

Data Science for
Mathematicians

CRC Press/Chapman and Hall

Handbooks in Mathematics Series

Series Editor: Steven G. Krantz
AIMS AND SCOPE STATEMENT FOR HANDBOOKS IN MATHEMATICS

SERIES

The purpose of this series is to provide an entree to active areas of

mathematics for graduate students, beginning professionals, and even for

seasoned researchers. Each volume should contain lively pieces that introduce

the reader to current areas of interest. The writing will be semi-expository,

with some proofs included for texture and substance. But it will be lively and

inviting. Our aim is to develop future workers in each field of study.

These handbooks are a unique device for keeping mathematics up-to-date and

vital. And for involving new people in developing fields. We anticipate that

they will have a distinct impact on the development of mathematical research.

Handbook of Analytic Operator Theory

Kehe Zhu

Handbook of Homotopy Theory

Haynes Miller

Data Science for Mathematicians
Nathan Carter

https://www.crcpress.com/CRC-PressChapman-and-Hall-Handbooks-in-Mathematics-Series/book-

series/CRCCHPHBKMTH

https://www.crcpress.com/

Data Science for
Mathematicians

Edited by

Nathan Carter

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

c© 2021 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

International Standard Book Number-13: 978-0-367-02705-6 (Hardback)

978-0-429-39829-2 (ebook)

This book contains information obtained from authentic and highly regarded sources. Reasonable

efforts have been made to publish reliable data and information, but the author and publisher

cannot assume responsibility for the validity of all materials or the consequences of their use. The

authors and publishers have attempted to trace the copyright holders of all material reproduced

in this publication and apologize to copyright holders if permission to publish in this form has

not been obtained. If any copyright material has not been acknowledged please write and let us

know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, repro-

duced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now

known or hereafter invented, including photocopying, microfilming, and recording, or in any infor-

mation storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access

www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center,

Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit

organization that provides licenses and registration for a variety of users. For organizations that

have been granted a photocopy license by the CCC, a separate system of payment has been

arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,

and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Carter, Nathan C., editor.

Title: Data science for mathematicians / Nathan Carter, ed.

Description: First edition. | Boca Raton, FL : CRC Press, 2020. | Includes

bibliographical references and index. |
Contents: Programming with data / Sean Raleigh -- Linear algebra / Jeffery

Leader -- Basic statistics / David White -- Clustering / Amy S. Wagaman --

Operations research / Alice Paul and Susan Martonosi -- Dimensionality reduc-

tion / Sofya Chepushtanova, Elin Farnell, Eric Kehoe, Michael Kirby, and Henry

Kvinge -- Machine learning / Mahesh Agarwal, Nathan Carter, and David

Oury -- Deep learning / Samuel S. Watson -- Topological data analysis / Henry

Adams, Johnathan Bush, Joshua Mirth. |
Summary: “Mathematicians have skills that, if deepened in the right ways, would

enable them to use data to answer questions important to them and others,

and report those answers in compelling ways. Data science combines parts of

mathematics, statistics, computer science. Gaining such power and the ability

to teach has reinvigorated the careers of mathematicians. This handbook will

assist mathematicians to better understand the opportunities presented by data

science”-- Provided by publisher.

Identifiers: LCCN 2020011719 | ISBN 9780367027056 (hardback) | ISBN

9780367528492 (paperback) | ISBN 9780429398292 (ebook)

Subjects: LCSH: Mathematical analysis. | Mathematical statistics. | Data

mining. | Big data--Mathematics.

Classification: LCC QA300 .D3416 2020 | DDC 515--dc23

LC record available at https://lccn.loc.gov/2020011719

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
https://lccn.loc.gov/2020011719
http://www.copyright.com/
http://www.copyright.com

Contents

Foreword xv

1 Introduction 1
Nathan Carter
1.1 Who should read this book? 1
1.2 What is data science? . 3
1.3 Is data science new? . 6
1.4 What can I expect from this book? 8
1.5 What will this book expect from me? 10

2 Programming with Data 13

Sean Raleigh
2.1 Introduction . 14
2.2 The computing environment 14

2.2.1 Hardware . 14
2.2.2 The command line . 15
2.2.3 Programming languages 16
2.2.4 Integrated development environments (IDEs) 17
2.2.5 Notebooks . 18
2.2.6 Version control . 22

2.3 Best practices . 23
2.3.1 Write readable code 23
2.3.2 Don’t repeat yourself 26
2.3.3 Set seeds for random processes 27
2.3.4 Profile, benchmark, and optimize judiciously 27
2.3.5 Test your code . 28
2.3.6 Don’t rely on black boxes 29

2.4 Data-centric coding . 30
2.4.1 Obtaining data . 30

2.4.1.1 Files . 30
2.4.1.2 The web . 31
2.4.1.3 Databases . 31
2.4.1.4 Other sources and concerns 33

2.4.2 Data structures . 34
2.4.3 Cleaning data . 35

2.4.3.1 Missing data 36

v

vi Contents

2.4.3.2 Data values 37
2.4.3.3 Outliers . 38
2.4.3.4 Other issues 38

2.4.4 Exploratory data analysis (EDA) 40
2.5 Getting help . 41
2.6 Conclusion . 41

3 Linear Algebra 43

Jeffery Leader
3.1 Data and matrices . 44

3.1.1 Data, vectors, and matrices 44
3.1.2 Term-by-document matrices 46
3.1.3 Matrix storage and manipulation issues 47

3.2 Matrix decompositions . 51
3.2.1 Matrix decompositions and data science 51
3.2.2 The LU decomposition 51

3.2.2.1 Gaussian elimination 51
3.2.2.2 The matrices L and U 53
3.2.2.3 Permuting rows 55
3.2.2.4 Computational notes 56

3.2.3 The Cholesky decomposition 58
3.2.4 Least-squares curve-fitting 60
3.2.5 Recommender systems and the QR decomposition . . 63

3.2.5.1 A motivating example 63
3.2.5.2 The QR decomposition 65
3.2.5.3 Applications of the QR decomposition 70

3.2.6 The singular value decomposition 71
3.2.6.1 SVD in our recommender system 74
3.2.6.2 Further reading on the SVD 77

3.3 Eigenvalues and eigenvectors 78
3.3.1 Eigenproblems . 78
3.3.2 Finding eigenvalues . 82
3.3.3 The power method . 84
3.3.4 PageRank . 86

3.4 Numerical computing . 92
3.4.1 Floating point computing 92
3.4.2 Floating point arithmetic 92
3.4.3 Further reading . 94

3.5 Projects . 95
3.5.1 Creating a database 95
3.5.2 The QR decomposition and query-matching 96
3.5.3 The SVD and latent semantic indexing 96
3.5.4 Searching a web . 96

Contents vii

4 Basic Statistics 99
David White
4.1 Introduction . 100
4.2 Exploratory data analysis and visualizations 103

4.2.1 Descriptive statistics 106
4.2.2 Sampling and bias . 109

4.3 Modeling . 111
4.3.1 Linear regression . 112
4.3.2 Polynomial regression 116
4.3.3 Group-wise models and clustering 117
4.3.4 Probability models . 118
4.3.5 Maximum likelihood estimation 122

4.4 Confidence intervals . 124
4.4.1 The sampling distribution 125
4.4.2 Confidence intervals from the sampling distribution . . 127
4.4.3 Bootstrap resampling 130

4.5 Inference . 133
4.5.1 Hypothesis testing . 133

4.5.1.1 First example 133
4.5.1.2 General strategy for hypothesis testing . . . 136
4.5.1.3 Inference to compare two populations 137
4.5.1.4 Other types of hypothesis tests 138

4.5.2 Randomization-based inference 139
4.5.3 Type I and Type II error 142
4.5.4 Power and effect size 142
4.5.5 The trouble with p-hacking 143
4.5.6 Bias and scope of inference 144

4.6 Advanced regression . 145
4.6.1 Transformations . 145
4.6.2 Outliers and high leverage points 146
4.6.3 Multiple regression, interaction 148
4.6.4 What to do when the regression assumptions fail . . . 152
4.6.5 Indicator variables and ANOVA 155

4.7 The linear algebra approach to statistics 159
4.7.1 The general linear model 160
4.7.2 Ridge regression and penalized regression 165
4.7.3 Logistic regression . 166
4.7.4 The generalized linear model 171
4.7.5 Categorical data analysis 172

4.8 Causality . 173
4.8.1 Experimental design 173
4.8.2 Quasi-experiments . 176

4.9 Bayesian statistics . 177
4.9.1 Bayes’ formula . 177
4.9.2 Prior and posterior distributions 178

viii Contents

4.10 A word on curricula . 180
4.10.1 Data wrangling . 180
4.10.2 Cleaning data . 181

4.11 Conclusion . 182
4.12 Sample projects . 182

5 Clustering 185

Amy S. Wagaman
5.1 Introduction . 186

5.1.1 What is clustering? . 186
5.1.2 Example applications 186
5.1.3 Clustering observations 187

5.2 Visualization . 188
5.3 Distances . 189
5.4 Partitioning and the k-means algorithm 193

5.4.1 The k-means algorithm 193
5.4.2 Issues with k-means 195
5.4.3 Example with wine data 197
5.4.4 Validation . 200
5.4.5 Other partitioning algorithms 204

5.5 Hierarchical clustering . 204
5.5.1 Linkages . 205
5.5.2 Algorithm . 206
5.5.3 Hierarchical simple example 207
5.5.4 Dendrograms and wine example 208
5.5.5 Other hierarchical algorithms 211

5.6 Case study . 211
5.6.1 k-means results . 212
5.6.2 Hierarchical results . 214
5.6.3 Case study conclusions 215

5.7 Model-based methods . 217
5.7.1 Model development . 217
5.7.2 Model estimation . 218
5.7.3 mclust and model selection 220
5.7.4 Example with wine data 220
5.7.5 Model-based versus k-means 221

5.8 Density-based methods . 224
5.8.1 Example with iris data 226

5.9 Dealing with network data 228
5.9.1 Network clustering example 229

5.10 Challenges . 232
5.10.1 Feature selection . 232
5.10.2 Hierarchical clusters 233
5.10.3 Overlapping clusters, or fuzzy clustering 234

5.11 Exercises . 234

Contents ix

6 Operations Research 239

Alice Paul and Susan Martonosi
6.1 History and background . 241

6.1.1 How does OR connect to data science? 241
6.1.2 The OR process . 242
6.1.3 Balance between efficiency and complexity 243

6.2 Optimization . 244
6.2.1 Complexity-tractability trade-off 246
6.2.2 Linear optimization 247

6.2.2.1 Duality and optimality conditions 249
6.2.2.2 Extension to integer programming 252

6.2.3 Convex optimization 252
6.2.3.1 Duality and optimality conditions 256

6.2.4 Non-convex optimization 258
6.3 Simulation . 260

6.3.1 Probability principles of simulation 261
6.3.2 Generating random variables 262

6.3.2.1 Simulation from a known distribution 262
6.3.2.2 Simulation from an empirical distribution:

bootstrapping 267
6.3.2.3 Markov Chain Monte Carlo (MCMC) methods 267

6.3.3 Simulation techniques for statistical and machine learn-
ing model assessment 269
6.3.3.1 Bootstrapping confidence intervals 269
6.3.3.2 Cross-validation 270

6.3.4 Simulation techniques for prescriptive analytics 271
6.3.4.1 Discrete-event simulation 272
6.3.4.2 Agent-based modeling 272
6.3.4.3 Using these tools for prescriptive analytics . 273

6.4 Stochastic optimization . 273
6.4.1 Dynamic programming formulation 274
6.4.2 Solution techniques . 275

6.5 Putting the methods to use: prescriptive analytics 277
6.5.1 Bike-sharing systems 277
6.5.2 A customer choice model for online retail 278
6.5.3 HIV treatment and prevention 279

6.6 Tools . 280
6.6.1 Optimization solvers 281
6.6.2 Simulation software and packages 282
6.6.3 Stochastic optimization software and packages 283

6.7 Looking to the future . 283
6.8 Projects . 285

6.8.1 The vehicle routing problem 285
6.8.2 The unit commitment problem for power systems . . . 286
6.8.3 Modeling project . 289
6.8.4 Data project . 289

x Contents

7 Dimensionality Reduction 291

Sofya Chepushtanova, Elin Farnell, Eric Kehoe, Michael Kirby, and
Henry Kvinge
7.1 Introduction . 292
7.2 The geometry of data and dimension 294
7.3 Principal Component Analysis 298

7.3.1 Derivation and properties 298
7.3.2 Connection to SVD 300
7.3.3 How PCA is used for dimension estimation and data

reduction . 300
7.3.4 Topological dimension 301
7.3.5 Multidimensional scaling 303

7.4 Good projections . 304
7.5 Non-integer dimensions . 306

7.5.1 Background on dynamical systems 307
7.5.2 Fractal dimension . 308
7.5.3 The correlation dimension 309
7.5.4 Correlation dimension of the Lorenz attractor 311

7.6 Dimension reduction on the Grassmannian 312
7.7 Dimensionality reduction in the presence of symmetry 318
7.8 Category theory applied to data visualization 321
7.9 Other methods . 326

7.9.1 Nonlinear Principal Component Analysis 326
7.9.2 Whitney’s reduction network 330
7.9.3 The generalized singular value decomposition 331
7.9.4 False nearest neighbors 332
7.9.5 Additional methods 332

7.10 Interesting theorems on dimension 333
7.10.1 Whitney’s theorem . 333
7.10.2 Takens’ theorem . 333
7.10.3 Nash embedding theorems 334
7.10.4 Johnson-Lindenstrauss lemma 335

7.11 Conclusions . 336
7.11.1 Summary and method of application 336
7.11.2 Suggested exercises . 336

8 Machine Learning 339

Mahesh Agarwal, Nathan Carter, and David Oury
8.1 Introduction . 340

8.1.1 Core concepts of supervised learning 341
8.1.2 Types of supervised learning 342

8.2 Training dataset and test dataset 342
8.2.1 Constraints . 342
8.2.2 Methods for data separation 344

Contents xi

8.3 Machine learning workflow 346
8.3.1 Step 1: obtaining the initial dataset 348
8.3.2 Step 2: preprocessing 350

8.3.2.1 Missing values and outliers 351
8.3.2.2 Feature engineering 352

8.3.3 Step 3: creating training and test datasets 353
8.3.4 Step 4: model creation 354

8.3.4.1 Scaling and normalization 354
8.3.4.2 Feature selection 355

8.3.5 Step 5: prediction and evaluation 357
8.3.6 Iterative model building 358

8.4 Implementing the ML workflow 360
8.4.1 Using scikit-learn . 360
8.4.2 Transformer objects 363

8.5 Gradient descent . 364
8.5.1 Loss functions . 364
8.5.2 A powerful optimization tool 365
8.5.3 Application to regression 366
8.5.4 Support for regularization 367

8.6 Logistic regression . 370
8.6.1 Logistic regression framework 371
8.6.2 Parameter estimation for logistic regression 371
8.6.3 Evaluating the performance of a classifier 373

8.7 Näıve Bayes classifier . 377
8.7.1 Using Bayes’ rule . 377

8.7.1.1 Estimating the probabilities 379
8.7.1.2 Laplace smoothing 379

8.7.2 Health care example 380
8.8 Support vector machines . 382

8.8.1 Linear SVMs in the case of linear separability 383
8.8.2 Linear SVMs without linear separability 386
8.8.3 Nonlinear SVMs . 389

8.9 Decision trees . 392
8.9.1 Classification trees . 395
8.9.2 Regression decision trees 398
8.9.3 Pruning . 399

8.10 Ensemble methods . 402
8.10.1 Bagging . 403
8.10.2 Random forests . 403
8.10.3 Boosting . 404

8.11 Next steps . 406

xii Contents

9 Deep Learning 409

Samuel S. Watson
9.1 Introduction . 410

9.1.1 Overview . 410
9.1.2 History of neural networks 411

9.2 Multilayer perceptrons . 413
9.2.1 Backpropagation . 414
9.2.2 Neurons . 417
9.2.3 Neural networks for classification 417

9.3 Training techniques . 418
9.3.1 Initialization . 419
9.3.2 Optimization algorithms 419
9.3.3 Dropout . 421
9.3.4 Batch normalization 421
9.3.5 Weight regularization 421
9.3.6 Early stopping . 422

9.4 Convolutional neural networks 422
9.4.1 Convnet layers . 423
9.4.2 Convolutional architectures for ImageNet 424

9.5 Recurrent neural networks 429
9.5.1 LSTM cells . 430

9.6 Transformers . 431
9.6.1 Overview . 431
9.6.2 Attention layers . 432
9.6.3 Self-attention layers 434
9.6.4 Word order . 434
9.6.5 Using transformers . 434

9.7 Deep learning frameworks . 435
9.7.1 Hardware acceleration 435
9.7.2 History of deep learning frameworks 436
9.7.3 TensorFlow with Keras 438

9.8 Open questions . 440
9.9 Exercises and solutions . 440

10 Topological Data Analysis 441

Henry Adams, Johnathan Bush, and Joshua Mirth
10.1 Introduction . 441
10.2 Example applications . 443

10.2.1 Image processing . 443
10.2.2 Molecule configurations 443
10.2.3 Agent-based modeling 445
10.2.4 Dynamical systems . 445

10.3 Topology . 446
10.4 Simplicial complexes . 447

Contents xiii

10.5 Homology . 449
10.5.1 Simplicial homology 450
10.5.2 Homology definitions 451
10.5.3 Homology example . 452
10.5.4 Homology computation using linear algebra 453

10.6 Persistent homology . 457
10.7 Sublevelset persistence . 463
10.8 Software and exercises . 464
10.9 References . 467
10.10Appendix: stability of persistent homology 467

10.10.1 Distances between datasets 468
10.10.2 Bottleneck distance and visualization 471
10.10.3 Stability results . 473

Bibliography 475

Index 515

http://taylorandfrancis.com

Foreword

As we often hear, we live in an era where data can be collected, stored, and
processed at an unprecedented (and rapidly accelerating) scale. Whether or
not that happens in a way that can properly be called science, however, is a
critical issue for our society.

The recently-concluded Roundtable on Data Science Postsecondary Edu-
cation, held under the auspices of the Board on Mathematical Sciences
and Analytics at the National Academies, brought together representatives
from academia, professional societies, industry, and funding agencies to share
perspectives on what tools our students need to participate in this space.
Throughout these discussions, it was clear that, while there is no single model
for what constitutes data science, there are a wide variety of tools from math-
ematics, statistics, and computer science that are essential ingredients for
anyone interested in exploring this rapidly-evolving discipline.

For those of us in mathematics, it is essential that we become better
informed about the role of our discipline in this emerging field. Doing so will
help prepare our students for careers that will increasingly depend on some
level of competency in understanding how to use data to inform decisions,
regardless of the specific discipline or industry in which they find themselves.
It can also bring heightened awareness of the importance of rigorous mathe-
matical perspectives to the enterprise.

I believe it is an ethical and, in fact, an existential imperative for the
mathematical sciences community to develop a deeper understanding of the
role of our disciplines in data science and to change our educational programs
to enable our students to engage with data effectively, and with integrity.

Nathan Carter and his colleagues have made an important contribution by
providing an overview of many of the key tools from the mathematical, statis-
tical, and computational sciences needed to succeed as a data scientist, written
specifically for those of us in the mathematical sciences—faculty interested in
learning more about data science themselves, graduate students, and others
with a reasonable level of mathematical maturity. From my perspective, for
those of us concerned with undergraduate mathematics education, it cannot
have come too soon.

Michael Pearson
Executive Director, Mathematical Association of America

xv

http://taylorandfrancis.com

Chapter 1

Introduction

Nathan Carter

Bentley University

1.1 Who should read this book? . 1
1.2 What is data science? . 3
1.3 Is data science new? . 6
1.4 What can I expect from this book? . 8
1.5 What will this book expect from me? . 10

This chapter serves as an introduction to both this text and the field of data
science in general. Its first few sections explain the book’s purpose and context.
Then Sections 1.4 and 1.5 explain which subjects will be covered and suggest
how you should interact with them.

1.1 Who should read this book?

The job market continues to demand data scientists in fields as diverse as
health care and music, marketing and defense, sports and academia. Practi-
tioners in these fields have seen the value of evidence-based decision making
and communication. Their demand for employees with those skills obligates
the academy to train students for data science careers. Such an obligation is
not unwelcome because data science has in common with academia a quest
for answers.

Yet data science degree programs are quite new; very few faculty in the
academy have a PhD in data science specifically. Thus the next generation of
data scientists will be trained by faculty in closely related disciplines, primarily
statistics, computer science, and mathematics.

Many faculty in those fields are teaching data-science-related courses now.
Some do so because they like the material. Others want to try something new.
Some want to use the related skills for consulting. Others just want to help
their institution as it launches a new program or expands to meet increased
demand. Three of my mathematician friends have had their recent careers

1

2 Data Science for Mathematicians

shaped by a transition from pure mathematics to data science. Their stories
serve as examples of this transition.

My friend David earned his PhD in category theory and was doing part-
time teaching and part-time consulting using his computer skills. He landed
a full-time teaching job at an institution that was soon to introduce graduate
courses in data science. His consulting background and computing skills made
him a natural choice for teaching some of those courses, which eventually led
to curriculum development, a new job title, and grant writing. David is one
of the authors of Chapter 8.

Another friend, Sam, completed a PhD in probability and began a post-
doctoral position in that field. When his institution needed a new director
of its data science masters program, his combination of mathematical back-
ground and programming skills made him a great internal candidate. Now in
that role, his teaching, expository writing, and career as a whole are largely
focused on data science. Sam is the author of Chapter 9.

The third and final friend I’ll mention here, Mahesh, began his career as
a number theorist and his research required him to pick up some program-
ming expertise. Wanting to learn a bit more about computing, he saw data
science as an exciting space in which to do so. Before long he was serving on a
national committee about data science curricula and spending a sabbatical in
a visiting position where he could make connections to data science academics
and practitioners. Mahesh is the other author of Chapter 8.

These are just the three people closest to me who have made this tran-
sition. As you read this, stories of your own friends or colleagues may come
to mind. Even if you don’t know a mathematician-turned-data-scientist per-
sonally, most mathematicians are familiar with Cathy O’Neil from her famous
book Weapons of Math Destruction [377], who left algebraic geometry to work
in various applied positions, and has authored several books on data science.

In each of these stories, a pure mathematician with some computer expe-
rience made a significant change to their career by learning and doing data
science, a transition that’s so feasible because a mathematical background is
excellent preparation for it. Eric Place1 summarized the state of data science
by saying, “There aren’t any experts; it’s just who’s the fastest learner.”

But mathematicians who want to follow a path like that of David, Sam, or
Mahesh have had no straightforward way to get started. Those three friends
cobbled together their own data science educations from books, websites, soft-
ware tutorials, and self-imposed project work. This book is here so you don’t
have to do that, but can learn from their experiences and those of others.
With a mathematical background and some computing experience, this book
can to be your pathway to teaching in a data science program and considering
research in the field.

1Director of Informatics, Martin’s Point Health Care, speaking at the University of New
Hampshire Northeast Big Data Conference, November 17, 2017

Introduction 3

But the book does not exist solely for the benefit of its mathematician
readers. Students of data science, as they learn its techniques and best prac-
tices, inevitably ask why those techniques work and how they became best
practices. Mathematics is one of the disciplines best suited to answering that
type of question, in data science or any other quantitative context. We are in
the habit of demanding the highest standards of evidence and are not con-
tent to know just that a technique works or is widely accepted. Bringing that
mindset to data science will give students those important “why” answers and
make your teaching of data science more robust. If this book helps you shift
or expand your career, it will not be for your benefit only, but for that of our
students as well.

1.2 What is data science?

In 2001, William Cleveland published a paper in International Statisti-
cal Review [98] that named a new field, “Data Science: An Action Plan for
Expanding the Technical Areas of the Field of Statistics.” As the title sug-
gests, he may not have been intending to name a new field, since he saw his
proposal as an expansion of statistics, with roughly 15% of that expanded
scope falling under the heading of computer science. Whether data science is
a new field is a matter of some debate, as we’ll see in Section 1.3, though I
will sometimes refer to it as a field for the sake of convenience.

In Doing Data Science [427], Cathy O’Neil and Rachel Schutt say that
the term “data scientist” wasn’t coined until seven years after Cleveland’s
article, in 2008. The first people to use it were employees of Facebook and
LinkedIn, tech companies where many of the newly-christened data scientists
were employed.

To explain this new field, Drew Conway created perhaps the most famous
and reused diagram in data science, a Venn diagram relating mathematics,
statistics, computer science, and domain expertise [107]. Something very close
to his original appears in Figure 1.1, but you’re likely to encounter many
variations on it, because each writer seems to create one to reflect their own
preferences.

You can think of the three main circles of the diagram as three academic
departments, computer science on the top left, math on the top right, and
some other (usually quantitative) discipline on the bottom, one that wants
to use mathematics and computing to answer some questions. Conway’s top-
left circle uses the word “hacking” instead of computer science, because only a
small subset of data science work requires formal software engineering skills. In
fact, reading data and computing answers from it sometimes involves unex-
pected and clever repurposing of data or tools, which the word “hacking”
describes very well. And mathematicians, in particular, can take heart from

4 Data Science for Mathematicians

Mathematics
and Statistics

Hacking
Skills

Domain
Expertise

Machine
Learning

Danger
Zone

Traditional
Research

Data
Science

FIGURE 1.1: Rendering of Drew Conway’s “data science Venn diagram” [107].

Conway’s labeling of the top-right circle not as statistics, but mathematics
and statistics, and for good reason. Though Cleveland argued for classifying
data science as part of statistics, we will see in Section 1.4 that many areas of
mathematics proper are deeply involved in today’s data science work.

The lower-left intersection in the diagram is good news for readers of this
text: it claims that data science done without knowledge of mathematics and
statistics is a walk into danger. The premise of this text is that mathematicians
have less to learn and can thus progress more quickly.

The top intersection is a bit harder to explain, and we will defer a full
explanation until Chapter 8, on machine learning. But the gist is that machine
learning differs from traditional mathematical modeling in that the analyst
does not impose as much structure when using machine learning as he or
she would when doing mathematical modeling, thus requiring less domain
knowledge. Instead, the machine infers more of the structure on its own.

But Figure 1.1 merely outlines which disciplines come into play. The prac-
tice of data science proceeds something like the following.

1. A question arises that could be answered with data.

This may come from the data scientist’s employer or client, who needs
the answer to make a strategic decision, or from the data scientist’s own
curiosity about the world, perhaps in science, politics, business, or some
other area.

2. The data scientist prepares to do an analysis.

This includes finding relevant data, understanding its origins and mean-
ing, converting it to a useful format, cleaning it, and other necessary

Introduction 5

precursors to analysis of that data. This includes two famous acronyms,
ETL (extract, transform, and load the data) and EDA (exploratory data
analysis).

3. The data scientist performs an analysis based on the data.

Though mathematical modeling is very common here, it is not the only
kind of analysis. Any analysis must leverage only those mathematical,
statistical, and computing tools permissible in the given situation, which
means satisfying necessary mathematical assumptions, ensuring compu-
tations are feasible, complying with software license agreements, using
data only in legal and ethical ways, and more.

4. The data scientist reports any useful results.

If the question was posed by an employer, “useful” probably means
actionable and desirable for that employer. If the question was a scientific
or academic one, “useful” may mean results that satisfy the intellectual
curiosity that motivated the question. A report of results may go to an
employer, an academic journal, a conference, or just a blog. If no useful
results were obtained, returning to an earlier step may be necessary.

Organizing the parts of data science chronologically is not uncommon (Fig-
ure 2 in reference [414]) but it is also not the only way to explain the subject
(pages 22 and following in reference [132]). But every such sequence includes
steps similar to those above, each of which is covered in this text, some in
multiple ways.

Mathematicians may be prone to thinking of step 3 in the list above as the
real heart of the subject, because it’s where the most interesting mathematics
typically happens. But step 2 can be even more central. Hadley Wickham’s
famous and influential paper “Tidy Data” [501] suggests that up to 80% of
data analysis can be the process of cleaning and preparing data (quoting Dasu
and Johnson [119]).

And while step 4 may seem like the task that follows all the real work,
it, too, can be the heart of the matter. In his online data science course,
Bill Howe2 says that Nate Silver’s seemingly miraculous predictions of the
2012 United States presidential election were (in Silver’s own admission) not
sophisticated data work but were important largely because they were new
and were communicated through clear visualizations and explanations. In that
famous work, perhaps step 4 was the most innovative and impactful one.

This leaves room for specialization in many directions. Those with better
communication skills will be better at step 4, like Silver and his team. Those
with greater subject matter expertise will be better at step 1, setting goals
and asking questions. Those with better stats skills will be better at modeling;
those with math skills will be better at knowing when models are applicable
and when new ones need to be invented and proven valid. Those with software

2Associate Director, eScience Institute, University of Washington

6 Data Science for Mathematicians

engineering skills may be better at packaging algorithms for reuse by other
scientists or creating dashboards for nontechnical users.

Names have begun to appear for some of these specializations. The term
“data analyst” can refer to one who specializes in the statistics and modeling
aspects of data science, the top-right circle of Figure 1.1. To refer to someone
who specializes in one data-driven domain, such as finance or genetics, you
may see the term “domain specialist.” This carries the connotation of famil-
iarity with general data science knowledge (of mathematics, statistics, and
computing) but less expertise in those areas than in the chosen domain. This
is the bottom circle of Figure 1.1. Finally, a “data engineer” is someone who
specializes in the storage, organization, cleaning, security, and transformation
of data, and will typically have strength primarily in computer science, per-
haps databases specifically. This is somewhat related to the top left of Figure
1.1.

Though I’ve quoted some foundational sources when explaining data sci-
ence, it’s important to recognize that not everyone defines data science the
same way. The field is still young, and there are many stakeholders and thus
many opinions. We’ll see one of the central disagreements in Section 1.3.

And there are different trends in how the phrase “data science” is used
internationally. For instance, in the United States it has been more common
to interpret Figure 1.1 as defining a data scientist very narrowly, as someone
who has mastered all parts of the Venn diagram, and thus sits in the exalted
center spot. The buzzword “unicorn” suggests how rare and magical such an
individual is. Only a small percentage of jobs in the field require this level
of expertise. In Europe, the interpretation has been more broad, permitting
one to specialize in various parts of the diagram while having some working
knowledge of the others.

1.3 Is data science new?

Donoho’s famous survey “50 Years of Data Science” [132] covers a debate
about whether data science is a qualitatively new thing or just a part of
statistics. Much of the debate centers around changes in technology, which
we can break into two categories. First, the proliferation of data-generating
devices (sensors, mobile phones, websites) give us access to enormous amounts
of data. As Bill Howe puts it, “data analysis has replaced data acquisition as
the new bottleneck to discovery.” Second, advances in hardware and software
have made it possible to implement ideas that were once outside the capability
of our computing tools (such as deep neural networks, covered in Chapter 9).

One side of the debate might point out that statistics didn’t stop being
statistics when computers were invented or when SAS or R became popular.

Introduction 7

It’s still statistics as technology evolves. The four steps in Section 1.2 might
as well describe the work of a statistician.

The other side would point to the unprecedented scope and diversity of
technology changes in so short a span of time, many of which necessitate whole
new areas of expertise, some of which require very little work with statistics.
Their claim would be that the sum of these changes amounts to a qualitatively
new situation.

Regardless of whether we prefer either side of the debate, we should avoid
thinking of these emerging and new technologies themselves as data science.
Because the emergence of data science as a field is intimately intertwined with
these technological changes, there is a temptation to conflate the two ideas.
But data science is the use of these technologies, which includes all the parts
of Figure 1.1, not just the technology itself.

Perhaps the most common example of this misunderstanding surrounds the
buzzphrase “big data,” which refers to data that is so extensive or is being
generated so quickly that new hardware or software is required to manage it.
Having to deal with big data may put technological constraints on the entire
data science process (steps 1 through 4 in Section 1.2), but we should not
confuse those technologies nor their constraints with the data science process
itself. Data science is much more than big data, or any other aspect of the
technology it uses.

And yet at the same time, there is something very important about the
technology. One of the sea changes in recent years has been how many analyses
are automated by writing code in a scripting language like R or Python rather
than by manipulating buttons or menus in a piece of statistical software.
Donoho says this is a “game changer,” turning algorithms, which were once
things described only in natural language in statistics papers, into things that
are downloadable, actionable, and testable. This leads to their being shared
more often on code websites than in academic papers.

Changes since Donoho’s writing make the case even more strongly. Now
you don’t even have to download anything to run an algorithm you find online;
you can read computational notebooks on GitHub or open them immediately
in a host of cloud services, make your own copy, and begin hacking, repro-
ducing other investigators’ results or tweaking them to your own needs. Dash-
boards make it possible for a data scientist to automate an analysis and create
an interface for it, through which nontechnical users can apply the analysis
to new data as that data arrives. Those users can gain new insights without
subsequent interaction with the analyst. Such applications are called “data
products,” and so data science has become not just about answering ques-
tions, but about building tools that can answer questions on demand.

This book takes no side in the debate over whether data science is a new
field. But it should be clear that the capabilities and activities surrounding
its new technologies are what a lot of the excitement is about.

8 Data Science for Mathematicians

1.4 What can I expect from this book?

You can expect that the chapters in this text represent the essentials of
data science and that each chapter provides references to where you can dive
deeper. Thus from this book you will get a solid foundation paired with ample
opportunities to grow into whatever specialized expertise interests you.

You cannot expect that every corner of data science is represented in this
text. It’s too huge a field, and it’s constantly evolving. For example, we do
not have a chapter on big data. We hit related topics in Chapters 7 and 10,
but big data is constantly changing with technology and is more related to
computer science than mathematics, so it does not have its own chapter.

We motivate each chapter by stating its purpose at the outset. Why did
someone invent the concepts in the chapter? What properties of the world
necessitated that tool in the analytics toolbox?

In most chapters, we give only a brief review of the mathematical back-
ground required for a chapter’s content, because the text is for mathemati-
cians. We assume that you know most of the mathematical background, per-
haps requiring only a short review or summary, which lets us move more
quickly into the material that’s likely to be new to you. In some chapters,
this may include more advanced mathematics, but most of the time the new
content is statistics, computing, or surprising applications of mathematics you
already know.

Each chapter covers all the most common concepts within its topic so that
you have a broad understanding of that topic. Most chapters also go beyond
just the foundations, but cannot do so comprehensively.

Each chapter ends with citations for further reading, sometimes even on
cutting edge research, so that those who were particularly intrigued by the
material know where to go for more depth.

Most chapters do not have exercises, because we assume that the reader
is capable of assessing whether they understand the chapter’s basics, and
assigning themself exercises to verify this if needed. Chapters typically give
only large, project-sized assignments. I cannot emphasize enough that every
reader should do these projects. Skipping them will leave only the illusion of
understanding.

What I cannot create, I do not understand.

Richard Feynman
found on his chalkboard after his death

Introduction 9

Each chapter has its own distinctives, but as a whole, they follow the
logical progression described below.

Chapter 2, Programming with Data. While we assume that the reader
knows a little programming, most mathematicians aren’t up on the tools,
practices, and ideas data scientists use when coding. Consider this chap-
ter your fast track to the computing knowledge you’ll need to get started,
including computational notebooks, reproducibility, and best practices.

Chapter 3, Linear Algebra. Why does a text for mathematicians have a
chapter on an undergraduate topic? It quickly reviews the basics to
get into the most relevant new ideas for working with data. Organized
around matrix decompositions, this chapter highlights computational
issues such as data storage, sparse matrices, and numerical stability,
culminating with unique projects on text analysis, databases, and web
searching.

Chapter 4, Basic Statistics. The last time most mathematicians spent
time studying statistics was probably before the data revolution. We
need a review. I’ve wanted for a long time to read a chapter like this
one, covering a huge swath of statistics fundamentals, but aimed at the
level of a mathematician, and with examples using R. It also highlights
tips for first-time statistics teachers, especially those whose students
want to go into data science. Here you’ll encounter the crucial concept
of overfitting vs. underfitting a mathematical model, which reappears
throughout the text.

Chapter 5, Cluster Analysis. Some aspects of computing with data today
seem almost magical. This chapter shows the first examples of that
through the most common type of unsupervised learning, with examples
of automatically finding, in data, structure that is meaningful to humans.
Readers may find this to be the first entirely new content in the text, and
it is a great example of how data science brings many topics together,
such as discrete mathematics, statistics, analysis, and optimization.

Chapter 6, Operations Research. Recall the mandate in data science
that derived insights must have practical value. This chapter emphasizes
that by expanding the optimization concepts from Chapter 5 to many
more methods and applications. The authors distinguish descriptive,
prescriptive, and predictive analytics, all in service to making decisions
from data, and end with an impressive array of deep projects suitable
for the reader or as term projects for advanced undergraduates.

Chapter 7, Dimensionality Reduction. Readers eager to dive into the
mathematical foundations of data science will enjoy Chapter 7, touch-
ing topics as disparate as Grassmannian manifolds, group theory, and
principal components analysis. While focusing primarily on theory, the
chapter still finds time to provide specific examples (with Python and

10 Data Science for Mathematicians

MATLAB code) of finding low-dimensional patterns in high-dimensional
data. The techniques and the mathematical theory upholding them are
at times equally surprising.

Chapter 8, Machine Learning. When you think of data science, you prob-
ably think of the topics in this chapter, which surveys many com-
mon algorithmic methods and central tools like gradient descent and
the scikit-learn library. Many common supervised learning techniques
appear, including support vector machines, decision trees, and ensem-
ble methods, as well as key workflow principles, like preventing leakage
between training and test data.

Chapter 9, Deep Learning. Neural networks and deep learning have
received a lot of hype, which this chapter addresses head-on in two
ways. First, it introduces readers to many of the amazing capabilities of
these technologies, and second, it reveals their implementation with clear
exposition and beautiful illustrations. Topics include stochastic gradient
descent, back-propagation, network architectures (CNNs, RNNs), and
code to get started in Python.

Chapter 10, Topological Data Analysis. This relatively new area of
data science is a hot topic not only for its successes in applied prob-
lems, but for the unexpected marriage of pure mathematics (topology)
to the applied world of data. It reviews essential ideas from topology and
connects them to data through the computation of persistent homology.
The chapter contains over 20 exercises to draw the reader in and has
extensive online supplements.

This diversity of chapter content and style provides something for every
reader, and because chapters are largely independent, you can start reading in
whichever one you like. Those who need to brush up on their computing skills
may want to start with Chapter 2. Or if you’re confident in your computing
skills and want to see what you can do with them, try Chapter 8 or 9. To
see new applications of familiar mathematics, try Chapter 3, 5, or 6; to learn
some new mathematics, try Chapter 7 or 10. Those more interested in being
a better teacher in data-related courses may want to start with Chapter 4.

Or, as the outline above shows, the text is also laid out so that it can be
read in order. Ample cross-references between chapters let you know what’s
coming next, and where you can flip back to review a concept from earlier.

1.5 What will this book expect from me?

We assume you know some computer programming. One statisti-
cian I spoke with said that if he had to tell mathematicians one thing that

Introduction 11

would help them get on with data science, it would be programming in a gen-
eral purpose language. You don’t need excellent coding skills, but you need to
have coded a bit before and to be willing to do plenty more. Chapter 2 will
give you more specifics.

O’Neil and Schutt define a data scientist as “a data-savvy, quantitatively
minded, coding-literate problem-solver.” Mathematicians are quantitatively
minded problem-solvers, and if you’re also coding literate, you can read this
book to become data-savvy. One of the main ways this will happen (and your
coding strength expand) is by tackling the large projects at the end of each
chapter.

You need to know or be willing to learn those domains to which
you want to apply data science. Bill Franks3 said that regardless of the
mathematical and statistical methods underpinning an analysis, the goal is
always the same: to turn data into actionable value. INFORMS defines ana-
lytics [163] as “the scientific process of transforming data into insight for
making better decisions.” If you don’t know any domain of application for
data science, you’ll need to be willing to learn one, or you won’t be able to
assess which insights are actionable or desirable.4

But of course you already have expertise in at least one field to which data
science can be applied, perhaps many. Do you like golf? Video games? Politics?
Mountain biking? Quilting? Investments? Rock music? There is data analytics
to be done in every field and more data coming online every minute. Indeed,
even if your life were exclusively within academia, there is data analytics to
be done there; bibliometrics uses data science to study academic publications.
One research group at my institution published bibliometric analyses in the
Proceedings of the National Academy of Sciences [174].

The final thing this book expects of you is perhaps the biggest. It’s a mental
shift you’ll need to cultivate as you move out of the realm of theorems and
proofs. Rob Gould5 emphasized to me how challenging it can be to shift from
deductive to inductive reasoning. Mathematicians spend their whole lives
removing context, seeking abstraction, but in data science, context is crucial.
Data takes on meaning only in context.

Jennifer Priestley6 echoed that sentiment when she and I discussed this
book’s goals. She says that this book should help you learn how to put together
things you already know—mathematical concepts like graph theory—to do
things you don’t yet know, like analyze supply chain data or health care
problems. The connection from what you know to what you don’t is data. For

3Chief Analytics Officer, International Institute for Analytics, speaking at the University
of New Hampshire Northeast Big Data Conference, November 17, 2017

4While this is less true when the data scientist is part of a group whose other members
are domain experts, at least some of that expertise is necessarily absorbed by the data
scientist in order for the group to do its work.

5Statistician, University of California, Los Angeles, and founding editor of Teaching
Innovations in Statistics Education

6Professor of Statistics and Data Science, Associate Dean of the Graduate College, Ken-
nesaw State University

12 Data Science for Mathematicians

example, we’re no longer thinking about graph theory in the abstract, but
we’re looking at the specific graph given by the data we have.

The data scientist’s job is to apply to the available data appropriate math-
ematical and statistical theory, usually using computer code, in a way that
yields useful results. Mathematicians have tons of expertise in the concepts
but not typically in how to apply them. This book is here to fill that gap.

Chapter 2

Programming with Data

Sean Raleigh

Westminster College

2.1 Introduction . 14
2.2 The computing environment . 14

2.2.1 Hardware . 14
2.2.2 The command line . 15
2.2.3 Programming languages . 16
2.2.4 Integrated development environments (IDEs) 17
2.2.5 Notebooks . 18
2.2.6 Version control . 22

2.3 Best practices . 23
2.3.1 Write readable code . 23
2.3.2 Don’t repeat yourself . 26
2.3.3 Set seeds for random processes . 27
2.3.4 Profile, benchmark, and optimize judiciously 27
2.3.5 Test your code . 28
2.3.6 Don’t rely on black boxes . 29

2.4 Data-centric coding . 30
2.4.1 Obtaining data . 30

2.4.1.1 Files . 30
2.4.1.2 The web . 31
2.4.1.3 Databases . 31
2.4.1.4 Other sources and concerns 33

2.4.2 Data structures . 34
2.4.3 Cleaning data . 35

2.4.3.1 Missing data . 36
2.4.3.2 Data values . 37
2.4.3.3 Outliers . 38
2.4.3.4 Other issues . 38

2.4.4 Exploratory data analysis (EDA) . 40
2.5 Getting help . 41
2.6 Conclusion . 41

13

14 Data Science for Mathematicians

2.1 Introduction

The most important tool in the data science tool belt is the computer. No
amount of statistical or mathematical knowledge will help you analyze data
if you cannot store, load, and process data using technology.

Although this chapter is titled “Programming with Data,” it will not teach
you how to write computer programs. There are lots of books and online
resources that can teach you that. Neither is the goal to familiarize you with
any particular programming language; such an attempt would be out-of-date
practically from the moment the book left the presses.

Instead, the aim of this chapter is to introduce you to some aspects of
computing and computer programming that are important for data science
applications.

A theme that runs throughout this chapter is the idea of reproducible
research. A project that can be reproduced is one that bundles together the
raw data along with all the code used to take that data through the entire
pipeline of loading, processing, cleaning, transforming, exploring, summariz-
ing, visualizing, and analyzing it. Given the exact same hardware and software
configuration, and given access to the raw data, anybody should be able to
run the code and generate the exact same results as the original researchers.
Several sections below speak to tools and workflows that support the data sci-
entist in creating and documenting their work to make it more reproducible.

Each of the following topics could fill whole books. We’ll just go on a quick
tour, introducing key vocabulary and giving some big-picture perspective.

2.2 The computing environment

2.2.1 Hardware

Although the focus of this chapter is on software, it’s worth spending a
little time talking about the machinery that powers the processes we run.

The choice of hardware for doing data science depends heavily on the task
at hand. Modern desktop and laptop computers off the shelf are generally well
equipped with large hard drives and a reasonable amount of RAM (“Random-
Access Memory,” the kind of memory used to run the processes that are
happening in your current computing session). Memory is cheap.

One common definition of big data is any data that is too big to fit in the
memory your computer has. For big data situations there are several options.
Your employer may have larger servers that allow more data to be stored and
allocate more memory resources for processing big data, and perhaps you can

Programming with Data 15

access those resources. Another popular option is to use a cloud-based service.
Some are offered by “big tech” companies like Google [195], Amazon [17], and
Microsoft [345], but there are many companies out there that host data and
data processing tools. These services are convenient because they make vast
resources available to you, but typically only charge you for the resources you
actually use on a pay-as-you-go basis.

When possible, it’s nice to take advantage of parallel processing. The cen-
tral processing unit (CPU) is the brain of your computer. It’s responsible for
managing all the instructions that are sent to the various parts of your com-
puter and for doing the heavy lifting when computations need to be performed.
Most modern CPUs have multiple “cores” that operate somewhat indepen-
dently of each other. This allows for complex computations to be broken up
into pieces that can run on different cores simultaneously. There’s a cost-
benefit analysis for parallelizing code. For example, you might run a one-off
task overnight rather than spending time figuring out how to split the process
into pieces that can run on parallel cores, perhaps for only a few hours of time
savings. Nevertheless, when you have an especially time-consuming bit of code
(and perhaps one you plan to run repeatedly or regularly), it’s worth finding
out whether your machine has multiple cores and whether the functions you
use can be parallelized to leverage those cores.

Some data scientists are working with graphics processing units (GPUs),
the part of your computer responsible for rendering graphics. GPUs are, in
some ways, far more powerful than CPUs. However, GPUs are highly special-
ized and not designed for the kinds of use cases data scientists typically have.
Working with them is more demanding from a technical point of view. Unless
your work involves image processing, frameworks and interfaces for doing data
science with GPUs are not widely available; they might be out of reach for
the average user. (The situation is improving, though, so by the time you
read this, such frameworks may be more commonplace; one such framework
is discussed in Chapter 9.)

2.2.2 The command line

Back in the days when computing was done on large mainframes, the
user interface was a simple “terminal.” This was usually a box that didn’t
have much functionality on its own but simply provided a way for the user
to enter commands that were passed to the mainframe, where all the serious
computational work was done. In the early days of personal computing, the
mainframe/terminal distinction went away for the average home computer
user, but the user interacted with their machine in much the same way, typing
commands on a screen next to a prompt that just sat there waiting for the
next command.

A lot of serious computing is still done at the command line. If you have
to access resources on a server, your computer can act as a terminal sending
commands to that server. Some functionality on even our own machines is

16 Data Science for Mathematicians

available principally through some kind of terminal program with a command
line. (For example, Git [468]—described in Section 2.2.6 below—is one such
application.)

If you want to check the terminal on your machine, there are multiple ways
of doing it (depending on the operating system), but here are some easy ones:

• In Windows 10, go to the Start Menu and type cmd to open the Com-
mand Prompt.

• In MacOS, use Command + Space to open Spotlight Search and type
Terminal. It’s located in the Utilities folder in your Applications list.
It’s also easy to find through the Finder.

• For Linux users, Ubuntu and Mint use the keyboard shortcut Ctrl + Alt
+ T to open the terminal. It’s also easy to find through Applications or
Apps (depending on your installation).

One important application of command-line skills is the Linux operating
system. While most home computers (not counting mobile devices) use Win-
dows or MacOS as an operating system, Linux is the lingua franca for web
servers, Internet-of-things devices, and serious production machines. Linux
users can opt to use a graphical user interface (GUI), pointing and clicking
a mouse to execute commands instead of typing something at a command
prompt, but power users frequently work at the command line.

2.2.3 Programming languages

There are hundreds of programming languages in existence and users of
those languages are often passionate proponents of their preferences. As new
languages develop and old ones fall out of favor, there is a constantly shifting
landscape, especially in a field like data science that is growing and evolving
so rapidly.

Having said all that, at the time of the writing of this book, there are two
languages that stand out for their popularity among data scientists: R [397]
and Python [164].

It is often said that R was written by statisticians and for statisticians.
Because of that focus, R has a lot of built-in functionality for data visualization
and analysis.

Python is a general-purpose programming language that was designed to
emphasize code readability and simplicity. While not originally built for data
science applications per se, various libraries augment Python’s native capa-
bilities: for example, pandas [340] for storing and manipulating tabular data,
NumPy [370] for efficient arrays, SciPy [255] for scientific programming, and
scikit-learn [385] for machine learning.

Both R and Python have features that make them attractive to data scien-
tists. One key feature is “dynamic typing.” By way of contrast, “static typing”

Programming with Data 17

requires the programmer to declare up front any variables they intend to use
along with the type of data that will be stored in those variables. R and
Python figure out what kind of variable you want on the fly by looking at the
content of the data you assign to it at the time of its definition. This makes
the process of writing programs faster, although it can also make programs
more error-prone. Rapid prototyping is much easier in R and Python than,
say, in C or Java.

Both R and Python are open source, which means that their source code
is made freely available, and consequently the languages are also free to down-
load and use. Open source projects also come with licenses that allow the user
to copy, remix, and redistribute the source code freely as well.

These are obviously not the only two choices. Julia [49] is a relative new-
comer that shows a lot of promise in speed, functionality, and readability for
some types of mathematical work. Java [196] is a traditional workhorse that
many developers already know (and love?). Scala [366] is closely related to
Java and acts as a standard interface for a variety of big data tools. A few
Internet searches will reveal whatever is the new hotness at the time you read
this.

2.2.4 Integrated development environments (IDEs)

Computer code is just text. You can write code in any text editor, and
it will be usable in R, Python, or whatever language you’re working in. Pro-
gramming languages generally provide a basic “shell,” which usually takes the
form of a simple application with a command prompt you can use to issue
commands to run functions or programs in that language. The shell imple-
ments something called a REPL, short for Read-Evaluate-Print Loop, an apt
description of its purpose.

Having said that, because programming is hard, we like to find ways to
make it easier. So rather than writing text files and running them from a
shell, we can run an Integrated Development Environment (IDE). IDEs often
provide tools like the following.

• Syntax highlighting makes it easier to read code on the screen by adding
color to distinguish functions, arguments, and variables.

• Linters clean up code by indenting and formatting it according to style
guides, flagging deprecated code, and checking for syntax errors or
unused variables and function arguments.

• Debugging tools provide ways to trace through functions as they’re exe-
cuting and set breakpoints that pause the program to check the state of
variables while the program is running.

• Project management allows you to organize files with related code and
store needed data files and other dependencies alongside your code.

18 Data Science for Mathematicians

• Code completion watches as you type and suggests functions and vari-
able names as you start to type them. Then you can hit a shortcut key
(such as tab) to auto-complete the rest of the name before you finish
typing, saving many keystrokes.

• Version control is often integrated so that you don’t have to open up
a separate terminal and remember complicated command-line syntax.
(See Section 2.2.6.)

The de facto standard IDE for R is RStudio [413] due to its tight inte-
gration with R and its orientation toward data projects. There are several
IDEs available that are specifically designed for Python, like Spyder [109] and
PyCharm [251]. Both languages are also supported in a wide range of general-
purpose IDEs that work with many different languages, like Atom [189], Sub-
lime [449], Eclipse [460], and Visual Studio Code [346].

2.2.5 Notebooks

In 1984, Donald Knuth (of TEX fame) wrote about a new paradigm for
organizing code called “literate programming” [272]:

Let us change our traditional attitude to the construction of pro-
grams: Instead of imagining that our main task is to instruct a com-
puter what to do, let us concentrate rather on explaining to human
beings what we want a computer to do.

Traditional code appears in plain text files—sometimes called “script
files”—containing just the code and, we hope, some comments. Knuth sug-
gests reversing that balance, using a document that is primarily narrative
to explain the function and purpose of the code, interspersed with delimited
blocks containing the code itself.

One popular, modern implementation of the literate programming
paradigm is the “notebook.” (Software familiar to many mathematicians like
Mathematica, MATLAB, Maple, and Sage also use notebooks.) Many flavors
of notebook use Markdown for formatting text, which is actually a markup
system similar in function to markup in TEX, but much simpler and with fewer
options.1 (See Figure 2.1 for an example of Markdown in both plain text and
rendered forms.) A notebook author indicates which portions of the content
are code, and that code is executed when the notebook is “run.” But the more
common use of notebooks is running each block of code interactively, one at
a time, typically while the author is creating the file, possibly still exploring
how to solve a problem or analyze a dataset.

1Because markup documents often get processed to produce either HTML or PDF output
files, HTML tags and LATEX commands, respectively, can also be inserted when plain vanilla
Markdown is insufficient for the job.

Programming with Data 19

FIGURE 2.1: Left: Some plain text using Markdown syntax. Right: The ren-
dered text. Markdown has many more features than those sampled here.

R notebooks are Markdown files that use a special set of delimiters called
“code chunks” to indicate where R code goes. Figure 2.2 shows an R Notebook
as it appears in RStudio. Figure 2.3 shows the HTML generated from the
notebook file. R Notebooks can also be processed to other file types, like PDF
and Word.

The standard notebook format for Python is the Jupyter [271] notebook
(formerly called IPython) that uses a series of “cells,” each of which can con-
tain either code or Markdown-formatted text. See Figure 2.4 for an example.

While not strictly necessary for doing reproducible research, notebooks are
helpful because they allow their creators to explain each step of the pipeline
and motivate the workflow. Instead of requiring a separate file of instructions
for compiling and processing code, the notebook file is the set of instructions,
containing all the text and code necessary to reproduce and explain the results.

Notebooks are especially valuable in educational settings. Rather than
having two documents—one containing code and the other explaining the
code, usually requiring awkward references to line numbers in a different file,
notebooks allow students to see code embedded in narrative explanations that
appear right before and after the code. While it’s possible in script files to
embed large commented sections alongside the code, those comment sections
are difficult to format and have no way to take advantage of the pretty, easy-
on-the-eyes, rich-text output that Markdown provides, such as typesetting of
mathematical formulas in TEX notation.

Notebooks play an important role in data science, but they are not solu-
tions to every problem. In software development, “production code”—meaning

20 Data Science for Mathematicians

FIGURE 2.2: An example of a simple R notebook presented in RStudio [413].
R notebooks will also generate HTML files. Figure 2.3 shows the file generated
from the notebook in this figure.

Programming with Data 21

FIGURE 2.3: This is the HTML file generated by the R Markdown file from
Figure 2.2.

FIGURE 2.4: An example of a simple Jupyter notebook. The Markdown cells
can be edited by double-clicking them and working with the plain text Mark-
down. The code cells run Python code. The grey box indicates the currently
active cell.

22 Data Science for Mathematicians

the final version of code that is used to, say, run a business—needs to work
silently in the background. It would be foolish to spend computing resources
generating pretty text that nobody will read as it’s running on a server. Hav-
ing said that, though, there could be a notebook (or multiple notebooks) that
explain the code that is later extracted and put into production.

2.2.6 Version control

Without version control, when editing a file, you have two choices:

1. Save your edits using the same filename, overwriting your old work.

2. Save your edits using a different filename, creating a new file.

In the former case, you have only one file, but no way to recover an older
version of that file. In the latter case, you have some older versions of the file
saved, but now you have a proliferation of files lying about.

A version control system will track your files in a “repository” (or “repo”
for short) by recording only the differences between each version and the next.
As a result, the version control system can recover the state of the project at
any point in the past by simply “replaying” the sequence of changes starting
from the creation of the file up to the point you wish to recover. You have to
keep only one copy of your files with a little extra overhead for storing the
“diffs,” or changes along the way.

Without version control, when working on a file collaboratively with some-
one else, you have two choices:

1. Edit the file one person at a time, sending it back and forth.

2. Edit two copies of the file simultaneously, and try to manually reconcile
the changes after comparing both copies.

Most types of modern version control systems are distributed version con-
trol systems, which can solve this problem as well. In the distributed paradigm,
anyone who needs to work on a set of files will copy the entire repository to
their local machine. After making edits, they push those changes back to
a central server, and the software will take care of merging all the changes
together. In the event that two people have edited the exact same lines of
text in two different ways, a human will have to resolve the merge conflict to
decide which of the versions should be accepted. But as long as people are
working in different parts of the file, the system will perform merges silently
and correctly. The distributed version control system also solves the problem
of backing up your files; if either your machine or the server goes down, the
repository can be restored easily from the other.

There are a number of version controls systems out there, but Git has
become somewhat of a de facto standard. Learning Git for the first time
can be intimidating due to all the specialized verbs that have evolved around

Programming with Data 23

version control: clone, fork, commit, push, pull, fetch, checkout, merge, squash,
rebase, etc. These commands are usually run from a command line (unless you
use an IDE with version control support, as in Section 2.2.4), and the user
has to learn many of them, as well as the various options that can be passed
to those commands. Even seasoned Git users often have to look up the syntax
for various commands on a regular basis.

There are a number of websites that host Git repositories in the cloud
(e.g., GitHub, GitLab, Bitbucket). In addition to serving a critical role as the
central location for projects involving multiple users, these services also play
an important role in reproducible research. Assuming you store your files in
a publicly available repo, others can see and reproduce your work. In fact,
GitHub will render Jupyter Notebooks right in the browser (as opposed to
just printing the plain text code from the underlying file). If your work has
an appropriate open source license, others will be able to download a copy of
your work and build on it, modify it for their own work, or take it in different
directions. Not only does version control give access to your code, it gives
access to every past version of your code as well. If someone wanted to run an
analysis based on the way your code ran three years ago, they could actually
download the exact version of your code from three years ago to get started.

2.3 Best practices

While this chapter is not meant to make anyone an expert programmer,
there are some basic principles that experienced coders understand that make
their work more functional and robust. This section explains a few of the most
important ones.

2.3.1 Write readable code

“Always code as if the [person] who ends up maintaining your code
will be a violent psychopath who knows where you live.” — John F.
Woods

One of the benefits of R and Python is that their code is relatively easy to
understand when you read it. Even still, there are steps you can take as the
programmer to make your code even easier to read.

Most people know about the importance of indenting code in a systematic
way. In Python, it’s actually built in to the language itself—rather than using
braces or some other kind of punctuation to enclose the body of functions
or control statements (like if/then/else statements or for or while loops),
Python uses white space:

24 Data Science for Mathematicians

for i in range (10):

if i % 2 == 0:

print ("{ number} is even". format(number = i))

else:

print ("{ number} is odd". format(number = i))

Variables should be named in sensible, comprehensible ways. It’s probably
okay to use something like i, j, or k as a simple index in a for loop, but other
variables should be named to indicate what they are supposed to store:

last_name = "Raleigh"

total_count = previous_count + new_count

One helpful convention for naming functions or methods is to use verbs
that communicate the “action” of the function. The following code defines a
Python function to find the divisors of a number:

def find_divisors(n):

div_list = []

for i in range(n):

if n % (i + 1) == 0:

div_list.append(i + 1)

return div_list

If a function returns a logical value, it might be named as follows:

def are_equal(x, y):

if x == y:

return True

else:

return False

Mathematicians are accustomed to writing out long, multiline expressions.
This is much harder to do with code and the results are difficult to read
and debug. Consider the following Python code, which computes the sample
standard deviation of a list of numbers, using the standard mathematical
formula converted directly into Python code. (It assumes that a statistics
module has been imported with the name stats.)

def calculate_sample_variance_short(data):

return sum ([(data_value - stats.mean(data))**2

for data_value in data])/(len(data) - 1)

A much better approach is to keep expressions simple by first defining sim-
ple subexpressions on their own lines. Following that, you can define the main
expression as a simple formula using the previously defined subexpressions. So,
for example, note the improved readability in the next Python example, which
accomplishes the same task. While the former is more concise, it’s also less
readable than the second and less clear about the sequence of steps involved
in the calculation.

Programming with Data 25

def calculate_sample_variance_readable(data):

data_mean = stats.mean(data)

n = len(data)

squared_deviations = [(data_value - data_mean)**2

for data_value in data]

return sum(squared_deviations)/(n - 1)

Avoid hard-coding numbers and parameter values into formulas and func-
tions, especially if you plan to use those values in more than one place in the
code. It’s much better to use variables to store values. As long as a variable
is named well, it will be more clear when you use it how you are using it
(rather than just having a number mysteriously appear). And if you ever need
to change the value, you can change it in one prominent place toward the top
of your code (rather than hunting down all the places you use it and possi-
bly missing a few). For example, the following R code calculates the mean
of 10 randomly sampled values from a uniform distribution on [0, 1] (runif
stands for “random uniform”) and then repeats that process 100 times. (See
Section 2.3.3 for more information about the set.seed command.)

set.seed (42)

simulated_data <- vector(length = 100)

for(i in 1:100) {

simulated_data[i] <- mean(runif(10, 0, 1))

}

A more flexible way to do this—and one that will usually result in fewer
bugs—is to give names to various parameters and assign them values once at
the top:

set.seed (42)

reps <- 100

n <- 10

lower <- 0

upper <- 1

simulated_data <- vector(length = reps)

for(i in 1:reps) {

simulated_data[i] <- mean(runif(n, lower , upper))

}

Now you can run any number of simulations using any sample size and any
interval simply by changing the values in one easy-to-find spot. This format
also makes it easier to convert any code into a reusable function later by
turning the list of variables into a list of parameters for that function.

While programming languages vary in how “readable” they are based on
the idiosyncrasies of their syntax, the above tips should make any code more
clear, both to other people reading your code, and to yourself in the future.

26 Data Science for Mathematicians

2.3.2 Don’t repeat yourself

Suppose we have a dataset about colleges and universities containing a
Tuition column recorded using the characters “$” and “,” (like $45,000). We
won’t be able to compute summary statistics until these values are stored as
proper numbers (like 45000). We could use the following Python code for a
one-off transformation.

data[" Tuition "] = data[" Tuition "]. str.replace ("$","")

data[" Tuition "] = data[" Tuition "]. str.replace (",","")

data[" Tuition "] = data[" Tuition "]. astype(float)

Then suppose that we encounter more columns in the same dataset with
the same problem, columns such as Room Board and Fees. It’s tempting to
take the code for the first iteration and copy and paste it multiple times
for the subsequent repetitions of the task. There are many tasks like this in
programming that have to be repeated multiple times, perhaps with minor
variations.

An important principle goes by the acronym “DRY,” for Don’t Repeat
Yourself. While cutting and pasting seems like a time-saving strategy, it usu-
ally ends up being a suboptimal solution in the long run. For example, what
if you decide later that you need to tweak your code? You will have to make
the same tweak in every other spot you copied that code. If you miss even one
spot, you’re likely to introduce bugs.

A much better solution is to write a function that accomplishes the task
in more generality. Then, every time you need to repeat the task, you can just
call the function you wrote. Adding arguments to the function allows you to
introduce flexibility so that you can change the parameters of the function
each time you wish to run it.

For example, given the utility of the task performed by the code above,
it’s not much more effort to write a little function that does the same thing,
but for any column of any dataset:

def convert_currency_to_float(data , col):

data[col] = data[col].str.replace ("$","")

data[col] = data[col].str.replace (",","")

data[col] = data[col]. astype(float)

return data

It is a little more time-consuming to write a general function that depends
on flexible parameters than to write a single chunk of code that executes
a concrete task. If you only have to do the task, say, one more time, there
is a cost/benefit scenario you must consider. However, even when you only
repeat a task once, there are benefits to abstracting your task and distilling it
into a function. If nothing else, you will improve your programming skills. The
abilities you develop will be transferable to future tasks you want to automate.
But you might also be surprised how often you later decide that you do need
to repeat a task more than the one time you originally planned. Abstracting

Programming with Data 27

tasks into functions ultimately makes your code more readable; rather than
seeing the guts of a function repeated throughout a computation, we see them
defined and named once, and then that descriptive name repeated throughout
the computation, which makes the meaning of the code much more obvious.

2.3.3 Set seeds for random processes

Data scientists often have the need to invoke random processes. Many
machine learning algorithms incorporate randomness, for example, when set-
ting initial weights in a neural network (Chapter 9) or selecting a subset of fea-
tures in a random forest (Chapter 8). Validation techniques like bootstrapping
and cross-validation generate random subsets of the data (Chapter 4). Often
data scientists will set up simulations to prototype or test their algorithms.

Using random number generation and stochastic processes seems counter
to the notion of reproducible research. How can someone reproduce a result
that was generated at random?

The solution is to realize that the random numbers generated by our com-
puters are not really random, but are “pseudorandom.” Roughly speaking, a
sequence of numbers is pseudorandom if it has approximately the same statis-
tical properties as a sequence of truly random numbers. Computers generate
pseudorandom numbers using an algorithm, and each algorithm starts with
an initial condition known as a “seed.” Two computers running the same
pseudorandom-number-generating algorithm starting with the same seed will
produce identical sequences of pseudorandom values.

Therefore, the way to make your work reproducible is to set a specific
random number seed in your code. Modulo some technical issues (like running
parallel processes—are the same seeds passed to each processor, for example?),
any other person who later runs your code will then generate the same output,
accomplishing the goal of reproducibility.

2.3.4 Profile, benchmark, and optimize judiciously

When you run your code, there are tools that can record the amount of
memory used and the time it takes to execute each step of your code. This
is called profiling your code. This is closely related to benchmarking, which
is comparing performance, either that of your code on two or more different
machines, or that of two or more pieces of code on the same machine, depend-
ing on your goals. The purpose of profiling and benchmarking is generally to
understand the bottlenecks in your workflow, whether caused by hardware or
software. These bottlenecks can often be relieved by rewriting code, perhaps
using different algorithms or data structures, or even using different program-
ming languages.

When rapidly prototyping code, especially for one-off applications, it’s gen-
erally not that important to spend a lot of time in “premature optimization.”
But for tasks that are clearly taking too long and need to be run more than

28 Data Science for Mathematicians

once, it is often valuable to try to get some insight into why your code might
be slower than it needs to be.

It’s hard to give specific advice about how to speed up your code because
it’s very context-dependent. In general, it’s worth doing some research to find
existing libraries or packages that implement slow portions of your code in
faster ways; if a function is slow for you, it was likely slow for someone in the
past who took the opportunity to try to make it better. Both R and Python
also allow you to call subroutines in other languages like C and Fortran that
are “closer to the metal,” meaning that they are lower-level languages that
have less overhead. The Rcpp [140] package, allowing C++ code inside of R,
is extremely popular. There are several ways to get performance benefits in
Python from C. One is Cython [27], which takes existing code in Python and
translates it into C automatically. Another is the cffi [406] library that allows
the user to use C code inside of Python.

It’s often possible to achieve orders of magnitude in speed and/or memory
improvement by changing the way you store your data and process it. For
example, in R, the data.table [133] package imports and transforms data
much more quickly than tools that access standard data frames (at the cost
of using syntax that doesn’t look like the rest of R). In Python, using numpy

arrays for matrix operations will generally be faster than using Python’s native
matrix operations. These are just a few examples; doing some Internet research
for existing packages is typically extremely valuable before beginning a new
project.

2.3.5 Test your code

How do you know you can trust the output of your code?
A Science magazine news piece [347] describes a “nightmare” scenario

involving a young researcher, Geoffrey Chang, studying protein structures in
cell membranes:

When he investigated, Chang was horrified to discover that a home-
made data-analysis program had flipped two columns of data, invert-
ing the electron-density map from which his team had derived the
final protein structure. Unfortunately, his group had used the pro-
gram to analyze data for other proteins. As a result, [...] Chang
and his colleagues retract three Science papers and report that two
papers in other journals also contain erroneous structures.

These types of errors, while not malicious in intent, can have devastating
ramifications—imagine having to retract five papers!

It’s not just about the output of code either. How do you know your
functions are robust against a variety of inputs (often supplied by other users
whose intentions are hard to guess)?

Programming with Data 29

The process of writing code that tests other pieces of code is called “unit
testing.” A unit test takes a small piece of code, usually a single function, and
runs it with a variety of inputs, comparing the results to the expected output
to ensure that there is agreement. For example, using the testthat [500]
package in R, we might write a unit test to see if a function does the right
thing with a few sample values:

test_that (" test_parity prints correctly", {

expect_that(test_parity (-3), prints_text ("odd"))

expect_that(test_parity (0), prints_text ("even"))

expect_that(test_parity (6), prints_text ("even"))

})

Although this example is rather trivial because the parity of an integer is
easy to calculate, the same ideas can be used to run many more tests on the
behavior of functions with an arbitrary level of complexity, where a correct
implementation is far less certain and needs much more verification.

As with profiling and benchmarking, unit testing does take time to imple-
ment and may not be that important for one-off tasks that are simple and have
a clear and direct implementation. But as your code grows in complexity, and
especially as you start designing your code for other users, you should consider
learning how to build in unit tests. Especially if scientific results depend on
the output of your work, doing otherwise may very well be irresponsible.

2.3.6 Don’t rely on black boxes

As data science has become a hot career path, there are many people who
want to move into the field. Some work hard to learn new skills in making
such a transition. However, there is a problematic perception out there that
all it takes to be a data scientist is to learn a few new lines of code that can
be thrown blindly at data to produce insight and, most importantly, profit!

The key problem is that there is no single algorithm that performs best
under all circumstances. Every data problem presents unique challenges. A
good data scientist will be familiar not only with a variety of algorithms, but
also with the circumstances under which those algorithms are appropriate.
They need to understand any assumptions or conditions that must apply. They
have to know how to interpret the output and ascertain to what degree the
results are reliable and valid. Many of the chapters of this book are specifically
designed to help the reader avoid some of the pitfalls of using the wrong
algorithms at the wrong times.

All this suggests that a data scientist needs to know quite a bit about the
inner workings of the algorithms they use. It’s very easy to use sophisticated
libraries and functions as “black boxes” that take in input and generate out-
put. It’s much harder to look under the hood to know what’s really happening
when the gears are turning.

It may not be necessary in all cases to scrutinize every line of code that
implements an algorithm. But it is worthwhile to find a paper that explains the

30 Data Science for Mathematicians

main ideas and theory behind it. By virtue of their training, mathematicians
are in a great position to read technical literature and make sense of it.

Another suggestion for using algorithms appropriately is to use some fake
data—perhaps data that is simulated to have certain properties—to test algo-
rithms that are new to you. That way you can check that the algorithms
generate the results you expect in a more controlled environment.

We live in an era in which most statistical processes and machine learning
algorithms have already been coded by someone else. We should enjoy the
benefits of being able to build and test models rapidly. But those benefits also
come with the responsibility of learning enough to know that our models are
trustworthy.

2.4 Data-centric coding

There are a few programming concepts and computational skills that are
somewhat specific to data science. In this section, we’ll explore a few of these.

2.4.1 Obtaining data

Data exists in a variety of forms. When we obtain data, we have to work
with the data as it comes to us, which is rarely in an ideal format.

2.4.1.1 Files

The most widely used format for data is a spreadsheet. Each spreadsheet
application has its own proprietary file format, and these formats can be quite
complicated. For example, a Microsoft Excel file is actually a zipped folder
containing a number of XML files that keep track of not just the data, but all
sorts of metadata about the file’s structure, formatting, settings, themes, etc.
(XML stands for eXtensible Markup Language and uses tags, like HTML does.
It’s a fun exercise to rename a Microsoft Excel file to have a .zip extension,
unzip it, and explore the underlying XML files.) Importing data from Excel
spreadsheets is computationally complicated, but since it’s a central task to
data science, there are great libraries and packages that do it seamlessly, like
the xlsx [135] or readxl [504] packages in R or the read excel function in
pandas in Python. (There are many packages in both languages that provide
this functionality.)

Even easier, if you can open the spreadsheet in Excel, you can export it
in a plain text format that’s easier to parse. (Plain text file formats leave less
room for extra formatting that could cause files to be imported in a corrupted
state.) For example, a Comma-Separated Values (CSV) file has column entries
separated by commas with newlines to indicate where new rows begin. A Tab-

Programming with Data 31

FIGURE 2.5: The same file shown in three different plain text formats: CSV
(left), TSV (center), and fixed-width (right) with fields of size 13, 6, and 10.

Separated Values (TSV) file is the same idea, but with tabs instead of commas.
There are also “fixed-width” formats that store the data values padded with
whitespace so that each one occupies the same fixed number of characters in
the file. (See Figure 2.5.)

2.4.1.2 The web

Some data is located on the web, but not in the form of a downloadable
spreadsheet or CSV file. In an ideal world, websites would have a public-facing
Application Programming Interface (API). Such an interface allows users to
send requests to the website to retrieve—or in some cases, even submit—data.
You can visit apitester.com and use their example API to learn more about
how API calls work.

Even without an API, an organization might provide a website that simply
lists data on a web page, say, in an HTML table. Or maybe the data you want
isn’t even formatted in a convenient way, but just appears on a web page, like
in Figure 2.6.

These situations call for “web scraping.” A web scraping tool will save
the raw HTML text from the web page and provide utilities to select which
elements you want based on the HTML tags that form the structure of the
page. Assuming the designer of the web page applied some kind of consistent
formatting to the data in which you’re interested, it’s usually not too difficult
to extract only what you need from the page. The go-to web scraping tool
in Python is Beautiful Soup [405]. In R, there are several options, but the
rvest [503] package was designed to have similar functionality to Beautiful
Soup.

2.4.1.3 Databases

Often, data is stored in a database. A relational database is a set of tables
(each made up of rows and columns) that are connected together by relation-
ships that identify when the values of one table are related to the values of
another table. For example, a database for an online vendor might have cus-
tomer information stored in one table and orders in another table. The link
between these tables would be the customer IDs that appear in both tables.
Relational database systems have strong constraints in place that protect the
integrity of the data as it’s accessed. Relational data is usually processed using

32 Data Science for Mathematicians

FIGURE 2.6: Left: Part of a table showing the number of women serving in
the United States Congress by year from Wikipedia [506]. Right: Some of the
HTML that generates the table on the left. Web scraping tools are able to
extract the data from the web table and convert it to an appropriate data
structure that you can work with.

Programming with Data 33

SQL, short for Structured Query Language.2 SQL queries are relatively easy
to learn because of the natural way they are constructed. For example, the
following query lists customers who are over 21 years old from the state of
Utah (assuming the information is stored in a table called customers with
columns age and state).

SELECT * FROM customers

WHERE age > 21 AND state = "UT";

The * means “all columns.” It gets a little more complicated when you
have to aggregate data across multiple tables (called a “join”), but it’s still
not a very steep learning curve compared to most programming languages.

Much of the data out there that is considered “big data” is non-relational.
Some of this has to do with performance limitations that relational databases
can suffer once databases hit a certain size or complexity. A lot of it is related
to the types of data being stored (e.g., video or audio) that relational databases
weren’t designed to store and access easily. There are a wide variety of non-
relational databases that store data in non-tabular formats to try to overcome
some of the limitations of relational data. Each type of database has its own
systems for querying or summarizing the data depending on its architecture
and application. Some of these non-relational databases are called NoSQL
databases (which is a little misleading, because NoSQL doesn’t necessarily
imply that you can’t use SQL to query them). NoSQL databases use a vari-
ety of systems to store data, including key-value pairs, document stores, and
graphs.

2.4.1.4 Other sources and concerns

Worst-case scenarios include data that is embedded in a PDF file, data
that appears in some kind of image file (like a photograph), or handwritten
data. Sometimes we can leverage sophisticated optical character recognition
(OCR) software to convert the data to a computer-friendly format, but that’s
not always the case. Manual data entry is always an option, albeit a painful
and error-prone one.

There are ethical considerations to take into account when obtaining data.
Some data is proprietary, and you may need to secure permission or possi-
bly even pay for the rights to use it. Just because you can find a free copy
online somewhere doesn’t guarantee you the right to use it. Web scraping, in
particular, lies in a somewhat murky territory legally and ethically; although
the data is clearly publicly accessible, the terms of service for some websites
explicitly prohibit web scraping. Even when web scraping is allowed, there
are best practices you should follow to ensure that you are not bombarding
servers with high-volume, high-frequency requests. Many websites maintain a
robots.txt file (usually found by appending /robots.txt to the base URL)

2Wars are fought over the pronunciation of SQL: some say the individual letters “ess-
cue-ell” and some say the word “sequel.”

34 Data Science for Mathematicians

FIGURE 2.7: A list in R with three elements: a numerical vector of length
ten, a character vector of length two, and a data frame with five observations
and two variables.

that explicitly lists the permissions granted to automated tools to access cer-
tain files or directories.

2.4.2 Data structures

Once we have imported the data, the computer must store that data in
memory in a way that makes sense to our statistical software and to us as
programmers and analysts.

Every programming language has a number of “types,” or ways that the
computer stores each kind of data. For example, integer is a type, as are
floating-point or double-precision numbers (discussed further in Section 3.4.1).
Character (including numeric or non-numeric symbols) is a type. Program-
ming languages also typically have arrays that are collections of objects of
one type.

In R, the most generic data structure is a “list,” which can contain named
elements of any type (including other lists) and can be of any length. (See
Figure 2.7.) For data science, we often store data in a “data frame,” which
is a special kind of list in which each element is a vector of some type, all
vectors have the same length, and represent columns of data of different types,
allowing the user to store both numerical and categorical data.

In Python, there are two data structures that are roughly similar to R’s
lists. One is also called a list, and it’s just an unnamed, ordered sequence
of objects of any type. (See Figure 2.8.) The other is called a dictionary,
which consists of key-value pairs, in much the same way that mathematicians
represent functions as sets of ordered pairs.

But Python also has “tuples” (ordered sequences like lists, but immutable,
meaning they can’t be modified after their creation) and sets (unordered col-
lections).

Programming with Data 35

FIGURE 2.8: A list in Python with three elements: a list of ten numbers, a
list of two strings, and a dictionary with five key-value pairs.

While there are no data frames native to Python, we can use the pandas

library that was built to handle tabular data. Each column (of one specific
type) is called a Series, and a collection of Series is called a DataFrame.

For data that is completely numeric, matrices (and their higher dimen-
sional analogues, sometimes called arrays or tensors) are often a good way to
store it. Processing matrices is easy due to advanced linear algebra libraries
that make matrix operations very efficient. R has matrix manipulation built
right into the language. Python has the numpy library that defines array-like
structures like matrices. We will see this in much greater detail in Chapter 3.

2.4.3 Cleaning data

When we obtain data, it’s almost never in a form that is suitable for doing
immediate analysis. But many data analysis routines expect that we have
“tidy” data. Although the ideas around tidy data have been around for a long
time,3 Hadley Wickham coined the term [501] and characterized it using three
properties:

1. Each set of related observations forms a table.

2. Each row in a table represents an observation.

3. Each column in a table represents a variable.

For example, tidy data for a retail store might have a table for customer
data. Each customer occupies one row of the dataset with their characteristics
(variables like name and phone number) stored in different columns. Another
table might hold product info with a separate product on each row, each with
a product ID, a price, and a product description as possible columns. Yet
another might be available inventory, and that might simply consist of two
columns, one with a product ID (from the product info table) and one with
the number of that item left in stock.

Even data from relational databases—seemingly tidy by definition—is tidy
only if the database designer follows correct database design principles and
only if the data is queried properly.

3Being “tidy” is closely related to Codd’s “third normal form” from database theory.

36 Data Science for Mathematicians

Often, the most time-consuming task in the data pipeline is tidying the
data, also called cleaning, wrangling, munging, or transforming. Every dataset
comes with its own unique data-cleaning challenges, but there are a few com-
mon problems one can look for.

2.4.3.1 Missing data

One of the biggest problems for data analysis is missing data.
How is missing data recorded? For example, do blank cells in a spreadsheet

get converted to null values when importing them into a statistical platform?
In R, there are multiple representations of null values, including NA, NaN, and
NULL. In Python, missing data might be called None or NaN. Note that there’s
a difference between the text string “None” and the special Python value
None. What if those blank spreadsheet cells are not actually blank, but have
some kind of invisible white space character like a space or tab? When those
values are imported, they will be stored as text and not as a missing value
as expected. Some datasets use special codes for missing data; for example,
suppose data entry staff represented missing values as 999 and the analyst
isn’t aware of that. Now imagine taking the mean of a bunch of values where
several are 999, and you can see the type of trouble such coding schemes can
cause.

What is the cause of missing values? Do they represent people who left
something blank on a form? Did they leave it blank because they didn’t want
to answer, or because they ran out of time or lost interest? Are the missing
values data entry errors? Are the missing values artifacts of the import pro-
cess? For example, sometimes when importing a messy spreadsheet, there will
be extra blank (or nearly-blank) rows or columns you didn’t expect, often
caused by stray characters in cells far from away the rectangular data, or by
formulas someone inserted off to the side.

What do we do with missing values? It depends heavily on the context
of our data. For example, missing values for sales probably mean no sales,
so they could be replaced with zeros. Missing values for patient height and
weight definitely don’t mean zero height and zero weight, and we’ll likely have
to leave them blank because there’s no way we will be able to know what
the original values were. Missing values for one year in a time series probably
don’t mean zero, but it might make sense to try to interpolate between two
adjacent years assuming that local trends roughly follow a functional form for
which interpolation makes sense.

Even when you have grappled with the context and representation of miss-
ing values, how do they affect your analysis? Are these values missing at
random, or are missing values correlated with some other property of the
population you’re studying? For example, if you ask about sensitive topics in
a survey, are certain marginalized groups more likely to leave that question
blank? If that is the case, then by ignoring the missing data, your analysis
will be biased. There is a large body of research on the technique of “impu-

Programming with Data 37

tation,” which is the act of filling in missing values with educated guesses at
various levels of sophistication. In some cases, if certain assumptions are met,
imputing missing data can result in more correct analyses than just dropping
rows for which there is missing data.4

2.4.3.2 Data values

Another central issue is how values are stored. For example, a dataset may
have a name column in which full names are stored. What if you needed to
sort the data by last name? You would first need to find a function (or write
one yourself) that split the full name column into multiple columns, maybe
first name and last name. But what about people with middle names or
initials? That would require a middle name column, but now we have to be
careful when only two names are listed. What about Hispanic individuals who
often use two last names? This is not a trivial problem. And if names are
hard, imagine parsing a variable containing dates!

Categorical variables cause a number of problems. For example, a rigor-
ously designed online form should generally present users with a drop-down
box that limits the possible responses. But many web forms use free response
boxes instead. So you may have users from the state of “Utah,” “utah,” “UT,”
“Ut,” “ut,” or even “Utha.” The data cleaning process requires the data scien-
tist to identify this issue and then re-code all these values into one consistently
spelled response. (And you have to do it for every state!)

It’s worth considering the level of specificity for your data-cleaning func-
tions. For example, if you find an instance of “Ut” in an R data frame that
you want to change to “UT,” you could just note that it appears in the 12th

row and the 4th column and fix it with code like the following one-liner.

df[12, 4] <- "UT"

But if there are other instances of “Ut” in the data, it would make a lot
more sense to write code to fix every instance of “Ut.” In R, that code looks
like the following.

df$state[df$state == "Ut"] <- "UT"

Going a step further, the following code uses the toupper function to
convert all state names to uppercase first, which would also fix any instances
of “ut.”

df$state[toupper(df$state) == "UT"] <- "UT"

Another problem is the representation of categorical variables in your data.
Many datasets use integers as codes for categorical data. For example, a color
variable might have values “red,” “blue,” and “green” that are recorded as 1,
2, and 3. Using those integer codes in real-valued functions would generally

4Horton and Kleinman wrote a nice article that surveys some common imputation meth-
ods along with computational tools that implement them. [232]

38 Data Science for Mathematicians

not be appropriate; nevertheless, you will see the mean of that color variable
if you generate summary statistics for your data. Clearly, that mean has no
reasonable interpretation.

You also need to know how your statistical platform deals with such data. R
has a string data type, but it also has a special data type called “factor.” Factor
variables represent categorical data efficiently by using numbers under the
hood, but they present human-friendly labels in most output and summarize
such data in appropriate ways (e.g., frequency tables that simply count the
instances in each category). Python (through the pandas library) has a similar
“category” data type.

Before running any analysis, it’s critical to inspect the values in your data,
both the data types for each variable and the specific values recorded therein.

2.4.3.3 Outliers

A key problem for numerical variables is the presence of outliers. As with
missing data, outliers have to be evaluated in the context of the data. It is
important to take time to try to understand why these outliers exist and what
they say about the data and the data collection process.

Sometimes outliers represent real, actual data values that just happen
to be unusual. For example, in salary data, there might be a value that’s
several orders of magnitude higher than all other salaries. But if that value
corresponds to a professional athlete, it might be accurate. On the other hand,
if one person’s weight is orders of magnitude higher than all others, that value
must be an error.

If you can ascertain that outliers are truly errors, then it makes sense to
correct them (when possible) or delete them. For all other outliers, it’s usually
not okay just to delete them, sweeping the issue under the rug. If you do have a
good rationale for setting aside certain data points, you should be transparent
about it. For example, the pro athlete whose salary is way higher than everyone
else’s might not make it into the final analysis, not because it’s an invalid or
erroneous value, but because that person may not be representative of the
population you are trying to study. Your exclusion criteria should be clearly
communicated.

2.4.3.4 Other issues

Even when the data is technically tidy, there may still be formatting issues
to deal with. For example, you may need to “reshape” your data to be either
“long” or “wide.” One form is not necessarily better than the other, but
certain algorithms expect their inputs to be either long or wide. For example,
Figure 2.9 shows the same data represented both ways. If one considers all
the test scores to be the same kind of measurement, then the long form on
the right is likely more tidy, treating each combination of student and test
as an observation. On the other hand, if one considers the student to be the
observational unit with the three test scores as variables, then the wide form

Programming with Data 39

FIGURE 2.9: Wide data (left) and long data (right).

FIGURE 2.10: The data frame on the left has a categorical variable called
color. The data frame in the center is the one-hot encoded version; the three
levels of color have been turned into three binary variables with a 1 indicating
which color corresponds to each observation. The data frame on the right uses
dummy encoding which recognizes that only two binary columns are necessary
to uniquely identify each observation’s color; observations that are “Red” will
have a 0 for “Blue” and a 0 for “Green.”

on the left might be more helpful, and indeed may be the required format for
certain “repeated measures” or “time series” procedures.

Another formatting issue arises with categorical variables. Many statisti-
cal procedures require you to convert categorical variables to a sequence of
numerical “indicator” variables using various encoding techniques with names
like “one hot” and “dummy.” (See Figure 2.10. Section 4.6.5 goes into more
detail.)

One final note about data cleaning and formatting: the gold standard is to
make the process reproducible. If there are only one or two small changes to
make, it seems simple enough just to open the data in a spreadsheet program
and make those changes. However, the sequence of mouse clicks and key presses
required to do this will not be written down anywhere. It requires more work
and discipline to write computer code to make those changes. And if there
are many changes to make (like re-coding thousands or even millions of rows),
you will likely have no choice but to write code that automates the process.
Either way, cleaning your data through code will allow others to start with
similar raw data files and convert them to correspondingly cleaned data files
in the same way in the future by reusing your code. If you are in a situation
where you will continue to receive future data files that use the same (messy)
format, it will be to your long-term advantage to write functions that will also
work with that future data.

40 Data Science for Mathematicians

2.4.4 Exploratory data analysis (EDA)

Once the data is clean, it’s very common and typically very useful to
visualize the data before jumping into analysis. For one thing, exploring your
data visually helps you learn about your data, its features and idiosyncrasies.
More importantly, the statistical techniques you choose are predicated on
certain mathematical assumptions that ensure that the output of the analysis
can be trusted. Checking conditions often involves looking at graphs, tables,
and charts.

For example, some forms of statistical inference require that numerical
values of interest be normally distributed in the population. Of course, all
we have is sample data, and no real-world data is going to be shaped like a
perfectly symmetric bell curve. Nevertheless, a histogram or a QQ-plot (as
in Section 4.3.4) can suggest that our data is more or less distributed as if
it were drawn from a normally distributed population, and that can give us
some confidence that our statistical techniques will result in correct results.

There are many ways of visualizing data: frequency and contingency tables,
bar graphs, boxplots, scatterplots, density plots, heatmaps, and many others.
It’s important to note that not every graph type is appropriate in every situ-
ation. In fact, for any given combination of variables, there are usually only a
handful of table, graph, or chart types that make sense. If you’re an educator
teaching data science, this is an important point to impress upon students,
who often wish to use the most visually unique or stunning display without
considering whether it is a good way to communicate the quantitative concept
they need to communicate.

There are three main ways people make plots in R. Base graphics (com-
mands built into the core R functionality) are very flexible due to the fine
control the user has over each element of the graph. As a result, though, it
has a steep learning curve and requires a lot of work to make graphs look
pretty. The lattice [420] graphics package uses a much easier interface, but
is not as commonly used as the newer ggplot2 [502] package.

Python also provides a number of common packages to produce graphs.
The matplotlib [240] library is somewhat analogous to base R graphics: hard
to use, but with much more flexibility and fine control. Other popular and
easier-to-use options are seaborn [492] and Bokeh [56]. You can also use the
ggplot [296] package, implemented to emulate R’s ggplot2.

Outside of R and Python, there are also a number of commercial software
products that specialize in data visualization. Tableau [453] is common, espe-
cially in the business world, and provides a sophisticated GUI for visual EDA
and reporting. Many R and Python users export their final results to Tableau
for sharing with clients, because of Tableau’s superior interface and style.

Programming with Data 41

2.5 Getting help

Learning any new skill—a new programming language or even a completely
new field of study—can feel daunting. Fortunately, there are many ways of
getting help. The Internet is your best friend, because many data science
topics, especially about programming, are so new and change so quickly that
books and journals are not sufficiently current. Search engines often provide
dozens of links to any question you may have. Some of the top hits for any
kind of technical search lead to the helpful Stack Overflow website. It’s been
around long enough that your question has likely been asked and answered
there already, but if not, you can always post a new question. Do be sure to
conduct a thorough search, possibly using several wording variations of your
question, to make sure you aren’t duplicating a question already present. Also
note that some answers are for older versions of a language, like Python 2
versus Python 3. Even in those cases, users will often helpfully add additional
answers for newer versions, so check the date of the original question and
answer and scroll down to see possibly newer responses as well.

For deeper dives, you can search for blog posts, online books, and online
courses. Of course there are also physical books you can purchase, although
for some technical topics, these tend to go out of date somewhat quickly.

Sometimes there is no substitute for face-to-face interactions with like-
minded people. Many cities have user groups for R, Python, and any number
of other languages and data science topics. Data scientists—especially those
in industry—often meet in formal and informal ways to discuss their craft.
The largest conference for R users is “rstudio::conf” (sponsored by RStudio).
Python users can attend “PyCon” meetings in many countries all over the
world. While those are the more prominent conferences, there are loads of
smaller, local conferences being held all the time. The website meetup.com
might list gatherings close to you.

2.6 Conclusion

There is a lot of content in this chapter, covering a wide range of topics.
Depending on where you are in your data science journey, not all of the infor-
mation here will be immediately applicable. Hopefully, you can refer back as
needed and revisit pieces that become more relevant in your future work.

If you are brand new to programming—especially in a data science
context—here are some recommendations for getting started:

42 Data Science for Mathematicians

• Choose a language and get it installed on your machine. If you know the
kind of data science work you’re likely to do in the future, you might
spend some time on the Internet to find out which language might be
right for you. (But honestly, it doesn’t matter that much unless you have
an employer with an extremely specific demand.)

• Install an IDE that is known to work seamlessly with your language of
choice. Consider working in a notebook environment.

• Find a project to start working on. (Tips below.)

• As you’re working on the project, review some of the sections of this
chapter to see if there are places you can apply best practices. For exam-
ple, once you have code that works, check to see if you can make it better
by following the tips in Section 2.3. Install Git, create an account on a
cloud platform like GitHub, and start tracking your project using version
control and sharing it publicly online.

Here are two ideas for interesting data projects:

• Try some web scraping. Find a web page that interests you, preferably
one with some cool data presented in a tabular format. (Be sure to
check that it’s okay to scrape that site. “Open” projects like Wikipedia
are safe places to start.) Find a tutorial for a popular web scraping tool
and mimic the code you see there, adapting it to the website you’ve
chosen. Along the way, you’ll likely have to learn a little about HTML
and CSS. Store the scraped data in a data format like a data frame that
is idiomatic in your language of choice.

• Find some data and try to clean it. Raw data is plentiful on the Internet.
You might try Kaggle [242] or the U.S. government site data.gov [482].
(The latter has lots of data in weird formats to give you some practice
importing from a wide variety of file types.) You can find data on any
topic by typing that topic in any search engine and appending the word
“data.”

Chapter 3

Linear Algebra

Jeffery Leader

Rose-Hulman Institute of Technology

3.1 Data and matrices . 44
3.1.1 Data, vectors, and matrices . 44
3.1.2 Term-by-document matrices . 46
3.1.3 Matrix storage and manipulation issues 47

3.2 Matrix decompositions . 50
3.2.1 Matrix decompositions and data science 51
3.2.2 The LU decomposition . 51

3.2.2.1 Gaussian elimination . 51
3.2.2.2 The matrices L and U . 53
3.2.2.3 Permuting rows . 55
3.2.2.4 Computational notes . 56

3.2.3 The Cholesky decomposition . 58
3.2.4 Least-squares curve-fitting . 60
3.2.5 Recommender systems and the QR decomposition 63

3.2.5.1 A motivating example . 63
3.2.5.2 The QR decomposition . 65
3.2.5.3 Applications of the QR decomposition 70

3.2.6 The singular value decomposition . 71
3.2.6.1 SVD in our recommender system 74
3.2.6.2 Further reading on the SVD 77

3.3 Eigenvalues and eigenvectors . 78
3.3.1 Eigenproblems . 78
3.3.2 Finding eigenvalues . 82
3.3.3 The power method . 84
3.3.4 PageRank . 86

3.4 Numerical computing . 92
3.4.1 Floating point computing . 92
3.4.2 Floating point arithmetic . 92
3.4.3 Further reading . 94

3.5 Projects . 95
3.5.1 Creating a database . 95
3.5.2 The QR decomposition and query-matching 96
3.5.3 The SVD and latent semantic indexing 96
3.5.4 Searching a web . 96

43

44 Data Science for Mathematicians

This chapter covers three important aspects of linear algebra for data science:
the storage of data in matrices, matrix decompositions, and eigenproblems.
Applications are interspersed throughout to motivate the content.

Section 3.1 discusses how matrices and vectors are used to store data in
data science contexts, and thus is a foundational section for the remainder of
the chapter. Section 3.2 covers four matrix decomposition methods that show
up in several different applications, together with example uses of each. Some
portions of that section review common linear algebra material, and as such,
readers familiar with the material can skip those sections, as the text indicates.
Example applications include least-squares curve fitting and recommender
systems, as used by Amazon, Netflix, and many other companies.

Section 3.3 introduces applications of eigenvalues and eigenvectors,
together with the complexities that arise when doing numerical computa-
tions with them. Again, the first portion of that section can be skipped by
readers who do not need a review of the foundational concepts. The primary
application covered in this section is Google’s PageRank algorithm.

The chapter then concludes with Section 3.4, on the numerical concerns
that arise when doing any kind of precise computation on a computer, followed
by Section 3.5, which suggests several projects the reader could undertake to
solidify his or her understanding.

3.1 Data and matrices

3.1.1 Data, vectors, and matrices

Linear algebra techniques and perspectives are fundamental in many data
science techniques. Rather than a traditionally ordered development of the
subject of linear algebra, this chapter provides a review of relevant concepts
mixed with and motivated by ideas from computational data analysis methods
that emphasize linear algebra concepts: In particular, what are called vector
space models, as commonly seen in information retrieval applications. Hence,
the linear algebra material will be introduced as needed for the data science
methods at hand.

Although data is a broad term, data that is processed mathematically is
often stored, after some degree of pre-processing, in one of the forms common
from matrix algebra: a one-dimensional array (a vector) or a two-dimensional
array (a matrix).

A vector is appropriate for one-dimensional data, such as rainfall in inches
over a series of n days. We use the vector r = (ri)

n
i=1 to store the measurements

r1, r2, . . . , rn. By convention, we take a vector to be a column rather than a

Linear Algebra 45

row if not otherwise specified. Addition and subtraction of two vectors of
common length n are to be performed elementwise, as is the multiplication of
a vector by a scalar. In principle our vector could be categorical rather than
numerical—a list of book genres, say—but we will consider only real numbers
as individual data in this chapter.

Many datasets of interest are two-dimensional. A video streaming service
tracks which of its m users has watched which of its n programs; such data is
naturally stored in a two-dimensional array with, say, m rows and n columns,
A = (ai,j) (i = 1, 2, . . . ,m, j = 1, 2, . . . , n), that is, an m × n matrix. The
entry ai,j in this users-by-programs matrix may represent the number of times
user i has watched program j, or it may simply be set to one if the user has
watched the program at least once, and zero otherwise. (Other less obvious
weightings are frequently used.) This table represents data that might be
mined for recommendations: If you liked the movie corresponding to j =
2001, you’ll love the TV show corresponding to j = 4077! In a data analysis
context, the indices, and perhaps the corresponding values, may be referred
to as “dimensions,” “features,” or “attributes” [75].

In general, there’s no reason the number of rows should equal the number
of columns for a given matrix. (Why should the number of people streaming
shows equal the number of available shows?) Hence we do not expect our
matrices to be square, in general.

It’s sometimes useful to be able to flip such a tabular representation; per-
haps we decide it will be easier to have the video streaming data stored with
the programs corresponding to the rows and the users to the columns instead.
For this reason and others the transpose, AT , will occur in our work.

We often describe two-dimensional data arranged rectangularly as being
in a table. But vectors and matrices differ from (mere) columns or tables of
numerical data in an important way: Vectors and matrices have algebraic prop-
erties. Addition, subtraction, and multiplication of matrices of the conforming
sizes are possible. (Of course, unlike matrices, tables often carry non-numerical
information concerning what is actually in the table.)

Occasionally elementwise multiplication will also make sense: If a table
lists our customers who rented movies from us in rows and the titles of those
movies as columns, with a 0 or 1 entry to indicate rental status (that is, it
is a binary, or boolean, matrix), and we obtain from another data collector
a corresponding table which lists individuals who have rated movies by rows
and the titles of those movies as columns, with a rating from 1 to 5, then after
eliminating from the latter table any rows corresponding to viewers who are
not actually our customers and otherwise formatting the new data to match
our internal format—the unavoidable task of data cleaning and management
that accounts for so much effort in data mining applications—the element-by-
element product shows what ratings our users gave to titles they rented from
us, while dropping out their ratings of other titles.

46 Data Science for Mathematicians

Surprisingly often, however, traditional matrix multiplication meets our
needs. In Section 3.3 we’ll use powers and products of matrices to identify
multistep paths in a graph. For example, if matrix A has viewers as rows and
movies as columns with zero-one entries indicating the viewer has seen the
movie, and matrix B has movies as rows and actors as columns with zero-
one entries indicating that the actor was in the movie, then the product AB
contains information as to whether a viewer has seen a movie containing a
given actor.

It’s common in data science applications to consider not just a rectangular
array of data but a higher-dimensional array. For example, a video streaming
service tracks which of its m users has watched which of its n programs on
which of the p = 7 days of the week. The data is naturally stored in a three-
dimensional array with, say, m rows, n columns, and p tubes (the terminology
for directions beyond rows and columns is not standardized), which forms
a multidimensional array M = (mi,j,k) (i = 1, 2, . . . ,m, j = 1, 2, . . . , n, k =
1, 2, . . . , p); that is, anm×n×p object. The entrymi,j,k could store the number
of times user i has watched program j on day k. Most major programming
languages allow for such arrays.

We call objects such as M multilinear arrays, multiway arrays, or discrete
tensors. They could have an arbitrary number of dimensions (called the order
of the array). For a d-dimensional array we describe the data itself as being
d-way; that is, vectors store one-way data, matrices store two-way data, a
three-dimensional (discrete) tensor stores three-way data, etc.

These objects have their own corresponding multilinear algebra. The con-
cepts build naturally off those of matrix algebra. There are, however, many
differences. We will concentrate on building a foundation in matrices and will
make only passing reference to higher-order arrays, where appropriate. For
further information on multilinear arrays, the reader is directed to [6].

Matrix algebra might not seem to have a particularly deep connection
to tables of data. Perhaps surprisingly, however, a number of means of data
analysis begin with a table of numerical data, interpret it as a matrix M in
order to imbue it with algebraic properties, then attempt to factor it into a
product of two or three other matrices, M = AB or M = ABC, where one or
more of the factor matrices will allow for useful insight into the nature of the
data.

3.1.2 Term-by-document matrices

In a simple model of the web search problem, we imagine that there are m
words that our search engine will recognize (the terms) and n web pages that
will be indexed (the documents). This already raises a number of questions—
for example, will we treat words like associated and associating as two different
terms, or lump them together with other related words under a prefix such as
associat- (referred to as stemming the terms)? If we encounter a word on a
web page that is not on our list, do we increase m or simply ignore the word?
But let’s put aside issues of design and data cleaning for now.

Linear Algebra 47

After the time-consuming task of having a large number of computers crawl
the web, we presumably know that term i appears on page j exactly ti,j times.
Of course, if m is large we expect that ti,j is very often zero—most web pages
do not mention aardvarks—but otherwise it is a positive integer. We consider
this table as a matrix T = (ti,j), called a term-by-document matrix, and say
that we are using a vector space modeling approach. We sometimes say that
the resulting matrix represents a bag-of-words mindset, in which we ignore
sentence structure and merely treat documents as (unordered) collections of
terms.

There’s nothing special about the specifics here. (Indeed, we are basically
describing the adjacency matrix of the graph of a relation.) The documents
could be books instead of web pages. The terms could be codes referring
to images from some comprehensive list of images (the “dictionary” of the
images). The documents could represent different biological species considered
as “books” spelled out in their genetic code, and the terms could be genes (or
other words formed from distinct segments of genetic code). We may choose
to refer to a matrix as a term-by-document matrix in many cases in which
we emphasize a linear algebra approach to analyzing the data, and so we
understand term and document very generally (e.g., the case of a users-by-
programs matrix mentioned in the previous section).

One situation in which this language is common is when we expect to
perform a query (search) that will be formulated as a vector, e.g., a situation
in which a search for term i is based on the vector ei (meaning column i of
the appropriately sized identity matrix). This is called a vector information
retrieval model. We will see additional uses of term-by-document matrices in
machine learning, in Section 8.7.

Readers who wish to solidify the concepts introduced so far may wish to try
the project in Section 3.5.1 at the end of the chapter before reading further.

3.1.3 Matrix storage and manipulation issues

This section looks at some of the details involved in the actual storage and
manipulation of large matrices from a computational point of view—how the
software and hardware are actually handling the data. For those who have
never dealt with truly massive datasets before, it can prove worthwhile to
understand what is going on within a software package; however, you can skip
to the next section to continue focusing on the linear algebra itself and return
to this section later if desired.

Most programming languages will support declaring a variable to be a
scalar, a one-dimensional array, or a two-dimensional array (of a given data
type—e.g., we might insist that all the entries of our vector be integers). In
most cases these will not natively be understood as having associated with
them the standard algebraic operations of matrix algebra; that is, these are
generally representation-and-storage schemes only.

48 Data Science for Mathematicians

Computer memory is, for all practical purposes, one-dimensional (that is,
linear). This means that even if a matrix is stored contiguously in memory, it
is not stored the way we are apt to envision it. It must be “unraveled” to a
one-dimensional form. In some languages the default is to first store row one,
then row two, then row three, etc., which is called row-major format; C++
is an example. In others the default is to first store column one, then column
two, then column three, etc., which is called column-major format; Fortran is
an example. More sophisticated options may be available, depending on the
particular hardware and software being used. What’s important about this
issue is that entries that are far from one another in memory generally take
significantly longer to retrieve; loading the values A1,1 and A1,2 will be much
faster than loading A1,1 and A2,1 in the case of a row-major language, and
the opposite will be true for a column-major language. Our algorithms must
be aware of this. As an example, computing the product Ax by repeated dot
products of the rows of A with the vector x makes sense in C++, but in
Fortran it would be wise to consider using the alternative formula

Ax = A1x1 +A2x2 + · · ·+Anxn

(where Ai is column i of A) instead. If such an option were not available,
one might attempt to rewrite the problem in terms of AT , but this is not
always convenient. Software cannot always be counted on to handle this mat-
ter seamlessly, so a users-by-programs matrix will make more sense than a
programs-by-users matrix in some cases, for example.

In practice, as it turns out, very large matrices are very frequently sparse—
that is, they have many more null entries than non-null entries. (We might
well find them impractical to store and manipulate otherwise.) There is no
strict definition of sparsity, but a common cut-off is that sparse matrices are
at least 95% zeros. A matrix that is not sparse is said to be dense; a very
dense matrix might be described as full.

For a large, sparse matrix, we can vastly speed up our computations if we
can construct a data storage scheme that stores only the non-null entries of
our matrix, together with algorithms that use only these values (as opposed
to, say, multiplying values by zero time and time again). There are a great
many ways to do so. Although the subject is beyond the scope of this chapter,
it’s worth seeing one simple approach, the coordinate format (COO). We store
the matrix

A =

3 0 0 0 0
0 0 0 2 4
0 0 1 5 7
6 0 0 0 8
0 0 0 0 0

as three vectors (plus some header information), say:

r = (1, 2, 2, 3, 3, 3, 4, 4)

c = (1, 4, 5, 3, 4, 5, 1, 5)

v = (3, 2, 4, 1, 5, 7, 6, 8)

Linear Algebra 49

where we interpret the first entries of these three vectors to mean that the
(1, 1) entry of the matrix is 3, and the final entries to mean that the (4, 5)
entry is 8. Note that if we don’t separately store the fact that the matrix is
5× 5, we risk losing the last row of A should we attempt to reconstruct it.

A few comments on this simplistic scheme: First, in this case it isn’t very
efficient. We are storing 24 values using COO versus the 25 entries for the
entire matrix. For a matrix with floating point entries we will see some savings
from the fact that the entries of the row and column index vectors can be
stored using less memory as integers, but that doesn’t buy us much. Second,
in our example, it’s relatively easy to access A by row but harder to access
it by column. (We could have made the other choice, making it more easily
accessible by columns instead.) Look at the three vectors and imagine a much
larger example: Using r it’s easy to locate row 3, but finding column 5 from c
involves some searching.

This format is convenient for assembling a matrix initially because as new
data arrives we can always add a new entry–say, making a2,2 now be 9–by
appending to the vectors we currently have:

r = (1, 2, 2, 3, 3, 3, 4, 4, 2)

c = (1, 4, 5, 3, 4, 5, 1, 5, 2)

v = (3, 2, 4, 1, 5, 7, 6, 8, 9)

(though until we re-sort these to make the row vector ascending again we’ve
lost the ease of accessing A by rows). Perhaps if a matrix is sparse enough we
could afford to store it using even more vectors so as to have it sorted both
by rows and by columns? We will want our storage scheme to enable us to
quickly access the data and to be amenable to whatever computation we will
be performing. Often we’ll use it to distribute the data over multiple machines
in a parallel computing environment, which will certainly be facilitated by
having less to move.

How best to store data is a large and important subject, but not our
focus in this chapter. However, as you consider the matrices and methods
we encounter along the way, it’s good to give some thought to the storage
schemes that might be used for them. Underlying every algorithm throughout
this book that uses matrices, graphs, or other relationships, there is likely an
array that would have many merely placeholding null entries in a traditional
representation. Sometimes software will seamlessly hide the issue from the
data scientist, but in many cases it will be incumbent upon the user to consider
how best to store and compress the information. As a classic computer science
text puts it, Algorithms + Data Structures = Programs [510].

The Basic Linear Algebra Subprograms (BLAS) standard is a specification
for general-purpose computational matrix algebra routines that frequently
occur in larger programs. Ideally the hardware vendor—the actual manu-
facturer of the computer—provides subroutines optimized for that machine’s
particular architecture, taking advantage of the known layout of caches, mem-
ory latencies (access times), available extended-precision registers, and so on,

50 Data Science for Mathematicians

to get code that runs as fast as possible on that device. Well-known BLAS
routines include the various “axpy” routines that compute quantities of the
form

ax+ y

such as saxpy (“single precision a x plus y”) or daxpy (“double-precision a x
plus y”), where a is a scalar and x and y are vectors.

The BLAS come in three levels. Level 1 BLAS routines perform vector-
vector operations that are O (n), such as the daxpy operation y ← ax +
y in which the output overwrites y. Level 2 BLAS perform matrix-vector
operations that are O

(
n2
)
, such as matrix-vector multiplication (e.g., dgemv,

which performs y ← αAx+βy in double-precision, where α and β are scalars,
A is a matrix, and x and y are vectors; an optional flag can be set to compute
αATx + βy instead). Level 3 BLAS perform matrix-matrix operations that
are O

(
n3
)
, such as matrix-matrix multiplications.

Even if vendor-supplied BLAS are not available, the use of generic BLAS
subroutines, coded by experts for high efficiency, can speed up computations
considerably. Packages are freely available on the web. The ATLAS (Automat-
ically Tuned Linear Algebra Subprograms) package will test your machine,
attempting to reverse-engineer its hardware capabilities, and produce near-
optimal versions of BLAS routines.

Data analysis performed in an environment such as MATLAB already has
a rich set of computational matrix algebra routines available; often, as with
MATLAB, specialized packages for applications like data analysis will also
be available. Lots of other languages, such as the scientific and numerical
programming adjuncts for Python, provide relatively easy access to a suite of
such programs. If one is using a programming language that does not provide
easy support for such computations, or if a highly specialized routine is needed,
it’s useful to know that there are high-quality, free or minimally-restricted
packages of such routines available, typically in at least Fortran and C (or
C++).

An excellent repository of these is Netlib (www.netlib.org). The LAPACK
(Linear Algebra Package) software library contains a wealth of routines; MIN-
PACK (for minimization) is among the other packages available there. For
multilinear arrays, TensorFlow (www.tensorflow.org) and, for MATLAB, Ten-
sor Toolbox are available.

There are many other such packages, including commercial ones. If you
don’t need to write the code yourself, don’t! Teams of experts, working over
decades, with constant user feedback, have probably done a much better job
of it already.

http://www.tensorflow.org
http://www.netlib.org

Linear Algebra 51

3.2 Matrix decompositions

3.2.1 Matrix decompositions and data science

There are several standard ways to factor matrices that occur in applica-
tions, including but by no means limited to data science. Each of them takes
a matrix M and factors it as either M = AB or M = ABC, and then finds
meaning in one or more of the factor matrices. Some of these decompositions
will be familiar to you (or at the very least will generalize operations famil-
iar to you), while others may not be; but each has a role in data science.
We’ll begin by finding a way to take standard Gaussian elimination by row-
reduction and write it in the form of a product of matrices, and then relate
it to the solution of least-squares curve fitting—a basic, but very common,
application in the analysis of data.

3.2.2 The LU decomposition

3.2.2.1 Gaussian elimination

Given an m×n matrix A, we often need to solve a linear system of the form
Ax = b where x is an n-vector and b is an m-vector. In fact, in using Newton’s
method to solve a linear system or in solving a partial differential equation via
an implicit finite difference method, we will need to solve a linear system again
and again as we iterate toward a solution (with a different A each time in the
former case but often with the same A each time but a different b in the latter
case). The basic means of doing this is Gaussian elimination by row-reduction
(or a variant column-oriented version if the matrix is stored in column-major
form). In data science applications, one of the most common ways of seeing
this situation arise is when we need to solve the normal equation

(
V TV

)
a = V T y,

where a is the unknown vector of coefficients in our model and V and y are
known, based on the x (independent) and y (dependent) variables, respec-
tively, as part of a regression analysis problem. (Readers who need a refresher
on regression can look ahead to Section 4.3.1. The normal equation is discussed
further in Sections 4.6.3 and 8.5.3.)

In most cases this operation will be done by a provided routine. For exam-
ple, MATLAB’s backslash command solves Ax = b via the simple command
x=A\b, and the backslash operator automatically chooses what it feels is the
best way to do so (which is not always Gaussian elimination). Statistics pack-
ages will perform a linear regression without asking the user to explicitly solve
the normal equations. For modest-sized datasets the response time is below
the user’s perceptual threshold, and so it makes little difference how the solu-
tion is being found. However, it is valuable to understand the ideas hidden

52 Data Science for Mathematicians

underneath these routines in order to most efficiently make use of them for
large datasets. Often the software will allow the user to select certain options
that may improve runtime, an idea to which we’ll return at the end of this
section.

We assume the reader is familiar with Gaussian elimination but will review
it here by example in order to introduce notation. The reader may skim the
section for the necessary details or read carefully for a thorough review.

Given an m × n linear system consisting of, say, three equations R1, R2,
and R3, perhaps

R1 : 2x1 + x2 + x3 = 4

R2 : x1 + 2x2 + x3 = 4

R3 : x1 + x2 + 2x3 = 4,

we note that the solution set of the linear system is left unchanged by the
following three elementary equation operations: E1 : Ri ↔ Rj , interchanging
the order of the two equations Ri and Rj ; E2 : cRi, multiplying equation Ri
by the nonzero scalar c; and E3 : mRi + Rj → Rj , adding a multiple m of
equation Ri to equation Rj , replacing the latter. In Gaussian elimination, we
use E3 to make zero the coefficients of x1 in the second row through the last,
then use E3 to make zero the coefficients of x2 in the third row through the
last, continuing in this way until we have eliminated all subdiagonal terms,
using E1 when necessary to move an entry into the diagonal position if the
coefficient there happens to be zero. Here we perform (−1/2)R1 +R2 → R2,
then (−1/2)R1 +R3 → R3, giving

R1 : 2x1 + x2 + x3 = 4

R′2 : 0x1 +
3

2
x2 +

1

2
x3 = 2

R′3 : 0x1 +
1

2
x2 +

3

2
x3 = 2,

where, importantly, the last two equations now form a 2 × 2 system in the
variables x2 and x3 alone. Finally, we perform (−1/3)R′2 +R′3 → R′3, giving

R1 : 2x1 + x2 + x3 = 4

R′2 : 0x1 +
3

2
x2 +

1

2
x3 = 2 (3.1)

R′′3 : 0x1 + 0x2 +
4

3
x3 =

4

3
,

which has been significantly simplified, as the last equation now involves only
one variable, the one above it only two, and the one above it all three. This
completes the Gaussian elimination phase; we proceed to back-substitution,
solving the last equation R′′3 to find that x3 = 1; then using this in R′2 to find
that x2 = 1; and finally using these values of x2 and x3 in R1 to find that
x1 = 1 as well. We have solved the system.

Linear Algebra 53

3.2.2.2 The matrices L and U

It’s unreasonable to ask the computer to manipulate the symbolic entities
x1, x2, and x3, and it was noticed very early on that one need merely write the
coefficients in columns and perform the corresponding operations as though
the symbols were still present. In modern linear algebraic form, we write the
given system in the form Ax = b, where

A =

2 1 1
1 2 1
1 1 2

x =

x1

x2

x3

b =

1
1
1

and form an augmented matrix

(
A
∣∣∣ b
)

=

2 1 1 4
1 2 1 4
1 1 2 4

 ,

where the line has no algebraic effect and may be omitted. In effect, the four
columns are the x1, x2, x3, and b columns, respectively. Taking the equation
labels Ri to now refer to the rows of this matrix, we once again perform
(−1/2)R1 + R2 → R2 and (−1/2)R1 + R3 → R3 in that order, changing(
A
∣∣∣ b
)

in turn, then (−1/3)R′2 +R′3 → R′3, giving

2 1 1 4
1 2 1 4
1 1 2 4

 ∼

2 1 1 1
0 3/2 1/2 2
0 0 4/3 4/3

 ,

where the tilde indicates that the two matrices differ only by one or more of the
three elementary equation operations, now termed elementary row operations.
We say that the two matrices are row equivalent. The Gaussian elimination
stage is completed, with the final matrix upper triangular. We have row-
reduced the augmented matrix to one in triangular form. By convention, any
rows consisting entirely of zero entries are placed at the bottom in the final
result. We now reinterpret this system in the form of equation (3.1) and apply
back-substitution as before. In this case, A is evidently nonsingular (that is,
invertible), as it is square and not row-equivalent to a matrix with a row of
all zeroes.

Gaussian elimination is usually the best way to solve small-to-medium, and
certain specially structured, linear systems. We associate with each elementary
row operation an elementary row matrix in the following way: The elementary

54 Data Science for Mathematicians

matrix Λ corresponding to performing operation E on an m×n matrix is the
matrix obtained by applying that operation to the identity matrix of order
m. Multiplication on the left by Λ is easily shown to have the same effect as
performing the operation directly on the matrix. For example, defining

Λ1 =

1 0 0
−1/2 1 0

0 0 1

we find that

Λ1

(
A
∣∣∣ b
)

=

2 1 1 1
0 3/2 1/2 2
1 1 2 1

directly implementing the elementary row operation (−1/2)R1 + R2 → R2.

Continuing in this way, Λ = Λ3Λ2Λ1 is a matrix that reduces
(
A
∣∣∣ b
)

to the

desired form.
We can therefore implement row reduction to upper triangular form as

a sequence of matrix multiplications. This would be very inefficient as code
but leads to valuable insights. Omitting the details, when the original matrix
can be reduced to upper triangular form using only operations of the form
−mj,iRi + Rj → Rj , there is a lower triangular matrix Λ with ones on its
main diagonal and entries −mj,i in the lower triangle, each occupying the

position it was intended to eliminate, such that Λ
(
A
∣∣∣ b
)

has the desired form,

an upper triangular matrix. Hence, we define UΛ = A.
If a square matrix F admits another square matrix G of the same order

such that FG = I (the identity matrix), then it must be that GF = I also. We
say that F and G are inverses of one another and that each is invertible and
write G = F−1. The invertible matrices are exactly the nonsingular matrices.

In principle this means that we could solve Ax = b when A admits an
inverse in the following way: Find A−1, then multiply x by it to produce
x = A−1b. Unfortunately, this method is both less computationally efficient
and less accurate than the method of Gaussian elimination, and is never used.

(Recall that a standard way of finding A−1 is to row-reduce
(
A
∣∣∣ I
)

until we

obtain the identity matrix on the left-hand side; this requires manipulating n

columns on the right-hand side, while working directly on
(
A
∣∣∣ b
)

involves only

one column on the right. Surely the extra computations involve more time and
more round-off error, and even then, we must still perform a matrix-vector
multiplication at the end to finally find x.) Furthermore, as a rule of thumb,
sparse matrices often have full inverses, meaning we may pay a considerable
price in storage. Inverses are valuable primarily in symbolic operations. Even
when we need to solve Ax = b repeatedly with the same A but different
b vectors, finding the LU decomposition of A once and using it for every
following case to solve LUx = b as b varies is almost always the less costly,
more accurate choice.

Linear Algebra 55

But now consider again the equation ΛA = U . The matrix Λ is not merely
lower triangular; it is unit lower triangular, that is, all its main diagonal entries
are ones. It’s clear that ΛT is nonsingular because it is already in (upper
triangular) reduced form, so Λ is itself nonsingular—hence invertible—as well.
The inverse of a unit lower triangular matrix is also a unit lower triangular
matrix, as can be seen by writing ΓΓ−1 = I, with Γ−1 full of unknowns
below the diagonal. If one computes the product, the values of the subdiagonal
entries follow immediately, and the ones below them next, and so on. In our
example,

Λ =

1 0 0
−1/2 1 0
−1/2 −1/3 1

 and Λ−1 =

1 0 0
1/2 1 0
2/3 1/3 1

 ,

and applying this to ΛA = U gives Λ−1ΛA = Λ−1U . Letting L = Λ−1, we
obtain the LU decomposition A = LU of the original matrix of coefficients A.
Note that it is trivial to construct L as we perform Gaussian elimination, as
its entries can be found easily from the mj,i (called the multipliers); in fact,
we could store those entries in the space cleared from A as it is transformed
in-place in memory to U , requiring no extra storage whatsoever. (There is no
need to store the known unit entries on the main diagonal of L). Hence, the
LU decomposition requires only the storage space of A itself.

This factorization represents the traditional means by which a system of
the form Ax = b is solved by machine. We begin with A, form L and U (possi-
bly overwriting A in memory in the process), then consider the problem in the
form LUx = b, i.e., L (Ux) = b. Temporarily writing y for the unknown vector
Ux, we solve Ly = b by forward-substitution in the obvious way, then solve
Ux = y by back-substitution to find the answer x. This has no computational
advantage over the cost of simple Gaussian elimination with back-substitution
for an n×n system if we only wish to solve Ax = b once, but often we next seek
to solve Ax = d for a new vector d. In this case, using the previously computed
L and U reduces the cost by an order of magnitude. (See Section 3.4.)

3.2.2.3 Permuting rows

We have neglected an important consideration—we will likely need to inter-
change rows at some point. First, we note that a matrix such as

K =

(
0 1
1 1

)

cannot be row-reduced to upper triangular form without the row interchange
operation; we must perform R1 ↔ R2. In fact, performing that operation on
the identity matrix produces an elementary matrix

Π =

(
0 1
1 0

)

and ΠK is upper triangular, as desired. Trivially, Π is its own inverse here.
We permute rows as needed throughout the row reduction process, leading to

56 Data Science for Mathematicians

an equation of the form MA = U where M is a product of some number of
permutation and unit lower triangular matrices. The corresponding decompo-
sition is A = M−1U .

Perhaps surprisingly, however, it’s always possible to write M−1 as the
product of a single permutation matrix P (a row-permuted version of the
identity matrix) and a unit lower triangular matrix L. The resulting decom-
position is called the PLU decomposition A = PLU . The solution process for
Ax = b is little changed; permutation matrices have the property that P−1

exists and equals PT , so PLUx = b becomes LUx = PT b and we proceed as
before.

Because permuting rows is so common in practice, it’s usual to call the
PLU decomposition simply the LU decomposition. Often we work with the
two matrices PL and U ; the former is merely a permuted version of a lower
triangular matrix and is essentially just as valuable. It’s also common to simply
store a permutation vector p that indicates in which order the rows of L would
have been permuted, rather than to actually move the rows around in memory.

But second and more generally, the form of Gaussian elimination we have
described is called naive Gaussian elimination, and it is numerically unsta-
ble in finite precision arithmetic; that is to say, it has the property that the
inevitable small errors in each step of the computation can grow so large that
the computed solution is grossly inaccurate. To improve its accuracy, when
we begin to consider column 1 we scan down the column and select from all
its entries the one that is largest in absolute value, then perform a row inter-
change to bring it to the topmost row. This process is called pivoting. We
then clear the column as before. Moving to column 2, we consider all entries
from the second row downward and again pivot (if necessary) to bring the
largest entry in absolute value to the second row. We then clear down that
column. This approach is called Gaussian elimination with partial pivoting
(GEPP). Intuitively, when the multipliers are all less than unity in magnitude
we are multiplying the unavoidable errors present by a quantity that dimin-
ishes them; when they are larger than unity, however, we risk exaggerating
them.

When the LU decomposition is referred to in practice it’s virtually certain
that a PLU decomposition performed with partial pivoting is meant. It isn’t
perfect, but it’s good enough that it’s the standard approach. For additional
stability, the more expensive method of maximal (or complete) pivoting per-
forms both row and column interchanges to bring the largest value remaining
in the part of the matrix left to be processed to the diagonal position.

3.2.2.4 Computational notes

We now offer a few computational notes that the reader may skip if desired.
The purpose is primarily to alert you to the existence of possible concerns
and challenges when using this decomposition with a truly large matrix. How
large is large? That depends on your software and hardware, as well as how

Linear Algebra 57

quickly you need a result. Scientific data processing problems from, say, par-
ticle physics or astronomy can involve a truly impressive amount of data.

Algorithms were traditionally judged by how many floating point oper-
ations they required—additions, subtractions, multiplications, divisions, and
raising to powers (including extraction of roots). Since additions/subtractions
tend to require less computer time than the other operations, sometimes the
additions and subtractions are counted separately from the multiplications
and divisions. For simplicity, we’ll lump them together.

A careful count shows that solving a general n×n linear system by Gaus-
sian elimination, including the back-substitution step, takes (2n3+3n2−5n)/6
additions and subtractions, (2n3 +3n2−5n)/6 multiplications, and n(n+1)/2
divisions. This is

2

3
n3 +

3

2
n2 − 7

6
n

floating point operations (flops). For large matrices, this is approximately
(2/3)n3, and we say that the method has computational complexity that is
of the order of n3, denoted O

(
n3
)
: Working with twice as much data (i.e.,

doubling n) requires about eight times as many operations for large n. This
doesn’t account for the cost of the searches required by partial pivoting, about
n2/2 comparisons.

This is one reason why we use the LU decomposition. Although we pay an
O
(
n3
)

initial cost to find it, subsequent solutions involving the same matrix

incur only an O
(
n2
)

cost for the forward- and back-substitution phases. We

do need to be somewhat suspicious here: Being told the method has an O
(
n2
)

cost means that for large n the cost is proportional to n2, but it’s not clear
what that constant of proportionality is; what if it actually grows like 106n2?
In fact, each phase takes about n2 operations, so the cost is about 2n2. Even
for modest n, this is much smaller than (2/3)n3.

If the matrix is sparse, we can almost surely do much better. For example,
a tridiagonal matrix, that is, one that has nonzero entries only on the main
diagonal and the immediate superdiagonal and subdiagonal, can be solved in
8n−7 flops via a variant of Gaussian elimination called the Thomas algorithm.

When processor speeds were lower and most computations were done on
serial machines that processed a single floating point operation at a time, one
after another, this type of analysis allowed for easy comparison between com-
peting algorithms. But after decades of Moore’s Law—the continual increase
of processor speeds—computation time is much less of a bottleneck than it
used to be. Add in the widespread use of parallel machines, from increasingly
common quad core laptops with four processors to machines with thousands
of processors, and the picture is somewhat different. And importantly, mem-
ory access speeds have not increased at the same rate as processor speeds.
For large matrix computations, or for accessing data in general, retrieving
information from memory is often the major concern.

For this reason, algorithms implementing this decomposition and the other
methods we are going to discuss will, ideally, be aware of the memory layout of

58 Data Science for Mathematicians

the device on which they are to be used. Many machines will have one or more
levels of small-but-fast cache memory nearer the processor than main memory
is, for example, and this may be accessible an order of magnitude more rapidly.
When reading a value from memory, we hope to make the greatest reuse of it
possible while we have it near the processor.

All of the algorithms that we will discuss have approximate versions that
both reduce computation costs and reduce memory usage. For example, when
computing the LU decomposition of a large, sparse matrix for which we have
devised a specialized data structure and in a case in which we are overwriting
the matrix in memory, the row-reduction operation will likely introduce non-
zero elements where previously the entry was zero (and hence not stored).
This phenomenon of “fill-in” can result in costly reworking of the data struc-
ture on-the-fly. One might choose to use an incomplete LU decomposition that
simply declines to create a new nonzero entry, skipping the computation and
saving current memory read/write time as well as later memory access and
computation time, or one that thresholds, that is, sets small values to zero to
save working with them. In many cases these provide an adequate approxi-
mation; in other cases they provide an initial guess that is used by another
algorithm to refine the solution to a more accurate one.

Many issues in computational matrix algebra are highly hardware-specific,
including the selection of the numerical algorithm in the first place. Impor-
tantly, memory access-time concerns typically dominate computation-time
concerns in modern high-performance, large-scale computational matrix alge-
bra. On a massively parallel machine, it’s often problematic just getting the
data to the processor nodes in a timely manner; processors sit idle for the
majority of the runtime in many applications.

These are the kind of options that are often user-selectable: Overwrite the
current matrix (or don’t), use thresholding, prohibit fill-in, use a different form
of pivoting, and so on. The point is not to write your own LU decomposition
routine but rather to make smart use of the existing ones. Mathematicians and
computational scientists do write much of the software that is used in data
science, and this sort of under-the-hood application of mathematics in the
field is crucial in building the software that enables data scientists to do their
work. For the end-user interested in applying such tools, what’s important is
to know enough about how they work.

3.2.3 The Cholesky decomposition

There’s an important variation of the LU decomposition that is widely
used in least-squares curve-fitting. A matrix is symmetric if it is equal to its
own transpose, that is, if B = BT . Such a matrix is necessarily square. We
say that a symmetric matrix B is positive semi-definite if for all conformable
vectors x,

xTBx ≥ 0

Linear Algebra 59

and that it is positive definite if, in fact, xTBx > 0 for all nonzero x (so that
a vector norm can be generated by taking the square root of this quantity,
which is called a quadratic form in B and represents the quadratic terms in
a polynomial in the vector x). Importantly, the matrix appearing in a least-
squares problem is almost always of this type.1

In the case of such a matrix, we can perform the LU decomposition in
such a way that U = LT , that is, so that B = LLT (equivalently, B = UTU).
This is called the Cholesky decomposition. To indicate why this is possible,
consider the positive definite matrix

B =

2 1 0
1 2 0
0 0 2

and perform the initial elimination step, (−1/2)R1 + R2 → R2 using the
matrix Λ1 from earlier, giving

1 0 0
−1/2 1 0

0 0 1

2 1 0
1 2 0
0 0 2

 =

2 1 0
0 3/2 0
0 0 2

and note that the resulting matrix has lost its symmetry. But if we now apply
ΛT1 on the right, we have

1 0 0
−1/2 1 0

0 0 1

2 1 0
1 2 0
0 0 2

1 −1/2 0
0 1 0
0 0 1

 =

2 0 0
0 3/2 0
0 0 2

because whatever row operation an elementary row matrix performs when
used on the left of the matrix (premultiplication of B), its transpose performs
the corresponding column operation when applied on the right (postmultipli-
cation). We now have

Λ1BΛT1 = D

B = L1DL
T
1

with L1 the inverse of Λ1. For a larger matrix, we would once again have
a product of many Lk matrices, the product of which would be unit lower
triangular. (Pivoting is never needed for existence of the decomposition nor
even for numerical stability for a positive definite matrix, though it can be
used for extra accuracy [192].) The end result on the right is always a diagonal
matrix, and the positive definiteness of B compels the diagonal entries of D

1We will see another application of quadratic forms in distance measures used in cluster
analysis in Section 5.3.

60 Data Science for Mathematicians

to be positive. Separating D as

D =

2 0 0
0 3/2 0
0 0 2

=

√

2 0 0

0
√

3/2 0

0 0
√

2

√

2 0 0

0
√

3/2 0

0 0
√

2

= D2
1/2

lets us write

B =
(
L1D1/2

) (
D1/2L

T
1

)

=
(
L1D1/2

) (
DT

1/2L
T
1

)

=
(
L1D1/2

) (
L1D1/2

)T

and postmultiplication by a diagonal matrix implements the elementary col-
umn rescaling operation so that B = LLT where L is lower triangular but
not, in general, unit lower triangular. The algorithm is of course implemented
in a very different way in code, but this establishes that we can decompose
a positive definite matrix in a way that uses only about half the storage of a
full LU decomposition, as we need store only L.

3.2.4 Least-squares curve-fitting

One of the most common tasks in data analysis is the fitting of a straight
line to some data. Suppose that we have a series of observations y1, y2, . . . , yn
taken at locations x1, x2, . . . , xn. It’s highly unlikely that the data falls on a
line y = a1x + a0, but if we are curious as to whether it is well-described by
such a line, we might seek to find such coefficients

a =

(
a1

a0

)

leading to the system of equations

a1x1 + a0 = y1

a1x2 + a0 = y2

...

a1xn + a0 = yn

Linear Algebra 61

which almost surely admits no solution. (We say the system is inconsistent.)
Ignoring this for the moment, we write

V =

x1 1
x2 1
...

...
xn 1

y =

y1

y2

...
yn

giving the system V a = y. Since this is presumably inconsistent, we instead
seek the best “near-solution” a, which we define as the one that minimizes
the norm

‖y − V a‖2 =

n∑

k=1

(yk − (a1xk + a0))
2
,

that is, the solution that minimizes the sum of squares of the prediction errors.
With this criterion, it follows that the least-squares solution is the solution of
the so-called normal equation2

V TV a = V T y,

i.e.,

a =
(
V TV

)−1
V T y,

though using the inverse would not be an efficient approach. Instead, we note
that V TV is symmetric,

(
V TV

)T
= V T

(
V T
)T

= V TV,

and in fact positive semi-definite,

xT
(
V TV

)
x = xTV TV x = (V x)

T
(V x) = ‖V x‖2 ≥ 0.

(In most cases the matrix V TV is actually positive definite.) This allows us to
use the Cholesky decomposition to find a. If the Cholesky decomposition of
the positive definite matrix V TV is LTL, then the normal equation becomes

LTLa = V T y

LT (La) = V T y,

and we can write d = La as a temporary variable, solve for it from LT d = V T y,
then solve La = d for a by back-substitution.

2We will see more about normal equation in Sections 4.6.3 and 8.5.3.

62 Data Science for Mathematicians

The approach easily generalizes. If instead we seek a quadratic model, say
y = a2x

2 + a1x+ a0, we define

a =

a2

a1

a0

and the system of equations

a2x
2
1 + a1x1 + a0 = y1

a2x
2
2 + a1x2 + a0 = y2

...

a2x
2
n + a1xn + a0 = yn

leads to

V =

x2
1 x1 1
x2

2 x2 1
...

x2
n xn 1

representing the presumably inconsistent system V a = y. Once again, the
normal equation

V TV a = V T y

defines the least-squares solution, that is, the one that minimizes

‖y − V a‖2 =
n∑

k=1

(
yk −

(
a2x

2
k + a1xk + a0

))2
,

and we can find this solution via the Cholesky decomposition of V TV . Note
that V TV is actually just a 3×3 matrix in this case, even if we have n = 1000
data points. We could continue with higher-degree polynomials.

A matrix such as V , with the property that each column moving leftward
is the next highest elementwise power of the penultimate column, and the
rightmost column is all ones, is called a Vandermonde matrix. Other authors
might define it so that the powers increase moving rightward instead. There
are specialized methods for solving Vandermonde systems V a = y when they
are consistent [192], but unless the system is square—so that we are, say, fitting
a quadratic to three points—our Vandermonde system will almost surely have
no solution.

The Cholesky decomposition requires about (1/3)n3 flops. The use of the
Cholesky decomposition thus speeds up the process of solving the normal
equation considerably, while reducing memory access requirements. This is
important when there are many parameters in the model, or when a program
checks a great number of potential models and then returns the best fit from
among them.

Linear Algebra 63

3.2.5 Recommender systems and the QR decomposition

3.2.5.1 A motivating example

Let’s consider a major area of application of vector information retrieval
methods, recommender systems. Video streaming services, among others, are
heavily interested in these. Netflix, which offered a million-dollar prize for a
better system at one point, believes the quality of its recommender system is
essential.

We think the combined effect of personalization and recom-
mendations save us more than $1B per year. [193]

Suppose A is a term-by-document matrix for a video streaming service
in which the terms are movies and the documents are viewers, with a 1 in
the (i, j) position if movie i has been selected for viewing at some point by
viewer j, and a 0 otherwise. (A streaming service user is being viewed as a
document that is “written” in terms of what movies the person has selected;
we are what we watch in this model!) We assume these selections are based
on the users’ interests, and wish to recommend movies based on this data. It’s
usual to weight the entries in some way. A simple approach is to normalize
each column. Lets call W the matrix obtained after rescaling each column of
A by its norm (unless it is entirely zero, in which case we leave it alone). For
definiteness, we’ll let the users be

1: Alice, 2: Bob, 3: Cori, 4: Derek, 5: Eric, 6: Fay

and the movies be

1: Godzilla, 2: Hamlet, 3: Ishtar, 4: JFK,
5: King Kong, 6: Lincoln, 7: Macbeth,

where we recognize that films 1 and 5 are both monster movies, films 2 and 7
are both based on Shakespearean plays, films 4 and 6 are both based on the
lives of U.S. presidents, and film 3 is a comedy. The point, however, is that
the algorithm need never be informed of these similarities and differences; it
will infer them from the data, if there is enough of it.

In some sense, we are recognizing that each viewer has some domain knowl-
edge, as it were, regarding movies, and that we might be able to access that
knowledge. Of course, we are not accessing that knowledge by interviewing
them, as might have been done before the data science revolution; we are
finding it from the limited data of their preferences alone.

64 Data Science for Mathematicians

The streaming service collects the necessary information in the course of
its operations. The raw term-by-document matrix might be the 7× 6 matrix

A =

1 0 0 1 1 0
0 1 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 1 1 0 1
0 1 0 0 1 0
0 1 0 0 0 0

,

and after we normalize each column we have W . Now suppose a new user
George joins the service and provides information on movies previously viewed
and enjoyed. Perhaps the only three on our list are Godzilla (1), JFK (4), and
Macbeth (7). What other films might George like? There’s more than one way
to try to answer this, but the vector information retrieval approach would be
to form a query vector

v = (1, 0, 0, 1, 0, 0, 1)
T

with a 1 for each movie liked, and a 0 otherwise. We then ask which columns
of W are closest to v; commonly, we interpret this to mean which have the
smallest angle between them and v, that is, the largest absolute value of the
cosine of the angle between the vector and v. Using a standard formula, this
angle satisfies

|cos (θj)| =
ATj v

‖Aj‖ ‖v‖

if we are using the unweighted matrix A, or

|cos (θj)| =
WT
j v

‖v‖

if we are using the weighted matrix W , for which ‖Wj‖ = 1. In fact, if we
choose to normalize v too, say as z = v/ ‖v‖, then we can perform the entire
calculation of these cosine values as AT z, producing a vector of query results.

A common guideline is that if |cos (θj)| is at least .5, we have found a rel-
evant “document.” Our results show that users 1 and 4 both produce cosine
values of about .577. Our new user seems to like the sort of shows that Alice
and Derek like; indeed, they share Godzilla and King Kong in common. Per-
haps the service should recommend Hamlet, the only other film selected by
either user? With more data, we should be able to make better recommenda-
tions.

But this isn’t a sufficiently smart method. There is information “buried” in
A, we presume, but obscured by the fact that we don’t know more about the
users, nor more than titles about the films—nothing regarding genre, actors,
etc. But we can infer some of this information from the assumption that the

Linear Algebra 65

viewers tend to have preferences regarding genre of film, favorite actors, etc.;
they aren’t just watching at random. What do their choices reveal, not only
about themselves, but about the films?

In a true term-by-document matrix, with each row representing a different
word and each column representing a different book, say, word choice is always
somewhat arbitrary: In this sentence the word “choice” was used, but couldn’t
“selection,” “preference,” or “usage” all have served about as well? We might
refer to a tennis “match,” a baseball “game,” a golf “tournament,” and so
on, but we recognize that, at least in this context, this cluster of concepts,
the words are very closely related. If we are searching for the word “game”
we might well want to have books on tennis matches and golf tournaments
included, even if the precise word “game” appears nowhere in them. The fine
detail provided by the precise word choices “match,” “game,” “tournament”
can be beneficial when writing a book but less so when searching for one.
Similarly for the films—if we hope to find similar films to use as recommen-
dations, we might find it useful to fuzz over the distinctions between a King
Kong film and a Godzilla film in order to cluster monster movies together. If
we are provided a thesaurus for words or a genre list for movies we may be
able to use it to search for such recommendations, but this doesn’t really inter-
rogate the accumulated data to see what people really want to view. It can’t
tell us whether people who have only watched more recent monster movies
would also enjoy older ones, and of course, in a large, rich dataset, we hope
to be able to identify the group of people who watch, say, modern monster
movies, old black-and-white detective movies, and anything starring Johnny
Depp, and recommend other movies they have watched to other members of
that same group.

The rank of A (and of W) is 5, which is one less than it could have been
(rank(A) ≤ min (m,n)). But we are going to use a rank-reduction approach
that will produce an approximate W that is of even lower rank. Why? This
forces the information that is presumed to be lurking within the matrix to
further cluster together. Hopefully, this clustering will force Godzilla and King
Kong together based on the associations lurking in A, blurring the distinction
between them, which will be a useful blurring for us, as we need to discover
the connection between them without being told, by mining the data in this
way. We will intentionally fuzzify the information contained in A in order to
better find such similarities.

3.2.5.2 The QR decomposition

The LU decomposition is of great importance in the many applications
that involve the solution, and especially the repeated solution, of a linear sys-
tem Ax = b (for example, when implementing Newton’s method), as we’ve
just seen in using its variant the Cholesky decomposition for least-squares
problems. In vector-space modeling applications, though, other decomposi-
tions are more widely used. The next matrix factorization we consider will

66 Data Science for Mathematicians

decompose a matrix A as the product of an orthogonal matrix Q, that is, a
square matrix with the property that QTQ = I (so that Q−1 = QT), and an
upper triangular matrix R. (We might have used U here instead, but as it
will very likely be a different upper triangular matrix than the one produced
by the LU decomposition, we use the alternative term “right triangular” for
an upper triangular matrix.) This will allows us to reduce the rank of our
term-by-document matrix in a systematic way that tends to reveal latent
information of the sort we seek.

The definition of an orthogonal matrix is driven by the concept of orthogo-
nality of vectors. Two vectors v1 and v2 are said to be orthogonal if their inner
product vT1 v2 is zero; we say that the set {v1, v2} is orthogonal. If the vectors
are also normalized to length one we say that the set is orthonormal. The
requirement that QTQ = I is actually just the requirement that every column
of Q be orthogonal to every other column of Q, and that the norm of any
column be unity. Hence the columns are pairwise orthogonal and normalized
to length one.

Every matrix has an LU decomposition, and every matrix has a QR decom-
position as well. (In general the factor matrices are not unique in either case.)
There are two main ways of finding a QR decomposition of a matrix. The first
is based on the orthogonality of Q. As this relates to the orthonormality of
its columns, let’s consider this from the vectorial point of view for a moment.
The span of a set of vectors is the set of all possible linear combinations of
them, for example, span({v1, v2}) is the set of all

α1v1 + α2v2

for all scalars α1, α2 (real scalars for our purposes). The span of a set of
vectors is a vector space. (We assume the formal definition of this is familiar.
Importantly, a vector space exhibits closure under the operations of addition
and scalar multiplication.) Ideally the vectors from which we form the vector
space are linearly independent, with no vector capable of being written as
some linear combination of the others. In this case we say that the number
of vectors in the set is the dimension of the vector space. Any set of vectors
generating the same vector space is said to be a basis for that space and must
have precisely the same number of vectors in it. In particular, in a vector space
of dimension n, a set of more than n vectors cannot be linearly independent
(and so we say that it is linearly dependent). The set of all n-vectors has
dimension n.

Importantly, if {v1, v2, . . . , vn} is a basis for a vector space, and v is an
element of that vector space, then there is one and only one way to express
v as a linear combination of the basis vectors; that is, there exists a unique
sequence of scalars α1, α2, . . . , αn such that

v = α1v1 + α2v2 + · · ·+ αnvn

Linear Algebra 67

and if B is the matrix with columns v1, v2, . . . , vn, then

v = B

α1

α2

...
αn

so that we may find the coefficients α1, α2, . . . , αn by solving a linear system
(say, by Gaussian elimination). Of course, if the basis vectors are orthonormal,
then B is an orthogonal matrix and we can find the coefficients easily from
the fact that B−1 is just BT in this case, so that

α1

α2

...
αn

 = BT v. (3.2)

This is just one reason why orthonormal bases are desirable.
Now, consider a set of vectors {v1, v2, . . . , vn} that is linearly independent.

These might represent (document) columns of a term-by-document matrix.
We may want to find an orthonormal set of vectors {u1, u2, . . . , un} with the
same span. The standard way of doing this is the Gram-Schmidt process: We
begin by letting u1 be the normalized version of v1,

u1 =
v1

‖v1‖

and then form u2 by subtracting off the projection of v2 along u1, then nor-
malizing the result.

u′2 = v2 −
(
vT2 u1

)
u1

u2 =
u′2
‖u′2‖

Continue this process, giving next

u′3 = v3 −
(
vT3 u2

)
u2 −

(
vT3 u1

)
u1

u3 =
u′3
‖u′3‖

and so on. It’s easily verified that the set {u1, u2, . . . , un} is orthonormal. Some
care must be taken when implementing the algorithm to address possible loss
of accuracy when n is not small, but this is not our concern here.

It’s possible to use this algorithm to find the QR decomposition of a matrix.
Let’s assume that A is a not-necessarily-square m×3 matrix and, for the sake

68 Data Science for Mathematicians

of convenience, that it has linearly independent column vectors. If we let vj

represent column j of A, so that A =
(
v1 v2 v3

)
, and set

R1 =

1/ ‖v1‖ 0 0
0 1 0
0 0 1

 ,

then postmultiplication byR1 rescales column 1 of the matrix by the reciprocal
of its norm. Comparing this to the first step of the Gram-Schmidt process, we
see that

AR1 =
(
u1 v2 v3

)

and so now letting

R2 =

1 −
(
vT2 u1

)
0

0 1 0
0 0 1

we find that
(AR1)R2 =

(
u1 u

′
2 v3

)

so that

R3 =

1 0 0
0 1/ ‖u′2‖ 0
0 0 1

provides the desired rescaling: AR1R2R3 =
(
u1 u2 v3

)
. The first two columns

of this matrix are pairwise orthonormal; we are getting closer to the desired
Q matrix. Finally, we use an R4 to find u′3 and then an R5 to convert it to
u3. This gives

AR1R2R3R4R5 =
(
u1 u2 u3

)

AS = Q,

where S, the product of the upper triangular Ri matrices, is also upper tri-
angular. Its inverse R exists and is also upper triangular, giving the desired
QR decomposition, A = QR. (In general, Q is m×m and R is m× n.) This
is sometimes called a triangular orthogonalization of A; we use successive tri-
angular matrices to make the matrix more and more orthogonal at each step,
much as the LU decomposition is a triangular triangularization process, using
(lower) triangular matrices to create an upper triangular one. Of course, an
actual program would proceed in a more efficient way.

Given a matrix, the span of its row vectors is called its row space, and the
span of its column vectors is called its column space. The column space of
A is in fact the range of the function y = Ax, that is, the set of all possible
results y as x ranges over all appropriately-sized vectors, for

y = Ax = A1x1 + · · ·+Anxn,

Linear Algebra 69

where Aj is column j of A. If the columns of A are linearly independent, the
columns of Q are an orthonormal basis for the column space. More generally, if
the columns of A are not necessarily linearly independent, if p is the dimension
of the column space of A, that is, p is the rank of A, then the first p columns
of Q form an orthonormal basis for the column space of A. (The additional
columns are needed for conformability of the product QR.)

It’s also possible to find the QR decomposition via orthogonal triangular-
ization methods. The more commonly used version of this approach is based
on successive orthogonal matrices implementing reflections, but a special-
circumstances method uses orthogonal matrices implementing rotations [306].

The rank of a matrix is the number of linearly independent row vectors
it possesses, which always equals the number of linearly independent column
vectors (and hence rank(A) ≤ min (m,n)). While in principle we could find
this via the LU decomposition by asking how many rows of U are not entirely
zero, round-off error complicates the matter. A better way to do this is by
asking how many nonzero diagonal entries there are in the R matrix of the
QR decomposition.

Also, although finding the QR decomposition is a little more expensive
than finding the LU decomposition, it also tends to yield slightly more accu-
rate results. Indeed, when solving the normal equation of least-squares curve-
fitting, it’s usually advisable to consider using the QR decomposition instead,
as follows.

ATAx = AT b

(QR)
T

(QR)x = (QR)
T
b

RTQTQRx = RTQT b

RTRx = RTQT b

(Recall that QTQ = I.) This avoids the creation of ATA, which compresses
n data points into a relatively small matrix (where n may be quite large).
This can both save time and improve accuracy lost to the the large number
of operations involved in creating the matrix prior to decomposing it.

The last equation certainly looks reminiscent of the equation we found
using the Cholesky factorization, and there is a close connection. But this
approach tends to give better results, especially in rank-deficient cases, as
when A has less than full rank, the numerical stability of the computation
becomes a much larger concern [526].

There are reduced-size versions of the decomposition that retain only the
information we will need in a particular application. For example, if m � n
as in a typical least-squares curve-fitting case, we are retaining a lot of null
rows at the bottom of R, and hence a lot of never-used entries of Q [306].

70 Data Science for Mathematicians

3.2.5.3 Applications of the QR decomposition

We’re ready to return to the recommender system example. Recall our
desire to “fuzz over” the distinctions between some movies, letting the data
cluster related movies together.

We begin with the QR factors of W . (If you attempt to follow along in
your favorite computing environment, recall that the QR decomposition is not
unique without the addition of further constraints, so you may get slightly
different results from what’s shown below.) This is not a cheap computation
for a large dataset, but the streaming service will have a massively parallel
computing system to handle it.

In a QR decomposition of a matrix A, rank(A) must always equal rank(R).
To implement the fuzzing over mentioned above, we will reduce the rank of
A (or W) by reducing the rank of R. Consider again the normalized 7 × 6
matrix W . It will have rank less than 6 if and only if some diagonal entry is
zero (or nearly so, because of the limitations of floating point arithmetic). In
many computing environments, the diagonal entries of R will be arranged in
descending order of magnitude, so the null entry would be R6,6. In this case,
the last two rows of R, rows 6 and 7, are entirely zero (again, up to round-off
error). To reduce the rank of R, we make rows 4 and 5 be all zeroes also. We
write RQRD for the new, modified R, which now has its last four rows entirely
null. It has rank 3. Now we will set

WQRD = QRQRD (3.3)

to get an approximate, reduced-rank version of W .
The percentage error introduced, as measured by a certain norm on matri-

ces (from Section 3.2.6), is about 43% in this case, which would be quite
high in other circumstances. Here, however, we were intentionally seeking to
discard some information in order to force the desired clustering, so this is
actually a good thing. If we now repeat our earlier query using

z =
(

1/
√

3, 0, 0, 1/
√

3, 0, 0, 1/
√

3
)T

then WT
QRDz gives, after suppressing the negligible values and then rounding

to two places,
(0.41, 0.58, 0.00, 0.50, 0.56, 0.00)

T
,

indicating that viewer 2 (Bob) is the best match, closely followed by viewer 5
(Eric). Bob does share an interest in King Kong and Macbeth, and looking at
Bob’s viewing habits, we might still conclude that we should recommend Ham-
let to the new user as well; this seems like a good recommendation, though no
better than we had done before. Looking at Eric’s record, we find Godzilla and
King Kong in common, and might recommend Lincoln—a novel recommen-
dation that is less obvious even to we who can reason about the underlying
genres and themes of the films. It doesn’t seem unreasonable that someone

Linear Algebra 71

who likes Hamlet and Macbeth might be interested in the story of Abraham
Lincoln; has reducing the rank uncovered this association?

It’s usually pointless to ask whether a single, isolated finding like this is
a success or merely a coincidence. Since the method has proven useful in
practice, we make use of it. But we will see in the next section that there is a
better, albeit more expensive, approach, requiring a different decomposition.
We’ll use the same term-by-document matrix, so if you’re following along with
the computations you may wish to save this example first.

Readers who wish to solidify their understanding of the matrix decomposi-
tions introduced so far may wish to try the project in Section 3.5.2 at the end
of the chapter before we move on to another matrix decomposition method.

3.2.6 The singular value decomposition

In this section we’re going to approach the same recommender system
example via a different decomposition that is more expensive, but typically
more revealing, than the QR decomposition. It’s the last of the three big
decompositions in applied linear algebra: the LU decomposition, the QR
decomposition, and now the singular value decomposition (SVD). It’s also
the heart of the statsictical method known as principal components analysis,
which is a major data science application in its own right, as will be seen in
Chapter 7.

In traditional scientific computing applications, the LU decomposition usu-
ally has the starring role. Solving Ax = b comes up on its own, in Newton’s
method, in least-squares problems in the guise of the Cholesky decomposition
(as we saw earlier), in implicit finite difference methods, and so on. For appli-
cations in data science, the QR and SVD methods appear more frequently
than might have been expected.

The singular value decomposition decomposes an m×n matrix A into the
product of three factor matrices, in the form

A = UΣV T ,

where U is an m ×m orthogonal matrix (so that UTU = I), V is an n × n
orthogonal matrix (so that V TV = I), and Σ is an m × n diagonal matrix
with nonnegative diagonal entries, decreasing as one moves along the diagonal
from the upper left to the lower right. The diagonal entry in the (i, i) position
of Σ is called the ith singular value σi of A. The columns of U are called the
left singular vectors of A, and the columns of V are called its right singular
vectors. When dealing with the SVD, it’s important to note carefully when we
are using V and when we are using V T ; we generally reason in terms of the
columns of V but use the transpose in forming the actual product. An SVD
is not unique without additional constraints placed on it; after all,

UΣV T = (−U)Σ(−V)T

(and this is not the only possible way to get a different decomposition). This
fact will not complicate our discussion, however.

72 Data Science for Mathematicians

A typical approach to finding the SVD computationally is to orthogonally
reduce the given matrix to bidiagonal form—an (upper) bidiagonal matrix
can be nonzero only on its main diagonal or on the first superdiagonal, that
is, the first diagonal above the main one—and then use a specialized routine
to find the SVD of the bidiagonal matrix. There are other algorithms to find
the SVD; the details would take us too far afield, so see [192] for information
on computing this decomposition.

There are many applications of the singular value decomposition. Orthog-
onal matrices are particularly well-behaved numerically, so solving problems
using the SVD can often be the right approach for difficult cases—more expen-
sive, yes, because of the initial cost of finding the SVD, but usually more accu-
rate. In fact, for least-squares problems, rather than solving from the normal
equation ATAx = AT b we can use some facts about orthogonal matrices to
get a formula directly from the minimization criterion on the so called residual
vector b− Ax [526]. This is typically the most expensive, but more accurate,
approach.

The rank of A is equal to the number of nonzero singular values of A,
and this is generally the most precise way to determine rank numerically. If
rank(A) = k, then the first k left singular vectors (from U) form an orthonor-
mal basis for the column space of A, and the first k right singular vectors
(from V) form, after transposition, an orthonormal basis for the row space
of A. (Recall that these spaces have a common dimension, the rank of the
matrix.) More to the point—and here we come to the important fact for our
example—we can rewrite the decomposition A = UΣV T in the form

A =
k∑

i=1

σiuiv
T
i ,

where ui is column i of U , and vi is column i of V . The k outer products

uiv
T
i

are rank-one matrices. (For example, if u and v are vectors of all unit entries,
the outer product is a matrix of all ones.) Since ‖ui‖ = 1 and ‖vi‖ = 1, and

σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σk ≥ 0

the expression
A = σ1u1v

T
1 + σ2u2v

T
2 + · · ·+ σkukv

T
k

shows the contribution of the k rank-one matrices that form the rank-k matrix
A, in descending order of importance.

An important result, the Eckart-Young Theorem, states that for any p ≤ k,
the approximation

A(p) =

p∑

i=1

σiuiv
T
i

Linear Algebra 73

is the best approximation of A among all similarly-sized matrices of rank at
most p, in the sense that it minimizes the error in A−A(p) in the sense of the
Frobenius norm

‖M‖F =

[
m∑

i=1

n∑

i=1

m2
i,j

]1/2

=

rank(M)∑

i=1

σ2
i

1/2

.

We say that A(p) is a truncated SVD for A. More precisely,

∥∥∥A−A(p)
∥∥∥
F

=

k∑

i=p+1

σ2
i

1/2

,

which relates the error in the approximation of A to its singular values. This
means that the error introduced by reducing the rank is based on the size
of the singular values corresponding to the dropped dimensions, and leads
directly to a useful formula: The relative error ρ of A(p) as an approximation
for A satisfies

ρ2 =

∥∥A−A(p)
∥∥2

‖A‖2
=
σ2
p+1 + · · ·+ σ2

k

σ2
1 + · · ·+ σ2

k

,

and since the singular values are arranged in descending order, the numerator
consists of the smallest k−p of them. We might view this as a result in the style
of Parseval’s Theorem that tells us how much “energy” we lose by neglecting
certain high-index, small-magnitude singular values, a loose analogue of high-
frequency noise [70]. As an aside, the square of the Frobenius norm of a matrix
is also equal to the trace of ATA, tr(ATA), by which we mean the sum of the
main diagonal entries of that matrix.

The truncated SVD is the best low-rank approximation of the matrix,
with respect to this norm. This suggests that we revisit the viewers-and-
movies example of the previous section but reduce the rank via the SVD
instead. Such an approach is termed latent semantic indexing (LSI), derived
from the latent semantic analysis (LSA) theory of natural language processing
associated with psychologist Thomas Landauer (and others). Amongst other
benefits, LSA can often identify, from a term-by-document matrix based on a
sufficiently large corpus, when words are (near-)synonyms, e.g., divining that
“car,” “automobile,” and “truck” all occur in similar contexts, so that a web
search for “automobile” could return pages lacking that term but contain-
ing “truck” even if it didn’t have explicit access to a thesaurus. In addition,
when words have multiple meanings (that is, are polysemous), as in the word
“bar,” this approach can often group documents using these words into appro-
priate clusters representing their various contexts (documents using “bar” as
in lawyer’s qualifications in one cluster, “bar” as in metal rods in another,
“bar” as in alcohol establishments in yet another, and “bar” as in wrestling
holds in another). The reduction of rank induces such clustering of the terms
and/or documents; filtering the semantic noise from the underlying signal of
the actual meaning is usually beneficial here.

74 Data Science for Mathematicians

3.2.6.1 SVD in our recommender system

Let’s look again at the term-by-document matrix of the previous section,
with 7 movies as the rows and 6 viewers as the documents.

A =

1 0 0 1 1 0
0 1 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 1 1 0 1
0 1 0 0 1 0
0 1 0 0 0 0

Let’s decompose its normalized form W in the form W = UΣV T . How far
should we reduce the rank? There’s no easy answer. The singular values are,
after rounding,

σ1 = 1.7106, σ2 = 1.3027, σ3 = 0.9264, σ4 = 0.6738, σ5 = 0.2542, σ6 = 0.

(In fact σ6 was about 2.7079 × 10−18.) Certainly setting σ6 to zero was a
reasonable thing to do, but if we’re going to truly reduce the rank that will
mean setting at least σ5 to zero also. This would give

ρ2 =

∥∥W −W (4)
∥∥2

‖W‖2
=

σ2
5 + σ2

6

σ2
1 + · · ·+ σ2

6

.
= 0.0108,

where the dotted equals sign indicates that the actual value has been correctly
rounded to the number of places shown. Hence ρ

.
= 0.11, that is, per the

Eckart-Young Theorem, we have thrown away about 11% of the “energy”
content of the matrix. To better match what we did in the QR decomposition
section, let’s use W (3) instead. This rank-three approximation has

ρ2 =

∥∥W −W (3)
∥∥2

‖W‖2
=
σ2

4 + σ2
5 + σ2

6

σ2
1 + · · ·+ σ2

6

.
= 0.0864,

giving ρ
.
= 0.29, that is, we are retaining about 71% of the matrix as measured

by the Frobenius norm (whatever that means in terms of viewers-and-movies).
Hopefully this better reveals latent connections within it. (Using the Frobenius
norm on the rank-three approximation previously found via the QR factor-
ization, we find that ρ

.
= 0.34, for about 66% accuracy.) Then, using the same

query as before,

z =
(

1/
√

3, 0, 0, 1/
√

3, 0, 0, 1/
√

3
)T

,

we find that computing
(
W 3
)T
z gives, after suppressing small values and then

rounding to two places,

(0.33, 0.58, 0.00, 0.43, 0.64, 0.00)
T
,

Linear Algebra 75

indicating that viewer 5 (Eric) is now the best match, closely followed by best
match from the QR approach of the last section, viewer 2 (Bob). The new user
had selected Godzilla, JFK, and Macbeth, and Eric also selected the first two of
these films; Bob had selected the latter two. With a small dataset like this, it’s
hard to know whether this result reflects any meaningful difference, but with a
large dataset, the rank reduction will have forced a better refinement of Eric-
like users from Bob-like users, and will attempt to cluster the new user in the
best fit grouping, reflecting both likes and dislikes (whether recorded explicitly
or inferred from what merely was not liked). We could then recommend other
films preferred by those users.

The question of how far to reduce the rank does not have an easy answer.
While a lower-rank approximate term-by-document matrix may better repre-
sent the latent semantic content of the original one, it’s rarely clear how to
decide what the best rank is. Often there is a range of ranks that all do a
serviceable job, with too little clustering on the higher-rank side of this inter-
val and too much on the lower-rank side; across a surprisingly broad range
of applications, ranks of roughly 100-300 give good results [250]. Again, it’s
analogous to the problem of separating signal from noise: At some point, it
becomes difficult to determine which is which. This is analogous to the ubiq-
uitous problem of the bias-variance tradeoff in more statistical approaches to
data analysis such as machine learning; see Chapters 4, 6, and 8 for more.

Let’s demonstrate the clustering visually. To do so, the rank was further
reduced to 2, giving a rank-two version of the W matrix. Its column space is
therefore two-dimensional. Now, the first two columns of U form a basis for
this column space, and the first two columns of V form a basis for its row space
(after transposition). Letting U2 be the corresponding 7×2 matrix and V2 the
corresponding 6×2 matrix, we have, from equation (3.2) on page 67, that UT2 v
gives the coefficients of v with respect to the orthonormal basis consisting of
the columns of U2, assuming v is conformable with the transpose of U2. This
provides us a way to picture the clustering effect: We project down to the
two-dimensional space by computing UT2 W , giving a 2 × 7 matrix in which
each column represents the two coordinates of the corresponding film in the
two-dimensional space spanned by the two 7-vectors. Similarly, V T2 W

T gives
a 2 × 6 matrix in which each column represents the two coordinates of the
corresponding user in the two-dimensional space spanned by two 6-vectors.
We could also project the query vector down into two dimensions.

The first column of UT2 W corresponds to the coordinates (0.76,−0.50), so
we plot film 1 with those coordinates. (Non-uniqueness of the SVD may mean
that you get the opposite signs if you try this yourself.) The first column of
V T2 W

T corresponds to the coordinates (0.85,−0.08), so we plot user 1 with
those coordinates. We’ll call the axes P1 and P2 arbitrarily. This gives Figure
3.1, in which the films appear as boxed exes labeled F1 through F7, while the
users appear as circled plusses labeled U1 through U6.

We see that films 3 and 5 (Ishtar and King Kong) are loosely grouped
together, while the remaining films form a second cluster. Whatever we as

76 Data Science for Mathematicians

FIGURE 3.1: Rank-reduction using the SVD.

individuals may think of these films, the data-driven insight is that, at least
in this set of users, these films share some factor(s) that cause them to draw
interest from a certain subset of the population. Similarly, users 2 and 5, 1
and 4, and 3 and 6 appear to be clustered as like-minded souls.

At this point the question arises: Should we use the QR decomposition
or the SVD? The standard LSA approach uses the SVD or one of its close
variants. Depending on available software and hardware, however, and the
specific structure of the term-by-document matrix, the QR decomposition
may be noticeably faster. There is some indication that the QR approach
is more sensitive to the choice of rank, making the SVD a safer approach.
See [250] for more on all these points and a discussion of other trade-offs, as
well as for further references.

When LSA is discussed, the implication is likely that the SVD will be
used. As noted in the previous section, the QR decomposition is not only
applicable to rank-reduction but also has separate applications in data science,
including as an important algorithm for least-squares problems. We chose to
demonstrate the QR and SVD approaches on a similar recommender system
problem as a means of introducing, not limiting, the topics.

Readers who wish to solidify their understanding of SVD, including its
relationship to the QR decomposition, may wish to try the project in Section
3.5.3 at the end of the chapter now.

Linear Algebra 77

3.2.6.2 Further reading on the SVD

In data analysis applications it’s not uncommon to replace the SVD

A = UΣV T =
k∑

i=1

σiuiv
T
i

with the semi-discrete decomposition (SDD)

A ≈ XDY T =
k∑

i=1

dixiy
T
i ,

where D is a diagonal matrix with diagonal entries di that are positive scalars,
as with the SVD, but the entries of X and Y must be −1, 0, or 1. This approx-
imation allows for a significant storage benefit [274], as we can represent the
entries of the approximate versions of the large and typically dense matrices
U and V , i.e., X and Y , using only 2 bits each.

There’s a lot more to say about the SVD. One important interpretation
of the singular values is in the context of the condition number of a square
matrix with respect to inversion, a measure of how ill-behaved the matrix A
is numerically when attempting to solve Ax = b. (We refer to the solution
of Ax = b as the inverse, or inversion, problem for A, with no implication
that we will actually use the inverse to solve it. The forward problem is that
of computing y = Ax given A and x.) The condition number is generally
defined as

κ (A) = ‖A‖
∥∥A−1

∥∥
for an invertible matrix and κ (A) =∞ for a noninvertible matrix. The norm
used may be any valid norm on matrices, such as the Frobenius norm men-
tioned earlier, but the most natural choice of matrix norm leads to the con-
clusion that

κ (A) =
σ1

σr
, (3.4)

where r is the rank of A. In other words, the condition number may be defined
as the ratio of the largest to the smallest (nonzero) singular values of the
matrix.

It’s a crucially important rule of thumb in numerical analysis that if the
condition number of A is about 10p, then we should expect to lose about p
significant figures in the solution of Ax = b, even if we are using a smart
method. This is unsettling news; if the entries of b are known to only five
places, and κ (A) = 106, even a go-to method like Gaussian elimination with
partial or even the more expensive maximal pivoting can’t be expected to give
good results. The condition number is most commonly estimated by a less
expensive method than using the singular values, but equation (3.4) defines
what we usually mean by the condition number (called the spectral condition
number). More details may be found in [306] at the introductory level, or
[444], [445], and [192] at a more advanced level.

78 Data Science for Mathematicians

We mention in passing that extending the SVD to multilinear arrays is
complicated. There is no natural generalization of this decomposition to three-
way and higher arrays, as any choice keeps some highly desirable properties of
the SVD but sacrifices others [6]. Nonetheless, the two major forms of general-
ized SVD are indeed applied to multilinear arrays in data science applications,
and in fact, this is an active area of research; see, e.g., [452] for an introduction
in the context of recommender systems.

The SVD has a rich geometric interpretation; it can be used to define a
near-inverse for not-necessarily-square matrices that lack an actual inverse,
and this so-called pseudoinverse does see application in data analysis (e.g.,
least-squares). The left singular vectors corresponding to nonzero singular
values form a basis for the range of A, the set of all y such that y = Ax for
some conformable x, while the right singular vectors corresponding to nonzero
singular values form a basis for the null space of A, that is, the set of all x
such that Ax = 0. See [229] or [445] for details.

In fact, we are very nearly discussing the statistical data analysis technique
of principal components analysis (PCA), important in areas including machine
learning, because the singular value decomposition of A depends on properties
of ATA, the positive semi-definite matrix occurring in the normal equation
ATAx = AT b of least-squares curve-fitting. This connection with the matrix
ATA will be brought out in more detail in the next section, while PCA appears
in Section 7.3.

3.3 Eigenvalues and eigenvectors

3.3.1 Eigenproblems

We now turn to the mathematics underlying Google’s PageRank web-
search algorithm, which we will explore in some detail. The same ideas have
other, related applications, including within PCA. The foundational material
of the next few sections will be familiar to many readers, who may feel free to
skip to Section 3.3.4.

A central type of problem involving a matrix A is limited to square matri-
ces: finding all scalars λ and corresponding nonzero vectors x, such that

Ax = λx.

This is called the eigenvalue problem (or eigenproblem). The scalars λ are
called the eigenvalues of the matrix, and the vectors x are called the eigenvec-
tors. If Ax = λx we say that the eigenvector x is associated with the eigenvalue
λ. We allow λ ∈ C even when, as in our cases, A is real. If λ ∈ C, its associ-
ated eigenvectors will be complex also. Disallowing x = 0 is necessary because
every λ would satisfy Ax = λx for x = 0, which is not very interesting.

Linear Algebra 79

It’s possible to demonstrate in an elementary fashion that every matrix has
at least one eigenvalue-eigenvector pair (an eigenpair); see [23]. In fact, every
n × n matrix has precisely n eigenvalues in C, counted in the same manner
as we count the zeroes of polynomials; hence we associate with every square
matrix the polynomial

p (z) = (z − λ1) (z − λ2) · · · (z − λn) ,

which we call its characteristic polynomial, with p (z) = 0 its characteristic
equation. For real matrices, p (z) is real and hence complex eigenvalues occur
in complex conjugate pairs. The algebraic multiplicity of the eigenvalue λ,
denoted µa (λ), is its multiplicity as a root of the characteristic equation, and
hence 1 ≤ µa (λ) ≤ n.

Note from Ax = λx that if x is an eigenvector of A associated with λ then
so is cx for any nonzero c. It’s easily shown that eigenvectors belonging to
numerically distinct eigenvalues are linearly independent. The span of the set
of all eigenvectors associated with an eigenvalue λ is called its eigenspace Eλ,
and every element of this space is also an eigenvector save for the zero vector,
which must be in every vector space and which satisfies the defining equation
A ·0 = λ ·0 but is not technically an eigenvector. The dimension of Eλ is called
the geometric multiplicity µg (λ) of the eigenvalue, and 1 ≤ µg (λ) ≤ µa (λ).
Whenever µg (λ) < µa (λ) we say that the eigenvalue λ is defective, and that
the matrix itself is defective. Defective matrices play a complicating role in
eigenproblems that is somewhat analogous to the case of singular matrices
and the solution of linear systems.

As a simple demonstration of the issue, consider the 2× 2 identity matrix
I2. Every nonzero vector is an eigenvector of I2 associated with the eigenvalue
1, for

I2x = 1 · x
for every x. The span of the set of all eigenvectors is thus R2, the entire space,
and a possible basis for it is {e1, e2}, where by convention ei is column i of the
identity matrix (the order of which is usually apparent from context). We call
{e1, e2, . . . , en}, with the vectors drawn from In, the standard basis of Rn. As
this holds for every vector, there can be no other eigenvalues; and since every
2× 2 matrix has precisely 2 eigenvalues, it must be that λ1 = 1, λ2 = 1, and
so the characteristic polynomial is

p (λ) = (λ− 1)
2
,

and µa (1) = 2, E1 = R2, and µg (1) = 2. The matrix is nondefective, as
µa (1) = µg (1).

But now consider the canonical example of a defective matrix, the 2 × 2
Jordan block

J =

(
1 1
0 1

)

80 Data Science for Mathematicians

and note that Je1 = 1 · e1, so that at least one of the eigenvalues is λ1 = 1.
There must be a second eigenvalue (possibly also unity). Hence we seek a

nonzero vector x = (x1, x2)
T

and a scalar λ such that
(

1 1
0 1

)(
x1

x2

)
= λ

(
x1

x2

)

x1 + x2 = λx1

x2 = λx2,

and we note from x2 = λx2 that either x2 = 0 or λ = 1. If x2 = 0, x must be
a multiple of e1, and we have gained nothing new; by the linear independence
of eigenvectors belonging to different eigenvalues, e1 can’t be an eigenvector
associated with two numerically distinct eigenvalues. If λ = 1, x1 + x2 = λx1

forces x2 = 0. There can be no eigenvectors that are not multiples of e1, and
they all correspond to the eigenvalue 1. Hence, it must be that the missing
eigenvalue is λ2 = 1. The matrix is defective: µa (1) = 2 but µg (1) = 1. The
eigenspace is E1 = span({e1}) (the x1-axis).

For a nondefective matrix A, a basis for the entire space, Rn, may be
formed from the eigenvectors of A. Suppose the matrix has p distinct eigen-
values. We select a basis for each eigenspace and use these

p∑

i=1

µg (λi) = n

vectors to form the basis for the whole space, called an eigenbasis. For a defec-
tive matrix, we will only be able to span a subset of Rn. (A subset of a vector
space that is itself a vector space is called a subspace of the vector space.)
Symmetric matrices are always nondefective, and have only real eigenvalues.
Eigenbases are important in many applications; PCA is an example.

Let’s write x(i) for some eigenvector associated with λi. For a nondefective
matrix, we can write the relations Ax(i) = λix

(i) as a single equation in the
form

Ax(1) +Ax(2) + · · ·+Ax(n) = λ1x
(1) + λ2x

(2) + · · ·+ λnx
(n)

AP = PD, (3.5)

where P is the matrix with the eigenvectors x(1), x(2), . . . , x(n) as its columns,
and D is the diagonal matrix with λ1, λ2, . . . , λn on the main diagonal, in
matching order. (Note that because eigenvalues can be complex, there is no
natural ordering of the eigenvalues.) The columns of P are linearly indepen-
dent, and hence it is nonsingular; therefore we can write

A = PDP−1,

called the eigenvalue decomposition of A, or equivalently

D = P−1AP,

Linear Algebra 81

called a diagonalization of A. Symmetric matrices are not only diagonalizable;
they are orthogonally diagonalizable, that is, we can always choose to have P
be an orthogonal matrix.

This concept brings us back to the singular value decomposition. The
(nonzero) singular values of A are the square roots of the eigenvalues of the
positive semi-definite matrixATA (or ofAAT). In fact, note that ifA = UΣV T

then

ATA =
(
UΣV T

)T
UΣV T

= V ΣTUTUΣV T

= V
(
ΣTΣ

)
V T ,

as UTU = I. Since ΣTΣ is clearly diagonal, and the columns of V are linearly
independent, if V is square this has the form of an eigenvalue decomposition of
ATA. More generally, it must be that the diagonal entries σ2

i are eigenvalues
of ATA with the columns of V as the corresponding eigenvectors, for

ATA = V
(
ΣTΣ

)
V T

(
ATA

)
V = V

(
ΣTΣ

)
,

using V TV = I and equation (3.5). Consideration of AAT shows the columns
of U are eigenvectors of it, associated once again with σ2

i . Hence, the eigenvalue
decomposition and the SVD are closely related, and this observation leads to
other means of computing the SVD.

The decomposition A = PDP−1 has wide applications. For example, we
often need to perform iterative processes involving matrices—PageRank will
provide an example—and the eigenvalues of A determine its long-term behav-
ior under iteration. For,

Am =
(
PDP−1

)m

= PDP−1PDP−1 · · · PDP−1

= PDmP−1

and Dm is simply the diagonal matrix with λmi as its ith diagonal entry. This
can also be a convenient way to raise a matrix to a large power.

In fact, we can use it to analyze the behavior of large powers of A. Define
the spectral radius ρ (A) of a matrix by

ρ (A) =
n

max
i=1

(|λi|) ,

i.e., its largest eigenvalue (in magnitude). We now see that if ρ (A) < 1 then
Am → 0 (the zero matrix), while if ρ (A) > 1 then at least some entry of
it grows without bound; the case ρ (A) = 1 requires a more careful analysis.
This is the basis of the analysis of many iterative methods, as it means that
the matrix iteration

v(k+1) = Av(k)

82 Data Science for Mathematicians

(with v(0) given, and presumably nonzero) converges to the zero vector (that
is, is stable) if its spectral radius is less than unity—all eigenvalues lie within
the unit circle—and diverges (that is, is unstable) if its spectral radius exceeds
unity.

Although it is less relevant to data science, another example of the value of
the eigenvalue decomposition as diagonalization may be more familiar to many
readers, the solution of the linear system of ordinary differential equations

x′ = Ax+ f,

where f(t) is a known vector and x(t) is a vector to be found. If A is diago-
nalizable then we can proceed as follows.

x′ =
(
PDP−1

)
x+ f

x′ = PDP−1x+ f

P−1x′ = DP−1x+ P−1f
(
P−1x

)′
= D

(
P−1x

)
+
(
P−1f

)

y′ = Dy + φ,

where y = P−1x and φ = P−1f . But this is just a system of n decoupled
first-order linear ODEs

y′1 = λ1y + φ1

y′2 = λ2y + φ2

...

y′n = λny + φn,

easily handled by elementary means (the integrating factor). We can then find
the desired solution as x = Py. There are more practical means of solving such
a system numerically, but the insight provided by decoupling the system can
often be valuable.

For a defective matrix, there is a next-best decomposition called the Jordan
Normal (or Canonical) Form. The Jordan form is similar to the eigenvalue
decomposition but the diagonal matrix D is replaced by an upper triangular
matrix J which is “nearly diagonal.”

Chapter 7 will address the popular technique of PCA, which relies on
either an eigendecomposition or the SVD, depending on choice of computa-
tional approach. The eigenvalue decomposition also comes into play in model
selection in Section 5.7.3. See [254] for an introduction to the subject.

3.3.2 Finding eigenvalues

For matrices small enough to be manipulated by hand, we can find the
eigenvalues by finding the characteristic polynomial of the matrix directly.

Linear Algebra 83

Given a square matrix A with PLU decomposition A = PLU , its determi-
nant det (A) is equal to the product of the diagonal entries of U if an even
number of row interchanges were performed, and the negative of this quan-
tity if an odd number were used. The notation |A| is also commonly used for
the determinant, but note that the determinant may be positive, negative, or
zero. It’s apparent that if A is already upper triangular then its determinant
is just the product of its diagonal entries, as we can take P and L to be I. But
beyond that, we see that det (A) = 0 exactly when there is a null entry on
the main diagonal of U , that is, if and only if A is singular. Hence, a matrix
is nonsingular if and only if its determinant is nonzero. However, it must be
emphasized that the determinant is a poor indicator of how well a matrix will
behave numerically; for that, we should check the condition number.

This, or a similar operation with one of our other decompositions, is the
primary means of computing the determinant numerically, if desired. The
traditional approach to defining the determinant is based either on a combi-
natorial method [20] or the Laplace expansion method, e.g.,

∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
= a

∣∣∣∣
e f
h i

∣∣∣∣− b
∣∣∣∣
d f
g i

∣∣∣∣+ c

∣∣∣∣
d e
g h

∣∣∣∣ .

(Note the use of vertical bars to indicate that we are computing the determi-
nant of A, which is a scalar quantity.) For large matrices this is an unimagin-
ably less efficient means of finding the determinant than using the LU decom-
position. Recall that det(AB) = det (A) det (B), a matrix and its transpose
have the same determinant, and that if Q is orthogonal, then det (Q) = ±1.

Using the determinant we can give a direct formula for determining the
characteristic polynomial of A by writing Ax = λx as

Ax− λx = 0

Ax− λIx = 0

(A− λI)x = 0,

for which we seek a nonzero solution. As x = 0 is a solution, there must be
more than one solution of this equation when λ is an eigenvalue; hence A−λI
must be singular. The requirement that

det (A− λI) = 0

has the advantage of being a computational, rather than qualitative, one.
Laplace expansion verifies that det (A− λI) is a polynomial in λ of precise
degree n; in fact, it’s the previously defined characteristic polynomial of A.

Of course, by the time we reach n = 5 the characteristic polynomial is a
degree 5 polynomial and hence its zeroes must be found numerically, leaving
no advantage for this already expensive approach as a numerical method.
Hence, eigenvalues must be found numerically by iterative methods. However,

84 Data Science for Mathematicians

the expansion technique can be valuable for 2 × 2, 3 × 3, and perhaps even
4× 4 cases, and does allow us to discover a variety of facts about eigenvalues,
such as that the eigenvalues of an upper triangular matrix lie along its main
diagonal, and that the determinant is the product of the eigenvalues,

det (A) = λ1λ2 · · · λn.

(Similarly, note that the trace of a matrix is equal to the sum of its eigenval-
ues.)

Methods for finding all eigenvalues of a matrix numerically are often based
on a reduction procedure involving a similarity: We say that two square matri-
ces A and B are similar if they are related by

B = S−1AS

for some nonsingular matrix S. The eigenvalue decomposition A = PDP−1

is an example (with S = P−1). Similar matrices have the same rank and the
same characteristic polynomial (and hence the same eigenvalues and determi-
nant). We reduce A to a simpler, similar form B for which the eigenvalues are
more readily found. A classic method is the QR algorithm of Francis, which
is equivalent to finding the QR decomposition A = QR of A, then forming
A1 = RQ, then refactoring this as A1 = Q1R1 and forming A2 = R1Q1, fac-
toring this, and so on. The Ak are similar to one another and converge, under
appropriate assumptions, to an upper triangular matrix, so that the eigenval-
ues are displayed on the main diagonal. There are many other algorithms for
finding all eigenvalues of a matrix, including ones that apply to special cases
(e.g., symmetric matrices) [192].

3.3.3 The power method

If a matrix has an eigenvalue λ1 such that |λ1| is strictly greater than |λi|,
i = 2, . . . , n, then we say that this is its dominant eigenvalue. In this case,
ρ (A) = |λ1|. A wide variety of applications require only the largest eigenvalue
of a matrix, and we’ll see in the next section that PageRank is among them.
Fortunately, there is a convenient method for finding a dominant eigenvalue,
the power method.

Suppose the matrix is diagonalizable. (This isn’t necessary but does make
the analysis easier.) Then there is an eigenbasis for the corresponding space,
and hence any vector v ∈ Rn may be written in the form

v = α1x
(1) + α2x

(2) + · · ·+ αnx
(n)

for some coefficients α1, α2, . . . , αn. Here x(1) is the eigenvector associated with
the dominant eigenvalue. We’ll assume the eigenvectors have been normalized.
Let v be nonzero and not an eigenvector of A, and suppose further that α1 is

Linear Algebra 85

nonzero. Then

Av = A
(
α1x

(1) + α2x
(2) + · · ·+ αnx

(n)
)

= α1Ax
(1) + α2Ax

(2) + · · ·+ αnAx
(n)

= α1λ1x
(1) + α2λ2x

(2) + · · ·+ αnλnx
(n)

A2v = A (Av)

= α1λ1Ax
(1) + α2λ2Ax

(2) + · · ·+ αnλnAx
(n)

= α1λ
2
1x

(1) + α2λ
2
2x

(2) + · · ·+ αnλ
2
nx

(n)

and in fact repeated multiplication by A shows that

Amv = α1λ
m
1 x

(1) + α2λ
m
2 x

(2) + · · ·+ αnλ
m
n x

(n),

which amounts to use of the observation that Ax = λx implies Amx = λmx.
We now rewrite as

Amv = α1λ
m
1

[
x(1) +

α2

α1

(
λ2

λ1

)m
x(2) + · · ·+ αn

α1

(
λn
λ1

)m
x(n)

]

and it’s clear from the dominance of λ1 that as m grows larger, this looks
increasingly like a multiple of x(1). In fact, for large m,

Amv ≈ α1λ
m
1 x

(1)

‖Amv‖ ≈
∥∥∥α1λ

m
1 x

(1)
∥∥∥

= |α1λ
m
1 |
∥∥∥x(1)

∥∥∥
= |α1| |λm1 |

because of the normalization of the eigenvectors. There are a number of ways
to extract the desired eigenvalue, all based on the observation that

∥∥Am+1v
∥∥

‖Amv‖ ≈
|α1|

∣∣λm+1
1

∣∣
|α1| |λm1 |

= |λ1| .

(Note that a dominant eigenvalue must be real and nonzero.) One approach
takes v, the starting vector, to be an initial guess as to x(1), which has
its largest entry (in magnitude) equal to 1; that is, in terms of the Holder
p-norms on n-vectors,

‖v‖p =

[
n∑

i=1

|xi|p
]1/p

,

of which the best-known case is p = 2, the Euclidean norm, we use the limiting
case p =∞,

‖v‖∞ =
n

max
i=1

(|xi|) ,

86 Data Science for Mathematicians

called the max (or maximum, or supremum) vector norm. (The case p = 1 is
the taxicab norm.) If ‖v‖∞ = 1 then after forming w(1) = Av we can let $1

be equal to any entry of w(1) of maximum magnitude. Then

v(1) =
Av

$1

itself has unit norm with respect to the max norm. Repeating, we find w(2) =
Av(1) = A2v and then let $2 be equal to any entry of w(2) with maximum
magnitude. Then setting

v(2) =
Av(1)

$2
=

A2v

$2$1

ensures that
∥∥v(2)

∥∥
∞ = 1. Under our assumptions, in the limit $m → λ1, the

dominant eigenvalue, and v(m) tends to an associated eigenvector. This is the
power method.

If we have an estimate of λ1 then we can accelerate by a process known as
shifting; even without such an estimate, the Rayleigh quotient

ρ(m) =

(
v(m)

)T
A
(
v(m)

)
(
v(m)

)T (
v(m)

)

converges to the eigenvalue significantly faster than does $ [192]. A variant
of the method can be used to find the smallest eigenvalue of a nonsingular
matrix [306].

The assumption that the eigenvectors have been normalized is actually
immaterial. In principle the assumption that α1 is nonzero is essential, but
in practice even if α1 = 0 the presence of round-off error will introduce a
small component—that is, a small α1—in subsequent computations, so that
this merely represents a slight delay in reaching an acceptable approximation.
The speed of the method is governed by

∣∣∣∣
λ2

λ1

∣∣∣∣ < 1,

where λ2 is the next largest eigenvalue in magnitude. If this quantity is nearly
unity, then convergence will be slow.

3.3.4 PageRank

The best-known of all web search algorithms, Google’s PageRank, is built
around the power method [72]. Imagine indexing the web. One option would
be to create a term-by-document matrix. This method is widely used for
more modest-sized collections of documents. But PageRank takes a different
approach.

Linear Algebra 87

The key idea behind this algorithm is that the most valuable page may
not be the one on which the searched-for term or its variants appear most fre-
quently. Indeed, using methods based on frequency led to early search engine
optimization efforts in which page owners packed their pages with endless
repetitions of terms, often in hidden text that served merely to artificially
inflate their rankings. Rather, the page recommended (via hyperlinks to it)
by the greatest number of other pages may be the best choice. This also lends
itself to abuse, as one could create hundreds of dummy web pages that merely
serve to point to one’s favored web page; for this reason, a measure of the
trustworthiness of the linking sites is also required.

Let’s suppose for the moment that we’re searching a manageable-size web;
perhaps a corpus of specialized pages internal to some database (on law, or
science, or medicine, etc.). There are N pages, which we assume to be num-
bered from page 1 to page N . Let bi be the number of incoming links to page
i, called backlinks. The simplest approach would be to say the score of page
i is bi, the number of pages “recommending” the page. In an ideal web, this
might be workable; if all recommendations are honest and accurate, then the
page with the greatest number of incoming links is probably the most impor-
tant and hence arguably the most valuable or authoritative, and the page
containing your search term (or phrase) with the highest such score might be
a good place for you to start your search. Of course, this might simply be an
introductory, overview, summary, or directory page of some sort, but if so,
then one of the next few links should be helpful.

Let’s think about this web in terms of graph theory. The web pages them-
selves will be nodes and the hyperlinks will be edges between them, with a
sense of direction that preserves the information concerning which is page
is linking to which. (Hence this is a directed graph or digraph, because the
edges are unidirectional.) For concreteness, imagine a six-page web as shown
in Figure 3.2, although we typically think of the pages as point-like nodes (or
vertices) and the links (or edges) as directed arcs (the shape and placing of
which are immaterial). More formally, edges are thought of as ordered pairs
of nodes.

For our purposes, we will disallow a page linking to itself. Also, we only
count an incoming link to page i from page j once, even if page j actually
links repeatedly to page i. Hence 0 ≤ bi ≤ N − 1. If bi = 0 then page i is
unreachable by traversing the web; one could reach that page only by using
its URL to go directly to it. We say a graph is (strongly) connected if it is
possible to visit every node by traversing the edges, respecting their sense of
direction, starting from any node of choice. There’s no reason to believe this
would be true of a given web.

A standard way of representing a graph with N nodes in matrix form is by
its adjacency matrix (or incidence matrix), which is an N ×N matrix with a
1 in the (i, j) entry if there is an edge from i to j, and a zero otherwise. (More
generally, we could allow multiple edges from i to j, called a multigraph, and
record the number of such edges in the matrix.) In our case, we have the

88 Data Science for Mathematicians

FIGURE 3.2: A six-page web, represented as a graph.

adjacency matrix

A =

0 0 0 1 0 0
1 0 1 0 0 0
0 1 0 0 1 1
0 1 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0

.

Clearly, there must be more efficient ways to represent graphs, because this
matrix will typically be very sparse.

The basic principle of a link-recommendation system is that the rank of a
page—call it ri for now, with a larger rank signifying a more valuable page—
should be based on the pages linking to it. We’ve already said that simply
setting ri to bi, the number of incoming links, is too simplistic. We want to
weight the individual incoming links that comprise the total bi by their own
importance. Hence we might next try

ri =
∑

j∈Si

rj ,

Linear Algebra 89

where Si is the set of all j such that page j links to page i. This is a linear
system to be solved; for our example, it gives

r1 = r2

r2 = r3 + r4 + r6

r3 = r2

r4 = r1

r5 = r3 + r4

r6 = r3 + r5

or simply r = AT r, with r the vector of the ri. This is an eigenproblem; if
a solution r exists, it’s an eigenvector of AT that is associated with a unit
eigenvalue. But, in fact, there is no such solution. Though A (and hence AT)
is singular, the linear system

(
AT − I

)
r = 0

involves the nonsingular matrix AT − I. But beyond that, looking at our web
and the linear system involving the ri, it seems apparent that, say, r1 = r2

might not really reflect the relative importance of the pages. We need to refine
this approach. Although the basic adjacency matrix is very useful in many
applications, we still need to find a way to factor in the relative trustworthiness
(or authoritativeness, importance, or reputation) of the pages.

The PageRank algorithm uses this idea: Let ωj represent the number of
outgoing links from page j, again counting each page at most once (so that
0 ≤ ωj ≤ N − 1). Then the weightings-influenced rank ρi of page i might be
better defined by

ρi =
∑

j∈Si

ρj
ωj

so that if a given page k ∈ Si has only one outgoing link (ωk = 1) its rec-
ommendation is more heavily weighted than if it has, say, 10 outgoing links
(ωk = 10). In our case this leads to the linear system

ρ1 =
ρ2

2

ρ2 =
ρ3

3
+
ρ4

2
+
ρ6

1

ρ3 =
ρ2

2

ρ4 =
ρ1

1

ρ5 =
ρ3

3
+
ρ4

2

ρ6 =
ρ3

3
+
ρ5

1

90 Data Science for Mathematicians

or ρ = Pρ, where ρ is the vector of the ρi, and

P =

0 1/2 0 0 0 0
0 0 1/3 1/2 0 1
0 1/2 0 0 0 0
1 0 0 0 0 0
0 0 1/3 1/2 0 0
0 0 1/3 0 1 0

is the re-weighted AT . Once again, we have the eigenproblem

Pρ = 1 · ρ

in which we hope to find that P does, indeed, have a unit eigenvalue. In fact,
it does, and this is its dominant eigenvalue; there is a null eigenvalue (as P is
singular), and two complex conjugate pairs of eigenvalues, with moduli 0.76
and 0.66 (to two decimal places).

The eigenvector corresponding to the unit eigenvalue, normalized to have
unit max norm by dividing it by its entry with largest magnitude, is

ρ =

1/2
1

1/2
1/2
5/12
7/12

.
=

0.500
1.000
0.500
0.500
0.417
0.583

,

indicating that the most important page is page 2, followed at some distance
by page 6, which is followed fairly closely by pages 1, 2, and 4, and finally
page 5. Looking at Figure 3.2, it certainly seems plausible to say that page 2
is the most-recommended page in the web, and that the others are grouped
more-or-less together.

Looking at P , we notice that its columns sum to unity. A matrix with
nonnegative entries is said to be a nonnegative matrix. A square nonnegative
matrix with columns that sum to unity is called a column (or left) stochastic
matrix; if the rows sum to unity instead it is said to be a row (or right)
stochastic matrix. If both the rows and the columns sum to unity it is said
to be a double stochastic matrix. When the type is clear from context, it is
usual to simply describe the matrix as stochastic. We’ll be using a column
stochastic matrix.

It’s a fact that a column stochastic matrix always has a unit eigenvalue,
and that all non-unit eigenvalues of the matrix must have smaller magnitude.
(The spectral radius of a stochastic matrix is unity.) However, note that In
is a (doubly) stochastic matrix, and it has a unit eigenvalue with algebraic
multiplicity n. Hence, the unit eigenvalue need not be unique.

It’s also easy to see that if w is a row vector of all unit entries of the
appropriate size, then wP = w for any column stochastic matrix P ; this is

Linear Algebra 91

essentially just a restatement of the fact that the columns sum to unity. In
other words, this vector is a left eigenvector of the matrix, as distinguished
from the right eigenvectors we have seen already. For a row stochastic matrix,
a column vector of all unit entries serves the same purpose. Indeed, whether
we set up our problem to use row stochastic or column stochastic matrices
makes little actual difference.

The approach we’ve been using isn’t guaranteed to generate a stochastic
matrix. If there is a web page with no outgoing links, we will have a column of
zeroes in the matrix P . That isn’t a stochastic matrix. However, if every web
page has at least one outgoing link, P is guaranteed to be (column) stochastic.

Stochastic matrices have many desirable properties, but it’s even better
if the matrix is not merely nonnegative but actually a positive matrix, that
is, one with all positive entries. The Perron-Frobenius Theorem states that a
square positive matrix has a dominant eigenvalue that is a positive number.
(Recall that a dominant eigenvalue is necessarily unique, by definition.) This
eigenvalue admits a (right) eigenvector with entirely positive entries (and also
a left eigenvector with positive entries), and all eigenvectors belonging to other
eigenvalues must have negative or complex entries.

This means that a positive stochastic matrix must have a unique dom-
inant eigenvalue, meaning it has a sole eigenvector associated with it that
has positive entries and is normalized to have unit max norm. (This is some-
times referred to as the stationary vector.) This would mean an unambiguous
ranking for our web-search algorithm. Hence the basic PageRank matrix P is
usually modified by combining it with a small amount of “noise” to force it to
be positive, as well as stochastic (by normalizing the columns after the noise
is added). Effectively, this forces the graph to be connected (no “dangling
nodes”). A weighted average of P and a matrix with each entry 1/n becomes
the positive stochastic matrix used in the algorithm.

The PageRank method is implemented using a version of the power
method. Naturally, the scale of the computation is truly massive! It’s always
important to remember that the way a concept is developed in linear alge-
bra for the purposes of establishing and understanding results may be very
different from how it is actually implemented as a computational algorithm.

There’s a much more probabilistic way of viewing what PageRank does.
Stochastic matrices are related to Markov chains and hence to random walks
(i.e., a random web-surfer model), and these concepts shed additional light on
the algorithm [302].

Of course, there are many other factors involved in a commercial web
search engine than merely finding the desired eigenvector, involving tweaks
and kluges to promote advertised products, to remove spam, to minimize
attempts to game the system by search engine optimization techniques, etc.
This section is intended only to indicate how the fundamental linear alge-
bra concept of eigenvalues and eigenvectors might occur in a data analysis
situation.

92 Data Science for Mathematicians

This is not the only recommendations- and eigenvector-based data analysis
algorithm. See [36] or [302] for the somewhat-similar Hyperlink Induced Topic
Search (HITS) method, and [158] for the eigenvector centrality method of
identifying the central nodes of a network (i.e., the most highly recommended,
or most prestigious, nodes of the graph).

3.4 Numerical computing

3.4.1 Floating point computing

Almost all computers implement the IEEE Standard for Floating-Point
Arithmetic (IEEE 754) [376], which allows for predictable behavior of software
across a wide variety of hardware types. While many applications in data
science use primarily integer data, the linear algebra applications we have
been considering in this chapter require the use of non-integral values. These
are stored in a format called floating point, as distinguished from a fixed-point
format such as the so-called (base 10) bank format in which exactly two digits
after the decimal place are used. The purpose of this section is to provide a
brief guide to some additional facts and issues involved in numerical computing
so that you will be more aware of potential pitfalls and better equipped to
work around them. The software you use will in most cases make the majority
of this seamless for you, however, and so this section is optional reading.

3.4.2 Floating point arithmetic

Most programming languages will require, or at least allow, the program-
mer to specify a data type for each variable, such as a single integer, a vector
of floating point numbers, or an m× n array with complex entries.

Integers are typically stored in a different manner than nonintegers. The
most common integer format is the long integer, which uses 32 bits (4 bytes).
Using a scheme called two’s complement, a typical long integer format stores
nonnegative integers from 0 to 231 − 1 in base two in the obvious way, while
negative integers m are stored as 232 + m (−231 ≤ m ≤ −1). There are
commonly other integer formats, such as short integer, which stores numbers
up to about 215 in magnitude using half the space. There is also frequently a
Boolean or logical data type that takes on only two values, which may be 1
and 0 but which may also be categorical values such as true and false.

The properties of integer data types may vary with hardware and soft-
ware. Unpredictable behavior can sometimes happen if the program causes an
overflow by attempting to store a too-large integer.

For real nonintegers, floating point arithmetic is employed. It’s unlikely
that you would find yourself using a machine that is not compliant with the

Linear Algebra 93

IEEE Standard for Floating-Point Arithmetic, so we discuss only that. Double
precision floating point numbers are stored using 64 bits (8 bytes) divided into
one bit representing the sign—unlike the scheme discussed above for integers—
52 bits for a mantissa, and 11 bits for an exponent, giving a number of the
form

±b0.b1b2 · · · b52 × 2E ,

where b1 through b52 are the stored mantissa bits, and E is the exponent,
which is specified by the 11 exponent bits with a built-in bias to allow for
numbers both less than and greater than one in magnitude. By convention, b0
is almost always unity; this is called normalization and allows us to gain one
extra bit of significance. The finite set of numbers represented by this scheme
range from about 10−308 to 10308 in magnitude, as well as 0, with 53 signifi-
cant bits—about 15 or 16 significant digits—available at all exponent ranges.
This is important: The spacing between the double precision floating point
number x = 1 and the next largest double precision floating point number
is about 10−16, but the spacing between the double precision floating point
number x = 10300 and the next largest double precision floating point num-
ber is nearly 10284. By design, floating point arithmetic provides a consistent
number of significant bits of precision across a wide range of exponents, but
this means that the spacing between adjacent floating point numbers grows
as the numbers themselves grow. The gap size is governed by a value known
as the machine epsilon, here ε = 2−52; the floating point numbers 1 and 1 + ε
differ, but 1 and 1 + ε/2 do not; the latter rounds down to 1.

Setting all 11 exponent bits to ones is a signal that the number should be
interpreted a special way: +∞, −∞, or NaN (“not a number,” e.g., the result
of attempting the operation 0/0). Although these special values are available
via the hardware, some languages (e.g., MATLAB) will allow you to work
with them, while others may signal an error. Values too large in magnitude
may overflow, resulting in a warning, error, or result of ±∞; values too small
in magnitude may underflow, being set to zero or possibly to an unnormalized
(subnormal) number with fewer significant bits.

The standard guarantees accurate computation of addition, subtraction,
multiplication, and division. It specifies several available rounding modes; in
fact, a technique called interval arithmetic computes a value like z = x+y with
both rounding down and with rounding up, giving a result [zlower, zupper] that
is guaranteed to bracket the unknown true value of z. This is rarely necessary,
however, and we must learn to accept that floating point computations involve
round-off error due to the finite amount of precision available. Even attempting
to enter x = π, say, causes representation error when the value is stored to
memory.

Single precision uses 1 bit for the sign, 23 bits for the mantissa, and 8 bits
for the exponent; the resulting values range from about 10−38 to 1038 in value.
Note that double precision is, in fact, a little more than double the precision
of single precision. Single precision is sufficient for many purposes and uses
half the storage.

94 Data Science for Mathematicians

There are both higher and lower precision options that may be available.
Formats half the size of single precision are increasingly common in use, saving
storage, time, and power usage, and requirements to lower the power used by
a computation are surprisingly frequent.

Floating point arithmetic behaves differently from real arithmetic in sev-
eral important ways. We have already seen that 1 + x can equal 1 even for a
perfectly valid (normal) floating point number x (e.g., x = ε/2). Similarly, x/y
can be zero even when x and y are normal, positive floating point numbers
(e.g., x = 10−200 and y = 10200). But in practice, perhaps the most common
concern is the failure of associativity. For example,

1 +
(
−1− ε

2

)
= 0

(1 +−1)− ε

2
= − ε

2
.

While this is a contrived example, the fact that the behavior of a formula
depends on how it is coded is actually a common difficulty.

Two last concerns related to floating point arithmetic. Subtraction of
nearly equal numbers is perhaps the gravest problem encountered in machine
arithmetic. Imagine a base-10 device capable of representing 6 digits. Let
x = 3.14159 and y = 3.14158. Then

z = x− y = 0.00001,

but while x and y had 6 digits of accuracy, z has only 1! Any further com-
putations done with z will suffer this same problem; we have lost essentially
all significance in our calculations by cancelling the common digits. A related
problem is division by very small magnitude numbers, which tends to inflate
any error already present in the numerator. Hence, for example, a computation
like

f (x+ h)− f(x)

h

for small h > 0 risks forming a wildly inaccurate numerator, then exaggerating
that effect upon dividing by h� 1. Care must be taken when performing such
calculations; ideally, alternative approaches can be found.

3.4.3 Further reading

The linear algebra material throughout this chapter may be found in most
introductory texts on the subject; [20] provides an elementary look at the
material, while [230], [229], [388], and [297] are higher-level references. An
upcoming text by a coauthor of another chapter of this text, [270], promises
to cover the subject of linear algebra for data science in much greater detail.

For computational matrix algebra and for general matters of scientific com-
putation, the author’s text [306] provides additional detail at an advanced
undergraduate level. An excellent and very readable book on computational

Linear Algebra 95

matrix algebra at the beginning graduate level is [470], while the classic ref-
erence on the subject is still [192].

The SVD application draws from the author’s experience as co-author of
a computational phylogenetics paper [177] using the LSI approach; the article
[344] sets the stage for most of these discussions (and the similar book [36],
which includes an introductory look at PageRank). These are also key sources
for the rank-reduction methods in the QR and SVD sections. A good reference
to begin a deeper look at vector information retrieval methods is [407]; [158]
covers a range of methods for textual data. For the motivation behind LSA,
[464] remains worthwhile reading.

3.5 Projects

3.5.1 Creating a database

It’s commonplace among people working with data that much more time is
spent on managing the data than on analyzing it. This has certainly been the
author’s experience. When assigning projects related to this material in gen-
eral computational science and in computational data science courses, the first
instruction to the students is to assemble a dataset. Sometimes this is weather
data from a National Oceanic and Atmospheric Administration (NOAA) web-
site, sometimes it’s genetic data from the National Center for Biotechnology
Information (NCBI), and sometimes it’s a corpus of book titles or text from,
say, Project Gutenberg. Rather than providing step-by-step instruction, the
students are generally provided with the name of a web repository of data
such as one of these three, a description of the type of data to be collected,
and then set loose to devise the best way to obtain the needed information
and to organize it for further use.

It’s common that such a task will require multiple software programs.
Data may be made available in a spreadsheet that must then be loaded into a
separate scientific computing package. Or the data may be poorly organized
and it may be necessary to write a script to collect and store it before porting it
elsewhere for processing. Data format conversion still takes up an unfortunate
amount of data wranglers’ time.

So this first project, on vector information retrieval, is not much more
than this: Assemble a corpus of text by selecting perhaps 300 titles from, say,
Project Gutenberg, choosing around 30 books from each of 10 genres. Take
perhaps the first 2000 words (after the boilerplate text) from each document.
This is already a scripting problem! Next, form a term-by-document matrix
with words as rows and titles as columns, with aij the number of occurrences
of term i in book j. Incorporate stemming; perhaps if two terms agree to the
first 6 letters, they are to be lumped together. Call this matrix A. Then weight

96 Data Science for Mathematicians

the entries of the matrix in whatever way seems reasonable to you, such as
making it boolean, normalizing by rows or columns, etc. This is the matrix
W that we used in the QR Decomposition and SVD sections. We will use it
in the following projects.

3.5.2 The QR decomposition and query-matching

Form a query q based on several words you expect to correspond to a
certain genre and normalize it to the vector z we used previously. Query the
database using WT z. Does your query result in a useful recommendation of a
book title?

Presumably the number of distinct terms you found significantly exceeds
the number of titles, so your weighted term-by-document matrix has rank 300
or less. Find the QR factors of your matrix and reduce the rank per equa-
tion (3.3). It’s far from clear how much the rank should be reduced. Look
at the diagonal entries of R and find a natural breakpoint in their magni-
tudes, but reduce the rank by at least 50%. Query the database using this
reduced-rank matrix. Does your query result in a useful recommendation of a
book title? Experiment with different degrees of rank-reduction and different
queries. Does rank-reduction result in better results?

3.5.3 The SVD and latent semantic indexing

You can repeat the rank-reduction query-matching experiment from above
using the SVD, but you can also do some clustering based on latent semantic
indexing. Mimic Figure 3.1 by reducing your data to rank 2, that is, to a
two-dimensional space. Try to interpret the data; do the clusters formed seem
natural or intuitive?

Try again with rank 3. Visualize your results as three-dimensional plots.
Do these clusters seem more appropriate? Had reducing to rank 2 caused too
many disparate items to be forced to caucus together, or has only going to
rank 3 failed to remove sufficient noise?

This is a good opportunity to try different weighting systems for your basic
term-by-document matrix. Compare your results across the raw matrix A of
integer frequencies, its Boolean all-or-nothing counterpart, and the column-
normalized version. Do you see noticeable differences?

3.5.4 Searching a web

Indexing a web relies on specialized software. To mimic the adjacency
matrix of a plausible web, first create a square 100× 100 matrix A of zeroes.
Let’s suppose that page 42 is the most important; randomly place into column
j = 42 a scattering of 30 unit entries. Column 42 now has 70 null entries and
30 unit entries, randomly placed throughout it. Maybe column j = 22 is also
highly recommended; randomly fill column j = 22 with, let’s say, 20 unit

Linear Algebra 97

entries. Then randomly fill the remaining columns with a random number of
unit entries, between 5 and 15 (inclusive) per column. Remember that the
diagonal entries should all be null. Now normalize the columns to make this
a column stochastic matrix P .

As mentioned in the PageRank discussion, in order to assure connectivity
so that we can benefit from the assertions of the Perron-Frobenius Theorem
we replace P by a weighted average of two matrices, say K = (1−m)P +mJ ,
where J is a square matrix of the appropriate order with all entries set to 1/n
(in our case, 1/100). As long as 0 ≤ m ≤ 1, the matrix K is column-stochastic,
and if m > 0 then it is also a positive matrix. Hence it has a dominant unit
eigenvalue. Let’s take m = 0.15 [72].

For a very large web the eigenvector would likely be found by some vari-
ation of the power method: Pick a vector v(0) that is a good guess at an
eigenvector for the dominant eigenvalue if possible; if not, pick any nonzero
vector. Let’s use a vector of all unit entries. Then iterate

v(k) =
Kv(k−1)

$k
,

where $k is equal to the max norm of the numerator. Then v(k) converges to
the stationary vector as k →∞.

Either use the power method or your computing environment’s eigenval-
ue/eigenvector routine to find the stationary vector. Make sure it’s appropri-
ately normalized, with the largest entry in the vector +1. What page does
that correspond to in your web? What about the next largest value? Is this
method identifying highly-recommended pages? Re-randomize A and repeat
this experiment several times.

Don’t expect that pages 42 and 22 will necessarily be the highest-scoring.
In fact, in 6 runs with pseudo-randomly generated data, page 42 came to
the top only once, and typically didn’t make the top five. The method does
not simply identify the page with the most incoming links. It simultaneously
assesses the importance of all the pages. Looking at the entries of the original
adjacency matrix A, does it appear that other important pages are linking to
your top results?

http://taylorandfrancis.com

Chapter 4

Basic Statistics

David White

Denison University

4.1 Introduction . 100
4.2 Exploratory data analysis and visualizations . 103

4.2.1 Descriptive statistics . 106
4.2.2 Sampling and bias . 109

4.3 Modeling . 111
4.3.1 Linear regression . 112
4.3.2 Polynomial regression . 116
4.3.3 Group-wise models and clustering . 117
4.3.4 Probability models . 118
4.3.5 Maximum likelihood estimation . 122

4.4 Confidence intervals . 124
4.4.1 The sampling distribution . 125
4.4.2 Confidence intervals from the sampling distribution 127
4.4.3 Bootstrap resampling . 130

4.5 Inference . 133
4.5.1 Hypothesis testing . 133

4.5.1.1 First example . 133
4.5.1.2 General strategy for hypothesis testing 136
4.5.1.3 Inference to compare two populations 137
4.5.1.4 Other types of hypothesis tests 138

4.5.2 Randomization-based inference . 139
4.5.3 Type I and Type II error . 142
4.5.4 Power and effect size . 142
4.5.5 The trouble with p-hacking . 143
4.5.6 Bias and scope of inference . 144

4.6 Advanced regression . 145
4.6.1 Transformations . 145
4.6.2 Outliers and high leverage points . 146
4.6.3 Multiple regression, interaction . 148
4.6.4 What to do when the regression assumptions fail 152
4.6.5 Indicator variables and ANOVA . 155

4.7 The linear algebra approach to statistics . 159
4.7.1 The general linear model . 160

99

100 Data Science for Mathematicians

4.7.2 Ridge regression and penalized regression 165
4.7.3 Logistic regression . 166
4.7.4 The generalized linear model . 171
4.7.5 Categorical data analysis . 172

4.8 Causality . 173
4.8.1 Experimental design . 173
4.8.2 Quasi-experiments . 176

4.9 Bayesian statistics . 177
4.9.1 Bayes’ formula . 177
4.9.2 Prior and posterior distributions . 178

4.10 A word on curricula . 180
4.10.1 Data wrangling . 180
4.10.2 Cleaning data . 181

4.11 Conclusion . 182
4.12 Sample projects . 182

4.1 Introduction

The field of statistics is often described as “the science of turning data
into information,” a phrase which could be used just as well to describe all
of data science. Section 1.3 covered the debate about the precise differences
between data science and statistics, but there is widespread agreement that
statistics is an essential piece of data science [132]. As discussed in [486], the
best practices for an undergraduate curriculum in data science would include
an introduction to statistical models. In this chapter, we will describe the
essential topics in such an introductory course, advanced topics that could
go into a second or third course in statistics, and a few tips regarding best
practices for teaching such a course.

Because this chapter suggests nearly three courses worth of material, it
is not essential to read it in its entirety before reading later chapters in the
text. The reader should cover the essentials of a first course in statistics in
Sections 4.2 through 4.5 and read about related pedagogy and connections
to other data science topics in Section 4.10. Naturally, you can return to the
more advanced material in Sections 4.6 through 4.9 as you find the need.

The choice of topics for this chapter is based on curricular guidelines
published by statistical associations [13, 89, 372], and the author’s experience
teaching statistics at Denison University, where these topics are spread across
two courses. Syllabi and links to course materials may be found at the author’s
web page (a link to which appears on the site for this text [84]), and a descrip-
tion of how a mathematician can develop and teach such courses may be found
in [498]. Over the years, the author has taught a number of colleagues how to
teach statistics, and a few patterns have emerged.

First, many mathematicians start out with a negative impression of the
field of statistics. Some believe statistics is basically a subfield of arithmetic,

Basic Statistics 101

because many formulas used in statistics are elementary. Others have nega-
tive memories from statistics courses they took as undergraduates that were
simultaneously boring and lacking in rigor (giving intuitive justifications for
important theoretical results, rather than rigorous proofs). Second, many find
the shift from deductive reasoning to inductive reasoning counterintuitive,
and long for the comfort of axioms. Mathematical culture leads us to abstract
away the context from the problems we face, but that context is essential
for doing applied statistics. Third, many in society inherently mistrust statis-
tics, because they have seen statistics used to make arguments both for and
against the same idea, e.g., whether or not tax cuts stimulate economic growth.
Worse, many papers that use statistical arguments cannot be replicated on
other datasets. (We discuss how to change this in Section 4.5.5.) Surely, these
were the kinds of considerations Mark Twain had in mind when he popularized
the phrase, “There are three kinds of lies: lies, damned lies, and statistics.”

A large part of this negative impression is due to how statistics was com-
monly taught when today’s professors were students, how statistics is pre-
sented in the media, and statistical illiteracy in society at large. Thankfully,
over the past decade, statistical pedagogy has undergone a renaissance, and
the world has become awash with freely available data on almost every topic
imaginable. It is now an extremely exciting time to study and teach statistics,
as statistical software removes the need for rote, hand calculations, facili-
tates the creation of engaging graphical visualizations, and allows us to focus
statistics courses around real-world applications and conceptual understand-
ing, rather than derivations of statistical formulas. Thanks to computational
automation, a modern statistics course is free to focus deeply on when a given
statistical model is an appropriate fit to the data, how to carry out a good
statistical analysis, and how to interpret the results in context. While many
non-experts have in the past used statistics to create flawed arguments, this is
not a failing of statistics as a field. Society is improving in our ability to detect
bad statistics, and journal publishing culture is changing to force authors into
the habits of good statistics, to combat the replication crisis (Section 4.5.5).

Now is an excellent time for a mathematician to get involved with research
and teaching in statistics. Many of the things we love about mathematics are
inherently present in statistics, including logical reasoning, creative problem-
solving, cutting to the core of a problem, quantitative intuition, and philo-
sophical questions requiring careful analytical thought. Additionally, many of
the tools of statistics are familiar to mathematicians, including sets, functions,
polynomials, matrices, dot products, probabilistic reasoning, and algorithms.
Every year, more and more mathematical concepts are used in creating statis-
tical models (e.g., the trees and graphs used in network analysis and machine
learning, as in Chapters 3 and 8, or techniques from homological algebra used
in topological data analysis, as in Chapter 10), and at the moment, a math-
ematician trained in the basics of statistics is in a position to introduce new
models that may quickly gain traction and application.

It is an exciting time to learn the tools of applied statistics, as these tools
open doors to new and interdisciplinary collaborations. Applied statistics is

102 Data Science for Mathematicians

an excellent source of projects suitable for student co-authors, and the vol-
ume and variety of available data makes it easy to find intrinsically interesting
research topics in applied statistics. Furthermore, data science is desperately
in need of more mathematicians: trained to be methodical and meticulous, and
with the technical background to actually understand statistical tools, rather
than using them as a black box. If we were to enrich our teaching with statis-
tical concepts, we could improve the state of statistical literacy, and could do
our part to restore public confidence in statistics. Research teams conducting
bad statistical analyses often do not have a trained statistician or mathemati-
cian, and having more mathematicians doing statistics and data science would
help combat this problem. A common thread in bad statistics is a failure to
check the assumptions required by the mathematical results statistics is based
on, or failing to verify the preconditions for statistical algorithms. As mathe-
maticians are well-practiced in checking assumptions, we are in a position to
improve statistical analyses when working alongside non-experts. Crucially,
we are in a position to salvage analyses of datasets where the assumptions
are not satisfied, by introducing more advanced models and a more careful
approach.

This chapter aims to teach the essentials of statistics to an audience of
mathematicians, with their particular abilities and preferences in mind. Since
mathematicians already possess a strong technical background, we are able to
move quickly through certain topics, and to emphasize other topics that are
sometimes difficult to grasp. We devote particular attention to the statistical
analysis of datasets that fail to satisfy the standard assumptions of statistics
(Section 4.6.4). No specific background knowledge is assumed of the reader.
Additionally, because statistics is being taught so differently today than a gen-
eration ago, we have interleaved a discussion about best practices for teaching
these topics to students.

Throughout, the essential idea for teaching a truly applied first course in
statistics is to de-emphasize unnecessary theory, and to give students as many
opportunities as possible to apply statistics to real-world datasets. This can
be a challenge for many mathematicians, as it involves truly embracing the
shift from deductive reasoning to inductive reasoning, and because many of
us never took a truly applied statistics course. Statistics curricular reform is
a relatively recent phenomenon, so the curricular guidelines [13,89,372] often
bear little resemblance to exposures today’s mathematics faculty might have
had to statistics as undergraduates. However, research has also shown that
mathematical statistics courses, with their emphasis on probability theory
and the theoretical properties of probability distributions, do not work for
the majority of students [352]. Furthermore, the statisticians are clear in their
recommendations: students should be given opportunities to work with real
data, to build and test statistical models using computational software, to
learn to check the conditions for these models, and to think about what to do
when the conditions fail [13].

As it is impossible to cover two semesters’ worth of content in a single
chapter, certain topics are touched on only lightly. Our goal is to structure the

Basic Statistics 103

conceptual core of statistics for the reader, to emphasize certain approaches
that may appeal to a mathematician, to introduce key terminology, and to
provide references where the reader can learn more. A standard introduction
to statistics includes exploratory data analysis, visualizations, an overview
of common statistical models, a dash of probability theory, simulation and
resampling, confidence intervals, inference, linear models, and causality. We
discuss these topics below, providing examples, definitions, and teaching tips
for each topic. For the sake of brevity, we move more quickly through elemen-
tary topics.

4.2 Exploratory data analysis and visualizations

One of the most powerful things we can do with data—even before getting
into building statistical models, analyzing variability, and conducting statis-
tical inference—is create graphs summarizing the data. This is also a natural
place to begin a first course in statistics: by teaching students how to explore a
real-world dataset and create visualizations using statistical software, in line
with the GAISE recommendations [13]. Figure 4.1 shows many basic visual-
izations typically encountered in a first course in statistics, all of which can be
created using simple commands in statistical software. Our discussion below
focuses primarily on quantitative variables, that is, variables taking numer-
ical values representing some kind of measurement. Examples include height,
age, salary, years of education, etc. Variables taking values from a finite set,
like hair color, race, or gender, are called categorical variables.

A histogram (Figure 4.1a) displays a finite set of data points for a quanti-
tative variable X (e.g., salary), by dividing the range of X into a fixed number
of discrete bins, and counting the number of individuals in the dataset whose
value for X is in each bin. Each bin is represented by a bar, whose height
represents the number of data points in the bin. This same information can
be represented by a stem and leaf plot (Figure 4.1b), which is essentially a
histogram rotated by 90 degrees. Each row represents a bin, and the number
of numbers in each row represents the count of individuals in that bin. We
call X symmetric when its histogram exhibits rough symmetry around its
center (the average value of X). When a histogram fails to be symmetric (e.g.,
if bar heights on the left side are much larger than bar heights on the right
side), we call X skew.

If X is categorical rather than quantitative, then the chart analogous to a
histogram (but where the bins now represent the categories of X, and white
space is inserted between the bars) is called a bar chart. For example, if
X represents highest degree earned, with levels of PhD, master’s, bachelor’s,
high school, and other, then a bar chart would have five bars, with heights
corresponding to the number of individuals in the dataset of each degree type.
Another way to represent the proportion of individuals of each category (as a

104 Data Science for Mathematicians

(a) Histogram (b) Stem and Leaf Plot

(c) Pie Chart (d) Box and Whisker Plot

(e) Scatterplot (f) Line Chart

FIGURE 4.1: Basic visualizations. The data for several of these visualizations
comes from the Galton dataset built into R, as discussed in the text.

fraction of the total number of individuals) is via a pie chart (Figure 4.1c). In
a pie chart, counts are represented as fractions of a circle, so that a histogram
with three equal height bars is equivalent to a circle divided into three equal
slices. It is easier for the human brain to distinguish heights of bars than
it is to distinguish areas of slices of a circle [256], so bar charts are usually
recommended over pie charts when the goal is a comparison of different levels.

Basic Statistics 105

A box and whisker plot (Figure 4.1d, also known as a box plot) is used
to represent the distribution of a quantitative variable X and its outliers. The
center dot of the box is the median, the box itself is the span between the first
and third quartile,1 and each whisker is a distance of 1.5IQR from the edges
of the box. A value of X outside of the whiskers is defined to be an outlier.

A scatterplot (Figure 4.1e) is used to show the relationship between two
quantitative variables. For example, if we have a dataset of children, where X
is the age of a child, and Y is the child’s shoe size, then each point (x, y) in a
scatterplot represents a child (of age x and shoe size y), and the scatterplot as
a whole shows us the trend between the age of children and their shoe sizes.
Scatterplots are an essential tool for linear regression, as we will see in Section
4.3.1. A line chart (Figure 4.1f) is like a scatterplot, but where there are no
duplicate X values, and where each point is connected to the next point by
a line segment. Line charts are most often used when X represents time. In
this situation, they show how Y changes over time.

Visualizations allow us to see trends (e.g., between years of education
and salary), skewness (e.g., the wealth distribution), and outliers. Visualiza-
tion serves as a powerful “hook” to get students on board with the inductive
nature of a statistics course. Students often appreciate a discussion about
how visualizations can be used to mislead. Such a discussion gives students
practice developing skepticism, looking carefully at axes in graphics they are
shown, and thinking about the importance of the choice of the population
under study.

Common ways that visualizations are used to mislead include starting the
y-axis in a bar chart at a value other than zero (to make the differences in bar
heights look more significant), plotting only a small range of the data (e.g.,
showing sales going down in the winter months, but hiding that sales went
back up in the summer months), leaving out data points in a scatterplot to
fit a narrative, manipulating the y-axis in a line chart to make change appear
more significant, cherry-picking the population (e.g., reporting opinions of
one political party without reporting the proportion of the population in that
party), or flipping the y-axis in a line chart (so that 0 is in the upper left
corner rather than the lower left corner) so that it reverses the meaning of the
chart.

The basic visualizations from Figure 4.1 are far from a comprehensive
coverage of data visualization. Indeed, even a semester-long course can only
scratch the surface of data visualization techniques, and with modern software,
the only limit is creativity. Figure 4.2 shows a few examples of advanced
visualizations. A density plot (Figure 4.2a) shows the density of the values
of a quantitative variable X, and so is like a histogram, but without the
need for arbitrary divisions into bins. This can combat binning bias, i.e., the

1The first quartile, Q1, is the smallest value of X larger than 25% of the values of X. The
third quartile, Q3, is larger than 75% of the values of X. The interquartile range (IQR) is
Q3−Q1. The second quartile is the median, so Q1, Q2, and Q3 divide X into four equally-
sized pieces. More generally, quantiles divide a variable into k roughly equally-sized pieces.

106 Data Science for Mathematicians

possibility that the choice of bins changes the meaning of a histogram. Density
plots are also helpful in probability theory (Section 4.3.4). Similarly, a violin
plot (Figure 4.2b) is like a box plot, but with information on the density of
the data. A bubble chart (Figure 4.2f) is like a scatterplot, but allowing
dots to have different sizes corresponding to some other variable of interest
(e.g., population, if one were plotting GDP vs. time). This idea of layering one
additional aesthetic (size, in this case) on top of an existing plot, to capture
one more variable of interest, is the core concept behind the grammar of
graphics that one would learn in a course on data visualization [509].

Another example of adding an aesthetic to an existing graphic is a choro-
pleth map (Figure 4.2d), which shades regions in a map according to some
variable, e.g., shading countries according to their military spending. A heat
map (Figure 4.2c) works similarly, but ignores existing boundaries and instead
shades (x, y)-coordinates (such as latitude and longitude) based on some quan-
titative variable of interest (e.g., the crime rate). Advanced data visualizations
can also be used for categorical data or textual data. For example, a word
cloud (Figure 4.2e) displays how frequently each word appears in a docu-
ment, via the size of the word in the word cloud. Advanced visualizations can
also be used to mislead, e.g., by reversing the typical shading convention in
a choropleth map, so that countries with a higher density are shaded lighter
rather than darker. Making choices about aesthetics is another area where a
mathematical background can be very helpful in data science. For example, in
a bubble chart, most statistical software will use the specified “size” variable
to scale the bubbles, effectively making bubble radius directly proportional
to the size variable. However, humans tend to perceive the significance of an
object proportional to the space it takes up in our visual field, so using our
data to impact radius may mean that the squares of our data are what the
viewer is perceiving. If we do not wish this, we may need to apply a square root
transformation to our size variable before giving it to the statistical software.

The article [364] contains an excellent summary of data visualization, and
assignments to guide the reader through creating and interpreting visualiza-
tions. We turn now to a different kind of summary information that can be
extracted from a dataset.

4.2.1 Descriptive statistics

In addition to summarizing data through visualizations, exploratory data
analysis also entails extracting numerical and categorical summaries of a
dataset. For example, one can and should extract the number n of individuals
in the dataset, what kinds of information is present regarding each individual
(e.g., summaries of the columns of a spreadsheet), and how much of the data
is missing. Identifying missing data is an important part of thinking about
issues of bias, and how such issues might limit the scope of analysis (Section
4.5.6).

For a quantitative variable X, one often desires a measurement of the
central value of X. For symmetric data, we usually use the mean, x, for the

Basic Statistics 107

(a) Density Plot (b) Violin Plot

(c) Heat Map (d) Choropleth Map

(e) Word Cloud (f) Bubble Chart

FIGURE 4.2: Advanced visualizations.

central value of X. However, if X is skew, it is more appropriate to use the
median value (which is less affected by outliers).

A crucial concept in statistics is the difference between a population
(i.e., the set of individuals we want to infer information about) and a sample
(i.e., the set of individuals we have data on). For example, a phone survey

108 Data Science for Mathematicians

asking individuals about their voting preferences represents a sample of the
population of all potential voters, whereas a census tries to obtain data on
every individual in a country. The value of a numerical summary on an entire
population is called a population parameter, and we often denote such a
value using Greek letters. For example, the mean height of every American
man would be denoted by µ. It is often prohibitively expensive to survey every
individual in a population, so we will almost never know the true value of a
population parameter. Instead, we compute a statistic from a sample, e.g.,
the sample mean, x. If our sample is representative of the general population
then the sample statistic will be close to the population parameter, and we can
compute a confidence interval for the population parameter (Section 4.4.2).

In addition to a measurement of centrality, we often desire a measurement
of the inherent variability in a quantitative variable X. For this, we often
use the standard deviation of X,2 defined in the formulas below (one for a
population of N individuals, and one for a sample of n individuals):

σ =

√∑
(xi − µ)2

N
and s =

√∑
(xi − x̄)2

n− 1
.

The summation above is over all individuals under study, so runs from 1
to N for the population, and from 1 to n for the sample. Clearly, if X has
no variability (i.e., if xi = x for all i) then s = 0. When X has a larger
variance, this means the histogram for X is fatter, more spread out. When
X has a smaller variance, it is more tightly concentrated around its mean,
so the histogram is thinner. With software, modern statistics courses can
de-emphasize rote memorization of formulas for these quantities, and focus
instead on conceptual topics such as how to identify when one histogram
represents more variability than another. There is no longer any reason to ask
students to compute these quantities by hand.

The reason that the denominator for s is n−1 rather than n is to make s an
unbiased estimator for σ (defined in the next section). A deeper reason has to
do with the concept of degrees of freedom. The idea here is that, because the
formula for s depended on x, we expended one degree of freedom in estimating
σ. That is, given n−1 of the data points, plus x, we could solve for the nth data
point, so we really only have n−1 bits of information going into our estimation
for s. A mathematically rigorous explanation for the phenomenon of “losing a
degree of freedom” is that our estimation procedure requires projecting from
an n dimensional space of data onto an n−1 dimensional space. We will return
to this linear algebra approach to statistics in Section 4.7. For now, we delve
deeper into the difference between a sample and a population, and the notion
of bias.

2The IQR can also be used to measure variability.

Basic Statistics 109

4.2.2 Sampling and bias

Before attempting to fit statistical models to data, or make inferences
about an unknown population based on a sample, it is important to think
about where the data came from (i.e., the data-generating process), and
ways the sample may be systematically different from the population. The
first step is correctly identifying the population under study, and thinking
about whether the sample is representative of the population. For example, if
one were to analyze data from the dating website OkCupid, can this data be
considered representative of all individuals in the United States? Of all individ-
uals who are single and actively seeking to date? Or, should any conclusions
drawn be restricted to only talk about individuals using OkCupid? These
are hard questions for which there is not always an obvious correct answer.
Effective ways of teaching students to think about these kinds of issues include
case studies, discussions in class, and short persuasive writing exercises. When
teaching statistics in a project-driven way, as described in [498], students can
continue practicing these skills in their lab reports.

Many results in classical statistics assume that data is obtained as a simple
random sample, i.e., all individuals in the population have an equal chance of
being in the sample. However, in the practice of data science, many important
datasets are not random. For example, data from social media and Twitter
is created when individuals opt to use these platforms, rather than being
randomly assigned to use them. There are statistical tests to determine if a
dataset behaves like random data for the purposes of statistics (Section 4.6.4),
but these tests cannot detect every failure of randomness, and they are not
a substitute for carefully thinking about where the data came from. As a
first step, one should identify how a study gathered data, whether random
sampling was used, and whether variables were controlled for (Section 4.8).
Sometimes, if a statistician desires a sample guaranteed to be representative
(e.g., to contain both men and women, members from each racial group, etc.),
then stratified random sampling is used. This means the population is
first divided into groups (e.g., white females, Latino males, etc.), and then
simple random sampling is used to sample individuals from each group, usually
respecting the group’s size relative to the population size.

To illustrate the importance of stratified random sampling, consider Simp-
son’s paradox. This is the phenomenon where the decision to group data can
reverse a trend seen in ungrouped data. This phenomenon is best illustrated
with an example, such as Table 4.1 (from [11]), which compares the batting
average of two baseball players (Derek Jeter and David Justice).

TABLE 4.1: Batting averages of two baseball stars in 1995 and 1996.

Player 1995 1996 Combined
Derek Jeter 12/48 or .250 183/582 or .314 195/630 or .310
David Justice 104/411 or .253 45/140 or .321 149/551 or .270

110 Data Science for Mathematicians

The batting averages of Justice were higher than those of Jeter in both
1995 and in 1996, but the combined average of Jeter was higher over those
two years. This happens because of the unequal sample sizes. Jeter’s .314 in
1996 included many more at bats than Justice’s .321, and this is reflected in
the combined average. Where Justice had more at bats, in 1995, he did not
do as well as Jeter in 1996. Examples such as this one can help clarify for
students why they might want to use stratified random sampling if they ever
ran an experiment, to guarantee equal sample sizes in all cells. Of course, for
the example of baseball data, one cannot assign an equal number of at-bats
for each of the two hitters. Indeed, most modern data analysis is conducted
on data that did not arise from a randomized, controlled experiment.

When doing data science using “found data” rather than data obtained
from random sampling, it is essential to think about issues of bias. For exam-
ple, evaluations on RateMyProfessor do not represent a random sample of
student evaluations, since they are created only when students decide to take
the time to navigate to RateMyProfessor and write such an evaluation. Stud-
ies have shown that extreme evaluations are overrepresented on this platform.
A similar phenomenon occurs with ratings on Yelp, perhaps because only indi-
viduals with strong opinions feel sufficiently motivated to write a review. Bias
can creep in even when data is gathered randomly. The standard example
is gathering data by calling people at home, since this procedure leaves out
anyone who doesn’t own a home phone.

Another subtle issue is deciding if a dataset represents a sample at all,
or whether it is in fact the entire population. For example, suppose we have
a dataset consisting of information about every person who died of a drug
overdose in Ohio in 2017. If we view this dataset as a sample from the entire
United States, we are implicitly assuming Ohio is representative (note that
a random sample of overdose deaths in the United States would not need
this assumption). If we view the dataset as a sample from the period of time
2014–2019, we are again assuming 2017 was a representative year. However,
if we view the dataset as the entire population of individuals who died of
an overdose in Ohio in 2017, then many of the tools of statistics (such as
confidence intervals and inference; Section 4.5) are not available to us. We can
still make data visualizations, extract numerical summaries, and find models
to describe the population (Section 4.3), but it does not make sense to assess
the statistical significance of such models.

Sometimes, we can get around the conundrum above by considering the
dataset as representative of some hypothetical population (an idea we return
to in Section 4.6.4). For example, we might have reason to believe that our
dataset of overdose deaths is incomplete (due to unreported overdose deaths,
coroner errors, etc.) and in that case we could view our dataset as a non-
random sample of all overdose deaths in 2017 in Ohio. For another example,
consider a dataset of all plays in the 2019 National Football League season.
When statistics is used in sports, it is common to face questions like: “Is
it better to run or pass against the 2019 Patriots on third down?” If we
view the dataset as a population, we can only answer the question “was it

Basic Statistics 111

better,” and our answer will involve a summary of all plays made against
the 2019 Patriots on third down. If we view the dataset as a sample from
a hypothetical population (of how all plays could have gone), then we can
attempt to use statistical models (perhaps using many more variables than
just what happened on third-down plays) to answer this question based on
traits of the opposing team. This is related to how video games simulate
football games between historical teams, based on statistical models built
from the historical data.

Moving forward, we will assume that our dataset is a sample taken from
an unknown population. In general, we say that a statistic is biased if it is
systematically different from the population parameter being estimated. Bias
can arise from how the data was gathered (e.g., only surveying individuals
who have phones), from certain individuals’ systematically declining to par-
ticipate in a survey (this is called “non-response bias”), or from how survey
questions are phrased. Another source of bias comes from measurement error,
also known as observational error. Measurement error occurs when a device
for gathering data does so in a flawed way, e.g., if a device is incorrectly cali-
brated, or if a method of collecting individuals to study (e.g., turtles, or rocks)
has a tendency to oversample larger individuals. Once students can identify
bias and measurement error, they are empowered to argue against research
that fails to take these concepts into account, they will be more likely to
design good study protocols (another area where short writing exercises can
help students put theory into practice), and they can begin to think about
ways to correct for bias in their data. For example, if one recognizes that a
measurement device was incorrectly calibrated, and if one can measure the
average error, then one can correct data gathered by the incorrect device.

Since most data in the world is not produced by randomized controlled
experiments, it may be important for a first course in statistics to teach stu-
dents the basics of getting data from different sources into a form suitable
for analysis. Alternatively, such a topic could be relegated to a first course in
data science, which might come before a formal introduction to statistics, as
recommended in [486]. Either way, we delay discussion of data wrangling and
data cleaning until Section 4.10.1, so that we can get to the core of statistics
more quickly.

4.3 Modeling

The power of statistics derives from its ability to fit models to data, and
to use those models to extract information, e.g., predictions. Some mathe-
maticians have a visceral negative reaction to the idea of modeling, but it is
worthwhile to remember that a tremendous amount of the mathematics we
love was, in fact, inspired by attempting to model real-world phenomena. For

112 Data Science for Mathematicians

example, much of Newton’s work in creating calculus was inspired by physical
applications. Euler invented graph theory to model locations and the bridges
between them. Much of geometry, e.g., the notion of a Calabi-Yau manifold,
or the types of properties we prove for Riemannian manifolds, was inspired
by theoretical physics and the shape of the universe. Much of dynamical sys-
tems, e.g., chaos theory, ergodic theory, and coupled differential equations,
was inspired by applications in biology and in particle physics. The point is
that, when mathematicians take inspiration from the real world, we come up
with models that are intrinsically interesting, aesthetically pleasing, and wor-
thy of study in their own right (not to mention actually being useful to the
disciplines who rely on us).

The models that arise in statistics are no less interesting than the models
discussed above. Many statistical models are simple (e.g., lines and hyper-
planes), but the inherent randomness in data means there are real subtleties
when it comes to fitting the model to the data. Often, this fitting process
aims to minimize the error, i.e., the differences between the model and the
data (which are called residuals). However, care must be taken not to overfit
a model to data, as we will discuss shortly. Furthermore, different choices for
the norm to minimize lead to different models, which are suitable for different
kinds of data situations. The field of statistical modeling benefits from the
involvement of mathematicians, because we deeply understand the formulas
used in such models, we can think through when one model is or is not a
good fit, and we can understand subtleties that arise in the fitting process
(e.g., trying to invert a singular matrix). Many data scientists use statistical
models as a black box, and this can lead to flawed analyses. This is an area
where a little bit of mathematical understanding goes a long way.

Fundamentally, a statistical model takes the form data = model + error,
where error is random noise. There are many different types of models, includ-
ing discrete models (clustering data points into a fixed number of groups, as in
Chapter 5), linear models (fitting a linear function that predicts the response
variable from the explanatory variable(s)), polynomial models, and computa-
tional models (as seen in a machine learning course, covered in Chapter 8).
In addition to knowing the common types of models, it is important for prac-
titioners of data science to know how to select a model, how to fit a model,
how to validate a model (e.g., to avoid overfitting), how to assess a model,
and how to draw conclusions from a model. The idea of modeling should be
introduced early in a first statistics course, and spiraled back to as the course
unfolds. Indeed, it is possible to frame an entire semester-long course in terms
of modeling [256].

4.3.1 Linear regression

Linear regression is the most common model in all of statistics. It is
used to model a linear relationship between two quantitative variables. When

Basic Statistics 113

TABLE 4.2: A portion of the data in Galton’s survey of the heights (in inches)
of people in Britain in the 1880s.

Row x = Father’s Height y = Child’s height
1 70 66
2 70.5 68
3 68 61
4 66 61
5 67.5 64
6 65 60.5
7 70 60
8 69 64
9 70 63
10 68.5 60
...

...
...

we fit a linear model, we will often begin with a spreadsheet (or CSV file) of
data of the form shown in Table 4.2.3

A linear model states that y = β0 +β1x+ ε, where ε is some random error
term whose expected value is zero. For example, on the entire Galton dataset,
statistical software can easily compute that the best-fitting linear model is
approximately y = 39.11 + 0.4x + ε (the code for which is in Figure 4.3). In
addition to explaining the relationship between the explanatory variable,
x, and the response variable, y, the model can be used to predict values of
y associated to given values of x. We use the notation ŷ for a predicted value
of y, obtained by substituting a value of x into the regression equation. For
example, the model predicts that for a father of height 70 inches, the child
is expected to have height ŷ = 39.11 + 0.4 · 70 = 67.11 inches. Here we are
using the assumption that the expected value of ε is zero. The first row in the
table above represents a father of height 70 inches and a child of height 66
inches. For row 1, the residual is ε1 = 66 − 67.11 = −1.11. For row 7 above,
the residual is ε7 = 60− 67.11 = −7.11.

We reserve the notation β1 for the true slope in the population (here,

families in Britain in the 1880s), and we use β̂1 for the slope in the sample,
since it depends on the specific random sample of 898 families Galton studied.
The R code in Figure 4.3 demonstrates how easy it is to fit and analyze a linear
regression model. Note that in R, the notation y ∼ x means y as a function

3This data represents a subset of the Galton dataset, a dataset representing a random
sample of 898 families from the population of families in Britain in the 1880s. This dataset
comes with the mosaic package of R [394], and hence can be ported to any statistical
computing language. As discussed in Section 4.10.2, it may be appropriate to give students
a dataset like this with some impossible data, e.g., a father whose height is 7 inches instead
of 70, so that students can think about omitting such rows of dirty data.

114 Data Science for Mathematicians

require(mosaic)

data(Galton)

xyplot(height ~ father, data = Galton)

mod = lm(height ~ father, data = Galton)

summary(mod)

xyplot(height ~ father, data = Galton, type = c("p","r"))

FIGURE 4.3: R code that fits a linear model to the data from Table 4.2, prints
the model summary, and creates a scatterplot with a regression line.

FIGURE 4.4: Sample scatterplots and regression lines.

of x, lm is short for “linear model,” and mosaic is a package developed for
teaching statistics and creating attractive visualizations [394].

The code in Figure 4.3 shows how to load the Galton dataset, how to make
a scatterplot to check that the relationship between a father’s height and a
child’s height is linear, how to fit the model, how to extract a regression table
(to assess the model), and how to plot the scatterplot with the regression line
overlaid. The resulting plot displays how the line captures the trend.

Scatterplots, like the examples in Figure 4.4, provide a valuable oppor-
tunity to get students thinking about nonlinear relationships, to foreshadow
more complicated regression models (such as quadratic regression), transfor-
mations (e.g., taking the log of y), and even topological models (e.g., if the
scatterplot represents a circle), should the instructor desire.

At this point in the course, it is not essential for students to know the
formulas for computing β̂1 and β̂0 from a table of values (xi, yi) as above. It
is sufficient for students to know that there are such formulas (so that, for a
fixed dataset, the regression line is unique), that these formulas are referred
to as the ordinary least squares (OLS) formulas, and that the purpose of
the formulas is to minimize the residual sum of squares (RSS), i.e., the
following sum, over all data points (x1, y1), . . . , (xn, yn).

n∑

i=1

(yi − ŷi)2 =
n∑

i=1

(yi − (β̂0 + β̂1xi))
2

Basic Statistics 115

If students have taken calculus, this is a natural moment to remind stu-
dents of the fact that optimization problems (such as the minimization prob-
lem above) can be solved with calculus. An alternative way to derive the
equations for the regression coefficients proceeds via projections in linear alge-
bra [100]. Mathematicians may recognize that minimizing the RSS is the same

as minimizing the `2-norm of the vector of residuals, over all choices of β̂0 and
β̂1.

Actually carrying out these derivations is best left for a second or third
course in statistics. In such a course, one could also prove the Gauss-Markov
Theorem, which states that, under the classic regression assumptions, the
formulas for β̂0 and β̂1 obtained from OLS are the “best” linear unbiased
estimators for the model (i.e., minimize variance). The meaning of “unbiased
estimator” will be explained in Section 4.3.4. The classic regression assump-
tions state that the relationship between x and y is linear, the errors ε have
mean zero, the errors are homoscedastic (i.e., all of the residual errors have the
same variance), the data points are independent (which can fail if X represents
time, where the past tells us something about the future), and, if there are
multiple explanatory variables, that they are linearly independent. In Section
4.6.4, we discuss what happens when these assumptions fail. We will return
to the Gauss-Markov Theorem in Section 4.7, after introducing the variance
of the β̂ coefficients. We discuss alternatives to the `2-norm in Section 4.7.2,
which yield different estimates for β0 and β1 that are appropriate in certain
situations.

This unit on regression is also an excellent time to introduce correlation.
Just as with the mean or standard deviation, there is a population version
of correlation (denoted ρ) and a sample version (denoted r or R). Below, we
discuss the sample correlation, and an analogous discussion holds for popula-
tion correlation (based on population means and covariance). While students
should not be made to compute correlation coefficients by hand, the formula
for correlation is worthy of inspection.

r =

∑
((xi − x)(yi − y))√∑
(xi − x)2

∑
(yi − y)2

The numerator is the covariance, a measurement about how two quan-
titative variables, x and y, vary together. In the denominator, students see
formulas for the variance of x and y. Taken together, we learn that correla-
tion is a scaled version of covariance, scaled to take values between −1
and 1. An example of data measured in different units (e.g., in kilometers vs.
meters) can demonstrate to students why it is important to scale the covari-
ance. One can often get an idea of the correlation by looking at scatterplots.
If the data falls perfectly on a line of nonzero slope, then the correlation is
1 or −1 (corresponding to the sign of the line’s slope). If the scatterplot is a
cloud, where the best-fitting line has slope zero, then the correlation is zero.
It is also important to teach students that correlation measures the strength

116 Data Science for Mathematicians

of a linear relationship only, and it is possible to have two very closely related
variables that still have a correlation of zero (as in Figure 4.4).

4.3.2 Polynomial regression

As the previous section demonstrates, when data fails to satisfy a linear
relationship, a linear model is not appropriate.4 We must therefore choose
a different statistical model, based on the scatterplot. For example, if the
scatterplot suggests a cubic relationship, we would choose a model of the form
y = β0+β1x+β2x

2+β3x
3+ε. By minimizing the residual sum of squares, as in

the previous section, we could find estimates β̂i for the population parameters
βi. There is no reason to stop at polynomial models: if one wished to fit a
sinusoidal model to the data, the same considerations apply. Again, this is an
area where a little bit of mathematical knowledge goes a long way.

The ability to fit any model desired raises the danger of overfitting, and
the need to discuss the bias-variance trade-off. Overfitting occurs when a
model fits a dataset “too well,” meaning that the model is not suitable for
generalizing from the dataset at hand to the unknown population of interest.
For example, the Galton dataset above has 898 individuals. If desired, one
could perfectly fit a 897-dimensional polynomial y = β0 +β1x+ · · ·+β897x

897

to the dataset, resulting in an 898-dimensional residual vector of zero, ~ε = ~0.5

The problem is that this model would be terrible for predicting heights of
individuals not in the dataset. For example, just after the tallest father, the
graph would veer steeply towards infinity, and would therefore predict giant
children taller than skyscrapers.

Our best tool to prevent overfitting is cross-validation. This means we
hold out some fraction of the data to be used for testing our model rather than
fitting it. For example, we might hold out 10% of the data above, or 90 data
points. We then fit a linear model based on the remaining 808 data points,
then check the residuals for the remaining 90 data points. If these 90 residuals
look basically the same as the 808 residuals from the model, then we have
reason to believe the model is a good fit, and that residuals from unknown
population data points would look similar. Readers interested in more detail
on cross-validation can see Sections 6.3.3.2 and 8.2.2. The crucial mindset for
a statistician is the idea that more data is going to come later, and we need
our model to be a good fit for that data, rather than just the data we began
with.

When deciding between a complicated model and a simple model, like
deciding which k to use if fitting a k-dimensional polynomial, it is valuable
to think in terms of sensitivity analysis. The bias-variance tradeoff is a
framework for such considerations. In this context, the bias error represents

4At least, not unless transformations are applied; see Section 4.6.1.
5Technically, to do this one should assume there are no repeated x observations, but this

can be fixed by adding a very small amount of random noise to the x values in the data, a
process known as jittering.

Basic Statistics 117

error due to the choice of model, e.g., the error that would arise if you fit a
cubic polynomial but should have fit a quartic. The variance error represents
the error due to the sensitivity of the model to small changes in the data, e.g.,
how much the cubic polynomial would change if one of the y values had a
slightly larger random error. Models with high variance may inadvertently
be fitting β coefficients based more on the random noise than on the relevant
“signal” (i.e., the true relationship between x and y in the population).6 One of
the joys of statistical modeling is that there is no one single right answer when
it comes to the choice of model, and this leads to spirited debate. However,
for the purposes of a first course in statistics, we generally err on the side of
choosing simpler, rather than more complicated, models, as long as doing so
does not ignore crucial aspects of the phenomenon we are studying (such as
the effect of gender on salary). This choice is sometimes called the principle
of parsimony (also known as the Law of Parsimony, or Occam’s razor). We
illustrate these ideas with another example in the next section.

4.3.3 Group-wise models and clustering

A discrete model, also known as a group-wise model, is a particularly
simple model based on data that assigns each individual to a group. This
means the explanatory variable is a discrete variable. For example, one can
understand the wage gap via a scatterplot with salary on the y-axis, and where
x values are 0 for men and 1 for women, as in Figure 4.5. In this example, the
model assigns to each male the average salary of the men xmen, and assigns to
each female the average salary of the women xwomen. This model is a special
case of a linear regression model of the form y = β0 + β1x+ ε, where x takes
values of 0 or 1, and ε is the error term (how badly the model misses reality).

This example foreshadows the main idea behind the two-sample t-test, that
of studying the difference xmen−xwomen. When doing inference for regression
(i.e., testing the null hypothesis H0 : β1 = 0, as we will cover in Section 4.5),
a class can revisit this example to see that the two-sample t-test is a special
case of regression inference.

The study of discrete models also allows for a discussion of how to choose
a model. Students can see that choosing one group (i.e., ignoring gender, so
assigning each individual to the overall average salary x) explains less vari-
ability than choosing two groups. On the other extreme, choosing n groups—
one for each individual—explains all the variability, because all residuals are
zero, just like fitting an n-degree polynomial above. In this context, the bias-
variance trade-off is about the bias error (i.e., systematic modeling error) in
choosing too few groups vs. the variance error caused by choosing too many
groups (i.e., how radically clusters will change when data points change by
a little bit). The study of groupwise models leads naturally into clustering,

6We have chosen the terms “bias error” and “variance error” to avoid confusion with
the statistical terms “bias” and “variance.” For more on the bias-variance trade-off, we
recommend [247]. This important issue will also appear in many later chapters of this text.

118 Data Science for Mathematicians

FIGURE 4.5: A scatterplot of compensation by sex. Data provided on the
website data.world by the City of San Antonio for 11,923 employees. The
mean for each sex is shown with a line segment.

and so we will not say more about about it here, but direct the reader to
Chapter 5. Instead, we pivot to probability models, i.e., trying to determine
which underlying probabilistic process might have generated the data.

4.3.4 Probability models

A probability model is a choice of probability distribution that may
have generated the data. For example, if the data represents counts (e.g., the
number of people buying a mattress each day of the week), then a Poisson
model may be appropriate. When we speak of “fitting” a probability model,
we mean estimating the parameters of the model based on the dataset. As
a Poisson model is determined entirely by its mean, µ, we fit the model by
computing the sample mean x. The study of probability models is essential
to statistics, because many results in statistics rely on the Central Limit
Theorem, which states that the average (or sum) of many repeated experi-
ments7 is asymptotically normally distributed as the number of trials goes to
infinity. This theorem is the reason that the normal distribution is ubiquitous
in statistics and is used when statisticians compute confidence intervals and
p-values (Section 4.5).

It is challenging to speak precisely about probability theory. A careful,
technical definition of the probability of an event requires a detour into
measure theory. Therefore, in statistics, we must learn to communicate less

7By which we mean independent and identical random trials.

Basic Statistics 119

formally about probability theory. For the purposes of statistics, randomness
is taken to be inherent in the world, and a random variable is a variable
whose values change according to some random process, which students can
understand intuitively via example.8 For example, the temperature outside
at any given moment is a random variable. Commonly, random variables are
generated by random processes or experiments; e.g., the top face on a stan-
dard six-sided die is a random variable generated by the process of rolling
the die. If we repeat an experiment, we soon encounter sums of random vari-
ables. Another source of random variables is statistics computed from random
samples; e.g., Galton’s β̂1 (Section 4.3.1) was a random variable, because it
depended on the specific 898 individuals in his study, obtained by random
sampling.

Of all topics in statistics, probability theory is the most mathematical.
It is therefore easy for a mathematician teaching statistics to enjoy spending
too much time in a unit on probability theory. Browsing textbooks that teach
statistics for engineers, it is common to find lengthy sections on probabil-
ity theory, including formal definitions of sample spaces, Venn diagrams (for
event unions, intersections, De Morgan’s laws, conditional probability theory,
and independence), expected value, and variance. Such books often contain
results such as Chebyshev’s theorem, the method of moments, and the law of
the unconscious statistician. It is common to find definitions of (joint) prob-
ability mass/density functions, cumulative density functions, and a plethora
of distributions, including the Bernoulli, binomial, geometric, hypergeometric,
Poisson, uniform, and exponential. (A few of these are illustrated in Tables
6.1 and 6.2 on pages 264 and 265.)

I argue that none of this is required in a first course in statistics. The
unit of probability is often the hardest for students, because many will lack
probabilistic intuition. The GAISE guidelines are clear that probability the-
ory should be de-emphasized in a first course in statistics, whether or not a
calculus prerequisite is in play [13]. As hard as it is, we must resist delving
into probability theory more deeply than is absolutely necessary. The essential
topics from probability theory include the following.

• The idea that a probability model assigns a probability to an event
[256]. Here an event can be formally defined as a subset of the set of
all possible outcomes (e.g., the event of rolling an even number when
rolling a standard six-sided die), but for the purposes of teaching it is
better to avoid a digression into set theory or Venn diagrams.

8Formally, a random variable is a measurable function from a probability space to a
measurable space. The probability space has a set (actually, a σ-algebra) of events, and
a function (a probability measure) assigning each event a probability. The codomain of a
random variable is a Borel space, and is almost always Rk in our settings. However, general
measurable spaces are allowed, e.g., the space of finite graphs, if the random variable in
question assigns random graphs G(n, p) in the sense of Erdös and Rényi.

120 Data Science for Mathematicians

• An informal, frequentist, definition of the probability of an event. This
builds the law of large numbers into the definition. For example, the
probability of rolling a 2 on a standard 6-sided die is 1/6 because if we
conducted a huge number of trials, about 1 in 6 would come up with a
2 on the top face. Formally, this is a statement that

lim
n→∞

Number of times a 2 is rolled

Number of Trials
=

1

6
.

• The normal distribution, introduced as a picture (Figure 4.6) rather than
via the formula for its probability density function. Students should also
be given examples of non-normally distributed phenomena, such as the
uniform distribution (e.g., illustrated with the example of a die roll).

• The notion that probability is an area under a curve (Figure 4.6), and
examples of cutoff x values that leave 5% of the area in the tails.9 Stu-
dents need to know that the interval [µ−1.96σ, µ+ 1.96σ] contains 95%
of the area under a N(µ, σ) distribution. Similarly, 99% of the area is
within 2.33 standard deviations from the mean. Students should be able
to find cutoffs like 1.96 and 2.33 using software or using tables of values
of the standard normal distribution.

• A visual understanding of variance as it relates to how “fat” the distri-
bution is, as we saw for histograms in Section 4.2, and observation that
a larger variability leads to larger tail probabilities.

• Simulation or applets [300,411] so that students can see how a normally
distributed random variable is more likely to take values near its mean,
rather than in the tail, and how taking the average of many trials tends
to produce a number even closer to the mean.

• The Central Limit Theorem and many examples where it does and
does not apply. The use of simulation to visualize sums and averages
of repeated trials converging to the normal distribution, and to see that
a sample size of n ≥ 30 is usually enough to rely on the Central Limit
Theorem, unless the data is strongly skewed.

Students should get into the habit of checking if a given distribution is
normal, e.g., using histograms or density plots to see if it “looks” normal, or
quantile-quantile (q-q) plots. A q-q plot displays the quantiles (Section
4.2) of the given distribution along the x-axis, and the quantiles of a normal
distribution along the y-axis. If the plot fails to be linear, then this is evidence
that the distribution is not normal. There are also formal hypothesis tests for
normality that we will discuss below. In many cases, we will not need our

9Given a probability density function Z and a cutoff z, the right tail is the set of values
of Z larger than z. The left tail is defined similarly. When we say tails, we mean the union
of the left and right tails.

Basic Statistics 121

FIGURE 4.6: Standard normal distribution (µ = 0, σ = 1) with the shaded
region corresponding to [−1.96, 1.96], covering approximately 95% of the area
under the curve.

random variables to be normal, because the Central Limit Theorem applies
even to sums and averages of samples from any distribution. If a dataset
represents a sample of size n < 30, from a non-normal distribution, then n
is not large enough for the Central Limit Theorem to tell us the average is
approximately normal. Instead, the average is distributed according to a t-
distribution, with n− 1 degrees of freedom (Section 4.2). The t-distribution
represents an infinite family of distributions that converges to the normal
distribution as n → ∞, and is close enough if n ≥ 30 so that the normal
distribution can be used as an approximation.

De-emphasizing overly theoretical discussions of the properties of proba-
bility distributions allows a first course in statistics to devote more time to
simulation. Simulation is an important topic in applied statistics, an essential
topic in data science, and a valuable way to give students probabilistic intu-
ition. As students gain facility with simulation, it is possible to teach them
how to use Monte Carlo simulations to approximate solutions to elementary
probability theorem problems (e.g., the Kobe Bryant Open Intro lab [61]).
That said, the core learning outcome for Monte Carlo simulations will still
be achieved via a discussion of randomization-based inference and bootstrap
resampling (Section 4.4.3).

Similarly, Bayes’ Formula can be delayed until students need it, if you
have time later in the course (or in a future course) to introduce the ideas
of Bayesian statistics (Section 4.9). An upper-level course in mathematical
statistics or probability theory will usually include analytic derivations of

122 Data Science for Mathematicians

model parameters (such as mean and standard deviation), as well as proofs
of relationships between distributions, such as the relationship that a squared
t-distribution is an F -distribution. An upper-level course on survival analysis
(the branch of statistics that models how long something will last) usually
includes more distributions, such as the Weibull distribution, that are used to
model wait times.

We conclude by mentioning that linear regression models (Section 4.3.1)
are special cases of probability models. The Central Limit Theorem guarantees
that the collection of β̂1, over all possible random samples of size n, is approx-
imately normally distributed. Thus, finding estimates for β̂1 and its standard
deviation SEβ̂1

can be viewed as fitting a normal distribution. This type of

fitting procedure is accomplished via maximum likelihood estimation (which

we discuss next), and the resulting formula for β̂1 agrees with the ordinary
least-squares estimation from Section 4.3.1.

4.3.5 Maximum likelihood estimation

The primary theoretical tool used for fitting probability models to data is
maximum likelihood estimation (MLE). This procedure finds the opti-
mal estimates for the parameters of a probability distribution to maximize the
likelihood of the data that was observed. Analytically solving the optimiza-
tion equations requires calculus, and this is another area where instructors are
warned not to get bogged down. One example usually suffices to give students
the idea of MLE, especially if the example involves finding the maximum intu-
itively or graphically, rather than analytically. In the example that follows, we
use a common statistical notation that sometimes trips up newcomers. The
notation Pr(A; p) refers to the probability of an event A, as a function of an
unknown parameter p. In this notation, the data (hence the event A) is fixed,
and the parameter is allowed to vary, since we don’t know the true popu-
lation parameter in practice. When a statistician writes f(x; θ1, . . . , θk), this
represents a multivariable function where x denotes the data (or a quantity
computed from it) and θi denotes an unknown population parameter. Some-
times, all but one of the parameters θi are fixed, and the goal is to solve for the
remaining θi, by turning the multivarable function into a single-variable func-
tion. The reader is advised to read notation in statistical texts carefully, and
clarify which quantities are fixed and which are variables. We have endeavored
to avoid confusing notation wherever possible.

We now give an example of maximum likelihood estimation. Suppose our
data consists of a sequence of heads and tails produced by flipping a coin over
and over again, and our goal is to find the optimal parameter, p, such that a
biased coin (that comes up heads with probability p) would be most likely to
produce the data. For example, if there were 62 heads out of 100 flips, then
a biased coin with p = 0.62 would have been more likely to produce the data
than an unbiased coin (with p = 0.5). To prove this, one writes down the
likelihood function, which tells us the probability of the data observed as a

Basic Statistics 123

function of possible values of p. If A is the event of seeing 62 out of 100 heads
then the likelihood function is

L(p) = Pr(A; p) =

(
100

62

)
p62(1− p)38.

We then find the p that maximizes this function. As it is difficult to dif-
ferentiate a product, and the natural log is a monotonic function, we apply
it before differentiating, and call the resulting function the log-likelihood
l(p) = ln(L(p)) = c+ 62 ln(p) + 38 ln(1− p), for some constant c. The deriva-
tive l′(p) = 62/p − 38/(1 − p) is zero when 62/p = 38/(1 − p), i.e., when
p = 62/100. As this is an estimate of the true p, obtained from a random
sample, we use the notation p̂ = 62/100. Different datasets may give rise to
different estimates p̂, so we can view p̂ as a random variable, generated by
the random process of taking a random sample of data. In general, we call
an estimate θ̂ of a population parameter θ unbiased if the expected value of
θ̂ equals θ. This implies the average of the values ˆtheta, over many random
samples, approaches θ.10 It is a theorem that maximum likelihood estimation
produces unbiased estimators.

Other examples of MLE include finding the optimal parameters for Pois-
son or exponential distributions based on arrival data, or re-deriving the OLS
formula11 for β̂1 to maximize the likelihood of paired data (x, y), if the two
variables are related linearly by y = β0 + β1x + ε. The mathematics behind
maximum likelihood estimation is beautiful, but it is unwise to carry the
method out in front of students. Many students would struggle to connect
such a lecture to the core topics of the course, and would struggle with the
shift from likelihood to log-likelihood. Rather than carrying out such a proce-
dure in class, the method can be introduced informally, at a high level, with
elementary examples, and foreshadowing how the method will come up again
in future statistics courses. That way, the method will not be quite so foreign
when students see it properly, in a mathematical statistics course. The idea
of trying many different parameter values and picking the “best” one (here,
the one that maximizes the likelihood) is also crucial for operations research
(Chapter 6) and machine learning (Chapter 8). The formula for p̂ from the
previous example could also be obtained from a simulation, computing the
likelihood function over a range of possible values of p (roughly, a concave
down quadratic), and then selecting the value of p that maximizes the likeli-
hood.

An alternative to maximum likelihood estimation is the method of
moments, where one writes formulas for the moments of a probability dis-
tribution12 in terms of the unknown parameters, and then solves these equa-

10There is also a notion of asymptotically unbiased estimators, where this statement
is only true in the limit as the sample size approaches ∞.

11This justifies our use of the term “unbiased estimator” when discussing the Gauss-
Markov Theorem above.

12The kth moment of a probability distribution X is defined to be the expected value
E[Xk]. The first moment is the average value, the second moment is related to the variance,
etc. Two probability distributions are equivalent if and only if all their moments are equal.

124 Data Science for Mathematicians

tions to find values for the parameters in terms of the sample moments com-
puted from the data. Discussion of this method is best left for a mathematical
statistics course. In a first course in statistics, a high-level discussion about
techniques for finding the best-fitting model is an excellent place to mention
cross-validation (Section 4.3.2).

Now that we have a collection of techniques for fitting models to data, we
turn to the important task of making inferences about an unknown population
from a random sample.

4.4 Confidence intervals

The study of confidence intervals is core to a first course in statistics,
as it allows one to make claims about the unknown population, based on
sample data. A confidence interval for a population parameter is an interval,
constructed from a sample, that will contain the parameter for a predeter-
mined proportion of all samples. We find it best to illustrate with an example
before delving into a formal definition. In the sections below, we discuss two
procedures for producing confidence intervals, one related to the sampling
distribution, and one based on bootstrap resampling (both defined formally in
the sections below). The example below is based on the sampling distribu-
tion, introduced in the next section. We provide R code to make confidence
intervals in Figure 4.9.

Suppose we are studying the heights in inches of all men in the United
States, and we have measured the heights of a random sample of n men. A 95%
confidence interval for the population mean height µ will be centered on the
sample mean x (because that is our best estimate for µ from what we know),
and its width will depend on n and on the variability present in the sample. For
the purposes of the discussion below, let Z be a random variable distributed
according to a N(0, 1) distribution (i.e., normal with mean 0 and standard
deviation 1). We write Z ∼ N(0, 1) as a short-hand notation. If n is sufficiently
large, the confidence interval is given by the formula [x−1.96· s√

n
, x+1.96· s√

n
],

where s is the sample standard deviation, and 1.96 is (approximately) the
value r of the normal distribution Z such that Pr(−r ≤ Z ≤ r) = 0.95. For
a given sample, the confidence interval may or may not contain the unknown
µ, depending on how lucky we were in gathering the sample. For example,
a random sample containing a disproportionately large number of tall men
would result in x > µ, and the confidence interval might fail to contain µ. The
procedure for constructing confidence intervals (i.e., the choice to use 1.96
and s√

n
) guarantees us that, if we took a large number, k, of random samples

of n men, then we would expect 95% of the resulting confidence intervals to

Basic Statistics 125

0 1p = 0.5

Computed values for p̂
with confidence intervals

For 6 experiments
(drawn with darker
lines), the confidence
interval for p̂ did not
contain p.

10
0

it
er

at
io

n
s

of
ex

p
er

im
en

t 50

0

Computed values for p̂

F
re

q
u
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 4.7: Results of 100 repetitions of a simulated experiment, each exper-
iment involving flipping a fair coin 100 times and recording the number of
heads. In each case, an estimate of the coin’s probability p of heads is com-
puted as p̂, and a 95% confidence interval around p̂ is shown. In 94% of cases,
it contained p.

contain µ, and would expect the other 5% of those intervals to fail to contain
µ. This is illustrated in Figure 4.7.

If we wanted to be 99% confident, i.e., to expect 99% of samples to yield
intervals that contain µ, then the intervals would naturally need to be wider.
Specifically, we would use 2.33 instead of 1.96, because Pr(−2.33 ≤ Z ≤
2.33) ≈ 0.99. Note that, as n→∞, confidence intervals get narrower, meaning
we become more and more confident that x is close to µ. Similarly, if a dataset
has less inherent variability (measured by s), then our confidence intervals get
narrower, i.e., we become more confident about the range of values where µ
can likely be found.

Formally, given a random sample X, a confidence interval for a popu-
lation parameter θ, with confidence level γ (which was 0.95 and 0.99 in our
examples above), is an interval [a, b] with the property that Pr(a ≤ θ ≤ b) = γ.

4.4.1 The sampling distribution

Recall that a sample statistic is any quantity computed from a sample.
For simplicity, we will assume we are studying the mean, and we will let µ
denote the population mean, and x the sample mean. Analogous considera-
tions could be used to study other statistics, such as the standard deviation
or median. For a fixed population, fixed sample size n, and fixed statistic to
study, the sampling distribution is the distribution of the sample statistics
over all samples of size n from the population. We can visualize the sampling
distribution as a dotplot, which is like a histogram but with vertically stacked
dots denoting the number of items in each bin (Figure 4.8). For the sampling

126 Data Science for Mathematicians

FIGURE 4.8: An approximately normally distributed sampling distribution.

distribution, each dot represents the information you would obtain from col-
lecting a simple random sample of size n, and then computing the sample
mean (or other sample statistic) of that sample. Hence, in practice, you will
not have access to the sampling distribution, because it is prohibitively expen-
sive to conduct so many samples. However, the Central Limit Theorem tells
us that the sampling distribution of values of x (over many samples drawn
at random from the population), will be approximately normally distributed,
with mean of µ, and standard deviation σ/

√
n, where σ is the population

standard deviation.
Of course, in practice, one would effectively never know the constant σ

(especially if one doesn’t even know µ). Consequently, in practice, one esti-
mates σ by the sample standard deviation s, and uses s/

√
n to approximate

the standard deviation of the sampling distribution. We use the term stan-
dard error (SE) for the standard deviation of the sampling distribution.
The sampling distribution is a challenging topic for students, so the use of
applets is recommended [300, 411] to show students the procedure of taking
many different samples from the unknown population. It is also important to
stress how the formula for the standard error implies that taking larger sam-
ples (increasing n) implies a reduction in variability (decreasing the standard
error).

Basic Statistics 127

marginOfError <- qnorm(.975)*sd(Galton$height)

/ sqrt(nrow(Galton))

mean(Galton$height) - marginOfError

mean(Galton$height) + marginOfError

FIGURE 4.9: R code to compute a 95% confidence interval for the mean
height.

4.4.2 Confidence intervals from the sampling distribution

Generalizing our example from the start of the section, we note that the
sampling distribution is approximately a N(µ, s/

√
n) distribution (for sample

sizes n ≥ 30, at least). Thus, 95% of sample means are contained in the interval

[
µ− 1.96 · s√

n
, µ+ 1.96 · s√

n

]
.

It follows that we can be 95% confident that µ is contained in the interval

[
x− 1.96 · s√

n
, x+ 1.96 · s√

n

]
,

and hence this interval is a 95% confidence interval for the parameter µ. Half
the width of the interval, i.e., 1.96 · s√

n
, is called the 95% margin of error.

This strategy for making confidence intervals described above depends on
the use of the normal distribution to approximate the sampling distribution.
In practice, it is better to use a t-distribution with n− 1 degrees of freedom,
since we use s to estimate σ. When n > 30, there is little difference between a
t-distribution and a normal distribution. If n < 30, then it is essential to use
the t-distribution, and we replace 1.96 with the value on the t-distribution that
leaves 5% in the tails. For example, if n = 13, we would use a t-distribution
with 12 degrees of freedom. Statistical software, or a t-table, tells us that a
95% confidence interval for the mean µ is given by

[
x− 2.179 · s√

n
, x+ 2.179 · s√

n

]
.

The R code in Figure 4.9 illustrates how easy it is for R to create a confi-
dence interval. We again use the built-in Galton dataset from Figure 4.3, and
we make a 95% confidence interval for the average height in this dataset. Since
the Galton dataset has n = 898 rows, we use the normal approximation for
the sampling distribution. In the code shown, qnorm(.975) gives us the value
z of the normal distribution Z ∼ N(0, 1) such that Pr(Z ≤ z) = 0.975. We
have seen above that z ≈ 1.96. The function sd returns the standard devia-
tion, and mean returns the mean. When we write Galton$height, R gives us
the height column of the Galton dataframe.

128 Data Science for Mathematicians

When run, this code returns a confidence interval of (66.52, 67). The sam-
ple mean was 66.76. Assuming Galton obtained his data as a random sample
from the population, we are 95% confident that the population mean height
µ is in the interval (66.52, 67). The narrowness of the interval is due to the
large sample size of n = 898.

This strategy for making confidence intervals works for many other popu-
lation parameters, including:

1. the difference between two means µ1 − µ2, e.g., the difference in salary
between men and women,

2. the proportion p of individuals with some property, e.g., the proportion
of people with depression,

3. the difference between two proportions p1 − p2, e.g., the difference
between the proportion of women with depression and the proportion of
men with depression,

4. the true slope β1 for linearly related data given by y = β0 + β1x+ ε,

5. the average response value y associated to a given value x of the explana-
tory variable, e.g., the average salary for a x = 47 year old,

6. the median,

7. the standard deviation, σ,

8. the ratio of two standard deviations σ1/σ2,

and many more.
For (1)–(5), the sample statistic (e.g., x1 − x2, or the sample slope β̂1)

will be approximately normally distributed, and there is a formula that can
estimate the standard error of the sampling distribution from sample data.
Once you have a standard error, confidence intervals are computed just as
above. For the last three examples, other distributions are needed to compute
confidence intervals. For example, σ (and the standard deviation of sample
statistics s) is distributed according to a χ2 distribution. There is a formula for
the standard error, and instead of 1.96, a cutoff taken from the χ2 distribution
is used. Similarly, σ1/σ2 (and the sampling distribution of s1/s2) is distributed
according to an F distribution. Descriptions of these tests, and formulas for
the standard error, can be found in most standard statistical textbooks, e.g.,
[11, 409].

Case (5) is worthy of further discussion. In order to make a confidence
interval around an average y value in a regression, a data scientist must know
that the residuals (i.e., the differences yi− ŷi) are independent and identically
distributed. If the sample size is less than 30, one must also know that the
residuals are normally distributed. Students can check this assumption using
histograms or a q-q plot, as discussed in Section 4.3.4. A data scientist must

Basic Statistics 129

FIGURE 4.10: A regression line through data whose residuals exhibit
homoscedasticity (left) and one where the residuals exhibit heteroscedasticity
(right).

also know that the residuals are homoscedastic (also spelled homoskedastic).
This means that the degree to which the residuals are spread around the
regression line (i.e., the variance of the residuals) does not depend on the value
of x, as shown on the left in Figure 4.10. Students can check this assumption
using a scatterplot. In Section 4.6.4, we will see how to cope with a failure of
this assumption, as shown on the right in Figure 4.10.

If a data scientist wants to predict future y values associated to a given
x value, then it is not enough to predict the average such y value. A 95%
prediction interval associated with x is expected to contain 95% of future
y values associated with x. This will of course be wider than a 95% confidence
interval for y, since averaging reduces variability, as shown in Figure 4.11. For
example, using our R code from Figure 4.3, for a fixed value of the father’s
height (e.g., x = 65), a confidence interval would tell us about the mean child
height among all children of fathers who are 65 inches tall, whereas with a
prediction interval we would be 95% confident that it would contain the height
of any child of a father who is 65 inches tall. Formulas for prediction intervals
can be found in standard statistical texts [11], and prediction intervals are easy
to produce using software. Since averages are not being used, it is essential
that residuals be normally distributed, or else prediction intervals cannot be
produced using values like 1.96 (from the normal distribution). Figure 4.11
is based on a regression for predicting stopping distance as a function of the
speed a car is going [150]. The dotted lines show prediction intervals for every
x, and the dark gray region shows a confidence interval. Note that we are
more confident about the mean response of y for x values near x, because the
dark gray region is narrower for those x values.

Nowadays, it is not essential to possess an encyclopedic knowledge of for-
mulas for standard errors. Software can easily compute confidence intervals
of any given level of significance (e.g., 95% or 99%), and so it is much more
important to know how to interpret and use confidence intervals than it is to
know how to compute their margins of error by hand.

130 Data Science for Mathematicians

FIGURE 4.11: Confidence and prediction intervals for regression.

4.4.3 Bootstrap resampling

Suppose X is a quantitative variable and we have a sample of n values
x1, . . . , xn. When we represent the sample graphically as a density plot (Sec-
tion 4.2), we call it the empirical distribution. Dotplots and histograms can
serve as approximations to the empirical distribution. We will use a dotplot
below (as we do when teaching this material) because it clarifies the connection
to the sampling distribution, and because it makes p-values intuitive and easy
to compute (by simply counting the number of dots in the tail). We assume
that our sample is representative of the population, so that the empirical dis-
tribution is an approximation to the actual distribution of X over the entire
population. For example, if n is 100, and we have two individuals taller than
6 feet, then we can assume the probability an individual in the population is
taller than 6 feet is about 2%. This means that each individual in our sample
represents potentially many individuals in the population. If we take a sam-
ple with replacement from our data x1, . . . , xn, we can treat this new sample
like a sample taken from the overall population (we call this new sample a
bootstrap resample). If we sampled the same tall person twice, this would
represent getting two different people of this height from the population.

The upside of this point of view is that we can build the bootstrap dis-
tribution by taking many bootstrap resamples of our dataset x1, . . . , xn, and
writing down the sample mean of each resample. To avoid confusion, let zi
denote the sample mean of the ith resample. We use a dotplot to visualize the
bootstrap distribution, as in Figure 4.12, and each dot represents some zi. On
average, the center of the dotplot will be x, the mean of our dataset. The stan-
dard deviation of the bootstrap distribution is a good approximation to the

Basic Statistics 131

FIGURE 4.12: Dotplot of simulated, one-dimensional data. Each stack of dots
represents repeated instances of the same x value.

standard error, if a sufficiently large number of resamples (e.g., about 10,000)
is used. The mathematical theory justifying bootstrap resampling is detailed
in [217]. The original idea of the bootstrap goes back to Ronald Fisher, one
of the giants of statistics, but at that time it was impractical, due to a lack of
computing power [217, Section 4.4].

Once you have the bootstrap distribution, you can make confidence inter-
vals in two ways. First, you could write down the standard error SE (using
the usual formula

s =

√∑
(zi − z)2

n− 1
,

where each zi is a mean of a bootstrap resample) and then use the method from
the previous section to make a confidence interval [z − 1.96SE, z + 1.96SE],
using the fact that the bootstrap distribution is approximately normally dis-
tributed (and that z ≈ x). The second option is to simply find the cutoff
points L,R in the bootstrap distribution, such that 2.5% of the zi are less
than L, and 2.5% of the zi are greater than R. One is then 95% confident that
the true mean, µ, is in the interval [L,R].

The R code in Figure 4.13 demonstrates how to carry out this procedure to
produce a 95% confidence interval for the mean height in the Galton dataset
with k = 1000 bootstrap resamples. We demonstrate both methods from
the previous paragraph. Both agree with the confidence interval produced in
Figure 4.9. The code below creates an n× k matrix (recall that n = 898), fills
it by sampling from Galton$height with replacement, and then applies the
mean function to each column. This results in k = 1000 means, which form
the bootstrap distribution boot.statistics. The two lines that start with #

are comments in the code.

132 Data Science for Mathematicians

height.mean = mean(Galton$height)

k = 1000

n = nrow(Galton)

boot.samples = matrix(sample(Galton$height,

size = k * n, replace = TRUE), k, n)

boot.statistics = apply(boot.samples, 1, mean)

densityplot(boot.statistics)

First method of extracting a confidence interval

bootstrap.SE = sd(boot.statistics)

height.mean - 1.96 * bootstrap.SE

height.mean + 1.96 * bootstrap.SE

Second method of extracting a confidence interval

quantile(boot.statistics, c(0.05, 0.95))

FIGURE 4.13: R code for computing a bootstrap confidence interval.

Bootstrap resampling is a non-parametric method, because it does not
require assumptions about the distribution of the population or data to work
(especially the second method, which avoids value 1.96 and the appeal to
the Central Limit Theorem). Notice how the second method above does not
require the numbers 1.96 obtained from the normal distribution. As many
datasets in the real world (and many in my class) are not normally distributed,
non-parametric methods are critical for applied data analysts. Rather than
mathematical approximations using the classical probability distributions,
resampling leans on modern computing power, much like a Monte Carlo simu-
lation. Many examples of bootstrapping in non-normal settings may be found
in [316], which also comes with a fantastic and freely available software called
StatKey that allows students to carry out the resampling process. Techniques
to carry out resampling in R are provided in [256].

If the dataset is not representative of the population (e.g., if it is biased),
then bootstrap resampling will not produce confidence intervals that contain
the true mean 95% of the time. However, in this case, the classical approach
to computing confidence intervals (described in the previous section) will also
face difficulties. If the sample size, n, is small, then both methods result in
wider intervals, but in theory these intervals should be correct 95% of the
time. If the sample size is small and the data is skewed, then both methods
will be wrong. There is an alternative method, called the Bootstrap T, that
can cope with such a situation [217].

An additional benefit of teaching with bootstrap methods is that one
can delay probability distributions until later in the semester, and can de-
emphasize the sampling distribution, one of the more conceptually challenging
topics for students. It is possible to arrange a course that teaches bootstrap

Basic Statistics 133

resampling before (or even in lieu of) parametric inference [317]. For more
about the pedagogical advantages of teaching via randomization-based meth-
ods, see [99,465,466,507,508,513].

4.5 Inference

Confidence intervals are not our only tool to reason about an unknown
population from a random sample. Another core area of statistics is inference.
Inference refers to a set of procedures to assess claims about a population
parameter, based on sample data. The claim about the parameter (that we
wish to test) is called the null hypothesis, and the sample data is used to
produce a test statistic and then a p-value. The p-value tells how likely
the test statistic would be for a different random sample of size n, if the null
hypothesis were true. A sufficiently low p-value represents evidence that the
null hypothesis is unlikely to be true, and leads the researcher to reject the
null hypothesis.

This is analogous to a proof by contradiction, where one assumes a state-
ment is true, then applies logical deduction until a contradiction is reached.
That contradiction demonstrates that the initial assumption must have been
wrong. As statistics is intimately tied to random error, one will never be cer-
tain that the null hypothesis is wrong. Nevertheless, a low p-value represents
a probabilistic contradiction, i.e., a strong departure from what we would
expect, based on the null hypothesis. After introducing the basics of inference
in Sections 4.5.1 and 4.5.2, in Section 4.5.3 we will discuss the types of errors
that can occur when doing statistical inference.

4.5.1 Hypothesis testing

In statistical inference, we wish to test a hypothesis about a population,
based on a random sample. In this section, we will carefully carry out one
example of statistical inference related to the mean of a population (and we
provide R code later in Figure 4.16), and then we will explain how to do
inference for other population parameters. Throughout, H0 will denote the
null hypothesis one wishes to test.

4.5.1.1 First example

Often, the null hypothesis will be a hypothesis based on a previous study.
For example, many of us grew up with the idea that a healthy human body
temperature is 98.6 degrees Fahrenheit. For a given population, e.g., all col-
lege students in the United States, a natural null hypothesis to test would
be H0 : µ = 98.6. Before testing this hypothesis, we should also decide on

134 Data Science for Mathematicians

an alternative hypothesis. The default choice is a two-sided test, where
the alternative hypothesis is Ha : µ 6= 98.6. If we have some additional infor-
mation, e.g., that thermometers from the last century tended to output mea-
surements that were too high, then we might do a one-sided test and test
Ha : µ < 98.6.

To testH0, we would gather a sample of n people, measure the temperature
of each, and compute the sample mean, x, and sample standard deviation, s.
In a two-sided test, if x is sufficiently far away from 98.6, we would take this
as evidence that the null hypothesis is unlikely to be true. In the one-sided
test above, the only way we could reject H0 is if the sample mean in our data
was sufficiently below 98.6. The critical question is: how far away does x need
to be from 98.6 before we can conclude the null hypothesis is probably false?

The answer to this question depends on both n and on the variance in
our dataset, just as the width of a confidence interval did. In fact, we can
use a confidence interval to carry out a hypothesis test. If 98.6 is not in the
confidence interval

[
x− 1.96 · s√

n
, x+ 1.96 · s√

n

]
,

then it means one of two things. Either 98.6 is the population mean, µ, and
we are in the unlucky 5% of samples that produce bad confidence intervals, or
98.6 is not the population mean. Of course, there is nothing magical about the
number 95%. As we have seen, working with 95% confidence intervals means
that we will be wrong 5% of the time, and similarly this test will mistakenly
reject a true null hypothesis 5% of the time. In general, it is important to
fix a significance level, α, before starting a hypothesis test. This α will be
the probability that we will mistakenly reject a true null hypothesis, with
a random sample of data. So, if α = 0.05, we work with a 95% confidence
interval, and in general, we work with a (1− α)× 100% confidence interval.

Another way to carry out a hypothesis test is to write down a test statistic
based on the data and on the null hypothesis. In our present example, the test
statistic would be

z =
x− 98.6

s/
√
n

.

Under the null hypothesis (i.e., assuming it is true), and assuming n is
large enough so that we can apply the Central Limit Theorem, the sampling
distribution is N(98.6, σ/

√
n) distributed. The formula above converts a point

in the sampling distribution, x, to the corresponding point z on a Z = N(0, 1)
distribution, by shifting and scaling (using s as an estimator for σ). The
number, z, therefore tells us how many standard deviations x is away from
98.6. In any normal distribution, about 95% of observations are contained
within two standard deviations from the mean (technically, within about 1.96
standard deviations from the mean), and 99.7% of the observations are within
3 standard deviations of the mean. If we are doing a two-sided test, we define
p = 2Pr(Z > |z|), the probability that Z takes a value as extreme as z.

Basic Statistics 135

FIGURE 4.14: Standard normal distribution with 5% of its area shaded in
one tail (α = 0.05, left) and the same distribution with 5% its area shaded
again, but split evenly between two tails (right).

critical z test z critical ztest z

FIGURE 4.15: Comparing the test statistic to the critical value in a one-sided
hypothesis test. In the image on the left, the null hypothesis would be rejected,
but in the image on the right, we would fail to reject.

Equivalently, this is the probability of getting a value x as far away from 98.6
as we observed, if the null hypothesis were true. We refer to p as the two-sided
tail probability, and display an example on the right of Figure 4.14.

If we were doing a one-sided test, with an alternative hypothesis Ha : µ <
98.6, then we would define p = Pr(Z < z), and refer to it as a one-sided tail
probability (as on the left of Figure 4.14). Either way, we call p the p-value
of the test. If x is close to 98.6, then the test statistic z will be close to zero,
and so this probability p will be large. However, if x is far from 98.6, then p
will be small.

If the p-value is less than α, we reject the null hypothesis. This situation
occurs on the right of Figure 4.15, since the area for p, shaded in gray, is
contained in the area for α, shaded with lines (i.e., the tail probability past
the cut-off z value). Of course, it could be the case that the null hypothesis
really is true, and we were simply unlucky in getting a sample that yielded an
extreme value of x. If the null hypothesis were true, we would expect to be
unlucky in this way with probability α. Hence, α represents our willingness to

136 Data Science for Mathematicians

alpha = 0.05

mu0 = 67.5

xbar = mean(Galton$height)

s = sd(Galton$height)

n = nrow(Galton)

t = (xbar - mu0) / (s/sqrt(n)) # This is -6.18

p = 2*pt(t, df = n-1) # pt gives the left tail probability

xbar; t; p

FIGURE 4.16: R code to carry out a null hypothesis significance test.

mistakenly reject a true null hypothesis. This may sound as if we should choose
α to be zero, and never make such a mistake. However, if α were zero, then
we would never reject the null hypothesis, even if it were wrong, so we would
be making a different mistake. We will talk about these two types of errors
in Section 4.5.3. Note also that there was nothing special about the value
98.6 in the discussion above. The same technique could test the hypothesis
H0 : µ = µ0 for any fixed value µ0.

The R code in Figure 4.16 carries out a two-tailed hypothesis test, again on
the Galton dataset. We test the null hypothesis, H0 : µ = 67.5, that the true
population height is 67.5 inches. We work at the α = 0.05 significance level.
The code computes a t-statistic t = −6.18 according to the formula discussed
above. The code computes the p-value using the function pt, which gives the
tail probability to the left of t. We multiply by 2 because we are doing a two-
tailed test. The last line in the R code carries out three commands, printing
each of the three quantities x, t, and p.

4.5.1.2 General strategy for hypothesis testing

What were the ingredients of the procedure we have just laid out? We
needed:

1. to know our population and which parameter we wanted to study,

2. to state our null and alternative hypotheses,

3. to be aware of any assumptions, e.g., that the Central Limit Theorem
could apply so that the sampling distribution is normally distributed,

4. to know the formula for the standard error,

5. to compute the test statistic,

6. to get a tail probability from the N(0, 1) distribution (which is easy to
do with software or with a table of statistical values), and

7. to make a decision, rejecting the null hypothesis if and only if p < α.

Basic Statistics 137

This same procedure works for every single parametric hypothesis test in
statistics, though sometimes the sampling distribution is not normally dis-
tributed. For example, if the sample size, n, is less than 30, then the Central
Limit Theorem tells us to use the t-distribution with n−1 degrees of freedom,
just as we did for confidence intervals. When testing a hypothesis of the form
H0 : σ = σ0, the sampling distribution is χ2-distributed, and when testing if
two populations have the same standard deviation, the sampling distribution
is F -distributed.

4.5.1.3 Inference to compare two populations

Sometimes, the null hypothesis is not based on a previous study, but is
instead based on comparing two populations. To compare the means of two
populations (e.g., the mean salary of men vs. the mean salary of women), a
two-sample t-test can test the hypothesis H0 : µ1 = µ2. First, we restate the
null hypothesis asH0 : µ1−µ2 = 0. Then we testH0 using a test statistic based
on x1 − x2. The same formula for the standard error is used for confidence
intervals in the setting of two populations. To compare two proportions, we
test H0 : p1 = p2. Rejecting the null hypothesis in such tests means concluding
the populations are statistically significantly different.

Sometimes, the data consists of pairs (x1, x2), and each pair represents two
observations of the same individual, under different conditions. For example,
x1 might be the amount of weight an individual can lift with his/her right
hand, and x2 the amount for the left hand. In this case, the paired structure
is important for explaining some of the variability in the dataset (because
different people have different baseline strengths). Another example would
be if x1 represented a score on a pre-test, and x2 a score on a post-test, to
measure the impact of an educational innovation. A paired t-test can test
the hypothesis H0 : µ1 = µ2, but with a different formula for the standard
error than for a two-sample t-test, that can be found in standard statistical
texts [11, 409]. For a first course in statistics, using statistical software, it is
not essential that students memorize formulas for standard errors, and all
the traditional formulas work in the same way (that is, they depend on the
standard deviation in the dataset, and the standard error shrinks as n grows,
as discussed in Section 4.5.1.1). It is far more important that students be able
to identify which test to use for a given situation.

One of the more important null hypotheses we can test is whether or not
two quantitative variables are correlated. Let ρ denote the population level
correlation, and let r denote the sample correlation. There is a test for the
hypothesis H0 : ρ = 0, based on the standard error of the sampling distribu-
tion of sample correlations. Rejecting the null hypothesis means that there is
statistically significant evidence of a relationship between the variables.

There is an equivalent hypothesis test (meaning, with the same t-statistic
and p-value) for the hypothesis H0 : β1 = 0, based on the standard error of the

138 Data Science for Mathematicians

regression slope β1. In order to conclude the sampling distribution is normal
(or t-distributed for small sample sizes), one needs a few more assumptions. As
always, the data must represent a random sample. Additionally, the residual
errors (i.e., the distances yi − ŷi) must be independent and identically dis-
tributed, with finite variance. The independence part of this assumption says
there cannot be autocorrelation in the data. This can fail in, for example,
data drawn from a time series, in which values depend on values from previ-
ous moments in time, or in data drawn from different geographic positions, if
data from one position depends on data at nearby geographic positions. It is
not essential for students to be able to prove that the sampling distribution
for regression coefficients is approximately normal, but students should get
used to checking the regression assumptions (as in Section 4.6.4). One can
still do linear regression if these new assumptions fail, but one should not
attempt to interpret t-statistics or p-values. We will discuss analogous tests
for multivariate linear regression in Section 4.6.3.

4.5.1.4 Other types of hypothesis tests

There are many more statistical tests that data scientists may encounter,
but all work according to the principles laid out in this section. For instance,
there are hypothesis tests for the median, or to test hypotheses on non-
normal populations based on small sample sizes, such as the Wilcoxon, Mann-
Whitney, and Kruskal-Wallis tests [11]. For examples of a different sort, there
are statistical tests to test whether a given dataset comes from a normally dis-
tributed population (e.g., Shapiro-Wilk, Anderson-Darling, or Kolmogorov-
Smirnov tests) [463], whether or not there is autocorrelation (e.g., Durbin-
Watson test) [514], whether or not there is heteroscedasticity (e.g., Breusch-
Pagan test) [514], and whether or not a dataset appears random (e.g., the
runs test for randomness, as in Section 4.6.4) [409]. For these four situations,
the researcher is hoping to fail to reject the null hypothesis, to have more
confidence in assumptions required for various models and tests. It is impor-
tant to note that one can never accept the null hypothesis as a result of a
significance test. One can only fail to reject the null hypothesis. Each test
considers one way that the null hypothesis could fail, but no test can consider
all possible ways. Students should get into the habit of making an argument
that the requisite assumptions are satisfied.

All statistical inference tests result in p-values. We have seen that p-values
represent tail probabilities based on the test-statistic, and the choice of a
one-sided or two-sided test determines whether or not we consider one tail or
both tails of the sampling distribution.13 Because the threshold α must be set
before the test is carried out, one should not try to interpret the magnitude
of a p-value,14 other than to determine whether or not p < α. Furthermore,

13There are also one-sided variants of confidence intervals, that reject the null hypothesis
if and only if a one-sided significance test has a p-value below the cutoff (e.g., p < 0.05) [11].

14That is, one should not get into the habit of interpreting a p-value of 0.0001 as more
significant than a p-value of 0.001.

Basic Statistics 139

when reporting the results of a statistical analysis, the American Statistical
Association strongly recommends that a researcher report more than just the
p-value [494]. Ideally, one should also report the sample size, how the data was
gathered, any modifications made to the data (including cleaning and removal
of outliers), issues of bias in the data, and confidence intervals. Ideally, data
should be made publicly available to aid efforts to reproduce research. We will
return to the issue of reproducibility and error in Section 4.5.3.

We conclude this section with a word regarding the teaching of inference.
The logic of inference can be difficult for students, and even experts sometimes
have difficulty pinning down precisely the population one has data about. It
takes practice to speak correctly about inference, and the reader is encouraged
to discuss inference with colleagues before first teaching it, both to get into
the habit of speaking correctly, and to begin to recognize difficulties students
will face. In the next section, we will look at a randomization-based approach
to inference, which is useful for test statistics that fail to be well-approximated
by the Central Limit Theorem. An additional benefit of the next section is
that it solidifies the logic of the previous section. We find that including both
approaches helps students gain an intuition for inference.

4.5.2 Randomization-based inference

Just as bootstrap resampling provides a non-parametric approach to con-
fidence intervals, randomization-based inference leverages modern computing
power and resampling to provide a non-parametric approach to hypothesis
testing. We describe the procedure below, and carry it out in R in Figure
4.17. As in Section 4.4.3, we must assume our sample is representative of our
population. We then use a Monte Carlo simulation to compute a p-value as
the number of successes divided by the number of trials.

For example, if given paired data (x1, y1), . . . , (xn, yn), we can test the
hypothesis that the correlation ρ is zero as follows. (One could also make
minor modifications to the discussion that follows to consider a difference of
means x − y.) First, we write down the sample correlation r of this dataset,
and select a p-value cutoff α (let’s say α = 0.05). If the true correlation
were zero, then the pairing didn’t matter. So we use our dataset to gen-
erate thousands of other datasets by randomly pairing xi values to yj val-
ues (i.e., breaking the given pairings). For example, thinking back to the
Galton dataset of Section 4.3.1, Table 4.2 gave a snippet of the data, with
(x1, y1) = (70, 66), (x2, y2) = (70.5, 68), etc. The thousands of new datasets
(X1, Y 1), . . . , (Xk, Y k) obtained from the procedure just described (bootstrap
resampling) might look like Table 4.3.

For example, in the first resample, the new first pairing is (x1, y1) =
(70, 60), obtained by randomly pairing x1 = 70 with y7 = 60 in the origi-
nal dataset. The second new pairing is (x2, y2) = (70.5, 63), and y2 is y9 in
the original dataset. Similarly, in the last resample (Xk, Y k), the first pairing

140 Data Science for Mathematicians

TABLE 4.3: k bootstrap resamples.

X1 Y 1 . . . Xk Y k

70 60 70 64
70.5 63 70.5 68
68 60 68 60
66 66 66 60.5

67.5 64 67.5 60
65 64 65 64
70 61 70 66
69 61 69 63
70 60.5 70 61

68.5 68 68.5 61

is (x1, y1) = (70, 64), obtained by randomly pairing x1 = 70 with y5 = 64 in
the original dataset.

If the null hypothesis were true, then the original pairing did not matter,
because the xs and ys are unrelated. Thus, under our assumption that the
sample is representative of the population, we can pretend that these new
datasets are drawn from the population, rather than created from the sample.
With thousands of datasets, we can make an empirical sampling distribution,
now called the bootstrap distribution. To do so, for each random pairing,
we write down the correlation obtained, and we gather all the correlations
together in a dotplot. In this distribution, some correlations will be positive,
and some will be negative, because each is obtained by a random pairing
of the original data. The average of all these correlation values approaches
zero as the number of bootstrap resamples increases. Hence, the mean of the
bootstrap distribution is close to zero.

The standard deviation of the bootstrap distribution will be based on how
much variability there was in our original dataset, and also the sample size
n. This standard deviation approximates the standard error of the sampling
distribution. To obtain the p-value, we simply count the number of bootstrap
samples whose correlation was larger than our original sample correlation r.
This count is the number of successes in our Monte Carlo simulation. For
example, if we created 3000 bootstrap samples (from 3000 random pairings),
and if 36 had a correlation as large as our original sample correlation r, then
the bootstrap p-value of a one-tailed test would be 36/3000 = 0.012. This
is lower than the threshold α = 0.05 that we selected, so we reject the null
hypothesis, and conclude that the true population correlation is nonzero.

The R code in Figure 4.17 carries out the procedure just described, again
on the Galton dataset. We test the null hypothesis that the true correlation
between a mother’s height and a father’s height is zero, H0 : ρ = 0. We work
at the α = 0.05 significance level. We use the function cor to compute the
sample correlation. We use the shuffle command for the permutations as in

Basic Statistics 141

alpha = 0.05

corGalton = cor(mother~father,data=Galton)

corGalton # The correlation is 0.07366461

bootstrap.dist2 = do(1000)*(cor(shuffle(mother)~father,

data=Galton))

bootstrap.dist2 = as.data.frame(bootstrap.dist2)

dotplot(~result, data=bootstrap.dist2)

Several bootstrap correlation values are > 0.0737

ladd(panel.abline(v=corGalton, col="red"))

p-value

numBigger = pdata(corGalton,bootstrap.dist2)

upperTail = numBigger/nrow(bootstrap.dist2)

pvalue = 2*upperTail

pvalue

FIGURE 4.17: R code for randomization-based inference.

Table 4.3. We use the do(1000) command to repeat the procedure “shuffle
then compute correlation” k = 1000 times. The ladd command lets us add
a vertical line to display the p-value, which we then compute as the number
of bootstrap correlations larger than the original correlation r = 0.07366461,
divided by 1000.

In the end, the code produced a p-value of 0.028 when we ran it. Because of
the random shuffle command in the code, different runs of the code above can
yield different p-values. Thankfully, bootstrap p-values asymptotically con-
verge. Because of the reliance on shuffling the data, tests like this are some-
times called permutation tests. The code above should be compared with
Figure 4.13 to solidify understanding of bootstrap procedures. Figure 4.18
shows one possible result of running the code. Each dot represents a correla-
tion obtained via the shuffle command. The p-value is obtained by counting
the number of dots in the tail, and multiplying by 2. An alternative approach
would be to count dots above r and below −r.

Empirical studies have shown that, if the dataset really is distributed
according to a classical distribution, then the bootstrap p-value (computed
via either of the approaches just described) is usually close to the p-value
one would obtain via parametric methods [217]. Randomization-based infer-
ence avoids the need for the sampling distribution (witnessed by the lack
of pnorm or pt, unlike Figure 4.16), and can be used for all the hypothesis
tests of the previous section. These tests can be carried out using the website
StatKey [315], and many examples of randomization-based tests can be found
in [316].

142 Data Science for Mathematicians

FIGURE 4.18: Bootstrap approximation to the sampling distribution,
obtained via randomization-based inference.

4.5.3 Type I and Type II error

In Section 4.5, we saw that the parameter α controls the probability of
wrongly rejecting a true null hypothesis. This kind of error is called a Type I
error. It occurs if the data is not representative of the population, which can
occur due to chance when a random sample is collected. A Type I error occurs
when the test statistic is far from what would be expected under the null
hypothesis, even though the null hypothesis is true. The other kind of error,
a Type II error, is when the null hypothesis is false, but the researcher fails
to reject it. We denote the probability of this type of error by β. Unlike α, the
researcher can never know β, but thankfully β decreases as the sample size
increases. Furthermore, there is a trade-off between α and β: if the researcher
decreases α, this makes it harder to reject the null hypothesis, and conse-
quently increases β. If a researcher has access to a previous study (and hence
some idea of how badly the null hypothesis might fail, as well as a sense of the
variance), there are techniques for choosing α to affect a good trade-off [110].
In practice, one often cannot control β, and hence the most important learning
goal for students is simply to be aware of it.

4.5.4 Power and effect size

The power of a statistical study is defined to be 1−β, i.e., the probability
that it does not make a Type II error. Equivalently, this is the probability that
the statistical study correctly detects an effect (i.e., that the null hypothesis
is false). The terminology comes from medical science, where an effect means

Basic Statistics 143

a treatment is working. The power rises with both n and α. It also depends
on the variability in the population and on the effect size, i.e., the difference
between the hypothesized mean µ0 and the true mean µ. For a two-sample test,
the effect size is the true difference between the population means, µ1 − µ2.
In practice, we do not know the effect size. However, researchers sometimes
know how large of an effect would be practically significant. This is especially
true in medical studies, where changing medication can cause complications,
but may be worth it depending on how much improvement one would expect
from the change. For researchers seeking funding, it is important to know how
to obtain a sample size, n, to achieve a given effect size (equivalently, a given
power). For problems like this, the confidence interval formulas from Section
4.4.2 can be used. For example, if a researcher wanted to detect an effect
size of 2 (e.g., a reduction of 2 on a 1–10 pain scale), then the width of the
confidence interval would need to be 4, so that the null hypothesis would be
rejected whenever the sample mean was farther than 2 from the hypothesized
mean. If a researcher had an estimate, s, of the standard deviation (e.g., from
a previous study), and was willing to accept a 5% probability of a Type I
error (α = 0.05), then this would mean solving for n in 1.96 · s√

n
≥ 2. Such a

calculation could be used to determine how many individuals would need to
be in the study, and hence how much money to request in a grant application.

Historically, statistics often faced the problem of not having enough data.
However, in the world of big data, it is possible to have too much data. Giant
sample sizes mean that statistical tests have power very close to 1. Conse-
quently, statistical tests can detect very small effect sizes. For example, if one
had data on 100 million Americans, it might be possible to detect a difference
in salary smaller than one penny. In situations like this, statistical significance
does not imply practical significance. (That is, analyzing differences of $0.01
in salary is not worth the effort.) If one has a large amount of data, and knows
the desired effect size, it may be prudent to take a random sample of the data
of a size n, chosen so that being statistically significant (i.e., rejecting the
null hypothesis) means the same thing as being practically significant (i.e.,
detecting the given effect size).

4.5.5 The trouble with p-hacking

It is an unfortunate fact that academic publishing tends to bias in favor of
statistically significant results, such as when a new treatment does result in a
difference from an old treatment. Consequently, there are market forces pres-
suring researchers to find significant results. At times, this has led researchers
to test many hypotheses, until finding a p-value less than 0.05. This practice is
known as p-hacking, and is a large part of the reason for the current Repro-
ducibility Crisis, wherein modern researchers are unable to reproduce results
from previously published papers [447]. Even if no p-hacking ever occurred,
one would expect that about 5% of papers would falsely reject a true null
hypothesis, by the definition of α and the common choice of α = 0.05. How-

144 Data Science for Mathematicians

ever, in some fields, a proportion as high as 54% of papers cannot be repli-
cated [426].

Let us discuss the reason that p-hacking leads to mistakes. Imagine a
dataset with one response variable (say, whether or not a person developed
cancer), and many explanatory variables, such as how much this person con-
sumed bananas, yogurt, etc. Suppose that none of these substances actually
contribute to an increased risk of cancer. Nevertheless, due to chance alone,
a dataset might show a correlation between risk of cancer and consumption
of some innocuous food. If just one hypothesis test were conducted, e.g., to
see if consumption of bananas is associated with increased risk of cancer, then
one would expect to correctly fail to reject the null hypothesis 95% of the
time, and would expect that in 5% of datasets the null hypothesis would be
(wrongly) rejected. Now suppose twenty different foods were tested for a pos-
sible association with cancer. With a probability of 0.05 of being wrong, and
20 tests, one would expect to be wrong on one of the tests. Even if there is no
effect present, doing sufficiently many tests can always lead to a statistically
significant p-value.

It should be stressed to students that they should decide which precise
hypothesis test(s) to conduct before actually carrying any tests out, that they
resist the temptation to add new tests if prior tests were not significant, and
that they maintain ethical standards throughout their careers. It may help
to remind them that reputation is more important than whether or not one
single experiment leads to a publishable result. Furthermore, the sheer volume
of research going on today means that it is very likely someone will attempt
to replicate their results, and that any oddities in the analysis will eventually
come out. If a student insists on testing more than one hypothesis, a Bonferroni
correction (Section 4.6.3) can control the overall probability of a Type I error.

4.5.6 Bias and scope of inference

Before conducting a hypothesis test, it is essential to know what popu-
lation one wishes to study. In the case of “found data” (rather than data
a researcher collected), it is often the case that the population represented
by the data is not exactly the population the researcher hoped to study. For
example, if one has a dataset consisting of all individuals who died from a drug
overdose in Ohio, then it is not possible to make statistical inferences related
to other states. It is also not possible to make conclusions about what factors
might help an individual overcome addiction, since none of the individuals in
the dataset did. In a case like this, one is arguably not doing statistics at all,
since the data represents the entire population of individuals who died from
a drug overdose in Ohio. Since there was no random sampling, the classical
uses of confidence intervals and hypotheses tests do not apply. Instead, one
can conduct exploratory data analysis, find summary information and visu-
alizations, and fit statistical models. If one wishes to use the data to predict

Basic Statistics 145

future observations, special techniques from the field of time series analysis
are required. These will be discussed briefly in Section 4.6.4.

4.6 Advanced regression

In Section 4.3, we introduced some basic statistical models, including ordi-
nary least-squares regression for relating two quantitative variables. In this
section, we will discuss more advanced techniques for regression, how to fac-
tor in more than one explanatory variable, and what to do when regression
assumptions fail to be satisfied. All of these are essential skills for a data
scientist working with real-world data.

4.6.1 Transformations

We saw in Section 4.3.1 that linear regression should be used only when
there is a linear relationship between the variables x and y. In the real world,
many variables exhibit more complicated relationships. For example, if y rep-
resents salary data, then the distribution of y values is probably skewed by
extremely wealthy individuals. In such situations, it is often wise to apply the
log function to y. Many times, a scatterplot will reveal a nonlinear relationship
between x and y, and transformations, such as taking the log, square root, or
square of either x or y can result in linear relationships. Ideally, the decision
of which transformation to apply will be based in some theory of how the
two variables should be related, or based on previous practice (e.g., the use
of log in econometrics). In less ideal situations, a researcher can use Tukey’s
Bulging Rule [471], as shown in Figure 4.19, to try different transformations
until a linear relationship is found. The idea is to transform x or y according
to Figure 4.19 (i.e., based on the shape of the scatterplot), iteratively, until
the relationship is linear (keeping in mind the Principle of Parsimony that
models should not be made more complicated than necessary). For examples,
we refer the reader to [471].

Trying many transformations is dangerous, as one runs the risk of over-
fitting the model to the sample data, rather than to the true relationship in
the model. A similar problem was discussed in Section 4.5.5. Cross-validation
(Section 4.3.2) can be used to prevent overfitting, by finding the transfor-
mations based on a random subset of the data, and then verifying that the
remaining data points fit the transformed model.

Sometimes, the relationship between x and y is a polynomial but not linear.
In such a situation, polynomial regression should be used, as shown in
Figure 4.20. For example, we might use a model of the form y = β0 + β1x +
β2x

2 + ε when the relationship is quadratic. The decision to fit such a model
should be based on the scatterplot and attributes of the variables that the data

146 Data Science for Mathematicians

y2, y3

log x,
√

x

log y,
√

y

x2, x3

FIGURE 4.19: Tukey’s Bulging Rule (left) and a scatterplot in need of trans-
forming (right).

FIGURE 4.20: Data that might be well fit by polynomial regression.

scientist knows from familiarity with the application domain. The procedure
for finding the β estimates and assessing the model is a special case of multiple
linear regression (discussed in Section 4.6.3), where we create a new variable
x2 in our dataset by simply squaring the value of x in every row.

4.6.2 Outliers and high leverage points

An outlier is a point that is far away from the other points, and there
are many ways to quantify “far away.” The most popular approach, due to
Tukey and mentioned earlier in Section 4.2, is to use the inter-quartile range
(IQR). Formally, this means computing the first quartile Q1 (with 25% of
the data below this point), median, and third quartile Q3 (with 75% of the

Basic Statistics 147

FIGURE 4.21: A small dataset with a linear model fit to it, and a high-
leverage data point on the bottom right of the figure (left). A large dataset
with a linear model fit to it, and an outlier near the top center of the figure
that is not a high-leverage data point (right).

data below this point), then defining the IQR as Q3 −Q1. An outlier is then
defined as any point that is less than Q1−1.5IQR or more than Q3 +1.5IQR.

With this definition, it is clear that outliers can occur due to chance alone.
An outlier is not the same as an impossible point or a misrecorded point.
Blindly throwing away outliers will reduce the variance in the data, and may
lead to wrong conclusions. However, sometimes an outlier can skew a statistical
model, as seen on the left of Figure 4.21. Because the regression coefficients
are based on the residual sum of squares, large residuals (e.g., due to outliers)
have an outsized impact on the regression coefficients. Another way to combat
this impact is to work with studentized residuals (also known as jackknife
residuals), computed with the outlier removed. This prevents a single outlier
from causing overly large confidence intervals, but removing outliers should
be done with caution. Another way to combat the same problem is explained
in Section 4.7.2.

Note that the regression line y = β0 + β1x always passes through (x, y),
by definition of β0. Consequently, adding a data point (x, y), where y is an
outlier and x is close to x, does not change the regression coefficients by much
(Figure 4.21). The slope will not change at all if x = x. However, adding a
new point (x, y) far away from (x, y), even if neither x nor y is an outlier, can
radically change the regression coefficients, as the same figure shows.15

When a point (x, y) causes a large change in the regression coefficients, as
shown on the left of Figure 4.21, we call it an influential point. A technique
for detecting influential points will be explained in Section 4.7. In the case
of an influential point, a researcher can consider reporting models with and
without the point in question. It is important to resist the temptation to
purge the dataset of points that don’t agree with the model, knowing that

15Adding a new point far away from (x, y) could also leave the regression coefficients
unchanged, e.g., if the new point is on the old regression line.

148 Data Science for Mathematicians

we as researchers face implicit pressure to find a model that fits well. Often,
influential points or outliers are worthy of further study, as individual cases.
Sometimes, they represent a subpopulation, and can be omitted by restricting
attention to a different subpopulation. For example, in height data, an outlier
might represent an individual with pituitary gigantism, so that their height
is far outside what would normally be expected. Finding the outlier helps the
researcher realize that this condition exists, but makes it difficult to create a
model that fits the dataset at hand. By setting the outlier aside for further
study, the researcher can get a model that fits the remaining data, and can be
used for predictions for individuals without pituitary gigantism. This situation
is similar to the left of Figure 4.21.

4.6.3 Multiple regression, interaction

Many interesting real-world response variables cannot be explained by a
single explanatory variable. For example, the value of a stock in the stock
market is a function of many variables, not just time. For a case such as this,
an appropriate statistical model would be y = β0+β1x1+β2x2+· · ·+βkxk+ε,
where ε is some random error term. Given a dataset of tuples, where the
ith tuple is denoted (yi, x1i, x2i, . . . , xki), it is easy to find the best-fitting

β coefficients using statistical software. We denote these coefficients, β̂j , to
distinguish them from the population-level coefficients βj . These estimated
coefficients will minimize the sum of squared residuals (yi − ŷi)

2, where ŷi
is the y value predicted by the model, i.e., ŷi = β̂0 + β̂1x1i + · · · + β̂kxki.
Formulas for the β̂j , known as the normal equations, could be obtained from
a multivariate optimization problem, but this derivation is not essential for
introductory students. (See Sections 3.2.2.1 and 8.5.3.) The process of finding

the estimated coefficients β̂j is known as fitting the model. With statistical
software, it is also easy to produce a regression table, like the one shown
in Table 4.4, containing information about how well the model explains the
variability in y, and which variables appear to be significant. In this example,
we use the length and gender of a turtle to predict its height.

In such a model, we interpret the slope, βj , as the average change in y
resulting from increasing xj by 1, and holding all the other variables constant.
In other words, βj is the partial derivative of y with respect to xj , assuming
that all variables are related linearly (i.e., the true population can be modeled
as a hyperplane plus random noise). Table 4.4 tells us that we would expect a
change of length of 1 cm to be associated with a change in height of 0.34446 cm,
on average. Similarly, there is a difference between the heights of male and
female turtles of −3.52558 cm, on average. Both β coefficients are statistically
significant, as is the model as a whole (with an F -statistic of 517.6).

In practice, we often have more variables than we need, and we need to
determine which collection of xj to include in the model. There are many
procedures for this. One, backwards selection, first fits all possible values xj ,
then iteratively removes variables that are not significant, until only significant

Basic Statistics 149

TABLE 4.4: Example linear regression table output by the statistical
software R.

Call:

lm(formula = height ~ length + gender, data = turtle)

Residuals:

Min 1Q Median 3Q Max

-3.3384 -1.0071 -0.0643 1.1902 4.4280

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.18082 2.06826 2.505 0.0159 *

length 0.34446 0.01498 23.001 < 2e-16 ***

gendermale -3.52558 0.60743 -5.804 6.1e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.745 on 45 degrees of freedom

Multiple R-squared: 0.9583, Adjusted R-squared: 0.9565

F-statistic: 517.6 on 2 and 45 DF, p-value: < 2.2e-16

variables remain. Another, forwards selection, starts by fitting all possible
models with only one explanatory variable, picks the best (e.g., whichever
maximizes R2, a quantity we will define shortly), and then tries all ways to
extend this model with a second variable, then with a third, etc. As with any
model selection procedure, to avoid overfitting the model to the data, it is
recommended to use cross-validation (Section 4.3.2).

In practice, we often prefer simpler models, and there are good theoretical
reasons to avoid including unnecessary variables. For instance, if two variables
x1 and x2 are both effectively measuring the same thing, then including both
in the model will result in multi-collinearity. This inflates the variance in the
model and makes it difficult to correctly interpret the regression coefficients, t-
statistics, and p-values. Fitting a model of the form y = β0+β1x1+β2x2+· · ·+
βkxk+ε is equivalent to fitting a k-dimensional hyperplane to our data. Ideally,
the k explanatory variables would all be orthogonal. If we include a variable
that is mostly explained by other variables in the model, then this makes the
model more susceptible to variation, since a small change in the data can lead
to a big change in the estimated coefficients. This situation is often referred to
as a “tippy plane.” If the explanatory variables are linearly dependent, then
the algorithm for finding the coefficients β̂j will fail, because a certain matrix
will not be invertible (Section 4.7). To avoid fitting a model where explanatory
variables are too close to being linearly dependent, statistical software can
compute variance inflation factors (VIFs), and it is desirable to leave out
variables with VIFs larger than 5 [101].

150 Data Science for Mathematicians

The coefficient of determination, R2, is defined to be the fraction of
the variability in y explained by all the explanatory variables xj . We will
see below that R2 can be defined formally as SSM/SST , where SSM is
the variability explained by the model, and SST is the total variability in
y. Hence, adding more explanatory variables will never decrease R2, because
it only gives the model more ability to explain variance. However, adding
unnecessary variables inflates the variance in the model (e.g., making the
model more likely to fit to the random noise than to the true signal) and makes
the model unnecessarily complicated. For this reason, researchers often use
adjusted R2, which penalizes models that contain unnecessary variables. (See
Section 8.3.4.2 for its definition.) When selecting which variables to include,
researchers often refer to adjusted R2 rather than R2.

Sometimes, understanding the response variable requires understanding
two explanatory variables, and their interaction. For example, we know that
drugs and alcohol interact in the human body, and this frequently leads to drug
overdoses. When a statistician desires to model interaction, the most common
model is to allow the variables to interact multiplicatively.16 To model such
an interaction, we can include an interaction term in the model as follows:
y = β0+β1x1+β2x2+β12x1x2+ε. Thinking in terms of hyperplanes, including
an interaction term means allowing for curvature. We will talk in Section 4.6.5
about another way to think about and teach interaction terms, in the context
of categorical variables. When one of the explanatory variables x1 is binary,
then a model of the form y = β0 +β1x1 +β2x2 +β12x1x2 + ε represents fitting
two parallel lines (with β1 as the distance between the lines), whereas a model
of the form y = β0 + β1x1 + β2x2 + β12x1x2 + ε represents two possibly non-
parallel lines. For the group where x1 = 0, the line is y = β0 + β2x2. For the
group where x1 = 1, the line is y = (β0 + β1) + (β2 + β3)x2. We will return to
this in Figure 4.24.

The astute reader may have noticed that the variable selection techniques
described earlier in this section involved looking at p-values for a large number
of statistical tests, each of the form H0 : βj = 0, and this violates the best
practices described in Section 4.5.5. Indeed, if we tested 20 useless variables
at the 5% significance level, we would expect to see one variable appear useful
even if it is not. One way to fix this is to use a Bonferroni correction.
(Another way, that works in the context of ANOVA, is Tukey’s HSD, which
we discuss in Section 4.6.5.) Briefly, the idea of the Bonferroni correction
is to insist on a smaller p-value for each individual test, so that the overall
probability of a Type I error is bounded by 5%. If one intends to conduct k
hypothesis tests, the p-value threshold should be α/k rather than α. It is then
an exercise in probability theory to see that the overall probability of a Type
I error (i.e., that at least one of the individual coefficient tests is wrong) is
bounded above by α.

16Multiplicative interaction is also common in applied mathematics, e.g., it arises in the
SIR model in epidemiology, and in the Lotka-Volterra equations modeling populations of
wolves and moose on Isle Royale.

Basic Statistics 151

An alternative approach is to test all of the regression coefficients at once.
Here, the null hypothesis is H0 : β1 = β2 = · · · = βk = 0. The idea of
R2 can be turned into a test statistic, which is distributed according to the
F -distribution, if the regression assumptions are met.17 The F -statistic and
p-value are reported by standard statistical software (in Table 4.4, they are in
the bottom row).

The test statistic, F , is based on an analysis of variance. Our goal with
a linear model is to explain the response variable, y, and we use residuals to
tell how well the model succeeds in this goal. It is therefore natural to study
the amount of variability in y that is explained by the model. The following
three sums all run from i = 1 to n, i.e., over all of our data points. The
total variability in y is the total sum of squares (SST):

∑
(yi − y)2. The

residual sum of squares, or sum of squared error (SSE), is
∑

(yi−ŷi)2. The
remaining variability is the variability explained by the model, SSM:

∑
(ŷi−

y)2. These three sums of squares are related by one of the most fundamental
formulas in all of statistics:18

SST = SSM + SSE.

This sum of squares decomposition immediately allows us to calculate
R2 = SSM

SST , which we introduced informally above. It is a theorem, easily
proven in a mathematical statistics course, that the square of the correlation,
r, is R2 [409]. Assuming the null hypothesis, that the β coefficients are zero (so
that the xi variables do not explain the response variable), we would expect
that the model does no better than the error term at explaining y, i.e., that
SSM is close to SSE. Hence, we would expect that SSM/SSE is close to 1.
Since SSE and SST are biased estimators for population-level parameters (as
in Section 4.3.4), we replace them by unbiased estimates MSE (Mean Squared
Error) and MST (Total Mean Square). Similarly, SSR has a corresponding
unbiased estimate, MSR (Regression Mean Square). This is analogous to how
we needed to divide by n − 1 when computing s, but divide by N when
computing σ, in Section 4.2. Formally:

MSE =
SSE

n− k − 1
, MST =

SST

n− 1
, and MSR =

SSR

k
.

The F -statistic is defined as F = MSR/MSE. A p-value for a given F -
statistic can be obtained from a table of values of the F distribution (with
degrees of freedom n− k and k), or from statistical software. If the p-value is
significant, we conclude that the model as a whole has merit, i.e., some combi-
nation of the explanatory variables do explain a statistically significant amount
of the response variable. An F -test can also be done using randomization-
based inference (Section 4.5.2), by shuffling the data thousands of times, cre-
ating a distribution of F -statistics from each shuffle, and then comparing the

17In particular, the residuals should be independent and identically distributed, and
should either be normally distributed or the sample size should be sufficiently large. In
addition, we must assume there is no multi-collinearity or heteroscedasticity.

18The reader can try proving this formula by recalling that the βi were chosen to min-
imize SSE, so we may assume ∂SSE

∂β0
= ∂SSE

∂β1
= 0. With those assumptions, algebra and

persistence suffice to complete the proof.

152 Data Science for Mathematicians

FIGURE 4.22: Result of a randomization-based F -test.

original F -statistic to the distribution created in this way. Figure 4.22 displays
the result of such a test (created analogously to the code in Figure 4.17) with
a very low p-value.

Another null hypothesis that can be tested analogously is the hypothesis
that the full model (featuring all k explanatory variables) has additional value
beyond some reduced model (featuring q < k variables). Such a test is called
a nested F -test, and the test statistic is

F =

RSSFull−RSSReduced

dfReduced−dfFull

RSSFull

dfFull

,

where RSS is the residual sum of squares (determined from either the full
model or the reduced model), and df stands for “degrees of freedom” [100].
In this case, a significant p-value means we reject the null hypothesis that
the two models have equal merit, and we conclude that the full model has
additional merit over the reduced model.

4.6.4 What to do when the regression assumptions fail

The classic assumptions19 required for linear regression inference state:

1. Linearity: The relationship between each explanatory variable xi and y
is linear.

19There does not seem to be any consensus from textbooks on how to phrase these
assumptions or how to group them, so the number of assumptions is not well-defined.

Basic Statistics 153

2. No perfect multicollinearity: The explanatory variables xi are linearly
independent.

3. No autocorrelation: The residuals (errors) are independent from each
other.

4. Homoscedasticity: The variance of the residual errors is constant as a
function of the explanatory variables xi.

5. Randomness: The data are obtained from a random process.

6. Normality: The residuals satisfy a normal distribution.

We have already discussed using scatterplots to check linearity (Section
4.3.1), and the need to avoid perfect multicollinearity (Section 4.6.3) to avoid
trying to invert a singular matrix (more on this in Section 4.7). Several of the
remaining assumptions are required only if one intends to do inference, e.g., to
test the hypothesis H0 : β1 = 0. If one only intends to use the regression line
to make predictions (by substituting in x values), not all of these assumptions
are required. In this section, we discuss which assumptions are needed for
which procedures, and what to do if an assumption is not satisfied.

The linearity assumption is needed for everything, because we are using a
linear model. If it fails, we can sometimes use transformations (Section 4.6.1)
until linearity is satisfied. The assumption of no autocorrelation is similarly
needed for everything. Students should get into the habit of thinking about
how the data was gathered, and possible sources of autocorrelation. Certain
tests, such as the Durbin-Watson test (in case of dependence on time) [514],
or the Moran test (in case of dependence on spatial location) [473], can be
used, but should not be relied upon exclusively. There is no substitute for
thinking through the relationships between data points. We will return to
autocorrelation at the end of this section.

The homoscedasticity assumption is required only for confidence intervals,
prediction intervals, and inference. Even if it is not satisfied, the fitted regres-
sion line ŷ = β̂0 + β̂1x provides an unbiased estimate of y values associated
with a given x value. A common way to reduce heteroscedasticity is to take
a log of y, or to take a log of both variables, as long as this does not break
linearity [514]. An alternative approach (popular in econometrics) is to replace
the standard errors by heteroscedasticity-robust standard errors, which
are unbiased estimates of the true standard deviation of the sampling distri-
bution. However, in this case, the convergence of the t-statistics to a normal
distribution requires a much larger sample size than n = 30 [514]. Yet another
approach, which works if the residual standard deviations σx are a function
of x (e.g., if the scatterplot is “fan-shaped”), is to introduce a new variable
and do weighted regression. In this approach, the dependence of σx on x
is factored into the model, and the residuals of this more advanced model are
homoskedastic, so inference works as usual [409].

154 Data Science for Mathematicians

The randomness assumption is required for confidence intervals, prediction
intervals, and inference. If the data is not random, then it cannot be thought
of as a random sample from a population. Hence, there is no sampling distri-
bution. In this case, the regression line can still be used to make predictions,
but we know predictions to be unbiased only if they are based on a random
sample of data. Sometimes the data are being produced by a mathematical or
physical process with little to no error (e.g., sunset times, or electromagnetic
currents), and hence follow mathematical curves precisely. In such a situation,
most of the residual error will be due to measurement error (Section 4.5.6),
and if our measurement devices are sufficiently precise, this error could be
close to zero. When this occurs, residual error and SSE will be close to zero,
and so statistical tests will likely be statistically significant. This is an accept-
able use of statistics, for a case when most of the data is signal, and very
little is random noise. From this point of view, mathematical modeling can be
thought of as a special case of statistical modeling.

In a world awash with data, it is increasingly common to gain access to
data on an entire population. For instance, one might have unemployment data
from each of the 50 U.S. states, or might be looking at census data (which is
supposed to contain every person in the U.S.). Such data does not represent a
sample, and so confidence intervals and inference should be used only if one is
thinking of the population as a random sample from some “hypothetical pop-
ulation,” possibly including future values. This should be done with caution,
to avoid extrapolation. Even if inference does not make sense, regression is a
powerful tool for explaining the relationship between two variables, and one
can use the standard deviation of the β coefficient to measure the effect size
and inherent variability in the data.

Sometimes, it is difficult to determine whether a dataset represents a ran-
dom sample. If there are no clear issues of bias, then one can test if a sample
exhibits statistical randomness, e.g., using the runs test for randomness.
In this test, the null hypothesis is that the data (a sequence of numbers)
is created by a random process. The test statistics is created based on the
number of runs, that is, monotonic subsequences. If the number of runs is
far off from what you would expect from randomly generated data (using the
framework of Section 4.5.1), then we reject the null hypothesis that the data
is random [409]. If we fail to reject the null hypothesis, then we have slightly
more confidence that the data is random, but of course, the data could be non-
random and simply behave like a random dataset from the point of view of
runs. As with autocorrelation, the runs test for randomness is not a substitute
for thinking carefully about the data.

The normality assumption is not required in order to use a regression model
for prediction. The assumption is required for inference if the sample size is
less than 30, though a t-distribution can soften this need. For a large sample
size, the sampling distribution for the estimates β̂1 is asymptotically normally
distributed, and hence we can do inference for the slope (or, more generally, an
F -test for multivariate regression). Similarly, we can do confidence intervals

Basic Statistics 155

for the slope and for predicted values ŷ. However, prediction intervals require
normally distributed residuals even if n > 30. All in all, this assumption is
the least important of the regression assumptions.

We conclude this section by returning to the issue of autocorrelation. If
there is autocorrelation, a more sophisticated model is required, even to know
that the model is useful for predicting y values. Sometimes the autocorrelation
is due to time, e.g., if observations (x, y) are drawn at different moments in
time, and if earlier tuples can affect later tuples. In such a situation, a time
series model is appropriate. Such a model attempts to predict future values of
y based on past values of y, x, and residual error ε. For example, to predict
the value of y at time t, one model might state

yt = β0 + β1xt + β2xt−1 + β3xt−2 + β4xt−3 + α1εt−1 + α2εt−2 + γt+ εt.

Note that yt is allowed to depend on time, t, as well as the lagged
explanatory variables xt−1, xt−2, and xt−3, and the lagged errors εt−1

and εt−2. Of course, yt can also depend on previous values of y, e.g., yt−1, but
if the model specification above holds for all t, then the model above already
captures the dependence on yt−1 through the dependence on the other lagged
variables.

Time series models are complicated enough even in the one-variable case,
i.e., determining how xt depends on lags xt−i and on lagged errors εt−i. A
standard course in time series analysis discusses how to decompose a time
series xt into its trend component (e.g., γt + β0), its seasonal components
(predictable deviations above and below the trend), and its periodicity (longer
term cycles, like the housing market). After subtracting these predictable fea-
tures, one attempts to fit a model to what’s left, i.e., to the residuals. If
this new time series is not stationary (in the same mathematical sense from
ergodic theory), then iterative differencing is required, i.e., shifting to a new
time series of the form ∇xt = xt − xt−1. Once the time series is stationary,
one fits a linear ARMA(p, q) model, where xt depends linearly on p lags of x,
and q is lags of ε. Even more complicated models are possible, e.g., allowing
longer-term seasonal lags (such as a time series of months that depends on
the previous two months, and also twelve months ago), or even models based
on the Fourier transform of the time series. An excellent reference is [434]. If
one has repeated measurements over time, from each individual in the sam-
ple, then the methods of longitudinal data analysis (also known as panel
data analysis) may be appropriate. Such topics are worthy of an advanced
course, and for a first course in statistics, it is sufficient to get students think-
ing about detecting autocorrelation, and being savvy enough to avoid fitting
simple linear models when more complicated models are required [215].

4.6.5 Indicator variables and ANOVA

In many real-world situations, we want to study explanatory variables
that are categorical rather than quantitative. For example, we might want
to quantify the effect of gender upon salary, or the effect of the governing

156 Data Science for Mathematicians

FIGURE 4.23: Because female painted turtles have a larger height on average,
if we let x = 0 for male and x = 1 for female turtles, the regression line is not
horizontal.

party upon the stock market. Thankfully, categorical variables can be included
in multivariate regression models with ease. If a categorical variable has k
possible values, then statistical software creates k − 1 dummy variables, also
called indicator variables, each of which takes values 0 or 1 for every case in
the data. For example, a categorical variable that takes values male or female
will turn into a dummy variable isMale that takes the value 1 if the individual
is a male, and 0 otherwise. If a categorical variable represented a traffic light,
with values green, yellow, and red, then two categorical variables would be
created: isGreen and isYellow. If the light was green, then isGreen will
be 1. If the light was red, then both isGreen and isYellow will be 0. More
generally, the category represented when all k − 1 variables are zero is the
reference category, and can be set by the user of the software, or can be
set automatically by the software.

In the first example above, the slope coefficient for the variable isMale

tells us how much, on average, being male causes the salary to increase. The
t-statistic and p-value for this slope coefficient tell us whether or not gender
has a statistically significant effect on salary, holding the other variables in
the model constant. If there are no other explanatory variables, then in the
regression model salary = β0+β1 ·isMale, testing the hypothesis H0 : β1 = 0
(i.e., testing whether the line in Figure 4.23 is significantly different from zero)
is equivalent to testing if the average salaries for men and women differ, i.e.,
a two-sample t-test of H0 : µmen = µwomen. Note that β0 is the average salary
for women (the case isMale = 0, and β0 + β1 is the average salary for men).

Basic Statistics 157

To study the (linear) impact of hair color on salary, one would study a
model of the form salary = β0 +β1 · isBlonde+β2 · isBrown+β3 · isBlack,
where here we are assuming there are four hair colors, and the fourth is a
reference category (e.g., including red hair, dyed hair, silver hair, no hair, and
everything else). We interpret the βi similarly to the previous example. The
regression F -statistic and p-value tests the hypothesis H0 : β1 = β2 = β3 = 0,
i.e., whether there is any difference in salary based on hair color. Now β0 is
the average salary for the reference category, and βi is the difference in salary
between the reference category and the ith group. Equivalently, this tests the
hypothesis H0 : µ1 = µ2 = µ3 = µ4, where µi is the average salary in the
ith group (e.g., the average salary for blondes). Such tests could be studied
independently of the regression framework, and often appear in statistics texts
under the name analysis of variance (ANOVA).

The assumptions required to carry out an ANOVA test are identical to
those required for a regression model (Section 4.6.4). Note that homoscedas-
ticity is now the hypothesis that different groups have the same standard devi-
ation, and we have seen a test for this in Section 4.5. The ANOVA F -statistic
is computed from the decomposition of variance into SST = SSM +SSE, as
F = MSR/MSE just as in Section 4.6.3. Now it is measuring the variance
between groups (i.e., variance explained by the assignment of data points into
groups) divided by the variance within groups (i.e., variance not explained by
the grouping). The ANOVA F -test tells us the utility of a groupwise model
(Section 4.3.3). Another way to phrase the hypothesis test is as a test of a
groupwise model of the form y = µ + αi + ε, where µ is the grand mean
(the overall mean value of y), and α refers to the impact of an individual
being in each group (e.g., gender, or hair color). ANOVA tests the hypothesis
H0 : α1 = · · · = αk = 0. Equivalently, ANOVA is testing the hypothesis that
the means of each group are equal (generalizing a two-sample t-test to more
than two groups).

If an ANOVA test rejects the null hypothesis, then we know that there
is some pair of means µi 6= µj . We can find which pair by using two-sample
t-tests, here called post-hoc tests because they occur after an ANOVA.
Because the probability of a Type I error rises with the number of tests,
a Bonferroni correction can be used to bound the probability of a Type I
error below a given threshold α (often, α = 0.05). Alternatively, one can
use Tukey’s honest significant difference (HSD) test, which has the
benefit that the probability of a Type I error, for the entire collection of tests,
is exactly α. The idea of Tukey’s test is to compute a test statistic for each
pairwise comparison (µi vs. µj) desired (using |xi−xj | and the standard error
from the ANOVA test), then compare these test statistics to cut-offs obtained
from the ANOVA test as a whole (using a studentized range distribution, q).
When there are only two means to compare, Tukey’s cutoff is the same as
the cutoff from a two-sample t-test. Unlike the Bonferroni correction, Tukey’s
method works only for comparison of means (not, say, testing multiple β
coefficients in a regression).

158 Data Science for Mathematicians

A standard course in categorical data analysis would also include two-
way ANOVA, which allows for overlapping groupwise models. For example,
salary might depend on both gender and hair color, and every individual has
both a gender and a hair color. There are now eight total groups, but instead
of using one categorical variable with eight levels, we retain the grouping in
terms of gender and hair color. Our model is then y = µ+ αi + γj + ε, where
α refers to the impact of gender, and γ refers to the impact of hair color. The
ANOVA decomposition of squares is then SST = SSA+ SSB + SSE, where
SSA is the sum of squares explained by the gender grouping, and SSB is
the sum of squares explained by the hair color grouping. There will now be
two F -statistics (one based on SSA/SSE and one based on SSB/SSE, with
adjustments for sample size as in Section 4.6.3), and two p-values. The first
tests whether all α’s are zero, and the second tests whether all γ’s are zero.

Like a one-way ANOVA, a two-way ANOVA is a special case of a linear
regression model of the form salary = β0 + β1 · isMale + β2 · isBlonde +
β3 · isBrown+ β4 · isBlack, where we have implicitly replaced hairColor by
indicator variables. The case where all indicator variables are zero corresponds
to a female with hair color in the reference category (e.g., a red-headed female).
The p-value for β1 matches the F -test p-value based on SSA/SSE, and the
p-value for testing the hypothesis H0 : β2 = β3 = β4 = 0 matches the F -test
p-value based on SSB/SSE.

Just as in Section 4.6.3, it is important to check for possible interaction
between the explanatory variables. If there is interaction, then the model
would need a product variable isMale · hairColor. Now, since the explana-
tory variables are categorical, instead of looking for curvature in a multivariate
model, we are looking to determine if the effect of one categorical variable (say,
hairColor) depends on the value of the other categorical variable (isMale).
Such a determination can be made via an interaction plot. The idea is to see
if a parallel slopes model (i.e., without an interaction term) is a better fit than
a model with an extra term (which, remember, we want to include only if we
need it) that allows the slopes to be non-parallel. An example is provided in
Figure 4.24 below, showing the impact of running habits and gender on heart-
rate. This dataset groups individuals by gender, and also by whether they are
runners or sedentary. The plot shows that the lines are mostly parallel, so an
interaction term is probably not required.

If a model contains both categorical and quantitative explanatory vari-
ables, most often the language of multivariate linear regression is used. How-
ever, if the quantitative variables, xi, are not primarily of interest, sometimes
they are referred to as covariates, and the process of fitting a linear model
based on both the categorical and quantitative explanatory variables, is called
Analysis of covariance (ANCOVA). As the xi are not of interest, infer-
ence for these variables is ignored. However, including covariates in the model
allows for the analysis of the importance of the variables of interest, while
holding the covariates constant. This will result in a lower SSE in the sum

Basic Statistics 159

FIGURE 4.24: Interaction plot for heart rate as a function of gender and
running habits.

of squares decomposition, and hence an improved F -statistic, at least, if the
covariates actually explain variation.20

A more advanced concept, generalizing both covariates and interaction
terms, is that of a moderator variable, i.e., a variable that influences the
strength or direction of the relationship between the explanatory variable(s)
of interest and the response variable. Thinking about moderator variables is
also important to experimental design, and we will return to it in Section 4.8.
However, a discussion of covariates and moderators could easily be omitted
from a first, or even second, course in statistics. To learn more, we recommend
[25].

4.7 The linear algebra approach to statistics

In this section, we simultaneously generalize both multivariate regression
and ANOVA. We first generalize them to a model known as the general linear
model (defined below), that often serves as a capstone to a second course
in statistics focused on regression [100,288]. The beauty of the general linear

20The use of degrees of freedom in defining MSE means that, if the covariates are useless,
the F -statistic could actually be less significant.

160 Data Science for Mathematicians

model is that it brings linear algebra into statistics, and allows for a geometric
understanding of many of the concepts introduced earlier in the chapter. This
linear algebraic approach makes it easy to discuss ridge and LASSO regression
(Section 4.7.2).

The next generalization involves introducing a link function to allow non-
linear relationships between the explanatory variables and the response vari-
able, and allowing non-normally distributed error terms. The simplest example
of this more general setting is logistic regression, which we cover in Section
4.7.3. We then simultaneously generalize logistic regression and the linear
algebra approach to linear regression, arriving at the generalized linear model
in Section 4.7.4. This model is general enough to cover logistic regression,
multinomial regression, Poisson regression, and negative binomial regression.
The acronym GLM is often used for this model, but we avoid this acronym
to minimize confusion between the general linear model and the generalized
linear model.

A little bit more linear algebra allows us to introduce, at the end of Sections
4.7.1 and 4.7.4, even more general models known as the general linear mixed
model and generalized linear mixed model (both often denoted GLMM in
statistical texts), that are suitable for time series analysis, hierarchical data
analysis, spatial data analysis, and longitudinal data analysis. All of these
generalizations are made possible by the linear algebraic approach we are
about to describe, and taken together, these general models yield almost all
statistical models one comes across in practice. We conclude with a discussion
of categorical data analysis in Section 4.7.5.

4.7.1 The general linear model

The general linear model states that Y = XB + ε, where:

• Y is an n× o matrix of values of o different response variables (but for
simplicity, we will stick to the case o = 1),

• X is an n×(k+1) design matrix whose columns correspond to explana-
tory variables (plus one extra column for the intercept term, β0),

• B is a (k + 1)× 1 matrix containing the β coefficients to be estimated,
and

• ε is an n× 1 matrix of errors.

A concrete example is instructive. To predict salary, y, based on gender,
x1, and age, x2, we gather data on n individuals, and store the y observations
in the n × 1 matrix Y . The matrix X is n × 3, and the matrix B is 3 × 1,
consisting of the unknowns β0, β1, and β2. The first column of X consists of
1 in every entry. The second column of X is 1 for males and 0 otherwise.
The third column of X consists of the age vector. The vector ε is n× 1, and
we can estimate it via the residuals ui = yi − ŷi, where Ŷ = XB̂ and B̂ is

Basic Statistics 161

the vector of β̂ estimates for the β coefficients. The regression assumptions
are about ε. No autocorrelation asks that the entries, εi, are independent.
Homoscedasticity asks that the standard deviations of all εi are equal. The
normality assumption asks the vector ε to be distributed according to a mul-
tivariate normal distribution (which follows from the Central Limit Theorem,
for sufficiently large sample sizes). We test these assumptions based on the
vector U of residuals, but first we must fit the model.

One determines if a general linear model is an appropriate model just
as one does with multivariate linear regression: by checking the regression
assumptions, beginning with the assumption that the explanatory variables
are related to the response linearly. This is automatic for categorical variables,
because dummy variables take only two values. For quantitative explanatory
variables, scatterplots reveal the relationship, and transformations should be
used if necessary.

After deciding the general linear model is appropriate, a researcher must fit
the model to the data. This involves finding estimates β̂ for the β-coefficients,
and can be done in two ways. The first involves computing the residual sum of
squares as a function of the βi (k + 1 variables), setting partial derivatives to
zero, and optimizing. The resulting equations for the βi are called the normal
equations (as in Sections 3.2.2.1 and 8.5.3). The second approach involves
projecting the Y vector onto the k-dimensional hyperplane spanned by the xi.
The projected vector is Ŷ , and represents everything the X variables know
about Y . Just as in linear algebra, there is a projection matrix, P , and
Ŷ = PY . To do ordinary least squares regression, we must choose the vector B̂
to minimize the residual sum of squares, i.e., the dot product (Y −XB)T (Y −
XB). This dot product is the squared Euclidean distance, ||Y −XB||2, from
the vector Y to the hyperplane XB. That distance is minimized by Ŷ = XB̂,
the orthogonal projection. Orthogonality guarantees that XT (Y −XB) = 0.

The normal equations are now equivalent to the statement that
(XTX)B̂ = XTY . It follows that B̂ = (XTX)−1XTY , as long as XTX is
invertible. This is why the explanatory variables are required to be linearly
independent, and why statistical software outputs an error when they are not.
Since Ŷ = XB̂, it follows that P = X(XTX)−1XT . This matrix P is often
called the hat matrix, since multiplication by P puts a hat on the vector Y .
The estimates β̂ obtained in this way match the estimates obtained via multi-
variable calculus. The Gauss-Markov Theorem states that B̂ is the best linear,
unbiased estimator of B.21 The proof requires the regression assumptions, but
not multivariate normality of the errors.

Already in the case of one explanatory variable, this approach sheds light
on classical regression. In this context, x and y may be viewed as n×1 vectors,
and we normalize them to vectors a and b obtained by ai = xi−x

σx
and bi =

yi−y
σy

. These new vectors have mean zero and standard deviation one, but point

in the same directions as the original vectors. Let θ denote the angle between

21Here “best” means minimal variance among all linear, unbiased estimators.

162 Data Science for Mathematicians

Model space

Error space

ŷ

y

ê

u

a

θ

a · u = ‖a‖ cos θ

FIGURE 4.25: The linear algebra approach to regression: orthogonal projec-
tion and correlation as a dot product.

them. As students learn in a first course in linear algebra, the projection
from b onto a is given by the formula a·b

||a|| . Elementary trigonometry then

tells us that cos(θ) = a·b
||a||||b|| , as shown in Figure 4.25. Replacing a and b

with their definitions in terms of x and y, one discovers that cos(θ) = r,
the correlation between x and y. This provides students another reason that
correlation is always between −1 and 1. We find it helpful to use the slogan
correlation is a dot product. Figure 4.25 also demonstrates what regression
is really doing. The model space is spanned by the explanatory variables xi.
The n-dimensional vector of fitted values ŷ is the closest vector to y that can
be obtained in the model space, i.e., is the orthogonal projection of y onto
the model space. The n-dimensional residual vector ê (which estimates the
unknown error vector ε) is the orthogonal distance from y to the hyperplane
spanned by the explanatory variables xi.

In the general context of k explanatory variables, the covariance matrix,
Σ, is defined to be E[(X−µX)(X−µX)T]. The entry Σi,j = E[(Xi−µXi

)(Xj−
µXj)T] is the covariance of the variables Xi and Xj . The diagonal entries,
Σi,i, represent the variances of each explanatory variable. The correlation
matrix is a scaled version of Σ, with ones along the diagonal. As above, we
obtain that each correlation is the cosine of the angle between the vectors
Y − Y and Xi − Xi.

22 Furthermore, the coefficient of determination, R2, is
cos2(θ), where θ is the angle between Y − Y and Ŷ − Y .23 Furthermore, the
F -statistic (or nested F -statistic) can be obtained as the cotangent squared
of the angle between ŶFull − Y and ŶReduced − Y [100]. This is because the

22The context makes it clear here that Y represents an n× 1 vector, where each entry is
y.

23It is an exercise to show that the mean of the vector Ŷ equals the mean, Y , of the
vector Y .

Basic Statistics 163

fundamental equation of ANOVA, that SST = SSM + SSE, can be written
as ||Y − Y ||2 = ||Ŷ − Y ||2 + ||Y − Ŷ ||2, i.e., as the Pythagorean Theorem.

The linear algebra approach also allows us to write down equations for the
standard errors of the β̂, and hence to make confidence intervals and carry out
inference. The residual vector, U , may be written as Y −Ŷ = (I−P)Y . Hence,
multiplication by I−P converts the response vector, Y , to the residual vector,

U . The variance, σ2
ε , of the unknown errors ε, is estimated by s2

ε = UTU
n−k , where

the denominator is required in order to make this an unbiased estimator. The
covariance of the residuals is obtained as Σu = (I − P)TΣ(I − P). If we have
perfect homoscedasticity and no autocorrelation at all, then Σu is the diagonal
matrix σ2In, where σ2 is the variance of every εi.

24

Assuming Σu = σ2In, elementary matrix algebra implies E[(B̂ − B)(B̂ −
B)T] = σ2(XTX)−1. One then obtains the standard error, SEβ̂i

of the ith

estimated coefficient, as the (i, i) entry of this matrix. If the errors are dis-
tributed according to a multivariate normal distribution, ε ∼ N(0, σ2I), then

β̂ ∼ N(β, σ2(XTX)−1). One uses this to make confidence intervals, and to
compute t-statistics, p-values, and F -statistics just as in Section 4.6.3. Note
that we do not know σ2 in practice, but it is standard to estimate it by
σ̂2 = n−k

n s2, using s2 from the previous paragraph [288].
Another powerful consequence of the linear-algebra approach to regression

is to better understand leverage and influential points. First, one may compute
standardized residuals as (y − ŷ)/σ̂ε, to see how extreme a residual is,
relative to the underlying variation. Next, the leverage of the ith data point
on the model, is hi = pi,i, the ith diagonal entry of the hat matrix, P . For
simplicity, we stick to the case of one explanatory variable, but everything
we say can be generalized to k explanatory variables. Unpacking the formula
hi = pi,i yields a formula relating the leverage to the geometric distance
between xi and x, hence the term leverage, viewing x as the fulcrum. The
ability to compute the leverage of each data point, via the hat matrix, allows
us to compute the standard deviation of the leverages. If a data point has
a leverage that is two or three standard deviations away from the average
leverage, then that might be cause to consider that data point separately, as
discussed in Section 4.6.2. This can even be formalized into a t-test, to test
whether the ith point has statistically significant leverage [101].

More important than leverage is influence, which is leverage times dis-
crepancy (where discrepancy is how far xi is from the regression line). This
is analogous to torque, from physics, as can be seen on the left of Figure
4.21. Cook’s distance is one way to measure influence, and is computed by

24In some sources, this assumption will be phrased as saying the errors are independent
and identically distributed (iid). Technically, to be iid, one would also need to know
that all the errors have the same distribution, e.g., that all are normal. That they all have
mean zero follows from the linearity assumption, and the residuals have mean zero because
we fit the model via orthogonal projection.

164 Data Science for Mathematicians

standard statistical software:

Di =
(ε̂i
∗)2

k + 1
· hi

1− hi
.

The * indicates a studentized residual, that is, the ith residual computed
from a model fit without data point i. Therefore the formula above calculates
how far the predicted values ŷ would move if your model were fit without the
point (xi, yi). If Di is larger than 1, the point (xi, yi) is very influential. If 0.5 <
Di < 1, then the point (xi, yi) is somewhat influential. These designations can
be used to help a modeler decide whether or not to further investigate (xi, yi),
e.g., to determine if this point is from a different population than the rest of
the points [101].

In this section, we have sketched a linear algebra-based approach to regres-
sion, that often forms the backbone of a second course in statistics [100,288].
The beauty of this approach is in its elegant reliance on geometry. The power is
in its wide range of applications and ease of generalizability. In addition to pro-
viding multivariate regression and ANOVA as a special case, this approach also
gives MANOVA and MANCOVA, for when there is more than one response
variable (e.g., predicting both salary and life expectancy). The approach of
this section may also be made to apply to hierarchical modeling, which is
useful when data comes naturally grouped into hierarchies that help explain
variation (e.g., students grouped into schools, and schools grouped into school
districts), or when building multi-level models (with different β’s at differ-
ent levels, or using one model to fill in missing data, and then feeding that
into a subsequent model). For details, see [402]. As for generalizability, we will
see in the next sections how the approach in this section may be modified to
yield almost all statistical models one comes across in practice.

Dropping the assumption of homoscedasticity, but retaining the assump-
tion of no autocorrelation, and letting σ2

i denote the variance of εi, we have

Σu =

σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
n

 .

The OLS standard errors will now be wrong, i.e., XTΣuX 6= σ2XTX.
To correct this, we can either do weighted regression, where we try to
model Σu based on X, or we can use robust standard errors (a.k.a. het-
eroscedasticity consistent standard errors), which keep the same esti-

mates, β̂i, but compute the standard errors SEβ̂i
using UUT in the formula for

E[(B̂−B)(B̂−B)T], rather than using σ2I. It is then a theorem, due to White
and building on earlier work of Huber and Eicker, that the resulting standard
errors will yield confidence intervals and p-values that are correct asymptot-
ically, i.e., as n → ∞ [514]. Weakening the “no autocorrelation” assumption
slightly allows for off-diagonal entries of Σu, and hence for off-diagonal entries

Basic Statistics 165

of E[(B̂ − B)(B̂ − B)T]. Such entries give a formal definition of variance
inflation factors (VIFs) from Section 4.6.3 [101].

If one drops the “no autocorrelation” assumption entirely, one must con-
sider more complicated structure in the matrix Σu. This generalization neces-
sitates the consideration of stochastic processes, i.e., the consideration of both
fixed effects and random effects (while the general linear model allows only
fixed effects). Following this path leads to the general linear mixed model,
which builds on the idea of hierarchical models, and is often appropriate for
panel data [215]. Along the same line of generalization, one finds ARIMA mod-
els, as described in Section 4.6.4. Note that the general linear model assumes
linear relationships and a normal error term.

4.7.2 Ridge regression and penalized regression

In the previous section, we saw how the linear algebra approach to ordinary
least-squares regression finds coefficients β̂ that minimize the residual sum of
squares. In this section, we briefly discuss alternative models that can do
better in certain situations. Full details of the contents of this section may be
found in [213, 247, 284]. The content of this section would rarely make it into
a first or second course in statistics, but may be useful to the reader.

Ridge regression, also known as Tikhonov regularization or `2 reg-
ularization, is an alternative way to fit the β̂ coefficients that reduces the
variance (i.e., reduces SEβ̂i

), but at the cost of introducing slight bias into the
estimates. This phenomenon is representative of the bias-variance trade-off
in machine learning. This trade-off cannot be avoided, as the Gauss-Markov
Theorem shows. Ridge regression is a powerful tool when building a model
where explanatory variables are tightly correlated, e.g., a model with large
VIFs. The process of fitting the β̂i begins by standardizing the explanatory
variables, so that R = XTX is the correlation matrix. One then solves a con-
strained optimization problem, using Lagrange multipliers, rather than the
classic OLS minimization of residual squared error.

The idea is to add a small parameter, k, to the diagonal entries of the
matrix R (this diagonal is a “ridge”), then define B̂ridge = (R + kI)−1XTY ,
which solves the constrained optimization problem. The resulting coefficients,
β̂ridge have less variance than β̂ but are slightly biased, depending on k. They
are also more stable, in the sense that small perturbations of the data lead to
less severe changes in β̂ridge than in β̂. There is an optimal choice of k (which
can lead to improved prediction error relative to OLS regression), but knowing
it would require knowing the true regression coefficients, β. A ridge trace
can be used to help the researcher decide on a value of k, and the methods of
machine learning should be used to avoid overfitting the model to the data.
The value of k is a Lagrange multiplier penalizing β-estimates that are too
large in `2-norm,

n∑

i=1

(yi − (β̂0 + β̂1xi))
2 + k

n∑

i=1

β2
j .

166 Data Science for Mathematicians

As in the previous section, this cost function can be rephrased in terms of
dot products, to obtain a more geometric intuition for ridge regression. This
approach reappears when studying support vector machines in machine
learning (Section 8.8), where one transforms a nonlinear separation problem
into a linear separation problem by using kernel functions (Section 8.8.3) to
shift the problem into a larger dimensional linear space. In that context, the
regularization term (Lagrange multiplier) is to guarantee a solution exists.

LASSO regression (Least Absolute Shrinkage Selector Operator) con-
ducts a procedure analogous to the above, but for the `1-norm,

n∑

i=1

(yi − (β̂0 + β̂1xi))
2 + k

n∑

i=1

|βj |.

Again, a tuning parameter, k, determines how much we penalize solutions
that have a large `1-norm. However, unlike ridge regression, LASSO regression
can set certain coefficient estimates to zero. Consequently, it can be used for
variable selection (i.e., if the estimate for βi is zero, that is equivalent to leaving
xi out of the model). The downside of this is that there is now no closed-
form expression, and no uniqueness result, for the new estimated coefficients
β̂lasso. Numerical optimization techniques, such as gradient descent (covered
in Chapters 6, 8, and 9), must be used. Further generalizations are possible,
such as elastic net regression, which simultaneously penalizes both `1 and `2
norms.

4.7.3 Logistic regression

Classically, linear regression is used when both the explanatory and
response variables are quantitative. If the explanatory variables are categori-
cal, then we are doing ANOVA, but the generalized linear model shows that
the procedure works the same whether the explanatory variables are quanti-
tative, categorical, or both. In this section, we will discuss what to do when
the response variable is categorical. We provide R code later in Figure 4.27.
We focus first on the simplest kind of categorical response: a binary (yes/no)
response. For example, in the Whickham dataset (which comes with the R
package mosaic), we have data on individuals including their age and whether
or not they smoked when data was collected in 1974,25 and we know whether
or not they were alive 20 years later in a follow-up study. In this case, the
response variable is whether or not they were alive.

In this setting, it is not appropriate to use a model of the form Y = XB+ε,
where ε is normally distributed. Indeed, if the response variable takes values
in {0, 1}, then the error term should be distributed according to a Bernoulli
distribution (i.e., a binomial distribution with only one trial). Fundamentally,
what we are interested in is the probability that the person survived, based

25Technically, this data was collected in 1972–1974, but we will simplify for the sake of
exposition.

Basic Statistics 167

FIGURE 4.26: A logistic model fit to the smoking survival rate described in
the text, here using only the age variable, not the smoking variable.

on the values of the explanatory variables, X. A standard linear model is not
appropriate, because it could lead to predicted probabilities smaller than 0 or
larger than 1. The general solution to this kind of situation is the generalized
linear model, but for ease of exposition, we work it out first for the case of a
simple logistic regression where the response variable is p, the probability that
an individual survived, and the explanatory variable is x, their age in 1974.
(Obviously, the smoking variable is the more interesting one, but we focus
on age first and add the second variable in the next section.) The logistic
regression curve is shown in Figure 4.26.

This graph demonstrates that older people were less likely to survive till
the follow-up study in 1994. Note that the response variable, p, is always
between 0 and 1, as it should be. To fit the logistic model, we first transform
the response variable to y = log(p/(1 − p)). This transformation is called
the logit function, also known as the log-odds function, because the odds
associated with a probability of p are p/(1 − p).26 The logit function maps
(0, 1) bijectively and continuously to R. We next fit a simple linear regression

model of the form ŷ = β̂0 + β̂1x. Lastly, we transform back using the inverse
of the logit function:

p̂ =
eβ̂0+β̂1x

1 + eβ̂0+β̂1x
.

26For example, if p = 0.75, then p/(1− p) = 3 and the odds are 3-to-1.

168 Data Science for Mathematicians

logm = glm(sex ~ height, data=Galton, family=binomial(logit))

summary(logm)

exp(confint(logm))

FIGURE 4.27: R code to carry out a logistic regression.

This is the equation for the logistic model, which predicts p given x. The curve
slopes downwards if β1 < 0 and slopes upwards if β1 > 0. In the former case, a
larger β0 means the curve slopes upward at a lower x value. In the latter case,
a larger β0 means the curve slopes upward at a higher x value. The larger the
value of |β1|, the steeper the curve.

In order for this model to be appropriate, we must know that y is a linear
function of x. This can be checked with a scatterplot. If x were binary (like
the other explanatory variable, smokerYes, in the Whickham dataset), then
linearity would be automatic, as we will see in the next section. We also need to
know that the data is random and that different data points are independent.

As with classical linear regression, β1 represents the average change in y
for a unit change in x (e.g., the impact of being one year older). However, the
response variable we are interested in is p, not y. We interpret β1 in terms of p
via the odds ratio, which tells us how the odds of survival would change (on
average) if age were increased by one. For example, if β1 = −0.12368, then the
model tells us that a change in age by one year (from A to A + 1 say) leads
to an odds ratio oddsA+1/oddsA = e−0.12368. The mantra is “change in odds
equals e to the slope” [101], where “change” means “multiplicative change.”
We interpret the odds ratio as follows. The odds of survival for a person aged
A+1 are the odds for a person aged A, multiplied by e−0.12368 ≈ 0.88. Hence,
the odds of survival go down, as we would expect. If the expected probability of
being alive at age A was p, so that O = oddsA = p/(1−p) and p = O/(O+1),
then for age A + 1 the probability becomes p′ = 0.88O/(0.88O + 1). This
causes p′ < p, as one would expect, but of course the impact of age on p is
not linear, as the logistic curve demonstrates.

The R code in Figure 4.27 carries out the logistic regression procedure
described above, again on the Galton dataset. Here our explanatory variable
is height and our response variable is gender. Even though gender comes to
us as a sequences of characters M and F, R is able to automatically convert this
into a binary numeric variable. The summary command produces the logistic
regression table, which we display in Table 4.5. The command exp(x) applies
the function ex, and we use this to find a confidence interval for the odds
ratio. The code returns a confidence interval of (2.016, 2.464), centered on

eβ̂1 = 2.218.
Having discussed how to fit the model and how to interpret the model,

we turn to how to assess the significance of the model. We wish to test the
hypothesis H0 : β1 = 0, to determine if age has a statistically significant effect
on the probability of surviving. The test statistic is z = β̂1/SEβ̂1

and is called

Basic Statistics 169

the Wald statistic. The theory of maximum likelihood estimation implies z
is normally distributed, and hence we can use a normal table (or software) to
find the p-value to assess our model’s significance. Note that, unlike simple
linear regression, we do not need the t-distribution or degrees of freedom. This
is because we don’t need to estimate the standard deviation, because it can
be derived from the mean, using the familiar formula that the variance of a
binomial(n, p) distribution is np(1 − p). The key point is that the errors are
Bernoulli distributed [101].

If we have multiple explanatory variables, then to assess model significance,
we need a test analogous to the ANOVA F -test. There, we compared the
best-fitting horizontal hyperplane (all slopes being zero), whose residual sum
of squares was SST , with the best-fitting hyperplane, whose residual sum of
squares was SSE. The same idea works for logistic regression, but instead
of comparing sums of squares, we compare the two models by comparing the
drop in deviance in shifting from the null model to the full model.27 Our
presentation follows [9]. The deviance of a model is defined as the sum

∑
di

(from i = 1 to n) where di is the deviance of the ith residual, that is, how far
the model is off for the ith data point (for a formula for di, see [9]). Analogous
to an ANOVA table, we may obtain an analysis of deviance table, keeping
track of the deviance explained by each variable (just like the sum of squares
decomposition).

Equivalently, the deviance for a model can be defined as −2(Lm − LT),
where Lm is the maximum of the log-likelihood function for the model (that

is, based on the fitted coefficients β̂), and LT is the maximum possible log-
likelihood (achieved by the saturated model, which has a separate parameter
for each data point, and hence no residual error). The null model has only
an intercept term (all slopes are zero). Both the null model and the full model
have a deviance. The resulting test statistic,

G = Null deviance− Residual deviance,

is χ2-distributed for large sample sizes n, and its p-value is a standard output
of statistical software. The relationship between G and the Wald statistics
of the individual variables is precisely analogous to the relationship between
the F -statistic and the individual t-statistics. The odds ratio eG is called the
likelihood ratio. Doing the drop in deviance test when there is only one
explanatory variable recovers a test known as the likelihood ratio test, an
improvement on the Wald test. In general, the likelihood ratio is the like-
lihood of seeing the data (if the null hypothesis were true) divided by the
maximum likelihood (allowing parameters to range over the whole parameter
space, rather than just the values allowed by the null hypothesis).

A reader who has studied entropy or information theory may wonder if
there is a connection to the appearance of −2 logL above. Such a connection

27The same procedure works in comparing a reduced model to the full model, just like a
nested F -test for regression. Simply replace “Null” by “Reduced” in the discussion.

170 Data Science for Mathematicians

TABLE 4.5: Sample logistic regression table.

Call:

glm(formula = sex ~ height, family = binomial(logit), data = Galton)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5425 -0.5068 0.0789 0.5046 3.2188

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -52.98422 3.40240 -15.57 <2e-16 ***

height 0.79683 0.05117 15.57 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1243.75 on 897 degrees of freedom

Residual deviance: 626.22 on 896 degrees of freedom

AIC: 630.22

fmod <- glm(sex ~ height, data=Galton,family = "binomial")

nmod <- glm(sex ~ 1, data=Galton, family = ’binomial’)

anova(nmod, fmod, test = ’Chisq’)

FIGURE 4.28: R code for analysis of deviance table.

indeed exists, and is used to define the Akaike information critrerion
(AIC), which is the logistic regression version of adjusted R2 (and hence
commonly appears in logistic regression tables). AIC is defined as

AIC = −2(maximum log likelihood− number of model parameters).

Observe that AIC penalizes models for having unnecessary parameters, just
like adjusted R2 does. For details, see [101]. All of the quantities just discussed
appear in the logistic regression table produced by the code in Figure 4.27,
and displayed in Table 4.5.

The table demonstrates that height is a statistically significant predictor
for gender. The table also displays the AIC, the deviance of the null model,
the deviance of the residual model, and (via subtraction) the drop in deviance.
The analysis of deviance table, including the G-statistic and p-value, can be
obtained via the code in Figure 4.28. This code fits the full model fmod, then
fits the null model nmod, then uses the anova command to get the analysis of
deviance table.

Basic Statistics 171

4.7.4 The generalized linear model

Just as linear regression can be extended to the general linear model via
a linear algebra approach, so too can logistic regression be extended to the
generalized linear model. This model states that g(Y) = XB+ε, where ε is
some random variable (not necessarily normal) with expectation E[ε] = 0, and
the link function g allows for nonlinear relationships between the explana-
tory variables and the response. The general linear model is a special case,
where g is the identity and ε is normally distributed. In the case of logistic
regression, g(p) = log(p/(1− p)), and the errors, ε, are Bernoulli distributed.
The general procedure is to first transform Y to g(Y), then find the coefficients

β̂, often using maximum likelihood estimation or a linear algebra approach,
and then conduct a drop in deviance test to determine if the model is signifi-
cant. For details, we refer the reader to [288].

If we wished to study a categorical response variable with more than two
categories (for example, to predict one of five disease types based on explana-
tory medical data), then we should do multinomial logistic regression
(also known as softmax regression). In this case, we can use the same link
function (because we are trying to predict probabilities), but now the errors
will be distributed according to a multinomial distribution (like a binomial,
but with more options than just “success” or “failure”).

A related type of regression is if our response variable represents count
data, e.g., for a female crab, taking y to be the number of satellites (males
residing nearby) she has. In this case, the link function will be log rather
than log(odds), because the response is not a probability, but takes only non-
negative values. The log function maps R>0 to R, and we can fit a simple linear
regression to g(Y) without fear of predicting impossible values. We transform
back to count data via the exponential function. The errors, ε, should now
be distributed according to the Poisson distribution, which is appropriate for
count data. Consequently, this form of regression is known as Poisson regres-
sion. Note that the Poisson distribution has the property that its variance is
equal to its mean. If this is not supported by the distribution of residuals, a
quasi-Poisson model can be fit (which introduces an extra parameter to allow
the variance and mean to be different), or even a negative binomial model for
ε. In this case, one is doing negative binomial regression.

Just as one can extend the general linear model to the general linear mixed
model, by allowing both fixed and random effects (i.e., choosing different struc-
ture for the matrices Σu in Section 4.7.1), so can one extend the generalized
linear model to a generalized linear mixed model. Equivalently, the gen-
eralized linear mixed model is just the general linear mixed model plus a link
function g and a non-normal error term ε. Such models arise in longitudinal
data analysis when the response variable is binary, categorical, or represents
count data [215].

172 Data Science for Mathematicians

4.7.5 Categorical data analysis

In the previous section, we saw how to predict a categorical response vari-
able from a quantitative explanatory variable. Of course, it is not terribly
surprising that age is a strong predictor for failure to survive. A more inter-
esting model would be to predict survival in the Whickham dataset based on
the variable smokerYes. In this case, we have both a binary predictor and
a binary response. We can do logistic regression and obtain a Wald statistic
and p-value for whether or not the model is statistically significant,28 and it
turns out the p-value will be exactly the same as we would obtain from the
hypothesis test of Section 4.5, to determine if the probability of survival is the
same for smokers and non-smokers, H0 : psmokerYes = psmokerNo.

Now suppose the explanatory variable has more than two levels. For exam-
ple, if we wish to predict whether or not someone has a job based on one of
four possible hair colors, then the test statistic G, and its associated p-value,
are testing the hypothesis that hair color does not have a significant impact
on the probability of having a job. This is equivalent to a classical χ2-test for
association, whose test statistic is the sum over all cells (in this example,
there are 2× 4 = 8) of

(Observed− Expected)2

Expected
.

If the counts in all 8 cells are the same, then the test statistic is zero. If there
really is an association between hair color and whether or not someone has a
job, then some cells will have a much larger fraction of success than others.
If both the explanatory and response variables have more than two levels,
then the test statistic from the generalized linear model can be viewed as
conducting a χ2-test for homogeneity, which again sums

(Observed− Expected)2

Expected

over all cells.
It is possible to teach an entire course on categorical data analysis [9].

For a first-year sequence in statistics, it is probably sufficient if students see
a χ2-test for association, and it is a bonus if they realize the connection to
logistic regression.

28Recall from the previous section that we do not need to check that a linear model is
appropriate, because our explanatory variable has only two values, so is linear automatically.

Basic Statistics 173

4.8 Causality

A large fraction of questions begin with “why.” It is human nature to
wonder why something occurs and whether it is caused by something else.
Statistics can be used to answer such questions, but the uncertainty inherent
in the field makes it difficult. Until now in the chapter, we have seen how to
tell when two variables are correlated, how to use R2 to quantify how much
uncertainty in the response variable is explained by the explanatory variables,
and whether or not explanatory variables are statistically significantly better
than nothing when it comes to modeling the response. None of this tells us
if a change in an explanatory variable causes a change in the response, and
correlation can be very misleading. For example, if one studies a dataset of
children, one might discover a strong correlation between shoe size and score
on a reasoning exam. Neither of these variables causes the other, but both are
caused by a lurking variable, age. Spurious correlations are not even rare, but
are often hilarious, as [487] demonstrates. Causation is also easy to get back-
wards, e.g., the phrase “rain follows the plow” from the late 1800s, expressing
the belief that rainfall was caused by human farming [256]. In this section, we
will briefly discuss how statistics can make causal inferences, and avoid these
fallacies. Our treatment is inspired by [256].

4.8.1 Experimental design

The gold standard for an experiment to demonstrate causality is the ran-
domized controlled trial. To carry out such an experiment, a researcher
has to consider all variables that might cause y, then collect a simple random
sample of data where all of those variables have been controlled for, except
for the explanatory variable of interest, x. Control here refers to the experi-
menter accounting for these variables in such a way that it can be known that
they are not causing y. For example, to determine if a particular drug helps
patients sleep, one might choose y to be the number of hours of sleep, and x
to be 1 for patients taking the drug, and 0 for patients not taking the drug.29

Since age also has to do with how well a person sleeps, the experimenter could
start with a population where everyone is the same age, or could do stratified
random sampling to be sure that both the treatment group (where x = 1)
and the control group (where x = 0) have the same distribution of ages. That
way, if the treatment group gets more sleep, we know it can’t be because they
are younger while the control group is older. Similarly, we could control for
gender by making the two groups gender balanced, or we could control for
living circumstance in the same way.

29Actually, patients not taking the drug should still be given a placebo, and should not
know which group they are in, to control for the placebo effect.

174 Data Science for Mathematicians

Sometimes, it is impossible or unethical to control for every variable or to
randomly assign individuals to the treatment or control group. For example,
to construct an airtight statistical argument that smoking causes lung can-
cer, we would need to assign individuals to degrees of smoking. To argue that
a rise in greenhouse gases causes global warming, we would need to assign
atmospheric greenhouse gas levels (and, since we have only one planet, a con-
trol group would be impossible). In some situations (such as social science),
there may be an extremely large number of variables to control for. Different
researchers could think up different variables that might matter, and for this
reason it is unlikely any one statistical experiment will be taken as definitive
proof of causation. It is essential for students to understand that correlation
is not causation, that controls are needed to argue in favor of causation,
and that different researchers can disagree, based on the same data. Stu-
dents should also know about placebo treatments, and about the importance
of blindness in experiments. An experiment is double-blind if neither the
subjects nor those they interact with know whether or not an individual is
receiving the treatment or a placebo. This information is known only to the
statistician analyzing the data, to control for the possibility that such knowl-
edge would cause different interactions between experimenters and subjects
(giving a possible alternative reason for differing outcomes, and impacting the
ability to draw a causal inference).

There is much more that can be said about causation, and may be appro-
priate for a second course in statistics [54], but we will content ourselves with
a very brief survey, and we refer the reader to the textbook [123,256] for more
details.

First, to conduct a causal statistical experiment, an experimenter must
create a hypothetical causal network, i.e., a directed graph whose nodes
are variables and where a directed edge denotes a causal relationship. An
example is provided in Figure 4.29, and many more examples may be found
in [256]. Links are drawn as dotted lines if there is a non-causal relationship.
Nodes can be marked (e.g., written in different shapes) to denote that cer-
tain variables were not measured. (These are called latent variables, and
are often impossible to measure, like quality of life.) Sometimes, an experi-
menter can use a proxy variable to stand in for a latent variable, e.g., using
wealth to stand in for quality of life. To be useful, a proxy variable must be
closely correlated with the variable of interest. For example, the widths of
tree rings, and information from ice cores, are common proxy variables for
historical environmental conditions (on which we can’t gather data because
they happened in the distant past).

In the hypothetical causal network, a correlating pathway between vari-
ables x and y is a path that includes a source (i.e., a variable with in-degree
zero). Such a path does not have to start at either x or y, and does not even
need arrows pointing to x or y. It should be understood as an undirected path.
A non-correlating pathway is any other undirected path. See Figure 4.29
for examples of both types of paths. To prove that the treatment variable,
x, causes change in the response variable, y, we must block all correlating

Basic Statistics 175

Gets good
grades

Is
confident

Is
motivated

Spends time
studying

Joins clubs
or sports

Is
intelligent

Has time
to study

FIGURE 4.29: A hypothetical causal network of some factors in the lives of
high-school students, where perhaps the variable of interest is “Gets good
grades.”

pathways except for the one we intend to argue proves x causes y. To block
a pathway, we must include some variable in that path as a covariate in the
model, so that its influence can be held constant. In a simple linear regression
y = β0 + β1x + ε, controlling for a covariate, z, means including it in the
model, i.e., using the model y = β0 + β1x+ β2z+ ε. In this second model, the
coefficient β1 describes the relationship of x on y while holding z constant.

If a variable is outside of our model, but still affects our variables of interest
(or the relationship between them), it is called an exogenous variable. Such
a variable E can be included when we draw a hypothetical causal network (Fig-
ure 4.29), but should be denoted in such a way that it is clear we do not have
data on E. If we cannot set up an experiment to avoid an exogenous variable,
then we should find a proxy variable for it that we can include in our model.
Variables with at least one arrow pointing to them are called endogenous,
and they can create relationships between x and the error term, ε. Again, it
can be valuable when drawing a hypothetical causal network (Figure 4.29) to
denote such variables with a new symbol.

One way to correct for the presence of endogenous variables is via the use
of instrumental variables. These are variables that are correlated with the
treatment variable but orthogonal to all the covariates. By projecting both the
treatment and response onto an instrumental variable, one avoids the need to
include the covariates in the model, and eliminates the impact of endogenous
variables. Equivalently, one can do a two-stage least-squares regression,
where the first stage predicts values for endogenous variables based on exoge-
nous variables, and then the second regression uses these predicted values as
inputs. In this way, everything in the new model is based on exogenous, rather
than endogenous, variables. If time is a variable, but if endogenous variables

176 Data Science for Mathematicians

are fixed in time, then a difference in differences approach can be used to
remove the effect of endogenous variables.

There are even more special variable names in a hypothetical causal net-
work. In a correlating pathway of the form X ← T → Y (where T is the
source), then T is called a confounder, just like how age confounded the
relationship between foot size and test score. In a non-correlating pathway of
the form X → T ← Y , then T is called a collider. One should not adjust for
such a variable. Doing so inadvertently builds Y into the explanatory variables.
For example, both depression and risk-taking cause drug use, and one should
not include drug use as a variable when exploring the relationship between
depression and risk-taking. In a correlating pathway of the form X → T → Y
(where X is the source), we call T a mediator variable. For example, in
many people, age causes weight gain, and weight gain causes knee pain. Age
also causes knee pain. In this case, weight gain is a possible variable that
mediates the relationship between age and knee pain. Other variables matter,
too, such as changes in how the body heals. A moderator variable affects
the direction and/or strength of a relationship. An example is an interaction
term in ANOVA. Mediator variables explain part of the relationship, whereas
moderator variables affect the relationship.

Even when it is possible to measure all variables (or find suitable proxy
variables), it is still challenging to come up with a study design that controls
for the covariates. Certainly individuals must be assigned randomly to either
the treatment or control group, but an entirely random assignment gives away
control over the covariates. Often, a randomized block design is used,
where individuals are divided into blocks in such a way as to reduce the
variability between blocks (e.g., a block could consist of individuals of the
same age, gender, and race), then within each block, individuals are randomly
assigned to receive either the treatment or the placebo. For more on design,
see [256].

4.8.2 Quasi-experiments

We conclude this section with a discussion of what can be done with data
that is not obtained by a random experiment. One approach is to use a quasi-
experiment, which is like an experiment, but where the assignment to treat-
ment and control groups is not random [343]. In such a setting, it is important
to argue that the explanatory variable behaves randomly with respect to all
other variables in the system. One approach is to build a regression featuring
the explanatory variable and the covariates. Additionally, one needs a the-
oretical justification for why no other variables could have been involved in
explaining the causation the hypothetical causal network seeks to explain. For
example, an extensive literature in economics studies the causal relationship
between weather variables and the economy, using the fact that the weather
is random, and hence can only be randomly related to the economy [125]. A
similar approach is a knockout experiment, where a researcher abruptly

Basic Statistics 177

removes an element from a system (e.g., a gene in a mouse) to determine that
element’s causal effect on other variables [341]. Lastly, even when experimen-
tal design is not available to achieve balanced blocks, one can use propensity
score analysis on non-experimental data to determine the probability that
an individual will appear in the treatment group, as a function of the covari-
ates [256]. When such a probability can be determined, one can focus on a
subset of a sample where there is balance across groups.

4.9 Bayesian statistics

Until now, our treatment of basic statistics has proceeded following a fre-
quentist perspective, where probability is defined as a limit, representing
the proportion of successes as the number of trials approaches infinity. Our
use of the sampling distribution in Section 4.5 is a clear example of a frequen-
tist approach, since to define a p-value, we had to think about potentially
collecting many random samples. An alternative approach is the Bayesian
perspective, where probability is thought of as a measurement of the plausi-
bility of the event happening. In the Bayesian formulation, an individual can
update a believed probability based on data, e.g., ceasing to believe a coin is
fair after it comes up heads on 10 flips in a row.

It is possible to teach an entire course using a Bayesian approach,30 even
a first course [281]. The Bayesian philosophy is that one has a prior belief
(perhaps based on a previous study, on a hypothesis about the world, or cho-
sen in order to make all outcomes equally likely), then collects data, and then
updates the prior belief to a posterior belief. Both beliefs can be modeled as
probability distributions, so the language of a prior distribution and pos-
terior distribution is common. If another experiment is conducted at some
future date, this posterior can be taken as the prior for that next experiment.
This philosophy lends itself well to computational, iterative models, and to
machine learning, both extremely common in data science. We find it is best
to give students a flavor of Bayesian thinking, and to teach Bayesian statistics
properly as an upper level elective, due to the appearance of sophisticated
probability distributions such as the beta distribution, and due to the reliance
of the subject upon integrals.

4.9.1 Bayes’ formula

Bayesian statistics takes its name from Bayes’ Formula, from probability
theory. For events A and B, we denote by A | B the event that A occurs, given

30Indeed, it is possible to live an entire life as a Bayesian.

178 Data Science for Mathematicians

that B occurred. Bayes’ Formula states

P (A | B) =
P (A ∩B)

P (B)
=
P (A)P (B | A)

P (B)
.

An excellent application of this formula is to the study of false positives in
medical testing. Many students will at some point receive a positive medical
test for a frightening condition. Even if this test has a low probability of a
false negative, often the probability of a false positive is larger than students
realize. For example, suppose a disease affects 5% of the population, and, when
people who have the disease are tested, 80% of the tests come back positive.
Furthermore, when people who don’t have the disease are tested, suppose 15%
of the tests come back from the lab marked positive (a false positive result).
Let A be the event that a randomly chosen person has the disease, and B be
the event that a randomly chosen person tests positive for the disease. If a
person has received a positive test, they are interested in P (A | B), i.e., the
probability that they actually have the disease. In our example, this can be
computed as

0.05 · 0.8
P (B)

=
0.04

P (B)
.

We can find P (B) using the Law of Total Probability, which states that

P (B) = P (B | A)P (A) + P (B | A′)P (A′),

where A′ denotes the complement of A. This means P (B) = 0.8 · 0.05 + 0.15 ·
0.95 = 0.1825, so that P (A | B) = 0.04/0.1825 ≈ 0.2192. This is higher than
0.05, the probability that an individual has the disease if we know nothing
about their test status, but it shows that one positive test result is far from
conclusive in determining if a person has the disease, in this hypothetical
scenario.

4.9.2 Prior and posterior distributions

Another application of Bayes’ Formula arises when updating a Bayesian
probability. For this section, we follow the treatment of [281], which also con-
tains a number of examples carrying out this procedure using R code. In this
context, there is some parameter, θ, and we are interested in the probabil-
ity density function, p(θ), telling us the likelihood of the values θ could take.
(Compare to Section 4.3.4.) When we start, p(θ) is the prior distribution
and can be any distribution we believe describes the probabilities of values of θ
(e.g., a uniform distribution, a normal distribution, an empirical distribution,
etc.). The distribution version of Bayes’ Formula says

p(θ | D) =
p(θ)p(D | θ)

p(D)
,

where D represents the dataset that was observed (so, p(D) is the evidence),
p(D | θ) is the probability of observing the data if the prior were correct (this

Basic Statistics 179

is called the likelihood), and p(θ | D) is the posterior distribution. In
general, both p(D) and p(D | θ) are very small numbers. For example, to test
whether or not a coin is fair, the parameter of interest, θ, is the probability
that the coin comes up heads. If we flip the coin 100 times and see an ordered
sequence containing 60 heads and 40 tails, p(D | θ) = θ60(1 − θ)40. Given a
prior distribution, p(θ), the Law of Total Probability tells us p(D) is an inte-
gral, over all values of θ, of p(θ)p(D | θ). Choosing a prior, p(θ), is not easy.
If we knew nothing about the coin, we might choose a uniform distribution.
If we were completely certain the coin was fair, we might choose a point mass
of 1 on the value θ = 0.5. In practice, the prior will be somewhere between
these two extremes. It is a theorem that if the prior distribution has a beta
distribution, then the posterior does, too. For this reason, the beta distribu-
tion appears all over a theoretical approach to Bayesian statistics. Nowadays,
computers can relatively easily approximate the integral that computes p(D),
using a Markov Chain Monte Carlo algorithm, such as the Metropo-
lis algorithm or Gibbs sampling [281, Chapter 7]. Consequently, it is less
essential to choose a prior distribution from the family of beta distributions,
when doing applied Bayesian statistics.

Bayesian statistics has its own version of model fitting, confidence inter-
vals, and inference. Model fitting is the easiest, since this fundamentally comes
down to estimating model parameters, just as in the previous paragraph.
Instead of a single value θ̂ estimating θ, we get the entire probability distri-
bution of θ values, which is strictly more information. We can think of θ̂ as
the expected value of this probability distribution.

Recall that frequentist confidence intervals and inference are based on the
sampling distribution (Section 4.5). The Bayesian version are quite different.
The Bayesian version of a 95% confidence interval is a highest density inter-
val, and contains the middle 95% of the posterior distribution p(θ | D). This
interval spans the 95% most likely values of θ. Note the similarity to boot-
strap confidence intervals (Section 4.4.3). For inference, the natural question
is whether or not the prior distribution was correct. There are many ways
to compare the prior distribution and the posterior distribution to measure
how different they are, and to answer this question. One popular way is a
posterior predictive check.

As [281] demonstrates, there are Bayesian versions of one and two sample
tests for comparing proportions and means, for the slope of regression, for
the utility of a GLM (like the F -test), for logistic and multinomial regression,
and for ordinal and Poisson regression, among many other topics. There are R
packages to carry out the computations described in this section, and R code is
provided in [281]. Moving to a more complicated model is as easy as adding one
more parameter. The Bayesian approach works especially well for hierarchical
modeling. Once all parameters and dependencies have been identified, the
Gibbs sampling algorithm makes it easy to estimate the parameters iteratively.
There is much more to Bayesian statistics than can easily be fit into a single
section, and we encourage the reader to add Bayesian techniques to your
repertoire. Excellent books include [180,181,281].

180 Data Science for Mathematicians

4.10 A word on curricula

As mentioned in Section 4.1, statistical pedagogy has undergone a renais-
sance over the past few decades. It is now commonly agreed that the best
way to teach statistics is to focus on statistical thinking as an investigative
process, to focus on conceptual understanding, to integrate real data with
a context and purpose, to use active learning approaches, and to use tech-
nology rather than rote hand calculations [13]. It is often advisable to use a
project-driven approach, where students carry out weekly guided labs (which
can be constructed in collaboration with colleagues from departments all over
your campus), culminating in an independent final project [498]. This has the
added benefit of giving students practice writing and speaking about statis-
tical investigations, and thinking through some of the ethical considerations
inherent to real-world data analysis. Additionally, applied statistics courses
are therefore especially attractive to students who desire to see immediate
applications of course content to real-world problems (which, in our experi-
ence, describes most students).

However, if students are to be required to work with real-world datasets,
they will need additional skills with data wrangling and data cleaning. We
discuss these topics below, in case the reader needs to teach them. An alter-
native approach is to require a first course in data science to come before a
first course in statistics, so that students would begin their statistics course
already familiar with a statistical software, and with data wrangling, clean-
ing, and curating. Such an approach was suggested in [486]. For more about
pedagogical uses of statistical computing languages, and some considerations
regarding which language to use, we recommend [231,351].

4.10.1 Data wrangling

Data wrangling, also known as data munging, refers to the process
of transforming data from its initial format into an easier-to-use format. An
example is the process of parsing data from an HTML file (e.g., web scrap-
ing), or extracting data from a database (e.g., using SQL), and writing the
data into a comma-separated value (CSV) file. Data wrangling often involves
some familiarity with programming, though many statistical computing lan-
guages have built-in functions to carry out certain aspects of data wrangling,
such as filtering data to consider only individuals with a desired property (e.g.,
women), grouping data according to some categorical variable (e.g., which
state an individual lived in), and computing aggregate statistics such as the
number of individuals satisfying the given properties. An example of one such
built-in library of functions is the R package dplyr [505], or the pandas module
in Python [340]. One can go much deeper into data wrangling. For example,

Basic Statistics 181

the field of natural language processing is intimately tied to the wrangling
of textual data.

It is not an exaggeration to say that one could spend an entire semester
teaching students the intricacies of data wrangling. (For a sample curriculum,
see [63] and the book [62], and for a shorter introduction, see Section 2.4.)
In a first course in statistics, it is best to teach students just what they will
need to be facile at basic transformations of their data, e.g., those required
to work with tidy data [501]. In practice, for elementary statistics, we find
that it is appropriate to work entirely with CSV files, but to include a dis-
cussion about other forms of data. When merging two datasets, aggregation
is often required. For example, if one dataset represents drug overdoses per
month, and another dataset represents daily police seizures of drugs, then the
only reasonable way to study the impact of police activity on overdoses is to
aggregate the second dataset so that it represents seizures per month, mak-
ing the unit of measurement months rather than days. Such transformations
involve applying a function (e.g., sum or count) to a column, and are easy to
accomplish with statistical software [257]. If the reader wishes to avoid the
need for such transformations, there are still many CSV files that can be ana-
lyzed without the need for data wrangling. However, if students are allowed
to choose their own dataset for an independent final project, as suggested
in [498], then some amount of data wrangling should be expected.

4.10.2 Cleaning data

In addition to data wrangling, many datasets one encounters are funda-
mentally dirty in some way. To get these datasets into a format where one
can run statistical analyses, data cleaning is required. As with data wran-
gling, there is far more to cleaning data than can comfortably fit into a single
semester course. A taxonomy of dirty data types is provided in [267], and a
discussion of common scenarios with dirty data is provided in [521]. If students
are to work with real-world data, and especially if they are going to do any
independent projects, it is very valuable to teach them about certain common
sources of data dirtiness and how to cope with it.

For instance, students are likely to face issues of statistical software inter-
preting integers as strings, impossible data (e.g., a large number of 0s in a list
of blood pressure measurements, perhaps used by the person collecting the
data to denote a lack of a measurement), and gaps in data (e.g., if data was
kept only for certain blocks of years). Once students are comfortable spot-
ting oddities in the data, statistical software can mutate data to a desired
type (e.g., integer), replace impossible data by “NA” entries, filter or drop
impossible entries, and group data from different ranges into different clus-
ters, rather than trying to fit a single model to data that represents multiple
different populations [257]. If there is time, it can be valuable to teach stu-
dents about the idea of filling in missing data by joining datasets that feature
the same individuals. Another common technique is multiple imputation,

182 Data Science for Mathematicians

which fills in missing data by fitting a model (e.g., linear regression) based
on the data that is present, and then using this model to predict expected
values for the data that was missing. Note that a simpler version of imputa-
tion simply replaces missing values in a univariate dataset X with copies of x.
(Imputation was introduced in Section 2.4.3.1.) In the interest of time, such
techniques are probably best delayed until a second course in statistics.

Both cleaning data and keeping data tidy are skills students will almost
certainly need if they are to conduct an independent final project, or if they
are to use the content from their statistics course(s) in subsequent research,
consulting, or employment settings. If one uses a project-based approach to
teaching, then students can practice these skills by being given successively
less tidy and dirtier data for each lab. However, it is possible (and perhaps
advisable, given time constraints) to teach a first course in statistics where
students are provided clean and tidy data for each assignment, and to relegate
the teaching of data cleaning and tidying to a data science course.

4.11 Conclusion

In this chapter, we have given a high-level overview of the essential topics
from basic statistics required for a working data scientist. We have empha-
sized topics that should be included in a first or second course in statistics,
and have tried to identify areas that historically give students difficulty. We
have highlighted areas where abstract thinking skills and advanced knowl-
edge of mathematics can be useful, and we have provided numerous refer-
ences where a reader can explore these topics more deeply. A large part of
the author’s approach was inspired by the textbooks [256], [316], and [101],
which together cover both a first and second course in statistics. For a more
traditional approach to a first course, one might follow [384]. If the audience
is future engineers, [225] (more theoretical) or [248] (more applied) may be
appropriate. Other excellent choices for a second course include [285, 401], or
for an audience with a strong mathematical background, [288]. An excellent
resource for anyone teaching statistics at any level is [182].

4.12 Sample projects

In this section, we give a few sample projects where the reader can practice
using the ideas in this chapter. All use built-in R datasets, because we intend
the focus to be on the statistics rather than obtaining and cleaning data, but

Basic Statistics 183

the reader who wishes to increase the challenge may feel free to find datasets
in the wild instead. Readers who wish to do this work in another programming
language may be able to access the same data; for example, Python and Julia
provide “RDatasets” packages that can load the same data for analysis in
those other languages.

1. Using the built-in dataset SAT that comes with the mosaic package of R
[394], create a multivariate regression model to predict the average SAT
total score in each state, based on expenditure per pupil, the average
pupil/teacher ratio, the estimated average annual salary of teachers,
and the fraction of eligible students taking the SAT. It may be helpful
to refer back to the R code provided throughout the chapter. Use a
model selection technique to find the best model you can, be sure to
check the assumptions of regression, and consider using cross-validation
to avoid overfitting. Be sure to assess the final model you find, reporting
the results of statistical inference, confidence intervals, and any concerns
about outliers and influential points. If you find outliers, consider using
ridge or LASSO techniques (Section 4.7.2) to create alternative models.

2. Using the built-in dataset Whickham that comes with the mosaic package
of R [394], create a logistic regression model for the probability that an
individual had a positive outcome (i.e., was still alive after 20 years)
based on their age and smoker status.

3. Using the built-in dataset CPS85 that comes with the mosaic package
of R [394], create a two-way ANOVA model to determine if there is a
significant difference in wage among white and non-white individuals,
and among men and women. You may wish to use interaction plots. If
you wish, you can extend your model by including age as a covariate,
or other covariates you desire.

4. Conduct exploratory data analysis on the Alcohol dataset that comes
with the mosaic package of R [394]. Create at least three interesting
graphics, as in Figures 4.1 and 4.2. If necessary, create additional cat-
egorical variables, e.g., for which continent each country is on. For a
challenge, try to create a choropleth map shading each country in the
dataset by alcohol consumption per capita.

5. Test your knowledge of confidence intervals and inference (Section 4.5)
on the dataset KidsFeet that comes with the mosaic package of R [394].
Create confidence intervals (using both methods discussed above) for
the mean of the variable length, and do inference (using both methods
discussed above) to see if there is a statistically significant correlation
between the length and width of a kid’s feet.

6. (Challenge) The SAT problem implicitly treats states as independent. A
more advanced statistical model would proceed via spatial data analysis,

184 Data Science for Mathematicians

mentioned in Section 4.6.4. If you feel inspired, teach yourself about spa-
tial statistics and consider using the spatial package in R to formulate
a model using the spatial aspect of the data.

7. (Challenge) Teach yourself about time series analysis (mentioned in Sec-
tion 4.6.4) and fit an ARIMA model to the built-in AirPassengers

dataset that comes with R. Use this model to forecast ahead, and predict
the numbers of airline passengers in the three months after the dataset
ended. You can also look up the real number of airline passengers in
those months, to see how well your model performed.

Chapter 5

Clustering

Amy S. Wagaman

Amherst College

5.1 Introduction . 186
5.1.1 What is clustering? . 186
5.1.2 Example applications . 186
5.1.3 Clustering observations . 187

5.2 Visualization . 188
5.3 Distances . 189
5.4 Partitioning and the k-means algorithm . 193

5.4.1 The k-means algorithm . 193
5.4.2 Issues with k-means . 195
5.4.3 Example with wine data . 197
5.4.4 Validation . 200
5.4.5 Other partitioning algorithms . 204

5.5 Hierarchical clustering . 204
5.5.1 Linkages . 205
5.5.2 Algorithm . 206
5.5.3 Hierarchical simple example . 207
5.5.4 Dendrograms and wine example . 208
5.5.5 Other hierarchical algorithms . 211

5.6 Case study . 211
5.6.1 k-means results . 212
5.6.2 Hierarchical results . 214
5.6.3 Case study conclusions . 215

5.7 Model-based methods . 217
5.7.1 Model development . 217
5.7.2 Model estimation . 218
5.7.3 mclust and model selection . 220
5.7.4 Example with wine data . 220
5.7.5 Model-based versus k-means . 221

5.8 Density-based methods . 224
5.8.1 Example with iris data . 226

5.9 Dealing with network data . 228
5.9.1 Network clustering example . 229

5.10 Challenges . 232

185

186 Data Science for Mathematicians

5.10.1 Feature selection . 232
5.10.2 Hierarchical clusters . 233
5.10.3 Overlapping clusters, or fuzzy clustering 234

5.11 Exercises . 234

5.1 Introduction

5.1.1 What is clustering?

Clustering refers to a collection of methods which are designed to uncover
natural groups, called clusters, in data. The idea is that the groups should
contain objects similar to each other, and the groups should be as different
as possible. Some mathematical attempts to quantify the degree of similarity
and difference necessary for clusters to be distinct have been pursued, but
no consensus exists. In short, we recognize clusters when we see them (and
sometimes find them when we should not).

The groups are unknown prior to applying the method, so these are often
called unsupervised techniques. Uncovering natural groups may lead to better
understanding of the dataset, showing relationships between observations, or
effectively creating a classification of the observations, and can be an analysis
end goal in and of itself. In other settings, clustering is a pre-processing step
and the groups found are further investigated as part of some other analysis.
Clustering is usually designed to find groups of observations, but can be used
to find groups of variables as well.

The applications of clustering are as wide-ranging as the methods are;
indeed, clustering methods are often adapted to their applications. Clustering
can be used to find communities in social networks (often called community
detection), identify documents with common stylistic patterns to help ascer-
tain authorship, find a new consumer group for marketing, study relationships
among biological species, find genes that may have similar expression patterns,
and much more. Briefly, we expound on some applications.

5.1.2 Example applications

Have you ever wondered what the referral network between physicians
looks like? Landon et al. examined referrals among over 4.5 million Medi-
care beneficiaries and their nearly 70,000 physicians in order to find what
referral communities existed. Their interest was prompted by the passage of
the Affordable Care Act and the desire to investigate creation of Account-
able Care Organizations. Finding clusters of physicians who are revealed to
already work in a community together may help in creating Accountable Care
Organizations [299]. What about examining communities found using social
networks to track linguistic shifts? A study in Raleigh, North Carolina exam-

Clustering 187

ined a particular linguistic variant called the southern vowel shift and how
changes in linguistic patterns were reflected over time in communities found
using a community detection algorithm called Infomap [404].

Clustering has also proven useful for examining authorship. Work from
the early 1990s examined authorship of the Book of Mormon and related
texts using cluster analysis to group text samples together based on literary
properties. (There is much more to be said for text analysis here, but our
focus is on clustering.) Specifically, hierarchical clustering was used to look
for groupings of text samples that may have (or are already known to have)
the same author or be written in the same style. Additionally, text samples
that were outliers with regard to the set can also be identified via clustering,
and a few were noted in the study [226]. More advanced clustering methods
were used to examine authorship as it relates to the book Tirant lo Blanc,
for which single author and two-author claims have been made, with some
detail about when the second author would have taken over writing the text.
A Bayesian approach to clustering was undertaken, with an aim to allow for
comparison of a single-cluster or two-cluster solution (to match the authorship
claims). The result of the analysis lends support to the two-author claim (or
at least, a change in style that could be associated with such a claim) [188].

If you’re interested in understanding relationships among biological
species, clustering is used there, too. Phylogenetic trees are used to show
believed evolutionary relationships between organisms based on similarities.
A 2012 study clustered soil bacteria organisms. The study authors were
interested in examining how seasonal change and environmental character-
istics affected phylogenetic relationships [429]. Beyond that, statisticians have
looked into methods for evaluating and comparing phylogenetic and clustering
trees using an idea of distance between trees in a microarray setting [87].

What about finding similar genes, or genes that work in concert? Gene
expression studies often cluster genes together looking for various relation-
ships. Lotem et al. examined genes that are over-expressed in cancers relative
to normal tissues. They found differences between the types of cancers in terms
of which genes were over-expressed [321]. If you are interested in examining
expression levels over time and seeing which gene clusters are found, you can
try a Bayesian model approach such as the one proposed in Fu et al. [173].
Their method is designed to handle fairly noisy time series data and is able
to estimate the number of clusters from the data itself.

5.1.3 Clustering observations

Now that we’ve discussed a handful of applications where clustering has
been used, we can get to the business of developing our understanding of
clustering methods. We will assume we have n observations on p variables,
and focus on clustering the n observations into k clusters. While it is possible
to cluster the p variables (sometimes called the features) with appropriate
adjustments to methods, our focus will be on using the p variables to cluster

188 Data Science for Mathematicians

the observations. The variables may be quantitative or categorical, though
categorical variables present some challenges. For most of our presentation,
we assume the variables are quantitative, and address working with categorical
variables in a few places. We will assume there is no missing data as that is a
separate issue to be dealt with carefully, as in Section 2.4.3.1. The variables
are assumed to have been chosen as inputs to the clustering algorithm; most
clustering algorithms do not perform variable selection. We’ll address this
challenge later in the chapter.

There are a wide range of clustering algorithms available to tackle this
unsupervised learning challenge. We will examine the properties and appli-
cations of a few key methods, after some necessary setup. First, we examine
visuals that might suggest clustering is appropriate for your data. After all, it
is possible that no clustering solution is really appropriate for your data (i.e.,
that no clusters really exist).

5.2 Visualization

Visualizing your data is one way to determine if clustering might be an
appropriate analysis tool. However, multivariate visualization can be a major
challenge. So, let’s start with univariate ideas that show how clusters might
show in your data. For these examples, we will use the iris dataset [19]. This
dataset was collected by Edgar Anderson, and has been used in demonstrat-
ing statistical ideas starting with the statistician R.A. Fisher in 1936 [161].
The dataset consists of 150 observations on irises, with 50 observations from
each of three species, with four measurement variables observed. One of the
measurement variables is the length of the iris petal. A density plot of the
variable for all 150 irises reveals two major modes, as shown in Figure 5.1.
Seeing the two modes might lead us to suspect that there are several groups
(at least two) present in the dataset. Here, that is indeed the case, one species
has much smaller petal lengths than the other two.

What about looking for patterns across several variables? Well, a scatter-
plot matrix can be used, if the number of variables is relatively small. This
allows for bivariate exploration to see if clusters may be present. A scatterplot
matrix allows for the examination of many bivariate relationships all at once;
all pairs of included variables have their own scatterplot displayed. In some
software, only the lower triangular portion of the matrix is shown. Others
show both portions, so that each variable plays the role of X in one plot and
plays the role of Y in the other. In our chosen software, R, the upper trian-
gular portion shows the Pearson correlation coefficient for the corresponding
relationship and the matrix diagonal is a univariate density plot [397]. This
plot can be very useful to examine the relationships among a few variables,
but grows unwieldly and hard to read as the number of variables increases.

Clustering 189

FIGURE 5.1: Density plot (i.e., smoothed histogram) of petal length variable
for iris data.

Instead of looking at a scatterplot matrix for all p variables at once, a com-
mon strategy is to examine multiple subsets of the variables. In tasks such
as regression analysis, the response variable would be included in each sub-
set examined. In our example, there are only four variables, so the matrix is
fairly easy to read. The scatterplot matrix of the iris dataset is shown in
Figure 5.2. Again, visually, it appears there may be at least two clusters of
observations when looking at the separation of data points in the different
scatterplots.

There are options for other visuals to be used, including projecting to
lower dimensions (such as with principal components analysis), which is the
approach we will take for visualizing some clustering solutions below. For infor-
mation on additional visualization options, the reader is directed to Everitt
et al. [149]. Principal components analysis is covered in Section 7.3.

5.3 Distances

For many clustering methods, a key choice that must be made by the ana-
lyst is the choice of metric for dissimilarities or distance between observations.
After all, if we are interested in finding natural groups of similar observations,

190 Data Science for Mathematicians

FIGURE 5.2: Scatterplot matrix of the four measurement variables in the
iris data.

we must have some measure of similarity or dissimilarity between the observa-
tions. Some sources call this proximity [243]. There is a minor distinction to be
made between dissimilarities and distances. For a measure to be a dissimilarity,
we assume that the resulting values are non-negative, the dissimilarity from an
observation to itself is 0, and that dissimilarities are symmetric. Dissimilarity
values are low when objects are similar and high when they are different. For
notation, let xi represent the ith data point, which is a p-dimensional vector.
Then if we take xi and xj , any pair of observations, i 6= j, and let d(xi, xj)
be the value of the dissimilarity measure, then we require all of the following.

1. d(xi, xj) ≥ 0,

2. d(xi, xi) = 0, and

3. d(xi, xj) = d(xj , xi).

However, most common dissimilarity measures also satisfy the triangle
inequality, making them metrics. In this case, we swap from calling them
dissimilarities to calling them distances. Satisfying the triangle inequality
means that for any three observations xi, xj , and xk, we have that d(xi, xj) ≤
d(xi, xk) + d(xk, xj).

If clustering is being performed on the variables rather than observations,
common dissimilarity measures involve the Pearson correlation coefficient, r,

Clustering 191

(or its absolute value) between the variables. These measures do not satisfy
the triangle inequality.

Intimately related to the choice of dissimilarity or distance is whether or
not the variables are scaled or standardized in some way. The most common
method of scaling is to scale so that each variable has mean zero and variance
one, by subtracting the mean and dividing by the standard deviation. Scal-
ing in other ways is possible, such as putting all variables on a scale from 0
to 1 by shifting the minimum value to 0 by adding a constant to all values,
and then dividing all values by the new maximum value. If variables are not
scaled, and are on very different scales, a variable with a large range may
dominate the distance measure and hence be the main driver of the cluster-
ing solution. Finally, variables can be given different weights as part of this
construction, but by default, we assume all variables are weighted equally in
the dissimilarity or distance measure. For simplicity, we will refer to these
measures as distances, though for a particular application, they may be only
dissimilarities.

Several common options for distance measures are described next.

1. Euclidean distance: The most common and probably most easily under-
stood distance measure is the typical Euclidean distance between two
observations. The usual formula applies, so that

d(xi, xj) =

[
p∑

k=1

(xik − xjk)2

]1/2

.

A variant is sometimes used that is squared Euclidean distance (i.e., just
omit the square root).

2. Manhattan (city-block) distance: Another common distance measure,
Manhattan distance uses absolute values between variable values for the
pair of observations to compute the distance between them. This means
the distance formula is

d(xi, xj) =

p∑

k=1

|xik − xjk|.

When thinking of this distance on the Cartesian plane, the idea is that
one is forced to walk between points on the grid lines, and cannot take
diagonal steps, which is where the city-block analogy originates.

3. Minkowski l-distance: Euclidean distance and Manhattan distance are
special cases of Minkowski distance, where the distance formula is given
by

dl(xi, xj) =

[
p∑

k=1

|xik − xjk|l
]1/l

.

192 Data Science for Mathematicians

In particular, Euclidean distance is l = 2, and Manhattan distance is
l = 1.

4. Mahalanobis distance: Mahalanobis distance may be useful for cluster-
ing because it takes the covariance matrix (variability information, as
defined in Section 4.7.1) into account in the distances. This distance was
originally proposed between a point and a distribution with a population
mean and covariance matrix, so that it measured how far from the mean
of the distribution the point was following the principal component axes
which were derived from the covariance matrix. For our purposes, it can
be expressed as a distance between two points assuming they are from
the same distribution, with a shared population covariance matrix. The
sample covariance matrix, S, with dimension p× p, is typically used as
an estimate of the population covariance, so that the distance between
the two points is given by

d(xi, xj) =
[
(xi − xj)TS−1(xi − xj)

]1/2
.

Note that if the sample covariance matrix is taken to be the identity
matrix, this reduces to Euclidean distance. This distance is often used
in k-means clustering [97]. Note that it is a quadratic form, as defined
in Section 3.2.3.

5. Gower’s distance: The four distances above have been described for
numeric variables. They can be applied on numerically coded categor-
ical variables (say, if one has created indicator variables, as we discuss
below), but these methods are not designed to deal with categorical data.
(Indicator variables were defined in Section 4.6.5.) Gower’s distance is
a distance measure that is able to work with a mixed collection of vari-
able types. The reader is directed to Gower [197] for more details. The
distance has been implemented in several software packages (including
via the daisy function in R).

For distances that rely on quantitative inputs, how might a categorical
variable be incorporated? One can designate one of its levels as a reference level
and create indicator variables (which take the value of 1 for that level, and 0 for
all other levels) for all its other levels, or use one-hot encoding which creates an
indicator variable for each level. Creating this series of indicator variables has
an impact on the distance measure (the indicator variables may dominate the
distance measure), but does allow the incorporation of categorical variables
into clustering analysis when working with most distances.

Clustering 193

5.4 Partitioning and the k-means algorithm

Over the years, a variety of different clustering methods have been devel-
oped. Some of the earliest methods still enjoy tremendous popularity. These
methods include partitioning methods, including k-means, and hierarchical
clustering methods. These methods are popular because they are simple to
understand and are implemented in most modern software packages for data
analysis. However, they do not have a strong theoretical foundation, and
there are computational considerations with the size of modern datasets. More
recent methods have been developed that have stronger mathematical founda-
tions, including model-based methods, and approaches to deal with large-scale
data exist.

Another class of methods that is fairly popular is density-based methods,
which can even learn the number of clusters from the data. Bayesian methods
have also been developed (though these may still be partitioning or hierarchi-
cal) to capitalize on that framework. Finally, specific clustering methods have
been developed for use on networks (or on data that has been structured like
a network). Briefly, we examine these methods and some of the algorithms
used to implement them.

For the methods that follow, we will assume we arrive at solutions with k
clusters, whether k may be specified in advance or not, depending on the algo-
rithm, and the clusters are denoted C1, . . . , Ck. For most of our methods, our
setup means that observations end up belonging to exactly one cluster. This
is considered “hard” cluster membership [97]. Typically, a cluster allocation
vector or membership function is created as output from these methods. In the
allocation vector, entries denote which cluster each observation (or variable,
as appropriate) belongs to. The membership function simply maps observa-
tions into their corresponding clusters. For example, if we let the membership
function be denoted C, then C(i) = j means that observation xi is in cluster
Cj . Suppose we know that C(12) = 3. Then, we know that observation x12

belongs to C3, and in the cluster allocation vector, the 12th entry would be 3.

5.4.1 The k-means algorithm

Partitioning methods, including the k-means algorithm, attempt to take
the observations and partition them into k clusters based on creating groups
of observations that are similar to one another based on the distance mea-
sure, where the groups themselves are far away from one another as well.
Partitioning means the union of the clusters C1, . . . , Ck is the entire set of n
observations, but the intersection of any two clusters Ci and Cj , i 6= j, is the
empty set. The subclass of algorithms to which k-means belongs is the class
of centroid-based algorithms, as other partitioning methods exist which do
not focus on centroids. K-means has a long history, being one of the earliest

194 Data Science for Mathematicians

TABLE 5.1: Number of partitions of n observations into k clusters for selected
small values of n and k.

Sample size (n) Number of clusters (k) Number of Partitions
8 2 127
10 3 9330
15 4 42,355,950
21 5 3,791,262,568,401

clustering methods developed, and was independently discovered in several
disciplines. (For more details, the reader should see Jain [245].) The term
k-means was first used in 1967 by MacQueen [330].

In k-means, the partitioning of observations sought is one that minimizes
the total squared error (or some other measure of within-cluster variation,
as covered in Zhao [519]) between each point in each cluster and its corre-
sponding cluster centroid (mean). In other words, the within-cluster variation
should be at a minimum with the chosen metric, which is commonly squared
Euclidean distance. The partition is usually solved for iteratively, rather than
setting it up as an optimization problem to solve. The challenge is that, with
n observations and the specified number of clusters k, the number of possible
partitions is immense. Specifically, the number of possible partitions can be
found as the Stirling number of the second kind with the reported n and k
values. We report a few example values in Table 5.1 to show the scale of the
problem even with very small n and k to demonstrate that it is practically
infeasible to search through all the partitions.

So, how will we go about finding our solution? Our outline of the k-means
algorithm follows.

1. Set a value for k, the number of clusters, and determine the distance
measure being used.

2. Initialize k starting cluster centroids; these may be actual data points
or random points.

3. Assign each data point xi, i = 1, . . . n, to the cluster C1, . . . , Ck that it
is closest to (measured by its distance to the cluster centroid).

4. Update the cluster centroids for all k clusters based on the updated
cluster assignments. The cluster centroids are found as the average of
all observations in that cluster. For Cj , the cluster centroid is

∑
i∈Cj

xi

|Cj |
.

5. Repeat steps 3 and 4 until convergence (i.e., the cluster assignments no
longer change).

Clustering 195

Note that the algorithm is strongly dependent on the user specified value
of k. However, k is usually unknown, so how can we use this algorithm? Well,
you can try a k value found by another algorithm, or you can find solutions for
several values of k, and compare the squared error between solutions, noting
of course that increasing k will reduce the squared error some. We can find
the within-cluster sum of squares using the Euclidean distance metric as

p∑

j=1

k∑

l=1

∑

i∈Cl

(xij − x̄(l)
j)2,

where we note that the sum is over all observations (by variable and cluster)
and compares each observation’s value on each variable to the mean of the
variable for the cluster. Alternative metrics may be chosen to compare the
solutions to help choose the value of k.

How will we choose k? We can try evaluating the solution for many values
of k and see which we like best. Some sources advocate for using an “elbow”
method approach in regards to the squared error, like one might see for choos-
ing the number of principal components to retain in principal components
analysis, where the squared error is plotted on the y-axis versus the number
of clusters k on the x-axis. An “elbow” in this plot, meaning a sharp drop-off
followed by a near plateau (or slight decrease) is the sign that the number of
clusters after the drop-off and at the start of the plateau is a good balance
between the squared error and k [148]. While the error will naturally decrease
as k increases, choosing too large a k will overfit the data (putting each obser-
vation in its own cluster, for example). Instead, we look for k after several
big drops in error before the curve starts to level out, which indicates we
are finding signal rather than noise. We will demonstrate this approach in our
example below and see other approaches later in the cluster validation section.

5.4.2 Issues with k-means

Every algorithm has advantages and disadvantages to its use. K-means
is often one of the only practical algorithms to run in a setting with high p
and low n [97]. However, it has significant disadvantages to be aware of. For
example, k-means is known to converge to local minima, even when the goal is
to find a global optimum [245]. Indeed, it is possible to get k-means “stuck” at
a local optimum due to poor choice of initial cluster centroids. Let’s consider
this via a simulation. First, we generate bivariate normal data with 3 clear
clusters as shown in Figure 5.3.

Next, we initialize the k-means algorithm with unlucky initial random
values for the centroids, with two points in the single “bottom” cluster, and
one point between the two “top” clusters as our centroids. The algorithm
runs but is unable to recover the original three clusters. Instead, the solution
is presented in Figure 5.4.

In order to alleviate this problem, often multiple random starts or starts
from within the closed convex hull of the data are used for the initial cluster

196 Data Science for Mathematicians

FIGURE 5.3: Simulated bivariate normal data with three clusters, represented
as plusses, circles, and triangles.

FIGURE 5.4: Found clusters via k-means with poor initial starting centroids.
Note that the top two true clusters have been united into one found cluster,
and the bottom true cluster has been separated into two found clusters.

Clustering 197

TABLE 5.2: Summary statistics on selected variables from a wine dataset.

Variable Mean Standard Deviation Minimum Maximum
Alcohol 13.00 0.81 11.03 14.83
Malic Acid 2.34 1.12 0.74 5.8
Ash 2.37 0.27 1.36 3.23
Alcalinity of Ash 19.49 3.34 10.6 30
Magnesium 99.74 14.28 70 162
Total Phenols 2.30 0.63 0.98 3.88
Flavanoids 2.03 1.00 0.34 5.08
Nonflavanoid Phenols 0.36 0.12 0.13 0.66
Proanthocyanins 1.59 0.57 0.41 3.58
Color Intensity 5.06 2.32 1.28 13
Hue 0.96 0.23 0.48 1.71
OD Diluted Wines 2.61 0.71 1.27 4
Proline 746.89 314.91 278 1680

centroids in k-means, and the solutions are compared to see if they agree
(hopefully at the global solution), or the one with the smallest within-cluster
variation can be chosen as the solution [97].

K-means is not scale invariant, meaning that solutions can differ signif-
icantly when obtained on standardized and unstandardized versions of the
data. (This is true for many clustering algorithms.) It is also known to find
clusters that are “spherical,” which may not represent the actual clusters
present [148]. With problems like these, alternative partitioning algorithms
have been developed, which are briefly discussed after our k-means example.

5.4.3 Example with wine data

For demonstrations of our clustering methods, we will use the wine dataset
from the University of California–Irvine’s (UCI’s) machine learning reposi-
tory [136]. Our analyses are performed using the software R [397], using the
RStudio interface [413]. The data consists of 178 observations on wine from
Italy from three different cultivars. (A cultivar is a plant variety obtained
by selective breeding.) We can use the various measurements on the wine
(disregarding the cultivar variable) to attempt to cluster the wines. The mea-
surement variables and some basic descriptive statistics about them are listed
in Table 5.2. Values were rounded to two decimal places. Unfortunately, the
repository does not have an in-depth description for each variable, nor do we
have details on how the variables were obtained or their units.

All 13 of the measurement variables are quantitative, but clearly have
different scales, so we will standardize them when performing our analysis
so that the ones with higher variance in the original scale do not dominate
the distance measure, by subtracting the mean and dividing by the standard
deviation (so that after standardizing, each variable will have mean 0 and

198 Data Science for Mathematicians

FIGURE 5.5: Within-groups sum of squares for solutions with k = 1 to k = 12
clusters for the wine example in Section 5.4.3.

standard deviation 1). We will use standard Euclidean distance as the distance
measure. If we were interested in including the cultivar variable, we would need
to use indicator variables or swap to Gower’s distance, but here, it may instead
be interesting to see if the recovered clusters match the cultivars.

In order to determine the number of clusters we want to recover, we will
use the “elbow” method approach, described previously. Remember that the
number of clusters after the drop-off and at the start of the plateau, the elbow,
is a good balance between the squared error and k [148]. We found k-means
solutions for k = 1 to k = 12, and have plotted the squared error (within-
group or within-cluster sum of squares) versus k in Figure 5.5. There is a fairly
clear elbow at k = 3 clusters so we will use the solution with three clusters.

This k-means solution was found using the kmeans function in R on the
scaled dataset (using the scale function for the standardization). The solu-
tion provides us with an allocation vector, so we can see which cluster each
observation belongs to, the size of the different clusters, as well as the cluster
centroids. The centroid values for each variable by cluster are shown in Table
5.3. Bearing in mind that these are scaled values, we are able to ascertain some
differences between the clusters in terms of their centroids. If desired, we could
unscale and put the centroids back in the original variable units as well.

The three clusters are fairly similar in size, with 51, 62, and 65 observations
respectively. Typically, we want to visualize the clustering solution, however
we are not able to plot in thirteen dimensional space. Instead, a common
representation of the solution is to plot the observations in two- (or potentially

Clustering 199

TABLE 5.3: Centroids for each cluster in the clustering solution found for the
wine dataset.

Variable vs. Centroid Cluster 1 Cluster 2 Cluster 3
Alcohol 0.16 0.83 -0.92
Malic Acid 0.87 -0.30 -0.39
Ash 0.19 0.36 -0.49
Alcalinity of Ash 0.52 -0.61 0.17
Magnesium -0.08 0.58 -0.49
Total Phenols -0.98 0.88 -0.08
Flavanoids -1.21 0.98 0.02
Nonflavanoid Phenols 0.72 -0.56 -0.03
Proanthocyanins -0.78 0.58 0.06
Color Intensity 0.94 0.17 -0.90
Hue -1.16 0.47 0.46
OD Diluted Wines -1.29 0.78 0.27
Proline -0.41 1.12 -0.75

TABLE 5.4: Comparison of clustering result to original cultivar variable.

k-means Cluster vs. Cultivar 1 2 3
1 0 3 48
2 59 3 0
3 0 65 0

three-) dimensional principal component space. The principal components are
obtained (using the correlation matrix here due to scaling issues) and principal
component scores (new coordinates) for each observation are obtained. Then,
we plot in that lower-dimensional space with the understanding that it is
encapsulating a high percentage of the variation in the original data (55%
here for the two-dimensional solution, which may be a little lower than we’d
like). In Figure 5.6, we can see that the clustering solution shows a somewhat
clear separation of the clusters in the principal component space. (Readers
new to principal components analysis should see Section 7.3.)

Finally, since we understood that the wines were collected from three dif-
ferent cultivars, we can examine our clustering solution to see if the clusters
capture the cultivar variable. In other words, we are examining whether or not
the naturally occurring groups found based on the observations correspond to
the different wine cultivars. The short answer here is a resounding yes. As
shown in Table 5.4, the clusters line up very well with the cultivars. There
was no expectation that this would be the case; indeed, the cultivar variable
was not used to find the clustering solution. This example shows that unsuper-
vised learning can result in practically meaningful findings, and illustrates why
clustering is used to look for naturally occurring groups of observations. The
clusters found may be very useful in identifying some underlying structure.

200 Data Science for Mathematicians

FIGURE 5.6: Three-cluster k-means solution plotted in principal component
space. Cluster assignment is plotted for each observation.

TABLE 5.5: Comparison of three- and four-cluster solutions for the wine
dataset.

k-means Clusters 1 2 3 4

1 49 0 2 0
2 0 55 0 7
3 0 1 43 21

We can use similar tables to compare different clustering solutions if they
are obtained. For example, we can compare a k-means three-cluster solution
to a k-means four-cluster solution. Note that since k-means is a partitioning
method, there is not necessarily any relationship between the three- and four-
cluster solutions. As Table 5.5 shows us, there are some similarities between
the clusters recovered, as it appears one cluster from the three-cluster solution
was split in two, but the other two clusters from the three cluster solution are
largely intact.

Now that we’ve explored k-means via an example, we can turn our atten-
tion to another issue relevant to any clustering solution, the topic of cluster
validation.

5.4.4 Validation

How do we know if our clustering solution has any value? In other words,
how do we validate or evaluate our clustering solutions? We’ve seen in our
examples that we can compare clustering solutions to see if the clusters are
similar with some basic contingency tables, but this isn’t really validating the

Clustering 201

solution. Are there statistics that can help us in this endeavor? The answer is
yes, though not all are appropriate in every situation.

A useful statistic (which has an associated graphic) is the silhouette coeffi-
cient, first proposed by Rousseeuw in 1987 [412]. This statistic was developed
to help visualize clustering solutions from partitioning methods. However, it
can be computed for any clustering solution. First, silhouette values are com-
puted for each individual observation. To understand these values, we need
some notation. We will assume we are looking at the ith observation, xi, and
that we have a clustering solution with k clusters already computed, and a
dissimilarity measure chosen. To compute the silhouette value, we need to
identify the cluster the ith observation is in (say Ci), and also what it’s next-
best cluster fit would be (say Ci′). In other words, we need to identify which
cluster it belongs to best, ignoring its current assigned cluster. In order to
identify which cluster is Ci′ , for each cluster c other than Ci, we compute
d(xi, c), which is the average dissimilarity of the ith observation to all ele-
ments in cluster c. We take the minimum of those average dissimilarities, and
denote it as b(i), i.e.,

b(i) = min
c6=Ci

d(xi, c).

The cluster that yielded that minimum is taken to be Ci′ , and is called
the neighbor of xi [412]. We also compute the average dissimilarity d(xi, Ci)
to obtain the average dissimilarity of xi to all objects in its own cluster, which
is denoted a(i). The silhouette value is a comparison of a(i) and b(i), appro-
priately scaled. Intuitively, for good clustering solutions, we’d like the a(i)’s
to be smaller than the b(i)’s for all observations, indicating that observations
fit better in their assigned cluster than in their cluster neighbor. The formula
for the silhouette value, s(i), is given by

s(i) =
b(i)− a(i)

max(a(i), b(i))

which results in s(i) values between −1 and 1. Values near −1 indicate that
the observation would belong better in its cluster neighbor than its current
assigned cluster, while values of 1 indicate it fits very well in its own cluster,
because its within-cluster average dissimilarity is much less than the average
dissimilarity to its cluster neighbor. Values near 0 indicate the observation
would belong equally well in both clusters.

Now that we have silhouette values for each observation, we can use them
to construct averages per cluster or other statistics of interest. Looking at the
overall maximum of the silhouette values may reveal no clustering structure is
really present (if the maximal s(i) value is less than, say, 0.25) [243]. A plot dis-
playing the s(i) values sorted in descending order within each cluster is called
a silhouette plot. In Figure 5.7, we examine the silhouette plot for the three-
cluster solution for the wine data we obtained using k-means. The plot was
constructed with the silhouette function in the cluster library in R [331].

Note that the average of the silhouette values for each cluster has been
reported. This value is called the average silhouette width for the cluster, s̄j ,

202 Data Science for Mathematicians

FIGURE 5.7: Silhouette plot for k-means three-cluster solution on wine data.

j = 1, . . . , k. These values can indicate which clusters are “stronger” than
others. We also see that the average silhouette width for the entire dataset
for this choice of k has been reported. This value is denoted s(k) because it
applies to the entire solution with k clusters. In our example, s(3) = 0.28.

Now, suppose we fit clustering solutions with k varying from 2 to n−1, and
we look at the average silhouette widths (the s(k) values) across the solutions.
The maximum of these values is called the silhouette coefficient, SC. In other
words,

SC = max
k

s(k),

for k = 2, . . . , n−1. Finding the silhouette coefficient is useful for two reasons.
First, it provides one with a reasonable choice of k; whichever solution had
the maximal average silhouette width is arguably the best solution. Second,
it provides an assessment of the overall strength of the clustering solution.
Kaufman and Rousseuw proposed the interpretations in Table 5.6 for SC
values [263].

We ran a short R script to find the SC value for our k-means solutions,
using k = 2, . . . , 177 since there are 178 observations in the dataset. The SC
value turns out to be the 0.28 reported for our solution with k = 3. So, this was
a good choice for k, based on this statistic, even though it was chosen via other
means originally. (The k = 4 solution had an average silhouette width of 0.26.)
However, even though this was the maximal width for the dataset found, the
provided interpretations suggest the clustering structure is not very strong.

Clustering 203

TABLE 5.6: Kaufman and Rousseuw’s proposed interpretations for silhouette
coefficients.

SC Interpretation
0.71-1.00 A strong structure has been found.
0.51-0.70 A reasonable structure has been found.
0.26-0.50 The structure is weak and could be artificial;

try additional methods.
< 0.25 No substantial structure has been found.

A similar statistic called the shadow value has been developed. For details,
see Leisch [309]. Many other validation approaches exist (too many to list)
and more continue to be developed. Briefly, we take a look at the validation
options available in the R package clValid [64] by Brock et al., which includes
some specific validation methods for biological data. The authors describe the
options as falling into three main categories: internal, stability, or biological.

Our focus will be on the internal and stability methods. According to the
package authors, “Internal validation measures take only the dataset and the
clustering partition as input and use intrinsic information in the data to assess
the quality of the clustering. The stability measures are a special version of
internal measures. They evaluate the consistency of a clustering result by
comparing it with the clusters obtained after each column is removed, one
at a time” [64, pp. 2–3]. Here, the columns are the variables in the dataset,
so the stability measures are evaluating how the clustering solutions change
as variables are left out. The internal measures include connectedness, the
silhouette width previously described, and the Dunn Index. Four stability
measures are included. For details, please see Brock et al. [64], which has
additional references as well. For all of the stability measures, smaller values
are desired.

One of the benefits of using clValid is that it allows the user to choose
from up to nine different clustering algorithms (assuming they are appropri-
ate), select potential values of k and the desired validation approaches, and
(after some processing time), it will report on which settings provide the best
solution in terms of the validation measures. Several of the available clustering
algorithms are discussed in later sections. To illustrate how clValid can be
applied, we used the wine data, with inputs to the function as follows:

1. clustering algorithms: agnes, kmeans, diana, pam, clara, with Euclidean
distance for all methods and average linkage for hierarchical methods,

2. possible values of k: 2–20,

3. validation measures: internal and stability for a total of 7 validation
measures.

A summary of the results (not shown) found that k-means with 3 clusters
was the best solution in terms of the silhouette coefficient, pam with 20 clus-

204 Data Science for Mathematicians

ters was the best according to one of the stability measures, and the other
5 validation measures selected agnes (which is a hierarchical agglomerative
method) with only 2 clusters as the optimal solution. clValid does allow the
use of model-based methods via mclust, which are discussed below, though
none were implemented in this example. However, at this time, it does not pro-
vide for the implementation of density-based methods that we discuss later.
For details on recent work highlighting validation methods for density-based
approaches, the reader is directed to Moulavi et al. [354].

For a different take on cluster validation, with a focus on evaluating clus-
tering usefulness, rather than performance using some of the methods we’ve
described or used in this chapter, the reader is directed to Guyon et al. [205]
for some interesting discussion.

5.4.5 Other partitioning algorithms

While k-means is the most popular partitioning algorithm, it is not the only
available partitioning algorithm. Where k-means focused on centroids (means)
and minimizing squared error, one can swap to median-like quantities and use
absolute error in a k-medians protocol [97]. One fairly popular alternative is
the partitioning around medoids (PAM) algorithm [263]. The PAM algorithm
is similar to k-means, but a key difference is that the “centers” of the clusters
are medoids, which are representative objects from the clusters (i.e., actual
data points), not centroids, which may not be actual data points. The PAM
algorithm is less sensitive to outliers than k-means [243]. Further extensions of
the PAM algorithm exist, such as CLARA (Clustering LARge Applications)
[261], and both of these algorithms can be applied in most common software
for data analysis, as we saw them both in our k-means validation example.

There is no one algorithm that is “best” in every situation. Each algorithm
has advantages and disadvantages and has been designed such that they work
better in some situations rather than others. Indeed, many methods exist that
are not based on a partitioning approach, so let’s explore other approaches.

5.5 Hierarchical clustering

Like k-means, hierarchical clustering methods are intuitive. In these meth-
ods, a hierarchical series of clustering solutions is developed by either slowly
merging similar observations into clusters together until all observations are
in one cluster (referred to as agglomerative or bottom-up clustering) or by
continually splitting clusters down to the level of individual observations after
starting from a single cluster (referred to as divisive or top-down clustering).
Typically, splits and merges are limited to involve just two clusters (i.e., creat-
ing two from one, or merging two into one), though this is not always the case.

Clustering 205

In each level of the hierarchy, a different number of clusters is present. One
of the hierarchical levels is chosen as the clustering solution, based on various
criteria we will discuss below. For example, a solution with 10 hierarchical
levels may be obtained and the third level from the top be chosen because it
has the best average silhouette width for its clusters among the 10 levels, or
the fifth level from the top may be chosen because of the number of clusters
it has.

Agglomerative methods are more common than divisive methods, so we
will focus on agglomerative methods to develop our understanding. The chal-
lenge with these methods is that the distance measures are defined between
observations, but we need to be able to merge clusters based on cluster dis-
tances to create these solutions. The methods used to update the cluster dis-
tances in the overall distance matrix are called the linkages. There are several
common linkages available in most clustering software programs. Let d(Ca, Cb)
be the distance between cluster Ca and Cb, which each could be made up of
different numbers of observations. The linkages tell us how to update these
distances as we merge clusters together, regardless of what distance measure
we have chosen to use between observations.

5.5.1 Linkages

Here, we describe a few linkage types, commonly available in most software
packages that perform hierarchical clustering.

1. Single Linkage: The distance between any two clusters is the minimum
distance between any pair of observations in the different clusters.

d(Ca, Cb) = min d(xi, xj) for xi ∈ Ca and xj ∈ Cb (5.1)

2. Complete Linkage: The distance between any two clusters is the maxi-
mum distance between any pair of observations in the different clusters.

d(Ca, Cb) = max d(xi, xj) for xi ∈ Ca and xj ∈ Cb (5.2)

3. Average Linkage: It may come as no surprise that there is a compromise
option between single and complete linkage, due to their use of extremes.
In average linkage, the distance between any two clusters is the average
of all the pairwise distances between all pairs of observations in the
different clusters.

d(Ca, Cb) = mean d(xi, xj) for xi ∈ Ca and xj ∈ Cb (5.3)

4. Centroid Linkage: The challenge with average linkage is that it requires
looking at all pairwise distances between the observations in the two
clusters under consideration. Centroid linkage is simply the distance
between the means (centroids) of the two clusters.

206 Data Science for Mathematicians

5. Ward’s Method: Based on the work of Joe Ward [491], while not strictly
a way of defining distances between two clusters, it is a commonly avail-
able method in software. At each level of the hierarchy, a statistic called
the error sum of squares is computed for the clusters in the level. The
error sum of squares is designed to capture the loss in information from
merging points into clusters compared to keeping them all as individual
units. Thus, smaller values of the statistic are desired. When moving
up to the next level, and determining which two clusters to merge, the
error sum of squares statistic is computed for each possible new clus-
ter arrangement at that level. The arrangement that has the smallest
increase in the error sum of squares is chosen, and the relevant merge
performed. This method has been studied over the years but is imple-
mented differently in various software packages. Please see Murtagh and
Legendre [355] for details on selected implementations of this method.

The various linkages have different advantages and disadvantages related to
their use and behavior. For example, single linkage often exhibits a behavior
called “chaining” where two clusters separated by a few points are strung
together. Also in single linkage, it is not uncommon for observations to merge
at higher distances to a main cluster, one at a time. This behavior can be
useful for identifying some unusual points, but may yield unrealistic clustering
solutions (a large number of clusters with one or two observations each), or
due to outliers, it may join two clusters which have a majority of points rather
far apart. However, single linkage is capable of handling diverse cluster shapes,
though the sensitivity to outliers can often outweigh its usefulness.

At the other end of the spectrum, complete linkage tends to break large
clusters, creating many small clusters, and may generate spherical clusters,
which may not be realistic. Ward’s linkage also suffers from a preference for
spherical clusters [97]. Centroid linkage may improve on average linkage in
some applications, but can also suffer from inversions. As an example of an
inversion, suppose we have two disjoint clusters at some level in the hierarchy.
An inversion would occur if our process results in their union being lower
in the hierarchy than the disjoint clusters themselves. Our plan is that we
are going from many clusters to a single one, so this should be impossible.
Inversions are relatively rare, but can result based on the choice of linkage
and the dataset [247].

For a detailed comparison of k-means and some common linkages for hier-
archical clustering, please see Fisher and Ness [160].

5.5.2 Algorithm

The agglomerative hierarchical clustering algorithm can be summarized in
the following steps:

1. Select a distance measure, and then obtain the starting distance matrix
for all observations.

Clustering 207

FIGURE 5.8: Five sample data points.

TABLE 5.7: The Euclidean distance matrix for the five data points shown in
Figure 5.8.

Obs 1 2 3 4 5
1 0
2 4.03 0
3 0.71 4.72 0
4 1.80 5.10 1.80 0
5 3.91 1.41 4.61 4.47 0

2. Merge the two observations (or clusters) with the smallest distance (per-
forming multiple merges in the case of ties) to form a new cluster (or
clusters, in the event of ties).

3. Update the distance matrix with the new cluster distances based on the
linkage selected.

4. Repeat the previous two steps (merge and update) until all observations
are merged into a single cluster.

5.5.3 Hierarchical simple example

For this example, we will assume we have five bivariate observations that
have been selected for clustering as shown in Figure 5.8. The associated start-
ing Euclidean distance matrix is provided to us as shown in Table 5.7.

208 Data Science for Mathematicians

TABLE 5.8: Distance matrix from Table 5.7, but with clusters 1 and 3 merged.
The distances for this new cluster have not yet been computed.

Cluster 1,3 2 4 5
1,3 0
2 ? 0
4 ? 5.10 0
5 ? 1.41 4.47 0

TABLE 5.9: Distance matrix from Table 5.8, but with missing entries com-
puted using single linkage.

Cluster 1,3 2 4 5

1,3 0
2 4.03 0
4 1.80 5.10 0
5 3.91 1.41 4.47 0

Let’s find the agglomerative clustering solution for these five observations
based on single linkage. To begin, we find the minimum distance in the distance
matrix, which will indicate which two observations we merge to create a new
cluster. The merge is always based on smallest distance; the linkage just tells
us how to update distances after the merge is complete (except for Ward’s
method). In the event of ties, multiple merges (creating multiple clusters, or
a cluster with three or more observations) may occur.

In our matrix, we can see that observations 1 and 3 have a distance of 0.71,
and that is the minimum distance in the matrix. We merge these observations
to create a new cluster called C1,3. Note that this will leave a number of
distances unchanged; for example, the distance between observations 2 and
4 is unaffected by this merge. We can see what the updated distance matrix
looks like in Table 5.8. The question marks denote all the distances that need
to be updated based on the merge of observations 1 and 3 into a cluster.

To fill in the question marks in Table 5.8, we use single linkage. We note
that d(x1, x2) = 4.03 and d(x3, x2) = 4.72, so d(x2, C1,3) is the minimum of
those, or 4.03. We can fill in the other entries similarly, as shown in Table 5.9.

We continue the merging process based on the smallest distance between
observations or clusters, which happens to be between observations 2 and 5,
at a distance of 1.41. The distance matrix is updated using single linkage
for all distances that involve the new cluster, and the process continues. To
summarize what happens in this example, we find that observations 1 and 3
join at a distance of 0.71, observations 2 and 5 join at 1.41, observation 4 joins
1 and 3 at 1.80, and all observations are finally joined together at a distance
of 3.91 into a single cluster.

5.5.4 Dendrograms and wine example

For hierarchical clustering, a common graphical representation of the solu-
tion is a dendrogram. The dendrogram is designed to show (at least for

Clustering 209

FIGURE 5.9: Dendrogram from single linkage agglomerative hierarchical clus-
tering of 5 sample data points.

relatively small numbers of data points) which clusters merged (or split) and at
what dissimilarities (the height on the y-axis) the merges (or splits) occurred.
The plot thus shows a collection of possible clustering solutions, and an indi-
vidual solution is obtained by “cutting” the dendrogram at a particular height.
In Figure 5.9, we see the dendrogram that resulted from our single linkage hier-
archical clustering example. The distances at which each cluster joined are all
visible in the dendrogram.

In terms of obtaining a particular clustering solution, cutting the den-
drogram at any height less than 0.71 would result in 5 distinct clusters, and
cutting the dendrogram at heights greater than 3.91 yields a single cluster.
Using a height of 1.75 to make the cut would result in three clusters (observa-
tions 1 and 3, observations 2 and 5, and observation 4), since this is just before
observation 4 joins observations 1 and 3. Typically, a judgment call must be
made about where to make the cut, which is often based on distance between
merges or the number of clusters desired or both. For example, if there is a
large gap in distance before a merge perhaps the clusters existing before the
merge are really separate clusters. This might be a good solution to examine.
Another approach is to define an error criterion and plot the value of the error
criterion versus k as suggested before with k-means. As before, an “elbow” in
the plot can indicate a reasonable value for k.

For our simple five-point example, the solution under both single and com-
plete linkage turns out to be the same. In order to demonstrate differences
in the linkages, we turn to our wine dataset. Recall there are 178 observa-
tions with 13 measurement variables. As before, due to the scaling issues
between the measurement variables, we standardize the variables and will use
Euclidean distance just as we did in our k-means example. The dendrograms
for the solutions using both single and complete linkage are shown in Figures
5.10 and 5.11. The observation numbers are shown but are very small with
178 observations. However, the general structure of the dendrograms shows
that there are differences between the single and complete linkage types.

210 Data Science for Mathematicians

FIGURE 5.10: Dendrogram from single linkage agglomerative hierarchical
clustering of wine data.

FIGURE 5.11: Dendrogram from complete linkage agglomerative hierarchical
clustering of wine data.

Clustering 211

5.5.5 Other hierarchical algorithms

The agglomerative algorithm discussed above (and implemented via
hclust or agnes—agglomerative nesting—in R) is not the only algorithm
available for hierarchical clustering. Divisive methods can also obtain a hier-
archical solution, and an example of such an algorithm is diana in R. This
algorithm was originally published in Nature in 1964 [329]. The method relies
on a series of binary splits to separate the observations into clusters, starting
from all in a single cluster and slowly splitting the observations apart based
on dissimilarities between clusters. Another alternative is the algorithm mona,
also available in R [262].

5.6 Case study

For our case study examining k-means and hierarchical methods, we will
use the College Scorecard dataset, available from the United States Depart-
ment of Education [367]. We downloaded the most recent institution-level data
file, which gave us a dataset of 7112 observations and 1978 variables. A data
dictionary that describes the variables and how they are coded is also avail-
able [367]. The dataset contains information on colleges and universities in the
United States, as part of an initiative to help prospective students understand
their college options, especially regarding costs. Different institutions submit
different amounts of information to the Department of Education, so there is
a high level of missing data.

How can we make sense of all this information about the different insti-
tutions in the United States? Prospective students, parents, and guardians
might search for schools with tuition in a certain range, or schools located
in their home state, or schools with good retention rates. However, this is
only considering one variable of interest at a time. We could combine these
and filter for several characteristics, but this still relies on our knowledge of
what types of schools we want to find. Instead, we can use clustering to look
for natural groups of similar institutions, which we can then investigate fur-
ther. Perhaps finding that one institution is in a particular cluster will lead
us to consider other institutions in the same cluster. For our case study, we
will look to see what clusters of institutions are recovered, with no particular
expectations about what will be found.

For our analysis, we initially isolated 20 quantitative variables we wanted
to include in the clustering. However, that gave us fewer than 1200 observa-
tions remaining with complete cases (no missing data). We investigated our
subset of 20 variables and isolated 9 that we could retain and still have 4546
observations (from the original 7112). We also kept variables that indicated
the school name, type of institution (e.g., public versus private), and region
in which the school is located, even though those variables will not be used

212 Data Science for Mathematicians

TABLE 5.10: Nine variables selected from the College Scorecard dataset and
the definition of each.

Variable Description

UGDS Enrollment of undergraduate
certificate/degree-seeking students

TUITFTE
Net tuition revenue per full-time
equivalent student

PCTPELL
Percentage of undergraduates who
receive a Pell Grant

COMP ORIG YR4 RT
Percent completed within 4 years at
original institution

COMP ORIG YR6 RT
Percent completed within 6 years at
original institution

PAR ED PCT 1STGEN Percentage first-generation students

GRAD DEBT MDN
The median debt for students who have
completed

AGE ENTRY Average age of entry

MD FAMINC
Median family income in real 2015
dollars

in the clustering. The 9 variables we used in our clustering and their descrip-
tions (from the Department of Education [367]) are shown in Table 5.10. The
9 variables are clearly on different scales, so we will standardize them for our
clustering.

5.6.1 k-means results

As in our wine data example, we examined k-means solutions and com-
puted the within-group sum of squares in order to choose an appropriate k.
Here, we implemented the process for k = 2 to k = 20 (slightly more clus-
ters). The results are shown in Figure 5.12. There are several potential elbows
indicating we might want a k between 3 and 6. Since an elbow was not clear,
we computed the average silhouette width for k values from 2 to 100. This
revealed that the silhouette coefficient, the maximum average silhouette width,
was obtained with the k = 4 solution, with a value of 0.3428.

We took a closer look at the four-cluster k-means solution. The clusters
had 739, 1559, 1203, and 1045 observations respectively. The cluster centroids
(on the standardized variables) are displayed in Table 5.11. Briefly looking

Clustering 213

FIGURE 5.12: Within-groups sum of squares for k-means solutions with k = 1
to k = 20 clusters for the College Scorecard data.

over the cluster centroids, it appears that clusters 1 and 3 had similar net
tuition revenue per student, but differed greatly on retention rates (both 4
and 6 years), average age of entry, and median family income. Cluster 4 has
the lowest net tuition revenue per student, the lowest retention rates, but
moderately low debt at graduation. Finally, cluster 2 is distinguished by hav-
ing the smallest number of students, highest retention rates, and lowest debt
at graduation.

To determine how strong the clustering structure found here is, we exam-
ined the average silhouette width for each cluster. The values were 0.2041,
0.4200, 0.3270, and 0.3439, respectively. These all suggest the structure found

TABLE 5.11: Cluster centroids for the four-cluster solution for the College
Scorecard dataset.

Variable vs. Centroid Cluster 1 Cluster 2 Cluster 3 Cluster 4

UGDS -0.31 -0.46 0.31 0.55
TUITFTE 0.35 -0.03 0.33 -0.58
PCTPELL 0.63 0.69 -0.85 -0.51
COMP ORIG YR4 RT -0.87 0.82 0.44 -1.11
COMP ORIG YR6 RT -0.76 0.73 0.51 -1.15
PAR ED PCT 1STGEN 0.41 0.70 -1.24 -0.10
GRAD DEBT MDN 1.12 -0.78 0.84 -0.59
AGE ENTRY 0.94 0.50 -1.01 -0.25
MD FAMINC -0.47 -0.63 1.35 -0.29

214 Data Science for Mathematicians

TABLE 5.12: Comparison of the four-cluster solution for the College Scorecard
dataset with the control variable of institution type.

Control versus k-means Clusters 1 2 3 4
1 - Public 44 98 399 963

2 - Private nonprofit 255 131 773 71
3 - Private for-profit 440 1330 31 11

is weak and could be artificial, or, for cluster 1, that the structure is not sub-
stantial. Unfortunately, graphing the solution in principal component space is
not very revealing. The clusters do appear to separate along the first principal
component axis, but there is an extreme outlier very far from the other points
(visual not shown). Additionally, it is difficult to gain much meaning from a
plot with over 4000 data points on it. Removing the outlier, which is in cluster
1, does not look like it would affect the solution much.

Instead of trying to gain visual insights into our clusters, we decided to see
how the clusters found corresponded to the type of institution and school’s
region. For region, we didn’t find much of an association with the four-cluster
k-means solution. However, for the type of institution (Control variable: 1 =
Public, 2 = Private nonprofit, and 3 = Private for-profit), we found some asso-
ciation, as shown in Table 5.12. Comparing these associations to the cluster
centroids is interesting.

5.6.2 Hierarchical results

To find a clustering solution to compare to the k-means four-cluster solu-
tion, we examined a variety of hierarchical models with hclust. Interest-
ingly, both single linkage and complete linkage identified one institution as an
extreme outlier. It joined all the other observations very late in the associated
dendrograms. This institution was identified as “Ultimate Medical Academy –
Clearwater.” This outlier turns out to be the same one visible in the principal
component space. Keeping this outlier in the analysis meant that neither single
nor complete linkage appeared to be good options for a hierarchical clustering
solution. Instead, we performed hierarchical clustering using Ward’s method,
and this resulted in a dendrogram that seemed easier to work with, as shown
in Figure 5.13. Note that the merges at low distances are impossible to read
due to the sheer number of data points, but it is fairly easy to identify heights
at which to cut the dendrogram to recover anywhere between two and seven
clusters. We decided to explore the five-cluster solution.

The overall average silhouette width for the five-cluster solution was
0.2612, indicating a weaker structure than that found via k-means. The clus-
ters had 939, 543, 713, 715, and 1636 observations each with average cluster
silhouette widths of 0.1721, 0.2106, 0.2186, 0.3729, and 0.2990 respectively.
This suggests only the fourth and fifth clusters recovered any real structure,
and it was weak. Briefly, we compare the hierarchical solution to the k-means
solution, because it appears there isn’t much else to learn from the hierarchical

Clustering 215

FIGURE 5.13: Dendrogram from Ward’s method hierarchical clustering of
College Scorecard data.

TABLE 5.13: Comparison of the four-cluster k-means solution with the five-
cluster hierarchical solution on the College Scorecard dataset.

Hierarchical versus k-means Clusters 1 2 3 4
1 206 34 425 279
2 464 63 12 4
3 0 1 694 18
4 6 0 0 709
5 63 1461 72 40

solution. The overlap between the clustering solutions is shown in Table 5.13.
We see that cluster 2 from k-means overlaps a great deal with cluster 5 in
the hierarchical solution. In particular, it loses fewer than 100 observations to
other hierarchical clusters and picks up less than 200 observations from other
k-means clusters. Similarly, cluster 4 from k-means overlaps significantly with
cluster 4 in the hierarchical solution (numbers match by coincidence), though
over a quarter of its observations ended up in hierarchical cluster 1. However,
the other clusters are different, resulting in the differences in average silhouette
widths. With the k-means solution preferred here, we can consider next steps.

5.6.3 Case study conclusions

Natural next steps in this analysis would be to explore the k-means cluster
centroids further, and try to see if there is a “name” that can be given to each
cluster. We can return to our brief summaries of the k-means clusters to try
this ourselves. We also looked at names of institutions in each cluster to try
to validate our descriptions. Generally speaking, cluster 4 appears to be “big”
public schools, including a large number of community colleges. These schools

216 Data Science for Mathematicians

have large numbers of undergraduates coupled with low net tuition revenue
and poor retention rates compared to the other institutions. This makes sense
given the status of community college in the United States. Cluster 2 appears
to be largely small, private, for-profit schools which have high retention rates
and low debt upon graduation—perhaps these are technical schools. Checking
names of some schools in this cluster, we do indeed find a large number of
technical schools, including many beauty schools, in the cluster.

Cluster 3 is largely a mix of public and private nonprofit schools with
fairly traditional students in terms of age (lowest ages at entry), fairly high
tuition revenue per student, and relatively well-off families sending students
there (judging by the median family income). As examples of schools included
in this cluster we find the University of Southern California, Yale University,
Emory University, and the University of Notre Dame, along with a number of
liberal arts schools such as Amherst College, Smith College, Wellesley College,
and Williams College. These appear to be more traditional four-year institu-
tions rather than community colleges. Finally, considering cluster 1, we see
schools that look in many respects like those in cluster 3, but with older stu-
dents, comparatively poor retention rates, and lower family median income.
It’s harder to find a pattern here to give a name to the cluster (perhaps this is
reflected in the cluster having the lowest average silhouette value among these
four). There appear to be few community colleges, with a mix of technical and
institutions with four-year programs in this cluster.

Finding these divisions is not that surprising. However, the clustering
results might be of interest to audiences beyond students and their fami-
lies. Perhaps a company wants to market a new educational software tool and
target it at schools with the most students (i.e., cluster 4). Services for non-
traditional students might be advertised for schools in cluster 1. Companies
may want to advertise unpaid internships to the more traditional students in
cluster 3. Obviously, we are making some broad assumptions about institu-
tions in the clusters when we assign names or suggest these applications, but
the clusters give us a starting place to work from.

After exploring the clustering solution we chose, we could consider further
refinements to the clustering solution. Perhaps the outlier should be removed
and the set of variables involved be adjusted. The choice of variables can
greatly affect the solution, and here, recall that we originally selected 20 out
of the 1978 available, and reduced that down even further to just 9 variables
due to issues with missing data. Perhaps less missing data is present with
slightly older versions of the dataset; we could investigate older releases, or
find other sources of information to merge.

We could filter down to certain observations to cluster on as well. For
example, what if we looked for clusters only among the private four-year insti-
tutions? What clusters would we find in the Rocky Mountains? We could find
completely different clusters with an altered focus. If you want to know which
of these clusters your undergraduate institution or your local college ended up
in, we suggest downloading the dataset, rolling up your sleeves to get the data
in an appropriate software program, and trying clustering out on your own.

Clustering 217

5.7 Model-based methods

While partitioning methods, like k-means, and hierarchical methods can
be written as algorithms to follow, they do not have a strong mathematical or
statistical foundation. Model-based clustering methods have a stronger foun-
dation, though they can still be considered partitioning methods. In these
methods, assumptions are made about the underlying clusters to be discov-
ered that enable statistical models to be specified and then fit based on the
data in order to uncover the clusters.

The idea of fitting models means that we can choose among models (i.e.,
perform model selection) to find a good fit to the data. However, in order to
fit such models, one makes a strong assumption that the underlying popula-
tion is actually a collection of subpopulations (the clusters), and that they
have multivariate probability density functions that enable them to be distin-
guishable from each other. With a fixed (finite) number of subpopulations, the
result is a finite mixture density because the population is a mixture of the
subpopulations (which can be in different proportions relative to each other).
This model means that the challenge lies in estimating the components of the
mixture, and their relative proportions based on assigning observations to the
cluster they most likely belong to based on the model fit [148]. Mixture models
have their origins in the work of Wolfe, for example [512]. We discuss model
development and estimation techniques next.

5.7.1 Model development

As before, assume we have k clusters present in the population (and our
data). Then, in a finite mixture model, each cluster is associated with a mul-
tivariate probability density function, denoted gj(x), where j = 1, . . . , k, and
x is our p-dimensional random vector of values for an observation. In other
words, gj(x) is the probability density of x ∈ Cj . The proportion of observa-
tions in each cluster is given by qj . We combine all of the individual component
densities together to obtain the population density function. In other words,
the population density function f(x | q) is given by

f(x | q) =
k∑

j=1

qjgj(x).

The density functions gj(x) are usually governed by parameters, specific
to each cluster, suppressed in the notation here, though they can be added.
For example, the density function might be written as gj(x | θj), and the
population density function as

f(x | q, θ) =

k∑

j=1

qjgj(x | θj).

218 Data Science for Mathematicians

With the goal of estimating the cluster probability density functions (or,
more specifically, their parameters) and the mixing proportions, we note that

one necessary constraint in the solution is that
∑k
j=1 qj = 1, and we assume

that the mixing proportions are non-negative.
When working with these models, a common assumption made (which sim-

plifies the problem) is that the cluster probability density functions all come
from the same family. Most commonly, they are assumed to be multivariate
normal, such that the mixture distributions arising here are Gaussian mix-
tures. In that case, the parameters θj , j = 1, . . . , k, refer to different means
and covariances for multivariate normal distributions. When attempting to
find estimates for these parameters, with the assumption of multivariate nor-
mality, we will see that some constraints may be made on the covariances
to make the optimization more feasible. It should be noted that the model
itself does not expressly require the cluster density functions to be in the
same family; however, that assumption significantly simplifies the estimation
process.

5.7.2 Model estimation

In order to find estimates for our model parameters, we will need to specify
a value of k in order to know how many components are in our mixture. The
true values of k, q, and θ are unknown, so let’s assume we choose an arbitrary k
for now, and we want to estimate q and θ based on that choice. The estimates
we will find are typically denoted q̂ and θ̂.

How will we solve for q̂ and θ̂? A classical statistical approach to esti-
mate parameters is via maximum likelihood estimation. However, even simple
examples using a mixture of two univariate normal distributions show serious
challenges for maximum likelihood parameter estimation. If the maximum like-
lihood estimation approach is not feasible, what can we do instead? A modern
approach is to use the Expectation-Maximization (EM) algorithm [126]. This
algorithm is an iterative process, alternating between an expectation and max-
imization step. We can motivate this idea in the context of the mixture of two
univariate normal distributions, following from Clarke et al. [97].

In this setting, we suppose p = 1 and k = 2, with both underlying densities
being normal. Then we have that gj(x) = φ(x | θj) = φ(x | µj , σ2

j) for j = 1, 2,
where φ is the usual normal density function. When we combine the gj ’s to
obtain the mixture density, we obtain

f(x) = q1φ(x | µ1, σ
2
1) + (1− q1)φ(x | µ2, σ

2
2).

With k of only 2, this is showing that the observation is drawn from one
of two normal distributions, with probability q1 of being from the first dis-
tribution, and hence, probability q2 = 1 − q1 of being from the second. Note
that in this case θ = (µ1, σ

2
1 , µ2, σ

2
2)′, and we need only an estimate of q to

get both mixing proportions.

Clustering 219

If we consider the observed data as x1, . . . , xn, since we don’t know which
density each observation came from, it is like we are missing a correspond-
ing yi = 1 or 2 for each xi that would indicate which density the observa-
tion was drawn from. In other words, we could consider our data to be pairs
(x1, y1), . . . , (xn, yn), but the yi’s are missing. If the yi’s were known, it would
be easy to obtain an estimate for q1 using the sample proportion of yi’s equal
to 1, and sample means and standard deviations for the the estimate of θ.
Unfortunately, we don’t have the yi’s. This is precisely the situation that the
EM algorithm is designed for. The goal is to reconstruct the yi’s (or a similar
construct that conveys what information is missing), using that information
to optimize the remaining parameters.

The algorithm needs initial starting values for the estimates of θ and q.
With no prior information, in this example, we could set the means to be
different sample values, use the sample standard deviation for both sigmas,
and set q̂1 = 0.5, assuming the mixtures are in equal proportions. A variety
of other choices are also possible [97]. Then, we start alternating the expec-
tation (E) and maximization (M) steps of the algorithm. We start with the
E step, whose goal is to estimate the missing portion of the data by finding
the conditional expectation for the missing portion given the observed data,
current q̂, and current θ̂. This “fills in” the missing portion and allows us to
proceed to the M step.

In the M step, we use the “filled-in” missing data values to maximize the
log-likelihood (which in this case is the natural log of the mixture density
above), and update our estimates of q and θ. The two steps then iterate—
back to the E step, then the M step, etc.—until some convergence or stopping
criterion is met. The criterion could be a set number of iterations or that
the change in estimates of q and θ falls below a certain small threshold value
(measured by some metric). For details in this example, please see Clarke et
al. [97].

The EM algorithm has applications far beyond this example. For some
insights into the EM algorithm itself, see Dempster et al. [126], for details
about the general case (for non-normal densities) in the mixture model con-
text, see Borman [57], and for more derivations in the normal mixture case
for k components, see Clarke et al. [97]. Bayesian analysts might use Markov
Chain Monte Carlo-based (MCMC) procedures such as a Gibbs sampler for
the same optimization [148]. Indeed, one might pursue Bayesian clustering
techniques or more general non-parametric clustering techniques; see Quin-
tana [396] for some insights.

Using the EM algorithm, we can find the estimates of q and θ that work
best with our choice of k. But how do we know that choice of k was a good
one? We need a metric to evaluate the solutions. A common one (which is
incorporated in the example we show below) is the Bayesian Information Cri-
terion (BIC) [168]. We will find estimates of q and θ for several values of k, i.e.,
fit multiple mixture models, and then compare their values of the evaluation
measure, BIC. The BIC is based on optimizing the log-likelihood of the data

220 Data Science for Mathematicians

(x) given the parameters. The BIC for a solution with k clusters is computed
as:

BIC(k) = −2 log f(x | q̂, θ̂) + k′ log(n),

where k′ is the number of parameters being estimated. The choice of k drives
the value of k′, depending on the underlying distributional choices and their
respective parameters in θ.

5.7.3 mclust and model selection

A popular package for fitting normal mixture models in R is mclust [167],
which was created based on work by Fraley and Raftery [168]. It uses the
EM algorithm approach for estimating the model parameters, and assumes
the clusters are all ellipsoidal (including spherical). While the mean vectors
for the clusters are unconstrained, mclust has a family of models that impose
constraints on the covariance matrices (defined in Section 4.7.1). The user
could choose one of these models, or use criteria to select one after fitting
them all. To understand the models, we first have to understand how the
covariance matrices are represented.

The covariance matrix Σj for the jth cluster is represented by its familiar
eigendecomposition, as follows. (Here we use the notation from [167], to be
consistent with their model presentation that follows, but the reader may also
refer to Section 3.3.1 for a review of the eigendecomposition, or eigenvalue
decomposition.)

Σj = λjDjAjD
T
j

In the decomposition, the various components affect the covariance matrix
differently. Aj is diagonal, with elements that are proportional to the eigen-
values, and this matrix determines the shape of the density contours for the
cluster. On the other hand, Dj is the usual orthogonal matrix of eigenvectors,
and it determines the orientation of the principal components for the cluster.
Finally, λj is a scalar, and relates to the volume of the cluster. In mclust,
these are referred to as the shape, orientation, and volume aspects of the clus-
ters, respectively. As originally proposed, the mclust models allow for each of
these aspects to be constrained to be the same for all clusters, forced to be
the identity matrix, or allowed to vary (increasing the number of parameters
that must be estimated) [167]. In Table 5.14, we show the characteristics and
name of each model in mclust; a version of this table appears in Fraley and
Raftery 1999 [167] and another version in Everitt and Hothorn [148].

We will demonstrate the use of mclust in our next example.

5.7.4 Example with wine data

To demonstrate model-based clustering, we fit a normal mixture model to
the wine data previously described. The 13 measurement variables are all used
(again, not including cultivar) for all 178 observations. The mclust package
in R is used for the model fit [167], and a BIC approach taken to determine

Clustering 221

TABLE 5.14: The models supported by R’s mclust package and the charac-
teristics of each.

Name Model Volume Shape Orientation
EII λI equal identity identity
VII λjI vary identity identity
EEI λA equal equal identity
VEI λjA vary equal identity
EVI λAj equal vary identity
VVI λjAj vary vary identity
EEE λDADT equal equal equal
EVE λDAjD

T equal vary equal
VEE λjDAD

T vary equal equal
VVE λjDAjD

T vary vary equal
EEV λDjAD

T
j equal equal vary

VEV λjDjAD
T
j vary equal vary

EVV λDjAjD
T
j equal vary vary

VVV λjDjAjD
T
j vary vary vary

the optimal model. The plot of the solution shown in Figure 5.14 allows us to
compare the different models and their performance on the dataset. Note that
Figure 5.14 is not the default plot from R, which would show all considered
models and their BIC values. Here, only the best models are shown for easier
comparison at selected values of k, the number of components in the mixture.

Our analysis finds that many of the models are performing similarly well
in terms of optimizing the BIC criterion. A summary command can reveal
the “best,” which in this case is the VVE model with three clusters, which
means that the volume and shape parameters may vary across clusters but
equal matrices for all clusters are assumed for the matrix of orthogonal eigen-
vectors, D. The solution found 3 clusters, with 59, 69, and 50 observations, for
mixing probabilities of 0.33, 0.39, and 0.28, respectively. The model fit also
returns the cluster means and variances, and offers many plotting options to
view the solution, including one that makes a scatterplot matrix colored by
cluster. However, since there are 13 measurement variables here, such a plot is
difficult to read, so instead we plot the clusters found in the principal compo-
nent space as we did previously for k-means. The result in Figure 5.15 shows
that the clusters found are very similar to what we observed previously with
kmeans and hclust.

As with k-means, we observe that the model-based clusters recover the
cultivars remarkably well, even though the cultivar variable was not used to
find the clusters.

5.7.5 Model-based versus k-means

In our wine data example, we noted that the clustering solution provided
by mclust was similar to that provided by kmeans. So, why do we need

222 Data Science for Mathematicians

FIGURE 5.14: Snapshot of model comparison for normal mixture models on
wine data showing best models.

FIGURE 5.15: Three-cluster solution via mclust model VVE for wine data
shown in principal component space.

Clustering 223

model-based methods? One of the major motivators of model-based meth-
ods is simply that there is a statistical model fit to the data. This allows for
the application of more formal model selection methods, such as the BIC,
rather than heuristics, such as looking for an elbow in a within-group sum of
squares plot or cutting a dendrogram at a distance that looks appropriate.

Fraley and Raftery [168] compare k-means and model-based methods via
mclust using the Wisconsin Breast Cancer dataset [333], which is available via
the UCI machine learning repository. We reexamine this comparison, noting
that the software has undergone various updates since the original example
was published, such that we get similar, but not exactly the same, results. The
dataset contains information on 569 observations of cell nuclei from biopsy
samples being analyzed to determine if they are malignant or benign (the
diagnosis). Of the variables in the dataset, the ones selected for analysis are
extreme area, extreme smoothness, and mean texture. (See Mangasarian et
al. [333] for details on how these variables were selected.) Extreme area is the
largest area of any cell nuclei in the sample, extreme smoothness is the largest
value for the local variation in cell nuclei radii for the cells in the sample,
and mean texture is the mean of the texture values (related to gray-scale
values) of the cells. We implement both k-means and mclust on these three
variables and study the relationship of the clustering solutions, as well as their
relationship to the known diagnosis variable.

For k-means, we again try to select k using an elbow approach. The vari-
ables are on different scales, so the solutions were obtained for the standardized
variables. We can fit k = 2 or k = 3 to see how those solutions match the
diagnosis variable, but the plot (Figure 5.16) does not show a clear elbow here.

The k-means two-cluster solution matches the diagnosis variable fairly well,
with only 53 observations not matching the majority class of their cluster.
A three-cluster k-means solution finds one cluster of malignant samples (96
malignant, 0 benign), one that is predominantly benign (286 benign, 28 malig-
nant), and one cluster that is a mixture of both (71 benign, 88 malignant).
Can model-based clustering do any better?

Using mclust, the original reference states that an unconstrained model—
denoted VVV in our notation—with three clusters was the best, though they
also consider the VVV two-cluster solution [168]. For our analysis, we ran
mclust to let it provide us with the summary comparing the methods and
determine which was best using the BIC. The results indicate that the VVI
model with either three or four clusters or the VVE model with three clusters
has the lowest BIC (values within 9 of each other). The VVV three-cluster
model is the 6th best model, with a BIC difference of about 26 from the best
model, VVI with three clusters, so it is still a top competitor. We examine the
VVI model with two and three clusters.

From the two-cluster VVI model, we see 50 observations do not match
the majority class of their cluster. This is similar though slightly better than
the k-means solution if we are interested in recovering the diagnosis variable.
However, the three-cluster VVI solution shows us the major benefit of mclust.

224 Data Science for Mathematicians

FIGURE 5.16: Within-groups sum of squares for k-means solutions with k = 1
to k = 12 clusters for Wisconsin Breast Cancer dataset.

This solution finds one cluster of malignant samples (143 malignant, 1 benign),
one that is predominantly benign (291 benign, 5 malignant), and one cluster
that is a mixture of both (65 benign, 64 malignant). The model-based method
provides a much better separation of the malignant and benign clusters, and
identifies a smaller intermediate cluster. New samples could be classified into
these clusters, and samples in the intermediate cluster could be sent for further
analysis [168].

Thus, model-based methods have proven useful in some contexts. Next,
we’ll briefly examine density-based methods, which are related methods that
are quite popular in some fields, but have less of a model framework.

5.8 Density-based methods

Density-based methods approach clustering as a problem of looking for
regions in (potentially high-dimensional) space where data points are dense
(the clusters) separated by more sparsely populated space. One of the most
popular methods of this type is density-based spatial clustering of applications
with noise, or DBSCAN [147], and variants of it that have arisen since it was

Clustering 225

first proposed. To develop our intuition about these methods, we will use the
framework provided in the original DBSCAN paper by Ester et al. [147].

The motivations for DBSCAN point to some of the strengths of the algo-
rithm. The method was designed to work with large databases, being efficient
computationally in that setting, requiring minimal domain knowledge, and
has the ability to detect clusters of arbitrary shape, including non-spherical
clusters. DBSCAN looks for clusters where the density of points internal to
the cluster is relatively consistent and high, and the density of points between
clusters is lower. In thinking about method performance, DBSCAN would not
be expected to work well on the wine data. The cluster separation in that
example that we have seen with other methods was observed in the principal
component space, not in the original variable space. However, it has compu-
tational advantages when working with large databases that still make it a
valuable technique.

Trying to identify clusters as regions of consistent, relatively high density
could be approached by requiring all points within a cluster to have a minimal
number of points within a certain distance of them (in their neighborhood,
specified by some radius). However, points on the borders of clusters could
fail this requirement, so requiring it for all points in the cluster does not
make sense. DBSCAN works around this by setting criteria based on density
requirements that define core points (internal to the cluster, which need to
have a certain number of points within a neighborhood of specified radius
around them) and border points. Clusters are defined by a set of points which
are density-reachable and density-connected; see Ester et al. [147] for details.
With these criteria, DBSCAN can also identify points that do not belong to
any clusters, which other methods cannot do. These points are considered
outliers or noise.

In Ester et al. [147], the DBSCAN algorithm is compared to CLARANS (a
hierarchical method built for a similar setting on large databases, extending
the CLARA algorithm [362]) on several simulated and real datasets. For the
real dataset, the run times of the algorithms show DBSCAN has clear superi-
ority over CLARANS in terms of computational efficiency. The comparison of
solutions on simulated data also shows DBSCAN outperforming CLARANS.

When running DBSCAN, the algorithm needs to know the size of the
neighborhood around the core points to use and how many points are required
to be within that neighborhood. These values could differ from cluster to
cluster, but Ester et al. [147] suggest using the values that correspond to
the “thinnest” cluster. This way, the thinnest cluster could be detected and
clusters that are more dense would easily satisfy the requirements. The authors
provide a heuristic to determine the values of these parameters for the dataset
at hand [147].

Variants of DBSCAN improving on the original algorithm were readily
developed. These include algorithms designed to detect clusters of varied den-
sity [381], and versions designed to work with spatial and temporal data [419].
For additional background, see the review in Kriegel et al. [279], and the sur-

226 Data Science for Mathematicians

FIGURE 5.17: Nearest neighbor plot for iris data, used to select input param-
eter for DBSCAN.

vey of five density-based algorithms (DBSCAN and four variants) in Parimala
et al. [381].

DBSCAN and its variants can suffer challenges in high-dimensional space,
where data is usually sparse (the typical sparsity challenge in high-dimensional
settings), due to the density focus [149]. Alternative algorithms to combat this
problem, such as the CLIQUE algorithm, first find areas of high density and
then focus on finding the clusters in lower-dimensional space [8].

5.8.1 Example with iris data

To demonstrate a density-based clustering method, we run DBSCAN using
the dbscan R package and function [206]. We swap to the iris dataset that
we saw in the visualization section, so that we can view the solution in low-
dimensional space to see where DBSCAN is finding noise points. This exam-
ple on the iris data is the example from the help file for the package. As
a reminder, the dataset contains four measurement variables on three differ-
ent species of iris. All four measurement variables are provided as inputs to
DBSCAN, but species is not used. The first step in the process is to identify
the input parameters that DBSCAN needs to run. This is accomplished with
a k-nearest neighbor distance plot, and looking for a “knee” (similar concept
to looking for an elbow). The plot is shown in Figure 5.17.

Clustering 227

FIGURE 5.18: DBSCAN solution on iris dataset. The noise points found are
denoted by circles, while the clusters are denoted by squares and triangles.

Based on that figure, we see a knee at a height of around 0.5, so this is the
value used as the radius of the neighborhood in DBSCAN, and the minimum
number of points that goes with it is set to be the dimension of the data plus
one, or 5, in this case. DBSCAN is then run with those settings. The solution
returned finds two clusters, with 49 and 84 points, respectively, and identifies
17 points as noise points. With only four measurement variables used, we can
plot the scatterplot matrix using all variables and display the data points with
a plotting character indicating their cluster or noise label, as shown in Figure
5.18.

Since we have the species variable for the iris dataset, we can make some
comparisons between the DBSCAN solution and species. It appears that the
DBSCAN solution identified one species as one cluster (indicated by triangles
in the plots), and the other two species (squares) as a second cluster, leaving
out 17 observations as noise (circles). This is not unrealistic; the virginica and
versicolor species are more similar to each other than to the setosa species.
If the dataset were higher-dimensional, we would have plotted the solution in
principal component space in order to view it.

For more practice with density-based methods, particularly to see how they
work with outliers and recovering clusters of arbitrary shape, see Exercises 10
and 11.

228 Data Science for Mathematicians

5.9 Dealing with network data

An important application of clustering is to find clusters or communities in
network data (social networks or otherwise). In these situations, the clustering
algorithm may not have access to any information other than the vertex and
edge connection information of the network. Here, the clustering is treated as
a graph partitioning problem. That is, the dataset is a collection of vertices, V ,
and edges, E, which describe a graph, G. Typically, these graphs are viewed
as simple (meaning no self-edges and no multi-edges), though they may be
weighted or unweighted, and directed or undirected. The goal is to partition
the graph into k components, where each component’s vertices define a cluster.
There are many different algorithms that can be used to find clusters on
networks, so we briefly outline a few that you may encounter.

1. Hierarchical: As previously described, hierarchical methods can be either
agglomerative or divisive, and operate in a similar way as we saw in
Section 5.5. They can even use similar linkage concepts, or alternative
cost metrics, such as the modularity statistic described below. As we saw
before, hierarchical methods give a hierarchy of solutions, one of which
must be selected as the final solution, and it turns out that dendrograms
can again be used to help visualize solutions.

2. Minimal Spanning Trees: Clustering methods based on minimal span-
ning trees may be considered a subcase of hierarchical methods, but
these methods can also be considered in a graph-theoretic context. Dif-
ferent variants of these algorithms exist, with one common application
being in web image analysis [202]. For connections to hierarchical meth-
ods, the reader is directed to Gower and Ross [198].

3. Edge Removal-Based: A number of algorithms have been described that
focus on finding clusters via iterative edge removal in the graph. Some
of these have been based on edge betweenness (a statistic describing the
number of shortest paths in the graph that go along that edge) as a
metric, and may be called divisive hierarchical algorithms [389].

4. Random Walk: A relatively intuitive algorithm to find communities in
networks was proposed using random walks on the graph to define a
measure of similarity between vertices [389]. This measure can then be
used in agglomerative hierarchical methods as the metric to propose
merges to find communities. The general idea is that when starting from
a vertex, a relatively short random walk from that vertex (based on its
local connections) will tend to end in the same community as the starting
vertex.

5. Spectral Partitioning: These methods rely on results from graph theory
that tie the number of nonzero eigenvalues of the graph Laplacian (a

Clustering 229

matrix derived from the adjacency matrix of the graph) to the number
of connected components in the graph. The connected components are
treated as the clusters of the graph, and thus this method can be used
for clustering. Related methods focus on other properties of the second
eigenvalue and eigenvector, using the sign of the entries in the second
eigenvector to partition a graph, bisecting it. Similar bisections can be
performed on the now separated graphs, until a final solution is obtained.
For more details and additional references, see Kolaczyk [273].

These algorithms all have advantages and disadvantages. For example, in
practice, edge removal-based algorithms are very computationally intensive,
and it has been found that other algorithms, such as the hierarchical ones
mentioned above, obtain similar solutions at less computational cost [273]. As
you can see from just this sampling of algorithms, some are more heuristic and
others rely on mathematical results from graph theory. Many more algorithms
exist, all with the goal to find optimal clusters present in the network. Before
we explore an example, we introduce a useful statistic called modularity, since
this may be used for cluster comparison or validation.

Modularity was first proposed by Newman and Girvan who use this mea-
sure to discuss the quality of a particular partitioning solution of the net-
work [361]. Modularity compares the current partition of a network to another
network with the same partitioning structure but with randomly placed edges
in terms of the fraction of edges that are within a community (i.e., connect
vertices within the same cluster). Strong structure is indicated when the mod-
ularity is large, because that means the current partition has a much higher
fraction of within-community edges than the similar network with randomly-
placed edges [361]. This allows modularity to be used as a cost metric to find
hierarchical solutions to network problems. In that case, ideally the optimiza-
tion with respect to modularity would be performed via an exhaustive search
of all possible partitions, but that is not feasible in practice. Instead, several
greedy search options have been developed that can be used, one of which we
demonstrate below. Additionally, modularity can be used as a metric to com-
pare solutions or validate them, though we must bear in mind some solutions
are designed to optimize it.

5.9.1 Network clustering example

For our example, we consider network data on dolphins. The data is an
undirected social network of frequent associations among 62 dolphins in a com-
munity living off Doubtful Sound, New Zealand [327]. Our aim is to identify
clusters of dolphins, likely social groups here based on the data collected. In the
network, the individual dolphins are the vertices and edges are placed between
those that frequently associate. This is the only information used to create
the clustering solution on the social network. Our clustering methods will be
performed in R using the igraph package [112]. We will run three different

230 Data Science for Mathematicians

FIGURE 5.19: Dolphin social network with edges indicating frequent associ-
ations.

algorithms on the network. Our agglomerative hierarchical algorithm designed
to optimize modularity will be implemented via the fastgreedy.community

function, our random walk-based algorithm will be implemented with the
walktrap.community function, and finally we will perform spectral partition-
ing via the leading.eigenvector.community function.

Before we look at the clustering solutions, let’s look at the original graph,
as plotted via the igraph package, in Figure 5.19. The network has 62 vertices
(one per dolphin) and 159 edges. Summary statistics on the network reveal
that each dolphin has at least one connection, and the maximal number of
connections is 12. From the plot of the network, we can see that there might
be at least two communities present, with a few dolphins that go between
them. Now we can run our algorithms and see what communities they find.

Each clustering algorithm here returns a community object, which can
be plotted, or have summary measures run on it. For example, the hierar-
chical algorithm optimizing modularity found four communities, of sizes 22,

Clustering 231

FIGURE 5.20: Agglomerative hierarchical solution optimizing modularity via
fastgreedy.community function on dolphin data. Communities are repre-
sented by vertices which are either white circles, white squares, gray circles,
or gray squares.

23, 15, and 2, respectively. We also have the cluster allocation vector previ-
ously described. That solution, with vertex shapes and colors indicating the
community membership, is shown in Figure 5.20.

Each of the solutions can be plotted this way (though we are showing only
one). In addition, hierarchical solutions can still be plotted with a dendrogram,
using some additional packages and commands (dendPlot in the ape package
[380]) as shown in Figure 5.21.

Briefly, we compare our three clustering solutions in Table 5.15. We com-
pute modularity for each solution, though we note that only the hierarchical
method is specifically trying to optimize this measure. All the solutions have
very similar modularity, nearly 0.5, which seems to reflect that some struc-
ture is present. A quick comparison of cluster labels (not shown) shows that

232 Data Science for Mathematicians

FIGURE 5.21: Dendrogram showing agglomerative hierarchical solution opti-
mizing modularity via fastgreedy.community function on dolphin data.

TABLE 5.15: Comparison of three clustering solutions for the dolphin network
data.

Method Number of Clusters Cluster Sizes Modularity
Hierarchical (Agg) 4 22, 23, 15, 2 0.4955

Random Walk 4 21, 23, 16, 2 0.4888
Spectral Partitioning 5 8, 9, 17, 14, 14 0.4912

the hierarchical solution optimizing modularity and the random walk-based
solution are nearly identical (though their smallest clusters are different). The
spectral clustering solution differs from both with an additional cluster that
splits one of the larger clusters in the other solutions in two.

Community detection is an important application of clustering, and now
that we’ve seen an example, we can turn our attention to some final challenges
regarding clustering.

5.10 Challenges

The challenges described below apply across methods covered in previous
sections.

5.10.1 Feature selection

Which variables in your dataset should be used in the clustering analysis?
For our exposition, we assumed that the variables for use in clustering had

Clustering 233

already been selected. However, choosing the variables for use in the analysis
is not always so straightforward. This problem is often termed variable or
feature selection. Although this subject could use an entire chapter’s worth of
exposition itself, we wanted to briefly highlight some work and some references
for interested readers.

In our discussions of dissimilarity measures, we noted that different weights
could be used for each variable in the construction of the dissimilarity, but
that we assumed equal weights. Allowing for different weights is one way to
incorporate variable selection, and this approach has been studied by statis-
ticians for years. In 1995, Gnanadesikan et al. compared multiple approaches
for weighting on several simulated and real datasets. Their findings found that
weightings based on the standard deviation or range of variables were problem-
atic, while more complicated weightings, if chosen carefully, fared better [191].

More recent work in 2004 tackled the problem in different ways. Dy and
Brodley examined feature selection in conjunction with needing to estimate k,
the number of clusters. They describe different ways of approaching the feature
selection (filter versus wrapper approaches), and present work in relation to a
Gaussian model-based EM algorithm for clustering using a wrapper approach.
They point out that the number of clusters found can differ based on the
number of variables selected. They examine various performance criteria and
report on their findings based on simulated and real data. In conclusion, they
find that incorporating the selection of k into the feature selection process
was beneficial, particularly because not all subsets of features have the same
number of clusters [138].

In related work, Friedman and Meulman consider feature selection using
weights, where the goal is to find clusters which are based on potentially dif-
ferent variable subsets. Their approach is called clustering objects on subsets
of attributes (COSA) and is also developed in a wrapper framework. Results
on both simulated and real datasets are presented. A bonus with this work is
a series of discussion responses from other statisticians discussing the problem
and this proposal [172].

Finally, for a recent review of feature selection work in clustering, see
Alelyani et al. [12]. This review touches on the problem in many different
clustering applications and for different types of datasets.

5.10.2 Hierarchical clusters

Thus far in our exploration of clustering, we’ve seen methods that assign
each observation to a single cluster. However, in practice, this may not be
realistic for many applications, especially in social network settings. Some
challenges arise when trying to study hierarchical clusters, or communities, or
as described in the next subsection, overlapping clusters. Clearly, hierarchical
structures occur naturally in the world—just consider the organization of a
school, college, or university. Our hierarchical methods can provide ways to
uncover these structures, by considering multiple solutions at different val-

234 Data Science for Mathematicians

ues of k. Higher levels in the hierarchy are examined by choosing a small k,
while lower levels are examined by choosing a large k. For example, in a social
network setting, with clustering childen who participate in club soccer, hier-
archical methods might reveal teams at a lower level, and then reveal leagues
at a higher level, based on social connections between children. When con-
sidering automobiles, a lower-level cluster might be vehicles all of the same
model, but a higher-level cluster might reveal make (as manufacturers make
multiple models) or vehicles of a similar type, such as a cluster of SUVs or
vans. These sorts of relationships are more easily explored with hierarchical
methods, where there is a clear understanding about how clusters are related
to one another (e.g., clusters C3 and C5 merged to make cluster C8), rather
than in partitioning methods, where there is not necessarily a relationship
between clusters found at different values of k.

5.10.3 Overlapping clusters, or fuzzy clustering

When studying hierarchical clusters, an observation may have cluster mem-
berships defined by the different hierarchical levels studied. A related but dis-
tinct issue is the issue of overlapping or fuzzy clustering, where an observation
can have membership in more than one cluster at a time (not dependent on
its hierarchical level). Cluster memberships here are often represented by a
vector of probabilities of assignment to each of the clusters. For example, in
a three-cluster solution, observation 4 may have a cluster membership vec-
tor (0.40, 0.20, 0.40), meaning that the observation belongs equally well to
clusters 1 and 3, but less so to cluster 2. For a real-life contextual example,
imagine clusters created based on spending habits of Amazon.com customers.
A customer might end up in clusters for purchases related to horror movies
as well as for children’s books (e.g., a parent who is a horror movie fan). Sim-
ilarly, in text analysis, one could consider texts that have multiple authors,
and based on their writing styles, the text might end up in several clusters or,
if clustering based on meaning, words with several meanings could also cause
texts to be in several clusters.

Specific methods have been developed to help study hierarchical clusters
and overlapping clusters. As examples, the reader is directed to Lanchichinetti
et al. [298] and Darmon et al. [116].

5.11 Exercises

For our exercises, we describe some example analyses that can be com-
pleted in R with the packages indicated. Feel free to use your software of
choice instead. For most of our problems, it is assumed that you will be stan-
dardizing the data, unless otherwise specified.

http://Amazon.com

Clustering 235

TABLE 5.16: A sample distance matrix for use in Exercise 5.

Obs 1 2 3 4 5 6
1 0
2 4.7 0
3 6.6 11.1 0
4 8.1 11.6 3.4 0
5 4.9 5.7 6.2 7.7 0
6 2.9 2.5 7 6.8 10.4 0

1. Find an example of clustering in an application area of interest to you.
What clustering methods are used? How is the number of clusters in the solu-
tion determined?

2. The iris dataset (available in R using the command data(iris)) was
used to show example visualizations that can indicate clustering is appropriate
for a dataset. Implement k-means on the dataset without the Species variable
using the unstandardized measurement variables using three clusters. Then,
run it using the standardized variables with three clusters. What impact does
standardizing have on the solutions? Does one solution recover Species better
than the other?

3. PAM and CLARA are alternative partitioning methods to k-means, and
both functions are implemented in R in the cluster package [331]. How do
these methods differ from k-means? Let’s find out. The wine data in our exam-
ples is freely available from UCI’s machine learning repository [136]. Obtain
the dataset, and then perform PAM and CLARA on it (without the cultivar
variable), using an appropriate approach to determine a number of clusters for
the solution. Compare the solutions to the k-means solution shown in Section
5.4.3, or to a k-means solution you obtain.

4. We saw the clValid package used to compare several clustering solu-
tions on the wine dataset. For practice with this approach, apply clValid

using your choice of inputs on the iris dataset without the Species variable.
Which methods and numbers of clusters are chosen as the optimal solutions
by the different validation measures?

5. Our simple five-point example for hierarchical clustering (Figure 5.8 and
Table 5.7) showed how to implement the single linkage approach starting from
the distance matrix. A distance matrix for six points is shown in Table 5.16.
Using this distance matrix, perform single, complete, and average linkage hier-
archical clustering. For each of these three approaches, sketch the dendrogram
of the solution. How different are the solutions?

236 Data Science for Mathematicians

6. In our application of hierarchical clustering to the wine dataset, we used
the hclust function. agnes is an alternative agglomerative hierarchical func-
tion in the cluster package, and diana is an associated divisive hierarchical
function. Apply agnes and diana to the iris dataset (without Species), and
plot the associated dendrograms. How do the solutions compare?

7. We saw dendrograms as our primary visualization of hierarchical clus-
tering solutions. Banner plots are an alternative, available via the cluster

package in R. For the hierarchical solutions in Exercise 6, obtain the corre-
sponding banner plots. How do the banner plots compare to the dendrograms?
Do you find you prefer one visualization over the other?

8. Implement model-based clustering using mclust for the iris dataset
(without Species). What model is selected as the “best”? What criterion is
used to assess which solution is “best”?

9. For the iris dataset (without Species), obtain silhouette values for
model-based clustering solutions with k = 3, k = 7, and k = 10 clusters.
Based on the silhouette values, which clustering solution do you prefer?

10. To investigate density-based methods, let’s generate data to cluster.
The clusterGeneration package in R allows for the generation of clusters
according to user specifications [395]. Generate data that you think DBSCAN
or another density-based method will work well on, then implement the
density-based method and see if it recovers the clusters well. Note that the
R function here can generate outlier points (outside of any cluster), which
DBSCAN can detect and label as such, but methods such as k-means can-
not do.

11. One of the strengths of density-based methods is the ability to find clus-
ters of arbitrary shape, rather than fairly common spherical clusters. Generate
data with at least one non-spherical cluster in low dimensions. (You will need
to think about how to do this.) Suggestions include crescent moon shapes or a
ring cluster around a spherical one. Implement k-means and a density-based
method and see which recovers the clusters better.

12. The dolphin dataset used in our network community detection exam-
ple is freely downloadable [327]. In our results, we showed only the result
of the fastgreedy.community function. Implement the random walk-based
algorithm with the walktrap.community function and spectral partitioning
via the leading.eigenvector.community function and verify the results pre-
sented in the text about the comparison of the solutions.

13. Our case study on the College Scorecard dataset demonstrated k-means
and hierarchical clustering solutions on a set of nine variables [367]. Using

Clustering 237

those same nine variables, implement model-based clustering, DBSCAN, and
any other methods you are interested in, and compare the solutions.

14. The College Scorecard case study dataset had 1978 variables avail-
able and is a good illustration of having to do feature selection while dealing
with missing data. Explore this dataset yourself, identify roughly 10 variables
you’d like to try clustering on, then examine how much data is missing. Clus-
ter the complete cases you have for your 10 variables (not complete cases
overall) using your preferred clustering method(s). What do you find? How
many observations were you able to cluster? Did you find a strong clustering
solution?

http://taylorandfrancis.com

Chapter 6

Operations Research

Alice Paul

Olin College

Susan Martonosi

Harvey Mudd College

6.1 History and background . 241
6.1.1 How does OR connect to data science? 241
6.1.2 The OR process . 242
6.1.3 Balance between efficiency and complexity 243

6.2 Optimization . 244
6.2.1 Complexity-tractability trade-off . 246
6.2.2 Linear optimization . 247

6.2.2.1 Duality and optimality conditions 249
6.2.2.2 Extension to integer programming 252

6.2.3 Convex optimization . 252
6.2.3.1 Duality and optimality conditions 256

6.2.4 Non-convex optimization . 258
6.3 Simulation . 260

6.3.1 Probability principles of simulation . 261
6.3.2 Generating random variables . 262

6.3.2.1 Simulation from a known distribution 262
6.3.2.2 Simulation from an empirical distribution:

bootstrapping . 267
6.3.2.3 Markov Chain Monte Carlo (MCMC)

methods . 267
6.3.3 Simulation techniques for statistical and machine

learning model assessment . 269
6.3.3.1 Bootstrapping confidence intervals 269
6.3.3.2 Cross-validation . 270

6.3.4 Simulation techniques for prescriptive analytics 271
6.3.4.1 Discrete-event simulation 272
6.3.4.2 Agent-based modeling . 272
6.3.4.3 Using these tools for prescriptive analytics 273

6.4 Stochastic optimization . 273
6.4.1 Dynamic programming formulation . 274
6.4.2 Solution techniques . 275

239

240 Data Science for Mathematicians

6.5 Putting the methods to use: prescriptive analytics 277
6.5.1 Bike-sharing systems . 277
6.5.2 A customer choice model for online retail 278
6.5.3 HIV treatment and prevention . 279

6.6 Tools . 280
6.6.1 Optimization solvers . 281
6.6.2 Simulation software and packages . 282
6.6.3 Stochastic optimization software and packages 283

6.7 Looking to the future . 283
6.8 Projects . 285

6.8.1 The vehicle routing problem . 285
6.8.2 The unit commitment problem for power systems 286
6.8.3 Modeling project . 289
6.8.4 Data project . 289

Operations research (OR) is the use of mathematical and computational tools
to guide decision-making under dynamic and uncertain conditions. At the
heart of such decision-making is data, and operations researchers

• make sense of data (descriptive analytics)

• to model complex systems (predictive analytics)

• and recommend actions (prescriptive analytics).

In this sense, operations research encompasses data science. Additionally,
operations research offers powerful tools, such as optimization and simulation,
that are embedded in the engines of common statistical and machine learning
methods to help those methods make better decisions about, e.g., how to clus-
ter data points or tune algorithm parameters. This chapter provides a brief
overview of the most central operations research methods that connect to data
science, tying in examples of current research that illustrate OR both as an
overarching process for leveraging data to make better decisions, and as a set
of computational tools that permit rapid analysis of ever-growing datasets.

Section 6.1 provides an overview of the field and its connection to data
science, articulating the fundamental trade-off in mathematical modeling
between model efficiency and model complexity. Section 6.2 presents the deter-
ministic optimization tools of mathematical programming that form the foun-
dation of traditional operations research. Given the omnipresence of stochas-
ticity (randomness) in most complex systems, simulation is a powerful tool for
modeling uncertainty; its use as a modeling tool and as a subroutine in sta-
tistical and machine learning is described in Section 6.3. Stochastic optimiza-
tion, the subject of Section 6.4, incorporates uncertainty into the optimization
framework. We illustrate these techniques in the context of applications of pre-
scriptive analytics in Section 6.5. Section 6.6 provides a brief overview of the

Operations Research 241

commercial and open-source software available for operations research meth-
ods. Having laid the foundation of operations research methodology, Section
6.7 concludes by describing exciting new directions in the field of OR as it
connects to data science.

6.1 History and background

The field of operations research emerged in Britain around 1938, a few
years before the start of the Second World War. During WWII, OR meth-
ods are credited with reducing losses of United States naval ships from Ger-
man submarine action and increasing bombing accuracy (i.e., reducing dis-
persion) by 1000%. Additionally, operations researchers envisioned the first
neural network in 1943. At the end of WWII, the military maintained its
OR groups, and research continued in the use of OR methods to improve
military and government operations. Over the past century, the military has
remained a strong user and producer of OR methodology, while OR’s reach
has extended to nearly all industries, including manufacturing, transportation,
and e-commerce [178].

6.1.1 How does OR connect to data science?

Operations research has always concerned itself with decision-making
under uncertainty, and the well-trained operations researcher has a firm foun-
dation in the methods of probability and statistics. As the collection and
availability of data has grown ubiquitous in the last several decades, the need
for operations research thinking to make sense of that data and prescribe
action has likewise grown.

This chapter describes four ways in which operations research connects to
data science:

1. Many traditional tools of operations research, including optimization
methods, serve as subroutines in common statistical and machine learn-
ing approaches.

2. Simulation facilitates inference and decision-making when sufficient data
are absent.

3. Prescriptive analytics is the use of the OR modeling process to derive
recommendations from data.

4. A new area of research in OR casts common statistical and machine
learning problems as optimization problems to generate optimal predic-
tions. (See Section 6.7.)

242 Data Science for Mathematicians

We describe several of the tools commonly associated with operations
research in this chapter. However, it is important to realize that OR is more
than a black box of tools that can be used to draw insights from data. Addi-
tionally, it is a way of thought that seeks first to distill a system, problem, or
dataset into its most fundamental components, and then to set about using
mathematical tools to deepen one’s understanding and make recommenda-
tions.

6.1.2 The OR process

An OR approach to problem-solving (and likewise, to data science) typi-
cally consists of these steps [102,219, pp. 109-112]:

1. Defining the problem

2. Formulating a model

3. Solving the model

4. Validating the model

5. Analyzing the model

6. Implementing the recommendations of the model

While the mathematical techniques described in this chapter and in other
chapters of this book address steps 2–5, one can argue that steps 1 and 6 are
the most challenging. To properly define a problem, one needs a deep under-
standing of the problem context: who are the stakeholders, what are their
objectives, and what factors constrain their actions? And successful imple-
mentation of the recommendations of a model requires the trust of the stake-
holders, which can only be achieved through clear communication throughout
the process. Two quotations from Robert E. D. “Gene” Woolsey, a renowned
industrial consultant, highlight this [515]1:

• “I was approached by the city of Denver to help them site a new firehouse
costing some millions of dollars. I had a particularly bright-eyed and
bushytailed student who volunteered for the project. . . . I told him gently
that the first requirement was to go and be a fireman for a few months
and then we would talk. . . . It did not take long as a working fireman
for him to discover that virtually all of the assumptions he had brought
to the problem were wrong.”

• “[I]t is easier to do the math correctly (which requires no politics) than
to get the method implemented (which always requires politics).”

1Several of Gene Woolsey’s papers and lectures have been compiled in Real World Opera-
tions Research: The Woolsey Papers [516]. The quotes cited above also reiterate the impor-
tance of domain knowledge, first mentioned in Section 1.5.

Operations Research 243

Thus, to have any hope for the modeling process to inform organiza-
tional decisions, the reverse must also be true: the organizational context
must inform the modeling process.

6.1.3 Balance between efficiency and complexity

Computation began to emerge around the same time as OR. Without
high-speed computers to analyze data and solve optimization problems, early
operations researchers embraced the craft of trading off model complexity for
model efficiency. There are two famous sayings that exemplify this trade-off:

“All models are wrong, but some are useful.” (George E. P. Box,
statistician, [58])

This first quote reassures us in our inevitable imperfection: the world
is complex and replete with variability. Even the most sophisticated model
cannot perfectly capture the dynamics within a complex system, so we are
absolved from the requirement of perfection. Our goal, therefore, is to develop
a model that is useful in its ability to elucidate fundamental relationships
between variables, make predictions that are robust to the variation exhibited
in past data, and most important to the operations researcher, recommend
relevant and sage decisions.

“A model should be as simple as possible, and no simpler.” (pop-
ular paraphrasing of a statement by Albert Einstein, physicist,
[76, 146])

This second quote provides guidance on how to create such a model. We
start with the simplest model conceivable. If that model fails to capture impor-
tant characteristics of the system it is trying to emulate, then we iteratively
add complexity to the model. This iterative process requires validation against
known behavior (i.e., data) at each step. We stop as soon as the model is ade-
quate for its intended purposes.

At the interface of OR with data science, we see the complexity/efficiency
tradeoff materialize in many ways:

• When developing a mathematical programming model (which is the
topic of Section 6.2), we try whenever possible to represent the decision
problem as optimizing a linear function over a feasible region defined by
a system of linear constraints. Surprisingly, this simple linear framework
is adequate for broad classes of systems! Only when a linear framework is
unachievable do we start to incorporate nonlinear objective functions or
constraints, and even then, we prefer to sacrifice model fidelity to main-
tain computational tractability. This trade-off is discussed in greater
detail in Section 6.2.1.

244 Data Science for Mathematicians

• When choosing input distributions for parameters of a simulation, we
rely heavily on simple distributions whose properties generally capture
natural phenomena while remaining analytically tractable. This is dis-
cussed in Section 6.3.1.

• Multistage sequential stochastic optimization problems suffer from the
so-called curse of dimensionality, which means that the solution space
explored by optimal algorithms grows much too fast with the size of the
problem. Such problems can rarely be solved to guaranteed optimality;
instead approximations and even simulation are used to yield very good
solutions in a reasonable amount of time. These methods are described
in Section 6.4.2 and the curse of dimensionality is revisited in Section
7.2.

• When fitting a statistical model or tuning parameters in a machine learn-
ing procedure, we choose predictor variables or parameter values that
achieve not only a low error rate on the data used to fit the model
(training data) but also a low error rate on unseen testing data. While
a very complex model that is highly tuned to the training data can
appear to have a good “fit,” a simpler model often does a better job of
capturing the prominent trends that permit good prediction on unseen
data. This problem of avoiding overfitting was discussed in Chapter 4
and will appear again in Chapter 8. We also describe it in the context
of operations research methods in Sections 6.2.4 and 6.3.3.2.

The challenge in achieving the right balance in this trade-off is to suffi-
ciently understand the problem being modeled in order to discern the criti-
cal factors and relationships from those that add complexity without insight.
Sensitivity analysis is a means to assess whether simplifying assumptions dra-
matically alters the output of the analysis. If our model or approach is robust
to these assumptions, then we have no need to make the model more com-
plex. Section 6.5 presents several real-world examples of operations research
methods in action to solve large-scale, complex decision problems. But first,
we must introduce the foundation of OR methodology: optimization.

6.2 Optimization

Optimization is an important tool used in the overall operations research
process to fit a model or make decisions based on a model. Consider some
typical data science problems: a credit card company wants to predict fraud-
ulent spending, a hotel wants to set room prices based on past demand, or a
medical researcher wants to identify underlying populations with similar risk
profiles. As seen in previous chapters, data scientists approach all of these

Operations Research 245

problems by transforming them into corresponding optimization problems. In
supervised learning problems, such as linear regression introduced in Chap-
ter 4, fitting a given model to past data is an optimization problem in which
we set the model parameters to obtain the best fit. Outside of prediction,
unsupervised learning problems such as clustering the data into k subgroups
or clusters can also be framed as an optimization problem trying to maximize
the intra-cluster similarity, as detailed in Chapter 5. Further, after analyzing
the data or fitting a model, there remain operations research problems to be
solved based on these insights. For example, a hotel may want to set prices for
the coming spring to maximize revenue. We refer to this category of problem
as prescriptive analytics and discuss it in more detail in Section 6.5.

In any optimization problem, we are given a set of feasible solutions, each
associated with some objective function value. The goal is to find a feasible
solution that optimizes that objective function. To write this in mathematical
form, we use a mathematical program:

maximize f(x)

subject to gi(x) ≤ 0 ∀i = 1, 2, . . . ,m

x ∈ X

Here, the variables are given by the vector x, and the set X represents the type
of values x can take on. Typically, we think of X as the set of real vectors Rn,
but we could also restrict x to be non-negative Rn≥0 or integer-valued Zn or a
combination. A feasible solution is defined as a vector x ∈ X that satisfies the
m constraints gi(x) ≤ 0 for i = 1, 2, . . . ,m, where gi : X → R. Lastly, f : X →
R gives the objective function value of x. Solving this mathematical program
would return a feasible solution x that maximizes f(x). Such a solution is
called an optimal solution.

This framework is general in that we can also capture problems minimizing
f(x) (equivalent to maximizing −f(x)), inequality constraints of the form
gi(x) ≥ 0 (equivalent to the constraint −gi(x) ≤ 0), and equality constraints
gi(x) = 0 (equivalent to the constraints gi(x) ≤ 0 and gi(x) ≥ 0). If there are
no constraints on x, then the problem is called an unconstrained optimization
problem and is often easier to solve. Otherwise, the problem is a constrained
optimization problem.

Note that we have not restricted the functions f or gi to take on any
particular form. In fact, we have not even specified that we can efficiently
calculate their values. As it stands, any optimization problem could be placed
into this form. However, we also have not guaranteed that we can solve the
problem above. As we will see, a simpler format of these functions generally
allows us to find an optimal solution more easily. Sections 6.2.2–6.2.4 introduce
the most common tiers of optimization problems of increasing complexity and
emphasize the corresponding tractability trade-off.

246 Data Science for Mathematicians

6.2.1 Complexity-tractability trade-off

The generality of the objective function f , constraint functions gi, and set
X allows us to capture very complex optimization problems. For example,
this form captures both the simple optimization underlying linear regression
as well as the much more complicated optimization problem of setting the
parameters for a neural network. However, there is a trade-off between the
complexity of the optimization problem and the corresponding tractability of
solving it.

As the complexity of an optimization problem increases, the time needed to
find an optimal solution also increases. How this time grows with the number
of data features and points is especially important as the size of the data
we have access to increases. For the credit card company wanting to predict
fraud, this time also matters from a practical standpoint since there is limited
time in which the company must flag the transaction. If we cannot find an
optimal solution in fast enough time, then we may have to settle for finding a
solution we think is “good enough.” Therefore, it is important to understand
when we can restate a problem in a simpler form or make some simplifying
assumptions without sacrificing too much accuracy in problem representation
in order to gain efficiency.

Further, simpler optimization problems may yield more useful results to
the designer. By returning a more structured and interpretable result, the user
may gain more insight into future decisions. To solve a prediction problem for
hotel bookings, we can choose between many models, each of which has its
own underlying optimization problem. If in one model, the effect between price
and the probability of booking is clear from the optimized model parameters,
then the manager can try to adjust prices to increase the occupancy rate.
However, another more complicated model may fit the data slightly better
but not give this relationship so clearly. This inference from the data and
model is discussed more in Section 6.5.

In the following sections, we will introduce several common optimiza-
tion paradigms of increasing complexity and corresponding optimization algo-
rithms. The algorithms introduced take as input the optimization problem and
return a feasible solution x. We say an algorithm is efficient or polynomial-
time if the runtime of the algorithm (i.e., the number of steps) scales polyno-
mially in the input size of the problem. Here, the input size corresponds to
the space needed to store x and the space needed to represent f , gi, and X .
Having an efficient algorithm that returns an optimal solution is an impor-
tant benchmark for the complexity of a problem. However, we won’t always
be guaranteed to find such an algorithm. In those cases, we will introduce
efficient algorithms that return a feasible solution that we hope is close to
optimal. These optimization algorithms are called heuristic algorithms.

Almost all data science problems can be captured in the following
paradigms. While problem-specific algorithms can also be developed, under-
standing when an optimization problem falls into each category is an impor-

Operations Research 247

tant first step to solving the problem. Further, we direct the reader to open-
source software for solving problems in each of these paradigms in Section 6.6.

6.2.2 Linear optimization

We first consider the simplest functional form for f and gi, linear functions.
Linear optimization problems are comprised of a linear objective function
and linear constraints. In other words, we can write the objective function as
f(x) = cTx = c1x1 + c2x2 + . . .+ cnxn and each constraint as gi(x) = ai

Tx =
ai,1x1 + ai,2x2 + . . . + ai,nxn − bi ≤ 0 for i = 1, 2, . . . ,m. (For a refresher on
linear algebra, see Chapter 3.) We also assume the variables x are real-valued,
i.e., X = Rn≥0. We often write this mathematical program in standard form
using vector and matrix notation,

maximize cTx (6.1)

subject to Ax ≤ b

x ≥ 0.

Here, c and b are vectors and A is an m× n matrix of constraint coefficients.
We let ai denote the ith row of A and Aj denote the jth column of A. This
restricted form of optimization problem is called a linear program. The linear
program (6.2) gives an example.

maximize 12x1 + 10x2 (6.2)

subject to x1 ≤ 3

x2 ≤ 4

x1 + x2 ≤ 6

x1 ≥ 0, x2 ≥ 0.

Example Applications of Linear Programming

1. Transportation Problem: optimally assign customer orders
to factories to minimize shipping costs, subject to factory
production limits [282].

2. Image Segmentation: segment an image into foreground and
background [159].

3. Image Reconstruction: restore a noisy image to original form
[443].

248 Data Science for Mathematicians

x1

x2
x2

1 ≤ x2

x2 ≥ −4x1 − 4

x2 ≥ −2x1 − 1

x2 ≥ −x1 − 0.25

x2 ≥ 0

x2 ≥ x1 − 0.25

x2 ≥ 2x1 − 1

x2 ≥ 4x1 − 4

FIGURE 6.1: Approximating a nonlinear constraint with multiple linear con-
straints.

At first, it may seem very limiting to assume a linear objective function
and constraints. However, many common problems can be formulated as lin-
ear programs. Further, more complicated constraints or objective functions
can sometimes be well approximated using linear functions. As shown in Fig-
ure 6.1, the constraint x2

1 ≤ x2 can be approximated to arbitrary precision
using multiple linear constraints.

Linear optimization benefits greatly from its imposed structure. First, the
feasible region, the set of all feasible solutions, is given by the intersection
of the half-spaces defined by each linear inequality (ai

Tx ≤ bi and xj ≥ 0).
This type of subspace is called a convex polytope. The polytope for the linear
program (6.2) is given in Figure 6.2 along with several isoprofit lines cTx = α
plotting all points with the objective function value α. It is easy to see that
the vertex (3, 3) is an optimal solution to the linear program. One nice feature
of linear programming is that the set of optimal solutions will always be given
by a face of the polytope, where a 0-dimensional optimal face corresponds to a
single optimal vertex. This implies that we can always find an optimal vertex
(although it becomes harder to visually find the solution as the dimension
increases).

Optimal Set for Linear Programming

Consider any linear program. Then, any local optimal solution is a
global optimal solution. Further, when the feasible region contains a vertex,
then if there exists an optimal solution (i.e., the feasible region is nonempty
and the objective function is bounded), then there exists an optimal solu-
tion that is a vertex of the feasible region.

This insight is critical to the algorithms used to find an optimal solution.
The most commonly known algorithm to solve linear programs, Dantzig’s
simplex algorithm [115], is not a polynomial-time algorithm. Nevertheless, the
simplex algorithm tends to work very well in practice, and the idea behind
the algorithm is beautifully simple and intuitive.

Operations Research 249

0

0

1

1

2

2

3

3

4

4

5

5

6

6

x2 = 4

x1 = 3

x1 + x2 = 6

x1 = 0

x2 = 0

12x1 + 10x2 = 66

12x1 + 10x2 = 50

12x1 + 10x2 = 40

FIGURE 6.2: Finding the optimal solution of the linear program (6.2). The
feasible region is outlined in bold and isoprofit lines for α = 40, 50, 66 are
drawn dashed, showing that (3,3) is optimal.

Simplex Algorithm
The simplex algorithm starts at a vertex of the feasible region. Finding such

a point can be done efficiently by actually solving a related linear program for
which we know a feasible vertex [47]. In each iteration, the algorithm searches
to find an adjacent vertex with a higher objective function value. If it finds
one, it moves to that new vertex. Otherwise, the algorithm outputs the current
vertex as an optimal solution. The possible inefficiency in this algorithm comes
from the fact that in the worst case the algorithm can visit exponentially
many vertices. This worst-case behavior requires a very particular constraint
structure, and in practice, the number of vertices visited tends to scale well
with the input size.

6.2.2.1 Duality and optimality conditions

As one might expect, given that they are the simplest form of constrained
optimization, linear programs can be efficiently solved. However, developing
a polynomial-time algorithm requires using duality to find additional struc-
ture of an optimal solution and to understand how the optimal solution would
change if we modified the constraints or objective function. In particular, con-
sider any linear program in the form (6.1) (called the primal linear program)
and let yi be a Lagrangian multiplier associated with the inequality constraint
ai
Tx− bi ≤ 0. Then, the Lagrangian relaxation is given by

max
y≥0

inf
x≥0

[
cTx +

m∑

i=1

(bi − ai
Tx)yi

]
.

250 Data Science for Mathematicians

Assuming that (6.1) has a nonempty feasible region and bounded objective
function, then this is equivalent to the following optimization.

min
x≥0

sup
y≥0

bTy +

n∑

j=1

(cj −Aj
Ty)xj

 .

This leads to the following dual linear program.

minimize bTy (6.3)

subject to ATy ≥ c

y ≥ 0.

Since the dual variables y can be seen as Lagrangian multipliers associated
with each constraint of (6.1), yi represents how much the optimal solution
value of (6.1) would increase if we relaxed the constraint ai

Tx ≤ bi to be
ai
Tx ≤ bi + 1.

It is easy to show that for all feasible x to (6.1) and feasible y to (6.3),
cTx ≤ bTy. This property is called weak duality and it implies that the
objective function in (6.3) can be interpreted as finding the tightest upper
bound for the program (6.1). In fact, linear programs satisfy the stronger
condition of strong duality : if both (6.1) and (6.3) have a nonempty feasible
region, then there exist feasible x∗ and y∗ such that cTx∗ = bTy∗. This
implies that if we find feasible x and y with matching objective function
values then we know both are optimal for their respective linear programs.

Another way to test for optimality is through a set of conditions called
the Karush-Kuhn-Tucker (KKT) conditions. These conditions are based on
the theory of Lagrangian multipliers and also rely on the dual solution y. In
particular, for linear programs, the KKT conditions can be stated as follows.

KKT Conditions for Linear Programming

Consider any linear program in the form (6.1). Then x ∈ Rn is an
optimal solution if and only if there exists y ∈ Rm such that

1. x is feasible for (6.1),

2. y is feasible for (6.3),

3. yi(ai
Tx− bi) = 0 for all i = 1, 2, . . . ,m, and

4. xj(Aj
Ty − cj) = 0 for all j = 1, 2, . . . , n.

The last two constraints are referred to as complementary slackness. In
fact, the simplex algorithm can also be viewed as maintaining a feasible solu-
tion x and an infeasible dual solution y that satisfies complementary slackness
with x. In each step, the algorithm moves towards feasibility of y.

Operations Research 251

FIGURE 6.3: The iterative path of the interior-point algorithm (solid) follow-
ing the central path (dashed).

Interior-point algorithms
We can use duality and the KKT conditions to design an algorithm to

find an optimal solution. Khachiyan [266] introduced the first polynomial-
time algorithm to solve linear programs called the ellipsoid algorithm. This
was shortly followed by Karmarkar’s [260] efficient interior-point algorithm,
which led to the popular class of algorithms called interior-point methods.
This class of methods updates a feasible solution on the interior of the feasible
region rather than a vertex. For simplicity, we will describe the primal-dual
interior-point algorithm, but there exist other interior point methods that
are also efficient but used less in practice [517]. In the primal-dual interior-
point algorithm, we maintain a primal feasible solution x and a dual feasible
solution y and work towards satisfying complementary slackness. Let s1 ≥ 0
and s2 ≥ 0 be new variables that represent the slack in the primal and dual
constraints, respectively. Then, we can rewrite the primal feasibility condition
as Ax + s1 = b, the dual feasibility condition as ATy − s2 = c, and the
complementary slackness conditions as s1

Ty = 0 and s2
Tx = 0. Let F :=

{(x,y, s1, s2) | Ax − b + s1 = 0, ATy − c − s2 = 0, (x,y, s1, s2) ≥ 0} be the
set of primal and dual feasible solutions. We define the central path as the set
of solutions that satisfy primal and dual feasibility and approximately satisfy
complementary slackness:

CP := {(x,y, s1, s2) ∈ F | s1Ty = τ, s2
Tx = τ for some τ ≥ 0}.

The set is called the central path since the set of x in CP traces a path on the
interior of the feasible polytope. See Figure 6.3. Further, for all τ > 0 there is
a unique feasible solution (x,y, s1, s2) ∈ F such that s1

Ty = τ and s2
Tx = τ ,

and as τ → 0, this solution approaches an optimal one.
The primal-dual interior-point algorithm tries to approximate this central

path and decrease τ on each step. The algorithm starts at a feasible solution
(x,y, s1, s2) on the interior of the polytope that is close to the central path for
some τ > 0. Then, on each iteration, the algorithm moves towards a feasible
point (x̂, ŷ, ŝ1, ŝ2) ∈ F such that ŝ1

T ŷ = τ and ŝ2
T x̂ = τ for some set value

252 Data Science for Mathematicians

of τ . The algorithm uses Newton’s method to take a single step towards this
point.2 By gradually decreasing τ and the step size, the algorithm maintains
feasibility and roughly follows the central path to approach an optimal solu-
tion. Thus, this method can be seen as an example of gradient descent on
the primal and dual problems simultaneously. Interestingly, the central ideas
behind the primal-dual interior-point algorithm will extend to more general
convex optimization, as discussed further in Section 6.2.3.

6.2.2.2 Extension to integer programming

While linear programming is a powerful optimization tool, sometimes we
want to restrict some or all of the variables to be integer-valued. This allows
us to code integer variables such as the number of items to produce in a given
month as well as binary decision variables such as whether or not to offer a
sale. Further, binary integer variables allow us to capture logical constraints
such as A OR B and IF A THEN B, where A and B are themselves linear
constraints. This added complexity allows integer programming to capture the
optimization behind problems such as determining a new bus route, creating
fair voter districts, and matching kidney donors and recipients. An application
related to bike-sharing networks can be found in Section 6.5, and the reader is
invited to formulate integer programs for problems related to vehicle routing
and electric power systems in Exercises 1 and 2, respectively.

A linear program in which all variables are restricted to be integer-valued
is called an integer program and one with both continuous- and integer-valued
variables is called a mixed integer program. Adding in the integer constraint
complicates the optimization procedure since the feasible region is no longer
given by a convex polytope. However, note that if we removed the integer
constraints we get a linear program that is a relaxation of the problem we
can solve. If the optimal solution to this relaxation is integer-valued, then it
will also be the optimal solution to the original integer program. (One setting
in which the optimal solution is guaranteed to be integer-valued is when the
vector b is integer-valued and the matrix A is totally unimodular.) This is
exactly the idea behind branch-and-bound and cutting plane methods, two
of the main algorithms used to solve integer programs. On each iteration,
both algorithms solve a linear programming relaxation to the original prob-
lem. Either the relaxation yields an integer-valued optimal solution or the
algorithm updates the relaxation by adding valid linear constraints. For more
information about integer programming and linear optimization in general,
see [47,425].

6.2.3 Convex optimization

Linear programming is itself a subset of a larger class of polynomial-time
solvable optimization problems called convex programming. Convex program-

2For more details about Newton’s method and other numerical methods, see [363].

Operations Research 253

ming, or convex optimization, is where the bread and butter of machine learn-
ing algorithms lies, including linear regression (Section 4.3.1), lasso regression
(Sections 4.7.2 and 8.5.4), and support-vector machines (Section 8.8). Return-
ing to our more general optimization problem notation, we can write a convex
program in the following format.

minimize f(x) (6.4)

subject to gi(x) ≤ 0 ∀i = 1, 2, . . . ,m

Such an optimization problem is a convex program if (1) the objective function
f(x) is a convex function and (2) the feasible region is a convex set. Note
that we have switched to the standard minimization representation for convex
programs rather than maximization. If each gi is a convex function, then this is
referred to as standard form. The program (6.5) gives an example of a convex
program in standard form.

minimize 0.5x2
1 (6.5)

subject to x1 + x2 ≤ 4

− log(x1) + x2 ≤ 0

x1 ≥ 0, x2 ≥ 0.

Example Applications of Convex Optimizationsdfsdf

1. Linear Regression: fit a linear prediction model to past data (Chap-
ter 4).

2. Support-Vector Machines: find a partition of labeled data (Chap-
ter 7).

3. Source-Location Problem: locate a source from noisy range measure-
ments in a network of sensors [379].

A set X ⊆ Rn is a convex set if for all x1,x2 ∈ X and for all 0 < α < 1,
αx1 + (1− α)x2 ∈ X . In other words, the line segment between x1 and x2 is
also in the set. Figure 6.4 shows that the feasible region of (6.5) is a convex
set but adding the constraint −x2

1 + 6x1 + x2 ≤ 9.5 loses the convexity. A
simple example for which we can easily show convexity is a half-space {x ∈
Rn | ai

Tx ≤ bi}. To prove convexity of more complex sets we can either use
the definition given above or use two nice properties of convex sets: (1) the
intersection of convex sets is itself convex, and (2) if X ⊆ Rn is a convex set
then the affine transformation {Ax+b ∈ Rn | x ∈ X} is a convex set. Already
these allow us to prove that the feasible region of a linear program is a convex
set, hence why we call the feasible region a convex polytope.

254 Data Science for Mathematicians

x1

x2

x1 + x2 = 4

− log(x1) + x2 = 0

x1

x2

−x2
1 + 6x1 + x2 = 9.5

a
b

FIGURE 6.4: On the left, the convex feasible region of (6.5) is outlined in
bold. Adding the inequality −x2

1 + 6x1 + x2 ≤ 9.5 yields the feasible region
on the right, which is not convex since the line connecting a and b is not
contained in the feasible region.

Given a convex set X , a function f : X → R is a convex function on X if
for all x1,x2 ∈ X and 0 < α < 1,

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

Figure 6.5 illustrates that the objective function of (6.5) is indeed convex.
Some simple convex functions are linear functions f(x) = cTx and a quadratic
function f(x) = x2. The former implies that linear programs are a subset of
convex programs. To prove convexity for more complex functions, we can again
rely on convexity preserving operations:

1. if f1, f2, . . . , fk are convex functions and w1, w2, . . . , wk ≥ 0 are non-
negative weights, then f(x) = w1f1(x) + w2f2(x) + . . . + wkfk(x) is
convex,

2. if {fa}a∈A is a family of convex functions, then f(x) = supa∈A fa(x) is
a convex function, and

3. if f(x) is a convex function, then f(Ax + b) is a convex function.

In addition, if f is twice continuously differentiable, then f is convex if and
only if its Hessian matrix3 is positive semidefinite for all x ∈ X .

Like linear programs, convex programs exhibit strong structure, which
allows us to solve them efficiently. First, the convexity of the feasible region and
objective function imply that a locally optimal solution is a globally optimal
one. Suppose we have a feasible solution x and optimal solution x∗, then by
the convexity of the feasible region, the line between x and x∗ is contained in
the feasible region. Further, by the convexity of the objective function, moving
along this line is an improving direction.

Optimal Set for Convex Programming

In any convex program, a local optimal solution is globally optimal.

3The Hessian is the matrix of all second-order partial derivatives, Hi,j = ∂2f
∂xi∂xj

, assum-

ing all such derivatives are defined.

Operations Research 255

f(x) = x2

x1 x2

α(x1, f(x1)) + (1 − α)(x2, f(x2))

FIGURE 6.5: Example of a convex function.

First-order optimization methods
This is the intuition behind the simple, first-order-based methods for solv-

ing convex programs, first introduced by Shor [433]. If we ignore the con-
straints in (6.4) and assume that f is differentiable, then the problem becomes
that of minimizing a differentiable, convex function, which we can easily solve
using gradient descent. In gradient descent, in each step t we are at some
point xt, and we find xt+1 by moving in the direction of the negative of the
gradient xt+1 = xt − ηt∇f(xt). By setting the step size ηt appropriately, the
solution converges to an optimal solution. This convergence can be improved
using Newton’s method to approximate f at each point xt. However, there are
two things that become difficult when applying gradient descent or Newton’s
method to a convex program: (1) we need to maintain feasibility, and (2) the
function f is not differentiable in many common data science settings.

We tackle the latter problem first. If f is not differentiable, then instead
of using the gradient to obtain a linear approximation for f , we will instead
use a subgradient to find a direction in which to move. A subgradient of f at
xt is a vector vt such that

f(x)− f(xt) ≥ vt · (x− xt)

for all x. In other words, vt gives us a lower bound for f that is equal at xt.
For example, v ∈ [−1, 1] is a subgradient for f(x) = |x| at x = 0. See Fig-
ure 6.6. In subgradient descent, the algorithm uses this subgradient to decide
which direction to move in. In particular, at each time step t with current
solution xt, the algorithm sets xt+1 = xt − ηtvt, where ηt is the step size. If
f is differentiable, then vt is the gradient and this is equivalent to steepest
descent, which is slower to converge than Newton’s method but still finds an
optimal solution. In the general case when f is not differentiable, since vt is
a subgradient, the solution value is not guaranteed to improve at each step.
However, as long as the sequence ηt satisfies that ηt → 0 and

∑
t ηt = ∞,

then the best solution seen also converges to an optimal solution. There exist
convergence proofs for other choices of ηt as well.

The subgradient method detailed so far does not deal with feasibility con-
straints. In order to add these in, the projected subgradient method maintains

256 Data Science for Mathematicians

FIGURE 6.6: Example of several subgradients (dashed) for a function (solid)
at x = 0.

a feasible solution by projecting the solution xt+1 back to the feasible region.
This projection can be efficiently done for many different types of convex sets,
and as long as the sequence ηt satisfies that ηt → 0 and

∑
t ηt = ∞, then

the best solution seen also converges to an optimal solution. The simplicity of
subgradient methods makes them appealing to implement in practice despite
being less efficient than the interior-point methods discussed in Section 6.2.3.1.
In addition, these methods can be run on large problem instances since they
are not very memory-intensive.

One way to improve the runtime on larger data is using stochastic gradi-
ent descent. Many objective functions in machine learning can be written as
a sum of functions f(x) = 1

n

∑
i fi(x), where each fi corresponds to some loss

function on the ith observation measuring how well the model matches that
observation. Rather than evaluating the gradient or subgradient for every fi,
stochastic gradient descent samples a random subset. Assuming some prop-
erties of the fi’s, this sample gives a good estimate for the overall fit of the
model for large datasets. We will see uses of stochastic gradient descent in
Chapters 8 and 9.

6.2.3.1 Duality and optimality conditions

As with linear programs, we can use duality to give more structure about
the set of optimal solutions and develop more efficient algorithms. Associating
a Lagrangian multiplier yi with each inequality constraint yields the following
dual program.

maximize L(y) := inf
x∈Rn

[
f(x) +

m∑

i=1

yigi(x)

]
(6.6)

subject to y ≥ 0

Operations Research 257

The objective function in (6.6) can be interpreted as finding the tightest
lower bound for (6.4). It is easy to show that convex programs satisfy weak
duality. That is, for all feasible x to (6.4) and feasible y to (6.6), f(x) ≥
L(y). However, unlike linear programs, strong duality only holds for convex
programs that satisfy regularity conditions. While there exist several possible
ways to show regularity, one simple test is to show that there exists feasible
x such that gi(x) < 0 for all i = 1, 2, . . . ,m. Such a point x is called a strictly
feasible point and this condition is called the Slater condition. If the convex
program satisfies regularity and both (6.4) and (6.6) have a nonempty feasible
region, then there exist feasible x∗ and y∗ such that f(x∗) = L(y∗). This
implies that if we find feasible x and y with matching objective function values
then we know both are optimal for their respective optimization problems.
Luckily, most reasonable convex programs satisfy these regularity conditions.

The dual program also yields the corresponding Karush-Kuhn-Tucker
(KKT) conditions of optimality. These conditions are necessary and suffi-
cient for optimality in most convex settings. For example, the conditions are
necessary and sufficient if the convex program (6.4) is in standard form and
satisfies the regularity conditions described above.

KKT Conditions for Convex Programming

Consider any convex program (6.4) in standard form that satisfies regu-
larity conditions and such that f and every gi is continuously differentiable
at some point x ∈ Rn. Then, x is an optimal solution if and only if there
exists y ∈ Rm such that

1. ∇L(x) = 0 (stationarity),

2. x is feasible for (6.4) (primal feasibility),

3. y ≥ 0 (dual feasibility), and

4. yigi(x) = 0 for all i = 1, 2, . . . ,m (complementary slackness).

For optimality conditions for nondifferentiable functions, see [221,359].
Interior-point algorithms
Again, we can use these optimality conditions to understand the intu-

ition behind some of the most common algorithms used to solve convex pro-
grams. The primal-dual interior-point method for linear programming in Sec-
tion 6.2.2.1 can be extended to convex programming and is one of several
interior-point methods for convex optimization [360]. As in linear program-
ming, the goal of this interior-point method is to maintain a primal feasible
solution x and a dual feasible solution y and work towards satisfying comple-
mentary slackness in the KKT conditions. The algorithm starts at a feasible
solution (x,y), and on each iteration, the algorithm moves towards a new

258 Data Science for Mathematicians

feasible point (x′,y′) such that yigi(x) ≈ τ , where τ decreases to zero as the
algorithm progresses. The algorithm takes a step towards this point via New-
ton’s method. In general, interior-point methods are very efficient for convex
programs provided that the constraints and objective function fall into some
common paradigms [59]. For more details on the theory of convex optimiza-
tion, see [32,59].

6.2.4 Non-convex optimization

Last, we move to our most general setting, non-convex optimization, in
which we allow the objective function and constraints to take on any form.
For example, consider the following optimization problem.

minimize

n∑

i=1

vixi (6.7)

subject to

n∑

i=1

wixi ≤W

xi ∈ {0, 1} ∀i = 1, 2, . . . , n.

This is the classic knapsack problem. In this problem, we are given n items
each with weight wi and value vi, and the goal is to choose the maximal value
set of items with total weight ≤ W . Despite the simplicity of this problem,
there is no polynomial-time algorithm to solve it. However, if we relax the
integer constraint and are allowed to fractionally choose items, then it is sim-
ple to find an optimal solution. Non-convexity in machine learning problems
arises from a similar problem. Many non-convex machine learning problems
are problems in high-dimensional settings in which it is necessary to add some
constraint on the complexity or sparseness of a solution in order to avoid over-
fitting. Further, neural networks are designed to capture complex relationships
between variables and are inherently non-convex. Even the relatively simple
objective function minx xTQx is non-convex and difficult to solve.

Example Applications of Non-Convex Optimizationsdfsdf

1. k-Means Clustering: partition data into k similar clusters (Chapter 5).

2. Neural Networks: fit a highly nonlinear prediction model (Chapter 9).

3. Designing Bus Routes: use traffic data to optimally route students to
school [39].

Without convexity, the algorithms described so far fail to work. Under
regularity conditions, an optimal solution still satisfies the KKT conditions.

Operations Research 259

However, these conditions are no longer sufficient or as informative. Without a
convex feasible region, the improving direction proposed may not be feasible,
and without a convex objective function, there may exist local minima or
saddle points that satisfy the KKT conditions but are not globally optimal.
In fact, a polynomial-time algorithm that finds an optimal solution for any
non-convex problem is unlikely to exist.4 Therefore, in order to solve a non-
convex problem, we have a few options: imposing additional structure that
allows us to optimally solve the problem, settling for a non-optimal solution,
or finding the optimal solution inefficiently. This last option is only realistic
for very small problems, and is not used for many data science questions.

Let’s consider the option of imposing additional structure. First, we can try
to relax a non-convex optimization problem to a convex one. If the optimal
solution to the relaxed problem is feasible for the original problem, then it
is the optimal solution overall. Otherwise, the optimal solution value to the
relaxed problem still gives us a bound on the optimal solution value for the
original problem. We can then try to map to a feasible solution and measure
the loss in objective function, or we can try to strengthen our relaxation.
If we cannot obtain a direct relaxation, then we can also consider a convex
approximation.

As an example, consider lasso regression, introduced in Section 4.7.2.
Lasso regression is motivated by a common preference among statisticians
for parsimonious regression models, in which relatively few predictor vari-
ables have nonzero coefficients. Ideally, a constrained optimization framework
could achieve such parsimony by minimizing the sum of squared errors subject
to the non-convex constraint, ||β||0 ≤ k. (k is a tunable hyperparameter which
reflects how severely we wish to constrain the parsimony of the model. The
tuning of hyperparameters is discussed in greater detail in Section 6.3.3.2.)
Due to the complexity of solving this non-convex optimization problem, lasso
regression can be seen as the convex approximation of optimal feature selec-
tion where the non-convex constraint ||β||0 ≤ k is replaced with the convex
constraint ||β||1 ≤ k′. Using Lagrange multipliers then yields the form for
lasso regression given in Chapter 4.

Alternatively, we can try to exploit the structure of our specific non-convex
problem. For certain non-convex problems, there exist efficient problem-
specific algorithms that find an optimal solution or the problem can be cleverly
reformulated to an easier format. As an example, several image segmentation
problems such as separating foreground and background can be reformulated
as linear programs [159,432]. Additionally, some algorithms designed for con-
vex optimization problems can be extended to restricted non-convex settings.
Projected gradient descent has been shown to converge to an optimal solution
if the problem constraints fall into one of a few patterns and the objective
function is almost convex [246].

4The existence of such an algorithm would imply that P = NP [176].

260 Data Science for Mathematicians

In the other direction, we can settle for a non-optimal solution by using
heuristic algorithms that are not guaranteed to return an optimal solution.
One such simple algorithm is a grid search: search over many possible feasible
solutions by gridding the range for each variable and return the best feasible
solution found. Or, better yet, we could iterate over many possible feasible
solutions and use these as different initial starting points for gradient descent.
While in each iteration we are not guaranteed to find the global optimal solu-
tion, we hope that by starting from many different points in the feasible region
that we will stumble upon it anyway. This general algorithm idea to start at
a feasible solution and search for improvements is called local search. If the
variables in our optimization problem are restricted to be integer-valued, there
exist other appropriate local search algorithms such as genetic algorithms or
tabu search that we can apply. Exercise 1 includes designing and evaluating
a local search algorithm for a vehicle routing problem. For a more detailed
exposition of non-convex optimization and its applications in data science, we
direct the reader to [246,440].

6.3 Simulation

Up until now, the methods described in this chapter have all been deter-
ministic; we’ve assumed that the problem at hand can be formulated as an
optimization problem with known objective function and constraints. How-
ever, uncertainty lies at the core of data science. How do we describe complex
relationships between random variables? How do we predict a random out-
come on the basis of known realizations of random variables, and how do we
measure our uncertainty in that prediction? How do we prescribe decisions
that are robust to uncertainty?

An important operations research tool for making decisions under uncer-
tainty is simulation. In its simplest sense, simulation is the generation of real-
izations of a random variable or process.

Example Applications of Simulationsdfsdf

1. Air Traffic Flow Management: Improve the utilization of the national
airspace by testing policies in an agent-based simulation [249].

2. Ranked Data Analysis: Cluster survey respondents based on partial
rankings of preferences using a Gibbs sampler [244].

3. Stochastic Optimization: Compute approximate value functions by
simulating the effects of given policies [393].

Operations Research 261

We first describe the key probability principles on which simulation relies
and fundamental techniques for generating random variables. We then provide
specific examples of the ways in which simulation underlies some machine
learning methods and can be used more broadly as a tool for prescriptive
analytics.

6.3.1 Probability principles of simulation

Chapter 4 introduced the notion of a random variable. Formally, a random
variable, X, is a mapping from the sample space of a random experiment
to a real number. For example, consider the experiment of flipping a fair
coin five times. The sample space of the experiment is the set of all possible
combinations of outcomes for the five coin flips. If we denote flipping heads as
H and flipping tails as T , one outcome in the sample space is (H,H,H, T, T),
which represents flipping heads on the first three flips and tails on the last
two. If we let X denote the number of heads flipped, then X is a mapping
from the sample space of outcomes of five coin flips to the numbers 0, 1, . . . , 5.
For the particular realization (H,H,H, T, T), X = 3.

For most purposes, a random variable X is classified as being either dis-
crete, meaning it takes on values in a countable set, or continuous, meaning
it takes on values over a real interval. A random variable is characterized by
its probability distribution, which specifies the relative likelihoods of the pos-
sible values of X. The distribution of a discrete random variable X is given
by its probability mass function (PMF), p(x), which specifies for any value x
the probability of X equaling that value: p(x) = P (X = x). For a continuous
random variable, the probability of X exactly equaling any value is 0, so we
instead refer to its probability density function (PDF), f(x), which is defined
so that

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx.

Equivalently, a random variable X is uniquely specified by its cumula-
tive distribution function (CDF), F (x) = P (X ≤ x). For a discrete random
variable having probability mass function p(x), the CDF is given by

F (x) = P (X ≤ x) =
∑

y≤x

p(y).

For a continuous random variable having probability density function f(x),
the CDF is given by

F (x) = P (X ≤ x) =

∫ x

−∞
f(y)dy.

We can use the CDF of a random variable to determine quantiles, or per-
centiles, of the distribution. Let the distribution of random variable X be
defined by CDF F . A value x is the qth quantile of F if F (x) = q

100 . That is,

262 Data Science for Mathematicians

x is the value such that random variable X takes on a value no greater than
x with probability q%. A common quantile of reference is the median, which
corresponds to the 50th quantile, or percentile, of the distribution.

Because the CDF defines a probability, it is bounded below by 0 and above
by 1. It is also monotonically nondecreasing, which is a useful property for
simulation, as we describe in the next section.

Two other important characteristics of a random variable are its expected
value (also referred to as mean) and its variance. By the Strong Law of Large
Numbers, the expected value is the limiting value of the sample average of
n observations of the random variable, x1+x2+...xn

n , as n goes to infinity. For
discrete random variables, it is defined as

E[X] =
∑

x

xp(x),

that is, the weighted sum of all possible values the random variable can take
on times the likelihood of that value. The analogous definition for continuous
random variables is

E[X] =

∫ +∞

−∞
xf(x)dx.

As these formulae suggest, the expected value of a random variable can be
thought of as the center of mass of its probability mass or density function.

The variance reflects the spread of the random variable’s distribution about
its expected value. It is defined as

σ2 = E[(X − E[X])2].

Large variance indicates great uncertainty about the random variable’s value,
while small variance indicates that the random variable tends to take on values
very close to its expected value. Variance reflects squared deviations about the
expected value, but it can also be useful to measure variability in the original
units of the random variable. For this, we use the square root of the variance,
known as the standard deviation.

6.3.2 Generating random variables

At its essence, simulation concerns itself with generating random variables,
also known as Monte Carlo simulation. We now describe common techniques
for generating random variables from a known distribution, from an empirical
distribution (also known as bootstrapping), and from an unknown distribution
(using Markov Chain Monte Carlo (MCMC) methods).

6.3.2.1 Simulation from a known distribution

When the distribution of X is known or assumed, simulation seeks to
generate a sequence of realizations from that distribution. That is, given a

Operations Research 263

cumulative distribution function F , we wish to generate a sequence of val-
ues X1, X2, . . . such that P (Xi ≤ x) = F (x). There are many techniques
for simulating random variables from a known distribution, with increasingly
sophisticated techniques required for simulating jointly distributed random
variables.

Choosing a distribution
The first step to any simulation is choosing which probability distribution

to simulate. The modeler must make assumptions about the nature of the
random variables being generated. For example, if the simulation is modeling
Internet traffic as an arrival process, the Poisson distribution is a common
choice for modeling the number of arrivals to occur in a given time interval.
As another example, a triangular distribution is a useful and simple distribu-
tion for modeling a continuous random variable having an assumed minimum
and maximum possible value and a likely modal value (forming the peak of
the triangle). As is common in modeling, the modeler must make a trade-off
between model fidelity and simplicity: a modeler might prefer to use a simpler
distribution that is more tractable and interpretable than a distribution that
captures more system complexity.

Most mathematical computing environments have built-in functions for
generating random variables from common univariate and multivariate dis-
tributions. The availability of built-in random variable generators streamlines
the computation associated with simulation. Eight common discrete and con-
tinuous distributions are given in Tables 6.1 and 6.2. For each distribution,
its probability mass (density) function is displayed, as well as a summary of
common uses and the R command used to generate values from this distribu-
tion. (The book website provides comparable commands in other languages
such as Python, Matlab, and Julia).

When a sample of data is available, the modeler can hypothesize a distri-
bution on the basis of a histogram or other graphical summary, and from there
assess the goodness-of-fit between the data and the hypothesized distribution.
The sample mean and sample variance can also be computed to provide infor-
mation about the true mean and variance of the distribution. Some common
goodness-of-fit tests are the Kolmogorov-Smirnov test, the Cramér-von Mises
criterion, and the Anderson-Darling test. For discrete distributions, the χ2

goodness-of-fit test is also common. If the hypothesized distribution fits the
sample data well, then the modeler can feel comfortable using that distribution
in the simulation.

Inverse method
Absent a built-in function, the modeler might need to write their own

method for generating random variables. The simplest technique that is useful
for generating a random variable from a univariate distribution is called the
inverse method. Let F−1 be the inverse of the CDF. Thus, F−1 provides, for a
desired quantile, the value of the random variable associated with that quantile
in distribution F . In other words, if P (X ≤ x) = q, then F−1(q) = x. Because
the quantiles of any distribution are, by definition, uniformly distributed over

264 Data Science for Mathematicians

TABLE 6.1: Common discrete probability distributions: uniform, binomial,
geometric, and Poisson. See Table 6.2 for common continuous distributions.

Discrete uniform Binomial

𝑝𝑝 𝑥𝑥 =
1

𝑘𝑘 + 1
, 𝑥𝑥 ∈ 𝑎𝑎, 𝑎𝑎 + 1, … , 𝑎𝑎 + 𝑘𝑘 𝑝𝑝 𝑥𝑥 =

𝑛𝑛
𝑥𝑥

𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥, 𝑥𝑥 ∈ 0, 1, … , 𝑛𝑛

Common uses: Equally likely dis-
crete integer outcomes from a to
a + k, no prior knowledge of dis-
tribution

Common uses: Number of suc-
cesses in n independent trials,
where each trial is successful with
probability p

In R: sample In R: rbinom
Geometric Poisson

𝑝𝑝 𝑥𝑥 = 𝑝𝑝(1 − 𝑝𝑝)𝑥𝑥−1, 𝑥𝑥 ∈ 0,1, … 𝑝𝑝 𝑥𝑥 =
𝜆𝜆𝑥𝑥𝑒𝑒−𝜆𝜆

𝑥𝑥! , 𝑥𝑥 ∈ 0, 1, …

Common uses: Counting the
number of independent trials until
the first success occurs, where each
trial is successful with probability
p

Common uses: Counting the
occurrence of rare events having
mean λ, queuing theory

In R: rgeom In R: rpois

Operations Research 265

TABLE 6.2: Common continuous probability distributions: uniform, triangle,
normal, and exponential. See Table 6.1 for common discrete distributions.

Uniform Triangle

𝑓𝑓 𝑥𝑥 =
1

𝑏𝑏 − 𝑎𝑎
, 𝑥𝑥 ∈ 𝑎𝑎, 𝑏𝑏

𝑓𝑓 𝑥𝑥 =

2(𝑥𝑥 − 𝑎𝑎)
(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎)

, 𝑎𝑎 ≤ 𝑥𝑥 < 𝑐𝑐

2
𝑏𝑏 − 𝑎𝑎

, 𝑥𝑥 = 𝑐𝑐

2(𝑏𝑏 − 𝑥𝑥)
(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐)

, 𝑐𝑐 < 𝑥𝑥 ≤ 𝑏𝑏

Common uses: Equally dis-
tributed likelihood of outcomes
over interval [a, b], no prior knowl-
edge of distribution except for
range

Common uses: No prior knowl-
edge of distribution except for
range [a, b] and mode c

In R: runif In R: rtriangle
Normal Exponential

𝑓𝑓 𝑥𝑥 =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒
− 𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2 ,𝑥𝑥 ∈ ℝ 𝑓𝑓 𝑥𝑥 = 𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥, 𝑥𝑥 ≥ 0

Common uses: Random errors,
sums of random variables, scientific
measurements, having mean µ and
variance σ2

Common uses: Spacing between
rare events occurring with rate λ

In R: rnorm In R: rexp

266 Data Science for Mathematicians

FIGURE 6.7: On the left, histogram of 1000 randomly generated U(0, 1) ran-
dom variables with density of the U(0, 1) distribution overlaid. On the right,

histogram of X = − ln(1−U)
λ , where λ = 5, computed using the 1000 U(0, 1)

random variables from the left panel, with the Exp(5) distribution overlaid.
(Plots produced using base plotting package in R.)

[0, 100], any random variable can be generated by first generating a number, U ,
uniformly over [0, 1] (corresponding to the 100U quantile) and then returning
X = F−1(U), assuming a closed-form expression for F−1 can be defined.

As an example, consider the exponential distribution, a continuous distri-
bution having PDF f(x) = λe−λx, x ≥ 0 for a given parameter λ > 0, known
as the rate of the distribution. (The exponential distribution is commonly used
for modeling the time between occurrences of rare events, and λ represents
the rate of occurrence per unit time.) Integrating f(x) we find the CDF of the
exponential distribution to be F (x) = 1− e−λx, x ≥ 0. To generate exponen-
tial random variables, we first invert F by solving F (X) = U in terms of X.

We find X = F−1(U) = − ln(1−U)
λ . Thus, given a U(0, 1) random variable, we

can generate X from an exponential distribution in this way. The left panel
of Figure 6.7 shows a histogram of 1000 randomly generated values uniformly
distributed from zero to one (U(0, 1)). The right panel shows a histogram of
1000 exponentially distributed random variables with rate parameter λ = 5

that were generated from the U(0, 1) using X = − ln(1−U)
λ .

Because a closed-form expression for F−1 is often not available, methods
such as acceptance-rejection or distribution-specific methods can also be used.
The reader is referred to [304,410] for a detailed treatment of this subject.

Operations Research 267

6.3.2.2 Simulation from an empirical distribution: bootstrapping

Sometimes a hypothesized distribution is not apparent from the problem
context or from the data sample. For example, a histogram of observed data
might not resemble any of the distributions given in Tables 6.1 and 6.2. In such
a case, the modeler might prefer to use the data’s empirical distribution. As
explained in Section 4.4.3, the empirical distribution is the distribution exhib-
ited by the sample of data itself, where the CDF, P (X ≤ x), is approximated
by the percentiles observed in the sample. The modeler can sample directly
from the (discrete) empirical distribution using a process called bootstrapping.
In this process, realizations of the random variable are selected uniformly at
random, with replacement, from the data in the sample. In this way, the dis-
tribution of the generated values mirrors the distribution observed in the raw
data.

Bootstrapping is especially useful when the true distribution is unknown
and

1. there is little to no intuition as to what a reasonable hypothesized dis-
tribution would be,

2. the distribution is complicated to derive because it arises from a non-
trivial composition of underlying random variables, or

3. small sample sizes preclude assessing the goodness-of-fit of a hypothe-
sized distribution.

A danger in bootstrapping is that bootstrapped samples can be heavily
influenced by the presence or absence of extreme values in the original sample.
If the original sample is so small that rare, extreme values did not occur in the
sample, the bootstrapped sample, regardless of size, will not exhibit extreme
values. On the other hand, if an extreme value occurs in a small original
sample, then it is possible this extreme value will be oversampled, relative to
the true distribution, in the bootstrapped sample. This can pose a problem
if the generated values are used in calculations that are sensitive to outliers,
or could result in the simulated sample not accurately representing the real
system.

We will revisit bootstrapping in Section 6.3.3, which focuses on the role of
simulation techniques in statistical and machine learning.

6.3.2.3 Markov Chain Monte Carlo (MCMC) methods

There are other times when we wish to generate random variables that
reflect the behavior of a known system, but for which no probability distribu-
tion for the random variables is known and no representative sample of data
can be found to approximate the distribution. In situations such as these,
Markov chain Monte Carlo methods (MCMC) can be a powerful tool.

First, we give some background on Markov chains. A discrete-time Markov
chain is a sequence of states experienced by a system in which the transition

268 Data Science for Mathematicians

probability pij , of moving to state j given that the system is currently in state
i depends only on the state i and not on any prior states visited. For instance,
in a random walk along the integer number line, the state of the system moves
either +1 or −1, with a probability that depends only on the current state.
When the Markov chain is ergodic,5 the system achieves steady-state, and a
stationary distribution describing the long-term, limiting probability of being
in a particular state can be either computed analytically or estimated via
simulation.

MCMC permits us to simulate from a probability distribution that we are
unable to derive or describe by defining a Markov chain sharing the same
state-space as the desired probability distribution and whose steady-state dis-
tribution is the desired distribution. Thus by simulating the Markov chain
for a long period of time and returning the last state visited, we can generate
random variables from (approximately) the desired distribution.

These ideas extend to generating from continuous probability distribu-
tions, but for ease of exposition, we will illustrate two common algorithms for
MCMC simulation using discrete distributions as examples.

Metropolis-Hastings algorithm
The challenge in MCMC is to construct a Markov chain whose limiting

distribution will be the same as the desired distribution. The Metropolis-
Hastings algorithm does just this. Let π be the desired probability distribution.
We wish to generate a sequence of states X0, X1, . . . that form a Markov chain
having stationary distribution π. Let M be the proposal chain, an irreducible
Markov chain sharing the same state space as the desired distribution. Let
Mij denote the transition probability from state i to state j in Markov chain
M . When the proposal chain is in state i, a proposal state j is generated with
probability Mij . The proposal state is accepted according to an acceptance

threshold aij =
πiMji

πjMij
. If aij ≥ 1, then state j is accepted automatically.

If aij < 1, then state j is accepted with probability aij . If it is accepted,
then Xn+1 = j; otherwise Xn+1 = i. The sequence X0, X1, . . . generated in
this fashion can be shown to be an irreducible Markov chain with stationary
distribution π. Because the Xi are not independent, it is not appropriate to use
the sequence directly as a random state generator. Instead, we run the chain
for a sufficiently long time (known as the burn-in period) so that the current
state of the system is largely independent of the initial conditions, and select
one value from this chain. We then start over from scratch to generate the
second value, and so on. For details of the proof, several practical applications,
and accompanying R code, the reader is referred to [130].

Gibbs sampler
Another important MCMC technique is the Gibbs sampler for generating

samples from joint multivariate distributions in which the distribution of each

5To be ergodic, a Markov chain must be irreducible (every state can reach any other
state), aperiodic (from a given state i, returns to that state are not restricted to a fixed
multiple of time steps), and recurrent (every state will eventually be revisited).

Operations Research 269

variable conditioned on all the others is known. The Gibbs sampler iteratively
samples a value for one of the variables conditioned on the current values of
the remaining variables, cycling in turn through all of the variables. After the
burn-in period, the vectors of samples will reflect the true distribution [213].
Casella and George provide a useful tutorial [85].

6.3.3 Simulation techniques for statistical and machine
learning model assessment

Now that we understand how to generate random variables from a prob-
ability distribution, we can return to the applications promised at the start
of Section 6.3. We highlight two important considerations in any predictive
modeling endeavor for data science.

• Model Selection: From many possible models and modeling frame-
works, how do we choose which is the best, and which predictor variables
should be included?

• Model Assessment: How suitable is a given model at describing the
observed relationships between the variables and at predicting future
observations?

Simulation plays an important role in model selection methods such as
random forests, boosting, and bagging, which will be covered in Chapter 8.
Simulation also plays an important role in assessing a model’s true predic-
tive power. We will describe two simulation techniques that commonly arise
in model assessment, bootstrapping confidence intervals for estimated param-
eters in a linear regression model and cross-validation. Both of these topics
were introduced in Chapter 4 and will be discussed later in Chapter 8. We
include these topics here to highlight the role of simulation.

6.3.3.1 Bootstrapping confidence intervals

A common question in any data analysis is whether apparent patterns
in the data are the result of relationships between observed or latent vari-
ables (signal) or instead are meaningless abnormalities arising due to chance
(noise). Recall from Section 4.5 that in traditional frequentist statistics, such
as ordinary least-squares regression, a null hypothesis representing a default
prior belief is compared against an alternative hypothesis. A test statistic is
computed from sample data and is evaluated as being either consistent or
inconsistent with the null hypothesis. This determination is made by requir-
ing a low Type I error rate, which is the probability of falsely rejecting the
null hypothesis, that is, falsely asserting that the pattern in the data is real
when it is actually due to noise. Underlying each of these steps are simple
distributional assumptions associated with the null hypothesis (often related
in some way to the normal distribution) that permit evaluation of the test
statistic’s statistical significance.

270 Data Science for Mathematicians

This methodology can break down when simple distributional assumptions
are not appropriate or cannot be evaluated. In this case, the bootstrap can
come to the rescue! The data are resampled (i.e., simulated from the origi-
nal dataset) using bootstrapping, and the desired test statistic is calculated
separately for each bootstrapped sample, yielding an empirical distribution to
which the test statistic calculated on the entire dataset can be compared and
a p-value computed.

6.3.3.2 Cross-validation

Section 4.3.2 introduced the technique of cross-validation, in which the
model is iteratively fit on a portion of the data and tested on a left-out por-
tion of the data. Cross-validation is important for estimating the prediction
error of the model to assess the degree of overfitting, and for the tuning of
hyperparameters. We start by motivating both of these ideas.

Even if the true relationship between a response variable and the predictor
variables were perfectly known, the response variable would still exhibit vari-
ability due to environmental factors or measurement error. Some of this vari-
ability is caused by the inherent functional relationship between the response
and the predictor variables (signal), and it is this relationship in which we
are interested. However, some of the variability is due to inherent noise that
is not representative of patterns likely to occur in future data points. Just
as any n (x, y) pairs (with distinct x values) can be perfectly matched to an
(n − 1)-degree polynomial, an overly complex model can seemingly “fit” the
variability observed in a finite sample of data. However, this complex model
is unlikely to yield accurate predictions of future data points. Recall from
Chapter 4 that we call this phenomenon overfitting, and it is characterized
by models that achieve a deceptively low training error rate on the data used
to fit, or train, the model, but high testing or prediction error rates on new
data. Once again, we are faced with the important trade-off between model
complexity (i.e., the ability to accurately represent high-dimensional relation-
ships in data) and model parsimony (the ability to extract simple relationships
between variables that are robust to the variability in data).

Moreover, in addition to modeling the relationship between a response and
predictor variables, many statistical and machine learning models incorporate
hyperparameters. A hyperparameter is a parameter that permits refinement of
the performance of an algorithm used for fitting a model. For example, in the
lasso method to regularize a regression model (Sections 4.7.2 and 6.2.4), the
tolerance constraint parameter k′ that bounds ||β||1 is a hyperparameter. It
does not appear in the model describing the relationship between the response
and the predictor variables, but it is used by the algorithm to determine the
model parameters. We generally do not know a priori the value of k′ to use.
Instead, we must iteratively vary k′ to identify the value that results in a
model having lowest prediction error.

Operations Research 271

Cross-validation is a valuable technique for estimating prediction error
(thereby avoiding overfitting) and for tuning hyperparameters. One com-
monly used method of cross-validation is k-fold cross-validation. In k-fold
cross-validation, the dataset is divided randomly into k equally-sized subsets
of observations, called folds. Using only k − 1 of the folds, with one fold set
aside, candidate models are identified and fitted to the data. The prediction
error is then estimated on the left-out fold. The process is repeated k times,
with each fold set aside exactly once and the model identified and trained on
each possible combination of k − 1 folds. The k estimates of prediction error
on the left-out folds are then averaged and used as an estimate of the testing
error of the model. When used in conjunction with hyperparameter tuning
(e.g., determining the ideal order of polynomial in a linear model, or the lasso
regularization parameter k′), the value of the hyperparameter is chosen to
minimize the average testing error over the k folds. Once this near-optimal
parameter value is determined, the final model can be fit using the entire
dataset. A typical value of k is five or ten folds, which trades off bias for
variability. Bias can be thought of as the model’s dependence on the data on
which it was trained. Variability refers to the variance in the prediction error.
Each model is fit to a fraction k−1

k of the data, and the prediction error is
estimated on a fraction 1

k of the data. Thus, using a larger number of folds
decreases the bias of the model but increases the variability of the prediction
error from fold to fold. Using a smaller number of folds yields lower variability
in the prediction error, but potentially higher bias estimates. Yet again, we
see the trade-off between complexity and parsimony.

The process of selecting the folds for cross-validation is itself a simulation.
The rows of data are randomly assigned to one of the k folds. Some tools, such
as R’s caret package, will try to create balanced folds that each represent the
distribution of the predictor variables in the full dataset, but there is still
randomization involved. Another data scientist running cross-validation on
the same data might end up with different results (and a different end model)
due to the random process of assigning observations to folds. For this reason, it
is very important to set a consistent random seed before any process involving
random number generation. Doing so ensures the reproducibility of your work
by others and by your future self!

6.3.4 Simulation techniques for prescriptive analytics

To this point, we have discussed simulation’s role under the hood of com-
mon statistical and machine learning methods. However, simulation is a pow-
erful approach in its own right for prescriptive analytics. We describe two com-
mon simulation approaches that, on their own, are effective tools for guiding
decision-making in stochastic (i.e., random) systems, discrete-event simulation
and agent-based modeling. We then describe how each can be used effectively
for prescriptive decision-making.

272 Data Science for Mathematicians

6.3.4.1 Discrete-event simulation

When modeling complex systems, such as the emergency department of
a large urban hospital, the rapidly changing temporal dynamics must be
incorporated into strategic (long-term decisions concerning infrastructure and
management structure), tactical (medium-term decisions concerning schedul-
ing and logistics), and operational (short-term decisions concerning in-the-
moment allocation of resources) decision-making. In discrete-event simulation,
a system evolves over time as discrete events arise stochastically to trigger
decision points [304,410].

A simple example of discrete-event simulation is a queue at a bank. The
discrete events punctuating the system are the arrivals of customers into the
bank, the commencements of service with the bank teller, and the completions
of service. Knowing the times at which these events occur is sufficient for
understanding the state of the system (e.g., how many people are in line, how
long they have waited, and how many people are being served) at any point
in the entire time horizon. Thus, a discrete-event simulation can model some
complex systems very compactly.

To create a discrete-event simulation, one must specify the probability dis-
tributions governing the time between each event. In the case of the bank, we
need to identify a probability distribution describing the time between arrivals
of new customers and a probability distribution describing the duration of ser-
vice. These two inputs are sufficient to model the bank’s queuing system, and
the methods of Section 6.3.2 can be used to do this. If past data are avail-
able, they can be used to inform the selection of distributions. An example
discrete-event simulation for a bike-sharing system is detailed in Section 6.5.

6.3.4.2 Agent-based modeling

The purpose of an agent-based model is to understand how the interaction
of independent entities (agents) making individual decisions will result in col-
lective dynamics in a system. In such a simulation, each individual is assigned
a simple set of rules governing their behavior in the system. The simulation
then executes the rules for each individual and tracks the state of the overall
system [304].

As an example, agent-based simulation can be used to model highway
traffic dynamics. Each vehicle follows a simple set of rules governing its speed
(selected as a random variable from a provided distribution), risk threshold,
and traffic regulations. The dynamics of the entire highway can then be mod-
eled as the interaction of these individual vehicles on the roadway.

To create an agent-based simulation, one must specify the classes of indi-
viduals present (e.g., fast versus slow drivers, risky versus cautious drivers,
commercial trucks versus private vehicles). One must determine a probability
distribution for membership in the class and other distributions for the param-
eters governing attributes in that class. Then each class must be assigned a
set of rules. These should all be informed by data, when available. Here again,

Operations Research 273

the complexity-tractability trade-off emerges: the beauty of agent-based mod-
eling is that often very simple rules of behavior can elicit complex system
dynamics. The job of the modeler is to define the rules that are sufficient to
reliably describe the system. See Section 6.5 for an application of agent-based
modeling to HIV prevention.

6.3.4.3 Using these tools for prescriptive analytics

Discrete-event and agent-based simulations can describe an existing system
and predict the effects of changes made to the processes within the system.
For instance, a simulation of our example bank could permit us to investigate
whether positioning a greeter at the entrance to the bank can help route people
more quickly to the correct teller to reduce waiting time. An agent-based
simulation of a highway could allow us to investigate whether new signage
can reduce accidents at a highway interchange.

As prescriptive tools, these simulations allow us to weigh trade-offs
between different choices to choose the “best” decision. One technique for
doing this is known as what-if analysis. As its name suggests, the operations
researcher identifies several possible decisions that could be made and for each
possible decision, uses the simulation to quantify the impacts to the system
if that decision were adopted. Amongst the decisions tested, the analyst can
choose the best.

Another option is to embed the outputs of the simulation as inputs to one
of the optimization frameworks described earlier in the chapter. Mathematical
programming problems require estimation of parameters that can quantify the
costs, resource use, profits, etc. associated with the decision variables in the
model. Simulation is a tool that can assist with such parameter estimation.

Yet another set of tools integrates simulation into an optimization frame-
work and is aptly named stochastic optimization. This set includes the tech-
nique popularly referred to as reinforcement learning. We discuss this class of
techniques in the next section.

6.4 Stochastic optimization

Section 6.2 described several classes of optimization problems in which
all of the inputs and the system state are assumed to be deterministic and
known with certainty. In reality, however, we often must make decisions
sequentially over time within a system whose evolution is stochastic, which
means random, or for which the current state cannot be perfectly observed
and must be inferred, probabilistically, from data. This leads to another vast
class of problems forming the realm of stochastic optimization, which includes
commonly-known techniques, such as stochastic gradient search, approximate

274 Data Science for Mathematicians

dynamic programming, optimal control, reinforcement learning, Markov deci-
sion processes (MDP), and partially-observable Markov decision processes
(POMDPs). Many of these techniques incorporate aspects of simulation into
the optimization framework, thus building upon the techniques presented in
the two previous sections. Exercise 2 leads the reader through an example
application of stochastic optimization to electric power systems.

Example Applications of Stochastic Optimizationsdfsdf

1. Energy Generation Portfolio Optimization: Determine schedule for
energy generation from multiple sources, including renewables, that
accounts for variability in demand and weather [391,392].

2. AlphaGo and AlphaGo Zero: Use reinforcement learning and approx-
imate dynamic programming to develop an artificial intelligence that
can beat grandmasters at the strategy game Go [436].

3. Airline Fare-Locking: Determine a revenue-maximizing policy for air-
line ticket purchasers to lock in airline fares for a given fee and time
duration [450].

Over time, research communities within the fields of operations research,
computer science, electrical engineering, and others have studied such prob-
lems, often using different vocabulary and notation to describe them. Pow-
ell [390, 393] presents a unifying framework for these techniques under the
umbrella of dynamic programming, which we summarize here. The reader is
particularly encouraged to refer to [393] for a thorough survey of stochastic
optimization techniques, their history across several different disciplines, sem-
inal references, and how these approaches adhere to this unifying framework.
We adopt the notation of [393] throughout this section.

6.4.1 Dynamic programming formulation

Stochastic optimization seeks to identify an optimal policy, which can be
thought of as a set of contingency plans defining the optimal action to take at
each point in time as a function of what is currently known about the system.

We let St be a description of the state of the system at time t. We assume
that St is a sufficient description of the state, meaning that only St and not
S1, . . . , St−1 is needed to determine the course of action at time t. Powell notes
that different communities interpret the term “state” differently. OR commu-
nities tend to think of it as a tangible state of an engineering system, and
other communities think of it as the state of an algorithm or a reflection of
belief (i.e., probability distribution) about a function. Powell includes in the
state St three pieces of information: the physical state Rt, other determinis-

Operations Research 275

tically known information It, and the distributional information constituting
the belief state Bt.

Given a policy π, Xπ
t (St) is a function that returns the decision, xt, to

make at time t as a function of the current state St. That is, xt = Xπ
t (St).

After taking the action, uncertainties in the system and the availability of
new information (Wt+1) observed at time t + 1 govern the evolution of the
system to a new state according to a (possibly random) transition function
SM , such that St+1 = SM (St, xt,Wt+1). Uncertainty and state transitions
are interpreted by some communities as dynamics that can be modeled using
probability distributions (e.g., as in MDPs, stochastic optimization, or robust
optimization) or by other communities as being observed from data (e.g., as
in reinforcement learning).

We likewise incur a reward (or a cost, depending on the problem context)
in period t, Ct(St, xt,Wt+1). We therefore seek to identify a policy π that
maximizes the cumulative expected reward, with the expectation taken over
all sources of uncertainty or incomplete information:

max
π

E

(
T∑

t=0

Ct(St, X
π
t (St),Wt+1)

∣∣∣∣ S0

)
. (6.8)

We can rewrite equation (6.8) in a recursive form, known as Bellman’s
equation, such that the optimal policy is given by

Xπ
t (St) = arg max

xt

E

(
Ct(St, xt,Wt+1)

+ max
π

E

T∑

t′=t+1

Ct′ (St′ , X
π
t′

(St′),Wt′+1)

∣∣∣∣ St+1

∣∣∣∣ St, xt

)
.

(6.9)

The expected values capture uncertainty in the information Wt and in the
evolution of the state. Thus, the optimal policy yields a decision Xπ

t (St) at
time t that maximizes not only the current period reward but additionally
the expected “reward-to-go” from time t+ 1 onward. Equation (6.8) (equiva-
lently, equation (6.9)) is known as a dynamic program, which is a cornerstone
of operations research. As described in [393], this framework captures all of
the stochastic optimization techniques and problem types mentioned above,
including stochastic gradient search and reinforcement learning, which are
commonly associated with machine learning and artificial intelligence.

6.4.2 Solution techniques

Equations (6.8) or (6.9) can rarely be solved to optimality in a direct
way due to the curse of dimensionality : due to the sequential structure of the
problem, the solution space grows exponentially with the time horizon, the set

276 Data Science for Mathematicians

of actions, and the nature of the probability distribution governing stochas-
ticity in the problem. Techniques to solve equations (6.8) or (6.9) typically
use Monte Carlo sampling or direct observation from data, so-called adaptive
algorithms.

Powell [393] categorizes these solution techniques into four classes, the
choice of which one to use depending on the problem type and dimension.
(The reader is referred to [393] for details of their implementation.)

• Policy search: A class of candidate policies, having associated parame-
ters, is proposed, and the goal is to choose the best among them. This
approach is ideal if the policy has a “clear structure” [393].

– Policy function approximations: Choose a general form for the can-
didate optimal policy (e.g., linear in the state space; or a neural
network) and then tune the parameters to find the optimal policy
within that class.

– Cost function approximations: Use a simpler cost function for which
finding the optimal policy is computationally tractable, and choose
a policy that optimizes this function.

• Lookahead approximations: Solve a reduced problem to optimality by
limiting the extent to which a given action’s future impacts are assessed.

– Value function approximations: Here we simplify computation by
replacing the “reward-to-go” term of equation (6.9), which repre-
sents the cumulative reward earned from time t + 1 through the
end of the time horizon T , with an expected approximate reward
depending only on the new state St+1.

– Direct lookahead : We simulate a single realization (or a sample) of
the remaining time steps and use that directly to approximate the
“reward-to-go” term of equation (6.9).

The first three of these (policy function, cost function, and value function
approximations) are all statistical learning problems in which the approxima-
tions are refined as the problem is solved. Powell points out that an important
area of research critical to improving the performance of such approaches is
the proper modeling of randomness through the appropriate choice of prob-
ability distribution (as described in Section 6.3.2.1) and proper assumptions
about the system’s evolution over time, or by using distributionally-robust
modeling.

In the next section, we illustrate how the various tools of operations
research have been leveraged to solve real-world prescriptive analytics prob-
lems.

Operations Research 277

6.5 Putting the methods to use: prescriptive analytics

The previous sections describe common tools used in operations research.
We now highlight how those tools can be used within the overall operations
research modeling process through a series of applications in which the tech-
niques are implemented. As described in Section 6.1.2, this process starts with
a real, non-mathematical question, and the goal of the analysis is to math-
ematically derive a useful answer that ends in execution of some action or
recommendation. We can break down the analysis into a few key steps:

1. descriptive analysis, which summarizes the data and information about
the problem,

2. predictive analytics, which builds a model of the system, and

3. prescriptive analytics, which answers decision-making questions about
the system.

While machine learning tends to stop at prescriptive analytics, operations
research ties these pieces together. Seeing the analysis as a continuous pro-
cess is important so that your model both accurately reflects the data you’ve
observed and is able to answer the questions you want to ask. In particular, it
is important to understand the techniques available to perform the analysis.
As always, there is often a trade-off between how accurate the model is and
what questions you can efficiently answer. Below, we present three application
areas: bike-sharing systems, online retail recommendations, and HIV preven-
tion. These applications will emphasize the benefits of model simplicity and
the difficulties going from model to recommendation to implementation.

6.5.1 Bike-sharing systems

Bike-share systems that allow users to rent bikes are found in most major
cities. In this section, we consider docked systems that have stations where
users can pick up and drop off bikes at a set of fixed docks. These systems offer
a wealth of user data and new transportation challenges since users directly
affect the distribution of bikes. The system manager wants to use this data
to design a good experience for users; this could translate to maximizing the
number of users per day or minimizing dissatisfied customers who cannot find
a bike.

Since the locations of bikes change randomly throughout the day, simula-
tion can be used to model the system and ask decision questions. In particular,
Jian et al. [252] model the system using discrete-event simulation, as seen in
Section 6.3.4.1, by assuming a Poisson arrival process for each possible route
consisting of a start and end station. The time-dependent arrival rate is then

278 Data Science for Mathematicians

set to reflect past history. While there exist many other possible ways to pre-
dict bike trips, this simulation model is used not just to predict user behavior
but also to influence the design of the system. Using this simulation model,
Freund et al. [169] show that the question of optimally determining how many
fixed docks to place at each station satisfies some convexity properties and can
be solved efficiently using a version of gradient descent. Note that this algo-
rithm has to also consider the practicality of the proposed solution by putting
limits on how many docks can be at each station. On the other hand, Jian et
al. [252] design gradient-based heuristic methods, as described in Section 6.2.4,
to determine the optimal allocation of bikes to stations given the number of
docks at each station and the expected flow of user traffic throughout the day.
(E.g., is it always optimal to fill the docks at Penn station each morning?)

Given the stochastic and often non-symmetric nature of user behavior,
bikes need to be redistributed each night in order to meet this proposed
allocation. This general practice of redistributing bikes to better meet user
demand is called rebalancing and yields many optimization problems that
can be formulated as integer programs [170] as defined in Section 6.2.2.2. In
particular, one question is how to route a set number of trucks to pick up and
drop off bikes throughout the night to meet (or come close to) the desired
allocation [170,403]. Finding these routes needs to be done efficiently in order
to start drivers on their routes, and the routes must satisfy a strict time limit.
Freund et al. [170] present an integer program for this problem and evalu-
ate the simplifications made in order to find good and feasible solutions in
a fixed amount of computation time. In an alternative approach, Nair and
Miller-Hooks [356] formulate a stochastic program, the topic of Section 6.4,
to redistribute a general fleet of shared vehicles subject to relocation costs,
though the routes used to complete this rebalancing are ignored.

6.5.2 A customer choice model for online retail

In online retail settings, retailers often sell many products and want to
choose which products to display and how, in order to maximize revenue.
Models for customer demand can inform these decisions as well as guide deci-
sions about inventory, pricing, and promotions. This is especially important in
the online setting in which users can easily find other sites to search. Choos-
ing an appropriate choice model is often a difficult task as there is a trade-off
between model accuracy and tractability; the choice models that capture the
most complicated forms of customer behavior are often those whose under-
lying parameters are difficult to estimate and whose corresponding decision
problems are difficult to solve.

One popular model for customer demand is the Multinomial Logit (MNL)
choice model. In this model, each product is associated with a value vi, which
is a linear function of the product features, and the probability the item is
displayed is based on this value as well as the values of other products dis-
played. One downside to the MNL model is that it does not capture some

Operations Research 279

logical substitution patterns. For example, this model does not capture the
situation when half of the customers want to purchase a polo shirt and the
other half want to purchase a t-shirt, regardless of color or other features,
since the probabilities will depend on how many t-shirts and polo shirts are
shown. However, the corresponding predictive and prescriptive optimization
problems tend to be tractable and the model performs well in practice [157].
While Luce [325] introduced the MNL model, interest grew when the semi-
nal work of Talluri and van Ryzin [456] showed that estimating this model’s
parameters from past customer purchases corresponds to a convex optimiza-
tion problem, as formulated in Section 6.2.3, that can be efficiently solved. The
estimated parameters also give an explicit interpretation into what product
features are most influencing customer demand.

Further, Talluri and van Ryzin [456] proved that the assortment optimiza-
tion problem under this choice model, in which the retailer wants to choose the
optimal set of products to display to a customer, can be solved efficiently. In
fact, the optimal solution to this problem corresponds to displaying all prod-
ucts with profit above a certain threshold. This can be extended to include
practical constraints such as a limit on the number of products shown (e.g.,
number of products on a web page) [120,416] and to the robust optimization
setting in which the values vi are assumed to be only partially known [417].
Further, in the network revenue management setting, a retailer wants to deter-
mine which products to display over time as inventory fluctuates (e.g., flight
tickets at different fare classes). Zhang and Adelman [518] solve this prob-
lem using approximate dynamic programming (Section 6.4), with the added
complexity of multiple customer segments.

6.5.3 HIV treatment and prevention

While human immunodeficiency virus (HIV) affects roughly 40 million peo-
ple around the globe [374], the mortality rate from HIV is lower due to treat-
ment and prevention measures. Specifically, antiretroviral therapy (ART) or
highly active antiretroviral therapy (HAART), which combines multiple ART
drugs, can effectively suppress the virus. However, the effectiveness of this
treatment for individuals and its prevention of the spread of HIV depends on
identifying individuals who need the therapy and proper dosing and adherence
once on it.

In order to identify an individual with HIV, a viral load (VL) test is
performed which measures the prevalence of the virus in the bloodstream.
However, this testing is expensive, so some places rely on other measures
that are correlated with VL. Liu et al. [314] use a tripartition approach to
determine whether to perform a VL test by predicting a risk score based on
low-cost health measures. If this risk score is above (below) certain thresholds
then the person is determined to go on (or not go on) ART. Otherwise, VL
testing is used to confirm the diagnosis. To determine the thresholds, the
authors consider two approaches, (1) assuming a common distribution on the

280 Data Science for Mathematicians

data, which allows the authors to calculate the optimal thresholds directly, or
(2) estimating the distribution and using a grid search for potential thresholds.
Interestingly, the authors find that the two methods perform comparably in
terms of diagnostic accuracy. Similarly, Liu et al. [313] consider pooled VL
testing that combines samples from multiple patients. If the test comes back
with a high enough prevalence of HIV, then the individuals within the pool
are tested. The benefit of pooling is the potential reduction in the number of
tests run and therefore the overall cost. Liu et al. [313] use a similar risk score
based on low-cost health measures to determine which patients to test first in
order to reduce the overall amount of tests needed. Note that in both cases a
model based on only a few health measures is used to inform the overall test
process and reduce costs.

Once a patient is on ART, then the dosage and therapy schedule need
to be set to effectively treat the disease and minimize potential side effects.
Kwon [294] formulates differential equations to model the prevalence of HIV in
the system and determine an optimal continuous treatment schedule. On the
other hand, Castiglione et al. [86] use a more complex agent-based model of the
immune system, as described in Section 6.3.4.2. While the optimal treatment
schedule cannot be found efficiently under this model, a genetic heuristic algo-
rithm is used to find a candidate solution and analyze its performance on past
data. Further, once on ART, the continuation of care is important for contin-
ued viral suppression. Olney et al. [371] introduce an individual-based model
of the care cascade to evaluate care recommendations such as pre-ART out-
reach to patients or population-wide annual HIV screenings, called universal
test-and-treat (UTT), on the prevalence of HIV in comparison to the relative
cost. Furthermore, Hontelez et al. [228] define a hierarchy of models for HIV
prevalence of increasing complexity to evaluate the impact of UTT. They find
that all models predict the elimination of HIV if UTT is implemented, but
the more complex models predict a later time point of elimination, increasing
overall treatment costs.

Each of these applications requires a suite of computational tools to
develop, solve, and evaluate the model in the context of real data. The next
section describes several widely available solvers and software.

6.6 Tools

Software is constantly evolving, but this section offers the reader some
pointers to common software used for optimization, statistics and machine
learning, and simulation.

Operations Research 281

6.6.1 Optimization solvers

To solve the mathematical programs described in Section 6.2, one first
needs to represent the mathematical program in some form of computing
syntax, and then one needs access to an optimization solver.

The simplest way to represent a mathematical program for the purposes of
computing is to use an algebraic modeling language. The syntax of such lan-
guages mirrors the algebraic representation a mathematician would naturally
give to a mathematical program (e.g., specifying constraints as summations
over certain sets, rather than in a matrix form.) Examples of commonly-
used commercial algebraic modeling languages are AMPL and GAMS. Addi-
tionally, Pyomo is an open-source optimization modeling language for Python
[211, 212], and JuMP is an open-source optimization environment for Julia
[22,137,324].

The optimization solver is a piece of software that uses the best known
algorithms to solve common classes of mathematical programs. While it is pos-
sible to program one’s own solver, commercial and open-source solvers have
typically been optimized for performance, by incorporating large-scale opti-
mization techniques suitable for solving problems commonly seen in industry.
Additionally, most of the popular solvers accept model formulations expressed
in the common algebraic modeling languages mentioned above. Thus, our rec-
ommendation to the reader is to use an existing solver rather than to create
one’s own.

The choice of solver to use depends on several factors:

• the type of mathematical program being solved

• whether the problem is being solved in isolation or integrated with a
broader code base written in a particular language

• the size of problem being solved

• whether the intended use of the output is commercial, academic, or
educational

• the available budget to purchase software

• the comfort and sophistication of the modeler

There are many commercial solvers for various mathematical programming
problems. Some well-known solvers include BARON, CPLEX, FICO Xpress,
Gurobi, LINDO, and MOSEK. It is not always necessary to purchase an indi-
vidual license for these commercial solvers; many commercial tools offer free
licenses for academic research and classroom use.6 Moreover, a free resource

6For example, at the time of this writing, AMPL offers a free full license for course
instructors, which includes several solver licenses, as well as a downloadable textbook [18,
166], making it a good option for classroom purposes.

282 Data Science for Mathematicians

for academic, non-commercial research is the NEOS Server, hosted by the Wis-
consin Institute for Discovery at the University of Wisconsin-Madison. The
NEOS Server hosts a large number of commercial and open-source solvers for
all of the problem classes described earlier and several more. The user uploads
files containing the model formulation and input data (typically expressed in
an algebraic modeling language like AMPL or GAMS), and the problem is
solved remotely on NEOS’ high-performance distributed computing servers.
Calls to NEOS can also be incorporated into, e.g., bash scripts on Linux to
facilitate repeated calls [114,131,201,511].

Thus, for the reader first dipping their toes into solving mathematical
programs (for example, by doing the projects at the end of this chapter),
our suggestion is to first identify the class of mathematical program you are
solving. For most novices, this is likely to be a linear program or mixed integer
linear program. Next, identify which solvers available on NEOS are suitable
for that class of problem; the vast majority of linear programming and mixed
integer programming solvers on NEOS accept input in either AMPL or GAMS,
if not both. Choose an input format suitable to your desired solver, and express
your mathematical program in that format.

For the more sophisticated programmer, an open-source collection of
solvers is provided by COIN-OR (Computational Infrastructure for Opera-
tions Research). These solvers are written in popular programming languages
such as Python, C++, and Julia. In addition to providing access to high-
quality open-source solvers, the COIN-OR project supports algorithm devel-
opment research by providing the source code of these solvers and a peer
review process for evaluating improvements made to these solvers [104,322].

Individual packages for certain classes of optimization problems also exist
independently of the COIN-OR projects. For example, cvxpy is a Python
package for solving convex programs [7,129,459], and picos is a Python API
for conic and integer programming problems [418].

The Institute for Operations Research and Management Science
(INFORMS) publishes a biannual optimization software survey in the maga-
zine, OR/MS Today [165], which covers solvers and modeling languages, and
includes both commercial and open-source tools.

6.6.2 Simulation software and packages

The simulation methods described above are easily implemented in com-
mon programming languages such as R and Python. Discrete-event simula-
tion packages exist for R (simmer [474–476]), Python (SimPy [326]) and Julia
(SimJulia [303]) as well. Spreadsheet-based tools such as Microsoft Excel also
have the ability to generate random numbers from common distributions to
be used in Monte Carlo simulations. A challenge in agent-based simulation is
the need to customize the simulation to the particular problem context. As a
result, one generally needs to program an agent-based simulation from scratch.
However, some commercial software provides simulation capabilities tailored

Operations Research 283

to particular applications, such as manufacturing, supply chains, and hospital
operations. The INFORMS Simulation Software Survey lists several commer-
cial options for the major classes of simulations we have discussed [451].

6.6.3 Stochastic optimization software and packages

Because stochastic optimization captures a broad array of problem types,
spanning multiple disciplines of research, it is difficult to point the reader to
a small number of standard or widely used tools. For stochastic multistage
linear or integer programs (known as stochastic programming), the Stochas-
tic Programming Society (SPS) maintains a list of commercial and open-
source tools, including AIMMS (commercial), PySP (Python-based) [496],
the Stochastic Modeling Interface (developed through COIN-OR), and the
NEOS Server [446]. Stochastic optimization frameworks based on dynamic
programming, such as reinforcement learning, tend to be problem-specific,
precluding the use of standardized software. However, OpenAI has developed
the Gym platform for “developing and comparing reinforcement learning algo-
rithms” [373]. Similarly, Horizon is an open-source reinforcement learning
platform developed and in use by Faceboook [179].

6.7 Looking to the future

This chapter has provided a broad outline of several areas of operations
research that connect to data science. We’ve discussed the types of mathemati-
cal programming that typically underlie common machine learning algorithms
and heuristics, as well as techniques of operations research that are themselves
methods for making decisions from data. An emerging area of research exam-
ines statistical and machine learning tools as optimization problems. We sum-
marize recent research here and refer the reader to a more detailed treatment
of this topic in the textbook by Bertsimas and Dunn [41].

Feature selection refers to the task of identifying which predictor variables
to include in a statistical or machine learning model. As will be discussed in
Chapter 7, with the growing prevalence of very large datasets, some having
tens of thousands of possible predictors, it is becoming less realistic to use iter-
ative exploratory methods to identify the best subset of predictors to include.
Common dimension reduction techniques, such as principal components anal-
ysis, suffer from lack of interpretability: they can help a machine learning
model make good predictions, but the user cannot always understand the
relationship between the predictors and the response. Recent research in the
OR community has developed mixed integer linear and nonlinear optimiza-
tion methods to solve the best subset problem in linear [457] and logistic [44]
regression and in support vector machines [34]. As an example, Bertsimas and

284 Data Science for Mathematicians

King [44] use mixed integer nonlinear optimization techniques to identify best
subsets of variables (including possible nonlinear transformations) to include
in a logistic regression model to achieve the sometimes-competing objectives of
model parsimony, avoidance of multicollinearity, robustness to outliers, statis-
tical significance, predictive power, and domain-specific knowledge. Moreover,
they demonstrate the efficacy of their approach on datasets having over 30,000
predictor variables.

Optimal machine learning refers to casting machine learning problems
(which seek to predict the values of unseen test data in a way that minimizes
some error function) within a traditional optimization framework. For exam-
ple, traditional classification methods such as the CART method for binary
classification trees (discussed further in Section 8.9) use iterative heuristics
that somewhat greedily partition the data to minimize in-class variability at
each step. By contrast, an optimal classification tree solves a mixed integer
program to find the provably optimal binary partitioning of the data along its
features [40].

Prescriptive analytics uses modeling not only to predict variables but also
to guide decision-making. When relying on observational data, it is often nec-
essary to integrate prediction into prescriptive decision-making. As we look
forward, we can expect methods to more seamlessly bridge predictive and
prescriptive analytics. For example, in personalized health, one observes an
outcome in response to a particular behavior or treatment, but one does not
observe the counterfactual : the outcome that one would have observed had a
different treatment been given. Recent research attempts to integrate the pre-
diction of the counterfactual into determining the optimal treatment [37, 42].
Likewise, randomized clinical trials often desire early identification of patients
who respond exceptionally well or exceptionally poorly to a new treatment.
Bertsimas et al. [45] present a mixed integer programming formulation that
can identify subsets of the population for whom a particular treatment is
exceptionally effective or ineffective, and show that the formulation leads to
subsets that are interpretable.

Machine learning problems are often rife with uncertainty due to miss-
ing values in the data, imprecise values of predictor variables, or incorrect
class labels. Robust optimization is an optimization framework that explicitly
accounts for the uncertainty of estimated parameter values [31, 38]. Recent
research applies robust optimization techniques to machine learning prob-
lems, including optimal decision trees [43]. (Decision trees will be discussed in
Section 8.9.) Additionally, optimization frameworks have been proposed for
multiple imputation of missing data in several machine learning contexts [46].

Operations research concerns itself with leveraging data to improve
decision-making. As data science sits at the interface of mathematics, com-
puter science, statistics, it is only natural that operations research paradigms
and methodologies will continue to play a prominent role in the field.

Operations Research 285

6.8 Projects

6.8.1 The vehicle routing problem

Vehicle routing problems are the class of problems related to routing a
fleet of vehicles to visit a set of clients. In the Capacitated Vehicle Routing
Problem (CVRP), the goal is to optimally route a fleet of vehicles to deliver
a set of packages to clients subject to vehicle capacity. This exercise will lead
the reader through some classic techniques for solving the CVRP. For more
details about this problem and vehicle routing in general, see [469]).

In the CVRP, we are given an origin o, a destination d, and a set of clients
N = {1, 2, . . . , n} each with demand qi (for simplicity we set qo = qd = 0).
We represent this set using a complete, directed graph G = (V,A), where
V = N ∪ {o, d} and let the arc cost c(i,j) be the travel cost from i to j
for all (i, j) ∈ A. The goal is to route a fleet of K vehicles starting from
the origin and ending at the destination so that each client is visited by at
least one vehicle, and the total travel cost is minimized. Further, each vehicle
has a fixed capacity Q; if a vehicle visits the subset S ⊆ N then we require∑
i∈S qi ≤ Q.

1. Below is an integer program for the CVRP, where δ+(S) (resp. δ−(S)) is
the set of arcs (i, j) such that i /∈ S and j ∈ S (resp. i ∈ S, j /∈ S). The
variables xa each represent the number of routes that use arc a ∈ A,
while ui represents the cumulative quantity of goods delivered between
the origin o and node i along the chosen route. Explain why this is a valid
integer program for the problem. That is, show that any feasible solution
to the IP corresponds to a valid solution to the CVRP of equal cost and
vice versa. For a referesher on integer programs, see Section 6.2.2.

minimize
∑

(i,j)∈A

c(i,j)x(i,j)

subject to
∑

a∈δ−({o})

xa = K

∑

a∈δ+({d})

xa = K

∑

a∈δ+({i})

xa = 1 ∀i ∈ N

∑

a∈δ−({i})

xa = 1 ∀i ∈ N

ui − uj +Qx(i,j) ≤ Q− qj ∀(i, j) ∈ A
xa ≥ 0, integer ∀a ∈ A
qi ≤ ui ≤ Q, ∀i ∈ V

286 Data Science for Mathematicians

2. As stated in Section 6.6, picos is a Python package that can solve integer
programs. Use picos to write a function that takes in an (n+1)× (n+1)
matrix of edge costs, an integer K, a vector of n demands, and a capacity
Q and returns the total travel cost of the solution to the above IP.

3. The website http://www.vrp-rep.org/variants/item/cvrp.html contains
data for instances of the CVRP. Download a few instances and compute
the corresponding optimal travel cost using the function you wrote in
the previous part.

4. Instead of solving the CVRP optimally using integer programming,
we can also develop a heuristic algorithm to find a good solution, as
described in Section 6.2.4. Design a local search algorithm that itera-
tively tries to improve the current solution using local moves. (E.g., one
move might be removing a client from a route and reinserting it at the
optimal place among all K routes.) Compare the algorithm’s perfor-
mance to that of the IP. Is there a way to improve the performance of
the heuristic? If so, what is the trade-off in runtime?

5. Now suppose that the demands are stochastic rather than deterministic.
That is, assume that the demand for client i is a random variable drawn
from N(qi, σ

2). Use the random package in Python and the IP you wrote
above to estimate the expected total travel cost for different values of
σ2 using the techniques seen in Section 6.3.2.2.

6.8.2 The unit commitment problem for power systems

The unit commitment problem is an optimization problem that determines
which generation sources an electric power system should turn on and off to
meet demand at minimal cost, subject to various technical constraints. In this
problem, we examine a simple day-ahead market in which an independent
system operator (ISO) forecasts the next day’s energy demand on, e.g., an
hourly basis, and schedules the power plants accordingly to meet that demand.
A more detailed presentation of such problems can be found in [234].

Using the notation of [234], consider a set G of generators, and a set T
of timesteps in a day (e.g., hours). For each generator g ∈ G and timestep
t ∈ T , we must determine the binary start-up decision vgt (indicating whether
or not generator g is started up at time t), the binary shutdown decision wgt
(indicating whether or not generator g is shut down at time t), and generator
g’s production rate pgt at each time step between start-up and shut-down.
When unit g is started up, we incur a fixed start-up cost SUg, and when unit
g is shut down, we incur a fixed shut-down cost SDg. Additionally, there is a
fuel cost function Fg(pgt) for the use of unit g that is linear7 in the production

7In reality, the production costs are modeled as being quadratic. The method for lin-
earizing quadratic costs is described in [234] but is omitted from this exercise for simplicity.

http://www.vrp-rep.org/

Operations Research 287

TABLE 6.3: Sample generator parameter data for the deterministic unit com-
mitment problem.

G1 G2 G3 G4
Min-ON (Lg) (h) 2 1 2 2
Min-OFF (lg) (h) 2 2 2 1

Ramp-Up Rate (RUg) (MW/h) 30 15 60 15
Ramp-Down Rate (RDg) (MW/h) 15 15 60 15

Min-Gen Pming (MW) 50 30 20 45
Max-Gen Pmaxg (MW) 150 110 90 110
Startup Cost SUg ($) 500 500 800 300

Shutdown Cost SDg ($) 500 500 800 300
Fuel Cost ag ($) 6.78 6.78 31.67 10.15

Fuel Cost bg ($/MWh) 12.888 12.888 26.244 17.820

rate pgt of unit g at time t. That is, Fg(pgt) = ag + bgpgt for known constants
ag and bg. We seek to schedule the generators to minimize total costs subject
to the following constraints.

• Each generator has a minimum duration of time that it must stay on
once powered on, Lg, and a minimum duration of time that it must stay
off once powered off, lg.

• When powered on, each generator g has a minimum generation limit
Pming and a maximum generation limit Pmaxg .

• Additionally, each generator has a ramp-down rate RDg and a ramp-up
rate RUg that limit fluctuations in the production rate pgt from one time
period to the next.

• We assume that total production in each time period must meet or
exceed forecasted demand Dt.

This project then has the following parts.

1. Formulate the deterministic unit commitment problem described above
as a mixed integer linear programming problem, as introduced in Section
6.2.2.2.

2. Solve the deterministic unit commitment problem using the sample data
on four generators given in Table 6.3; the hourly demands are given
in Table 6.4 (adapted from [234, Table 2.2 and Figure 2.3]). You will
need to use optimization software capable of solving mixed integer linear
programs. See Section 6.6.1 for suggestions.

3. Next we incorporate variable demand. Assume, as above, that the gener-
ation schedule must be set a day in advance, but while the availability of

288 Data Science for Mathematicians

TABLE 6.4: Sample hourly demand data for the deterministic unit commit-
ment problem.

Hour 1 2 3 4 5 6
Demand (MW) 142 165 152 140 138 152

Hour 7 8 9 10 11 12
Demand (MW) 204 191 193 200 207 214

Hour 13 14 15 16 17 18
Demand (MW) 199 202 211 239 248 342

Hour 19 20 21 22 23 24
Demand (MW) 345 317 209 199 184 175

energy sources is deterministic, demand is variable. Specifically, assume
that there are three possible demand scenarios: With 25% probability,
demand will be 10% lower than expected in every hour. With 50% prob-
ability, demand will be as expected in every hour, and with 25% proba-
bility, demand will be 10% higher than expected in every hour. Due to
this variability, if demand is not met in a given hour, a penalty cost q
is incurred per megawatt of unmet demand. Formulate a mixed integer
linear programming model that minimizes total expected costs (with the
expectation taken over the three possible scenarios) while satisfying the
production constraints for all three scenarios. (We call this a stochas-
tic programming model, as introduced in Section 6.4. The definition of
expected value is given in Section 6.3.1.)

4. Solve the stochastic programming model using the sample data in Tables
6.3 and 6.4. First let q = 60. In this case, all of the demand in the low-
and medium-demand cases is satisfied, but not in the high-demand case.
By how much does the optimal objective function value increase over the
optimal objective function value found in the deterministic case? How
does the chosen production schedule differ from that found in part (b)?
Next vary q and assess the sensitivity of the chosen production schedule
to its value. How high must the penalty on unmet demand be so that
demand in the high-demand scenario is always met?

5. Now, let’s incorporate generation variability. Renewable energy sources,
such as solar and wind, have production capacities that vary with envi-
ronmental conditions. Consider three scenarios: with 30% probability
the minimum and maximum production levels of generators 3 and 4 are
15% less than expected; with 50% probability the minimum and maxi-
mum production levels of generators 3 and 4 are as expected; with 20%
probability the minimum and maximum production levels of generators
3 and 4 are 10% more than expected. Formulate a mixed-integer lin-
ear programming model that minimizes total expected costs (with the
expectation taken over the nine possible combinations of demand and

Operations Research 289

generation scenarios) while satisfying the constraints for all nine scenar-
ios. Solve the stochastic programming model using the sample data in
Tables 6.3 and 6.4. What is the cost of uncertainty in the generators?

6.8.3 Modeling project

There are numerous extensions and generalizations to the previous project.
Here are two examples.

1. Assume that the expected hourly demand is known, but that each hour’s
demand independently has a variance σ2

t associated with it and that each
generator’s hourly min and max production level have a variance of σ2

gt.
(Variance is defined in Section 6.3.1.) Program a simulation or dynamic
program (or both) that determines the lowest cost generation schedule
using the sample data in Tables 6.3 and 6.4. (Hint: This task is deliber-
ately ill-posed. For example, you will need to assume distributions on the
hourly demands, and make assumptions about the allowable percentage
of demand that goes unmet.)

2. As described in detail in [234], there are many ways to extend this formu-
lation. For instance, prices can exhibit variability; demand might fluc-
tuate as a function of price variability (price elasticity); there can be
network effects. Add increasing levels of complexity to your model and
examine how the optimal allocation of generators and total cost varies
at each stage of model progression.

6.8.4 Data project

The U.S. Energy Information Administration (EIA) collects hourly data on
the U.S. electrical system operations [479]. Download the January-June 2019
BALANCE data from the U.S. Electric System Operating Data tool [481].
(Instructions can be found at [477].)

1. Focus on CISO (California ISO). Using a statistical analysis software
such as R, begin by exploring and cleaning the data. For example: Which
columns are present in the data? Are generation values stored correctly
as numerical variables? If not, re-code them appropriately. Do the values
make sense? If not, handle the nonsensical values appropriately. Are any
values missing? If so, handle them appropriately. Your analysis should
be easily reproduced by another person or your future self, so keep track
of the analysis you perform and data cleaning decisions you make.

2. Conduct exploratory data analysis, using graphical visualizations and
summary statistics, on hourly demand and the amount of demand met
by each generation source. Using the methods of Section 6.3.2.1, which

290 Data Science for Mathematicians

distributions seem appropriate? How would you estimate the expected
values and variances that you used in earlier iterations of your model?

3. The dataset does not provide information about fuel costs, generator
capacities, start-up/shut-down costs, or ramp-up/ramp-down require-
ments. Additional EIA data can be found at [478] and [480]. The Califor-
nia ISO website also provides monthly energy production statistics [77].
Using these and other sources of data, estimate the parameters required
to solve your day-ahead stochastic model for the CISO market.

4. Solve your day-ahead stochastic model. For parameters that you were
unable to precisely estimate from available data, use sensitivity analysis
to vary those parameters and explore how the outputs of your model vary
in response. Does your portfolio of energy sources used in the optimal
solution resemble the portfolio reported by [77]? Why or why not?

Chapter 7

Dimensionality Reduction

Sofya Chepushtanova

Colorado State University

Elin Farnell

Amazon Web Services

Eric Kehoe

Colorado State University

Michael Kirby

Colorado State University

Henry Kvinge

Pacific Northwest National Laboratory

7.1 Introduction . 292
7.2 The geometry of data and dimension . 294
7.3 Principal Component Analysis . 298

7.3.1 Derivation and properties . 298
7.3.2 Connection to SVD . 300
7.3.3 How PCA is used for dimension estimation and data

reduction . 300
7.3.4 Topological dimension . 301
7.3.5 Multidimensional scaling . 303

7.4 Good projections . 304
7.5 Non-integer dimensions . 306

7.5.1 Background on dynamical systems . 307
7.5.2 Fractal dimension . 308
7.5.3 The correlation dimension . 309
7.5.4 Correlation dimension of the Lorenz attractor 311

7.6 Dimension reduction on the Grassmannian . 312
7.7 Dimensionality reduction in the presence of symmetry 318
7.8 Category theory applied to data visualization 321
7.9 Other methods . 326

7.9.1 Nonlinear Principal Component Analysis 326
7.9.2 Whitney’s reduction network . 330

291

292 Data Science for Mathematicians

7.9.3 The generalized singular value decomposition 331
7.9.4 False nearest neighbors . 332
7.9.5 Additional methods . 332

7.10 Interesting theorems on dimension . 333
7.10.1 Whitney’s theorem . 333
7.10.2 Takens’ theorem . 333
7.10.3 Nash embedding theorems . 334
7.10.4 Johnson-Lindenstrauss lemma . 335

7.11 Conclusions . 336
7.11.1 Summary and method of application . 336
7.11.2 Suggested exercises . 336

7.1 Introduction

In mathematics the notion of dimension has a variety of interpretations.
As beginning students, we are initially confronted with the dimension of a
vector space, and then the dimension of an associated subspace. When we
leave the setting of linear spaces we meet the idea of local linearization and
recapture the concept of dimension from a basis for the tangent space, i.e., the
topological dimension. A related idea is the term intrinsic dimension, which is
taken to be the minimum number of variables required by a modeling function
to characterize the data locally. Intrinsic dimension can be computed in the
setting of the implicit function theorem, for example, if we envision capturing
a dataset as the graph of a function. We see that all of these interpretations of
dimension involve the number of parameters required, locally or globally, to
characterize a dataset. These widely varied notions of dimension allow us to
quantify the geometry and complexity of a dataset, making the estimation of
dimension an attractive first step in the process of knowledge discovery from
data.

The transition from continuous spaces to sets, either finite or infinite, gen-
erates new considerations when it comes to the definition of dimension. This of
course is the arena of central interest when we are estimating dimension from
observed or simulated data. Now one can introduce the idea of non-integer,
or fractal dimensions. These include Hausdorff, box counting, and the more
recently proposed persistent homology fractal dimension. All of these defini-
tions are well-defined mathematically. They have precise geometric frameworks
and emerge from a mathematician’s view of the world.

The data scientist is confronted with the task of trying to leverage the
mathematician’s notions of dimension to help characterize the complexity or
information content of a dataset. Dimension gives a measure of how many
degrees of freedom are at work in an underlying process that generated the
data. Estimating this can be extremely useful when one is interested in quanti-
fying the changes in the behavior of a system with an external parameter, e.g.,

Dimensionality Reduction 293

temperature of a heated fluid, or speed of an airplane. A partial differential
equation (PDE) model of a physical phenomenon can faithfully capture first
principle conservation laws but, in and of itself, does not reveal the complexity
of the system. A PDE is a form of mathematical compression that is decoded
by numerical simulations that produce complex data. In high dimensions we
require phenomenological modeling approaches to exploit the fact that data
itself reveals additional principles of interactions among variables.

We have several complementary objectives with this chapter. First, we pro-
pose to provide an overview of several foundational mathematical theorems
that speak to the idea of dimension in data, and how to capture a copy of a
dataset of interest in a potentially low-dimensional vector space. We present
a range of computationally robust techniques for estimating dimensions of a
dataset and provide a comprehensive set of references to additional method-
ologies. We seek to further establish the mindset that the playground of data
analysis is not for only statisticians and computer scientists. Ideas of shape
through geometry and topology may provide insight into data that can’t be
captured using statistical invariants or deep learning. We propose that dimen-
sion and its estimation provide the starting point for a mathematician’s data
science toolkit.

This chapter is organized as follows. Section 7.2 provides conceptual foun-
dations, linking geometric motivations to the concept of dimension. In Section
7.3, we look at Principal Component Analysis (PCA), the most widely-used
dimensionality reduction technique, which readers have already seen used in
some earlier chapters of this text. Before diving into other methods, Section
7.4 asks how we can know when a dimensionality reduction technique has
done a good job.

Because some datasets exhibit non-integer dimensions, we outline fractal
and correlation dimensions in Section 7.5. Section 7.6 describes the Grass-
mannian as a framework for robust data processing and dimension reduction.
We show the powerful benefits of exploiting symmetry in data in Section 7.7.
We then find a surprising application of category theory to data analysis (the
UMAP algorithm for data visualization) in Section 7.8 and give a brief sum-
mary of several additional methods in Section 7.9.

For those interested in the mathematical underpinnings of the chapter,
Section 7.10 presents some landmark theorems in pure mathematics and con-
nects them to the problem of dimension estimation of data. Finally, Section
7.11 provides concluding remarks, citations to related work, and suggestions
for exploring the chapter’s methods on real data.

294 Data Science for Mathematicians

7.2 The geometry of data and dimension

The goal of this section is to expand on the notions introduced in Section
7.1; we understand dimension through varying lenses, each of which is related
to underlying geometry. Depending on the context of the dataset of interest
to a data scientist, one of these characterizations of dimension may be more
useful than others.

A common starting point for the concept of dimension arises from an
understanding of dimension in a linear sense. We naturally understand R3 as
a three-dimensional space by recognizing that it is a three-dimensional vector
space. In this characterisation, we note that any basis for R3 has three distinct
elements that together generate the space via linear combinations over R, and
thus this notion of dimension reflects our perception of dimension as a measure
of degrees of freedom.

In a data science context, we may often consider data which is very “close”
to linear or which “behaves well” in a linear sense; it is in these cases that it
will be meaningful to utilize this definition of dimension. Consider for example,
the set of pictures of a person under varying illumination. Images of a person
can be thought of as vectors in a high-dimensional vector space; when we
construct linear combinations of these vectors, the results are not only well-
defined mathematically, but also capture meaning in the context of the data.
Linear combinations appear to be new pictures of the same person and we can
even have a well-understood notion of the average of a set of pictures. In fact,
it has been demonstrated that, under minor assumptions, the set of images
of an object under all possible illumination conditions forms a convex cone in
the space of images, which is well-approximated by a low-dimensional linear
space [28,183]. The geometry of illumination spaces has been characterized in
the setting of the Grassmannian, which is shown to provide a powerful and
robust framework for pattern recognition [48,91].

On the other hand, there are certainly times when a linear notion of dimen-
sion would be an unwise approach to understanding and analyzing data. Con-
sider data drawn from X = {(x, y, z) : x2 + y2 = 1, z = 0}, a circle in the
xy-plane in R3 of radius one, centered on the z-axis. We can, of course, count
the number of elements in a basis for the subspace in R3 generated by these
points; in doing so, we might conclude that the space from which our data
was drawn is two-dimensional. But we all know that treating the data in this
way would be ignoring fundamental information. In this case, we would be
missing the fact that the dataset itself is not well-behaved under taking linear
combinations, so linear spaces are not ideal for understanding the behavior
of our data. Furthermore, we’d be failing to observe that there is a different
characterization of dimension that would better capture degrees of freedom in
this setting.

Dimensionality Reduction 295

As the previous example of a circle embedded in R3 suggests, such cases are
better handled by considering the data in more generality, in this case as being
drawn from a manifold rather than from a vector space. Then we can recognize
that the circle is actually a one-dimensional object via its local identification
with R. While one may reasonably detect if data is well-approximated by a
low-dimensional linear space via, e.g., singular values, detecting whether data
is close to being drawn from a manifold can be more challenging. This topic is
addressed further below where we consider the computation of the topological
dimension of a manifold from samples.

The methodology that supports extracting a manifold representation for
a particular dataset is often referred to as nonlinear dimension reduction or
manifold learning and contains a wide variety of techniques. It is worth paus-
ing for a moment to establish that expending the effort to find such a man-
ifold is a worthwhile endeavor. Often, after applying these techniques, one
obtains a visualization of the data in a low-dimensional space which then
guides intuition for analysis. Techniques that are commonly used for visu-
alization in addition to dimension reduction include Multidimensional Scal-
ing (MDS), Isomap, Laplacian eigenmaps, t-distributed Stochastic Neighbor
Embedding (t-SNE), and Uniform Manifold Approximation and Projection
(UMAP), some of which are explored below. In addition to gaining intuition
via visualization, such dimension reduction often provides context that drives
other computations on the data; in the example of the embedded circle data,
it would be appropriate to compute distances between points along the circle
rather than the default choice of Euclidean distance. In biology, for exam-
ple, understanding the nonlinear evolution of data trajectories is critical to
decoding processes [185].

Finally, the so-called “curse of dimensionality,” first introduced by Bellman
in [30] tells us that we must use caution when attempting to complete analysis
in high-dimensional spaces. Because volume increases exponentially fast with
dimension, in general, data is sparse in high-dimensional spaces. In order to
learn a model, the amount of data required to do so with confidence frequently
grows exponentially with dimension. Consequently, obtaining a meaningful
low-dimensional representation of the data is often a fundamental step in
successful data analysis [53].

Manifold learning comprises a wide range of techniques, each of which
seeks to find a low-dimensional representation for a dataset on the basis that,
while the data may reside in a high-dimensional ambient space, it often lies
on or close to a low-dimensional manifold. For example, as discussed in [29],
consider a dataset of grayscale pictures of an object taken at a resolution of
n× n by a moving camera under fixed lighting, which is naturally contained
in Rn2

. Yet the dataset must have the structure of a low-dimensional manifold
embedded in Rn2

because the set of all images of the object under all camera
positions has degrees of freedom defined exclusively by the movement of the
camera. We often think of “intrinsic dimension” as precisely corresponding
to this notion of degrees of freedom, and manifold learning provides a tool

296 Data Science for Mathematicians

FIGURE 7.1: Left: The mean image. Right: The first principal component.

for attempting to discover that dimension. As a related example, we collected
grayscale images of the plastic pumpkin that appears on the left in Figure 7.1
as it spun on a record player through approximately three rotations. This is
an analogous setting, and we should expect that while the data resides in a
high-dimensional ambient space corresponding to the number of pixels, the
intrinsic dimensionality of the data must be one because there was only one
degree of freedom in the construction of the dataset that arose from the angle
of rotation. In Figure 7.2, we show the projection to three dimensions of this
dataset using PCA, introduced in Section 7.3; note that it does appear to
exhibit the structure of a one-dimensional manifold.

In general, we may think of dimension estimation and reduction of data
in terms of maps to a lower-dimensional space that preserve some quantity of
interest. Some manifold learning techniques emphasize preservation of pair-
wise distances between points; e.g., MDS and Isomap seek to preserve pair-
wise distances and pairwise geodesic distances, respectively. Others, such as
t-SNE, characterize point similarity/dissimilarity via probability distributions
and emphasize finding a low-dimensional representation that is faithful in this
regard. Many highlight preservation of local structure, e.g., Locally Linear
Embeddings (LLE) and Laplacian eigenmaps. PCA, which is a linear dimen-
sion reduction technique, can also be thought of in this regard; the projection
to a lower-dimensional space via PCA maximizes (seeks to preserve) variance.
Taken as a whole, we often learn about the dimension and structure of our
data by mapping to a lower-dimensional space, especially when such maps
are possible with relatively “small” loss in terms of that which we seek to
preserve. When we have a manifold representation for a dataset, we take the
dimension of the manifold to be the dimension of the data, which agrees in a
local sense with the degrees of freedom characterization of dimension.

Finally, we should note that for certain datasets, fractal dimension becomes
the appropriate notion of dimension. In these cases, it is common that the data
does not lie on a sub-manifold and thus the context of the problem necessitates
a different approach to understanding dimension. Popular real-world settings

Dimensionality Reduction 297

FIGURE 7.2: The projection to three dimensions using Principal Component
Analysis of the dataset of pumpkin images taken as the pumpkin rotated on
a record player. Note that the dataset does appear to be one-dimensional.
Image from [153], used with permission.

that have seen applications of fractal dimension include coastlines, fault geom-
etry, vegetation, and time series [218, 332, 353, 369]. Fractal dimensions, too,
can be viewed as a count of degrees of freedom, tying back to our earlier
intuitive understanding of dimension.

There are many definitions of fractal dimension; these definitions often
agree, especially on well-behaved examples, but they need not agree in gen-
eral. Hausdorff proposed a definition that he utilized in the context of the
Cantor set, and his and other definitions of fractal dimension agree on the
Cantor set having fractal dimension log3(2) (an intuitively reasonable result
since the Cantor set ought to have dimension greater than zero but less than
one). The Hausdorff dimension of a set is considered an important definition
of dimension, but it can be difficult to compute in practice. A related frac-
tal dimension is the box-counting or capacity dimension, which arises from a
relaxation of the definition of Hausdorff dimension. The box-counting dimen-
sion considers how the infimum of the number of cubes of fixed side length
required to cover the set scales as the side length goes to zero (equivalently, one
may use alternatives such as closed balls of fixed radius). A second alternative
to Hausdorff dimension, and one of the most popular choices for computa-
tionally feasible fractal dimension estimation, is correlation dimension, which
utilizes statistics of pairwise distances. For more details on fractal dimension,
see [151].

298 Data Science for Mathematicians

In the next section, we dive deeper into a selection of specific dimension
estimation and reduction methods.

7.3 Principal Component Analysis

Principal Component Analysis (PCA) provides an optimal data-driven
basis for estimating and reducing dimension and is one of the main tools
used for that purpose. It is also widely used as a technique for visualizing
high-dimensional datasets. The method can be traced back to Pearson [383]
although it has been rediscovered many times and is also referred to as the
Karhunen-Loève Transform [259, 318] and Empirical Orthogonal Functions
(EOFs) [319]. It is intimately related to the Singular Value Decomposition
(SVD) and the numerical linear algebraic algorithms for computing the SVD
may be used for computing PCA. Readers who would like a review of SVD (or
the related linear algebra in general) may wish to read Section 3.2.6 before
diving into Section 7.3.1 below. Interestingly, the Fourier transform can be
viewed as a special case of PCA for translationally invariant datasets [268].

7.3.1 Derivation and properties

PCA provides a principled technique for changing coordinates of data with
the goal of revealing important structure. Given a dataset of points {x(i)}, i =
1, . . . , n, the goal is to determine the best k-dimensional subspace of Rm where
m is referred to as the ambient dimension of the data, i.e., each x(i) ∈ Rm.
Let’s write the approximation of a point x(i) as a decomposition into the sum
of the component a in the projected space and the residual b in the orthogonal
complement, so

x = Px+ (I − P)x,

where we have set a = Px and b = (I−P)x. Here P = UUT and the columns
of U are an orthonormal matrix UTU = I. Assuming that our projections
are orthogonal, we have the Pythagorean Theorem to decompose the lengths
squared

‖x‖2 = ‖a‖2 + ‖b‖2.
It is convenient to define the data matrix X = [x(1)| · · · |x(n)]. Using the
identity

∑
i ‖x(i)‖2 = ‖X‖2F we can compute the decomposition over the entire

dataset
‖X‖2F = ‖A‖2F + ‖B‖2F

where A = [a(1)| · · · |a(n)] and B = [b(1)| · · · |b(n)]. (Recall that the Frobenius
norm of a matrix is the square-root of the sum of the squares of the entries.)
We can seek an orthogonal projection that maximizes the sum of the projected

Dimensionality Reduction 299

lengths
maximize
UTU=I

‖UUTX‖2F . (7.1)

It is readily shown using the technique of Lagrange multipliers that the
extrema for this problem satisfy

XXTui = λiui. (7.2)

Since XXT is symmetric and positive semi-definite, it follows that we can
order the basis in terms of the real eigenvalues

λ1 ≥ λ2 ≥ . . . λn ≥ 0.

Note that since
λi = uTi XX

Tui,

the eigenvalue λi measures the total projection of the data onto the ith coor-
dinate direction. If the data is mean subtracted, i.e., the data has zero mean
in the centered coordinate system, then the eigenvalues are in fact the statis-
tical variance captured in that coordinate direction. The eigenvalue spectrum
measures the distribution of information in the space. This dispersion of infor-
mation can be measured using entropy. Shannon’s entropy is defined as

E = −
∑

i

λi lnλi. (7.3)

This quantity E is at a maximum when all the eigenvalues are equal indicating
that there is no preferred direction in the dataset, i.e., no data reduction is
possible. In contrast, if only one eigenvalue is nonzero, then the data can be
reduced to one dimension and is maximally compressible. It can be shown that
the PCA basis is the one that minimizes Shannon’s Entropy. In summary, over
all orthogonal bases the PCA basis [268,495]

• maximizes the length-squared of the projected data,

• equivalently, minimizes the length-squared of the residuals,

• equivalently, maximizes the statistical variance of the retained data,

• equivalently, minimizes Shannon’s entropy, and

• produces coordinates in which the dimension-reduced data are uncorre-
lated.

300 Data Science for Mathematicians

7.3.2 Connection to SVD

The Singular Value Decomposition (SVD) for a matrix is connected to
PCA in a simple way. Recall that every rectangular matrix X can be decom-
posed into the product of orthogonal matrices U, V , and a diagonal matrix
Σ. The matrices U and V contain the left and right singular vectors of X,
respectively, and Σ contains the ordered singular values. Thus we can write
the SVD of X as

X = UΣV T . (7.4)

It can be shown that the left singular vectors are the eigenvectors arising in
PCA. This follows from the fact that

XXT = UΣ2UT , (7.5)

or an m×m eigenvector problem. Analogously, the right singular vectors are
the eigenvectors of the n× n problem

XTX = V Σ2V T . (7.6)

Note that the relationship between U and V through the SVD allows one to
solve only the smaller of the two eigenvector problems. Given its relevance for
points in high dimensions, e.g., high-resolution digital images, solving equation
(7.6) is referred to as the snapshot method while solving equation (7.5) is
referred to as the direct method; see [269, 437]. Note that, in practice, if the
sizes of m,n allow, it is most desirable to solve the “thin” SVD so that the
matrices XXT or XTX are never actually computed. For additional details,
see [268].

7.3.3 How PCA is used for dimension estimation and data
reduction

In this section, we consider an application of PCA/SVD for dimension
reduction and estimation.

We consider the variation of illumination on an object by waving a light in
front of a stationary plastic pumpkin. In the left of Figure 7.1 we have plotted
the mean image in a sequence of 200 images. The first eigenvector, shown on
the right, contains 85% of the total data variance even though the ambient
dimension is 345,600. The first 10 dimensions contain over 98% of the total
variance.

The projection of the image sequence onto a two-dimensional subspace is
shown in in the left of Figure 7.3; this representation contains over 94% of
the variance. While this is not exactly an isometric embedding, it reveals the
qualitative motion of the lamp being swung back and forth by hand. The log
of the eigenvalues shown on the right of this plot show the traditional scree

Dimensionality Reduction 301

FIGURE 7.3: Left: Projection of the images in the illumination sequence to
two dimensions, created using the code in Figure 7.4. Right: The nonzero
eigenvalues of the matrix XXT .

plot. Note that the steep portion begins to flatten out around ten dimensions
and this would be taken as the estimate for the dimension of this data.

Note that there are 200 images and that they were mean subtracted to
perform this analysis. This is done effectively using

X̃ = X(I − eeT /n)

where e is the vector of ones. As a result of this mean subtraction there are
199 eigenvectors associated with nonzero eigenvalues. But, according to the
discussion above, about 189 of the eigenvectors are not required for represent-
ing the data since the images only sit in these dimensions with very small
amplitude.

MATLAB code for creating the image on the left of Figure 7.3 using SVD
appears in Figure 7.4.

7.3.4 Topological dimension

An important question for geometric data analysts is how to estimate the
dimension of a manifold from sampled data. There is an elegant solution based
on computing the singular values σi(ε) of a local ε-ball of data as a function of
the radius of the ball. The algorithm begins with a small data ball centered at
a point of interest, and that contains enough points for the SVD to be infor-
mative. The algorithm proceeds by enlarging the size of the data ε-ball Bε(p)
centered at a point p on the manifold [65,67]. The key idea is that, for small ε,
the singular values that scale linearly with the radius of the ball are associated
with the singular vectors that span the tangent space of the manifold. The
remaining singular values reflect the noise distribution in the data. As the
radius of the ball increases, curvature effects begin to dominate as reflected
by the appearance of singular values that scale quadratically. Extensions of

302 Data Science for Mathematicians

%Input: data1 is the data matrix of the color image sequence

%with dimensions 480 (#rows)

% x 720 (#cols)

% x 3 (R,G,B)

% x 200 images in sequence.

%initialize the data matrix,

%whose columns will be "vecced" images:

Q = [];

for i = 1:200

%convert color images to gray level:

A = rgb2gray(squeeze(data1(:,:,:,i)));

%turn each image matrix into a vector:

x = reshape(A,size(A,1)*size(A,2),1);

%collect images as columns in one matrix:

X = [X double(x)];

end

MM = X*ones(200)/200;

MX = X-MM; %complete the mean subtraction

[U S V] = svd(MX,0); %thin SVD

A = U(:,1:2)’*MX; %find 2D reduction

FIGURE 7.4: MATLAB code for generating the image shown on the left of
Figure 7.3, taking as input the sequence of 200 images described in Section
7.3.3.

Dimensionality Reduction 303

these ideas to function spaces have been presented in [66]. Explorations of
computational and algorithmic strategies are considered in [238].

We note that the obvious question—do the singular vectors that scale
quadratically with ε reveal additional geometric information—can be answered
in the affirmative [15, 16, 525]. You can also compute generalized curvatures
using singular values [14].

7.3.5 Multidimensional scaling

In the above algorithms, we assumed that our dataset X was given with
coordinates in some field (so that each x ∈ X is a point in a vector space).
However, in many cases of interest, data may not be available as points in a
Euclidean space. Instead, we may have access to relationships between data
points in a set, i.e., we may possess a similarity matrix S associated with a
dataset that satisfies

Sij ≤ Sii and Sij = Sji.

Defining Dij = Sii + Sjj − 2Sij gives rise to a distance matrix [334]. Alterna-
tively we may have distances between data points as a starting point. MDS
answers the question concerning how to determine a configuration of points
whose Euclidean distances are as faithful as possible to the provided distance
matrix.

One natural strategy is to then try to find a Euclidean approximation
X̃ ∈ Rn of the metric space (X,m), for some n ≥ 1, where the corresponding

metric on X̃ is the usual Euclidean metric. Once we have X̃, we also have all
the tools of linear algebra at our disposal.

The loss function minimized by MDS is the strain of the Euclidean approx-
imation X̃ relative to X. Minimizing the strain is equivalent to minimizing

 ∑

x1,x2∈X
(bij − x1 · x2)2

1
2

where bij comes from a double mean-centered version of the distance matrix
D. Note that MDS accesses Euclidean distance via its relationship with the
inner product in the identity:

||x1 − x2||2 = ||x1||2 − 2x1 · x2 + ||x2||2.

For a more detailed discussion on MDS the reader is referred to [50], or to the
example code in Figure 7.5.

304 Data Science for Mathematicians

%Multidimensional Scaling Algorithm

%INPUTS:

% D -- a distance matrix D(i,j) is the distance

% between points i and j

% dim -- the dimension of the linear embedding space

%OUTPUTS:

% X -- a data matrix of size dim x number of points

A = -0.5*D.*D;%Hadamard product

n = size(D,1)%n is the number of points

onevec = ones(n,1);

H = eye(n)-onevec*onevec’/n;%centering matrix

B = H*A*H %double centering of A

[V E] = eig(B)

VN = V*sqrt(E);

X = (VN(:, 1:dim))’

FIGURE 7.5: Implementation of the MDS algorithm in MATLAB.

7.4 Good projections

We return now to datasets consisting of points in a vector space V. In
most situations a dimensionality reduction algorithm should approximately
preserve the distance between distinct points x1 and x2 in a dataset X ⊂ V
even as pairs of points in V , but not in X, are collapsed. Another way to
say this is that we would like to find functions that preserve the secant set
associated with X. The secant set of X is defined as

S := {x1 − x2 | x1, x2 ∈ X, x1 6= x2}.
Note that the secants of S will in general have different lengths. Depending

on what aspects of X we want to preserve during reduction, we may either
normalize our secants (to put them on an equal footing) or discard secants
below a certain length threshold (where noise has a larger effect).

One example of a secant-based dimensionality reduction algorithm, which
operates on the normalized secant set S̃ and which is related to PCA, is found
in [68]. Here, one solves the optimization problem

arg max
P

∑

s∈S̃

||Ps||, (7.7)

to find an orthogonal projection P , which projects the data from Rn to a k-
dimensional subspace (for k < n) that optimally preserves normalized secants
of the dataset. This problem can be solved by taking the singular value decom-
position of the matrix whose columns (or rows) are the elements of S̃.

Dimensionality Reduction 305

We saw in Section 7.2 that it can be valuable to estimate the intrinsic
dimension of a dataset. In this case, the constructive proof of Whitney’s
Embedding Theorem suggests that instead of solving (7.7), we should solve

P ∗ = arg max
P

(
min
s∈S̃
||Ps||

)
, (7.8)

which tries to find a projection such that the most diminished secant is maxi-
mized. Intuitively, if our projection drastically decreases the length of a secant,
and hence collapses two distinct data points, then we have most likely inter-
sected or folded the data manifold on itself and hence the dimension we are
projecting into may be insufficient for embedding the manifold. As Whit-
ney’s Embedding Theorem gives an upper bound on the number of dimen-
sions required to embed an m-dimensional manifold, studying the value of
mins∈S̃ ||P ∗s|| for the orthogonal k-projection solution P ∗ of (7.8), as k varies,
can give one approximate bounds on the intrinsic dimension of X. The secant-
avoidance projection (SAP) algorithm [291] is an example of an algorithm that
can efficiently solve (7.8). For a hierarchical approach to (7.8) see [293]. The
word “approximately” must be used in this case because whereas (7.7) is con-
vex, (7.8) is not.

To see the difference between secant-based methods and PCA, we consider
the simple example of a circle S1 embedded into R2n via the trigonometric
moment curve φ2n : S1 → R2n. Parameterized by t ∈ [0, 2π] this curve is given
by

φ10(t) := (cos(t), sin(t), cos(2t), . . . , cos(nt), sin(nt)).

Let U be a dataset obtained by randomly selecting 800 points from φ10(S1) ⊂
R10. Figure 7.6 shows the result of using PCA to project U into R3. Notice that
in order to optimize for variance, portions of φ10(R) become tightly knotted
in the course of dimensionality reduction. Put another way, PCA is willing
to collapse a few secants if it can preserve overall variance. We contrast this
with the result of using a projection that satisfies (7.8). Notice that since (7.8)
focuses on maximizing the most collapsed secant, the resulting projection does
not have any tight knots in it.

If we solve equation (7.8) over the normalized secant set S̃ ⊂ Rn, the
k-projection solution P ∗ provides an additional statistic

κk = min
s∈S̃
||P ∗s||,

that describes the extent to which the least well-preserved secant is diminished
under the optimal projection. We call the collection of all such values

κ = (κ1, κ2, . . . , κn),

the κ-profile for the dataset X. It has been shown that changes in the κ-profile
often reflect fundamental changes in a dataset [292]. For example, different
soundscapes [162] exhibit fundamentally different κ-profiles as shown in Figure
7.7, reflecting their differing complexities.

306 Data Science for Mathematicians

FIGURE 7.6: Visualizations of the result of projecting randomly sampled
points from the trigonometric moment curve in R10 to R3 using the first three
coordinates (left), using PCA (center), and using the SAP algorithm (right).
Note that since PCA tries to maximize only overall variation, the projection
that optimizes this objective function leaves some points knotted together.
The SAP projection, on the other hand, finds a projection that keeps the
points more evenly spaced throughout the whole curve.

FIGURE 7.7: The κ-profile for five different soundscapes. A recording of
each soundscape [162] was chopped into fixed-length “vectors” and these were
treated as points in a high-dimensional Euclidean space where their κ-profile
could be calculated. Note that, unsurprisingly, environments with more rela-
tively uniform, incoherent noise, such as the seashore and heavy rain, appear
to be higher dimensional than environments with more structured noise.

7.5 Non-integer dimensions

The non-integer definitions of dimension in this section initially arose in the
study of dynamical systems. We have included a short detour through some
of these basic concepts. Readers primarily interested in computing dimension
from data can return to the technical details related to dynamics later if

Dimensionality Reduction 307

interested. We begin with a brief review of dynamical systems, but readers
familiar with the material may skip ahead to Section 7.5.2.

7.5.1 Background on dynamical systems

Here we provide the foundation to precisely define what is meant by an
attractor. We first give some basic working definitions from dynamical systems
theory.

Definition 7.1 (Autonomous Differential Equation) An autonomous dif-
ferential equation on the open phase space M ⊂ RN is an equation of the form,

du

dt
= F (u)

where u : R→ M is a smooth path, also called an orbit, and F : M → RN is
a smooth function on M.

Associated to a differential equation is its flow. Here we provide the definition
of a complete flow to avoid subtleties involved in defining the flow domain.

Definition 7.2 (Complete Flow) The flow f : R ×M → M associated to
the above differential equation is the unique smooth map satisfying the follow-
ing properties.

1. f(0, u) = u

2. f(s, f(t, u)) = f(t+ s, u)

3. ∂f
∂t (t, u) = F (f(t, u))

Note that properties 1 and 2 define a smooth action of R on M . We then wish
to characterize those sets which are invariant under the dynamics.

Definition 7.3 (Invariant Set) A set X ⊂M is invariant if for any x ∈ X
and any t ∈ R, f(t, x) ∈ X.

Building to our definition of attractor, attractors should attract in some
sense. We make this precise.

Definition 7.4 (Attracting Set) An attracting set is a closed invariant
subset X ⊂ M such that there exists a neighborhood U of X which has the
property that if u ∈ U then f(t, u) ∈ U for all t ≥ 0 and f(t, u) → X as
t→∞.

We call
⋃
t≤0

f t(U) the domain of attraction, where f t : M → M is the diffeo-

morphism defined by f t(u) = f(t, u). An attractor has the unique property
that it must also be generated by an orbit of the dynamical system. By an
orbit of the dynamical system we mean a path x(t) = f(t, p) where p ∈ M is
fixed.

Definition 7.5 (Attractor) An attractor X is an attracting set which con-
tains a dense orbit, i.e., an orbit whose image is dense in X.

308 Data Science for Mathematicians

7.5.2 Fractal dimension

The simulation of dynamical systems leads to interesting objects with non-
integer dimensions known as strange attractors, as in Figure 7.8. How does one
define and compute a definition of dimension that agrees, in some sense, with
our geometric intuition? Is the notion of dimension even unique? How do
different definitions of dimension relate to one another?

FIGURE 7.8: The Lorenz attractor in state space with parameters ρ = 28,
σ = 10, and β = 8/3 chosen by Lorenz so that the system will exhibit chaotic
behavior. The code to generate this image is in Figure 7.9. See [320] for more
details.

For a set X ⊂ RN whose closure is compact, let Nε(X) be the minimal
number of ε-balls needed to cover X and define

µF (X, d, ε) = Nε(X)εd (7.9)

and

µF (X, d) = lim sup
ε→0+

µF (X, d, ε). (7.10)

If we consider, for example, a two-dimensional surface in three-dimensional
space and a covering of the surface with the minimal number of three-
dimensional ε-balls, we would observe that as ε approaches zero the cover
would decrease in volume to zero. This is due to the fact that a two-
dimensional surface has measure zero in R3. To find that the dimension of
the surface is in fact two, we would want to reduce the dimensionality of the
ε-cover by reducing d in the definition of µF above until we see that the ε-
cover has nonzero d-volume in the limit as ε goes to zero. This motivates the
definition of the fractal dimension.

Dimensionality Reduction 309

Definition 7.6 (Fractal Dimension) Let X be a set whose closure is com-
pact. The fractal dimension of X is the quantity

dimF (X) = inf
d≥0
{d : µF (X, d) = 0} ,

where µF (X, d) is defined by Equations 7.9 and 7.10.

The fractal dimension, also known as the Hausdorff dimension, is often
impractical to compute because it requires finding the minimal number of ε-
balls needed to cover the set X. A more practical measure of dimensionality,
which can be more readily computed, is the box-counting dimension. For the
box-counting dimension, instead of minimally covering the set X with ε-balls
and counting them, we partition RN into a uniform grid of N -dimensional
hypercubes with side length ε and then count the number of hypercubes that
intersect X.

Let Mε(X) denote the number of hypercubes with side length ε that inter-
sect X, and define

µB(X, d, ε) = Mε(X)εd.

With some basic algebra we obtain the equality

d =
log (µB(X, d, ε))

log(ε)
+

log (1/Mε(X))

log(ε)
.

Similar to the fractal dimension, we consider only those d where
lim
ε→0+

µB(X, d, ε) = 0. Taking a limit on the expression above we obtain

d = lim
ε→0+

log (1/Mε(X))

log(ε)
.

Hence we have the following definition.

Definition 7.7 (Box-counting Dimension) Let X be a set whose closure
is compact. The box-counting dimension of X is the quantity

dimBox(X) = lim
ε→0+

log (1/Mε(X))

log(ε)
,

where Mε(X) is the number of hypercubes with side length ε in a uniform grid
that intersect X.

In general, the box-counting dimension is at least as large as the fractal dimen-
sion, but equality will hold when X satisfies the so-called open-set condition;
see [152] for more details.

7.5.3 The correlation dimension

The fractal dimension gave us a pure geometric measure of dimension-
ality for sets that are noisier than sets that are locally Euclidean-like (i.e.,

310 Data Science for Mathematicians

manifolds, CW-complexes, etc...). Many times in practice, such a set arises as
an attractor for some dynamical system. The correlation dimension is built to
measure dimensionality of attractors, sets which are generated by the dense
orbit of a dynamical system, as in Figure 7.8. Nevertheless, the definitions
of the correlation dimension do not prohibit one from calculating it for an
arbitrary dataset. In fact the correlation dimension is often very close to the
fractal dimension of a set and generally far simpler to compute.

Now consider a generic time series {Xi}∞i=0 in RN . (For an arbitrary dataset
X ⊂ RN we can just take a random ordering of the points. A brief introduction
to time series in general appears at the end of Section 4.6.4.) We would like a
definition of dimension for X that takes into account its dynamical complexity
rather than just its geometric degrees of freedom. To form this definition we
first define the correlation integral associated to the time series.

Definition 7.8 For any ε > 0, the correlation integral with respect to ε is the
value

C(ε) = lim
n→∞

1

n2

n∑

i,j=0

θ(ε− |Xi −Xj |), (7.11)

where θ is the Heaviside function, which is 0 on (−∞, 0) and 1 on [0,∞).

C(ε) gives the probability of finding two points in the full time series that are
closer than ε to one another. The intermediate values,

C(ε, n) =
1

n2

n∑

i,j=0

θ(ε− |Xi −Xj |),

give the probability that there will be two points in the truncated time series
less than ε distance away. Grassberger and Procaccia [199] establish that C(ε)
behaves as a power law for small ε so that C(ε) ∼ εν for some ν ∈ R. This
yields the following definition.

Definition 7.9 (Correlation Dimension) The correlation dimension of a
set X, when it exists, is the quantity

dimCorrX = lim
ε→0+

logC(ε)

log ε
,

where C(ε) is the correlation integral defined in Equation 7.11.

To get an idea of the correlation dimension, it is enlightening to see how it
relates to the box-counting dimension. From the definitions given in the fractal
dimension section along with some analysis, if DB = dimBox(X) then

C(ε) ≥ εDB

µB(X,DB , ε)
.

Dimensionality Reduction 311

By taking the log of each side and dividing by log(ε) we obtain

logC(ε)

log ε
≤ DB −

logµB(X,DB , ε)

log ε
.

Now we take the limit to obtain

dimCorr(X) ≤ lim
ε→0+

(
DB −

logµB(X,DB , ε)

log ε

)

= DB − lim
ε→0+

log (µB(X,DB , ε))

log ε

= dimBox(X).

If we assume a uniform distribution of points on the set X with a little
analysis [199] we can obtain

dimCorr(X) = dimBox(X).

Hence we can roughly think of the correlation dimension as a weighted frac-
tal dimension in the sense that regions of the set X that are more frequented
by the time series are weighted more heavily than regions that are frequented
less so. The correlation dimension offers perhaps a more relevant measure
of the dimension in the context of time series (more specifically dynamical
systems) because it takes into account the actual dynamical coverage of X.

7.5.4 Correlation dimension of the Lorenz attractor

To see an application of computing the correlation dimension we will
approximately compute the correlation dimension of the well-known Lorenz
attractor. The Lorenz attractor sits within three-dimensional phase space and
is generated by the Lorenz equations

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz.

These equations form a three-dimensional coupled system of ordinary dif-
ferential equations (ODEs). Lorenz, a mathematician and meteorologist, used
these equations as a basic model for the dynamics in weather systems. Specifi-
cally, these equations relate the temperature variations and rate of convection
of a two-dimensional cross-section of fluid uniformly warmed from below and
cooled from above; see [438] for a thorough account. For parameter values
near σ = 10, ρ = 28, and β = 8/3, the Lorenz system has chaotic solutions,
and the attractor assumes its famous butterfly shape, as in Figure 7.8. For

312 Data Science for Mathematicians

the computation of the correlation dimension we will use a variety of tools
and packages provided by Python, most notably numpy, sklearn, scipy, and
matplotlib.

We first generate the Lorenz attractor by initializing a point in phase space
and then using odeint from the scipy package to evolve the point in space
along an orbit. At the end we plot the orbit to give a visualization of the
attractor. The code is in Figure 7.9, and the resulting image we have already
seen in Figure 7.8.

To calculate the correlation dimension of the attractor we will want to
restrict our calculation to those points towards the end of the orbit so that
the trajectory has had time to converge upon the attractor. We then define
the correlation integral and compute it for a range of ε near zero. We then fit
a linear model to the log-log plot, which tells us that the slope of the fitted
model, and thus the correlation dimension, is approximately 2.04; see the code
in Figure 7.10.

We can see how well a linear model fits the data by generating the afore-
mentioned log-log plot, using the code in Figure 7.11, resulting in Figure 7.12.
Our calculation yields that the attractor’s correlation dimension is approxi-
mately 2.04 which agrees with our geometric intuition. It should be noted that
that there is an upper bound to correlation dimension that one can calculate
based on the number of points in X. Eckmann and Ruelle [139] show that if
one uses n points to calculate correlation dimension of X then the maximum
dimension one can calculate is approximately 2 log10(n).

An efficient box-counting-based method for the improvement of fractal
dimension estimation accuracy is introduced in [311]. A method to estimate
the correlation dimension of a noisy chaotic attractor is proposed in [424].
This method is based on the observation that the noise induces a bias in the
observed distances of trajectories, which tend to appear farther apart than
they are. Fractal-based methods that are assigned to the global estimators
and geometric approaches are explored in [258].

7.6 Dimension reduction on the Grassmannian

One of the major challenges in data science is capturing the essence of a
phenomenon using data as a proxy. For example, changes in illumination can
make the same object look very different to pattern recognition algorithms
which is problematic for machine learning. One solution is to collect a set of
points in Euclidean space and to compute their span, and hence their vector
subspace. As evidenced by our pumpkin example in Section 7.3.3, the variation
in illumination state of the object is now encoded into a low-dimensional
subspace. Now the task is to exploit the geometry of this framework.

Dimensionality Reduction 313

Import libraries

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

from mpl_toolkits.mplot3d import Axes3D

Set default parameters

rho = 28

sigma = 10

beta = 8/3

Define the system of ODEs

def f(X, t):

x, y, z = X

return (sigma * (y - x),

x * (rho - z) - y,

x * y - beta * z)

Pick initial point

X0 = [1.0, 1.0, 1.0]

Specify time range

(time_start, time_end, time_step)

t = np.arange(0.0, 1000.0, 0.01)

Integrate the ODE to obtain an orbit

Xt = odeint(f, X0, t)

Plot the Lorenz attractor

fig = plt.figure()

ax = fig.gca(projection=’3d’)

ax.plot(Xt[:, 0], Xt[:, 1], Xt[:, 2], c=’b’)

plt.show()

FIGURE 7.9: Python code for generating the Lorenz attractor shown in Figure
7.8

The Grassmannian (or Grassmann manifold) G(k, n) is a k(n − k)-
dimensional parameterization of all k-dimensional subspaces of Rn. It is nat-
ural tool for representing a set of points as a single abstract point, i.e., a
subspace, on this manifold. Note now that we have moved data to a mani-
fold and do not require that the data itself initially reside on a manifold, as
many manifold learning methods require. As an example, a set of 10 images
in R345600 creates a point α ∈ G(10, 345600) represented by a basis for this

314 Data Science for Mathematicians

Import additional libraries

import sklearn.metrics as metrics

from sklearn.linear_model import LinearRegression

Define the correlation integral

def C(distances,eps):

n = distances.shape[0]

return np.sum(distances<eps)/(n**2)

Specify range for epsilon

eps_range = np.arange(.3, 5, .05)

Initialize vector of correlation integrals

corr_int = np.zeros_like(eps_range)

Compute distance matrix from time-series

From t=750 to t=1000

d = metrics.pairwise_distances(Xt[75000:])

Compute correlation integrals for a range of epsilons

for i, eps in enumerate(eps_range):

corr_int[i] = C(d, eps)

Compute respective logarithms

x = np.log(eps_range)

y = np.log(corr_int)

Fit linear model for approximating correlation dimension

X = x[:,None] # Refit to 2-d array for LinearRegression

lin_reg = LinearRegression().fit(X, y)

Compute approximate correlation dimension

corr_dim = lin_reg.coef_ # Slope of line

print("Correlation dimension is", corr_dim)

FIGURE 7.10: Python code for computing the correlation dimension discussed
in Section 7.5.4. It assumes the code from Figure 7.9 has been run.

set. Another set of 10 images creates another point, again represented by a
spanning set, β ∈ G(10, 345600). This leads us to be interested in measuring
the distance d(α, β).

Why is this framework useful? A set of k n-dimensional data points in
Euclidean space is modeled as a subspace, i.e., a point on G(k, n), as in Fig-
ure 7.13. Computing distances between these points on the manifold depends

Dimensionality Reduction 315

Import additional library

from matplotlib import rc

Setup TeX environment with pyplot

rc(’font’,**{’family’:’sans-serif’,

’sans-serif’:[’Helvetica’]})

rc(’text’, usetex=True)

Plot correlation integrals with linear model

plt.plot(x, y, ’go--’, linewidth=2,

markersize=5,label="Correlation Integral")

plt.plot(x, lin_reg.predict(X), ’-’, linewidth=2,

markersize=5, c=’k’, label="Linear Regression")

plt.legend()

plt.xlabel("log(ϵ)")

plt.ylabel("log(C(ϵ))")

plt.annotate(’slope= ’+str(np.around(corr_dim.item(),2)),

(1, -8), size=12)

FIGURE 7.11: Python code for plotting the data and model discussed in
Section 7.5.4. It assumes the code from Figure 7.10 has been run.

on computing principal angles between subspaces [192]. For example, given
two n×k data matrices X and Y , we determine a representation for the span
of each set of vectors on G(k, n) with the QR-decomposition

X = QXRX , Y = QYRY ,

where the matricesQX , QY are orthonormal bases for the column spacesR(X)
and R(Y), respectively. An SVD computation produces the principal angles
θi (i = 1, . . . , k) between R(X) and R(Y), i.e.,

QTXQY = UΣV T ,

with
cos θi = Σii.

(Readers who would benefit from a review of the QR decomposition should
see Section 3.2.5.2 and for a review of SVD, see Section 3.2.6.)

The geometric structure of the Grassmann manifold allows us to compute
pairwise distances between its points (subspaces) using one of the metrics or
even pseudometrics defined there [1, 91, 141]. For instance, if 0 ≤ θ1 ≤ θ2 ≤
. . . ≤ θk ≤ π/2 are the principal angles between the column spaces R(X) and
R(Y), then the chordal distance is given by

dc(R(X),R(Y)) =

√
sin2 θ1 + sin2 θ2 + · · ·+ sin2 θk,

316 Data Science for Mathematicians

FIGURE 7.12: log-log plot of the correlation integrals C(ε) vs. ε for the Lorenz
attractor. The slope here is the approximate correlation dimension of the
attractor.

k points in Rn

n

k G(k, n)

FIGURE 7.13: Schematic construction of points on a Grassmannian manifold.
From [94], used with permission.

the geodesic distance is given by

dg(R(X),R(Y)) =
√
θ2

1 + θ2
2 + · · ·+ θ2

k,

Dimensionality Reduction 317

(a) 2D Grassmannian embedding (b) 2D PCA projection

FIGURE 7.14: An example of two-dimensional data representations via the
Grassmannian framework (a) that separates the two data classes versus (b)
PCA projection of individual points, which leaves the two classes mixed in
two dimensions. From [94], used with permission.

and for 0 < l < k a pseudometric can be defined as

dl(R(Y),R(Y)) =
√
θ2

1 + θ2
2 + · · ·+ θ2

l .

See [108] for additional details.
Since we can measure distances between points on the Grassmannian, we

can use multidimensional scaling as described above to build a configuration of
points in Euclidean space. The striking result of merging these ideas is shown
in Figure 7.14. Hyperspectral pixels in 200 dimensions associated with two
different classes of material are completely mixed when projected using PCA.
In contrast, if the variability of the data is captured using the Grassmannian
trick, the data is separable. See another example in [94]. This represents a
very powerful preprocessing for subsequent machine learning algorithms.

Using this approach we can actually “see” subspaces as low-dimensional
points in Euclidean space. Moreover, according to [108], G(k, n) with the
chordal distance dc can be isometrically embedded into RD, where D is inde-
pendent of k. Note that even if dc provides distance-preserving embeddings,
while dg and dl do not, it is also computationally useful to use both the
geodesic metric and pseudometric to generate the distances between points
on G(k, n) for our setting. It is interesting that a pseudometric dl, computed
from the smallest l principal angles, can result in better class separability in
low-dimensional Grassmannian embeddings compared to the other distances.
See [94] as an example of a classification problem on Grassmanians.

Having organized data on an embedded Grassmanian, one can apply
machine learning techniques for further experimentation in the convenient
setting of low-dimensional Euclidean space. Additional dimension reduction

318 Data Science for Mathematicians

can be achieved by using feature selection approaches such as sparse support
vector machines (sparse SVM or SSVM) [94]. Note that if SVM, SSVM, or any
other supervised machine learning method is used, one can utilize Landmark
MDS (LMDS) to be able to embed new testing points in the same Euclidean
space as training data [122]. This can be done by applying MDS to the mani-
fold distances computed between landmark points only, and then by applying
distance-based triangulation to find configuration for the rest of the points,
including both training points and new points for testing, whenever needed.

The Grassmannian framework described above can be used in combina-
tion with topological data analysis (TDA), in particular, with its powerful
tool persistent homology (PH), which has gained a lot of attention in recent
years [143,375,523]. PH is a method that measures topological features of the
underlying data space, such as the numbers of connected components, loops,
and trapped volumes, persistent at multiple scales. Since PH can be used to
study metric spaces, the Grassmannian, equipped with its metrics, provides
a convenient setting for the following approach: first, organize (potentially)
large volumes of high-dimensional data as points on G(k, n), retaining data
variability and structure, then generate and interpret PH output. See, for
example, [95], as well as Chapter 10 in this book.

We conclude this section by remarking that application of the Grassman-
nian has become widespread in computer vision and pattern recognition.
For example, we find applications to video processing [214], classification,
[90, 208, 489, 490], action recognition [24], expression analysis [312, 454, 472],
domain adaptation [286, 382], regression [227, 430], pattern recognition [328],
and computation of subspace means [88, 335]. More recently, Grassmannians
have been explored in the deep neural network literature [235]. (This text
covers neural networks in detail in Chapter 9.) An interesting related idea
concerns subspace packing problems [108,289,448]. The geometric framework
of the Grassmannian has been made more attractive by the development of
numerical tools [2, 141,175].

7.7 Dimensionality reduction in the presence of symme-
try

Over the last century and a half, a continual theme in both mathematics
and physics has been the use of symmetry to simplify problems. The begin-
nings of a similar story can be told in data science where it has become increas-
ingly clear that exploiting the symmetries inherent in a data type can lead
to more robust and efficient algorithms. One of the most celebrated examples
of this phenomenon is the convolutional neural network (CNN), whose excep-
tional performance on image recognition tasks helped spark the deep learning

Dimensionality Reduction 319

revolution. The key property of a CNN is that its architecture is designed to
be invariant to translations of objects in a sample image, as we will cover later
in Section 9.4. For example, once the network learns to recognize a dog on the
right side of an image, it will automatically learn to recognize a dog on the
left side of an image. Thus even before training, the model understands that it
should ignore certain variations in the data that are unimportant to classifica-
tion. Since representation theory is the study of symmetry using the tools of
linear algebra, many of the ideas from this domain play a key, if understated,
role in data analysis.

In this section, we give some specific examples of how representation the-
ory can play a guiding role in dimensionality reduction. Our presentation is
unconventional in that we stick to an algebraic description, since it is from
this perspective that the transition to more diverse groups is easiest. We start
by acknowledging the most ubiquitous example of representation theory in
dimensionality reduction: the discrete Fourier transform (DFT). For diverse
modalities where data is represented in the form of vectors (a prominent exam-
ple being time series) it is common to take a DFT and then cut out frequencies
that are known to correspond to noise or unwanted signal. Suppose we have a
data point x = (x0, . . . , xn−1) ∈ Cn and that Cn is the cyclic group of order
n. Then Cn contains n elements which we denote as Cn = {1, g, g2, . . . , gn−1}.
Recall that the group algebra C[G] of a finite group G is the algebra of formal
sums of elements of G with multiplication given by the usual multiplication
of group elements [301, II, §3]. We can interpret x as an element of the group
algebra C[Cn]

x =
n−1∑

k=0

xkg
k.

More commonly x would be interpreted as a function in Hom(Cn,C), but
as algebras C[G] ∼= Hom(G,C) for any finite group G, where the usual algebra
multiplication holds on the left and the convolution of functions holds on
the right. The DFT is nothing other than the well-known decomposition of
the group algebra of a finite group into a product of matrix algebras [428,
Part II, Section 6]. (In the most general setting this is known as the Artin-
Wedderburn decomposition.) Of course in this case, since the symmetry group
Cn is commutative, the result is just a direct product of numbers (the Fourier
coefficients). Algebraically then, removing unwanted frequency components
of a signal is equivalent to zeroing out certain matrix algebras in the Artin-
Wedderburn decomposition.

Of course, harmonic analysis is much more than a specialized area of rep-
resentation theory, but the ways that Fourier theory is used in dimensionality
reduction serve as a model for the ways that the representation theory of
other groups can be applied in this area. But note that for a noncommutative
finite group G, the data at the other end of the Fourier transform is a direct
product of nontrivial matrices. As is usual in representation theory, many of

320 Data Science for Mathematicians

the observations made here and below have analogues when the finite group
G is replaced by a compact Lie group.

In the remainder of this section, we will show how the ideas above inter-
act with two classical dimensionality reduction algorithms in the presence
of symmetry. Following [295], we first consider the most fundamental tech-
nique for dimensionality reduction, PCA (Section 7.3). Suppose that we have
a dataset X that sits in a C-vector space V . Like many dimensionality reduc-
tion algorithms, PCA can be reduced to finding the eigendecomposition of a
specific linear operator, in this case, the ensemble average covariance matrix
C : V → V . Now suppose that a group G (finite or compact) acts on V and
that the set of possible data points U (not restricted to the data points X that
have actually been observed) is stable under this action (so that possible data
points get sent by C to other possible data points). This symmetry assumption
implies that C is G-equivariant on V . It then follows from basic representation
theory that subrepresentations of G in V are stable under the action of C.
Thus if we understand the representation theory of G, then we automatically
have a partial PCA decomposition of V with respect to dataset X, since the
eigenspaces of C are constrained to be direct sums of the irreducible repre-
sentations of G in V . As a further consequence, the possible dimensions of
the eigenspaces of C are bounded below by the dimensions of the irreducible
representations of G appearing in V .

The authors of [295] go on to show that symmetry gives a definite compu-
tational advantage when applying PCA. In the common case where V decom-
poses into a direct sum of regular representations of G, then the ratio α(G)
of the number of flops1 required to do PCA without utilizing the symmetries
of X over the number of flops required when utilizing the symmetry of X is

α(G) =
|G|3∑

ρ dim(ρ)3
,

where the term in the denominator is the sum of cubes of the dimensions of
all irreducible representations of G.

A similar phenomenon occurs when one considers the MDS algorithm (Sec-
tion 7.3.5) in the presence of symmetry. Recall that the input to this algorithm
is a distance matrix D that gives the pairwise distances between each point in
a dataset X. Let m : X×X → R≥0 be the metric which gives D. In [290] it is
shown that when a finite group G acts on X and m is invariant with respect
to the action of G so that for g ∈ G and x, y ∈ X, m(gx, gy) = m(x, y), then
the eigenspaces of the MDS operator are in fact representations of G. Again,
as a consequence of understanding the representation theory of G, we can
automatically make statements about the best way to embed X in Euclidean
space while approximating m by the Euclidean metric.

We end by listing a few basic examples of datasets that naturally have the
action of a group attached.

1A flop, or “floating point operation,” was introduced briefly in Section 3.2.2.4.

Dimensionality Reduction 321

• Generalizing from the example above, there is an action of Cn × Cn
on any set of n × n images. In fact X can be identified with elements
of C[Cn × Cn] in a manner analogous to above. The two-dimensional
Fourier transform is the result of the corresponding decomposition of
C[Cn × Cn] into matrix algebras.

• Let X be an n-question survey where each question requires a binary
answer. The set X is acted on by C2×· · ·×C2 (where there are n terms
in this product corresponding to the n questions). The analogue of the
DFT basis in this case is called the Walsh-Hadamard basis.

• Let X be a set of rankings of n objects, then X may be identified with
elements of the symmetric group Sn.

• It has become increasingly clear that many types of data can be realized
as points on a Grassmann manifold G(k, n) with 0 < k ≤ n. Being a
homogeneous space, there is a natural action of the orthogonal group
O(n) on G(k, n). An example of a type of dataset that can naturally
be interpreted as points on the Grassmannian are illumination spaces.
See [91] for further details, and the next section in this chapter for many
additional applications.

The reader interested in a more in-depth treatment of the applications of
representation theory to dimensionality reduction and data science in general
should consult the foundational work in this area [128]. For a more recent
survey on how representation theory appears in machine learning, see [275].

7.8 Category theory applied to data visualization

UMAP stands for Uniform Manifold Approximation and Projection. In
contrast to other dimension reduction algorithms such as PCA that preserve
the global structure of the dataset, UMAP, along with t-SNE and Laplacian
Eigenmaps, seeks to instead preserve the local geometry of a dataset. The
advantage is that individual structures sitting within the dataset will remain
intact in the projected space. For example, if the dataset contains a set of
points which lie on a topological torus they will remain on a torus when
projected, as in Figure 7.15. In the context of visualization, one may be able
to recognize separate and familiar topological structures within the data. In
the context of classification and preprocessing, each class may live on its own
separate submanifold of the original data space. Hence, we would like to retain
that classification by submanifolds when moving to a lower dimensional space
where further analysis is to be performed.

UMAP is unlike other popular dimension reduction algorithms in that it
will project a dataset so that it is approximately uniformly distributed in

322 Data Science for Mathematicians

FIGURE 7.15: Three-dimensional projection via UMAP of a 2-torus embed-
ded into 100-dimensional space. The torus was generated by first indepen-
dently sampling two angle coordinates uniformly from 0 to 2π, parametrizing
the standard torus in three-space with inner radius r = 3 and outer radius
R = 10, and then applying an orthogonal transformation to isometrically
embed the torus into 100 dimensions.

the embedding space regardless of the distribution of the original data. A
mathematician may be intrigued to discover that such a practical algorithm
is built from abstract category-theoretic foundations. There are several key
components to the UMAP algorithm:

ULA: Uniform local approximations to the global Reimannian distance at each
point.

LFR: Association of a fuzzy simplicial representation to each uniform local
approximation.

GFR: Generation of a global fuzzy representation by taking a fuzzy union over
all local fuzzy representations.

PCE: Projection of the original data to a lower-dimensional space that mini-
mizes the cross-entropy between corresponding fuzzy representations.

ULA: Let X = {x1, . . . , xn} ⊂ Rm be a dataset and assume that X lies on
some embedded submanifold M of Rm, not necessarily distributed uniformly

Dimensionality Reduction 323

with respect to the induced metric. The goal is to put a Riemannian metric
gX (smooth choice of inner product on the tangent spaces) on the manifold
M so that X is uniformly distributed with respect to the geodesic distance
dX . One approximate way to do this is to have it so the unit balls Bi centered
about each xi contain the same number of points of X. UMAP does this by
locally approximating the geodesic distance dX(xi, xj) out of xi via inversely
scaling the Euclidean distance dRm(xi, xj) by the maximum distance σi from
xi to its k nearest neighbors,

dX(xi, xj) ≈
1

σi
dRm(xi, xj).

Therefore a unit ball in M around xi will almost always contain exactly k
points. In order to ensure local connectivity of the embedded manifold we
modify the scaled Euclidean distance by subtracting off the distance, ρi, from
xi to its nearest point in X. At this point we’ve approximated only distances
out of the point xi, so a star of distances where xi is the center of the star. Since
all of X will be covered by these star-like distances, and we plan to assimilate
them into a global construction, we define the distances between the outer
points of each individual star as infinity. The choice of infinity will be justified
later when constructing the global fuzzy representation; essentially an infinite
distance corresponds to a lack of 1-simplex joining the associated points in
the fuzzy representation. We can now give the definitions of extended pseudo-
metrics di on X, which capture the geometry local to each xi. Explicitly, define
the extended pseudo-metric spaces di : X ×X → R≥0 ∪ {∞} as

di(xj , xk) =

{
1
σi

(dRm(xj , xk)− ρi) if j = i or k = i

∞ otherwise.

LFR: Having our different metrics di which capture the geometry near
each point xi, we would like to combine these into a single metric. In general,
there is no natural way to build a metric space from other metric spaces with
the same underlying set. In our case, this is due to incompatibilities between
local representations. For example, in general,

di(xi, xj) 6= dj(xj , xi),

due to the differences in scale for each neighborhood. By associating to each
metric space di the “fuzzy” simplicial set X̃i via the “functor” FinSing, we
can losslessly transfer the metric data to a different category where assimi-
lating all of the local distances becomes a simple operation. Let Fin-sFuzz
denote the category of fuzzy simplicial sets over a finite set and Fin-EPMet
be the category of extended pseudo-metric spaces over a finite set. Then
FinReal is the functor that takes a fuzzy simplicial set to its associated
metric space, and FinSing is the functor that takes a metric space to its
associated fuzzy simplicial set.

Abstractly, a fuzzy simplicial set F is a contravariant functor F : ∆× I →
Set where I is the poset category on the unit interval [0, 1], ∆ is the simplex

324 Data Science for Mathematicians

x0

x1

x2

x3

x4 x5

x6

FIGURE 7.16: An example of a three-dimensional fuzzy simplicial set with
probabilities on the faces represented by various degrees of shading. Here we
omit a simplex if the associated probability is 0.

category, and Set is the category of sets. To each ([n], a) ∈ ∆× I we associate
the set F≥an of n-simplices with membership strength at least a. Practically,
we can think of a fuzzy simplicial set as a simplicial complex where each
simplex in the space has a probability associated to it, as in Figure 7.16.
The actual mathematical theorem given in [339, 439] that makes this lossless
transfer precise is that there are natural bijections between the hom-sets

homFin-EPMet(FinReal(X), Y) ∼= homFin-sFuzz(X,FinSing(Y))

for any X ∈ Fin-sFuzz and Y ∈ Fin-EPMet.
Whereas traditional simplicial complexes tell you about the topology of

a space, the added data of probability extracts the geometric, or distance,
structure of the space. We can construct X̃i := FinSing(Xi) explicitly by first
building an n − 1-dimensional simplex with vertex set X, and a probability
assigned to each face F via the formula

P(F) = min
xi,xj∈F

{
e−di(xi,xj)

}
. (7.12)

Notice that a face must have probability less than or equal to the probabil-
ity of any one of its subfaces. For UMAP this has the implication that each X̃i

is a 1-dimensional simplicial set, or a weighted graph, due to the presence of
infinite distances in (X, di) (e−∞ = 0). Hence, the problem of joining various
metric spaces into a single metric space becomes the problem of combining
the edge probabilities of various weighted graphs.

GFR: Since each weighted graph X̃i has the same vertex set X, we can
take a fuzzy, or probabilistic, union of the weighted graphs X̃i by superim-
posing the X̃i on top of one another and resolving the probabilities on each
edge. Thus we require a function that will combine different probabilities of
the same edge to a single probability. Such a function ξ : [0, 1]× [0, 1]→ [0, 1]
is called a t-conorm. UMAP uses the probabilistic t-conorm

ξ(a, a′) = a+ a′ − a · a′.

Dimensionality Reduction 325

The fuzzy representation of X will then be the weighted graph X̃ :=
⋃ξ
i X̃i.

Since each edge [xi, xj] will have only two probabilities associated to it, namely
e−di(xi,xj) and e−dj(xj ,xi), we can compute the above union with simple matrix
operations. If we let P denote the matrix with weights pij := e−di(xi,xj), then

X̃ will be the weighted graph with vertex setX and weighted adjacency matrix
given by

X̄ = P + PT − P ◦ PT

where P ◦PT denotes the Hadamard (point-wise) product of P with its trans-
pose PT . Notice that X̃ will represent a metric space (X, dX) where X appears
to be approximately uniformly distributed. Essentially UMAP averages each
uniform local representation to obtain an approximately uniform global rep-
resentation.

PCE: Pick an embedding dimension d. Let F : X → Rd be any mapping
with yi := F (xi) and Y := Im(F). We can view Y as a metric space with the
induced Euclidean metric. Again, to ensure local connectedness of our embed-
ded space, we adjust the Euclidean distance by subtracting off the expected
minimum distance σ between points. The parameter σ chosen is problem-
dependent and can have a significant effect on the embedding; see [339]. Let
Ỹ := FinSing(Y) be the fuzzy representation of Y . Note that since Y has
finite distances defined between every pair of points, Ỹ will be a (n − 1)-
dimensional fuzzy simplicial set. To compare the two fuzzy representations, we
approximate Ỹ with its 1-skeleton to obtain another weighted graph. UMAP
seeks an optimal projection F∗ in the sense that F∗ minimizes the cross-
entropy between the weighted graphs X̃ and Ỹ ,

F∗ = arg min
F

∑

xi 6=xj

(
X̃ij log

(
X̃ij

Ỹij

)
+ (1− X̃ij)log

(
1− X̃ij

1− Ỹij

))
 .

Note: Ỹ depends on the embedding F .
UMAP initializes the embedding F with Laplacian eigenmaps and then

uses stochastic gradient descent (SGD, covered in Chapters 8 and 9) along
with negative sampling in order to minimize the cross-entropy. Like UMAP,
Laplacian eigenmaps also approximately preserve the local geometry so they
serve as a good initial configuration for the descent. SGD amounts to sampling
edges [xi, xj] at random and then moving the pair of points (yi, yj) in the
direction of the gradient of the associated summand in the cross-entropy. In
order to calculate the gradient of any summand we need to approximate the
weight function Φ : Rd × Rd → [0, 1] on the edges of Ỹ given by

Φ(x, y) =

{
e‖x−y‖2−σ if ‖x− y‖2 ≥ σ
1 if ‖x− y‖2 < σ

326 Data Science for Mathematicians

with a differentiable function Ψ : Rd ×Rd → [0, 1]. UMAP smoothly approxi-
mates Φ with the function

Ψ(x, y) =

(
1 + a

(
‖x− y‖22

)b)−1

,

where the hyperparameters a and b are chosen by nonlinear least squares
fitting. This completes the algorithm.

Notice that in the UMAP algorithm all the work of minimization happens
in the category of Fin-sFuzz, and not in Fin-EPMet. Actually calculat-
ing the metric space (X, dX) is not required to produce a lower dimensional
embedding of it. This is the power of categories; the ability to transfer a prob-
lem from one mathematical framework to another, using tools more natural
for solving the problem. See Figures 7.15 and 7.17 for some examples of UMAP
embeddings.

UMAP can be implemented via the Python package umap-learn. Figure
7.18 shows the code to generate a dataset on a torus embedded in R100. Then
Figure 7.19 shows the code that applies the UMAP algorithm to reduce to R3,
recovering the torus shape from the data, resulting in Figure 7.15. In Figure
7.19, n_neighbors denotes the k in k-nearest neighbors, min_dist denotes
the expected minimum distance σ, n_components denotes the dimension d of
the projected space, and metric denotes the metric for measuring distances
in the original space.

7.9 Other methods

In this section we briefly survey some additional methods of interest. They
can be read in any order, or returned to after perusing Section 7.10.

7.9.1 Nonlinear Principal Component Analysis

An auto-encoder feed-forward neural network is a mapping that has been
optimized to approximate the identity on a set of training data [277,278,368].
The mapping is comprised of a dimension-reducing mapping G followed by a
dimension-increasing reconstruction mapping H, i.e.,

F (x) = (H ◦G)(x).

We call G : U ⊂ Rn → V ⊂ Rm the encoder and H : V ⊂ Rm → U ⊂ Rn
the decoder. The network learns the functions G and H to minimize the loss
function ∑

i

‖x(i) − F (x(i))‖22 (7.13)

Dimensionality Reduction 327

FIGURE 7.17: Two-dimensional UMAP of the NIST digits dataset provided
by Python module scikit-learn. The compressed 8 × 8 gray scale images of
handwritten digits came from a total of 43 people. The images are then flat-
tened and represented as vectors in 64-dimensional space where distances are
measured by the Euclidean distance metric.

328 Data Science for Mathematicians

Import libraries

import numpy as np

from scipy.stats import ortho_group

import matplotlib.pyplot as plt

import matplotlib

from mpl_toolkits.mplot3d import axes3d

import umap

Initial parameters

r = 3 # Inner radius

R = 10 # Outer radius

xyz = np.array([]) # Initialize (x,y,z) coordinates of torus

N = 1000 # Number of points

Random orthonormal frame in 100-dimensional space:

orth = ortho_group.rvs(100)

orth3 = orth[0:3, :] # 3-dimensional subframe

for i in range(N):

Generate random angles for parameterization

theta = 2*np.pi*np.random.rand()

tau = 2*np.pi*np.random.rand()

Calculate position vector for center ring

xy = np.array([R*np.cos(theta), R*np.sin(theta)])

Calculate (x,y,z) coordinate for parameterization

z = r*np.sin(tau)

w = r*np.cos(tau)

xy = xy + (w/R)*xy

Append point to array of points

if xyz.shape[0] == 0: # If array is empty

xyz = np.array([xy[0], xy[1], z])

else: # If array is non-empty

xyz = np.vstack((xyz, np.array([xy[0], xy[1], z])))

Rotate into 100-dimensional space

(recall, orth3 is some orthogonal transformation)

X = np.matmul(xyz, orth3)

FIGURE 7.18: Python code to sample data from a torus and embed it ran-
domly in R100, so that we might attempt to recover the structure with the
UMAP algorithm, as in Figures 7.19 and 7.15.

Dimensionality Reduction 329

UMAP algorithm

model = umap.UMAP(

n_neighbors=50,

min_dist=0.1,

n_components=3,

metric=’euclidean’,

)

u = model.fit_transform(X)

Initialize plot

fig_umap = plt.figure()

ax_umap = fig_umap.add_subplot(111, projection=’3d’)

Color by scaling (x,y,z) coordinates to RGB values

c = np.zeros_like(xyz)

c[:,0] = ((xyz[:,0]+r+R)/(2*(r+R)))

c[:,1] = ((xyz[:,1]+r+R)/(2*(r+R)))

c[:,2] = ((xyz[:,2]+r)/(2*r))

Plot

for i in range(N):

color = matplotlib.colors.to_hex(c[i,:])

ax_umap.scatter3D(u[i, 0], u[i, 1], u[i,2],c=color)

plt.show()

FIGURE 7.19: Python code to apply the UMAP algorithm to the data gen-
erated by the code shown in Figure 7.18. This code assumes that the code in
that figure has been run. The resulting image appears in Figure 7.15.

330 Data Science for Mathematicians

for a given set of data points in the ambient space {x(1), x(2), . . . , x(P)}. Hence,
the autoencoder learns a function F = H ◦ G such that F (x(i)) ≈ x(i). The
reduction mapping G transforms the point x(i) to a latent representation
y(i) = G(x(i)) ∈ V ⊂ Rm.

If we are interested in visualization, then we take m = 2 or m = 3. The
decoder ensures that the encoder is faithful to the data point, i.e., it serves
to reconstruct the reduced point to its original state x(i) ≈ H(y(i)). If the
mappings H and G were restricted to be linear, then this approach discov-
ers the same subspaces as PCA, hence the term “nonlinear PCA.” For more
information on how neural network functions are nonlinear, see Chapter 9.

7.9.2 Whitney’s reduction network

From a mathematician’s perspective, Hassler Whitney might arguably be
viewed as the world’s first dimension reducer. His theoretical work provides
insight into the mechanisms of dimension reducing mappings such as the auto-
encoder described in the previous section. For reasons we shall see, Whitney
restricts the mapping G above to be linear. Whitney’s data was a manifold
and his famous easy embedding theorem (which we review in Section 7.10.1
for interested readers) identifies the conditions required to realize a copy of
a manifold in Euclidean space. It is also the blueprint for a data reduction
algorithm that bears some resemblance to the autoencoder neural network
described in Section 7.8. To a data scientist, Whitney’s formulation can be
interpreted as representing a dataset as the graph of a function [68,69].

Loosely speaking, a manifold of dimension m can be projected into a
Euclidean space of dimension 2m + 1 such that the image of the projection
can be reconstructed in the ambient space without loss; for details see [222]. If
G is linear and H is nonlinear in the autoencoder neural network, then we are
matching Whitney’s blueprint for data reduction [68, 69]. The secant meth-
ods described above for estimating the embedding dimension are then very
effective for finding good projections. Now we assume that P = UUT is a pro-
jection found using secant a method. Then a data point can be decomposed
as

x = Px+ (I − P)x.

We are interested in the dimension-reduced representation p̂ = UTx. The
residual of this projection, i.e., the part of x not captured in the linear space
spanned by the columns of U is q̂ = UT⊥x where U⊥ is a mapping to the null
space of P . In this setting we use a neural network to encode the mapping
q̂ = f(p̂). In other words, we have the reconstruction

x ≈ Up̂+ U⊥f(p̂).

This can be thought of as parameterizing the data in terms of a linear operator
L and nonlinear operator N as

x ≈ L(p̂) +N(p̂).

Dimensionality Reduction 331

Or, again, in terms of a graph (p̂, f(p̂)) in the reduced coordinate system.
The conditions under which the mapping p̂ = f(q̂) exists are governed by
Whitney’s theorem. For additional details see [68,69].

7.9.3 The generalized singular value decomposition

The generalized singular value decomposition is an important but less
widely used technique for signal processing [192].

Theorem 1 GSVD [484]. Let A ∈ Rna×p and B ∈ Rnb×p. Then there
exist U ∈ Rna×na , V ∈ Rnb×nb , X ∈ Rp×p, as well as diagonal matrices
C ∈ Rna×p, and S ∈ Rnb×p such that

A = UCXT (7.14)

and
B = V SXT (7.15)

with
UTU,= I, V TV = I, and S2 + C2 = I.

Here the diagonal matrices consist of non-negative entries C = diag(c1, . . . , cp)
and S = diag(s1, . . . , sp).

In what follows we will make some restrictive assumptions that will sim-
plify our presentation. First, we assume that p ≤ na +nb so that X is square.
Further we assume X is invertible and define Z = (XT)−1 and we write the
ith column of Z as zi. Also, we will assume that A and B have the same
number of rows, so n = na = nb.

The GSVD equations can be merged into the statement

s2
iA

TAzi = c2iB
TBzi.

We can now simultaneously estimate dimension in the row spaces of A and
B using the properties zTi A

TAzi = c2i and zTi B
TBzi = s2

i . Since c2i + s2
i = 1

we see that each zi contains parts of the rows of A and B as measured by
ci and si. A mathematical overview of the GSVD is available in [142]. The
GSVD also provides an elegant solution to signal separation. In this setting
we assume that there is an observed matrix X that is the result of linearly
mixing a signal matrix of interest S, i.e.,

X = SA

The GSVD method allows you to recover S from X under certain assumptions;
see [239] for details.

332 Data Science for Mathematicians

7.9.4 False nearest neighbors

A point in the delay embedding of the time series x(t) into dimension M
is given by

z(t) = (x(t), x(t− T), . . . , x(t− (M − 1)T) ∈ RM .

If the embedding dimension M is too small, then it is possible that moving to
dimension M + 1 may lead to nearest neighboring points blowing apart from
each other, indicating that they were false nearest neighbors [265]. Define the
distance between a point z ∈ RM and its nearest neighbor z̃ ∈ RM to be

d2
M (t) =

M−1∑

k=0

(z(t− kT)− z̃(t− kT))2.

A measure of the distance correction δc that results from adding the M + 1st

dimension is then

δc =
|x(t− TM)− x̃(t− TM)|

dM (t)
,

where z̃ is the delay embedding of x̃. Following [265], if this measure is greater
than a critical threshold δc > τ one may conclude that dimension M is too
small for a faithful embedding of the data. One also has to account for isolated
points that do not have close nearest neighbors, as well as the presence of noise.
Additional implementation details can be found in [216], and more on delay
embeddings of time series is reviewed in Section 7.10.2 for interested readers.

7.9.5 Additional methods

In closing, we point the reader to useful surveys and additional algorithms
on dimension estimation and reduction that reflect different perspectives from
the one followed here. An overview of several basic methods for dimension
reduction is given in [82] and [74]. A survey of intrinsic dimensionality, topo-
logical dimension, Fukunaga-Olsen’s algorithm, fractal dimension, and MDS
is provided in [78]. More recent review of the state-of-the-art methods of
intrinsic dimension estimation, underlining recent advances and open prob-
lems, is given in [79]. An algorithm to estimate the intrinsic dimension of
datasets based on packing dimension of the data that requires neither para-
metric assumptions on the data generating model nor input parameters to
set is presented in [264]. Many novel applications for local intrinsic dimension
estimation have been explored; see, e.g., [83]. An alternative to the UMAP
algorithm for data visualization is given by centroid-encoders, a data-labeled
version of autoencoders [184].

Dimensionality Reduction 333

7.10 Interesting theorems on dimension

Mathematicians have already proven a lot of fundamental things about
dimension. Developing algorithms from these is an active area of research.
This section briefly states several interesting theorems related to dimension
estimation and data reduction with the hope that the reader is induced into
pursuing these ideas further in the literature.

7.10.1 Whitney’s theorem

The statement of the theorem presented below follows [222]. Recall that
a C1 map is called an immersion if for every point x ∈ M we have that the
derivative map Tf :Mx → Nf(x) is one-to-one.2

Definition 7.10 (Embedding [222]) A map f :M→ N is an embedding
if f is an immersion which maps M homeomorphically onto its image.

The following theorem can be interpreted as being about data reduction on
sampled manifolds.

Theorem 2 (Whitney’s Easy Embedding Theorem [499]) Let M be a
compact Hausdorff Cr n-dimensional manifold, 2 ≤ r ≤ ∞. Then there is a
Cr embedding of M in R2n+1.

The proof of Whitney’s theorem introduces the unit secant set. Projections
away from these secants allow the realization of a diffeomorphic copy of the
manifold. So, ignoring noise, any n-dimensional manifold can be realized in
a Euclidean space of dimension 2n + 1 via a linear map. The reconstruction
mapping is a nonlinear inverse of the projection.

7.10.2 Takens’ theorem

Often data is observed as a sequence of points in time. Consider, for exam-
ple, the value of the temperature outside, the velocity of a stream, or the
voltage fluctuations at a point on the human scalp. These data streams can
be represented as the sequence (x(t1), x(t2), . . . , x(tn)). This scalar sequence
may be viewed as a projection of a higher-dimensional object with a distinct
geometric structure. Imagine a point traveling along the unit circle but all
you get to observe is the x-coordinate of the point. One can reassemble this
scalar information using a device known as a time-delayed embedding that was
proposed as a means to recover geometry from a time series [378]. So, the time
series data is used to build delay vectors

z(t) = (x(t), x(t− T), . . . , x(t− (M − 1)T)) ∈ RM ,

2A map is said to be Cr if the first r derivatives exist and are continuous.

334 Data Science for Mathematicians

where T is the delay time and M is the embedding dimension. One can verify
that a good choice of T and M = 2 make it possible to recover a topological
circle from the above projection using this trick. In general, the delay T can be
found from the data by looking at the first zero crossing of the autocorrelation
function. The embedding dimension M can be estimated in a variety of ways,
including the false-nearest-neighbor algorithm we covered in Section 7.9.4.
The major theoretical underpinning of the property that delay embeddings
can be used to reconstruct geometry was proved by Takens [455].

Theorem 3 (Takens [455]) Let M be a compact manifold of dimension m.
For pairs (ϕ, y), ϕ : M → M a smooth diffeomorphism and y : M → R a
smooth function, it is a generic3 property that the map Φ(ϕ,y) :M→ R2m+1,
defined by

Φ(ϕ,y)(x) = (y(x), y(ϕ(x)), . . . , y(ϕ2m(x)))

is an embedding. By smooth we mean at least C2.

A very readable proof of this theorem may be found in [237]. This work set
off a stream of papers and launched the field in dynamical systems referred to
as embedology [421]. In the context of applications to real data, this modeling
approach has at its core a dimension estimation problem.

7.10.3 Nash embedding theorems

There are differing philosophies about which aspects of geometry one
should preserve when embedding datasets in lower dimensional spaces. As
above with Whitney’s theorem, it is appealing to seek answers in mathemat-
ical theory. The hope is that there may be the ingredients of a potentially
useful algorithm.

Nash solved the open problem related to the general conditions under
which a Riemannian manifold can be isometrically embedded into Euclidean
space.

Theorem 4 (Nash [357]) Any closed Riemannian n-manifold has a C1 iso-
metric embedding in R2n.

Theorem 5 (Nash [358]) Every Riemannian n-manifold is realizable as a
sub-manifold of Euclidean space.

If the manifold is compact Nash provides an embedding dimension of
n(3n + 11)/2 while if it is noncompact his estimate is n(n + 1)(3n + 11)/2.
These estimates were further improved in [203].

Direct numerical implementation of Nash’s C1 embedding algorithm is
feasible, but it is not well behaved numerically. Another interesting direction

3The term “generic” restricts the theorem to a certain sane set of measurement functions;
the reader should refer to [455] for details.

Dimensionality Reduction 335

is to learn the geometry in the data by computing an appropriate Riemannian
metric, a technique referred to as metric learning on manifolds [387].

There is a considerable literature on isometric embeddings that is not for
the faint of heart [200]. However, it is possible that there exists current theory
that could be converted into new embedding algorithms.

7.10.4 Johnson-Lindenstrauss lemma

If one would like to map a high-dimensional dataset into a lower dimen-
sional Euclidean space while approximately preserving the relative distances
between any two of the data points, the existence of such a mapping is asserted
by a fundamental result named after William Johnson and Joram Linden-
strauss:

Theorem 6 (Johnson-Lindenstrauss Lemma [253]) Let 0 < ε < 1, X be

a set of m points in Rn, and k be a positive integer such that k ≥ O
(

ln(m)

ε2

)
.

Then there is a Lipschitz mapping f : Rn → Rk such that for all xi, xj ∈ X,

(1− ε)||xi − xj ||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε)||xi − xj ||2.

In other words, the lemma says that that any dataset of m points in Rn can
be embedded in k � n dimensions without distorting the distances between
any pair of the data points by more than a factor of 1 ± ε. Note that k is
independent of n and logarithmic in m, but naturally increases as ε decreases.
There are versions of the lemma with improved bounds for k; see, for instance,
the discussion in [118], which also contains a readable proof of the statement.

In practice, to construct such an embedding, most existing methods project
the input points onto a spherically random hyperplane through the origin;
consider, e.g., a technique known as random projections [51]. In this method,
the original n-dimensional data is projected to a k-dimensional (k � n) space
through the origin, using a random k × n matrix P whose columns are unit
vectors. In matrix notation, if Xn×m is a data matrix of m n-dimensional
points, then the projection of Xn×m onto a lower k-dimensional space is given
by the k×m matrix Pk×nXn×m. Note that in practice the random matrix P
does not have to be orthogonal, since that may be computationally expensive,
and hence, strictly speaking, Pk×nXn×m is not a projection if this is the case.
The choice of matrix P is an important part of the method, and, typically,
the entries of P are chosen to be Gaussian distributed. While this approach is
conceptually simple, in practice, multiplying the input matrix with the matrix
P with particular properties can be computationally challenging; see further
discussions in [3, 51,118].

The applications implied by the lemma include, for example, the above-
mentioned random projections method and its faster version called the fast
Johnson-Lindenstrauss transform (FJLT) [10], learning mixtures of Gaussians
[117], and approximate nearest-neighbor search [287].

336 Data Science for Mathematicians

7.11 Conclusions

7.11.1 Summary and method of application

In this chapter we have presented a range of theory and algorithms that
relate to the problem of dimension estimation and reduction. Our perspective
has its origins in mathematical theory. It concerns primarily how mathemat-
ical definitions and concepts can be exploited by data scientists to explore
the geometry and topology of a dataset. Algorithm development for under-
standing data is now well evolved and the resulting toolset is quite powerful.
It is our thinking that clues for further development of these algorithms and
additional inspiration for new algorithms can be found in the depths of math-
ematical theory. Hopefully this article will encourage mathematicians, from
across the spectrum of applied to pure, to explore mathematics for the pur-
poses of knowledge discovery in data.

Given all the techniques of this chapter, how does a data scientist know
what to use to make sense of dimension estimation and data reduction? Given
the diversity of applications a precise flowchart is unrealistic, however, it is
possible to provide some general guidelines. The first thing to try is almost
always Principal Component Analysis. This linear method provides both an
estimate of dimension and a basis for the associated reduced subspace. While
PCA captures maximum variance of the dataset, one may opt for secant pro-
jection methods to preserve more geometric structure. Secant-based methods
prevent the collapsing of distinct points, which may be more attractive for
some applications. Nonlinear methods for reducing the dimension of data are
potentially of interest if the eigenvalue distribution of PCA suggests that a lin-
ear mapping to a low-dimensional space is not possible. This can happen, for
example, if a topological circle explores all dimensions in the ambient space.
A nonlinear reduction technique might be used to reduce such a dataset to
three dimensions with the Whitney Reduction Network. Other methods pro-
vide a dimension estimate without an actual data reduction mapping. These
include correlation dimension, fractal dimension and false nearest neighbors.
Lastly, if similarities or differences are available rather than actual data points,
methods such as MDS still apply. Other manifold learning techniques such as
Laplacian eigenmaps are also potentially useful; see [305] for a unifying view
of these methods.

7.11.2 Suggested exercises

In the spirit of the above blueprint for dimension estimation and data
reduction, we encourage the reader to explore these methods further by apply-
ing them to real data. A variety of interesting datasets are hosted at the UCI
Machine Learning Dataset Repository [136]. Download one of these datasets

Dimensionality Reduction 337

and estimate its dimension by applying one or more of the data reduction algo-
rithms detailed in this chapter, using Python or MATLAB code as shown in
the chapter’s figures, or by looking up appropriate packages in your language
of choice. Consider attacking these particular challenges:

1. How many dimensions does it require to retain 95% of the variance in
your data using PCA?

2. Plot the length of the minimum projected secant as a function of dimen-
sion using the PCA basis.

3. How does this graph corroborate your PCA estimate?

4. Would the particular dataset you chose be better served by the proper-
ties of one of the other methods introduced in the chapter?

Or if you prefer a less data-driven exercise, try replicating the experiment
shown in the Python code in Figures 7.19 and 7.18, but for a shape other than
the torus.

Have fun!

http://taylorandfrancis.com

Chapter 8

Machine Learning

Mahesh Agarwal

University of Michigan-Dearborn

Nathan Carter

Bentley University

David Oury

True Bearing Insights

8.1 Introduction . 340
8.1.1 Core concepts of supervised learning . 341
8.1.2 Types of supervised learning . 342

8.2 Training dataset and test dataset . 342
8.2.1 Constraints . 342
8.2.2 Methods for data separation . 344

8.3 Machine learning workflow . 346
8.3.1 Step 1: obtaining the initial dataset . 348
8.3.2 Step 2: preprocessing . 350

8.3.2.1 Missing values and outliers 351
8.3.2.2 Feature engineering . 352

8.3.3 Step 3: creating training and test datasets 353
8.3.4 Step 4: model creation . 354

8.3.4.1 Scaling and normalization 354
8.3.4.2 Feature selection . 355

8.3.5 Step 5: prediction and evaluation . 357
8.3.6 Iterative model building . 358

8.4 Implementing the ML workflow . 360
8.4.1 Using scikit-learn . 360
8.4.2 Transformer objects . 363

8.5 Gradient descent . 364
8.5.1 Loss functions . 364
8.5.2 A powerful optimization tool . 365
8.5.3 Application to regression . 366
8.5.4 Support for regularization . 367

8.6 Logistic regression . 370
8.6.1 Logistic regression framework . 371
8.6.2 Parameter estimation for logistic regression 371

339

340 Data Science for Mathematicians

8.6.3 Evaluating the performance of a classifier 373
8.7 Näıve Bayes classifier . 377

8.7.1 Using Bayes’ rule . 377
8.7.1.1 Estimating the probabilities 379
8.7.1.2 Laplace smoothing . 379

8.7.2 Health care example . 380
8.8 Support vector machines . 382

8.8.1 Linear SVMs in the case of linear separability 383
8.8.2 Linear SVMs without linear separability 386
8.8.3 Nonlinear SVMs . 389

8.9 Decision trees . 392
8.9.1 Classification trees . 395
8.9.2 Regression decision trees . 398
8.9.3 Pruning . 399

8.10 Ensemble methods . 402
8.10.1 Bagging . 403
8.10.2 Random forests . 403
8.10.3 Boosting . 404

8.11 Next steps . 406

8.1 Introduction

Machine learning is the discipline of programming computers to learn from
experience (known data) in order to make predictions and find insights on new
data. Applications of machine learning are distributed across several fields
such as marketing, sales, healthcare, security, banking, retail, and dozens more.
While there are also dozens of specific applications within those fields, a few
examples include spam detection, product recommendation, fraud detection,
image recognition, and text classification.

These two goals—predictions and insights—and the machine learning
problems they solve can be broadly categorized into two classes, unsuper-
vised learning and supervised learning. Chapter 5 gave detailed coverage
of the most common type of unsupervised learning, clustering, so this chapter
focuses on supervised learning. In order to introduce the elements of a com-
mon machine learning workflow, we start by reviewing a familiar example of
supervised learning, linear regression. We then consider more advanced meth-
ods such as logistic regression, Bayesian classifiers, decision trees, and support
vector machines, giving you several powerful new tools in your data science
toolbelt.

Machine Learning 341

8.1.1 Core concepts of supervised learning

In supervised machine learning, data takes the form of datasets in which
one column is called the “target,” “response,” or “dependent” variable (and
is referred to as y) and the remaining columns are called “feature,” “pre-
dictor,” or “independent” variables (and are referred to as x). The target
column contains the values to predict and the feature columns contain those
values used as input to make these predictions. Below, the term “feature-
target dataset” refers to datasets with an identified target column. The goal
of supervised learning can be summarized as finding, from a feature-target
dataset, an underlying function f such that f(x) ≈ y. This typically happens
without using knowledge of the full dataset, which we’ll explain further in
Section 8.2.

In machine learning, instead of explicitly programming rules for prediction,
the approach is to use data to train a model to discover a pattern in the
data. Consequently, a single observation from our dataset, which we denote
with (x(i), y(i)) for row i, is called a training example. A collection of such
examples, {(x(i), y(i)) | i = 1, . . . , n} is a training set, and is used to learn
the “best” function f such that

f(xnew) ≈ ynew,

when we encounter a previously unseen data point (xnew, ynew), i.e., it is not
among the (x(i), y(i)).

We will distinguish carefully between the terms “model” and “fit model.”
When we say model, we are referring to a function that takes a feature-target
dataset as input and produces a fit model as output, typically by seeking
optimal values of the model parameters. This mapping (from dataset to fit
model) is known as “training.” A fit model is a function that takes as input a
set of features and predicts the corresponding target value. Equivalently, we
can see the fit model as taking an entire dataset with feature columns as input
and adding to that dataset a full column of target values, by performing its
prediction operation on each row.

Let’s clarify the distinction between a model and a fit model with an
example. Assume we have a dataset of house characteristics and the sale prices
of those houses, and the sale price is the target. If we were to apply linear
regression (as introduced in Section 4.3.1), then the model would be just
that—linear regression. Linear regression is a technique that takes as input the
known dataset of sale price and house characteristics and produce a fit model,
which in the case of linear regression is a collection of coefficients (one for
each feature column) and an intercept. In other words, before the coefficients
are determined, we just have the general model of linear regression, but once
they are determined, we have a fit model that has been trained on our data,
and is a specific linear equation. The estimated sales prices (target) can be
calculated by the fit model (one target value for each row) in the usual way,
the intercept plus the product of each characteristic with its corresponding
coefficient.

342 Data Science for Mathematicians

Typically, these estimates (and so the fit model that created them) are
then scored to evaluate the fit model’s quality. In the case of linear regression,
its estimates are often scored using the root mean-squared error (RMSE). This
process of creating the model, predicting with the model, and evaluating the
model by scoring these predictions are essential components of the machine
learning workflow we introduce in Section 8.3.

8.1.2 Types of supervised learning

Supervised learning models can be divided into two classes: those that pro-
duce fit models that make predictions for continuous numeric target variables,
which is called regression, and those that produce fit models that make pre-
dictions for categorical target variables, which is called classification. The
prediction of housing prices is an example of regression, because sales prices
(the target) are numeric.

Determining whether emails are spam (or not spam) is an example of
classification. In the context of classification problems, a dataset {(x, y)} is
called labeled if every x is accompanied by a tag y which represents the group
or class to which x belongs. Binary classification models are written to predict
values of 0 or 1 (or, equivalently, 1 or −1). There are standard techniques that
translate categorical variables into one or more binary numeric variables, as
covered in Section 4.6.5.

Arguably two of the most basic requirements of machine learning for most
models are that the target and feature columns are numeric and that these
columns have no missing values. If values are missing from the original dataset,
they need to be imputed before fitting most machine learning models; Sections
2.4.3.1 and 8.3.2.1 discuss the handling of missing values.

8.2 Training dataset and test dataset

The goal of supervised machine learning is to make accurate predictions on
future (unseen) data. To do so, we create a model using known data and score
this model using known data, with the intent that this score (on known data)
is a good estimate of the score of predictions on unseen data. This section
introduces two constraints inherent in the above stated goal and describes
how they determine a machine learning workflow.

8.2.1 Constraints

In order that a model’s score on known data is a good estimate of its score
on unknown data, the data on which the model is scored should be unknown to
the process that creates the model. This leads to the following two constraints.

Machine Learning 343

1. A model should be applied to a training dataset, and the resulting
fit model should be scored by its predictions on a test dataset that is
separate from the training dataset.1

2. No information from the test dataset should be used to modify the
training dataset, nor to modify any aspect of the model fitting process.

Failing to satisfy the second constraint is often referred to as data leak-
age [427]. Information from the test dataset includes summaries of columns
(variables) from the test dataset, predictions made on the test dataset, scores
of such predictions, and literally any other data computed based on the test
dataset.

These constraints are used to preserve the use of the test dataset as a valid
and believable proxy for unseen data and they determine the components of
the machine learning workflow described below. It is a common error to use
the training dataset (and the predictions made on it) as a proxy for unseen
data, but the training dataset is “known” to the model, because the model
was created from it. This is intimately related to the concept of overfitting a
model, introduced in Chapter 4 and revisited in several other chapters of this
text. If the data scientist trains the data too specifically to the quirks of the
training set, that fit model is said to be “overfit” to the training data, and
thus is likely to produce poor predictions on test (or other unseen) data.

The use of training and test datasets is standard practice. Many machine
learning software packages have a facility to create training and test dataset
pairs.

Even so, in practice, these constraints are sometimes disregarded, but
doing so diminishes the expectation that model performance on the test
dataset is an accurate estimate of model performance on unseen data. In
sensitive domains (e.g., health care), reporting to others a model’s score on
a test dataset, without mentioning data leakage that has occurred, can be
unethical, because it misrepresents the capabilities of the model.

In particular, note the temptation to iteratively modify a model based
on its performance on the test set, until it performs well on future runs on
that test set. This is a type of data leakage in which the data scientist’s
own activity is the medium through which the leakage occurs. This is likely
to produce results whose accuracy is not representative of model accuracy
on (actually) unseen data. Marco Lopez de Prado analyzed this process in
financial machine learning in [121].

At face value, the data leakage constraint implies that the test dataset
should be used only once to create and score predictions. The cross-validation
technique mentioned in earlier chapters and described further in Section 8.2.2
allows the training dataset to be used to iteratively improve a model, by creat-
ing multiple “train-validate” dataset pairs to evaluate multiple models without

1And when we introduce validation datasets in Section 8.2.2, this constraint applies there
as well. Models should be trained on the training data and evaluated on the validation data.

344 Data Science for Mathematicians

ever looking at the test data. Thus the test dataset is not used until the best
model has been chosen after iterating over the train-validation dataset pairs.
See Section 8.3.6 for details on integrating cross-validation into a machine
learning workflow.

8.2.2 Methods for data separation

The previous section emphasized the importance of having separate train-
ing and test datasets, as well as the importance of using the test set only once,
to evaluate the final model. This leaves us with the question of how to itera-
tively improve a model using only the training data. This section introduces
two answers to this question.

Before we do so, note that the method we’ve described so far for training-
test separation is called holdout. In holdout, the original labeled data is
divided into two disjoint sets, typically about 70% in the training set and
the other 30% in the test set. The model is trained on the training set and
evaluated on the test set.

The limitation mentioned above is not the only concern with holdout.
Because any data withheld for testing is not available for training, a model
trained on only a part of the data is unlikely to be as good as a model trained
on the full dataset. A model trained using the holdout method is highly depen-
dent on the composition of the training set. This problem can be aggravated
if the original dataset was small to begin with, or if the classes in the dataset
are imbalanced. To see the impact of imbalanced data, consider a case such
as fraud detection or rare disease discovery; imagine 10 cases of fraud out of
10,000 credit card transactions. It is possible that a test set with 3000 cases
contains no fraudulent transactions, thus leading to a poor model with poor
estimated performance. This issue can be partially addressed by ensuring that
the training and test sets have the same distribution of response classes. For
example, if analyzing survival in the Titanic dataset (Section 8.6), it is advis-
able to split the set so that the proportion of survivors is the same in both
the training and test sets.

If using the holdout method, one way to get a better estimate of the gen-
eralization error, which is the expected error on previously unseen data, is
to repeat the holdout method with different choices of training sets. Then the
mean and variance of the errors across these repetitions can be computed and
used to compute confidence intervals on the model’s final score. This process
of repeating the holdout approach multiple times is also called random sub-
sampling. While this method does improve the performance estimate, it is
still possible for some records to be used more often in training than others.
And it doesn’t address the original concern we raised in the previous section,
of how to iteratively improve a model without ever looking at the test data.

To address that concern, we introduce cross-validation. In this very com-
mon approach, the labeled dataset of size n is divided into k (usually k = 5 or
10) disjoint subsets of approximately equal size S1, . . . , Sk, as in Figure 8.1.

Machine Learning 345

S1

S1

S1

S1

S1

Run 1: S2

S2

S2

S2

S2

Run 2:

S3

S3

S3

S3

S3

Run 3:

S4

S4

S4

S4

S4

Run 4:

S5

S5

S5

S5

S5Run 5:

FIGURE 8.1: k-fold validation for k = 5. Each row represents one run of
training and testing, with the shaded set Si in that row set aside for testing
and the remaining subsets united to form the training set.

The model is then fit to data k different times. During each run, one of these
k subsets is used as a test set and the remaining k − 1 are used as a training
set. This way, each record is used the same number of times for training and
exactly once for testing.

If k is large, the training set is almost as large as the full labeled dataset,
hence the error estimates are similar to those obtained when the full dataset
is used for training. Error estimates from the k runs are averaged out to get
an estimate of the generalized error. In the special case k = n, this method
is called the leave-one-out approach. Cross-validation has the disadvantage
of being computationally expensive, since the process has to be repeated k
times.

Another common approach is bootstrap, in which a training dataset of
the same size as the full labeled dataset is created, but by sampling with
replacement from the full labeled dataset, as in the example in Figure 8.2.
Hence a labeled record can appear more than once in the training set. If the
labeled dataset is large, then an observation has about a 63% chance of being
in the training set.2 The records that are not included in the training set
become a part of the test set. The model is trained on the training set and the
performance is recorded on the test set. This sampling process can be repeated
multiple times to generate multiple bootstraps. The accuracies from each of
the resulting test sets can be averaged to get an estimate of the generalized
error.

2Each of the n records has probability 1− (1− 1
n

)n of getting selected; as n→∞, this

becomes 1− 1
e
≈ 0.63.

346 Data Science for Mathematicians

Observation Outlook Temperature Tennis

1 sunny hot no
2 rainy mild yes
3 sunny mild yes

Observation Outlook Temperature Tennis

1 sunny hot no
2 rainy mild yes
2 rainy mild yes

Observation Outlook Temperature Tennis

1 sunny hot no
1 sunny hot no
3 sunny mild yes

Observation Outlook Temperature Tennis

1 sunny hot no
2 rainy mild yes
3 sunny mild yes

Observation Outlook Temperature Tennis

3 sunny mild yes
3 sunny mild yes
3 sunny mild yes

...

FIGURE 8.2: Four different bootstrap samples from the dataset on the left.

8.3 Machine learning workflow

This section introduces a machine learning workflow, which details the
basic steps in a machine learning project. As Chapter 1 stated, there are
many ways to describe the organization of a data science project, but the
chronological workflow we suggest here pays particular attention to the con-
straints in Section 8.2.1. We describe the steps of the workflow first in general
terms and then, in separate sections, dive into each step and connect it to a
running example, using a dataset from the Boston housing market and linear
regression as the model.

The “machine learning workflow” takes a raw dataset as input and pro-
duces a fit model as output optimized to produce good predictions on future
unseen data. We list the steps here and illustrate them in Figure 8.3. As you
read the steps below, feel free to compare them to the figure.

1. Obtain the initial raw dataset, which may come from multiple sources
and take some wrangling to form into a single table.

2. Preprocessing: Create a feature-target dataset from the initial dataset,
which entails data cleaning, handling missing values, feature engineering,
and selecting a target.

3. Split the feature-target dataset into a training set and a test set.

To keep our first example simple, we will use holdout, but will later
return to cross-validation in Section 8.3.6.

Machine Learning 347

Raw Data

Feature-Target Dataset

Training Data Test Data

Model

Evaluation

Fit Model

Evaluation

1.

2.

3.

4.

5.

FIGURE 8.3: A flowchart illustrating the workflow introduced in Section 8.3.
The numbers on the left of the figure correspond to the steps listed in the
text.

4. Modeling: Create a model from the training dataset.

Again, we will keep our first example of this workflow simple, and form
just one model without seeking to iteratively improve it. But as Figure
8.3 shows, this step is typically an iterative process, leveraging tools like
cross-validation or bootstrap.

5. Use the model to create predictions from the features in the test dataset
and score those predictions by comparing them to the corresponding
target values in the test dataset.

Most of the work involved in machine learning projects is contained in
step 2 (preprocessing) and step 4 (modeling) and thus those steps make up
the majority of this section. Step 1 is highly dependent on the sources and
formats of the dataset and often involves writing code to address the needs
of the specific datasets, including those sources and formats. Step 3 involves
one of the techniques from Section 8.2.2, but we will begin with holdout in
our first example below, randomly designating a portion (typically 70%) of
the feature-target dataset to the training dataset and the remaining portion
to the test dataset. Step 5 is also standard. Because our example will involve
a linear regression model, we can use the R2 (or adjusted R2) metric from
Section 4.6.3; if we were doing classification, we could use one of the scoring
techniques we introduce later in Section 8.6.3.

348 Data Science for Mathematicians

Data scientists may spend as much as 80%–90% of their time on steps 1
and 2. Without good data preparation, it is impossible to build good models.
Furthermore, the steps can be highly domain dependent, and an understand-
ing of the context of the data can be very helpful in building good models.

We demonstrate the workflow using a running example from a dataset
based on the U.S. Census Service data for houses in Boston, MA, origi-
nally published in 1978 [210]. The dataset has 1012 rows, each representing a
1970 U.S. Census tract in the Boston area, and 13 attributes per tract, some
numeric and some categorical, described in Table 8.1. An additional attribute,
median value (MEDV), is often used as the response variable and is suitable
for a regression problem because it is numeric. These attributes are described
in the table. The MEDV variable is censored, in that median values at or over
$50,000 are set to $50,000.

TABLE 8.1: Description of variables in the Boston housing dataset.

Variable Description
CRIM Per capita crime rate by town
ZN Proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS Proportion of nonretail business acres per town
CHAS Charles River dummy variable

(1 if the tract bounds the river, 0 otherwise)
NOX Nitric oxide concentration (parts per 10 million)
RM Average number of rooms per dwelling
AGE Proportion of owner-occupied units built prior to 1940
DIS Weighted distances to five Boston employment centers
RAD Index of accessibility to radial highways
TAX Full-value property tax rate per $10,000
PTRATIO Pupil-teacher ratio by town
B 1000(Bk − 0.63)2, where Bk is the proportion, by town,

of people described as black
LSTAT Percentage of the population classified as lower status
MEDV Median value of owner-occupied homes, in $1000s

8.3.1 Step 1: obtaining the initial dataset

The first step of the workflow is obtaining the initial raw dataset. Because
we have chosen to use a well-known dataset, this step is easy for our example.
The dataset is easy to obtain freely on the Internet, and comes built into sev-
eral popular statistical and machine learning software systems.3 In other cases,
though, this stage entails reading and merging multiple datasets that may be

3It appears in the R package mlbench [310] and is included in the Python library scikit-
learn [385].

Machine Learning 349

in different formats. This may involve a wide range of coding techniques, some
of which were discussed in Chapter 2.

The initial dataset produced at this stage should be checked to ensure
it meets expectations. This check may be informal and performed manually,
which is called exploratory data analysis, or it may be an automated moni-
toring process used to check dataset quality against formal specifications. In
both cases variable ranges and distributions are checked and missing values
are identified.

Chapters 2 and 4 have both discussed exploratory data analysis (EDA)
techniques, so we do not review them in detail here. But note that it is common
to explore the entire dataset in this phase before the training and test sets
have been separated. This is often important to check data quality, but it is
important to avoid letting information from the (future) test dataset influence
the modeler’s strategy too much, or data leakage has occurred.

Some situations provide much more strict boundaries. For instance, in a
data science competition (for example, using the Common Task Framework
introduced in [132]), participants are only ever shown the training data, and
the test data is reserved for evaluating winners. For a less contrived example,
imagine deploying a model into a software environment where it will be auto-
matically applied to new data; clearly, the data scientist does not get to see
that new data when building the model.

The first goal of EDA is understanding the functional types (categorical,
numerical) and the data types (string, integer, decimal, logical) of the vari-
ables in the dataset. Visualizing variables can provide insight into single vari-
ables and into relationships between multiple variables. Common summary
statistics fall into this category, including the mean and standard deviation
for continuous variables and finding counts and proportions for categorical
variables. In addition to these univariate measurements, bivariate measures
are common for finding correlation between variables, to identify redundant
variables and multi-collinearity that could harm regression models. Two-way
tables, χ2 tests, and ANOVA are common techniques; the reader may refer to
Chapter 4 for a review, and Section 4.6.3 for coverage of multicollinearity in
particular.

For example, if a data scientist were exploring the variables in the Boston
housing dataset, she might create a histogram of each variable. The result for
the ZN variable is in Figure 8.4, showing that the distribution of this variable
is highly left-skewed.

To check that the data seems reasonable, the data scientist might compute
a summary of its values, like the one in Table 8.2. Because the variable is
supposed to represent proportions, when we see that it has a minimum of
zero and a maximum of 100, we learn two things. First, the values seem to
be percentages (out of 100) rather than proportions (out of 1.0), which will
obviously be important if we choose to do any computations based on this
variable. Second, none of the values seem unreasonable (e.g., 110%). If any had
been outside the sensible range, those rows may need to have been discarded.

350 Data Science for Mathematicians

FIGURE 8.4: Histogram for the ZN variable in the Boston housing dataset.

TABLE 8.2: Numeric summary of the ZN variable in the Boston housing
dataset.

ZN

count 506.000000
mean 11.363636
std 23.322453
min 0.000000
25% 0.000000
50% 0.000000
75% 12.500000
max 100.000000

Plots are less reliable than numeric measures, however; for instance, it is not
obvious from Figure 8.4 that the maximum value is 100. Not only is the bar
near 100 very small and thus easy to miss visually, but even if we spot it,
we know that a histogram clumps nearby data points together, and so the
maximum might not be exactly 100.

During EDA, it is common to discover that some rows and columns have
missing or outlier values. We discuss strategies for addressing these concerns
as part of the preprocessing step, below.

8.3.2 Step 2: preprocessing

The preprocessing step in the workflow takes as input the initial dataset
and produces a feature-target dataset using a series of data transformations.

Machine Learning 351

This step has two goals. First, the resulting feature-target dataset should have
no missing values. Second, some features may need to be created or modified, a
process known as feature engineering. All data transformations in this step
must be non-aggregating, a concept we explain and justify in the following
section.

8.3.2.1 Missing values and outliers

Recall from Section 2.4.3.1 that many datasets have entries that are either
unspecified (missing values) or are outliers (present but extreme values). For
instance, if a disproportionate number of rows specify 99 for the age variable,
that could indicate that 99 has been used as a flag indicating an unknown age.
Outliers or missing values can be due to the nature of the domain from which
the data is derived or due to issues with data collection. As mentioned in the
previous section, these properties of the data are typically discovered in the
EDA phase. Then there are several options: remove observations with miss-
ing or outlier values, remove features with too many missing values, replace
missing or outlier values with valid values, or use a model that is robust to
missing or outlier values.

The first two options require a threshold of the number or proportion of
missing or outlier values. For example, in the Titanic dataset introduced in
Table 8.4 of Section 8.6, the column “body” has too many missing values; a
data scientist might consider discarding it. Removing rows or columns that
exceed the threshold should not be done lightly as there may be “signal” in
the missing or outlier values.

The third option, replacing missing or outlier values, is called data impu-
tation and should be done carefully, so as not to adversely affect the results
of the model. Missing data can be imputed using domain expertise or lever-
aging statistical tools. Two of the most common imputation techniques are
to replace missing values with a specified value based on an understanding of
the domain or replace them with the mean, median, or mode of the variable.
Another approach is to replace a missing value with a random number within
one standard deviation of the mean value of the variable. A more involved
form of imputation is to create a model that predicts the replacement value
based on other features of the dataset.

If the data scientist chooses to do data imputation, it is important to
consider subtle means of data leakage. Consider a medical study, where some
patients’ blood pressure data are missing, and we choose to impute those
missing values with the mean blood pressure numbers across all patients in
the dataset. If this action is taken during Step 1 or 2 of the workflow, before
the training and test sets have been separated, then the test set rows have
impacted this mean value, which is likely to be imputed into some rows in the
training data, a subtle form of leakage.

Thus any imputation that aggregates data from an entire column should
be avoided in this preprocessing step, and saved until Step 4 of the workflow,

352 Data Science for Mathematicians

once the training and test sets have been separated. However, imputation that
uses a static value (for example, filling in zeros in a sales column for weeks
when we have no record of sales) is a non-aggregating data transformation,
raises no such concerns, and can be performed here in Step 2. Thus these
terms are important because of the second constraint from Section 8.2.1.

Once we have omitted any columns that contained too many missing values
or outliers (assuming we elected to do so), we can then consider whether any
rows should be omitted for a similar reason. Notice that order is important;
considering rows before columns could result in the removal of an excessive
number of rows in the dataset. In both cases the threshold is determined from
requirements of the domain, prediction model, and application.

One of the reasons the Boston housing dataset is so popular is because it
is very clean. It does not contain any missing values that require imputation,
so we will not need to apply the techniques of this section to our example
dataset.

8.3.2.2 Feature engineering

Feature engineering is the process of designing features that are most useful
to the modeling process, that is, they help create fit models that make good
predictions. There are standard techniques for creating additional features
to add to a dataset, and we describe a few below. They fall into two broad
categories: using requirements of the model and using our understanding of
the problem domain. The examples below include some of each type.

When using the linear regression model, we are assuming linear relation-
ships between the dataset’s features and its target. But we may know or
suspect that some features have a nonlinear relationship with the target, and
thus it might be appropriate to add a new feature computed by transforming
one or more existing ones. This includes what Section 4.6.3 calls “interaction
terms,” that is, the product of two features. These are sometimes referred to
as polynomial features for obvious reasons, and are motivated both by the
constraints of a linear model and our knowledge of the domain.

Because most machine learning models assume features are numeric, cat-
egorical features must be converted to one or more so-called “binary” or
“dummy” features, which are numeric. Methods for doing so were covered
in Section 4.6.5, and are another type of feature engineering, this one moti-
vated exclusively by the requirements of the model.

Dates and times typically need to be converted to another form to be useful
in modeling. Although dates are often composed of numeric components (e.g.,
the three numbers in 7/4/1776) this is not often a useful form for computation.
For some domains, just the month value lifted from the date may be useful for
prediction, possibly treated categorically. For other applications, a more useful
value may be the day of the week (possibly represented as 0–6, indicating
Sunday through Saturday). For other applications, the elapsed time from some
fixed starting point until the date in question, as a number of days or months,

Machine Learning 353

may be more useful, or the difference in time between two date features. All
of these common date manipulations are examples of feature engineering, all
motivated by the semantics of the data and its relationship to what we know
about the domain.

Domain knowledge may also lead us to do feature engineering in non-
mathematical ways. For example, in the Titanic dataset we will cover in Sec-
tion 8.6, if we’re trying to model a passenger’s likelihood of survival, we might
be able to do some feature engineering from the column that includes the
passenger’s name. The title recorded in the name can inform us about the
passenger’s rank in society; from “Astor, Col. John Jacob,” we can conclude
that he has the title “Col.” This can be meaningful information that lets us
ask new questions of the data, such as whether a person of higher rank has
influence that impacts whether he or she gets on a life boat. This type of
feature engineering, that is, based on text, can often be done with regular
expressions [171], but in complex cases may require manual data processing.

Finally, all the techniques of dimensionality reduction we learned in Chap-
ter 7 are methods of feature engineering designed to reduce a potentially
intractable number of dimensions down to something more manageable, or to
reveal to us the simple structure hidden in complex data. The most common
of these is principal components analysis (PCA, introduced in Section 7.3).
It creates features that are linear combinations of the original features, but
are linearly independent of one another. These new features are sorted from
highest to lowest variance, so that we might choose the subset with highest
variance.

In the Boston housing dataset, we consider the variables listed in Table 8.1.
The CHAS variable was already an indicator variable in the dataset when we
received it. If MEDV were one of our features, we might consider the product
MEDV · TAX as a useful new feature (after converting units), because it
indicates the median amount of annual property tax paid for a residence of
the tract; but since MEDV is our target, we cannot use it to form new features.
If there had been hundreds of features, we might have needed PCA, but as is,
the dataset probably does not require feature engineering.

8.3.3 Step 3: creating training and test datasets

Recall the importance of this step, first described in constraint 1 in Section
8.2.1, and that typically 70% of the records are placed in the training dataset
and the remaining 30% are placed in the test dataset. In our example, the Boston
housing dataset contains 506 observations, and we will use an 80%/20% split,
so we will assign 404 to the training dataset and 102 to the test dataset.

For a numeric target variable, assuming it is not sequential (e.g., a stock
price at regular time intervals), the observations are usually assigned randomly
to the training and test datasets. For a categorical target variable, it is desir-
able to ensure that the class distribution of the target is similar in the training
and test datasets. Most software packages for machine learning can automate

354 Data Science for Mathematicians

the test-train set creation and have many options to ensure requirements like
these are satisfied; we will see an example using scikit-learn in Section 8.4.

8.3.4 Step 4: model creation

By this point, the data scientist should know what model they aim to use
on the data. This choice is informed by the data exploration and manipulation
in steps 1 and 2, and the choice of model may also have informed some of the
feature engineering work, as described above.

Recall the distinction between a model and a fit model. The data scientist
chooses the model, and the computing environment trains that model on the
training dataset, producing coefficients (in the case of linear regression, or
model parameters in general) that give us a fit model, ready to be applied to
new data points. That training process happens in this step.

In order to keep our running example simple, so that we might focus on the
workflow, we will use a linear model to predict MEDV from the other features.
While the model selection and evaluation process is typically iterative, using
training and validation sets as described in Section 8.2.2, we will omit those
details in this walk through the workflow.

This is perhaps the central step in the machine learning workflow, so we
reiterate a central concept. Minimizing error on the training set does not,
in general, guarantee good performance on unseen data. This is the danger
called “overfitting” that was introduced in Chapter 4 and has been revisited
in many chapters since then. This danger is more likely if the hypotheses of
the model are too complex or specific. Such complexity must be considered
carefully against the size of the training set; smaller sets are more prone to
overfitting. These guidelines can help us select a model that is more likely to
perform well on unseen data.

In Section 8.3.2 we forbade aggregating transformations, to prevent data
leakage. Now that training and test datasets have been separated, if we need
to apply any aggregating transformation (such as imputing missing values
with a column mean), we can do so now, before training the model. Two
classes of data transformations often take place at this point, one called scaling
and normalization, the other called feature selection. We focus on those two
activities in the following sections.

In models with hyperparameters, this model creation step would also
include tuning those hyperparameters. (For a review of hyperparameters, see
their introduction in Section 6.2.4.) But the simple model we’ve chosen for
our Boston housing dataset does not have any hyperparameters.

8.3.4.1 Scaling and normalization

Linear regression typically does not require scaling the feature variables
since the coefficients can automatically adapt to the scale of the features. But

Machine Learning 355

this section is crucial in other models, even though we will not need to use it
for our Boston housing model.4

Some model training algorithms (such as penalized regression, mentioned
in Chapters 4 and 6) compare features, which can be meaningless if the fea-
tures in question have different scales. In general, for two different measure-
ments (say, distance traveled and number of passengers), there is no reason to
suspect the data have even remotely the same range of values. In practice, the
term normalization has multiple meanings, but we use it in its most general
sense, the processes for resolving these differences.

There are two common techniques to create features with common ranges.

The first is min-max scaling, where each value x
(i)
j of feature j is replaced

with
x

(i)
j −mini x

(i)
j

maxi x
(i)
j −mini x

(i)
j

,

where i ranges over all observations. Obviously, this creates values in the
interval [0, 1], and both endpoints of the interval are achieved. The second

technique is standard scaling, where each value x
(i)
j of feature j is replaced

with
x
(i)
j −µ
σ , where µ and σ are the mean and standard deviation of that

feature and i ranges over all observations.
While scaling may seem like a type of preprocessing, recall that it cannot

be done in step 2 without the danger of data leakage, and must therefore
be done now, before training a model. This ensures that the aggregate data
transformations involved operate only on the training dataset. But whatever
scaling transformations are created for and applied to the training data must
be applied unchanged to the test data as well, or the test data will not be
sensible inputs to the fit model later.

8.3.4.2 Feature selection

It is not always best to use all available features when training a model.
This may be because we prefer a simpler model for reasons of elegance or
interpretability (applying Occam’s razor, as in Section 4.3.2) or because we
want to avoid overfitting.

The term feature selection is ambiguous. Many people use it to refer to
the decisions made by the data scientist to select those features that seem to
make the most sense for inclusion in the model. Others use it to refer to auto-
mated algorithms that can select a subset of the features of a dataset. In both
cases, the goal is creating a better model that produces better predictions. It
is this second meaning that we focus on here; other chapters have focused on
mathematical modeling in detail, but machine learning is a frequently auto-
mated process, so we focus exclusively on automated methods.

4One does need to take care with the scale of features in linear regression if using penal-
ized regression (ridge or lasso) or if using an optimization technique like gradient descent,
which can be sensitive to significant differences in scale across features, as discussed in
Section 9.3.2.

356 Data Science for Mathematicians

There are several general methods that distinguish currently available fea-
ture selection techniques. Filter methods select features based solely on their
statistical properties. For example, features might be selected based on their
variance or on their correlation with the target. Such techniques can be applied
before training the model.

Embedded methods use models that, as part of the model training process,
assign values to each feature that indicate their importance to the fit model.
Regularization models such as random forest (Section 8.10.2), lasso (Section
8.5.4), and elastic net [400] fall into this category.

Wrapper methods evaluate subsets of features by automatically repeating
the process of training the model and scoring the fit model’s predictions, one
repetition for each subset that needs to be evaluated. The feature set with the
best score is chosen. This method is more computationally intensive than the
others, but finds feature sets that directly contribute to better models and
predictions. The caveat is that this method can lead to overfitting [323].

Let us return to our running example, fitting a linear model to the Boston
housing dataset. There are two well-known algorithms for feature selection
in such a situation. Both require a way to measure the goodness of fit for a
model, such as R2, adjusted R2, or root mean-squared error (RMSE), which
is defined as

RMSE =

√∑
i(y

(i) − ŷ(i))2

n
. (8.1)

This is a measure of model error because ŷ(i) represents the value predicted
for observation (x(i), y(i)), in which y(i) is the actual value. The RMSE is in
the units of y, and hence its scale depends on the meaning of y.

By contrast, the R2 metric introduced in Section 4.6.3, which we will
discuss further in Section 8.5.3, is unitless. It measures the proportion of the
variability in y explained by x, and thus takes values between 0 and 1. In
two models with the same number of features, the one with a higher R2 value
would generally be considered better. As we add covariates, R2 monotonically
increases, but one can guard against overly complex models by using the
adjusted R2 instead.

Equipped with such metrics, we can return to the two algorithms for fea-
ture selection in a regression model. One algorithm begins with an empty
model and adds features, one at time; the other begins with a model using
all features and removes them, one at a time. These two methods are called
forward selection and backward selection, respectively.

In Table 8.3, we see the output of the forward selection process based
on RMSE. Each asterisk indicates the inclusion of the indicated feature in
the model. We can see that initially there is significant gain in both R2 and
reduction in RMSE but as the number features increase, the returns do not
keep up. If we were doing feature selection manually, fit model #4 in the
table may be a good choice. An algorithmic process would use some objective
criterion to choose the cutoff. When we revisit cross-validation in Section 8.3.6,

Machine Learning 357

TABLE 8.3: Forward feature selection on Boston housing training dataset.

C
R

IM

Z
N

IN
D

U
S

C
H

A
S

N
O

X

R
M

A
G

E

D
IS

R
A

D

T
A

X

P
T

R
A

T
IO

B
L

A
C

K

L
S

T
A

T

R
2

R
M

S
E

1 * 0.55 6.16
2 * * 0.66 5.34
3 * * * 0.70 5.04
4 * * * * 0.71 4.95
5 * * * * * 0.73 4.80
6 * * * * * * 0.74 4.72
7 * * * * * * * 0.74 4.68
8 * * * * * * * * 0.74 4.64
9 * * * * * * * * * 0.75 4.62
10 * * * * * * * * * * 0.75 4.59
11 * * * * * * * * * * * 0.76 4.53

we will see ways for making a more definitive choice. For now, let us choose
fit model #4, whose equation is

MEDV ≈ 20.67 + 4.6219RM− 6749LSTAT− 0.9146PTRATIO− 0.5148DIS.

8.3.5 Step 5: prediction and evaluation

We now wish to evaluate whether the fit model produced in the previous
step, which we optimized using training data, will perform well on data it
has not seen. We therefore now use that fit model to make predictions from
features of the test dataset. This process, using the fit model from the previous
step, is entirely mechanical. For instance, in the case of the equation given
above, software simply needs to apply this simple linear function to each row
of the test dataset, generating predictions for the MEDV variable in each row.

Our scoring criteria in the case of our Boston housing example will be
the same metric we used during forward stepwise regression in the previous
section, the RMSE. We can ask our computing environment to determine the
RMSE by comparing the predictions to the actual values on the test dataset,
and in this case we find RMSE = 5.746. This is higher than the error of
RMSE = 4.95 that we got on the training data, in row 4 of Table 8.3.

The challenge with interpreting the above number comes from the fact
that, as one can see from equation (8.1), the units of RMSE are those of
y. It would be nice to have a measure that is invariant to the scale of the
response variable. Recall from Section 4.6.3 the decomposition of the sum of
squared errors, which is the numerator in equation 8.1. In that section, we
defined the total sum of squares SST =

∑
(y(i) − ȳ)2, the sum of squared

error SSE =
∑

(y(i) − ŷ(i))2, and the variability explained by the model

358 Data Science for Mathematicians

SSM =
∑

(ŷ(i) − ȳ)2, and related them as

SSE = SST − SSM.

In that section, we also defined the coefficient of determination,

R2 =
SST − SSE

SST
=
SSM

SST
=

∑
i(ŷ

(i) − ȳ)2

∑
i(y

(i) − ȳ)2
. (8.2)

From this equation, we see that R2 measures the proportion of the variability
in y explained by x and it takes values between 0 and 1.

Even though R2 is independent of the scale of y, as we add more covari-
ates, the R2 value monotonically increases. This can encourage one to build
more and more complex models, perhaps at the cost of interpretability and
generalizability to new data (overfitting). This gives rise to the alternative
measure called the adjusted R2,

adjR2 = 1− n− 1

n− d− 1
(1−R2), (8.3)

which penalizes for the number of covariates d. If the number of samples n is
very large compared to the number of covariates, adjR2 is almost the same as
R2.

We use these measures in the following section when we consider how to
extend our housing example with cross-validation.

8.3.6 Iterative model building

Until now, we’ve kept our Boston housing example simple, forming and
evaluating just one model. But in a more complex scenario, a data scientist
might follow a more complex and iterative workflow. If you begin with a simple
model, but it doesn’t prove adequate when measuring it, you might return to
the drawing board and add new features, or change to a model that uses a
technique other than regression, and so on, until finding some model that
can discover appropriate patterns of the data. This brings us up against a
limitation of the simple example workflow shown so far.

The constraints from Section 8.2.1 implied that, in step 5, predictions
should be created and scored only once on the test data. This limitation gets
in the way of the iterative model-building process just described. The simple
workflow example we just gave will need to be extended if this limitation is
to be removed without violating those constraints.

Thus we return to cross-validation, introduced in Section 8.2.2, which
addresses this limitation and provides the ability to evaluate a model, and
to create and score predictions made by the model, using only the training
dataset. This provides the capability to iterate over multiple models and model
configurations. (The bootstrap technique introduced in that same section can
also be used to accomplish a similar goal.)

Machine Learning 359

Cross-validation takes as input a model and a training dataset. It creates a
predefined number k of training and validation dataset pairs from the original
training dataset, in the manner described in Section 8.2.2 and illustrated in
Figure 8.1. Then for each such pair, it fits the model to the training dataset of
that pair and evaluates that model by scoring its predictions on the validation
dataset of the same pair. The final result is a collection of such prediction
scores. Thus during step 4, the data scientist gets feedback on how the chosen
model generalizes to data on which it has not been fit, without yet involving
the test data.

Consider again the application of linear regression to the Boston housing
data, using the same four variables from earlier. If we want to evaluate how
well this model generalizes, without yet seeing the test dataset, we could apply
cross-validation. As an example, let’s choose k = 5 and use R2 as the metric
for scoring. When we did so, we achieved the following five R2 scores, one for
each training-validation pair.

0.75, 0.69, 0.68, 0.78, 0.79

Because there is randomness inherent in the process of generating the cross-
validation partition, if you repeat this experiment, you may get different
scores. (Chapter 2 discussed best practices for ensuring reproducibility of auto-
mated processes that involve randomness.)

The mean and standard deviations of the cross-validation scores are used
to compare models. The mean measures the performance of the model (not
the individual fit models). The standard deviation measures its consistency
or predictability; a high standard deviation indicates that the data scientist
is taking on more risk if adopting that model, because it could perform far
better or worse than the mean suggests.

The workflow modifications we introduced here impact only step 4, which
is now an iterative process and includes the following.

1. using cross-validation (or bootstrap sampling) to create a collection of
prediction scores (one for each validation dataset) for a model

2. determining whether these scores (and potentially their means and stan-
dard deviations) are satisfactory5

3. starting over if the scores are not satisfactory, which may include engi-
neering new features or choosing a different model

When this iterative process completes, the data scientist has chosen a model
for the problem at hand. To convert it to a fit model, the training process
is then typically applied to the entire training dataset, not merely one of the
subsets of it created by cross-validation. Then that final fit model is scored

5For instance, in the case of the five scores shown above, is the data scientist content
with a model that explains about 70%–80% of the variability in the data?

360 Data Science for Mathematicians

once on the test set, as usual, in step 5. There is no restriction on the number
of iterations in step 4 as long as step 5 is not run.

It is also possible to automate the process of hyperparameter tuning
through cross-validation. We refer interested readers to grid search and ran-
domized search methods, both of which are implemented in scikit-learn [385],
the software toolkit we introduce next.

8.4 Implementing the ML workflow

We now make the general ideas of Section 8.3 more concrete by show-
ing how to implement them in a popular machine learning software toolkit,
scikit-learn [385], which we access through Python. Readers who prefer to
use another language for their machine learning projects,6 or who do not yet
wish to dive into the code may wish skip this section and move on to further
mathematical content in Section 8.5. Throughout this section we will see the
utility of scikit-learn as we import several of its tools to make an otherwise
lengthy computation the matter of a single function call.

Scikit-learn is a highly object-oriented framework, but we present here
only the essential material for working with a few of its objects and classes.
For more depth on scikit-learn, see [385], and for a more thorough treatment
of object orientation in Python in general, see [134].

8.4.1 Using scikit-learn

We give an implementation of the machine learning workflow using scikit-
learn on the Boston housing dataset. The Python code for the workflow
appears in Listing 8.1, and we will discuss each of its steps below.

Step 1 of the workflow is to get the raw data into a table, which is easy in
the case of the Boston housing data, because it is one of the built-in datasets
in scikit-learn. The code for doing so appears at the top of Listing 8.1; the
first two lines read the dataset and store it in a variable.

Data obtained from most real-world sources has not been cleaned and
prepared for analysis, as the built-in datasets in packages like scikit-learn have.
So in most cases, Step 1 takes much more effort, as discussed in Chapter 2.
We keep this step simple here so that we can focus on the machine learning
steps instead.

Step 2 stores the features and target in different variables, for ease of
reading the code, and so that we can easily pass them later to functions that

6As of this writing, there is a Julia library for accessing scikit-learn [442] plus a Julia-
specific machine learning framework [55], and R has its own packages for machine learning
as well [52, 283].

Machine Learning 361

Listing 8.1: Code for the machine learning workflow described in Section 8.4

Step 1: Obtain data

from sklearn.datasets import load_boston

boston = load_boston ()

Step 2: Create a feature -target dataset

import pandas as pd

features = pd.DataFrame(

data=boston.data ,

columns=boston.feature_names)

target = boston.target

Step 3: Split into training and test datasets

from sklearn.model_selection import train_test_split

(X_training , X_test , y_training , y_test) = \

train_test_split(features ,target ,train_size =0.8)

Step 4: Create a model from the training dataset

from sklearn.pipeline import Pipeline

from sklearn.feature_selection import SelectKBest

from sklearn.linear_model import LinearRegression

estimator = Pipeline ([

(’select ’, SelectKBest(k=5)),

(’model ’ , LinearRegression ())

])

fit_model = estimator.fit(X=X_training , y=y_training)

Step 5: Score the model using the test set

predictions = fit_model.predict(X=X_test)

from sklearn.metrics import mean_squared_error

print(mean_squared_error(y_test ,predictions)**0.5)

362 Data Science for Mathematicians

expect them to be separate. The code for doing so uses the pandas [340]
package for Python, which stores row-and-column data in an object called a
“DataFrame,” named after a similar structure from R. The pandas package is
ubiquitous in Python data science work.

The Boston housing dataset is a grid of numbers, but as we saw in Chapter
3, it is helpful to name the columns when working with matrix data, and
thus the dataset also provides its column names, which our code uses when
constructing the DataFrame.

Step 3 separates the dataset into training data and test data. This is
such a common action that there is built-in support for it in scikit-learn.
We import from scikit-learn’s model selection package a function called
train_test_split.

In this case, we’ve chosen to use 80% of the data for training (hence the
0.8 in the code for Step 3 in Listing 8.1). The train_test_split function
returns a quadruple of training features, test features, training targets, and
test targets, in that order, and the Python code shown uses the language’s
support for assigning to multiple variables at once using tuples, as shown.

Step 4 creates a model from the data. As discussed in Sections 8.3.4 and
8.3.6, this step is typically iterative, but we have kept it simple here for our
first example, and automated a single model construction.

We do, however, wish to illustrate several important aspects of scikit-learn
at this point. First, the toolkit is built on the notion of pipelines, which are
chains of composed functions that pass data along, one to the next. The code
in Step 4 in Listing 8.1 shows only a small (two-step) pipeline, but pipelines
can be arbitrarily long.

The first function in the pipeline is the SelectKBest function with k = 5.
This function chooses the k features from the training dataset that are most
useful for predicting the target, by default measuring this with the F -statistic
used in analyses of variance. (Other measures can be specified, though we
have used the default in this example.)

The second function in the pipeline then takes those five features and cre-
ates a linear model. A pipeline that ends by fitting a model is called an esti-
mator in scikit-learn parlance, in contrast to a pipeline that merely modifies
the data, which is called a transformer. Notice that the code fits the model
to the training data only, storing the result in a variable called fit_model.

We see once again why scikit-learn is popular; these feature selection and
model fitting functions are built in, and the data scientist can load them
with a single import command. No code needs to be written to define these
mathematical or statistical concepts; this has already been done for us, and
is thoroughly tested and documented [385].

While it may seem silly to use a pipeline to compose only two steps, the
example can easily be extended for more complex models. For instance, SVMs
(introduced in Section 8.8) assume that the features have been standardized.
In such cases, we could add to the beginning of the pipeline the pair (’scale’,
StandardScaler()) to include this step. Each step in a pipeline can be used

Machine Learning 363

to transform one or more variables, compute new columns, select certain rows,
impute missing values, fit models, make predictions, and more; the concept is
quite flexible, as we’ll discuss more in the next section.

Finally, Step 5 scores the model by applying it to the test dataset. This
is the final section of the code in Listing 8.1. Once again, the necessary sta-
tistical concept (in this case MSE) has been defined in scikit-learn. Since we
wish to report the RMSE, we simply raise the MSE to the 0.5 power before
reporting it.

8.4.2 Transformer objects

Readers who wish to understand scikit-learn’s internals a bit more will
find an introduction in this section, which should help you if you plan to
read the scikit-learn documentation [385]. Readers who wish to focus on the
mathematics instead my skip this section.

Scikit-learn is designed within the object-oriented framework embraced by
the Python language. In that paradigm, various concepts are implemented as
objects in the language; in our case, those concepts include data transforma-
tions, models, etc. In object-oriented parlance, a method is a function that is
associated closely with a specific object on which it operates. Thus for exam-
ple, a model will have a method for fitting it to data and another method for
using the result to predict new target values; these methods are called fit

and predict in scikit-learn.
Like models, data transformations must also be fit to data before they can

be used. For instance, if we wish to transform a feature by imputing the mean
value to all missing entries, we first need to customize that transformation to
our needs by finding that mean value. Thus data transformations in scikit-
learn implement not only a transform method, as we might expect, but also
a fit method, which must be run first. For both models and transformations,
the fit method “learns” characteristics of the dataset and stores them as
attributes of the (transformation or model) object. This corresponds roughly
to what we’ve called training when we’ve been speaking mathematically.

For example, a LinearRegression object creates a linear model, and its
fit method does what we think of mathematically when fitting a linear model
to data; it computes the βi coefficients and remembers them (as attributes of
the object in this case). Similarly, a SimpleImputer object, which imputes
missing values with the mean of the (non-missing) values for the feature, has
a fit method that learns the mean value of each column to which it is applied
and remembers that mean for later use. Its transform method then uses that
mean to replace each missing value in any columns to which it is applied.

A scikit-learn pipeline calls the fit, transform, and predict methods for
us in the correct sequence for all steps in the pipeline. In Listing 8.1, at the
end of Step 4, we call fit on the estimator pipeline to create a fit model, and
then use that model’s predict method in Step 5 as we score the model. Each

364 Data Science for Mathematicians

of these called the appropriate fit, transform, or predict methods in each
step of the pipeline, and transmitted data among those steps appropriately.

8.5 Gradient descent

At this point in the chapter, we transition from big picture ideas to specific
methods. Sections 8.2 through 8.4 covered topics that apply to machine learn-
ing projects in general, and how one should go about them. Now we introduce
new models and techniques that a data scientist can include at various points
in that workflow.

In this section, we discuss the general tool of gradient descent, which
plays a major role in neural networks (Chapter 9), and we will use it to
explain extensions to linear regression. (Readers who recall initial coverage of
gradient descent in Section 6.2.3 may find portions of the following to be a
review.) Subsequent sections introduce new types of models that one might
call the bread and butter of machine learning, including logistic regression, the
näıve Bayes classifier, support vector machines, decision trees, and ensemble
methods.

8.5.1 Loss functions

As outlined in the introduction, the goal of machine learning is to learn
from data. We need a metric to quantify the performance of this learning,
and we often use a loss function L(ŷ, y), which represents the loss from
predicting ŷ when the correct value (often called the ground truth) is y.
The total or mean loss from the full training data is used to determine the
overall loss during training and that total is usually called the cost function
or (ambiguously, also) the loss function.

In regression problems, we’ve seen the common squared loss function
L(ŷ, y) = (ŷ − y)2. But in a classification problem, we use the loss function
to penalize incorrect predictions. A standard example is the zero-one loss
function given by L(ŷ, y) = 1ŷ 6=y, where 1 is the indicator function, shorthand
for

1ŷ 6=y =

{
1 if ŷ 6= y
0 otherwise.

In some settings, it makes more sense to use an asymmetric loss function. For
instance, declaring a fraudulent transaction as correct is more damaging to a
bank than the other way around.

While we wish to minimize the cost function during training, focusing
only on minimizing the cost function can lead to overfitting, sometimes called
“memorization.” What we really want is a model that generalizes well to

Machine Learning 365

unseen data, just as students wanting to do well on an exam should focus
on the concepts, rather than simply memorizing examples. In the context of
machine learning, the cost function is sometimes modified to draw attention
to the “concepts.” The form of the cost function is also adapted whenever
possible to yield a convex optimization problem.

8.5.2 A powerful optimization tool

Once we have a cost function associated with a machine learning problem,
our next goal is to find the model parameters that minimize this cost. In some
very nice (but rare) settings, this can be done analytically; we will see such
an example in the next section. In most cases, this optimization is achieved
using numerical techniques. We will describe one such powerful optimization
technique, gradient descent.

Let J(θ) be a differentiable, convex function representing the cost as func-
tion of the parameters θ of our learning model. We wish to determine the
θ that minimizes the cost J(θ). We start with an initial guess θ0 for θ and
repeatedly update that guess using

θi+1 = θi − α∇J(θi), (8.4)

until it converges (i.e., |θk − θk+1| < ε, for some sufficiently small ε). Here α
represents the step size or learning rate. Intuitively, θ is updated in the
direction of the steepest descent, which moves θ towards lower values of J(θ).
This is illustrated on the left of Figure 8.5.

Choosing the appropriate learning rate ensures that the iteration converges
efficiently. If α is too small, it will take too long for {θi} to converge and if
α is too large, each step may overshoot the minimum and {θi} may diverge.
In practice, a sequence of alphas can be used, starting with larger values and
moving to smaller ones. One suitable choice is α = 1

L , where L is the Lipschitz
constant of the gradient, which satisfies

‖∇J(θ)−∇J(θ′)‖ ≤ L‖θ − θ′‖, ∀θ, θ′ (8.5)

for suitably nice functions J [21,59]. In equation (8.4), for a single update to
θ, the iteration has to compute ∇J(θ), which requires looping over the full
training set. Using the entire dataset in this way is called batch gradient
descent, but in cases where the training set is very large, this loop can be time
consuming. Alternatively, we can update θ based on a single training example
at a time, and choose those examples in a random sequence. This approach is
called stochastic gradient descent and is illustrated on the right of Figure
8.5. It works well in practice, once the algorithm has had multiple passes at
the data.

Gradient descent can be used in some non-convex settings, but in that
context it does not always converge to a global minimum; the solution may get
“stuck” at a local minimum. There are many interesting variants on gradient

366 Data Science for Mathematicians

θ0

θ1

θ0

θ1

FIGURE 8.5: Gradient Descent vs Stochastic Gradient Descent . In each
image, assume that the concentric ellipses are level curves and their center
is a minimum.

descent that will be covered in detail in Chapter 9, because that chapter
covers neural networks, which use gradient descent extensively in non-convex
settings.

8.5.3 Application to regression

Linear regression is one of the simplest models that can be fit to data that
presents a linear trend. It was covered in Section 4.3.1, but we briefly review
it here to highlight applications of cost functions and gradient descent.

Recall that a representation of a linear function of x can be given by

fθ(x) = θ · x =

p∑

i=0

θixi,

where θ is a weight vector with same dimensions as x. To simplify notation, we
will assume that x0 = 1 so that θ0 represents the intercept term, meaning both
x and θ have length p+1. We will use the ordinary least-squares regression
model, that is, given a training set we would like to pick θ to minimize the
cost function,

J(θ) =
n∑

i=1

(y(i) − fθ(x(i)))2, (8.6)

the sum of squared errors, on the training set.
Let X be an n×(p+1) matrix of feature vectors, called the design matrix,

and y a column vector of length n× 1 of response values.

X =

(x(1))T

(x(2))T

...
(x(n))T

 y =

y(1)

y(2)

...
y(n)

Machine Learning 367

Then we can express the goals of linear regression using the cost function
framework we’ve used in the rest of the chapter, in matrix form as

J(θ) = (Xθ − y)T (Xθ − y).

Assuming X is full column rank (i.e., the columns are linearly independent),
XTX is positive definite, and setting ∇J(θ) = 2(XTXθ−XTy) equal to zero
yields the normal equation

XTXθ = XTy.

Since J(θ) is a convex function, it has a unique minimum at

θ = (XTX)−1XTy. (8.7)

So linear regression is one of the rare examples in which we have a closed form
solution for the model parameters. Having estimated the regression parameter
θ, we can predict the target value for any test vector x by evaluating x ·
(XTX)−1XTy. But it is not always this easy.

Computing a matrix inverse can be computationally expensive or may not
even be possible. Two columns of X may be perfectly correlated; for instance,
when one column Xsalary represents the salary of an employee and another
Xretirement represents the retirement contributions made by the employer (per-
haps Xretirement = 0.06 ·Xsalary). In practice, if some columns are highly cor-
related, then it is advisable to remove the redundant columns. For instance, in
the Boston housing data, Figure 8.6 shows that the variables RAD and TAX
are highly correlated, with a correlation coefficient of 0.91. Keeping both the
variables in the linear regression model can lead to multi-collinearity, which
can cause the coefficient estimation to be unstable and make it difficult to sep-
arate the effect of one input from another.

If any of the above concerns arose in a linear regression model, we could
apply (for example) stochastic gradient descent to estimate the model param-
eters θ by incorporating the linear regression loss function into the gradient
descent update step.

θj+1 = θj − αx(i)(θj · x(i) − y(i)) (8.8)

8.5.4 Support for regularization

Earlier in this chapter, we mentioned some strategies for selecting a subset
of predictors that are best related to the response variable. Readers may recall
from Chapter 4 strategies for fitting a model using all p predictors yet perform-
ing very well on test sets, called regularization or shrinkage, because they
shrink some of the estimated coefficients θi towards zero (when compared to
their estimates from the least squares model). This shrinkage in turn reduces
the variance of the model. There are two major types of regularization: ridge

368 Data Science for Mathematicians

FIGURE 8.6: Correlation matrix for the Boston housing dataset variables,
with each entry’s background color darkened in proportion to the value of the
entry.

regression, which shrinks all non-intercept coefficients but does not set any
of them to be exactly zero, and lasso, which sets some coefficients exactly to
zero. The latter can also be seen as another approach to model selection, since
only some coefficients contribute to the model. Thus regularization is a way
to prevent a model from overfitting, thus improving model performance on
unseen data.

For convenience of the discussion below, we repeat the associated cost
functions here; ridge uses the `2 norm to penalize each model parameter,

Jλ(θ) = (Xθ − y)T (Xθ − y) + λ

p∑

j=1

θ2
i ,

through the tuning parameter λ. Lasso uses the `1 norm instead,

Jλ(θ) = (Xθ − y)T (Xθ − y) + λ

p∑

j=1

|θi|. (8.9)

Ridge encourages more parameters to move towards zero as the data scientist
increases the hyperparameter λ. In the same circumstance, lasso encourages
more parameters to become exactly zero. This distinction is illustrated in
Figure 8.7.

Machine Learning 369

FIGURE 8.7: Ridge (left) and lasso (right) regression coefficients for a model
fit to the Boston housing dataset. While this grayscale version does not permit
the reader to distinguish the variables, the important pattern to observe is how
they converge. In ridge regularization, the coefficients converge towards zero
at varying rates, while in lasso regularization, each suddenly becomes zero at
some value of λ.

To understand why lasso causes some coefficients to be exactly zero it will
help to consider the contours of the error and the constraint functions. For
simplicity, let us consider the two-dimensional case, illustrated in Figure 8.8.
The constraint region for |θ1|+|θ2| ≤ t is a rhombus, while that of θ2

1+θ2
2 ≤ t is

a circle. The contours of the least squares error function (Xθ−y)T (Xθ−y) can
be represented by ellipses. Our goal is to minimize the sum of the magnitudes
of the error function and the scaled shrinkage term. So in both approaches we
seek to find the first point where the least-squares error function (the ellipses
shown in gray) meets the constraint contour. In the lasso case, it is likely
to be one of the corners of the rhombus centered at the origin, leading one
coefficient to become zero entirely. In higher dimensions, similar results hold,
except that more coefficients may become zero.

θ0

θ1

θ0

θ1

FIGURE 8.8: Contours of constraint and error functions in the lasso and ridge
regression cases, as described in Section 8.5.4.

370 Data Science for Mathematicians

Section 4.7.2 pointed out that there is a closed-form solution only for ridge
regression, not for lasso. We therefore find in regularization a new applica-
tion of gradient descent; it can be used where no closed-form solution exists,
because to express the penalties imposed by the regularization method we
wish to employ, it requires modifications only to our cost function.

Yet even gradient descent has trouble with optimizing lasso regression,
because the `1 norm in equation (8.9) is not differentiable. But a variation
of the gradient descent method, called sub-gradient descent, discussed in
Section 6.2.3, can be used in this case.

8.6 Logistic regression

On April 15, 1912, the Titanic, the largest passenger liner ever made at
that time, collided with an iceberg during her maiden voyage. The ship sank,
killing 1502 out of 2224 passengers and crew members. This tragedy led to
enforcement of better safety conditions aboard ships thereafter.

The Titanic3 dataset7 contains 1309 rows, each representing a real Titanic
passenger, which constitute about 80% of the passengers on board [209]. The
dataset contains 14 features, one of which indicates the survival status of the
passenger. A description of the features appears in Table 8.4.

TABLE 8.4: Variables in the Titanic3 dataset.

Variable Description
pclass Type of passenger’s ticket; values: “first,” “second,” “third”
survived Survival status; values: 0 (did not survive), 1 (did survive)
name Passenger’s name
sex Passenger’s sex; values: “female,” “male”
age Age (in years) of passenger at the time of the voyage
sibsp Number of siblings/spouses aboard
parch Number of parents/children aboard
ticket Ticket number
fare Passenger fare
cabin Cabin/room number
embarked Port of embarkation; values: “C” (Cherbourg),

“Q” (Queenstown), “S” (Southampton)
boat Lifeboat identification number (if passenger survived)
body Body identification number (if passenger did not survive)
home.dest Passenger’s home city

7So called because it improves upon earlier datasets named Titanic and Titanic2.

Machine Learning 371

This dataset is included with many statistical software packages and is
commonly used in statistics education. While the lack of sufficient lifeboats
on the ship contributed to the high casualty rate, the dataset allows us to
ask many other interesting questions about passengers’ survival. For exam-
ple, besides luck, were there other factors that predisposed some passengers
to higher likelihood of surviving? Can we train a model that can predict a
passenger’s survival based on other features of that passenger?

Unlike a regression problem, where the goal is to predict a continuous
response variable, in this problem we want to predict a discrete response vari-
able (whether a passenger survived). Such a problem is called a classification
problem. Logistic regression (first introduced in Section 4.7) is a binary clas-
sification technique that builds on linear regression through the logit function
to deliver class probabilities for the response variable. Logistic regression is
widely used in heath care and social sciences for its ease of interpretation, and
we provide a brief review of it in the following section.

8.6.1 Logistic regression framework

We encode the two levels of the response variable as 0 and 1. Consider the
logistic function

g(z) =
ez

1 + ez
=

1

1 + e−z
, (8.10)

shown in Figure 8.9. It maps (−∞,∞) to (0, 1), hence its values can be inter-
preted as probabilities. We can define the formula for the logistic regression
model as

hθ(x) = g(θ · x) =
1

1 + e−θ·x
, (8.11)

which embeds a standard linear model inside the logistic function. It is easy
to check that

log
g(θ · x)

1− g(θ · x)
= θ · x, (8.12)

where the left-hand side is called the log odds or logit, because it contains
the ratio of the probability of class 1 to the probability of class 0. If θ · x =
θ0 + θ1x1 + · · ·+ θpxp, then we can interpret θi as the amount by which the
log odds changes for one unit increase in xi, keeping everything else the same.
So we can think of the logistic regression model as the usual linear regression
model except that the response variable is a continuous variable representing
the log odds of being classified into one of two chosen classes.

8.6.2 Parameter estimation for logistic regression

Since the logistic function is not linear, we do not have a closed form
solution for θ and using the least squares estimate is also not convenient.
We can instead use maximum likelihood estimation (MLE), introduced

372 Data Science for Mathematicians

FIGURE 8.9: Logistic function y = 1
1+e−x , whose output (y) values can be

used to represent probabilities.

in Section 4.3.5; we provide a brief review here. Using P to stand for the
probability of an event, let

P (y = 1 | x; θ) = hθ(x)

and thus

P (y = 0 | x; θ) = 1− hθ(x).

Or if we use p to represent the probability mass function, we can write this
more compactly as

p(y | x; θ) = hθ(x)y(1− hθ(x))1−y.

Assuming the n training examples are independently generated, we can
express the likelihood of the parameters as

n∏

i=1

hθ(x
(i))y

(i)

(1− hθ(x(i)))1−y(i) .

Maximizing this likelihood is equivalent to minimizing the negative log
likelihood function instead. We can express this as a cost function

J(θ) = −
n∑

i=1

y(i) log(hθ(x
(i))) + (1− y(i)) log(1− hθ(x(i)))

= −
n∑

i=1

y(i) log(g(θ · x(i))) + (1− y(i)) log(1− g(θ · x(i))).

Applying the gradient descent algorithm to J(θ), and using g′(z) = g(z)(1−
g(z)) when computing ∇J(θ), we obtain the following form for applying
stochastic gradient descent in this case.

θj+1 = θj − αx(i)(g(θj · x(i))− y(i)).

Machine Learning 373

This equation can be expressed in terms of the design matrix X as

θj+1 = θj − αXT (g(Xθ)− y), (8.13)

where g(Xθ) means applying g componentwise to Xθ.
Clearly the update rule is very similar to equation (8.8), which we obtained

in the case of linear regression, except for the transformation of Xθ through
the logistic function. Just as in the case of linear regression, one can regularize
logistic regression using an `1 or `2 penalty.

To apply code like that shown in Listing 8.1 to a classification problem,
the primary modification needed would be to change LinearRegression to
LogisticRegression, which is another component built into scikit-learn.

The ideas in this section apply to classification into more than two response
classes as well. For example, the performance of a student at the end of the
year might be classified as outstanding, satisfactory, or unacceptable. For ease
of notation let us call these classes 2, 1, and 0 respectively. We can carry
out this classification by creating three different logistic regression classifiers,
where

hθi(x) = p(y = i | x; θi) i = 0, 1, 2,

that is, hθi(x) is the probability that x is in class i rather than either of
the other two classes. (Here the other two classes are thought of as a single
class which represents “not class i.”) For a new input x, we can predict its
associated class as

arg max
i=0,1,2

hθi(x).

We have therefore now seen two models that can be used in Step 4 of
the machine learning workflow from Section 8.3, linear and logistic regres-
sion. Both of these were reviews of techniques covered earlier in the text, and
were used to provide a gentle introduction to the machine learning workflow
and gradient descent. In Sections 8.7 and following, we introduce new mod-
els specific to machine learning that can be used in place of linear or logistic
regression when they are more suited to the problem facing the data scientist.

But first, we must address the question that the previous section raises:
When using a classification model like logistic regression in the machine learn-
ing workflow, how do we score the model in Step 5 of that workflow? Section
8.6.3 answers that question and discusses some related modifications.

8.6.3 Evaluating the performance of a classifier

Quantifying the performance of a classifier is necessary for understanding
its effectiveness, comparing it with other models, selecting the best model
from a list of models, tuning hyperparameters (like λ in regularization), and
more. We address issues related to quantifying the performance of a classifier,
and cover various metrics, including accuracy, F1 score, and AUC.

374 Data Science for Mathematicians

Actual
value

Predicted value

positive negative Total

p
o
si

ti
v
e

True
Positive

False
Negative

P′

n
e
g
a
ti

v
e

False
Positive

True
Negative

N′

Total P N

FIGURE 8.10: Confusion matrix for a binary classifier.

The performance of a binary classifier can be measured by the proportion
of test records it classifies correctly. But consider the case of an HIV detection
test, where such a measure is not sufficient. Suppose 10 in 1000 people in a
community have HIV. A test can declare every person HIV negative and still
achieve 99% accuracy. But clearly, such a test has failed its objective!

In general, the problem with measuring only accuracy is that in some cases,
successful detection of one class is more important than the detection of the
other class. A confusion matrix is a useful representation of the information
needed for studying the performance of a binary classifier, and its general form
appears in Figure 8.10.

Assuming the classes being predicted are “positive” and “negative,” the
matrix will contain four counts, one for each of the four categories shown
in the figure. Let TP stand for the number of True Positive cases, that is,
positive cases classified as positive, the top left entry in the table, and define
FP , TN , and FN analogously.

The accuracy of a classifier is defined as

Accuracy =
Number of correct predictions

Total number of predictions
=

TP + TN

TP + TN + FP + FN

Recall and precision are the preferred metrics for unbalanced datasets
(where the number of cases in one class outweighs the numbers in the other
class, like the community of 1000 with 10 cases of HIV). Precision measures
the fraction of positive predictions that are correct.

Precision =
TP

TP + FP

Machine Learning 375

Actual
value

Predicted value

positive negative Total

p
o
si

ti
v
e

1 9 10

n
e
g
a
ti

v
e

0 990 990

Total 1 999

FIGURE 8.11: Confusion matrix for an HIV classifier.

It answers the question that someone with a positive diagnosis cares about:
How likely is it that my diagnosis is actually true? Recall measures the fraction
of true positives that are detected.

Recall =
TP

TP + FN

It answers the question that a community health official might ask: What
proportion of the HIV cases in the community are we detecting?

It is possible to do well on some metrics at the cost of others; for exam-
ple, an HIV test with the confusion matrix in Figure 8.11 has high precision
and accuracy scores (1 and 0.991, respectively), but a poor recall score (0.1).
Building a classification problem which maximizes both precision and recall
is the key challenge of classification problems. A popular metric, the F1 score,
integrates the two metrics by taking the harmonic mean of precision and recall,

F1 =
2 · Precision · Recall

Precision + Recall
.

A high F1 score ensures a reasonably high value of both precision and recall.
In a number of binary classification techniques (including logistic regres-

sion and the näıve Bayes classifier, which we will study soon) the classifier
returns a (continuous) real value, representing the probability of the observa-
tion belonging to the positive class. In such cases, the classification boundary
between classes must be determined by a threshold value. As the threshold
value changes, the classification of test instances changes.

The receiver operating characteristic curve, or ROC curve, shown in Figure
8.12, illustrates the diagnostic ability of a binary classifier as the threshold of

376 Data Science for Mathematicians

FIGURE 8.12: An example ROC curve from an analysis of the Titanic dataset.

discrimination varies. It plots the true positive rate (TPR) against the false
positive rate (FPR).

TPR =
TP

TP + FN
FPR =

FP

TN + FP

Notice that TPR is just another name for recall, and FPR is analogous but for
false positives. Each threshold value results in new TPR and FPR values and
hence a point on the ROC curve; from any given classifier, we can compute
such a curve.

The best possible prediction will yield a point in the upper-left corner of
the ROC curve implying a TPR value of 1 and FPR value of 0. If all cases are
classified as belonging to the negative class this corresponds to the point (0, 0)
and if all cases are classified as belonging to the positive class this corresponds
to the point (1, 1).

We can quantify some attributes of a classifier by measurements of its ROC
curve. A good classification model will lead to an ROC curve located as close
as possible to the upper left corner of the diagram, while a classification model
close to random guessing will have an ROC close to the line TPR = FPR.8

The area under the ROC curve (commonly referred to as area under the curve,
AUC) is a common metric used for evaluating the performance of a classifier.
A perfect classifier has an AUC of 1, while a random guess classifier has an
AUC of 0.5. In fact, AUC can be thought of as the probability that a randomly
drawn member of the “negative” class will produce a score lower than the score
of a randomly drawn member of the “positive” class [207].

8If the curve were entirely below the TPR = FPR line, the modeler should interchange its
positive and negative predictions, producing a new classifier that gives better than random
predictions.

Machine Learning 377

While we will not go over the construction of the ROC curve in detail, it
suffices to say that the test records are first sorted according to their output
values and a threshold value corresponding to each of these output values is
used to compute the TPR and FPR values on the ROC curve corresponding
to the chosen threshold value.

8.7 Näıve Bayes classifier

The näıve Bayes classifier can be used in the same contexts as logistic
regression can—for classification. Like logistic regression, it models the prob-
ability of each target class based on the features. But unlike logistic regression,
it does not use a discriminative function (like logit) but rather assumes the
data points within each class are generated from a specific probability distribu-
tion (for example, the Bernoulli distribution). For this reason, the näıve Bayes
classifier is considered a generative classifier, and the logistic regression is
considered a discriminative classifier.

The learning models we have studied so far have modeled p(y | x; θ), the
conditional probability of the response variable given the predictors. Recall
the example of predicting whether a credit card transaction is fraudulent; in
such a case, y is a binary response (fraudulent or not), and x is a vector of
the available data about the transaction.

Now we adopt a different approach, studying features that characterize
fraudulent transactions and features characterizing legitimate transactions. In
this approach we will model p(x | y; θ), the class-conditioned probability.
We can use such models to predict whether a new transaction is fraudulent.

8.7.1 Using Bayes’ rule

Ignoring θ for a moment for simplicity, Bayes’ rule,

p(y | x) =
p(x | y)p(y)

p(x)
, (8.14)

helps us relate p(x | y) to p(y | x). Here p(y) represents the class prior,
i.e., the probability that a randomly chosen outcome x comes from class y,
while p(y | x) is the posterior probability9 that an outcome with features x
belongs to class y. Note that to predict the class based on the features, it is

9We speak only of probabilities in this section, not probability densities. Section 8.7.1.1
contains a method for handling continuous variables.

378 Data Science for Mathematicians

sufficient to predict the class y that has the highest p(x | y)p(y) value, since
the denominator p(x) is common to each class. In short, if p(x) 6= 0,

arg max
y

p(y | x) = arg max
y

p(x | y)p(y)

p(x)
= arg max

y
p(x | y)p(y). (8.15)

Our goals are thus to estimate p(x | y) and p(y). The näıve Bayes clas-
sifier estimates the class-conditioned probability p(x | y) in Bayes’ rule (8.14)
by assuming that the attributes of x are conditionally independent given the
class label y, that is, if x = (x1,x2, . . . ,xk), then

p(x | y) = p(x1 | y)p(x2 | y) · · · p(xk | y).

Let us understand this by way of an example.
Insurance claims are often filed after a traffic accident. An insurance

provider would like to determine if the insured party is at fault or not, for
claims purposes; let us call this target variable AF , with AF = 0 meaning
“not at fault” and AF = 1 meaning “at fault.” An incident report consists of
text describing the incident, such as “The insured car jumped the red light and
hit a vehicle turning,” and so on. We can represent each report as a feature
vector with length equal to the number of words in the English language. If a
word appears in the report then we assign a 1 to the coordinate corresponding
to this word, and otherwise we assign a 0.10

The independence assumption stated above says that p(red = 1 | AF = 1)
is independent of p(jumped = 1 | AF = 1) that is

p(red = 1 | AF = 1) = p(red = 1 | AF = 1, jumped = 1).

This is a strong assumption! For example, the phrase “jumped a red light” is
not uncommon, and so the words “jumped” and “red” occur together some-
what often. Thus the associated conditional probabilities are almost certainly
not independent. This is why the word “näıve” appears in the name of the
technique; we are intentionally ignoring these correlations, for a simpler model.
And doing so works fairly well in practice.

Without such a strong assumption, we would also have enormous data
storage concerns. Suppose x represents a vector (in our example a document)
where each co-ordinate xi is binary and y is also binary. Then the formula for
p(x | y)p(y) would depend on over 2m parameters, since x has m coordinates.
But under conditional independence, we need only about 2m parameters!
Thus the independence assumption can be viewed as a method for handling
the curse of dimensionality (introduced in Section 7.2) in this context.

10In practice, a lot of pre-processing is done before such representation vectors are created
(e.g., stop words removal, stemming, lemmatization, etc.) but we ignore these details for a
simpler example. The reader may recall that this data storage format was called a “term-
by-document matrix” and discussed in detail in Section 3.1.2.

Machine Learning 379

TABLE 8.5: Summary of the 1308 fares in the Titanic dataset (left) and a
discretization of that data into intervals (right).

Fare

Mean 33.30
Standard deviation 51.76
Minimum 0.00
25th percentile 7.90
50th percentile 14.45
75th percentile 31.26
Maximum 512.33

Fare interval Assigned ordinal value

(−∞, 7.90) 1
[7.90, 14.45) 2
[14.45, 31.26) 3

[31.26,∞) 4

8.7.1.1 Estimating the probabilities

For categorical variables, the conditional probability p(X = xi | Y = y)
can be estimated by the fraction of training instances of class y that have
attribute xi. In the example above, p(red = 1 | AF = 1) can be estimated
as the fraction of claim reports in which the insured party was at fault that
contain the word “red.” However, if the feature is continuous, we can discretize
the continuous variable and replace it with a discrete value corresponding to
the interval in which the value lies, in effect obtaining an ordinal feature. Once
we have the intervals, we can estimate p(X = x | Y = y) by computing the
fraction of training instances of class y that belong to the interval to which x
belongs.

For example, if we consider the famous Titanic dataset, whose fare variable
is summarized on the left of Table 8.5, we can divide its values into intervals
using the quartiles in the summary statistics, with the result shown on the
right of the same table. Thus a $20 fare would be assigned a feature value
of 3. Now we can treat this feature as we did the categorical variables. The
estimation error in the conditional probability will depend on the size of the
intervals.

Another option is to assume a form for the probability distribution for
p(x | y) (for example, a Gaussian distribution), estimate the parameters of
the distribution using the training data, and then obtain the probabilities from
the realized distribution. As for the prior p(y), we can compute the fraction
of cases in the training set that belong to class y.

8.7.1.2 Laplace smoothing

We now know how to estimate p(y | x), but one problem remains. Consider
a word, such as “drone,” that does not appear in any claims report in our
training set (perhaps because drones were not in common use when our data
was collected), but the word does appear in a report in the test set (because
drones are more common now). Let x represent the feature vector associated

380 Data Science for Mathematicians

to that report. Because the word is not mentioned in the training set, our
method estimates

p(drone = 1 | AF = 1) = p(drone = 1 | AF = 0) = 0.

The following problem arises when we attempt to compute p(AF = 1 | x).

∏
i p(x

(i) | AF = 1)p(AF = 1)∏
i p(x

(i) | AF = 1)p(AF = 1) +
∏
i p(x

(i) | AF = 0)p(AF = 0)
=

0

0
(8.16)

This problem arose because we erroneously concluded that, because we
haven’t observed an event (the word “drone”) in the finite observations in
our training data, it happens with probability zero. Even unobserved events
usually have some nonzero probability, however small. The technique called
Laplace smoothing (or additive smoothing) can resolve this, as follows.

The key problem underlying equation (8.16) is that there are some indices

j for which every x
(i)
j = 0, thus making p(x

(i)
j = 1 | y = C) = 0 for any class C.

This is because the default way to estimate the probability p(x
(i)
j = 1 | y = C)

is empirically: Write nC for the total number of occurrences of word j in
training documents of class C and write |C| for the total number of occurrences
of any word (from the set of words that we care about) in training documents of

class C. Then the following natural empirical estimate for p(x
(i)
j = 1 | y = C)

has problems when |C| = 0.

p(x
(i)
j = 1 | y(i) = C) =

nC
|C| .

We deviate from that problematic default by choosing some other default
probability p that is independent of the data we’ve seen. In a text analysis
problem like this one, it is common to choose p = 1

k , the reciprocal of the
number of words in the language. We then create a combination of these two
probabilities using a parameter m as follows.

p(x
(i)
j = 1 | y(i) = C) =

nC +mp

|C|+m
(8.17)

Consider how this formula behaves for different values of m. For m = 0 we
return to the empirical estimate nC

|C| . As m→∞, this value moves towards the

other probability estimate, p. Thus m is a hyperparameter that the data ana-
lyst can choose to shift equation (8.17) closer to or farther from the empirical
estimate. Although we use the letter m, it need not be an integer; the sym-
bol α is sometimes used. It is common to choose m = k, which coupled with
p = 1

k , yields estimates of the form nC+1
|C|+k .

8.7.2 Health care example

Consider the small set of five (fictional) hospital records shown in Table 8.6,
classifying each patient as either having a heart condition or being diabetic.

Machine Learning 381

TABLE 8.6: Fictional health care data used in an example in Section 8.7.2.

Dataset Document ID Words Class
Train 1 diabetes, amputation, edema diabetic
Train 2 insulin, diabetes, kidney diabetic
Train 3 heart, breath, attack heart condition
Train 4 amputation, heart diabetic
Test 5 insulin, diabetes, breath

TABLE 8.7: Probabilities computed for the example in Section 8.7.2.

j p(x
(i)
j = 1 | y = diabetic) p(x

(i)
j = 1 | y = heart condition)

diabetes 3/16 1/11
amputation 3/16 1/11
edema 2/16 1/11
insulin 2/16 1/11
kidney 2/16 1/11
heart 2/16 2/11
breath 1/16 2/11
attack 1/16 2/11

Total 16/16 11/11

A real example would include a much larger number of records and a much
larger list of words, but we keep this list small so that we can discuss it with
ease. We wish to train a model that can predict a patient’s class based on the
words that appear in the patient’s records.

In order to apply the näıve Bayes classifier, we will need to first compute

p(x
(i)
j = 1 | y(i) = C) for each word j and each class C. We will use equation

(8.17) with m = k and p = 1
k , as suggested above. Because we are focused on

only eight different words in this small example, we have m = 8 and p = 0.125,
and equation (8.17) simplifies to nC+1

|C|+8 .

Consider just one example, with C = heart condition and say j = 1 is the
index for the word “diabetes.” In such a case, we have nC = 0 and |C| = 3,
yielding the probability estimate

p(x
(i)
1 = 1 | y = heart condition) =

0 + 1

3 + 8
=

1

11
.

Repeating such a computation for each j, C yields the results in Table 8.7.
With these probabilities in hand, we can apply the näıve Bayes classifier

to the one item in our test dataset (the bottom row of Table 8.6). We apply
equation (8.15), meaning that we should compute both p(x | y = diabetic) and
p(x | y = heart condition) and find which class gives the larger probability.

382 Data Science for Mathematicians

Each probability will use the conditional independence assumption inherent
in the model. If C = diabetic, then

p(y = C | insulin = 1, diabetes = 1, breath = 1)

∝ p(insulin = 1 | y = C) · p(diabetes = 1 | y = C)

· p(breath = 1 | y = C) · p(y = C)

=
2

16
· 3

16
· 1

16
· 3

4
≈ 0.0011

A similar computation with C = heart condition would yield approximately
0.0004. Choosing the y with the larger p(x | y) in this case means that our
model would predict y = diabetic.

In an applied context where the outcome is crucial, classification decision
procedures like this one are not implicitly trusted. For instance, borderline
cases may be referred to humans for expert classification. Or in a high-stakes
environment such as health care, the automated system may just be a reference
estimate that a doctor would use when considering a diagnosis.

The näıve Bayes classifier has many attractive features as a model; it
is fast to apply to a test case, robust, and has a low storage requirement.
Furthermore, as new training examples become available, it is computationally
inexpensive to update the probabilities in Table 8.7 (or the analogous, larger
table in a real application) with the new data. In cases where the independence
assumptions hold (so that the word “näıve” may be dropped), it is in fact the
Bayes optimal classifier.

We now take a moment to position näıve Bayes relative to the classification
methods we introduce in the upcoming sections. Support vector machines (in
Section 8.8) are a powerful technique, but for binary classification only, and
thus näıve Bayes remains relevant when the number of classes is three or
more. Decision trees (in Section 8.9) are more sophisticated than näıve Bayes,
but can suffer from fragmentation (explained in that section), so in domains
with many equally important features, näıve Bayes remains the more effective
option. Furthermore, even when a practitioner plans to implement a more
sophisticated system than näıve Bayes, it is still common to apply näıve Bayes
first to use as a baseline for comparison when the more accurate classifier is
later implemented.

8.8 Support vector machines

Support Vector Machines (SVMs) are binary classifiers that use separating
hyperplanes (explained below) as decision boundaries between two classes.
They differ from linear classifiers like logistic regression in that the separating
hyperplane is chosen to maximize the margin between classes; linear classifiers

Machine Learning 383

are happy with simply separating the classes without any regard for margin
of separation.

Section 8.8.1 introduces SVMs under the assumption of linearly separa-
ble classes. This assumption rarely holds of real world data, but we use it
to develop the key ideas, then consider the nonlinearly-separable setting in
Section 8.8.2. Finally, we consider nonlinear class boundaries in Section 8.8.3,
in which we will introduce the widely-used kernel technique, a generalization
of similarity measures based on inner products.

The term Support Vector Classifier (SVC) is often used to describe an SVM
without the kernel technique, reserving the term SVM for when the kernel
technique is required. We will not make this distinction, but we point it out
because the classes in scikit-learn implementing SVMs use this terminology
(SVC, NuSVC, and LinearSVC).

8.8.1 Linear SVMs in the case of linear separability

Suppose we have a two-class classification problem in which the two classes
are linearly separable, that is, there is a hyperplane such that all points on
one side of the hyperplane belong to one class and all points on the other side
belong to the other class. In general, we would expect there to be infinitely
many hyperplanes that can separate two such classes, each of which would
therefore exhibit zero error on the training dataset. And yet not all such
hyperplanes will perform equally well when exposed to unseen data.

We therefore seek a hyperplane that provides the largest separation
between the classes, that is, the training points from each class are as far
as possible from the hyperplane, as in Figure 8.13. Such a classification prob-
lem is of course predicated on the idea that data in the same class sit near to
one another, and thus the margin shown in the figure gives the word “near”
as much flexibility as possible before the chosen hyperplane would misclassify
a test example.

Let {(x(i), y(i)) | i = 1, 2, . . . , n} be a set of training data and for conve-
nience let the classes be +1 and −1. As before, each x(i) is a vector of length
p. The training boundary for a linear classifier can be expressed in the form

x · θ + θ0 = 0,

where θ and θ0 are parameters of the model. For any point x+ above the
decision boundary, x+ · θ + θ0 > 0 and for any point x− below the decision
boundary, x− · θ + θ0 < 0.

Suppose the class label of points above the hyperplane x · θ+ θ0 = 0 is +1
and the label for those below is −1. Let X+ be the set of x vectors in the +1
class that are closest to the hyperplane x · θ+ θ0 = 0; define X− analogously.
Then the x ∈ X+ lie on the hyperplane x · θ + θ0 = k+ for some constant k+

and the x ∈ X− lie on some x · θ + θ0 = k−, with k− < 0 < k+. The sets X+

and X− play a special role, as we will see in upcoming sections.

384 Data Science for Mathematicians

FIGURE 8.13: A two-class classification problem (positive and negative) with
two features, corresponding to the x- and y-axes. The solid line is a hyperplane
maximizing its distance from the points on either side, with the margins shown
by the dashed lines. Support vectors are circled. SVMs can be used in any
number of dimensions, but we choose two here for ease of visualization.

We can rescale θ and θ0 so that the above margin hyperplanes satisfy the
equations

H+ : x · θ + θ0 = 1

H− : x · θ + θ0 = −1.

The distance between H+ and H− is therefore given by 2
‖θ‖ . We therefore have

two complementary facts; if y = +1 then x · θ + θ0 ≥ 1 and if y = −1 then
x · θ + θ0 ≤ −1. We can express these two facts together as (x · θ + θ0)y ≥ 1.

We can use this as a constraint in an optimization problem. We would like
to find θ and θ0 that maximize the distance 2

‖θ‖ between the margins while

respecting the constraints

(x(i) · θ + θ0)y(i) ≥ 1 ∀i = 1, 2, . . . , n. (8.18)

Reframing this in terms of a cost, we can say we want to minimize the cost

function ‖θ‖
2

2 subject to the same constraints.

Using Lagrange multipliers, the objective function ‖θ‖
2

2 and the constraints
in (8.18) can be expressed as the task of minimizing

J(θ) =
‖θ‖2

2
−

n∑

i=1

λi((x
(i) · θ + θ0)y(i) − 1). (8.19)

We must assume that λi ≥ 0, because if we do not do so, then any unmet
constraint could make J(θ) unbounded below as follows. Suppose (x(i) · θ +

Machine Learning 385

θ0)y(i) < 1; then we can choose a large negative λi so that −λi((x(i) · θ +
θ0)y(i) − 1) is as negative as we like. This lets us decrease J(θ) indefinitely
outside the feasible region, and thus its minimum will be outside the feasible
region. It would not be a faithful representation of the constraints in (8.18),
so we require each λi ≥ 0.

The resulting problem (8.19) is a convex optimization problem, so we can
try to solve it analytically in the usual way.

δJ

δθ
= θ −

n∑

i=1

λiy
(i)x(i) = 0 (8.20)

δJ

δθ0
= −

n∑

i=1

λiy
(i) = 0 (8.21)

But the Lagrange multipliers are not yet known, so we do not have an explicit
formula for θ and θ0.

Chapter 6 discussed Lagrange duality in detail, and we can apply it here to
arrive at the following constraints on the Lagrange multipliers, which Chapter
6 called the KKT conditions.

1. λi ≥ 0 ∀i = 1, 2, . . . , n

2. λi((x
(i) · θ + θ0)y(i) − 1) = 0 for i = 1, 2, . . . , n.

The second of these conditions implies that λi = 0 or (x(i) · θ + θ0)y(i) = 1.
Thus λi can be greater than 0 only for those training points (x(i), y(i)) for
which (x(i) · θ+ θ0)y(i) = 1, that is, the point (x(i), y(i)) lies on the boundary.
The x(i)’s for which λi > 0 are called the support vectors.

Using the constraints (8.20) and (8.21) on λi we can rewrite the (primary)
optimization problem as

‖θ‖2
2
−

n∑

i=1

λi((x
(i) · θ + θ0)y(i) − 1) (8.22)

=
1

2

n∑

i=1

n∑

j=1

λiλjy
(i)y(j)x(i) · x(j) +

n∑

i=1

λi −
n∑

i=1

λiy
(i)x(i) ·

n∑

j=1

λjy
(j)x(j)

=

n∑

i=1

λi −
1

2

n∑

i=1

n∑

j=1

λiλjy
(i)y(j)x(i) · x(j) (8.23)

Equation (8.23) is the dual Lagrangian formulation of the optimization prob-
lem and is entirely in terms of the Lagrange multipliers and the training data.
Instead of a primary problem which was framed as a minimization problem,
this dual formulation is a maximization problem and can be solved using
quadratic programming or gradient descent. Once the multipliers are found,
we can compute an estimate θ̂ using (8.20). Since the λi are usually computed

386 Data Science for Mathematicians

numerically, they are only approximations, hence θ̂0 may not be exact, but can
be estimated as the average of the θ0 values obtained by solving the equation
y(i)(θ · x(i) + θ0) = 1 for each support vector (x(i), y(i)).

To predict the class of a test case z, we can use our estimated θ̂ and θ̂0 as
follows.

y =

{
+1 if z · θ̂ + θ̂0 > 0

−1 if z · θ̂ + θ̂0 < 0

If we cared only about the training data, then considering when z · θ̂+ θ̂0 ≥ 1
or z · θ̂ + θ̂0 ≤ −1 would suffice. But this is precisely the point of SVMs; we
have created an optimal margin around the training data, so that test data
that may satisfy z · θ̂ + θ̂0 ∈ (−1, 1) is also classified sensibly.

8.8.2 Linear SVMs without linear separability

In practice it is unlikely that one finds a hyperplane that perfectly separates
two classes. Because real data is noisy, there will usually be some points that
lie on the wrong side of any hyperplane we might try to use as a classifier. In
such cases, we may want to find a hyperplane that provides the best separation
between the classes while ensuring that points on the wrong side of the dividing
hyperplane are not too far from it. Let ξi ≥ 0 represent the slack, the amount
by which the ith training point is on the wrong side of the margin (or zero if
it is correctly classified), as in Figure 8.14. We can reframe the problem from
Section 8.8.1 as one of minimizing

‖θ‖2
2

+ C

n∑

i=1

ξi (8.24)

such that for i = 1, 2, . . . , n,

(x(i) · θ + θ0)y(i) ≥ 1− ξi and ξi ≥ 0.

The second term in the objective function penalizes a decision boundary
with large slack variables and C is a hyperparameter that encapsulates the
tradeoff between minimizing the training error and maximizing the margin.
Figure 8.15 shows that lower values of C increase the margin and the training
error but may generalize better to new data, as we will see at the end of this
section.

The associated Lagrange primal problem can be framed as

Lp =
‖θ‖2

2
+ C

n∑

i=1

ξi −
n∑

i=1

λi((x
(i) · θ + θ0)y(i) − (1− ξi))−

n∑

i=1

µiξi (8.25)

where λi and µi are Lagrange multipliers. Like earlier, these lead to the fol-
lowing KKT conditions.

1. ξi ≥ 0, λi ≥ 0, and µi ≥ 0

Machine Learning 387

x1

x2

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

−−

−

−

−

−

−
−

−

−

−
−

−

−

−

−

ξi

ξj

x(i)

x(j)

H+ H0 H−
x · θ + θ0 = +1

x · θ + θ0 = −1

FIGURE 8.14: Illustration of slack variables, as introduced in Section 8.8.2.

2. λi((x
(i) · θ + θ0)y(i) − (1− ξi)) = 0

3. µiξi = 0

The associated dual problem can be obtained by combining these conditions
with equation (8.25), yielding

n∑

i=1

λi −
1

2

n∑

i=1

n∑

j=1

λiλjy
(i)y(j)x(i) · x(j). (8.26)

This is very similar to the separable case except that 0 ≤ λi ≤ C, which
follows from the constraint δLp

δξi
= 0 and λi ≥ 0 and µi ≥ 0.

The solution for θ̂ is again expressed in terms of the fitted Lagrange mul-
tipliers λi,

θ̂ =
n∑

i=1

λiy
(i)x(i),

and one can compute θ̂0 as before. We can determine the class of any new test
vector z by checking the sign of z · θ̂ + θ̂0 and again only the support vectors
matter.

Notice the computational efficiency implicit in the previous sentence.
Applying the model to a new observation z requires computing the dot prod-
uct and sum z · θ̂+ θ̂0 using vectors of length n, the size of the training data.

388 Data Science for Mathematicians

C = 100 (leaner margin)

C = 1 (wider margin)

FIGURE 8.15: SVM with nonlinearly-separable data shown using two different
C values, but the same set of data. The smaller C value leads to more ξi > 0,
but also more data points are used in the computation of θ̂ and θ̂0.

Machine Learning 389

−

−
−

−

−

−

−
−

−

−
−

−

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

++

+

++

FIGURE 8.16: Classes separated by a nonlinear boundary.

Some applications include vast amounts of training data, and thus this may
be an expensive loop to run. But since we know in advance that most of the
λi are zero (since typically a small portion of a large dataset are support vec-
tors) we can pre-compute just the list of indices i for which λi is nonzero,
and significantly reduce the computational cost of applying our model to new
data.

Considering the second of the KKT conditions given above, we see that
if (x(i) · θ + θ0)y(i) − (1 − ξi) 6= 0 then we must have λi = 0. This happens
precisely when x(i) is not one of the support vectors. Consequently the formula
for θ̂ will include only those terms where x(i) is a support vector. Since we
already know that the method for computing θ̂0 uses only support vectors,
we see their crucial role in impacting the classification results of this model—
indeed, no other data points come into play! Thus we see the importance of
the hyperparameter C, which chooses how many of the data points will be
used as support vectors, as shown in Figure 8.15.

8.8.3 Nonlinear SVMs

The support vectors we have studied so far do not allow for nonlinear
decision boundaries. For example, consider two classes placed in concentric
circles in R2, with

y =

{
−1 if x2

1 + x2
2 < 1

+1 if x2
1 + x2

2 ≥ 1,

as in Figure 8.16.
There is no linear boundary that separates the two classes. But all is

not lost. If we are willing to view the same data in a higher dimensional
space, we might succeed. If we view this data in R3 by embedding (x1,x2)
as (x1,x2,x

2
1 + x2

2), then points of class −1 are clearly below (in the third

390 Data Science for Mathematicians

coordinate) the points of class +1. Hence the two classes can be separated by
a linear boundary that corresponds to a circle in R2.

Just as we have studied how to extend linear regression to nonlinear regres-
sion using arbitrary basis functions bi(x), such as polynomials, in

y = θqbq(x) + θq−1bq−1(x) + · · ·+ θ1b1(x) + ε,

we can take a similar approach with SVM classifiers and consider arbitrary
transformations φ : Rp → Rq given by

φ(x) = (b1(x), b2(x), . . . , bq(x)).

For suitable φ, this approach produces a linear boundary in the transformed
space for a nonlinear boundary in the original space.

There are two potential problems with this approach. First, we do not
know which transformation φ will produce a linear boundary in the trans-
formed space. Second, even if we know an appropriate map φ, it may be
computationally expensive to solve the constrained optimization problem in
a high-dimensional feature space.

Let us handle the second problem first. Suppose we have an appropriate

map φ, so that the problem can be represented as a minimization of ‖θ‖
2

2 such
that

(φ(x(i)) · θ + θ0)y(i) ≥ 1, ∀i = 1, 2, . . . , n.

This is the optimization problem we saw in the linear SVM case, except that
x has been replaced by φ(x). The associated dual problem can we written as

n∑

i=1

λi −
1

2

n∑

i=1

n∑

j=1

λiλjy
(i)y(j)φ(x(i)) · φ(x(j)). (8.27)

Here φ(x(i))·φ(x(j)) measures the similarity of x(i) and x(j) in the transformed
space. If the dimension of the transformed space to which x is mapped is large,
computing φ(x) and φ(x(i)) · φ(x(j)) can be computationally intensive. But
there is some good news here. We may be able to compute the inner product
above in the original space!

Let us consider an example. Let x = (x1,x2), c > 0 and φ : R2 → R6 be
given by

φ(x) = (x2
1,x

2
2,
√

2x1x2,
√

2cx1,
√

2cx2, c).

This general transformation has many properties we won’t investigate here,
but one worth noting is that a circle maps to a linear boundary in the trans-
formed space, because x2

1 + x2
2 = c can be written as φ(x) · θ + θ0 when

θ = (1, 1, 0, 0, 0) and θ0 = −c. If we compute φ(u) · φ(v), we see that it can

Machine Learning 391

be expressed in terms of u and v directly.

φ(u) · φ(v)

= (u2
1,u

2
2,
√

2u1u2,
√

2cu1,
√

2cu2, c) · (v2
1,v

2
2,
√

2v1v2,
√

2cv1,
√

2cv2, c)

= u2
1v

2
1 + u2

2v
2
2 + 2u1u2v1v2 + 2cu1v1 + 2cu2v2 + c2

= (u · v + c)2

In general, we define K(u,v) = φ(u) · φ(v) to be the kernel function
induced by φ. Just as in equation (8.27), the dual problem does not depend
on the exact form of the mapping function φ but rather on the induced kernel
function.

This is of particular value when the computation of the inner product on
the transformed space can be done on the much smaller original space. Which
brings us to the question of which φ one can choose so that φ(u) ·φ(v) behaves
nicely. The following theorem is quite useful.

Theorem 7 (Mercer) A kernel function K can be expressed as K(u,v) =
φ(u) · φ(v) if and only if for any function g(x) with

∫
g2(x)dx finite,

∫
K(x,y)g(x)g(y)dxdy ≥ 0.

It can be used to show the value of the following three popular kernel
functions.

1. the polynomial kernel, (u · v + c)q for q ∈ N

2. the sigmoid kernel, tanh(a(u · v) + b) for a, b ≥ 0

3. the Gaussian kernel, e−‖u−v‖
2/2σ2

for σ 6= 0

We leave it to the reader to verify that these indeed are kernel functions.
Another characterization of kernel functions besides Theorem 7 is as fol-

lows. Given any m points x(1),x(2), . . . ,x(m) and a kernel function K, we
can consider an m × m kernel matrix M such that Mi,j = K(x(i),x(j)) =
φ(x(i)) · φ(x(j)). The function K is a kernel function if and only if the asso-
ciated kernel matrix is symmetric positive semi-definite for any m points,
x(1),x(2), . . . ,x(m) [431, chapter 3].

Figure 8.17 shows two classes, one comprised of two independent normal
random variables x1,x2 and the other satisfying x2

1+x2
2 > 4. Note the presence

of some lighter points outside the circle x2
1+x2

2 = 4. A nonlinear support vector
machine with Gaussian kernel was used to separate the two classes, and its
decision boundary is the loop shown in the figure.

The Gaussian kernel is also called the Gaussian radial basis function
(RBF). This kernel takes smaller and smaller values as two points x and y are
further apart in the original space. Surprisingly, the associated transformation

392 Data Science for Mathematicians

FIGURE 8.17: A nonlinear SVM with Gaussian kernel.

space of φ for the RBF kernel is infinite dimensional, even though computing
the kernel is easy.

Many machine learning methods besides SVMs benefit from this kernel
trick where a computation that requires φ(x(i)) · φ(x(j)) can instead be done
in the input space. For example, this method can be used in logistic regression
[520], linear regression, and k-means clustering. This trick can be leveraged
to focus calculations locally or indirectly increase the feature space.

8.9 Decision trees

The final important machine learning model we cover here is decision trees,
a conceptually simple, non-parametric technique supporting both classifica-
tion and regression. It stratifies the feature space into simple regions (usually
rectangular) and then fits a constant model on each simple region. Typical
constant models are majority class (mode) for classification problems and
mean for regression problems.

This has much more geometric flexibility than other methods, which comes
with both advantages and disadvantages. For example, consider the binary
data shown in each image in Figure 8.18. While there may be kernel functions
that could make the decision boundary a single plane in a higher-dimensional
space, it would be nice to have a technique that is capable of learning the

Machine Learning 393

+

−

−
−

−

−

+

−

−

−

−

+

+−

−

+

−

−

+

−

−

−

−

−

+
−

−

− −

+
+
+

−

+

+ −

−

−
+

−
−

−

−

−

−

−

−

−

−

−

+

−

−+

+

+

+
−

+

+

−

+

+

+
+

+
−

−

+

−−

−

+

−

+

+

+

− +

−

−

+

+

−

−

−

−

+

−

+
−

+
+

−

−

−
−

+

−
−

+

−

+

−

−

+

−

+

−

−
−

++

+

−−

+

+
−

+

−
−

−

−

+

+

++

− +

+
−

−

−

−

+

−

−−

+

−

− +

+

+

−

−−

−

−

+

+

+

−

+

−

−

+

−

−

FIGURE 8.18: Two examples of binary classification datasets with nontrivial
geometric structure.

shape of each class from the data itself, which decision trees can do. The
corresponding disadvantage is concern about fitting the model too well to the
data, because it is capable of tailoring itself very well to the shape of the data
it is given.

The key idea behind decision trees is to ask a sequence of carefully chosen
questions about the features. Each response leads to a follow-up question until
the model has narrowed its focus to a small enough subset of the data that it
has a reasonable guess about the correct class (in the case of a classification
problem) or an appropriate value (in the case of a regression problem). These
questions can be organized in a hierarchical structure of nodes and directed
edges, a tree, with the typical graph-theoretic meaning. Unlike trees in nature,
decision trees are represented with the root on top, so that the questions
one asks proceed down the page. All nodes except the root have exactly one
incoming edge.

Non-leaf nodes contain a decision rule, embodying the idea of asking a
question of the data and proceeding down the appropriate branch based on the
response received. Leaf nodes, instead, are assigned a class label or value, and
are used for prediction. To use a decision tree to classify an observation, one
begins at the root and follows branches downward based on the relationship
between the decision rules at each node and the observation in question. When
one reaches a leaf, it is used to classify the observation.

Consider Table 8.8, containing responses to people’s desire to play ten-
nis given various weather conditions. A decision tree created from this data
appears in Figure 8.19, with the root at the top and three leaves at the bottom.
Each node contains three values: The top is the best prediction of whether
people wish to play tennis given by that node (yes or no); the middle is the
percentage of the training data that passes through the node; and the bottom
is the proportion of that training data that is in the yes category.

394 Data Science for Mathematicians

TABLE 8.8: A table of data about whether people wish to play tennis on
various days, based on the weather for the day.

Outlook Temperature Humidity Windy Play tennis
sunny hot high no no
sunny hot high yes no
overcast hot high no yes
rainy mild high no yes
rainy cool normal no yes
rainy cool normal yes no
overcast cool normal yes yes
sunny mild high no no
sunny cool normal no yes
rainy mild normal no yes
sunny mild normal yes yes
overcast mild high yes yes
overcast hot normal no yes
rainy mild high yes no

Yes
100%
64%

No
71%
50%

No
36%
20%

Yes
36%
80%

Yes
29%
100%

Is outlook overcast?

Is humidity high?

No

Yes

Yes No

FIGURE 8.19: A decision tree for playing tennis, computed from the data in
Table 8.8. See Section 8.9 for an explanation of the format.

Machine Learning 395

TABLE 8.9: Possible binary splits on the outlook feature from Table 8.8.

Left branch Right branch
{sunny, overcast} {rainy}
{sunny, rainy} {overcast}
{rainy, overcast} {sunny}

For instance, at the root node, we see that the best guess in general for
whether people wish to play tennis is yes, which was computed from all 100%
of the training data, 64% of which had the target variable as yes. But if the
weather were sunny with high humidity, we could follow the appropriate path
downward from the root, ending at the leftmost leaf, and predict that people
are not likely to wish to play tennis in that situation. Our prediction would
be based on the 36% of the training data that has those attributes, because
in only 20% of those observations was the answer a yes.

8.9.1 Classification trees

Although we have mentioned that trees can be used for both classification
and regression problems, let us focus first on classification. The model we
discuss below forms the basis of most leading decision tree models today.
Though our model below does not restrict the number of splits at a node,
most libraries implementing decision trees limit trees to binary splits. This
is due to the large number of partitions (2q−1 − 1) that are possible for an
unordered variable with q values, even in the case of binary splits. For instance,
consider from Table 8.8 the predictor “outlook,” which has three levels. We
must consider the 22 − 1 possible ways to separate its values, which are in
Table 8.9.

Building a decision tree with minimum training error can be computation-
ally very expensive. In fact, finding such a decision tree is an NP-complete
problem [241]. Instead of searching for the best tree, we will use a greedy
approach to building a tree that is locally optimal and forms the basis of lead-
ing decision tree models like classification and regression tree (CART, used in
scikit-learn), ID3, C4.5, and others.

Initialize the tree with a single node, the root. Let Nt denote the training
records associated to node t, and place all training records in Nroot. Let the
list of all classes be c1, . . . , ck. If all records in Nt belong to the same class, we
say node t is a pure node and we declare node t a leaf and label it with that
one class. Otherwise, we use some splitting criterion I (to be discussed below)
to split Nt into smaller subsets that are used to form new child nodes. We
can apply this process recursively to grow each branch of the tree until each
ends in a leaf.

396 Data Science for Mathematicians

We will refine this procedure further, but first let us discuss some measures
commonly used as splitting criteria. In each,

p(ci | t) =
|{j | y(j) = ci}|

|Nt|

is the probability that an observation belongs to class ci given that it is in
Nt. We will apply each to the root node in the tennis example, which has 14
instances with 9 yes responses and 5 no responses.

1. Classification error: The classification error at node t is defined to be

1−max
i
p(ci | t). (8.28)

This splitting criterion measures the error that would be made if each
member of the node were assigned the most common class in Nt.

The classification error at the root node is 1− 9
14 ≈ 0.357.

2. Gini index: The Gini index at node t is defined as the total variance
at node t across all classes,

∑

i

p(ci | t)(1− p(ci | t)) = 1−
∑

i

p(ci | t)2. (8.29)

The Gini index at the root is 1−
((

5
14

)2
+
(

9
14

)2) ≈ 0.459.

3. Entropy: The entropy at node t is given by

−
∑

i

p(ci | t) log2(p(ci | t)), (8.30)

where 0 log2 0 is treated as 0.

The entropy at the root is −
(

5
14 log2(5

14) + 9
14 log2(9

14)
)
≈ 0.940.

In Figure 8.20, we can see the three splitting criteria together for a binary
classification problem where the horizontal axis represents the fraction of pos-
itive instances at a node and the vertical axis represents the splitting criterion
value. Each splitting criterion takes values close to zero if all p(ci | t) are near
zero or one. They take small values when the node is pure and higher values
otherwise; they are measures of impurity at a node.

Since our goal is to achieve purer nodes, we can split a node into child
nodes based on any impurity criterion, call it I in general. For instance, if
a parent node with observations Nparent is split into two child nodes with
observations Nleft and Nright, the quality of the split can be defined as

∆ = I(parent)−
(|Nleft|
|Nparent|

I(left) +
|Nright|
|Nparent|

I(right)

)
.

Machine Learning 397

FIGURE 8.20: Splitting criteria in a binary classification setting, with entropy
on top, Gini index dashed, and classification error on bottom.

TABLE 8.10: Gains in purity by splitting on outlook at the root with the Gini
index as the splitting criterion.

Sunny Overcast Rainy
Play tennis Yes No Yes No Yes No
yes 2 7 4 5 3 6
no 3 2 0 5 2 3
I(child) 0.480 0.346 0.000 0.500 0.480 0.444
∆ 0.065 0.102 0.002

We use ∆ to measure the gain in purity by splitting on attribute i, and we
develop strategies for splitting a node in a way that maximizes ∆.

In our tennis example, let us compute the gain in purity for various ways
that we split the root node using the outlook variable as measured by the
Gini index. Outlook has three categories, so we must reduce it into a binary
decision; first consider the split overcast vs. not overcast. We can compute the
gain in purity at this split as

∆ ≈ 0.459−
(

4

14
· 0.0 +

10

14
· 0.5

)
≈ 0.102.

We could repeat this calculation for other ways to split outlook, and for
other features as well. Table 8.10 shows a portion of those calculations, focus-
ing on just the categories in the outlook variable for this example. The overcast
vs. not overcast binary split provides the greatest gain in purity. As Figure
8.19 shows, we get a pure node with preference to play tennis if it is overcast.

While the three splitting criteria are quite similar numerically, classifica-
tion error is less sensitive to changes in class probabilities, so entropy and Gini
index are more commonly used. But these measures tend to favor attributes
with a large number of distinct values, which can result in overfitting, leading
to unreliable predictions on unseen data.

398 Data Science for Mathematicians

To resolve this problem, one can use the splitting criterion that maximizes
the gain ratio, defined as ∆ divided by the split information, which is the
entropy of the class probabilities of the splits. For example, if a node with 20
observations splits into two nodes with 5 and 15 observations then the split
information is

−(0.25 log2(0.25) + 0.75 log2(0.75)).

It is possible that a split may yield child nodes where each new node has
the same predicted value. Though this may seem strange at first, recall that
a split is performed if there is an increase in purity. For example, if one of the
resulting nodes is pure with class y and the other node has 60% members in
class y, though both the nodes have the same label, we can be more confident
of the class of members in the first node.

On performing a split it may happen that one resulting node is empty.
This can happen if none of the training data has the combination of predictor
values associated with the split. In this case, we simply declare the parent
node a leaf and let its predicted class be the most common class among its
members.

Since real data can throw up surprises, it is possible the dataset has obser-
vations that agree on all feature variables yet have different class labels. For
instance, two customers may have exactly the same attributes, but one gets
approved for a credit card and other is rejected. If two observations in a node
have exactly the same combination of feature values, yet they belong to differ-
ent classes, we do not perform a split, but declare the node a leaf, and again,
let its predicted class be the most common class among its members.

So far, we have discussed only decision trees whose attributes are categori-
cal. We can naturally extend this to ordinal and continuous attributes as well.
Ordinal attributes are a special type of categorical data that come with an
additional restriction: when splitting the values into a left set L and a right
set R, every element of L must be less than every element of R. Continu-
ous attributes can be discretized as in Table 8.5 and then treated as ordinal
attributes.

We will put our discussion of classification trees on pause for a moment
while we consider using decision trees for regression, but there are additional
improvements to the application of decision trees in general (for both classi-
fication and regression) that we return to in Section 8.9.3, and in some ways
in Section 8.10 as well.

8.9.2 Regression decision trees

When the response variable is continuous, we make some minor modi-
fications to the technique of the previous section. As in the classification
case, a decision tree will partition the feature space into disjoint regions
R1, R2, . . . , Rq. Usually these will be high-dimensional rectangles, because
they will be formed by conditions of the form xj ≤ t, if xj is continuous.
For every observation that falls into one of these regions, we will make the

Machine Learning 399

same prediction. Unlike the majority vote in the case of classification trees,
here we will assign the mean of all response values for training observations
in the region. When forming the regions, we would like to minimize the RSS
given by

RSS =

q∑

j=1

∑

x(i)∈Rj

(y(i) − ȳRj
)2,

where ȳRj is the mean of the response variable across all training observations
in region Rj . Since it is computationally infeasible to consider every possible
partition of the feature space, just as it was in the classification problem, we
can take an inductive greedy approach.

Again, start with a root containing all observations. At every node our goal
is to find the best binary split based on the splitting variable xj and splitting
point s that minimizes the RSS across the resulting regions. Formally, let us
define

Rleft(j, s) = {x(i) | x(i)
j ≤ s} and Rright(j, s) = {x(i) | x(i)

j > s}.

Then our goal is to find j and s that minimize
∑

x∈Rleft(j,s)

(y(i) − ȳRleft(j,s))
2 +

∑

x∈Rright(j,s)

(y(i) − ȳRright(j,s))
2. (8.31)

For example, let us consider the Boston housing data and build a regression
decision tree for MEDV, using only the variables LSTAT and RM mentioned
earlier. At the root there are 506 observations with a mean MEDV of 22.53.
At this point the best split is with j = RM and s = 6.941. (One can find the
optimal s value by considering all midpoints between two adjacent values of
the variable, in this case RM.) Repeating the split on each of the child nodes
creates a tree with seven nodes, having depth two, as shown in Figure 8.21. It
shows a model that, for example, assigns all houses with LSTAT < 14.4 and
RM < 6.941 a MEDV value of 23.35.

We now return to considering modifications to the tree-building process,
which can benefit both classification and regression trees.

8.9.3 Pruning

The previous two sections described algorithms for splitting nodes, but
when is the tree-building process finished? We could split every node until all
nodes are pure or until all members of every node share the same attribute
values. While these approaches are sufficient to stop the tree growth, they
would typically make the tree very deep, which typically indicates overfitting.
One way to address this issue is to prune the decision tree using one of the
following strategies.

1. Prepruning prunes the tree before it is fully generated, by setting
a stringent criterion on the minimum improvement in ∆ (the gain in

400 Data Science for Mathematicians

RM ≤ 6.941
entropy = 84.42
samples = 506
value = 22.533

LSTAT ≤ 14.4
entropy = 40.273
samples = 430
value = 19.934

RM ≤ 7.437
entropy = 79.729

samples = 76
value = 37.238

entropy = 26.009
samples = 255
value = 23.35

entropy = 19.276
samples = 175
value = 14.956

entropy = 41.296
samples = 46
value = 32.113

entropy = 36.628
samples = 30
value = 45.097

FIGURE 8.21: Regression decision tree (left) with corresponding regions
(right).

Machine Learning 401

purity), that must be met for a node to be split. The choice of ∆ is a
balance between underfitting (if ∆ is too high) and overfitting (if it is
too low).

2. Postpruning grows a maximal tree and then prunes it back, either by
replacing a subtree with a node whose class or value is the mode or mean
of the constituent observations respectively in the subtree or by replacing
a subtree with its most commonly used branch. Postpruning usually
leads to better outcomes than prepruning, but is more cost intensive
since we have to build out the full tree first.

3. Cost-complexity pruning grows a large tree and then finds a subtree
T of it that minimizes the cost-complexity criterion

|T |∑

t=1

|Nt|I(t) + α|T |.

The sum is over terminal nodes only, of which there are |T |, a measure
of the complexity of the tree. I is the impurity criterion and α is a
hyperparameter, which can be determined using cross-validation. This
formulation has resemblance to lasso, in that if α is large, we get a small
tree, and if it is small, we get a large subtree within the original tree. In
particular, when α is zero, we get back the original, large tree.

The popularity of decision trees comes in part because they are inexpen-
sive, non-parametric models that can handle both classification and regression.
Furthermore, they are easy to construct and interpret, including explaining
their meaning to nontechnical stakeholders. Decision trees implicitly account
for interactions between features, support both categorical and quantitative
variables, and can even handle missing data. For instance, for categorical
data, we can add a category “missing” for each of the predictors. Once a
tree of depth d has been constructed, it has O(d) worst case complexity to
generate a prediction. Readers interested in experimenting with decision trees
can refer to the scikit-learn documentation for the DecisionTreeClassifier

class, which contains links to examples of how to use it [385].
But decision trees have some weaknesses as well. They do not perform well

on certain types of problems related to boolean logic, where building out the
tree is analogous to writing out a complete truth table. Because the algorithms
given above aspire only to local optimality, if a suboptimal split happens
early, it negatively affects the rest of the construction. In domains with many
equally important features, it is more effective to use SVMs than decision
trees, since decision trees can suffer from a problem called fragmentation.
This term describes the fact that each leaf of a tree uses only a small subset of
the training data, and thus each prediction is based on limited support from
the data. Decision trees can also be highly unstable because they are highly

402 Data Science for Mathematicians

dependent on the training data. So a different train-test split can give a very
different decision tree for the same dataset.

These disadvantages motivate some of the improvements in the following
section, which applies to decision trees and other models as well.

8.10 Ensemble methods

On the British and American game show Who Wants to be a Million-
aire?, each contestant can use once the privilege of polling the audience for
the answer to a multiple choice question on which the contestant may be
stumped. The audience usually includes people who want to be on the show,
so although they did not qualify for the show that day, it’s a safe bet that
their guesses are better than random. Polling the audience usually reveals the
right answer. Something similar happens in ensemble learning, which combines
several models to achieve better performance than any one of the individual
models.

One of the disadvantages just listed for decision trees is their high vari-
ance (propensity for overfitting). A very successful solution to this problem
is to combine multiple trees (i.e., form a “forest”). This is an example of an
ensemble method. In general, classification accuracy can be improved by
aggregating the predictions from multiple classifiers.

When using an ensemble method on a classification problem, we first train
a set of base classifiers using the training data. In our game show analogy,
these are the audience members. We then form a model that predicts by
aggregating “votes” from each of the base classifiers.

Under certain conditions, ensemble methods can be much better than the
individual classifiers. Let us consider a simple example. Suppose we have 21
independent classifiers each with an error rate of ε and we predict the class
based on the majority vote. The error of the ensemble method will be given
by

εensemble =
21∑

i=11

(
21

i

)
εi(1− ε)21−i.

For instance, if ε = 0.4, εensemble = 0.174 which is much lower than any
individual classifier. In Figure 8.22 we see that the ensemble does better than
the base classifiers if and only if ε < 0.5. The above formulation also requires
that the base classifiers not be correlated; while this independence condition
may not always be achievable, improvements in error rates can be realized if
the correlations are small.

Machine Learning 403

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

ǫ

ǫensemble

FIGURE 8.22: Ensemble classifier error in an ensemble of 21 independent base
classifiers each with error rate ε.

8.10.1 Bagging

Decision trees are prone to high variance. We know from statistics that if
X1, X2, . . . , Xn are independent random variables with variance σ2 then their

mean X̄ has variance only σ2

n . So with sufficiently many independent predictors,
we can reduce the variance by averaging the predictions. How can we produce
these approximately independent and identically distributed decision trees?

One idea would be to train multiple base trees on separate training sets.
But we may not have a very large training set, so partitioning the data may
thin out the training dataset so much that the trees are not representative of
the actual response function. Another approach would be bootstrapping, as
in Section 8.2.2.

Bagging (Bootstrap Aggregating) is a technique of fitting multiple large
trees to bootstrapped versions of the training data and then predicting based
on the majority vote from these trees. Bagging improves test errors by reducing
the variance of the base classifiers. Since only about 63% of the training data is
visible to each base classifier, it is also less prone to overfitting due to noise in
training data. However, if the primary cause of error in the original classifier
were underfitting rather than overfitting, then bagging may in fact lead to
worse results, since the base classifiers are now seeing only about 63% of the
training data and not the full training dataset.

8.10.2 Random forests

Random forests are a generalization of bagging. In bagging we boot-
strapped the training set to build a number of decision trees. While there
is randomness in which observations make it to the bootstrapped set, all p
features are considered in building the trees. If there is a strong predictor of

404 Data Science for Mathematicians

the response variable in the feature set, it is likely that most trees will split on
this predictor. Hence the predictions from these trees, while being identically
distributed, will likely be highly correlated. But averaging highly correlated
quantities does not reduce the variance as much as it would for uncorrelated
quantities.

So to de-correlate the trees and hence reduce the variance, random forests
choose a further randomization; each time a tree is split, only m out of p fea-
tures are considered. If m = p features are used, a random forest is equivalent
to bagging. In practice, usually m ≈ √p randomly chosen features are used.
The smaller the value of m, the more uncorrelated the trees will be. When m
is small relative to p, the trees do not have access to a majority of the features.
This forces enough trees to rely on other moderately strong predictors and as
a consequence, the correlation is reduced. The random selection of variables
controls overfitting and for most datasets the results do not seem to be too
sensitive to m.

While this gives us an excellent way to reduce the variance while keeping
the bias low (if the trees are fully developed), one downside is that we have
lost the ease of interpretability that we had when using a single decision tree.
We can still rank variables by their importance and gain some insight, but the
importance rankings can be much more variable than the classification results
themselves.

8.10.3 Boosting

Boosting is one is of the most powerful ensemble methods. It is a general
purpose strategy that can be applied to various statistical methods, but we
will limit this discussion to boosting decision trees for binary classification.
In bagging we built multiple independent trees using bootstrapped datasets
and finally predicted using majority vote. In boosting, we will instead build
a sequence of trees, each new tree informed by the previous tree. While we
will use the same model to build the trees, we will adaptively modify the dis-
tribution of the training data so that newer trees focus on those observations
that were previously classified incorrectly. This increases the weight of mis-
classified observations so that the tree corrects the bias on those observations.
By iteratively using this approach and using a weighted combination of these
trees, we can create a new, strong classifier.

One of the most well-known implementations of boosting is called Ada-
Boost. Let {(x(i), y(i)) | i = 1, 2, . . . , n} denote the training set. For ease of
notation, let y(i) ∈ {−1, 1}.

Let w
(i)
j denote the weight assigned to example (x(i), y(i)) during the jth

round of boosting. We require that the weights in any round sum to 1, that is,∑n
i=1 w

(i)
j = 1. In the first round, we assign each observation in the training set

equal weight, 1
n . Once we have fit a tree Cj to the training data, we determine

Machine Learning 405

the weighted classification error on the training data after round j by

εj =

∑n
i=1 w

(i)
j 1y(i) 6=Cj(x(i))∑n
i=1 w

(i)
j

,

where 1 is the indicator function introduced earlier. The weights of the training
data are updated by

w
(i)
j+1 =

w
(i)
j

Zj
·
{
e−αj if Cj(x

(i)) = y(i)

eαj if Cj(x
(i)) 6= y(i),

where

αj =
1

2
ln

(
1− εj
εj

)
.

The normalizing factor Zj is chosen so that the newly updated weights sum to

1, i.e.,
∑n
i=1 w

(i)
j+1 = 1. We note that if the error rate εj is close to 1, then αj

is a large negative number and if it is close to 0 it is a large positive number.
So the weighting scheme increases the weights of incorrectly labeled training
points and decreases the weights of correctly labeled training points. The final
classifier after k iterations is given by

C =
k∑

j=1

αjCj .

The user must determine the appropriate number of iterations.
Unlike the earlier ensemble techniques using committee voting, where every

classifier was given equal weight, in this implementation classifier Cj is given
an importance of αj . If the error rate εj ever exceeds random guessing, i.e.

greater than 50%, the weights w
(i)
j are readjusted to 1

n . This weighted voting
process penalizes classifiers with poor accuracies. We leave it to the reader to
check that at each round, the weighting scheme assigns the same weight to
the correctly classified and misclassified instances. In Figure 8.23, we plot the
same data as in Figure 8.17, this time using AdaBoost to separate the classes.

AdaBoost enjoys some good error bounds as well. It has been shown that
the training error of the AdaBoost implementation is bounded,

εAdaBoost ≤
k∏

j=1

√
εj(1− εj),

where k is number of iterations. If γj = 0.5− εj , then γj measures how much
better classifier Cj is to random guessing. Using Taylor series expansion, we
can check

εAdaBoost ≤
k∏

j=1

√
1− 4γ2

j ≤ e−2
∑

j γ
2
j .

406 Data Science for Mathematicians

FIGURE 8.23: Results of applying AdaBoost to classify the data shown in
Figure 8.17.

So if each Cj is a weak classifier, that is, a classifier that is only slightly
better than random guessing,11 and for all j, γj > γ, for some γ > 0, the
training error of the AdaBoost classifier decreases exponentially.

8.11 Next steps

Due to the vast scope of the field, we have only addressed some of the
most popular techniques in machine learning, and those to only a limited
extent. Other popular techniques the reader may wish to learn include linear
and quadratic discriminant analysis, k-nearest neighbors (KNN), regression
splines, reinforcement learning, and more on kernel methods.

Neural networks are considered a part of machine learning, but because
they are both quite complex and quite powerful, this text dedicates an entire
chapter to it, immediately following this one. And Chapter 5 already addressed
unsupervised learning.

While learning about the wide range of models and analytic techniques,
it’s important to work on projects. As we’ve done in each chapter of this text,

11For example, a tree of depth 1, sometimes called a decision stump, is often a weak
classifier.

Machine Learning 407

we highlight the degree to which projects provide invaluable experience that
can come only with the specifics of a real dataset and the opportunity to learn
the programming skills required to work with it. We suggest the reader try
the following activities to get their hands dirty with machine learning.

1. Install both Python and scikit-learn using the instructions online for
both (e.g., [385]), then verify that you can reproduce the work in Listing
8.1 and obtain the same output. Must we do anything to ensure that
scikit-learn chooses the same test-train split each time we run the code,
so that our computation is reproducible?

2. Investigate the documentation for the LinearRegression class in scikit-
learn to see how to add regularization to your linear model.

3. Using the same dataset, choose a classification problem instead. The
easiest example is to let the binary variable CHAS be the target, but this
is a strange variable to predict; instead, consider discretizing a variable
like CRIM, PTRATIO, or RM. Replace the linear regression step in the
code with a logistic regression step instead. How might we report, for
the resulting logistic regression model, each of the classifier performance
metrics introduced in this chapter? If you apply SVMs instead, do they
perform better or worse than logistic regression?

4. Learn how to extend the code from Listing 8.1 to import a dataset from
a spreadsheet or CSV file, perhaps that you obtained from the Internet
or a database. Use a decision tree or tree-based ensemble method to
predict your target variable.

5. Visit Kaggle [242], a website full of machine learning competitions, some
for fun and education, others for monetary reward. View their tutorial
on how to enter a competition, which is based on the Titanic dataset
introduced in this chapter. Once you’ve completed the tutorial, find
another non-tutorial competition and enter!

http://taylorandfrancis.com

Chapter 9

Deep Learning

Samuel S. Watson

Brown University

9.1 Introduction . 410
9.1.1 Overview . 410
9.1.2 History of neural networks . 411

9.2 Multilayer perceptrons . 413
9.2.1 Backpropagation . 414
9.2.2 Neurons . 417
9.2.3 Neural networks for classification . 417

9.3 Training techniques . 418
9.3.1 Initialization . 419
9.3.2 Optimization algorithms . 419
9.3.3 Dropout . 421
9.3.4 Batch normalization . 421
9.3.5 Weight regularization . 421
9.3.6 Early stopping . 422

9.4 Convolutional neural networks . 422
9.4.1 Convnet layers . 423
9.4.2 Convolutional architectures for ImageNet 424

9.5 Recurrent neural networks . 429
9.5.1 LSTM cells . 430

9.6 Transformers . 431
9.6.1 Overview . 431
9.6.2 Attention layers . 432
9.6.3 Self-attention layers . 434
9.6.4 Word order . 434
9.6.5 Using transformers . 434

9.7 Deep learning frameworks . 435
9.7.1 Hardware acceleration . 435
9.7.2 History of deep learning frameworks . 436
9.7.3 TensorFlow with Keras . 438

9.8 Open questions . 440
9.9 Exercises and solutions . 440

409

410 Data Science for Mathematicians

9.1 Introduction

9.1.1 Overview

Many machine learning models learn a relationship between variates in
a dataset by introducing a parametric class of functions and identifying the
values of the parameters that minimize a specified loss value. For example,
logistic regression models the relationship between predictor and response with
the function x 7→ σ(L(x)), where σ is the logistic function and L is a linear
function. Support vector machines (Section 8.8) use x 7→ σ(L(x)), where σ is
the sign function.

The core idea of deep learning is to enhance simple parametric models by
composing several of them. Such compositions are called neural networks,
in reference to their historical role in efforts to model biological systems. We
will call each simple model being composed a layer. Composing models leads
to enhanced model expressivity, because earlier layers may learn during the
training process to output values that are useful for later layers (as in Fig-
ure 9.1). This capability has proved to be remarkably useful in solving a variety
of real-world problems. However, it took researchers several decades to get the
ideas and technology in place for this potential to be realized.

0 1

FIGURE 9.1: The response variable for the set of points shown in the first
figure is 0 (for points marked with an X) or 1 (for points marked with a circle).
A composition of a map from R2 to R3 with a map from R3 to R1 can map the
originally entangled data to a linearly separable configuration in R3 (second
figure) and from there the two classes of data points can be mapped to the
intervals [0, 1

2) and (1
2 , 1] (third figure). The preimages of [0, 1

2) and (1
2 , 1] are

shown in different shades of gray in each of the first two figures.
The two maps used in this example were of the form (x1, x2) 7→ (σ(ax1 +bx2 +
c), σ(dx1 + ex2 + f), σ(gx1 + hx2 + i)), where σ(x) = 1

1+e−x is the sigmoid
function, and (x1, x2, x3) 7→ jx1 +kx2 + lx3. The parameters a through l were
chosen jointly so that the composition predicts the response variable as well
as possible.

Deep Learning 411

9.1.2 History of neural networks

Although interest in deep learning has risen sharply in the last decade or so,
its roots go back to the middle of the 20th century. In 1943, Warren McCulloch
and Walter Pitts proposed the first mathematical model of the neuron [338].
In this model, each neuron receives signals of various strengths from other
neurons and “fires” if and only if its aggregate stimulus is sufficiently large.
In other words, the activation of a neuron with input vector x ∈ Rn is defined
to be 1{w·x+b>0} (using the notation from Section 8.5.1), where w ∈ Rn and
b ∈ R are parameters of the model called weight and bias.

Fascinated by the ideas in the McCulloch and Pitts paper, Marvin Minsky
set out to build a neural network machine that could learn to escape a maze. In
1951, he worked with Dean Edmonds to build the world’s first neurocomputer
out of valves, motors, gears, and wires [365].

In 1958, Frank Rosenblatt invented the perceptron algorithm for finding
values for w ∈ Rn and b ∈ R in the activation formula 1{w·x+b>0} that
yield good results on a given dataset [408]. A dedicated computer was built
to implement this algorithm, and Rosenblatt hyped the possibilities, saying
the machine “may eventually be able to learn, make decisions, and translate
languages” [111].

The perceptron proved difficult to train, and a 1969 book by Minsky
and Seymour Papert [349] demonstrated some of its theoretical shortcom-
ings. They showed that a perceptron cannot represent the xor function
(x, y) 7→ mod(x + y, 2) on {0, 1}2. They also pointed out that Rosenblatt’s
algorithm does not work on compositions of perceptrons, which do not share
the perceptron’s lack of expressivity. This book was seen by many as confirma-
tion that the optimism about neural networks was ill-founded. Its reception
initiated the first AI winter, in which many researchers either left the field or
found it difficult to get their research published [493].

In his 1974 PhD thesis [497], Paul Werbos introduced the idea of training
neural networks by backpropagation, which means using the chain rule to
apply gradient descent to tune the model parameters (as in Section 9.2.1).
However, this idea did not become widely known until it was rediscovered
by David Parker and Yann LeCun in 1985 and then rediscovered yet again
and popularized in 1986 by David Rumelhart, Geoffrey Hinton, and Ronald
Williams in Learning representations by error propagation [415]. This paper
succeeded in popularizing the backpropagation idea and sparked an era of
renewed interest in neural networks.

In 1989, George Cybenko proved that the neural network functions are
dense in C([0, 1]d) [113], and LeCun et al. showed that backpropagation algo-
rithms can leverage this expressivity in practical settings by helping the United
States, Postal Service with recognizing handwritten zip code digits [307]. Over
the next several years, novel network architectures were used to tackle various
natural language and image-related tasks.

412 Data Science for Mathematicians

By the late 1990s, these endeavors began to lose favor as limitations of
existing backpropagation algorithms were encountered. Deeper networks were
required for increasingly challenging problems, and these networks were found
not to train well. At fault were the repeated multiplications prescribed by the
chain rule, which tend to attentuate or amplify the gradient signal exponen-
tially in the number of layers. This vanishing/exploding gradient problem
makes earlier layers in deep networks particularly difficult to train [423].

In a 1995 paper [308], LeCun et al. compared several models for hand-
written digit recognition and showed favorable outcomes for the much simpler
support vector machine approach. Random forests (Section 8.10.2), which are
very effective and remain quite popular, were introduced the same year [223].
These and other machine learning models became more fashionable than neu-
ral nets in the the late 1990s and early 2000s.

Interest in neural networks was renewed in 2006 when Hinton, Simon Osin-
dero, and Yee-Whye Teh published A fast learning algorithm for deep belief
nets and rebranded the neural networks enterprise as “deep learning” [220].
These researchers developed an effective solution to the vanishing/exploding
gradient problem by initializing each layers’ weights using an unsupervised
learning method (rather than initializing them randomly). In other words,
they ameliorated the problem of getting stuck during gradient descent by
simply choosing a better starting point in the space of model parameters.

Also in 2006, Fei Fei Li and a team of colleagues began working to assem-
ble a collection of millions of 224×224 color photos. In 2010, this dataset was
used to hold a contest called the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), in which researchers compete to develop models that
correctly classify images (as well as other image processing tasks) [35]. The
winner of the 2012 ILSVRC, called AlexNet after its designer Alex Krizhevsky,
achieved a breakthrough improvement in classification error rate from about
26% to about 17%. He and his colleagues Ilya Sutskever and Geoffrey Hin-
ton used a larger version of the neural network introduced for handwritten
digit recognition two decades prior [280]. Classification error of the partic-
ipant models continued to shrink substantially over the next few years. In
2015, the ILSVRC winner achieved a better-than-human image classification
error rate of 3.57%.

Neural networks have also been applied successfully to natural language
tasks in recent years. In 2019, the research organization OpenAI announced a
neural network called GPT-2, which can generate responses to essay prompts
[399]. The results are very impressive. (Note that this model was trained on
a large corpus of data from the Internet, not on The Lord of the Rings in
particular.)

Prompt (human written). Legolas and Gimli advanced on the orcs,
raising their weapons with a harrowing war cry.

Response (machine-generated, first paragraph). The orcs’ response
was a deafening onslaught of claws, claws, and claws; even Elrond

Deep Learning 413

was forced to retreat. “You are in good hands, dwarf,” said Gimli,
who had been among the first to charge at the orcs; it took only
two words before their opponents were reduced to a blood-soaked
quagmire, and the dwarf took his first kill of the night. The battle
lasted for hours until two of the largest Orcs attempted to overwhelm
Aragorn. When they finally stopped, they lay defeated and lifeless
for miles and miles.

In addition to its role in image and language processing, deep learning
has led to monumental improvements in computer board game play. In 2015,
Google Brain’s AlphaGo engine became the first computer to defeat a pro-
fessional Go player [435]. In 2019, the Top Chess Engine Championship was
won by a neural-network-based engine called Leela Chess Zero [96], which is
an open-source project based on work published by the Google Brain team.

The pace of achievements in deep learning over the past decade has been
unparalleled in other areas of machine learning and has cemented its status
as an important resource in the data scientist’s toolkit.

9.2 Multilayer perceptrons

In this section, we will develop the ideas necessary to implement a plain-
vanilla neural network called the multilayer perceptron.

Let p and q be positive integers. We will construct a function from Rp to Rq
as a composition of simple, parametrized functions called layers. Perhaps the
simplest idea would be to compose linear functions, with arbitrary dimensions
for the intermediate Euclidean spaces. But compositions of linear functions
are linear, so any two consecutive linear layers may be collapsed into one with
no change in expressivity, and the set of such compositions is no larger than
the set of linear functions from Rp to Rq.

Thus we will build our composition by inserting a nonlinear function
between every pair of linear layers. We will do this in a particularly simple
way: we fix a function K : R → R, which we call the activation function.
We will abuse notation and write K also for the function which applies K
componentwise to any Euclidean vector.

Recall that an affine function is a map of the form x 7→ Ax + b for some
matrix A and vector b.

Definition 9.1 Consider a function K : R → R. A multilayer percep-
tron with activation K is a function that may be expressed as an alternating
composition of affine functions and componentwise applications of K.

414 Data Science for Mathematicians

For concreteness, let’s look at a simple example. If A1(x) =

[
3 −2
1 4

]
x +

[
1
1

]
, A2(x) =

[
−4 0
3 1

]
x +

[
−2
2

]
, and K is the function that applies x 7→

max(0, x) componentwise, then A2 ◦ K ◦ A1 is a multilayer perceptron with

activation K. If x =

[
−2
−4

]
, then we have A1(x) =

[
3
−17

]
. Applying K to each

component yields

[
3
0

]
. Finally, applying A2 yields

[
−4 0
3 1

] [
3
0

]
+

[
−2
2

]
=

[
−14
11

]
.

The earliest proposed activation function was the indicatorK(x) = 1{x>0}.
However, neural network functions with indicator activation are locally con-
stant, which makes it impossible to incrementally improve them by adjust-
ing the parameters in a direction of local improvement. Sigmoid functions
addressed this problem and were the most widely used activation function for
many years. More recently, the ReLU (pronounced RAY-loo) activation func-
tion x 7→ max(x, 0) has gained favor because it has been found to perform
well in practice and is computationally efficient.

9.2.1 Backpropagation

Consider an L-layer multilayer perceptron N with activation function K
and affine maps Aj(x) = Wjx + bj , for j = 1, . . . , L. Given a set of training
data {(xi,yi)}ni=1 where xi ∈ Rp and yi ∈ Rq for each i ∈ {1, 2, . . . , n}, we
define the loss function

L(N , {(xi,yi)}ni=1) =
1

n

n∑

i=1

L(yi,N (xi)),

where L is a function that penalizes the descrepancy between an observed
value yi and the value N (xi) predicted by the model for the corresponding
input xi. One common choice is L(y1,y2) = |y1−y2|2, in which case the loss
function measures mean squared error.

One reasonable way to search for parameter values that minimize the
loss function is to compute the gradient of the loss function with respect
to the vector of parameters and adjust the parameters in the direction
opposite to that gradient. In other words, we consider N as a function of
W1,b1,W2,b2, . . . ,WL,bL and x, and differentiate

1

n

n∑

i=1

L(yi,N (xi;W1,b1,W2,b2, . . . ,WL,bL))

with respect to Wj and bj for each j ∈ {1, 2, . . . , L}.
We will use use matrix calculus to keep this process organized. Let’s begin

by taking derivatives of various types of layers in Figure 9.2.

Deep Learning 415

1
−2
3

input (x
i ∈ R p

)

[−3
4

] [
0
4

]

3
1
2
−5

3
1
2
0

[−1
−1

]

output (N
(x

i) ∈ R q
)

∣∣∣∣
[−1
−1

]
−
[

3
2

]∣∣∣∣
2

= 5

loss

[
3
2

]
desired output (yi)

A1 K A2 K A3 Li

(W1, b1) (W2, b2) (W3, b3)

FIGURE 9.2: Consider a training observation with input [1,−2, 3] and out-
put [3, 2]. The multilayer perceptron maps [1,−2, 3] to [−1,−1] through an
alternating composition of affine maps Aj = Wjx + bj for j ∈ {1, 2, 3} and
ReLU activation functions K. The error associated with this observation is
the squared distance from [−1,−1] to [3, 2].

First, the derivative of an affine map A(u) = Wu + b with respect to u is
∂(Wu)
∂u + ∂b

∂u = W + 0 = W .

Second, the derivative of K(x) with respect to x has (i, j)th entry ∂(K(x)i)
∂xj

,

which is equal to 0 if i 6= j and K ′(xi) if i = j. In other words, the derivative
of K with respect to x is diagK ′(x).

Lastly, the derivative of L(yi,y) = |y − yi|2 is

∂

∂y

[
(y − yi)

T (y − yi)
]

= 2(y − yi)
T ,

by the product rule.
Note that the derivative of W 7→ Wv is a third-order tensor,1 since W is

a second-order tensor and Wv is a first-order tensor. The following exercise
provides the key tool for handling this derivative by showing how it dots with
an arbitrary vector u to give a matrix.

Exercise 9.1 Given f : Rm×n → R, we define

∂

∂W
f(W) =

∂f
∂w1,1

· · · ∂f
∂w1,n

...
. . .

...
∂f

∂wm,1
· · · ∂f

∂wm,n

 ,

where wi,j is the entry in the ith row and jth column of W . Suppose that u is
a 1×m row vector and v is an n× 1 column vector. Show that

∂

∂W
(uWv) = uTvT .

1Tensors were first mentioned in Section 3.1. Here, second- and third-order refer to the
number of dimensions of the object.

416 Data Science for Mathematicians

Exercise 9.1 implies that ∂
∂W (Wv) is characterized by the property that

u ∂
∂W (Wv) = uTvT for any row vector u.

With these derivatives in hand, we can describe a simple gradient
descent algorithm for training a multilayer perceptron:

1. Initialization. We initialize the weight and bias values in some manner.
For example, we could start out with zero weights, or we could sample
from a specified probability distribution. We will discuss initialization
further in Section 9.3.1.

2. Forward propagation. We calculate the loss L(yi,N (xi)) for each
observation (xi,yi) in the training set (storing the vectors computed at
each layer).

3. Backpropagation. For each observation, we calculate the derivatives
of each layer and multiply them progressively according to the chain
rule to find and store the derivative of the final layer, the composition of
the last two layers, the composition of the last three layers, and so on.
We use these stored derivative values and Exercise 9.1 to compute the
derivative of the loss with respect to each weight matrix, and similarly
for the bias vectors. Then we compute, for each weight matrix and bias
vector, the mean of these derivatives across all observations.

4. Gradient descent. We choose a small value ε > 0 called the learning
rate and change the values of each weight matrix by −ε times the mean
derivative of the loss with respect to that matrix. In other words, we
adjust the weights in the direction which induces the most rapid instan-
taneous decrease in the loss value. Likewise, we adjust each bias vector
by −ε times the mean derivative of the loss with respect to that vector.

We repeat these steps until a specified stopping condition is met. For example,
we might stop when the computed derivatives get sufficiently small (suggesting
that a local minimum has been reached), or we might keep track of the loss
computed with respect to a withheld subset (called validation data) of the
original data. We would stop when the updates are no longer significantly
decreasing the validation loss.

In practice, the algorithm described above is computationally infeasible
because the training set is often quite large (tens of thousands of observations,
say), and computing all of the necessary derivatives for each weight update
makes the whole process impractically slow. Therefore, it is customary to
instead do stochastic gradient descent, wherein derivatives are calculated
only with respect to a randomly sampled subset of the original training set,
and weight updates are performed based on an average over this mini-batch.
Commonly used values for the size of the mini-batch range from 30 to 200 or
so.

Deep Learning 417

Exercise 9.2 Visit the website for this text [84] and work through the compu-
tational notebook there to experiment with a multilayer perceptron implemented
from scratch.

9.2.2 Neurons

Multilayer perceptrons are often depicted with each vector component
drawn in its own node, as shown in Figure 9.3. The nodes in such a diagram
are called neurons, and it’s customary to depict the activation operations
as internal to each neuron. Thus the neurons have input and output values,
drawn as pill halves in Figure 9.3. The arrows correspond to entries of the W
matrices, while the components of the bias vectors are not shown. Note that
the final layer uses identity activation.

1

−2

3

−3 0

4 4

3 3

1 1

2 2

−5 0

−1 −1

−1 −1

FIGURE 9.3: A component-style multilayer perceptron diagram.

9.2.3 Neural networks for classification

So far we have considered multilayer perceptrons that output vectors.
Many important neural network applications call for the network to return
a classification instead. For example, we might want to build a neural net-
work that takes as input a vector in [0, 1]784 representing the pixel values for a
28× 28 grayscale image depicting a handwritten digit and outputs a value in
{0, 1, 2, . . . , 9} that corresponds to the digit that appears in the image. Let’s
denote by C the number of classes, in that case 10.

The customary approach to adapting neural networks to classifiation prob-
lems is to encode each sample classification yi as a vector in RC with a 1 in
the position corresponding to its class and with zeros elsewhere. We set up
the network to output vectors in RC and then apply the softmax function

u 7→
[

euj

∑C
k=1 euk

]C

j=1

from RC to [0, 1]C . Applying the softmax ensures that the entries of the pre-
diction vector are positive and sum to 1. This allows us to interpret compo-
nents of y as asserted probabilities for each possible classification. A confident

418 Data Science for Mathematicians

prediction assigns a number close to 1 in one position and small numbers else-
where.

Finally, we perform stochastic gradient descent using the loss functions
L(yi,y) = − log(y ·yi). This function returns zero if the output vector asserts
a probability of 1 to the correct class, and it applies a large penalty if the y
assigns a small probability to the correct class.

Training a network for classification requires differentiating the loss-
softmax composition:

Example 1 Find the derivative of L(yi, softmax(u)) with respect to u.

Solution. Suppose that j is the correct class for the ith observation, that
is, yij = 1. Then

L(yi, softmax(u)) = − log

(
euj

∑n
k=1 euk

)
= −uj + log

n∑

k=1

euk .

Differentiating with respect to uj yields

−1 +
euj

∑n
k=1 euk

,

and differentiating with respect to u` for ` 6= j yields

eu`

∑n
k=1 euk

.

Therefore, the derivative with respect to u is −yTi + softmax(u)T . �

Exercise 9.3 Think of two advantages of outputting probability vectors rather
than discrete class values (solution on page 440).

9.3 Training techniques

Training neural networks to perform well on real-world problems is seldom
straightforward. The loss is a non-convex function of the model parameters,
so there is no guarantee that a gradient descent algorithm will converge to a
global minimum. Furthermore, even if the optimization algorithm does achieve
very low training loss, the resulting model may be overfit (as in Figure 9.4).
In this section, we discuss several techniques for addressing these challenges.

Deep Learning 419

FIGURE 9.4: A neural network can overfit the training data, as shown in the
first figure. The model in the second figure has a higher loss on the training
set, but it performs better on test data.

9.3.1 Initialization

Effective network training requires starting the weights and biases in a
part of the parameter space where gradient descent can work well. If many of
the activation functions map their inputs to zero, for example, many weight
and bias values will have zero marginal effect on the loss and may therefore
never change. Similarly, learning is hindered if the parameters start out orders
of magnitude larger or smaller than where they should end up. The Xavier-He
initialization scheme specifies that the initial value of the weights in each layer
should be drawn independently from a Gaussian distribution with mean zero
and variance

σ =
√

2

√
2

ninputs + noutputs
,

where ninputs and noutputs are the dimensions of the domain and codomain for
that layer. This formula is obtained by compromising an interest in achieving
constant variance of the values output by each layer (which suggests a stan-
dard deviation of 1/

√
ninputs) and constant variance of the backpropagated

gradients (which suggests 1/
√
noutputs) [190].

Xavier-He initialization is much simpler than the approach of Hinton, Osin-
dero, and Teh mentioned in Section 9.1.2 [220], but it does tend to work well
in practice and has become a popular default initilization scheme.

Initializing bias values is more straightforward; the popular deep learning
framework Keras (see Section 9.7.2) uses zero vectors. In [194], it is recom-
mended to initialize each bias vector entry to a fixed, small positive number
like 0.1.

9.3.2 Optimization algorithms

There are many numerical optimization algorithms which aim to improve
on stochastic gradient descent. For example, momentum gradient descent

420 Data Science for Mathematicians

x

ymomentum
adam

FIGURE 9.5: A function f exhibiting pathological curvature (left), and a com-
parison of momentum gradient descent and Adam for that function (right),
with the same starting point and learning rate.

takes steps based on the backpropagated derivative computed from the cur-
rent mini-batch as well as the derivatives computed in previous mini-batches.
Specifically, we choose a value α ∈ [0, 1] called the momentum and take
a weighted average of the gradients computed at each iteration: the current
mini-batch gets a weight of 1, the mini-batch immediately preceding the cur-
rent one gets a weight of α, the one before that gets a weight of α2, and so on.
Momentum gradient descent produces more stable, less responsive derivative
estimates than plain stochastic gradient descent. We can adjust α to navigate
the tradeoff between stability and responsiveness.

Adam optimization combines momentum with another idea: adjusting
each component of each gradient descent step based on the average squared
gradient seen in that component over the previous gradient descent iterations.
In other words, the step size for a given parameter gets a boost if the loss
function tends, on average across iterations, to be insensitive to small changes
in that parameter. This allows the iterates to proceed more directly toward the
minimum when in a region where the function exhibits pathological curvature
(where the function’s second derivative in one direction is much larger than
the second derivative in another direction, as in Figure 9.5).

Both momentum gradient descent and Adam are common optimizers to
use when training a neural network, and they are more popular than plain
stochastic gradient descent.

Deep Learning 421

9.3.3 Dropout

Dropout is a regularization technique which entails making a random sub-
set of the neurons in a given layer inactive for a mini-batch (this is equivalent
to assigning those neurons an activation function of zero for that mini-batch).
Each neuron in a dropout layer is inactivated with a specified probability α,
independently of other units and independently of the same neuron’s status
in other mini-batches. Dropout reduces overfitting by preventing the neural
network from relying too heavily on specific pathways or individual neurons.
It has been a popular technique since its introduction in 2014 [441], because
it is simple and often gives a modest improvement in model results.

9.3.4 Batch normalization

Feature scaling is a common feature engineering technique useful for avoid-
ing difficulties associated with large differences in scale between features.
Batch normalization grants neural networks the same convenience on a
neuron-by-neuron basis: it modifies the output from each neuron by standard-
izing its output values across the current mini-batch. Furthermore, rather than
standardizing to zero mean and unit variance, we introduce two new train-
able parameters per neuron—commonly denoted β and γ—which specify the
mean and standard deviation of the activation values which are output for
the next layer. Mathematically, the batch normalization update takes the fol-
lowing form (with x representing the vector of activation values at a specific
neuron across the current mini-batch):

µ̂ = mean(x)

σ̂2 = std(x)

xout = β +
γ(x− µ̂)√
σ̂2 + ε

,

where mean and std compute the sample mean and sample standard devia-
tion, respectively (and where the addition of β and the subtraction x− µ̂ are
componentwise).

For example, if we have 6 neurons in a given layer and a mini-batch size
of 100, then we will have 6 such vectors x in R100 for that layer. Also, ε is a
smoothing term used to avoid division by zero in the event that σ̂ is equal to
zero. A typical choice is ε = 10−5.

9.3.5 Weight regularization

Another way to address the overfitting problem is to add a term to the loss
function that penalizes the model for using large weights. For `2 regularization,
we add a constant multiple of the sum of the squares of the parameters in the

422 Data Science for Mathematicians

weight matrices, and for `1 regularization we add a constant multiple of the
sum of their absolute values. Since the derivative of w 7→ λ|w|2 is 2λwT ,
`2 regularization has the effect of changing the parameter update rule from
w ← w − ε ∂L∂w to w ← w(1 − 2ελ) − ε ∂L∂w , where ε is the learning rate
and L is the loss without the weight regularization term. In other words, `2

regularization scales each parameter value towards zero by a factor of 1− 2ελ
on each iteration.

9.3.6 Early stopping

Training a neural network for too long can lead to overfitting. Early stop-
ping entails holding out a portion of the training data—called validation
data2—and halting the training process once the loss or accuracy on the val-
idation set stops improving. For example, we might stop when we reach a
prespecified number of mini-batches after the last time a record minimum
loss was reached (and then revert the network parameters to their values at
the time of the last record minimum).

9.4 Convolutional neural networks

Multilayer perceptrons represent a one-size-fits-all approach to model fit-
ting. Although they do have knobs for the user to adjust (depth, architecture,
activation function, optimization algorithm, etc.), they do not support the
incorporation of domain-specific knowledge into the structure of the model.
There are two especially important areas where domain-tailored model archi-
tectures have proved to be very useful: image processing and natural language
processing.

In this section, we will discuss convolutional neural networks, which
are designed for handling image data. Common problems tackled with convo-
lutional neural networks include image recognition (e.g, “what type of animal
is represented in this image?”) and object segmentation (e.g., “where are the
faces in this picture?”).

Like multilayer perceptrons, convolutional neural networks (or convnets)
are alternating compositions of linear and nonlinear maps. The idea is that
the output of each layer should store features of the image, starting with the
raw image pixels, and increase in utility for the task at hand. (See Figure 9.6.)

2Note that since validation data is not used to compute gradients as the model is training,
it is reasonable to use it to check whether the model is overfitting. However, validation data
is distinct from test data since we are using the validation data as a part of the overall
training process.

Deep Learning 423

FIGURE 9.6: An image representing a handwritten digit followed by partial
outputs of the layers of a convolution neural net trained to identify digit
images. Each layer output consists of a stack of two-dimensional arrays, and
this figure shows only one of them per layer.

Convnets preserve the two-dimensional structure of the image data, however,
and set up connections which reflect spatial relationships between pixels.

It turns out to be useful to represent layer inputs and outputs in a convnet
as three-dimensional arrays, for two reasons: First, images may have different
channels (like separate red, green, and blue values for each pixel, if the image
is in color) that are naturally represented with a shallow third axis. Second,
equipping layers to map a stack of images to a stack of images allows them to
track several image features simultaneously and recombine them in different
ways in each successive layer. This additional expressivity turns out to be
critical for good performance on real-world problems.

9.4.1 Convnet layers

Convolutional neural networks are built using two main types of lay-
ers: convolutional and pooling layers. Images are customarily assumed to be
square, with the idea that rectangular images encountered in practice may be
resampled to square dimensions.

Convolutional layer. Use Figure 9.7 to follow along with the following
description of a convolutional layer computation. Suppose that the layer’s
input is a k×k×` array, and fix an integer s ≤ k. The output of the layer will
be an array whose first two dimensions correspond to the grid of contiguous
s×s square subgrids of a k×k square grid and whose depth t is chosen as part
of the network architecture. Each channel in the output array is associated
with an s× s× ` array called a filter together with a scalar b called the bias.
The filter entries and biases are parameters to be learned during training.

We define the dot product of two arrays of the same shape to be the sum
of the products of corresponding entries. Each entry in a given output channel
is obtained by dotting that channel’s filter with the corresponding s × s × `
subarray of the input and adding that channel’s bias to the result.

Pooling layer. Given an input tensor of dimension k × k × ` and an
integer p ≥ 0, a pooling layer applies a fixed scalar-valued function to each
p × p subgrid in a partition of each channel in the previous layer. Thus the
output of the pooling layer is (k/p) × (k/p) × `, if p divides k. The most
common choice for p is 2, and the most common choice for the nonlinear

424 Data Science for Mathematicians

FIGURE 9.7: (Left) An illustration of the convolution operation: each channel
in the output tensor is associated with a trainable filter (the s×s×` tensor) and
a trainable scalar bias value. The values in the output tensor are determined by
the input tensor, filter, and bias by dotting the filter with each continguous
s × s × ` input subtensor and adding the bias. (Right) An illustration of
the pooling operation: input and output tensors have the same number of
channels, and each output channel is obtained from the corresponding input
channel by applying a specific function to the entries in each square in a
partition of the channel.

function applied to each subgrid is

[
a b
c d

]
7→ max(a, b, c, d). A pooling layer

which uses the maximum function is called a max pool layer. Note that
pooling layers do not have any model parameters.

Exercise 9.4 Explain how a convolutional neural network without pooling
layers may be viewed as a multilayer perceptron with a set of equations impos-
ing constraints on the model parameters (solution on page 440).

9.4.2 Convolutional architectures for ImageNet

Given an image recognition task, an ordinary convolutional neural network
like the one shown in Figure 9.8 typically performs significantly better than a
multilayer perceptron with a similar number of neurons. However, achieving
state-of-the-art performance has required substantial innovation beyond con-
volutional and pooling layers. We will use the history of the ImageNet contest
(ILSVRC) as a focal point for surveying how cutting-edge performance has
been achieved over the period of renewed interest in convnets from 2012 to
the present.

AlexNet. The first deep learning classifier to win the ILSVRC was
AlexNet in 2012 [280]. See Figure 9.9 for the representation of the network
architecture from the original paper.

Deep Learning 425

FIGURE 9.8: A convolutional neural network architecture. We begin with a
convolutional layer followed by a pooling layer, then another convolutional
layer and another pooling layer. Finally, the data go through two fully con-
nected layers to yield an output vector in R10.

FIGURE 9.9: The AlexNet architecture. The dense layers are multilayer per-
ceptron layers. From [280], used with permission.

426 Data Science for Mathematicians

Note the stride value of 4 shown in the first layer. This means that
the 11 × 11 filter traverses the grid in increments of 4 pixels rather than
1 pixel. This results in each spatial dimension in the next layer’s channels
being approximately one-fourth as large as they would be with a stride of 1
pixel. This stride value reflects an effort to keep the model’s overall number
of parameters manageable.

The convolutional layers are shown on two parallel tracks. This represents
an accommodation of a practical constraint: a single processing unit did not
have enough memory to store the necessary data, so the layers were split
across two.

Several training techniques were used, including `2 regularization with a
parameter of λ = 5×10−4 and dropout with α = 1/2. The mini-batch size was
128, and the momentum used in the gradient descent algorithm was 0.8. The
convolutional and dense layers use ReLU activations, and the last layer uses a
softmax activation. AlexNet also used a local response normalization scheme
that fixes an ordering on the channels and then applies a standardization
(de-meaning and dividing by the standard deviation) across several nearby
channels in the same spatial position. This practice has fallen out of favor in
recent years.

The winner of the ILSVRC in 2013 was a modification of AlexNet called
ZFNet.

GoogLeNet. The winner of the 2014 contest was GoogLeNet (architecture
illustrated in Figure 9.10).

This network introduces a number of innovations. Perhaps its most salient
novelty is the use of the inception module as a building block. See Figure
9.11 for an illustration.

The idea of the inception module is to allow the model to effectively choose
for itself the best spatial dimension for the spatial dimension of the filter used
in each layer. We do this by inserting layers of different filter dimensions and
concatenating the results channel-wise (which requires some padding around
the edges so that the convolution operations don’t actually shrink the array
dimensions). We also insert some 1× 1 convolutions and a max pooling layer,
because otherwise the concatenation step causes the number of channels (and
therefore also the number of parameters) to get out of hand.

A second new feature of GoogLeNet is the insertion of two additional
classification stacks, each consisting of an average pool layer followed by one
or two dense layers and a softmax activation. They attach directly to the
outputs from intermediate layers, and their outputs are used as a part of the
training loss function. The purpose of these stacks is to ensure that the early
layers receive sufficiently large gradient nudges to properly train. Although
this would seem to impose an unnatural requirement on early layers (namely,
that they should produce a representation of the images which supports a
classification stack which will not be used at prediction time), this feature
was nevertheless found to be worthwhile.

Deep Learning 427

input 7× 7 conv maxpool LocalRespNorm 1× 1 conv 3× 3 conv LocalRespNorm

maxpool Inception Inception maxpool Inception Inception

Training classification

Inception

Inception Inception

Training classification

Inception maxpool Inception Inception Classification

FIGURE 9.10: GoogLeNet, also known as InceptionNet.

1× 1 conv 3× 3 conv

1× 1 conv 5× 5 conv

3× 3 max pool 1× 1 conv

input concat

1× 1 conv

FIGURE 9.11: An inception module.

428 Data Science for Mathematicians

input first
layer

second
layer +

FIGURE 9.12: A ResNet unit.

Lastly, GoogLeNet decreased the overall number of parameters (from
about 62 million to about 11 million) and achieved better balance than
AlexNet in the distribution of the parameter count across layers. AlexNet
has most of its parameters in the last couple of layers, since large dense lay-
ers tend to be much more parameter-intensive than convolutional layers. The
dense layers in GoogLeNet were made smaller than the ones in AlexNet by
judicious use of pooling layers and 1× 1 convolutional layers.

ResNet. The winner of the 2015 contest was ResNet. It accelerated the
trend of increased network depth by using 152 layers! Despite the number of
layers, ResNet’s overall number of parameters was similar to AlexNet, at 60
million.

In principle, a deeper network should perform better than a shallower one,
because it can choose to approximate the identity function for any layers it
doesn’t need, thereby replicating the behavior of a shallower network. How-
ever, in practice this doesn’t work because training difficulty increases in the
number of layers.

These observations lead to the key insight of ResNet: we can make it easier
for the network to learn the identity function by interpreting the layer outputs
as specifying the difference between input and output rather than specifying
the output directly. In other words, we sum a layer’s input to its output and
forward the result to the next layer. This is the idea that gives ResNet its
name, since a residual is a difference between two quantities.

We can illustrate this idea in a computational graph diagram by drawing
a connection that goes around a computational unit (like a neural network
layer, or a stack of two neural network layers). See Figure 9.12.

Further details about how ResNet is trained include the following.

1. Batch normalization is used after every convolutional layer.

2. Weights are initialized using the Xavier-He heuristic.

3. The learning rate decreases over time: it starts at 0.1 and decays by a
factor of 10 each time a performance plateau is detected.

4. Mini-batch size is 256.

5. No dropout is used.

Deep Learning 429

0

5

10

15

20

25
to

p-
5

er
ro

r
ra

te

2010 2011 2012 2013 2014 2015 2016

AlexNet

GoogLeNet

ResNet

FIGURE 9.13: ILSVRC results: the top-five error rate is the percentage of
images in the test set whose correct classification does not appear among the
five classes asserted by the model as most likely.

In 2016, Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex
Alemi introduced Inception-ResNet, which uses inception modules with resid-
ual connections. This model was used as a part of the 2016 winning submission
from the Trimps-Soushen team. See Figure 9.13 for a comparison of the per-
formance of all of the ILSVRC winners. The last couple of winners match
human-level performance on the metric shown.

9.5 Recurrent neural networks

MLPs and convnets are feedforward neural networks: their computational
graphs are acyclic. Such networks are not ideal for sequential data (like text or
audio) because they don’t have a natural mechanism for modeling the sequen-
tial structure of the data. Recurrent neural networks remedy this problem by
introducing loops between nodes.

The simplest recurrent neural network (Figure 9.14) consists of a single
recurrent cell. The input data are fed into the cell sequentially, and the cell
also outputs a sequence. For example, suppose that xt is a vector representa-
tion of the tth word in a sentence to be translated, and that yt represents the
tth word in the translation. The output at each time step depends on the input
at that time step and the output at the previous time step. Mathematically,
we have

yt = K(Winxt +Woutyt−1 + b),

430 Data Science for Mathematicians

RNN

Wout Wout Wout Wout Wout

x1

y1

Win

x2

y2

Win

x3

y3

Win

x4

y4

Win

x5

y5

Win

xt

yt = K(Winxt + Woutyt−1 + b)

Win

unrolled

FIGURE 9.14: A simple recurrent neural network. We can unroll a recurrent
neural network by distinguishing time steps spatially in the diagram.

where K is the cell’s activation function, Win and Wout are matrices, b is a
vector, yt is the model’s output at time t, and xt is the input data at time t.

Note that a recurrent neural network can handle a variety of input lengths,
since we can keep putting the next xt in and getting a new yt value out until
we reach the end of the sequence of xt’s.

9.5.1 LSTM cells

Simple recurrent cells are seldom used in practice because they don’t effec-
tively learn relationships involving long-term memory. For example, if the
main character in a story is revealed to be a former tennis prodigy, that infor-
mation might very well be crucial for correctly interpreting a sentence many
paragraphs later. The long short-term memory (LSTM) cell was invented
in 1997 by Sepp Hochreiter and Jürgenas Schmidhuber as a way of provid-
ing the recurrent neural network with a dedicated mechanism for retaining
and modifying long-term state [224]. There are many variants of the LSTM
architecture, a typical example of which is shown in Figure 9.15.

Each cell outputs two values to the next cell: the long-term state Ct (the
top line in Figure 9.15) and the current timestep’s output value yt. The cell
takes Ct−1 and yt−1 as input, as well as the current input vector xt. Three
dense layers are used to modify the information in the long-term state, the
first by componentwise multiplication and the second and third by vector addi-
tion. A fourth dense layer and the long-term state combine multiplicatively
to produce the current output value yt.

Recurrent networks based on LSTM cells have been popular since their
introduction and continue to be used in household natural language systems
like Amazon’s Alexa [204].

Deep Learning 431

σ σ tanh σ

×

+×

×

tanh

yₜ₋₁

Cₜ₋₁ Cₜ

yₜ

xₜ

yₜ

FIGURE 9.15: An LSTM cell. The top line carries the long-term information,
and the bottom line produces each time step’s output value yt. The vectors
entering on the left side of the cell are the corresponding outputs from the
previous cell. Unannotated merging of lines represents vector concatenation,
merging annotated with a circle represents combining the two incoming vec-
tors with the operation shown, a circle represents function application, line
splitting corresponds to vector copying, and the boxes marked σ or tanh rep-
resent dense neural network layers with trainable weights and an activation
function given by the label.

9.6 Transformers

9.6.1 Overview

In recent years, state-of-the-art natural language results have been
obtained using a type of feedforward neural network called a transformer,
introduced in a paper called Attention is all you need [485]. For example, the
network GPT-2 discussed in Section 9.1.2 is built using this idea. For concrete-
ness, let’s discuss the translation problem: given a sentence in one language,
we are looking to output a translation of that sentence in another language.

We will discuss the high-level structure of a transformer before describing
the function computed by each component. The two stacks in Figure 9.16 are
called the encoder and decoder, respectively. The input to the encoder is a
sequence of words encoded as a matrix (where the ith row contains a vector
representation of the ith word in the input sentence, for each i), and the output
of the encoder is a digested form of the input sentence whose purpose is to
play a role in the decoder’s computation. Conceptually, the encoder output
corresponds to the abstract state stored in a translator’s mind when they
have comprehended a passage in the source language and are about to begin
writing a translation.

432 Data Science for Mathematicians

The input ingredients for the decoder stack are the output from the encoder
stack and a matrix of vector representations of the (initially empty) list of
output symbols that have been generated thus far. The decoder’s last layer is a
dense layer with softmax activation, and it produces a probability distribution
over the vocabulary of the target language. A word, which will serve as the
next word in the translation, is chosen from that distribution. The decoder
stack is executed again to generate another word, and so on, until eventually
it outputs a special end symbol.

9.6.2 Attention layers

The key component of a transformer is attention. The idea of the atten-
tion mechanism is that particular words are operative at different times during
a translation task. For example, when translating ¿Cómo estás? from Spanish
to English, we’re looking mostly at the word Cómo when we output how, then
mostly at estás when we output are, and again at estás when we output you.
Attention is an architectural component which mimics this ability to focus on
different parts of the input sequence over time. Although self-attention layers
appear before attention layers in the transformer architecture, we will discuss
attention layers first because that will make it easier to draw analogies.

To define the computation performed by an attention layer, we fix a posi-
tive integer h and associate to each attention layer 3h+ 1 trainable matrices,
denoted (WQ

i ,W
K
i ,W

V
i), where i ranges from 1 to h, and WO. We say that

the layer has h heads. The motivating concept for the heads is that they are
focusing on different aspects of the context, analogous to the way that human
readers keep track of setting, weather, mood, etc.3

We define the function

Attention(Q,K, V) = softmax

(
QKT

√
d

)
V,

where d is the the number of columns of the matrix Q and where softmax acts
row-wise. The rows of the three arguments of this function are referred to as
queries, keys, and values. Recalling from linear algebra that that the rows of a
matrix product AB are linear combinations of the rows of B with weights given
by corresponding rows of A, we can see that the Attention function recombines
the values based on the alignment of queries and keys (as computed by the
dot products implicit in the matrix multiplication QKT). The application of
the softmax function ensures that the weights used to recombine the values
sum to 1.

For each i ∈ {1, 2, . . . , h}, we define

headi = Attention(XWQ
i , ZW

K
i , ZW

V
i),

3All analogies between neural network behavior and the human mind should be taken
with a large grain of salt. The analogies in this section are particularly strained because
we think of matrix rows as corresponding to words, even though that interpretation is only
valid for the original input.

Deep Learning 433

FIGURE 9.16: Architecture of a transformer.

434 Data Science for Mathematicians

where X is the input matrix for the layer and Z is the matrix output from
the encoder stack. In other words, queries are computed in a learnably linear
way from the input matrix, keys and values are computed in a learnably linear
way from the encoder output, and each head returns the attention for that
query-key-value triple.

Finally, the output of the attention layer is defined to be

concat(head1, . . . ,headn)WO,

where concat is the function that concatenates vectors. In other words, the
outputs from each head are combined in a learnably linear way to produce
the overall output for the layer.

9.6.3 Self-attention layers

The self-attention layers in the encoder stack are similar to attention layers,
the only change being the formula for the head outputs. For a self-attention
layer, we have

headi = Attention(XWQ
i , XW

K
i , XW

V
i).

In other words, the queries, keys, and values for a self-attention layer are all
computed from its input matrix. The human-reader analogue for self-attention
is taking note of specific words as you interpret others. For example, cor-
rectly interpreting the sentence the dog caught the frisbee before it

hit the ground requires recognizing that the word it refers to the frisbee
rather than the dog. An effectively trained self-attention layer would be able
to place most of the softmax weight for the row corresponding to it in the
position corresponding to the frisbee row of V .

9.6.4 Word order

Note that the transformer, as we have described it so far, does not handle
rows differently based on their row index. Since word order is meaningful in
natural languages, we will graft in the ability to distinguish words by their
position in the sentence. We do this by fixing a predetermined position matrix
and adding this matrix to the input before it reaches the first self-attention
layer of each stack, as in Figure 9.16. The rows of the position matrix are
distinct, so each row vector being fed into the first self-attention layer incorpo-
rates information about the word itself and about its position in the sentence.

9.6.5 Using transformers

We conclude this section by suggesting two tools for applying transformers
to real-world problems without having to code them from scratch.

Deep Learning 435

1. When OpenAI announced GPT-2, they released code for a small version
of the model, which may be applied by users to their own datasets [398].

2. Google open-sourced a state-of-the-art transformer model called BERT,
which can be trained efficiently in the cloud on the user’s data [127].

GPT-2 can be fine-tuned4 on user-collected plain text files, and its fund-
mental functionality is text continuation. In other words, the user supplies
a segment of natural language text as input, and the output is an attempt
at continuing the segment. This functionality can be leveraged to complete a
variety of other tasks, however. For example, GPT-2 can be made to summa-
rize a passage by concluding the input text with TL;DR (which is an Inter-
net abbreviation used to introduce summaries; it stands for “too long; didn’t
read”).

9.7 Deep learning frameworks

9.7.1 Hardware acceleration

Since larger neural networks tend to perform better on complex prob-
lems, state-of-the-art deep learning pushes the limits of modern computational
resources. In particular, advanced models are trained on clusters of computers
in a way that leverages parallelization. In this section we will discuss several
ways to parallelize neural network computations.

GPU acceleration. The CPU (central processing unit) is the primary
component in a computer that executes program instructions. In the 1970s,
arcade game manufacturers recognized that the general-purpose design of the
CPU made it suboptimally suited to the matrix operations used heavily in
graphics rendering, so specialized chips called GPUs (graphics processing
units) were introduced. GPUs generally have a slower clock speed than CPUs,
but they can parallelize computations more efficiently. Matrix operations are
ideally suited to parallelization-oriented optimization, since different entries
in a matrix sum or product may be computed independently. Because neural
network calculations are heavily reliant on matrix operations, using GPUs is a
natural way to accelerate them. Users often experience speedups of 1–2 orders
of magnitude from activating GPU acceleration, so GPUs are often considered
essential for serious neural network training.

Hyperparameter parallelization. Hyperparameters are parameters
which are not adjusted during model training; these include choices like the
number of layers, the number of neurons in each layer, filter size in a conv-
net, etc. Hyperparameter search entails trying training several models with

4Fine-tuning refers to using new data to apply further training iterations to a model
which has already been trained on a different, typically much larger dataset.

436 Data Science for Mathematicians

different choices of hyperparameters, for purposes of finding a good set of
hyperparameters. This is an example of an embarrassingly parallel problem:
the different training runs are not interrelated, so we can just deploy them to
different machines and collect the results.

Model parallelization. We can split each layer into multiple pieces; for
example, in a convolutional neural net we could put half the channels in a given
layer on one GPU and half on another. This problem is not embarrassingly
parallel, since the values from both sets of channels need to be communicated
to the next layer. These data transfer costs trade off against the parallelization
benefits. AlexNet manages this tradeoff by incurring the data transfer costs
for only some of the layers. (See Figure 9.9.)

Data parallelization. We can train our model on separate mini-batches
simultaneously. This entails a change to the training algorithm, since typically
each mini-batch needs to be computed with weights that were updated based
on the previous mini-batch. The idea is to store the weights in a centralized
server and have each parallel implementation of the model read and write to
the server whenever a mini-batch is finished [124].

9.7.2 History of deep learning frameworks

The application of neural networks to real-world problems entails a great
deal of computational overhead. The user must

1. obtain data,

2. make various choices about the training process (such as model architec-
ture, activations and loss functions, parameter initialization, optimiza-
tion algorithm, etc.),

3. specify an algorithm implementing that set of choices, and

4. dispatch the computation to multiple processors for a parallelization
speedup.

The first two steps require input from the user, but the third and fourth
steps can be automated. This automation improves the user’s experience by
saving them time and reducing the number of opportunities to introduce bugs.
A deep learning framework is a software package that efficiently imple-
ments neural network computations and provides a convenient interface for
specification of data and algorithm options. The rise of deep learning frame-
works has been a boon to reproducibility and researcher productivity.

In 2002, Ronan Collobert, Samy Bengio, and Johnny Mariethoz released
Torch, a machine learning project that included support for multilayer per-
ceptrons [105]. This framework was released as a C++ library5 and was

5C++ is popular among software engineers and is often used in performance-sensitive
applications.

Deep Learning 437

intended primarily for users with the savvy to link and call C++ libraries
from their own code. In 2008, they added a graphical user interface and an
interface in the scripting language Lua, making their tools accessible to a
broader audience [106]. Torch remained popular until the mid 2010’s, when it
was overshadowed by several frameworks backed by large companies. Active
development on Torch halted in 2018.

The second major deep learning framework, a Python6 library called
Theano, was introduced in 2007 by the Montreal Institute for Learning Algo-
rithms at the University of Montreal [462]. Theano served as a nexus of inno-
vation in deep learning computation until 2017 when its developers saw fit to
pass the baton to its well-resourced competitors [33].

The major entrants into the deep learning framework scene in the mid-
2010s were Facebook, Google, and Microsoft. In 2016, Facebook introduced
PyTorch, the Python-based heir to the design and internal structure of Torch.
Facebook also released Caffe2 in 2017, which was based on the Berkeley deep
learning framework Caffe. PyTorch is typically used for convenient experi-
mentation, and Caffe2 for production. In 2018, Facebook announced that the
two systems would be merged, so that users may transition more seamlessly
from research to deployment.

Google’s TensorFlow was introduced in 2015, and Microsoft Cognitive
Toolkit (originally called CNTK) was released in 2016. In 2015, François
Chollet wrote the Python library Keras, which provides a unified interface
to Theano, TensorFlow, and Microsoft Cognitive Toolkit. Computations are
specified by the user in Keras and dispatched to the chosen backend for the
heavy lifting. Keras has since been incorporated into both Tensorflow and
Microsoft Cognitive Toolkit as a built-in way to interact with those libraries.

In 2017 Facebook and Microsoft announced the Open Neural Network
Exchange (ONNX) to facilitate switching between frameworks. For example,
a neural network model can be trained in one system, saved as a file in ONNX
format, and then loaded into a different system to be used as a part of a
visualization.

One of the main reasons that frameworks are indispensable to the deep
learning researcher is that they allow computations to leverage GPU resources
with the flip of a switch. Performing scientific computation on GPUs required
considerable expertise and effort until around 2007 when the manufacturer
NVIDIA7 introduced an interface called CUDA for performing calculations
on GPUs without having to heavily re-write code written for a CPU. Every
major deep learning platform uses CUDA to support GPU computing.

6Python is a programming language whose design prioritizes convenience and flexibility.
Python is often supplemented with packages like Theano, which use C or C++ code under
the hood to achieve good performance for specific applications.

7The GPU market is dominated by two manufacturers: NVIDIA (roughly 70% market
share) and AMD (about 30%).

438 Data Science for Mathematicians

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Torch
Theano

Caffe/Caffe2
PyTorch

Keras
TensorFlow

Microsoft Cognitive Toolkit

FIGURE 9.17: A timeline of popular deep learning frameworks. The lines
merging from Keras to TensorFlow and Microsoft Cognitive Toolkit indicate
the integration of a Keras interface.

9.7.3 TensorFlow with Keras

The primary two high-level deep learning interfaces are PyTorch and
Keras, as in Figure 9.17. In this section, we will perform some basic neu-
ral network training with Keras. You can follow along in a live computing
environment in your browser on the website of resources associated with this
text [84]. Code in this section is written in Python, but Keras is accessible
from other languages as well.

We begin by pulling image data into our session. In Keras, the built-in
datasets are stored as submodules of tensorflow.keras.datasets, and the
data are loaded using the load_data function in that module. This function
returns two pairs: the training data (input and output) and the test data
(input and output). Here we load a dataset of images of handwritten digits,
similar to the left image in Figure 9.6.

from tensorflow.keras.datasets import mnist

(X_train, y_train), (X_test, y_test) = mnist.load_data()

We can run X_train.shape to check that X_train is a 60,000 × 28 × 28
tensor, and similarly we find that y_train is a length-60,000 vector of labels
(each of which is a digit, 0-9). The test data are similar, except that there are
10,000 images and labels.

The pixel intensities in the tensor of images are integers from 0 to 255, so
we divide the tensors by 255 to get values ranging from 0 to 1.

X_train = X_train / 255.0

X_test = X_test / 255.0

Next we construct a Python object that represents a multilayer perceptron.
The simplest way to do this is with a Sequential model, specifying the desired
Dense layers in order. We start out with a Flatten layer, since dense layers

Deep Learning 439

expect vectors, while each image is a 28 × 28 matrix. Keras observes the
convention that the sample axis is the first axis, so the flatten operation acts
only on the other two axes.

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Flatten, Dense

model = Sequential([Flatten(input_shape=(28,28)),

Dense(units=100,activation=’relu’),

Dense(units=10,activation=’softmax’)])

Next we prepare the model for training using the compile method.

model.compile(optimizer=’sgd’,

loss=’sparse_categorical_crossentropy’,

metrics=[’accuracy’])

The sparse_categorical_crossentropy loss is appropriate for classifica-
tion problems where the training labels for the n classes are {0, 1, . . . , n− 1}.
The optimizer argument selects stochastic gradient descent as our optimiza-
tion algorithm, and the metrics argument engages accuracy tracking during
training.

Now we can train the model8:

model.fit(X_train, y_train, epochs=5)

The epochs argument specifies the number of passes through the dataset.
For example, if the mini-batch size is 32 (the default value in Keras), then
approximately 60,000/32 mini-batches are used per epoch.

Finally, we test our model using the test data.

results = model.evaluate(X_test, y_test)

dict(zip(model.metrics_names, results))

The last line zips the names of the metrics returned by the evaluate

method with their values. We get something like

{’loss’: 0.224, ’acc’: 0.935},

indicating an accuracy of about 93.5%. Although this is far from the state of
the art on MNIST (which is a relatively easy dataset to get good results on),
this is a reasonable starting point and serves to illustrate that in fewer than
15 lines of code, you can create a neural network for image recognition! It also
shows the key steps of a Keras workflow: build, compile, fit, and evaluate.

8This line of code took about 30 seconds to run on my notebook computer, while the
previous steps each took a second or less.

440 Data Science for Mathematicians

9.8 Open questions

Gaining insight into the inner workings of a neural network is highly desir-
able for reasons of transparency, fairness, and scientific interest. However,
methods for understanding neural networks are mostly descriptive. A robust
mathematical theory of neural network training could offer substantial prac-
tical value.

A theory of neural network training on a classification might, for example,
envisage each point x ∈ Rn for a given class in a real-world dataset as a
perturbation of a random point selected from a probability distribution on a
relatively low-dimensional submanifold of Rn. This idea is called the manifold
hypothesis; see [156] for mathematical results on checking whether it holds
for a given dataset.

If the manifolds corresponding to different classes are separable by a hyper-
plane, then solving the classification problem amounts to identifying a separat-
ing hyperplane. However, if they are entangled, then hopefully they transform
under successive layers of the network to manifolds that are more easily sepa-
rable (as in Figure 9.1). This idea has been investigated empirically [60], but
progress remains elusive.

9.9 Exercises and solutions

Exercises for this chapter have been included at relevant points in the text
itself, rather than collected at the end. Readers can find them on pages 415,
416, 418, and 424.

For readers who want a software develompent challenge, consider replacing
Exercise 9.2 on page 416 with building your own multilayer perceptron from
scratch in your favorite language, then comparing your work to what you find
in [84]. For readers who want hands-on experience with applying the chapter’s
methods to data, start by repeating the work in Section 9.7.3 yourself, then
try extending it to a new dataset.

Solution to Exercise 9.3. A model which outputs discrete classes can’t be
trained by gradient descent because there is typically no meaningful metric
on the space of classes. Furthermore, a probabilistic output has the advantage
of being able to faithfully represent uncertainty when the model is unable to
confidently choose one class over others.

Solution to Exercise 9.4. If we flatten each three-dimensional array into a
vector, then the computation performed by the convolutional layer is equiv-
alent to an MLP layer with some weights constrained to be zero (the ones
connecting any pair of pixels which are not close enough spatially to be related
by the convolution operations) and others constrained to be equal (the ones
which involve the same entry in the same filter in the convolution operation).

Chapter 10

Topological Data Analysis

Henry Adams, Johnathan Bush, and Joshua Mirth

Colorado State University

10.1 Introduction . 441
10.2 Example applications . 443

10.2.1 Image processing . 443
10.2.2 Molecule configurations . 443
10.2.3 Agent-based modeling . 445
10.2.4 Dynamical systems . 445

10.3 Topology . 446
10.4 Simplicial complexes . 447
10.5 Homology . 449

10.5.1 Simplicial homology . 450
10.5.2 Homology definitions . 451
10.5.3 Homology example . 452
10.5.4 Homology computation using linear algebra 453

10.6 Persistent homology . 457
10.7 Sublevelset persistence . 463
10.8 Software and exercises . 464
10.9 References . 467
10.10 Appendix: stability of persistent homology . 467

10.10.1 Distances between datasets . 468
10.10.2 Bottleneck distance and visualization 471
10.10.3 Stability results . 473

10.1 Introduction

Given a finite sampling of data points from a shape, what knowledge can
we learn about the shape? For example, suppose that our dataset is sampled
from a shape consisting of 17 “blobs,” or components. In Chapter 5, we learned
how to use clustering techniques to recover the fact that our dataset might
have been sampled from a shape with 17 underlying components. But what
if your points are sampled from a circle—is it possible to recover this circular
shape from only a finite noisy sampling (Figure 10.1)? What if your dataset

441

442 Data Science for Mathematicians

is sampled from a surface, such as a sphere, or torus, or two-holed torus
(Figure 10.2)? Though it is rare for a dataset to lie on such a surface, later in
this chapter we will see a natural example arising from conformations of the
cyclo-octane molecule C8H16. What properties about a shape can you recover
given only a finite sample of noisy data points from that shape?

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.388

2

VietorisRipsAndCech_CanonicalPoints.nb 3

FIGURE 10.1: (Left) Points sampled from a circle with noise. (Right) A recon-
struction of the circle.

FIGURE 10.2: (Left) A hollow sphere has a single two-dimensional hole. (Mid-
dle) A hollow torus has a single two-dimensional hole and two one-dimensional
holes (shown in black). (Right) A hollow double torus has a single two-
dimensional hole and four one-dimensional holes (shown in black). Any other
one-dimensional hole can be written as a “linear combination” of these four.

In this chapter, we explain how it is possible to recover topological proper-
ties about the shape from which one’s dataset is sampled. Topology is a way
to quantify the number of holes, or topological features (we will use these two
names interchangeably), of each dimension in a space. Roughly speaking, a
zero-dimensional feature is a connected component, a one-dimensional feature
is a loop, and a two-dimensional feature is a void. For example, one can use
topology to make precise the intuitive notions that a hollow sphere (the sur-
face of a ball) has a single two-dimensional hole, whereas a hollow torus has
a single two-dimensional hole and two one-dimensional holes (Figure 10.2).

We begin by describing example applications of topology to data analysis
in Section 10.2, followed by a more formal introduction to topology in Sec-
tion 10.3. In Section 10.4 we introduce simplicial complexes, which are the

Topological Data Analysis 443

data structure we use to store topological spaces on a computer. We intro-
duce homology in Section 10.5, which is a way to count the number of holes of
each dimension in a space, i.e., to make the counts in Figure 10.2 precise. Sec-
tion 10.6 describes persistent homology, which was developed in the late 1990s
and early 2000s as a way to compute topological properties when one is given
only a dataset, i.e., a finite sampling from some unknown underlying space.
We end with additional sections on sublevelset persistence (Section 10.7), a
survey of software packages for topological data analysis (Section 10.8), and
a brief pointer to related papers and expository articles (Section 10.9). It is
important for any algorithm in data analysis to be robust to noise, as all data
measurements are inherently noisy to some degree, and we describe how per-
sistent homology is robust to noise in Appendix 10.10. Some accompanying
code for persistent homology, with an accompanying tutorial, is available on
the website for this book [84].

10.2 Example applications

We give a survey of only a few of the beautiful example applications of
topology to data analysis, including datasets arising from image processing,
molecule configurations, agent-based modeling, and dynamical systems.

10.2.1 Image processing

If you take a large collection of black and white photographs of indoor
and outdoor scenes, what are the most common 3× 3 pixel patches, i.e., the
most common tiny squares of adjacent pixels? Select out only the high-contrast
patches, i.e. those that are far from being monochromatic, and normalize each
patch to have the same “contrast norm,” and to have the same average gray-
scale color. It turns out that the most common patches are linear gradients
at all angles, forming a circle. The next most common patches are quadratic
gradients at all angles, forming two additional circles (Figure 10.3). Topolog-
ical data analysis can be used to find the number of one-dimensional holes in
this dataset; for further details see [81] and the references [233, 483] within.
As we describe in Section 10.6, one can use these low-dimensional models in
order create image compression algorithms.

10.2.2 Molecule configurations

As another example of a dataset with an interesting shape, consider con-
formations of the cyclo-octane molecule. The cyclo-octane molecule C8H16

consists of a ring of eight carbons atoms, each bonded to a pair of hydrogen

444 Data Science for Mathematicians

FIGURE 10.3: (Left) PCA projection of the 3× 3 image patches described in
the text. (Right) Three-circle model.

atoms in Figure 10.4 (left). A conformation of this molecule is a chemically
and physically possible realization in 3D space R3, modulo translations and
rotations. The locations of the carbon atoms in a conformation determine
the locations of the hydrogen atoms via energy minimization, and hence each
molecule conformation can be mapped to a point in R24 = R8·3, as there
are eight carbon atoms in the molecule, and each carbon location is repre-
sented by three coordinates x, y, z. This map realizes the conformation space
of cyclo-octane as a subset of R24. The papers [71, 336, 337] show that the
conformation space of cyclo-octane is the union of a sphere with a Klein bot-
tle, glued together along two circles of singularities, as shown in Figure 10.4
(right).

Example: Cyclo-Octane (C8H16) data
1,000,000+ points in 24-dimensional space

Figure 7: Conformation Space of Cyclo-Octane. Here we show how the set of conforma-
tions of cyclo-octane can be represented as a surface in a high dimensional space. On the
left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org).
In the center, these conformations are represented by the 3D coordinates of their atoms.
The coordinates are concatenated into vectors and shown as columns of a data matrix.
As an example, the entry c1,1,x of the matrix denotes the x-coordinate of the first carbon
atom in the first molecule. On the right, the Isomap method is used to obtain a lower
dimensional visualization of the data.

conformation space. Freedman’s method failed because the surface had self-
intersections of the type discussed in this paper. Thus we developed our
method for non-manifold surface reconstruction and applied it to the cyclo-
octane dataset.

To reduce complexity and avoid potential error due to hydrogen place-
ment, we used only ring atoms to obtain a dataset {xi}1,031,644

i=1 ⊂ R24. We ap-
plied our algorithm to this dataset using parameters ϵ = 0.23, dt = 0.05, dp =
0.01, and ϵp = 0.02. We used five different values of dl, given by 0.08, 0.09,
0.10, 0.11, and 0.12. We produced five different triangulations with 6,040;
7,114; 8,577; 10,503; and 13,194 vertices.

We used the Plex and Linbox toolboxes to check the accuracy of the
triangulations. For each of the five triangulations, we verified that every
neighborhood Bi (before decomposition) had Betti numbers 1,0,0. This is an
accuracy check because any neighborhood Bi should be homotopic to a point
and should therefore have Betti numbers 1,0,0. We also computed Betti num-
bers for each of the five full triangulations. In all cases we found the Betti
numbers to be 1,1,2. This consistency strongly suggests that the triangula-
tions are all representative of the actual conformation space. A visualization
of the triangulation with 6,044 vertices using the Isomap coordinate represen-

23

Datasets have shapes

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.

FIGURE 10.4: (Left) The cyclo-octane molecule consists of a ring of 8 carbon
atoms (black), each bonded to a pair of hydrogen atoms (white). (Right)
A PCA projection of a dataset of different conformations of the cyclo-octane
molecule; this shape is a sphere glued to a Klein bottle (the “hourglass”) along
two circles of singularity. The right image is from [337], used with permission.

Topological Data Analysis 445

Indeed, using persistent homology in Section 10.6 and following [522], we
compute the persistent homology of the dataset of cyclo-octane molecules. The
computations show a single connected component, a single one-dimensional
hole, and a part of two-dimensional holes, matching the homology groups of
the union of a sphere with a Klein bottle, glued together along two circles of
singularities.

10.2.3 Agent-based modeling

Of course, most datasets do not contain beautiful shapes such as spheres,
tori, or Klein bottles. Nevertheless, persistent homology is still a useful way
to summarize both the local geometric and global topological features that
may be present in a noisy dataset, such as a flock of birds (Figure 10.5).

FIGURE 10.5: A flock of birds (artist’s rendering) contains a lot of both local
geometric and global topological data.

10.2.4 Dynamical systems

The prior examples are all built on point cloud data—i.e., a finite set of
points. However, persistent homology can also be applied to functions through
a process known as sublevelset persistence. Indeed, consider Figure 10.6 (left),
which shows a Rayleigh-Bénard convection system obtained by mixing two
metals [276]. Figure 10.6 (right) shows various sublevelsets of this function,
as the thresholding parameter increases. Note that we obtain an increasing
sequence of spaces, and hence can apply persistent homology to describe
attributes of the Rayleigh-Bénard function. Though the focus of this chapter
is persistent homology for point clouds, we return to sublevelset persistence
in Section 10.7.

446 Data Science for Mathematicians

FIGURE 10.6: (Left) A surface created from Rayleigh–Bénard convection.
(Right) Four increasing sublevelsets from that surface. Images from [276],
used with permission.

10.3 Topology

We begin by giving a high-level introduction to topology. The mathemati-
cian reader may be somewhat familiar with the general idea of the subject, but
a brief review may be helpful. Topology was developed by Poincaré and others
in the 1900s. Topology it is now one of the major branches of mathematics,
and it interacts in important and surprising ways with many of the other main
branches of mathematics, such as analysis, algebra, geometry, combinatorics,
logic, number theory, etc.

The reader may recall that in Chapter 7 we learned how to recover geo-
metric properties of a space from only a finite sample. What is the difference
between geometric and topological properties? Geometric properties include,
for example, distances and curvatures—things that can be measured with a
ruler. By contrast, topological properties are invariant upon stretching and
bending (but not ripping or gluing) a shape. For example, to a geometer, a
circle is not the same thing as an ellipse, since a circle has constant curvature,
whereas an ellipse has regions of larger and smaller curvature. By contrast,
to a topologist, a circle is considered to be the same shape as an ellipse, since
it is possible to continuously deform the circle until one obtains the ellipse,
or vice versa (Figure 10.7). This topological perspective emphasizes what the
circle and the ellipse both share in common: a single hole.

FIGURE 10.7: The transformation of a circle into an ellipse.

Topological Data Analysis 447

As another example, it is frequently said that a topologist cannot distin-
guish between her coffee cup and her doughnut. Indeed, consider Figure 10.8,
in which you can see a coffee cup gradually deform into a doughnut as one
side shrinks away the cup portion, while the handle expands into a larger ring
shape, until we we are left with an edible doughnut!

FIGURE 10.8: The transformation of a doughnut into a coffee cup.

In mathematics, ignoring structure is sometimes detrimental, but it is
also sometimes advantageous. For example, parity arguments in mathematics
ignore an integer’s exact value in order to emphasize whether that integer is
odd or even, which sometimes is all that matters. In topology, we ignore some
geometric structure (such as distances or curvature) in order to emphasize
other properties, such as the number or type of holes in a space. Roughly
speaking, a topological property is one that is invariant upon stretching or
bending (but not tearing or gluing) a space.

The field of algebraic topology studies ways to assign algebraic invariants
to topological spaces. The word “invariant” implies that two topological spaces
which can be deformed to each other will be assigned the same algebraic data,
i.e., these algebraic assignments are invariant (or unchanged) upon stretching
or bending a space. In other words, these algebraic invariants depend only
on the topological properties of the underlying space. In Section 10.5, we will
learn more about one such algebraic invariant, called homology.

10.4 Simplicial complexes

A simplicial complex is a collection of points, line segments, triangles,
tetrahedra, and “higher-dimensional tetrahedra,” called simplices, together
with data specifying how these spaces are attached. In particular, we require
simplices to be attached along faces, defined below, ensuring that every point
of the complex is contained in a unique maximal simplex. A simplicial complex
definines a triangulation of a topological space, whereby the space has been
decomposed into simpler parts (simplices) admitting a feasible computational
analysis (Figure 10.9). Simplicial complexes are useful in data analysis because
a simplicial complex built on top of a finite dataset (a finite number of vertices)

448 Data Science for Mathematicians

admits a combinatorial description that one can store and manipulate on a
computer.

FIGURE 10.9: (Left) Simplices of dimension zero, one, two, and three. (Right)
Simplices of various dimensions glued together to form a simplicial complex.

Formally, a finite abstract simplicial complex K with vertex set V =
{v0, v1, . . . , vn} is a collection of subsets1 of V , such that K is closed under
taking subsets, and every singleton of V belongs to K. By “closed under taking
subsets” we mean that if σ ⊆ V is in K and τ ⊆ σ, then τ is also necessarily
in K. By convention, we often ignore the element ∅ ∈ K because it is irrel-
evant to the topology of K. Each element of K is called a face of K, and a
subcollection of elements of K consisting of all subsets of a single face defined
by d+ 1 vertices is called a d-simplex.

To an abstract simplicial complex K we may define an associated topo-
logical space, denoted |K|, called the geometric realization of K. First, given
a d-simplex σ, define |σ| to be the convex hull of d + 1 linearly independent
vectors in Rd+1. Then, roughly speaking, the geometric realization |K| of a
simplicial complex K is a topological space obtained by taking the disjoint
union of each |σ|, for σ ∈ K, and then identifying these topological sim-
plices along common faces as determined by the combinatorial structure of
K. In this way, an abstract simplicial complex provides a purely combina-
torial description of a decomposition of a topological space into geometric
simplices, specifying both which simplices are present and the ways in which
they are attached along faces (Figure 10.10).

{
{0, 1, 2}, {0, 1}, {0, 2}, {1, 2},
{2, 3}, {3, 4}, {4, 5}, {3, 5},
{0}, {1}, {2}, {3}, {4}, {5}, ∅

}

0

1

2 3

4

5
K |K|

FIGURE 10.10: An abstract simplicial complex K (left) and its geometric
realization |K| (right).

1i.e., a subset of the powerset P(V)

Topological Data Analysis 449

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.

VietorisRipsAndCech_CanonicalPoints.nb 5

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.175

6 VietorisRipsAndCech_CanonicalPoints.nb

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.23

VietorisRipsAndCech_CanonicalPoints.nb 7

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.388

8 VietorisRipsAndCech_CanonicalPoints.nb

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.609

VietorisRipsAndCech_CanonicalPoints.nb 9

FIGURE 10.11: A dataset and its Vietoris–Rips complexes at five different
choices of scale.

In topological data analysis, we assume that our dataset X arises as a finite
sample of points from an unknown space. Two common methods of defining
a simplicial complex from a metric space X are the Vietoris–Rips and Čech
simplicial complexes.2 By definition, the Vietoris–Rips simplicial complex with
vertex set X and scale parameter r > 0, denoted VR(X; r), contains a simplex
{v0, . . . , vd} whenever its diameter is less than r, i.e., diam({v0, . . . , vd}) < r.
Similarly, the Čech simplicial complex with vertex set X and scale param-
eter r > 0, denoted Č(X; r), contains a simplex {v0, . . . , vd} whenever the
collection of open balls of radius r/2 centered at each vi have a nonempty
intersection.

Hence, both the Vietoris–Rips and Čech simplicial complexes associate to
X a topological space depending on a notion of “closeness” of points within
X. Further, given 0 ≤ r ≤ r′, it follows that VR(X; r) ⊆ VR(X; r′) and
Č(X; r) ⊆ Č(X; r′), that is, both complexes define a filtration of topological
spaces parametrized by r. This observation is closely related to persistent
homology in Section 10.6; the word persistent implies that we are interested
in which topological features or holes persist over a range of scale parameters
r, as shown in Figure 10.11.

10.5 Homology

Homology provides a method to associate a sequence of algebraic struc-
tures, e.g., vector spaces or modules, to a topological space. Importantly,
the structures computed by homology are algebraic invariants, meaning they
depend only on topological properties of the space, and remain constant under
certain allowable transformations, e.g., stretching or bending. Roughly speak-
ing, the homology invariants measure the number of connected components,
one-dimensional holes, two-dimensional voids, etc., of the space. The compu-
tation of homology is motivated by the observation that two spaces may be
distinguished by comparing the set of such invariants associated to each space.
As an example, a circle is not the same shape (up to stretching and bending)

2Čech is pronounced approximately like “check.”

450 Data Science for Mathematicians

as a figure-eight, because a circle contains a single hole while a figure-eight
contains two holes (Figure 10.12).

FIGURE 10.12: (Left) A circle and a simplicial complex with the same shape.
(Right) A figure-eight and a simplicial complex with the same shape.

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.388

2

VietorisRipsAndCech_CanonicalPoints.nb 3

FIGURE 10.13: In all three shapes X above, H0(X) = F indicates the pres-
ence of a single connected component. (Left) H1(circle) = F corresponds to
the one-dimensional hole. (Middle) H2(sphere) = F corresponds to the two-
dimensional hole. (Right) The torus has two one-dimensional holes and a single
two-dimensional hole, giving H1(torus) = F 2 and H2(torus) = F .

More precisely, homology associates to a space X a sequence of abelian
groups H0(X), H1(X), H2(X), . . . , such that Hd(X) gives a measure of the
number of “d-dimensional holes” in X (Figure 10.13). Because the homological
groups associated to a space X remain constant under continuous deforma-
tions of the space (that is, the groups are topological invariants), it is sufficient
to compute the homology of a simplicial complex which has the same shape
as X (Figure 10.12).

10.5.1 Simplicial homology

There are a number of equivalent methods to compute the homology of a
space. We consider one particular method of computation, simplicial homol-
ogy, which is motivated by the observation that the homology of a finite
simplicial complex is computable through techniques of linear algebra. For
simplicity, throughout the remainder of this section, we fix the coefficients to
live in the field F = F2 = {0, 1} of two elements, in which 1 + 1 = 0. As a

Topological Data Analysis 451

consequence, each homology group Hn(X) is a vector space3 over F . Further-
more, since addition is the same as subtraction in the field of two elements, we
do not need to keep track of negative signs in any of the following formulas.

0

1

2

3

FIGURE 10.14: We compute the homology of simplicial complex J and find
a single connected component, a single one-dimensional hole, and no higher-
dimensional holes.

As an example, consider the simplicial complex J with vertices {0}, {1},
{2}, {3}, edges {0, 1}, {0, 2}, {0, 3}, {1, 2}, {2, 3}, the triangle {0, 2, 3}, and no
higher-dimensional faces (Figure 10.14). This space has one connected compo-
nent, a single one-dimensional hole, and no two-dimensional voids or higher-
dimensional holes. Therefore, we expect to compute H0(J) = F, H1(J) = F,
and Hi(J) = 0 for i > 1. More generally, for a space X with n distinct k-
dimensional holes, we expect to compute Hn(X) = F k. Roughly speaking,
in order to detect these topological features in J , we should understand the
relationship between simplices creating holes, and those filling holes. More
precisely, observe that the central hole in this example is determined by the
existence of all three edges {0, 1}, {1, 2}, {0, 2} in J together with the absence
of the two-dimensional face {0, 1, 2} in J .

10.5.2 Homology definitions

In light of this guiding example, let K denote a finite simplicial complex
defined on a vertex set V . If σ = {v0, v1, . . . , vd} is a d-simplex in K, then let
{v0, . . . , v̂i, . . . , vd} = {v0, . . . , vi−1, vi+1, . . . , vd} denote the simplex obtained
by removing the ith vertex of σ; we call such a simplex the ith boundary face
of σ.

Define a simplicial d-chain to be a finite formal4 linear sum
∑n
i=1 σi,

where each σi is a d-simplex of K. Let Cd denote the set of all simplicial
d-chains. Note that Cd has the structure of a vector space over our field F

3By making different choices of coefficients, one can instead endow homology groups
with the structure of an abelian group or a module.

4By formal we mean that if σ and σ′ are two d-simplices, then we are allowed to write
σ + σ′ as a d-chain, even though we will not define how to “add” the two simplices σ and
σ′ together.

452 Data Science for Mathematicians

under addition. For example, if σ, σ′, σ′′, σ′′′ are d-simplices in K, and if we
add the d-chains σ+σ′+σ′′ and σ+σ′′′ together, then we obtain the d-chain
σ′ + σ′′ + σ′′′ as output, where the two σ summands have cancelled since we
are using F = F2 coefficients in which 1 + 1 = 0.

Define the dth boundary operator ∂d by

∂d(σ) =
d∑

i=0

{v0, . . . , v̂i, . . . , vd},

and extend linearly on simplices to obtain a map ∂d : Cd → Cd−1, called the dth

boundary map. By definition, observe that each boundary map is determined
by its effect on the generators of Cd. For example, if σ = {v0, v1, v2}, then
∂2(σ) = {v1, v2}+ {v0, v2}+ {v0, v1}. If σ = {v0, v1, v2} and σ′ = {v0, v1, v3},
then

∂2(σ + σ′)

= ∂2(σ) + ∂2(σ′)

= ({v1, v2}+ {v0, v2}+ {v0, v1}) + ({v1, v3}+ {v0, v3}+ {v0, v1})
= {v0, v2}+ {v0, v3}+ {v1, v2}+ {v1, v3}.

The last equality above follows since we are using coefficients in F = F2, the
field of two elements, in which 1 + 1 = 0. Hence {v0, v1}+ {v0, v1} cancels to
give zero.

Definition 10.1 The dth homology group of a simplicial complex K (with
coefficients in F) is the abelian group

Hd(K) =
ker ∂d

im ∂d+1
.

Elements of ker ∂d are called d-cycles, and elements of im ∂d+1 are called d-
boundaries of K.

10.5.3 Homology example

Let us apply these definitions to compute the homology groups of the
example complex J from Figure 10.14, and verify that these groups agree
with our intuition. In this case, observe

C0 = {a{0}+ b{1}+ c{2}+ d{3} | a, b, c, d ∈ F},
C1 = {a{0, 1}+ b{0, 2}+ c{0, 3}+ d{1, 2}+ e{2, 3} | a, b, c, d, e ∈ F},
C2 = {a{0, 2, 3} | a ∈ F},

Topological Data Analysis 453

TABLE 10.1: The chain, cycle, boundary, and homology groups of the example
simplicial complex J from Figure 10.14.

d 0 1 2 3 ≥ 4

Cd F 4 F 5 F 0 0
ker ∂d F 4 F 2 0 0 0
im ∂d+1 F 3 F 0 0 0

Hd F F 0 0 0

and Cd = {0} for all d > 2. Hence, C0
∼= F 4, C1

∼= F 5, and C2
∼= F . Next,

observe that the boundary operators are generated by the following equations:

∂0({v0}) = 0 for all vertices {v0} of J

∂1({v0, v1}) = {v1}+ {v0} = {v0}+ {v1} for any edge {v0, v1} of J

∂2({0, 2, 3}) = {2, 3}+ {0, 3}+ {0, 2} = {0, 2}+ {0, 3}+ {2, 3}
∂d is the zero map for d > 2.

It is straightforward to verify that

ker ∂1 = {0, {0, 1}+ {0, 2}+ {1, 2},
{0, 2}+ {0, 3}+ {2, 3}, {0, 1}+ {0, 3}+ {1, 2}+ {2, 3}}

= {a({0, 1}+ {0, 2}+ {1, 2}) + b({0, 2}+ {0, 3}+ {2, 3}) | a, b ∈ F}
∼= F 2.

To see the second equality above, note that

({0, 1}+{0, 2}+{1, 2})+({0, 2}+{0, 3}+{2, 3}) = {0, 1}+{0, 3}+{1, 2}+{2, 3}.

We furthermore compute

im ∂2 = {0, {0, 2}+ {0, 3}+ {2, 3}}
= {a({0, 2}+ {0, 3}+ {2, 3}) | a ∈ F}
∼= F.

Hence, we find H1(J) = F 2

F
∼= F , as expected. In a similar way, one may

compute the remaining cycle groups (elements of the kernel ∂d) and boundary
groups (elements of the image ∂d+1), from which it follows that H0(J) = F
and Hd(J) = 0 for d ≥ 2. These computations are summarized in Table 10.1.

10.5.4 Homology computation using linear algebra

The reader may object to the ad-hoc nature of the sequence of equations
leading to ker ∂1

∼= F 2 and im ∂2
∼= F in the above example. Indeed, an attrac-

tive feature of simplicial homology is that it may be computed algorithmically

454 Data Science for Mathematicians

with techniques of linear algebra. Here, we demonstrate a portion of this algo-
rithmic approach for the above simplical complex, and leave the details of the
intermediate steps as an exercise.

As an example, let us consider the first boundary map ∂1 associated to the
example complex J . From the perspective of linear algebra, ∂1 is just a linear
map from the vector space C1 = F 5 to the vector space C0 = F 4. Hence, we
may represent ∂1 as a matrix, say, M , and compute the dimension of both
the image of ∂1 (i.e., the rank of M) and the kernel of ∂1 (i.e., the nullity of
M) through simple Gaussian elimination (as in Section 3.2.2.1). In addition,
as long as we take care to maintain a consistent labeling of both the rows and
the columns of M , we may simultaneously compute generating sets for both
of these vector spaces. We will use not only row operations but also column
operations.

In light of the definition of ∂1, observe

M =

{0, 1} {0, 2} {0, 3} {1, 2} {2, 3}

{0} 1 1 1 0 0
{1} 1 0 0 1 0
{2} 0 1 0 1 1
{3} 0 0 1 0 1

.

For example, the second column of M contains ones in the rows associated to
{0} and {2} since ∂1({0, 2}) = {0} + {2}. Next, we perform Gaussian elimi-
nation while keeping track of the labels associated to each row and column.
First, swap rows to obtain

{0, 1} {0, 2} {0, 3} {1, 2} {2, 3}

{1} 1 0 0 1 0
{2} 0 1 0 1 1
{3} 0 0 1 0 1
{0} 1 1 1 0 0

.

Add the first two columns to the fourth column to obtain

{0, 1} {0, 2} {0, 3} z1 {2, 3}

{1} 1 0 0 0 0
{2} 0 1 0 0 1
{3} 0 0 1 0 1
{0} 1 1 1 0 0

,

Topological Data Analysis 455

TABLE 10.2: The homology groups of some common spaces, the last three of
which are pictured in Figure 10.2.

Space X H0(X) H1(X) H2(X)

Circle F F 0
Figure eight F F 2 0
two-sphere F 0 F

Torus F F 2 F
Double torus F F 4 F

where z1 = {0, 1} + {0, 2} + {1, 2}. Add the second two columns to the fifth
column to obtain

{0, 1} {0, 2} {0, 3} z1 z2

{1} 1 0 0 0 0
{2} 0 1 0 0 0
{3} 0 0 1 0 0
{0} 1 1 1 0 0

,

where z2 = {0, 2} + {0, 3} + {2, 3}. Note that adding column i to column j
affects the label on column j. By contrast, adding row i to row j affects the
label on row i. We add the first row to the fourth row to obtain

{0, 1} {0, 2} {0, 3} z1 z2

{0}+{1} 1 0 0 0 0
{2} 0 1 0 0 0
{3} 0 0 1 0 0
{0} 0 1 1 0 0

.

Continuing in this way, we add the second row to the fourth row, and the
third row to the fourth row, to obtain our final diagonalization

{0, 1} {0, 2} {0, 3} z1 z2

{0}+{1} 1 0 0 0 0
{0}+{2} 0 1 0 0 0
{0}+{3} 0 0 1 0 0
{0} 0 0 0 0 0

.

This matrix has rank three and nullity two. Further, the first three rows form
a basis for im ∂1, and the last two columns z1 and z2 form a basis for ker ∂1.

In Table 10.2 we list the homology groups of some common spaces.
Readers interested in solidifying their understanding of homology may try

the following exercises. We then apply these ideas to datasets in Section 10.6.

Exercise 10.1 Compute the one-dimensional homology of a figure-eight. You
could use, for example, the simplicial complex model given in Figure 10.12
(right).

456 Data Science for Mathematicians

Exercise 10.2 Compute the two-dimensional homology of the boundary of a
tetrahedron, which consists of four vertices, six edges, and four triangles (or
two-simplices), but no three-simplices.

Exercise 10.3 Compute the one-dimensional homology of the one-skeleton of
a tetrahedron (which contains four vertices and six edges). Should you expect
to find three one-dimensional holes or four one-dimensional holes?

FIGURE 10.15: A sphere, a disc, and a torus attached at a point.

Exercise 10.4 Consider the topological space X consisting of a sphere, a disk,
and a torus attached at a point (the so-called wedge sum of these spaces) in
Figure 10.15. First, write down a triangulation of X. Let V , E, and F denote
the total number of distinct vertices, edges, and faces of your triangulation,
respectively. Compute the number χ = V − E + F , which is called the Euler
characteristic of X.

Given a topological space Y, let βk(Y) denote the dimension of Hk(Y) as
an F -vector space. We call βk(Y) the kth Betti number of Y . Now, given that
the kth Betti number of a wedge of two topological spaces is the sum of the kth

Betti number of each (for k > 0), compute the following alternating sum for
the space X:

ψ :=
∑

k≥0

(−1)kβk(X).

Topological Data Analysis 457

What do you observe about the relationship between χ and ψ? If this obser-
vation is true in general, then using the fact that homology groups are topo-
logical invariants, would this imply that the Euler characteristic is another
example of a topological invariant which remains constant under allowable
transformations of the space? In this way, homology can be viewed as a gen-
eralization of the Euler characteristic.

10.6 Persistent homology

In Chapter 5 we learned about hierarchical clustering, in which one studies
how the clusters within a dataset form and merge as one increases some notion
of scale. In this section, we study a generalization of hierarchichal clustering,
in which one studies how the homology groups of a dataset change as one
increases the scale.

Consider for example a finite subset X ⊆ Rn, and its Vietoris–Rips com-
plex VR(X; r) as defined in Section 10.4. If we consider an increasing sequence
of scale parameters r1 ≤ r2 ≤ r3 ≤ . . . ≤ rm−1 ≤ rm, then we obtain an
increasing sequence of simplicial complexes (Figure 10.16 (top))

VR(X; r1) ⊆ VR(X; r2) ⊆ VR(X; r3) ⊆ . . . ⊆ VR(X; rm−1) ⊆ VR(X; rm).

Persistent homology will give us a language to describe not only the holes
in VR(X; rj) at each scale rj , but also how the holes in VR(X; rj) relate to
those in VR(X; rj+1)—namely which holes at scale rj+1 are new (not present
at scale rj), which holes at scale rj die at scale rj+1, and which holes remain or
persist from scale rj to scale rj+1. The same can be done with Čech complexes
instead of Vietoris–Rips complexes.

More generally, let K1 ⊆ K2 ⊆ K3 ⊆ . . . ⊆ Km−1 ⊆ Km be any nested
sequence of topological spaces, each one contained inside the next. (The
prior paragraph considers the case when Ki = VR(X; ri).) We can apply
i-dimensional homology to get a sequence

Hi(K1)→ Hi(K2)→ Hi(K3)→ . . .→ Hi(Km−1)→ Hi(Km)

of homology groups with maps in-between.5 The i-dimensional persistent
homology of this increasing sequence of spaces can be represented as a set
of intervals (Figure 10.16 (middle)), referred to as the persistence barcode.
In this barcode representation, each interval corresponds to an i-dimensional
topological feature, i.e., to an i-dimensional topological hole. An interval’s

5We remark that even though Kj ⊆ Kj+1 is an inclusion, the map Hi(Kj)→ Hi(Kj+1)
need not be an inclusion in any sense.

458 Data Science for Mathematicians

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.

VietorisRipsAndCech_CanonicalPoints.nb 5

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.175

6 VietorisRipsAndCech_CanonicalPoints.nb

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.23

VietorisRipsAndCech_CanonicalPoints.nb 7

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.388

8 VietorisRipsAndCech_CanonicalPoints.nb

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.609

VietorisRipsAndCech_CanonicalPoints.nb 9

Out[9]=

Vietors-Rips and Cech simplicial complexes

Draw balls

Select/deselect for Vietoris-Rips/Cech

Filtration parameter 0.703

10 VietorisRipsAndCech_CanonicalPoints.nb

zero-dimensional persistent homology barcode

one-dimensional persistent homology barcode

one-dimensional persistent homology diagram

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

H1 Persistence Diagram

FIGURE 10.16: (Top) A dataset and its Vietoris–Rips complexes at five dif-
ferent choices of scale. (Middle) The zero-dimensional and one-dimensional
persistent homology intervals. The horizontal axis is the scale parameter r in
the construction of the Vietoris–Rips complex. (Bottom) The one-dimensional
persistent homology diagram. The horizontal axis is the birth time, and the
vertical axis is the death time.

Topological Data Analysis 459

birth-time corresponds to the first index at which that topological feature
appears, and its death-time corresponds to the index when the topological
feature becomes trivial.6

In persistent homology barcodes, the horizontal axis corresponds to the
filtration value. For example, in Figure 10.16 (middle), the horizontal axis
corresponds to the scale parameter r in the definition of the Vietoris–Rips
complex. By contrast, the vertical axis in persistent homology barcodes has
no meaning, in the sense that if we swap the vertical order of two intervals
(in the same dimension), then the persistent homology barcode is considered
to be unchanged.

The information in a persistence barcode can equivalently be presented as
a persistence diagram. Indeed, in a persistence diagram, each interval I with
birth-time b and death-time d is represented as the point (b, d) in the plane
R2. Since we have b ≤ d for each such interval, i.e. since each topological
feature is born before it dies, a persistence diagram is a collection of points in
the plane above the diagonal line y = x. See Figure 10.16 (bottom).

If we are computing the persistent homology of a filtration that consists
of increasing Vietoris–Rips complexes or Čech complexes of a finite dataset
X ⊆ Rn, then the way to read the persistent homology intervals is as follows.
If r is smaller than the distance between the two closest points in X, then
VR(X; r) = X is just a finite set of points with no interesting topology,
and hence we are not interested in the topology of VR(X; r) for very small
scale parameters r. Similarly, if r is larger than the diameter of X, then
VR(X; r) is a simplex on vertex setX, which again has no interesting topology,
and hence we are not interested in the topology of VR(X; r) for very large
scale parameters r. Instead, we are interested in an intermediate range of
scale parameters, and furthermore, we are most interested in those features
which persist for a longer range. See for example the persistent homology
intervals in Figure 10.16. The one long zero-dimesional interval and the one
long one-dimensional interval correspond to the true homology of the circle,
which has one connected component and a single one-dimensional hole. By
contrast, the shorter zero-dimensional and one-dimensional intervals should be
disregarded as sampling noise. In general, it is not easy to distinguish intervals
corresponding to true features of the dataset from those corresponding to noise
coming from the sampling.

Part of the reason for the popularity of persistent homology is that it is
computable! Indeed, the algorithm for persistent homology is a cubic O(n3)
operation, where n is the number of simplices that appear [144]. (This can be
reduced to O(n2.376), where the exponent 2.376 is coming from the computa-
tional complexity of matrix multiplication [348].)

6Trivial means either zero, or alternatively, a linear combination of other topological
features.

460 Data Science for Mathematicians

We return now to two of the datasets mentioned in Section 10.2, in order to
describe their persistent homology, and how that persistent homology recovers
important patterns within the datasets.

The first such dataset from Section 10.2.1 is of 3 × 3 pixel patches taken
from black-and-white photographs. Only the high-contrast patches, the ones
that are far from being monochromatic, are considered. Each patch is nor-
malized to have unit “contrast norm,” and to have the same average value.
The most common such patches, according to a certain estimate of density,
are shown via a PCA projection in Figure 10.3 (left). From this PCA pro-
jection, which looks like a circle with a cross inside it, one might guess that
this dataset has four one-dimensional holes. However, the persistent homol-
ogy barcodes in Figure 10.17 show five robust one-dimensional features. These
five one-dimensional features allowed the researchers in [81] to develop the
three-circle model for this dataset in Figure 10.18. This model indeed has
five one-dimensional holes, as illustrated in the same figure. The conclusion of
the three-circle model is that the most common 3 × 3 image patches are lin-
ear gradients at all angles, forming a circle. The next most common patches
are quadratic gradients at all angles, forming the two additional circles in
the three-circle model. See the website for this book [84] for a tutorial that
computes these persistent homology barcodes.

Is there value of having a compact model for a dataset? One can use a
compact model for data compression. Indeed, a 3 × 3 image patch could be
stored not as a list of 9 real numbers, but instead as a point on the (one-
dimensional) three-circle model plus an error vector. This is the first step

zero-dimensional persistent homology barcode
2.	Densest	patches	according	to	an	intermediate	estimate

Persistent	homology	applied	to	data

one-dimensional persistent homology barcode

2.	Densest	patches	according	to	an	intermediate	estimate
Persistent	homology	applied	to	data

two-dimensional persistent homology barcode

2.	Densest	patches	according	to	an	intermediate	estimate
Persistent	homology	applied	to	data

FIGURE 10.17: zero-, one-, and two-dimensional persistent homology bar-
codes for the dataset of 3× 3 optical image patches. We have five significant
one-dimensional intervals.

Topological Data Analysis 461

1 3 5

2

4

FIGURE 10.18: (Left) The three-circle model for the dataset of 3× 3 optical
image patches. (Right) A topological deformation of this model, which shows
the five one-dimensional holes.

towards a Huffman-type code [236], as used for example in JPEG [488]. In [81],
the three-circle model is extended to give a Klein bottle model for 3×3 image
patches, which does provide a reasonable image compression scheme. The
Klein bottle model has also been used in [386], along with Fourier analysis, to
build a rotation-invariant texture classification algorithm.

A second interesting dataset is the space of conformations of the cyclo-
octane molecule, considered in Section 10.2.2. Cyclo-octane C8H16 consists
of a ring of 8 carbons atoms, along with 16 hydrogen atoms. The locations
of the carbon atoms can be used to map each molecule conformation to a
point in R24, where the dimension 24 = 8 · 3 is obtained as there are eight
carbon atoms in the molecule, and each carbon location is represented by
three coordinates x, y, z. In Figure 10.19, we compute the persistent homology
of this dataset, obtaining a single connected component, and two significant
two-dimensional homology features. See the website for this book [84] for a
tutorial that computes these persistent homology barcodes. These homology
signatures agree with the homology of the union of a sphere with a Klein
bottle, glued together along two circles of singularities. As many shapes have
these same homology signatures, the persistent homology does not determine
the shape uniquely. However, persistent homology gives a data scientist partial
clues towards such a model. The sphere with Klein bottle model is obtained in
the papers [336, 337], who furthermore obtain a triangulation of this dataset
(a representation of the dataset as a two-dimensional simplicial complex).

It is important to reiterate that while homology is an invariant of a space,
it is not a complete invariant. This means that two shapes that can be bent
or stretched to get from one to the other necessarily have the same homology
groups, but the reverse direction does not hold! Two shapes which have the
same homology groups may or may not be deformable to get from one to the

462 Data Science for Mathematicians

Example: Cyclo-Octane (C8H16) data
1,000,000+ points in 24-dimensional space

Figure 7: Conformation Space of Cyclo-Octane. Here we show how the set of conforma-
tions of cyclo-octane can be represented as a surface in a high dimensional space. On the
left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org).
In the center, these conformations are represented by the 3D coordinates of their atoms.
The coordinates are concatenated into vectors and shown as columns of a data matrix.
As an example, the entry c1,1,x of the matrix denotes the x-coordinate of the first carbon
atom in the first molecule. On the right, the Isomap method is used to obtain a lower
dimensional visualization of the data.

conformation space. Freedman’s method failed because the surface had self-
intersections of the type discussed in this paper. Thus we developed our
method for non-manifold surface reconstruction and applied it to the cyclo-
octane dataset.

To reduce complexity and avoid potential error due to hydrogen place-
ment, we used only ring atoms to obtain a dataset {xi}1,031,644

i=1 ⊂ R24. We ap-
plied our algorithm to this dataset using parameters ϵ = 0.23, dt = 0.05, dp =
0.01, and ϵp = 0.02. We used five different values of dl, given by 0.08, 0.09,
0.10, 0.11, and 0.12. We produced five different triangulations with 6,040;
7,114; 8,577; 10,503; and 13,194 vertices.

We used the Plex and Linbox toolboxes to check the accuracy of the
triangulations. For each of the five triangulations, we verified that every
neighborhood Bi (before decomposition) had Betti numbers 1,0,0. This is an
accuracy check because any neighborhood Bi should be homotopic to a point
and should therefore have Betti numbers 1,0,0. We also computed Betti num-
bers for each of the five full triangulations. In all cases we found the Betti
numbers to be 1,1,2. This consistency strongly suggests that the triangula-
tions are all representative of the actual conformation space. A visualization
of the triangulation with 6,044 vertices using the Isomap coordinate represen-

23

Datasets have shapes

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.

zero-dimensional persistent homology barcode

Example: Cyclo-Octane (C8H16) data
1,000,000+ points in 24-dimensional space

S. Martin, J.-P. Watson / Computational Geometry 44 (2011) 427–441 437

Table 2
Example run times. Here we show the run times obtained for the different examples investigated in this section. For each example we provide the number
of points n, number of landmarks L, neighborhood size k, time in seconds for pre-processing, and time in seconds for reconstruction.

Example n L k Pre-proc. Recon.

Sphere 10,000 886 36 1.7 368.2
Torus 10,000 667 28 1.1 220.5
Double torus 20,000 813 26 3.7 263.1

Mobius strip 10,000 416 23 0.9 123.7
Klein figure 8 10,000 1940 33 3.8 778.0
RP2 100,000 753 35 11.7 302.0

Two spheres 83,646 1588 13 446.4 344.4
Klein immersion 61,440 4566 14 295.7 1183.3
Henneberg 13,637 1463 39 40.9 723.4

Fig. 7. Conformation space of cyclo-octane. Here we show how the set of conformations of cyclo-octane can be represented as a surface in a high-
dimensional space. On the left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org). In the center, these conformations are
represented by the 3D coordinates of their atoms. The coordinates are concatenated into vectors and shown as columns of a data matrix. As an example,
the entry c1,1,x of the matrix denotes the x-coordinate of the first carbon atom in the first molecule. On the right, the Isomap method is used to obtain a
lower-dimensional visualization of the data.

3.5. Run times

The run times for the nine examples we have investigated are shown in Table 2. These times were obtained on
a 2.26 GHz Intel Xeon dual quadcore workstation with 16 GB of RAM. The algorithm was implemented in Matlab
(www.mathworks.com) using the optimization toolbox to solve the linear program in (6). Table 2 shows that pre-processing
is negligible except for the non-manifold examples. In the case of the non-manifold examples, the pre-processing is generally
faster than the triangulation.

4. Application

Cyclo-octane is a saturated eight-member cyclic compound with chemical formula C8H16. Cyclo-octane has received
attention in computational chemistry because it has multiple conformations of similar energy, a complex potential energy
surface, and significant (steric) influence from the hydrogen atoms on preferred conformations [32–34]. Cyclo-octane is also
interesting because there are enumerative algorithms available which can provide a dense sampling of the conformation
space [35,36]. These algorithms show from first principles that the resulting conformation space has two degrees of freedom,
suggesting that the space is a surface (but not necessarily a manifold).

Using dimension reduction methods, we have previously analyzed the cyclo-octane conformation space [16]. In our
analysis, we used a dataset of 1,031,644 cyclo-octane conformations, enumerated using the triaxial loop closure algorithm
of Coutsias et al. [35]. Each conformation is placed in Cartesian space via the 3D position coordinates of each atom in the
molecule. The conformations are then aligned to a reference conformation such that the Eckart conditions are satisfied [37].
The final positions of a given conformation are concatenated to obtain a vector in R72. The resulting collection is a dataset
{xi}1,031,644i=1 ⊂ R72 which is presumed to describe a surface. In Brown et al. [16] we applied a variety of dimension reduction
methods to the cyclo-octane dataset, one of which was Isomap [38]. A summary of our analysis using the Isomap reduction
is shown in Fig. 7.

Beyond dimension reduction, the next step in our analysis is surface reconstruction. Unfortunately, the Isomap repre-
sentation of the cyclo-octane conformation space is only a visualization, and is not accurate enough for use with a 3D
surface reconstruction methods. Therefore we applied Freedman’s algorithm for surface reconstruction in the original high-
dimensional conformation space. Freedman’s method failed because the surface had self-intersections of the type discussed
in this paper. Thus we developed our method for non-manifold surface reconstruction and applied it to the cyclo-octane
dataset.

Persistent	homology	applied	to	data

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.

one-dimensional persistent homology barcode

Example: Cyclo-Octane (C8H16) data
1,000,000+ points in 24-dimensional space

S. Martin, J.-P. Watson / Computational Geometry 44 (2011) 427–441 437

Table 2
Example run times. Here we show the run times obtained for the different examples investigated in this section. For each example we provide the number
of points n, number of landmarks L, neighborhood size k, time in seconds for pre-processing, and time in seconds for reconstruction.

Example n L k Pre-proc. Recon.

Sphere 10,000 886 36 1.7 368.2
Torus 10,000 667 28 1.1 220.5
Double torus 20,000 813 26 3.7 263.1

Mobius strip 10,000 416 23 0.9 123.7
Klein figure 8 10,000 1940 33 3.8 778.0
RP2 100,000 753 35 11.7 302.0

Two spheres 83,646 1588 13 446.4 344.4
Klein immersion 61,440 4566 14 295.7 1183.3
Henneberg 13,637 1463 39 40.9 723.4

Fig. 7. Conformation space of cyclo-octane. Here we show how the set of conformations of cyclo-octane can be represented as a surface in a high-
dimensional space. On the left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org). In the center, these conformations are
represented by the 3D coordinates of their atoms. The coordinates are concatenated into vectors and shown as columns of a data matrix. As an example,
the entry c1,1,x of the matrix denotes the x-coordinate of the first carbon atom in the first molecule. On the right, the Isomap method is used to obtain a
lower-dimensional visualization of the data.

3.5. Run times

The run times for the nine examples we have investigated are shown in Table 2. These times were obtained on
a 2.26 GHz Intel Xeon dual quadcore workstation with 16 GB of RAM. The algorithm was implemented in Matlab
(www.mathworks.com) using the optimization toolbox to solve the linear program in (6). Table 2 shows that pre-processing
is negligible except for the non-manifold examples. In the case of the non-manifold examples, the pre-processing is generally
faster than the triangulation.

4. Application

Cyclo-octane is a saturated eight-member cyclic compound with chemical formula C8H16. Cyclo-octane has received
attention in computational chemistry because it has multiple conformations of similar energy, a complex potential energy
surface, and significant (steric) influence from the hydrogen atoms on preferred conformations [32–34]. Cyclo-octane is also
interesting because there are enumerative algorithms available which can provide a dense sampling of the conformation
space [35,36]. These algorithms show from first principles that the resulting conformation space has two degrees of freedom,
suggesting that the space is a surface (but not necessarily a manifold).

Using dimension reduction methods, we have previously analyzed the cyclo-octane conformation space [16]. In our
analysis, we used a dataset of 1,031,644 cyclo-octane conformations, enumerated using the triaxial loop closure algorithm
of Coutsias et al. [35]. Each conformation is placed in Cartesian space via the 3D position coordinates of each atom in the
molecule. The conformations are then aligned to a reference conformation such that the Eckart conditions are satisfied [37].
The final positions of a given conformation are concatenated to obtain a vector in R72. The resulting collection is a dataset
{xi}1,031,644i=1 ⊂ R72 which is presumed to describe a surface. In Brown et al. [16] we applied a variety of dimension reduction
methods to the cyclo-octane dataset, one of which was Isomap [38]. A summary of our analysis using the Isomap reduction
is shown in Fig. 7.

Beyond dimension reduction, the next step in our analysis is surface reconstruction. Unfortunately, the Isomap repre-
sentation of the cyclo-octane conformation space is only a visualization, and is not accurate enough for use with a 3D
surface reconstruction methods. Therefore we applied Freedman’s algorithm for surface reconstruction in the original high-
dimensional conformation space. Freedman’s method failed because the surface had self-intersections of the type discussed
in this paper. Thus we developed our method for non-manifold surface reconstruction and applied it to the cyclo-octane
dataset.

Persistent	homology	applied	to	data

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.

two-dimensional persistent homology barcode

Example: Cyclo-Octane (C8H16) data
1,000,000+ points in 24-dimensional space

S. Martin, J.-P. Watson / Computational Geometry 44 (2011) 427–441 437

Table 2
Example run times. Here we show the run times obtained for the different examples investigated in this section. For each example we provide the number
of points n, number of landmarks L, neighborhood size k, time in seconds for pre-processing, and time in seconds for reconstruction.

Example n L k Pre-proc. Recon.

Sphere 10,000 886 36 1.7 368.2
Torus 10,000 667 28 1.1 220.5
Double torus 20,000 813 26 3.7 263.1

Mobius strip 10,000 416 23 0.9 123.7
Klein figure 8 10,000 1940 33 3.8 778.0
RP2 100,000 753 35 11.7 302.0

Two spheres 83,646 1588 13 446.4 344.4
Klein immersion 61,440 4566 14 295.7 1183.3
Henneberg 13,637 1463 39 40.9 723.4

Fig. 7. Conformation space of cyclo-octane. Here we show how the set of conformations of cyclo-octane can be represented as a surface in a high-
dimensional space. On the left, we show various conformations of cyclo-octane as drawn by PyMol (www.pymol.org). In the center, these conformations are
represented by the 3D coordinates of their atoms. The coordinates are concatenated into vectors and shown as columns of a data matrix. As an example,
the entry c1,1,x of the matrix denotes the x-coordinate of the first carbon atom in the first molecule. On the right, the Isomap method is used to obtain a
lower-dimensional visualization of the data.

3.5. Run times

The run times for the nine examples we have investigated are shown in Table 2. These times were obtained on
a 2.26 GHz Intel Xeon dual quadcore workstation with 16 GB of RAM. The algorithm was implemented in Matlab
(www.mathworks.com) using the optimization toolbox to solve the linear program in (6). Table 2 shows that pre-processing
is negligible except for the non-manifold examples. In the case of the non-manifold examples, the pre-processing is generally
faster than the triangulation.

4. Application

Cyclo-octane is a saturated eight-member cyclic compound with chemical formula C8H16. Cyclo-octane has received
attention in computational chemistry because it has multiple conformations of similar energy, a complex potential energy
surface, and significant (steric) influence from the hydrogen atoms on preferred conformations [32–34]. Cyclo-octane is also
interesting because there are enumerative algorithms available which can provide a dense sampling of the conformation
space [35,36]. These algorithms show from first principles that the resulting conformation space has two degrees of freedom,
suggesting that the space is a surface (but not necessarily a manifold).

Using dimension reduction methods, we have previously analyzed the cyclo-octane conformation space [16]. In our
analysis, we used a dataset of 1,031,644 cyclo-octane conformations, enumerated using the triaxial loop closure algorithm
of Coutsias et al. [35]. Each conformation is placed in Cartesian space via the 3D position coordinates of each atom in the
molecule. The conformations are then aligned to a reference conformation such that the Eckart conditions are satisfied [37].
The final positions of a given conformation are concatenated to obtain a vector in R72. The resulting collection is a dataset
{xi}1,031,644i=1 ⊂ R72 which is presumed to describe a surface. In Brown et al. [16] we applied a variety of dimension reduction
methods to the cyclo-octane dataset, one of which was Isomap [38]. A summary of our analysis using the Isomap reduction
is shown in Fig. 7.

Beyond dimension reduction, the next step in our analysis is surface reconstruction. Unfortunately, the Isomap repre-
sentation of the cyclo-octane conformation space is only a visualization, and is not accurate enough for use with a 3D
surface reconstruction methods. Therefore we applied Freedman’s algorithm for surface reconstruction in the original high-
dimensional conformation space. Freedman’s method failed because the surface had self-intersections of the type discussed
in this paper. Thus we developed our method for non-manifold surface reconstruction and applied it to the cyclo-octane
dataset.

Persistent	homology	applied	to	data

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.

FIGURE 10.19: (Top) A PCA projection of a dataset of different confor-
mations of the cyclo-octane molecule. This shape is a sphere glued to a Klein
bottle (the “hourglass”), along two circles of singularity. (Bottom) zero-, one-,
and two-dimensional persistent homology barcodes for this dataset. The top
image is from [337], used with permission.

Topological Data Analysis 463

other. By analogy, the parity (even or oddness) of an integer gives you partial
clues as to what the integer is, though it certainly doesn’t determine the num-
ber uniquely! This is why persistent homology gives a data practitioner only
partial clues (homology groups) as to what the underlying space is; persistent
homology does not uniquely identify the underlying space. It is an active area
of research to find a geometric model for a dataset that matches computed
homology groups.

Chemists are interested not only in the space of conformations of a
molecule such as cyclo-octane, but also in the energy associated to such con-
formations. Indeed, the conformations of low energy are the ones most likely
to be found in nature. Furthermore, the energy landscape determines what
path the molecule takes in order to transition between two different low-energy
states. In order to describe a real-valued energy function on a domain of possi-
ble confirmations, one first needs to understand the shape of this domain. The
paper [337] furthermore plots the energy function of the cyclo-octane molecule
and the transition paths between low-energy configurations; doing so relies on
being able to separate the domain of definition into its spherical and Klein
bottle pieces.

In the 3 × 3 image patch example and the cyclo-octane molecule exam-
ple, we use persistent homology to estimate the homology groups of an
unknown underlying space from only a finite dataset sample. There is by
now a robust theory bounding the error in such approximations, as described
in Appendix 10.10 on the stability of persistent homology.

10.7 Sublevelset persistence

So far in this chapter, we have mainly applied persistent homology to an
increasing sequence of spaces of the form

VR(X; r1) ⊆ VR(X; r2) ⊆ VR(X; r3) ⊆ . . . ⊆ VR(X; rm−1) ⊆ VR(X; rm),

where X is a dataset, where r1 ≤ r2 ≤ r3 ≤ . . . ≤ rm−1 ≤ rm, and where
VR(X; ri) is the corresponding Vietoris–Rips complex at scale ri. However,
as pointed out in Section 10.6, persistent homology can be applied to any
increasing sequence of topological spaces Y1 ⊆ Y2 ⊆ Y3 ⊆ . . . ⊆ Ym−1 ⊆ Ym.
Sublevelset persistent homology fits into this framework.

Suppose one is given a topological space Y equipped with a real-valued
function f : Y → R. Let r1 ≤ r2 ≤ r3 ≤ . . . ≤ rm−1 ≤ rm be an increasing
sequence of real numbers. For each i, we let the ith sublevelset Yi = {y ∈
Y | f(y) ≤ ri} consist of all points in Y whose values under f are at most
ri. See for example Figure 10.20 (top), which shows a torus Y equipped with
the height function f : Y → R, along with some of its sublevelsets. Since r1 ≤

464 Data Science for Mathematicians

zero-dimensional persistent homology barcode

• Input:	Increasing	spaces.	Output:	barcode.
• Significant	features	persist.
• Cubic	computation	time	in	the	number	of	simplices.

Persistent	homology	

one-dimensional persistent homology barcode

• Input:	Increasing	spaces.	Output:	barcode.
• Significant	features	persist.
• Cubic	computation	time	in	the	number	of	simplices.

Persistent	homology	

two-dimensional persistent homology barcode

• Input:	Increasing	spaces.	Output:	barcode.
• Significant	features	persist.
• Cubic	computation	time	in	the	number	of	simplices.

Persistent	homology	

FIGURE 10.20: (Top) Several sublevelsets for a torus equipped with its height
function. (Bottom) The corresponding sublevelset persistent homology bar-
codes.

r2 ≤ r3 ≤ . . . ≤ rm−1 ≤ rm, we have an increasing sequence of sublevelsets
Y1 ⊆ Y2 ⊆ Y3 ⊆ . . . ⊆ Ym−1 ⊆ Ym, and hence we are in a setting where we
can apply persistent homology. The resulting persistent homology is called the
sublevelset persistence of the space Y equipped with the real-valued function
f : Y → R.

Even if the domain Y is simple topologically, such as the planar domain
in the Rayleigh-Bénard convection example in Figure 10.6, sublevelset persis-
tence can reveal interesting geometric and topological properties of a compli-
cated function f : Y → R.

10.8 Software and exercises

The growth of applied and computational topology is, in part, due to the
availability of free and open-source software packages. Two of the original
software packages are the Computational Homology Project (CHomP) [350],
and a series of PLEX software packages, the latest of which is Javaplex [458].
More recent software packages include GUDHI [461], R-TDA [154, 155], and
Ripser [26], which even has a light weight version allowing one to compute
persistent homology in an Internet browser. Scikit-TDA [422] features several
methods for incorporating topological features in machine learning applica-
tions.

We have made some code for persistent homology available at the website
for this book [84]. This code relies on the Ripser software package. A tutorial
for this code appears on the same website. Below we give a sample of the
exercises that are covered in greater detail in that online tutorial.

Topological Data Analysis 465

Exercise 10.5 Using the dataset available at the GitHub repository, compute
the persistent homology barcodes of the image processing dataset described in
Sections 10.2.1 and 10.6. Do your barcodes agree with the homology of the
three circle model?

Exercise 10.6 Using the dataset available at the GitHub repository, compute
the persistent homology barcodes of the cyclo-octane molecule dataset described
in Sections 10.2.2 and 10.6.

Exercise 10.7 Compute the persistent homology of a dataset of your own
choosing!

Exercise 10.8 Compute the persistent homology of the Vietoris–Rips com-
plex of the five points {(1, 0), (1, 2), (0, 3), (−1, 2), (−1, 0)} in the plane. Can
you explain all of the persistent homology barcodes that appear?

Exercise 10.9 Compute the persistent homology of the Vietoris–Rips com-
plex of an evenly-spaced 20 × 20 grid of 400 points on the flat torus S1 × S1

in R4, which is the set of all points (cos(α), sin(α), cos(β), sin(β)) with α, β ∈
[0, 2π).

Exercise 10.10 Compute the persistent homology of the Vietoris–Rips com-
plex of 500 points sampled uniformly at random from the unit sphere S2 in
R3.

Exercise 10.11 Select 400 points uniformly at random (or approximately
uniformly at random) from the annulus {(x, y) ∈ R2 | 0.952 ≤ x2 + y2 ≤
1.052}. Compute the persistent homology of its Vietoris–Rips complexes.

Exercise 10.12 Select 400 points uniformly at random (or approximately
uniformly at random) from the “coconut shell” {(x, y, z) ∈ R3 | 0.952 ≤
x2 + y2 + z2 ≤ 1.052}. Compute the persistent homology of its Vietoris–Rips
complexes.

Exercise 10.13 Write a script that will select n even-spaced points from the
unit circle in the plane. Compute the persistent homology of the Vietoris–Rips
complex of 4, 6, 9, 12, 15, and 20 equally spaced points on the circle.

Do you get ever homology above dimension 1?

Exercise 10.14 Find a planar dataset Z ⊆ R2 and a filtration value r such
that the Vietoris–Rips complex VR(Z; r) has nonzero homology in dimension
2. Do a software computation to confirm your answer.

Exercise 10.15 Find a planar dataset Z ⊆ R2 and a filtration value r such
that the Vietoris–Rips complex VR(Z; r) has nonzero homology in dimension
6. Do a software computation to confirm your answer.

466 Data Science for Mathematicians

Exercise 10.16 Let X be the 8 vertices of the cube in R3: X =
{(±1,±1,±1)}. Equip X with the Euclidean metric. Compute the persistent
homology of the Vietoris–Rips complex of X. Do you get ever homology above
dimension 2?

Exercise 10.17 One way to produce a torus is to take a square [0, 1]× [0, 1]
and then identify opposite sides. This is called a flat torus. More explicitly,
the flat torus is the quotient space ([0, 1] × [0, 1])/ ∼, where (0, y) ∼ (1, y)
for all y ∈ [0, 1] and where (x, 0) ∼ (x, 1) for all x ∈ [0, 1]. The Euclidean
metric on [0, 1]× [0, 1] induces a metric on the flat torus. For example, in the
induced metric on the flat torus, the distance between (0, 1/2) and (1, 1/2) is
zero, since these two points are identified. The distance between (1/10, 1/2)
and (9/10, 1/2) is 2/10, by passing through the point (0, 1/2) ∼ (1, 1/2).

Write a script that selects 400 random points from the square [0, 1]× [0, 1]
and then computes the 400 × 400 distance matrix for these points under the
induced metric on the flat torus. Compute the persistent homology of this
metric space.

Exercise 10.18 One way to produce a Klein bottle is to take a square [0, 1]×
[0, 1] and then identify opposite edges, with the left and right sides identified
with a twist. This is called a flat Klein bottle. More explicitly, the flat Klein
bottle is the quotient space ([0, 1]× [0, 1])/ ∼, where (0, y) ∼ (1, 1− y) for all
y ∈ [0, 1] and where (x, 0) ∼ (x, 1) for all x ∈ [0, 1]. The Euclidean metric
on [0, 1] × [0, 1] induces a metric on the flat Klein bottle. For example, in
the induced metric on the flat Klein bottle, the distance between (0, 4/10) and
(1, 6/10) is zero, since these two points are identified. The distance between
(1/10, 4/10) and (9/10, 6/10) is 2/10, by passing through the point (0, 4/10) ∼
(1, 6/10).

Write a script that selects 400 random points from the square [0, 1]× [0, 1]
and then computes the 400 × 400 distance matrix for these points under the
induced metric on the flat Klein bottle. Compute the persistent homology of
this metric space.

Change from F2 coefficients to F3 (here F3 is the finite field with three
elements) coefficients and see how the persistent homology changes.

Exercise 10.19 One way to produce a projective plane is to take the unit
sphere S2 in R3 and then identify antipodal points. More explicitly, the pro-
jective plane is the quotient space S2/(x ∼ −x). The Euclidean metric on S2

induces a metric on the projective plane.
Write a script that selects 400 random points from the unit sphere S2 in

R3 and then computes the 400 × 400 distance matrix for these points under
the induced metric on the projective plane. Compute the persistent homology
of this metric space.

Change from F2 to F3 coefficients and see how the persistent homology
changes.

Topological Data Analysis 467

10.9 References

There are by now a large number of survey papers and books on applied
topology and topological data analysis. We will mention only a small subset
of these, but we encourage the reader to also see the references within. Some
excellent survey papers and books on applied topology include [144,187,524].
See [80,186] for survey papers on topological data analysis. Two of the seminal
papers on persistent homology include [145] and [523]. The image processing
dataset considered in this chapter is introduced in the paper [81], and the
cyclo-octane molecule dataset is introduced in the paper [337]. See [467] for
an example application of topology to agent-based modeling, as mentioned in
Section 10.2.3. Two example papers on the interaction between topological
data analysis and machine learning include [5, 73].

Any method in data science needs to be robust to some amount of noise.
Indeed, scientific measurements are accurate only up to a certain number of
significant figures. Even worse, data entries could be corrupted while being
stored or transferred. One of the most important properties of persistent
homology is the stability theorem, which says that persistent homology is
robust, to some extent, to noise. The machinery behind this theorem, including
important notions of distance between datasets (the Hausdorff and Gromov-
Hausdorff distances), and notions of distance between persistence diagrams
(the bottleneck distance) would have taken us too far astray from our data
science goals of the chapter, but the reader may be interested in learning about
them in Appendix 10.10.

10.10 Appendix: stability of persistent homology

Persistent homology describes the topology of a single dataset, but it
is often important to have methods for comparing different datasets. Fig-
ure 10.21 shows two datasets sampled from a circle with noise. The datasets
appear similar, but must their persistence barcodes reflect that? The bar-
codes will certainly not be identical (in particular, the data indicated by �
has fewer points than the one marked with ∗, and so its zero-dimensional per-
sistent homology barcode will have fewer intervals at small scales). Can we
quantify how different they are?

To answer these questions, we introduce a distance for persistence dia-
grams. An important result, called the stability theorem (Theorem 8), guar-
antees that similar datasets have persistence diagrams which are close with
respect to this distance.

468 Data Science for Mathematicians

FIGURE 10.21: Two sets of points sampled from a circle with noise.

10.10.1 Distances between datasets

Before comparing persistence diagrams, we will need a precise way of say-
ing how similar two datasets are. Given two finite subsets U ⊂ Rn and V ⊂ Rn,
what we need is a way to measure the distance from U to V . This is surpris-
ingly tricky!

We will model a dataset U mathematically as a metric space. That is, for
us a dataset U is a set equipped with a notion of distance d(u, u′) between
any two points u, u′ ∈ U that satisfies the metric space assumptions (such as
the triangle inequality, etc.). For simplicity, in this section we will think of all
of our datasets U as subsets of Euclidean space, namely U ⊆ Rn, where the
distance d on U is simply the restriction of the standard distance function d
on Euclidean space Rn.

To begin, let’s consider how to measure the distance between a single point,
x, and a finite set V in Rn. Intuitively this is the distance between x and the
point in V closest to x. Formally,

d(x, V) = min
v∈V

d(x, v).

To extend this to a distance between two sets, U and V , we need to then
consider all of the points in U , and so we define

~d(U, V) = max
u∈U

min
v∈V

d(u, v).

Topological Data Analysis 469

−1 0 1 2
0

1

2

(0, 1)

(1, 0)

(0, 2)

(0, 0.5)

(1, 1)

(1, 1.5)

(1, 2)

(0, 1.5)

FIGURE 10.22: A set of points U marked with � and V marked with ∗, in
which ~d(U, V) 6= ~d(V,U).

Observe that in Figure 10.22, ~d(U, V) = 0.5 and is realized by the distance
between (0, 1) and (0, 1.5) (as well as several other pairs of points). However,
~d(V,U) = 1 and is realized by the distance between (1, 0) and (1, 1), so the

distance ~d is not symmetric. To fix this, we symmetrize ~d to get the Hausdorff
distance, dH:

dH(U, V) = max{~d(U, V), ~d(V,U)}.

While dH is a candidate for a distance on datasets, it is not yet the correct
notion of distance for our purposes. Consider Figure 10.23. It depicts two
copies of the same data, translated to different locations in the plane. The
location of the data should not matter—a circle is a circle regardless of where
it is placed—and since we are doing topology we care only about the shape,
not the location. So we need to allow ourselves to align the data as well as
possible before computing the Hausdorff distance. This refinement is called
the Gromov-Hausdorff distance, and it relies on the notion of isometry.

Definition 10.2 A function f is an isometric embedding of U if for all
ui, uj ∈ U , we have d(ui, uj) = d(f(ui), f(uj)).

Definition 10.3 Let U and V be finite subsets of Rn, let Z be any metric
space, and let f : Rn → Z and g : Rn → Z be isometric embeddings of U and

470 Data Science for Mathematicians

FIGURE 10.23: The same point set as in Figure 10.21, translated to two
different locations. The Hausdorff distance is not zero.

V , respectively. The Gromov-Hausdorff distance, dGH(U, V) is the minimal
Hausdorff distance between f(U) and g(V), where the minimum is taken over
all possible isometric embeddings and all metric spaces Z.

In many cases the reader can think of the Gromov-Hausdorff distance as
the Hausdorff distance computed after aligning the two datasets as well as
possible; that is, after rotating, translating, or reflecting U in order to make
it line up with V . Exercise 10.23 shows that this is not completely accurate,
but it can guide the intuition.

The Gromov-Hausdorff distance is our final measure of the distance
between datasets. If dGH(U, V) = 0, then U and V can be “aligned” so that
they are exactly the same. It is symmetric (because the Hausdorff distance
is symmetric) and dGH(U, V) ≥ 0 because it is an extension of the Haus-
dorff distance. Furthermore, Exercise 10.22 shows that it satisfies the triangle
inequality.

Readers who want hands-on experience with the Hausdorff and Gromov-
Hausdorff distances may be interested in the following exercises. Alternatively,
the reader could skip directly to Section 10.10.2 to learn about the bottleneck
distance between persistent diagrams, which will be used in the stability the-
orems in Section 10.10.3.

Topological Data Analysis 471

Exercise 10.20 Why is minu∈U maxv∈V d(u, v) not a good measure of dis-
tance?

Exercise 10.21 What is the Hausdorff distance between the x-axis and the
y-axis in R2? What is the Gromov-Hausdorff distance?

Exercise 10.22 Show that the Gromov-Hausdorff distance satisfies the tri-
angle inequality, that is, for any three metric spaces U , V , and W ,

dGH(U,W) ≤ dGH(U, V) + dGH(V,W).

Exercise 10.23 The reader may wonder why we introduce the metric space
Z in the definition of Gromov-Hausdorff distance since it might appear more
natural to consider isometries f and g from Rn to Rn. Such functions are
just translations, rotations, and reflections. Here we give an example where
the optimal isometric embedding is into a non-Euclidean space. (This exercise
was adopted from [342].)

1. Let X consist of the points (−1, 0), (1, 0), and (0,
√

3) in R2 (or more
generally, an abstract metric space of three points where all distances
are 2). Let Y be a single point. Find the location of Y that minimizes
the Hausdorff distance dH(X,Y), and determine that distance.

2. Now consider an abstract metric space Z consisting of points {p, q, r, s}
with distances given by the table:

d(−,−) p q r s
p 0 2 2 1
q 2 0 2 1
r 2 2 0 1
s 1 1 1 0

Show that Z is a metric space.

3. Find isometric embeddings f : X → Z and g : Y → Z such that the
Hausdorff distance between f(X) and g(Y) is smaller than the distance
in part 1.

4. Prove that there does not exist an isometry from Z into Rn. (Hint: p,
q, and r must form an equilateral triangle. Where can s go?)

10.10.2 Bottleneck distance and visualization

The previous section gave us a notion of distance between datasets. Here
we develop a notion of distance to use on persistence diagrams. A persistence
diagram consists of a set of points in the plane with coordinates (x1, x2) such
that x2 ≥ x1. Hypothetically, we could measure distances between persistence
diagrams with the Hausdorff distance; however, it is again better to align the
sets of points in some way. We are also going to measure distance in the plane
differently. Specifically, we want to use the L∞ or “max” distance.

472 Data Science for Mathematicians

Definition 10.4 If x = (x1, x2) and y = (y1, y2) are points in R2, then the
L∞ distance between x and y is

‖x− y‖∞ = max{|x1 − y1|, |x2 − y2|}.

Exercise 10.24 The unit circle is the set of points x in R2 with ‖x‖ = 1.
Using the same definition with the L∞ distance to the origin, what does the
unit circle look like?

We can use the L∞ metric on the plane to define a distance between persis-
tence diagrams. Each point in a persistence diagram represents a topological
feature (a loop, enclosed volume, etc.) in the data, and the coordinates of that
point represent the birth and death times. To say that two diagrams U and
V are similar should mean that each feature in the data represented by U has
a corresponding feature in the data of V with similar birth and death times.
This suggests we should define a distance between U and V as something like

d(U, V) = min
φ

max
u∈U
{‖u− φ(u)‖∞},

where φ is a bijective (one-to-one and onto) function φ : U → V .
A bijection is necessary because we should not match multiple features in

U to a single feature in V , or vice versa. (To see that this is important: Say
U has three features and V has only one, all with the same birth and death
values. Then a non-bijective matching would match all of the features in U
to the feature in V , and the minimum L∞ distance would be zero!) However,
U and V probably have a different number of features, and thus a different
number of points in their diagrams, so there may not be any bijections.

A resolution is found by considering the diagonal in the plane; that is,
the points u where u1 = u2. Topologically such a point would correspond
to a feature which is born and dies at exactly the same time. In practice
persistence diagrams often have many points very close to the diagonal, due
to noise causing many short-lived features. This suggests a fix to the problem
of bijections: add as many points as necessary on the diagonal so that U and
V have the same number of points. The easiest way to do this is simply to
add the entire diagonal to both diagrams, as illustrated in Figure 10.24. With
this change, our proposed definition becomes the bottleneck distance.

Definition 10.5 Let U and V be persistence diagrams, and ∆ = {(x1, x2) ∈
R2 | x1 = x2 ≥ 0}. Let Ũ = U ∪∆ and Ṽ = V ∪∆. The bottleneck distance
between U and V is

dB(U, V) = inf
φ

sup
u∈U
‖u− φ(u)‖∞,

where the infimum is taken over all bijections between Ũ and Ṽ .

Topological Data Analysis 473

FIGURE 10.24: Two persistence diagrams, indicated by � and ∗, with arrows
showing the optimal matching. Note that one point is matched to a point on
the line ∆.

Let us pause to think about what the bottleneck distance means. The
distance ‖u− φ(u)‖∞ is the larger of the difference in birth times between u
and the point to which it is matched by φ and the difference in death times
between these. The infimum over φ says that we choose the bijection which
minimizes this. So the bottleneck distance describes the maximum amount we
have to adjust either birth or death times to match the features in U with
those in V .

10.10.3 Stability results

The idea of the following stability result is that if two datasets are close in
the Gromov-Hausdorff distance, then the persistence diagrams obtained from
them should be close in the bottleneck distance. In particular, two datasets
sampled from the same space, but with noise, will typically be close in Gromov-
Hausdorff distance. Consequently they will have persistence diagrams with
essentially the same features occurring at the same times, and thus have small
bottleneck distance. The precise statement of the stability theorem is as fol-
lows.

Theorem 8 (Stability theorem for point clouds) Suppose X and Y are
datasets, U is the persistence diagram of the Vietoris–Rips filtration of X,
and V is the persistence diagram of the Vietoris–Rips filtration of Y . Then

dB(U, V) ≤ 2dGH(X,Y).

474 Data Science for Mathematicians

The same theorem holds for other filtrations as well, for example Čech
complexes. The proof can be found in [92].

In Section 10.10.1 a filtration by sublevelsets was defined. For such a filtra-
tion one might ask if changing the function by which sublevelsets are defined
affects the persistence diagram. We can measure the distance between two
functions f and g with another type of L∞ distance.

Definition 10.6 The L∞ distance between two functions f and g from Rn
to Rm is

‖f − g‖∞ = sup
x∈Rn

‖f(x)− g(x)‖∞.

The stability theorem for functions says that similar functions give similar
persistence diagrams.

Theorem 9 (Stability theorem for functions) Let U(f) and U(g) be the
persistence diagrams corresponding to the sublevelsets of two functions f and
g defined on the same space. Then

dB(U(f), U(g)) ≤ ‖f − g‖∞.

This was first shown in [103].
Lastly, it is worth noting that persistent homology is stable with respect to

Gromov-Hausdorff distance, but a noisy version of a space is not necessarily
close to the original space in the Gromov-Hausdorff sense. The two datasets
in Figure 10.25 differ by a single point, but their Gromov-Hausdorff distance
is large and their barcodes are quite different! Dealing with more noise that
does not lie near the dataset is an ongoing area of research in topological data
analysis; see for example [93].

FIGURE 10.25: An example of non-Hausdorff noise. Adding in only a single
point at the center creates a new dataset with quite large Hausdorff and
Gromov-Hausdorff distances to the original dataset.

Bibliography

[1] P.-A. Absil, Robert Mahony, and Rodolphe Sepulchre. Riemannian
geometry of grassmann manifolds with a view on algorithmic compu-
tation. Acta Applicandae Mathematicae, 80:199–220, 2004.

[2] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization
Algorithms on Matrix Manifolds. Princeton University Press, Prince-
ton, NJ, 2009.

[3] Dimitris Achlioptas. Database-friendly random projections: Johnson-
Lindenstrauss with binary coins. Journal of Computer and System Sci-
ences, 66(4):671–687, 2003.

[4] Henry Adams, Johnathan Bush, and Joshua Mirth. Supplementary
resources for Chapter 10 of Data Science for Mathematicians. https:

//github.com/ds4m/topological-data-analysis, 2020.

[5] Henry Adams, Sofya Chepushtanova, Tegan Emerson, Eric Hanson,
Michael Kirby, Francis Motta, Rachel Neville, Chris Peterson, Patrick
Shipman, and Lori Ziegelmeier. Persistence images: A vector represen-
tation of persistent homology. Journal of Machine Learning Research,
18(8):1–35, 2017.

[6] Rasmus Bro Age Smilde and Paul Geladi. Multi-Way Analysis: Appli-
cations in the Chemical Sciences. Wiley, 2004.

[7] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen
Boyd. A rewriting system for convex optimization problems. Journal of
Control and Decision, 5(1):42–60, 2018.

[8] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prab-
hakar Raghavan. Automatic subspace clustering of high dimensional
data for data mining applications. SIGMOD Rec., 27(2):94–105, June
1998.

[9] Alan Agresti. Categorical Data Analysis. Wiley, Hoboken, New Jersey,
3rd edition, 2012.

[10] Nir Ailon and Bernard Chazelle. The fast Johnson–Lindenstrauss trans-
form and approximate nearest neighbors. SIAM Journal on Computing,
39(1):302–322, 2009.

475

https://github.com/
https://github.com/

476 Bibliography

[11] M. Akritas. Probability & Statistics for Engineers and Scientists with
R. Pearson, 2015.

[12] Salem Alelyani, Jiliang Tang, and Huan Liu. Feature selection for clus-
tering: A review. In Data Clustering, pages 29–60. Chapman and Hal-
l/CRC, 2018.

[13] Aliaga, Cobb, Cuff, Garfield, Gould, Lock, Moore, Rossman, Stephen-
son, Utts, Velleman, and Witmer. GAISE college report (revised print-
ing). http://www.amstat.org/education/gaise/, 2012.

[14] J. Álvarez-Vizoso, Robert Arn, Michael Kirby, Chris Peterson, Bruce
Draper, Geometry of curves in Rn from the local singular value decom-
position, Linear Algebra and its Applications, Volume 571, pp. 180–202,
ISSN 0024-3795, https://doi.org/10.1016/j.laa.2019.02.006, 2019.

[15] Xavier Alvarez-Vizoso, Michael Kirby, and Chris Peterson. Integral
invariants from covariance analysis of embedded Riemannian manifolds.
preprint arXiv:1804.10425, submitted, 2018.

[16] Javier Álvarez-Vizoso, Michael Kirby, Chris Peterson, Manifold cur-
vature learning from hypersurface integral invariants, Linear Alge-
bra and its Applications, Volume 602, pp. 179–205, ISSN 0024-3795,
https://doi.org/10.1016/j.laa.2020.05.020, 2020.

[17] Amazon. Amazon Web Services. https://aws.amazon.com. Accessed:
2020-01-05.

[18] AMPL Optimization inc. AMPL for courses website. https://ampl.

com/try-ampl/ampl-for-courses/.

[19] Edgar Anderson. The irises of the gaspe peninsula. Bull. Am. Iris Soc.,
59:2–5, 1935.

[20] Howard Anton. Elementary Linear Algebra. Wiley, 11th edition, 2013.

[21] Larry Armijo. Minimization of functions having lipschitz continuous first
partial derivatives. Pacific Journal of Mathematics, 16(1):1–3, 1966.

[22] Alex Arslan et al. JuliaOpt: Optimization packages for the Julia lan-
guage. https://www.juliaopt.org/.

[23] Sheldon Axler. Down with determinants! American Mathematical
Monthly, 102:139–154, 1995.

[24] Sherif Azary and Andreas Savakis. Grassmannian sparse representations
and motion depth surfaces for 3d action recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 492–499, 2013.

https://doi.org/
https://doi.org/
https://www.juliaopt.org/
https://ampl.com/
https://ampl.com/
https://aws.amazon.com
http://www.amstat.org/

Bibliography 477

[25] R.M. Baron and D.A. Kenny. The moderator-mediator variable dis-
tinction in social psychological research: Conceptual, strategic, and sta-
tistical considerations. Journal of Personality and Social Psychology,
51:1173–1182, 1986.

[26] Ulrich Bauer. Ripser: efficient computation of Vietoris–Rips persistence
barcodes. arXiv preprint arXiv:1908.02518, 2019.

[27] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,
Dag Sverre Seljebotn, and Kurt Smith. Cython: The best of both worlds.
Computing in Science & Engineering, 13(2):31–39, 2011.

[28] Peter N. Belhumeur and David J. Kriegman. What is the set of images
of an object under all possible illumination conditions? International
Journal of Computer Vision, 28(3):245–260, 1998.

[29] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensional-
ity reduction and data representation. Neural Computation, 15(6):1373–
1396, 2003.

[30] Richard E. Bellman. Adaptive Control Processes: A Guided Tour.
Princeton University Press, Princeton, NJ, 1961.

[31] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust
Optimization. Princeton University Press, Princeton, NJ, 2009.

[32] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex
Optimization: Analysis, Algorithms, and Engineering Applications, vol-
ume 2. SIAM, 2001.

[33] Yoshua Bengio. MILA and the future of Theano. https://groups.

google.com/forum/#!topic/theano-users/7Poq8BZutbY, 2017.

[34] Sandra Beńıtez-Peña, Rafael Blanquero, Emilio Carrizosa, and Pepa
Ramı́rez-Cobo. Cost-sensitive feature selection for support vector
machines. Computers & Operations Research, 106:169–178, 2018.

[35] Alex Berg, Jia Deng, and L. Fei-Fei. Large scale visual recogni-
tion challenge (ilsvrc), 2010. URL http://www. image-net. org/chal-
lenges/LSVRC, 3, 2010.

[36] Michael W. Berry and Murray Browne. Understanding Search Engines:
Mathematical Modeling and Text Retrieval. SIAM, 2nd edition, 2005.

[37] Dimitris Berstimas and Nathan Kallus. From predictive to prescriptive
analytics. Management Science, 2019. Articles in Advance, ISSN 0025-
1909 (print), ISSN 1526-5501 (online).

[38] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis. The-
ory and applications of robust optimization. SIAM Review, 53(3):464–
501, 2011.

http://www.image-net.org/
http://www.image-net.org/
https://groups.google.com/
https://groups.google.com/

478 Bibliography

[39] Dimitris Bertsimas, Arthur Delarue, and Sebastien Martin. Optimizing
schools’ start time and bus routes. Proceedings of the National Academy
of Sciences, 116(13):5943–5948, 2019.

[40] Dimitris Bertsimas and Jack Dunn. Optimal classification trees.
Machine Learning, 106(7):1039–1082, 2017.

[41] Dimitris Bertsimas and Jack Dunn. Machine Learning Under a Modern
Optimization Lens. Dynamic Ideas LLC, Charlestown, MA, 2019.

[42] Dimitris Bertsimas, Jack Dunn, and Nishanth Mundru. Optimal pre-
scriptive trees. INFORMS Journal on Optimization, 1(2):164–183, 2019.

[43] Dimitris Bertsimas, Jack Dunn, Colin Pawlowski, and Ying Daisy Zhuo.
Robust classification. INFORMS Journal on Optimzation, 1(1):2–34,
2019.

[44] Dimitris Bertsimas and Angela King. Logistic regression: From art to
science. Statistical Science, 32(3):367–384, 2017.

[45] Dimitris Bertsimas, Nikita Korolko, and Alexander M. Weinstein. Iden-
tifying exceptional responders in randomized trials: An optimization
approach. INFORMS Journal on Optimization, 2019. To appear. https:
//pubsonline.informs.org/doi/pdf/10.1287/ijoo.2018.0006.

[46] Dimitris Bertsimas, Colin Pawlowski, and Ying Daisy Zhuo. From pre-
dictive methods to missing data imputation: An optimization approach.
Journal of Machine Learning Research, 18(196):1–39, 2018.

[47] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Opti-
mization, volume 6. Athena Scientific, Belmont, MA, 1997.

[48] J. R. Beveridge, B. A. Draper, J. M. Chang, M. Kirby, H. Kley, and
C. Peterson. Principal angles separate subject illumination spaces in
YDB and CMU-PIE. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(2):351–363, Feb 2009.

[49] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia:
A fresh approach to numerical computing. SIAM Review, 59(1):65–98,
2017.

[50] JM Bibby, JT Kent, and KV Mardia. Multivariate Analysis. Academic
Press, London, 1979.

[51] Ella Bingham and Heikki Mannila. Random projection in dimensionality
reduction: Applications to image and text data. In Knowledge Discovery
and Data Mining, pages 245–250. ACM Press, New York, 2001.

https://pubsonline.informs.org/
https://pubsonline.informs.org/

Bibliography 479

[52] Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob
Richter, Erich Studerus, Giuseppe Casalicchio, and Zachary M. Jones.
mlr: Machine learning in r. Journal of Machine Learning Research,
17(170):1–5, 2016.

[53] Christopher M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, Oxford, U.K., 1995.

[54] Natalie J. Blades, G. Bruce Schaalje, and William F. Christensen. The
second course in statistics: Design and analysis of experiments? The
American Statistician, 69(4):326–333, 2015.

[55] Anthony Blaom, Franz Kiraly, Thibaut Lienart, and Sebastian Vollmer.
alan-turing-institute/MLJ.jl v0.5.3: A Julia machine learning frame-
work, November 2019.

[56] Bokeh Development Team. Bokeh: Python library for interactive visu-
alization. https://bokeh.pydata.org/en/latest/, 2018.

[57] Sean Borman. The expectation maximization algorithm: a short tuto-
rial. http://www.seanborman.com/publications, 2004.

[58] George E. P. Box. Robustness in the strategy of scientific model building.
In Robert L. Launer and Graham N. Wilkinson, editors, Robustness in
Statistics, pages 201–236, Academic Press, NY, 1979.

[59] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge University Press, 2004.

[60] Pratik Prabhanjan Brahma, Dapeng Wu, and Yiyuan She. Why deep
learning works: A manifold disentanglement perspective. IEEE transac-
tions on neural networks and learning systems, 27(10):1997–2008, 2015.

[61] Andrew Bray and Mine Çetinkaya Rundel. “Labs for R” blog post. The
OpenIntro Project, July 2016.

[62] T.C. Bressoud and D. White. Introduction to Data Systems. Springer-
Verlag, 2020.

[63] T.C. Bressoud and G. Thomas. A novel course in data systems with
minimal prerequisites. SIGCSE Conference: the 50th ACM Technical
Symposium, 2019.

[64] Guy Brock, Vasyl Pihur, Susmita Datta, and Somnath Datta. clValid:
An R package for cluster validation. Journal of Statistical Software,
25(4):1–22, 2008.

[65] D. S. Broomhead, R. Jones, and G. P. King. Topological dimension
and local coordinates from time series data. J. Phys. A: Math. Gen,
20:L563–L569, 1987.

http://www.seanborman.com/
https://bokeh.pydata.org/

480 Bibliography

[66] D.S. Broomhead, R. Indik, A.C. Newell, and D.A. Rand. Local adaptive
Galerkin bases for large-dimensional dynamical systems. Nonlinearity,
4:159–197, 1991.

[67] D.S. Broomhead and Gregory P. King. Extracting qualitative dynamics
from experimental data. Physica, 20 D:217–236, 1986.

[68] D.S. Broomhead and M. Kirby. A new approach for dimensionality
reduction: Theory and algorithms. SIAM J. of Applied Mathematics,
60(6):2114–2142, 2000.

[69] D.S. Broomhead and M. Kirby. The Whitney reduction network: a
method for computing autoassociative graphs. Neural Computation,
13:2595–2616, 2001.

[70] S. Allen Broughton and Kurt Bryan. Discrete Fourier Analysis and
Wavelets: Applications to Signal and Image Processing. Wiley, Hoboken,
NJ, 2nd edition, 2018.

[71] M. W. Brown, S. Martin, S. N. Pollock, E. A. Coutsias, and J. P. Watson.
Algorithmic dimensionality reduction for molecular structure analysis.
Journal of Chemical Physics, 129:064118, 2008.

[72] Kurt Bryan and Tanya Leise. The $25,000,000,000 eigenvector: The
linear algebra behind Google. SIAM Review, 48(3):569–581, 2006.

[73] Peter Bubenik. Statistical topological data analysis using persistence
landscapes. The Journal of Machine Learning Research, 16(1):77–102,
2015.

[74] Christopher J. C. Burges. Dimension reduction: A guided tour. Foun-
dations and Trends in Machine Learning, 2(4):275–365, 2010.

[75] Andriy Burkov. The Hundred-Page Machine Learning Book. Andriy
Burkov, 2019. (freely available on the web).

[76] Alice Calaprice, editor. The Ultimate Quotable Einstein. Princeton
University Press, 2010.

[77] California ISO. Homepage, 2019. http://www.caiso.com/Pages/

default.aspx.

[78] Francesco Camastra. Data dimensionality estimation methods: a survey.
Pattern recognition, 36(12):2945–2954, 2003.

[79] Francesco Camastra and Antonino Staiano. Intrinsic dimension estima-
tion: Advances and open problems. Information Sciences, 328:26–41,
2016.

[80] Gunnar Carlsson. Topology and data. Bulletin of the American Math-
ematical Society, 46(2):255–308, 2009.

http://www.caiso.com/
http://www.caiso.com/

Bibliography 481

[81] Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian.
On the local behavior of spaces of natural images. International Journal
of Computer Vision, 76:1–12, 2008.

[82] Miguel Á. Carreira-Perpiñán. A review of dimension reduction tech-
niques. Technical report, Department of Computer Science, University
of Sheffield, 1997.

[83] Kevin M Carter, Raviv Raich, and Alfred O Hero III. On local intrinsic
dimension estimation and its applications. IEEE Transactions on Signal
Processing, 58(2):650–663, 2009.

[84] Nathan Carter et al. Data Science for Mathematicians: online resources
for the text. https://ds4m.github.io/, 2020.

[85] George Casella and Edward I. George. Explaining the Gibbs sampler.
The American Statistician, 46(3):167–174, 1992.

[86] Filippo Castiglione, Francesco Pappalardo, Massimo Bernaschi, and
Santo Motta. Optimization of HAART with genetic algorithms and
agent-based models of HIV infection. Bioinformatics, 23(24):3350–3355,
2007.

[87] John Chakerian and Susan Holmes. Computational tools for evaluating
phylogenetic and hierarchical clustering trees. Journal of Computational
and Graphical Statistics, 21(3):581–599, 2012.

[88] Rudrasis Chakraborty and Baba C Vemuri. Recursive frechet mean com-
putation on the grassmannian and its applications to computer vision. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 4229–4237, 2015.

[89] B. Chance, S. Cohen, S. Grimshaw, J. Hardin, T. Hesterberg, R. Hoerl,
N. Horton, M. Mallone, R. Nichols, and D. Nolan. Curriculum guidelines
for undergraduate programs in statistical science. http://www.amstat.
org/education/pdfs/guidelines2014-11-15.pdf, 2014.

[90] Jen-Mei Chang. Classification on the Grassmannians: Theory and
Applications. Colorado State University, 2008.

[91] Jen-Mei Chang, Michael Kirby, Holger Kley, Chris Peterson, Bruce
Draper, and J Ross Beveridge. Recognition of digital images of the
human face at ultra low resolution via illumination spaces. In Com-
puter Vision–ACCV 2007, pages 733–743. Springer, 2007.

[92] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J Guibas,
and Steve Y Oudot. Proximity of persistence modules and their dia-
grams. In Proceedings of the Twenty-fifth Annual Symposium on Com-
putational Geometry, pages 237–246. ACM, 2009.

http://www.amstat.org/
http://www.amstat.org/
https://ds4m.github.io/

482 Bibliography

[93] Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geomet-
ric inference for probability measures. Foundations of Computational
Mathematics, 11(6):733–751, 2011.

[94] Sofya Chepushtanova and Michael Kirby. Sparse Grassmannian embed-
dings for hyperspectral data representation and classification. IEEE
Geoscience and Remote Sensing Letters, 14(3):434–438, March 2017.

[95] Sofya Chepushtanova, Michael Kirby, Chris Peterson, and Lori
Ziegelmeier. Persistent homology on Grassmann manifolds for analysis
of hyperspectral movies. In Computational Topology in Image Context,
pages 228–239. Springer International Publishing. Cham, Switzerland.

[96] Chess.com member “pete”. Lc0 Wins Computer Chess Cham-
pionship, Makes History. https://www.chess.com/news/view/

lc0-wins-computer-chess-championship-makes-history, 2019.

[97] Bertrand Clarke, Ernest Fokoue, and Hao Helen Zhang. Principles and
Theory for Data Mining and Machine Learning. Springer Science &
Business Media, New York, NY, 2009.

[98] William S. Cleveland. Data science: An action plan for expanding the
technical areas of the field of statistics. International Statistical Review,
69(1):21–26, 2001.

[99] G. Cobb. The introductory statistics course: A ptolemaic curriculum?
Technology Innovations in Statistics Education, 1:1, 2007.

[100] G. Cobb. Teaching statistics: Some important tensions. Chilean Journal
of Statistics, 2(1):31–62, April 2011.

[101] G. Cobb, B. Hartlaub, J. Legler, R. Lock, T. Moore, A. Rossman,
A. Cannon, and J. Witmer. Stat2: Building Models for a World of
Data. WH Freeman, New York, NY, 2012.

[102] James J. Cochran, editor. INFORMS Analytics Body of Knowledge.
John Wiley and Sons, Inc., Hoboken, NJ, 2019.

[103] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Sta-
bility of persistence diagrams. Discrete & Computational Geometry,
37(1):103–120, 2007.

[104] COIN-OR Foundation. COIN-OR Website. https://www.coin-or.

org.

[105] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a mod-
ular machine learning software library. Technical report, Idiap, 2002.

[106] Ronan Collobert et al. Torch5 homepage (archived). https:

//web.archive.org/web/20081205015134/http://torch5.

sourceforge.net/, 2008.

https://web.archive.org/
https://web.archive.org/
https://web.archive.org/
https://www.coin-or.org
https://www.coin-or.org
https://www.chess.com/
https://www.chess.com/

Bibliography 483

[107] Drew Conway. The Data Science Venn Diagram. http://drewconway.
com/zia/2013/3/26/the-data-science-venn-diagram, March 2013.

[108] John H Conway, Ronald H Hardin, and Neil JA Sloane. Packing lines,
planes, etc.: Packings in Grassmannian spaces. Experimental Mathemat-
ics, 5(2):139–159, 1996.

[109] Carlos Cordoba et al. Spyder: The Scientific Python Development Edi-
tor. https://www.spyder-ide.org. Accessed: 2020-01-05.

[110] R. V. Craiu and L. Sun. Choosing the lesser evil: trade-off between false
discovery rate and non-discovery rate. Statistica Sinica, 18:861–879,
2008.

[111] Daniel Crevier. AI: The Tumultuous History of the Search for Artificial
Intelligence. Basic Books, New York, 1993.

[112] Gabor Csardi and Tamas Nepusz. The igraph software package for
complex network research. InterJournal, Complex Systems:1695, 2006.

[113] George Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[114] Joseph Czyzyk, Michael P. Mesnier, and Jorge J. Moré. The NEOS
server. IEEE Journal on Computational Science and Engineering,
5(3):68–75, 1998.

[115] George B. Dantzig, Alex Orden, and Philip Wolfe. The generalized
simplex method for minimizing a linear form under linear inequality
restraints. Pacific Journal of Mathematics, 5(2):183–195, 1955.

[116] David Darmon, Elisa Omodei, and Joshua Garland. Followers are not
enough: A multifaceted approach to community detection in online
social networks. PloS one, 10(8):e0134860, 2015.

[117] Sanjoy Dasgupta. Learning mixtures of Gaussians. In Proceedings of the
40th Annual Symposium on Foundations of Computer Science, FOCS
’99, page 634. IEEE Computer Society, 1999.

[118] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theo-
rem of Johnson and Lindenstrauss. Random Structures and Algorithms,
22(1):60–65, 2003.

[119] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and
Data Cleaning, 1st edn. John Wiley & Sons, Inc., New York, NY, 2003.

[120] James Davis, Guillermo Gallego, and Huseyin Topaloglu. Assortment
planning under the multinomial logit model with totally unimodular
constraint structures. Unpublished manuscript, 2013.

https://www.spyder-ide.org
http://drewconway.com/
http://drewconway.com/

484 Bibliography

[121] Marcos López de Prado. Advances in Financial Machine Learning.
Wiley, 2018.

[122] Vin de Silva and Joshua B. Tenenbaum. Sparse multidimensional scaling
using landmark points. Technical report, Stanford University, 2004.

[123] Angela Dean, Daniel Voss, and Danel Draguljic. Design and Analysis
of Experiments. Springer, New York, 2nd edition, 2017.

[124] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in Neural Informa-
tion Processing Systems, pages 1223–1231, Curran Associates, Inc., Red
Hook, NY, 2012.

[125] M. Dell, B.F. Jones, and B.A. Olken. What do we learn from the
weather? the new climate-economy literature. Journal of Economic Lit-
erature, 52:740–798, 2014.

[126] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the
Royal Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

[127] Jacob Devlin and Ming-Wei Chang. Open Sourcing
BERT: State-of-the-Art Pre-training for Natural Lan-
guage Processing. https://ai.googleblog.com/2018/11/

open-sourcing-bert-state-of-art-pre.html, 2018.

[128] Persi Diaconis. Group representations in probability and statistics. Lec-
ture notes-monograph series, 11:i–192, 1988.

[129] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of Machine Learn-
ing Research, 17(83):1–5, 2016.

[130] Robert P. Dobrow. Introduction to Stochastic Processes with R. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2016.

[131] Elizabeth D. Dolan. The NEOS Server 4.0 administrative guide. Tech-
nical Memorandum ANL/MCS-TM-250, Mathematics and Computer
Science Division, Argonne National Laboratory, 2001.

[132] David Donoho. 50 years of data science. Journal of Computational and
Graphical Statistics, 26(4):745–766, 2017.

[133] Matt Dowle and Arun Srinivasan. data.table: Extension of ‘data.frame‘,
2019. R package version 1.12.2.

[134] Allen Downey. Think Python. O’Reilly Media, 2nd edition, updated for
Python 3. Sebastopol, California, 2016.

https://ai.googleblog.com/
https://ai.googleblog.com/

Bibliography 485

[135] Adrian A. Dragulescu and Cole Arendt. xlsx: Read, Write, Format Excel
2007 and Excel 97/2000/XP/2003 Files, 2018. R package version 0.6.1.

[136] Dheeru Dua and Casey Graff. UCI machine learning repository. http:
//archive.ics.uci.edu/ml, 2017.

[137] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling
language for mathematical optimization. SIAM Review, 59(2):295–320,
2017.

[138] Jennifer G Dy and Carla E Brodley. Feature selection for unsupervised
learning. Journal of Machine Learning Research, 5(Aug):845–889, 2004.

[139] Jean Pierre Eckmann and David Ruelle. Fundamental limitations for
estimating dimensions and lyapunov exponents in dynamical system.
Physica D: Nonlinear Phenomena, 56:185–187, 1992.

[140] Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++
integration. Journal of Statistical Software, 40(8):1–18, 2011.

[141] Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry
of algorithms with orthogonality constraints. SIAM Journal on Matrix
Analysis and Applications, 20(2):303–353, 1998.

[142] Alan Edelman and Yuyang Wang. The GSVD: Where are the ellipses?,
matrix trigonometry, and more. arXiv preprint arXiv:1901.00485, 2019.

[143] Edelsbrunner, Letscher, and Zomorodian. Topological persistence and
simplification. Discrete and Computational Geometry, 28(4):511–533,
2002.

[144] Herbert Edelsbrunner and John L Harer. Computational Topology: An
Introduction. American Mathematical Society, Providence, RI, 2010.

[145] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topologi-
cal persistence and simplification. In Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on, pages 454–463. IEEE,
2000.

[146] Albert Einstein. On the method of theoretical physics. The Herbert
Spencer Lecture, Oxford University, 1933.

[147] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters a density-based algo-
rithm for discovering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining, KDD’96, page 226–231. AAAI Press, 1996.

[148] Brian Everitt and Torsten Hothorn. An Introduction to Applied Multi-
variate Analysis with R. Springer Science & Business Media, New York,
NY, 2011.

http://archive.ics.uci.edu/
http://archive.ics.uci.edu/

486 Bibliography

[149] Brian S Everitt, Sabine Landau, Morven Leese, and Daniel Stahl. Clus-
ter analysis. 330 pages, John Wiley & Sons Ltd., Chichester, West
Sussex, UK, 2011.

[150] M. Ezekiel. Methods of Correlation Analysis. Wiley, New York, 1930.

[151] Kenneth Falconer. Fractal geometry: mathematical foundations and
applications. John Wiley & Sons, 2004.

[152] Kenneth J. Falconer. Dimensions and measures of quasi self-similar sets.
Proc. Amer. Math. Soc. 106 (1989), 543-554, 1989.

[153] Elin Farnell. Algorithms and geometric analysis of data sets that are
invariant under a group action. PhD thesis, Colorado State University,
2010.

[154] Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David L.
Millman, Vincent Rouvreau. The included GUDHI is authored by
Clément Maria, Dionysus by Dmitriy Morozov, PHAT by Ulrich Bauer,
Michael Kerber, and Jan Reininghaus. TDA: Statistical Tools for Topo-
logical Data Analysis, 2019. R package version 1.6.9.

[155] Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, and Clément Maria.
Introduction to the R package TDA. arXiv preprint arXiv:1411.1830,
2014.

[156] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing
the manifold hypothesis. Journal of the American Mathematical Society,
29(4):983–1049, 2016.

[157] Jacob Feldman, Dennis Zhang, Xiaofei Liu, and Nannan Zhang. Taking
assortment optimization from theory to practice: Evidence from large
field experiments on Alibaba. Unpublished manuscript, 2018.

[158] Ronen Feldman and James Sanger. The Text Mining Handbook:
Advanced Approaches in Analyzing Unstructured Data. Cambridge Uni-
versity Press. 2006.

[159] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-
based image segmentation. International Journal of Computer Vision,
59(2):167–181, 2004.

[160] Lloyd Fisher and John W. Van Ness. Admissible clustering procedures.
Biometrika, 58(1):91–104, 1971.

[161] Ronald A Fisher. The use of multiple measurements in taxonomic prob-
lems. Annals of Eugenics, 7(2):179–188, 1936.

Bibliography 487

[162] Frederic Font, Gerard Roma, and Xavier Serra. 2013. Freesound techni-
cal demo. In Proceedings of the 21st ACM International Conference on
Multimedia (MM’13). Association for Computing Machinery, New York,
NY, USA, 411–412. DOI:https://doi.org/10.1145/2502081.2502245.

[163] Institute for Operations Research and the Management Sciences. Oper-
ations research and analytics. https://www.informs.org/Explore/

Operations-Research-Analytics, 2019.

[164] Python Software Foundation. Python: A dynamic, open source pro-
gramming language. https://www.python.org.

[165] Robert Fourer. Linear programming software survey. OR/MS Today,
46(3):51–53, 2019. https://doi.org/10.1287/orms.2019.03.05.

[166] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Mod-
eling Language for Mathematical Programming. 6th edition, Brooks/
Cole, Belmont, California, 2009.

[167] Chris Fraley and Adrian E Raftery. Mclust: Software for model-based
cluster analysis. Journal of Classification, 16(2):297–306, 1999.

[168] Chris Fraley and Adrian E Raftery. Model-based clustering, discrimi-
nant analysis, and density estimation. Journal of the American Statis-
tical Association, 97(458):611–631, 2002.

[169] Daniel Freund, Shane G. Henderson, and David B. Shmoys. Minimiz-
ing multimodular functions and allocating capacity in bike-sharing sys-
tems. In Friedrich Eisenbrand and Jochen Koenemann, editors, Integer
Programming and Combinatorial Optimization, pages 186–198. Springer
International Publishing, Cham, Switzerland, 2017.

[170] Daniel Freund, Ashkan Norouzi-Fard, Alice J. Paul, Carter Wang,
Shane G. Henderson, and David B. Shmoys. Analytics for the Sharing
Economy: Mathematics, Engineering and Business Perspectives, chap-
ter Data-Driven Rebalancing Methods for Bike-Share Systems. Springer,
2019. Forthcoming.

[171] J.E.F. Friedl. Mastering Regular Expressions: Powerful Techniques for
Perl and Other Tools. A Nutshell Handbook. O’Reilly, Sebastopol, Cal-
ifornia, 1997.

[172] Jerome H. Friedman and Jacqueline J. Meulman. Clustering objects on
subsets of attributes (with discussion). Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 66(4):815–849, 2004.

[173] Audrey Qiuyan Fu, Steven Russell, Sarah J Bray, Simon Tavaré, et al.
Bayesian clustering of replicated time-course gene expression data with
weak signals. The Annals of Applied Statistics, 7(3):1334–1361, 2013.

https://doi.org/
https://doi.org/
https://www.python.org
https://www.informs.org/
https://www.informs.org/

488 Bibliography

[174] Ekaterina Galkina Cleary, Jennifer M. Beierlein, Navleen Surjit
Khanuja, Laura M. McNamee, and Fred D. Ledley. Contribution of NIH
funding to new drug approvals 2010–2016. Proceedings of the National
Academy of Sciences, 115(10):2329–2334, 2018.

[175] Kyle A. Gallivan, Anuj Srivastava, Xiuwen Liu, and Paul Van Dooren.
Efficient algorithms for inferences on grassmann manifolds. In IEEE
Workshop on Statistical Signal Processing, 2003, pages 315–318. IEEE,
2003.

[176] Michael R. Garey and David S. Johnson. Computers and Intractability,
volume 29. WH Freeman, New York, 2002.

[177] Karen Moffett Gary W. Stuart and Jeffery J. Leader. A comprehensive
vertebrate phylogeny using vector representations of protein sequences
from whole genomes. Molecular Biology and Evolution, 19(4):554–562,
2002.

[178] Assad, A. A., Gass, S. I. An Annotated Timeline of Operations Research:
An Informal History. Netherlands: Springer, 2005.

[179] Jason Gauci, Edoardo Conti, and Kittipat Virochsiri. Horizon: The first
open source reinforcement learning platform for large-scale products and
services, 2018. https://code.fb.com/ml-applications/horizon/.

[180] Stern, H. S., Rubin, D. B., Vehtari, A., Carlin, J. B., Dunson, D. B.,
Gelman, A. Bayesian Data Analysis, Third Edition. United Kingdom:
Taylor & Francis, 2014.

[181] Andrew Gelman and Xiao-Li Meng. Applied Bayesian Modeling and
Causal Inference from Incomplete-Data Perspectives. Wiley, 1st edition,
2004.

[182] Andrew Gelman and Deborah Nolan. Teaching Statistics: A Bag of
Tricks. Oxford University Press, 2nd edition, 2017.

[183] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few
to many: Illumination cone models for face recognition under variable
lighting and pose. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(6):643–660, June 2001.

[184] Tomojit Ghosh, Michael Kirby, and Xiaofeng Ma. Dantzig-Selector
Radial Basis Function Learning with Nonconvex Refinement, pages 313–
327. Springer International Publishing, Cham, Switzerland, 2017.

[185] Tomojit Ghosh, Xiaofeng Ma, and Michael Kirby. New tools for the
visualization of biological pathways. Methods, 132:26–33, 2018.

[186] Robert Ghrist. Barcodes: The persistent topology of data. Bulletin of
the American Mathematical Society, 45(1):61–75, 2008.

https://code.fb.com/

Bibliography 489

[187] Robert W Ghrist. Elementary Applied Topology, volume 1. Createspace
Seattle, 2014.

[188] Javier Girón, Josep Ginebra, and Alex Riba. Bayesian analysis of a
multinomial sequence and homogeneity of literary style. The American
Statistician, 59(1):19–30, 2005.

[189] GitHub staff et al. Atom: A hackable text editor for the 21st century.
https://atom.io. Accessed: 2020-01-31.

[190] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pages
249–256, Sardinia, Italy, 2010.

[191] Ram Gnanadesikan, Jon R Kettenring, and Shiao Li Tsao. Weighting
and selection of variables for cluster analysis. Journal of Classification,
12(1):113–136, 1995.

[192] Gene H. Golub and Charles F. Van Loan. Matrix Computations, 4th
edition. Johns Hopkins University Press, Baltimore, 2013.

[193] Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system:
Algorithms, business value, and innovation. ACM Trans. Manage. Inf.
Syst., 6(4), 2015.

[194] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, Cambridge, MA, 2016.

[195] Google. Google Cloud. https://cloud.google.com. Accessed: 2020-
01-05.

[196] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification, Java SE 8 Edition. Addison-Wesley
Professional, Harlow, 1st edition, 2014.

[197] John C Gower. A general coefficient of similarity and some of its prop-
erties. Biometrics, pages 857–871, 1971.

[198] John C Gower and Gavin JS Ross. Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 18(1):54–64, 1969.

[199] P. Grassberger and I. Procaccia. Measuring the strangeness of strange
attractors. Physica D, 9:189, 1983.

[200] Misha Gromov. Geometric, algebraic, and analytic descendants of nash
isometric embedding theorems. Bulletin of the American Mathematical
Society, 54(2):173–245, 2017.

https://cloud.google.com
https://atom.io

490 Bibliography

[201] William Gropp and Jorge J. Moré. Optimization environments and the
NEOS server. In Martin D. Buhman and Arieh Iserles, editors, Approxi-
mation Theory and Optimization, pages 167–182. Cambridge University
Press, 1997.

[202] Oleksandr Grygorash, Yan Zhou, and Zach Jorgensen. Minimum span-
ning tree based clustering algorithms. In 2006 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’06), pages 73–
81. IEEE, Arlington, VA, 2006.

[203] Matthias Günther. Isometric embeddings of riemannian manifolds. In
Proceedings of the International Congress of Mathematicians, volume 1,
pages 1137–1143, 1991.

[204] Arpit Gupta. How alexa is learning to converse
more naturally. https://developer.amazon.com/blogs/

alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/

how-alexa-is-learning-to-converse-more-naturally, 2018.

[205] Isabelle Guyon, Ulrike Von Luxburg, and Robert C Williamson. Clus-
tering: Science or art. In NIPS 2009 Workshop on Clustering Theory,
Vancouver, BC, pages 1–11, 2009.

[206] Michael Hahsler, Matthew Piekenbrock, S Arya, and D Mount. dbscan:
Density based clustering of applications with noise (dbscan) and related
algorithms. R package version, pages 1–0, 2017.

[207] David J. Hand. Measuring classifier performance: A coherent alternative
to the area under the roc curve. Machine Learning, 77:103–123, 2009.

[208] Mehrtash T Harandi, Conrad Sanderson, Sareh Shirazi, and Brian C
Lovell. Graph embedding discriminant analysis on grassmannian mani-
folds for improved image set matching. In CVPR 2011, pages 2705–2712.
IEEE, 2011.

[209] Frank E. Harrell. Regression Modeling Strategies With Applications to
Linear Models, Logistic Regression, and Survival Analysis. Springer,
New York, 2001.

[210] David Harrison and Daniel L Rubinfeld. Hedonic housing prices and
the demand for clean air. Journal of Environmental Economics and
Management, 5(1):81–102, 1978.

[211] William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff,
Gabriel A. Hackebeil, Bethany L. Nicholson, and John D. Siirola.
Pyomo: Optimization Modeling in Python, volume 67. Springer Science
& Business Media, New York, second edition, 2017.

https://developer.amazon.com/
https://developer.amazon.com/
https://developer.amazon.com/

Bibliography 491

[212] William E. Hart, Jean-Paul Watson, and David L. Woodruff. Pyomo:
Modeling and solving mathematical programs in Python. Mathematical
Programming Computation, 3(3):219–260, 2011.

[213] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning: Data Mining, Inference and Prediction. Springer
Science+Business Media, LLC, New York, NY, 2009.

[214] Jun He, Laura Balzano, and Arthur Szlam. Incremental gradient on
the grassmannian for online foreground and background separation in
subsampled video. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1568–1575. IEEE, Providence, RI, 2012.

[215] D. Hedeker and R. D. Gibbons. Longitudinal Data Analysis, 1st edition.
Wiley-Interscience, Providence, RI, 2006.

[216] Rainer Hegger and Holger Kantz. Improved false nearest neighbor
method to detect determinism in time series data. Physical Review
E, 60(4):4970, 1999.

[217] T. C. Hesterberg. What teachers should know about the bootstrap:
Resampling in the undergraduate statistics curriculum. The American
Statistician, 69(4):371–386, 2015.

[218] Tomoyuki Higuchi. Approach to an irregular time series on the basis
of the fractal theory. Physica D: Nonlinear Phenomena, 31(2):277–283,
1988.

[219] Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations
Research. McGraw-Hill, Providence, RI, 9th edition, 2010.

[220] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554,
2006.

[221] J-B Hiriart-Urruty. From convex optimization to nonconvex optimiza-
tion. Necessary and sufficient conditions for global optimality. In Non-
smooth optimization and related topics, pages 219–239. Springer, Prov-
idence, RI, 1989.

[222] M.W. Hirsch. Differential Topology. Graduate Texts in Mathematics
33. Springer-Verlag, Providence, RI, 1976.

[223] Tin Kam Ho. Random decision forests. In Proceedings of 3rd interna-
tional conference on document analysis and recognition, volume 1, pages
278–282. IEEE, Providence, RI, 1995.

[224] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

492 Bibliography

[225] Robert Hogg, Elliot Tanis, and Dale Zimmerman. Probability and Sta-
tistical Inference. Pearson, Providence, RI, 9th edition, 2014.

[226] David I Holmes. A stylometric analysis of mormon scripture and related
texts. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 155(1):91–120, 1992.

[227] Yi Hong, Roland Kwitt, Nikhil Singh, Brad Davis, Nuno Vasconcelos,
and Marc Niethammer. Geodesic regression on the grassmannian. In
13th European Conference on Computer Vision, pages 632–646. Zurich,
Switzerland, Springer, 2014.

[228] Jan A. C. Hontelez, Mark N. Lurie, Till Bärnighausen, Roel Bakker,
Rob Baltussen, Frank Tanser, Timothy B. Hallett, Marie-Louise Newell,
and Sake J. de Vlas. Elimination of HIV in South Africa through
expanded access to antiretroviral therapy: A model comparison study.
PLoS Medicine, 10(10):e1001534, 2013.

[229] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis.
Cambridge University Press, 1994.

[230] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, 2nd edition, 2012.

[231] N. J. Horton, E. R. Brown, and L. Qian. Use of R as a toolbox for
mathematical statistics exploration. The American Statistician, 58(4),
2004.

[232] Nicholas J Horton and Ken P Kleinman. Much ado about nothing. The
American Statistician, 61(1):79–90, 2007. PMID: 17401454.

[233] Jinggang Huang, Ann B Lee, and David Bryant Mumford. Statistics
of range images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 324–332, 2000.

[234] Yuping Huang, Panos M. Pardalos, and Qipeng P. Zheng. Electrical
Power Unit Commitment: Deterministic and Two-Stage Stochastic Pro-
gramming Models and Algorithms. SpringerBriefs in Energy. Springer,
New York, 2017.

[235] Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building deep networks on
grassmann manifolds. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[236] David A Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[237] JP Huke. Embedding nonlinear dynamical systems: A guide to Takens’
theorem. Manchester Institute for Mathematical Sciences, University of
Manchester, http://eprints.maths.manchester.ac.uk/, 2006.

http://eprints.maths.manchester.ac.uk/

Bibliography 493

[238] D. Hundley and M. Kirby. Estimation of topological dimension. In Pro-
ceedings of the Third SIAM International Conference on Data Mining,
pages 194–202, San Fransico, 2001.

[239] D. Hundley, M. Kirby, and M. Anderle. Blind source separation using
the maximum signal fraction approach. Signal Processing, 82(10):1505–
1508, 2002.

[240] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In
Science & Engineering, 9(3):90–95, 2007.

[241] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary deci-
sion trees is np-complete. Information Processing Letters, 5(1):15 – 17,
1976.

[242] Kaggle Inc. Kaggle. https://www.kaggle.com. Accessed: 2020-01-05.

[243] Alan Julian Izenman. Modern multivariate statistical techniques.
Regression, classification and manifold learning, 2008.

[244] Julien Jacques and Christophe Biernacki. Model-based clustering for
multivariate partial ranking data. Journal of Statistical Planning and
Inference, 149:201–217, 2014.

[245] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern Recog-
nition Letters, 31(8):651–666, 2010.

[246] Prateek Jain and Purushottam Kar. Non-convex optimization for
machine learning. Foundations and Trends in Machine Learning, 10(3-
4):142–336, 2017.

[247] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshi-
rani. An Introduction to Statistical Learning: With Applications in R.
Springer, New York, 2013.

[248] Steven Janke and Frederick Tinsley. Introduction to Linear Models and
Statistical Inference. Wiley-Interscience, 1st edition, 2005.

[249] P. Jarvis, S. Wolfe, M. Sierhuis, R. Nado, and F. Y. Enomoto. Agent-
based modeling and simulation of collaborative air traffic flow manage-
ment using Brahms. SAE International Journal of Aerospace, 3(1):39–
45, 2010.

[250] E.R. Jessup and James Martin. Taking a new look at the latent seman-
tic analysis approach to information retrieval. In Michael Berry, editor,
Computational Information Retrieval, pages 121–144, SIAM, Philadel-
phia, 2001.

[251] JetBrains s.r.o. PyCharm: The Python IDE for Professional Developers.
https://www.jetbrains.com/pycharm. Accessed: 2020-01-05.

https://www.jetbrains.com/
https://www.kaggle.com

494 Bibliography

[252] Nanjing Jian, Daniel Freund, Holly M. Wiberg, and Shane G. Hender-
son. Simulation optimization for a large-scale bike-sharing system. In
Proceedings of the 2016 Winter Simulation Conference, pages 602–613.
IEEE Press, 2016.

[253] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz
mappings into Hilbert space. In Contemporary Mathematics, volume 26,
pages 189–206, 1984.

[254] I.T. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2002.

[255] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–.

[256] D. Kaplan. Statistical Modeling: A Fresh Approach. Ingram, 2009.

[257] D. Kaplan. Data Computing: An Introduction to Wrangling and Visu-
alization with R. Project MOSAIC, 2015.

[258] Rasa Karbauskaitė and Gintautas Dzemyda. Fractal-based methods as a
technique for estimating the intrinsic dimensionality of high-dimensional
data: A survey. Informatica, 27:257–281, 01 2016.

[259] K. Karhunen. Über lineare methoden in der wahrscheinlichkeitsrech-
nung. Ann. Acad. Sci. Fennicae, 37, 1946.

[260] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. In Proceedings of the Sixteenth Annual ACM Symposium on
Theory of Computing, pages 302–311. ACM, 1984.

[261] Leonard Kaufman and Peter J. Rousseeuw. Clustering large applica-
tions (program clara). Finding Groups in Data: An Introduction to
Cluster Analysis, pages 68–125, John Wiley and Sons, Inc., Hoboken,
New Jersey, 1990.

[262] Leonard Kaufman and Peter J. Rousseeuw. Monothetic analysis (pro-
gram mona). Finding Groups in Data: An Introduction to Cluster Anal-
ysis, pages 68–125, John Wiley and Sons, Inc., Hoboken, New Jersey,
1990.

[263] Leonard Kaufman and Peter J. Rousseeuw. Partitioning around medoids
(program pam). Finding Groups in Data: An Introduction to Cluster
Analysis, pages 68–125, John Wiley and Sons, Inc., Hoboken, New Jer-
sey, 1990.

[264] Balázs Kégl. Intrinsic dimension estimation using packing numbers.
In Advances in Neural Information Processing Systems, pages 697–704,
2003.

Bibliography 495

[265] Matthew B Kennel, Reggie Brown, and Henry DI Abarbanel. Determin-
ing embedding dimension for phase-space reconstruction using a geomet-
rical construction. Physical Review A, 45(6):3403, 1992.

[266] Leonid G Khachiyan. A polynomial algorithm in linear programming.
In Doklady Academii Nauk SSSR, volume 244, pages 1093–1096, 1979.

[267] W. Kim, B y Choi, E k Hong, S k Kim, and D. Lee. A taxonomy of
dirty data. Data Mining and Knowledge Discovery, 7:81–99, 2003.

[268] M. Kirby. Geometric Data Analysis: An Empirical Approach to Dimen-
sionality Reduction and the Study of Patterns. Wiley, 2001.

[269] M. Kirby and L. Sirovich. Application of the Karhunen-Loève procedure
for the characterization of human faces. IEEE Trans. Pattern Anal.
Mach. Intell., 12(1):103–108, 1990.

[270] Michael Kirby. Linear Algebra for Data Science (forthcoming).

[271] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia
Abdalla, and Carol Willing. Jupyter notebooks – a publishing format for
reproducible computational workflows. In F. Loizides and B. Schmidt,
editors, Positioning and Power in Academic Publishing: Players, Agents
and Agendas, pages 87–90. IOS Press, 2016.

[272] Donald E. Knuth. Literate programming. Comput. J., 27(2):97–111,
May 1984.

[273] Eric D Kolaczyk. Statistical Analysis of Network Data: Methods and
Models. Springer Publishing Company, Incorporated, 2009.

[274] Tamara G. Kolda and Dianne P. O’Leary. A semidiscrete matrix decom-
position for latent semantic indexing in information retrieval. ACM
Transactions on Information Systems, 16(4):322–346, 1998.

[275] Imre Risi Kondor. Group Theoretical Methods in Machine Learning.
Columbia University, 2008.

[276] Miroslav Kramár, Rachel Levanger, Jeffrey Tithof, Balachandra Suri,
Mu Xu, Mark Paul, Michael F Schatz, and Konstantin Mischaikow.
Analysis of Kolmogorov flow and Rayleigh–Bénard convection using per-
sistent homology. Physica D: Nonlinear Phenomena, 334:82–98, 2016.

[277] Mark A. Kramer. Nonlinear principal component analysis using autoas-
sociative neural networks. AIChE J., 37(2):233–243, 1991.

[278] Mark A. Kramer. Autoassociative neural networks. Comput. Chem.
Engng., 16(4):313–328, 1992.

496 Bibliography

[279] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek.
Density-based clustering. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 1(3):231–240, 2011.

[280] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 1097–1105, 2012.

[281] John Kruschke. Doing Bayesian Data Analysis. Academic Press, 2nd
edition, 2015.

[282] Harold W. Kuhn. Variants of the Hungarian method for assignment
problems. Naval Research Logistics Quarterly, 3(4):253–258, 1956.

[283] Max Kuhn. caret: Classification and Regression Training, 2020. R pack-
age version 6.0-85.

[284] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springer,
2013.

[285] S. Kuiper and J. Sklar. Practicing Statistics: Guided Investigations for
the Second Course. Pearson, 2012.

[286] Sriram Kumar and Andreas Savakis. Robust domain adaptation on the
l1-grassmannian manifold. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 103–110,
2016.

[287] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search
for approximate nearest neighbor in high dimensional spaces. In Proceed-
ings of the Thirtieth Annual ACM Symposium on Theory of Computing,
STOC ’98, page 614–623. Association for Computing Machinery, 1998.

[288] Michael Kutner, Christopher Nachtsheim, John Neter, and William Li.
Applied Linear Statistical Models. McGraw-Hill/Irwin, 5th edition, 2004.

[289] Gitta Kutyniok, Ali Pezeshki, Robert Calderbank, and Taotao Liu.
Robust dimension reduction, fusion frames, and grassmannian packings.
Applied and Computational Harmonic Analysis, 26(1):64–76, 2009.

[290] Henry Kvinge and Mark Blumstein. Letting symmetry guide
visualization: multidimensional scaling on groups. arXiv preprint
arXiv:1812.03362, 2018.

[291] Henry Kvinge, Elin Farnell, Michael Kirby, and Chris Peterson. A gpu-
oriented algorithm design for secant-based dimensionality reduction. In
2018 17th International Symposium on Parallel and Distributed Com-
puting (ISPDC), pages 69–76. IEEE, 2018.

Bibliography 497

[292] Henry Kvinge, Elin Farnell, Michael Kirby, and Chris Peterson. Mon-
itoring the shape of weather, soundscapes, and dynamical systems: A
new statistic for dimension-driven data analysis on large datasets. In
2018 IEEE International Conference on Big Data (Big Data), pages
1045–1051. IEEE, 2018.

[293] Henry Kvinge, Elin Farnell, Michael Kirby, and Chris Peterson. Too
many secants: A hierarchical approach to secant-based dimensionality
reduction on large data sets. In 2018 IEEE High Performance extreme
Computing Conference (HPEC), pages 1–7. IEEE, 2018.

[294] Hee-Dae Kwon. Optimal treatment strategies derived from a HIV model
with drug-resistant mutants. Applied Mathematics and Computation,
188(2):1193–1204, 2007.

[295] Brigitte Lahme and Rick Miranda. Karhunen-loeve decomposition in
the presence of symmetry. I. IEEE Transactions on Image Processing,
8(9):1183–1190, 1999.

[296] Greg Lamp et al. ggplot: A package for plotting in Python. http:

//yhat.github.io/ggpy. Accessed: 2020-01-05.

[297] Peter Lancaster and Miron Tismenetsky. The Theory of Matrices: With
Applications. Academic Press, 2nd edition, 1985.

[298] Andrea Lancichinetti, Santo Fortunato, and Janos Kertesz. Detecting
the overlapping and hierarchical community structure in complex net-
works. New Journal of Physics, 11(3):033015, 2009.

[299] Bruce E Landon, Jukka-Pekka Onnela, Nancy L Keating, Michael L
Barnett, Sudeshna Paul, A James O’Malley, Thomas Keegan, and
Nicholas A Christakis. Using administrative data to identify naturally
occurring networks of physicians. Medical Care, 51(8):715, 2013.

[300] David Lane. Rice virtual lab in statistics. http://onlinestatbook.

com/rvls/index.html.

[301] Serge Lang. Graduate Texts in Mathematics: Algebra. Springer, 2002.

[302] Amy N. Langville and Carl D. Meyer. Google’s PageRank and Beyond:
The Science of Search Engine Rankings. Pearson, 2004.

[303] Ben Lauwens. Simjulia: A combined continuous time/discrete
event process oriented simulation framework. https://simjuliajl.

readthedocs.io.

[304] Averill M. Law. Simulation Modeling and Analysis. McGraw-Hill, 5th
edition, 2015.

https://simjuliajl.readthedocs.io
https://simjuliajl.readthedocs.io
http://onlinestatbook.com/
http://onlinestatbook.com/
http://yhat.github.io/
http://yhat.github.io/

498 Bibliography

[305] Neil D Lawrence. A unifying probabilistic perspective for spectral
dimensionality reduction: Insights and new models. Journal of Machine
Learning Research, 13(May):1609–1638, 2012.

[306] Jeffery J. Leader. Numerical Analysis and Scientific Computation.
Princeton University Press, 20011.

[307] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Back-
propagation applied to handwritten zip code recognition. Neural com-
putation, 1(4):541–551, 1989.

[308] Yann LeCun, LD Jackel, Leon Bottou, A Brunot, Corinna Cortes,
JS Denker, Harris Drucker, I Guyon, UA Muller, Eduard Sackinger,
et al. Comparison of learning algorithms for handwritten digit recog-
nition. In International Conference on Artificial Neural Networks, vol-
ume 60, pages 53–60. Perth, Australia, 1995.

[309] Friedrich Leisch. Neighborhood graphs, stripes and shadow plots for
cluster visualization. Statistics and Computing, 20(4):457–469, 2010.

[310] Friedrich Leisch and Evgenia Dimitriadou. mlbench: Machine Learning
Benchmark Problems, 2010. R package version 2.1-1.

[311] Jian Li, Qian Du, and Caixin Sun. An improved box-counting
method for image fractal dimension estimation. Pattern Recognition,
42(11):2460–2469, 2009.

[312] Mengyi Liu, Ruiping Wang, Zhiwu Huang, Shiguang Shan, and Xilin
Chen. Partial least squares regression on grassmannian manifold for
emotion recognition. In Proceedings of the 15th ACM on International
conference on multimodal interaction, pages 525–530. ACM, 2013.

[313] Tao Liu, Joseph W. Hogan, Michael J. Daniels, Mia Coetzer, Yizhen
Xu, Gerald Bove, Allison K. DeLong, Rami Kantor, Lauren Leding-
ham, Millicent Orido, and Lameck Diero. Improved HIV-1 viral load
monitoring capacity using pooled testing with marker-assisted decon-
volution. Journal of acquired immune deficiency syndromes, 75(5):580,
2017.

[314] Tao Liu, Joseph W. Hogan, Lisa Wang, Shangxuan Zhang, and Rami
Kantor. Optimal allocation of gold standard testing under constrained
availability: Application to assessment of HIV treatment failure. Journal
of the American Statistical Association, 108(504):1173–1188, 2013.

[315] R. Lock, P. Lock, K. Lock, E. Lock, and D. Lock. Statkey website.
http://www.lock5stat.com/StatKey/index.html.

[316] R. Lock, P. Lock, K. Lock, E. Lock, and D. Lock. Unlocking the Power
of Statistics. Wiley, 2012.

http://www.lock5stat.com/

Bibliography 499

[317] Robin Lock and Patti Lock. Introducing statistical inference to biology
students through bootstrapping and randomization. PRIMUS, 18:39–
48, 01 2008.

[318] M. Loève. Probability Theory. von Nostrand, Princeton, N.J., 1955.

[319] E. Lorenz. Empirical orthogonal eigenfunctions and statistical weather
prediction. Science Report No. 1, Statistical Forecasting Project 1,
M.I.T., Cambridge, MA, 1956.

[320] Edward Norton Lorenz. Deterministic nonperiodic flow. Journal of the
Atmospheric Sciences. 20 (2), 1963.

[321] Joseph Lotem, Dvir Netanely, Eytan Domany, and Leo Sachs. Human
cancers overexpress genes that are specific to a variety of normal
human tissues. Proceedings of the National Academy of Sciences,
102(51):18556–18561, 2005.

[322] Robin Lougee-Heimer. The Common Optimization INterface for Opera-
tions Research. IBM Journal of Research and Development, 47(1):57–66,
January 2003.

[323] John Loughrey and Pádraig Cunningham. Overfitting in wrapper-based
feature subset selection: The harder you try the worse it gets. In Max
Bramer, Frans Coenen, and Tony Allen, editors, Research and Develop-
ment in Intelligent Systems XXI, pages 33–43, London, 2005. Springer
London.

[324] Miles Lubin and Iain Dunning. Computing in operations research using
Julia. INFORMS Journal on Computing, 27(2), 2015.

[325] R. Duncan Luce. Individual Choice Behavior: A Theoretical Analysis.
Courier Corporation, 1959.

[326] Ontje Lünsdorf and Stefan Scherfke. Simpy: a process-based discrete-
event simulation framework based on standard Python. https://

simpy.readthedocs.io.

[327] David Lusseau, Karsten Schneider, Oliver J. Boisseau, Patti Haase, Elis-
abeth Slooten, and Steve M Dawson. The bottlenose dolphin community
of doubtful sound features a large proportion of long-lasting associations.
Behavioral Ecology and Sociobiology, 54(4):396–405, 2003.

[328] Bei Ma and Hailin Zhang. Recognition of faces using texture-based prin-
cipal component analysis and grassmannian distances analysis. In Inter-
national Conference on Graphic and Image Processing (ICGIP 2011),
volume 8285, page 82856C. International Society for Optics and Pho-
tonics, 2011.

https://simpy.readthedocs.io
https://simpy.readthedocs.io

500 Bibliography

[329] P. Macnaughton-Smith, W.T. Williams, M.B. Dale, and L.G. Mock-
ett. Dissimilarity analysis: a new technique of hierarchical sub-division.
Nature, 202(4936):1034, 1964.

[330] J. MacQueen. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Statistics, pages
281–297, Berkeley, Calif., 1967. University of California Press.

[331] Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt
Hornik. cluster: Cluster Analysis Basics and Extensions, 2019. R pack-
age version 2.1.0.

[332] Benoit B. Mandelbrot. Stochastic models for the earth’s relief, the shape
and the fractal dimension of the coastlines, and the number-area rule for
islands. Proceedings of the National Academy of Sciences, 72(10):3825–
3828, 1975.

[333] Olvi L. Mangasarian, W. Nick Street, and William H. Wolberg. Breast
cancer diagnosis and prognosis via linear programming. Operations
Research, 43(4):570–577, 1995.

[334] K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Aca-
demic Press, 1979.

[335] Tim Marrinan, J. Ross Beveridge, Bruce Draper, Michael Kirby, and
Chris Peterson. Flag manifolds for the characterization of geometric
structure in large data sets. In Numerical Mathematics and Advanced
Applications-ENUMATH 2013, pages 457–465. Springer, 2015.

[336] S. Martin and J. P. Watson. Non-manifold surface reconstruction from
high-dimensional point cloud data. Computational Geometry, 44:427–
441, 2011.

[337] Shawn Martin, Aidan Thompson, Evangelos A. Coutsias, and Jean-Paul
Watson. Topology of cyclo-octane energy landscape. The journal of
chemical physics, 132(23):234115, 2010.

[338] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[339] Leland McInnes, John Healy, and James Melville. UMAP: Uniform
manifold approximation and projection for dimension reduction. arXiv
preprint arXiv:1802.03426, 2018.

[340] Wes McKinney. Data structures for statistical computing in python. In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th
Python in Science Conference, pages 51 – 56, 2010.

Bibliography 501

[341] N. Meinshausen, A. Hauser, J.M. Mooij, J. Peters, P. Versteeg, and
P. Bühlmann. Methods for causal inference from gene perturbation
experiments and validation. Proceedings of the National Academy of
Sciences, 113:7361–7368, 2016.

[342] Facundo Mémoli. Gromov–Hausdorff distances in Euclidean spaces. In
2008 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition Workshops, pages 1–8. IEEE, 2008.

[343] B.D. Meyer. Natural and quasi-experiments in economics. Journal of
business & economic statistics, 13:151–161, 1995.

[344] Zlatko Drmac̆ Michael W. Berry and Elizabeth R. Jessup. Matrices,
vector spaces, and information retrieval. SIAM Review, 41(2):335–362,
1999.

[345] Microsoft. Microsoft Azure Cloud Products. https://azure.

microsoft.com. Accessed: 2020-01-05.

[346] Microsoft. Visual Studio Code. https://code.visualstudio.com.
Accessed: 2020-01-31.

[347] Greg Miller. A scientist’s nightmare: Software problem leads to five
retractions. Science, 314(5807):1856–1857, 2006.

[348] Nikola Milosavljević, Dmitriy Morozov, and Primoz Skraba. Zigzag per-
sistent homology in matrix multiplication time. In Proceedings of the
twenty-seventh annual symposium on Computational geometry, pages
216–225. ACM, 2011.

[349] Marvin Minsky and Seymour Papert. Perceptron: an introduction to
computational geometry. The MIT Press, Cambridge, expanded edition,
19(88):2, 1969.

[350] Konstantin Mischaikow, Hiroshi Kokubu, Marian Mrozek, Pawe l Pilar-
czyk, Tomas Gedeon, Jean-Philippe Lessard, and Marcio Gameiro.
Chomp: Computational homology project. Software available at http:
// chomp. rutgers. edu , 2014.

[351] M. Mitchell. Strategically using general purpose statistics packages:
A look at stata, sas and spss. UCLA Technical Report Series, Report
Number 1, Version Number 1, 2007.

[352] David S. Moore. Should mathematicians teach statistics? The College
Mathematics Journal, 19(1):3–7, 1988.

[353] D.R. Morse, J.H. Lawton, M.M. Dodson, and M.H. Williamson. Fractal
dimension of vegetation and the distribution of arthropod body lengths.
Nature, 314(6013):731, 1985.

http://chomp.rutgers.edu
http://chomp.rutgers.edu
https://code.visualstudio.com
https://azure.microsoft.com
https://azure.microsoft.com

502 Bibliography

[354] Davoud Moulavi, Pablo A. Jaskowiak, Ricardo J.G.B. Campello, Arthur
Zimek, and Jörg Sander. Density-based clustering validation. In Pro-
ceedings of the 2014 SIAM International Conference on Data Mining,
pages 839–847. SIAM, 2014.

[355] Fionn Murtagh and Pierre Legendre. Ward’s hierarchical cluster-
ing method: Clustering criterion and agglomerative algorithm. arXiv
preprint arXiv:1111.6285, 2011.

[356] Rahul Nair and Elise Miller-Hooks. Fleet management for vehicle shar-
ing operations. Transportation Science, 45(4):524–540, 2011.

[357] John Nash. C1 isometric imbeddings. Annals of Mathematics, pages
383–396, 1954.

[358] John Nash. The imbedding problem for Riemannian manifolds. Annals
of Mathematics, pages 20–63, 1956.

[359] Yurii Nesterov. Lectures on Convex Optimization, volume 137. Springer,
2018.

[360] Yurii Nesterov and Arkadii Nemirovskii. Interior-point Polynomial Algo-
rithms in Convex Programming, volume 13. SIAM, 1994.

[361] Mark EJ Newman and Michelle Girvan. Finding and evaluating com-
munity structure in networks. Physical review E, 69(2):026113, 2004.

[362] Raymond T Ng and Jiawei Han. Clarans: A method for clustering
objects for spatial data mining. IEEE Transactions on Knowledge &
Data Engineering, 14(5):1003–1016, 2002.

[363] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer
Science & Business Media, 2006.

[364] Deborah Nolan and Jamis Perrett. Teaching and learning data visual-
ization: Ideas and assignments. The American Statistician, 70:260–269,
2016.

[365] Donald J Norris. Introduction to artificial intelligence. In Beginning
Artificial Intelligence with the Raspberry Pi, pages 1–15. Springer, 2017.

[366] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Stphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman,
and Matthias Zenger. The Scala language specification, 2004.

[367] U.S. Department of Education. College scorecard. https://

collegescorecard.ed.gov/data/, 2019. Accessed: 2019-12-14.

https://collegescorecard.ed.gov/
https://collegescorecard.ed.gov/

Bibliography 503

[368] E. Oja. Data compression, feature extraction, and autoassociation in
feedforward neural networks. In T. Kohonen, K. Mäkisara., O. Simula,
and J. Kangas, editors, Artificial Neural Networks, pages 737–745, NY,
1991. Elsevier Science.

[369] Paul G Okubo and Keiiti Aki. Fractal geometry in the San Andreas fault
system. Journal of Geophysical Research: Solid Earth, 92(B1):345–355,
1987.

[370] Travis E. Oliphant. Guide to NumPy (2nd ed.). CreateSpace Indepen-
dent Publishing Platform, North Charleston, SC, USA, 2015.

[371] Jack J. Olney, Paula Braitstein, Jeffrey W. Eaton, Edwin Sang, Monicah
Nyambura, Sylvester Kimaiyo, Ellen McRobie, Joseph W. Hogan, and
Timothy B. Hallett. Evaluating strategies to improve HIV care outcomes
in Kenya: A modelling study. The Lancet HIV, 3(12):e592–e600, 2016.

[372] ASA/MAA Joint Committee on Undergraduate Statistics. Second
courses in applied statistics. http://www.amstat.org/education/

pdfs/second-course-syllabus.pdf, February 2016.

[373] OpenAI. Gym: A toolkit for developing and comparing reinforcement
learning algorithms. https://gym.openai.com/.

[374] World Health Organization. Antiretroviral therapy for HIV infection in
adults and adolescents: Recommendations for a public health approach-
2010 revision. https://www.who.int/hiv/pub/arv/adult2010/en/,
2010.

[375] Nina Otter, Mason A. Porter, Ulrike Tillmann, Peter Grindrod, and
Heather A. Harrington. A roadmap for the computation of persistent
homology. EPJ Data Science, 6(1):17, 2017.

[376] Michael Overton. Numerical Computing with IEEE Floating Point
Arithmetic. SIAM, 2001.

[377] Cathy O’Neil. Weapons of Math Destruction: How Big Data Increases
Inequality and Threatens Democracy. Crown Publishing Group, USA,
2016.

[378] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geom-
etry from a time series. Physical Review Letters, 45(9):712–716, 1980.

[379] Daniel P. Palomar and Yonina C. Eldar. Convex optimization in signal
processing and communications. Cambridge university press, 2010.

[380] E. Paradis and K. Schliep. ape 5.0: an environment for modern phy-
logenetics and evolutionary analyses in R. Bioinformatics, 35:526–528,
2018.

https://www.who.int/
https://gym.openai.com/
http://www.amstat.org/
http://www.amstat.org/

504 Bibliography

[381] M Parimala, Daphne Lopez, and N.C. Senthilkumar. A survey on
density based clustering algorithms for mining large spatial databases.
International Journal of Advanced Science and Technology, 31(1):59–66,
2011.

[382] Vishal M. Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chel-
lappa. Visual domain adaptation: A survey of recent advances. IEEE
signal processing magazine, 32(3):53–69, 2015.

[383] Karl Pearson. On lines and planes of closest fit to systems of points in
space. Phil. Mag. S., 2(11):559–572, 1901.

[384] Roxy Peck, Chris Olsen, and Jay Devore. Introduction to Statistics &
Data Analysis. Brooks Cole, 5th edition, 2015.

[385] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[386] Jose A. Perea and Gunnar Carlsson. A Klein-bottle-based dictionary
for texture representation. International journal of computer vision,
107(1):75–97, 2014.

[387] Dominique Perrault-Joncas and Marina Meila. Metric learning and man-
ifolds: Preserving the intrinsic geometry. Preprint Department of Statis-
tics, University of Washington, 2012.

[388] Robert Piziak and P.L. Odell. Matrix Theory: From Generalized Inverses
to Jordan Form. Chapman and Hall/CRC, 2007.

[389] Pascal Pons and Matthieu Latapy. Computing communities in large
networks using random walks. J. Graph Algorithms Appl., 10(2):191–
218, 2006.

[390] Warren B. Powell. Clearing the jungle of stochastic optimization.
INFORMS Tutorials in Operations Research, pages 109–137, 2014.
http://dx.doi.org/10.1287/educ.2014.0128.

[391] Warren B. Powell. Stochastic optimization challenges in energy, 2016.
4th International Conference on Computational Sustainability https:

//www.youtube.com/watch?v=dOIoTFX8ejM.

[392] Warren B. Powell. Tutorial on stochastic optimization in energy –
part II: An energy storage illustration. IEEE Transactions on Power
Systems, 31(2):1468 – 1475, 2016. https://doi.org/10.1109/TPWRS.

2015.2424980.

https://doi.org/
https://doi.org/
https://www.youtube.com/
https://www.youtube.com/
http://dx.doi.org/

Bibliography 505

[393] Warren B. Powell. A unified framework for stochastic optimization.
European Journal of Operational Research, pages 795–821, 2019. https:
//doi.org/10.1016/j.ejor.2018.07.014.

[394] Randall Pruim, Daniel T Kaplan, and Nicholas J Horton. The mosaic
package: Helping students to ‘think with data’ using R. The R Journal,
9(1):77–102, 2017.

[395] Weiliang Qiu and Harry Joe. clusterGeneration: Random Cluster Gen-
eration (with Specified Degree of Separation), 2015. R package version
1.3.4.

[396] Fernando A. Quintana. A predictive view of bayesian clustering. Journal
of Statistical Planning and Inference, 136(8):2407–2429, 2006.

[397] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2019.

[398] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Code for the paper “language models are unsupervised
multitask learners”. https://github.com/openai/gpt-2, 2019.

[399] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
URL https://openai.com/blog/better-language-models, 2019.

[400] Matthias Raess. Exploring elastic net and multivariate regression. Avail-
able on arXiv at https://arxiv.org/abs/1607.06763, 2016.

[401] Fred Ramsey and Dan Schafer. The Statistical Sleuth: A course in meth-
ods of data analysis. Brooks/Cole Cengage Learning, 2013.

[402] Stephen Raudenbush and Anthony Bryk. Hierarchical Linear Models:
Applications and Data Analysis Methods. Advanced Quantitative Tech-
niques in the Social Sciences. SAGE Publications, 2nd edition, 2001.

[403] Tal Raviv, Michal Tzur, and Iris A. Forma. Static repositioning in a
bike-sharing system: models and solution approaches. EURO Journal
on Transportation and Logistics, 2(3):187–229, 2013.

[404] Jeffrey Reaser, Eric Wilbanks, Karissa Wojcik, and Walt Wolfram. Lan-
guage variety in the new South: Contemporary perspectives on change
and variation. UNC Press Books, 2018.

[405] Leonard Richardson. Beautiful soup documentation. https://www.

crummy.com/software/BeautifulSoup/bs4/doc/, April 2007.

[406] Armin Rigo, Maciej Fijalkowski, et al. cffi 1.13.2: Foreign Function
Interface for Python calling C code. https://cffi.readthedocs.io/

en/latest/.

https://openai.com/
https://cffi.readthedocs.io/
https://cffi.readthedocs.io/
https://www.crummy.com/
https://www.crummy.com/
https://arxiv.org/
https://github.com/
https://doi.org/
https://doi.org/

506 Bibliography

[407] Thomas Roelleke. Information Retrieval Models: Foundations and Rela-
tionships. Morgan & Claypool, 2013.

[408] Frank Rosenblatt. The perceptron, a perceiving and recognizing automa-
ton Project Para. Cornell Aeronautical Laboratory, 1957.

[409] S. Ross. Introduction to Probability and Statistics for Engineers and
Scientists, 4th edition. Academic Press, 2009.

[410] Sheldon Ross. Simulation. Academic Press, 5th edition, 2012.

[411] A. Rossman and B. Chance. Applet collection. http://www.

rossmanchance.com/applets/.

[412] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53–65, 1987.

[413] RStudio Team. RStudio: Integrated Development Environment for R.
RStudio, Inc., Boston, MA, 2015.

[414] Ulrich Rüde, Karen Willcox, Lois Curfman McInnes, and Hans De
Sterck. Research and education in computational science and engineer-
ing. SIAM Review, 60(3):707–754, 2018.

[415] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing internal representations by error propagation. Technical report, Cal-
ifornia Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[416] Paat Rusmevichientong, Zuo-Jun Max Shen, and David B. Shmoys.
Dynamic assortment optimization with a multinomial logit choice model
and capacity constraint. Operations Research, 58(6):1666–1680, 2010.

[417] Paat Rusmevichientong, David Shmoys, Chaoxu Tong, and Huseyin
Topaloglu. Assortment optimization under the multinomial logit model
with random choice parameters. Production and Operations Manage-
ment, 23(11):2023–2039, 2014.

[418] Guillaume Sagnol and Maximilian Stahlberg. Picos: A Python interface
to conic optimization solvers. https://picos-api.gitlab.io/picos/.

[419] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu.
Density-based clustering in spatial databases: The algorithm gdbscan
and its applications. Data Mining and Knowledge Discovery, 2(2):169–
194, 1998.

[420] Deepayan Sarkar. Lattice: Multivariate Data Visualization with R.
Springer, New York, 2008. ISBN 978-0-387-75968-5.

[421] Tim Sauer, James A. Yorke, and Martin Casdagli. Embedology. Journal
of statistical Physics, 65(3-4):579–616, 1991.

https://picos-api.gitlab.io/
http://www.rossmanchance.com/
http://www.rossmanchance.com/

Bibliography 507

[422] Nathaniel Saul and Chris Tralie. Scikit-TDA: Topological Data Analysis
for Python. https://doi.org/10.5281/zenodo.2533369, 2019.

[423] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85–117, 2015.

[424] Jaap C Schouten, Floris Takens, and Cor M van den Bleek. Estimation
of the dimension of a noisy attractor. Physical Review E, 50(3):1851,
1994.

[425] Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, 1998.

[426] M.J. Schuemie, P.B. Ryan, W. DuMouchel, M.A. Suchard, and D. Madi-
gan. Interpreting observational studies: why empirical calibration is
needed to correct p-values. Stat. Med., 33:209–218, 2014.

[427] Rachel Schutt and Cathy O’Neil. Doing Data Science: Straight Talk
from the Frontline. O’Reilly Media, Inc., 2013.

[428] Jean-Pierre Serre. Linear Representations of Finite Groups, volume 42.
Springer, 1977.

[429] Bahar Shahnavaz, Lucie Zinger, Sébastien Lavergne, Philippe Choler,
and Roberto A Geremia. Phylogenetic clustering reveals selective events
driving the turnover of bacterial community in alpine tundra soils. Arc-
tic, Antarctic, and Alpine Research, 44(2):232–238, 2012.

[430] David A Shaw and Rama Chellappa. Regression on manifolds using
data-dependent regularization with applications in computer vision. Sta-
tistical Analysis and Data Mining: The ASA Data Science Journal,
6(6):519–528, 2013.

[431] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, 2004.

[432] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. Departmental Papers (CIS), page 107, 2000.

[433] Naum Zuselevich Shor. Minimization Methods for Non-differentiable
Functions, volume 3. Springer Science & Business Media, 2012.

[434] Robert Shumway and David Stoffer. Time Series Analysis and its Appli-
cations: With R Examples. Springer, 4th edition, 2017.

[435] David Silver and Demis Hassabis. AlphaGo: Mastering the
Ancient Game of Go. https://ai.googleblog.com/2016/01/

alphago-mastering-ancient-game-of-go.html, 2016.

https://ai.googleblog.com/
https://ai.googleblog.com/
https://doi.org/

508 Bibliography

[436] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap,
Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and
Demis Hassabis. Mastering the game of Go without human knowledge.
Nature, 550:354–359, 2017.

[437] L. Sirovich and M. Kirby. A low-dimensional procedure for the char-
acterization of human faces. J. of the Optical Society of America A,
4:529–524, 1987.

[438] Colin Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange
Attractors. Springer, 1982.

[439] David I. Spivak. Metric realization of fuzzy simplicial sets. Self pub-
lished notes, available online at https://www.semanticscholar.org/

paper/METRIC-REALIZATION-OF-FUZZY-SIMPLICIAL-SETS-Spivak/

a73fb9d562a3850611d2615ac22c3a8687fa745e, 2012.

[440] Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. Optimization
for machine learning. MIT Press, 2012.

[441] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[442] Cédric St-Jean. ScikitLearn.jl: Julia implementation of the scikit-
learn API. https://github.com/cstjean/ScikitLearn.jl, Novem-
ber 2019.

[443] Henry Stark. Image Recovery: Theory and Application. Elsevier, 2013.

[444] G.W. Stewart. Matrix Algorithms, Vol. I: Basic Decompositions. SIAM,
1998.

[445] G.W. Stewart. Matrix Algorithms, Vol. II: Eigensystems. SIAM, 2001.

[446] Stochastic Programming Society. Stochastic programming resources.
Project website: https://www.stoprog.org/resources. Accessed 25
July 2019.

[447] V. Stodden. Reproducing statistical results. Annu. Rev. Stat. Appl,
2:1–19, 2015.

[448] Thomas Strohmer and Robert W. Heath Jr. Grassmannian frames with
applications to coding and communication. Applied and computational
harmonic analysis, 14(3):257–275, 2003.

https://www.stoprog.org/
https://github.com/
https://www.semanticscholar.org/
https://www.semanticscholar.org/
https://www.semanticscholar.org/

Bibliography 509

[449] Sublime HQ Pty Ltd. Sublime Text. http://www.sublimetext.com.
Accessed: 2020-01-05.

[450] M. Sumida and H. Topaloglu. An approximation algorithm for capacity
allocation over a single flight leg with fare-locking. INFORMS Journal
on Computing, pages 83–99, 2019.

[451] James J. Swain. Simulation software survey. OR/MS Today, 44(5):38–
49, 2017.

[452] Panagiotis Symeonidis and Andreas Zioupos. Matrix and Tensor Fac-
torization Techniques for Recommender Systems. Springer International
Publishing, 2016.

[453] Tableau Software. Tableau. https://www.tableau.com. Accessed:
2020-01-05.

[454] Sima Taheri, Pavan Turaga, and Rama Chellappa. Towards view-
invariant expression analysis using analytic shape manifolds. In Face
and Gesture 2011, pages 306–313. IEEE, 2011.

[455] F. Takens. Detecting Strange Attractors in Turbulence. Dynamical
Systems and Turbulence; Proceeding of a symposium held at University
of Warwick 1979-1980, pages 366–381, 1980.

[456] Kalyan Talluri and Garrett Van Ryzin. Revenue management under
a general discrete choice model of consumer behavior. Management
Science, 50(1):15–33, 2004.

[457] Ryuta Tamura, Ken Kobayashi, Yuichi Takano, Ryuhei Miyashiro,
Kazuhide Nakata, and Tomomi Matsui. Mixed integer quadratic opti-
mization formulations for eliminating multicollinearity based on vari-
ance inflation factor. Journal of Global Optimization, 73(2):431–446,
February 2019.

[458] Andrew Tausz, Mikael Vejdemo-Johansson, and Henry Adams.
Javaplex: A research software package for persistent (co)homology.
In International Congress on Mathematical Software, pages 129–136,
2014. Software available at http://appliedtopology.github.io/

javaplex/.

[459] The CVXPY authors. CVXPY 1.0: Convex optimization, for everyone.
https://www.cvxpy.org/.

[460] The Eclipse Foundation. Eclipse IDE: The Leading Open Platform for
Professional Developers. http://www.eclipse.org/. Accessed: 2020-
01-31.

[461] The GUDHI Project. GUDHI User and Reference Manual. GUDHI
Editorial Board, 2015.

http://www.eclipse.org/
https://www.cvxpy.org/
http://appliedtopology.github.io/
http://appliedtopology.github.io/
https://www.tableau.com
http://www.sublimetext.com

510 Bibliography

[462] Theano Development Team. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688,
May 2016.

[463] H.J. Thode. Testing for Normality. Marcel Dekker, New York, 2002.

[464] Peter W. Foltz Thomas K. Landauer, and Darrell Laham. An introduc-
tion to latent semantic analysis. Discourse Processes, 25(2-3):259–284,
1998.

[465] N. Tintle, B. Chance, G. Cobb, S. Roy, T. Swanson, and J. Vander-
Stoep. Combating anti-statistical thinking using simulation-based meth-
ods throughout the undergraduate curriculum. Faculty Work: Compre-
hensive List, 2015.

[466] N. Tintle, J. VanderStoep, V l Holmes, B. Quisenberry, and T. Swan-
son. Development and assessment of a preliminary randomization-
based introductory statistics curriculum. Journal of Statistics Educa-
tion, 19(1), 2011.

[467] Chad M Topaz, Lori Ziegelmeier, and Tom Halverson. Topological data
analysis of biological aggregation models. PloS one, 10(5):e0126383,
2015.

[468] Linus Torvalds et al. Git version control system 2.25.0. https:

//git-scm.com/.

[469] Paolo Toth and Daniele Vigo. Vehicle routing: Problems, methods, and
applications. SIAM, 2014.

[470] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. SIAM,
1997.

[471] J.W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, MA,
1977.

[472] Pavan Turaga and Rama Chellappa. Locally time-invariant models of
human activities using trajectories on the grassmannian. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 2435–
2441. IEEE, 2009.

[473] Alexander J. Tybl. An overview of spatial econometrics. https://

arxiv.org/abs/1605.03486, 2016.

[474] Iñaki Ucar, José Alberto Hernández, Pablo Serrano, and Arturo Azcorra.
Design and analysis of 5G scenarios with simmer: An R package for fast
DES prototyping. IEEE Communications Magazine, 56(11):145–151,
November 2018.

https://arxiv.org/
https://arxiv.org/
https://git-scm.com/
https://git-scm.com/

Bibliography 511

[475] Iñaki Ucar and Bart Smeets. simmer: Discrete-event simulation package
for R. https://r-simmer.org/.

[476] Iñaki Ucar, Bart Smeets, and Arturo Azcorra. simmer: Discrete-event
simulation for R. Journal of Statistical Software, 90(2):1–30, 2019.

[477] United States Energy Information Administration. EIA-930 data users
guide and known issues, 2019. https://www.eia.gov/realtime_grid/
docs/userguide-knownissues.pdf.

[478] United States Energy Information Administration. Electricity, 2019.
https://www.eia.gov/electricity/data.php.

[479] United States Energy Information Administration. Homepage, 2019.
https://www.eia.gov/.

[480] United States Energy Information Administration. Today in energy:
Prices, 2019. https://www.eia.gov/todayinenergy/prices.php.

[481] United States Energy Information Administration. U.S. electric system
operating data, 2019. https://www.eia.gov/beta/realtime_grid/.

[482] U.S. General Services Administration. data.gov. https://www.data.

gov. Accessed: 2020-01-05.

[483] J. H. van Hateren and A. van der Schaaf. Independent component filters
of natural images compared with simple cells in primary visual cortex.
Proc. R. Soc. Lond. B, 265:359–366, 1998.

[484] Charles F Van Loan. Generalizing the singular value decomposition.
SIAM Journal on Numerical Analysis, 13(1):76–83, 1976.

[485] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems,
pages 5998–6008, 2017.

[486] R. D. De Veaux, M. Agarwal, M. Averett, B. Baumer, A. Bray, T. Bres-
soud, L. Bryant, L. Cheng, A. Francis, R. Gould, A. Kim, M. Kretchmar,
Q. Lu, A. Moskol, D. Nolan, R. Pelayo, S. Raleigh, R. Sethi, M. Sond-
jaja, N. Tiruviluamala, P. Uhlig, T. Washington, C. Wesley, D. White,
and P. Ye. Curriculum guidelines for undergraduate programs in data
science. Annual Review of Statistics and Its Application, 4, 2017.

[487] Tyler Vigen. Spurious correlation website. http://www.tylervigen.

com/spurious-correlations.

[488] Gregory K Wallace. The JPEG still picture compression standard. IEEE
Transactions on Consumer Electronics, 38(1):xviii–xxxiv, 1992.

http://www.tylervigen.com/
http://www.tylervigen.com/
https://www.data.gov
https://www.data.gov
https://www.eia.gov/
https://www.eia.gov/
https://www.eia.gov/
https://www.eia.gov/
https://www.eia.gov/
https://www.eia.gov/
https://r-simmer.org/

512 Bibliography

[489] Tiesheng Wang and Pengfei Shi. Kernel grassmannian distances and dis-
criminant analysis for face recognition from image sets. Pattern Recog-
nition Letters, 30(13):1161–1165, 2009.

[490] Xinchao Wang, Wei Bian, and Dacheng Tao. Grassmannian regular-
ized structured multi-view embedding for image classification. IEEE
Transactions on Image Processing, 22(7):2646–2660, 2013.

[491] Joe H. Ward Jr. Hierarchical grouping to optimize an objective function.
Journal of the American statistical association, 58(301):236–244, 1963.

[492] Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Joel
Ostblom, Saulius Lukauskas, David C Gemperline, Tom Augspurger,
Yaroslav Halchenko, John B. Cole, Jordi Warmenhoven, Julian
de Ruiter, Cameron Pye, Stephan Hoyer, Jake Vanderplas, Santi Vil-
lalba, Gero Kunter, Eric Quintero, Pete Bachant, Marcel Martin,
Kyle Meyer, Alistair Miles, Yoav Ram, Thomas Brunner, Tal Yarkoni,
Mike Lee Williams, Constantine Evans, Clark Fitzgerald, Brian, and
Adel Qalieh. mwaskom/seaborn: v0.9.0 (july 2018), July 2018.

[493] Philip D. Wasserman and Tom Schwartz. Neural networks. ii. what are
they and why is everybody so interested in them now? IEEE Expert,
3(1):10–15, 1988.

[494] R.L. Wasserstein and N.A. Lazar. The ASA’s statement on p-values:
Context, process, and purpose. The American Statistician, 70:129–133,
2016.

[495] S. Watanabe. Karhunen–Loève expansion and factor analysis. In Trans.
4th. Prague Conf. on Inf. Theory, Statist. Decision Functions, and Ran-
dom Proc., pages 635–660, Prague, 1965.

[496] Jean-Paul Watson, David L. Woodruff, and William E. Hart. Pysp:
modeling and solving stochastic programs in Python. Mathematical Pro-
gramming Computation, 4(2):109–149, 2012.

[497] P.J. Werbos. New tools for prediction and analysis in the behavioral
sciences. Ph. D. dissertation, Harvard University, 1974.

[498] David White. A project based approach to statistics and data science.
PRIMUS, 29(9):997–1038, 2019.

[499] H. Whitney. Differentiable manifolds. Annals of Math., 37:645–680,
1936.

[500] Hadley Wickham. testthat: Get started with testing. The R Journal,
3:5–10, 2011.

[501] Hadley Wickham. Tidy data. The Journal of Statistical Software, 59,
2014.

Bibliography 513

[502] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016.

[503] Hadley Wickham. rvest: Easily Harvest (Scrape) Web Pages, 2019. R
package version 0.3.4.

[504] Hadley Wickham and Jennifer Bryan. readxl: Read Excel Files, 2019. R
package version 1.3.1.

[505] Hadley Wickham, Romain François, Lionel Henry, and Kirill Müller.
dplyr: A Grammar of Data Manipulation, 2019. R package version 0.8.3.

[506] Wikipedia contributors. Women in the United States House of
Representatives—Wikipedia, The Free Encyclopedia, 2020. [Online;
accessed 05-January-2020].

[507] C. J. Wild, M. Pfannkuch, and M. Regan. Towards more accessible con-
ceptions of statistical inference. Journal of the Royal Statistical Society,
174(2):247–295, 2011.

[508] C. J. Wild, M. Pfannkuch, M. Regan, and R. Parsonage. Accessible con-
ceptions of statistical inference: Pulling ourselves up by the bootstraps.
International Statistical Review, 85(1):84–107, 2017.

[509] L. Wilkinson. The Grammar of Graphics, 2nd edition. Springer, 2005.

[510] Niklaus Wirth. Algorithms+Data Structures=Programs. Prentice Hall,
1976.

[511] Wisconsin Institutes for Discovery. NEOS Server: State-of-the-Art
Solvers for Numerical Optimization. https://neos-server.org/

neos/.

[512] John H Wolfe. Pattern clustering by multivariate mixture analysis. Mul-
tivariate Behavioral Research, 5(3):329–350, 1970.

[513] M. Wood. The role of simulation approaches in statistics. Journal of
Statistics Education, 13(3), 2005.

[514] J. Wooldridge. Introductory Econometrics: a Modern Approach. South-
Western Cengage Learning, Mason, Ohio, 2012.

[515] Robert E. D. Woolsey. Where were we, where are we, where are we
going, and who cares? Interfaces, 23(5):40–46, 1993.

[516] Robert E. D. Woolsey and Richard L. Hewitt. Real World Operations
Research: The Woolsey Papers. Lionheart Publishing, Inc., Marietta,
Georgia, 2003.

[517] Stephen J. Wright. Primal-dual interior-point methods, volume 54.
SIAM, 1997.

https://neos-server.org/
https://neos-server.org/

514 Bibliography

[518] Dan Zhang and Daniel Adelman. An approximate dynamic program-
ming approach to network revenue management with customer choice.
Transportation Science, 43(3):381–394, 2009.

[519] Ying Zhao and George Karypis. Evaluation of hierarchical clustering
algorithms for document datasets. In Proceedings of the eleventh inter-
national conference on Information and knowledge management, pages
515–524. ACM, 2002.

[520] Ji Zhu and Trevor Hastie. Kernel logistic regression and the import
vector machine. Journal of Computational and Graphical Statistics,
14(1):185–205, 2005.

[521] Y. Zhu, L. M. Hernandez, P. Mueller, Y. Dong, and M. R. Forman. Data
acquisition and preprocessing in studies on humans: What is not taught
in statistics classes? The American Statistician, 67(4):235–241, 2013.

[522] A. Zomorodian. Advances in Applied and Computational Topology.
American Mathematical Society, 2012.

[523] Afra Zomorodian and Gunnar Carlsson. Computing persistent homol-
ogy. Discrete and Computational Geometry, 33(2):249–274, 2005.

[524] Afra J Zomorodian. Topology for computing, volume 16. Cambridge
university press, 2005.

[525] J. Álvarez Vizoso, M. Kirby, and C. Peterson. Manifold curvature from
covariance analysis. In 2018 IEEE Statistical Signal Processing Work-
shop (SSP), pages 353–357, June 2018.

[526] Åke Björck. Numerical Methods for Least Squares Problems. SIAM,
1996.

Index

Acceptance-rejection method, 266
Accuracy, 374
Activation function, 413
Ada-Boost, 404–405
Adam optimization, 420
Adaptive algorithms, 276
Adjusted R2, 150
Advanced regression, 145

indicator variables and ANOVA,
155–159

multiple regression, interaction,
148–152

outliers and high leverage points,
146–148

regression assumptions, 152–155
transformations, 145–146

Affordable Care Act, 186
Agent-based modeling, 445
Agent-based simulation, 282
Agglomerative clustering, 204
Agglomerative methods, 205
AIMMS, 283
Akaike information critrerion (AIC),

170
AlexNet, 412, 424–425
Algebraic modeling language, 281
Algebraic topology, 447
AlphaGo engine, 413
Amazon, 15
Ambient dimension of data, 298
American Statistical Association, 139
Analysis of covariance (ANCOVA), 158
Analysis of variance (ANOVA), 150,

155–159
Analytics, 11
Antiretroviral therapy (ART), 279
Application Programming Interface

(API), 31
Applied statistics, 101–102

Asymptotically unbiased estimators,
123n10

Attention layers, 432–434
Attracting set, 307
Attractor, 307
Auto-encoder feed-forward neural

network, 326
Autocorrelation, 138
Automatically Tuned Linear Algebra

Subprograms package
(ATLAS package), 50

Autonomous differential equation, 307
Average Linkage, 205

Backpropagation, 411, 413–417
Backward selection, 148–149, 356
Bar chart, 103–104
Base classifiers, 402
Basic Linear Algebra Subprograms

(BLAS), 49–50
Batch normalization, 421
Bayes’ Formula, 121
Bayesian Information Criterion (BIC),

219–220
Bayesian statistics, 121, 177

prior and posterior distributions,
178–180

Bayes’ formula, 177–178
Bayes optimal classifier, 382
Bayes’ rule, 377

estimating probabilities, 379
independence assumption, 378
Laplace smoothing, 379–380

Benchmarking, 27–28
Bernoulli distribution, 166
BERT, 435
Bias-variance trade-off, 116–117,

165
Bias error, 116–117
“Big data”, 7, 14

515

516 Index

Bike-sharing systems, 277–278
BLAS, see Basic Linear Algebra

Subprograms
Bonferroni correction, 150
Bootstrap(ping), 267, 403

approach, 345
confidence intervals, 269–270
distribution, 130, 140
resample, 130
resampling, 124, 130–133

Bootstrap aggregating (Bagging),
403

Boston housing dataset, 362
Bottleneck distance, 471–473
Bottom-up clustering, 204
Box-counting dimension 309
Box and whisker plot,

104–105
Bubble chart, 106

C++, 435n5
Caffe2, 437
California ISO (CISO), 289
Capacitated Vehicle Routing Problem

(CVRP), 285
CART method, 284
Categorical data analysis, 158
Category theory applied to data

visualization, 321–326
Causality, 173

experimental design, 173–176
quasi-experiments, 176–177

Čech simplicial complexes, 449
Central Limit Theorem, 118, 120–122,

126, 134, 139
Central processing unit (CPU),

15, 435
Centroid linkage, 205–206
Chebyshev’s theorem, 119
Cholesky decomposition, 58–60
Choropleth map, 106
C languages, 28
CLARANS algorithm, 225
Classic knapsack problem, 258
Classification

error, 396
trees, 395–398

Cloud-based service, 15
Cluster analysis, 9

Clustering, 117–118, 186
case study, 211, 215–217
challenges, 232
College Scorecard dataset, 211–212
dealing with network data, 228
density-based methods, 224–227
distances, 189–192
example applications, 186–187
exercises, 234–237
feature selection, 232–233
hierarchical clustering, 204–211
hierarchical clusters, 233–234
hierarchical results, 214–215
k -means results, 212–214
model-based methods, 217–224
network clustering example,

229–232
observations, 187
overlapping clusters, or fuzzy

clustering, 234
partitioning and k -means

algorithm, 193–204
spectral partitioning method,

228–229
techniques, 441–442
visualization, 188–189

Clustering LARge Applications
(CLARA), 204, 235

Clustering objects on subsets of
attributes (COSA), 233

clValid package, 235
CNTK, see Microsoft Cognitive Toolkit
Code completion, 17
Coefficient of determination (R2), 150
College Scorecard dataset, 211–212,

236–237
Collider, 176
Comma-separated value file (CSV file),

30, 180–181
Command line, 15–16
Complementary slackness, 250
Complete flow, 307
Complete linkage, 205
Composing models, 410
Computational Homology Project

(CHomP), 464
Computational Infrastructure for

Operations Research
(COIN-OR), 282

Index 517

Confidence intervals, 124
bootstrap resampling, 130–133
sampling distribution, 125–127
from sampling distribution,

127–130
Confounder, 176
Confusion matrix, 374
Constrained optimization problem, 245
Convex optimization, 252

convex programming, 252–253
duality and optimality conditions,

256–258
first-order optimization methods,

255–256
Hessian matrix, 254

Convex polytope, 248
Convex programming, 252–253
Convolutional layer, 423
Convolutional neural network (CNN),

318–319, 422
convnet layers, 423–424
convolutional architectures for

ImageNet, 424–429
Cook’s distance, 163
Correlating pathway, 174
Correlation, 115, 162

dimension, 309–311
of Lorenz attractor, 311–312

Cost-complexity pruning, 401
Cost function, 364

approximations, 276
Covariance, 115

matrix, 162
Covariates, 158
Cross-validation, 116, 270–271, 344, 359
CUDA, 437
Cultivar, 197
Cumulative distribution function

(CDF), 261
Curse of dimensionality,

244, 295
Cyclo-octane molecule (C8H16),

443–444, 461, 463

d-simplex, 448
Data

category theory applied to data
visualization, 321–326

cleaning, 181

parallelization, 436
scientist, 292
structures, 34–35
wrangling, 180–181

Data-centric coding, 30
cleaning data, 35
databases, 31–33
data structures, 34–35
data values, 37–38
files, 30–31
missing data, 36–37
obtaining data, 30
other issues, 38–39
other sources and concerns, 33–34
outliers, 38
web, 31

Data-generating devices, 6
Data-generating process, 109
Databases, 31–33
DataFrame, 35
Data munging, see Data–wrangling
Data science, 3–7, 51, 102, 294

OR methods connect to, 241–242
tool, 14

Debugging tools, 17
Decision trees, 392

classification trees, 395–398
kernel functions, 392–393
for playing tennis, 394
pruning, 399–402
regression decision trees, 398–399

Decoder, 431
Deep learning, 10, 410; see also Machine

learning
convolutional neural networks,

422–429
exercises and solutions, 440
frameworks, 435, 436–438
hardware acceleration, 435–436
multilayer perceptrons, 413–418
neural networks, 411–413
open questions, 440
recurrent neural networks, 429–431
TensorFlow with Keras, 438–439
training techniques, 418–422
transformers, 431–435

Degrees of freedom (df), 108, 152,
159n20

Dendrograms, 208–210

518 Index

Density-based methods, 193, 224, 236;
see also Model-based methods

DBSCAN, 224–226
example with iris data, 226–227

Density-based spatial clustering of
applications with noise
algorithm (DBSCAN
algorithm), 224–226

Density plot, 105
Descriptive analysis, 277
Descriptive statistics, 106–108
Design matrix, 366
Dimension, 292–293

reduction techniques, 284
Dimensionality reduction

additional methods, 332
category theory applied to data

visualization, 321–326
dimension, 292–293
dimensionality reduction in

presence of symmetry,
318–321

dimension reduction on
Grassmannian, 312–318

false nearest neighbours, 332
geometry of data and dimension,

293–298
good projections, 304–306
GSVD, 331
interesting theorems on dimension,

333
Johnson-Lindenstrauss lemma, 335
multidimensional scaling, 303–304
Nash embedding theorems,

334–335
non-integer dimensions, 306–312
nonlinear principal component

analysis, 326–330
PCA, 298–301
in presence of symmetry,

318–321
Takens’ theorem, 333–334
topological dimension, 301–303
Whitney’s reduction network,

330–331
Whitney’s theorem, 333

Direct lookahead, 276
Discrete-time Markov chain, 267–268
Discrete Fourier transform (DFT), 319

Discrete model, 117
Discrete random variables, 262
Discriminative classifier, 377
Distances, 189–192
Divisive clustering, 204
Domain-specific knowledge, 422
Don’t repeat yourself (DRY), 26–27
Dropout technique, 421
Durbin-Watson test, 153
Dynamical systems, 445–446
Dynamic programming, 274

formulation, 274–275
“Dynamic typing”, 16

Eckart-Young Theorem, 72
Edge removal-based method, 228
EIA, see U.S. Energy Information

Administration
Eigenvalues, 78

eigenproblems, 78–82
finding, 82–84
PageRank, 86–92
power method, 84–86

Eigenvectors, 78–92
“Elbow” method approach, 195, 198
Embedding theorem, 330
Empirical distribution, 130
Empirical Orthogonal Functions

(EOFs), 298
Encoder, 431
Ensemble methods, 402

bagging, 403
boosting, 404–406
random forests, 403–404

Entropy, 396
Errors, 163n24
Error sum of squares, 206
Estimator, 362
Euclidean distance, 191, 195
Euclidean space, 317, 468
Euler invented graph theory, 112
Event, 119
Exogenous variable, 175
Expectation-Maximization algorithm

(EM algorithm), 218–219
Explanatory variable, 113
Exploratory data analysis (EDA), 40,

103, 349
bar chart, 103–104

Index 519

density plot, 105–106
descriptive statistics, 106–108
sampling and bias, 109–111

F -test, 151
False nearest neighbours, 332
False positive rate (FPR), 376
Fast Johnson-Lindenstrauss transform

(FJLT), 335
Feasible solution, 245
Feature engineering, 351–353
Feature scaling, 421
Feature selection, 283–284, 355–357
“Feature target dataset”, 341
Files, 30–31
Fine-tuning, 435n4
First-order optimization methods,

255
Floating-Point Arithmetic, 92–94
Fortran, 28
Forward propagation, 416
Forward selection, 149, 356
Fourier transform, 319
Fractal dimension, 308–309
Fragmentation, 401
Frequentist perspective, 177
Fuzzy clustering, 234

Galton dataset, 113n3–114, 116
Gauss-Markov Theorem,

115, 161
Gaussian elimination, 51–52, 57
Generalization error, 344
Generalized singular value

decomposition (GSVD), 331
General linear mixed model, 160, 165,

171
General linear model, 159–166,

171–172
Generative classifier, 377
GFR, 324–325
Gibbs sampler, 268–269
Gibbs sampling, 179
Gini index, 396
Git repositories, 23
Goodness-of-fit, 263
Google, 15
GoogLeNet, 426–427
Gower’s distance, 192

GPT-2, 412
Gradient descent, 364

algorithm, 416
application to regression, 366–367
loss functions, 364–365
powerful optimization tool,

365–366
support for regularization,

367–370
Gram-Schmidt process, 67–68
Grammar of graphics, 106
Graphical user interface (GUI), 16
Graphics processing units (GPUs), 15,

435
acceleration, 435

Graph theory, 11
Grassmannian, dimension reduction on,

312–318
Gromov-Hausdorff distance, 470,

473–474
Group-wise models, 117–118

“Hacking”, 3
Hardware, 14–15
Harmonic analysis, 319
Hat matrix, 161
Heat map, 106
Hessian matrix, 254n3
Heteroscedasticity-robust standard

errors, 153
Heteroscedasticity consistent standard

errors, see Robust standard
errors

Heuristic algorithms, 246
Hierarchical clustering, 204

algorithm, 206–207
dendrograms and wine example,

208–210
hierarchical simple example,

207–208
linkages, 205–206
other hierarchical algorithms, 211

Hierarchical clusters, 233–234
Hierarchical modeling, 164, 228
Highly active antiretroviral therapy

(HAART), 279
Histogram, 103–104
HITS method, see Hyperlink Induced

Topic Search method

520 Index

Homology, 443, 447, 449
computation using linear algebra,

453–457
definitions, 451–452
example, 452–453
persistent, 457–463
simplicial, 450–451

Homoscedasticity, 153
Honest signifcant diference (HSD), 157
Horizon platform, 283
HTML, 31
Huffman-type code, 461
Human immunodeficiency virus (HIV),

279
treatment and prevention, 279–280

Hyperlink Induced Topic Search
method (HITS method), 92

Hyperparameter, 270
parallelization, 435–436

Hypothetical causal network, 174

i-dimensional persistent homology,
457

igraph package, 229
ImageNet, convolutional architectures

for, 424–429
ImageNet Large Scale Visual

Recognition Challenge
(ILSVRC), 412

Image processing, 422
Inception-ResNet, 429
Inception module, 426–427
Independent classifiers, 402
Indicator variables, 155–159
Inference, 133

bias and scope of, 144–145
first example, 133–136
general strategy for hypothesis

testing, 136–137
hypothesis testing, 133
inference to compare two

populations, 137–138
other types of hypothesis tests,

138–139
power and effect size, 142–143
randomization-based inference,

139–142
trouble with p-hacking, 143–144
Type I and Type II error, 142

Influence leverage, 163
Influential point, 147
Institute for Operations Research and

Management Science
(INFORMS), 282–283

Instrumental variables, 175
Integer program, 252
Integrated development environments

(IDEs), 17–18
Interaction, 150

plot, 158
Interior-point algorithms, 251
Internal validation, 203
Interquartile range (IQR), 105n1, 146
Intrinsic dimension, 292, 295
Invariant set, 307
Inverse method, 263–266
IPython, 19
Iris dataset, 235
Iterative model, 358–360

Jittering, 116n5
Job market, 1
Johnson-Lindenstrauss lemma, 335
JuMP, 281
Jupyter notebook, 21

k -fold cross-validation, 271
k -means algorithm, 193–195

example with wine data,
197–200

issues with k -means, 195–197
model-based methods vs.,

221–224
other partitioning algorithms,

204
partitioning and, 193
validation, 200–204

k -nearest neighbors (KNN), 406
Karush-Kuhn-Tucker conditions (KKT

conditions), 250, 258
Knockout experiment, 176

Lagged errors, 155
Lagged explanatory variables, 155
Lagrange multipliers, 165
Lagrangian relaxation, 249
Laplace smoothing, 379–380
Laplacian eigenmaps, 296

Index 521

Lasso regression model, 259
Latent semantic analysis (LSA),

73
Latent variables, 174
Law of Parsimony, see Principle of

parsimony
Law of Total Probability, 178
Learning representations by error

propagation, 411
Least-squares curve-fitting, 60–62
Least Absolute Shrinkage Selector

Operator regression (LASSO
regression), 166

Leave-one-out approach, 345
Leela Chess Zero engine, 413
LFR, 323–324
Likelihood, 179

function, 122–123
ratio test, 169

Linear algebra, 9, 44
categorical data analysis, 172
computational matrix algebra,

94–95
creating database, 95–96
data, vectors, and matrices,

44–46
eigenvalues and eigenvectors,

78–92
floating point computing, 92–94
generalized linear model, 171–172
general linear model, 159–165
logistic regression, 166–170
matrix decompositions, 51–78
matrix storage and manipulation

issues, 47–50
numerical computing, 92
projects, 95
QR decomposition and

query-matching, 96
ridge regression and penalized

regression, 165–166
searching web, 96–97
to statistics, 159
SVD and latent semantic indexing,

96
term-by-document matrices, 46–47

Linear Algebra Package software library
(LAPACK software library),
50

Linear function, 243
Linearity, 152
Linear optimization, 247; see also

Stochastic optimization
convex optimization, 252–258
duality and optimality conditions,

249–252
extension to integer programming,

252
non-convex optimization, 258–260
simplex algorithm, 248–249

Linear program, 247
Linear regression, 112–116, 245, 366
Linear SVMs

in case of linear separability,
382–386

without linear separability,
386–389

Line chart, 105
Linkages, 205
Linters clean up code, 17
Linux operating system, 16
“Literate programming”, 18
Locally Linear Embeddings (LLE),

296
Log-likelihood, 123
Log-odds function, see Logit function
Logistic regression, 370

curve, 167
evaluating performance of a

classifier, 373–377
framework, 371
parameter estimation for, 371–373

Logit function, 167
Longitudinal data analysis, 155
Long short-term memory cell (LSTM

cell), 430–431
Lookahead approximations, 276
Lorenz attractor, correlation dimension

of, 311–312
Lorenz equations, 311
Lotka-Volterra equations, 150n6
Lua scripting language, 437
LU decomposition, 51; see also Singular

value decomposition (SVD)
computational notes, 56–58
Gaussian elimination, 51–52
matrices L and U , 53–55
permuting rows, 55–56

522 Index

Machine learning, 284, 340; see also
Deep learning

constraints, 342–344
creating training and test datasets,

353–354
decision trees, 392–402
ensemble methods, 402–406
feature engineering, 351–353
gradient descent, 364–370
implementing ML work flow, 360
iterative model building, 358–360
logistic regression, 370–377
methods for data separation,

344–346
missing values and outliers, 350–351
model creation, 354–357
models, 410
Näıve Bayes classifier, 377–382
obtaining initial dataset, 347–350
prediction and evaluation, 357–358
preprocessing, 350
scikit-learn framework, 360–364
simulation techniques for machine

learning model assessment,
269–271

supervised learning, 341–342
SVMs, 382–392
training dataset and test dataset,

342
workflow, 346–347

MacOS, 16
Mahalanobis distance, 192
Manhattan (city-block) distance, 191
Manifold hypothesis, 440
Markdown syntax, 18–19
Markov Chain Monte Carlo-based

procedures (MCMC
procedures), 179, 219, 267

Markov decision processes (MDP),
274

Mathematics, 3
MATLAB, 50
Matrices, 44–46
Matrix algebra, 46
Matrix decompositions, 51

Cholesky decomposition, 58–60
and data science, 51
least-squares curve-fitting, 60–62
LU decomposition, 51–58

recommender systems and QR
decomposition, 63–71

SVD, 71–78
Matrix diagonal, 188
Matrix storage and manipulation issues,

47–50
Maximum likelihood estimation (MLE),

122–123, 371
Mean, 262
Mean Squared Error (MSE), 151, 414
Measurement error, 109
Mediator variable, 176
Metropolis-Hastings algorithm, 268
Metropolis algorithm, 179
Microsoft, 15
Microsoft Cognitive Toolkit, 437
Microsoft Excel, 282
Min-max scaling, 355
Minimal spanning trees, 228
Minkowski l-distance, 191–192
Mint, 16
Mixed integer nonlinear optimization

techniques, 284
Mixed integer program, 252
MLPs, 429
MNL model, see Multinomial Logit

model
Model-based methods, 217; see also

Density-based methods
example with wine data, 220–221
mclust and model selection, 220
model-based vs. k-means, 221–224
model development, 217–218
model estimation, 218–220

Model assessment, 269
Model creation, 354

feature selection, 355–357

scaling and normalization, 354–355

Model parallelization, 436

Model selection, 269

Moderator variable, 159, 176
Modern version control systems, 22
Modularity, 229
Molecule configurations, 443–445
Moments, 123
Momentum gradient descent, 420
Monte Carlo simulations, 121, 139–140
Moore’s Law, 57
Moran test, 153

Index 523

Multi-collinearity, 149, 367
Multi-level models, 164
Multidimensional scaling (MDS), 295,

303–304
Multilayer perceptron, 413, 422

backpropagation, 413–417
neural networks for classification,

417–418
neurons, 417

Multinomial logistic regression, 171
Multinomial Logit model (MNL model),

278–279
Multiple imputation technique, 181

Näıve Bayes classifier, 377
Bayes’ rule, 377–380
health care example, 380–382

Nash embedding theorems, 334–335
National Center for Biotechnology

Information (NCBI), 95
National Oceanic and Atmospheric

Administration (NOAA), 95
Natural language processing,

181, 422
Negative binomial regression, 171
NEOS Server, 282–283
Nested F -test, 152
Netfix, 63
Netlib, 50
Network clustering, 229–232
Neural networks, 410, 412

for classification, 417–418
functions, 411

Neurons, 417
NOAA, see National Oceanic and

Atmospheric Administration
Non-convex optimization, 258–260;

see also Convex optimization
Non-correlating pathway, 174
Non-integer dimensions, 306

background on dynamical systems,
306–307

correlation dimension, 309–311
correlation dimension of Lorenz

attractor, 311–312
fractal dimension, 308–309

Non-relational databases, 33
“Non-response bias”, 111
Nonlinear dimension reduction, 295

Nonlinear principal component analysis,
326–330

Nonlinear SVMs, 389–392; see also
Linear SVMs

Normal distribution, 120
Normal equations, 148
NoSQL databases, 33
Notebooks, 18–22
Null hypothesis, 133
Null model, 169

Occam’s razor, see Principle of
parsimony

OkCupid, 109
One-sided test, 134
One-way ANOVA, 158
Operations research methods (OR

methods), 241, 242–243
balance between efficiency and

complexity, 243–244
data project, 289–290
feature selection, 283–284
modeling project, 289
optimization, 244–260
optimization solvers, 281–282
OR methods connect to data

science, 241–242
prescriptive analytics, 277–280
simulation, 260–273
simulation software and packages,

282–283
stochastic optimization, 273–276
stochastic optimization software

and packages, 283
tools, 280
unit commitment problem for

power systems, 286–289
vehicle routing problem, 285–286

Optical character recognition (OCR),
33

Optimal machine learning, 284
Optimal solution, 245
Optimization, 244

algorithms, 419–420
complexity-tractability trade-off,

246–247
data scientists approach, 244–245
linear optimization, 247–252
solver, 281

524 Index

Ordinary least squares (OLS), 114
regression, 366

Outliers and high leverage points, 146
Overfitting, 116, 270
Overlapping clusters, 234

p-dimensional vector, 190
p-hacking, 143

trouble with p-hacking,
143–144

p-value, 133
PageRank websearch algorithm, 78,

86–92
Paired t-test, 137
Panel data analysis, see Longitudinal

data analysis
Parsimonious regression models, 259
Partially-observable Markov decision

processes (POMDPs), 274
Partitioning around medoids (PAM),

204, 235
Pathological curvature, 420
PCE, 325–326
Pearson correlation coefficient, 188,

190
Penalized regression, 165–166
Perceptron algorithm, 411
Permutation tests, 141
Persistence barcode, 457
Persistent homology, 443, 445, 449,

457–463
barcodes, 459
bottleneck distance and

visualization, 471–473
distances between datasets,

468–471
stability of, 467
stability results, 473–474

Pie Chart, 104
PLEX software packages, 464
PMF, see Probability mass function
Poisson distribution, 171
Poisson model, 118
Poisson regression, 171
Policy function approximations, 276
Policy search, 276
Polynomial-time algorithm, 249, 259
Polynomial regression, 116–117, 145
Pooling layer, 423–424

Population, 107
density function, 217
parameter, 108

Post-hoc tests, 157
Posterior distribution, 177–180
Postpruning, 401
Power

and effect size, 142–143
method, 84–86

Precision, 374
Prediction interval, 129
Predictive analytics, 277
Prepruning, 399, 401
Prescriptive analytics, 277, 284

agent-based modeling, 272–273
bike-sharing systems, 277–278
customer choice model for online

retail, 278–279
discrete-event simulation, 272
HIV treatment and prevention,

279–280
simulation techniques for, 271
tools for, 273

Primal-dual interior-point algorithm,
251

Primal linear program, 249
Principal component analysis (PCA),

78, 189, 293, 298, 320
connection to SVD, 299–300
derivation and properties, 298–299
for dimension estimation and data

reduction, 300–301
Principle of parsimony, 117
Prior distribution, 177–180
Probability

distribution, 261
models, 118–124
space, 119n8

Probability density function (PDF),
120n9, 261

Probability mass function (PMF), 261
Problem-specific algorithms, 246
“Production code”, 19
Programming languages, 16–17
Programming with data, 14

best practices, 23
black boxes, 29–30
command line, 15–16
computing environment, 14

Index 525

data-centric coding, 30–40
data scientists, 41
DRY, 26–27
EDA, 40
hardware, 14–15
IDEs, 17–18
notebooks, 18–22
profile, benchmark, and optimize

judiciously, 27–28
programming languages, 16–17
set seeds for random processes, 27
testing code, 28–29
version control, 22–23
write readable code, 23–25

Projected subgradient method, 255–256
Projection matrix, 161
Project management, 17
Propensity score analysis, 177
Proxy variable, 174
Pruning, 399–402
Pseudorandom, 27
PyCharm, 18
Pyomo, 281
PySP, 283
Pythagorean theorem, 298
Python, 7, 16–17, 23, 40
PyTorch, 437

q-q plots, see Quantile-quantile plots
QR decomposition, 65–69, 96

applications, 69–71
motivating example, 63–65
recommender systems and, 63

Quadratic model, 62
Quadratic regression, 114
Quantile-quantile plots (q-q plots),

120
Quantiles, 105n1
Quantitative variables, 103
Quasi-experiments, 176–177
Query-matching, 96

Random-Access Memory (RAM), 14
Random forests, 403–404
Randomization-based inference,

139–142
Randomized block design, 176
Randomized controlled trial, 173
Random processes, 27

Random subsampling, 344
Random variable, 119, 261

generating, 262
simulation from empirical

distribution, 267–269
simulation from known

distribution, 262–266
Random walk method, 228
Read-Evaluate-Print Loop (REPL), 17
Recall, 374
Recurrent neural networks, 429

LSTM cells, 430–431
Regression, 342
Regression decision trees, 398–400
Regression Mean Square (MSR), 151
Regularization, 165, 367
Reinforcement learning, 273
Relational databases, 31, 35
Representation theory, 319
Residuals, 112
Residual sum of squares (RSS), 114
ResNet, 428
Response normalization scheme, 426
Response variable, 113
R functionality, 40
Ridge regression, 165–166, 368
Ridge trace, 165
Ripser software package, 464
Robust optimization, 284
Robust standard errors, 164
Root mean-squared error (RMSE),

356–357
R’s caret package, 271
R software, 7, 16, 34
Runs test for randomness, 154

Sample, 107
statistic, 125

Sampling
and bias, 109–111
confidence intervals from, 127–130
distribution, 124–127

Saturated model, 169
Scatterplots, 105, 114
Scikit-learn framework, 360–364
Scikit-TDA, 464
“Script files”, 18
Secant-avoidance projection algorithm

(SAP algorithm), 305

526 Index

Self-attention layers, 434
Semi-discrete decomposition (SDD),

77
Sensitivity analysis, 116
Shrinkage, 367
Sigmoid functions, 414
Significance level, 134
Silhouette coefficient, 201–202
Simple random sample, 109
Simplex algorithm, 248–249
Simplicial complexes, 447–449
Simplicial homology, 450–451
Simpson’s paradox, 109
Simulation, 121, 260

bootstrapping confidence intervals,
269–270

cross-validation technique, 270–271
generating random variables,

262–269
for prescriptive analytics, 271–273
probability principles of, 261–262
software and packages, 282–283
for statistical and machine learning

model assessment, 269–271
for statistical and machine learning

model assessment, 269
Single linkage, 205
Singular value decomposition (SVD),

71, 298, 300
Eckart-Young Theorem, 72–73
and latent semantic indexing,

96
reading on, 76–78
in recommender system,

74–76
Snapshot method, 300
softmax function, 417
Softmax regression, see Multinomial

logistic regression
Software, 464–466
Sparse matrix, 48
Sparse support vector machines

(sparse SVM), 318
Spectral partitioning method,

228–229
Spreadsheet, 30
Spyder, 18
Squared loss function, 364
SST, see Total sum of squares

Stability theorem, 467
for functions, 474
for point clouds, 473–474

Standard deviation, 262
Standard error (SE), 126
Standardized residuals, 163
Standard scaling, 355
Statistical learning model assessment,

simulation techniques for,
269–271

Statistical models, 112
Statistical pedagogy, 101
Statistics, 100–101, 108

advanced regression, 145–159
applied, 101–102
Bayesian statistics, 177–179
causality, 173–177
cleaning data, 181–182
confidence intervals, 124–133
data wrangling, 180–181
exploratory data analysis and

visualizations, 103–111
group-wise models and clustering,

117–118
inference, 133–145
linear algebra approach to, 159–172
linear regression, 112–116
modeling, 111
models, 103
polynomial regression, 116–117
probability models, 118–124
word on curricula, 180

Stem and leaf plot, 103–104
Stochastic gradient descent, 256, 365,

416
Stochastic Modeling Interface, 283
Stochastic optimization, 273; see also

Linear optimization
dynamic programming

formulation, 274–275
software and packages, 283
solution techniques, 275–276
stochastic optimization, 273–274

Stochastic programming, 283
Stochastic Programming Society (SPS),

283
Strange attractors, 308
Stratified random sampling, 109
Structured Query Language (SQL), 33

Index 527

Studentized residuals, 147
Subgradient descent method, 255, 370
Sublevelset persistence, 445,

463–464
Sum of squared error (SSE), 151
Supervised learning techniques, 10,

340–342
Support vector classifier (SVC), 383
Support vector machines (SVMs), 166,

382
linear SVMs in case of linear

separability, 382–386
linear SVMs without linear

separability, 386–389
nonlinear SVMs, 389–392

t-distributed Stochastic Neighbor
Embedding (t-SNE), 295

t-distribution, 121–122
Tab Separated Values (TSV), 30–31
Takens’ theorem, 333–334
TensorFlow, 50, 437

with Keras, 438–439
Term-by-document matrices, 46–47, 65,

95
Test dataset, 342–346
Test statistics, 133–134, 269
Theano (Python library), 437
Three-dimensional arrays, 423
Three-dimensional vector, 294
Tidying, 35–36
Tikhonov regularization, see Ridge

regression
Time-delayed embedding, 333
Time-dependent arrival rate, 277–278
Top-down clustering, 204
Topological data analysis, 10

agent-based modeling, 445
clustering techniques, 441–442
dynamical systems, 445–446
example applications, 443
hollow sphere, 442
homology, 449–457
image processing, 443
molecule configurations, 443–445
persistent homology, 457–463
references, 467
simplicial complexes, 442–443
simplicial complexes, 447–449

software and exercises, 464–466
stability of persistent homology,

467–474
sublevelset persistence, 463–464
topology, 446–447

Topological dimension, 301–303
Topology, 446–447
Total Mean Square (MST), 151
Total sum of squares (SST), 151
Training set, 341, 342–346
Training techniques, 418

batch normalization, 421
dropout, 421
early stopping, 422
initialization, 419
optimization algorithms, 419–420
weight regularization, 421–422

Transformations, 145–146
Transformers, 362, 431–432

attention layers, 432–434
self-attention layers, 434
tools for, 434–435
word order, 434

Transition function, 275
Triangular orthogonalization, 68
Trivial, 459n6
True positive rate (TPR), 376
Tukey’s Bulging Rule, 146
Tukey’s HSD test, 157
Two-sample t-test, 137
Two-sided tail probability, 135
Two-sided test, 134
Two-stage least-squares regression, 175
Two-way ANOVA, 158
Type I error, 142
Type I error rate, 269
Type II error, 142

Ubuntu, 16
Unconstrained optimization problem,

244–245
Uniform local approximations (ULA),

322
Uniform Manifold Approximation and

Projection (UMAP), 295,
321–322

Unit commitment problem for power
systems, 286–289

“Unit testing”, 29

528 Index

Universal test-and-treat (UTT),
280

University of California–Irvine’s
machine learning (UCI’s
machine learning), 197

Unsupervised learning, 340
U.S. Energy Information

Administration (EIA), 289

Validation
data, 416, 422
techniques, 27

Value function approximations, 276
Vandermonde matrix, 62
Vanishing/exploding gradient problem,

412
Variability, 271
Variance error, 117
Variance inflation factors (VIFs), 149,

165
Vectors, 44–46
Vehicle routing problem, 285–286
Venn diagram, 3, 119
Version control, 17, 22–23
Vietoris–Rips simplicial complex, 449,

457
Violin plot, 106

Viral load test (VL test), 279
Visualizations, 103–111, 471–473

Wald statistic, 169
Ward’s method, 206
Web, 31

scraping, 33, 180
search problem, 46

Weight
and bias model, 411
regularization, 421–422

Weighted regression, 153, 164
What-if analysis, 273
Whickham dataset, 166
Whitney’s Embedding Theorem, 305
Whitney’s theorem, 333
Wilcoxon, Mann-Whitney, and

Kruskal-Wallis tests, 138
Windows 10, 16
Wisconsin Breast Cancer dataset,

223
Word cloud, 106
Word order, 434
Worst-case scenarios, 33

Xavier-He initialization scheme, 419
χ2-test for homogeneity, 172

	Cover������������
	Half Title�����������������
	Series Page������������������
	Title Page�����������������
	Copyright Page���������������������
	Contents���������������
	Foreword���������������
	1. Introduction����������������������
	1.1 Who should read this book?�������������������������������������
	1.2 What is data science?��������������������������������
	1.3 Is data science new?�������������������������������
	1.4 What can I expect from this book?��
	1.5 What will this book expect from me?��

	2. Programming with Data�������������������������������
	2.1 Introduction�����������������������
	2.2 The computing environment������������������������������������
	2.2.1 Hardware���������������������
	2.2.2 The command line�����������������������������
	2.2.3 Programming languages����������������������������������
	2.2.4 Integrated development environments (IDEs)���
	2.2.5 Notebooks����������������������
	2.2.6 Version control����������������������������

	2.3 Best practices�������������������������
	2.3.1 Write readable code��������������������������������
	2.3.2 Don't repeat yourself����������������������������������
	2.3.3 Set seeds for random processes���
	2.3.4 Profile, benchmark, and optimize judiciously
	2.3.5 Test your code���������������������������
	2.3.6 Don't rely on black boxes��������������������������������������

	2.4 Data-centric coding������������������������������
	2.4.1 Obtaining data���������������������������
	2.4.1.1 Files��������������������
	2.4.1.2 The web����������������������
	2.4.1.3 Databases������������������������
	2.4.1.4 Other sources and concerns���

	2.4.2 Data structures����������������������������
	2.4.3 Cleaning data��������������������������
	2.4.3.1 Missing data���������������������������
	2.4.3.2 Data values��������������������������
	2.4.3.3 Outliers�����������������������
	2.4.3.4 Other issues���������������������������

	2.4.4 Exploratory data analysis (EDA)��

	2.5 Getting help�����������������������
	2.6 Conclusion���������������������

	3. Linear Algebra������������������������
	3.1 Data and matrices����������������������������
	3.1.1 Data, vectors, and matrices��
	3.1.2 Term-by-document matrices��������������������������������������
	3.1.3 Matrix storage and manipulation issues���

	3.2 Matrix decompositions��������������������������������
	3.2.1 Matrix decompositions and data science���
	3.2.2 The LU decomposition���������������������������������
	3.2.2.1 Gaussian elimination�����������������������������������
	3.2.2.2 The matrices L and U
	3.2.2.3 Permuting rows�����������������������������
	3.2.2.4 Computational notes����������������������������������

	3.2.3 The Cholesky decomposition���������������������������������������
	3.2.4 Least-squares curve-fitting
	3.2.5 Recommender systems and the QR decomposition���
	3.2.5.1 A motivating example�����������������������������������
	3.2.5.2 The QR decomposition�����������������������������������
	3.2.5.3 Applications of the QR decomposition���

	3.2.6 The singular value decomposition���
	3.2.6.1 SVD in our recommender system��
	3.2.6.2 Further reading on the SVD���

	3.3 Eigenvalues and eigenvectors���������������������������������������
	3.3.1 Eigenproblems��������������������������
	3.3.2 Finding eigenvalues��������������������������������
	3.3.3 The power method�����������������������������
	3.3.4 PageRank���������������������

	3.4 Numerical computing������������������������������
	3.4.1 Floating point computing�������������������������������������
	3.4.2 Floating point arithmetic��������������������������������������
	3.4.3 Further reading����������������������������

	3.5 Projects�������������������
	3.5.1 Creating a database��������������������������������
	3.5.2 The QR decomposition and query-matching��
	3.5.3 The SVD and latent semantic indexing���
	3.5.4 Searching a web����������������������������

	4. Basic Statistics��������������������������
	4.1 Introduction�����������������������
	4.2 Exploratory data analysis and visualizations���
	4.2.1 Descriptive statistics�����������������������������������
	4.2.2 Sampling and bias������������������������������

	4.3 Modeling�������������������
	4.3.1 Linear regression������������������������������
	4.3.2 Polynomial regression����������������������������������
	4.3.3 Group-wise models and clustering���
	4.3.4 Probability models�������������������������������
	4.3.5 Maximum likelihood estimation��

	4.4 Confidence intervals
	4.4.1 The sampling distribution��������������������������������������
	4.4.2 Confidence intervals from the sampling distribution
	4.4.3 Bootstrap resampling���������������������������������

	4.5 Inference��������������������
	4.5.1 Hypothesis testing�������������������������������
	4.5.1.1 First example����������������������������
	4.5.1.2 General strategy for hypothesis testing��
	4.5.1.3 Inference to compare two populations���
	4.5.1.4 Other types of hypothesis tests��

	4.5.2 Randomization-based inference��
	4.5.3 Type I and Type II error�������������������������������������
	4.5.4 Power and effect size
	4.5.5 The trouble with p-hacking
	4.5.6 Bias and scope of inference��

	4.6 Advanced regression������������������������������
	4.6.1 Transformations����������������������������
	4.6.2 Outliers and high leverage points��
	4.6.3 Multiple regression, interaction���
	4.6.4 What to do when the regression assumptions fail��
	4.6.5 Indicator variables and ANOVA��

	4.7 The linear algebra approach to statistics��
	4.7.1 The general linear model�������������������������������������
	4.7.2 Ridge regression and penalized regression��
	4.7.3 Logistic regression��������������������������������
	4.7.4 The generalized linear model���
	4.7.5 Categorical data analysis��������������������������������������

	4.8 Causality��������������������
	4.8.1 Experimental design��������������������������������
	4.8.2 Quasi-experiments������������������������������

	4.9 Bayesian statistics������������������������������
	4.9.1 Bayes' formula���������������������������
	4.9.2 Prior and posterior distributions��

	4.10 A word on curricula�������������������������������
	4.10.1 Data wrangling����������������������������
	4.10.2 Cleaning data���������������������������

	4.11 Conclusion����������������������
	4.12 Sample projects���������������������������

	5. Clustering��������������������
	5.1 Introduction�����������������������
	5.1.1 What is clustering?��������������������������������
	5.1.2 Example applications���������������������������������
	5.1.3 Clustering observations������������������������������������

	5.2 Visualization������������������������
	5.3 Distances��������������������
	5.4 Partitioning and the�������������������������������
	5.4.1 The k-means algorithm
	5.4.2 Issues with k-means
	5.4.3 Example with wine data�����������������������������������
	5.4.4 Validation�����������������������
	5.4.5 Other partitioning algorithms��

	5.5 Hierarchical clustering����������������������������������
	5.5.1 Linkages���������������������
	5.5.2 Algorithm����������������������
	5.5.3 Hierarchical simple example��
	5.5.4 Dendrograms and wine example���
	5.5.5 Other hierarchical algorithms��

	5.6 Case study���������������������
	5.6.1 k-means results
	5.6.2 Hierarchical results���������������������������������
	5.6.3 Case study conclusions�����������������������������������

	5.7 Model-based methods������������������������������
	5.7.1 Model development������������������������������
	5.7.2 Model estimation�����������������������������
	5.7.3 mclust and model selection���������������������������������������
	5.7.4 Example with wine data�����������������������������������
	5.7.5 Model-based versus k-means

	5.8 Density-based methods��������������������������������
	5.8.1 Example with iris data�����������������������������������

	5.9 Dealing with network data������������������������������������
	5.9.1 Network clustering example���������������������������������������

	5.10 Challenges����������������������
	5.10.1 Feature selection�������������������������������
	5.10.2 Hierarchical clusters�����������������������������������
	5.10.3 Overlapping clusters, or fuzzy clustering���

	5.11 Exercises���������������������

	6. Operations Research�����������������������������
	6.1 History and background���������������������������������
	6.1.1 How does OR connect to data science?���
	6.1.2 The OR process���������������������������
	6.1.3 Balance between efficiency and complexity

	6.2 Optimization�����������������������
	6.2.1 Complexity-tractability trade-off
	6.2.2 Linear optimization��������������������������������
	6.2.2.1 Duality and optimality conditions��
	6.2.2.2 Extension to integer programming���

	6.2.3 Convex optimization��������������������������������
	6.2.3.1 Duality and optimality conditions��

	6.2.4 Non-convex optimization������������������������������������

	6.3 Simulation���������������������
	6.3.1 Probability principles of simulation���
	6.3.2 Generating random variables��
	6.3.2.1 Simulation from a known distribution���
	6.3.2.2 Simulation from an empirical distribution: bootstrapping���
	6.3.2.3 Markov Chain Monte Carlo (MCMC) methods��

	6.3.3 Simulation techniques for statistical and machine learning model assessment��
	6.3.3.1 Bootstrapping confidence intervals
	6.3.3.2 Cross-validation�������������������������������

	6.3.4 Simulation techniques for prescriptive analytics���
	6.3.4.1 Discrete-event simulation��
	6.3.4.2 Agent-based modeling�����������������������������������
	6.3.4.3 Using these tools for prescriptive analytics���

	6.4 Stochastic optimization����������������������������������
	6.4.1 Dynamic programming formulation��
	6.4.2 Solution techniques��������������������������������

	6.5 Putting the methods to use: prescriptive analytics���
	6.5.1 Bike-sharing systems���������������������������������
	6.5.2 A customer choice model for online retail��
	6.5.3 HIV treatment and prevention���

	6.6 Tools����������������
	6.6.1 Optimization solvers���������������������������������
	6.6.2 Simulation software and packages���
	6.6.3 Stochastic optimization software and packages��

	6.7 Looking to the future��������������������������������
	6.8 Projects�������������������
	6.8.1 The vehicle routing problem��
	6.8.2 The unit commitment problem for power systems��
	6.8.3 Modeling project�����������������������������
	6.8.4 Data project�������������������������

	7. Dimensionality Reduction����������������������������������
	7.1 Introduction�����������������������
	7.2 The geometry of data and dimension���
	7.3 Principal Component Analysis���������������������������������������
	7.3.1 Derivation and properties��������������������������������������
	7.3.2 Connection to SVD������������������������������
	7.3.3 How PCA is used for dimension estimation and data reduction��
	7.3.4 Topological dimension����������������������������������
	7.3.5 Multidimensional scaling�������������������������������������

	7.4 Good projections���������������������������
	7.5 Non-integer dimensions���������������������������������
	7.5.1 Background on dynamical systems��
	7.5.2 Fractal dimension������������������������������
	7.5.3 The correlation dimension��������������������������������������
	7.5.4 Correlation dimension of the Lorenz attractor��

	7.6 Dimension reduction on the Grassmannian��
	7.7 Dimensionality reduction in the presence of symme-try��
	7.8 Category theory applied to data visualization��
	7.9 Other methods������������������������
	7.9.1 Nonlinear Principal Component Analysis���
	7.9.2 Whitney's reduction network��
	7.9.3 The generalized singular value decomposition���
	7.9.4 False nearest neighbors������������������������������������
	7.9.5 Additional methods�������������������������������

	7.10 Interesting theorems on dimension���
	7.10.1 Whitney's theorem�������������������������������
	7.10.2 Takens' theorem�����������������������������
	7.10.3 Nash embedding theorems�������������������������������������
	7.10.4 Johnson-Lindenstrauss lemma���

	7.11 Conclusions�����������������������
	7.11.1 Summary and method of application���
	7.11.2 Suggested exercises���������������������������������

	8. Machine Learning��������������������������
	8.1 Introduction�����������������������
	8.1.1 Core concepts of supervised learning���
	8.1.2 Types of supervised learning���

	8.2 Training dataset and test dataset��
	8.2.1 Constraints������������������������
	8.2.2 Methods for data separation��

	8.3 Machine learning workflow
	8.3.1 Step 1: obtaining the initial dataset��
	8.3.2 Step 2: preprocessing����������������������������������
	8.3.2.1 Missing values and outliers��
	8.3.2.2 Feature engineering����������������������������������

	8.3.3 Step 3: creating training and test datasets��
	8.3.4 Step 4: model creation�����������������������������������
	8.3.4.1 Scaling and normalization��
	8.3.4.2 Feature selection��������������������������������

	8.3.5 Step 5: prediction and evaluation��
	8.3.6 Iterative model building�������������������������������������

	8.4 Implementing the ML workflow
	8.4.1 Using scikit-learn�������������������������������
	8.4.2 Transformer objects��������������������������������

	8.5 Gradient descent���������������������������
	8.5.1 Loss functions���������������������������
	8.5.2 A powerful optimization tool���
	8.5.3 Application to regression��������������������������������������
	8.5.4 Support for regularization���������������������������������������

	8.6 Logistic regression������������������������������
	8.6.1 Logistic regression framework��
	8.6.2 Parameter estimation for logistic regression���
	8.6.3 Evaluating the performance of a classifier

	8.7 Naïve Bayes classifier
	8.7.1 Using Bayes' rule������������������������������
	8.7.1.1 Estimating the probabilities���
	8.7.1.2 Laplace smoothing��������������������������������

	8.7.2 Health care example��������������������������������

	8.8 Support vector machines����������������������������������
	8.8.1 Linear SVMs in the case of linear separability���
	8.8.2 Linear SVMs without linear separability��
	8.8.3 Nonlinear SVMs���������������������������

	8.9 Decision trees�������������������������
	8.9.1 Classification trees
	8.9.2 Regression decision trees��������������������������������������
	8.9.3 Pruning��������������������

	8.10 Ensemble methods����������������������������
	8.10.1 Bagging���������������������
	8.10.2 Random forests����������������������������
	8.10.3 Boosting����������������������

	8.11 Next steps����������������������

	9. Deep Learning�����������������������
	9.1 Introduction�����������������������
	9.1.1 Overview���������������������
	9.1.2 History of neural networks���������������������������������������

	9.2 Multilayer perceptrons���������������������������������
	9.2.1 Backpropagation����������������������������
	9.2.2 Neurons��������������������
	9.2.3 Neural networks for classification

	9.3 Training techniques������������������������������
	9.3.1 Initialization���������������������������
	9.3.2 Optimization algorithms������������������������������������
	9.3.3 Dropout��������������������
	9.3.4 Batch normalization��������������������������������
	9.3.5 Weight regularization����������������������������������
	9.3.6 Early stopping���������������������������

	9.4 Convolutional neural networks��
	9.4.1 Convnet layers���������������������������
	9.4.2 Convolutional architectures for ImageNet���

	9.5 Recurrent neural networks������������������������������������
	9.5.1 LSTM cells�����������������������

	9.6 Transformers�����������������������
	9.6.1 Overview���������������������
	9.6.2 Attention layers�����������������������������
	9.6.3 Self-attention layers����������������������������������
	9.6.4 Word order�����������������������
	9.6.5 Using transformers�������������������������������

	9.7 Deep learning frameworks�����������������������������������
	9.7.1 Hardware acceleration����������������������������������
	9.7.2 History of deep learning frameworks��
	9.7.3 TensorFlow with Keras����������������������������������

	9.8 Open questions�������������������������
	9.9 Exercises and solutions����������������������������������

	10. Topological Data Analysis������������������������������������
	10.1 Introduction������������������������
	10.2 Example applications��������������������������������
	10.2.1 Image processing������������������������������
	10.2.2 Molecule configurations
	10.2.3 Agent-based modeling����������������������������������
	10.2.4 Dynamical systems�������������������������������

	10.3 Topology��������������������
	10.4 Simplicial complexes��������������������������������
	10.5 Homology��������������������
	10.5.1 Simplicial homology���������������������������������
	10.5.2 Homology definitions
	10.5.3 Homology example������������������������������
	10.5.4 Homology computation using linear algebra���

	10.6 Persistent homology�������������������������������
	10.7 Sublevelset persistence�����������������������������������
	10.8 Software and exercises����������������������������������
	10.9 References����������������������
	10.10 Appendix: stability of persistent homology���
	10.10.1 Distances between datasets���
	10.10.2 Bottleneck distance and visualization��
	10.10.3 Stability results��������������������������������

	Bibliography�������������������
	Index������������

