
Reverse
Engineering
the Mind

Florian Neukart

Consciously Acting Machines
and Accelerated Evolution

AutoUni – Schriftenreihe

Herausgegeben von/Edited by
Volkswagen Aktiengesellschaft
AutoUni

AutoUni – Schriftenreihe

Band 94

Die Volkswagen AutoUni bietet Wissenschaftlern und Promovierenden des Volk-
swagen Konzerns die Möglichkeit, ihre Forschungsergebnisse in Form von Monog-
raphien und Dissertationen im Rahmen der „AutoUni Schriftenreihe“ kostenfrei zu
veröffentlichen. Die AutoUni ist eine international tätige wissenschaftliche Einrich-
tung des Konzerns, die durch Forschung und Lehre aktuelles mobilitätsbezogenes
Wissen auf Hochschulniveau erzeugt und vermittelt.

Die neun Institute der AutoUni decken das Fachwissen der unterschiedlichen
Geschäftsbereiche ab, welches für den Erfolg des Volkswagen Konzerns unabding-
bar ist. Im Fokus steht dabei die Schaffung und Verankerung von neuem Wissen und
die Förderung des Wissensaustausches. Zusätzlich zu der fachlichen Weiterbildung
und Vertiefung von Kompetenzen der Konzernangehörigen, fördert und unterstützt
die AutoUni als Partner die Doktorandinnen und Doktoranden von Volkswagen
auf ihrem Weg zu einer erfolgreichen Promotion durch vielfältige Angebote – die
Veröffentlichung der Dissertationen ist eines davon. Über die Veröffentlichung in der
AutoUni Schriftenreihe werden die Resultate nicht nur für alle Konzernangehörigen,
sondern auch für die Öffentlichkeit zugänglich.

The Volkswagen AutoUni offers scientists and PhD students of the Volkswagen
Group the opportunity to publish their scientific results as monographs or doc-
tor’s theses within the “AutoUni Schriftenreihe” free of cost. The AutoUni is an
international scientifc educational institution of the Volkswagen Group Academy,
which produces and disseminates current mobility-related knowledge through its
research and tailor-made further education courses. The AutoUni‘s nine institutes
cover the expertise of the different business units, which is indispensable for the
success of the Volkswagen Group. The focus lies on the creation, anchorage and
transfer of knew knowledge.

In addition to the professional expert training and the development of specialized
skills and knowledge of the Volkswagen Group members, the AutoUni supports and
accompanies the PhD students on their way to successful graduation through a vari-
ety of offerings. The publication of the doctor’s theses is one of such offers. The
publication within the AutoUni Schriftenreihe makes the results accessible to all
Volkswagen Group members as well as to the public.

Herausgegeben von/Edited by
Volkswagen Aktiengesellschaft
AutoUni
Brieffach 1231
D-38436 Wolfsburg
http://www.autouni.de

Florian Neukart

Reverse Engineering
the Mind
Consciously Acting Machines
and Accelerated Evolution

Florian Neukart
Wolfsburg, Germany

AutoUni – Schriftenreihe
ISBN 978-3-658-16175-0	 ISBN 978-3-658-16176-7  (eBook)
DOI 10.1007/978-3-658-16176-7

Library of Congress Control Number: 2016955691

© Springer Fachmedien Wiesbaden GmbH 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Fachmedien Wiesbaden GmbH
The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Any results, opinions and conclusions expressed in the AutoUni Schriftenreihe are
solely those of the author(s).

The only way to discover the limits of the possible
is to go beyond them into the impossible.

Sir Arthur C. Clarke

Preface

What we perceive as consciousness seems to be an anomaly, and so is intelligence. Earth
features a biodiversity of around 8.7 ∗ 10଺ ± 1.3 ∗ 10଺ SE (between ~7,400,000 and
~10,000,000) organisms, 1 from those just a few show rudimentary forms of both
consciousness and intelligence, and only one seems to be aware and discuss what it means to
exist. Although more than 1,000 exoplanets have been detected thitherto (latest estimations
predict around 1.7 ∗ 10ଽ only in our galaxy), and 12 of them are probably habitable, there has
not been any indication that intelligent life apart from earth has emerged elsewhere. This may
be interpreted in many ways, whereby the most appealing ones for me are:

– Intelligence is an anomaly.
This assumption states that the probability for the evolution of human-like intelligence in
a species is infinitely small. No other species on earth seems to have developed it, which
can be considered as strong indication for the hypothesis that if extraterrestrial species
exist, they may not have developed it either. A similar thought experiment is about the
physical laws governing our universe. If universe parameters, such as the speed of light or
the strength of gravity, would have been allowed to take any value from 0 below infinity,
then the occurrence of the current set of parameters and parameter values governing the
very existence of the universe (and life) as we know it is infinitely low. Although I
personally do not hope and guess that this hypothesis is true, it has not yet been disproved
by scientific evidence.

– We are the first ones searching for intelligent life in our galaxy.
Considering the size of our galaxy and the time the universe already exists, it is very
likely that if intelligent life except from ours exists in whatever form, we will detect it
sooner or later, but: if we are not the only intelligent species in the universe it is, given the
almost 14 billion years that elapsed since the big bang, very unlikely that we are the first
ones having evolved intelligence, and in consequence the technology to communicate and
travel through space. More than half a century ago, even Enrico Fermi has faced the
paradox that considering the age of our universe, it should be very likely that intelligent
life has already emerged elsewhere. But where is it, then? This became widely known as
the Fermi-paradox.

– Other intelligent species have already discovered us, but do not (or cannot) show up for
some reason.

– No other species has solved the problem of how to produce exotic energy, which is, as to
current knowledge, required for travelling faster than light (to be exact, it is not travelling
faster than light, but bridging of distances by warping space-time). As no matter can
travel faster than light, it must be space-time that is moved through space-time. This can
theoretically be done by creating a warp-field around an area of space-time (and an object
like a spaceship within this area), which is bordered by a singularity in front of the object
and controlled expansion of space-time behind it. In theory this is possible, as has already
been shown with a special solution of Einstein's field equations in general relativity. This
solution states that the creation of an energy-impulse-tensor modifying the space-time
around a spacecraft in the sense that the distance between start- and endpoint can be

1 Tittensor Derek P. et al. (2011): How Many Species Are There on Earth and in the Ocean? [2013-
10-24]; URL: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.
1001127

VIII Preface

reduced is possible. However, for creating such a warp-field exotic matter, thus matter not
only not consisting of protons, neutrons or electrons, but additionally being of negative
energy density must be available2 – this may be a problem, as we have not even been able
to proof that it exists.

From a solely scientific point of view all of these and a lot more arguments are valid options,
but I will focus on the first one here. Mankind has always dreamed of immortality, which has,
amongst others, been one of the major reasons for why our species devised the concept of
religion. Our brain provides us with the abilities required to understand the universe, and the
more we understand about our role in the universe and life itself, the more transhumanistic
our views become. It may be not easy to accept that we will most likely take care of our
immortal soul ourselves in the not-so-distant future, but this is exactly what will happen.
Problems like starvation or over-population may be solved by leaving our bodily existence
behind, and hundreds of years-lasting journeys to exoplanets for colonization will not pose a
challenge for human minds transferred into the computers of spaceships. This is just a first
impression of what the future of mankind could be like. The ideas are countless, and history
taught us that advancement of science not always bears only good. Anyway, this work marks
the beginning of a journey – the journey towards consciously acting machines and artificially
accelerated human evolution.

Florian Neukart3

2 Alcubierre Miguel (1994): The warp drive: hyper-fast travel within general relativity; Classical
and.Quantum.Gravity 11:L73-L77, 1994

3 I am especially eager to note any copyrights of multimedia elements such as images and texts
used, and if possible to use graphics and text of my own. However, most of the time scientific
work is based on the work already done by others, which becomes apparent by having a look at
the number of publications cited within this elaboration. Every publishing scientist knows that one
challenge is that the more one reads and studies about a topic, the easier the boundaries of their
own ideas get blurred with those of others' ideas. Thus, if in this elaboration unmarked, but by
third party copyright protected images or a text are found, it was not possible for me to detect the
related copyright. In case of such an unintentional copyright violation I will remove the corres-
ponding picture or text element or will mark it with an appropriate copyright notice/citation of
sources indicated in the next version of the publication after a short notification.

Table of Contents

Preface ... VII
List of Figures ... XVII

List of Tables .. XXI
List of Algorithms .. XXIII

List of Abbreviations ... XXV

Introduction .. 1

Structure ... 3

1 Evolution’s most extraordinary achievement ...7

1.1 Anatomy of the human brain... 7
1.1.1 Truncus cerebri ... 9

1.1.1.1 Cerebellum .. 9
1.1.1.2 Mesencephalon .. 10
1.1.1.3 Pons .. 11
1.1.1.4 Medulla oblongata ... 12

1.1.2 Paleomammalian .. 12
1.1.2.1 Corpus amygdaloideum ... 13
1.1.2.2 Hippocampus .. 14
1.1.2.3 Diencephalon .. 14

1.1.2.3.1 Hypothalamus .. 15
1.1.2.3.2 Subthalamus .. 16
1.1.2.3.3 Thalamus dorsalis .. 16
1.1.2.3.4 Pineal gland and Epithalamus .. 16

1.1.2.4 Cingulate gyrus ... 16
1.1.3 Cortex and neocortex .. 17

1.1.3.1 Frontal lobe ... 18
1.1.3.2 Parietal lobe .. 18
1.1.3.3 Temporal lobe ... 19
1.1.3.4 Occipital lobe .. 20

1.2 Neural information transfer ... 21

1.3 Summary .. 24

2 Pillars of artificial intelligence... 25

2.1 Machine learning .. 26
2.1.1 Supervised learning algorithms ... 26
2.1.2 Unsupervised Learning Algorithms... 26

2.2 Computer Vision .. 28

2.3 Logic and reasoning .. 30

2.4 Language and communication .. 32

2.5 Agents and actions .. 34

X Table of Contents

2.5.1 Principles of the new agent-centered approach .. 34
2.5.2 Multi-agent behavior .. 35
2.5.3 Multi-agent learning ... 36

2.6 Summary .. 36

3 An outline of artificial neural networks .. 39

3.1 Definition ... 39

3.2 Paradigms of computational intelligence ... 41

3.3 Neural networks ... 42
3.3.1 Artificial neural networks ... 42

3.3.1.1 Suitable problems .. 44
3.3.1.2 Basic knowledge ... 45

3.3.1.2.1 Structure .. 45
3.3.1.2.2 Bias ... 45
3.3.1.2.3 Gradient descent .. 45

3.3.1.3 Activation functions .. 46
3.3.1.3.1 Linear activation function .. 46
3.3.1.3.2 Sigmoid activation function ... 47
3.3.1.3.3 Hyperbolic tangent activation function 47
3.3.1.3.4 Rectifier linear unit .. 48
3.3.1.3.5 Gaussian activation function .. 49

3.3.1.4 Regularization ... 50
3.3.2 Types of artificial neural networks .. 51

3.3.2.1 Supervised and unsupervised learning ... 51
3.3.2.2 Feed-forward artificial neural network ... 51
3.3.2.3 Feed-forward artificial neural network with feedback connections 51
3.3.2.4 Fully connected artificial neural network ... 52
3.3.2.5 Basic artificial neural network structure ... 52
3.3.2.6 Perceptron ... 53

3.3.2.6.1 Single layer perceptron .. 53
3.3.2.6.2 Multi layer perceptron .. 56
3.3.2.6.3 Spiking artificial neural networks ... 58

3.3.2.7 Radial basis artificial neural network ... 59
3.3.2.8 Recurrent artificial neural network .. 59

3.3.2.8.1 Elman recurrent artificial neural network 60
3.3.2.8.2 Jordan recurrent artificial neural network 61

3.3.2.9 Fully connected artificial neural network ... 62
3.3.2.9.1 Hopfield artificial neural network... 64
3.3.2.9.2 Boltzmann Machine ... 66
3.3.2.9.3 Support vector machine.. 71
3.3.2.9.4 Self-organizing feature map ... 72
3.3.2.9.5 Committee machines .. 74

3.3.3 Training and learning .. 77
3.3.3.1 Supervised and unsupervised training .. 77
3.3.3.2 (Root) mean squared error ... 78
3.3.3.3 Estimators ... 79
3.3.3.4 Hebb's learning rule ... 79

Table of Contents XI

3.3.3.5 Delta rule... 80
3.3.3.6 Propagation learning .. 81

3.3.3.6.1 Back propagation training .. 82
3.3.3.6.2 Manhattan update rule training ... 86
3.3.3.6.3 Resilient propagation ... 87

3.3.3.7 Genetic learning (NeuroEvolution) .. 90
3.3.3.7.1 Evolutionary search of connection weights............................... 93
3.3.3.7.2 Evolutionary search of architectures ... 93
3.3.3.7.3 Evolutionary search of learning rules 94

3.3.3.8 Simulated annealing .. 94
3.3.3.9 NeuroEvolution of augmenting topologies (NEAT) 96

3.3.4 Stability-plasticity dilemma .. 99

3.4 Summary .. 100

4 Advanced artificial perception and pattern recognition 103

4.1 Convolutional artificial neural networks ... 104
4.1.1 Data representation ... 105
4.1.2 Structure ... 106

4.1.2.1 Convolutional layers .. 107
4.1.2.2 Different ways of perception and processing.. 111
4.1.2.3 Maxpooling/ downsampling layers .. 112
4.1.2.4 Feature maps ... 112
4.1.2.5 Fully connected layers ... 114
4.1.2.6 Number of neurons .. 114

4.1.3 Training .. 114

4.2 Deep belief artificial neural network ... 118
4.2.1 Stacking together RBMs ... 122
4.2.2 Training .. 122

4.3 Cortical artificial neural network .. 123
4.3.1 Structure ... 125

4.3.1.1 Cortices ... 127
4.3.1.2 Number of neurons .. 127
4.3.1.3 Synapses ... 128

4.3.2 A generic cortical artificial neural network ... 128
4.3.3 Purpose ... 130
4.3.4 Evolution and weight initialization ... 131

4.4 SHOCID recurrent artificial neural network .. 134
4.4.1 Structure ... 134

4.4.1.1 Recurrent layer one ... 135
4.4.1.2 Recurrent layer two ... 136
4.4.1.3 Number of neurons .. 137
4.4.1.4 Synapses ... 138

4.4.2 Purpose ... 138
4.4.3 Evolution and weight initialization ... 139

4.5 Summary .. 141

XII Table of Contents

5 Advanced nature-inspired evolution and learning strategies 143

5.1 Transgenetic NeuroEvolution ... 143
5.1.1 Fundamentals ... 144
5.1.2 Host genetic material .. 145
5.1.3 Endosymbiont... 146
5.1.4 Algorithm ... 146
5.1.5 Horizontal (endosymbiotic) gene (sequence) transfer 147

5.1.5.1 Weight plasmid ... 148
5.1.5.2 Structure plasmid... 148

5.1.6 Transposon mutation .. 149
5.1.6.1 Jump and swap transposon .. 149
5.1.6.2 Erase and jump transposon .. 150

5.1.7 Usage ... 150

5.2 Artificial immune system-inspired NeuroEvolution .. 150
5.2.1 Fundamentals ... 151
5.2.2 Clonal selection and somatic hypermutation ... 152
5.2.3 Danger theory, virus attack and hyperrecombination 155
5.2.4 Negative selection .. 158
5.2.5 Overall algorithm.. 160
5.2.6 Causality .. 161
5.2.7 Usage ... 162

5.3 Structural evolution .. 162
5.3.1 Fundamentals ... 162
5.3.2 Algorithm ... 163
5.3.3 Generic determination of artificial neural network quality............................. 165
5.3.4 Parameterization ... 167
5.3.5 Usage ... 167

5.4 Summary .. 167

6 Autonomously acting cars and predicting market
behaviour: some application scenarios for ANNs .. 169

6.1 Analysis and knowledge ... 169
6.1.1 Supervised and unsupervised functions ... 171
6.1.2 Classification .. 171
6.1.3 Regression .. 172
6.1.4 Clustering ... 172
6.1.5 Attribute importance ... 173
6.1.6 Association ... 173
6.1.7 Interesting knowledge ... 173
6.1.8 Accurate knowledge ... 174
6.1.9 Interpretable knowledge.. 174
6.1.10 Intelligent processing .. 174
6.1.11 Efficient processing .. 174

6.2 Autonomously acting cars ... 175
6.2.1 V2X-communication .. 176
6.2.2 Massively equip car with processing power and AI-algorithms 176

Table of Contents XIII

6.2.3 Artificial intelligence and environment sensing ... 176
6.2.3.1 Cameras and how AI is applied to related data 177
6.2.3.2 RADAR and how AI is applied to related data 177
6.2.3.3 LiDAR and how AI is applied to related data... 178
6.2.3.4 Additional sensors and how AI is applied to related data 178
6.2.3.5 GPS and how AI is applied to related data ... 179
6.2.3.6 Microphones and how AI is applied to related data 179
6.2.3.7 Autonomously acting car’s brain – the domain controller 179

6.3 Summary .. 180

7 An outline of quantum mechanics ... 181
7.1 Quantum systems in general ... 181

7.1.1 Quantum theory .. 182
7.1.1.1 Quantum states .. 182
7.1.1.2 Observables ... 183
7.1.1.3 Quantum measurements .. 184
7.1.1.4 Quantum dynamics .. 185

7.1.2 Quantum operators ... 186
7.1.3 Quantum physical effects .. 190

7.1.3.1 Quantum interference .. 190
7.1.3.2 Quantum linear superposition .. 192
7.1.3.3 Quantum entanglement .. 193

7.2 The unitary evolution U .. 195

7.3 The state vector reduction R ... 198

7.4 Summary .. 219

8 Quantum physics and the biological brain ... 221

8.1 Difficulties with U in the macroscopic world .. 222

8.2 The Hameroff-Penrose model of orchestrated objective reduction 224
8.2.1 The idea .. 224
8.2.2 Microtubules .. 225

8.3 Further models .. 228

8.4 Summary .. 229

9 Matter and consciousness .. 231

9.1 Qualia ... 231

9.2 Materialism .. 232
9.2.1 Eliminative materialism .. 233
9.2.2 Noneliminative materialism .. 233

9.3 Functionalism ... 233
9.3.1 The problem of absent or inverted qualia .. 234
9.3.2 The Chinese Room argument .. 234
9.3.3 The knowledge argument .. 235

XIV Table of Contents

9.4 The Identity Theory .. 235

9.5 Summary .. 236

10 Reverse engineering the mind ... 237

10.1 Theory of mind ... 237

10.2 Quantum linear superposition in artificial brains ... 238

10.3 Self-organization .. 241
10.3.1 Structure and system ... 242

10.3.1.1 Conservative structure ... 242
10.3.1.2 Dissipative structure .. 243

10.3.2 Self-organization in computational intelligence .. 243
10.3.2.1 Self-organized learning.. 246
10.3.2.2 Learning with respect to self-organization ... 246

10.3.2.2.1 Competitive learning .. 248
10.3.2.2.2 Competitive learning in artificial neural networks 249

10.3.2.3 Adaptive Resonance Theory .. 251
10.3.3 The transition to the human brain .. 254

10.3.3.1 Laterally interconnected synergetically self-organizing maps 257
10.3.3.2 The pruning neocortex ... 259

10.3.3.2.1 Incremental pruning ... 260
10.3.3.2.2 Selective pruning ... 260
10.3.3.2.3 Pruning and quantum artificial neural networks 260

10.3.4 Arguments for self-organization in artificial neural systems 261

10.4 Mechanisms apart from self-organization ... 261
10.4.1 Leader .. 262
10.4.2 Blueprint .. 262
10.4.3 Recipe .. 262
10.4.4 Template .. 262

10.5 Quantum physics and the artificial brain ... 263
10.5.1 Quantum artificial neural network... 263

10.5.1.1 Structure .. 264
10.5.1.2 Quantum bits ... 266
10.5.1.3 Superposition .. 266

10.5.1.3.1 Superposition of dendrites .. 266
10.5.1.3.2 Superposition of neurons .. 267
10.5.1.3.3 Superposition of the quantum artificial neural network........... 267

10.5.1.4 Entanglement .. 268
10.5.1.5 Interference ... 275
10.5.1.6 Processing ... 277

10.5.1.6.1 Entanglement ... 278
10.5.1.6.2 Quantum parallelism .. 279
10.5.1.6.3 From basic operators to the quantum transfer function 279
10.5.1.6.4 Reduction of and information about the quantum

perceptron equations .. 284
10.5.1.6.5 Normalization .. 289

10.5.1.7 Measurement ... 290

Table of Contents XV

10.5.1.7.1 Quantum artificial neural network configuration search
function ... 290

10.5.1.7.2 Example processing ... 291
10.5.1.8 Envisaged implementations of a quantum artificial neural network 295

10.5.1.8.1 Adiabatic quantum annealing ... 298
10.5.1.8.2 Nuclear magnetic resonance ... 298
10.5.1.8.3 Others .. 299

10.6 The artificial neocortex ... 299
10.6.1 Knowledge and data ... 301

10.6.1.1 Knowledge representation ... 302
10.6.1.2 Declarative knowledge representation ... 302

10.6.1.2.1 Semantic networks ... 303
10.6.1.2.2 Object-attribute-value-triplet .. 304
10.6.1.2.3 Frames ... 305

10.6.2 Context recognition and hierarchical learning ... 309
10.6.2.1 Definition of context-sensitive information .. 310
10.6.2.2 Information Clustering .. 311
10.6.2.3 Context analysis .. 312
10.6.2.4 Hierarchical learning ... 313
10.6.2.5 Interpreting the context .. 315
10.6.2.6 Hidden Markov models and conceptual hierarchies in the neocortex...... 317

10.6.3 Implementation ... 325
10.6.3.1 Acquisition of basic knowledge ... 328
10.6.3.2 Encoding the acquired knowledge into pattern recognizers 329
10.6.3.3 Access to knowledge and how search engines are similar to the brain 333
10.6.3.4 Language processing and understanding .. 337
10.6.3.5 Quantum pattern recognizers ... 343
10.6.3.6 Real world input and new experiences ... 345
10.6.3.7 Automatic information interconnection.. 346

10.6.4 A superior goal ... 346

10.7 A distributed mind .. 347
10.7.1 Non-invasive transducers .. 349
10.7.2 Semi-invasive, invasive transducers and the neural grid 350
10.7.3 Signal processing .. 350

10.7.3.1 Pre-processing .. 351
10.7.3.2 Feature extraction .. 351
10.7.3.3 Detection and classification ... 351

10.7.4 BCI requirements for the distributed mind .. 352

10.8 Summary .. 353

11 Conclusion .. 355

Glossary – computational intelligence .. 357

Glossary – quantum physics .. 365

Bibliography ... 371

List of Figures

Figure 1 - Human brain.. 8
Figure 2 - Triune brain ... 8
Figure 3 – Truncus cerebri ... 9
Figure 4 - Cerebellum .. 10
Figure 5 - Mesencephalon .. 11
Figure 6 - Pons .. 11
Figure 7 - Medulla oblongata ... 12
Figure 8 - Paleomammalian ... 13
Figure 9 - Corpus amygdaloideum ... 13
Figure 10 - Hippocampus .. 14
Figure 11 - Diencephalon .. 15
Figure 12 - Hypothalamus ... 16
Figure 13 - Frontal lobe ... 18
Figure 14 - Parietal lobe .. 19
Figure 15 – Temporal lobe ... 20
Figure 16 - Occipital lobe .. 21
Figure 17 - Neuron .. 21
Figure 18 - Neuron types ... 22
Figure 19 - Action potential ... 23
Figure 20 - McCulloch & Pitts neuron model... 43
Figure 21 - Representative processing model ... 43
Figure 22 - Linear activation .. 46
Figure 23 - Sigmoid activation ... 47
Figure 24 - Tangens hyperbolicus activation .. 48
Figure 25 - ReLu activation ... 48
Figure 26 - Gauss activation .. 49
Figure 27 - Simple artificial neural network structure .. 52
Figure 28 – Single layer perceptron ... 54
Figure 29 – OR operator .. 56
Figure 30 – AND operator ... 56
Figure 31 – XOR operator ... 56
Figure 32 – Multi layer perceptron... 57
Figure 33 - Elman artificial neural network .. 61
Figure 34 - Jordan artificial neural network ... 62

XVIII List of Figures

Figure 35 - Hopfield artificial neural network .. 65
Figure 36 - Boltzmann machine ... 67
Figure 37 - Restricted Boltzmann machine .. 68
Figure 38 – Self organizing feature map .. 73
Figure 39 - Committee machine ... 75
Figure 40 - Hebb's rule .. 80
Figure 41 - Delta rule... 81
Figure 42 – NeuroEvolution of augmenting topologies mutation ... 97
Figure 43 – NeuroEvolution of augmenting topologies recombination of different

topologies ... 98
Figure 44 - 4-dimensional tensor ... 105
Figure 45 – CNN sparse interconnectivity ... 106
Figure 46 - CNN architecture... 107
Figure 47 – Convolution .. 107
Figure 48 – ࢞(࢚) .. 108
Figure 49 – ࢞(࣎) .. 109
Figure 50 – 109 .. (࢚)ࢎ
Figure 51 – ࣎ࢎ reflected .. 110
Figure 52 – ࣎ࢎ reflected and shifted .. 110
Figure 53 – Convolution of ࢚࢞ and ࢚ࢎ − ࣎ ... 110
Figure 54 – Activation map ... 112
Figure 55 – Downsampled activation map ... 112
Figure 56 – Convolution calculation .. 113
Figure 57 - Featuremap generation .. 115
Figure 58 - Simple ANN .. 119
Figure 59 – Causal brain influence types ... 124
Figure 60 – Pre-cortical artificial neural network structure ... 125
Figure 61 – Cortical artificial neural network structure .. 126
Figure 62 – Cortical artificial neural network structure .. 129
Figure 63 – SHOCID recurrent artificial neural network single hidden layer 135
Figure 64 – SHOCID recurrent artificial neural network multi hidden layer 137
Figure 65 - Transgenetic NeuroEvolution .. 145
Figure 66 - Bloch sphere .. 196
Figure 67 - Euler's formula .. 198
Figure 68 - Photon and half-silvered mirror ... 202
Figure 69 - Photon, half-silvered and fully-silvered mirrors ... 202

List of Figures XIX

Figure 70 - Infinite potential step ... 204
Figure 71 - Finite potential step ... 207
Figure 72 - Particle lacks energy .. 211
Figure 73 - Potential barrier ... 211
Figure 74 - Potential barrier - forces .. 212
Figure 75 - ART1 Structure ... 252
Figure 76 - Monkey striate cortex recording, ... 255
Figure 77 - Quantum artificial neural network ... 265
Figure 78 – Quantum teleportation network unit .. 270
Figure 79 - cNOT from H and V .. 281
Figure 80 - Toffoli gate with controlled V ... 281
Figure 81 - Toffoli-gate with complex conjugate transpose V .. 282
Figure 82 - Quantum addition .. 283
Figure 83 – Quantum artificial neural network calculations ... 286
Figure 84 - Quantum single layer perceptron diagram .. 287
Figure 85 - Quantum multi layer perceptron diagram ... 288
Figure 86 - Reverse the calculation bits ... 288
Figure 87 - Rotation towards |293 ... ݀ݔ
Figure 88 - Quantum Hopfield artificial neural network ... 296
Figure 89 - Quantum Boltzmann machine .. 297
Figure 90 – Semantic network ... 303
Figure 91 – Representation of n-digit predicates .. 304
Figure 92 – O-A-V-triplet .. 305
Figure 93 - Markov chain weather prediction ... 319
Figure 94 - Markov chain interpretation of speech signals ... 319
Figure 95 - Markov chain .. 320
Figure 96 - Hidden Markov model ... 321
Figure 97 - Hidden Markov model weather observations ... 322
Figure 98 - Hierarchically hidden Markov model ... 324
Figure 99 - Pattern presented to multiple pattern recognizers ... 326
Figure 100 - Hierarchical pattern processing .. 327
Figure 101 - Binary decision tree ... 331
Figure 102 - Bottom-up ANN tree ... 332
Figure 103 - Cumulative activation .. 333
Figure 104 - Viterbi example ... 338
Figure 105 - Variable explanation .. 340

List of Tables

Table 1 - Quality determination ... 166

Table 2 – (Quantum) artificial neural network feature comparison 265

Table 3 – O-A-V-triplet.. 305

Table 4 – Car-frame ... 306

Table 5 – Engine-frame .. 307

List of Algorithms

Algorithm 1 - Basic perceptron learning ... 55

Algorithm 2 – RBM learning ... 71

Algorithm 3 – SOM learning ... 74

Algorithm 4 - Committee of SA feed-forward ANNs .. 77

Algorithm 5 – Back propagation algorithm .. 85

Algorithm 6 - Manhattan update rule .. 87

Algorithm 7 - Resilient propagation .. 89

Algorithm 8 - Genetic algorithm ... 91

Algorithm 9 - Simulated annealing algorithm ... 96

Algorithm 10 – CNN back propagation algorithm ... 118

Algorithm 11 – DBN training .. 123

Algorithm 12 - Evolution of cortical ANN .. 133

Algorithm 13 - Evolution of SRANN.. 140

Algorithm 14 - Transgenetic NeuroEvolution ... 147

Algorithm 15 – Clonal selection algorithm .. 153

Algorithm 16 - Clonal selection and hypermutation .. 154

Algorithm 17 – Danger theory algorithm ... 156

Algorithm 18 - Danger theory, virus attack and hyperrecombination................................. 157

Algorithm 19 – Negative selection algorithm .. 158

Algorithm 20 - Negative selection .. 160

Algorithm 21 – Immune system-inspired NeuroEvolution ... 161

Algorithm 22 - Structural evolution .. 164

Algorithm 23 – Quality determination ... 166

Algorithm 24 – Competitive training ... 250

Algorithm 25 – Adaptive resonance theory .. 253

Algorithm 26 - Lifting weights into superposition ... 267

Algorithm 27 – Quantum teleportation .. 269

Algorithm 28 – Quantum teleportation artificial neural network .. 271

Algorithm 29 – Quantum teleportation artificial neural network processing 274

Algorithm 30 – Quantum input normalization ... 289

Algorithm 31 – Word comparison ... 311

Algorithm 32 – Growing SOFM .. 314

Algorithm 33 – Context interpretation ... 316

Algorithm 34 – Creation of the sequence of symbols ... 321

XXIV List of Algorithms

Algorithm 35 – Viterbi algorithm .. 339

Algorithm 36 – Forward recursion... 341

Algorithm 37 – Backward recursion .. 342

List of Abbreviations

AI Artificial Intelligence

AIS Artificial Immune System

ANN Artificial Neural Network

AOD Agent Oriented Development

AOP Agent Oriented Programming

APC Antigen-Presenting Cell

BP Back propagation

CI Computational Intelligence

CSV Comma separated values

DBN Deep Belief Network

DM Data Mining

FFANN Feed-forward Artificial Neural Network

ETL Extract, Transform, Load

GA Genetic Algorithm

MLP Multi Layer Perceptron

NDS Neural Data Set

OOP Object Oriented Programming

PAMP Pathogen-Associated Molecular Patterns

QANN Quantum ANN

RANN Recurrent ANN

RBM Restricted Boltzmann Machine

RP Resilient-propagation

(R)MSE (Root) Mean Squared Error

SA Simulated annealing

SHOCID System applying High Order Computational Intelligence in Data Mining

SRANN SHOCID RANN

Introduction

This elaboration is, in some sense, the first version of a manual describing how to implement
an artificial conscious entity and how to extend the very human existence beyond biological
limitations. Subsequent versions depend on future research not only conducted by the author,
but by numerous scientists from various fields.

Since there is the research field of artificial intelligence (AI), one of the biggest hurdles has
always been the creation of conscious experiences in machines. Not only lots of different
definitions of what exactly consciousness is exist from a philosophical point of view; it is yet
also not completely understood on a neuroscientific level how our brain creates conscious
content. Within this elaboration, I will provide a foundation for understanding how conscious
experiences emerge by approaching the topic by means of actual and future technology. In my
opinion, one of the most important foundations of consciousness is, amongst self-awareness,
the ability to understand concepts, or more generally, the understanding of ‘things’. I define
these things to comprise everything that exits, be it a single atom or a complex lifeform.
When it comes to understanding things, learning is an important aspect, and for being able to
measure levels of understanding, it is first required to define and quantify when something
has been understood. I want to emphasize this challenge at the very beginning of this
elaboration, as words such as ‘learning’, ‘understanding’ and ‘consciousness’ are suitcase-
words from psychology helping us to discuss complex subjects science has not yet entirely
understood. Suitcase-words such as consciousness enable us to include yet unknown pro-
cesses and (changes of) states associated with the human brain in our everyday-language with
ease, not only without being able to describe what accounts for a conscious experience on
neuronal or (sub-) atomic layers, but also without being able to explain what consciousness is
on a more abstract layer. Lots of scientists from different fields have been working on dis-
closing the secret of consciousness, and numerous different explanations have been published
and discussed controversially. Most of these theories feature a common denominator – the
inclusion of a feature set, which is associated with the perception of consciousness. It would
be counterproductive to reject such approaches, as only the detailed description and com-
bination of single features will allow us to reproduce conscious behavior in artificial entities.
We will deal with this and a lot more in this book, and also define these features crisply, as
only then we will be able to create hard- and software capable of not only processing
information in the way the human brain does, but also capable of reproducing the conditions
that are required for creating conscious experiences.

Not only philosophers, but scientists from numerous different fields have long tried to
understand what it is that creates such experiences; from what we can see today, some of the
attempts have already been crowned by success. The strength of current AI is not only
justified in the fact that today’s computers can do things better at which machines have used
to be better than humans since the first successful implementations of paradigms of AI. Back
in 1996, as IBM’s Deep Blue beat Garri Gasparov in chess, one could have argued that this
had nothing to do with real intelligence, but resulted from the fact that Deep Blue could
calculate 2 ∗ 10଺ chess moves per second. However, another of IBM’s masterpieces, Watson,
showed that by the combination of linguistic pre-processors, expert systems, search engines,
machine learning, logic, natural language understanding, and by accessing data sources of
various kinds intelligently, understanding can be emulated, which makes it more difficult for
opponents of AI to argue against it. Both examples are very impressive not only from
scientific and engineering points of view, however although these systems are artificially

2 Introduction

intelligent, they cannot be considered conscious beings (and, as of now, it has never been the
aim of making them conscious).

For what it can mean to create conscious machines becomes even more interesting by taking
into account the research of Stuart Hameroff and Roger Penrose, who state that quantum
physical phenomena take place on cell-basis, or even on the basis of tubulin dimers, elements
occurring within nerve (and all other eukaryotic) cells’ cytoskeletons: if quantum coherence,
which may constitute a requirement for consciousness, may possibly be maintained at this
level, this would result in a dramatic increase of the number of operations per second a brain
is able to accomplish. Even if quantum physical phenomena have not yet been linked to the
creation of conscious content by proof, it is nevertheless useful taking such into account for
the implementation of artificial entities that should emulate or experience conscious content
themselves. Thus, within this work the implementation of quantum artificial neural networks
(by the leveraging the power of quantum computers) is juxtaposed in opposition to classical
artificial neural networks in terms of their probable capabilities and usefulness for the
implementation of an artificial mind.

The creation of consciousness in an artificial entity brings up lots of new questions,
particularly the one after human immortality; this may not be obvious at a first glance, but if
artificial entities are capable of producing conscious content and may theoretically live
forever, can we humans then benefit thereof in the sense of transferring our minds, dreams
and desires into such vessels, one may ask. But then there is the continuous consciousness-
problem: if we copy our mind from our biological brain into an artificial vessel, it is just that
– a copy, and in the worst case two of us exist at the same time, one doomed to die and the
other blessed to live forever. I will also propose a solution to this problem.

Finally, I ask the reader to pardon me for the technical style of writing in which I sometimes
slide. I am admittedly used to creating scientific reports/ papers, or technical and functional
documentations, but not so much to writing bedtime lecture.

Last, but not least, I sometimes refer to some computational intelligence paradigms with the
prefix ‘SHOCID’. This is, because the ideas thereto emerged during the specification phase of
the data mining system SHOCID (System Applying High Order Computational Intelligence
in Data Mining), 4 which I developed some years ago. This gives the elaboration at hand a
practical touch – most of the discussed and introduced computational intelligence-paradigms
have been implemented in SHOCID.

4 Neukart Florian (2013): System Applying High Order Computational Intelligence in Data Mining
and Quantum Computational Considerations Concerning the Future of Artificial Intelligence;
Brasov: Transilvania University of Brasov

Structure

Chapter 1

In this chapter basic brain functionality as well as the rough anatomy of the human brain is
discussed. This is mainly because as an artificial intelligence researcher one has to deal with
natural intelligence and how the brain works sooner or later. A subfield of artificial intelli-
gence, computational intelligence, comprises many nature-inspired approaches such as swarm
intelligence, genetic algorithms or artificial neural networks. Especially some kinds of
artificial neural networks, by means of which we are concerned with creating more or less
simple imitations of their biological counterparts, have achieved information processing
similar to what we currently understand happens within biological brains.

Chapter 2

The major goal of this elaboration is to work out how specific aspects of the human mind,
namely those responsible for higher cognitive functions, function, and to figure out which
hardware is required to process an artificial mind with the same, similar or superior
capabilities. For this, I will focus on any approach that allows us to reproduce cognitive
capabilities, but not necessarily achieve this target by the same means as evolution did. It
makes sense, at this point, to provide an introduction to artificial intelligence in order to
understand which areas of the neocortex are subject to AI research and development. This
chapter notabene provides only a brief overview of the pillars of AI, as even the detailed
elaboration of just one sub-area of each of those would suffice to fill books. In the later
chapters I will mostly focus on artificial neural networks, logic, knowledge representation,
and speech in order to illustrate how I think the human thought processes can be rebuilt
artificially. I will also give a brief introduction to one of my research fields, autonomously
acting cars, which should help to understand what it takes to create intelligent, autonomous,
social and adaptive agents; rebuilding collective and intelligent behavior in artificial systems
not only allows us to understand a significant amount of brain evolution, but also how
intelligence makes us a highly complex species in terms of thought processes.

Chapters 3, 4 and 5

In these chapters the fundamental concepts and standards of artificial neural networks are
particularized under the consideration of actual knowledge and research conducted. The field
of computational intelligence, to which artificial neural networks belong, comprises nature-
inspired approaches for solving complex problem statements. Thus, this is where we will
begin the search for paradigms that seem to be suitable for engineering artificial conscious
entities.

In chapters 4 and 5, some sophisticated artificial neural network structures and learning
approaches, some of which have been developed and published by the author, are
particularized. One reason for explaining various algorithms is to show how far we can go
with artificial neural networks and classical computers, how sophisticated learning algorithms
can become, and how such structures can be manipulated. The more important reason for
going into some detail with several algorithms is that I want to free the reader’s mind, as for
achieving brain-like capabilities we do not necessarily need to copy the inner workings of our
brain but rely on other approaches – in this special case not the journey is its own reward. I

4 Structure

will, amongst others, discuss how artificial neural networks can be efficiently trained by
simulating the survival behavior of bacteria in hazardous environments.

The major question to be answered in this chapter is whether these complex approaches are
already powerful enough for generating conscious experiences in an artificial entity.
Furthermore, some simple application scenarios for the introduced approaches are explained,
creating a basic understanding of how such approaches may be applied practically.

Chapter 6

Deep artificial neural networks are, in some aspects, the most human-like artificial way of
processing information we have thitherto. Very impressive and important achievements have
been made due to complex network structures and sophisticated training algorithms, and what
can already be achieved is not that far from the capabilities of what parts of the human brain,
such as the visual cortex, can achieve. However until recently, the typical research in that area
concerned problems that are perfectly suitable for being processed on a computer, like the
prediction of numerical values or clustering of unstructured data. Furthermore, once trained to
data of a sub-domain, an ANN can only be used in that sub-domain. What I want to say is that
individual approaches are simply not potent enough for approaching the full stack of
capabilities of a human brain. But a combination of several techniques may… With actual
training algorithms it would be impossible to train a structure consisting of billions of neurons
and thousands of neuron layers. This chapter serves the purpose to understand what ANNs are
often used for, and for this we start with simple data analysis and evolve towards more
complex information processing in the latter chapters.

Chapters 7 and 8

Quantum mechanics is of utmost importance within this elaboration, as, thanks to some of
humankind’s greatest scientists, within the last century the knowledge within this field has
grown extensively and allows more than just an outlook on future developments in artificial
intelligence. Some theories of consciousness make use of quantum physical phenomena
within the brain for explaining awareness, or conscious experiences. Both chapters are used to
explain the most important fundamentals of quantum mechanics and how they may find
application within a biological brain. However, as the sole reduction of the brain by means of
a quantum computer may not solve all problems, some objections against such hypotheses are
raised, contributing to the groundwork for the main chapter of this elaboration.

Chapter 9

Before being able to reverse engineer a human mind, one has to understand some of the most
commonly accepted philosophical views of what a mind actually is. Trying to implement
algorithms without having thought about what the mind actually is, is impossible. Only
philosophy can deliver some answers to this question and I, for my part, chose eliminative
materialism to be the most suitable approach to pursue, when grappling with implementation
scenarios for an aware, artificial entity. Some of the readers may wonder about the statement
that I ‘chose’ one of many philosophical approaches as useful means for what achieving what
is discussed in this book; this is because I encounter consciousness from an engineering point
of view, and engineers usually solve problems by the means that are to their disposal. Thus, I
consider philosophical views as a means of implementation only in the context of this book.

Structure 5

Chapter 10

The objective of writing this book was the introduction of paradigms and ideas that may serve
the purpose of reverse engineering the mind in the near future. Amongst others, in this chapter
self-organization in both human and artificial brains, which I consider to be another important
aspect for the development of our mental abilities, is discussed. So are some more concepts
such as search, information retrieval, or data representation, which form, together with what
has been elucidated before, the foundation for giving an artificial conscious entity the ability
to understand and interpret the world. Furthermore, I am of the opinion that the implement-
tation of artificial neural networks on quantum systems represents one of the most valuable
approaches for achieving the objectives of this research, as only such may deliver the
computational power for processing what we understand to be our mind. Of course,
everything is connected in order to form a big picture – the picture of how to reverse-engineer
the mind.

Finally, the question on how we humans may benefit from such developments in the sense of
transferring our minds into artificial vessels is addressed. How can the continuous
consciousness-problem be bypassed, thus the required information in and structure of our
brain be extracted instead of just being copied? There seems to be a solution for the dilemma
in the sense of a distributed mind, which is discussed likewise.

1 Evolution’s most extraordinary achievement

When doing research in the field of artificial intelligence, sooner or later one is required to
deal with what I consider the most fascinating thing Nature has equipped us with – the human
brain. This extraordinary organ does not only allow us to understand the universe, but
additionally provides us with feelings, conscious perception or the ability to control our
bodies in highest precision. I have always tried not to shelve myself into a specific field of
research; however, above all I am a computer scientist and from a computer scientist’s point
of view it is, at first, interesting how the brain is capable of processing, storing or recalling
information. Inevitably, when starting to deal with the matter this yields a lot more questions
– questions that cannot be answered as easily for the brain as for hard- and software we are
used to work with every day, even if one is equipped with knowledge about the field of
artificial intelligence. Later in this work we will see that today’s artificial intelligence is
something that strongly differs from what we consider to be biological or human intelligence.
Thus, I consider a rough explanation of the human brain’s anatomy as well as the known and
studied workings of its parts to be a good starting point.

1.1 Anatomy of the human brain

Most of the readers will remember the lessons in school where the human brain has been
explained according to its evolutionary development: this will also be the way the matter will
be dealt with in this chapter. Some of the following explanations have been inspired by the
ones given by Bruce F. Katz5 and at dasgehirn.info, 6 as the former perfectly well outline the
functional principles of the human brain from an engineering point of view, and the latter
from a medical point of view. From the abstractive Figure 1 - Human brain below we can see
that the brain consists of four big lobes, the brain stem and the cerebellum, the latter looking
like a ball of wool attached to the undersurface of the temporal lobe. However, there is a far
more abstractive scheme describing the human brain, called triune brain model, which has
been introduced by Paul Maclean (Figure 2 - Triune brain).

The triune brain model shows three differently colored areas, stacked according to their
occurrence in the brain evolution. The brightest area in Figure 2 - Triune brain represents
what is considered to be the most ancient and basic part of the nerve system, the reptilian
brain, which has evolved about 3 ∗ 10଼ years ago. The reptilian brain is responsible for
regulating autonomous functions like the heart rate or breathing. The medial part in the figure
represents the limbic brain, or paleomammalian, which has evolved about 3 ∗ 10଼ years ago
and which is partially responsible for recalling information, thus memorizing things, and
emotions. The neocortex, or neomammalian, which makes up most of the visible part of the
human brain (once it has been made visible in some way) has evolved only 1.2 ∗ 10ହ years
ago, and merges not only with the structure of the paleomammalian, but also in its
functionality.

5 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC, p. 16 ff.

6 dasgehirn.info: [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_1

8 1 Evolution’s most extraordinary achievement

Figure 1 - Human brain7

Figure 2 - Triune brain8

7 Wikipedia: Human brain [2013-06-19]; Wikipedia; URL: http://en.wikipedia.org/wiki/Human_
brain

8 Steven White: Triune brain [2013-06-20]; Steven White; URL: http://blog.stevenwhite.com/

1.1 Anatomy of the human brain 9

1.1.1 Truncus cerebri

The truncus cerebri (Figure 3 – Truncus cerebri), or brain stem, is the oldest part of the human
brain and only as large as a finger, but nevertheless an essential part of our brain, as it
regulates circulatory, breathing or sleeping. It consists of four major parts, whereby each of
those may be subdivided into further areas. However, the description of the most basic parts
does suffice for our purposes here.

Figure 3 – Truncus cerebri9

1.1.1.1 Cerebellum

The cerebellum (Figure 4 - Cerebellum) is known to be responsible for coordination, equili-
brium, motor movement and muscle tone. It consists of white matter in the inside and is
surrounded by a very tightly folded outer layer of gray matter, called the cerebellar cortex.
The number of neurons in the cerebellum makes up one half of all neurons in the brain
(~500,000,000), which are used for relaying information between itself and the cerebral
cortex’ (which we must distinguish from the cerebellar cortex) areas involved in motor
controls. An injury of the cerebellum results in disturbances of bodily movements, like a loss
of coordination, impossibility of judging distances, the inability for performing fast move-
ments, etc.

9 dasgehirn.info: Der Hirnstamm [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/der-hirnstamm/ (reprinted with permission from dasgehirn.info)

10 1 Evolution’s most extraordinary achievement

Figure 4 - Cerebellum10

1.1.1.2 Mesencephalon

As a part of the brain stem, the mesencephalon (Figure 5 - Mesencephalon) or midbrain
connects the prosencephalon (forebrain) with the rhombencephalon (hindbrain). It is
responsible for hearing, eye movement, pupil dilation and sight response control, and, as all
areas of the brain stem, for motor movements. It comprises the crura cerebri, a bunch of fibers
transporting signals from the cortex into the spinal cord or brain nervous cores, and the
tegmentum, containing cores like the substantia nigra and the nucleus ruber, the former one
being an area that is important for the initiation of movements. Because it is darkly hued, it
was named the black substance, or substantia nigra. If the substantia nigra suffers from
damage or even complete failure, symptoms of Parkinson occur. The red core, or nucleus
ruber, owes his name a high iron content – it is visible to the unaided eye in the mesenceh-
phalon and is responsible for muscle tone as well as bodily posture. Another important area is
the tectum, consisting of the upper colliculi superiores and the lower colliculi inferiors, the
former being responsible for reflex-movements in pupils and eyes, the latter one acting as a
control center of the auditory pathway.

10 dasgehirn.info: Das Kleinhirn [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/das-kleinhirn/ (reprinted with permission from dasgehirn.info)

1.1 Anatomy of the human brain 11

Figure 5 - Mesencephalon11

1.1.1.3 Pons

In the brain stem’s center, between the medulla oblongata and the mesencephalon we can find
the pons (Figure 6 - Pons), which is the Latin word for bridge. Because of its nerve pathways,
descending down to the medulla oblongata and ascending up to the mesencephalon, it can be
seen as their direct extension. Its name results from the opinion of former physiologists that it
connects the two hemispheres of the cerebellum, which in fact is not true. In fact, its fibers are
corticophine, thus go from the cortex into the pons, where they are shifted and continue into
the cerebellum. Hence, we now know that the pons acts as a relay between cerebellum and
cortex and is responsible for translating the signals between cerebellum and motor cortex.
Furthermore, it is responsible for numerous vegetative tasks like the steering of cardiac action
and breathing, as well as for processing information related to taste and hearing.

Figure 6 - Pons12

11 dasgehirn.info: Das Mesencephalon [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/das-mesencephalon/ (reprinted with permission from dasgehirn.info)

12 dasgehirn.info: Der Pons [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/der-pons/ (reprinted with permission from dasgehirn.info)

12 1 Evolution’s most extraordinary achievement

1.1.1.4 Medulla oblongata

Within the medulla oblongata (Figure 7 - Medulla oblongata) the medulla (or spinal cord)
goes into the brain stem. Between all the fibers there are located lots of important core areas,
e.g. reflexes for breathing in and coughing. It is the under most segment of the brain stem, and
as a differentiation between the end of spinal cord and the beginning of the medulla oblongata
is difficult, it has been denominated the extended spinal cord, or medulla oblongata. Physiolo-
gically, it marks the beginning of the brain and contains several important cores for switching
neural signals between the medulla and the brain. Noteworthy areas are the cores for
breathing or vomiting, as well as breathing, coughing and tasting (together with the pons).

Figure 7 - Medulla oblongata13

1.1.2 Paleomammalian

The paleomammalian (Figure 8 - Paleomammalian), or limbic system, has long been seen as
the unitary center of our emotions and via numerous popular scientific articles this simplified
message is still being transported. However, although the paleomammalian is commonly
known to sum up the four Fs (fighting, feeding, fleeing, sexual reproduction [the reader may
pardon my rejection for not using the fourth F here]), it provides a lot more than information
processing related to emotions; today we know that it also has an important role to play in
terms of memory and drive of any kind. However, this does not imply that all of our complex
feelings are to be processed within this structure – other structures we get to know later on are
involved as well. The second oldest part of our brain comprises four major areas as well, the
amygdala, the hippocampus, the hypothalamus and the cingulate gyrus, which are be roughly
explained below.

13 dasgehirn.info: Die Medulla Oblongata [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/die-medulla-oblongata/ (reprinted with permission from dasgehirn.info)

1.1 Anatomy of the human brain 13

Figure 8 - Paleomammalian14

1.1.2.1 Corpus amygdaloideum

The Corpus amygdaloideum, or amygdala (Figure 9 - Corpus amygdaloideum) consists of
several cores, although having been named according to one. It is located in both the front
part of the temporal lobe as well as the lower part of the side ventricle. As far as we know
today, it is involved in the emotions of anger and fear, which has been proved by stimulating
this area in animals, which then showed both rage and fear, and when being damaged a result
may be a complete lack of these emotions. It is strongly connected to the truncus cerebri, and
is also involved in autonomous body functions, like breathing and circulation. It is also
strongly connected to the hypothalamus via a bunch of nerve fibers, called the stria terminalis.
Via its connection to the hypothalamus, which is responsible for starting adrenaline
production in the adrenal glands, it helps to prepare the body so it is able to cope with the
reason of fear. Thus, it is responsible for the creation, recognition and bodily reactions of fear,
which involves all of our five senses.

Figure 9 - Corpus amygdaloideum15

14 dasgehirn.info: Das limbische System [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/das-limbische-system/ (reprinted with permission from dasgehirn.info)

14 1 Evolution’s most extraordinary achievement

1.1.2.2 Hippocampus

The hippocampus (Figure 10 - Hippocampus) owes its name a similarity to a sea horse, which
may not be seen by everybody. Apart from that, as a central structure of the paleomammalian
it has shown to be important in memorizing things. It is located on the inner side of the
temporal lobe, at the bottom of the side ventricles and in particular responsible for creating,
archiving and recalling information from the long-term memory. If both are missing, no new
memories can be created. Thus, it seems to be a very important structure for human
consciousness, if one is of the opinion that consciousness is strongly bound to self-perception
and the flow of time: a person lacking both hippocampi is captured in the present.
Additionally, the hippocampus is one of the few areas from which we know that is capable of
building not only new neural connections, but also new neurons.

Figure 10 - Hippocampus16

1.1.2.3 Diencephalon

The diencephalon (Figure 11 - Diencephalon), covering almost all sides of the lobes of the
telencephalon, is located hidden in the center of the brain. It is divided into four floors, all of
which have very different functions. It is attached to the two largest glands of the brain, the
pineal gland and the pituitary gland. It comprises the following noteworthy areas.

15 dasgehirn.info: Die Amygdala [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/die-amygdala/ (reprinted with permission from dasgehirn.info)

16 dasgehirn.info: Der Hippocampus [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/der-hippocampus/ (reprinted with permission from dasgehirn.info)

1.1 Anatomy of the human brain 15

Figure 11 - Diencephalon

1.1.2.3.1 Hypothalamus

The hypothalamus is involved in actions and functions regarding sexual reproduction,
temperature regulation, time perception and nutrition. Its name, sub-room, results from the
fact that it is located at the bottom of the diencephalon. The rear section of the hypothalamus
is streaked by thick nerve fibers, the axons of the fornix, which traverse to the corpora mam-
millaria, their axons ascending to the anterior thalamus – all of them responsible for
memorizing information. The front part of the hypothalamus is traversed by thin nerve fibers
and features numerous segregated areas and is connected to the hormones of other endocrine
glands by receptors. Additionally, it features nerve cells responsible for steering our bio-
rhythm and for matching it to the diurnal/nocturnal rhythm. Summing up, the hypothalamus is
the superior control center of the autonomous nervous system and its rear part belongs to the
limbic system. However, the hypothalamus cannot do all of this alone, but requires
cooperation with the pituitary gland that produces several hormones, which in turn induce or
inhibit the secretion of other pituitary hormones. In front of the hypothalamus one can see the
optic chiasm.

16 1 Evolution’s most extraordinary achievement

Figure 12 - Hypothalamus17

1.1.2.3.2 Subthalamus

The subthalamic nucleus is not visible from the ventricle area. His cell masses are migrated
laterally in depth - one sees them only when the brain is not centered, but off-center,
transverse or longitudinal cut. Its main structure is the subthalamic nucleus, which is
associated with the basal ganglia and is involved in the control of motor function.

1.1.2.3.3 Thalamus dorsalis

The dorsal thalamus has inherited the name of the third ventricle and often it is simply
referred to thalamus. A shallow groove on the banks of the third ventricle, the hypothalamic
sulcus, borders it from the hypothalamus. The thalami of both sides, bulging a little against
the ventricles, are connected by an in thickness varying bridge of tissue over the ventricles.
This bridge is called adhesio interthalamica, and is not found in any brain, it may be missing,
but that has, as far as we know today, no functional significance.

1.1.2.3.4 Pineal gland and Epithalamus

Back up and above the thalamus, the pineal gland is located. It has changed in the course of
evolutionary history from a light sensitive organ to an endocrine gland. During the night it
produces the hormone melatonin. Together with the tiny Habenulae, which probably have
olfactory tasks, it forms the epithalamus.

1.1.2.4 Cingulate gyrus

The cingulate gyrus, or pre-frontal lobe, is an integration center of the cortex, where several
sensory data not only converge, but reactions to these are designed and emotions are
regulated. It comprises most of the executive functions steering own behavior under
consideration of the environment, as well as the working memory. It is superior to the corpus
calosum and research suggests that it acts as interface between cortical regions and other

17 dasgehirn.info: Der Hypothalamus [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/der-hypothalamus/ (reprinted with permission from dasgehirn.info)

1.1 Anatomy of the human brain 17

structures in the limbic system.18 Evidence regarding the preponderance of spindle cells in
this region suggests that it has more in common with higher cortical regions than with the
paleomammalian.19 Katz20 also mentions that the forward half of the cingulate gyrus, called
the anterior cingulate cortex, has come under intense scrutiny as a possible gateway from the
paleomammalian and that research found that high activity in the anterior cingulate cortex
correlates with depression. Furthermore, he mentions that inhibition of activity by deep brain
stimulation in this area may relieve symptoms of depression. Taken together the cingulate
gyrus functions as a gateway of emotions from the paleomammalian to the neocortex.

1.1.3 Cortex and neocortex

The cerebrum makes up around 85 per cent of the brain mass. If the cerebral medulla, which
especially consists of nerve fibers with the embedded basal ganglia, is removed, then what
remains is the neocortex – a layer which is two to five millimeters thick. This layer is also
called gray matter because it is rich in nerve cell bodies that give it a reddish brown to gray
color. One has determined the number of nerve cells (neurons) in the cerebral cortex with
about 23,000,000,000 in the male and about 19,000,000,000 in the female brain - it being
noted that the average male body is also larger than the female.

The neocortex is the evolutionary youngest part of the human brain, with an age of 120,000
years, what suggests, compared to the other brain parts, that evolution has not finished it yet.
The neocortex consists of four large areas, which are the temporal lobe, the frontal lobe, the
occipital lobe and the parietal lobe. As far as we know today it is this structure that provides
us with significant advantages compared to other known species. From what we know we are
the only species on earth featuring generative language skills and using tools on a regular
basis. Additionally, we might be the only ones who will do self-modifying, by the virtue of
the achievements of neuroengineering. The cerebral cortex alone takes nearly one half of the
brain volume, which becomes possible as it is a six-fold structure. Each of its layers consists
of a characteristic population of neuron types and densities, however, this varies throughout
the whole brain, and the function of each layer is different. All in all, it is responsible for the
coordination of perception, motivation, learning and higher thinking. What we can
additionally see is that the neocortex is not only folded on layer-level, but also on surface-
level. These canyons are called sulci, the high areas gyri. The overall structure consists of two
hemispheres, connected by the corpus callosum, a large bunch of fibers obviously used for
communicating signals between the two. There have been conducted several studies on split-
brain patients, which will not be discussed here in detail. The neocortex is the part of the brain
I have been focusing on the later chapters, when it comes to reverse engineering the mind, as
in it all higher cognitive functions take place.

18 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC, p. 23.

19 Allman John (2001): The anterior cingulate cortex: The evolution of an interface between emotion
and cognition; New York: New York Academy of Sciences, p. 935, 107 - 117

20 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC

18 1 Evolution’s most extraordinary achievement

1.1.3.1 Frontal lobe

The frontal lobe (Figure 13 - Frontal lobe) is the largest structure in the human brain,
occupying the front part of the brain from the cortex to the central gyrus. The frontal lobe is
not perfectly understood yet, but it is assumed that it processes, amongst motoric tasks, the
higher cognitive functions in the area of the prefrontal cortex. Research has shown that this
area plays a role in activities that require attention, thinking, decision-making and planning.
Furthermore, it is assumed that it is the residence of personality. Directly at the central gyrus
the primary motor cortex is located, which is involved in deliberate movements, where the
neural areas for the face, especially lips, mouth and tongue (where the latter one does not
specifically belong to the face) occupy most of the space, compared to other areas. In the front
of the primary motor cortex we can find the pre-motoric cortex, which is involved in complex
movements. Finally, the prefrontal cortex is massively interconnected and associated with
executive functions, which makes it important for personality and character. It is involved in
social functions and socially appropriate behavior; it has been observed that damage to the
prefrontal cortex results in strong changes in personality, as well as motoric disorders.
Another point that suggests that it is one of the most complex areas of the brain is that it is not
fully developed until the age of 25.

Figure 13 - Frontal lobe21

1.1.3.2 Parietal lobe

The parietal lobe (Figure 14 - Parietal lobe) is one of the four major lobes of the cerebral
cortex. It is located behind the front and above of the occipital lobe. In its front area
somatosensory processes take place in the rear sensory information is incorporated, whereby
the handling and orientation of objects in space are enabled. Thus, on the one hand, it is
responsible for what the body feels, where one’s own limbs are and in what position. Here
proprioceptive, auditory, and vestibular information are integrated, so combined to form a
larger whole. Particularly important are additional visual information of the dorsal where-

21 dasgehirn.info: Der Frontallappen [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/der-frontallappen/ (reprinted with permission from dasgehirn.info)

1.1 Anatomy of the human brain 19

way, and the ventral what-way. This creates a three-dimensional image of the environment
that is constantly brought up to date and allows us purposeful movement. This concerns both
vicinity as well as distance. Thus, the posterior parietal cortex uses this information in relation
to local and remote area of the environment. Faults can lead to a ‘neglect’ – the failure of
recognizing one’s own limbs, or one half of the environment.

Figure 14 - Parietal lobe22

1.1.3.3 Temporal lobe

The temporal lobe (Figure 15 – Temporal lobe) goes into the occipital and parietal lobes
without a sharp boundary. It is divided from the frontal lobe via a deep furrow, the lateral
fissure, which contains the insula. When the brain viewed from below it can be seen that the
two temporal lobes frame the brain stem. Perhaps the most famous feature of the temporal
lobe is the processing of information responsible for listening. Because the primary auditory
cortex, the so-called Heschl's transverse turns, are hidden in the deep lateral fissure. After a
few synaptic switches in the brain stem and thalamus in these windings ends the auditory
pathway that transmits signals from the sensory cells in the cochlea of the ear. The primary
auditory cortex in Heschl's transverse coils is only about stamp size. The downstream
secondary and tertiary auditory centers are a lot bigger. They are located in the upper and
middle turn of the temporal lobe and take almost the entire cortical surface of the temporal
lobe, which can be seen in the side view. Thus, listening is one of the most widespread
systems of our cerebrum – language and music seem to require a high computational effort.

Where the upper and middle temporal convolution to the rear pass into the cortices of the
occipital lobe, which is mostly used for the visual system, auditory and visual functions
overlap. There one can find lexical centers that have to do with the recognition of written and
spoken words. Looking from the bottom of the temporal lobe, one discovers on its inner
surface, just behind his blunt anterior pole, a small, inward bulging, which is called uncus, or
hook. In its three-layer allocortical surface of the olfactory tract ends. Just below these
olfactory cortices, even forming a part of the olfactory cortices, the amygdala can be found,
which we remember belongs to the limbic system and is functionally responsible for the

22 dasgehirn.info: Der Parietallappen [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/der-parietallappen/ (reprinted with permission from dasgehirn.info)

20 1 Evolution’s most extraordinary achievement

affective coloring of our experience. For the memory of the temporal lobe plays an important
role; there are allocortical areas again, so atypical six-fold cortical areas serving these
functions, which are counted to the limbic system. The innermost, wide turn of the temporal
lobe, which can be seen in the bottom view, is the parahippocampal gyrus. Integrated in it is
the entorhinal cortex, which acts as a kind of interface between just now experienced things
and the memory of the system. Right next to it and something above it is the hippocampal
formation. To get them to face, one would have to cut the temporal lobe and inspect the
inside. Together, the hippocampal formation and the enthorinal cortex are responsible for the
reading of recent memory contents as well as for the retrieval of existing memories. The kind
of memory we are talking about here are not limited to knowledge and biography, rather they
allow us to focus in everyday life. Important interfaces between the visual system and
memory here are the isocortices on the lower rear area of the temporal lobe. Research has
shown that the gyrus fusiformis centers have to do with the cognition and recognition of
faces.

Figure 15 – Temporal lobe23

1.1.3.4 Occipital lobe

The occipital lobe (Figure 16 - Occipital lobe) can be roughly divided into two areas: the
primary visual cortex, V1 briefly, and the visual association cortices V2 to V5. V1 is mainly
on the medial, the inwardly facing side of the hemisphere, thereby forming the wall of the
sulcus calcarinus. Incoming nerve impulses, so-called afferents V1 receives via the optic
radiation from the lateral geniculate nucleus, a part of the thalamus, with its 1,500,000 million
fibers are confronted with 200,000,000 cortex neurons. The primary visual cortex is organized
retinotopically, which means that each point on the retina corresponds to a very specific and
small cortical area – neighborhoods remain. In the illustration of what is seen the place of
sharpest vision is taken by the fovea, which takes only 1.5 millimeters in diameter on the
retina, uses four-fifths of V1. This reflects the interconnection of the retina, because the fovea
is a ganglion cell to a photoreceptor, or more simply, the resolution is particularly high. Both
ensure that what we focus currently is processed at best.

23 dasgehirn.info: Der Temporallappen [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/der-temporallappen/ (reprinted with permission from dasgehirn.info)

1.2 Neural information transfer 21

Figure 16 - Occipital lobe24

1.2 Neural information transfer

The human brain consists of a network of nearly 10ଵଵ neurons, and up to 50 times more glial
cells. Between these neurons, there exist between 10ଵସ and 10ଵହ synaptic interconnections.
These neurons, acting in a parallel manner, can produce enormous computing power. Each
neuron consists of a cell body with a nucleus, as well as dendrites for signal reception and an
axon for signal transduction (Figure 17 - Neuron).

Figure 17 - Neuron25

24 dasgehirn.info: Der Occipitallappen [2013-06-22]; dasgehirn.info; URL: http://dasgehirn.info/
entdecken/anatomie/der-occipitallappen/ (reprinted with permission from dasgehirn.info)

22 1 Evolution’s most extraordinary achievement

Even with the naked eye one can distinguish between grey and white matter of the brain. The
grey substance consists of the cell bodies of the neurons, which can be found in the core areas
and the cortex. The white substance consists of axons, the outgoing fibers of the neurons,
which interconnect the single brain structures. In the cerebral cortex and the mesencephalon
the neurons are ordered, structured. On the contrary, in the brain stem the order is rather
chaotic – a correlation between the complexity of processed tasks and the neural architecture
seems to exist. There exist more than 1,000 different types of neurons, which both differ in
their form and functionality.

– Sensory neurons translate optical, mechanical, chemical and thermic stimulations in
electrical impulses and transfer these to the central nervous system.

– Projection neurons transport signals from one cortex area to another.
– Interneurons act inhibitory or excitatory.
– Neurodoctrine cells emit chemical messenger substances into the blood.
– Motoneurons directly stimulate muscles.

All these neurons look differently, but feature a similar basic structure, consisting of input
region, trigger region, conductile region and transfer region.

Figure 18 - Neuron types26

Figure 18 - Neuron types shows the different types of neurons, on the left a spinal motor
neuron, a pyramidal cell of the hippocampus, and a Purkinje cell of the cerebellum.

An excited nerve cell transmits signals in form of electric impulses, along the so called action
potentials of its axon, to other neurons. The ions in a neuron determine its electric charge. If a
specific neuron, which we call post-synaptic neuron by now, receives signals from other
neurons, which we call pre-synaptic neurons here, then its potential may be given a rise. Each
of the neurons features a threshold, which may be exceeded if the neuron’s potential has been
given rise by several pre-synaptic signals. However, this does not necessarily happen, as the

25 Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg: Springer-
Verlag, p. 121

26 dasgehirn.info: Zellen: spezialisierte Arbeiter des Gehirns [2013-06-23]; dasgehirn.info; URL:
http://dasgehirn.info/entdecken/kommunikation-der-zellen/neuronentypen-9916/image_
mediathek_large/ Copyright: Niklas Hippel (reprinted with permission from dasgehirn.info)

1.2 Neural information transfer 23

synapse transferring the signal may not only be excitatory, thus send a positive signal
consequently leading to a rise of the post-synaptic neuron’s potential, but also inhibitory,
meaning that it decreases the post-synaptic neuron’s potential and consequently also
decreases this specific neuron’s probability for firing. In our example the signal is excitatory,
thus the excitement of the neighbor neurons is transmitted into the nucleus by the dendrites,
causing an increment of the potential. If the threshold of -60mV is reached via depolarisation,
the neuron unleashes an action potential, in other words, transmits its excitement to its
neighbor.27 In doing so, the potential shifts up to +30mV. During the spread, an action
potential increases until the neuron’s threshold. After the following repolarisation the
hyperpolarisation follows. During the hyperpolarisation the resting potential is deceeded and
no neighbor neuron can be excited. Finally, the resting potential is exceeded slightly. An
action potential is then transmitted until it comes across a synapse, a connection to another
neuron (Figure 19 - Action potential).

Figure 19 - Action potential28

If the action potential of a neuron triggers the action potential of another neuron, the
stimulation forwarding through the synapses is increased. This fact is known as Hebbian
learning rule (3.3.3.4 Hebb's learning rule). The synaptic connections correspond to the
weights in the matrices behind artificial neural networks. The synapses therefore function as
transmitters of information, and the result of functioning is either the strengthening or
weakening of the stimulation. As a result, the neuron receives signals and some of them are
stimulating whereas others are suppressing. The neuron sums stimulating and suppressing
impulses. If their algebraic sum exceeds a certain threshold value, the signal at neuron output
is transmitted – via axon – to other neurons. Summing up, interconnected neurons allow our
brain to process information as it does because of the following features and capabilities:

– An incoming signal to a neuron within is transmitted electrically.
– Between two neurons usually signals are transmitted via chemical neurotransmitters.

27 Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg: Springer-
Verlag, p. 120 ff.

28 Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg: Springer-
Verlag, p. 121 ff.

24 1 Evolution’s most extraordinary achievement

– The electrical transmission works on the all-or-nothing principle: Only when the signal
strength exceeds a threshold, the action potential within the axon is generated.

– Thereby the synapses translate the electrical signal of the action potential into a chemical
one: they release messenger substances and neurotransmitters into the gap between sender
and recipient cell.

– The recipient cell takes up the receptors and neurotransmitters and translates them into an
electrical signal, the postsynaptic signal words.

– The message of urgency and a signal is reflected in the number and frequency of action
potentials; we will discuss this later in more technical detail, as also in artificial neural
network research these so-called spiking neurons have come into discussion.

1.3 Summary

I am aware of the fact that there is a lot more to say about the human brain, like on how
neuron cells are made up, on how information processing happens or even on its anatomy. All
of the required explanations will be given in the next chapters, either when there are
approaches introduced that seek to incorporate quantum physical effects in the information
processing of the human brain. However, a lot of information will not be provided in this
elaboration, as comprehensive knowledge of the human brain is not required for
understanding the discussed paradigms. What is, on the contrary, important to know are the
major parts of the human brain, what they are responsible for and partially how they work. If
required, further explanations follow in the following chapters, but for the beginning the
information provided within this chapter forms a solid foundation we can build upon, like

– the description of the most important parts of the human brain,
– the different types of neurons and
– how neurons work from a technical point of view.

2 Pillars of artificial intelligence

The major goal of this elaboration is to work out how specific aspects of the human mind,
namely those responsible for higher cognitive functions, function, and to figure out which
hardware is required to process an artificial mind with the same, similar or superior
capabilities. For this, I will focus on any approach that allows us to reproduce cognitive
capabilities, but not necessarily achieve this target by the same means as evolution did. It
makes sense, at this point, to provide an introduction to artificial intelligence in order to
understand which areas of the neocortex are subject to AI research and development. This
chapter notabene provides only a brief overview of the pillars of AI, as even the detailed
elaboration of just one sub-area of each of those would suffice to fill books. In the later
chapters I will mostly focus on artificial neural networks, logic, knowledge representation,
and speech in order to illustrate how I think the human thought processes can be rebuilt
artificially. I will also give a brief introduction to one of my research fields, autonomously
acting cars, which should help to understand what it takes to create intelligent, autonomous,
social and adaptive agents; rebuilding collective and intelligent behavior in artificial systems
not only allows us to understand a significant amount of brain evolution, but also how
intelligence makes us a highly complex species in terms of thought processes.

 An early definition of artificial intelligence on the part of the IEEE Neural Networks Council
was ‘the study of how to make computers do things at which, at the moment, people are
better’29. This is still valid today, but the research also focused on letting software do things
better, in which computers have always been better, as the analysis of large data sets. Data
forms the basis for the development of artificial intelligent software systems that will not only
collect information, but is able to

– learn,
– understand and interpret information,
– adapt its behavior,
– plan,
– conclude,
– solve problems,
– think abstract,
– come up with ideas, and
– understand and interpret language.

After having worked for about 10 years in the field, I feel more comfortable with the more
general definition:

Artificial intelligence is a machine based form of intelligence that is not distinguished from
actual natural intelligence, covering amongst others:

– cognitive intelligence
– emotional intelligence
– social intelligence
– tactic knowledge (everyday-life like)
– collective intelligence (swarm)

29 Rich E., Knight K. (1990): Artificial Intelligence, 5

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_2

26 2 Pillars of artificial intelligence

I defined both in separate publications (the latter still being subject to secrecy obligations),
but a quick literature review will show that both definitions have been published in similar
ways by numerous other researchers. Generally, I pursue the holistic approach towards
artificial intelligence, which is concerned with incorporating all or at least several pillars of
AI. People very often talk about AI in scenarios where they applied machine learning or some
other sophisticated approaches to solve a specific problem, i.e. market prediction. This is not
what I consider to be AI – it’s just an algorithm performing calculations. For me, there exist
five pillars of AI, which is of course subject to discussion and sometimes also to dispute.

2.1 Machine learning

On the coarsest level algorithms in machine learning (ML) can be divided into two classes –
supervised and unsupervised – depending on whether the respective algorithm requires the
specification of a target variable or not.

2.1.1 Supervised learning algorithms

Supervised learning techniques require, in addition to the input variables (predictors), the
known target values (labels) of a problem. To train a ML model on the identification of road
signs on cameras, vectorized road signs are required as input variables images of, ideally in
different configurations. Lighting, angle, pollution, etc. are summarized as noise or blur in the
data, nonetheless a street sign in the rain should be equally recognized as good in the
sunshine. The labels (the correct names) are typically assigned manually. This correct set of
input variables and their correct classification account for a training data set. Although we
only have one image per training data set in this case, we are talking about several input
variables, since ML algorithms find relevant properties (features) in the training data and
learn the relationship between these features and the class assignment for the example cited
classification task. Supervised learning is mainly used to predict numeric values (Regression)
and classification (prediction of class membership), where the data are not limited to a
specific format; the processing of images, audio files, videos, numeric data and text provides
for ML algorithms no problem. Some examples of classification are about object recognition
(street signs, object ahead of the vehicle, etc.), face detection, credit risk assessment, voice
recognition, customer churn to just to name a few.

Examples for regression are the determination of continuous, numerical values on several
(sometimes hundreds or thousands) input variables, such as the optimum speed based on road
and environmental conditions in an autonomous series vehicle, the determination of a
financial measure such as gross domestic product based on a variable number of input
variables (using agricultural land, education level of a population, industrial production, etc.)
or the identification of potential market share by introducing new models. Each of these
issues is highly complex and cannot be expressed by simple, linear relationships in simple
equations; it may also happen that the expertise does not exist.

2.1.2 Unsupervised Learning Algorithms

Unsupervised learning techniques single out any individual target variable, but it is the aim to
achieve a general characterization of an instance. Frequently, unsupervised ML algorithms are

2.1 Machine learning 27

used to group records (clusters), so relationships between individual data points are found,
which can be composed of an arbitrarily high number of attributes, and merged into groups
(clusters). In some cases, the output of unsupervised ML algorithms can be used again as an
input for supervised learning algorithms. Examples of unsupervised learning are about the
formation of groups of customers based on purchase behavior or demographics, or time series
clustering in order to group millions of sensor time series into not previously obvious groups.

Machine Learning (ML) is therefore the part of the artificial intelligence (AI), in which
computers are given the ability to learn from data without being explicitly programmed. In
ML, the focus is on the development of programs, which are capable of teaching themselves
in order to grow and change as they are provided with new data. Processes that can be
mapped as a flow chart are therefore are not candidates for machine learning – everything
requiring dynamic, changing strategies and that cannot be limited to static rules, is potentially
suitable to be solved by means of ML. It is applied when

– human expertise does not exist,
– people cannot express their expertise,
– the solution changes over time,
– the solution has to be adapted to specific cases.

In contrast to the statistics, which is used to track the inference from a sample, it is of interest
to develop efficient algorithms for solving optimization problems and a representation of the
model for evaluation of inference in computer science. Commonly used methods for
optimization known in this context are evolutionary algorithms (genetic algorithms, evolution
strategies), whose basic principles are based on the natural evolution. 30 These methods are
very effective in the application to complex non-linear optimization problems.

ML is not the same as data mining, although ML is generally applied in this field – the goal of
both is to analyze data in order to find patterns. Rather than to extract data for human
understanding as is the case in the data mining, ML method can be used to improve one's
understanding of a program on the data provided. Software implementing ML methods
detects patterns in data, and can adapt its behavior based on what it finds. When talking about
autonomously acting vehicles (or the software that interprets visual signals from divers input
channels, i.e. a camera), an execution block, consisting of the output of the AI algorithm and
logic on this output, initiating a braking maneuver in case of suddenly appearing passersby in
front of the vehicle needs to function both with small, large, thick, thin, disguised, coming
from the left, coming from the right, etc. people, which is called generalization. The term
generalization is used here, as the ML-approach must be able to generalize on all persons
from the limited amount of training examples provided. It must not, on the other hand, be too
generalizing, as the vehicle should not slow down at a stationary dustbin on the roadside.

The complexity in the world will often be greater than the complexity of a ML-model which
is tried in most cases, to divide into sub-problems and problems apply ML models on these
sub-problems. The output of these models is then integrated to allow complex tasks such as
autonomous acting of vehicles in structured and unstructured environments.

30 Bäck T., Fogel D.B., Michalewicz Z. (1997): Handbook of Evolutionary Computation, Institute of
Physics Publishing, New York

28 2 Pillars of artificial intelligence

2.2 Computer Vision

Computer Vision (CV) is a very broad field of research in which scientific theories from
different fields (as so often in the AI) are merged, ranging from biology, neuroscience and
psychology to computer science, mathematics and physics. To start with it is important to
understand how an image is physically created. Before light impinges on a two-dimensional
array of sensors, it is refracted, absorbed, scattered or reflected, and an image is formed
through the measurement of the intensity of the light beams through each element in the
image (pixels). The three basic perspectives on CV are:

– The reconstruction of a scene and the point, from which the scene is observed, based on
an image, an image sequence or a film.

– The imitation of biological, visual perception, in order to better understand the physical
and biological processes are involved, such as how the wetware works, and how the
interpretation and understanding of what has been observed function.

– In technical research and development, the focus is on efficient algorithmic solutions – in
CV software often problem-specific solutions are developed, which have only limited
overlaps with the optical perception in biological organisms.

All three have similarities and influence each other. If emphasis is on obstacle detection in
order to initiate an automated braking maneuver ahead of the vehicle as a passersby appears,
it is primarily important to recognize the passer as an obstacle; an interpretation of the entire
scene, such as to understand that the vehicle moves toward a family having a picnic in a
meadow, is not necessary required in this case. In contrast, the understanding of a scene is
then a requirement if context is a relevant input (or output), such as the development of
robotic household assistants, who need to understand very well that a person lying on the
floor is not only a sleeping obstacle, but is in all likelihood a medical emergency.

Visual perception in a biological organism is understood as an active process, which includes
the control of the sensor and is closely linked to the successful completion of the action.31 As a
result,32 CV-systems are mostly not passive, that is, the system has to

– be continuously supplied with data via sensors (streaming), and
– act on this data stream.

Apart from that the goal of CV systems is not the understanding of scenes in images – it has
to primarily extract the relevant information for a specific task from the scene. Rather, a
“region of interest” must be determined, which is used for processing. Finally, the system
must have a short response time, because it is likely that a scene is changing over time and a
delayed action may not result in the desired effect. For object recognition (“what” is “where”
in a scene), many different methods have been proposed, including:

– Object detectors, which move a window over the image and determine a response for
each position of any such filter by matching template and sub-picture (box contents).
Each new object parameterization requires a separate scan. More sophisticated algorithms

31 Bajcsy R. (1988): Active perception, Proceedings of the IEEE, 76:996-1005
32 Crowley J. L., Christensen H. I. (1995): Vision as a Process: Basic Research on Computer Vision

Systems, Berlin: Springer

2.2 Computer Vision 29

expect the same at different scales and apply filters that have been learned from a large
number of images.

– Segment based techniques extract a geometric description of an object by grouping of
pixels that define the extent of an object in an image. Based on this, an immutable feature
set is calculated, that is, the features contained therein retain the same values under
various image transformations such as changes in the light conditions, scaling or rotation.
These features are used to identify objects or object classes clearly. An example is the
previously mentioned identification of road signs.

– Orientation-based methods use parametric object models that are trained on data. 33 ,34
Algorithms search for parameters such as scaling, translation or rotation, which optimally
fit a model on corresponding features in the image. An approximate solution can be found
through a reciprocal process, i.e. by features such as contours, corners, or other
characteristic points in the image “voting” for parameter solutions that are compatible
with the feature found.

For conducting object recognition, it must first be decided whether algorithms are working on
2D- or 3D-representations of objects, whereby 2D-representations are often a good com-
promise between accuracy and availability. Current research in deep learning artificial neural
networks shows that even distances between two points based on two 2D images, taken from
different points, can be determined accurately. In daylight and reasonably good visibility this
input can be used in addition to data from laser and radar in order to increase the accuracy – a
mono-vision camera is sufficient to generate the necessary data. Unlike 3D-objects 2D-
images do not encode any information such as shape, depth or orientation directly. Depth
coding can be done in many ways, such as with the aid of laser or stereo cameras (like human
perception) and structured light approaches (like Kinect from Microsoft). Currently, the most
intensively pursued research direction relates super squares – geometric shapes defined by
formulas that use any exponent to identify structures such as cylinders, cubes and cones with
rounded or sharp corners. Using a small set of parameters, a wide variety of different base
forms can be described. If 3D-images are determined by means of stereo cameras, due to
poorer data quality compared with laser scans, statistical methods (such as generating a stereo
point cloud) are applied instead of the previously mentioned form methods. Further research
is done regarding tracking,35,36 contextual scene understanding,37,38 and surveillance39, but these
are currently for the automotive industry is of secondary relevance.

33 D. P. Huttenlocher, S. Ulman: Recognizing solid objects by alignment with an image,
International Journal of Computer Vision, 5: 195-212, 1990

34 K. Frankish, W. M. Ramsey: The Cambridge handbook of artificial intelligence, Cambridge:
Cambridge University Press, 2014

35 Chaumette F., Hutchinson S. (2006): Visual servo control I: Basic approaches, IEEE Robotics and
Automation Magazine, 13(4): 82-90

36 Dickmanns E. D. (1991): Dynamic Vision for Perception and Control of Motion, London:
Springer, 2007

37 T. M. Straat, M. A. Fischler: Context-based vision: Recognizing objects using information from
both 2D and 3D imagery, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:
1050-65

38 Hoiem D., Efros A. A., Hebert M. (2006): Putting objects in perspective, Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2137-44

39 Buxton H. (2003): Learning and understanding dynamic scene activity: A review, Vision
Computing, 21: 125-36

30 2 Pillars of artificial intelligence

2.3 Logic and reasoning

Known as “Knowlege Representation & Reasoning” (KRR) in the literature, the focus in this
field this field of research is on the design and development of data structures and inference
algorithms. Problems that are solved by reasoning, are frequently found in applications
requiring interaction with the physical world (as humans), such as the making of diagnoses,
planning, natural language processing, answering questions, etc. KRR forms the basis for
human-level AI.

Reasoning in the field of KRR is where data-based answers have to be found without human
intervention or assistance, whereby the data are usually presented in a formal system with
clear and precise semantics. Since about 1980, it is assumed that the data involved are a
mixture of simple and complex structures, where the former are in a low degree of
computational complexity and provide the research basis for large databases. The latter are
presented in a more expressive language, which requires less space for representation, and
correspond with generalizations and fine-granular information.

Decision-making is a kind of reasoning, in which answering questions about preferences
between activities is paramount, such as when an autonomously acting agent tries to perform
a task for a human being. Very often this decision-making is conducted in a dynamic domain,
which changes by the execution of actions and the lapse of time. One example is the
autonomously acting vehicle that must react to changes in traffic.

Mathematical logic is the formal basis for many applications in the real world, such as the
theory of computation, our legal system and related arguments, and theoretical developments
and evidence regarding research and development. The initial vision was to represent any
kind of knowledge in the form of logic and to reason with universal algorithms, but some
challenges have arisen; not any kind of knowledge is easy to represent. In addition, it can be
very complex to compile the required knowledge for complex applications, and in addition it
is not easy to learn this knowledge in from an expressive, logical language.40 Moreover, it is
not easy to reason with the required, expressive language – in the extreme case, such a
scenario is computationally not feasible, even if the first two challenges can be solved.
Currently three debates are conducted in this regard:

– First there is the statement that logic cannot represent many concepts, such as space,
analogy, shape, uncertainty, etc., and therefore they cannot as an active part in the
development of AI on human level are counted. The counter argument is that logic is just
one of many tools. Currently, the combination of representative expressiveness, flexibility
and clarity with any other method or other system is achieved.

– The second debate revolves around the statement that logic is too slow for inference and
will therefore never play a role in a production system. The counterargument here is that
ways for approximation of inference by logic exist, so that processing is approaching time
limits and progress on logical inference is thus made.

– The third debate revolves around the argument that it is extremely difficult or even
impossible to develop systems of logical axioms in real world applications. The counter-

40 Lavarac N., Dzeroski S. (1994): Inductive Logic Programming, vol. 3: Nonmonotonic Reasoning
and Uncertain Reasoning, Oxford University Press: Oxford

2.3 Logic and reasoning 31

arguments are mainly based on the research of those seeking techniques for learning
logical axioms from natural language texts.

A distinction is made between four different types of logic41 that are not discussed further
here:

– Propositional logic
– First-order logic
– Modal logic
– Non-monotonic logic

At this point it is also required to mention automated decision making, i.e. autonomously
acting robots (vehicles), automated agents in the internet, or mapping decision finding
processes I logic in order to automate those. Very often, such a decision process considers the
dynamics in the surrounding world, such as when a transport robot has to avoid another in a
production plant. However, this is not a prerequisite, for example when a decision-making
process is carried out without well-defined direction in the future, i.e., the decision to rent a
warehouse at a specific price at a specific location. Decision-finding as research discipline
spans multiple domains, such as computer science, psychology, economics and all engi-
neering. Some fundamental issues need to be addressed for the development of automated
decision making systems:

– Is the domain is dynamic in that a sequence of decisions is required, or is it static, so that
a single or multiple simultaneous decisions must be made?

– Is the domain deterministic, non-deterministic or even stochastic?
– Should benefits be optimized or a goal be reached?
– Is the domain known to the full extent or only partially at any time?

Logical decision problems are non-stochastic in nature, which includes planning and
conflictory behavior. Both require that the available information on the initial and
intermediate states is complete, and that actions have only deterministic, known effects and
that there is a specific target definition. These types of problems are found in the real world
frequently, such as in the control of robots, logistics, complex behavior on the internet, and
computer and network security.

In general, a planning problem involves an initial (known) situation, a target definition and a
set of permitted actions or transitions between steps. The result of a planning process is a
sequence or set of actions, the correct execution of which moves the performer from an initial
state to a state that satisfies the goal conditions. Planning is a computationally difficult
problem, even if simple problem specification languages are used. The search for a plan can,
even with simpler problems, not traverse through the entire state space graph, because it is
exponentially larger in the number of states defining the domain. Therefore, it is attempted to
develop efficient algorithms mapping subgraphs in order to browse these in the hope of
achieving the goal. Recent research has focused on the development of new search methods
and new representations of actions and states that allow easier planning. Especially when
taking into account one or more agents working against each other, it is important to find a

41 Frankish K., Ramsey W. M. (2014): The Cambridge handbook of artificial intelligence,
Cambridge: Cambridge University Press

32 2 Pillars of artificial intelligence

balance between learning and decision – exploration for the learning's sake, while decisions
are taken, can lead to undesirable results.

Many problems in the real world are problems whose dynamic is of stochastic nature –
purchasing a vehicle whose properties are unknown to us and affect its value is an example.
These dependencies affect the purchase decision and it is therefore necessary to incorporate
risks and uncertainties. Stochastic domains are practically more difficult with respect to
decision-finding, but also more flexible with regard to approximations than deterministic
domains – the simplification of practical assumptions also makes automated decision-finding
practicable. There are lots of problem formulations which can represent different aspects and
decision making processes in stochastic domains, under the most famous decision networks
and Markov decision-making processes.

Many applications require the combination of logical (non-stochastic) and stochastic
elements, such as the control of robots requiring high-level specifications in logic and low-
level representations with respect to a probabilistic sensor model. Natural language processing
is another area to which applies this assumption, since high-level knowledge in logic is
combined with probabilistic low-level models of text and voice signals.

2.4 Language and communication

Processing of speech is considered as fundamental in AI, and two fields are distinguished:
Computational Linguistics (CL) and natural language processing (NLP). In summary, the
difference that in CL research the use of computers for language processing is conducted, and
NLU consists of all applications, such as machine translation (MT), Q&A, document
summary, information extraction, etc. NLP therefore requires a specific task and is not per se
a research discipline. NLP includes:

– Part-of-Speech Tagging
– Natural language understanding
– Natural language generation
– Automated summarization
– Entity recognition
– Parsing
– Voice recognition
– Sentiment analysis
– Voice-, topic- and word-segmentation
– Co-reference resolution
– Discourse analysis
– Machine translation
– Word sense disambiguation
– Morphological segmentation
– Answers to questions
– Relationship extraction
– Sentence separation

The central vision of the AI states that a version of first-order predicate logic (first-order
predicate calculus, FOPC), supported by appropriate to the problem mechanisms for the
representation of language and knowledge is sufficient. This assumption states that logic can

2.4 Language and communication 33

and should provide the semantics underlying natural language. Although experiments in AI
and linguistics to leverage a form of logical semantics as a key for the representation of
content have progressed, such were crowned with little success concerning a program
translating English into formal logic. Even in psychology, it has not yet been proven that such
translations in logic corresponds to the way in which people store and manipulate “meaning”.
The translation from one language FOPC is therefore currently still a goal that has not yet
been achieved. No doubt there are NLP applications must which establish logical inferences
between sentence representations, but if these only account for a part of an application, it is
not obvious that they have something to do with the underlying meaning of natural language
(and thus with CL/ NLP), since the primary task of logical structures was inference. Different
positions have emerged also in this area:

– Logical inferences are very closely linked to the meaning of sentences, because to know
their meaning is the same as deriving inferences, and logic is the best way to do that.

– There is a meaning outside the logic that posits a number of semantic markers or
primitives that are hung on the words to express their meaning. Today, this is commonly
referred to as annotation.

– The predicates of logic and formal systems generally appear only different from human
language, but their terms are in fact the words than they appear.

The introduction of statistical and AI methods is the latest trend in this regard in the field. The
general strategy is to learn how language is processed, ideally in the way in which humans do,
whereby this does not constitute a prerequisite. Regarding ML, this is learning based on very
large corpora, which were translated manually by humans. This often means that it must be
learned (algorithmically) how annotations are assigned, how coropora are provided with part-
of-speech categories (allocation of words and punctuation of a text to speech), semantic
markers or primitives, and all this based corpora prepared by humans (which are therefore
correct). In supervised ML possible associations of part-of-speech tags with words that were
annotated by humans on text can be learned so that the algorithms then can annotate new,
hitherto unknown texts. 42 This works weakly supervised or unsupervised as well, i.e. when no
annotations were made from humans and only a text in one language with identical content in
another language is presented, or even relevant clusters are found in thesaurus data, without
having defined a goal.43

Regarding AI and language information retrieval (IR) and information extraction (IE) play a
major role, which very strongly correlate with each other. One of the main tasks of IR is
grouping of texts based on their content, whereby IE extracts similar fact elements from texts,
or is used to answer questions about text content. Therefore, these fields correlate with each
other strongly, since individual records (not only long texts) can also be considered as
documents. These methods are applied, i.e., in interactions of users with systems, such as
when a driver asks the onboard computer a question about the operator manual while driving
– after the linguistic input has been converted to text, based on the semantic content of the
question an answer in the manual is searched, extracted and returned.

42 Leech G., Garside R., Bryant M. (1994): CLAWS4: The tagging of the British National Corpus.
In Proceedings of the 15th International Conference on Computational Linguistics (COLING 94)
Kyoto, Japan, pp. 622-628

43 Spärck Jones K. (1999): Information retrieval and artificial intelligence, Artificial Intelligence
141: 257-81

34 2 Pillars of artificial intelligence

2.5 Agents and actions

In classical AI research mainly focused on single, isolated software systems that operated
relatively inflexible on predefined rules. New technologies and applications have created the
demand for artificial entities that are more flexible, adaptive and autonomous, and act as
social units in multi-agent systems. In classical AI (see “Physical Symbol System Hypo-
thesis”44, which was embedded in so-called “deliberative” systems) an action theory, thus how
systems make decisions and act, is represented logically in individual systems needing to
perform actions. The system shall, based on these rules, prove a theorem – the requirements
for this are that the system has

– a description of the world in which it is currently located,
– the desired target state and a set of actions,
– along with conditions for execution of this and
– a list with the results of each action gets.

It has been found that even in simple problems by the computational complexity each time-
limited system is unusable, which had a great impact on symbolic AI, resulting in the
development of reactive architectures. Such follow if-then rules converting inputs directly
into tasks. Such systems are extremely simple, but can nevertheless solve very complex tasks.
A problem is that such systems learn procedures, but not declarative knowledge, that is, they
are learning attributes that simply cannot generalize to similar situations. There have been
many attempts to combine deliberative and reactive systems, however, it seems that one must
either focus on impractical, deliberative systems or on very loosely developed reactive
systems – both are not optimal.

2.5.1 Principles of the new agent-centered approach

The agent-oriented approach can be characterized by the following principles:

– Autonomous behavior: Autonomy refers to the ability of systems to make their own
decisions and carry out tasks on behalf of the system designer. The aim is to let a system
act autonomously in scenarios in which it is difficult to control it directly. Traditional
software systems perform methods after they have been called – they have no choice;
Agents, however opt for their views, desires and intentions (Belief, Desire, Intention –
BDI).45

– Adaptive behavior: Since it is impossible to predict all situations which agents will
encounter, they must be able to act flexibly. They must be able to learn from their
environment and adapt. This task is more difficult, if not only nature is a source of
uncertainty, but the agent is also located in a multi-agent system. Only environments that
are not static and closed allow meaningful application scenarios for BDI agents, e.g. a
lack of knowledge of the world may be compensated by reinforcement learning: agents
are acting in an environment that is described by a set of possible states. Each time an

44 Newell A., Simon H. A.: Computer science as empirical enquiry: Symbols and search,
Communications of the ACM 19:113-26

45 Bratman M., Israel D. J., Pollack M. E. (1988): Plans and resource-bounded practical reasoning,
Computational Intelligence, 4: 156-72

2.5 Agents and actions 35

agent performs an action, it will be “rewarded” with a numerical value expressing how
good or bad was his action. This leads to a number of conditions, actions and rewards.
The agent is now encouraged to identify an approach that maximizes reward.

– Social behavior: In an environment in which different entities act, it is necessary that
agents recognize their opponents and form groups, provided a common goal requires
them to do so. Agent-oriented systems are used for personalization of user interfaces,
middleware and in competitions such as the RoboCup. In a scenario in which only
autonomously vehicles are on the roads, not only autonomy, but also the exchange of
information between vehicles and the thereupon based acting as group is an indispensable
component. Through coordination between the agents the traffic flow is optimized –
congestion and accidents are virtually impossible.

In summary, that the agent-oriented approach is accepted as a forward-looking direction in the
AI community.

2.5.2 Multi-agent behavior

There are different approaches pursued to implement multi-agent behavior, which differ
mainly in terms of how much control the designer on individual agent has.46,47,48 Differentiation
is made between

– distributed problem-solving systems (Distributed Problem Solving systems, DPS) and
– multi-agent systems (multi-agent system, MAS)

DPS allows the designer to control every individual agent in the domain in which the solution
of the task is distributed to more than one agent. In MAS, on the contrary, there are several
designers and each can only influence his own agent and has no access to the design of all
other agents. In this case, the design of the interaction protocols is very important. In DPS,
agents try to achieve a goal or solve a problem, whereas in MAS, each agent is individually
motivated to reach its own target and wants to maximize his own benefit. The research in
DPS has to achieve the goal of cooperation strategies for problem solving while minimizing
the degree of communication. In MAS attention is paid to the coordinated interaction, thus
how the autonomously acting agents can be made to find a common basis for communication
and carry out uniform actions.49 Ideally, a world that is only traversed by acting autonomously
vehicles, a DPS, however, due to competition between the OEMs a MAS will most likely
arise first. The communication and negotiations between agents are in the foreground (see
Nash equilibrium).

46 Bond H. Ah., Gasser L. (1988): Readings in Distributed Artificial Intelligence, San Mateo, CA:
Morgan Kaufmann

47 Durfee E. H. (1999): Coordination for Distributed Problem Solvers, Boston, MA: Kluwer
Academic, 1988

48 Weiss G.: Multiagent Systems: A modern approach to distributed artificial intelligence,
Cambridge, MA: MIT Press

49 Frankish K., Ramsey W. M. (2014): The Cambridge handbook of artificial intelligence,
Cambridge: Cambridge University Press

36 2 Pillars of artificial intelligence

2.5.3 Multi-agent learning

The multi-agent learning (MAL) is given a certain degree of attention only recently. Key
issues are the definition of techniques that should be used and what exactly multi-agent
learning is. Current ML approaches have been developed to train individual agents, whereas
at MAL distributed learning is the target. Distributed does not necessarily mean that a neural
network, in which many identical operations are run during exercise and this can therefore be
parallelized, is executed, but

– that a problem is split into sub-problems and individual agents learn these in order to
solve the main problem based on their combined knowledge, or that

– many agents independently try to solve the same problem by competing against each
other.

Reinforcement Learning is an approach which takes in this respect application.50

2.6 Summary

Artificial intelligence has already found its way into our daily lives and is no longer exclusi-
vely the subject of science fiction novels. At present, AI is mainly used in the following areas:

– Analytical data processing
– In domains in which quick, qualified decisions must be made on a large amount of (often

heterogeneous) data
– At monotonous, but attention-requiring activities

In analytical data processing, over the next years we will no longer rely on decision support
systems, but on systems that relieve us of decisions. Specifically, in data analysis we are
currently developing individual, analytical solutions for specific problem statements, but
those cannot be used across contexts – for example, a solution developed for anomaly
detection in stock value behavior cannot be used to understand content of images. Also in the
future, this will not be the case, but AI systems will integrate individual, interacting
components and will so take over more complex tasks currently reserved for humans – a clear
trend we can already observe now. A system not only processing the latest data from stock
markets, but also analyzing the development of political structures on news texts or videos,
extracting sentiments from from blogs or social networks, monitoring and predicting relevant
financial ratios, etc., requires the integration of many different subcomponents – encouraging
them to work together is the subject of current research, and progress is published weekly. In
a world in which AI systems are able to improve themselves continuously and to control
companies more effectively than humans, what remains there for the humans? Time to focus
on expanding one's knowledge, the improvement of society, the eradication of hunger,
elimination of diseases, propagation of our species over the boundaries of our own solar
system. Some theories suggest that quantum computers are needed for the development of
strong AI systems, and only someone who is very careless, would argue an effective quantum
computer would be available within the next 10 years. And only someone who is careless

50 Busoniu L., Babuska R., De Schutter B. (2008): A comprehensive survey of multi-agent
reinforcement learning, IEEE Transactions on Systems, Man, and Cybernetics – Part C:
Applications and Reviews 38: 156-72

2.6 Summary 37

would argue that that is not the case. Be that as it may, as with the majority of relevant,
scientific achievements history shows that artificial intelligence must be used wisely –
systems that can take exponentially more decisions in extremely short periods of time with
increasing hardware performance, can cause many positive things, but also have the potential
to be abused.

3 An outline of artificial neural networks

Here we will have a closer look at some of the fundamental concepts and current standards in
the field of computational intelligence (CI), which are particularized under the consideration
of actual knowledge and research conducted. The focus is on artificial neural networks, as I
consider them, together with Markov models, as one of the most valuable means for
developing learning software. Artificial neural networks are not only applicable within the
field of data mining (see 6.1 Analysis), but can make a software system capable of
understanding and solving a presented problem statement through learning. (Hierarchically
hidden) Markov models are explained at 10.6 The artificial neocortex, where I also explain
one of the most important capabilities of an intelligently acting system, which is the
processing of natural language (and language understanding, which I lump together here), and
how patterns are hierarchically organized within the human brain. This is, because in artificial
systems both concepts may be implemented through Markov models. We will further see that
within the field of artificial intelligence the imitation of human brain functionality has been
researched on for a long time, but although the achievements have been impressive, software
mimicking such approaches is still restricted to doing things at which computers have always
been better in than humans, such as the detection of patterns in huge amounts of unstructured
data or time-series prediction (the prediction of continuous values). Computational
intelligence is a subfield of AI, and further AI paradigms relevant for this elaboration will be
discussed at 10 Reverse engineering the mind as well.

3.1 Definition

As already discussed in chapter 2 Pillars of artificial intelligence AI as a whole tries to make
systems behave like humans do, whereas computational intelligence relies on evolutionary
approaches to solve, amongst others, problems suitable for computers, like detecting
similarities in huge amounts of data or optimization problems. Within the field of AI robotics,
CI approaches find application for ensuring robust control, planning, and decision
making.51,52,53,54,55

CI techniques have experienced tremendous theoretical growth over the past few decades and
have also earned popularity in application areas e.g. control, search and optimization, data
mining, knowledge representation, signal processing, and robotics.56

51 Liu Dikai, Wang Lingfeng, Tan Kay Chen (2009): Design and Control of Intelligent Robotic
Systems; Berlin Heidelberg: Springer-Verlag, p. 2

52 Nolfi Stefano, Floreano Dolfi (2000): Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines; Bradford Books

53 Jain Lakhmi C. (1998): Soft Computing for Intelligent Robotic Systems: Physica-Verlag
54 Watanabe Keigo, Hashem M.M.A. (2004): Evolutionary Computations: New Algorithms and

Their Applications to Evolutionary Robotics; Heidelberg: Springer-Verlag
55 Teshnehlab M., Watanabe K. (1999): Intelligent Control Based on Flexible Neural Networks

(Intelligent Systems, Control and Automation: Science and Engineering); Dordrecht: Kluwer
Academic Publishers

56 Liu Dikai, Wang Lingfeng, Tan Kay Chen (2009): Design and Control of Intelligent Robotic
Systems; Berlin Heidelberg: Springer-Verlag, p. 2

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_3

40 3 An outline of artificial neural networks

However, when talking about the application of CI-paradigms in the further chapters, it has to
be clearly defined which meaning the umbrella term CI bears in the field of DM at first. The
term itself is highly controversial in research and used in different manners. Generally,
Fulcher et al. and Karplus provide widely accepted definitions, which are also suitable within
the context of this elaboration:

– Nature-inspired method(s) + real-world (training) data = computational intelligence.57
– CI substitutes intensive computation for insight into how the system works. Neural

networks, fuzzy systems and evolutionary computation were all shunned by classical
system and control theorists. CI umbrellas and unifies these and other revolutionary
methods.58

– Another definition of computational intelligence emphasizes the ability to learn, to deal
with new situations, and to reason.59

CI is all of the above mentioned, and even more. Combined with an agent-oriented develop-
ment approach, in other words by encapsulating a software system’s fields of CI-functions to
single entities working together to reach a superior target, leads to a completely different
understanding of what software is. A CI-software system not only consists of static business
rules, it comprises the ability to adapt to a problem, to learn and to behave. Behavior is
important in this context, as it a more appropriate term for the functionality of an evolutionary
system, e.g. ANNs can indeed be developed by a person, but the same person does not know
what exactly happens within an ANN learning or solving a problem statement. Of course, the
developer knows theoretically what happens behind ANN learning, but as such make use of
random variables intensively and repeated training with the same data produces slightly
different results it is more suitable to talk about behavior instead of functionality. From the
above mentioned information it becomes obvious that computational intelligence comprises

– artificial neural networks,
– fuzzy logic and
– evolutionary computation

but also covers

– granular computing,60
– probabilistic reasoning,
– Bayesian (belief) networks,61
– fuzzy Petri nets,
– constrained reasoning,

57 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 38

58 Karplus W. (1998) cited in: Kaynak Okyay, Zadeh Lofti A., Türksen Burhan (1998):
Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications;
Berlin: Springer-Verlag

59 Eberhart Russel C., Simpson Patrick K., Dobbins Roy (1996): Computational Intelligence PC
Tools; Boston MA: Academic Press

60 Lin Y. T. (1999): Granular computing: fuzzy logic and rough sets. In: Zadeh LA, Kacprzyk J.
(eds.): Computing with Words in Information/Intelligent Systems; Springer-Verlag: Berlin

61 Jensen Finn V., Nielsen Thomas Dyhre (2001): Bayesian Networks and Decision Graphs; Berlin:
Springer-Verlag

3.2 Paradigms of computational intelligence 41

– case-based reasoning,62
– support vector machines,63
– rough sets,64
– learning/adaptive classifiers,
– fractals,65
– wavelets,66
– chaos theory,67 as well as
– intelligent agents.68

Thus, computational intelligence researchers pursue the target to empower a machine to learn
in a data-driven and non-algorithmic way. Summing up, computational intelligence is the
study of adaptive mechanisms to enable or facilitate intelligent behavior in complex,
uncertain and changing environments.69

3.2 Paradigms of computational intelligence

As indicated beforehand, computational intelligence makes use of evolutionary approaches,
e.g. the imitation of human brain functions by the implementation of ANNs for classification,
or the imitation of insect swarms (swarm intelligence)70 for solving optimization problems.
The IEEE Computational Intelligence Society defines the imitation of evolutionary
approaches as ‘mimicking nature for problem solving’. Natural processes CI makes use of
are71,72

– evolutional paradigms and genetic selection (phylogeny): evolutionary approaches
– multi-cellular organisms (embryology; ontogeny): cellular automata73

62 Watson Ian (1997): Applying Case-Based Reasoning: Techniques for Enterprise Systems; San
Francisco: Morgan Kaufmann

63 Shawe-Taylor Cristianni N. (2000): Support Vector Machines and Other Kernel-based Learning
Methods; UK: Cambridge University Press

64 Inuiguchi Masahiro, Hirano Shoji, Tsumoto Shusaku (2003): Rough Set Theory and Granular
Computing; Berlin: Springer-Verlag

65 Falconer Kenneth (2003): Fractal Geometry: Mathematical Foundations and Applications; New
York: Wiley

66 Mallat Stephane (1999): A Wavelet Tour of Signal Processing; Boston MA: Academic Press
67 Ott Edward (2002): Chaos in Dynamical Systems, UK: Cambridge University Press
 Padgham Lin, Winikoff Michael (2004): Developing Intelligent Agent Systems: A Practical

Guide to Designing, Building, Implementing and Testing Agent Systems (Wiley Series in Agent
Technology); New York: Wiley

69 Onwubolu, Godfrey C. (2009): Hybrid Self-Organizing Modelling Systems Berlin Heidelberg:
Springer-Verlag, p. 13

70 Bertelle Cyrille, Duchamp Gérard H. E., Kadri-Dahmani Hakima (2009): Complex Systems and
Self-organization Modelling; Berlin Heidelberg: Springer-Verlag

71 Sipper M., Sanchez E., Mange D., Tomassini M., Perez-Uribe A., Stauffer A. (1997): A
phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems; IEEE Trans.
Evolutionary Computation, 1(1): 83–97

72 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 17

73 Lohn I. D., Reggia J. A. (1997): Automatic discovery of self-replicating structures in cellular
automata; IEEE Trans. Evolutionary Computation, 1(3): 165–178

42 3 An outline of artificial neural networks

– biological brains, cerebral cortex, the nervous, immune and endocrine systems (epi-
genesis): ANNs; immunity-based systems74

– social organisms, insect swarms, bird flocks: swarm intelligence
– artificial life75

The difficulty in developing software systems that behave similar to human beings is to map
probability, fuzziness and imprecision on systems that initially have been developed for being
deterministic, sharp and precise.

Generally, two fundamental approaches to CI can be characterized, namely the left- versus the
right-brained; the former refers to the traditional logical, rule-based, model-driven algorithmic
approach, while the latter (data-driven) connectionist approach mimics the intuitive/creative/
artistic side of our brains.76 The further chapters focus on the right-brained approach.

3.3 Neural networks

The human brain has been considered to be one of the most complex natural structures within
the yet discovered universe, and it is still capable of fulfilling cognitive processes that top the
possibilities of modern computers. Especially learning, saving of information, recognition and
perception, adaption to changing situations and the environment, behavior and creativity are
the major areas in which computers fail in direct comparison. The operating principle of the
human brain differs from the classical von Neumann-architecture in massive parallelism –
namely neuronal activity. Artificial neural networks try to imitate the structure and behavior
of the human brain and can, to some extent, accomplish astounding achievements.

3.3.1 Artificial neural networks

As indicated, artificial neural networks77,78,79 seek the imitation of a human brains’ func-
tionality. Like a human brain, an artificial neural network is made up of neurons – current
ones do not contain as much of these as a human brain does, but future approaches in
quantum computing might target the simulation of a brain with a similar count of neurons.
From the machine learning point of view, ANNs are capable of making non-linear mapping
from a set of inputs to a set of outputs and therefore can be employed as universal functional
approximators, which can offer accurate approximation of an unknown system on provision

74 Mange D., Tomassin M. (1998): Bio-Inspired Computing Machines. Presses, Laussanne:
Polytechniques et Universitaries Romandes

75 Levy Steven (1997): Artificial Life: A Report From the Frontier: Where Computers Meet
Biology; New York: Vintage Books

76 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 17

77 Kung Sun.Y. (1993): Digital Neural Networks. Englewood Cliffs: PTR Prentice Hall
78 Lau Clifford (1991): Neural networks, theoretical foundations and analysis; Los Alamitos: IEEE

Press
79 Philippides A. et al. (1999): Diffusible neuromodulation in real and artificial neural networks; In:

AI Symposium, Second International Conference on Cybernetics, Applied Mathematics and
Physics: CIMAF 1999: Editorial Academia

3.3 Neural networks 43

of data samples.80 The McCulloch & Pitts neuron model (Figure 20 - McCulloch & Pitts
neuron model) shows the similarity of an artificial neuron to a human one.

Figure 20 - McCulloch & Pitts neuron model81

The cell body receives its input from other neurons or, in case the neuron resides in the input
layer, directly from a data source. The input is then multiplied by the weight of the connection
to the target neuron, in other words passed over the dendrites, and then the results of all input
neurons are summed up. This sum is compared to the threshold value in the nucleus and, if it
is exceeded, passed over into the activation function, which then transfers the scaled (an
activation function scales the output properly [3.3.1.3 Activation functions]) output of the
inputs to the neuron(s) it is connected to. Figure 21 - Representative processing model
provides a more mathematical description of the neuron, making it easier to understand the
mathematical base processes behind an artificial neural network (Figure 21 - Representative
processing model).

i1

i2 o1

in

w
i1o1

wi2o1

w i3o
1

∑ t f

Figure 21 - Representative processing model

80 Jain Lakhmi C. (2008): Computational Intelligence Paradigms: Innovative Applications; Berlin
Heidelberg: Springer-Verlag, p. 3

81 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 26

44 3 An outline of artificial neural networks

Figure 21 - Representative processing model also shows that the inputs ݔଵ,, … , ௡ݔ are
multiplied by their weights and then summed up, compared with the threshold value t which
leads, by an exceedance, to a firing neuron and by a lower deviation to a neuron that does not
fire. The weighted sum is not directly passed over to the target neuron(s), but to the activation
function, for scaling it properly. In this latter example, the threshold is represented by a bias,
in other words the constant value 1.

Artificial neural networks, which are believed to be robust and adaptive, have been used to
solve manifold problems, including those that fall into the NP-complete82 class.83

Generally, two approaches for designing an ANN are possible; the evolutionary and the non-
evolutionary approach: in the evolutionary approach, an ANN can be evolved by means of an
evolutionary technique, e.g. a population-based stochastic search strategy such as a genetic
algorithm (3.3.3.7 Genetic learning).84,85,86 In the non-evolutionary approach, the ANN is built
not as the result of an evolutionary process, but rather as the result of a specific algorithm
designed to automatically construct it, as is the case with a constructive algorithm.87

3.3.1.1 Suitable problems

Not every problem is suitable for being processed with an artificial neural network. If a
program works according to an easily written out flow chart, it is not suitable for being solved
by an ANN.88 Programs that should heavily make use of static business rules, and which must
be fully predictable, are therefore also not suitable. The major advantages of an ANN,
compared to a static program, are its abilities to learn, to be fuzzy if necessary and to adapt to
a changing problem statement. When the above mentioned points come true and furthermore,
the solution of a problem statement comes to the fore and not the solution process, then the
application of an ANN might be the proper approach. Artificial neural networks can perfectly
be applied on problem statements that cannot be solved step-by-step, such as recognizing
patterns, classification, series prediction and finally, data mining. 89 In data mining,
classification and clustering are problems of utmost suitability for presenting them to ANNs,
especially when dealing with huge amounts of data and attribute-rich datasets.

82 Harel David (2004): Algorithmics: The Spirit of Computing, 3rd ed.; Amsterdam: Addison-
Wesley

83 Andreas Tolk (2009): Complex Systems in Knowledge-based Environments: Theory, Models and
Applications; Berlin Heidelberg: Springer-Verlag, p. 115

84 Franco Leonardo, José M. Jerez (2009): Constructive Neural Networks; Berlin Heidelberg:
Springer-Verlag, p. 2

85 Schaffer J. D. et al. (1992): Combinations of genetic algorithms and neural networks: a survey of
the state of the art. In: Proceedings of the International Workshop of Genetic Algorithms and
Neural Networks, pp. 1–37

86 Yao X. (1999): Evolving neural networks; Proceedings of the IEEE 87(9), 1423–1447
87 Franco Leonardo, José M. Jerez (2009): Constructive Neural Networks; Berlin Heidelberg:

Springer-Verlag, p. 2
88 Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield: Heaton

Research, Inc., p. 43
89 Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield: Heaton

Research, Inc., p. 43

3.3 Neural networks 45

3.3.1.2 Basic knowledge

The following explanations provide an overview of some basics that necessarily have to be
understood to understand the functioning of ANNs, as they are applied by all them, especially
within S/MLPs.

3.3.1.2.1 Structure

The structure of ANNs may vary, from one to many layers, the number of neurons or the
direction of processing. Figure 20 - McCulloch & Pitts neuron model describes the structure
of a neuron and how it receives input and transfers output. This indicates that an ANN usually
does not consist of just one single neuron, except when dealing with a single layer perceptron
(3.3.2.6.1 Single layer perceptron) containing just a single neuron. The internal structure
therefore depends on the type and learning method of the ANN (3.3.1.4 Regularization).

3.3.1.2.2 Bias

A bias neuron itself does not receive an input, as its activity level is always +1. The weight of
a bias to another neuron can either be positive or negative, depending on its usage. If the input
from other neurons is fairly strong, the bias ensures that the neuron stays active at positive
weight. If the bias weight is negative, the bias ensures that the unit stays inactive. This is
useful in special cases where a threshold is needed that at first has to be exceeded by other
neurons (negative weight) or when a neuron is expected to fire very often (positive weight).
This mentioned threshold is, on the contrary to other to the threshold of an activation
function, modifiable, as the weight between a bias and receiving unit is also modifiable
through learning.90

3.3.1.2.3 Gradient descent

The gradient as a first-order optimization algorithm is especially relevant for propagation
learning (3.3.3.6 Propagation learning), as it is used for modifying the weights of the neuron
connections within an artificial neural network. The gradient descent has the advantage that
not the whole hyper plane of the n-dimensional space all neuron weights together form must
be known. The weights of every ANN form a hyper plane, as long as the ANN features more
than one weight. For an ANN with only one weight, a 2-dimensional space for representing
the gradient descent’s curve suffices.

Typical for an ANN the gradient descent proceeding initially uses a random combination of
weights for determining the gradient. The learning rate, a constant which influences the rate at
which the weights of a neuron connection are adapted, is then used on the gradient to
determine the descent. The descent, in this case, is the corresponding adaption of the weights.
The gradient is defined as function of a scalar field, which indicates the rate of change
(learning rate) and the direction of the largest change in terms of a vector field.91

90 Rey Günter D.: Neuronale Netze: Eine Einführung [2011-25-08]; Rey Günter D.; URL: http://
www.neuronalesnetz.de/aktivitaet.html

91 Rey Günter D.: Neuronale Netze: Eine Einführung [2011-31-08]; Rey Günter D.; URL: http://
www.neuronalesnetz.de/back-propagation3.html

46 3 An outline of artificial neural networks

For the ANNs discussed within this elaboration, as an error function either the mean squared
error or the root mean squared error have been applied (explained in detail at 3.3.3.2 (Root)
mean squared error), which is the function that has to be minimized. The gradient descent
derivation and the calculation of the gradient descent itself are detailed in 3.3.3.6.1 Back
propagation training.

3.3.1.3 Activation functions

As Figure 20 - McCulloch & Pitts neuron model and the latter figures show, the summed
output is sent to an activation function, when the threshold is exceeded. The activation
function serves the purpose of scaling the presented output of a neuron layer into a proper
range for further processing within an artificial neural network. The activation function is not
restricted to a specific one, but can take various forms. Common examples for activation
functions are the linear activation function with or without bias, the binary threshold function
or sigmoid functions.

3.3.1.3.1 Linear activation function

The linear activation function is the simplest one, as it does not modify the input values at all.
When the entire range of the input values needs to be represented, then this function is of use,
but in any other case a slightly more complex function allows more complex processing. For
example, the XOR problem cannot be solved with a linear activation function (Figure 22 -
Linear activation).

Figure 22 - Linear activation

The linear activation function is represented by the equation

(ݔ)݂ = (1-3) ݔ

3.3 Neural networks 47

3.3.1.3.2 Sigmoid activation function

Sigmoid functions are not really complex functions, but perfectly serve the purpose of scaling
the input in an ANN. The following sigmoid function is a basic example for an ANN just
having to return positive values (Figure 23 - Sigmoid activation).

Figure 23 - Sigmoid activation

Its equation is

(ݔ)݂ = ଵ
ଵା௘షೣ (3-2)

If an ANN needs to return only values between 0 and 1, but not below 0, this function fits
best.

3.3.1.3.3 Hyperbolic tangent activation function

If, however, the output has to be scaled between positive and negative values, e.g. between -1
and 1 as it is common when applying ANNs, the hyperbolic tangent function performs well
(Figure 24 - Tangens hyperbolicus activation).

48 3 An outline of artificial neural networks

Figure 24 - Tangens hyperbolicus activation

Its equation is

(ݔ)݂ = ௘మೣିଵ
௘మೣାଵ

 (3-3)

3.3.1.3.4 Rectifier linear unit

The rectifier linear unit (ReLu) activation function has shown to result in ANNs with
remarkable performance, especially in deep structures such as convolutional ANNs.

Figure 25 - ReLu activation

3.3 Neural networks 49

Its equation is

(ݔ)݂ = ,0)ݔܽ݉ (4-3) (ݔ

As of now, the ReLu function is the most popular activation function. It has been argued to be
biologically more plausible than the sigmoid activation.

3.3.1.3.5 Gaussian activation function

The last activation function of relevance for this elaboration is a radial basis one, the Gauss
function, producing the familiar curve (Figure 26 - Gauss activation).

Figure 26 - Gauss activation

Its equation is

(ݔ)݂ = ܽ݁ି (ೣష್)²
మ೎² (3-5)

ܽ being the curve's peak, ܾ representing the curve's position, and ܿ being the width of the
curve. The Gaussian activation function can be applied when finer control over the activation
range is needed.92

Nearly any activation function can be applied within artificial neural networks, also such ones
as logarithmic sinus functions. It is of utmost importance for a very often applied training
approach within multi-layer perceptrons, abstracted by the umbrella term ‘propagation
training’ (3.3.3.6 Propagation learning), that the activation function is derivative. For
calculating the error within propagation training, the actual output of the neural network is

92 Heaton Jeff (2010): Programming Neural Networks with Encog 2 in Java; Chesterfield: Heaton
Research, Inc., p. 90

50 3 An outline of artificial neural networks

applied to the derivative of the activation function used,93 which requires the function to be
derivative. The last function mentioned here is not used within the prototype, but of use for
further explanations, as it is easy understandable. It is the bipolar activation 94 function,
algebraically represented by

(ݏ)݂ = ൜ 1, ݏ ݂݅ > 0,
−1, ݏ ݂݅ ≤ 0 (3-6)

A bipolar function scales the weighted and summed output of a neuron to either -1 or 1.

3.3.1.4 Regularization

Regularization is required due to the number of weights deep neural networks tend to overfit.
Several approaches exist:

– L2 regularization: the squared magnitude of all parameters is directly penalized in the
objective, thus to every weight ߱ the term ଵ

ଶ
ଶ߱ߣ is added, whereby ߣ represents the

regularization strength, the factor ଵ
ଶ
 is added because this term’s gradient with respect to ߱

then results in ߱ߣ instead of 2߱ߣ. This results in penalizing high weight vectors heavily.
Weights and inputs are multiplied, and another effect of L2 regularization is that the
network uses all of its inputs slightly instead of just some inputs a lot. Finally, every
weight is decayed linearly during gradient descent.

ݐ)௜ݓ + 1) = (ݐ)௜ݓ − ௜ݓߣ (3-7)

– L1 regularization: the term ߣ|߱| is added to the objective, which results in many weight
vectors evolving towards 0. This results in the effect that the neurons use only a very
sparse subset of their inputs, namely the ones contributing most to the output. The rest of
the inputs is considered to be noise and disregarded. L1 regularization is also frequently
used in feature selection. A regularization technique called elastic net regularization
combines L1 and L2 regularization: ߣଵ|߱| + .ଶ߱ଶߣ

– Dropout: 95 dropout is one of the most simple, but also most effective dropout methods
and is usually used in combination with the others mentioned. The idea is to sample an
ANN, thus keep a neuron and its weights active with probability ݌.

– Max norm constraints: this refers to apply constraints to the updates. The update rule for
the weights is applied as usual, but additionally an upper bound, the constraint ܿ , is
enforced on the weight vector of every neuron ݓሬሬ⃗ , so that it satisfies ‖ݓሬሬ⃗ ‖ < ܿ. The ex-
ploding gradient-problem can never occur in an ANN making use of max norm constraint
regularization.

93 Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton Research,
Inc., p. 87

94 Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton Research,
Inc., p. 87

95 Sirivastava Nitish, Hinton Geoffrey, Krizhevsky Alex, Sutskever Ilya, Salakhutdinov Ruslan
(2014): Dropout: A Simple Way to Prevent Neural Networks from Overfitting; Journal of
Machine Learning Research 15 (2014) 1929-1958

3.3 Neural networks 51

3.3.2 Types of artificial neural networks

The number of different types of ANNs is straightforward, but nonetheless the different types
show complete differences in their structure and their cases of application. Furthermore, each
type of ANN can be changed in terms of activation functions, data processing or its number of
layers which, in some degree, can lead to the assumption that one has to do it with different
subtypes.

Artificial neural networks may be classified by the following dimensions:

– Supervised versus unsupervised versus hybrid
– Feed-forward versus feed-forward with feedback versus fully connected (fully recurrent)

3.3.2.1 Supervised and unsupervised learning

Supervised ANNs are called supervised, as they need a teacher for being able to learn. A
teacher, in this case, is on the one hand the human presenting training data to the ANN, but
primarily the training data itself. Training data are such datasets that feature complete and
correct input values as well as the desired output values for the artificial neural network. A
commonly used test case for ANNs is the XOR problem, where the network has to have two
input neurons for being able to receive the input values and one output neuron, for being able
to produce the target value.

Nevertheless, training data is not always available as output values are not always known,
which may be the case when clustering data. A special class of ANNs, the self-organizing
feature maps, are capable of classifying values into output clusters they defined on their own.

3.3.2.2 Feed-forward artificial neural network

The former type of neural network has its name from the process of sending input values
forward through an ANN, which has been denoted feed-forward, related to the direction the
data passes through.

3.3.2.3 Feed-forward artificial neural network with feedback connections

Feed-forward with feedback ANNs include, additionally to the latter, also feedback connec-
tions, making them recurrent. Such artificial neural networks contain cyclic interconnections
between the neuron layers or single neurons. 96 These cyclic interconnections are used to
propagate the output values of a specific layer through the extra layer to another specific layer
as input values, which form a kind of long term-memory of the ANN.

96 Tahir Mukarram A. (2007): Java Implementation of Neural Networks; USA: Booksurge
Publishing Inc., p. 70

52 3 An outline of artificial neural networks

3.3.2.4 Fully connected artificial neural network

Fully connected ANNs do not follow a specific direction when processing the input to the
output neurons, as every neuron is connected to every other neuron within the network. Fully
recurrent ANNs have been proven to be unstable and dynamic,97 and are, amongst others,
applied when simulating chaotic systems.98,99

3.3.2.5 Basic artificial neural network structure

The structure of an ANN depends, as indicated beforehand, on its type. The following scheme
(Figure 27 - Simple artificial neural network structure) is therefore not valid for each type of
ANN, but serves the purpose of explaining data transfer through such one.

inh
1

Figure 27 - Simple artificial neural network structure

The schematic ANN dictates over 2 input neurons, which means that the two input values the
same time must be presented to it. The purpose behind this is not to save time, but depends
from the problem. When e.g. presenting the XOR problem to an ANN, it must have two input
neurons, as always two values are presented at the same time. The next layer is the hidden
one, in the scheme also consisting of two neurons. A hidden layer is the ANN-internal
representation of the processed inputs and at least one is usually needed for enabling the ANN
to process complex problems – training often shows if one is required. For generic ANNs, at
least one hidden layer is required, as the problem to process is not known before. The only
impact a hidden layer in an ANN has when processing a problem of low complexity normally
not requiring one, is a decreased performance in terms of processing time. The last neuron in
the scheme is the output neuron, receiving the processed data and forwarding it to the outside
world. Of course, ANNs are not limited to the number of neurons in each layer shown in the
scheme, as e.g. for multidimensional classification (=one input is not classified by one, but
more values) at least two output neurons must be available. Additionally, the scheme contains
the descriptions of weights between each of the neurons and neuron layers. These weights
form the memory of a neural network and are mathematically represented by a matrix. An

97 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 693

98 Wang L. P. (2004): A noisy chaotic neural network for solving combinatorial optimization
problems: Stochastic chaotic simulated annealing; IEEE Trans. System, Man, Cybernetics, Part B
– Cybernetics, 34(5): 2119–2125

99 Wang L. P. (1998): On chaotic simulated annealing; IEEE Trans. Neural Networks, 9: 716–718

3.3 Neural networks 53

example for saving the memory of a neural network, including its threshold values, is the
matrix

݉௜௛ = ൥
௜ଵ௛௡ݓ ௜௡௛ଵݓ
௜ଵ௛ଵݓ ௜௡௛௡ݓ

ଵݐ ଶݐ

൩ (3-8)

based on the connections to the input layer and the hidden layer of Figure 27 - Simple
artificial neural network structure. The values of the weights between the input neurons
between the input neurons are saved in the columns, where column 1 represents the weights
of ݅ଵ to the hidden neurons ℎଵ and ℎ௡. So does the second column, with the weights from the
input neuron ݅௡ to the hidden neurons ℎଵ and ℎ௡. The two thresholds are saved in the last row
of the matrix, in the column of their corresponding neuron. Training or learning of an
artificial neural network means ‘adaption of the weights between the neurons’. How these
weights are adapted, depends from the method of training (3.3.3 Training and learning).
Furthermore, ANNs can be regarded as generalization of autoregressive moving-average,
known from economy and as ARMA, which is described as follows:100

Φ(ܮ)ݔ௧ = Θ(ܮ)߳௧ (3-9)

where Φ(ܮ) and Θ(ܮ) are polynomials of the order p and q,

(ܮ)ߔ = 1 − ߶ଵܮ − ߶ଶ²ܮ − ⋯ − ߶௣ܮ௣

(ܮ)߆ = 1 − ܮଵߠ − ²ܮଶߠ − ⋯ − ௤ (3-10)ܮ௤ߠ

where {߳௧} represents the white noise, and L the lag operator.

As Fulcher notes correctly, ANNs are nonlinear generalizations of the autoregressive process:

௧ݔ = ݂൫ݔ௧ିଵ, … , ௧ି௣൯ݔ + ߳௧ (3-11)

3.3.2.6 Perceptron

Perceptrons are supervised ANNs, therefore require training data and can be of the types feed-
forward or feedback. Initially, the perceptron has been introduced by Frank Rosenblatt.101 The
two classes of perceptrons are single-layer peceptrons (SLP) and multi-layer perceptrons
(MLP). As the descriptions indicate, the SLP consists of just one neuron layer, whereas the
MLP has at least one input layer and one output layer as well as one-to-many hidden layers.

3.3.2.6.1 Single layer perceptron

The purpose of an SLP is to segregate data belonging to two different classes. Simply said,
data belongs to class one when the neuron fires, and to class two if it does not. Not to fire in

100 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 520

101 Rosenblatt Frank (1958): The Perceptron. A Probabilistic Model for Information Storage and
Organization in the Brain; Psychological Reviews, 65: 386–408

54 3 An outline of artificial neural networks

case of a bipolar activation function providing the classes one and zero means to put out zero.
An SLP with one output neuron is mathematically represented by

ݕ = ݂(∑ ߱௜
௡
௜ୀଵ ௜ݔ + (ߠ + ߳௧ (3-12)

where ݂ is the activation function, applied to the summed weights ߱௜ multiplied by the input
values ݔ௜, if the threshold is exceeded. ߳௧ is the uncertainty variable of the ANN, also called
white noise. Additionally, the formula takes into consideration a bias ߠ , which is not
necessarily used.

Figure 28 – Single layer perceptron

Figure 28 – Single layer depicts the bias ߠ with ݔ଴, having the value 1, which is, according to
the latter formula, also taken into consideration when summing up. The perceptron works as
described before, with the exception that an activation function is depicted. This function
described in the scheme is a special bipolar one, meaning that the input is either classified to
one, or minus one. Generally, a function capable of classifying inputs into both positive and
negative output (not necessarily only into one and minus one) is denoted bipolar. A function
only able to classify into positive values is called unipolar.

Thus, a neuron can, and will within this elaboration, also make use of sigmoidal activation
functions like the unipolar sigmoid or the bipolar tangens hyperbolicus function mentioned
above.

3.3 Neural networks 55

According to the scheme, the following perceptron learning algorithm describes what happens
during the training phase:102

Start

1. Initial selection of perceptron weights at random.
2. Repeat

a) To the input neuron, the learning vector ݔ, while
ݔ = (ݐ)ݔ = ,(ݐ)0ݔ] ,(ݐ)1ݔ . . . , , ܶ[(ݐ)݊ݔ = ݐ 1, 2, . .. is presented.

b) The output value y of the perceptron is calculated, according to the before
explained equation

ݕ = ݂ ൭෍ ߱௜

௡

௜ୀଵ

௜ݔ + ൱ߠ

c) The output value (ݐ)ݕ is afterwards compared with the desired output value
݀ = .occurring in the learning sequence ((ݐ)ݔ)݀

d) The weights are then modified according to dependencies:
i. ݂݅ (ݐ)ݔ)ݕ ≠ ݀൫(ݐ)ݔ൯, ݐ)௜ݓ ℎ݁݊ݐ + 1) = (ݐ)௜ݓ + ݀൫(ݐ)ݔ൯ݔ௜(ݐ);

ii. ݂݅ (ݐ)ݔ)ݕ = ݀൫(ݐ)ݔ൯, ݐ)௜ݓ ℎ݁݊ݐ + 1) = e.g. weights remain ,(ݐ)௜ݓ
unchanged.

3. Until criteria are reached

End

Algorithm 1 - Basic perceptron learning

Hence, the learning algorithm of the SLP x1 has to adapt the weights ݓଵ,, … , ௡ in a way thatݓ
the related neuron puts out one when data belongs to class one, and minus one, when the data
set belongs to class two. In the above algorithm, in step 5, sub step a) increases the weight by
the desired output value ݀൫(ݐ)ݔ൯ multiplied by a learning vectorݔ௜(ݐ). The algorithm runs as
long as an allowed minimum error between the desired output and the actual output has not
been reached. Famous examples for learning rules are the Widrow-Hoff rule (∆ or ߜ rule,
3.3.3.5 Delta rule) or Hebb's learning rule (3.3.3.4 Hebb's learning rule).

According to Rosenblatt's theorem, the learning algorithm of the perceptron converges in final
time, and it therefore can learn anything what it is capable to represent. However, due to the
fact that the SLP features only one layer, it can only solve linearly separable problems (and
may therefore, without exception, be applied on linearly separable data). In other words, an
SLP can only solve problems based on data, which can be segregated through planes in space,
as the segregation of two points in a two-dimensional space through a line is. An example for
linearly inseparable data would be the XOR operator. The following graphs (Figure 29 – OR
operator, Figure 30 – AND operator, Figure 31 – XOR operator) describe the problem.

102 Rutkowski Leszek (2008): Computational Intelligence Methods and Techniques; Berlin
Heidelberg: Springer-Verlag, p. 192

56 3 An outline of artificial neural networks

Figure 29 – OR operator

Figure 30 – AND operator

Figure 31 – XOR operator

Figure 31 – XOR operator shows the impossibility of linearly segregating the sets within the
XOR-operator.

3.3.2.6.2 Multi layer perceptron

MLPs find application when the necessity of solving problem statements based on convex or
arbitrarily complex data. Two-layer perceptrons are capable of separating convex sets, any
further layer enables MLPs to separate any sets. The structure of an MLP differs from the one
of an SLP, as the name indicates, in the number of layers (Figure 32 – Multi layer
perceptron).

Figure 32 – Multi layer perceptron describes an MLP with three layers, consisting of three
input neurons, which are presented the input vector ݒ௜, four hidden neurons and two output
neurons, which produce the output vector ݒ௢. As indicated in 3.3.1.2.1 Structure, the hidden

3.3 Neural networks 57

neurons are the internal representation of the outside world, transferred by the input neurons
and adapted by input neurons’ corresponding weights. Every neuron of the MLP makes use of
an activation function, as an SLP neuron does. Referring back to ARMA mentioned in 3.3.1
Artificial neural networks, a 3-layer MLP with one output neuron can be described by

௧ݔ = ℎଶ(ݓ଴ + ∑ ଴௝ݓ)௝ℎଵݓ
௟
௝ୀଵ + ∑ ((௧ି௜ݔ௜௝ݓ + ߳௧

௣
௜ୀଵ (3-13)

where the input layer has ݌ inputs ݔ௧ିଵ, … , ௧ି௣, the hidden layer has ݈ hidden nodes and theݔ
output, and there is a single output for the output layer ݔ௧. Layers are fully connected by
weights, where ݓ௜௝ is the ݅௧௛ input for the ݆௧௛ node in the hidden layer, whereas ݓ௝ is the
weight assigned to the ݆௧௛ node in the hidden layer for the output. ݓ଴ and ݓ଴௝ are the biases,

Figure 32 – Multi layer perceptron

ℎଵ and ℎଶ are activation functions. ߳௧ is the uncertainty variable of the ANN, also called white
noise.103

The major advantage of an MLP is the possible application of complex learning functions on
a fairly high number of weights, which are the decisive factor in the ANNs capability of
learning and remembering how to solve problems of any complexity.

Saving the weights as matrices becomes increasingly complex, the more neurons and layers
an ANN includes:

103 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 521

58 3 An outline of artificial neural networks

݉௜௛ =

⎣
⎢
⎢
⎢
⎡
௜ଵ௛ଵݓ ௜ଶ௛ଵݓ ௜௡௛ଵݓ
௜ଵ௛ଶݓ ௜ଶ௛ଶݓ ௜௡௛ଶݓ
௜ଵ௛ଷݓ ௜ଶ௛ଷݓ ௜௡௛ଷݓ
௜ଵ௛௡ݓ ௜ଶ௛௡ݓ ௜௡௛௡ݓ

ଵݐ ଶݐ ଷݐ ⎦
⎥
⎥
⎥
⎤
 (3-14)

and

݉௛௢ = ൥
௛ଵ௢ଵݓ ௛ଶ௢ଵݓ ௛ଷ௢ଵݓ ௛௡௢ଵݓ
௛ଵ௢௡ݓ ௛ଶ௢௡ݓ ௛ଷ௢௡ݓ ௛௡௢௡ݓ

ଵݐ ଶݐ ଷݐ ସݐ

൩ (3-15)

The depicted ANN describes a feed-forward artificial neural network, as the data is trans-
ferred from the input to the output neurons in just one way. The pure calculation of the output
of a feed-forward ANN (here without activation function and uncertainty variable) happens as
follows:

݋ = (∑ ߱௜ݔ௜
௡
௜ୀଵ + ௡) (3-16)ݓ

The input ݔ௜ is multiplied with its corresponding weight ߱௜ and then summed up with the
matrix columns' threshold ݓ௡ , in the matrix examples represented by (ݐଵ, … , (௡ݐ , and in
equation (3-12) generalized by ߠ.

3.3.2.6.3 Spiking artificial neural networks

Spiking neural networks process information differently in the sense that they make use of a
temporal component in their operating model. This means that each firing neuron does not
fire at each propagation cycle, but rather when a pre-defined membrane potential has been
reached. The neural output of a firing neuron is absorbed by a target neuron, which in- or
decreases its potential, depending from the signal type. The sum of the incoming signals is
called spike-train. Let assume a time series

௜(௧)ݑ = ௥ݑ (3-17)

where ݑ௥ is the resting potential of the neuron ݑ௜ at ݐ. At ݐ = 0 the presynaptic neuron ݆ fires
and at ݐ > 0 the answer of the postsynaptic neuron ݅ is

௜(௧)ݑ − ௥ݑ = ௜௝(௧) (3-18)ߝ

where ߝ௜௝ is the postsynaptic potential at ݐ. If ߝ௜௝(௧) > 0 then the signal is excitatory, else it is
inhibitory. If now two presynaptic neurons ݆ = 1,2 send spikes to ݅ by firing at ݐ௝

ଵ and ݐ௝
ଶ, then

each spike evokes a postsynaptic potential ߝ௜௝, and a modification of the potential happens:

௜(௧)ݑ = ∑ ∑ ௜௝ቀ௧ି௧ೕߝ
೙ቁ + ௥௡௝ݑ (3-19)

If then the critical value has been reached the action potential in ݅ is stimulated and passed
over to other neurons via the axon. After firing the potential is reset to ݑ௜(௧) < .௥ݑ

3.3 Neural networks 59

3.3.2.7 Radial basis artificial neural network

A radial basis network is similar to the before mentioned feed-forward multilayer perceptron,
with the restriction that it makes use of one hidden layer in any case. This hidden layer makes
use of radial base functions as activation functions, usually Gaussian ones. The equation

(ݔ)݂ = ∑ ݔ|௜߮൫หݓ − ܿ௜|ห൯௞
௜ (3-20)

describes such a network, where ߮() is a radial basis function, ܿ௜ is the ith center, and k is the
number of the center. Both ݓ௜, ܿ௜ and k are determined by the data set of x. Typical choices of
radial basis functions are the already known

Gaussian function,

(ݔ)߮ = ܽ݁ି (ೣష್)²
మ೎² (3-21)

the thin-plate-spline function,

(ݔ)߮ = ௫ (3-22)݃݋²݈ݔ

the multi-quadratic function,

(ݔ)߮ = ଶݔ) + (ଶߚ
భ
మ (3-23)

the inverse multi-quadratic function,104

(ݔ)߮ = ଵ

(௫మାఉమ)
భ
మ
 (3-24)

or the compound Gauss function

(ݔ)߮ = ቆ1݁ି (ೣశమ)
(మషభ)మ

మ

ቇ + ቆ2݁ି (ೣషమ)
(మషభ)మ

మ

ቇ (3-25)

RBF networks are especially useful for function approximation or for predictive ANNs.

3.3.2.8 Recurrent artificial neural network

Although feed-forward ANNs are capable of solving various problems, the application of
recurrent ANNs provides several advantages in terms of granularity and abstraction. The
notions of granularity and abstraction are used in many subfields of artificial intelligence. The
granulation of time and space leads naturally to temporal and spatial granularities. 105 An
additional recurrent layer may influence the network’s performance and enable the network to
solve more complex problems, as the layer, through its influence to another layer, serves as

104 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 522

105 Abraham Ajith, Hassanien Aboul-Ella, de Leon F. de Carvalho André Ponce, Snáel Vaclav
(2009): Foundations of Computational Intelligence Volume 6: Data Mining; Berlin Heidelberg:
Springer-Verlag, p. 68

60 3 An outline of artificial neural networks

some kind of long-time memory of an ANN. An ANN implemented in the classic feed-
forward architecture, e.g. encounters problems when dealing with moving-average series. In
using the multi layer perceptron neural network to represent

௧ݔ = ߳௧ − ௧ିଵ (3-26)ߠ

or in another term

௧ݔ = ∑ ௜ߠ ௧ି௜ݔ +ஶ
௜ୀଵ ߳௧ (3-27)

one needs to have an input layer with an infinite number of neurons (infinite memory of the
past), namely, ݔ௧ିଵ, ݔ௧ିଶ, . . ., which is impossible in practice.106 Although an infinite number
of neurons theoretically would lead to an exact representation, a high finite number would
indeed suffice, but also increase the complexity of the network by a large number of
parameters, which would slow down training and estimation.107 Therefore, a recurrent ANN
can deal with ARMA series, whereas MLPs only can deal with AR time series. A recurrent
ANN can be represented by108

௧ݔ = ℎଶ(ݓ଴ + ∑ ଴௝ݓ)௝ℎଵݓ +௟
௝ୀଵ ∑ ௧ିଵݔ௜௝ݓ + ∑ ߸௠௝ݖ௠,௧ିଵ)) + ߳௧

௟
௠ୀଵ

௣
௜ୀଵ (3-28)

where

௠,௧ݖ = ଴௠ݓ + ∑ ௧ି௜ݔ௜௠ݓ + ∑ ߸௞௝ݖ௞,௧ିଵ, ݉ = 1, … , ݈௟
௞ୀଵ

௣
௜ୀଵ (3-29)

Two kinds of recurrent ANNs are worth mentioning here, namely the Elman 109 and the
Jordan110 recurrent ANN.

3.3.2.8.1 Elman recurrent artificial neural network

The Elman neural network processes the outputs of the hidden layer to the recurrent or
context layer, which passes its outputs again back to the hidden layer in the next iteration.
This influences the input, output and adoption by its learning method in the network’s next
iteration. The connections between the context and the hidden layer are not weighted.
Therefore, propagation learning can be applied to the network (Figure 33 - Elman artificial
neural network).

106 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 523

107 Mandic Danilo P., Chamber Jonathon (2001): Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures, and Stability; New York: Wiley

108 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 524

109 Elman J. L. (1990): Finding Structure in Time; Cognitive Science, 14, 179-211
110 Jordan Michael I. (1986): Attractor dynamics and parallelism in a connectionist sequential

machine; Proceedings of the Eighth Annual Conference of the Cognitive Science Society;
Englewood Cliffs: Erlbaum, pp. 531-546

3.3 Neural networks 61

Figure 33 - Elman artificial neural network

3.3.2.8.2 Jordan recurrent artificial neural network

Another example of a recurrent ANN is the Jordan network, having a state layer in which the
outputs of the network are propagated into. The connections between the context layer and the
hidden layer are not weighted, which again allows propagation training (Figure 34 - Jordan
artificial neural network).

62 3 An outline of artificial neural networks

Figure 34 - Jordan artificial neural network

The major difference to the Elman ANN is that every output is propagated into every hidden
neuron and not just into one. This is necessary, as the number of output neurons, and therefore
the number of the context neurons, very often differs from the number of hidden neurons.

Recurrent ANNs are useful when dealing with problems that require ‘long-term memory’ for
successful processing. There exist more, well-known types of recurrent ANNs which have not
been considered within this elaboration.

3.3.2.9 Fully connected artificial neural network

As already indicated, each of the neurons of fully connected ANNs features connections to
every other neuron, except themselves – no self-connections exist, but as many input as
output ones. Thus, a fully connected ANN has no processing direction like a feed forward
ANN has. Two very popular and simple fully connected ANNs are the

– Hopfield network111 and the
– Boltzmann machine.112

111 Hopfield J. Joseph (1982): Neural networks and physical systems with emergent collective
computational properties; Proceedings Nat. Acad. Sci. (USA) 79, 2554-2558.

3.3 Neural networks 63

Especially the latter type is of utmost importance here, as it is the foundation for the deep
belief networks113 for classification. Both network types are presented an initial pattern
through its input neurons, which does not differ from MLPs. However, according to the
weight calculations, a new pattern is received from the output neurons. The difference to other
ANNs now is that this pattern is fed back to the input neurons, which is possible, as the input
and output layer are the same. This cycle continues as long as it takes the network to stabilize.
Until stabilization, the network is in a new state after an iteration, which is used for
comparison of the actual pattern and the input vector.114 Both Hopfield ANNs and Boltzmann
machines belong to the class of thermal ANNs, as they feature a stochastic component, the
energy function, which is applied similarly to simulated annealing-learning explained at
3.3.3.8 Simulated annealing. Energy-based probabilistic models define a probability
distribution through an energy function, as

(ݔ)݌ = ௘షಶ(ೣ)

௓
 (3-30)

where Z is the normalization factor and called the partition function:

ܼ = ∑ ݁ିா(௫)
௫ (3-31)

An energy-based model can be learnt by performing (stochastic) gradient descent on the
empirical negative log-likelihood of the training data.

Excursus: the log-likelihood

As the log-likelihood is of importance here, it will be explained in detail, starting with its
connection to the likelihood-function. In general, the likelihood function is used within the
maximum likelihood-method for the estimation of the parameters of a density or probability
distribution. Let assume ܺ is a stochastic variable with a probability function

;ݔ)݂ (3-32) (ߠ

where ߠ is an unknown parameter that may be multidimensional and ݔଵ, ,ଶݔ … , ௡ݔ are
different forms of ߠ. The likelihood function is the function that assigns each value of this
parameter the value

,ଵݔ|ߠ)ܮ ,ଶݔ … , (௡ݔ = ,ଵݔ)݂ ,ଶݔ … , ;௡ݔ (3-33) (ߠ

The log-likelihood function is simply the logarithmic likelihood-function. As it is used
within the maximum likelihood-estimation, the first and second derivation to ߠ have to be
calculated, as well as the zeros of the first derivation. This is easier when using the log-
likelihood

൯(ߠ)ܮ൫݃݋݈ = ,ଵݔ)݂)݃݋݈ ,ଶݔ … , ;௡ݔ (3-34) ((ߠ

112 Hinton Geoffrey E., Sejnowski Terrence J. (1983): Optimal Perceptual Inference. Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, Washington DC, pp. 448-453.

113 Hinton Geoffrey E., Salakhutdinov Ruslan R. (2006): Reducing the dimensionality of data with
neural networks, Science, vol. 313, no. 5786, pp. 504–507, 2006.

114 Heaton Jeff (2010): Programming Neural Networks with Encog 2 in Java; Chesterfield: Heaton
Research, Inc., p. 339

64 3 An outline of artificial neural networks

This is because the derivation of the log-likelihood to ߠ is simpler than the likelihood to ߠ.
Generally, if ߠ∗ is a maximum of the log-likelihood function, then it is also a maximum of
the likelihood function and vice versa.115 The basic idea behind the maximum likelihood-
function is very simple, as follows. Let assume the approximation for the unknown ߠ for
which the function ݂ is as large as possible. If ݂ is a differentiable function of ߠ, a necessary
condition for ݂ to have a maximum in an interval (not at the boundary) is

 డ௙
డఏ

= 0 (3-35)

The derivative is partial, because ݂ also depends on (ݔଵ, ,ଶݔ … , ௡). A solution depending onݔ
,ଵݔ) ,ଶݔ … , Thus, 1-30 may be replaced .ߠ ௡) is called a maximum likelihood estimate forݔ
by

 డ௟௡(௙)
డఏ

= 0 (3-36)

because ݂൫ݔ௝൯ > 0 , a maximum of ݂ is in general positive, and ln(݂) is a monotone
increasing of the function ݂, which often simplifies calculations.116

As for the logistic regression at first the log-likelihood (1-32) followed by the loss function
(1-33) as being the negative log-likelihood need to be defined:

,ߠ)ܮ (ܦ = ଵ
ே

∑ ݃݋݈ ௫(೔)∈஽((௜)ݔ)݌ (3-37)

ℓ(ߠ, (ܦ = ,ߠ)ܮ− (38-3) (ܦ

using the stochastic gradient

− డ ௟௢௚ ௣(௫(೔))
డఏ

 (3-39)

where ߠ are the parameters of the model.117

3.3.2.9.1 Hopfield artificial neural network

The Hopfield ANN (Figure 35 - Hopfield artificial neural network) is a self-connected ANN.
It contains one single layer of neurons, which is self-connected. Every neuron on the layer is
connected to every other neuron on the same layer, without being self-connected. In
difference to most of the other ANNs, the Hopfield ANN does not apply threshold values.
Another characteristic of this special type of ANN is that it operates on bipolar numbers,
allowing binary numbers to be represented numerically in a way that true and false are
opposites. Thus, the ANN's activation function is also bipolar, only outputting -1 or 1 for each

115 K rengel Ulrich (1988): Einführung in die Wahrscheinlichkeitstheorie und Statistik;
Braunschweig/Wiesbaden 1988: Verlag Friedrich Vieweg & Sohn

116 Kreiszig Erwin (1999): Advanced Engineering Mathematics, 8th ed.; Singapore: John Wiley &
Sons, p. 1107

117 Deeplearning.net (2012): Restricted Boltzmann Machines (RBM) [2012-15-08]; Deeplearning.
net; URL: http://deeplearning.net/tutorial/rbm.html

3.3 Neural networks 65

output neuron. 118 Until stabilization, the state of the Hopfield network will move towards the
closest pattern, thus ‘recognizing’ that pattern. As the Hopfield network moves towards one
of these patterns, the energy, applied with the energy function, lowers.119 Let assume that ݒ௜(௧)
is the state of a node ݅ at time ݐ and

௜(௧)ݒ = ݃൫ݑ௜(௧)൯ (3-40)

ௗ௨೔(೟)

ௗ௧
= ௜ܧ− (3-41) (௧ݒ)

where

(ݒ)௜ܧ = డ
డ௩೔

 (42-3) (ݒ)ܧ

and where ݃ represents an arbitrary increasing function, then a Hopfield ANN may be used to
compute a local minimum of this function defined on a hypercube. As the equations can
generally be seen as gradient-descent method, they usually do not find the global minimum:

ௗ
ௗ௧

(௧ݒ)ܧ = ∑ (௧ݒ)௜ܧ ௗ൫௩೔(೟)൯
ௗ௧௜ = ∑ ௜(௧)൯ݑ൫′݃(௧ݒ)௜ܧ ௗ൫௨೔(೟)൯

ௗ௧
= − ∑ ݃′௜௜ ൫ݑ௜(௧)൯ܧ௜

ଶ(ݒ௧) ≤ 0
 (3-43)

The equation shows that E is decreasing, but not strictly decreasing and any equilibrium
reached may only be a local minimum.120 Graphically, a Hopfield ANN may be represented
as shown in Figure 35 - Hopfield artificial neural network

i1

i2

in

wi1i2

wi2in

wi1in

Figure 35 - Hopfield artificial neural network

118 Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield: Heaton
Research, Inc., p. 85

119 Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton Research,
Inc., p. 44

120 Wong Eugene (1991): Stochastic Neural Networks; California: University of Berkelay,
Department of Electrical Engineering and Computer Science

66 3 An outline of artificial neural networks

3.3.2.9.2 Boltzmann Machine

At a first glance, a Boltzmann machine seems to be identical to a Hopfield ANN. However, it
contains hidden neurons. Boltzmann machines are a particular form of the log-linear Markov
random field, e.g. for which the energy function is linear in its free parameters. To make them
powerful enough to represent complicated distributions, it is considered that some of the
variables are never observed, represented by the above mentioned hidden neurons. By having
more hidden variables, the modelling capacity of the Boltzmann machine can be increased.121
The hidden neurons require adoptions in the above equations, with respect to the hidden and
observed part:

(ݔ) = ∑ ,ݔ)ܲ ℎ) = ∑ ௘షಶ(ೣ)

௓௛௛ (3-44)

For being able to map this equation to a similar one as equation (3-44) shows, the notation of
free energy must be introduced:

ℱ(ݔ) = ݃݋݈− ∑ ݁ିா(௫,௛)
௛ (3-45)

leading to

(ݔ)ܲ = ௘షℱ(ೣ)

௓
 (3-46)

where

ܼ = ∑ ݁ିℱ(௫)
௫ (3-47)

The data negative log-likelihood gradient's form then is:

− డ ௟௢௚ ௣(௫)
డఏ

= డℱ(௫)
డఏ

− ∑ ௫̅(෤ݔ)݌
డℱ(௫෤)

డఏ
 (3-48)

The gradient contains two terms, referring to the positive and negative phases. The terms
positive and negative do not refer to the sign of each term in the equation, but rather reflect
their effect on the probability density defined by the model. The first term increases the
probability of training data (by reducing the corresponding free energy), while the second
term decreases the probability of samples generated by the model. 122 Graphically, a
Boltzmann machine can be described as depicted in Figure 36 - Boltzmann machine.

121 Deeplearning.net (2012): Restricted Boltzmann Machines (RBM) [2012-15-08]; Deeplearning.
net; URL: http://deeplearning.net/tutorial/rbm.html

122 Deeplearning.net (2012): Restricted Boltzmann Machines (RBM) [2012-15-08]; Deeplearning.
net; URL: http://deeplearning.net/tutorial/rbm.html

3.3 Neural networks 67

w i1h1

wi1h2

wi2h2
w

i2h3

w inh
2

winh3

w
inhn

Figure 36 - Boltzmann machine

Every neuron is connected to every other neuron without featuring self-connections. The
input neurons are the output neurons at once, thus consuming the input vector and presenting
the output vector.

A further development of the Boltzmann machine is the so-called restricted Boltzmann
machine (RBM).123 An RBM consists of a layer of visible units and a layer of hidden units
with no visible-visible or hidden-hidden connections. With these restrictions, the hidden units
are conditionally independent given a visible vector, so unbiased samples data can be
obtained in one parallel step (Figure 37 - Restricted Boltzmann machine).124

123 Smolensky Pavel (1986): Information processing in dynamical systems: Foundations of harmony
theory. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed Processing:
Volume 1: Foundations, pages 194-281. MIT Press, Cambridge, MA.

124 Scholarpedia (2011): Boltzmann Machine (2012-15-08); Scholarpedia; URL: http://www.scholar
pedia.org/article/Boltzmann_machine#Restricted_Boltzmann_machines

68 3 An outline of artificial neural networks

Figure 37 - Restricted Boltzmann machine

The first thing in training a RBM is to create a probability distribution based on the
propagated inputs. Each hidden unit then takes a binary value based on this distribution:

൫ℎ௝݌ = 1หݒ൯ = ∑൫ߪ ௜ݒ௜௝ݓ + ௝ܿ
஽
௜ୀଵ ൯ (3-49)

where ℎ௝ is the ݆௧௛ hidden neuron, ݒ௜ the ݅௧௛ visible neuron, ݓ௜௝ the weight between the ݅௧௛
visible and the ݆௧௛ hidden neuron. ௝ܿ is the bias of the ݆௧௛ hidden neuron, and ߪ represents the
sigmoid activation function.

Next, each of the visible neurons takes a value based on the probability distribution of the
propagated inputs, just in the other direction:

௜ݒ)݌ = 1|ℎ) = ∑൫ߪ ௜௝ℎ௝ݓ + ௜ܾ
஽
௝ୀଵ ൯ (3-50)

where ௜ܾ is the visible layer’s bias, and the visible units should reconstruct the original input.
If now ܾ, ܿ, the biases of the visible and hidden layers, and ܹ, the weights of the RBM, are
considered to be a vector parameter ߠ, then (ߠ|ݒ)݌ is the probability that can be achieved to
get close to the real distribution of ݒ, so ߠ must be learned. For evaluating the results, the
energy function ݒ)ܧ, ℎ) must be introduced:

,ݒ) ℎ) = ݒ்ܾ− − ்ܿℎ − ℎ்ܹݒ = − ∑ ௜ݒܾ −஽
௜ୀଵ ∑ ܿெ

௝ୀଵ ℎ௝ − ∑ ∑ ℎ௝ݓ௜௝ݒ௜
஽
௜ୀଵ

ெ
௝ୀଵ (3-51)

An RBM is trained to model the joint probability distribution of its inputs (explanatory
variables) and the corresponding labels (response/output variables), both represented by the

3.3 Neural networks 69

visible units of the RBM. 125 Thus, the joint probability density function, showing the
simultaneous probability of ݔ given ܽ and ܽ given ݔ, which in an RBM is expressed as the
weights shared between the two RBM layers, is

,ݒ)݌ ℎ) = ଵ
௓

,ݒ)ܧ−൫݌ݔ݁ ℎ)൯ (3-52)

where the normalization factor Z (called partition or normalization function) is

ܼ = ∑ ,ݒ)ܧ−൫݌ݔ݁ ℎ)൯௩,௛ (3-53)

In order to determine how to train a RBM, we are interested in the distribution of visible
variables, thus the marginal distribution over hidden variables taking the form

(ߠ|ݒ)݌ = ∑ ,ݒ)ܲ ℎ) = ଵ
௓

∑ ,ݒ)ܧ−൫݌ݔ݁ ℎ)൯௛௛ (3-54)

Then, the log-likelihood gradient is used to train the model:

݈݊ (ݒ|ߠ)ܮ = ݈݊ ݌ (ߠ|ݒ) = ݈݊ ଵ
௓

∑ ,ݒ)ܧ−൫݌ݔ݁ ℎ)൯௛ = ݈݊ ∑ ,ݒ)ܧ−൫݌ݔ݁ ℎ)൯௛ −
݈݊ ∑ ,ݒ)ܧ−൫݌ݔ݁ ℎ)൯௩,௛ (3-55)

The resulting log-likelihood gradient indicates that as long as it is possible to compute the
derivative of free energy for the training examples, and the derivative of free energy for the
model’s own distribution, it is possible to train the model tractably. Next, the gradient against
the model parameter ߠ (ߠ is used to represent the model parameters) is calculated, starting
with the derivative:

డ ௟௡ ௅(ఏ|௩)
డఏ

= డ
డఏ

൫݈݊ ∑ ,ݒ)ܧ−൫݌ݔ݁ ℎ)൯௛ ൯ − డ
డఏ

൫݈݊ ∑ ,ݒ)ܧ−൫݌ݔ݁ ℎ)൯௩,௛ ൯ =

− ଵ
∑ ௘௫௣൫ିா(௩,௛)൯೓

∑ ,ݒ)ܧ−൫݌ݔ݁ ℎ)൯ డா(௩,௛)
డఏ௛ = ଵ

∑ ௘௫௣൫ିா(௩,௛)൯೓
∑ ,ݒ)ܧ−൫݌ݔ݁ ℎ)൯௩,௛

డா(௩,௛)
డఏ

=

− ∑ (ݒ|ℎ)݌ డா(௩,௛)
డఏ௛ + ∑ (ℎ|ݒ)݌ డா(௩,௛)

డఏ௩,௛ (3-56)

The gradient of each weight is then

߲ ݈݊ (ݒ|ߠ)ܮ
௜௝ݓ߲

= ෍ (ݒ|ℎ)݌
,ݒ)ܧ߲ ℎ)

௜௝௛ݓ߲

+ ෍ (ݒ|ℎ)݌
,ݒ)ܧ߲ ℎ)

௜௝௛,௩ݓ߲

= ෍ ௜ݒℎ௝(ݒ|ℎ)݌ −
௛

෍ (ݒ)݌ ෍ ௜ݒℎ௝(ݒ|ℎ)݌
௛௩

= ௝ܪ൫݌ = 1หݒ൯ݒ௜ − ෍ ௝ܪ൫݌(ݒ)݌ = 1หݒ൯ݒ௝
௩

 (3-57)

125 Fischer Asija, Igel Christian: Training Restricted Boltzmann Machines: An Introduction [2016-
07-04]; URL: http://image.diku.dk/igel/paper/TRBMAI.pdf

70 3 An outline of artificial neural networks

and for each bias

డ ௟௡ ௅(ఏ|௩)
డ௖ೕ

= ௝ܪ൫݌ = 1൯ − ∑ ௝ܪ൫݌(ݒ)݌ = 1หݒ൯௩ (3-58)

where ௝ܿ represents the ݆௧௛ bias of the hidden layer.

When the gradient equation is applied as it is, combinatorial explosion does not allow us to
solve it in a realistic time frame. The term ∑ ௩(ݒ)݌ states that the probability distribution over
all {0,1}-patterns must be calculated. This in turn implies that the calculation takes into
account patterns which are not in the source data. A method to overcome this challenge is
contrastive divergence (CD), which leverages Gibbs sampling. Let assume ݒ(଴) is an input
vector, and ݒ(௞) is an input (output) vector that can be obtained by sampling k times using
exactly this input vector:

ℎ௝
(௞)~݌൫ℎ௝หݒ(௞)൯ (3-59)

ℎ௜
(௞ାଵ)~݌൫ݒ௜หݒ(௞)൯ (3-60)

Thus, (ݒ)݌is approximated via iterative Gibbs sampling, and the derivative of the log likely-
hood function is then

డ ௟௡ ௅(ఏ|௩)
డఏ

= − ∑ (ݒ|ℎ)݌ డா(௩,௛)
డఏ௛ + ∑ ,ݒ)݌ ℎ)௩,௛

డா(௩,௛)
డఏ

≈ − ∑ ൯(଴)ݒ൫ℎห݌ డா(௩,௛)
డఏ௛ +

∑ ,(௞)ݒ൫݌ ℎ൯௩,௛
డா൫௩(ೖ),௛൯

డఏ
 (3-61)

The model parameter ߠ consists then of

௜௝ݓ
(ఛାଵ) = ௜௝ݓ

(ఛ) + ௝ܪ൫݌ቀߟ = 1หݒ଴൯ݒ௜
(଴) − ௝ܪ൫݌ = 1หݒ(௞)൯ݒ௜

(௞)ቁ (3-62)

௜ܾ
(ఛାଵ) = ௜ܾ

(ఛ) + ௜ݒቀߟ
(଴) − ௜ݒ

(௞)ቁ (3-63)

௝ܿ
(ఛାଵ) = ௝ܿ

(ఛ) + ߟ ቀ݌൫ܪ௝ = 1หݒ଴൯ቁ − ௝ܪ൫݌ = 1หݒ(௞)൯ (3-64)

where ߬ stands for the number of iterations, and ߟ is the learning rate. Summing up, CD
sampling ݇ times is CD-݇, and usually CD-1 is sufficient. The algorithm for training an RBM
is as follows:

Start

1. Initial selection of RBM weights at random.
2. Repeat

a) Set the input neurons’ states to the learning vector x, while ݔ = (ݐ)ݔ =
,(ݐ)0ݔ] ,(ݐ)1ݔ . . . , , ܶ[(ݐ)݊ݔ = ݐ 1, 2, . ..

b) For each
weight ݓ௜௝

(ఛ) set

௜௝ݓ
(ఛାଵ) = ௜௝ݓ

(ఛ) + ௝ܪ൫݌ቀߟ = 1หݒ଴൯ݒ௜
(଴) − ௝ܪ൫݌ = 1หݒ(௞)൯ݒ௜

(௞)ቁ

3.3 Neural networks 71

c) For each
visible bias ௜ܾ

(ఛ) set

௜ܾ
(ఛାଵ) = ௜ܾ

(ఛ) + ௜ݒቀߟ
(଴) − ௜ݒ

(௞)ቁ

d) For each
hidden bias ௝ܿ

(ఛ) set

௝ܿ
(ఛାଵ) = ௝ܿ

(ఛ) + ߟ ቀ݌൫ܪ௝ = 1หݒ଴൯ቁ − ௝ܪ൫݌ = 1หݒ(௞)൯

3. Until criteria are reached

End

Algorithm 2 – RBM learning

3.3.2.9.3 Support vector machine

Support vector machines 126 (SVMs) are, as ANNs, used for classification, but are an
alternative to these. A support vector machine separates an amount of objects into classes,
leaving a considerable area around the classes free of objects. Classifiers classifying objects in
such way are called ‘large margin classifiers’. As for supervised learning within ANNs it is
necessary that for an amount of training data is known to which class they belong to. The
SVM is able to separate these objects into classes by inserting a hyper plane between the
classes and afterwards to maximize the distance between the vectors closest to the hyper
plane. The hyper plane is therefore only dependent from vectors closest to it. As a matter of
fact, a hyper plane is very often not capable of linearly separating objects. This is where
support vector machines map an n-dimensional input space non-linearly into a high
dimensional feature space127, possibly to a space with infinite dimensions:

∅: ܸ௡ ⟶ ܸ௠ (3-65)

where ܸ௡ represents the lower-dimensional input space and ܸ௠ representing the high-
dimensional feature space. In a high dimensional feature space also a very complex amount of
vectors becomes linearly separable. This space is where the hyper plane is then defined. The
example of Fulcher shows, how this is conducted with a series of ݈ historical observations:

,ଵݕ) ,(ଵݔ … , ௟ݕ) , ௟) (3-66)ݔ

where ݕ௜ ∈ ܸଵ and ݔ௜ ∈ ܸ௡.

The approximation and estimation of the functional relation between ݕ௜ and ݔ௜ is done by

= (ݔ)݂ =< ,ݓ (ݔ)∅ > +ܾ = ∑ ௜(௦ݔ)∅௜ݓ + ܾ௠
௜ୀଵ (3-67)

126 Vapnik V. (1998): The support vector method of function estimation. In: Suykens J., Vandewalle
J. (eds.): Nonlinear Modeling: Advanced Black-Box Techniques; Boston MA: Kluwer: 55–85

127 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 528

72 3 An outline of artificial neural networks

where <.,.> denotes the inner product. The vector w and the constant b are to be determined
by following the structural risk minimization principle, known from statistical learning
theory.128 Furthermore, the neurons of the hidden layer in the SVM will not take the same
inputs or apply the same transfer function, as it is common in ANNs. For classification,
Fulcher describes the SVM by

(ݔ)݂ = ∑ ௜ߙ௜ݕ
∗ < ,(௔ݔ)∅ (ݔ)∅ > ܾ∗

௔ (3-68)

where ߙ௜
∗ and ܾ∗ represent coefficients satisfying the structural risk minimization principle,

and s the set of all support vectors. If ݕ௜ are categorical, such as ݕ௜ ∈ {−1,1}, the support
vectors, a subset of {ݔ௜}௜ୀଵ

௟ , are determined by the minimization process.129 The classification
is carried out according to the sign of the function130:

ݕ = ൜ 1, ݂݅ (ݔ)݂ > 0
−1, ݂݅ (ݔ)݂ < 0 (3-69)

3.3.2.9.4 Self-organizing feature map

Self-organizing feature maps (SOFMs) are used to picture high-dimensional data onto a low-
dimensional map while trying to keep the neighbor structure of data as good as possible. This
means that data close to each other in an n-dimensional space should also stay close to each
other in the low-dimensional map – the neighbor structure is kept. SOMs inventor, Teuvo
Kohonen, was inspired by the sensory and motor parts of the human brain.131

Figure 38 – Self organizing feature map – the scheme of a SOM shows that every component
of the input vector ݔ is represented by an input neuron and is connected with the above low-
(two-) dimensional layer. During a learning phase the weight vectors of a SOM are adapted in
a self-organizing way.132 As other ANNs, the SOM consists of neurons (݊ଵ, … , ݊௡), each
having a weight vector ݓ௜ and a distance to a neighbor neuron. The distance between the
neurons ݊௜ and ௝݊ is ݊௜௝ ,. As Figure 38 – shows, each neuron is allocated a position in the
low-dimensional map space. As in all other ANNs, initially the neuron weights are ran-
domized. During learning, the similarity of each input vector to the weights of all neurons on
the map is calculated, meaning that all weight vectors are compared with the input vector
݀ ∈ The SOMs learning algorithm therefore belongs to the group of unsupervised learning .ܦ
algorithms. The neuron showing the highest similarity, having the smallest distance ݀௦௠௔௟௟ to
݀ ∈ is then selected as the winning neuron ݊௪௜௡:133 ܦ

128 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 528

129 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 529

130 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 529

131 Kohonen Teuvo (1990): The Self-Organizing Map; Proceedings of the IEEE 78, Nr. 9, p. 1464-
1480

132 Ritter Helge, Martinez Thomas, Schulten Klaus (1991): Neuronale Netze. Eine Einführung in die
Neuroinformatik selbstorganisierender Netzwerke; Addison Wesley

133 Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg: Springer-
Verlag, p. 141

3.3 Neural networks 73

Figure 38 – Self organizing feature map

݀௦௠௔௟௟ = ݀{(݀ ∈ ଵஸ௝ஸ௡,ܦ
௠௜௡ ௝)} (3-70)ݓ

Not only the weights of the winning neuron are then adapted, but also the weights of the
neighbor neurons have to be taken into consideration by the neighborhood function ߮௡ and
the learning rate ߤ. The neighborhood function shall feature the following characteristics:134

 .has its center at the position of ݊௪௜௡ and is a maximum there ߤ –
– The neighbor neurons are considered according to a radius. Within this radius, for

distances smaller than ݎ, ߮௡ leads to outcomes greater than zero, and for distances greater
than ݎ, it takes zero.

Again, the Gauss function fulfils all the requirements and is a good choice. The adaption of
the weights is then carried out as follows:

௜ݓ
(௧ାଵ) = ௜ݓ

(௧) + ௜ݓ,௡ೢ೔೙ݓ௡ቀ߮ߤ
(௧), ቁቀ݀ݎ ∈ ܦ − ௜ݓ

(௧)ቁ (3-71)

During learning, not only the neuron weights of the winning neuron and its neighborhood
neurons must be adapted, also the learning rate and the neighborhood radius has to be reduced
in each iteration, done by ߪ(௧ାଵ):135

(௧ାଵ)ߪ = ௦ߪ ∗ ቀఙ೐
ఙೞ

ቁ
(௧ାଵ)/(௧ାଵ)೐

 (3-72)

134 Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg: Springer-
Verlag, p. 141 ff.

135 Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg: Springer-
Verlag, p. 143

74 3 An outline of artificial neural networks

where ߪ௦ represents the starting value and ߪ௘ the ending value, also being the function value
of (1+)ݐ௘. Kohonen defined the SOM-algorithm as follows:136

Start

1. Initial selection of SOM weights at random.
2. Repeat

a) Present ݀ ∈ ௜ݓ to every weight vector of every neuron ܦ , … , ௡ݓ
b) Determine the winning neuron according to the smallest distance:

݀௦௠௔௟௟ = ݀{(݀ ∈ ଵஸ௝ஸ௡,ܦ
௠௜௡ {(௝ݓ

c) Determine the neighborhood neurons with ߮௡ and adapt the weights
according to

௜ݓ
(௧ାଵ) = ௜ݓ

(௧) + ௜ݓ,௡ೢ೔೙ݓ௡ቀ߮ߤ
(௧), ቁቀ݀ݎ ∈ ܦ − ௜ݓ

(௧)ቁ

d) Decrease the learning rate ߤ or the neighborhood radius ݎ by

(௧ାଵ)ߪ = ௦ߪ ∗ ൬
௘ߪ

௦ߪ
൰

(௧ାଵ)/(௧ାଵ)೐

3. Until criteria are reached

End

Algorithm 3 – SOM learning

3.3.2.9.5 Committee machines

Committee machines (CMs) are a number of ANNs working together and trying to find the
best solution for one problem. ANNs working as groups usually find more accurate solutions
than just one neural network applied to a problem statement. Although one ANN can be
trained so solve a specific problem, it might not be as accurate as one might want to have it.
The problem is that a software engineer can develop the ANN, and tell it in which way it
should learn, but he cannot predict how accurate the ANN will learn and if the ANN will
learn correctly (e.g. see problems in 3.3.3.6.1 Back propagation training). The more secure
approach therefore is to train more than one ANN on one how to solve one problem statement
simultaneously. ANN committee machines therefore need a combiner to conclude the results
(Figure 39 - Committee machine).

136 Kohonen Teuvo (1990): The Self-Organizing Map; Proceedings of the IEEE 78, Nr. 9, p. 1464-
1480

3.3 Neural networks 75

Figure 39 - Committee machine

The above schematic picture shows a committee machine of three multi layer perceptrons.
Committee machines are also often referred to as experts, as more than one ‘thought’ leads to
the final solution. Another solution for ensuring the quality of the solution is the training of
hybrid committee machines. Several types of hybrid CMs are possible, containing

– ANNs of the same type with different learning functions and the same activation
functions,

76 3 An outline of artificial neural networks

– ANNs of the same type with different learning functions but different activation
functions,

– or a combination of the latter, and
– ANNs of different types

The application of one of these approaches tends to increase the quality of the training's result
in a high mass. Slightly more complex, but also an approach used by the prototype described
within the practical part of this thesis is the combination of several hybrid committee
machines to a committee machine. This combination of experts is can be considered as step
towards an artificial immune system, as it is capable of processing any numeric input, as a
human immune system is capable of. Within the research field of artificial immune systems
the biological immune system is used as a metaphor for computational problems.137

The functionality of the combiner of a committee machine depends on the preferred
implementation. Possible implementations are e.g.

– the calculation of the mean value of all solutions or
– the brewing of the most similar solutions by simultaneous reduction of the most different

solutions, followed by the calculation of the medium value of the remaining solutions.

At the example of a feed-forward ANN, trained by simulated annealing, a committee of three
experts would be trained as follows:

Start

1. Repeat
a) Randomize weights.
b) Repeat

i. Calculate the network output for the value d ∈ D
ii. Evaluate the fitness of each neuron:

iii. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

iv. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

v. Repeat
1. Create new ANN and randomize weights according to T
2. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

δୢ∈ୈୀ(desiredୢ∈ୈ − actualୢ∈ୈ)actualୢ∈ୈ(1 − actualୢ∈ୈ)
3. Calculate the error δ୦୧ୢ for each hidden neuron hid

δ୦୧ୢ = actual୦୧ୢ(1 − actual୦୧ୢ) ෍(w୦୧ୢୢ∈ୈδୢ∈ୈ)
ୢ∈ୈ

4. Compare solutions according to

137 Bertelle Cyrille, Duchamp Gérard H. E., Kadri-Dahmani Hakima (2009): Complex Systems and
Self-organization Modelling; Berlin Heidelberg: Springer-Verlag, p. 71

3.3 Neural networks 77

∆஼൫ௌᇲ൯஼(ௌ)= (ᇱܵ)ܥ − (ܵ)ܥ

5. If C(Sᇱ) is better than C(S), replace C(S)
vi. Until max tries for current temperature reached

vii. Decrease temperature by

߮஼൫ௌᇲ൯஼(ௌ) = ܶ ∗ ݁
௟௡ቀ௦

௘ቁ
௖ିଵ

c) Until lower temperature bound reached
2. Until all experts have been trained
3. Combine the results

End

Algorithm 4 - Committee of SA feed-forward ANNs

3.3.3 Training and learning

As it is obvious now, how an ANN transports data from its input neurons to its output
neurons, how this data is changed due to a neuron's corresponding weights and activation
function, and that an artificial neural network learns through weight adaption, it is of severe
importance to understand some different learning approaches. Different ANNs and different
problem statements require different learning approaches. As elucidated beforehand, training
within an ANN is done by the adaption of the neuron connections’ weights, which does not
happen in only one step, but over multiple iterations. Before discussing different learning
methods, some basic knowledge for calculating parameters used by the learning algorithms is
explained.

3.3.3.1 Supervised and unsupervised training

As already indicated at 3.3.2.1 Supervised and unsupervised learning, a supervised training
algorithm requires both inputs and outputs in the training data sets. On the contrary, the ANN
is not presented any desired output with the training sets in unsupervised learning. The major
difference lies in the field of application, as unsupervised learning networks are usually
applied on data for clustering, when not being aware of how to cluster the data, whereas
supervised learning ANNs are applied when one knows, which output the network shall
produce on a given input.

Some networks apply hybrid learning approaches, thus both unsupervised and supervised
learning. Examples are radial basis function networks, which use supervised learning at the
output layer and unsupervised learning at the hidden layer(s), or counter propagation net-
works, applying unsupervised learning in combination with Grossberg’s outstar138.139

138 Wasserman Philip D. (1989): Neural Computing: Theory and Practice; New York: Van Nostrand
Reinhold

78 3 An outline of artificial neural networks

3.3.3.2 (Root) mean squared error

Usually, an ANN is initialized with random weights between the neurons. The input is then
sent through the network, which lets it produce an output that will differ from the desired
output to greater or lesser extent. The difference between the desired and the actual output is
used to calculate the mean squared error (MSE) or the root mean square error (RMSE), which
happens after a training iteration. For being able to determine the (R)MSE, the errors for
every provided training set have to be calculated. The (R)MSE represents the average error of
the whole network and is, after each complete iteration (an iteration involves the presenting of
all training sets to the ANN), compared with the predefined, allowed error. As long as the
(R)MSE is not less or equal the allowed error or another stop criteria has been reached, the
network continues these steps. The MSE-equation is

௠௦௘ݔ = ଵ
௡

∑ ௜ݔ
ଶ௡

௜ୀଵ (3-73)

which can also be written as

௠௦௘ݔ = ௫భ
మା௫మ

మା⋯ା௫೙
మ

௡
 (3-74)

where the RMSE is

௥௠௦௘ݔ = ටଵ
௡

∑ ௜ݔ
ଶ௡

௜ୀଵ
మ (3-75)

or

௥௠௦௘ݔ = ට௫భ
మା௫మ

మା⋯ା௫೙
మ

௡

మ
 (3-76)

where n represents the number of the input values in both equations. For the application of the
RMS to the output of an ANN, the equation

௥௠௦௘ݔ = ටଵ
௡

∑ ௜݈ܽݑݐܿܽ) − ௜)²௡݀݁ݎ݅ݏ݁݀
௜ୀଵ

మ (3-77)

has to be considered,140 where the actual value is the value currently produced by the ANN
and the desired value the expected one. Therefore, learning is the adaption of the weighs in
the matrix representing the artificial neural network.

The next important value is the definition of the trained epochs an ANN is allowed to run
through. An ending criterion may be the allowed minimum error, but can also be the
attainment of a predefined number of iterations. It has to be considered that an error is only
provided to an ANN when supervised learning is applied, as in unsupervised learning the
network decides itself, what the output is (on the contrary to supervised learning ones).
Supervised training can be applied with SLPs or MLPs, as well as with fully connected ANNs

139 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 693

140 Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield: Heaton
Research, Inc., p. 126

3.3 Neural networks 79

like the Hopfield ANN, whereas unsupervised learning finds application within topographic
maps, as the Self-Organizing Feature Map (3.3.2.9.4 Self-organizing feature map).

3.3.3.3 Estimators

Unfortunately, as the (root) mean squared error as an error measure between the actual and
desired output is not robust when having to deal with outliers, many robust estimators have
been used recently, such as M-estimators (Maximum-likelihood estimators), R-estimators
(estimates based on rank transformations), L-estimators (Linear combination of order
statistics), and LMedS estimators (Least Median of Squares). Anything required for making
training algorithms more robust to replace the squared residuals in the network error by
another function of the residuals, yielding

௠௦௘ݔ = ଵ
௡

∑ ௡(௜ݔ)ߩ
௜ୀଵ (3-78)

where ߩ is a symmetric, positive-definite function with a unique minimum at zero, and is
chosen to be less increasing than square completely in the presence of outliers. 141

3.3.3.4 Hebb's learning rule

One of the best known and first learning rules is Hebb's rule,142 described by the psychologist
Donald Olding Hebb, which is applied both within supervised and unsupervised learning
ANNs. During his research, Donald Hebb realized that the strength of the connection between
two neurons increases, if both fire at the same time. This led him to develop an algorithm,
which allows the modification of weights in an artificial neural network:

ݐ)௜ݓ + 1) = (ݐ)௜ݓ + ௜ݓ∆ (3-79)

Through ∆ݓ௜ the necessary change (delta) in the weight of the corresponding connection is
calculated at the point in time ݐ + 1, as the following equation shows:

௜ݓ∆ = (80-3) ݕ௜ݔߤ

The parameter ߤ represents the learning rate, which influences the rate at which the weights of
the connection are adapted. Hebb's rule, as a result, tends to strengthen the output in the
direction it has a tendency towards.143 Figure 40 - Hebb's rule graphically represents the
application of the rule.

141 Hassanien Aboul-Ella, Abraham Ajith, Vasilakos Athanasios V., Witold Pedrycz (2009):
Foundations of Computational Intelligence Volume 1: Learning and Approximation; Berlin
Heidelberg: Springer-Verlag, p. 224 ff.

142 Hebb Donald (1949): Organization of behaviour; New York: John Wiley
143 Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield: Heaton

Research, Inc., p. 134

80 3 An outline of artificial neural networks

Figure 40 - Hebb's rule144

Hebb's rule is also applicable when applying it with unsupervised learning, but needs a slight
modification, which is the consideration of the desired output value ݋ௗ:

௜ݓ∆ = ௗ݋௜ݔߤ (3-81)

3.3.3.5 Delta rule

The delta rule, which targets on calculating the least mean square, is a rule only applied
within supervised learning ANNs. This is, because the delta learning rule also requires desired
outputs to compared with the actual output values, as Hebb's rule in the supervised manner
does:

ݐ)௜ݓ + 1) = (ݐ)௜ݓ + ௜ݓ∆ (3-82)

As in Hebb's rule, through ∆ݓ௜ the necessary change (delta) in the weight of the corres-
ponding connection is calculated, as equation (3-83) shows:

௜ݓ∆ = ௜ (3-83)ݔߜߤ

The difference lies in ߜ, which considers the output ݋௕௔ before transferring it through the
activation function, as Figure 41 - Delta rule shows.

144 Rutkowski Leszek (2008): Computational Intelligence Methods and Techniques; Berlin
Heidelberg: Springer-Verlag, p. 207

3.3 Neural networks 81

Figure 41 - Delta rule

The Delta rule cannot be modified in a way so that the application within unsupervised
learning ANNs is possible.

3.3.3.6 Propagation learning

As the above explained learning rules, all sorts of propagation training use the desired output
of an ANN and compare it with the actual output, for propagating the error for the adaption of
weights starting from the output neurons back to the input neurons after each iteration, only
the way of how this is conducted is slightly different. Therefore, it can only be applied within
supervised learning ANNs. Propagation learning includes several forms, but only the three
forms of relevance for this elaboration will be discussed in detail. These are

– Back propagation,
– Manhattan update rule, and
– Resilient propagation.145

All propagation learning algorithms have in common that the difference between the desired
output and the actual output, the error of the ANN, is tried to be improved after each iteration.
This means that for each item in one iteration (each loop through the whole amount of

145 Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton Research,
Inc., p. 87

82 3 An outline of artificial neural networks

training data) some change to the weight matrices, but also to the threshold is calculated,
precisely in the form of a two-pass process: a forward and backward pass.146

With the forward pass, simply the already mentioned transfer of the input data with all
operations carried out within the network from the input neurons to the output neurons is
meant. Also, as mentioned beforehand, the difference between the desired and the actual
output is calculated within this step, which has been described as the error (3.3.3.1 Supervised
and unsupervised training) of the network. Additionally, the actual output of the network is
stored for the use within the backward pass.

As a second step, within the backward pass, the beforehand stored erratic values are used to
calculate the gradient of these errors, which is done by applying the actual output of the
artificial neural network to the derivative of the activation function used for this level. The
resulting value, as last step, is then multiplied with the error value.147

Propagation learning has been of utmost importance in the development of artificial neural
network learning approaches, as with the hidden layers within an MLP, the problem of how to
calculate the error for this hidden layer arises. This is founded in the fact that the desired
output of the overall network can be defined, but not the output for the hidden layer. The error
comparison is therefore a more difficult one as when dealing with SLPs and has been solved
first with the back propagation learning algorithm.

3.3.3.6.1 Back propagation training

As all of the detailed propagation algorithms, the back propagation one is based on gradient
descent, calculated within the error function and the neurons' corresponding weights. This
also requires a slightly more complex activation function, as the bipolar one used within the
SLP (3.3.2.6.1 Single layer perceptron). For the following explanation, the sigmoid activation
function (3.3.1.3 Activation functions) is applied, as it is differentiable:

(ݔ)ߪ = ଵ
ଵା௘షೣ (3-84)

or

(ݔ)ߪ = ଵ
ଵା௘௫௣(ିఝ(௫))

 (3-85)

for which

ఋఙ(௫)
ఋ௫

= ൫1(ݔ)ߪ − ൯ (3-86)(ݔ)ߪ

is valid.148

146 Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton Research,
Inc., p.87

147 Heaton Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton
Research, Inc., p. 89

148 Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg: Springer-
Verlag, p. 130

3.3 Neural networks 83

The difference between the desired and the actual output is usually expressed as MSE (3.3.3.1
Supervised and unsupervised training),149

݁ݏ݉ = ଵ
ଶ

∑ ௜ݔ
ଶ௡

௜ୀଵ (3-87)

or for the application within an ANN

(ݓ)݁ݏ݉ = ଵ
ଶ

∑ ௜݀݁ݎ݅ݏ݁݀) − ௜)ଶ௡݈ܽݑݐܿܽ
௜ୀଵ (3-88)

or for derivation a representation similar to the one Kramer chose:

(ݓ)݁ݏ݉ = ଵ
ଶ

∑ ௗ݀݁ݎ݅ݏ݁݀) − ௗ)ଶ݈ܽݑݐܿܽ
ௗ∈஽ (3-89)

where ݓ represents the vector of all network weights and ݀ ∈ all possible inputs of the ܦ
training data set. The factor ଵ

ଶ
 has the purpose of simplifying the derivation. The next step is

the partial derivation ߲ of the function towards their weights, beforehand mentioned as ߜ-rule
(3.3.3.5 Delta rule), as this is the gradient descent of the error function:150

݁ݏ߲݉
௜ݓ߲

=
߲

௜ݓ߲

1
2 ෍(݀݁݀݁ݎ݅ݏௗ − ௗ)ଶ݈ܽݑݐܿܽ

ௗ∈஽

= ෍(݀݁݀݁ݎ݅ݏௗ − (ௗ݈ܽݑݐܿܽ
ௗ∈஽

߲
௜ݓ߲

ௗ݀݁ݎ݅ݏ݁݀) − (ௗ݈ܽݑݐܿܽ

= ෍(݀݁݀݁ݎ݅ݏௗ − (ௗ݈ܽݑݐܿܽ
ௗ∈஽

൬−
ௗ݈ܽݑݐ߲ܿܽ

௜ݓ߲
൰

= − ∑ ௗ݀݁ݎ݅ݏ݁݀) − ௗ)ௗ∈஽݈ܽݑݐܿܽ ቀడ௔௖௧௨௔௟೏
డఝ೏

డఝ೏
డ௪೔

ቁ (3-90)

where ߮ is a differentiable activation function, and ݔ௜ the input ݔ on position ݅. As a next step,
the derivation of the sigmoid function has to be considered:

డ௔௖௧௨௔௟೔
డఝೣ೔

= డ(ఙ(ఝೣ೔))
డఝೣ೔

= ௜(1݈ܽݑݐܿܽ − ௜) (3-91)݈ܽݑݐܿܽ

The constants of the weights w are dropped out within the derivation, which leads to

డఝ೏
డ௪೔

= డ௪௫೏
డ௪೔

= ௜,ௗݔ (3-92)

and finally to

డ௠௦௘
డ௪೔

= − ∑ ௗ݀݁ݎ݅ݏ݁݀) − ௗ)ௗ∈஽݈ܽݑݐܿܽ ௗ(1݈ܽݑݐܿܽ − ௜,ௗݔ(ௗ݈ܽݑݐܿܽ (3-93)

149 Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg: Springer-
Verlag, p. 121

150 Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg: Springer-
Verlag, p.130 ff.

84 3 An outline of artificial neural networks

Kramer also indicates correctly that the weight adaption must have the contrariwise algebraic
sign of the differentiation:

௜ݓ∆ = ߤ− డ௠௦௘
డ௪೔

= ߤ ∑ ௗ݀݁ݎ݅ݏ݁݀) − ௗ)ௗ∈஽݈ܽݑݐܿܽ ௗ(1݈ܽݑݐܿܽ − ௜,ௗݔ(ௗ݈ܽݑݐܿܽ (3-94)

The weight adaption after presenting one set out of the overall training set is therefore done
conducted by

௜ݓ∆ = ௗ݀݁ݎ݅ݏ݁݀)ߤ − ௗ(1݈ܽݑݐܿܽ(ௗ݈ܽݑݐܿܽ − ௜,ௗݔ(ௗ݈ܽݑݐܿܽ (3-95)

with the delta rule

௜ݓ
ᇱ = ௜ݓ + ௜ݓ∆ (3-96)

or by including a specific point in time ݐ + 1

ݐ)௜ݓ + 1) = (ݐ)௜ݓ + ௜ݓ∆ (3-97)

with

௜ݓ∆ = ௜ (3-98)ݔߜߤ

as already described in 3.3.3.5 Delta rule.

Back propagation adapts the weights of the neurons from the output back to the input,
requiring also the neurons of the hidden layer(s) to be adapted, which requires the error to be
calculated by

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ∑ ௗ∈஽(ௗ∈஽ߜ௛௜ௗௗ∈஽ݓ) (3-99)

whereas the calculation errors for input and output layers happens by

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − ௗ∈஽) (3-100)݈ܽݑݐܿܽ

However, additionally to the learning rate, which defines how fast a back propagation
artificial neural network learns in a percent value, there is another parameter to consider,
which is called momentum, usually a value close to zero, and represented by ߙ. Through the
momentum, or term of variable inertia, the last weight change and the gradient are weighted
in percent, so that the weight adaption within the current iteration partially depends on the
weight adaption of the last iteration. The value zero would cause a weight change only
depending from the gradient's value, where a value of 1 would ignore the gradient and just
consider the weight change of the last iteration.

Summing up, the weight change between the neurons ݅ and ݆ at the point in time ݐ + 1 is
carried out by summing up the products of

– the learning rate ߤ, multiplied by the error (delta) of the neuron ݆ ߜ௝ and the input ݔ of
neuron ݅ ݔ௜ and

– the momentum ߙ multiplied by the weight change of the last iteration ∆ݓ௜௝(ݐ):

ݐ)௜௝ݓ∆ + 1) = ௜ݔ௝ߜߤ + (101-3) (ݐ)௜௝ݓ∆ߙ

As all calculations have been deduced and explained, the back propagation algorithm is as
follows:

3.3 Neural networks 85

1. Start
2. Initial selection of network weights ݓ௜ at random.
3. Repeat

a) Calculate the actual outputs of the neurons in the hidden layer

(ݐ)௝݋ = ߪ ൥෍ (ݐ)௜ݔ ∗ (ݐ)௜௝ݓ − ௜ߠ

௡

௜ୀଵ

൩

b) Calculate the actual outputs of the neurons in the output layer

(ݐ)௞݋ = ߪ ቎෍ (ݐ)௝௞ݔ ∗ (ݐ)௝௞ݓ − ௜ߠ

௠

௝ୀଵ

቏

c) Calculate the error gradient for the neurons in the output layer

(ݐ)௞ߜ = (ݐ)௞݋ ∗ [1 − [(ݐ)௞݋ ∗ ݁௞(ݐ)

where

݁௞(ݐ) = (ݐ)௞ݐ − (ݐ)݋

d) Calculate the weight corrections

(ݐ)௝௞ݓ߂ = ߤ ∗ (ݐ)௝݋ ∗ (ݐ)௞ߜ

e) Adapt the weights from hidden to output layer according to

ݐ)௝௞ݓ + 1) = (ݐ)௝௞ݓ + (ݐ)௝௞ݓ߂

f) Calculate the error gradient for the neurons in the hidden layer

(ݐ)௝ߜ = (ݐ)௝݋ ∗ ൣ1 − ൧(ݐ)௝݋ ∗ ෍ (ݐ)௞ߜ ∗ (ݐ)௝௞ݓ
௟

௞ୀଵ

g) Calculate the weight corrections

(ݐ)௜௝ݓ߂ = ߤ ∗ (ݐ)௜݋ ∗ (ݐ)௝ߜ

h) Update the weights at the hidden neurons

ݐ)௜௝ݓ + 1) = (ݐ)௜௝ݓ + (ݐ)௜௝ݓ߂ߙ

4. Until criteria are reached
5. End

Algorithm 5 - Back propagation algorithm

However, although back propagation has proved to come to desired and correct solutions
most of the time, sometimes a problem is that only the gradient, or in other words the local
environment in the plane, is known, what might lead to the following problems:

86 3 An outline of artificial neural networks

– Local minimum problem
As only the local environment is known, it is not quite sure if the algorithm found the
global minimum or just a local one. This problem occurs especially when the hyper plane
of the error term is littered with peaks and lows, which is the case when the networks’
dimension is of higher order, or in other words, when the number of connections between
the neurons is high. The cliffier a hyper plane is the more local minima it features.

– Flat plateau problem
When a hyper plane as a whole, or at least partially, features nearly no peaks and lows,
also the number of local minima is low. As the gradient descent (3.3.1.2.3 Gradient
descent) at the point in time (ݐ + 1) depends, according to the momentum ߙ more or less
on the gradient of the point in time (ݐ), the gradient at (ݐ + 1) might become very small,
when the gradient at (ݐ) was small too. Because of this, the next low might not be reached
and the descent stagnates.

– Leaving global minimum problem
The global minimum might be skipped when the expansion of the low in the hyper plane
is very small. This leads again to the local minimum problem.

– Oscillation
Oscillation may happen directly or indirectly. Direct oscillation means it might happen
that the gradient does not descend, but heads from the current descent to a neighbor
descent of another peak. This forces the gradient to jump back to the point of origin (to
the same value with the different sign), which is called to a direct oscillation. Indirect
oscillation follows the same principle, with the exception that not one but several steps
are needed for getting back to the point of origin.

3.3.3.6.2 Manhattan update rule training

The difference of the Manhattan update rule and back propagation is that the descent at the
point in time (ݐ + 1) is not changed in dependency of the same gradient’s value, but only
from its sign. It is therefore considered, if the gradient

– is positive,
– is negative, or
– is close to zero.

Thus, in Manhattan update rule, the value of the gradient’s magnitude is used to determine
how to update the weight matrix or threshold value:151

– If the magnitude is close to zero, then the weight or threshold values remain unchanged.
– If the magnitude is positive, then the weight or threshold value is increased.
– If the magnitude is negative, then the weight or threshold value is decreased.

Manhattan update rule does not require the learning rate or momentum passed over, just the
constant for defining the in- or decrease of the weight, which must be provided as parameter
∆:

151 Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton Research,
Inc., p. 89

3.3 Neural networks 87

௜௝ݓ∆
(௧ାଵ) =

⎩
⎪
⎨

⎪
⎧−∆ , ݂݅ డ௠௦௘

డ௪೔ೕ

(௧ାଵ)
> 0

+∆ , ݂݅ డ௠௦௘
డ௪೔ೕ

(௧ାଵ)
< 0

0 , ݁ݏ݈݁

 (3-102)

The above equation shows that the weight change at the point in time (ݐ + 1) is carried out in
dependency of the gradient’s sign at (ݐ + 1) as well as the constant ∆ . The change is
propagated back through the network as elucidated in 3.3.3.6.1 Back propagation training (as
the detailed back propagation equations have already been outlined, a simplified and more
compact notation will be applied for the propagation algorithms to come):

Start

1. Initial selection of network weights w୧ at random.
2. Repeat

a) Calculate the network output for the value d ∈ D
b) Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

c) Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

d) Adapt the weights according to

௜௝ݓ∆
(௧ାଵ) =

⎩
⎪
⎨

⎪
⎧−∆ , ݂݅

݁ݏ߲݉
௜௝ݓ߲

(௧ାଵ)

> 0

+∆ , ݂݅
݁ݏ߲݉
௜௝ݓ߲

(௧ାଵ)

< 0

0 , ݁ݏ݈݁

3. Until criteria are reached

End

Algorithm 6 - Manhattan update rule

By the application of the Manhattan update rule as training algorithm within an ANN the flat
plateau problem is avoided, as, because of its constancy, the gradient or weight change cannot
become so small that the next low is not reached.

3.3.3.6.3 Resilient propagation

The difference between resilient propagation and back propagation is that the descent at the
point in time (ݐ + 1) is not changed in dependency of the same gradient’s value, but also only

88 3 An outline of artificial neural networks

from its sign, as it is done when applying the Manhattan update rule. It is therefore considered
as well, if the gradient

– is positive,
– is negative, or
– is close to zero.

Thus, in resilient propagation, the value of the gradient’s magnitude is used to determine how
to update the weight matrix or threshold value, equal to the Manhattan update rule:152

– If the magnitude is close to zero, then the weight or threshold values remain unchanged.
– If the magnitude is positive, then the weight or threshold value is increased.
– If the magnitude is negative, then the weight or threshold value is decreased.

However, in difference to the Manhattan update rule, resilient propagation does not require
the setting of the constant ∆ used for the weight adaption. Rather than using a fixed constant
to update the weights and threshold values, the deltas do not remain fixed, like in the
Manhattan update rule or back propagation algorithm, as they change as training
progresses.153 The calculation of resilient propagation's weight adaption is calculated similarly
to Manhattan update rule, except the ∆-value is not static, but calculated:154

௜௝ݓ∆
(௧ାଵ) =

⎩
⎪
⎨

⎪
⎧−∆௜௝

(௧ାଵ) , ݂݅ డ௠௦௘
డ௪೔ೕ

(௧ାଵ)
> 0

+∆௜௝
(௧ାଵ) , ݂݅ డ௠௦௘

డ௪೔ೕ

(௧ାଵ)
< 0

0 , ݁ݏ݈݁

 (3-103)

The determination of the new update-values ∆௜௝
(௧ାଵ) is sign-dependent:

∆௜௝
(௧ାଵ)=

⎩
⎪
⎨

⎪
ାߤ⎧ ∗ ∆௜௝

(௧) , ݂݅ డ௠௦௘
డ௪೔ೕ

(௧)
∗ డ௠௦௘

డ௪೔ೕ

(௧ାଵ)
> 0

ିߤ ∗ ∆௜௝
(௧) , ݂݅ డ௠௦௘

డ௪೔ೕ

(௧)
∗ డ௠௦௘

డ௪೔ೕ

(௧ାଵ)
< 0

∆௜௝
(௧) , ݁ݏ݈݁

 (3-104)

where 0 < ିߤ < 1 < .ାߤ

When the partial derivative డ௠௦௘
డ௪೔ೕ

(௧ାଵ)
 of the corresponding weight ∆ݓ௜௝ performs a sign

change, the update value is ∆௜௝
(௧ାଵ) is decreased in case of an increase by the factor ߤା = 1.2

and in case of a decrease by ିߤ = 0.5. A change of the sign indicates that the last update
value was too high and a local minimum was jumped over. However, when the weight does
not change, the update value is increased to allow accelerated convergence in shallow regions.

152 Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton Research,
Inc., p. 89

153 Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton Research,
Inc., p. 89

154 Mache Niels: RPROP [2011-31-08]; Hong Kong Polytechnic University; URL: http://www.eie.
polyu.edu.hk/~enzheru/snns/SNNSinfo/UserManual/node152.html#man

3.3 Neural networks 89

155 When the sign changes, the weight shall not be changed, which is usually done by
డ௠௦௘
డ௪೔ೕ

(௧)
: = 0. The weight change is propagated back through the network as elucidated in

3.3.3.6.1 Back propagation training:

Start

1. Initial selection of network weights ݓ௜ at random.
2. Repeat

a) Calculate the network output for the value d ∈ D
b) Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

c) Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

d) Adapt the weights according to

௜௝ݓ∆
(௧ାଵ) =

⎩
⎪
⎨

⎪
⎧−∆௜௝

(௧ାଵ) , ݂݅
݁ݏ߲݉
௜௝ݓ߲

(௧ାଵ)

> 0

+∆௜௝
(௧ାଵ) , ݂݅

݁ݏ߲݉
௜௝ݓ߲

(௧ାଵ)

< 0

0 , ݁ݏ݈݁

with

∆௜௝
(௧ାଵ)=

⎩
⎪⎪
⎨

⎪⎪
ାߤ⎧ ∗ ∆௜௝

(௧) , ݂݅
݁ݏ߲݉
௜௝ݓ߲

(௧)

∗
݁ݏ߲݉
௜௝ݓ߲

(௧ାଵ)

> 0

ିߤ ∗ ∆௜௝
(௧) , ݂݅

݁ݏ߲݉
௜௝ݓ߲

(௧)

∗
݁ݏ߲݉
௜௝ݓ߲

(௧ାଵ)

< 0

∆௜௝
(௧) , ݁ݏ݈݁

3. Until criteria are reached

End

Algorithm 7 - Resilient propagation

By the application of resilient propagation as training algorithm within an ANN

– the flat plateau problem is avoided, as, because of its constancy, the gradient or weight
change cannot become so small that the next low is not reached and

155 Riedmiller Martin et al. (1993): A direct adaptive method for faster back-propagation learning:
The Rprop algorithm; Proceedings of the IEEE International Conference on Neural Networks,
IEEE Press: 586-591

90 3 An outline of artificial neural networks

– oscillation is avoided as the update value is decreased when the sign changes.

3.3.3.7 Genetic learning (NeuroEvolution)

Genetic algorithms (GA) belong to the class of metaheuristic algorithms and are used for
solving optimization problems or for training an artificial neural network (which, in fact, is an
optimization problem as well). Due to their characteristic of performing the search with
populations of solutions, these algorithms have an intrinsic parallelism where many different
possibilities are explored simultaneously. 156 GAs are adaptive, robust algorithms and
particularly useful for applications that require search and optimization. They are population-
based algorithms for which any communication and interaction are carried out within the
population and therefore, they possess a high degree of implicit parallelism.157 When talking
about optimization problems, especially NP-hard problems, in other words problems that
cannot be solved in polynomial time even by the fastest supercomputers, can be solved
relatively quick with GAs. Above all, there is no unified explanation of what genetic
algorithms exactly are. However, there are certain, in the field generally accepted elements all
descriptions of GAs have in common:158

– a population of chromosomes encoding (in string form) candidate solutions to the
problem in hand,

– a mechanism for reproduction,
– selection according to fitness, and
– genetic operators.

In artificial neural networks making use of genetic algorithms (= evolutionary artificial neural
networks - EANN), evolution can be introduced at various levels, starting from weight
evolution, proceeding to architecture adaption and leading to the evolution of the learning
mechanism. 159 , 160 As in nature, genetic algorithms use natural selection which is both
important when trying to solve optimization problems and training ANNs. Mostly, training of
an ANN with a GA is a search optimization problem, as the best solution out of a pool of
solutions is tried to be found. Genetic algorithms represent possible solutions to a problem as
chromosomes, and the sum of the chromosomes as population. Some chromosomes might
represent fairly good solutions, some others not. If a solution is good or bad has to be
determined by a so-called fitness function. The fitness function constitutes the measure of
fitness (adaptation) of a given individual in the population, which allows to evaluate the
degree of fitness of particular individuals in a population, and based on this degree select the
individuals that are the best fit (that is, having the highest fitness function), in accordance

156 Abraham Ajith, Hassanien Aboul-Ella, Siarry Patrick, Engelbrecht Andries (2009): Foundations
of Computational Intelligence Volume 3 Global Optimization; Berlin Heidelberg: Springer-
Verlag, p. 426

157 Jain Lakhmi C. (2008): Computational Intelligence Paradigms: Innovative Applications; Berlin
Heidelberg: Springer-Verlag, p. 4

158 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 883

159 Abraham Ajith, Crina Grosan, Pedrycz Witold (2008): Engineering Evolutionary Intelligent
Systems; Berlin Heidelberg: Springer-Verlag, p. 5

160 Yao X. (1999): Evolving neural networks; Proceedings of the IEEE 87(9), 1423–1447

3.3 Neural networks 91

with the evolutionary principle of the survival of ‘the strongest’ (the best fit) ones.161 These
chromosomes then receive the ‘privilege’ for recombination. In the context of ANNs, the
fitness function is the error function, in game theory it can be the cost function and in
optimization problems it is the objective function trying to determine a minimum or
maximum.

A chromosome consists of genes, which are parts of the overall solution. In case of ANN
training, the genes are the network's weights, a chromosome is a complete ANN and the
population is the overall amount of all ANNs representing a possible solution to a problem.
An iteration, or the evolution of a generation for finding a suitable feed-forward ANN for
solving a problem proceeds as follows:

Start

1. Creation of initial population.
2. Randomization of weights and threshold values of each chromosome.
3. Repeat

a) Calculate the network output for the value d ∈ D
b) Evaluate the fitness of each chromosome:

i. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

ii. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

c) Selection of chromosomes to recombine
d) Repeat

i. Crossover of chromosomes
ii. Mutation of offspring

e) Until all selected chromosomes are recombined
4. Until criteria are reached
5. Creation of new population

End

Algorithm 8 - Genetic algorithm

Step 3. a) i. to a) iii. in the algorithm is to put on a level with selection in nature and mating
and mutation are conducted in step 3. a) iv. Additionally to the already known calculation of
the ANN error, the application of genetic operators, which are the mutation of offspring
(chromosomes of the population at the point in time (ݐ + 1)) and the recombination (mating
of the chromosomes selected by the application of the fitness function at (ݐ)), is, according to
an example, done as follows:

161 Rutkowski Leszek (2008): Computational Intelligence Methods and Techniques; Berlin
Heidelberg: Springer-Verlag, p. 268

92 3 An outline of artificial neural networks

The chromosomes

ܿℎݎଵ = [10010|01110|00011] (3-105)

and

ܿℎݎଶ = [10011|11110|11100] (3-106)

are crossed over, or mated and lead to the offsprings

ଵݏ݂݋ = [10010|11110|00011] (3-107)

and

ଶݏ݂݋ = [10011|01110|11100] (3-108)

Both chromosomes consist of 15 genes, and for the recombination in this example two lines
were drawn to divide the each chromosome into 3 equally-sized parts, which are then
recombined.

In biological systems clones are not exact copies of the parent cell because some mutations
are in effect. In artificial systems, clones are also not exact copies of the parent cell or neuron,
and therefore some mutation must be in effect as well. The clone, to be a true clone, must
have the same parents, e.g. input signals.162 At first, the mutation operator is applied on the
offspring, which leads to

ଵݏ݂݋ = [10110|11110|00011] (3-109)

and

ଶݏ݂݋ = [10011|01110|11110] (3-110)

Both recombination and mutation are carried out with a probability of a predefined per-
centage. The probability for recombination is calculated for each chromosome, and the
mutation probability for each single gene. At recombination, the selected chromosomes are
summarized as pairs, and for each pair of chromosomes a random number between a range
(usually between 0 and 1) is calculated. When this value falls below the recombination
percentage value, the chromosomes are mated:

ܿℎݎଵଶ௠௔௧௘
(௧ାଵ) = ൝

ݏ݈݁݊݅ ݎ݁ݒ݋ݏݏ݋ݎܿ ݐܽ ଶݎଵܽ݊݀ ܿℎݎℎܿ ܾ݁݊݅݉݋ܿ݁ݎ , ௖௛௥ଵଶݒ ݂݅
(௧) < ௥௘௖݌

ℎ݅݊݃ݐ݋݊ ݋݀ , ௖௛௥ଵଶݒ ݂݅
(௧) > ௥௘௖݌

 (3-111)

where ݌௥௘௖ represents recombination percentage value. If the random value for recombination
௖௛௥ଵଶݒ

(௧) falls below, it is carried out. The same holds for the mutation of single genes, only that
every gene receives a random number for mutation when changing gene values by a function

162 Abraham Ajith, Hassanien Aboul-Ella, Snáel Vaclav (2009): Foundations of Computational
Intelligence Volume 5: Function Approximation and Classification; Berlin Heidelberg: Springer-
Verlag, p. 364

3.3 Neural networks 93

and that every chromosome receives the random number when shuffling genes within this
chromosome. The following example shows the mutation of an offspring chromosome by
shuffling its genes:

ଵ௠௨௧݋
(௧ାଵ) = ൝

(ଵ݋)߮ , ௢ଵ௠௨௧ݒ ݂݅
(௧) < ௠௨௧݌

ℎ݅݊݃ݐ݋݊ ݋݀ , ௢ଵ௠௨௧ݒ ݂݅
(௧) > ௠௨௧݌

 (3-112)

where

(ଵ݋)߮ = ൛ܿݐ݅ݓݏℎ ݃௥௔௡ௗଵ ݐ݅ݓℎ ݃௥௔௡ௗଶ , ௢ଵ௠௨௧ݒ ݂݅
(௧) < ௠௨௧݌ (3-113)

 determines the length of the offspring chromosome and two random numbers within (ଵ݋)߮
this length, at which the values are switched. The examples show how to mutate and
recombine chromosomes containing only bit-values. It works the same when applying it to an
ANN, as all network weights or genes, stored to an array, represent a possible solution or
chromosome.

Genetic algorithms are not limited to the above mentioned operators or general structure.
Recent research proposed transgenetic algorithms, applying horizontal or lateral gene transfer
as well as endosymbiosis.163 Further, genetic data mining approaches may also make use of
gene grouping and additional operators, like

– the search for outliers,
– the random creation of new gene groups out of existing ones,
– the merging of strong gene groups, or
– the search for groups with a high member variability for scattering these members across

the rest.164

As mentioned at the beginning of the subchapter, there are three possible evolution strategies
an ANN might go through:

3.3.3.7.1 Evolutionary search of connection weights

The evolutionary adaption of weights is the solution which was used to explain genetic
algorithms. Several chromosomes, which are possible ANN solutions with different weights,
are created and evaluated against the optimal solution during the training phase.

3.3.3.7.2 Evolutionary search of architectures

Evolutionary architecture adaption can be achieved by constructive and destructive algo-
rithms, where constructive ones add complexity to an ANN started with a simple structure
and destructive algorithms remove the same from an ANN. 165 , 166 , 167 , 168 By adding and

163 Abraham Ajith, Hassanien Aboul-Ella, Siarry Patrick, Engelbrecht Andries (2009): Foundations
of Computational Intelligence Volume 3 Global Optimization; Berlin Heidelberg: Springer-
Verlag, p. 429

164 Abraham Ajith, Hassanien Aboul-Ella, Snáel Vaclav (2009): Foundations of Computational
Intelligence Volume 4: Bio-Inspired Data Mining; Berlin Heidelberg: Springer-Verlag, p. 257

165 Frean M. (1990): The upstart algorithm: a method for constructing and training feed-forward
neural networks; Neural Computation 2: 198–209

94 3 An outline of artificial neural networks

removing is meant that new solutions with more or less hidden neurons or layers are created
to verify if the specified minimum error rate can be achieved through these.

3.3.3.7.3 Evolutionary search of learning rules

The evolutionary search for the suitable learning rule can be carried out by the initial creation
of several populations of artificial neural networks each population making use of different
learning strategies. The results are then compared in terms of generations or minimum
error.169

3.3.3.8 Simulated annealing

Simulated annealing (SA) also belongs to the group of metaheuristic algorithms, suitable for
solving optimization or search problems. In physics, the term ‘annealing’ refers to the very
slow cooling of gas or metal into a crystalline solid of minimum energy configuration.170 The
atoms of such materials have very high energy values at very high temperatures, which gives
the atoms a great deal of freedom in their ability to restructure themselves.171 The energy
values of such materials decreases during cooling down. When the ideal speed (continuous
temperature reduction) has been found, the material will be stable in its structure and more
consistent then if cooling it down too quick. Simulated annealing172 algorithms simulate this
behavior, which can also be applied within ANN training. The simulated annealing algorithm
always works with two solutions, the first being the best one having been achieved until the
point in time (ݐ + 1), represented by ܥ(ܵᇱ), and the second being the one currently created
and compared with the first one, represented by ܥ(ܵ):

∆஼൫ௌᇲ൯஼(ௌ)= (ᇱܵ)ܥ − (114-3) (ܵ)ܥ

If the second one performs better than the first one, thus the outcome of the above equation is
positive, it is used to replace the latter as the current best one. In some cases, simulated
annealing also makes use of a probability for determining when to replace a solution with a
better one. Therefore, in some implementations a better new solution might not always
replace the actual one:

∆௥௘௣஼൫ௌᇲ൯஼(ௌ)= ݉݅݊ ቀ1, ݁ି∆಴൫ೄᇲ൯಴(ೄ)/்ቁ (3-115)

166 Mascioli F. et al. (1995): A constructive algorithm for binary neural networks: the oil spot
algorithm; IEEE Trans Neural Netw 6(3): 794–797

167 Omlin C. W. et al. (1993): Pruning recurrent neural networks for improved generalization
performance; Technical report No 93-6, CS Department, Rensselaer Institute, Troy, NY

168 Stepniewski S. W. et al. (1997): Pruning back-propagation neural networks using modern
stochastic optimization techniques; Neural Comput Appl 5: 76–98

169 Abraham Ajith, Crina Grosan, Pedrycz Witold (2008): Engineering Evolutionary Intelligent
Systems; Berlin Heidelberg: Springer-Verlag, p. 8

170 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 909

171 Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield: Heaton
Research, Inc., p. 199

172 Kirkpatrick Scott et al. (1983): Optimization by simulated annealing; Science, 220(4598): 671–
680

3.3 Neural networks 95

where ܶ represents the current temperature, meaning the value that influences the change of
weights within a weight matrix of an ANN:

߮஼൫ௌᇲ൯஼(ௌ) = ܶ ∗ (116-3) ݎ

The ratio ߮஼൫ௌᇲ൯஼(ௌ) for changing the weights within an ANN is calculated by multiplying the
temperature ܶ by a random number ݎ . The higher the temperature is, the higher is the
probability of a high weight change. Changes with a specific temperature are carried out as
long as a predefined number of iterations (cycles) has not been reached. After having fulfilled
the last iteration of a temperature, the algorithm verifies if the lowest, predefined temperature
has been reached. If not, the temperature will be lowered by either a constant or by
logarithmically decreasing it by a ratio between a beginning and an ending temperature, as the
following equation shows:173

߮஼൫ௌᇲ൯஼(ௌ) = ܶ ∗ ݁
೗೙ቀೞ

೐ቁ

೎షభ (3-117)

The variable ݏ represents the starting temperature, ݁ in this case the ending temperature. ܿ
represents the cycle count. The above equation calculates a ratio that should be multiplied by
the current temperature ܶ, which produces a change that will cause the temperature to reach
the ending temperature in the specified number of cycles.

An iteration, or generation, of finding suitable weights for a feed-forward ANN looks as
follows:

Start

1. Randomize weights.
2. Repeat

a) Calculate the network output for the value d ∈ D
b) Evaluate the fitness of each neuron:

i. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

ii. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

c) Repeat
i. Create new ANN and randomize weights according to ܶ

ii. Calculate the error δୢ∈ୈ for each output neuron d ∈ D
– δୢ∈ୈୀ(desiredୢ∈ୈ − actualୢ∈ୈ)actualୢ∈ୈ(1 − actualୢ∈ୈ)

iii. Calculate the error δ୦୧ୢ for each hidden neuron hid
– δ୦୧ୢ = actual୦୧ୢ(1 − actual୦୧ୢ) ∑ (w୦୧ୢୢ∈ୈδୢ∈ୈ)ୢ∈ୈ

iv. Compare solutions according to

173 Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield: Heaton
Research, Inc., p. 205

96 3 An outline of artificial neural networks

∆஼൫ௌᇲ൯஼(ௌ)= (ᇱܵ)ܥ − (ܵ)ܥ

v. If C(Sᇱ) is better than C(S), replace C(S)
d) Until max tries for current temperature reached
e) Decrease temperature by

߮஼൫ௌᇲ൯஼(ௌ) = ܶ ∗ ݁
௟௡ቀ௦

௘ቁ
௖ିଵ

3. Until lower temperature bound is reached

End

Algorithm 9 - Simulated annealing algorithm

3.3.3.9 NeuroEvolution of augmenting topologies (NEAT)

As SA and GA-learning, NEAT belongs to the group of metaheuristic algorithms. However,
NEAT does not only adapt the weights of ANNs within a population, it furthermore mutates
the architecture and is capable of recombining ANNs with different architectures. The NEAT
method of evolving ANNs combines the usual search for appropriate network weights with
complexification of the network structure and consists of solutions to three challenges in
evolving neural network topology:174

– Crossover of disparate ANN topologies
– Protection of topological innovation through speciation
– Minimization of topologies for detection of most efficient solutions

As NEAT is a form of a genetic algorithm, it supports mutation and recombination. As
already indicated, the mutation is applied both to connection weights and the ANN
architecture. The mutation of the connection weights happens as explained in 3.3.3.7.1
Evolutionary search of connection weights, but the mutation of the architecture may happen
through

– adding of a connection between two neurons, or
– adding of a neuron

to the ANN's architecture. The new connection can be added between two neurons that have
not been connected beforehand. If, however, a new neuron has been added, the active
connection between two neurons is split, meaning that the initial connection is disabled and
two new ones are added.

The connection between the first node in the chain and the new node is given a weight of one,
and the connection between the new node and the last node in the chain is given the same
weight as the split connection, which introduces a nonlinearity (e.g. sigmoid function) where

174 Stanley O. Kenneth (2004): NeuroEvolution of Augmenting Topologies [2011-12-12]; Carnegie
Mellon School of Computer Science; URL: http://www.cs.cmu.edu/afs/cs/project/jair/pub/
volume21/stanley04a-html/node3.html

3.3 Neural networks 97

there was none before, which changes the function only slightly, and the new neuron is
immediately integrated into the network.175 The NEAT mutations can be explained best with
Figure 42 – NeuroEvolution of augmenting topologies mutation.

Figure 42 – NeuroEvolution of augmenting topologies mutation176

Furthermore, genomes (chromosomes) receive innovation numbers, which are historical
markers that identify the original historical ancestor of each gene. New genes are assigned
new increasingly higher numbers. In adding a connection, a single new connection gene is
added to the end of the genome and given the next available innovation number. In adding a
new node, the connection gene split is disabled, and two new connection genes are added to
the end the genome. The new node is between the two new connections. A new node gene
(not depicted) representing this new node is added to the genome as well (Figure 43 –
NeuroEvolution of augmenting topologies recombination of different topologies).177

175 Stanley O. Kenneth (2004): NeuroEvolution of Augmenting Topologies [2011-12-12]; Carnegie
Mellon School of Computer Science; URL: http://www.cs.cmu.edu/afs/cs/project/jair/pub/
volume21/stanley04a-html/node3.html

176 Stanley O. Kenneth (2004): NeuroEvolution of Augmenting Topologies [2011-12-12]; Carnegie
Mellon School of Computer Science; URL: http://www.cs.cmu.edu/afs/cs/project/jair/pub/
volume21/stanley04a-html/node3.html

177 Stanley O. Kenneth et al. (2002): Evolving Neural Networks through Augmenting Topologies;
Evolutionary Computation 10(2): 99-127

98 3 An outline of artificial neural networks

Figure 43 – NeuroEvolution of augmenting topologies recombination of different topologies178

NEAT therefore knows, which genes of both parent chromosomes match up and which do
not. When a gene of a parent genome with its innovation number is available within the
innovation number range of the other parent, it is disjoint, otherwise it is excess. NEAT
speciates the population so that individuals compete primarily within their own niches instead
with the population at large. This way, topological innovations are protected and have time to
optimize their structure before they have to compete with other niches in the population. In
addition, speciation prevents bloating of genomes: Species with smaller genomes survive as
long as their fitness is competitive, ensuring that small networks are not replaced by larger
ones unnecessarily. Protecting innovation through speciation follows the philosophy that new
ideas must be given time to reach their potential before they are eliminated. Historical
markings make it possible to divide the population into species based on topological
similarity:

ߜ = ௖భா
ே

+ ௖మ஽
ே

+ ܿଷ ∗ ܹ (3-118)

178 Stanley O. Kenneth (2004): NeuroEvolution of Augmenting Topologies [2011-12-12]; Carnegie
Mellon School of Computer Science; URL: http://www.cs.cmu.edu/afs/cs/project/jair/pub/
volume21/stanley04a-html/node3.html

3.3 Neural networks 99

where ߜ is the distance between two network encodings as a linear combination of the number
of excess ܧ and disjoint ܦ genes, as well as the average weight differences of matching genes
ܹ. The coefficients ܿଵ, ܿଶ and ܿଷ adjust the importance of the three factors, and the factor ܰ,
the number of genes in the larger genome, normalizes for genome size. The reproduction
mechanism for NEAT is called explicit fitness sharing, where organisms in the same species
must share the fitness of their niche. Thus, a species cannot afford to become too large even if
many of its organisms perform well. Therefore, any one species is unlikely to take over the
entire population, which is crucial for speciated evolution to maintain topological diversity:

௜݂
ᇱ = ௙೔

∑ ௦௛(ఋ(௜,௝))೙
ೕసభ

 (3-119)

where the fitness ௜݂
ᇱ for the chromosome ݅ of a species is calculated according to its distance ߜ

from every other organism ݆ in the population. The sharing function ݏℎ is set to 0 when the
distance ߜ(݅, ݆) is above the threshold; otherwise it is set to 1.179

3.3.4 Stability-plasticity dilemma

The stability-plasticity dilemma is the problem of ANNs to retain old memories resulting
from new inputs.

– Plasticity concerns the adaption to any change in the input environment, whereas
– stability concerns the preservation of previously learned knowledge.

The ANN weights have to be flexible enough to accommodate the new knowledge (plasticity)
but not so much so as to lose the old ones (stability).180 Some ANN structures minimizing the
effects of this dilemma discussed in this book are described in detail in chapter 4. There have
been several contributions published describing solutions for the SP-dilemma, and one that
focuses on adaption is adaptive incremental learning (AIL) which seeks to deal with data
arriving over time or with (static) huge amounts of data that exceed the storage capacities.
Thus, processing of data at once is not feasible.181 AIL algorithms include

– adaptive resonance theory (ART) ANNs 182 (these are of vital significance for the
comparison of artificial and biological neural networks at 10.3 Self-organization and
10.3.2.3 Adaptive Resonance Theory),

– fuzzy ARTMAP,183,184

179 Stanley O. Kenneth (2004): NeuroEvolution of Augmenting Topologies [2011-12-12]; Carnegie
Mellon School of Computer Science; URL: http://www.cs.cmu.edu/afs/cs/project/jair/pub/
volume21/stanley04a-html/node3.html

180 Sasu Lucian Mircea (2006): Computational Intelligence Techniques in Data Mining; PhD Thesis;
Brasov: Transylvania University of Brasov, p. 45

181 Hassanien Aboul-Ella, Abraham Ajith, Vasilakos Athanasios V., Witold Pedrycz (2009):
Foundations of Computational Intelligence Volume 1: Learning and Approximation; Berlin
Heidelberg: Springer-Verlag, p. 238 ff.

182 Adeli Hojjat, Hung Shih-Lin (1995):Machine Learning Neural Networks, Genetic Algorithms and
Fuzzy Systems; John Wiley and Sons, New York

183 Cheng Tai W., Goldgof Dimitry, Hall Lawrence (1998): Fast fuzzy clustering. Fuzzy Sets and
Systems 93, 49–56

100 3 An outline of artificial neural networks

– nearest generalized exemplar,185
– generalized fuzzy min-max neural networks,186
– growing neural gas,187,188
– and incremental learning based on function decomposition.189

Especially the ART ANN, which has not been discussed within this chapter (but at 10.3.2.3
Adaptive Resonance Theory), produces a stable network that can learn new data. The main
idea behind this is to spare some of the output units for new patterns. When the input and a
stored pattern are sufficiently similar, they are said to resonate. When there is not sufficient
similarity, a new class of patterns is formed utilizing the unused output units. There is no
response from the network when all output units are used.190

3.4 Summary

Computational intelligence is the imitation of nature for letting software solve and learn
problem statements. As stated at the beginning machines shall, by the use of computationally
intelligent programs, become able to do things usually humans can do better. CI is a field
within the artificial intelligence, which pursues the empowerment of software systems
(machines) to

– understand,
– behave,
– adapt,
– collect information,
– plan, reason, solve problems, think abstractly, comprehend ideas and language, and

learn191

AI as a whole tries to make systems behave like humans do, whereas computational
intelligence relies on evolutionary approaches to solve, amongst others, problems suitable for
computers, like detecting similarities in huge data amounts or optimization problems. Within

184 Eschrich S., Ke J., Hall L., Goldgof D. (2003): Fast accurate fuzzy clustering through data
reduction. IEEE Trans. Fuzzy Systems 11, 262–270

185 Yang M.-S., Ko C.-H. (1996): On a class of fuzzy c-numbers clustering procedures for fuzzy data.
Fuzzy Sets and Systems 84(1), 49–60

186 Dave R.N., Krishnapuram R. (1997): Robust clustering methods: a united view. IEEE Trans.
Fuzzy Systems 5, 270–293

187 Cover T.M., Hart P.E. (1967): Nearest neighboring pattern classification. IEEE Trans.
Information Theory 13, 21–27

188 Eschrich S., Ke J., Hall L., Goldgof D. (2003): Fast accurate fuzzy clustering through data
reduction. IEEE Trans. Fuzzy Systems 11, 262–270

189 Bezdek James (1980): A convergence theorem for the fuzzy isodata clustering algorithms. IEEE
Trans. Pattern Analysis and Machine Intelligence 2, 1–8

190 Vasantha Kalyani D., Rajasekaran Sundaramoorthy (2009): Pattern Recognition Using Neural and
Functional Networks; Berlin Heidelberg: Springer-Verlag, p. 27

191 Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg: Springer-
Verlag, p. 7

3.4 Summary 101

the field of AI robotics, CI approaches find application for ensuring robust control, planning,
and decision making.192,193,194,195,196

CI techniques have experienced tremendous theoretical growth over the past few decades and
have also earned popularity in application areas e.g. control, search and optimization, data
mining, knowledge representation, signal processing, and robotics.197 Computational intelli-
gence therefore is of inestimable value in the field of data mining, as through its paradigms
machines can learn and apply manifold solution types, including classics like

– classification
– (time-Series) prediction, and
– clustering.

From what we have seen in this chapter, the field of computational intelligence, comprising
also artificial neural networks, offers interesting ideas which will form the foundation for the
search for possible implementation scenarios regarding an artificial mind. However, the
introduced artificial neural network structures seem to be too simple for being able to process
what we ought to process. Thus, within the next chapter more sophisticated and powerful
ANN structures will be introduced, capable of solving more complex problem statements.
One of these has even been inspired by the signal processing happening in the brain when a
conscious experience occurs.

192 Liu Dikai, Wang Lingfeng, Tan Kay Chen (2009): Design and Control of Intelligent Robotic
Systems; Berlin Heidelberg: Springer-Verlag, p. 2

193 Nolfi Stefano, Floreano Dolfi (2000): Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines; Bradford Books

194 Jain Lakhmi C. (1998): Soft Computing for Intelligent Robotic Systems: Physica-Verlag
195 Watanabe Keigo, Hashem M.M.A. (2004): Evolutionary Computations: New Algorithms and

Their Applications to Evolutionary Robotics; Heidelberg: Springer-Verlag
196 Teshnehlab M., Watanabe K. (1999): Intelligent Control Based on Flexible Neural Networks

(Intelligent Systems, Control and Automation: Science and Engineering); Dordrecht: Kluwer
Academic Publishers

197 Liu Dikai, Wang Lingfeng, Tan Kay Chen (2009): Design and Control of Intelligent Robotic
Systems; Berlin Heidelberg: Springer-Verlag, p. 2

4 Advanced artificial perception and pattern recognition

Of course, any artificial neural network structure has been inspired by the inner workings of
the human brain, but some have been even more so, in the sense that not only how neurons
single and clusters of neurons function is important, but also how cortices (e.g. the visual
cortex) processes real-world data and which different types of cells are used and why. In the
later chapters data representation will be discussed in some more detail, and we will see that
how data is presented to a machine learning algorithm is at least as important as the algorithm
itself.

Over the last years deep architectures, thus artificial neural networks comprising more than
two hidden layers, have been widely discussed (and earned both praise and criticism). It has
been emphasized that deep architectures are especially suitable for learning and processing
complex data structures, such as images or sound, whereby with images I do not only refer to
images as we humans perceive it in our everyday-life. I am referring to point-clouds or ݊-
dimensional representations of real-world images in terms of vectors, matrices or tensors,
which only make deep architectures that successful. Whether or not the inner workings in our
brain represent images in the same way, I want to emphasize that when we are developing
solutions in AI for solving real-world problems we do not only try to imitate how humans or
animals process data, perceive or behave. Very often AI-software achieves tasks such as
object recognition in a completely different way, starting with potentially different
representation of data.

The challenge one has to deal with so-called deep learning ANNs is that training is difficult
and time-consuming. This is on the one hand because a lot of the learning theory behind deep
architectures has not yet been understood, and on the other hand because of algorithmic
unpredictability, such as randomness in the weight initialization. What is more is that most
existing learning algorithms have not been developed for deep architectures and cannot be
applied to such structures successfully; e.g. back propagation suffers heavier from the
classical problems (see 3.3.3.6.1 Back propagation training) the deeper an architecture is, plus
additionally from vanishing or exploding gradients. Therefore, one question we must ask
when designing algorithms for training deep artificial neural structures is whether there are
more advanced ways of representing and presenting data. The purpose of this chapter is to go
into detail with some forms of data representation and also to show that we can apply some of
nature’s optimization strategies for learning although their “real” purpose is something
completely different (e.g. an immune system fighting pathogens).

Anyway, in terms of learning (training) genetic or thermal algorithms such as simulated
annealing (see 3.3.3.8 Simulated annealing) or completely different approaches such as
convolutional, deep belief networks or similar ones (4 Advanced artificial perception and
pattern recognition) tackle the problem. This is of utmost importance, as the human brain is a
deep neural network structure after all and apparently this has not negatively influenced its
capabilities. Some of following artificial neural network structures have been invented and
specified within the research phase of the SHOCID198 project.

198 Neukart Florian (2013): SYSTEM APPLYING HIGH ORDER COMPUTATIONAL INTELLI-
GENCE IN DATA MINING AND QUANTUM COMPUTATIONAL CONSIDERATIONS

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_4

104 4 Advanced artificial perception and pattern recognition

4.1 Convolutional artificial neural networks

Convolutional ANNs (CNNs) are, as standard ANNs, biologically inspired, but even more so.
From the research conducted by Hubel and Wiesel199 regarding visual perception of cats we
learned that the visual cortex is a highly complex arrangement of cells. Not surprisingly, the
convolutional neural network has deeply influenced the field of computer vision. The cells in
the visual cortex react to signals from the receptive field, small tiled sub-areas the making up
the entire visual field. These sub-areas function as in situ (local) filters leveraging the strong
spatial correlation occurring in natural images. Three different kinds of cells have been
identified:

– Layer 4 cells, whose receptive fields are round like those of LGN (before reaching the
primary visual cortex, fibers of the optic nerve make a synapse in a part of the thalamus
called the lateral geniculate nucleus [LGN]) and ganglion cells (a ganglion is a nerve
cell cluster or a group of nerve cell bodies located in the autonomic nervous system),

– simple cells with elongated receptive fields and thus maximally activated by a line of a
particular orientation, and

– complex cells whose receptive fields are similar to those of simple cells except that the
line can lie over a larger area of the retina and these fire more to moving lines.200

Thus, complex cells seem to feature far bigger receptive fields than simple cells and thus
successfully tackle the position invariance in a picture, and simple cells seem to strongly react
to edges. The urge to understand the inner workings of the animal visual cortex has inspired
numerous researchers, also from the field of AI, which resulted in numerous models (not
necessarily strongly related to artificial neural networks), such as NeoCognitron, 201
HMAX202 and LeNet-5,203 which will be explained in further detail.

CNNs share some properties with self-organizing feature maps (3.3.2.9.4 Self-organizing
feature map), in the sense that the order of the input vector elements not only matters, but is
crucial. Other ANN architectures such as feed forward ANNs do not care about the order of
the attributes are presented via the input vector. In terms of SOMs the representation of data
in a grid (or a higher-dimensional structure – SOMs are not restricted to 2D-space) has shown
remarkable success in clustering images, as pixels close to each other are also important to
each other. So the order of how the pixels of an image are presented does matter.
Nevertheless, apart from the fact that SOMs are clustering algorithms (which can after
successful training of course be used as classifiers), further challenges in computer vision

CONCERNING THE FUTURE OF ARTIFICIAL INTELLIGENCE; Brasov: University of
Brasov

199 Hubel, D. and Wiesel, T. (1968): Receptive fields and functional architecture of monkey striate
cortex; Journal of Physiology (London), 195, 215–243.

200 tutis.ca (2013): The Visual Cortex [2016-06-19]; URL: http://www.tutis.ca/NeuroMD/
L2V123/V123.pdf

201 Fukushima, K. (1980): Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position; Biological Cybernetics, 36, 193–202.

202 Serre, T., Wolf, L., Bileschi, S., and Riesenhuber, M. (2007): Robust object recog- nition with
cortex-like mechanisms; IEEE Trans. Pattern Anal. Mach. Intell., 29(3), 411–426. Member-
Poggio, Tomaso.

203 LeCun Yann, Bottou Léon, Bengio Yoshua, and Haffner Patrick (1998): Gradient-based learning
applied to document recognition; Proceedings of the IEEE, 86(11), 2278–2324

4.1 Convolutional artificial neural networks 105

before the introduction of CNNs were position invariance and noise in an image. Position
invariance refers to the spatial position in the image (thus an object located in the top left
corner, the bottom right corner or anywhere else), but also the size of the object, e.g. not all
cars in an image have the same size or have been photographed from the same distance.

4.1.1 Data representation

One of CNN’s primary tasks is to process (classify) images, such as identifying an object in a
picture successfully as car or distinguishing between humans and immobile objects when it
comes to autonomously driving cars. CNNs “perceive” images as 4-dimensional tensors,
whereby a tensor is a data structure that can be imagined either as an array of arrays, or just a
stack of matrices, each element of each matrix being another multi-dimensional element. An
example for a single 3-dimensional tensor is

ݐ = ቌ
ቀ1

4ቁ ቀ4
5ቁ ቀ6

8ቁ

ቀ3
5ቁ ቀ6

7ቁ ቀ8
4ቁ

ቍ (4-1)

A 4-dimensinal tensor goes just one step further and replaces each of the elements by another
multi-dimensional structure, thus is an array of arrays of arrays (see Figure 44 - 4-dimensional
tensor).

Figure 44 - 4-dimensional tensor

I mentioned beforehand that data may be represented differently, and where this becomes
obvious first is in the additional dimensions used for describing an image. Two dimensions
are required because the image has length and height, and the other dimensions are needed
because of color-encoding. If, for example, RGB encoding is applied, then the CNN features
three input layers (called channels), one for each color.

106 4 Advanced artificial perception and pattern recognition

4.1.2 Structure

As data is presented in boxes, and as convolution within the network takes place, the structure
differs a lot from classical feed forward ANNs. What is more, a whole standard feed forward
ANN is attached to the structure after convolution and downsampling are finished. The
receptive fields in a CNN are implemented by connecting subsets of layers ݈ to superordinated
layers ݈ + ݊.

Figure 45 – CNN sparse interconnectivity204

In Figure 45 – CNN sparse interconnectivity the bottom (input) layer ݈ represents the
receptive field consisting of 5 neurons, each of which features up to three connections to the
next layer ݈ + 1. Viewed from ݈ + 1 down to ݈ the receptive field has width 3, as each ݈ + 1-
neuron receives input from three ݈-neurons. This is how spatially local input patterns are
learned from the input layer ݈ (with a receptive field of size 5) up to layer ݈ + ݊. Each unit is
does not react to variations occurring outside of its receptive field, so what this makes sure
that the learnt filters bring out the most vigorous response to a spatially local input pattern.205
The original architecture of the LeNET-5 neural network features three layer types (see Figure
46 - CNN architecture):

– Convolutional layers
– Max-pool layers
– Dense layers

204 LeCun Yann, Bottou Léon, Bengio Yoshua, and Haffner Patrick (1998): Gradient-based learning
applied to document recognition; Proceedings of the IEEE, 86(11), 2278–2324

205 Deeplearning.net (2012): Convolutional Neural Networks (LeNet) [2016-06-20]; Deeplearning.
net; URL: http://deeplearning.net/tutorial/lenet.html

4.1 Convolutional artificial neural networks 107

Figure 46 - CNN architecture

4.1.2.1 Convolutional layers

Convolution coms from the Latin word convolvere and stands for “rolling together”, and
expressed in a more mathematical way a convolution is defined as a product of func-
tions ݂ and ݃ that are objects in the algebra of Schwartz functions in ℝ௡, and convolution of
two functions ݂ and ݃ over a finite range [0, is given by [ݐ

[݂ ∗ (ݐ)[݃ = ∫ ݐ)݃(߬)݂ − ߬)݀߬௧
଴ (4-2)

where [݂ ∗ (ݐ)[݃ represents convolution of ݂ and ݃ . Thus, convolution produces a third
function [݂ ∗ .݃ from two functions ݂ and (ݐ)[݃

Figure 47 – Convolution206

206 WolframMathworld: Colvolution [2016-16-21]; URL: http://mathworld.wolfram.com/
Convolution.html

108 4 Advanced artificial perception and pattern recognition

The green curve in Figure 47 – Convolution shows the convolution of the functions f and g,
and the x-axis is t. Function g moves from the left to the right, thus propagates in time, and
the vertical green line indicates where on the t-axis we are. The filled grey region shows the
product of ݂(τ)g(t − τ) as a function of t, thus it is the convolution.207 Something that is not
obvious when looking at the convolution equation is why ߬ shows up. Let assume we start
with the standard notation for convolution:

(ݐ)ݕ = (ݐ)ݔ + ℎ(ݐ) (3-4)

The notation can be misleading in the sense that it seems as if we get (ݐ)ݕ for a particular
value of ݐ by looking at both ݔ and ℎ for a specific value of ݐ. What is required instead is to
look at the whole time wave forms of ݔ and ℎ, which is why ݐ comes in. Figure Figure 48 –
࢞(࢚) depicts (ݐ)ݔ and a time signal. At point ݐ = 2 we can see that (ݐ)ݔ = -is a time (ݐ)ݔ .3.5
function, so it changes over time.

Figure 48 – ࢞(࢚)

Basically, there is nothing special about ݐ, so it would also be possible replace it by ߬ and talk
about ݔ(߬) instead (see Figure 49 – ࢞(࣎)).

207 WolframMathworld: Colvolution [2016-16-21]; URL: http://mathworld.wolfram.com/
Convolution.html

4.1 Convolutional artificial neural networks 109

Figure 49 – ࢞(࣎)

The same holds for ℎ(ݐ). Let assume the following example in which ℎ(ݐ) = 1 where e.g.
ݐ = 3 (see Figure 50 – ࢎ(࢚)).

Figure 50 – ࢎ(࢚)

Of course, the same replacement of t by ߬ is possible, but what we are interested here is ݐ − ߬,
thus ℎ(ݐ − ߬). Let assume that ݐ = 2, then we can get to ℎ(ݐ − ߬) by reflecting the function in
Figure 50 – ࢎ(࢚) around the ߬ = 0-line, and shifting it so that the point that lies on 0, now lies
on 2 (see Figure 51 – ࢎ(࣎) reflected and Figure 52 – ࢎ(࣎) reflected and shifted).

110 4 Advanced artificial perception and pattern recognition

Figure 51 – ࢎ(࣎) reflected

Figure 52 – ࢎ(࣎) reflected and shifted

Next and according to the convolution equation, the integral shows the area covered by the
multiplication of ݔ(߬) and ℎ(ݐ − ߬) (see Figure 53 – Convolution of ࢞(࢚) and ࢎ(࢚ − ࣎), green
area).

Figure 53 – Convolution of ࢞(࢚) and ࢎ(࢚ − ࣎)

4.1 Convolutional artificial neural networks 111

߬ shows up because in order to do the convolution of ݔ and ℎ it is required to have to look at ݔ
for values other than ݐ, and in general it is necessary to have to look at ݔ for every possible
value of its argument. The same holds for ℎ – every possible value of its argument must be
considered. That’s what ߬ does, as it ranges from −∞ to +∞.

When considering analysis of images, the immobile function (red in Figure 47 – Convolution)
represents the input data, thus the image itself. The second function moving from the left to
the right (blue in Figure 47 – Convolution) is the filter applied to the image, whereby 1 filter
is no restriction – usually there are numerous filters applied to an image, each recognizing a
different feature. In the first or one of the first convolution layers filters for detecting/creating
a map of edges in the image are possible, such as one filter recognizing horizontal, one
recognizing diagonal and one for vertical lines. The filters thus perform a search over the
image-space – a sliding window moving over the image – and any time a match is detected,
this is recorded. Finally, after each convolution, activation functions are applied on the output
– some of which are mentioned at 3.3.1.3 Activation functions).

4.1.2.2 Different ways of perception and processing

One thing we should always bear in mind is the fact that in artificial intelligence we seek to
implement intelligence in software (and, considering quantum computers, also in hardware),
but not necessarily in the same way as humans implement intelligence, for whatever
intelligence exactly is. A CNN does not perceive images as we humans do, which is where the
tensors mentioned beforehand come into play. If we consider an RGB image, a CNN does not
take just one image as input, as we humans seem to do, but splits it into three channels, one
for each of the colors. Thus, width and height of the image remain unchanged, but instead of
processing one flat 2D-image, it comes as a three layer deep box. Furthermore, the input
volume in terms of spatial dimensions does not remain constant propagating through the
network.

To start with, the intensity of the three colors red, green and blue is expressed by a number,
each of which will be an element in one of the three channels making up the image box. Any
channel at this stage is represented by a 2D-matrix. The CNN then applies each of the filters
on each of these channels, and at any step the dot product between the filter and the patch the
filter slides over is taken (depending from the shape of the filter other operations are applied
as well, e.g. the Hadamard product for rectangular filters). If the two matrices both have
feature high values in the same positions, the resulting dot product will be high as well,
otherwise it will be low. If a filter is thus finding its pattern in the patch it is currently sliding
over, this will be recorded with high values. At each step, another dot product is taken, each
of which contribute to the activation map, which is another matrix created for holding these
values. One parameter of importance is the stride – the step size for moving the filter across
the image. The number of columns in the activation map equals the number of steps (thus
depends on the stride) required to move across the image. Any search for a specific pattern,
which is the application of a specific filter, will produce one activation map. This is where the
number of spatial dimensions of the output already differs from the number of input
dimensions. Let assume a filter of size 4 × 4 is moving over a channel with 40 × 40 pixels
with stride 4, and then it will start with rows 1-4 in the top left corner and move across the
image until it reaches the top right corner, which will take 10 steps. It will then continue with
lines 5-8, and go on until it reached the bottom right corner. The result will be a 10 × 10
matrix (activation map). If we would look for 20 different patterns, 20 activation maps would

112 4 Advanced artificial perception and pattern recognition

be produced, resulting in a new box sized 10 × 10 × 20 (see the feature maps in Figure 46 -
CNN architecture). This whole process is called convolution.

4.1.2.3 Maxpooling/ downsampling layers

What happens in the maxpooling (or downsampling, subsampling) layer is that the activation
maps are downsampled, which is similar to what happens in the convolution layers. Patches
of a pre-defined size are cut under consideration of a stride and the highest number within a
patch is extracted and set as element in a new matrix. Let assume the activation map is as
shown in Figure 54 – Activation map

2 5 5 6
6 3 3 7
8 7 5 1
4 9 8 2

Figure 54 – Activation map

A max pool with 22 filters and stride 2 would produce a downsampled activation map as
shown in Figure 55 – Downsampled activation map

6 7
3 8

Figure 55 – Downsampled activation map

What remains are the strongest correlations to a feature compressed to a sub-space. Although
lots of information is lost in that step, this is also one of the advantages, because it decreases
both required processing time and memory needed.

4.1.2.4 Feature maps

As described above, each of the filters is replicated over the whole receptive field (slides over
the field), and the dot product is between the filtered region and the filter is calculated.
Weights (thus the values in the filter matrix) are shared as the filter moves across the image,
which greatly reduces the amount of processing time needed. The same filter may be applied
upon the different input channels, so if the input is an RGB image, the filter is applied three
times. In Figure 56 – Convolution calculation the calculation is shown in detail, whereby the
training algorithm found different filters for the different channels:

4.1 Convolutional artificial neural networks 113

Figure 56 – Convolution calculation208

208 Cf. Karpathy Andrej: CS231n Convolutional Neural Networks for Visual Recognition [2016-06-
23]; URL: https://cs231n.github.io/

114 4 Advanced artificial perception and pattern recognition

Filter W0 contains three filters, one for each channel, and so does filter W1. The number of
filters depends on how many patterns the network should be able to recognize, but ideally one
starts with a predefined configuration, such as LeNet or OxfordNet. In the first layer the
filters may still be interpretable by examining them closer, but this will become more difficult
for subsequent layers. What the training algorithm does is to find filters which minimize the
training error, and these are not necessarily human-interpretable. Figure 56 – Convolution
calculation depicts the calculation of the dot products of channel 1-3 with its respective filters.
In the example the three dot products are summed up to one feature in the feature map –
resulting in the value 1. To come back to terms, a feature map is calculated by the repeated
application of a function (dot product in our case) across the sub-regions of the entire image.
This is what is generally referred to as the convolution of an image with a filter. Additionally,
a bias is added and the output passed over to an activation function, as in some of the other
artificial neural networks introduced beforehand:

ℎ௜௝ = ℎ൫(ܹ௞݊ܽݐ ∗ ௜௝(ݔ + ܾ௞൯ (4-4)

The convolution for a one-dimensional signal is given by

[݂ ∗ ݃](݊) = ∑ ݊)݃(ݑ)݂ − (ݑ =ஶ
௨ୀିஶ ∑ ݂(݊ − ஶ(ݑ)݃(ݑ

௨ୀିஶ (4-5)

For a two-dimensional signal it is given by

[݂ ∗ ݃](݉, ݊) = ∑ ,ݑ)݂ ݉)݃(ݒ − ,ݑ ݊ − ஶ(ݒ
௨ୀିஶ (4-6)

which extends to ݊ dimensions. These equations apply to discrete signals, whereas the
integral specified beforehand applies to continuous signals.

4.1.2.5 Fully connected layers

Figure 46 - CNN architecture shows that after the layer S4 the network structure changes to a
standard feed forward structure, which has been explained at 3.3.2.2 Feed-forward artificial
neural network. Let assume S4 produces 16 5 × 5 feature maps, and the next layer features
120 neurons, then each of the 25 pixels within the 5 × 5 maps would feature 120 connections.
This results in 48,000 connections from S4 to C5.

4.1.2.6 Number of neurons

The number of the hidden layer’s neurons depends on various factors, such as the size of the
input image, how many features should be learned (thus, how many filters are applied), filter
size and stride: the larger filter and stride, the better the performance as fewer calculations
need to be conducted, but also the poorer the performance.

4.1.3 Training

The network can be trained with most of the already introduced training algorithms, such as
any propagation algorithm, genetic algorithms or simulated annealing. The most popular
algorithm is back propagation, however the forward and backward pass differ slightly
depending from what layer the calculations or the error is propagated through. Training

4.1 Convolutional artificial neural networks 115

regarding the fully connected layer does not differ from what has been introduced in 3.3.3.6.1
Back propagation training.

Let assume we start with an image of a size of ܯ × ܰ and a filter size of ݉ × ݊, then the
convolution is

௜௝ݖ
(௞) = ∑ ∑ ∑ ௦௧ݓ

(௞,௖)௡ିଵ
௧ୀ଴ (௝ା௧)(௜ା௦)ݔ

(௖)௠ିଵ
௦ୀ଴௖ (4-7)

where ݖ௜௝
(௞) represents the convolution of the filter ݇ over the channel ܿ, ݅ and ݆ are initial row

and column for each calculation on the channel, ݓ௦௧
(௞,௖) is the value (weight) of the filter ݇ in

its ݏ௧௛ row ݐ௧௛ column, and ܿ the channel (see Figure 57 - Featuremap generation). If the
filters are squared, it is also possible to apply the dot product:

௜௝ݖ
(௞) = ∑ ∑ ∑ ௦௧ݓ

(௞,௖)௡ିଵ
௧ୀ଴ (௝ା௦)(௜ା௧)ݔ

(௖)௠ିଵ
௦ୀ଴௖ (4-8)

Figure 57 - Featuremap generation

As indicated beforehand, an RGB image has 3 channels, and the filters are adapted for each of
the channels first, and summed up after calculation. If the number of filters is ܭ and the
number of channels ܥ, then ܹ ∈ ℝ௄×஼×௡×௡. From the equation it becomes obvious that the
size of the convolved image is (ܯ − ݉ + 1) × (ܰ − ݊ + 1). The activations are calculated
by

ܽ௜௝
(௞) = ℎቀݖ௝௜

(௞) + ௞ቁߠ = ݔܽ݉ ൬0, ቀݖ௝௜
(௞) + ௞ቁ൰ (4-9)ߠ

where ߠ௞ is the bias of the ݇௧௛ filter. ߠ௞ ∈ ℝ௄ is one-dimensional, thus given by a vector,
indicating that one bias for each filter exists. In the max-pooling layer, no learning at all
happens, so the propagation is

௜௝ݕ
(௞) = ݔܽ݉ ቀܽ(௟భ௜ା௦)(௟మ௝ା௧)

(௞) ቁ (4-10)

where ݈ଵ and ݈ଶ represent the pooling filter size and ݏ ∈ [0, ݈ଵ], ݐ ∈ [0, ݈ଶ]. As indicated in
3.3.1.4 Regularization, there exist several ways for regularization, and max-pooling/
downsampling is just the most popular one. Usually, the filters are quadratic and have a size
of 2 × 2 up to 4 × 4. There is also no need to follow the standard procedure of convolution-

116 4 Advanced artificial perception and pattern recognition

activation-pooling, as the latter two can be mixed up and a convolution filter can of course be
succeeded by another convolution filter. The parameters to be provided to the algorithm are
thus architecture-related:

– number of convolutions
– number of filters
– filter size
– number of max-pooling filters
– size of max-pooling filters
– arrangement of layers

Finally, the MLP attached to the last convolution/ max-pooling filter requires one-dimen-
sional data, as it is common. Feature/ activation maps are of higher dimension, at least two-
dimensional. A 2-dimensional quadratic filter of size ݈ଵ = ݈ଶ = 2 would thus feature as many
connections from each of its pixels as the fully connected layer has neurons. The error weight
adaption is conducted via back propagation, and for the MLP-layers it is exactly as described
at 3.3.3.6.1 Back propagation training and will not be repeated here. The error from the MLP-
input layer is propagated to the max-pooling layer, and re-mapped into the two-dimensional
max-pooling layers. As no learning happens in the max-pooling layer (it is model parameter-
free), the error is propagated back to the previous layer:

డா

డ௔(೗భ೔శೞ)(೗మೕశ೟)
(ೖ) = ൝

డா

డ௬೔ೕ
(ೖ) ௜௝ݕ ݂݅

(௞) = ܽ(௟భ௜ା௦)(௟మ௝ା௧)
(௞)

0 ݁ݏ݅ݓݎℎ݁ݐ݋
 (4-11)

where ܧ is the evaluation (error) function. The so-calculated error is propagated to the
convolution layer, and can be used to calculate the bias and gradients. As the activation with
the bias happens before the convolution when propagating backwards through the network,
the gradient of the bias has to be calculated first according to

డா
డ௕(ೖ) = ∑ ∑ డா

డ௔೔ೕ
(ೖ)

డ௔೔ೕ
(ೖ)

డఏ(ೖ)
ேି௡
௝ୀ଴

ெି௠
௜ୀ଴ (4-12)

With the following two definitions

௜௝ߜ
(௞) ≔ డா

డ௔೔ೕ
(ೖ) (4-13)

and

ܿ௜௝
(௞) ≔ ௜௝ݖ

(௞) + (௞)ߠ (4-14)

such that

డா
డ௕(ೖ) = ∑ ∑ ௜௝ߜ

(௞) డ௔೔ೕ
(ೖ)

డ௖೔ೕ
(ೖ)

డ௖೔ೕ
(ೖ)

డఏ(ೖ)
ேି௡
௝ୀ଴

ெି௠
௜ୀ଴ = ∑ ∑ ௜௝ߜ

(௞)ℎᇱቀܿ௜௝
(௞)ቁேି௡

௝ୀ଴
ெି௠
௜ୀ଴ (4-15)

The gradient of the weight is calculated identically:

4.1 Convolutional artificial neural networks 117

డா

డ௪ೞ೟
(ೖ,೎) = ∑ ∑ డா

డ௭೔ೕ
(ೖ)

ேି௡
௝ୀ଴

ெି௠
௜ୀ଴

డ௭೔ೕ
(ೖ)

డ௪ೞ೟
(ೖ,೎) = ∑ ∑ డா

డ௭೔ೕ
(ೖ)

ேି௡
௝ୀ଴

ெି௠
௜ୀ଴

డ௔೔ೕ
(ೖ)

డ௭೔ೕ
(ೖ) (௝ା௧)(௜ା௦)ݔ

(௖) =

∑ ∑ ௜௝ߜ
(௞)ℎᇱቀܿ௜௝

(௞)ቁேି௡
௝ୀ଴ (௝ା௧)(௜ା௦)ݔ

(௖)ெି௠
௜ୀ଴ (4-16)

If the CNN has multiple convolutional and max-pooling layers, then the error of the con-
volutional layers also has to be calculated:

డா

డ௪೔ೕ
(೎) = ∑ ∑ ∑ డா

డ௭(೔శೞ)(ೕశ೟)
(ೖ)

డ௭(೔శೞ)(ೕశ೟)
(ೖ)

డ௫೔ೕ
(೎)

௡ିଵ
௧ୀ଴

௠ିଵ
௦ୀ଴௞ (4-17)

which results in

డா

డ௭೔ೕ
(೎) = డா

డ௔೔ೕ
(ೖ)

డ௔೔ೕ
(ೖ)

డ௭೔ೕ
(ೖ) = ௜௝ߜ

(௞) డ௔೔ೕ
(ೖ)

డ௖೔ೕ
(ೖ)

డ௖೔ೕ
(ೖ)

డ௭೔ೕ
(ೖ) = ௜௝ߜ

(௞)ℎᇱቀܿ௜௝
(௞)ቁ (4-18)

The error is then

డா

డ௪೔ೕ
(೎) = ∑ ∑ ∑ (௝ି௧)(௜ି௦)ߜ

(௞) ℎᇱ௡ିଵ
௧ୀ଴

௠ିଵ
௦ୀ଴௞ ቀܿ(௜ି௦)(௝ି௧)

(௞) ቁݓ௦௧
(௞,௖) (4-19)

The algorithm for learning CNNs is as follows (assumption is 1 convolution and 1 max-
pooling layer; training equations of the fully connected layer has been omitted, as it has
already been described):

1. Start
2. Initial selection of network weights ݓ௜ at random.
3. Repeat

a) Calculate the convolution for channels ܥ and filters ܭ

௝௜ݖ
(௞) = ෍ ෍ ෍ ௦௧ݓ

(௞,௖)
௡ିଵ

௧ୀ଴

(௝ା௧)(௜ା௦)ݔ
(௖)

௠ିଵ

௦ୀ଴௖

b) Calculate the rectifier activations

ܽ௜௝
(௞) = ℎቀݖ௝௜

(௞) + ௞ቁߠ = max ൬0, ቀݖ௝௜
(௞) + ௞ߠ ቁ൰

c) Propagate the convolution output to the max-pooling layer

௜௝ݕ
(௞) = max ቀܽ(௟భ௜ା௦)(௟మ௝ା௧)

(௞) ቁ

d) Propagate the output through the fully connected ANN
e) Calculate the error
f) Propagate the error back through the fully connected ANN
g) Adapt weights of fully connected ANN
h) Propagate the max-pooling output through the fully connected ANN

ܧ߲
߲ܽ(௟భ௜ା௦)(௟మ௝ା௧)

(௞) = ቐ
ܧ߲

௜௝ݕ߲
(௞) ௜௝ݕ ݂݅

(௞) = ܽ(௟భ௜ା௦)(௟మ௝ା௧)
(௞)

0 ݁ݏ݅ݓݎℎ݁ݐ݋

118 4 Advanced artificial perception and pattern recognition

i) Calculate gradient of the bias

ܧ߲
߲ܾ(௞) = ෍ ෍ ௜௝ߜ

(௞)ℎᇱቀܿ௜௝
(௞)ቁ

ேି௡

௝ୀ଴

ெି௠

௜ୀ଴

j) Calculate the gradient of the filter

ܧ߲
௦௧ݓ߲

(௞,௖) = ෍ ෍ ௜௝ߜ
(௞)ℎᇱቀܿ௜௝

(௞)ቁ
ேି௡

௝ୀ଴

(௝ା௧)(௜ା௦)ݔ
(௖)

ெି௠

௜ୀ଴

k) Calculate the error of the convolution layer

ܧ߲
௦௧ݓ߲

(௞,௖) =
ܧ߲

௜௝ݓ߲
(௖) = ෍ ෍ ௜௝ߜ

(௞)ℎᇱቀܿ௜௝
(௞)ቁ

ேି௡

௝ୀ଴

(௝ା௧)(௜ା௦)ݔ
(௖)

ெି௠

௜ୀ଴

4. Until criteria are reached
5. End

Algorithm 10 – CNN back propagation algorithm

Breakdown:

k ∈ K: filter ݇ of all filters ܭ

 ݇ ௞: bias of filterߠ

ℎ: activation function

ܽ: activation

௜௝ݖ
(௞): convolution z of ݇௧௛ filter, ݅ and ݆ row and column upper left corner of convoluted area

of image

: error function

ܿ ∈ ܥ channel ܿ of all channels :ܥ

4.2 Deep belief artificial neural network

Deep belief ANNs are, once the structure is finalized, deep feed forward ANNs, which means
that they feature at least more than one hidden layer. The major difference is the weight
initialization, which is called layer-wise pre-training. The answer to the question why a more
sophisticated weight initialization is required for being able to successfully train a deep ANN
with an algorithm such as back propagation is motivated in two problems: vanishing and/ or
exploding gradients. The basic idea is that more hidden layers allow an ANN to learn more
complex classification functions, which results in higher accuracy. Based on that assumption,
additional layers should, in the worst case, not contribute at all, thus neither in- or decrease

4.2 Deep belief artificial neural network 119

accuracy. However, that is not what is happening. The more layers are added to an ANN, the
more inaccurate it becomes. Let assume an ANN with two hidden layers, then once back
propagation is conducted, one can observe that the gradients for the neuron bias డா

డ௕
 and the

gradients for the weights డா
డ௪

, in other words the rate of change of the cost with respect to a
neuron’s bias and weight in the second hidden layer are a lot larger than in the first hidden
layer. In order to understand this better it is useful to compare the learning speed of these two
hidden layers by observing the gradients for the first and second hidden layer

௝ߜ
௟ = ߲/ܧ߲ ௝ܾ

௟ (4-20)

which represents the gradient for the ݆௧௛ neuron in the ݈௧௛ layer, whereby ߜ௟ is a vector
containing all gradients. The size of the single vector components determines how fast the
hidden neurons in the layer ݈ learn. In order to determine how fast a layer learns, the length of
the vector ‖ߜ௟‖ can be taken. What one can observe is that the gradient gets smaller the more
hidden layers an ANN has and as one moves backward through the hidden layers. This is
called the vanishing gradient problem. If the opposite happens, which cannot be ruled out, we
are talking about the exploding gradient problem. It helps to explain the vanishing gradient
problem by going through a simple example:

Figure 58 - Simple ANN

The very simple multi-layered ANN depicted in Figure 58 - Simple ANN features four
weights ݓଵ, … , ସݓ and 4 biases ߠଵ, … , ସߠ , and the calculated output is compared with the
desired output by an error function ܧ (e.g. RMSE). The gradient ߠଵ belonging to the hidden
neuron 1 is

డா
డ௕భ

= ℎᇱ(ݕଵ) × ଶݓ × ℎᇱ(ݕଶ) × ଷݓ × ℎᇱ(ݕଷ) × ସݓ × ℎᇱ(ݕସ) × డா
డ௔ర

 (4-21)

where

௝ݕ = ௝ିଵݔ௝ݓ + ௝ߠ (4-22)

௝ݕ represents the weighted input to a neuron ݆ ௝ିଵݔ , the output of neuron ݆ − 1 , ℎ′ the
derivative of the activation function ℎ.

What happens is that if a change Δߠଵ in the bias ߠଵ is conducted, this will affect the numeric
content of the whole network:

120 4 Advanced artificial perception and pattern recognition

– The output Δݔଵ of the first neuron is affected.
– This will result in a change of ݕଶ, the weighted input to the second hidden neuron.
– This will also change Δݔଶ.
– This continues until the error function is reached, which will then result in a change in the

output cost Δܧ, so

డா
డఏభ

≈ ௱ா
௱ఏభ

 (4-23)

If the result of each single step mentioned above is tracked, an expression for the gradient డா
డఏభ

can be determined. Δߠଵ changes the output of the first hidden neuron ݔଵ as follows:

ଵݔ = ℎ(ݕଵ) = ℎ(ݓଵݔ଴ + ଵ) (4-24)ߠ

Therefore,

ଵݔ߂ = డ௛(௪భ௫బାఏభ)
డఏభ

ଵߠ߂ = ℎᇱ(ݕଵ)ߠ߂ଵ (4-25)

where ℎᇱ(ݕଵ) is the first term in the gradient డா
డఏభ

, converting a change Δߠଵ in the bias into a
change Δݔଵ in the output activation. This results in a change in

ଶݕ = ଵݔଶݓ + ଶ (4-26)ߠ

which is the second hidden neuron’s weighted input.

ଶݕ ≈ డ௬మ
డ௫భ

ଵݔ߂ = ଵ (4-27)ݔ߂ଶݓ

Combined with the first term calculated before this results in

ଶݕ ≈ ଵ (4-28)ߠ߂(ଵݕ)ଶℎᇱݓ

This clearly shows how the following terms will be influenced by a change in ߠଵ:

ܧ߂ ≈ ℎᇱ(ݕଵ)ݓଶℎᇱ(ݕଶ)ݓଷℎᇱ(ݕଷ)ݓସℎᇱ(ݕସ) డா
డ௫ర

 (4-29)

The last expression is constructed of single terms of the structure ݓ௝ℎᇱ൫ݕ௝൯. The derivative of
the sigmoid function is

ᇱߪ = ௘షೣ

(ଵା௘షೣ)మ (4-30)

and its peak is at 0.25. Thus, when initializing the weights in the ANN with a Gaussian with
ߤ = 0 and ߪ = 1 (here, ߪ is the standard deviation, not an activation function). In terms of the
sigmoid function the weights will then be smaller than 1, and as we saw that the whole term is
a product of expressions ݓ௝ߪᇱ൫ݕ௝൯, any of these expressions will satisfy

หݓ௝ߪᇱ൫ݕ௝൯ห < ଵ
ସ
 (4-31)

4.2 Deep belief artificial neural network 121

This in turn means that the product will become smaller the more terms are in the network,
thus the deeper the network. Comparing డா

డఏభ
 with డா

డఏయ
 we can see that these have some terms in

common:

డா
డఏభ

= (ସݕ)ᇱߪସݓ(ଷݕ)ᇱߪଷݓ(ଶݕ)ᇱߪଶݓ(ଵݕ)ᇱߪ డா
డఏర

 (4-32)

డா
డఏయ

= (ସݕ)ᇱߪସݓ(ଷݕ)ᇱߪ డா
డఏర

 (4-33)

Thus, as we move backwards through the network when calculating the gradients, డா
డఏభ

 will be

a lot smaller than డா
డఏయ

.

Another challenge in deep ANNs is the exploding gradient problem, which occurs when the
weights are chosen to be large, and the biases ߠଵ, … , ସ so that the problematic terms will notߠ
become too small, i.e. in a way that results in a weighted neuron input of at least ݕ௝ = 0 and
in consequence ߪᇱ൫ݕ௝൯ = ଵ

ସ
. Let assume

ଵݕ = ଴ݔଵݓ + ଵߠ = 0 (4-34)

which can easily be accomplished by setting

ଵߠ = −100 ∗ ଵݕ (4-35)

All terms ݓ௝ߪᇱ൫ݕ௝൯ will then result in

 100 ∗ ଵ
ସ

= 25 (4-36)

Summing up, the problem is that the gradient is unstable, thus that gradients in early layers
always depend from the gradients in later layers. With many layers, this can result in
considerable uncertainty. Therefore, other approaches for training deep networks had to be
found. Considering the multi-neuron multi-layer case, the gradient in the ݈௧௛ layer of an ܮ-
layered ANN is given by

௟ߜ = ்(௟ାଶݓ)(௟ାଵݕ)′∑்(௟ାଵݓ)(௟ݕ)′∑ … (37-4) ܧ௫ߘ(௅ݕ)′∑

∑ ᇱ(௅ݕ) is a diagonal matrix, and its entries, the ߪᇱ(ݕ)-values, are the values for the weighted
inputs to the ݈௧௛ layer. ݓ௟ are the weight matrices for each layer, and ∇௫ܧ is a vector
containing partial derivatives of ܧ with respect to the output activations. Compared to the
one-layered network used beforehand, the critical terms change to (ݓ௟)்∑′(ݕ௟). Any ∑′(ݕ௟)
has small entries, each of them smaller than ଵ

ସ
, which means given the ݓ௟ are sufficiently

small, each of the (ݓ௟)்∑′(ݕ௟) will make the gradients sufficiently smaller causing the
vanishing gradient problem.209

209 Nielsen Michael (2016): Neural Networks and Deep Learning [2016-07-04]; URL: http://
neuralnetworksanddeeplearning.com/chap5.html

122 4 Advanced artificial perception and pattern recognition

4.2.1 Stacking together RBMs

Restricted Boltzmann machines have already been introduced at 3.3.2.9.2 Boltzmann
Machine, and training and stacking together RBMs is the weight initialization needed in order
to prevent the problems mentioned to occur. When training an RBM, in the forward pass the
inputs of neurons ݊ଵ, … , ݊௡ are multiplied by the respective weights of hidden layers
ℎଵ, … , ℎ௡, meaning that at ℎଵ the summation happens, a bias-value is added, and the sum is
passed through an activation function for scaling the output, as common in ANNs. The
difference to a standard feed forward ANN is that only discrete values (usually 0 and 1) are
taken – research on continuous RBMs is ongoing. As RBMs have been developed as auto-
encoders, the backward pass aims to reconstruct the presented input vectors. Therefore, a way
to imagine how processing works is to see the activations at the hidden layer as input and the
input layer as output layer, thus the activations are multiplied by the respective weights and
summed up at the input layer (bot no further activation happens). In order to adapt the weights
the back propagation algorithm is applied. Once training has reached the required criteria and
the reconstructed values are close enough to the optimum, the activations at the hidden layer
are taken and serve as inputs to the next RBM. Thus, the hidden features extracted from the
input dataset are used as inputs to the next layer. This is why and how concepts can be learned
over a hierarchical structure. After the weights have been initialized in this specific way, an
output layer needs to be added, which is capable of representing the desired class output,
whereby the output layer usually relies on algorithms such as SVM or logistic regression.
Finally, all stacked layers together are treated as a standard feed forward ANN and training
can be conducted via back propagation, and usually not much weight adaption happens after
this very special form of weight initialization. This is also why in terms of DBNs we are
talking about a combination of unsupervised and supervised training – weight initialization is
unsupervised, as no class labels are provided and the hidden patterns in the data are learned.
Fine-tuning via back propagation is supervised.

In 3.3.2.9.2 Boltzmann Machine the notation of (free) energy has been introduced, and this is
how RBMs differ in “thinking” to feed forward ANNs. Every unit features a stochastic state,
and the RBM’s energy is determined based on each of these units’ state. The least amount of
energy possible in a network is the target of the minimization problem, and the (minimum)
energy condition memorizing the correct data is the network’s steady state. RBMs in general
have been proposed, as BMs need a huge amount of processing time due to their fully
connected architecture.

4.2.2 Training

The training of a deep belief network leverages both the training algorithms of

– RBMs: weight initialization
– back propagation for feed forward ANNs: training after weight initialization

The algorithm for training deep belief ANNs is as follows (details for RBM and back
propagation to be found at 3.3.2.9.2 Boltzmann Machine and 3.3.3.6.1 Back propagation
training):

4.3 Cortical artificial neural network 123

Start

1. Repeat
a) Initialize and train ܾ݉ݎ௫ from ܾ݉ݎଵ, … , ௡ܾ݉ݎ
b) If ࢞ > ૚

i. Stack ܾ݉ݎ௫ିଵ and ܾ݉ݎ௫
2. Until ࢞ == ࢔
3. Add output layer
4. Train DBN according to back propagation algorithm

End

Algorithm 11 – DBN training

Breakdown

,ଵܾ݉ݎ … , ,௡: RBM 1ܾ݉ݎ … , ݊, depending from the required depth

4.3 Cortical artificial neural network

The cortical artificial neural network210 is one of the deep artificial neural structures that have
been conceived and specified during the research phase of the SHOCID project. Its
development has been inspired by theoretical aspects of the signal processing in the human
brain, resulting in conscious experiences. Yet Edelman said that human consciousness does
not arise via the original sensory processing, but from the interactivity that arises within 500
ms between these low- and high-level modules (re-entry). 211 Furthermore, a theory of
consciousness called reduced functionalism, which’s key premise is that only causal currents
matter in determining conscious contents, goes along with reciprocal corollary, which on her
part dictates that only reciprocal currents matter. Although these two statements provide the
functional basis of the cortical (recurrent) ANN, by which software systems implementing
such receive the ability of solving complex classification and time-series prediction problems,
this will not be discussed here in detail, as theories of consciousness are discussed in chapter
9. Katz proposed the framework depicted in Figure 59 – Causal brain influence types.

210 Neukart Florian, Moraru Sorin-Aurel, Grigorescu Costin-Marius, Szakazs-Simon Peter (2012):
Cortical Artificial Neural Networks and their Evolution - Consciousness-inspired Data Mining.
Proceedings of OPTIM 2012

211 Edelman G. (2001): Naturalizing consciousness: A theoretical framework; Proceedings of the
National Academy of Sciences USA, 100, 5520 - 5524

124 4 Advanced artificial perception and pattern recognition

Figure 59 – Causal brain influence types212

Summing up, type I causal influences are feed-forward, and operate at the pre-horizon of what
may be termed the conscious kernel, meaning that they can influence the contents of
consciousness by affecting the firing of neurons in this kernel, but are not themselves
generators of conscious content. Type II neural units do not feature this property, and
therefore are potentially within the conscious kernel, which gives them the properties of re-
entry, synchrony, and accessibility. Type III neurons in the post-horizon of consciousness are
influenced by type II ones, and like type I ones they do not have re-entry into the conscious
kernel, and can therefore not be part of consciousness.213

Especially when trying to solve classification or time-series prediction problem statements,
commonly applied ANN structures, like feed-forward or recurrent MLPs tend to show a
decreased performance and accuracy when dealing with manifold datasets containing

212 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC, p. 136

213 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC, p. 136

4.3 Cortical artificial neural network 125

numerous input (predictors) and/or target-attributes. This is independent from the applied
learning methods, activation functions, biases, etc... The creation of cortices in combination
with an intense increase of the number of weights within an ANN allows eluding this, as
explained below.

4.3.1 Structure

Back to computational intelligence, this resulted in the idea for cortical ANNs, in which
processing is not only carried out by a single horizontal hidden layer (or cortex), but by
several parallel hidden layers. The input is processed feed-forward to every single cortex of
the ANN. The pre-cortical ANN-scheme (Figure 60 – Pre-cortical artificial neural network
structure) helps to understand this special ANN type.

Figure 60 – Pre-cortical artificial neural network structure

The first step to the implementation is the definition of the cortices, which has to be
considered within a software-side implementation. The above scheme describes the
segregation of both cortices 1 and ݊, each commanding over two hidden layers. The input is
processed from the input neurons to every single neuron of each cortex. By comparison to
Figure 59 – Causal brain influence types, the input neurons act as the sensory field input, or
the input to the brain, which are the neurons of the type I. The processing within the
conscious kernel of the ANN happens in the independent cortices, which is in the pre-cortical
ANN structure only feed-forward. In Katz's picture, these are the type II neurons. After

126 4 Advanced artificial perception and pattern recognition

having been processed by each of the cortices, the cortex outputs are processed into a
common cortex layer, which is the last processing step before being passed over to the output
layer, or in terms of reduced functionalism, to the type III neurons.

However, in the introduction I mentioned the re-entry, which goes along with reduced
functionalism, the theory of mind by which the development of the cortical ANN has been
inspired. Re-entry states that the information is processed within the conscious kernel and not
just passed through. In terms of ANN development this means that there are recurrent layers
required for processing, which leads to the slightly more complex scheme of cortical ANNs
(Figure 61 – Cortical artificial neural network structure).

Figure 61 – Cortical artificial neural network structure

The scheme shows that, compared to the pre-cortical ANN structure, the cortical ANN
features state layers connected from the second cortical hidden layer to the first cortical

4.3 Cortical artificial neural network 127

hidden layer of each cortex, which allows the processing cortex to possess a kind of memory.
Within the conscious kernel therefore not only causal information processing is carried out,
but also recurrent processing of the information. Mathematically, the processing from the
input through a cortical ANN consisting of just one cortex, which in fact does not make sense,
but is the most basic representation of such an ANN, is

௧ݔ = ℎସ(ݓ଴ + ∑ ௟ݓ
௡
௟ୀଵ ℎଷ(ݓ଴௟ + ∑ ௝ݓ

௠
௞ୀଵ ℎଶ(ݓ଴௞ + ∑ ଴௝ݓ)௝ℎଵݓ +௟

௝ୀଵ ∑ ௧ିଵݔ௜௝ݓ +௣
௜ୀଵ

∑ ߸௠௝ݖ௠,௧ିଵ)))) + ߳௧
௟
௠ୀଵ (4-38)

where

௠,௧ݖ = ଴௠ݓ + ∑ ௧ି௜ݔ௜௠ݓ + ∑ ߸௞௝ݖ௞,௧ିଵ, ݉ = 1, … , ݈௟
௞ୀଵ

௣
௜ୀଵ (4-39)

where the input layer has ݌ inputs ݔ௧ିଵ, … , ௧ି௣, the hidden layer 1 has ݈ hidden nodes, theݔ
hidden layer 2 has ݉ hidden nodes, the hidden layer 3 has ݊ hidden nodes and the output with
,௧ିଵݕ outputs ݕ … , ,௧. The layers are fully connected by weightsݔ ௧ି௣, for the output layerݕ
where ݓ௜௝ is the ݅௧௛ input for the ݆௧௛ node in the hidden layer, whereas ݓ௝ is the weight
assigned to the ݆௧௛ node in the hidden layer for the output. ݓ଴௝ ଴௝ݓ , ଴௞ݓ , and ݓ଴௟ are the
biases, ℎଵ ... ℎ௡ are activation functions. The connections from recurrent layer two to the
hidden layer are also weighted in the cortical ANN, therefore, ߸௠௝ <> 1. For every single
cortex, the above equation holds and has to be calculated through to receive the proper output,
whereby the fourth hidden layer plays a special role as its neuron number directly depends
from the number of cortices, the number of neurons in the last hidden layer before the
common cortex layer (or the fourth hidden one in the above representation) each cortex
commands over, and the number of output neurons. So, if the number of cortices ݊௖ = 2, and
each last hidden layer before the common cortex layer of every cortex consists of 3 neurons
and the number of output neurons is 2, the number of neurons in the common cortex layer is
6, according to the last formula in 4.3.1.2 Number of neurons.

Cortical ANN have proved to perform well when their neurons implement either the sigmoid
activation function for only positive scaling of input values and the hyperbolic tangent
activation, when the output has to be scaled between positive and negative values.

4.3.1.1 Cortices

Each cortex of the cortical ANN in the scheme consists of two hidden layers and one state
layer, but the number is of course not limited to that. The cortices receive their input from the
input layer and double-process the information, as it is, after having passed the second, hidden
cortex layer, processed to the common cortical layer, which serves as some kind of reception
unit for the outputs of every cortex. A single output layer, especially when consisting of a
small number of neurons, would not be able to successfully process the output of two or more
cortices.

4.3.1.2 Number of neurons

The number of neurons of each layer within a cortical ANN can be determined by calculations
based on the input and output neurons. The number of the first hidden cortex layer is
determined with

128 4 Advanced artificial perception and pattern recognition

݊௛ଵ௖௡ = ቀ௡೔೙೛ೠ೟

ଷ
∗ 2ቁ + ݊௢௨௧௣௨௧ (4-40)

where ݊௜௡௣௨௧ represents the number of input neurons and ݊௢௨௧௣௨௧ the number of output
neurons. However, the empiric research has shown that for some problems it might be
necessary to increase the number of hidden neurons and that – 20 neurons for the first hidden
layer mark a good start then. In a similar way, the number of the second hidden cortex layer is
determined:

݊௛ଶ௖௡ = ቀ௡೓భ೎೙
ଷ

∗ 2ቁ + ݊௢௨௧௣௨௧ (4-41)

where ݊௛ଵ௖௡ represents the number of neurons in the first cortical hidden layer and ݊௢௨௧௣௨௧
again the number of output neurons.

The number of neurons within the state layers in cortical ANNs always equals ݊௛ଶ௖௡ ,
although the processing does not happen one to one (each neuron in the source has on neuron
in the target layer), but weighted from every source neuron to every target neuron, which has
proofed to be the best solution during verification. The number of neurons in the common
cortex layer strongly depends from the number of cortices and the number neurons of each
cortex' second hidden layer:

 ݊௖௖ = ቀ௡೓మ೎೙
ଷ

∗ 2ቁ ∗ ݊௖ + ݊௢௨௧௣௨௧ (4-42)

where ݊௛ଶ௖௡ represents the number of the second cortical hidden layer, ݊௖ the number of
cortices within the ANN and ݊௢௨௧௣௨௧ the number of output neurons.

4.3.1.3 Synapses

Partially, cortical ANNs are recurrent (in their cortices), but what makes it different from
most practically applied ones is that not only every feed-forward connection in the ANN is
weighted, but also the recurrent ones. The high number of weighted connections and hidden
layers within a cortical ANN leads to increased processing time, but also to the possibility of
understanding and processing Data Mining problem statements of high complexity,
containing numerous different predictors and target attributes.

4.3.2 A generic cortical artificial neural network

As we seek to find a generic neural network architecture, capable of processing strongly
varying input with overseeable training effort, the structure of the cortical ANN has been
slightly adapted: the ANN structure capable of solving most of the presented problem
statements without the absolute need to change the structure or source code has been
determined according to empiric research results (Figure 62 – Cortical artificial neural
network structure).

4.3 Cortical artificial neural network 129

Figure 62 – Cortical artificial neural network structure

Independent from the general cortical ANN, I personally made positive experiences for
predicting share prices using cortical ANNs commanding only over one hidden layer per each
cortex. Another difference is that indeed all connections are weighted, and the connections
from the cortex layers to the state layers are one to one, not one to all. This dictates that the
state layers must have the same number of neurons as the cortex layers. Furthermore, this
structure demands to determine the number of neurons slightly different from the common
cortical artificial neural network. The number of the cortex neurons for each cortex is
determined in the same way as the first hidden layer neuron determination in the common
cortex ANN:

݊௛௖ = ቀ௡೔೙೛ೠ೟

ଷ
∗ 2ቁ + ݊௢௨௧௣௨௧ (4-43)

130 4 Advanced artificial perception and pattern recognition

However, the common cortex layer neurons are calculated according to the equation

݊௖௖ = (݊௛௖ ∗ 2) + ݊௢௨௧௣௨௧ (4-44)

Moreover, the common cortex layer and the output layer neurons apply the hyperbolic tangent
activation function, regardless of the sign of the input. The other layer's neurons make use of
the sigmoid activation function if the input sign is positive; else they also use the hyperbolic
tangent function.

4.3.3 Purpose

As already stated in the introduction, ANNs with only two hidden layers are capable of
representing an arbitrary decision boundary to arbitrary accuracy with rational activation
functions and can approximate any smooth mapping to any accuracy.214 This leads to the
question of the purpose of such a complex ANN structure, commanding at least over three
hidden layers and moreover, over at least two cortices containing those hidden layers. When
implementing a cortical ANN, or an initial population of such ANNs (as genetic evolution is
again an efficient way to finding the best solution for a problem statement when dealing with
such complex ANN structures), and teaching them how to solve the XOR problem, the
learning success will not be comparable to an ANN with just one hidden layer, learning e.g.
with resilient propagation, as it will be much worse. Assuming that the fitness function of the
ANN is the root mean squared error

௥௠௦௘ݔ = ටଵ
௡

∑ ௜ݔ
ଶ௡

௜ୀଵ
మ (4-45)

the ANN will either be not able to achieve the allowed error within the allowed number of
iterations or will at least take much longer to do so. Furthermore, the performance will be
much worse than compared to the mentioned single-hidden layer ANN. However, the strength
of cortical ANNs advances when source data contains manifold predictors and shall be
classified or predicted into various targets, as our brain uses to classify input. As the number
of weights within cortical ANNs is high, understanding of very complex source data and the
possibility of learning to classify is, according to complex weight matrix structures, possible.
Current ANN research does not focus on complex ANN structures, as huge amounts of source
data not being able to be processed by just one ANN, are clustered and processed with several
ANNs. It does take much until the necessity of applying several cortical ANNs for allowing a
software system to understand a problem statement arises, regardless to the problem's
complexity. Especially within data mining systems, the overall complexity of a solution is
decreased, although the overall solution consisting of one cortical ANN is more complex than
the single parts of the first one.

Thus, at a first glance, there would not be the need for creating cortices within an ANN, but
practical application showed that the processing of data from the input neurons into two or
more independent cortices results in more accurate results. This is because the two cortices
process input independently from each other, and the resulting output of both is merged.
When the calculations in one cortex are not as accurate as they should be, this is compensated

214 Heaton Research (2005 - 2011): The number of Hidden Layers [2011-28-09]; URL: http://www.
heatonresearch.com/node/707

4.3 Cortical artificial neural network 131

by the other cortices (not training algorithm can ensure that the resulting output is as good as
possible, owed to the randomness the evolution of ANNs). The effect of compensation shows
its advantage to the full extent when the cortical ANN includes at least 3 cortices, as it is very
unlikely that the majority of the cortices incorrectly process information.

4.3.4 Evolution and weight initialization

As cortical ANNs are complex structures, the above described formulas for determining the
optimal number of neurons for each layer are a good suggestion for determining an initial
condition before evolution, but do not always perform best. This is, where structural evolution
can again be applied for determining the optimal solution for a problem statement, which is
slightly more complex in cortical ANNs than in feed-forward ones. The evolution of the
structure of a cortical ANN is even more complex than the evolution of the SHOCID
recurrent ANN, which also contains hidden layers to be adapted and added or removed.
Structural evolution of a cortical ANN may contain:

– Addition or removal of cortical layers
– Addition or removal of cortical layer neurons, first and second, which leads to the

adaption of the neuron number in the common cortex layer
– Addition or removal of cortices, which leads to the adaption of the neuron number in the

common cortex layer

When evolving a cortical ANN I suggest to only carry out the addition or removal of cortical
neurons and the addition or removal of cortices (the maximum number of cortices is restricted
to 4). Furthermore, the number of hidden layers within a cortex remains 2 and is not in- or
decreased. Therefore, the evolution has influence on the whole structure of the ANN, but only
the cortex structure is adapted. Similar adaptations occur within the human brain when
learning is carried out – unused synaptic connections are weakened or removed, and on the
contrary often used connections are strengthened.

The structure-part within the evolutionary process on cortical ANNs does only affect the
number of hidden neurons and layers. However, in theory there are further possibilities of
evolution currently not having been tested in a way so that a statement can be made. Possible
structural modifications / mutations may also contain

– Asynchronous adaption of the cortices
 Asynchronous in- or decrease of layers
 Asynchronous in- or decrease of cortex neurons

– Hybrid activation functions per cortex (within a cortex?)

Weight initialization for deep cortical ANN structures can be conducted as described in 4.2
Deep belief artificial neural network. As simulated annealing has proofed to come to the most
accurate solutions in short time within cortical ANNs, the algorithm for evolving cortical
ANNs may be follows:

Start

1. Creation of initial ANN with ݊ܿ௠௜௡ cortices, containing ݊ℎܿ௠௜௡ hidden cortex layers
and ݊ℎ1௠௜௡ hidden neurons in the first cortical hidden layer and ݊ℎ2௠௜௡ neurons in the
second cortical hidden layer. Additionally, the initial common cortex layer is created

132 4 Advanced artificial perception and pattern recognition

with ݊ܿܿ௠௜௡ neurons.
2. Repeat

a) Calculate the network output for the value d ∈ D
b) Evaluate the fitness of each neuron:
c) Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

d) Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

e) Repeat
i. Create new ANN and randomize weights according to T

ii. Calculate the error δୢ∈ୈ for each output neuron d ∈ D
δୢ∈ୈୀ(desiredୢ∈ୈ − actualୢ∈ୈ)actualୢ∈ୈ(1 − actualୢ∈ୈ)

iii. Calculate the error δ୦୧ୢ for each hidden neuron hid
δ୦୧ୢ = actual୦୧ୢ(1 − actual୦୧ୢ) ෍(w୦୧ୢୢ∈ୈδୢ∈ୈ)

ୢ∈ୈ

iv. Compare solutions according to

∆஼൫ௌᇲ൯஼(ௌ)= (ᇱܵ)ܥ − (ܵ)ܥ

v. If C(Sᇱ) is better than C(S), replace C(S)
f) Until max tries for current temperature reached
g) Decrease temperature by

߮஼൫ௌᇲ൯஼(ௌ) = ܶ ∗ ݁
௟௡ቀ௦

௘ቁ
௖ିଵ

3. Until lower temperature bound reached
4. Determine the quality value of the initial network architecture
5. Store the quality value of the initial network architecture in the quality array
6. Repeat

a) if nh1 < nh1max:
i. Increase ݊ℎ1 by ܿ௛ଵ

b) Calculate ݊ܿܿ
c) Creation of ANN population of ݊௣ ANNs with ܿ cortices, containing ݊ℎܿ hidden

cortex layers and ݊ℎ1 hidden neurons in the first cortical hidden layer and ݊ℎ2
neurons in the second cortical hidden layer. Additionally, the initial common
cortex layer is created with ݊ܿܿ neurons.

d) Randomization of weights and threshold values.
e) Repeat

i. Repeat
1. Calculate the network output for the value d ∈ D
2. Evaluate the fitness of each neuron:
3. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

4.3 Cortical artificial neural network 133

4. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

5. Repeat
a. Create new ANN and randomize weights according to

T
b. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

δୢ∈ୈୀ(desiredୢ∈ୈ − actualୢ∈ୈ)actualୢ∈ୈ(1 − actualୢ∈ୈ)
c. Calculate the error δ୦୧ୢ for each hidden neuron hid

δ୦୧ୢ = actual୦୧ୢ(1 − actual୦୧ୢ) ෍(w୦୧ୢୢ∈ୈδୢ∈ୈ)
ୢ∈ୈ

d. Compare solutions according to

∆஼൫ௌᇲ൯஼(ௌ)= (ᇱܵ)ܥ − (ܵ)ܥ

e. If C(Sᇱ) is better than C(S), replace C(S)
6. Until max tries for current temperature reached
7. Decrease temperature by

߮஼൫ௌᇲ൯஼(ௌ) = ܶ ∗ ݁
௟௡ቀ௦

௘ቁ
௖ିଵ

ii. Until lower temperature bound reached
f) Until ࢞ࢇ࢓ࢉ࢔ is reached
g) Determine the quality value of the current network architecture
h) Store the quality value of the current network architecture in the quality array
i) Verification

i. Present each verification data set
ii. Increase error array for RMSE > ݎ௠௔௫ for each verification data set by 1

j) if ࢎ࢔૚ == ݊ℎ1௠௔௫:
– Increase ݊ℎ2 by ܿ௛ଶ

7. Until nh2max is reached
8. Comparison of stored ANN solutions by quality
9. Present best solution

End

Algorithm 12 - Evolution of cortical ANN

Breakdown:

݊ℎܿ௠௜௡/݊ℎܿ௠௔௫: Minimum/maximum number of hidden cortex layers
݊ℎ1௠௜௡/݊ℎ1௠௔௫: Minimum/maximum number of neurons of nhc1
݊ℎ2௠௜௡/݊ℎ2௠௔௫: Minimum/maximum number of neurons of nhc2
݊௖: Number of cortices
݊ܿܿ௠௜௡: Minimum number of common cortex neurons
ܿ௡ /ܿ௠: Hidden neuron/layer counters

134 4 Advanced artificial perception and pattern recognition

݀ ∈ Actual input :ܦ
݀ ௗ∈஽: Error for inputߜ ∈ at output neuron on in the current generation ܦ
 ௛௜ௗ: Error for hidden neuronߜ
 ௠௔௫: Allowed RMSEݎ

The neuron numbers ݊ℎ1௠௜௡ , ݊ℎ1௠௔௫ , ݊ℎ2௠௜௡ and ݊ℎ2௠௔௫ are determined according to the
equations explained in 5.3 Structural evolution. It has to be considered that the layer directly
upstream to the layer which's neurons have to be calculated, serves as the input layer, where
the output layer is always the last layer in the ANN. Otherwise, all hidden layers would
receive the same number of neurons.

4.4 SHOCID recurrent artificial neural network

The SHOCID recurrent artificial neural network 215 (SRANN) is another deep learning
architecture that has been conceived and specified within the SHOCID research-project, with
the purpose of performing classification and time-series prediction tasks on generic input
values. In order to give it better long short term-memory, recurrent connections from the
output layer to the hidden layers and from the hidden layers to itself exist. Thus, this structure
is used for making time-dependent predictions, e.g. predicting the trajectory of a person, or in
short: what’s going to happen next. Our brain has evolved a series of pattern recognizers and
predictors to do exactly that: predict where prey or predators are going to move and what their
next actions are. The SRANN is, as well as the Elman and Jordan ANNs, a recurrent ANN,
processing its input values forward and able to make use of several learning methods.
However, as the calculations within SRANNs are computationally more intensive than in
other ANNs, the preferred learning method is based on a genetic adaption of weights (3.3.3.7
Genetic learning). In difference to Elman and Jordan ANNs, the SRANN is also able to apply
structural evolution, 216 described at 5.3 Structural evolution, a method similar to NEAT
(3.3.3.9 NeuroEvolution of augmenting topologies (NEAT)) carrying out not only an adaption
of weights, but also an in- and decrease of neurons and layers within an ANN for determining
the optimal solution to a data mining problem statement.

4.4.1 Structure

Schematically, the SHOCID RANN’s structure is as depicted in Figure 63 – SHOCID
recurrent artificial neural network single hidden layer.

215 Neukart Florian (2013): Accuracy through Complexity - One Step further in Time-Series
Prediction and Classification, Knowledge Discovery in Databases.

216 Neukart Florian. et al. (2011): Problem-dependent, genetically evolving Data Mining solutions;
Proceedings of DAAAM 2011, 2011 22nd World Symposium

4.4 SHOCID recurrent artificial neural network 135

w
i1hn

w inh
1

w h4
on

w ron
h1

n

Figure 63 – SHOCID recurrent artificial neural network single hidden layer

The ANN is somewhat similar to the Elman and Jordan recurrent ANNs, with the difference
that it unites architectural concepts of both. The above picture shows that the network, in case
it contains just one hidden layer, has two recurrent layers.

4.4.1.1 Recurrent layer one

The recurrent layer one, represented by the neurons ݎ௢ଵ௛௫ and ݎ௢௡௛௫, processes the values of
the output neurons back to the hidden layer. Each hidden neuron ℎ௫ from the hidden layer
receives input from each neuron ݎ௢௫௛௫ of the recurrent layer one. The connections from the
recurrent layer to the hidden layer contain weights, which are adapted after a learning
iteration. The recurrent layer one therefore must feature exactly the same number of neurons
as the output layer. The weight adaption is necessary as the output values from the output
layer shall not cause the hidden neurons to fire in the mass the hidden layer two does.

136 4 Advanced artificial perception and pattern recognition

4.4.1.2 Recurrent layer two

The recurrent layer two, represented by the neurons ݎ௛ଵ௛ଵ, . . . , ௛௡௛௡, processes the outputݎ
values of the hidden layer back to itself and provides them as input, but without making use of
weights. This not only increases the firing rate of the hidden neurons, but also increases the
probability of an adaption of weights between the hidden layer and the output layer intensely.
In difference to the recurrent hidden layer two, the number of the neurons in the recurrent
layer is the same as the number of the neurons in the hidden layer. Furthermore, the
processing of the output values in this layer is nearly the same as in an Elman ANN, meaning
that the neuron ݎ௛ଵ௛ଵ only propagates its output value back to the neuron ℎଵ, but without
weights being adapted or taken into consideration inside of a leaning iteration.

The hidden layer therefore receives input from both recurrent layers, which, in comparison to
classical Jordan and Elman ANNs, increases the network's memory, what is important for
time series prediction, but also leads to better classification results by increased weight
adaption within the ANN. Mathematically, the SHOCID RANN can be represented by

௧ݔ =
ℎଶ(ݓ଴ + ∑ ௝௜ݓ ଴௝ݓ)௧ିଵℎଵݕ +௟

௝ୀଵ ∑ ௧ିଵݔ௜௝ݓ + ∑ ߸௠௝ݖ௠,௧ିଵ + ∑ ߸௬௝ݖ௬,௧ିଵ
௬
௤ୀଵ)) + ߳௧

௟
௠ୀଵ

௣
௜ୀଵ (4-46)

where

௠,௧ݖ = ଴௠ݓ + ∑ ௧ି௜ݔ௜௠ݓ + ∑ ߸௞௝ݖ௞,௧ିଵ, ݉ = 1, … , ݈௟
௞ୀଵ

௣
௜ୀଵ (4-47)

and

௬,௧ݖ = ଴௬ݓ + ∑ ௧ି௜ݔ௜௬ݓ + ∑ ߸௞௝ݖ௞,௧ିଵ, ݕ = 1, … , ݈௟
௞ୀଵ

௣
௜ୀଵ (4-48)

where the input layer has p inputs ݔ௧ିଵ, … , ௧ି௣, the hidden layer has l hidden nodes and theݔ
output with y outputs ݕ௧ିଵ, … , ௧. Layers are fully connected byݔ ௧ି௣, for the output layerݕ
weights, where ݓ௜௝ is the ݅௧௛ input for the ݆௧௛ node in the hidden layer, whereas ݓ௝ is the
weight assigned to the ݆௧௛ node in the hidden layer for the output. ݓ଴and ݓ଴௝ are the biases,
ℎଵ and ℎଶ are activation functions. The connections from recurrent layer two to the hidden
layer are not weighted in the SRANN, therefore ߸௠௝ = 1 , but stay in the formula as
weighting may become useful in not yet discovered use cases. The connections from the
recurrent layer one ߸௬௝ݖ௬,௧ିଵ to the hidden layer are, as described beforehand, weighted.

The SRANN is not limited in terms of neurons or layers, meaning that such also can become
multi-hidden layer ANNs, which is also the reason why structural evolution can be applied
(Figure 64 – SHOCID recurrent artificial neural network multi hidden layer).

The difference to the single hidden layer SRANN (SL-SRANN) is that per each additional
hidden layer two additional recurrent layers appear. The processing from the output layer o to
the second hidden layer ℎଶ via the recurrent layer ݎ௢௫௛ଶ௫ and from the second hidden layer
ℎଶvia the recurrent layer ݎ௛ଶ௫௛ଶ௫ to itself is exactly the same as the one described at the SL-
SRANN. The recurrent layer ݎ௛ଶ௫௛ଵ௫ however, uses the output of the hidden layer two as
input and processes it, after weighting the values, back to the hidden layer one. Therefore, it
features the same number of neurons as the hidden layer two ℎଶ. The recurrent layer ݎ௛ଵ௫௛ଶ௫
applies the same un-weighted processing as the layer ݎ௛ଶ௫௛ଶ௫ for propagating its output values
back to itself.

4.4 SHOCID recurrent artificial neural network 137

i1

i2

h21

h22

o1

w i1h11

wh22o1

h2n

on

in

wi1h12w
i1h13w

i1h1n

w i2h11

w i2h12
wi2h13w

i2h1n

w inh1
1

w inh12

w inh13

winh1n

w
h21on

wh22on

w h2no1

wh2non

ro1h2x

ronh2x

rh22h21

rh22h22

rh2nh2n

wh21o1

wRo1h21

h11

h12

h13

h1n

rh11h11

rh12h12

rh13h13

rh1nh1n

rh21h1x

rh22h1x

rh2nh1x

wro1h22

wro1h2n

wronh21
wronh22
wronh2n

wrh21h11
wrh21h12
wrh21h13
wrh21h1n

wrh22h11
wrh22h12
wrh22h13
wrh22h1n

wrh2nh11
wrh2nh12
wrh2nh13
wrh2nh1n

wh11h21

w
h11h22w

h11h2n
wh12h21

wh12h22w
h12h2n

w h13h21

wh13h22

wh13h2n

wh1n
h2

1

wh1nh22

wh1nh2n

Figure 64 – SHOCID recurrent artificial neural network multi hidden layer

4.4.1.3 Number of neurons

The number of neurons of each layer within the SHOCID RANN is determined by calcula-
tions based on the input and output neurons. In case of a single hidden layer SRANN, the
number of the hidden layer is determined by

݊௛ଵ = ቀ௡೔೙೛ೠ೟

ଷ
∗ 2ቁ + ݊௢௨௧௣௨௧ (4-49)

where ݊௜௡௣௨௧ represents the number of input neurons and ݊௢௨௧௣௨௧ the number of output
neurons. In a similar way, the second hidden layer's number of neurons, in case of a two-
hidden-layer SRANN, is determined:

݊௛ଵ = ቀ௡೓భ
ଷ

∗ 2ቁ + ݊௢௨௧௣௨௧ (4-50)

where ݊௛ଵ represents the number of neurons in the first hidden layer and ݊௢௨௧௣௨௧ again the
number of output neurons.

As indicated beforehand, the number of neurons within the state layers in SHOCID RANNs
depends from the submitting layer. The recurrent layer one commands over the same number
of neurons as the output layer, as the input is processed one-to-one and therefore no other
solution is possible. The same holds for the second recurrent layer, which receives the input

138 4 Advanced artificial perception and pattern recognition

one-two-one from the hidden layer and therefore commands over the same number of neurons
as the latter one. Hence,

݊௥ଵ = ݊௢ (4-51)

and

݊௥ଶ = ݊௛ (4-52)

4.4.1.4 Synapses

The SRANN is a recurrent ANN, but what makes it different from most practically applied
ones is that it both commands over weighted, recurrent connections and un-weighted,
recurrent connections. As the scheme shows, the connections from the output layer to the
recurrent layer one are not weighted, in contrast to the connections from the recurrent layer
one to the hidden layer. At a first glance, this may look the same as in a Jordan recurrent
ANN. However Jordan recurrent ANNs make use of weighted connections from output layer
to the hidden layer. The same holds for the recurrent layer two and a comparison to the Elman
recurrent ANN, but examined in detail the SRANN processes the input directly from the
hidden layer to itself, in the contrary to the former one, which commands over weighted
connections from the hidden layer to recurrent one.

The high number of weighted connections and hidden layers within the SRANN may lead to
increased processing time, but also, and as the cortical ANN, to the possibility of
understanding and processing data mining problem statements of high complexity, containing
numerous different predictors and target attributes.

4.4.2 Purpose

As indicated repeatedly, ANNs with only two hidden layers are capable of representing an
arbitrary decision boundary to arbitrary accuracy with rational activation functions and can
approximate any smooth mapping to any accuracy.217 However, depending from the presented
time-series prediction problem statement, one must derive from testing if Jordan or Elman
recurrent ANNs perform better. There is no obvious way of how one can find out which
structure will perform better, except through considerable experience and testing.

The SRANN avoids this, as to its structure, which is a combination of modified Jordan and
Elman RANNs, the determination becomes unnecessary. In several tests it could be verified
that by the application of the SRANN, time-series prediction problems can be solved more
accurately than by both Jordan and Elman RANNs. Furthermore, the SRANN showed
considerable performance and accuracy in solving classification problem statements,
comparable to those of the cortical ANN structure. When implementing a SRANN, or an
initial population of such ANNs (as genetic evolution is again an efficient way to finding the
best solution for a problem statement when dealing with such complex ANN structures), and
teaching them how to solve the XOR problem, the learning success is indeed comparable to

217 Heaton Research (2005 - 2011): The number of Hidden Layers [2011-28-09]; URL: http://www.
heatonresearch.com/node/707

4.4 SHOCID recurrent artificial neural network 139

an ANN with just one hidden layer, learning e.g. with resilient propagation, although it's
complexity.

Therefore, the strength of SRANNs advances not only when source data contains manifold
predictors and shall be classified or predicted into various targets, but also in simple problem
statements usually solved with back propagation ANNs. As the number of weights within
SRANNs is numerous, complex understanding of source data and the possibility of learning
to classify is, according to complex weight matrix structures, possible.

4.4.3 Evolution and weight initialization

SRANNs are complex structures, and the latterly described formulas for determining the
optimal number of neurons for each layer are a good suggestion, but do not always perform
best. This is, where structural evolution may be applied for determining the optimal solution
for a problem statement, which is slightly more complex in SHOCID RANNs than it is in
feed-forward ones. Furthermore, the evolution of the structure of a cortical ANN is complex,
as the structural evolution contains:

– Addition or removal of hidden layers and the corresponding.
– Addition or removal of recurrent layers.
– Addition or removal of hidden layer neurons, first and second, and the corresponding .
– Addition or removal of recurrent layer neurons, first and second for each hidden layer.

When evolving an SRANN, I made positive experiences by only carrying out the addition or
removal of hidden layers, recurrent layers and the addition or removal of the corresponding
neurons, and by restricting the maximum number of hidden layers within the SRANN to 2.
Therefore, the maximum number of recurrent layers is four. Therefore, the evolution has
influence on the whole structure of the ANN.

Weight initialization for deep SRANN structures can be conducted as described in 4.2 Deep
belief artificial neural network. Furthermore, as genetic evolution has proofed to come to the
most accurate solutions in short time within SHOCID RANNs, an algorithm for evolving
these ANNs is as follows:

Start

1. Creation of initial ANN population of np ANNs with mmin hidden layers, nmin hidden
neurons for each hidden layer, and the recurrent layers one and two with the
corresponding number of neurons.

2. Repeat
a) Calculate the network output for the value d ∈ D
b) Evaluate the fitness of each chromosome:

i. Calculate the error δୢ∈ୈ for each output neuron on

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

ii. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

140 4 Advanced artificial perception and pattern recognition

c) Selection of chromosomes to recombine
d) Repeat

i. Crossover of chromosomes
ii. Mutation of offspring

e) Until all selected chromosomes have been recombined
3. Until criteria are reached
4. Determine the quality value of the initial network architecture
5. Store the quality value of the initial network architecture in the quality array
6. Repeat

a) if n < nmax:
Increase n by cn

b) Creation of population of x ANNs with mcm hidden layers, ncn hidden neurons
for each hidden layer and the recurrent layers one and two with the corres-
ponding number of neurons.

c) Randomization of weights and threshold values of each chromosome.
d) Repeat

i. Calculate the network output for the value d ∈ D
ii. Evaluate the fitness of each chromosome:

8. Calculate the error δୢ∈ୈ for each output neuron on

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

9. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

iii. Selection of chromosomes to recombine
iv. Repeat

10. Crossover of chromosomes
11. Mutation of offspring

v. Until all selected chromosomes have been recombined
e) Until criteria are reached
f) Determine the quality value of the current network architecture
g) Store the quality value of the current network architecture in the quality array
h) Verification

i. Present each verification data set
ii. Increase error array for RMSE > rmax for each verification data set by 1

i) if n == nmax:
Increase m by cm

7. Until mmax is reached
8. Comparison of stored ANN solutions by quality
9. Present best solution

End

Algorithm 13 - Evolution of SRANN

4.5 Summary 141

Breakdown:

݊௣: Number of chromosomes
݉௠௜௡/݉௠௔௫: Minimum/maximum number of hidden layers
݊௠௜௡/݊௠௔௫: Minimum/maximum number of neurons per ݉௡
ܿ௡/ܿ௠: Hidden neuron/layer counters
݀ ∈ Actual input :ܦ
݀ ௗ∈஽: Error for inputߜ ∈ at output neuron on in the current generation ܦ
 ௛௜ௗ: Error for hidden neuronߜ
 ௠௔௫: Allowed RMSEݎ
݊௠௜௡ and ݊௠௔௫ are determined on the basis of the number of input neurons. The equation

݊௛ = ቀ௡೔೙೛ೠ೟

ଷ
∗ 2ቁ + ݊௢௨௧௣௨௧ (4-53)

delivers the number of the hidden neurons, which form the basis for the determination of the
minimum and maximum number to which evolution shall come to:

݊௠௜௡ = ݊௛ − ቀ௡೓
ଷ

ቁ (4-54)

and

݊௠௔௫ = ݊௛ + ቀ௡೓
ଷ

ቁ (4-55)

The same holds for the second hidden layer, if evolution is applied that far, with the
difference that all neuron numbers of the evolution of the first layer are stored into an array,
which serve as a calculation basis for ݊௠௜௡ and ݊௠௔௫. If, e.g., one solution of the first hidden
layer evolution process has three hidden neurons, the evolution of the second hidden layer
takes this as ݊௛ and calculates ݊௠௜௡ and ݊௠௔௫ anew. The algorithm also shows that the first
run to determine the initial ANN's quality has to be carried out at the beginning, as the
evolution starts immediately afterwards.

4.5 Summary

Within the chapter some more sophisticated artificial neural network structures have been
discussed, as well as and according to the research results the most suitable learning
algorithms and paradigms for these. The verification of the new paradigms showed that the
combination of computational intelligence with typical data mining problem statements
features enormous potential. I mention data mining very often, as within this field numerous
practices are applied for achieving what the human brain does achieve with ease, such as
classification, prediction or clustering. On the other hand, practical application of actual CI-
paradigms shows that are capable of solving complex problem statements that humans cannot
do that quickly with their brains, such as pattern recognition in numerical and unstructured
date. However, in finding a solution to such problems computers have always been better than
humans, on the contrary to e.g. interpretation of context (what is someone actually doing?) by
observation, which actually is no problem for a human brain. From what the research has
shown, the rudimentary simulation of human conscious processing opens new possibilities in
ANN research, but the search for software capable of producing conscious content only starts
at this point.

142 4 Advanced artificial perception and pattern recognition

Apart from that, stored data and the need for evaluating it will increase, and time required for
implementing such will proportionally decrease, as software systems capable of learning and
understanding problem statements come to the fore, especially when considering the current
‘Big Data’ and AI-hype cycle.

5 Advanced nature-inspired evolution and learning
strategies

From what we have understood about the inner workings of the human brain, our neural
networks are initialized while we are developing in our mothers’ wombs, but not well
configured to work in the outside world right after we are born. Learning in the human brain,
which refers to building up neural networks over the neocortical hierarchies, involves a lot
more than initializing connections and increasing the connection strength between neurons.
Depending from the neuron type, even different types of electrochemical signals (amplitude,
frequency, period) may have no effect, result in firing bursts or a single activation only
(3.3.2.6.3 Spiking artificial neural networks). The facts that we have not yet a hundred percent
understood how learning in the human brain happens and that the beauty of mathematics very
often allows us to solve problems in many ways, the explanation of the following nature-
inspired training algorithms should show that we do not necessarily need to exactly copy what
is happening in the human brain in order to achieve similar or even identical capabilities.
Some training algorithms have already been introduced in chapter 3, but the following ones
are special in the sense that they copy nature and evolution even more in order to achieve a
totally different task, namely training neural networks instead of e.g. fighting viruses or
simulating parasitic behavior. Especially complex ANN architectures are useless without
benefiting from a suitable learning approach. Within this chapter some algorithms Nature
already provided us with have been translated into the training mathematics for artificial
neural networks.

Training ANNs means to solve an optimization problem, and the purpose for describing these
algorithms is to show that Nature has developed very sophisticated solutions to such kind of
problems over millions of years of evolution. Although learning and evolution go along,
evolution can either be

– a learning approach, or
– a supportive process for learning, when evolving the architecture.

How can that be? This is on the one hand, because genetic algorithms may be used for
learning, which classifies an artificial neural network into an evolutionary learning one. If on
the other hand an ANN is capable of adapting its architecture by a supportive architecture
evolution process like structural evolution or NEAT, this does not necessarily mean that it has
to learn by the application of genetic algorithms.

5.1 Transgenetic NeuroEvolution
As transgenetic NeuroEvolution218 via the inclusion of both symbionts and horizontal gene
transfer is a new approach in artificial neural network learning, it requires an explanation in
detail. Transgenetic algorithms are used for performing a stochastic search by simulating
endosymbiotic interactions between a host and a population of endosymbionts as well as

218 Neukart Florian et al. (2012): Transgenetic NeuroEvolution. Proceedings of OPTIM 2012

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_5

144 5 Advanced nature-inspired evolution and learning strategies

information exchange between the host and endosymbionts by agents219. By the combination
of one of the already discussed learning approaches with a host organism, serving as genetic
pool, and transgenetic vectors, both learning performance and accuracy can be increased to a
considerable degree. A further advantage is that the application of transgenetic vectors
massively increases the chance of fulfilling the stopping criteria, as even learning algorithms
like back propagation cannot oscillate or get stuck in local minima due to the inescapable
transfer of host genetic material.

5.1.1 Fundamentals

The biological fundamentals of transgenetic algorithms for solving NP-hard combinatorial
problems have already been elucidated in detail by Goldbarg & Goldbarg220, but need to be
adapted for ANN evolution. As in nature, the relationship between a host organism and a
symbiont may be an advantage for both organisms, and the descendants share genetic material
of both the host and the symbiont. The host organism here mostly serves as genetic database
and contributes to the final solution with gene sequences. The endosymbiont is the real
solution, which is evolved until predefined stopping criteria have been met. However, the
manipulation of the endosymbiont's genetic material does not only happen through horizontal
gene (sequence) transfer of the host's genetic material to the former one, but also by some
special types of mutation in its chromosomes, or in case of population-based learning,
genomes.

Both changes in the endosymbiotic DNA are carried out by agents, the so-called transgenetic
vectors. Transgenetic NeuroEvolution makes use of the following types of vectors:

– Plasmids
 Weight plasmid
 Structure plasmid

– Transposons
 Jump and swap transposon
 Erase and jump transposon

Plasmids are used for the transportation of genetic information from the host to the
endosymbiont, and transposons mutate the genetic material of the endosymbiont. Figure 65 -
Transgenetic NeuroEvolution provides a brief overview of how transgenetic NeuroEvolution
works.

219 Abraham Ajith, Hassanien Aboul-Ella, Siarry Patrick, Engelbrecht Andries (2009): Foundations
of Computational Intelligence Volume 3 Global Optimization; Berlin Heidelberg: Springer-
Verlag, p. 425

220 Abraham Ajith, Hassanien Aboul-Ella, Siarry Patrick, Engelbrecht Andries (2009): Foundations
of Computational Intelligence Volume 3 Global Optimization; Berlin Heidelberg: Springer-
Verlag, p. 425 ff.

5.1 Transgenetic NeuroEvolution 145

wi1h1 w
h1o1

w
i2h3

w inh
2

w
inhn

w
h2on

wh3o1

w h4on

w i1h1

w
i2h3

w inh
2

w
inhn

wi1h1 w
h1o1

w
i2h3

w inh
2

w
inhn

w
h2on

wh3o1

w h4on

wh3o1

wh4on

w h4
o1

wh4on

Re-in
teg

rati
on

Figure 65 - Transgenetic NeuroEvolution

On the left side, Figure 65 - Transgenetic NeuroEvolution shows the host, which serves as
genetic database for the horizontal gene transfer, carried out by plasmid vector agents. One
weight plasmid on the left side below transports a sequence of weights to the endosymbiont,
as well as a structural plasmid above the host transfers the weights, biases and activation
functions. On the right side, a jump and swap transposon vector mutates the chromosome of
the endosymbiont.

5.1.2 Host genetic material

The host consists of ‘rough’ solutions to the problem statement, that is several populations
each consisting of thousands individuals each of them subject of continuous evolution. There-
fore, the host is not only one organism, but thousands of organisms in different populations.

146 5 Advanced nature-inspired evolution and learning strategies

5.1.3 Endosymbiont

The endosymiont is a simulated annealing ANN solution, which simulates the cooling of
metal, as explained in 3.3.3.8 Simulated annealing. The transgenetic vectors are applied
during the simulated cooling process. Any iteration creates a new possible solution, and each
new solution must endure the attacks of both plasmid and transposon vector agents to see if a
better solution can be found.

5.1.4 Algorithm

The algorithm for applying transgenetic NeuroEvolution is as follows:

Start

1. Creation of ݊௛௣ initial host populations with ݊௖ individuals.
2. For each ࢖ࢎ࢔ repeat

a) Randomization of weights and threshold values of each chromosome.
b) Repeat

i. Calculate the network output for the value d ∈ D
ii. Evaluate the fitness of each chromosome:

1. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

2. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

iii. Selection of chromosomes to recombine
iv. Repeat

1. Crossover of chromosomes
2. Mutation of offspring

v. Until all selected chromosomes are recombined
c) Until criteria are reached

3. Until rough evolution (࢘࢘ࢋ࢙࢓) for each ࢖ࢎ࢔ has been finished.
4. Create initial ANN solution and randomize weights.
5. Repeat

a) Calculate the network output for the value d ∈ D
b) Evaluate the fitness of each neuron:

i. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

ii. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

iii. Set C(C) = C(S)

5.1 Transgenetic NeuroEvolution 147

c) Repeat
i. Create new ANN and randomize weights according to T

ii. Calculate the error δୢ∈ୈ for each output neuron d ∈ D
δୢ∈ୈୀ(desiredୢ∈ୈ − actualୢ∈ୈ)actualୢ∈ୈ(1 − actualୢ∈ୈ)

iii. Calculate the error δ୦୧ୢ for each hidden neuron hid
δ୦୧ୢ = actual୦୧ୢ(1 − actual୦୧ୢ) ෍(w୦୧ୢୢ∈ୈδୢ∈ୈ)

ୢ∈ୈ

iv. Compare solutions according to

∆஼൫ௌᇲ൯஼(ௌ)= (ᇱܵ)ܥ − (ܥ)ܥ

v. If C(Sᇱ) is better than C(C), set C(C) = C(Sᇱ)
vi. Apply plasmid vector

vii. If C(P) is better than C(C), set C(C) = C(P)
viii. Apply transposon vector

ix. If C(T) is better than C(C), set C(C) = C(T)
d) Until max tries for current temperature reached
e) Decrease temperature by

߮஼൫ௌᇲ൯஼(ௌ) = ܶ ∗ ݁
௟௡ቀ௦

௘ቁ
௖ିଵ

6. Until lower temperature bound reached

End

Algorithm 14 - Transgenetic NeuroEvolution

Breakdown:

nhp: the number of host populations to create
rrmse: rough root mean squared error
C(C): calculation current solution
C(S): calculation initial solution
C(P): calculation plasmid solution
C(T): calculation transposon solution

The algorithm shows that the evolution of the host genetic material is carried out only
roughly, until the rough root mean squared error has been reached by the evolution of the
population. Within the introduced system this is the allowed, passed RMSE multiplied by 10.
If the allowed RMSE is 1%, the rough RMSE is 10%.

5.1.5 Horizontal (endosymbiotic) gene (sequence) transfer

The horizontal transfer of genetic material is the transfer of genetic material from the host to
the endosymbiont by plasmids. Every time the plasmid vector is applied on the currently
evolving endosymbiont, the actual best solution of the currently selected host population is
determined and serves as current host. The plasmid vector selects a gene sequence of the host
chromosomes, copies it and transfers it to the endosymbiont. The application of the plasmid

148 5 Advanced nature-inspired evolution and learning strategies

vector happens once during each the evolutionary iteration of the endosymbiont. As
mentioned above, the actual best solution (=the host) is chosen from one of the host
populations, where the selection of the latter also happens at random, depending from the
number of host populations created. If three host populations have initially been created, the
probability for each one to be selected is 1/3 either.

After having selected the host chromosome, the relevant gene sequence has to be determined,
which also happens at random. For transgenetic algorithms it is important that the host and the
endosymbiont consist of the same number of genes, as for the horizontal gene transfer gene
sequence determination the chromosome length is taken into consideration. After the length
of the selected chromosome has been determined, a random starting and end point are created,
which enclose the transfer gene sequence. The same starting and end points are then used to
delete the gene sequence in the endosymiont. The gap is then filled with the host genetic
transfer sequence. However, both the old and new solutions are then compared according to
their quality, and if the transfer has proofed to be evolutionary reasonable, the new solution
will form the basis for further evolution, but if not, the gene transfer is rolled back. As
mentioned in the fundamentals, there are two types of plasmids. The application of either the
one or the other happens at random with a probability of 1/2 for each.

5.1.5.1 Weight plasmid

The weight plasmid does only take the weights between the neurons into consideration. This
means that a transfer sequence only consists of weights, but does not contain activation func-
tions or biases. The following example shows the application of a weight plasmid. The length
of the host chromosome is determined and a random sequence selected:

ܿℎݎ௛ = [10010|0111000|011] (5-1)

The host chromosome has the length 15, and the gene transfer sequence starts with gene 6 and
ends with gene 12. The same sequence is then selected in the endosymbiont:

ܿℎݎ௦ = [10011|1111011|100] (5-2)

Afterwards, the endosymbiotic gene sequence is deleted and replaced by the host gene
sequence, which forms the descendant chromosome:

ܿℎݎௗ = [10011|0111000|100] (5-3)

5.1.5.2 Structure plasmid

The structure plasmid, in contrary to the weight plasmid, contains all activation functions and
bias values the transfer sequence encloses. This requires the different host populations to
make use of different activation functions, as a transfer of these would be useless otherwise.
The bias values evolve independently in each chromosome of each host population as well as
in the endosymbiont. It should only be taken care of both the activation functions and the bias
values - there is no need to interfere otherwise. The example for the structural plasmid is the
same, with the exception that the gene sequence also contains bias values and activation
functions:

5.1 Transgenetic NeuroEvolution 149

The length of the host chromosome is determined and a random sequence selected:

ܿℎݎ௛௢௦௧ = [10݊ଵ௛01݊ଶ௛0|0݊ଷ௛111݊ସ௛000|0݊ହ௛11] (5-4)

The host chromosome has the length 15, and the gene transfer sequence starts with gene 6 and
ends with gene 12. The difference is that the above chromosome also contains neuron
information, namely the mentioned activation functions and the bias values of the host. The
same sequence is then selected in the endosymbiont:

ܿℎݎ௦ = [10݊ଵ௦01݊ଶ௦1|1݊ଷ௦111݊ସ௦011|1݊ହ௦00] (5-5)

Afterwards, the endosymbiotic gene sequence is deleted and replaced by the host gene
sequence, which forms the descendant chromosome:

ܿℎݎௗ = [10݊ଵ௦01݊ଶ௦1|0݊ଷ௛111݊ସ௛000|1݊ହ௦00] (5-6)

5.1.6 Transposon mutation

As mentioned in the fundamentals, the transposon mutation does not transfer genetic
sequences from the host, but changes the genetic information in the endosymbiont. As with
plasmid vectors the application of transposonic vectors happens once within an endo-
symbiont’s evolutionary iteration. A transposon vector selects a gene sequence in the endo-
symbiont and mutates it according to the transposon type. Again, both the old and new
solutions are then compared according to their quality, and if the mutation has proofed to be
evolutionary reasonable, the new solution will form the basis for further evolution, but if not,
the gene sequence mutation is rolled back. As mentioned in the fundamentals, there are two
types of transposons. The application of each type of transposon vector depends on the
randomly selected gene sequence in the endosymbiotic chromosome.

5.1.6.1 Jump and swap transposon

After the length of the endosymbiotic chromosome has been determined, a random starting
and end point are created, which enclose a gene sequence. If the enclosed gene sequence
consists of two genes, the jump and swap transposon vector is applied and the two selected
genes are swapped. The length of the symbiont chromosome is determined and a random
sequence selected:

ܿℎݎ௦ = [10010|01|11000011] (5-7)

The host chromosome has the length 15, and the gene transfer sequence starts with gene 6 and
ends with gene 8. The transposon can only be a jump and swap vector, when the length of the
selected gene sequence does not exceed 2. These two genes are then swapped, which forms
the descendant chromosome:

ܿℎݎௗ = [10010|10|11000011] (5-8)

150 5 Advanced nature-inspired evolution and learning strategies

5.1.6.2 Erase and jump transposon

If the length of the random gene sequence exceeds two the erase and jump transposon is
applied. In principle, it works similar to the jump and swap transposon, except that one ran-
domly selected gene in the chromosome is deleted and replaced by a randomly chosen other
one of the sequence. The length of the symbiont chromosome is determined and a random
sequence selected:

ܿℎݎ௦ = [10010|0111000|011] (5-9)

The host chromosome has the length 15, and the gene transfer sequence starts with gene 6 and
ends with gene 2. The transposon can only be an erase and jump vector, when the length of
the selected gene sequence exceeds 2. Within this gene sequence, one gene is selected at
random and erased, in the example gene number 7:

ܿℎݎ௦ = [10010|0 11000|011] (5-10)

Another gene is selected at random for replacing the missing one, in the following case gene
number 10, which forms the descendant chromosome:

ܿℎݎௗ = [10010|0011000|011] (5-11)

5.1.7 Usage

Transgenetic NeuroEvolution can be applied with each ANN solution type, as long as there
exist both a host and an endosymbiont. It is crucially to represent the chromosomes and gene
sequences as arrays of values, so that the transfer and mutation can be carried out.

5.2 Artificial immune system-inspired NeuroEvolution

The artificial immune system (AIS) based NeuroEvolution is a combination of genetic
algorithm learning and the strengths of an artificial immune system, which decreases the
number of generations needed for finding a suitable solution in a high mass. This is achieved
by a combination of clonal selection and somatic hypermutation, negative selection and the
inclusion of the danger theory in each population’s evolution cycle. Furthermore, causality
plays a more important role within the introduced paradigm, as the solution population does
not only change from generation to generation, but also within one generation. For the
immune system-based operations only the individuals of the current generation do matter.
Moreover, the in- and outputs a population in consideration uses for learning do indeed have a
significance, or in other words do have a significance over time, for the genetic evolution of
the single individuals (chromosomes). However, all of the immune system-based operations
do not need to consider these, as only the current populations do matter. This, as a whole,
allows the connection to a new, within this thesis introduced ANN paradigm – the
consciousness-inspired ANN (4.3.2 A generic cortical artificial neural network).

5.2 Artificial immune system-inspired NeuroEvolution 151

5.2.1 Fundamentals

What an artificial immune system (AIS) exactly is can be described best when classifying
them according to their application. AIS can be:

– Models of biological immune systems, as artificial neural networks are simple models of
biological ones that can be used by immunologists for explanation, experimentation and
prediction activities that would be difficult or impossible in wet-lab experiments, which is
known as computational immunology.

– Abstractions of one or more immunological processes. Since these processes try to protect
e.g. humans from biologically and biochemically hazardous entities, it has been reasoned
that they may be computationally useful.221 The latter one is of special interest for the
elaboration in hand.

Furthermore, not just one solution is created during training, but populations of solutions,
which firstly allows the evolution of the solutions by the already known paradigms of genetic
evolution, which are

– selection,
– mating, and
– mutation.

Additionally, the immunological operators are carried out once in every generation on the
current population. Thus, every single individual of every population in consideration is sub-
ject to continuous change, if it is strong enough to overcome the natural selection and survive
invasions of other populations. The AIS-based operations that are carried out are

– clonal selection,
– somatic hypermutation,
– danger theory, and
– negative selection.

The latter operations also do not happen by chance, but once in every generation of individ-
uals. However, there is one additional event that is likely to occur and which influences the
size and the structure of populations, in particular a virus infection. A virus reduces the
number of individuals in a population, in contrary to clonal selection. Thus, mechanisms for
controlling the population size have to be implemented, which are

– elimination of individuals,
– hyperrecombination and
– birth control.

As natural selection does only occur from generation to generation and not within a genera-
tion, some of the immunological processes, like clonal selection, would increase the number
of the population above the initial value, which serves as population number threshold and
shall not be exceeded. According to this, the number the threshold would be exceeded by
must also serve as value for the elimination operator, which then eliminates exactly this
number of individuals starting from the individual possessing the worst quality.

221 Garrett Simon M. (2005): How Do We Evaluate Artificial Immune Systems?; Evolutionary
Computation 13(2): 145-178

152 5 Advanced nature-inspired evolution and learning strategies

Hyperrecombination is initialized when the size of a population has rapidly decreased by a
virus attack and always works together with birth control, as hyperrecombination within a
population is only allowed as long the population number threshold has not been exceeded.
Furthermore, it is a part of the danger theory explained below, as weak individuals which died
an unnatural death by virus attack are replaced by strong ones, originating the surviving
strong ones.

The population number threshold is set as the target is to continuously evolve a population
towards a super-population, each single individual consisting of valuable genetic material.

5.2.2 Clonal selection and somatic hypermutation

According to Burnet's 1959 clonal selection theory, 222 the immune system repertoire
undergoes a selection mechanism during the lifetime of the individual. The theory states that
on binding with a suitable antigen, activation of lymphocytes occurs. Once activated, clones
of the lymphocyte are produced expressing identical receptors to the original lymphocyte that
encountered the antigen. Thus, a clonal expansion of the original lymphocyte occurs. This
ensures that only lymphocytes specific to an activating antigen are produced in large numbers.
The clonal selection theory also stated that any lymphocyte having antigen receptors specific
to molecules of the organism's own body must be deleted during its development. This
ensures that only antigens from a pathogen might cause a lymphocyte to clonally expand and
thus elicit a destructive adaptive immune response. In this sense, the immune system can be
viewed as a classifier of antigens into either self antigen or non-self antigen, with non-self
antigen assumed to be from a pathogen and thus needs to be removed from the body.223
Additionally, it has to be mentioned that the mutation carried out is described as somatic
hypermutation, which states that the mutation factor is a lot higher than in usual mutation
procedures.

An example algorithm for clonal selection is as follows:224

Start

1. Initialization: Create an initial, random population of antibodies, P0. Iterate steps 2-
7 if a predefined termination condition is not met.

2. Evaluation and Selection 1: Select a subset, F, of the fittest antibodies from Pt
according to some fitness function, ݂(ܽ ௜ܾ).

3. Cloning:
a) For each

ܾܽ ∈ create a set of clones, Ci, such that |Ci| = nc(abi). The set of all ,ܨ
clones, ܥ = ∪௜ .௜ܥ

4. Mutation:

222 Burnet Frank M. (1959): The Clonal Selection Theory of Acquired Immunity. Cambridge
University Press

223 AISWeb (2012): Immune-Inspired Algorithms [2012-03-13]; AISWeb; URL: http://www.
artificial-immune-systems.org/algorithms.shtml

224 de Castro L. N., Von Zuben F. J. (2001): An immunological approach to initialize centers of
radial basis function neural networks. In Proc. of 5th Brazilian Conference on Neural Networks,
79–84

5.2 Artificial immune system-inspired NeuroEvolution 153

a) For each
clone ܿ ∈ ܽ)݂)݉ܽ apply mutation function ܥ ௜ܾ), ,Add the mutated clones ߩ
C´, to Pt to give ௧ܲ

´
5. Evaluation and Selection 2: Select a subset, F´ of the fittest antibodies from ௧ܲ

´
6. Diversity: Add r randomly generated new B-cells to F´ give a new population ௧ܲ

´´
7. Death: Retain only the best |Pt| members of ௧ܲ

´´ t to give ௧ܲାଵ; all other B-cells are
considered to have died.

End

Algorithm 15 – Clonal selection algorithm

Thus, the clonal selection theory explains how (B and T-)lymphocytes are activated by
binding these to suitable antigens. Once this activation has happened, these special
lymphocytes are cloned by a factor – the better their response to an antigen is, the higher the
clone factor will be. The lower their response is, the lower is the clone factor, which ensures
that the immune system only produces lymphocytes specific to an antigen are produced in a
large amount. Within the proposed algorithm, clonal selection within a population happens
once in each generation of individuals. In other words, clonal selection is applied before all
genetic operators and operations have been applied on a population in consideration.

After each generation the quality of the best solution is determined, e.g. by calculating the
unified root mean squared error or another fitness measurement for each individual. Each
individual not fulfilling the minimum fitness requirement is removed from the population.
The remaining population is then raised again by clones of the best-performing genome of the
remaining population. Let assume, the number of individuals in a population is 5,000 and
2,450 do not fulfil the minimum quality requirements. These are then removed, so that only
2,550 individuals remain in the population. The best-performing individual is then cloned and
mutated 2,450 times, which again raises the number of genomes in the population to 5,000.
Therefore, the best-performing individual and its clones would then make up nearly a half of
the overall population. However, as a high number of identical individuals reduce the genetic
versatility of a population, each of these clones is mutated by either a weakened standard
evolution mutation factor ݉௪ so that the advantaged genetic material is preserved. For that,
the algorithm simply divides the standard mutation ݉௦ factor by two. Certainly, randomness
plays a role only with a factor always the same clone would be created. The formula shows
the value of a single chromosome's gene ݒ௚ after the weakened mutation:

௚(௧ାଵ)ݒ = ௚(௧)ݒ + (݉௪ − ௥௔௡ௗݔ ∗ ݉௪ ∗ 2) (5-12)

where ݒ௚(௧ାଵ) is the value of the gene after the mutation and ݒ௚(௧) the gene's value before
mutation; ݔ௥௔௡ௗ is a random number. The second half of the clones has to undergo somatic
hypermutation, which means that the basic genetic material stays the same, but is mutated by
a higher factor, which has to be defined separately. Hypermutation is carried out in the same
way as the weakened mutation, with the only difference that the mutation factor is higher. In
my most successful implementations, it is increased by its half. What has to be taken into
consideration after all is the size threshold of the population, which is never exceeded due to
controlled elimination of individuals. Referring to the above example and to standard genetic
evolution, natural selection does only occur from generation to generation, but not within one
single generation. Furthermore, as the population consists of a higher number of high-quality

154 5 Advanced nature-inspired evolution and learning strategies

individuals, compared to standard genetic evolution, the percentage to mate has also been
increased from the standard 25 % to 50 % for AIS-inspired NeuroEvolution, at least until 80
% of the input datasets of a DM-problem statement have been successfully learned according
to the fitness function. After that, it is decreased to 25 % for allowing the population to step
gently towards the learning success. The algorithm for clonal selection within is as follows:

Start

1. Create initial ANN population and randomize weights.
2. Repeat

f) Calculate the network output for the value d ∈ D
g) Evaluate the fitness of each chromosome:

i. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

ii. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

h) Selection of chromosomes to recombine
i) Repeat

i. Crossover of chromosomes
ii. Mutation of offspring

j) Until all selected chromosomes are recombined
k) Set C(C) = C(S)

– ===============Clonal selection & hypermutation================
l) Determine the best chromosome cୠୣୱ୲ of C(C)
m) For each c of C(C)

i. Determine quality
ii. if current chromosome ࢛࢘ࢉࢉ is below minimum fitness

remove cୡ୳୰from C(C)
n) Until cloning happened ࢚࢙ࢋ࢈ࢉࢌ times
o) Repeat

i. Clone cୠୣୱ୲
ii. if current clone ࢛࢘ࢉࢉ has even number

Weakened mutation of cୡ୳୰
iii. else

Hypermutation of cୡ୳୰
p) Until initial population size has been restored

3. Until criteria are reached

End

Algorithm 16 - Clonal selection and hypermutation

Breakdown:

nhp: the number of host populations to create

5.2 Artificial immune system-inspired NeuroEvolution 155

C(C): calculation current population
C(S): calculation initial population
cbest: best chromosome
ccur: current clone

5.2.3 Danger theory, virus attack and hyperrecombination

The danger theory225 was initially proposed in 1994, and since then become popular amongst
immunologists as an explanation for the development of peripheral tolerance (tolerance to
agents outside of the host). Summing up, the danger theory states that antigen-presenting cells
(APCs) are themselves activated via an alarm: a danger signal, which enables them to provide
the necessary co-stimulatory signal to the T helper cells that subsequently control the adaptive
immune response. The danger signals are emitted by ordinary cells of the body that have been
injured due to attack by pathogen, e.g. the intra-cellular contents released due to uncontrolled
(necrotic) cell death could provide such signals. Such signals are detected by specialised
innate immune cells called dendritic cells that seem to have three modes of operation:
immature, semi-mature and mature. In the dendritic cell's immature state it collects antigen
along with safe and danger signals from its local environment such as pathogen-associated
molecular patterns (PAMPs) and inflammatory cytokines. The dendritic cell is able to
integrate these signals for being able to decide whether the environment is safe or dangerous.
If safe, the dendritic cell becomes semi-mature and upon presenting antigen to T-cells the
dendritic cell will cause T-cell tolerance. If dangerous, the dendritic cell becomes mature and
causes the T-cell to become reactive on antigen-presentation.226

An example algorithm for danger theory is as follows: 227

Start

1. Create an initial population of dendritic cells (DCs), D
2. Create a set to contain migrated DCs, M
3. For each

ܦ ∈ ܵ
a) Do

i. Create a set of DCs randomly selected from D, P
ii. For each

ܯ ∈ ܵ
1. Do

a. Add data item to DCs collected list
b. Update danger, PAMP and safe signal concentrations
c. Update concentrations of output cytokines
d. Migrate the DC from D to M and create a new DC in

D if concentration of co-stimulatory molecules is
above a threshold

225 Matzinger P. (2002): The Danger Model: A renewed sense of self. Science, 296(5566): 301–305
226 AISWeb (2012): Immune-Inspired Algorithms [2012-03-14]; AISWeb; URL: http://www.

artificial-immune-systems.org/algorithms.shtml
227 AISWeb (2012): Immune-Inspired Algorithms [2012-03-14]; AISWeb; URL: http://www.

artificial-immune-systems.org/algorithms.shtml

156 5 Advanced nature-inspired evolution and learning strategies

2. End
b) End
c) For each

ܥܦ ∈ ܯ
i. Do

1. Set DC to be semi-mature if output concentration of semi-
mature cytokines is greater than mature cytokines, otherwise
set as mature

ii. End
d) For each

݀ ∈ ܵ
i. Do

1. Calculate number of times data item is presented by a mature
DC and a semi-mature DC

2. Label data item a safe if presented by more than semi-mature
DCs than mature DCs, otherwise label as dangerous

3. Add data item to labelled set M
ii. End

End

Algorithm 17 – Danger theory algorithm

Breakdown

S: set of data items to be labelled safe or dangerous

D: set of data items labelled safe or dangerous

Therefore, the danger theory explains how immune response to harmful cells works and why
other not harmful bacteria are not attacked. The clue is that stressed cells raise some sort of
alarm signal. Cells can die in two ways: via apoptotic, normal death that has been requested
by the body’s internal signalling system, or via necrosis, a form of unexpected death caused
by something going wrong with the cell, which often causes an inflammatory response.
Matzinger228 suggested that the immune system is particularly activated by cell necrosis.229

The danger theory within the introduced algorithm works similar to the natural paradigm, as
infected individuals are removed from the population by AIS-based operations. Infection
happens via a virus, thus the virus operator. The virus operator only attacks special
individuals, namely weak ones, whereas it does not bother strong individuals. The question
now is what qualifies an individual as strong and what makes it weak? Again, strength is
determined by a fitness function, e.g. by the calculation of the already mentioned, unified
RMSE of the individual in question. The virus operator therefore affects and eliminates all
individuals below a specific quality, which is the quality of the worst performing individual of
the last population. Therefore, danger theory's virus operator cannot strike until the second

228 Matzinger P. (2002): The Danger Model: A renewed sense of self. Science, 296(5566): 301–305
229 Garrett Simon M. (2005): How Do We Evaluate Artificial Immune Systems?; Evolutionary

Computation 13(2): 145-178

5.2 Artificial immune system-inspired NeuroEvolution 157

generation has been created, as the unified RMSE of the worst individual of the first
generation serves as elimination threshold for the virus. All removed individuals have to be
replaced, as the final size of every generation's population must be the same as the initial
population's size. Thus, another population size control mechanism, called hyperrecombina-
tion, applies. Hyperrecombination only happens within a population, like clonal selection and
somatic hypermutation do, and for that reason all remaining individuals of the virus-
decimated population receive the privilege to recombine, in contrary to standard generation-
spanning recombination, where just a specific percentage of the best-performing individuals
receives it. Recombination then happens randomly and as long as birth control allows it, or in
other words, the population number threshold has not been exceeded. The algorithm for the
danger theory, virus attack and hyperrecombination is as follows:

Start

1. Create initial ANN population and randomize weights.
2. Repeat

a) Calculate the network output for the value d ∈ D
b) Evaluate the fitness of each chromosome:

i. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

ii. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

c) Selection of chromosomes to recombine
d) Repeat

i. Crossover of chromosomes
ii. Mutation of offspring

e) Until all selected chromosomes are recombined
f) Set C(C) = C(S)

– =======Danger theory, virus attack and hyperrecombination==========
g) Store quality value of worst performing individual iworst
h) if generation > 1

i. For each ࢉ ∈ (࡯)࡯
1. Compare quality of c(t) with cworst (t-1)
2. If qualityc(t) worse than qualitycworst(t-1)

Eliminate c(t)
ii. Repeat

1. Random crossover of all chromosomes (hyperrecombination)
2. Standard mutation of hyperrecombined offspring

iii. Until population number threshold has been reached again
3. Until criteria are reached

End

Algorithm 18 - Danger theory, virus attack and hyperrecombination

158 5 Advanced nature-inspired evolution and learning strategies

Breakdown:

rrmse: rough root mean squared error
C(C): calculation current population
C(S): calculation initial population
c(t): current chromosome
qualityc(t): quality of the actual chromosome
qualitycworst(t-1): quality of the worst chromosome of the last generation

5.2.4 Negative selection

Negative selection was introduced by Forrest230 in 1994 and refers to the process of deleting
self-reactive lymphocytes, which is termed clonal deletion and is carried out via a mechanism
called negative selection that operates on lymphocytes during their maturation. For T-cells
this mainly occurs in the thymus, which provides an environment rich in antigen presenting
cells that present self-antigens. Immature T-cells that strongly bind these self-antigens
undergo a controlled death (apoptosis). Thus, the T-cells surviving this process should be un-
reactive to self-antigens. The property of lymphocytes not to react to the self is called
immunological tolerance.231 The algorithm for negative selection is as follows:232

Start

1. Create a set of self strings, S, by some means.233
2. Create a set of randomly generated strings, ܴ଴.
3. For eachݎ଴ ∈ ܴ଴, form a set, R, of those ݎ଴ that do not strongly match any ݏ ∈ ܵ. A

strong match is defined by a matching function݉(ݎ଴, ,଴ݎ)݉(݅) :such that ,(ݏ (ݏ ⋈
,ݔ)݉ An example of the use of .ߠ .will be given below (ݕ

a) For each
r in R, ensure that no ݏ ∈ ܵ matches above (or ‘below’, depending on the
form of ⋈) the threshold.

4. Return to 3. a) while change detection of S is required

End

Algorithm 19 – Negative selection algorithm

Breakdown:

⋈: an operator, such as ≥, that defines whether high or low value of ݉(ݎ଴, indicates greater (ݏ
similarity between the strings, and ߠ defines a threshold. 234

230 Forrest S., Perelson A. S., Allen L., Cherukuri R. (1994). Self-nonself discrimination in a com-
puter. In Proceedings of 1994 IEEE Symposium on Research in Security and Privacy, 132–143

231 AISWeb (2012): Immune-Inspired Algorithms [2012-03-13]; AISWeb; URL: http://
www.artificial-immune-systems.org/algorithms.shtml

232 Forrest S., Perelson A. S., Allen L., Cherukuri R. (1994). Self-nonself discrimination in a com-
puter. In Proceedings of 1994 IEEE Symposium on Research in Security and Privacy, 132–143

233 Forrest S., Perelson A. S., Allen L., Cherukuri R. (1994). Self-nonself discrimination in a com-
puter. In Proceedings of 1994 IEEE Symposium on Research in Security and Privacy, 132–143

5.2 Artificial immune system-inspired NeuroEvolution 159

Thus, the negative selection theory states that lymphocytes being dangerous or self-reactive
are eliminated instead of being allowed to maturate. Self-reaction tests may be carried out
with every new child solution originating two parent solutions in standard generation-
spanning recombination. Every new individual has to show its reaction towards a negative
selection-operator, which then marks a solution as deletion candidate for the elimination
operator or leaves it untouched. The negative selection operator checks whether a newborn
individual's quality (according to 5.3.3 Generic determination of artificial neural network
quality) is below a dynamically calculated threshold, namely the quality value of the worst
genome of the last generation error ݕݐ݈݅ܽݑݍ௖௪௢௥௦௧(೟షభ) , which also finds application within the
danger theory. Solutions with a quality below this threshold would indeed not survive very
long, but if selected for deletion before further evolution is applied, place is given for new
solutions. Mating continues as long as it needs to reach the population number threshold,
equally how many individuals are negatively selected. Let assume, the population number
threshold is 10, and the evolution from the initial population at point in time ݐ to the
population at point in time ݐ + 1 produces 3 solutions with a quality value below
ݐ ௖௪௢௥௦௧(೟షభ), then the generation atݕݐ݈݅ܽݑݍ + 1 would only consist of 7 individuals. Thus, the
quality of new-born individuals is verified after each recombination of two parent chromo-
somes and in case the selection criteria are met negative selection is applied. However,
evolution then continues until the threshold of 10 is reached again and not until then the new
generation is ready for further evolution. As the value ݕݐ݈݅ܽݑݍ௖௪௢௥௦௧(೟షభ) is needed, negative
selection cannot be applied until the second generation.

At a first glance, one might say that there is no need for applying negative selection, as danger
theory also eliminates low-quality individuals. Nevertheless, if very bad performing solutions
are removed from the population as soon as possible, as it happens within negative selection,
then the overall quality of a population is increased in advance. The algorithm for the negative
selection is as follows:

Start

1. Create initial ANN population and randomize weights.
2. Repeat

a) Calculate the network output for the value d ∈ D
b) Evaluate the fitness of each chromosome:

i. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

ii. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

c) Selection of chromosomes to recombine
d) Repeat

i. Crossover of chromosomes

234 AISWeb (2012): Immune-Inspired Algorithms [2012-03-13]; AISWeb; URL: http://www.
artificial-immune-systems.org/algorithms.shtml

160 5 Advanced nature-inspired evolution and learning strategies

ii. Mutation of offspring
– ====================Negative selection=======================

iii. Check quality of offspring
iv. If quality of current offspring < ࢘࢘ࢋ࢙࢓

1. Eliminate current offspring
2. Repeat

– Recombine selected chromosomes anew
3. Until quality of current offspring < qualitycworst(t-1)

e) Until all selected chromosomes are recombined
f) Set C(C) = C(S)

3. Until criteria are reached

End

Algorithm 20 - Negative selection

Breakdown:

nhp: the number of host populations to create
C(C): calculation current population
C(S): calculation initial population
C(P): clone population

5.2.5 Overall algorithm

Thus, the overall algorithm as a combination of all mentioned paradigms and methods is as
follows:

Start

1. Create initial ANN population and randomize weights.
2. Repeat

a) Calculate the network output for the value d ∈ D
b) Evaluate the fitness of each chromosome:

i. Calculate the error δୢ∈ୈ for each output neuron d ∈ D

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

ii. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

c) Selection of chromosomes to recombine
d) Repeat

i. Crossover of chromosomes
ii. Mutation of offspring

– ====================Negative selection=======================
iii. Check quality of offspring

5.2 Artificial immune system-inspired NeuroEvolution 161

iv. If quality of current offspring < 0.1
1. Eliminate current offspring
2. Repeat

– Recombine selected chromosomes anew
3. Until quality of current offspring < qualitycworst(t-1)

e) Until all selected chromosomes are recombined
f) Set C(C) = C(S)

– ===============Clonal selection & hypermutation================
a) Determine the best chromosome cୠୣୱ୲ of C(C)
b) For each c of C(C)

iii. Determine quality
iv. if current chromosome ࢛࢘ࢉࢉ is below minimum fitness

– remove cୡ୳୰from C(C)
c) Until cloning happened ࢚࢙ࢋ࢈ࢉࢌ times
d) Repeat

v. Clone cୠୣୱ୲
vi. if current clone ࢛࢘ࢉࢉ has even number

– Weakened mutation of cୡ୳୰
vii. else

– Hypermutation of cୡ୳୰
e) Until initial population size has been restored

– =======Danger theory, virus attack and hyperrecombination==========
i) Store quality value of worst performing individual iworst
j) if generation > 1

i. For each ࢉ ∈ (࡯)࡯
1. Compare quality of c(t) with cworst (t-1)
2. If qualityc(t) worse than qualitycworst(t-1)

– Eliminate c(t)
ii. Repeat

3. Random crossover of all chromosomes (hyperrecombination)
4. Mutation of hyperrecombined offspring

iii. Until population number threshold has been reached again
3. Until criteria are reached

End

Algorithm 21 - Immune system-inspired NeuroEvolution

5.2.6 Causality

More than in other evolutionary approaches, causality plays a major role when applying
immune system-inspired NeuroEvolution, as not only standard and generation-spanning
evolution, but also evolution of the current population is applied. For such evolution, nothing
but the individuals and the genetic operators and immune system-based operations do matter.
It is not important, what the inputs are or what the underlying individuals shall learn. This is
the passage to Katz and his theory of reduced functionalism. The key premise of reduced
functionalism, as explained within 4.3.2 A generic cortical artificial neural network, is that
only causal currents matter in determining conscious contents. Thus, only current connections

162 5 Advanced nature-inspired evolution and learning strategies

of neurons, and within the introduced approach also current populations, do matter for several
of the operations carried out. It is not important, what the inputs for and outputs of each single
chromosome are. Only their existence and the ability to manipulate them matters.

5.2.7 Usage

AIS-inspired NeuroEvolution may be applied with any feed-forward or recurrent ANN. As it
is a refined genetic learning approach, the learning performance strongly depends from the
size of the genetic pool (a smaller pool will require more generations for building out the
desired solution while a larger genetic pool will perform better in terms of generations, but
worse in terms of computation time).

5.3 Structural evolution

The combination of artificial neural networks to committee machines has already been
described; however, by applying a committee machine the detection of one of the solutions
fulfilling the requirements of the fitness function (more than one solutions may be a fit) is
highly probable, but unfortunately the detection of the optimal one is not. The two approaches
applying adaptation of an ANN's architecture within the evolution process discussed within
ths elaboration are structural235 evolution and NeuroEvolution of augmenting topologies.
NEAT is restricted to learn by genetic algorithms, whereas the structural evolution may be
and has been applied for any given training approach for feed-forward and recurrent artificial
neural networks that have been discussed.

5.3.1 Fundamentals

As with all learning algorithms discussed here the number of input neurons is determined
according to the number of input data sets and thus applies the formula described in 4.3.1.2
Number of neurons for determining the number of hidden neurons. This resulting artificial
neural network serves as model for the creation of an initial population. For the following
algorithm this means that the number of input and output neurons are determined according to
the presented training data. ݊௠௔௫ can be determined automatically, based on the number of
input neurons. ݉௠௔௫ will never exceed 2, as with 2 hidden layers ANNs are capable of
representing an arbitrary decision boundary to arbitrary accuracy with rational activation
functions and can approximate any smooth mapping to any accuracy.236 The algorithm shows
that a number of committees ݊௖ is created, each of these having ݊ + 1 neurons in the actual
hidden layer, compared to the last committee. When the algorithm has reached ݊௠௔௫ for the
current hidden layer ݉௖௨௥, the second hidden layer, which simultaneously represents ݉௠௔௫, is
created. For ݉௠௔௫, the same constructive procedure for creating the neurons is adducted, with
the exception that for calculating ݊௠௔௫ the hidden layer ݉௠௔௫ − 1 is drawn on. During the
verification phase, an array is created for each committee, which is increased by 1 when ݎ௠௔௫

235 Neukart Florian et al. (2011): Problem-dependent, genetically evolving Data Mining solutions;
Proceedings of DAAAM 2011, 2011 22nd World Symposium, p. 1 ff.

236 Heaton Research (2005 - 2011) The number of Hidden Layers [2011-28-09]; URL: http://
www.heatonresearch.com/node/707

5.3 Structural evolution 163

has been exceeded for the actual data set. The best solution is the one with the lowest array
value.

Individuals of this initial population are then selected according to their fitness, and e.g. by
the application of a genetic algorithm recombined and mutated, which as a whole is the
evolution of a single generation of individuals. As fitness function serves the RMSE, and
selection according to fitness in structural evolution means that the 25% fittest individuals of
a generation receive the privilege to recombine. Mutation is carried out on 10% of the
offspring. However, it has been proved that in combination with SRANNs the selection of the
50% fittest individuals, combined with an offspring mutation rate of 25% the best-converging
ANNs for classification and time-series prediction can be achieved. The whole evolution
process therefore can partially be regarded as a combination of incremental and selective
pruning not only on neuron-layer, but also on hidden layer-layer. Both pruning methods are
trial and error approaches to finding an appropriate number of hidden neurons for an ANN's
hidden layer.237 The incremental pruning algorithm usually increases the number of neurons
up from an ANN with just one hidden neuron until a specified number of hidden neurons have
been reached. Selective pruning removes neurons from an ANN until either no more neurons
can be removed or the error rate increases. In contrast to the mentioned ones, structural
evolution starts with an assumed optimal solution and both increases and decreases an ANN's
neurons and layers until ݊௠௔௫ or ݊௠௜௡and ݉௠௔௫ have been reached.

In case of applying structural evolution with NeuroEvolution, recombination and mutation in
detail happens as explained in 3.3.3.7 Genetic learning, by the creation of cut-points between
the created double-arrays consisting of a network's weights. structural evolution makes use of
two cut-points, whereas the first one is chosen randomly, but by taking into consideration that
the first cut-point ܿଵ cannot be chosen so far in the array that there is not a sufficiently long
section left to allow the full cut length to be taken, as proposed by Heaton Research.238 The
second cut-point is located at the position ܿଶ = 2 ∗ ܿଵ.

5.3.2 Algorithm

When applying structural evolution for a committee of FFANNs, learning by a genetic
algorithm, a software system requires any presented problem to run through the following
algorithm:

Start

1. Creation of initial ANN population of np ANNs with mmin hidden layers and nmin hidden
neurons for each hidden layer.

2. Repeat
a) Calculate the network output for the value d ∈ D
b) Evaluate the fitness of each chromosome:

i. Calculate the error δୢ∈ୈ for each output neuron on

237 Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield: Heaton
Research, Inc., p. 213 ff.

238 Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield: Heaton
Research, Inc., p. 179

164 5 Advanced nature-inspired evolution and learning strategies

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

ii. Calculate the error δ୦୧ୢ for each hidden neuron hid

௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)
ௗ∈஽

c) Selection of chromosomes to recombine
d) Repeat

i. Crossover of chromosomes
ii. Mutation of offspring

e) Until all selected chromosomes have been recombined
3. Until criteria are reached
4. Determine the quality value of the initial network architecture
5. Store the quality value of the initial network architecture in the quality array
6. Repeat

a) if n < nmax:
Increase n by cn

b) Creation of population of x ANNs with mcm hidden layers and ncn hidden
neurons for each hidden layer.

c) Randomization of weights and threshold values of each chromosome.
d) Repeat

i. Calculate the network output for the value d ∈ D
ii. Evaluate the fitness of each chromosome:

12. Calculate the error δୢ∈ୈ for each output neuron on

ௗ∈஽݀݁ݎ݅ݏ݁݀)ௗ∈஽ୀߜ − ௗ∈஽(1݈ܽݑݐܿܽ(ௗ∈஽݈ܽݑݐܿܽ − (ௗ∈஽݈ܽݑݐܿܽ

13. Calculate the error δ୦୧ୢ for each hidden neuron hid
௛௜ௗߜ = ௛௜ௗ(1݈ܽݑݐܿܽ − (௛௜ௗ݈ܽݑݐܿܽ ෍(ݓ௛௜ௗௗ∈஽ߜௗ∈஽)

ௗ∈஽

iii. Selection of chromosomes to recombine
iv. Repeat

1. Crossover of chromosomes
2. Mutation of offspring

v. Until all selected chromosomes have been recombined
e) Until criteria are reached
f) Determine the quality value of the current network architecture
g) Store the quality value of the current network architecture in the quality array
h) Verification

i. Present each verification data set
ii. Increase error array for RMSE > rmax for each verification data set by 1

i) if n == nmax:
j) Increase m by cm

7. Until mmax is reached
8. Comparison of stored ANN solutions by quality
9. Present best solution

End

Algorithm 22 - Structural evolution

5.3 Structural evolution 165

Breakdown:

np: Number of chromosomes
mmin /mmax: Minimum/maximum number of hidden layers
nmin /nmax: Minimum/maximum number of neurons per mn
cn /cm: Hidden neuron/layer counters
݀ ∈ Actual input :ܦ
݀ ௗ∈஽: Error for inputߜ ∈ at output neuron on in the current generation ܦ
 ௛௜ௗ: Error for hidden neuronߜ
rmax: Allowed RMSE
nmin and nmax are determined on the basis of the number of input neurons. The equation

݊௛ = ቀ௡೔೙೛ೠ೟

ଷ
∗ 2ቁ + ݊௢௨௧௣௨௧ (5-13)

delivers the number of the hidden neurons, which form the basis for the determination of the
minimum and maximum number to which evolution shall come to:

݊௠௜௡ = ݊௛ − ቀ௡೓
ଷ

ቁ (5-14)

and

݊௠௔௫ = ݊௛ + ቀ௡೓
ଷ

ቁ (5-15)

The same holds for the second hidden layer, if evolution is applied that far, with the
difference that all neuron numbers of the evolution of the first layer are stored into an array,
which serve as a calculation basis for nmin and nmax. If, e.g., one solution of the first hidden
layer evolution process has three hidden neurons, the evolution of the second hidden layer
takes this as nh and calculates nmin and nmax anew. The algorithm also shows that the first run
to determine the initial ANN's quality has to be carried out at the beginning, as the evolution
starts immediately afterwards.

5.3.3 Generic determination of artificial neural network quality

The quality of an ANN in the applied algorithms is, on the one hand, determined by the
RMSE. The problem is that the accumulation of all output neurons' RMSE is not enough for
being able to determine the best network of an evolutionary process. This can be explained by
the following algorithm:

Start

1. Initialize/reset overall quality values q1,...,q10 and qoverall with 0
2. Repeat

a) Repeat
i. Determination of the current solution’s quality (RMSE) and storage of

the quality value (the error of each neuron for each dataset) into overall
quality value for each input dataset at:

166 5 Advanced nature-inspired evolution and learning strategies

௖௨௥ݍ = ቐ
ଵݍ + ௜ݔ

ଶ , ௜ݔ ݂݅
ଶ ≬ (0.01, 0.1)

ଶݍ + ௜ݔ
ଶ , ௜ݔ ݂݅

ଶ ≬ (0.001, 0.01)
… … …

b) Until all datasets have been presented
i. Calculate the overall quality of the current architecture by taking the

RMSE

௢௩௘௥௔௟௟ݍ = ൮ඩ
1
݊ ෍ ௜ݔ

ଶ
௡

௜ୀଵ

మ

∗ ቌ෍ ௜݋ ∗ ݉
௡೚

௜ୀଵ

ቍ + ඩ
1
݊ ෍ ௜ݔ

ଶ
௡

௜ୀଵ

మ

൲ ∗ ݇

ii. Store qoverall in the overall quality array with the current architecture
value.

3. Until evolution has finished
4. Present the best solution

End

Algorithm 23 – Quality determination

Breakdown:

q1,...,q10: the quality values holding the quality results of the current architecture from 0.1 to
0.000000001
in: the currently presented input data set
qcur: the current architecture’s quality
qcom: the common denominator calculation
qoverall: the overall quality value of the current architecture
m: predefined multipliers, applied on the error of each single neuron depending from its
decimal place
k: frequency parameter

This can be explained better by the comparison of two networks A and B, both having one
output neuron and been presented four input data sets (Table 1 - Quality determination).

Table 1 - Quality determination

Input Dataset / Output
Neuron

RMSE ANN A RMSE ANN B

1 0.01 0.1
2 0.01 0.1
3 0.01 0.1
4 0.3 0.05

It is clearly obvious that A comes to better results for the input data sets 1, 2 and 3. However,
the fourth output shows an error of 30%, which is pretty high. When trying to sum up or
calculate a mean value of all the RMSEs of both networks, A will have the better result than

5.4 Summary 167

B, although B as a whole performs better than A. The solution therefore is to apply the
introduced algorithm.

For ANN A, the overall quality is

௢௩௘௥௔௟௟ݍ = ݎ) ∗ (0.01 ∗ 9 + 0.01 ∗ 9 + 0.01 ∗ 9 + 0.3 ∗ 10) + (ݎ ∗
3
9 ∗

1
10 = 4.697

 (5-16)

For ANN B, the overall quality is

௢௩௘௥௔௟௟ݍ = ݎ) ∗ (0.1 ∗ 10 + 0.1 ∗ 10 + 0.1 ∗ 10 + 0.05 ∗ 9) + (ݎ ∗
3

10 ∗
1
9 = 4.01625

 (5-17)

where ݎ is the summed RMSE for all output neurons. The above equations both contain the
multipliers 10 and 9, which are selected by considering the decimal place of each neuron's
error. Errors greater than 0.1 are multiplied by 10, errors between 0.01 and 0.1 by 9, ..., errors
between 1E-9 and 1E-10 by 1, which leads to an application of the quality determination
down to errors of 0.000000001 or 0.0000001%. A further multiplication is carried out by the
frequency parameter ݇, which simply is a division of the count of decimals with a specific
decimal place by the related multiplier.

5.3.4 Parameterization

As structural evolution can be applied not only with one learning method, the parameteriza-
tion depends on the chosen approach, e.g. a genetic algorithm requires amongst others an
initial population size, and back propagation amongst others a momentum.

5.3.5 Usage

Structural evolution can be applied with every feed-forward or recurrent ANN, although for
the application with recurrent ANNs like the SRANN, the context layers have to be taken into
consideration. Furthermore, when applying structural evolution it has to be considered that the
stopping criteria for evolving an ANN must not be the same error ݔ for a number of ݕ
generations. Especially when used with SRANNs, the stopping criteria must be a fixed
number of generations up to a maximum of 10,000 or an allowed minimum error. This is
because SRANNs (and sometimes other genetic solutions) tend to perform extraordinary well
(especially on problem statements of lower complexity), which makes a determination of the
network quality impossible, as the quality of all architectures throughout the evolution tends
to become zero.

5.4 Summary

The introduced approaches show is that it is not necessarily required to apply the solutions
Nature conceived for solving exactly the same problems. It is possible to translate parts from
solutions like an immune system into machine learning approaches, e.g. resulting in well-
performing training algorithms for artificial neural networks. When pursuing the target of

168 5 Advanced nature-inspired evolution and learning strategies

implementing an artificial mind it is important to understand the inner workings of the brain,
but it is not necessarily required to implement solutions in the same way – only to achieve the
target counts.

Transgenetic NeuroEvoltion perfectly shows that strategies for solving optimization problems
Nature has developed over millions of years of evolution can successfully be translated into
machine learning. Transgenetic NeuroEvolution solution outperformed most of the classical
solution types discussed within this elaboration by relying on a strategy combining a host
organism with an endosymbiont. By the application of transgenetic NeuroEvolution, we can
eliminate several, well-known problems in ANN learning, like the local minima or oscillation
problems of back propagation. Horizontal gene transfer and transposon mutation of the
endosymbiont do, due to architectural constraints like the constant changing of the processed
solution’s structure (or gene sequence), simply not allow the upcoming of such problems.

The application of artificial immune system-based operations is a completely new type of
artificial neural network evolution and processing as well. Not only generation-spanning
recombination and mutation do matter, but also the elimination of weak chromosomes in
advance, and the higher requirements for surviving covered by the danger theory. Thus, also
genetic operations only of relevance for the actual generation are carried out. All the com-
bined paradigms contribute in a high mass to the improvement of the overall performance,
allowing a software system to find an optimal solution in fewer generations. As a matter of
course, all of the AIS-based operations increase the learning performance and may be applied
solely, depending from the requirements on the final solution. As last and most important
point, AISGA outperforms standard GA-solutions in terms of learning performance and
classification success on new datasets.

6 Autonomously acting cars and predicting market …
behaviour: some application scenarios for ANNs

As already discussed, deep artificial neural networks are, in some aspects, the most human-
like artificially developed way of processing information we have thitherto. Very impressive
and important achievements have been made due to complex network structures and
sophisticated training algorithms, and what can already be achieved is not so far from the
capabilities of what parts of the human brain, such as the visual cortex, can achieve. However
until recently, the typical research in that area concerned problems that are perfectly suitable
for being processed on a computer, like prediction of numerical values or clustering of
unstructured data, and individual approaches are simply not potent enough for approaching
the full stack of a human brain’s capabilities. But a combination of several techniques may…
With actual training algorithms it would be impossible to train a structure consisting of
millions of neurons and thousands of neuron layers. A major step to forward have been deep
learning architectures as well as sophisticated learning algorithms (see chapters 4 and 5), but
as we will see this is not the answer we are looking for. My educated guess is that quantum
ANNs will open a whole new world to creating artificial brains (see 10.2 Quantum linear
superposition in artificial brains). This chapter serves the purpose to understand what ANNs
are often used for, and we start with simple data analysis and evolve towards more complex
information processing in the latter chapters.

6.1 Analysis and knowledge

As indicated before, data mining pursues the target of extracting knowledge (for a detailed
description of how data can be represented in order to efficiently support knowledge
discovery see 10.6.1.1 Knowledge representation) from data.239 In the context of data mining
(DM), knowledge are interesting patterns and amongst these, patterns that are generally
accepted, not trivial, new, useful and interpretable.240 Since the introduction of data mining,
numerous definitions arose. The most precise and within the field accepted ones are:

– DM is the analysis of observational data sets to find unsuspected relationships between
these and to summarize the data in novel ways that are both understandable and
useful,241 but also

– the process of discovering knowledge from large amounts of unstructured data stored in
databases, data warehouses (a DWH forms the factual basis on which decision situations
are presented and assessed242), or other information repositories,243 and

239 Berthold Ed (1999): Intelligent Data Analysis: An Introduction; New York: Springer-Verlag,
cited from: Runkler Thomas A. (2010): Data Mining - Methoden und Algorithmen intelligenter
Datenanalyse; Wiesbaden: Vieweg+Teubner | GWV Fachverlage GmbH, p. 2

240 Fayyad et al. (1996) Advances in Knowledge Discovery and Data Mining, cited from: R Runkler
Thomas A. (2010): Data Mining - Methoden und Algorithmen intelligenter Datenanalyse;
Wiesbaden: Vieweg+Teubner | GWV Fachverlage GmbH, p. 2

241 Hand David J., Mannila Heikki, Smyth Padhraic (2001): Principles of Data Mining; Cambridge:
MIT Press

242 Ruan Da, Hardeman Frank, van der Meer Klaas (2008): Intelligent Decision and Policy Making
Support Systems (Studies in Computational Intelligence); Berlin Heidelberg: Springer-Verlag, p.
66

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_6

170 6 Autonomously acting cars and predicting market …

– the nontrivial extraction of implicit, previously unknown, interesting and potentially
useful information and from data.244

According to these definitions, DM is usually applied on huge amounts of data containing
knowledge not yet discovered, or to recognize and identify patterns. Some examples are:

– An autonomously driving car embedded in a multi-agent system relying on a huge
amount of sensors and algorithms in order to correctly perceive what it happening around
it and make sense of the huge amount of unstructured data the external world delivers.

– An assurance company, having saved lots of personal data about their customers, ranging
from income to age and marital status, trying to find out which of the saved attributes
might influence a customer to switch to another assurance company is one illustrative
example from business side.

– A meteorological institution trying to predict weather on data, stored over a period of
several years, is an example from the world of science.

A countless number of algorithms and functions which an intelligent software system may
apply on raw data, and also numerous cases in which DM finds application, but the target is
always the same: gaining interesting, accurate, interpretable knowledge in an intelligent and
efficient way.

Our everyday world as we perceive it is unstructured and raw, meaning that most of the
information around us is irrelevant for our current actions and must be filtered. Only what is
relevant is extracted and processed further, i.e. our visual system detects and interprets
information from visible light to build a representation of the surrounding environment, and
carries out a number of complex tasks:

– reception of light and the formation of monocular representations
– buildup of a nuclear binocular perception from a pair of two dimensional projections
– identification and categorization of visual objects
– assessing distances to and between objects
– guiding body movements in relation to the objects seen

Non-image forming visual functions, independent of visual perception, includes the pupillary
light reflex (PLR) and circadian photo entrainment. Data mining algorithms help software
systems to do exactly that. Data mining functions are classified into three umbrella
dimensions and their counterparts, which are

– supervised and unsupervised
– descriptive and predictive
– transparent and opaque245

243 Han Jiawei, Kamber Micheline, Pei Jian (2000): Data Mining: Concepts and Techniques; Morgan
Kaufmann Publishers

244 Frawlwy William J. et al. (1992): Knowledge Discovery in Databases - An Overview; AI
Magazine: 213-228

245 Hornik Mark F., Marcade Erik, Venkayala Sunil (2007): Java Data Mining: Strategy, Standard,
and Practice. A Practical Guide for Architecture, Design, and Implementation (Morgan Kaufmann
Series in Data Management Systems); San Francisco: Elsevier, Inc., p. 86

6.1 Analysis and knowledge 171

6.1.1 Supervised and unsupervised functions

Supervised functions are all the mining functions requiring training data before being able to
perform on new data. Therefore, supervised means that an artificial neural network of this
category cannot be applied on new data before having been trained with existing data.

6.1.2 Classification

Classification describes a form of prediction, where one or many input values are processed
by the mining function or algorithm to receive one or many output values. In other words,
classification is the projection of an assignment of elements in pre-defined classes,246 or the
classification of feature vectors in a finitely number of classes. 247 Classification (and
clustering) tasks are very common in the field of biology for determining groups of data that
show similar behavior and for classifying new samples into them. Classification is more often
used as a second stage after the clustering.248

Very often, for classification no specific algorithm can be derived easily, so software systems
capable of processing numerous inputs for deriving the desired solution decrease the time and
complexity needed to come to a solution. The notion of classification is to classify cases
according to a fixed set of categories, which itself simply is a discrete value with well-defined
meaning.249 An ANN used for classification, like a perceptron (3.3.2.6 Perceptron), derives a
functional relationship between the input data and the desired output. Training data therefore
must contain data sets as well as the desired outputs to each data set, so the ANN can learn
(3.3.3 Training and learning) how to derive target values from future datasets.

The results of software side classification are of a specific quality, determined by the
comparison of the actual output values and the desired output values of some training data. It
is therefore common not to train an ANN with all the available training data, but with a
specific amount so that the trained ANN can be evaluated by the feeding of known data and
the following comparison of its actual output values with the given values. Classification is
supported by manifold statistical and machine learning approaches, such as logistic
regression, naïve Bayes, feed forward ANNs, decision trees, support vector machines and a
lot more.

246 Chamoni Peter, Gluchowski Peter (2006): Analytische Informationssysteme: Business Intelli-
gence- Technologien und –Anwendungen, 3rd. ed.; Berlin: Springer-Verlag, p. 265

247 Ertel Wolfgang (2008): Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung;
Wiesbaden: Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH, p. 181

248 Nedjah Nadia et al. (2009): Intelligent Text Categorization and Clustering; Berlin Heidelberg:
Springer-Verlag, p. 2

249 Hornik Mark F., Marcade Erik, Venkayala Sunil (2007): Java Data Mining: Strategy, Standard,
and Practice. A Practical Guide for Architecture, Design, and Implementation (Morgan Kaufmann
Series in Data Management Systems); San Francisco: Elsevier, Inc., p. 88

172 6 Autonomously acting cars and predicting market …

6.1.3 Regression

Regression is used to make predictions on continuous numerical targets and, like classify-
cation, a supervised mining function.250 Regression therefore tries to explain a dependent,
continuous variable by several independent variables. 251 As it is supervised, the same
prerequisites apply to regression as to classification. Training data is needed for the algorithm
or function for being able to derive a functional relationship between the input values and the
output values. However, in difference to classification, a specific form of ANNs has proofed
to be of value, namely recurrent ANNs (3.3.2.8 Recurrent artificial neural network). This type
of ANNs has short-term memory, which is very useful when having to predict continuous
numerical values.

The results of software side regression are of a specific quality, which is determined by the
comparison of the actual output values and the desired output values of some training data, as
it is done within classification. Regression is, amongst many others, supported by (recurrent)
ANNs, decision trees, support vector machines, (linear, logistic, polynomial, stepwise etc.)
regression.

6.1.4 Clustering

Algorithms and functions capable of clustering belong to the form of unsupervised mining
approaches. Clustering is used, when needing to identify natural clusters, to find represent-
tative cases within a huge amount of data for supporting data reduction, or when needing to
identify data not belonging to any of the found clusters.252 Within huge amounts of data,
clustering therefore tries to identify data sets similar to each other and assigns these to a
cluster. Different data sets belong to different clusters, and a set of clusters is considered to be
of high quality if the similarity between clusters is low, yet the similarity of cases within a
cluster is high.253 The groups are, in contrary to classification, not known a priori, but the
outcome of the clustering proceeding.254

Within the field of artificial neural networks, the self-organizing feature map of Teuvo
Kohonen (3.3.2.9.4 Self-organizing feature map) is applied for clustering.

250 Hornik Mark F., Marcade Erik, Venkayala Sunil (2007): Java Data Mining: Strategy, Standard,
and Practice. A Practical Guide for Architecture, Design, and Implementation (Morgan Kaufmann
Series in Data Management Systems); San Francisco: Elsevier, Inc., p. 89

251 Fahrmeir L. et al. (1996): Regressionsanalyse; In: Fahrmeir, L. et al. (Hrsg.): Multivariate
statistiche Verfahren. 2nd ed.; Berlin, New York, S. 93 - 168

252 Dipartimento di Elettronica e Informazione, Politecnico Di Milano: Clustering [2011-18-09];
Dipartimento di Elettronica e Informazione; URL: http://www.elet.polimi.it/upload/matteucc/
Clustering/tutorial_html

253 Anderberg Michael R. (1973): Cluster Analysis for Applications, New York: Academic Press Inc.
254 Chamoni Peter, Gluchowski Peter (2006): Analytische Informationssysteme: Business

Intelligence- Technologien und –Anwendungen, 3rd. ed.; Berlin: Springer-Verlag, p. 265

6.1 Analysis and knowledge 173

Clustering is, amongst many others, supported by self-organizing feature maps, centroid-
based algorithms, 255 distribution-based algorithms, density-based algorithms, orthogonal
partitioning clustering.256

6.1.5 Attribute importance

Very often, it is necessary to determine which attributes influenced the emergence of a data
mining processes’ result most, which makes it possible to focus on these attributes. Through
attribute importance, the attributes not contributing to the outcome of a mining process in a
high mass also can be identified and, if desired, be reduced. Especially when dealing with
data sets containing numerous attributes, the identification of the attributes contributing to a
result becomes necessary knowledge, as the data mining process can be improved in terms of
time and complexity through the reduction of attributes. Also, attributes not relevant for
finding a solution may produce noise, which may falsify a DM result.

When dealing with ANNs, attributes with higher numeric values influence a solution more
than attributes with lower numeric values. Therefore, no other algorithm then sorting the
attributes according to their value is necessary. As attributes in different data sets may have
either high or low values, it is useful to determine the probability of an attribute being high as
well.

6.1.6 Association

With association a special relationship between attributes is determined, namely support and
confidence. The support of a rule indicates how frequently the items associated in the rule
occur together, whereas the confidence of a rule indicates the probability of finding both the
antecedent item set and the consequent item set in the same transaction, given that the
antecedent alone is found.257 The most simple implementation of an association rule therefore
is ܣ implies ܤ , determined through the number of occurrences of ܣ , followed by ܤ . As
association rules are used for determining the relationship between attributes, they can also be
used for determining the relationships between categories.

6.1.7 Interesting knowledge

The knowledge, resulting from a DM-process, carried out by interaction of humans and a DM
system, must be interesting. Interesting in this context means that especially software systems
applying computational intelligence-paradigms very often are capable of detecting patterns in

255 MacQueen J. B. (1967): Some Methods for Classification and Analysis of Multivariate
Observations; Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability; Berkeley: University of California Press, 1:281-297

256 Milenova Briana et. al. (2002): O-Cluster: Scalable Clustering of Large High Dimensional
Datasets [2011-18-09]; Oracle Corporation; URL: http://www.oracle.com/technology/
products/bi/odm/pdf/o_cluster_algorithm.pdf

257 Hornik Mark F., Marcade Erik, Venkayala Sunil (2007): Java Data Mining: Strategy, Standard,
and Practice. A Practical Guide for Architecture, Design, and Implementation (Morgan Kaufmann
Series in Data Management Systems); San Francisco: Elsevier, Inc., p. 93

174 6 Autonomously acting cars and predicting market …

unstructured raw data, but not everything might be of interest. A DM-system relying on CI
therefore must be able to correctly interpret (learn) and process what its user wants to know,
exactly how a human infant has to learn what to do in special situations for being able to
apply the same or similar behavior in similar future situations.

6.1.8 Accurate knowledge

The results a data mining system delivers must be accurate. It is not in the interest of the
knowledge receivers that information is interesting, but wrong. A software system that
predicts a 98% probability for a loss of € 5,000,000 in the next six months because customers
will not continue to buy the products ݔ and ݕ would, without doubt, be interesting for a
company. If, according to this newly gained knowledge, the production of these products
would be stopped although customers are still demanding for it, and in consequence buy
products of competitors, a wrong prediction would lead to a financial disaster.

6.1.9 Interpretable knowledge

The knowledge must be interpretable for humans. Not only evolutionary approaches in data
mining require either a software system or the user to transform textual information into
machine-readable information, meaning digits. Additionally, the often required normalization
of data makes the information useless for a human. Therefore, not only the input must be
transformed, but also the output transformed back into a human-interpretable format.
Graphical user interfaces providing diagrams and charts very often help to interpret the
resulting information.

6.1.10 Intelligent processing

Data mining very quickly becomes very complex, which can also come true when applying
simple paradigms. An example is the classification of data with artificial neural networks
(3.3.1 Artificial neural networks), which is not very complex in a situation when there are 100
data sets, each containing only three attributes, and the classification happens by a ANN
having to predict the membership to classifier ܽ or ܾ . The classification becomes more
complex when one data set contains 1,000 attributes, and the results must be predicted by not
only one, but a committee of numerous ANNs of different type and size, making use of
different activation functions, into 100 classifiers. From such a situation can be derived that
intelligent processing is the probable, correct combination of different techniques as well as
the efficient application of the same, which leads to efficient processing.

6.1.11 Efficient processing

The execution of CI-methods is very often time-consuming and requires lots of processing
power. It is therefore preferable to develop such systems in a way that not only makes them
capable of multithreading, but also allows them to apply the suitable set of techniques for a
specific problem, i.e. split the problem into sub-problems and tackle each of the sub-problems
with the most suitable approach. The result, or the representation of the gained knowledge
resulting from a data mining process, is usually described by models or patterns.

6.2 Autonomously acting cars 175

A model is a global summary of a dataset and may, e.g. be expressed as an equation that
describes a process.258 An example would be the representation of a matrix in a ݌-dimensional
space, so the equation

ݕ = ܽ + ݔ ∗ ܾ (6-1)

where a and b represent parameters, can be declared as a model.259 On the contrary, a pattern
describes a structure relating to a small part of the overall data, exemplified by the notation

ݔ ݂݅ > ݕ)ܲ ℎ݁݊ݐ ଵݔ ∈ ଵܻ) = ଵ (6-2)݌

where ݔଵ and ଵܻ denote a value and a set of values.260

The modelling phase is often considered as the most interesting phase of the data mining
process, as the resulting model or pattern describes the solution for the problem statement. As
many possible techniques or algorithms for a problem statement exist, DM often requires the
user to understand and to know what to do next. The difficulty increases, when no algorithmic
solution for a problem can be found. Very often, the user of a DM system may not be
interested in the algorithmic solution of a problem statement, but in the result that can be
achieved by applying this solution. This is again where CI paradigms in DM apply, as a
software system capable of falling back on evolutionary approaches is able to find out the best
solution on its own and to provide the desired results by applying this solution on the
presented problem.

6.2 Autonomously acting cars

The development of autonomously acting cars (AAC) requires one to understand how certain
aspects of the human brain function, such as object recognition and some predictive
capabilities, so I will very briefly give an introduction into the field, go into some of the
development challenges and explain where ANNs can successfully be applied. AACs rely on
a huge amount of manifold sensors and algorithms, including LiDAR for recognizing moving
objects, cameras and related algorithms for identifying what this moving object is, radar and
ultrasonic for better interpreting its own position in a dynamic world. Of course logic is not to
be omitted, as the domain controller (the car’s brain) has to make decisions based on what it
perceives through its sensors:

– interpret the car’s surroundings
– anticipate upcoming events and predict the necessary reactions
– instruct the various hardware components of the car to perform the necessary actions

Basically, there exist two approaches in AAC development:

258 Sasu Lucian Mircea (2006): Computational Intelligence Techniques in Data Mining; PhD Thesis;
Brasov: Transylvania University of Brasov, p. 9

259 Sasu Lucian Mircea (2006): Computational Intelligence Techniques in Data Mining; PhD Thesis;
Brasov: Transylvania University of Brasov, p.10

260 Sasu Lucian Mircea (2006): Computational Intelligence Techniques in Data Mining; PhD Thesis;
Brasov: Transylvania University of Brasov, p.10

176 6 Autonomously acting cars and predicting market …

– V2X-communication
– massively equip car with hardware and algorithms

6.2.1 V2X-communication

The input comes to a significant part from infrastructure, i.e., road sensors, intersection
management systems, etc. and comparing a LiDAR-obtained profile of the 360° surroundings
of the car (comparing that image to a map database + identifying differences between the two
images as obstacles). The advantages are that the autonomously acting agent

– can be made quite reliable over time,
– covers relatively large distances, and
– relatively low cost (from the car’s perspective).

The disadvantages in the V2X-communcation-only approach are

– high initial cost (need to build out infrastructure and a detailed street-view map database),
and

– the car’s ability to react to sudden changes.

6.2.2 Massively equip car with processing power and AI-algorithms

In terms of understanding what needs to be done to create an autonomously acting agent in
the dynamic real world, it is useful to second on the second approach, massively equipping a
car with hardware and AI-algorithms, and augment it with the first (as we do not necessarily
need to copy how humans function to achieve the same goals). In this implementation
scenario, the car does not receive any external navigation instructions, and relies on
algorithms and logic applied on streams from cameras, radar, LiDAR and other sensors,
which give it a 360° knowledge of the surrounding environment. The advantages are that the
autonomously acting agent

– can react quickly to situations, and
– focus only on what is important, while
– ignoring everything else (most important).

The disadvantages in this approach are mostly related to weaknesses in the sensors and cost,
namely

– relatively high car cost (at least near term),
– sensitivity to weather and
– other sources of electronic signal blockage.

6.2.3 Artificial intelligence and environment sensing

The most secure approach is a mix of both approaches, whereby nowadays we see improve-
ment potential especially in V2V-communication, as AACs mostly act as singular agents
instead the fleet as multi agent system, i.e. some of the areas of interest related research
currently goes incorporate

6.2 Autonomously acting cars 177

– Each car broadcasting what it senses to all others in its surroundings
– Scene understanding instead of object recognition is the target
– Better recognition by more sophisticated algorithms (i.e., deep learning ANNs)
– Integration of auditory perception

As already introduced, there are manifold sensor data used in a car for AI tasks, including

– temperature sensors, steering and breaking maneuvers for doing predictive maintenance
or traffic prediction,

– rain and temperature sensors for weather analysis,
– ultrasonic, radar, LiDAR, breaking maneuvers, GPS for analyzing anomalies in traffic

flow,
– cameras, LiDAR, ultrasonic and radar for environment perception, etc.

Here, the focus is on environment perception and the sensors used for achieving this non-
trivial target.

6.2.3.1 Cameras and how AI is applied to related data

Monovision-cameras are, due to low resolution and low-quality imagery mostly used for fixed
infrastructure recognition, i.e. lane markings or speed limit signs. With appropriate algorithm-
mic support, they allow fast image processing in order to recognize common roadside
infrastructure from a simple black and white relatively low-resolution image.

Stereo-vision cameras allow depth perception and thus are used for understanding relative
position of moving traffic and obstacles as well as in short-range perception.

Amongst others, AI algorithms such as ANNs on the data from cameras may be used to

– conduct object recognition,
– do fast image processing to recognize common roadside infrastructure from a simple

black and white relatively low-resolution image,
– do depth perception,
– to understand the AAC’s relative position of moving traffic and obstacles, and be
– combined with other sensory information used to get to scene understanding instead of

mere object recognition.

6.2.3.2 RADAR and how AI is applied to related data

RADAR is used for collecting information about the car’s immediate surroundings, whereby
“immediate” depends from the car speed. For low speed short range- RADAR is used in order
to sense the ACC's immediate surroundings, especially at low speeds. Long range-RADAR is
applied at high speeds and over relatively long distances. Long distance radar combined with
algorithm-based processing of images from stereovision cameras gives the autonomous car
the capability of

– knowing what is in front of it as well as
– how the positions and profiles of external objects are changing at all times.
– Combined with LIDAR, can be used to measure velocity of objects (Doppler effect).

178 6 Autonomously acting cars and predicting market …

Amongst others, AI algorithms such as ANNs on the data from RADAR may be used to

– conduct fusion of RADAR and algorithm-based processing of images from stereovision
cameras,

– recognize obstacles in the front of the ACC,
– change of positions and profiles of external objects over time.

A disadvantage or RADAR is that compared to LiDAR the field of view is narrow, which is
why fusion with other sensory information is required.

6.2.3.3 LiDAR and how AI is applied to related data

LiDAR makes use of a combination of reflected laser/ light (LI) and radar (DAR) to create a
3D profile of the surroundings of the car. A LiDAR creates a rapid series of 360° profiles and
compares them to each other and to a database storing historic data in order to detect changes
(i.e., moving objects). This is also why LiDAR cannot be used exclusively – snowfall, e.g.,
makes up an ever-changing environment and piles of snow should not be identified as moving
object only because they are not stored in the LiDAR database. LiDAR comes with some
advantages, namely that algorithms on it allow to

– accurately detect movement, and
– compared to RADAR the field of view is broad.

Some of the disadvantages and open questions are that

– temporary changes (like snow or new traffic patterns) could disrupt the surrounding
profile,

– it does not work for some aspects of autonomous driving like lane and sign tracking
(camera/ vision systems required), and

– velocity measurement current area of research (Doppler effect).

Amongst others, AI algorithms such as ANNs on the data from LiDAR may be applied for

– identifying (moving) objects within the scans, e.g. comparing scans, edge-detection over
scans in order to get different views from an object,

– matching scans with LIDAR database (and identify/ ignore disturbances),
– identifying unique coordinates in the LIDAR-scan and camara images for overlaying,
– extracting frame coordinates around moving objects from LIDAR, mapping it into camera

and identifying what the object is.

6.2.3.4 Additional sensors and how AI is applied to related data

Sensors of all kinds already extensively used in cars, including acceleration sensors, pressure
sensors, light sensors etc. An ACC also needs to monitor itself to know that it is not traveling
over the speed limit, if something is wrong with the car, predictive maintenance and a lot
more. Thus, these sensors may be used for

– improving security, and
– human-machine interaction.

6.2 Autonomously acting cars 179

Amongst others, AI algorithms such as ANNs on the sensor data may be applied for

– active-safety related aspects, such as recognizing road conditions by haptic feedback (e.g.
vibrations from steering wheel, suspension),

– driver monitoring (attention, health conditions), i.e.
 driver condition monitoring,
 driver intention estimation, and

– predictive maintenance (tire, break-condition)

6.2.3.5 GPS and how AI is applied to related data

The global positioning system (GPS) is a reliable, high-speed two-way data communications
equipment (antennas, 4G- and GPS receivers), mainly used for

– navigation
– V2V/ V2X communication
– content reception

usually, data recorders or black boxes are required, given the high level of automation, in the
event of an accident or failure, and amongst others, AI algorithms such as ANNs on the data
from GPS may be applied for

– analyzing and predicting events, and
– given information about other cars‘ positions, traffic optimization.

6.2.3.6 Microphones and how AI is applied to related data

In current research, multiple microphones in terms of AACs are used to create environment
sound profiles, which in turn may e.g. be used for

– recognizing approaching emergency vehicles (Doppler effect),
– focusing sensors on particular areas (noisy, crowdy, particular noises such as crashes).

and amongst others, AI algorithms such as ANNs on the data from GPS may be applied for
classification of events based on ambient noise analysis.

6.2.3.7 Autonomously acting car’s brain – the domain controller

The domain controller is a computer acting as the brain of the autonomously acting car, as it
processes all of the produced data and algorithms, as well as executes the logic to be executed
based on what the AAC senses. Thus, it acts as the crossover between the input and output
systems of the car by receiving signals from the various cameras, radar, and sensors,
determining what action is to be taken and then communicating with the car’s drivetrain to
execute the necessary actions. Summing up, this is where

– the software brain/ operating system of the car resides, and
– where machine learning is meant to be executed,
– fusing signals from cameras, radar, and sensors happens,

180 6 Autonomously acting cars and predicting market …

– necessary actions on the algorithmic output are determined (which will then be used for
communicating with the car’s drivetrain to execute these).

In terms of scene understanding, current AACs do not understand what they sense, as sensory
information heavily used to do object recognition only. However, understanding context is
one of the most complex topics in AI research and will be dealt with in detail at 10.6.2
Context recognition and hierarchical learning. In terms of an AAC understanding a scene can
contribute to safety, e.g. sensory information from close other AACs can be broadcast.

What we also do not see in humans intelligence is, at least as far as we know, re-training and
re-deployment of models. The common approach is to train an AI algorithm on historic data,
deploy it and if required, retrain and redeploy. Data, i.e. environments, may change over time,
not only in terms of configurations (which objects we see), but also in terms of content (what
is there that has not been there at training time, how single agents behave, etc.), and humans
can adapt to such changes perfectly fine, thus the AACs can potentially learn from human
behavior, i.e. when interaction is required and a large group of users shows the same reactions
in identical situations, or erratic behavior of other ACCs.

Future research will most likely treat autonomous cars not as individuals, but as multi-agent
systems, which requires to incorporate the three aspects of multi-agent systems (see 2.5
Agents and actions)

– Autonomous behavior: model decisions should be based on beliefs, desires and intentions
(BDI-agents)

– Adaptive behavior: It is impossible to predict any situation, thus the agents must be able
to adapt to not-yet-perceived situations, e.g. by means of reinforcement learning

– Social behavior: V2V-communication should be exploited in order to share information
between agents, and also communication from a central control center to all agents in
order to optimize traffic. This information could be used to develop services, i.e. the AAC
recognizing accidents and calling emergency services, and let AACs automatically form
rescue lanes in case of an accident.

6.3 Summary

This chapter showed that most of the tasks in AI rely on analyzing data, which is also why I
strongly focused on data mining and related areas of application. A brief overview about
some of the data collected and produced by autonomously acting cars and how these are
efficiently leveraged in order to rebuild aspects of human intelligence, i.e. safely reacting in a
dynamic environment, helps to understand some of the challenges involved in developing AI-
systems. It also helps to understand how we can develop artificially intelligent agents
performing human-like tasks, but not necessarily by exactly the same means (humans do not
use LiDAR, and humans do not perceive images as 4D-tensors).

7 An outline of quantum mechanics

Quantum computer science is one of the fields that seem to be very promising for future
developments within the field of artificial intelligence, especially in terms of artificial neural
networks or Markov models. This is due to the effects of quantum mechanics, which offer
completely new possibilities for ANN learning. In the last years the interest in theoretical
aspects of quantum physics has grown intensely and thus, also research in computational
neuroscience discovered it and is now trying to make use of its possibilities. Quantum
information theory is sometimes confusing computer scientists, especially because of its
otherness compared to classical information processing. Therefore, the following chapter
provides a brief introduction into quantum computer science and its paradigms with respect to
artificial neural networks, or more precisely, quantum artificial neural networks.

7.1 Quantum systems in general

There exist several important aspects in quantum mechanics that are useful for quantum
computer science and which need to be elucidated in detail. The first distinction occurs in
information processing. A similarity between classical computers and quantum computers is
that the former process information in bits (on the most granular level), and the latter ones
through quantum bits (Qbits, Qbit-states), whereby I go along with the physicist David N.
Mermin, who refuses to use the abbreviation qubit due to linguistic reasons. In a two-state
quantum system, the states |0〉 and |1〉, which at a first glance look similar to the classical
states of a von Neumann computer (0 and 1), form the basis.

Before going into detail, I require the readers to accept the following in advance, although the
meaning of quantum linear superposition will be explained not until 7.1.3.2 Quantum linear
superposition. The information a Qbit contains is (represented by) the superposition of the
two independent states within a complex vector space, and is written as

|߰〉 = 〈ଵ|0ߙ + 〈ଶ|1ߙ = ቀ
ଵߙ
ଶߙ

ቁ (7-1)

The probability amplitudes ߙଵ and ߙଶ, which describe the probability that the Qbit is either
associated with the one or the other state, are complex numbers that in quadratic power must
sum to unity:

ଵ|ଶߙ| + ଶ|ଶߙ| = 1 (7-2)

Thus, the state |߰〉 associated with a Qbit can be any unit vector in the two-dimensional
vector space spanned by |0〉 and |1〉 over the complex numbers, where ߙଵand ߙଶ are two
complex numbers constrained only by the requirement that |߰〉, like |0〉 and |1〉, needs to be a
unit vector in the complex vector space. Moreover and as indicated beforehand, a Qbit cannot
be said to have a value, instead it is associated with a state, in contrary to a classical bit, which
can be said to be in a concrete state. 261 A quantum system that is composed of ݊ Qbits has

261 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_7

182 7 An outline of quantum mechanics

ܰ = 2݊ independent states obtained through the tensor product of the complex vector space
already addressed. A quantum systems’ wave function exists in is the Hilbert space, which
consists of a set of states |߶〉. Thus, a quantum system can also be described by

|߰〉 = ∑ ௜|߶௜〉௜ߙ (7-3)

where ߙ୧ represents the complex coefficients (probability amplitudes) describing the
probability of the system collapsing into the state ߶௜ when measuring it.

So much to the first impression of how quantum systems are described. I started with these
theoretical fragments as I consider it important to realize some facts before dealing with
quantum theory in detail:

– A quantum system, be it a just a single Qbit or a complex one, does not simply exist – it is
dynamic and evolves through time.

– It is associated with states, and not in concrete states, and
– its probability amplitudes are complex numbers in Hilbert space.

7.1.1 Quantum theory

Quantum theory (as all physical theories) can be characterized by how it represents (physical)
states, observables, measurements, and dynamics (evolution in time).262 As Jyh Ying Peng
explains the axioms of quantum mechanics very well in his lecture notes, 263 these have
formed the foundation for the coming chapters.

7.1.1.1 Quantum states

A state in a common physical system is its complete description. In quantum mechanics, a
state is a ray in a Hilbert space, where a Hilbert space is a vector space over the field of
complex numbers, denoted by ܥ. The vectors in the Hilbert space are denoted by Dirac’s
Bra(c)Ket notation |߰〉. A ket |߰〉 can either be seen an ݊ element vector or an ݊ 1 ݔ matrix,
where ݊ forms the dimension of the Hilbert space. Its corresponding bra 〈߰| is the complex
conjugate transpose (adjunct) of the ket. Its inner product 〈߰|߶〉 may be seen as matrix
multiplication mapping an ordered pair of vectors to ܥ, with some special properties:

Positivity

〈߰|߰〉 > 〈߰| ݎ݋݂ 0 ≠ 0 (7-4)

Linearity

〈ଵ|߰ଵߙ)|߶〉 + (〈ଶ|߰ଶߙ = ଵ〈߶|߰ଵ〉ߙ + ଶ〈߶|߰ଶ〉 (7-5)ߙ

262 Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL: http://red.csie.
ntu.edu.tw/QC/peng/chap1.pdf

263 Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL: http://red.csie.
ntu.edu.tw/QC/peng/chap1.pdf

7.1 Quantum systems in general 183

Skew symmetry

〈߶|߰〉 = 〈߶|߰〉∗ (7-6)

Furthermore, the Hilbert space is complete (or contains all necessary limits) in the norm

ห|߰|ห = 〈߰|߰〉
భ
మ (7-7)

A ray in a Hilbert space is represented by a given vector and all its complex multiplies. Two
different vectors (rays) will never be parallel in that space. Rays are represented by vectors
with unit norm

〈߰|߰〉 = 1 (7-8)

so that ݁௜ఈ|߰〉, where

ߙ =∈ ℝ (7-9)

represent the same physical state for all ߙ. By the superposition

〈߶|ଵߙ + ଶ|߰〉 (7-10)ߙ

new states can be formed, and the relative phase between the two components is physically
relevant, which means whereas

〈߶|ଵߙ + ଶ|߰〉 (7-11)ߙ

and

݁௜ఈ(ߙଵ|߶〉 + ଶ|߰〉) (7-12)ߙ

represent the same physical state,

〈߶|ଵߙ + ݁௜ఈߙଶ|߰〉 (7-13)

is a different one. 264

7.1.1.2 Observables

A property of a physical system is that it can be measured. This is not different in quantum
mechanics, where an observable is a self-adjunct operator, thus a matrix, and a linear map
taking vectors to vectors. This is represented by matrices. For an operator

,ܣ :ܣ |߰〉 ⟶ (14-7) 〈߰|ܣ

and

〈߰|ଵߙ)ܣ + (〈߶|ଶߙ = 〈߰|ܣଵߙ + (15-7) 〈߶|ܣଶߙ

264 Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL: http://red.csie.
ntu.edu.tw/QC/peng/chap1.pdf

184 7 An outline of quantum mechanics

The adjunct ܣற of an operator ܣ is defined by

〈߰ܣ|߶〉 = (7-16) 〈߰|߶றܣ〉

where |߰ܣ〉 simply denotes ܣ|߰〉 for all vectors |߰〉 , |߶〉 . In matrix form the adjunct is
represented as the (complex) conjugate transpose. ܣ is self-adjunct, if ܣ = றܣ . The eigen-
vectors of the corresponding self-adjunct matrix, the eigenstates, form a complete ortho-
normal basis in the Hilbert space. 265 Orthonormal means that all vectors of the space feature
the length 1 and the dot product of two of them is 0, which means that they are orthogonal to
each other (see the orthonormalbase of the three-dimensional Euclidean space vectors (7-17) -
(7-19)):

ଓ⃗ = ൭
1
0
0

൱ (7-17)

ଔ⃗ = ൭
0
1
0

൱ (7-18)

ሬ݇⃗ = ൭
0
0
1

൱ (7-19)

7.1.1.3 Quantum measurements

The formulation of quantum mechanics describes the deterministic unitary evolution of a
wave function, which can never be observed experimentally and which allows to compute the
probability that certain macroscopic events will be observed. There are no events and no
mechanism for creating events in the mathematical model. It is this dichotomy between the
wave function model (see eqs. (7-22) - (7-26)) and observed macroscopic events that is the
source of the interpretation issue in quantum mechanics. In contrary to classical physics,
where the mathematical model talks about the things that can be observed, in quantum
mechanics the mathematical model by itself never produces observations, since the wave
function must be interpreted in order to relate it to experimental observations. 266 The
numerical outcome of the measurement of the observable (=self-adjunct operator) ܣ is an
eigenvalue of ܣ, and directly after measurement the quantum state becomes the eigenstate of
 corresponding to the measurement result, and if the quantum state before measurement is ܣ
|߰〉, then outcome ߙ௡ is obtained with the probability

(௡ߙ)ܲ = ห| ௡ܲ|߰|ห
ଶ

= 〈߰| ௡ܲ|߰〉 (7-20)

As a consequence, the normalized quantum state becomes

265 Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL: http://red.csie.
ntu.edu.tw/QC/peng/chap1.pdf

266 Budnik Paul: The measurement problem [2012-10-06]; URL: http://www.mtnmath.com/faq/meas-
qm-2.html

7.1 Quantum systems in general 185

௉೙|ట〉

〈ట|௉೙|ట〉
భ
మ
 (7-21)

If the measurement is then repeated immediately, the same result would be obtained with the
probability of one. 267

7.1.1.4 Quantum dynamics

Time evolution of a quantum state is unitary, and a unitary transformation can be seen as a
rotation in Hilbert space. Evolution happens via a special self-adjunct operator, called the
Hamiltonian268 of the system. In the Schrödinger picture of dynamics, the Hamiltonian (vector
or state) describing that the system evolves time-independently is determined by the
Schrödinger equation

(ݎ)෡߰ܪ = ିℏమ

ଶ௠
△ (ݎ)߰ + (ݎ)߰(ݎ)ܸ = (22-7) (ݎ)߰ܧ

where the Laplace-operator

△ (ݎ)߰ =△ |߰〉 = 〈߰|ଶߘ = డమ

డ௫మ |߰〉 + డమ

డ௬మ |߰〉 + డమ

డ௭మ |߰〉 (7-23)

and in time according to the time-dependent Schrödinger equation

݅ℏ డ
డ௧

,ݎ)߰ (ݐ = ିℏమ

ଶ௠
 △ ,ݎ)߰ (ݐ + ,ݎ)ܸ ,ݎ)߰(ݐ (24-7) (ݐ

where

,ݎ)෡߰ܪ (ݐ = ݅ℏ డ
డ௧

,ݎ)߰ (25-7) (ݐ

and

,ݎ)߰ܧ (ݐ = ିℏమ

ଶ௠
△ (ݎ)߰ + (26-7) (ݎ)߰(ݎ)ܸ

ℏ is the reduced Planck’s constant ௛
ଶగ

 , ିℏమ

ଶ௠
△ the kinetic energy and ܸ the potential energy of

the particle (a particle may have differing values for its potential energy, depending from
where it is located, e.g. in a gravitational field or an electric field). డమ

డ௫మ ,ݔ)߰ -is the deri ,(ݐ
vation of the wave function with respect to its position ܪ .ݔ෡ is the Hamiltonian, which allows
a simplified description of the time-evolution of the physical system and the related wave
function ߰, and ݅ is the imaginary unit. The Hamiltonian function (equation (7-27)) itself
allows the creation of the Hamilton operator (equation (7-28)):

,ݔ)෡ܪ (݌ = ௣మ

ଶ௠
+ (27-7) (ݔ)ܸ

267 Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL: http://red.csie.
ntu.edu.tw/QC/peng/chap1.pdf

268 Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL: http://red.csie.
ntu.edu.tw/QC/peng/chap1.pdf

186 7 An outline of quantum mechanics

,ොݔ)෡ܪ (̂݌ = ௣ොమ

ଶ௠
+ (7-28) (ොݔ)ܸ

This happens by replacing of the momentum ݌ and location ݔ by the related momentum
operator ̂݌, working as the derivative −݅ℏ డ

డ௫
 , and the location operator ݔො, ܸ(ݔො) then being the

potential-operator working as multiplication with the potential function ܸ(ݔ).269

7.1.2 Quantum operators

For being able to conduct operations on a quantum computer, operators are required, similar
to a classical von Neumann computer. Operators on a Hilbert space describe how a wave
function is transformed into another; they may be represented as matrices acting on vectors,
where the notation 〈.| indicates a column vector and the |. 〉 complex conjugate row vector.
Using operators, (7-3) can be created. The solutions ߶௜ to such an equation are called
eigenstates and can be used to construct the basis of a Hilbert space. In the quantum
formalism, all properties are represented as operators whose eigenstates are the basis for the
Hilbert space associated with that property and whose eigenvalues are the quantum allowed
values for that property. It is of utmost importance to mention that operators in quantum
mechanics must be linear operators and that they must be unitary.270 An operator is unitary,
when its inverse equals its adjunct (which is the complex conjugate transpose):

ܷିଵ = ܷற (7-29)

The usage of unitary operators ܷ is especially required when trying to solve problems of the
type

ݔܣ = (30-7) ݕ

The solution

ݔ = (31-7) ݕଵିܣ

is simple when one knows ିܣଵ. However, the calculation of the inverse of a large matrix may
not always be simple, which is the primary reason for the application of unitary operators. It
goes beyond this thesis to discuss all of the quantum operators in detail, but it is important to
know the following ones, taken from Mermin's introduction to quantum computer science:271

The NOT-operator ࢄ

ܺ: 〈ݔ| ⟶ ෤〉 (7-32)ݔ|

which does

269 University of Wuppertal (2013): Der Hamiltonoperator [2013-01-25]; URL: http://hydrogen.
physik.uni-wuppertal.de/hyperphysics/hyperphysics/hbase/quantum/hamil.html

270 Ricks Bob, Ventura Dan (2003): Training a Quantum Neural Network; Provo: Brigham Young
University

271 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

7.1 Quantum systems in general 187

1෨ = 0 (7-33)

and

0෨ = 1 (7-34)

as well. The NOT-operator is reversible, as a second application brings back the state to its
initial state:

ܺଶ = 1 (7-35)

When the orthogonal states of a bit are represented by

|0〉 = ቀ1
0ቁ (7-36)

and

|1〉 = ቀ0
1ቁ (7-37)

then the linear operator of ܺ expressed on the two-dimensional vector space is

ܺ = ቀ0 1
1 0ቁ (7-38)

and

1 = ቀ1 0
0 1ቁ (7-39)

where the latter one flips the bit and the former one leaves it in its current state.

The swap-operator ࢙࢐࢏

〈ݕݔ|ଵ଴ݏ = (40-7) 〈ݔݕ|

changes the states of the two bits i and j, where the example ݏଵ଴ does the following on

〈ଵ଴|01ݏ = |10〉 (7-41)

or

〈ଵ଴|10ݏ = |01〉 (7-42)

but does leaves |11〉 and |00〉 as they are, as an interchange results in the same state.

The cNOT operator ࢐࢏ࢉ

ܿଵ଴|ݕ|〈ݔ〉 = (43-7) 〈ݔ⨁ݕ|〈ݔ|

ܿ଴ଵ|ݕ|〈ݔ〉 = (44-7) 〈ݕ|〈ݕ⨁ݔ|

188 7 An outline of quantum mechanics

where ⨁ is the modulo 2 addition (or the XOR). The c in cNOT or ܿ௜௝ stands for controlled,
meaning that if the state of the ݅௧௛ bit is |0〉 then cNOT does not change the state of the ݆௧௛
bit, but if the ݅௧௛ bit is |1〉, then the ݆௧௛ bit will be subject to ܺ:

ܿଵ଴|01〉 = |11〉 (7-45)

and

ܿଵ଴|11〉 = |01〉 (7-46)

and leaves |10〉 and |00〉 as they are, as the cNOT on these bits results in the same state. This
changes when the control bit is on the right. If a vector space consists of two bits, the basis is
|00⟩, |01⟩, |10⟩, |11⟩, and the vector assignments are

|00⟩ = ൮

1
0
0
0

൲ (7-47)

|01⟩ = ൮

0
1
0
0

൲ (7-48)

|10⟩ = ൮

0
0
1
0

൲ (7-49)

|11⟩ = ൮

0
0
0
1

൲ (7-50)

Thus, the cNOT operator for a two bit-space as unitary version of XOR is a permutation
matrix of the form

ܿ௜௝ = ൮

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

൲ (7-51)

The n-operator

〈ݔ|݊ = (52-7) 〈ݔ|ݔ

where

ݔ = 0 ∨ 1 (7-53)

and

෤݊ = 1 − ݊ (7-54)

7.1 Quantum systems in general 189

and

+ ෤݊ = 1 (7-55)

݊ is the projection operator of |1〉 and ෤݊ projects onto |0〉. As matrix operators

݊ = ቀ0 0
0 1ቁ (7-56)

and

෤݊ = ቀ1 0
0 0ቁ (7-57)

|0〉 and |1〉 are eigenvectors of ݊ with eigenvalues 0 and 1, and so it is for ෤݊ with eigenvalues
of 1 and 0.

The ࢆ-operator

ܼ = ݊ − ෤݊ = ቀ1 0
0 −1ቁ (7-58)

According to the matrices ܺ anticommutes with ܼ:

ܼܺ = −ܼܺ (7-59)

Furthermore, as

݊ + ෤݊ = 1 (7-60)

then

݊ = ଵ
ଶ

(1 − ܼ) (7-61)

and

෤݊ = ଵ
ଶ

(1 + ܼ) (7-62)

Also ܿ௜௝ can be rewritten:

ܿ௜௝ = ଵ
ଶ

(1 + ܼ௜) + ଵ
ଶ ௝ܺ(1 − ܼ௜) = ଵ

ଶ
൫1 + ௝ܺ൯ + ଵ

ଶ
ܼ௜൫1 − ௝ܺ൯ (7-63)

An interchange of the operators ܺ and ܼ has the effect of switching the control and target-bits
of ܿ௜௝. Thus, ܿ௜௝ becomes ௝ܿ௜.

The Hadamard transformation ࡴ

ܪ = ଵ
√ଶ

(ܺ + ܼ) = ଵ
√ଶ

ቀ1 1
1 −1ቁ (7-64)

Equation (7-63) shows the interchange of the control and target-bits of the cNOT operator,
which is done by the Hadamard transformation ܪ. Furthermore,

ܺଶ = ܼଶ = 1 (7-65)

190 7 An outline of quantum mechanics

and

ܼܺ = −ܼܺ (7-66)

and

ଶܪ = 1 (7-67)

and

ܪܺܪ = ܼ (7-68)

and

ܪܼܪ = ܺ (7-69)

so ܪ can be used to interchange ܺ and ܼ in ௝ܿ௜:

௝ܿ௜ = ൫ܪ௜ܪ௝൯ܿ௜௝(ܪ௜ܪ௝) (7-70)

The important point for quantum computation is the difference between ݏ௜௝ and ܪ௜ܪ௝, as ܪ௜ܪ௝
is a product of two 1-bit operators, while ݏ௜௝ is not.

|0〉 = ଵ
√ଶ

|0〉 + |1〉 (7-71)

and

〈0|ܪ = ଵ
√ଶ

|0〉 − |1〉 (7-72)

Although the application of ܪ on bits is not a transformation that makes sense, a combination
with other operators like the one in equation (7-69) may be used. In a quantum computer, the
application of ܪ on a 1-Qbit state for interchanging control and target bit of cNOT is perfectly
useful, as it is a simple 1-Qbit operator and therefore easy to implement.

There is a lot more that can be said about quantum operators, e.g. Pauli's e-vector ⃗ߪ, or three
complex matrices, used for the representation of the rotation of a spin-1/2 object (Fermions),
has not been explained, but for this elaboration the basic knowledge does suffice.

7.1.3 Quantum physical effects

Quantum physical systems show several properties cannot be observed in the macroscopic
world. Such effects are on the one hand of considerable importance for quantum computation
as well as the search for hard- and software capable of processing conscious experiences.

7.1.3.1 Quantum interference

Quantum interference is, although it is a familiar wave phenomenon, one of the most
interesting principles of quantum mechanics. Considering waves, such interfere constructively
with each other when being in phase and interfere destructively when out of phase. In
quantum mechanics, this interference applies to the probability waves, where the wave

7.1 Quantum systems in general 191

function interferes with itself through the action of an operator; the different prates of the
wave function interfere constructively or destructively according to their relative phases like
any other kind of wave. 272 Thomas Young's double-slit experiment describes the confusion
interference in quantum mechanics produces. Deutsch’s well-known problem will serve to
explain how quantum interference can be of use in quantum computation. Let assume we
want to determine if a function ݂ is constant or balanced, thus if ݂(0) = ݂(1) or ݂(0) ≠
݂(1). All information we possess about ݂ is

݂(0) = 1 (7-73)

(1) = 0 (7-74)

so the function itself is a black box. What we can additionally say is that if the function is
balanced, it is reversible, and if it is constant, it is not (as the result for both inputs is the same
– one cannot say what the last operation was). The function call will be implemented as a
unitary and thus reversible transformation

௙ܷ: ,ݔ| ⟨ݕ → ,ݔ| (75-7) ⟨(ݔ)݂⨁ݕ

First of all, a quantum register consisting of two Qbits has to be initialized:

⟨ݕ|⟨ݔ| ← |0⟩|1⟩ (7-76)

Via the Hadamard-transformation an equal superposition of the two-Qbit register can be
created:

|߰⟩ = ቀ ଵ
√ଶ

|0〉 + |1〉ቁ ቀ ଵ
√ଶ

|0〉 − |1〉ቁ = ଵ
ଶ

(|0⟩|0⟩ − |0⟩|1⟩ + |1⟩|0⟩ − |1⟩|1⟩) (7-77)

The function call, which is ௙ܷ applied to the input register, results in

|߰⟩ = ଵ
ଶ

(|0⟩|0⨁݂(0)⟩ − |0⟩|1⨁݂(0)⟩ + |1⟩|0⨁݂(1)⟩ − |1⟩|1⨁݂(1)⟩) = ଵ
ଶ

(|0⟩|1⟩ −
|0⟩|0⟩ + |1⟩|0⟩ − |1⟩|1⟩) (7-78)

This must be simplified further, so that we can observe the result of a second Hadamard
transformation on the first bit (we remember that if the function is reversible, it is balanced
and the first Qbit will be in the state |0⟩ again).

|߰⟩ = ଵ
ଶ

(−|0⟩(|0⟩ − |1⟩) + |0⟩(|0⟩ − |1⟩)) = ଵ
ଶ

(|1⟩ − |0⟩)(|0⟩ − |1⟩) (7-79)

The application of ܪ results in

|߰⟩ = ଵ
ଶ

− √2ห1⟩√2ห1⟩ = −|1⟩|1⟩ (7-80)

Thus, we now know that the function is balanced. Interference comes into play before the
second Hadamard transformation is applied, as in case the function is constant, the amplitudes
for |0⟩ sum to 1 and the amplitudes for |1⟩ cancel each other out (ଵ

√ଶ
− ଵ

√ଶ
= 0).

272 Ricks Bob, Ventura Dan (2003): Training a Quantum Neural Network; Provo: Brigham Young
University

192 7 An outline of quantum mechanics

± ଵ
√ଶ

(|0〉 + |1〉) → ± ଵ
√ଶ

൬ ଵ
√ଶ

(|0〉 + |1〉) + ଵ
√ଶ

(|0〉 − |1〉)൰ (7-81)

In case ݂ is balanced, the situation behaves vice-versa.

Excursus: Thomas Young's double-slit experiment

In the double-slit experiment, a beam of light is aimed at a barrier with two vertical slits.
After the light passes through the slits, the resulting pattern is recorded on a photographic
plate. When one slit is covered, a single line of light is displayed, aligned with whichever slit
is open. Intuitively, one might hypothesize that if both slits were open, the resulting pattern
would display as two lines of light, aligned with the slits. What occurs in practice, however, is
that light passing through the slits and displayed on the photographic plate is entirely
separated into multiple lines of lightness and darkness in varying degrees. The result
illustrates that interference is taking place between the waves and particles going through the
slits in what a layman might expect to be two non-crossing trajectories. If the beam of
photons is slowed enough to ensure that individual photons are hitting the plate, one might
expect there to be no interference and a pattern of light would be two lines of light, aligned
with the slits. The results of the experiment, however, indicate the presence of interference.
Somehow, the single particles are interfering with themselves. On the face of things, this
might seem impossible: one expects that a single photon will go through one slit or the other
and will end up in one of two possible light line areas. That expectation, however, is
invalidated by the results of the double-slit experiment. What actually occurs is that each
photon not only goes through both slits, but also simultaneously traverses every possible
trajectory en route to the target. Research into this phenomenon has demonstrated that other
elementary particles, such as electrons, exhibit the same behavior.273

7.1.3.2 Quantum linear superposition

The linear superposition or coherence, which results in quantum parallelism, is represented by
the quantum state (7-3) in Hilbert space, with complex coefficients ܿ௜ and a set of states ߶௜ in
this space. Quantum mechanics dictates that the interaction of a system with its environment
results in the destruction of its superposition. This allows the conclusion that the construction
of a quantum computer that will not be influenced by its own irrelevant physical properties is
difficult. The coefficients ܿ௜ give the indication of the system being associated with the state
߶௜ when measurement happens. At the beginning of this chapter it has been mentioned that
the coefficients must sum to unity, which is founded on the fact that a physical system must
collapse to one basis state. Furthermore, it is important to understand that states of the
quantum system are rays in the Hilbert space that cannot be added to each other. It is only
possible to sum up the vectors two different states consist of, however, the result is no new
ray, but a two-dimensional subspace of the Hilbert space. Though, if |߶〉 and |߰〉 represent
two states, then many different superpositions, thus the ray ߙଵ|߶〉 + ଶ|߰〉 , may be built andߙ
〈߶|ଵߙ)ߣ + (〈߰|ଶߙ belongs to the same state, if ߣ ≠ 0 . Summing up, the quantum linear
superposition contains all possible configurations of a quantum system at once, until
measurement is done, which finally results in a collapse or decoherence.

273 whatis.com (2011): double-slit experiment [2012-10-06]; URL: http://whatis.techtarget.com/
definition/double-slit-experiment

7.1 Quantum systems in general 193

7.1.3.3 Quantum entanglement

Unlike bits in a von Neumann machine, whose general state can only be one of the 2௡
products of |0〉 and |1〉, a general state of ݊ Qbits is a superposition of these 2௡ product states
and cannot, in general, be expressed as a product of any set of 1-Qbit states. Individual Qbits
that make up a multi-Qbit system cannot always be characterized as having individual states
of their own - in contrast to the bits in a von Neumann machine – as they may be in
nonproduct-states called entangled states.274 When measuring a Qbit A and obtaining spin up
(or down), then Qbit B (on which no access is given) will also be in the state spin up (or
down), similarly for measurements on Qbit B. Another way to look at it is that in this parti-
cular correlation between the two Qbits, that is, in this particular state of the whole system,
any preparation of only one of the Qbits will cause the other Qbits to have the same value. In
this case the Qbits ܣ and ܤ are entangled. When system A becomes mixed due to interaction
with system B, one can say that the two systems are entangled. Moreover, this entanglement
destroys the coherence of system A, as system A collapses from the initial superposition of
states to one of the states each with a certain probability.275 For a computer scientist trying to
make use of the properties of a quantum computer, entanglement may not be difficult to
understand, as if one bit is in the state |0〉, another is as well. However, in the world of
physics entanglement is not quite well understood, as it is indeed clear, what the resulting
effects are but not how it works. What makes entanglement little understood is the fact that
since quantum states exist as superpositions, these correlations exist as such as well and when
coherence is lost (e.g. by measurement), then the correct correlation is somehow commu-
nicated between the Qbits, and it is this ‘somehow’ that is not understood. 276 Mathematically,
Ricks and Ventura277 provide a detailed description of entanglement by the density matrix
formalism: the density matrix ߩట of a quantum state |߰〉 is defined as the tensor product of
|߰〉 and 〈߰|:

టߩ = |߰〉〈߰| (7-82)

An example is the quantum state

|߰〉 = ଵ
√ଶ

|00〉 + ଵ
√ଶ

|01〉 (7-83)

In vector form, it is written as

|߰〉 = ଵ
√ଶ

൮

1
1
0
0

൲ (7-84)

274 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

275 Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL: http://red.csie.
ntu.edu.tw/QC/peng/chap1.pdf

276 Ricks Bob, Ventura Dan (2003): Training a Quantum Neural Network; Provo: Brigham Young
University

277 Ricks Bob, Ventura Dan (2003): Training a Quantum Neural Network; Provo: Brigham Young
University

194 7 An outline of quantum mechanics

and as density matrix ߩ, which describes the quantum system in a mixed state (of all prob-
ability distributed po ssible states), it appears as

టߩ = ∑ ௜௜ߙ |߰〉〈߰| = |߰〉〈߰| = ଵ
ଶ

൮

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

൲ (7-85)

The quantum state

|߶〉 = ଵ
√ଶ

|00〉 + ଵ
√ଶ

|11〉 (7-86)

has the density matrix

థߩ = |߶〉〈߶| = ଵ
ଶ

൮

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

൲ (7-87)

where the matrices and vectors are indexed by the state labels 00,...,11. ߩట may be factorized
as

టߩ = ଵ
ଶ

ቆቀ1 0
0 0ቁ ⊗ ቀ1 1

1 1ቁቇ (7-88)

whereas ߩథ cannot be factorized, which declares them as entangled. The simplest states of
entanglement between two Qbits are the Bell-states, also known as maximally entangled two-
Qbit states:278

|߶ା〉 = ଵ
√ଶ

(|0〉஺ ⊗ |0〉஻ + |1〉஺ ⊗ |1〉஻) (7-89)

|߶ି〉 = ଵ
√ଶ

(|0〉஺ ⊗ |0〉஻ − |1〉஺ ⊗ |1〉஻) (7-90)

|߰ା〉 = ଵ
√ଶ

(|0〉஺ ⊗ |1〉஻ + |0〉஺ ⊗ |1〉஻) (7-91)

|߰ି〉 = ଵ
√ଶ

(|0〉஺ ⊗ |1〉஻ − |0〉஺ ⊗ |1〉஻) (7-92)

These states dictate that from two individuals A and B, often named Alice and Bob, each
possesses one of two entangled Qbits, described in the Bell-states by the subscripts of A and
B. If A decides to measure the related Qbits then the outcome cannot be predicted, as

ቚ ଵ
√ଶ

ቚ
ଶ

= 0.5 (7-93)

and therefore with equal probabilities either |0〉 or |1〉 would be measured. However,
according to quantum entanglement, B would now measure the same. This is because the final
state |0〉 can only the result of A’s Qbit being in the state |0〉.

278 Bell John S. (1987): Speakable and Unspeakable in Quantum Mechanics, Cambridge: Cambridge
University Press

7.2 The unitary evolution U 195

7.2 The unitary evolution U

The evolution of a quantum state is, although it only exists until the collapse of the quantum
linear superposition, or state vector reduction, occurs. How this state evolves through time,
has already been introduced – it is called the Schrödinger picture of dynamics. Thus, the
Schrödinger equation describes how a quantum state evolves through time, or in other words,
how a quantum wave function changes with respect to time. It has already been mentioned
that e.g. a quantum bit may be described by

|߰〉 = 〈ଵ|0ߙ + ଶ|1〉 (7-94)ߙ

and represented by a hydrogen atom with its electron. To be more specific, any combination
of possible final states a physical system may represent can be used to describe a super-
position, as long as their complex number amplitudes sum to unity in quadratic power, like

|߰〉 = 〈ଵ|0ߙ + 〈ଶ|1ߙ + 〈ଷ|2ߙ + ⋯ + ௡|ܰ〉 (7-95)ߙ+

where

ଵ|ଶߙ| + ଶ|ଶߙ| + ଷ|ଶߙ| + ⋯ + ௡|ଶߙ| = 1 (7-96)

and 0〉,…, ܰ〉 do not refer to the states of Qbits as before, but to the different physical states a
quantum wave function may collapse into after measurement. Again, as quantum states
always feature complex number amplitudes, they exist as rays in Hilbert space. The ray that
belongs to the quantum state ߰ ≠ 0 is the complex subspace that it spans.

If physical states are allocated states in Hilbert space, the basic equation for the probably
resulting measured values changes from

,݅)݌ ,ܣ ߰) = ଶ (7-97)|〈߰|ଵ߉〉|

to

,݅)݌ ,ܣ ߰) = |〈௸భ|ట〉|మ

〈௸భ|௸భ〉〈ట|ట〉
 (7-98)

where ݌(݅, ,ܣ ߰) is the probability of obtaining ݅௧௛ measurement value by measuring the state
߰ with the measurement apparatus ܣ (the arising probabilities due to measurement will be
discussed in detail in the next chapter). Furthermore, we have to remember that e.g. 〈Λଵ|Λଵ〉 ∈
 is the dot product of a vector, which is positive definite with itself and used for determining ܥ
the vector’s length. For all pairs of vectors a dot product 〈Λ|߰〉 ∈ ܥ is defined with the
following properties:

∗〈߰|߉〉 = (7-99) 〈߉|߰〉

and

ଵߙଵ߰|߉〉 + ߰ଶߙଶ〉 = ଵߙ〈ଵ߰|߉〉 + ଶ (7-100)ߙ〈ଶ߰|߉〉

Thus, the argument is linear in the second argument and antilinear in the first

ଵ߰ଵߙ〉 + 〈߉|ଶ߰ଶߙ = ଵߙ
∗〈߰ଵ|߉〉 + ଶߙ

∗〈߰ଶ|߉〉 (7-101)

196 7 An outline of quantum mechanics

As states in the Hilbert space are rays, they cannot be added together. Admittedly, it is
possible to add the vectors two different rays consist of; however, the sums do not form a ray,
but rather span a two-dimensional subspace. The representatives ߰ and ߶ of two rays can be
used to construct many different superpositions, resulting in the ray ߙଵ|߰〉 + ଶ|߶〉, whereߙ
〈߰|ଵߙ)ߣ + ߣ ଶ|߶〉) belongs to the same physical state, as long asߙ ≠ 0 . As the different
superpositions of the states ߰ and ߶ form the space

ଵܲܥ = ܵଶ (7-102)

each one can be thought of as a point on the two-dimensional surface of a sphere. On such a
surface, ߰ marks the north pole, ߰ୄ the position perpendicular to it, thus the south pole. The

equator corresponds to the equivalent superpositions టା௘೔ഀట఼

√ଶ
. Consolidating superpositions

by the +-sign is not associative or commutative, hence it is not an addition.279 This can be
easily understood by having a closer look at Figure 66 - Bloch sphere, a sphere named after
the physicist Felix Bloch used for describing a two-level quantum mechanical system like a
Qbit is one.

Figure 66 - Bloch sphere280

Figure 66 - Bloch sphere uses spin-mechanics for describing the Qbit – spin up represents |0⟩
and spin down |1⟩. However, a Qbit may also take all the values in between, which a classical

279 Norbert Dragon (2005): Anmerkungen zur Quantenmechanik; Hannover: University of Hannover
280 University of Copenhagen: Bloch-sphere gymnastics [2013-08-04]; URL: http://www.nbi.ku.dk/

forskningsgrupper/Kvanteoptik/english/qoptlab/research/exp-clock/bloch/

7.2 The unitary evolution U 197

bit cannot represent. An example is the point |଴⟩ା௜|ଵ⟩
√ଶ

, which can be found on the sphere’s
equator and on the positive y-axis. As we are dealing with a Qbit in our example, the prob-
ability amplitudes have to be taken into consideration, which for the Bloch sphere above are

〈ଵ|0ߙ + ଵ|1〉 (7-103)ߙ

In a 3-d real vector space, the complex amplitudes of a Qbit ߙଵ|0〉 + ଵ|1〉 are then describedߙ
by

ଵߙ = ݁
ష೔ഝ

మ ݏ݋ܿ ఏ
ଶ
 (7-104)

ଶߙ = ݁
೔ഝ
మ ݊݅ݏ ఏ

ଶ
 (7-105)

where ߠ is the polar angle (the angle between the vector and the z-axis), ߶ is the azimuthal
angle (the angle between the x-axis and the vector’s projection onto the two-dimensional ݕ|ݔ-
plane). The angle between the vector (formerly described as a ray in Hilbert-space) and the ݖ-
axis determines the probabilities of obtaining |↑〉 or |↓〉 along this axis, whereas the azimuthal
angle represents the relative phase. Thus, the vector points into the positive range of ݖ, when

ଵߙ = |↓〉 ∧ ଶߙ = |↑〉 (7-106)

and into the negative range of ݖ, when

ଵߙ = |↑〉 ∧ ଶߙ = |↓〉 (7-107)

which is a representation of the general Qbit, existing in 2-d Hilbert-space, in 3-d real vector
space.281 Back to the Bloch-sphere, there are some important things to bear in mind: the
surface of a sphere is two-dimensional, thus features two degrees of freedom. However, the
amplitudes of a Qbit are given by complex numbers, so one might assume that the two of
them feature four degrees of freedom, which in fact is not the case:

– The amplitudes require the unitarity constraint, which means that their squares must sum
to unity. Thus, one degree of freedom is removed.

– Furthermore, the overall phase factor is physically irrelevant in this example, as it does
not have observable consequences. If a complex number is written in the form of polar
coordinates, like ݎ ݁௜ఏ , the phase factor is ݁௜ఏ , and ߠ in this expression represents the
phase. It is not quite correct that the phase factor does not have any influence at all; it just
leaves the expectation values of a Hermitian operator as they are, so the values of
 ௜థ|߰〉 are the same,282 but if phase factors of two quantum states݁ܣand ⟨߰|݁ି௜థ 〈߰|ܣ|߰⟩
interacting with each other differ, these differences might be measurable. Back to the Qbit
this means that if the phase factor is only of relevance for one of the two vector
components, ߙଵ may be left with the real part only, resulting in

ଵߙ = ݏ݋ܿ ఏ
ଶ

 (7-108)

281 Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL: http://red.csie.
ntu.edu.tw/QC/peng/chap1.pdf

282 Albert Messiah (2000): Quantum Mechanics; Dover Publications

198 7 An outline of quantum mechanics

Summing up, the removal of the overall phase as well as the unitarity constraint leaves us
with only two local degrees of freedom.

Excursus: Polar coordinates

The description of complex numbers by the use of polar coordinates is very common in
quantum physics and goes back to Euler’s formula:

ݖ = ݔ + ݕ݅ = ߶ݏ݋ܿ)|ݖ| + (߶݊݅ݏ݅ = ௜థ (7-109)݁ݎ

ݖ = ݔ − ݕ݅ = ߶ݏ݋ܿ)|ݖ| − (߶݊݅ݏ݅ = ௜థି݁ݎ (7-110)

Figure 67 - Euler's formula

Back to the unitary evolution U that should be described here briefly, we now know how
simple quantum systems are constructed, but not exactly how they behave (which is, by the
way, something that has puzzled scientists for decades). The evolution of a quantum state
dictates that with time given states of a quantum system evolve towards new states:

⟨߰|ଵߙ + ଶ|߶⟩ (7-111)ߙ

evolves to

⟨′߰|ଵߙ + ଶ|߶′⟩ (7-112)ߙ

This also applies for quantum linear superpositions consisting of more than two states. What
happens is that the evolution of each of the states can be dealt with by the Schrödinger
equation, without a change in the complex number weightings. It is very important to
understand that although it seems that the complex number-weightings and the superposition
do not play any physical role in the evolution at all, but this is in fact not the case. I refer to
the next chapter here, as the experiments with half-silvered mirrors help to understand what is
meant by that.

7.3 The state vector reduction R

Within chapter 10.5 we already got to know the state vector reduction of a quantum linear
superposition, also called decoherence. What is so special about quantum mechanics is that
although the scale of the elements its effects happen to have an influence is very small, thus
on the level of molecules, atoms, electrons, photons or even fundamental particles, they can

7.3 The state vector reduction R 199

be observed over macroscopic distances. Thus, we distinguish between two kinds of physics,
the classical, Newtonian mechanics involving elements on a macroscopic scale and quantum
mechanics. I go along with Roger Penrose283 here that the finding of appropriate quantum /
classical laws which operate uniformly at all scales might be a scientific advance of consid-
erable impact. Maybe we should continue with a short excursus to Newton’s three axioms, as
we will encounter Newton’s laws within this work very often.

Excursus: Newton’s axioms

With his axioms Newton defined how we have to deal with forces and how they govern the
movements of masses. All of his axioms have been proved to hold several times thitherto
although dating back to 1687 or even earlier (1638 for the first axiom, specified by Galileo
Galilei), where he proposed them in his Philosophiae Naturalis Principia Mathematica.

Newton’s first axiom

The first axiom is commonly known as the law of inertia, stating

ݒ = ,ݐ݊ܽݐݏ݊݋ܿ ܨ ݂݅ = 0 (7-113)

The meaning of this is simply that a body remains in a resting position or in uniformly linear
movement (ݒ = acts on it. An example may be the space ܨ if no external force (ݐ݊ܽݐݏ݊݋ܿ
probe Voyager that has been started in 1977, currently moving through interstellar space
with approximately 17 km/s. If we neglect the now minimally acting gravitational forces of
the sun and the planets of our solar system, then we can calculate the distance it is moving
over time quite simple, let say for the next 10 years:

10 ∗ 365 ∗ 24 ∗ 60 ∗ ݏ60 ∗ 17 ௞௠
௦

≈ 5.4 ∗ 10ଽ݇݉ (7-114)

Voyager will have traveled 5,400,000,000 km when the next 10 years have passed by.

Newton’s second axiom

The second axiom tells us that

= ௗ௣(௧)
ௗ௧

 (7-115)

In words this means that the forces ܨ working on a body can be calculated if one knows its
momentum, or that one can calculate a body’s momentum (ݐ)݌ by knowing the forces
working on it. (ݐ)݌ is a product of mass and velocity:

(ݐ)݌ = ݉ ∗ (116-7) ݒ

where ݉ is the mass of a body and ݒ its velocity. As the momentum is a product of two
components, its derivation can also be calculated with the product rule, thus be represented
by

283 Roger Penrose (1994): Shadows of the mind – a search for the missing science of consciousness;
Oxford: Oxford University Press; p. 308

200 7 An outline of quantum mechanics

ܨ = ௗ௠(௧)
ௗ௧

ݒ + ݉ ௗ௩(௧)
ௗ௧

 (7-117)

where the first part of the equation specifies a change of mass over time, like one we would
experience with a driving car consuming fuel. However, if the mass remains constant, then
the axiom can be simplified to the well-known equation

ܨ = ݉ ∗ ܽ (7-118)

simply stating that the acting force is a product of mass and acceleration. As an example we
may compare the momentum of a truck, weighing 20,000 kg and moving with a speed of 80
km/h with the momentum of a small car, weighing 1,000 kg and travelling with a speed of
210 km/h.

௥௨௖௞்݌ = ଼଴
ଷ.଺

∗ 20,000 ≈ 4.4 ∗ 10ହ݇݃ ݉/(119-7) ݏ

஼௔௥݌ = ଶଵ଴
ଷ.଺

∗ 1,000 ≈ 5.8 ∗ 10ସ݇݃ ݉/(120-7) ݏ

Therefore, the momentum of the truck exceeds the momentum of the car by a factor of
approximately 7.5.

Newton’s third axiom

݋݅ݐܿܽ = (121-7) ݋݅ݐܿܽ݁ݎ

The third axiom is easy to understand, it simply says that wherever a force acts on a body,
another force worked on the body this force originated from.

Why are these axioms of importance? They are important, because they can be used to deal
with bodies on a macroscopic scale. They cannot be used to deal with effects on a quantum
mechanical scale, as we shall see in the following chapters. First of all, we need to discuss the
quantum linear superposition quantum physical systems feature as long as they do not
undergo a measurement, where measurement here does not necessarily mean that the system
has been measured by a human. Independent from which event the system was caused to
collapse, be it an observation or a quantum gravitational effect, I will use the letter R when
referring to this state vector reduction from now on. The first problem we have with R is that
we need to prove that it actually takes place, although we mostly just get to see the result of
R, thus a quantum physical system in a specific state and not in all of its possible states U.
Before we do that, we shall again shortly address U, the quantum linear superposition we
already discussed in chapter 10.5. For being able to express U, we must use complex numbers
as such a system exists in a complex vector space, the Hilbert space. This is where we first
need to distinguish between the laws governing classical physics and quantum physics, as in
the phenomena of the former one we do not encounter complex numbers. Back to the scale at
which quantum phenomena unveil, let us imagine a single photon being at one of two specific
positions A and B. With classical physics, we cannot only imagine this easily, but also say
that there are no contradictions in such an assertion; either the photon is at A or it is at B.
However, on a quantum level we not only cannot tell where the photon is, stunningly it can
occupy both places at once. How can that be? In chapter 10.5 we learned that a Qbit is
represented by a probability-distributed superposition of the values of 0 and 1:

|߰〉 = 〈ଵ|0ߙ + ଶ|1〉 (7-122)ߙ

7.3 The state vector reduction R 201

where ߙଵ and ߙଶ represent the complex number amplitudes providing the probabilities the
superposition |߰〉 will either collapse into |0〉 or |1〉. We have the same situation with our
photon and the positions in space here:

|߰〉 = 〈ܣ|ଵߙ + (123-7) 〈ܤ|ଶߙ

Although we have been talking of probabilities by now, we have to bear in mind that we are
still dealing with complex numbers, thus we actually cannot say that the amplitudes represent
such, as these would require real numbers to be represented. In classical physics, any physical
system can be assigned a state that one intends to describe can be represented by a number of
physical quantities. Even more is possible, if one is aware of the initial position of this
system, namely the description of the system’s state in the future.

A quantum state is also called a quantum wave function, and such a wave function is
described by the Schrödinger equation I already described at 7.1.2.4 Quantum dynamics.
Back to equation (8 – 11), it is correctly read as

ℎ݁ ݎ݋ݐܿ݁ݒ ݁ݐܽݐݏ ฬ ݉݁ݐݏݕݏ ݉ݑݐ݊ܽݑݍ ܽ ݂݋ 〈߰ = ݎ݈ܽ݁݊݅ ݉ݑݐ݊ܽݑݍ ℎ݁ݐ
ଵߙ ݏ݁ݐܽݐݏ ݈ܾ݁݅ݏݏ݋݌ ݏᇱ݉݁ݐݏݕݏ ݉ݑݐ݊ܽݑݍ ℎ݁ݐ ݂݋ ݊݋݅ݐ݅ݏ݋݌ݎ݁݌ݑݏ

ฬ 〈ܣ

 〈ܤ|ଶߙ ݀݊ܽ

However, beforehand we were only dealing with Qbits, thus systems featuring only two
possible states. It is indeed possible and even more likely that a system features more than
two states it can collapse into when being measured:

|߰〉 = 〈ܣ|ଵߙ + 〈ܤ|ଶߙ + 〈ܥ|ଷߙ + 〈ܦ|ସߙ + 〈ܧ|ହߙ + ௡|ܰ〉 (7-124)ߙ

We just need to imagine a single particle moving around in space; without knowing its phase
space position it could be anywhere within its own and the space’s physical boundaries.

Let us try to understand this by an experiment often used by Roger Penrose284,285 (whom I
admire most for his work on quantum physics and human consciousness) for describing this
behavior. Imagine we have a half-silvered mirror (semi-transparent) angled 45° towards a
light source, reflecting half of the light sent against it and letting the other half pass through.
Now let us imagine that we would have an apparatus that would allow us sending one single
photon (we remember that a beam of light or light in general consists of numerous photons)
against this mirror. We would then expect to find the photon either at position A (the end of
the first path, thus if the photon would have passed through the mirror), or at position B (the
end of the second path, thus if the photon would have been reflected). In fact that is the case,
as ‘finding’ the photon at position A or B implies that we induced some sort of measuring.
Everything seems to be fine and as we had expected the situation to be. However, before
‘finding’ the photon at A or B, something absolutely different from classical physics has
happened, in particular the photon has been in a quantum superposition of reflection and
transmission and has travelled along both pathways (Figure 68 - Photon and half-silvered
mirror):

284 Roger Penrose (1994): Shadows of the mind – a search for the missing science of consciousness;
Oxford: Oxford University Press

285 Roger Penrose (1991): The Emperor’s New Mind Concerning Computers, Minds, and the Laws of
Physics; Oxford: Oxford University Press

202 7 An outline of quantum mechanics

Figure 68 - Photon and half-silvered mirror

Directly after our apparatus has emitted the photon and until the photon has reached the half-
silvered mirror, it is in the state |߰〉, which may be a complex superposition as well depending
from the events occurring between the light source and the half-silvered mirror, however, not
one of reflection and transmission. However, before we move on to the particle/wave-
dualism, we will continue with our experiment (which emanates, by the way, from the
Elitzur–Vaidman bomb-testing problem, a thought experiment first proposed by Avshalom
Elitzur and Lev Vaidman in 1993). Before encountering the half-silvered mirror, the photon’s
probability wave |߰〉 describes the probability of it having a specific position or momentum
when doing a measurement. After having encountered the half-silvered mirror evolves, in
accordance with the Schrödinger picture of dynamics, into the state

|߰〉 = 〈ܣ|݅ + (125-7) 〈ܤ|

where |ܤ〉 tells us that the photon is moving along the path towards B, and ݅|ܣ〉 tells us that
the photon is moving along the path towards A, ݅ having been caused by a net phase shift
occurring between the two. I say between the two here, as both exist at once, because
although the half-silvered mirror alters the photon’s state, it does not absorb it (which would
be a measurement). Therefore, we have to deal with a non-deterministic alteration of the
photon state |߰〉 in this situation, and as such our photon is allowed (or forced, it is in the eye
of the beholder) to undergo quantum linear superposition, what causes it to feature all of its
possible states at once, which in our case are the reflected and transmitted states. But how can
we know that, as only measurement would allow us to determine the position of the photon,
or more specifically, to determine if the photon has taken path A or not. Well, for this there is
a slight adaptation of the experimental situation required, namely by means of another half-
silvered mirror and two fully-silvered mirrors, the latter ones allowing to bring the photons
back together (Figure 69 - Photon, half-silvered and fully-silvered mirrors).

Figure 69 - Photon, half-silvered and fully-silvered mirrors

7.3 The state vector reduction R 203

The initial situation remains the same, with an apparatus emitting a single photon towards a
half-silvered mirror. However, after the photon has passed the first half-silvered mirror, no
deterministic measurement happens, but again a non-deterministic alteration of the
superposed state by both ݅|ܣ〉 and |ܤ〉 being reflected from fully-slivered mirrors (identifiable
by the thick line around them). Thus, ݅|ܣ〉 has undergone another phase-shift and evolved into
 Summing up and .⟨ܦ|݅ which, as a consequence, has evolved into 〈ܤ| and so has ,(ܥ|݅)݅
according the unitary evolution quantum physical systems undergo, the following has
happened, where the arrow represents an evolution towards a state:

〈ܣ|݅ + 〈ܤ| → 〈ܦ|݅ + (126-7) (〈ܥ|݅)݅

which results in

|߶〉 = 〈ܦ|݅ − (127-7) ⟨ܥ|

because of the fact that the squared imaginary unit equals −1:

݅ଶ = −1 (7-128)

The remarkable thing in this experiment happens at last half-silvered mirror, where the beams
come together again. Depending from what we take as our initial situation, the states ݅|ܦ〉
respectively |ܥ〉 evolve to

〈ܦ| → 〈ܨ|݅ + (〈ܧ|݅)݅ = 〈ܨ| − (129-7) ⟨ܧ|݅

and

〈ܥ| 〈ܧ|→ + (130-7) 〈ܨ|݅

The overall state then becomes

〈ܦ|݅ + 〈ܥ| → ⟨ܨ|)݅ + (⟨ܧ|݅ − ⟨ܧ|) + (⟨ܨ|݅ = ⟨ܨ|݅ − ⟨ܧ| − ⟨ܧ| − ⟨ܨ|݅ = (131-7) ⟨ܧ|2−

So when we now extend our experimental setting by two detectors at each of the two paths, a
measurement will always result in detecting the photon at |ܧ⟩. A multiplicative factor such as
 still represents the same physical system – only the ration between more than one ⟨ܧ|2−
multiplies would be of interest for quantum mechanical considerations. Back to the surprising
result, it can be explained by quantum interference, thus the two probability waves cancel
each other out at |ܨ⟩, but constructively interfere at |ܧ⟩ – the behavior is the same as the one
explained beforehand with Young’s double-slit experiment. Again this experiment has served
for proving the particle/wave-dualism. I have been using transmission and reflection in the
above experiment without detailed explanations; however, it is important to mention here that
a particle like a photon could not only be transmitted through a half-silvered mirror, but
theoretically also through a wall of bricks. As the understanding of such behavior is very
important knowledge in quantum mechanics, I will go into detail a bit, starting with an
example that is very commonly used in elementary courses of quantum physics. In our
universe, a particle is allowed to move in three space directions, but due to reasons of
simplicity just one space dimension has been used in the following explanations (which can
be skipped without remorse, if one is not interested in the mathematics of reflection and
transmission on quantum-layer).

204 7 An outline of quantum mechanics

Let assume there is a particle with the mass ݉ moving along the direction ݔ of a one-
dimensional space. Furthermore, the particle is captured in an infinite rectangular potential
 .named after its shape ,(݌ infinite at the origin point of ordinates as well as at point) (ݔ)ܸ
Infinite means that the potential cannot be overcome by the particle. This can be imagined in
one direction (from the origin of ordinates along the positive ݔ-axis) as described with Figure
70 - Infinite potential step. To catch a particle in an infinite potential step it is required to keep
a potential well, in which the particle (or wave) is able to move, bordered by such steps.

Figure 70 - Infinite potential step286

The first thing required to be done is to set up the Schrödinger equation:

− ℏమ

ଶ௠
(ݔ)߰߂ + (ݔ)߰(ݔ)ܸ = (132-7) (ݔ)߰ܧ

In difference to the equation described in chapter 10.5, for our one-dimensional space it is not
required to deal with more than one dimensions, thus ݔ in the equation is the only space
coordinate. Therefore, also the differential Laplace-operator shrinks to

(ݔ)߰߂ = డమ

డ௫మ (133-7) (ݔ)߰

The resulting Schrödinger equation is

− ℏమ

ଶ௠
డమ

డ௫మ (ݔ)߰ + (ݔ)߰(ݔ)ܸ = (134-7) (ݔ)߰ܧ

286 Simulation done with “Quantum Tunneling and Wave Packets”-Applet available at http://phet.
colorado.edu/en/simulation/quantum-tunneling

7.3 The state vector reduction R 205

For being able to proceed, it is required to consider what it means when the potential steps are
infinite. The potential is infinite along the negative ݔ-axis to the origin point of ordinates and
infinite from point p along the positive ݔ-axis:

(ݔ)ܸ = ∞, ݔ ݂݅ < 0 ∨ ݔ > (135-7) ݌

Furthermore, the potential is 0 between the origin point of ordinates and point ݌:

(ݔ)ܸ = 0, ݂݅ 0 ≤ ݔ ≤ (136-7) ݌

According to this, we can change the required Schrödinger-equation to

− ℏమ

ଶ௠
డమ

డ௫మ (ݔ)߰ = (137-7) (ݔ)߰ܧ

If we furthermore consider the wave number to be

݇ = √ଶ௠ா
ℏ

 (7-138)

the equation can be rewritten as

ௗమ

ௗ௫మ (ݔ)߰ + ݇ଶ߰(ݔ) = 0 (7-139)

I do not want to go into too much detail with differential equations here, but now we are
dealing with a second order differential equation, which features two different solutions with
two constants ܣ and ܤ, which have to be determined separately:

߰ଵ(ݔ) = (140-7) (ݔ݇)݊݅ݏܣ

߰ଶ(ݔ) = (141-7) (ݔ݇)ݏ݋ܿܤ

The general solution to our Schrödinger-equation is then

(ݔ)߰ = (ݔ݇)݊݅ݏܣ + (142-7) (ݔ݇)ݏ݋ܿܤ

This is of utmost importance, as this knowledge can be used for determining the energy
levels. In the case with infinite potential steps ߰ at its potential thresholds must be 0, which
then gives the boundary constraints of the problem:

߰(0) = 0 (7-143)

(݌)߰ = 0 (7-144)

This can be used for calculating the missing constants A and B: According to eq. (6-141) B
must be 0, as

߰(0) = (ݔ݇)ݏ݋ܿܤ = 0 (7-145)

(0)ݏ݋ܿ = 1 . Thus, if B had another value than 0 eq. (6-145) would not result in 0.
Furthermore,

(݌)߰ = (݌݇)ݏ݋ܿܣ = 0 (7-146)

dictates that

206 7 An outline of quantum mechanics

݌݇ = (7-147) ߨ݊

This can be concluded from that fact that the sinus of any whole-number multiply of ߨ equals
0, so ݌ would then equal ߨ and ݇ equal ݊ . ݇ can be used to express the wave number in
another way as given by eq. (6-138), so the following equation is valid:

ଶ௠ா
ℏమ = ௡మగమ

௣మ (7-148)

and thus

ܧ = ௡మగమℏమ

ଶ௠௣మ (7-149)

Eq. (6-149) provides the allowed energy levels for the particle in question, or in other words
describes the quantized states belonging to the principal quantum number ݊, which describes
the electron cloud or the electron state. The larger ݊ is, the lower is the binding energy of the
electron and therefore, the larger is the probability that the electron is farther from the atomic
nucleus.

Excursus: quantum numbers

Above the energy level of a particle has been mentioned, which represents one of the
conserved quantities in the dynamics of a quantum system. Altogether, there exist four such
quantities, called quantum numbers, which will admittedly not be explained in detail here,
but nevertheless mentioned for staying complete:

Principal quantum number ࢔: describes the shell (energy level) of an atom, thus the height
of the orbit. May take the values ݊ = 1,2, . . . , ݊

Azimuthal quantum number ࢒: describes the orbital’s type (ݏ, ,݌ ݀, ݂, ?) and can take the
values ݈ = 1,2, . . . , ݊ − 1

Magnetic quantum number ࢓: describes the orientation of the orbital in ݖ-direction and
may take the values ݉ =– ݈, . . . , +݈

Spin quantum number ࢙: describes the spin orientation of an electron (as it is a dot this
cannot be imagined easily. However, this property has been proofed) along the ݖ-axis. An
electron is a fermion (particularly a lepton), as its spin is ଵ

ଶ
. Thus, ݏ may take ଵ

ଶ
 and − ଵ

ଶ
 in this

particular case.

As a next step, it is required to normalize the wave function, which means that it is required to
ensure that the probabilities for finding a particle in the region between ݔ and ݀ݔ sum up to 1:

∫ ௣ݔଶ݀|(ݔ)߰|
଴ = 1 (7-150)

As ߰(ݔ) is already known, it is required to insert it (only the part with the constant A, as B
equals 0):

7.3 The state vector reduction R 207

ଶ|ܣ| ∫ ଶ݊݅ݏ ቀ௡గ௫
௣

ቁ ௣ݔ݀
଴ = 1 (7-151)

∫ ଶ݊݅ݏ ቀ௡గ௫
௣

ቁ ௣ݔ݀
଴ = ௔

ଶ
 (7-152)

and thus

ଶ|ܣ| ቀ௔
ଶ
ቁ = 1 (7-153)

Finally,

ܣ = ටଶ
௔

 (7-154)

The normalized wave function is then

(ݔ)߰ = ටଶ
௔

݊݅ݏ ቀ௡గ௫
௣

ቁ (7-155)

With this knowledge it is possible to continue with reflection and transmission that have been
discussed in the mirror-experiment beforehand. Let assume the potential step is not infinite, as
with the semi-transparent mirrors used in the experiment above (such a mirror can be
considered to be a finite potential step), then the particle may have enough energy to
overcome such a step. Assuming that the potential is 0 from the negative ݔ-axis to the origin
point of ordinates, and is finite (0.5 electron Volt [eV] in Figure 71 - Finite potential step), but
with less energy than the particle’s total energy (0.82 eV in Figure 71 - Finite potential step).

Figure 71 - Finite potential step287

287 Simulation done with “Quantum Tunneling and Wave Packets”-Applet available at http://phet.
colorado.edu/en/simulation/quantum-tunneling

208 7 An outline of quantum mechanics

As the whole situation is dealt with quantum mechanically, again a wave function and not a
point particle is required for the explanations. In the area ݔ < 0 the situation is as follows:

ௗమటభ
ௗ௫మ (ݔ) + ݇ଵ

ଶ߰ଵ(ݔ) = 0 (7-156)

where

݇ଵ
ଶ = ଶ௠ா

ℏమ (7-157)

However, in the area ݔ > 0 the situation is different, as the potential has to be taken into
consideration:

ௗమటమ
ௗ௫మ (ݔ) + ݇ଶ

ଶ߰ଶ(ݔ) = 0 (7-158)

where

݇ଶ
ଶ = ଶ௠(ாି௏బ)

ℏమ (7-159)

Thus ݇ changes as the wave moves from the area with no potential step into the area with a
potential step (described in the equation with ଴ܸ), as the total energy of the particle is reduced
by exactly the energy of the step. According to Figure 71 - Finite potential step, the energy
would result in 0.32 eV. Again two differential equations of second order are at hand, but
with finite potential. For the situation ݔ < 0 the general turns out to be

߰ଵ(ݔ) = ௜௞భ௫݁ܣ + ௜௞భ௫ି݁ܤ (7-160)

As the particle features more energy than the potential step, the equation for the situation
ݔ > 0 can be treated the same way as potential-free movement:

߰ଶ(ݔ) = ௜௞మ௫݁ܥ + ௜௞మ௫ି݁ܦ (7-161)

where in both equations ݁௜௞௫ describes waves moving along the positive ݔ-axis, and ݁ି௜௞௫
describes waves moving along the negative ݔ-axis. Although the situation has been dealt with
as if it was potential-free, this is not the whole story, as the wave may impinge the potential
step instead of passing it. When this happens, the wave may either be transmitted or reflected.
As the reflection in the example described in Figure 71 - Finite potential step can only redirect
the wave along the negative ݔ-axis, ܦ must be 0. Thus, the correct solution for the situation
ݔ > 0 is

߰ଶ(ݔ) = ௜௞మ௫ (7-162)݁ܥ

Therefore, all possible situations have been covered, namely the initially incoming wave via
-௜௞మ௫. From the mirror݁ܥ ௜௞భ௫ and the transmitted wave viaି݁ܤ ௜௞భ௫, the reflected wave via݁ܣ
experiment it became obvious that when measuring the particle’s position, only one of these
options will remain, so the probabilities for reflection and transmission have to be determined,
which is done by calculating the reflection and transmission-coefficients. For this the
determination of three variables is required in advance, which are the incoming current
density ܬ௜, the reflected current density ܬ௥ as well as the transmitted current density ܬ௧. As the
situation is still the simplified one with just one dimension, the gradient-operator in the

7.3 The state vector reduction R 209

following equation for calculating the probability current density is represented only by the
derivation towards x:

௜ܬ = ௜ℏ
ଶ௠

ቂ߰௘(ݔ) ௗట೔
∗(௫)

ௗ௫
− ߰௘

(ݔ)∗ ௗట೔(௫)
ௗ௫

ቃ (7-163)

The probability current density is thus determined by the wave function in position-space,
where ߰௘(ݔ) is the incoming wave (along ݔ), and ߰௘

(ݔ)∗ its complex conjugate. For the
described example the incoming wave ݁ܣ௜௞భ௫ has to be used

௜ܬ = ௜ℏ
ଶ௠

ଵ݁ି௜௞భ௫൯݇݅ܣ−௜௞భ௫൫݁ܣൣ − ଵ݁௜௞భ௫൧ (7-164)݇݅ܣ௜௞భ௫ି݁ܣ

where −݇݅ܣଵ݁ି௜௞భ௫ and ݇݅ܣଵ݁௜௞భ௫ are the wave’s complex conjugate respectively the wave
itself derived with respect to ݔ, which may be simplified to

௜ܬ = ℏ௞భ
௠

 ଶ (7-165)|ܣ|

The same holds for ܬ௥ and ܬ௧:

௥ܬ = ௜ℏ
ଶ௠

ଵ݁௜௞భ௫݇݅ܤ௜௞భ௫ି݁ܤൣ − ൧ (7-166)(ଵ݁ି௜௞భ௫݇݅ܤ−)௜௞భ௫݁ܤ

௥ܬ = ℏ௞భ
௠

 ଶ (7-167)|ܤ|

௧ܬ = ௜ℏ
ଶ௠

ଵ݁ି௜௞భ௫൯݇݅ܥ−௜௞భ௫൫݁ܥൣ − ଵ݁௜௞భ௫൧ (7-168)݇݅ܥ௜௞భ௫ି݁ܥ

௧ܬ = ℏ௞భ
௠

 ଶ (7-169)|ܥ|

Thus, the required coefficients are given by

ܴ = ௃ೝ
௃೔

= |஻|మ

|஺|మ (7-170)

and

ܶ = ௃೟
௃೔

= |஼|మ

|஺|మ (7-171)

The final thing to do is the determination of the missing constants, which begins with the
definition of the boundary conditions. The potential step in the latter example is not infinite,
so ߰(ݔ) does not go towards 0. Furthermore, the wave and its derivation towards space are
continuous over the potential step:

߰ଵ(0) = ߰ଶ(0) (7-172)
ௗటభ
ௗ௫

(0) = ௗటమ
ௗ௫

(0) (7-173)

If the solutions (eqs. (6-160) and (8-162)) of the differential equation are plugged in, the
result is

௜௞భ௫݁ܣ + ௜௞భ௫ି݁ܤ = ௜௞మ௫ (7-174)݁ܥ

210 7 An outline of quantum mechanics

which is

ܣ + ܤ = (175-7) ܥ

and

݇ଵܣ − ݇ଵܤ = ݇ଶ(176-7) ܥ

where

ܤ = ௞భି௞మ
௞భା௞మ

 (177-7) ܣ

and

ܥ = ଶ௞భ
௞భା௞మ

 (178-7) ܣ

 cancels out and therefore, the final results for this example are ܣ

ܴ = (௞భି௞మ)మ

(௞భା௞మ)మ (7-179)

and

ܶ = ସ௞భ௞మ
(௞భା௞మ)మ (7-180)

This result shows some of the magic of quantum mechanics, as if ݇ଵ does not equal ݇ଶ then
the particle is reflected, although it features more energy than the potential step (0.5 eV
compared to 0.82 eV). This is only possible when the particle is not treated as a particle, but
when the particle/wave-dualism is taken into consideration – only a wave features the
probability of being reflected from the step in the example. If ݇ଵ equals ݇ଶ then the
probability of the wave being reflected is 0, and vice versa. When the wave is reflected at a
potential step, such as it happens in Figure 72 - Particle lacks energy, then the probability
density is a sum of the incoming wave and its reflected part.

Let assume, the particle lacks enough energy for passing the (finite) potential step, as
described in Figure 72 - Particle lacks energy. The step features 1 eV of energy, the particle
only 0.5 and quantum physics does not change anything here – the particle will not pass the
barrier. However, things get a little different, when a wave collides with a potential barrier,
the former featuring less energy than the latter, as described in Figure 73 - Potential barrier.

In Figure 74 - Potential barrier - forces one can see that the potential barrier has its beginning
at point ܣ, thus the wave starts encountering a negative force at ܣ. Classical physics dictates
that the particle would have to be reflected at point ܲ, as this is where the particle’s energy
equals the barrier’s energy.

7.3 The state vector reduction R 211

Figure 72 - Particle lacks energy288

Figure 73 - Potential barrier289

288 Simulation done with “Quantum Tunneling and Wave Packets”-Applet available at http://phet.
colorado.edu/en/simulation/quantum-tunneling

212 7 An outline of quantum mechanics

Figure 74 - Potential barrier - forces

However, quantum physics tells us something different, but only when any of the distances of
a point to its adjacent point is of less or equal order than the de Broglie wavelength of the
particle in question.

Excursus: de Broglie wavelength

According to Louis-Victor de Broglie any particle can be allocated a wavelength – he
postulated the concept of the matter wave in his famous Ph.D. thesis in 1924. When talking
of a particle without mass, like a photon, then

ܧ = ℏ߱ (7-181)

where ℏ is the already discussed reduced Planck’s constant, ݒ the wave frequency and ߱ the
radial frequency. As

ℏ = ௛
ଶగ

 (7-182)

and

߱ = (183-7) ݒߨ2

the energy results in

ܧ = ℎ(184-7) ݒ

Apart from that, the photon features momentum, although it does not feature mass:

⃗݌ = ℏሬ݇⃗ where ሬ݇⃗ is the wave vector, which is perpendicular to the wave front. A wave
expanding towards the direction ሬ݇⃗ is described by

,ݎ⃗)߰ (ݐ = ௜(௞ሬ⃗݁ܣ ௥⃗ିఠ௧) (7-185)

where

289 Simulation done with “Quantum Tunneling and Wave Packets”-Applet available at http://phet.
colorado.edu/en/simulation/quantum-tunneling

7.3 The state vector reduction R 213

ሬ݇⃗ = (݇௫ , ݇௬, ݇௭) (7-186)

The circle closes with

= หሬ݇⃗ ห = ఠ
௖

= ଶగ
௩

 (7-187)

Back to the photon momentum it is obvious that

݌ = ௛௞
ଶగ

 (7-188)

because of the reduced Planck’s constant. Due to ݇ (which in fact is the same ݇ as the one
used in the examples, but calculated in a different way) the resulting momentum is

݌ = ௛
ఒ
 (7-189)

where ߣ is the wavelength. De Broglie generalized this equation for all particles in the form
of

ߣ = ௛
௣
 (7-190)

where ݌ is the relativistic momentum of a particle with the rest mass ݉:

݌ = ௠௩

ටଵିቀೡ
೎ቁ

మ (7-191)

Assuming that AB and BC in Figure 74 - Potential barrier - forces are negligible, the schema-
tic description of the potential barrier described in Figure 73 - Potential barrier is of sufficient
accuracy. The distance ݀ from the origin point of ordinates towards ݌ describes the width of
the potential barrier, which in most physical situations is larger than the de Broglie wave-
length. The illustrations show that the particle features 0.75 eV of energy and the potential
barrier 1 eV, however, the probability density shows that there exists a probability of 0.02 for
the particle to overcome the barrier, which is called quantum tunneling. This either means that
a particle is temporarily supplied with additional energy so it is able to bypass the barrier, or
the wave extension is itself allows this. Taking only the ݔ-dimension into consideration, the
Schrödinger equation for ݔ < again (assuming that the potential barrier originates at -p) ݌−
takes the form

ௗమటభ
ௗ௫మ (ݔ) + +݇ଵ

ଶ߰ଵ(ݔ) = 0 (7-192)

where

݇ଵ
ଶ = ଶ௠ா

ℏమ (7-193)

When considering the potential barrier to end at point ݌ then the equation for the area
ݔ ≤ 0 ≤ is ݌

ௗమటమ
ௗ௫మ (ݔ) + ݇ଶ

ଶ߰ଶ(ݔ) = 0 (7-194)

214 7 An outline of quantum mechanics

where

݇ଶ
ଶ = ଶ௠(ாି௏బ)

ℏమ (7-195)

Nothing new by now… however, when having a look at Figure 73 - Potential barrier it
becomes obvious that ܧ − ଴ܸ is negative and would thus make ݇ imaginary, which is
physically not allowed. Thus, the sign of the equation is switched:

ௗమటమ
ௗ௫మ (ݔ) − ݇ଶ

ଶ߰ଶ(ݔ) = 0 (7-196)

and

݇ଶ
ଶ = ଶ௠(௏బିா)

ℏమ (7-197)

In the area ݔ > the equation becomes ݌

ௗమటయ
ௗ௫మ (ݔ) + ݇ଵ

ଶ߰ଷ(ݔ) = 0 (7-198)

Thus, there are three solutions, one for each ψ୬, starting with the solution for the area x <
 which is again ,݌−

߰ଵ(ݔ) = ௜௞భ௫݁ܣ + ௜௞భ௫ି݁ܤ (7-199)

the one for −݌ ≤ ݔ ≤ is ݌

߰ଶ(ݔ) = ௞మ௫݁ܥ + ௞మ௫ (7-200)ି݁ܦ

without imaginary part, and the one for ݔ > is ݌

߰ଷ(ݔ) = ௜௞భ௫݁ܧ + ௜௞భ௫ (7-201)ି݁ܨ

However, in the area ݔ > there is no wave travelling to the left, thus ݌

߰ଷ(ݔ) = ௜௞భ௫ (7-202)݁ܧ

as ܨ equals 0. A situation with 5 arbitrary complex constants seems to be unsolvable at the
beginning, however, by matching the wave functions and their respective derivatives at the
boundaries. From the latter example the reflection and transmission coefficients are known,
which are

ܴ = ௃ೝ
௃೔

= |஻|మ

|஺|మ (7-203)

and

ܶ = ௃೟
௃೔

= |ா|మ

|஺|మ (7-204)

Again, the wave functions and its derivations towards space are continuous over the potential
barrier:

߰ଵ(0) = ߰ଶ(0) (7-205)

7.3 The state vector reduction R 215

ௗటభ
ௗ௫

(0) = ௗటమ
ௗ௫

(0) (7-206)

߰ଶ(݌) = ߰ଷ(݌) (207-7)
ௗటమ
ௗ௫

(݌) = ௗటయ
ௗ௫

 (208-7) (݌)

All in all there are three regions, thus two boundaries:

௜௞భ௣ି݁ܣ + ௜௞భ௣݁ܤ = ௞మ௣ି݁ܥ + ௞మ௣ (7-209)݁ܦ

for ݔ = and ݌−

௞మ௣݁ܥ + ௞మ௣ି݁ܦ = ௜௞భ௣ (7-210)݁ܧ

for ݔ = ݌

As a next step, the derivatives of the wave function have to be set up (all solutions together
make up the wave function):

(ݔ)߰ = ൝
௜௞భ௫݁ܣ + ௜௞భ௫ି݁ܤ

௞మ௫݁ܥ + ௞మ௫ି݁ܦ

௜௞భ௫݁ܧ
 (7-211)

(ݔ)′߰ = ቐ
ଵ݁௜௞భ௫݇݅ܣ − ଵ݁ି௜௞భ௫݇݅ܤ

ଶ݁௞మ௫݇ܥ − ଶ݁ି௞మ௫݇ܦ

ଵ݁௜௞భ௫݇݅ܧ
 (7-212)

The boundary condition for the derivative of ߰(ݔ) at ݔ = ݌−

ଵ݁ି௜௞భ௣݇݅ܣ − ଵ݁௜௞భ௣݇݅ܤ = ଶ݁ି௞మ௣݇ܥ − ଶ݁௞మ௣ (7-213)݇ܦ

and at ݔ = ݌

ଶ݁௞మ௣݇ܥ − ଶ݁ି௞మ௣݇ܦ = ଵ݁௜௞భ௣ (7-214)݇݅ܧ

is continuity. Summing up, there are two equations for ݔ = ݌− and two for ݔ = ݌ , still
containing five unknown variables. Multiplying the first of the four equations by ݅݇ଵ, solving
it for ܤ

ଵ݁௜௞భ௣݇݅ܤ = ଵ݁ି௞మ௣݇݅ܥ + ଵ݁௞మ௣݇݅ܦ − ଵ݁ି௜௞భ௣ (7-215)݇݅ܣ

and substituting it into the third equation

ଵ݁ି௜௞భ௣݇݅ܣ − ଵ݁ି௞మ௣݇݅ܥ − ଵ݁௞మ௣݇݅ܦ + ଵ݁ି௜௞భ௣݇݅ܣ = ଶ݁ି௞మ௣݇ܥ − ଶ݁௞మ௣ (7-216)݇ܦ

results in

ଵ݁ି௜௞భ௣݇݅ܣ2 = ଶ݁ି௞మ௣݇ܥ + ଵ݁ି௞మ௣݇݅ܥ − ଶ݁௞మ௣݇ܦ + ଵ݁௞మ௣ (7-217)݇݅ܦ

ଵ݁ି௜௞భ௣݇݅ܣ2 = ଵ݇݅)ܥ + ݇ଶ)݁ି௞మ௣ + ଵ݇݅)ܦ + ݇ଶ)݁௞మ௣ (7-218)

ଵ݁ି௜௞భ௣݇ܣ2 = ቀ1 − ௜௞మ
௞భ

ቁ ௞మ௣ି݁ܥ + ቀ1 − ௜௞మ
௞భ

ቁ ௞మ௣ (7-219)݁ܦ

216 7 An outline of quantum mechanics

After that, the second equation has to be multiplied by ݇ଶ, solved for ܦ

ଶ݁ି௞మ௣݇ܦ = ଶ݁௜௞భ௣݇ܧ − ଶ݁௞మ௣ (7-220)݇ܥ

and substituted into the fourth equation

ଶ݁௞మ௣݇ܥ − ଵ݁௜௞భ௣݇ܧ + ଶ݁௞మ௣݇ܥ = ଵ݁௜௞భ௣ (7-221)݇݅ܧ

which results in

ଶ݁௞మ௣݇ܥ2 = ଶ݁௜௞భ௣݇ܧ + ଵ݁௜௞భ௣ (7-222)݇݅ܧ

ଶ݁௞మ௣݇ܥ2 = ଶ݇)ܧ + ݅݇ଵ)݁௜௞భ௣ (7-223)

ଶ݁௞మ௣݇ܥ = ଵ
ଶ

ቀ1 + ௜௞భ
௞మ

ቁ ௜௞భ௣ (7-224)݁ܧ

As a next step, the second equation has to be multiplied by ݇ଶ, solved for ܥ

ଶ݁௞మ௣݇ܥ = ଶ݁௜௞భ௣݇ܧ − ଶ݁ି௞మ௣ (7-225)݇ܦ

and substituted into the fourth equation

ଶ݁௜௞భ௣݇ܧ − ଶ݁ି௞మ௣݇ܦ − ଶ݁ି௞మ௣݇ܦ = ଵ݁௜௞భ௣ (7-226)݇݅ܧ

which results in

ଶ݁ି௞మ௣݇ܦ2 = ଵ݁௜௞భ௣݇݅ܧ + ଶ݁௜௞భ௣ (7-227)݇ܧ

ଶ݁ି௞మ௣݇ܦ2 = ଵ݇݅)ܧ + ݇ଶ)݁௜௞భ௣ (7-228)

௞మ௣ି݁ܦ = ଵ
ଶ

ቀ1 − ௜௞భ
௞మ

ቁ ௜௞భ௣ (7-229)݁ܧ

Some of the exponential signs in the resulting equations do not match, thus

ଶ݁௞మ௣݇ܥ = ଵ
ଶ

ቀ1 + ௜௞భ
௞మ

ቁ ௜௞భ௣ (7-230)݁ܧ

is adapted to

ଶ݁ି௞మ௣݇ܥ = ଵ
ଶ

ቀ1 + ௜௞భ
௞మ

ቁ ௜௞భ௣݁ିଶ௞మ௣ (7-231)݁ܧ

and

௞మ௣ି݁ܦ = ଵ
ଶ

ቀ1 − ௜௞భ
௞మ

ቁ ௜௞భ௣ (7-232)݁ܧ

to

௞మ௣݁ܦ = ଵ
ଶ

ቀ1 − ௜௞భ
௞మ

ቁ ௜௞భ௣݁ଶ௞మ௣ (7-233)݁ܧ

This can now be substituted into

ଵ݁ି௜௞భ௣݇ܣ2 = ቀ1 − ௜௞మ
௞భ

ቁ ௞మ௣ି݁ܥ + ቀ1 − ௜௞మ
௞భ

ቁ ௞మ௣ (7-234)݁ܦ

7.3 The state vector reduction R 217

which results in

ଵ݁ି௜௞భ௣݇ܣ2

= ൬1 −
݅݇ଶ

݇ଵ
൰

1
2 ൬1 +

݅݇ଵ

݇ଶ
൰ ௜௞భ௣݁ିଶ௞మ௣݁ܧ

+ ൬1 −
݅݇ଶ

݇ଵ
൰

1
2 ൬1 −

݅݇ଵ

݇ଶ
൰ ௜௞భ௣݁ଶ௞మ௣݁ܧ

 (7-235)

ଵ݁ି௜௞భ௣݇ܣ2

=
௜௞భ௣݁ܧ

2 ൬1 −
݅݇ଶ

݇ଵ
+

݅݇ଵ

݇ଶ
+

݇ଵ݇ଶ

݇ଵ݇ଶ
൰ ݁ିଶ௞మ௣

+
௜௞భ௣݁ܧ

2 ൬1 +
݅݇ଶ

݇ଵ
−

݅݇ଵ

݇ଶ
+

݇ଵ݇ଶ

݇ଵ݇ଶ
൰ ݁ଶ௞మ௣

 (7-236)

௜௞భ௣ି݁ܣ2 =
௜௞భ௣݁ܧ

2 ൬2݁ିଶ௞మ௣ −
݅݇ଶ

݇ଵ
݁ିଶ௞మ௣ +

݅݇ଵ

݇ଶ
݁ିଶ௞మ௣ + 2݁ଶ௞మ௣ +

݅݇ଶ

݇ଵ
݁ଶ௞మ௣

−
݅݇ଵ

݇ଶ
݁ଶ௞మ௣൰

 (7-237)

௜௞భ௣ି݁ܣ2 = ா௘೔ೖభ೛

ଶ
ቂ2(݁ିଶ௞మ௣ + ݁ଶ௞మ௣) − ௜௞మ

మ

௞భ௞మ
݁ିଶ௞మ௣ + ௜௞భ

మ

௞భ௞మ
݁ିଶ௞మ௣ + ௜௞మ

మ

௞భ௞మ
݁ଶ௞మ௣ −

௜௞భ
మ

௞భ௞మ
݁ଶ௞మ௣ቃ (7-238)

௜௞భ௣ି݁ܣ2 =
௜௞భ௣݁ܧ

2
ቈ2(݁ିଶ௞మ௣ + ݁ଶ௞మ௣) +

݅݇ଶ
ଶ

݇ଵ݇ଶ
(݁ଶ௞మ௣ − ݁ିଶ௞మ௣)

−
݅݇ଵ

ଶ

݇ଵ݇ଶ
(݁ଶ௞మ௣ − ݁ିଶ௞మ௣)቉

 (7-239)

௜௞భ௣ି݁ܣ2 = ௜௞భ௣2݁ܧ ቀ௘మೖమ೛ା௘షమೖమ೛

ଶ
ቁ + ௜൫௞మ

మି௞భ
మ൯

௞భ௞మ
ቀ௘మೖమ೛ି௘షమೖమ೛

ଶ
ቁ (7-240)

As

(ݔ)ℎ݊݅ݏ = ଵ
ଶ

(݁௫ − ݁ି௫) = (241-7) (ݔ݅)݊݅ݏ݅−

and

(ݔ)ℎݏ݋ܿ = ଵ
ଶ

(݁௫ + ݁ି௫) = (242-7) (ݔ݅) ݏ݋ܿ

the result of this delicate piece of algebra is

௜௞భ௣ି݁ܣ = ௜௞భ௣݁ܧ ቂܿݏ݋ℎ(2݇ଶ݌) + ௜൫௞మ
మି௞భ

మ൯
ଶ௞భ௞మ

 ቃ (7-243)(݌2݇ଶ)ℎ݊݅ݏ

218 7 An outline of quantum mechanics

The transmission coefficient can be expressed as the ratio of the transmitted current density ܬ௧
and the incoming current density ܬ௜. By knowing that the transmitted current density is |ܧ|ଶ
and the incoming current density is |ܣ|ଶ, followed by a closer look at the last equation, it is
obvious that everything needed to do the required calculations for the reciprocal of the
transmission coefficient is already available, as the equation can be re-expressed as

ቚ஺௘ష೔ೖభ೛

ா௘೔ೖభ೛ ቚ = ቚቂܿݏ݋ℎ(2݇ଶ݌) + ௜൫௞మ
మି௞భ

మ൯
ଶ௞భ௞మ

 ቃቚ (7-244)(݌2݇ଶ)ℎ݊݅ݏ

Furthermore, by knowing that the product of the complex conjugates represents the sum of
the squares of the real part and the coefficient of the imaginary part, the equation’s left part
can be simplified as follows:

ቚ஺௘ష೔ೖభ೛

ா௘೔ೖభ೛ ቚ = ටቂ஺௘ష೔ೖభ೛

ா௘೔ೖభ೛
஺∗௘೔ೖభ೛

ா∗௘ష೔ೖభ೛ቃ (7-245)

ቚ஺௘ష೔ೖభ೛

ா௘೔ೖభ೛ ቚ = ටቂ஺
ா

஺∗

ா∗ቃ (7-246)

ቚ஺௘ష೔ೖభ೛

ா௘೔ೖభ೛ ቚ = ඥ[஺஺∗]
ඥ[ாா∗]

 (7-247)

ቚ஺௘ష೔ೖభ೛

ா௘೔ೖభ೛ ቚ = |஺|మ

|ா|మ (7-248)

With this, the ratio can be expressed as

|஺|మ

|ா|మ = ቚቂܿݏ݋ℎ(2݇ଶ݌) + ௜൫௞మ
మି௞భ

మ൯
ଶ௞భ௞మ

ቃቚ(݌2݇ଶ)ℎ݊݅ݏ
ଶ
 (7-249)

|஺|మ

|ா|మ = ቚቂܿݏ݋ℎ(2݇ଶ݌) + ௜൫௞మ
మି௞భ

మ൯
ଶ௞భ௞మ

ቃቚ(݌2݇ଶ)ℎ݊݅ݏ
ଶ
 (7-250)

|஺|మ

|ா|మ = (݌2݇ଶ)ℎଶݏ݋ܿ + ቀ௞మ
మି௞భ

మ

ଶ௞భ௞మ
ቁ

ଶ
 (251-7) (݌2݇ଶ)ℎଶ݊݅ݏ

|஺|మ

|ா|మ = 1 + (݌2݇ଶ)ℎଶ݊݅ݏ + ቀ௞మ
మି௞భ

మ

ଶ௞భ௞మ
ቁ

ଶ
 (252-7) (݌2݇ଶ)ℎଶ݊݅ݏ

|஺|మ

|ா|మ

ଶ
= 1 + ቀ1 + ௞మ

రିଶ௞భ
మ௞మ

మା௞భ
ర

ସ௞భ
మ௞మ

మ ቁ (253-7) (݌2݇ଶ)ℎଶ݊݅ݏ

|஺|మ

|ா|మ = 1 + ቀସ௞భ
మ௞మ

మା௞మ
రିଶ௞భ

మ௞మ
మା௞భ

ర

ସ௞భ
మ௞మ

మ ቁ (254-7) (݌2݇ଶ)ℎଶ݊݅ݏ

|஺|మ

|ா|మ = 1 + ቀ௞మ
రାଶ௞భ

మ௞మ
మା௞భ

ర

ସ௞భ
మ௞మ

మ ቁ (255-7) (݌2݇ଶ)ℎଶ݊݅ݏ

|஺|మ

|ா|మ = 1 + ൫௞మ
మା௞భ

మ൯మ

ସ௞భ
మ௞మ

మ (256-7) (݌2݇ଶ)ℎଶ݊݅ݏ

The substitution of the wave numbers

݇ଵ
ଶ = ଶ௠ா

ℏమ (7-257)

7.4 Summary 219

or

݇ଵ = ଶ௠ா
ℏ

 (7-258)

and

݇ଶ
ଶ = ଶ௠(௏బିா)

ℏమ (7-259)

or

݇ଶ = ඥଶ௠(௏బିா)
ℏ

 (7-260)

finalizes the solution for the transmission coefficient:

|஺|మ

|ா|మ = 1 +
ቀమ೘

ℏమ (௏బିா)ାమ೘ಶ
ℏమ ቁ

మ

ସቀమ೘ಶ
ℏమ ቁቀమ೘

ℏమ (௏బିா)ቁ
ℎଶ݊݅ݏ ቀଶ௣

ℏ ඥ2݉(଴ܸ − ቁ (7-261)(ܧ

|஺|మ

|ா|మ = 1 +
ర೘మ

ℏర (௏బିாାா)మ

ర೘మ

ℏర ସா(௏బିா)మ
ℎଶ݊݅ݏ ቀଶ௣

ℏ ඥ2݉(଴ܸ − ቁ (7-262)(ܧ

|஺|మ

|ா|మ = 1 + ௏బ
మ

ସா(௏బିா)
ℎଶ݊݅ݏ ቀଶ௣

ℏ ඥ2݉(଴ܸ − ቁ(ܧ = ܶିଵ (7-263)

By having derived the transmission coefficient, which does obviously not equal 0, an inter-
esting feature of quantum physics has been revealed, beforehand mentioned as quantum
tunnelling. Classically, a particle would be reflected at any case, however, as the above calcu-
lations show, quantum physics states that even in a case a particle features less energy than a
potential barrier it hits, a finite probability the particle passing the exists. This is especially
important for later explanations based on the research of Stuart Hameroff 290 and Roger
Penrose.291

7.4 Summary

Although there is a lot more to say and explain about quantum physics, from the provided
knowledge one gets compelled to search for the occurrence of quantum effects in the human
brain. Research has shown that there is a lot more than classical physics, and as our
knowledge about quantum physics advances, we may not only find new fields of application,
like the creation of quantum computers and the implementation of paradigms from artificial
intelligence on such (see the next chapter). We may find out that quantum physics also plays a
significant role in our macroscopic world as some theories propose that quantum effects also
occur in our brain. It is not that we need to be aware of all these complex algebra and trigono-
metry elucidated in this chapter – they may just happen, but the only (currently known) way

290 Quantumconsciousness: Quantum computation in brain microtubules? The Penrose-Hameroff
“Orch OR” [2013-07-28]; URL: http://www.quantumconsciousness.org/penrose-hameroff/
quantumcomputation.html

291 Roger Penrose (1994): Shadows of the mind – a search for the missing science of consciousness;
Oxford: Oxford University Press

220 7 An outline of quantum mechanics

for describing all the quantum effects discussed is by the use of mathematics, which will also
be the way for reproducing human brain functionality artificially. However, before moving
back to the human brain we will have a closer look at artificial neural structures that may
benefit from the implementation on a quantum computer.

8 Quantum physics and the biological brain

Why may one suggest that quantum physical properties do have an influence on how
information in the human brain is actually processed? From the first chapter it should be clear
that the soma of a biological neuron features numerous branched dendrites, and at least one
axon extending to other neurons, each of them featuring branches as well. We recall that
neurons have a negative resting potential, at about –70 mV. If a specific neuron, which we
call post-synaptic neuron by now, receives signals from other neurons, which we call pre-
synaptic neurons here, then its potential may be given a rise. Each of the neurons features a
threshold at around –55 mV, which may be exceeded if the neuron’s potential has been given
rise by several pre-synaptic signals. However, this does not necessarily happen, as the synapse
transferring the signal may not only be excitatory, thus send a positive signal consequently
leading to a rise of the post-synaptic neuron’s potential, but also inhibitory, meaning that it
decreases the post-synaptic neuron’s potential and consequently also decreases this specific
neuron’s probability for firing. In chapters 3 and 4 we were dealing with simple simulations
of brain activities by the application of artificial neural networks to get a basic understanding
of how such structures work and what they may be used for. In chapter 5 we were applying
our knowledge from chapter 2 for creating some more complex artificial neural network
structures, and in chapter 5 we got to know some other nature-inspired approaches for
artificial neural network learning. In chapter 10.5 Quantum physics and the artificial brain I
am extending the possibilities towards processing such an artificial neural network on a
quantum computer, but the purpose for the proposition of the latter one has not only been the
possibility for processing problem statements like the ones explained in chapter 5. In my point
of view, in former times there were two possibilities for trying to grasp the complex workings
for information processing the human brain is capable of:

– The neurologist’s approach was to gather very detailed knowledge about the features of
the human brain, like how information may be processed, or which parts are responsible
for specific functions.

– The computer scientist’s approach was at first to understand the basic functions of the
human brain and to try imitating those functions by means of computer science, like
artificial neural networks.

However, none of these approaches alone remains valid, as the former one very often takes
into consideration only Newtonian physics, thus only processing of information on a macro-
scopically visible scale, where the latter one may indeed consider information processing on a
quantum physical scale, e.g. in a quantum artificial neural network, but without taking into
consideration the role quantum mechanics may actually play in information processing in the
human brain. A complete understanding must incorporate a mixture of three areas, thus rely
on the neurologist’s knowledge of the of the brain’s inner workings, the computer scientist’s
knowledge on digital information processing and quantum information theory as well as the
physicist’s knowledge of quantum mechanics and quantum field theory in general. As this
approach to the very complex topic has proven to be useful, I will not any longer distinguish
between and move freely within these fields, and solely talk of neuronengineering, which has
also been used by Katz292 in this context and which I consider to be the field of research

292 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_8

222 8 Quantum physics and the biological brain

incorporating all other fields required for understanding the functioning of the human brain as
well as re-engineering its capabilities.

In my point of view it is not reprehensible to research for possible quantum effects in the
human brain, although at a first glance it might seem impossible that such may or even can
occur. Analogies can already be found, be it the massive parallel processing of information,
the brain’s nondeterministic processes or the reduction of information to single events, which
may be interpreted from conscious experiences. Quantum mechanics and the beforehand
discussed phenomena like entanglement, deterministic evolution, but non-deterministic state-
vector reduction, or interference seems to be a promising candidate for the explanation of
neural information processing. However, I am not the first researcher being interested in the
area, as even Niels Bohr, one of the first physicists having dealt with quantum mechanics, has
allegedly been of the opinion that biological processes may incorporate quantum physical
effects.

1967 the Umezawa and Ricciardi have proposed a hypothesis on how quantum field theory
may find application within the human brain. They proposed that spontaneous violations of
the symmetry can result in quantum states within the brain, which are called Goldstone-
Bosons. Such Goldstone-Bosons are long-range correlated waves, and the violation of the
symmetry has been interpreted as natural measurement procedure. One year after that, Werner
Fröhlich has detected coherent dipole-waves one layer below the cell membrane. He
recognized that the orientation of these dipoles represents a general control- and order-
parameters in biological processes. Furthermore, in his hypothesis he explains that quantum
coherence may occur below the cell membrane for several centimetres, the so-called dipole-
line-up. However, this has not been proved and the hypothesis has been checked by several
researchers which could not find any evidence for long-term coherences to occur.293

8.1 Difficulties with U in the macroscopic world

According to our understanding, there exists one reason why quantum linear superposition
cannot be held in the macroscopic world – it is not possible to isolate a macroscopic quantum
system from its own irrelevant properties, such as gravitation might be one. Currently there
does not exist a theory of all, which unifies the theory of general relativity with the quantum
theory. The theory of general relativity covers gravity, whereas the quantum theory covers all
other physical elementary forces, which are electromagnetic, weak and strong interaction. The
difference between these theories is, roughly said, that the former one describes the setup of
the universe, and the latter one the interaction between the smallest particles in small spaces.
Furthermore, gravitation is the only of the four elementary forces that has no ‘interaction’ in
its name, as according to our current knowledge it is the only force that acts exceptionally
attractive, which is due to only one gravitational charge, the mass (it cannot be cancelled out
by an opposing force). Weak and strong interaction only play a role at microscopic level,
whereas the electromagnetic interaction is also important on macroscopic level. As of today’s
knowledge, both theories do not overlap except in very extreme cases, like in black holes or
the big bang, where the curvature of space time goes to infinity. Anyway, the difficulties for
formulating a theory of everything are manifold, e.g. the problem that gravitation cannot be

293 Held Werner: Quantenphysikalische Ansätze des Bewusstseins [2013-08-09]; URL: http://www.
datadiwan.de/netzwerk/index.htm?/experten/he_001d_.htm

8.2 The Hameroff-Penrose model of orchestrated objective reduction 223

split up in quanta or ‘elementary portions’, which is required for being able to successfully
apply calculations on quantum layer. Unfortunately, we cannot discuss some of current time’s
most interesting theories like the string theory or the loop-quantum gravitation here.

Penrose294 well described that we have to bear in mind that although the theories have not yet
been brought together, not only in the most extreme physical situations gravitation may play a
role in quantum physics. As the Planck length of 1.616199(97) ∗ 10ିଷହ m is the length that
counts for effects of quantum gravity and one may not easily figure out how effects on this
scale may influence the macroscopic world, he used a very figurative example to describe
such a situation. Summing up, he describes a photon impinging a half-silvered mirror, as
explained the sample experimental situations (see 7.3 The state vector reduction R). After the
photon has been split up into two parts, one part meets a detection device that is treated fully
quantum mechanically and moves a spherical lump attached to it. So the lump may feature
two different positions, either the moved one or the initial one. Thus, the linear superposition
also features both and not only that, it also involves the lump’s gravitational field. Penrose
points out that this is, according to general relativity, a superposition of two different space-
time geometries and asks the very interesting question, at which point those differ enough
from each other so that decoherence occurs. The answer is that the difference must be
something larger than or equal to the Planck scale. For a superposed state consisting of two
spatially displaced states he asks for the energy that it would for the displacement to happen,
considering exceptionally the gravitational force between them. According to this proposal
and in absolute units, the gravitational energy that is required for displacing the states is

ௗܧ = ௠మ

௔
 (8-1)

and the time it takes until decoherence happens is the reciprocal of ܧௗ

௥ܶ = ௔
௠మ (8-2)

where ܽ is the radius of the superposed objects and ݉ its mass. Summing up, the criterion for
measurement Penrose proposed is that if there is sufficient disturbance in an environment, R
will take place rapidly and will also include any physical system that is entangled with it, like
the measuring apparatus mentioned beforehand. This can be easily imagined by replacing the
spherical lump with a glass of water that just absorbs the part of the photon that has passed the
mirror – macroscopically we cannot observe any physical difference, however, micro-
scopically, the arrangement of particles within the glass of water has changed and thus
interaction or measurement has happened. We will go into detail with this by discussing the
Hameroff-Penrose model of orchestrated objective reduction followed by my own proposal.

294 Penrose Roger (1994): Shadows of the mind – a search for the missing science of consciousness;
Oxford: Oxford University Press, p. 335 ff.

224 8 Quantum physics and the biological brain

8.2 The Hameroff-Penrose model of orchestrated objective
reduction

A lot of scientists from different fields have been discussing the model of orchestrated
objective reduction that has been proposed by Roger Penrose and Stuart Hameroff295,296 in the
90ies. The model will be described completely, but not in as much detail as done by Roger
Penrose and Stuart Hameroff in their work, taking into account my own comments and some
of Werner Held.297 Furthermore, I do not comment on the ‘feasibility’ of the theory, as for me
this is of no concern here – the focus is on aspects that may be used for the implementation of
an artificial conscious entity, even if there currently exists no proof for the relevance of
quantum effects for the emergence of conscious experiences.

8.2.1 The idea

On a first instance it may not be obvious why a theory of particle physics can be used for the
explanation of biological or mental phenomena, as conscious experiences are. However, on a
second glance one will recognize that the conscious thoughts and brain activity in general
feature a certain similarity to quantum physics, compared to classical physics, which is due to
the massively distributed and parallel processing of in our brains, the uniformity and globality
of a from many individual aspects assembled perception, the simultaneous irreducibility of
this emergent phenomenon to individual components as well as the increasingly visible non-
determinism biological and mental action require almost necessarily a conceptual framework
capable of processing such non-local, non-reductionistic and indeterminate processes.
Quantum theory is capable of exactly that,

– as it is home to non-local phenomena such as the Einstein-Podolski-Rosen paradox (as
discussed beforehand in the half-silvered mirror experiments),

– as it features discontinuous quantum jumps,
– and as it is a probability theory, in which a single event cannot be physically determined.

The idea that quantum physical processes may impact the nervous activity or consciousness
has already been expressed sporadically in the early days of the debate on quantum physics,
however, the dissenting votes predominated. Niels Bohr, the founder of quantum mechanics,
has been known for several significant cancellations to the belief that quantum theory could
be suitable for the interpretation of biological processes, whereby his objection was the
seeming impossibility of direct measurement, as to prepare biological organism for a
measurement would mean to kill it. Quantum theory would be suitable only for inanimate
matter, since the condition of the isolation of quantum physical systems must be given by
their environment, which is not the case in biological systems, as such are dissipative
structures and in permanent exchange of energy with their environment. Another issue in the
debate at that time were the different orders of magnitude, as in that time quantum effects at

295 Penrose Roger (1994): Shadows of the mind – a search for the missing science of consciousness;
Oxford: Oxford University Press

296 Hameroff Stuart: Quantum consciousness [2013-07-28]; URL: http://www.quantumconscious
ness.org

297 Held Werner: Quantenphysikalische Ansätze des Bewusstseins [2013-06-22]; URL: http://www.
werner-held.de/pdf/qc.pdf

8.2 The Hameroff-Penrose model of orchestrated objective reduction 225

that time played only a role in microscopic orders of magnitude. No measurement, not even to
inorganic systems, could expand on macroscopic areas, because even the cosmic background
radiation of 3ܭ already leaves behind 2.3 ∗ 10ଵଷ photons per second on ܿ݉ଷ tungsten,
according to Wigner’s calculations, which is an influence large enough to make any accurate
measurement impossible. Objections along these lines could rest the efforts for several
decades, however, meanwhile it is possible to detect the same quantum phenomena in all
atoms, not just electrons or photons – the next step will be to detect these at molecules.

8.2.2 Microtubules

Stuart Hameroff presented the idea that microtubules as holographic bio-computer could be
home to quantum effects in the sense that the microtubules could be the place of action of the
Fröhlich-waves. Changes in dipole density in the environment of the cell cause changes in the
quantum states of the microtubules, e.g. the coherent Goldstone / Fröhlich- waves. Micro-
tubules are tiny protein tube occurring in all cells, with an approximately 2.5 ∗ 10ିଽ m dia-
meter on the outside and 1.4 ∗ 10ିଽ m diameter on the inside as well as highly variable length
from a few nanometers to several millimetres in the axons of neurons, which are composed of
13 parallel or spirally arranged strands of the protein tubulin. The dipolar tubulin is a dimer,
consists of an alpha and a beta monomer and can occur in two contiguous formations. Except
for the control of cell division, these extremely plastic microtubules also play a decisive role
in the organization of the cytoskeleton, the protein, mass, plasma and for transport within the
cell, at communication with neighboring cells, and at the shaping of the cell and the
movement. They are arranged in parallel and connected to other nerve cells and other micro-
tubule structures by so-called cell microtubule associated proteins (MAPs). Some experiments
conducted show that microbotules may play a significant role in conscious activities:

– Hameroff researched on single-celled organisms such as the Paramecium, which do not
feature neurons or synapses, but microtubules. However, they do feature primitive
sensory abilities and learning performance in certain labyrinths.

– Cronley-Dillon showed that rats that were raised in a barren environment feature a
significantly lower density of microtubules than those who were kept in a stimulating
environment.

– At the same time, the consumption of drugs that prevent the construction of microtubules,
result in reduced memory performance.

Then it was primarily Roger Penrose298 , 299 who triggered off a broad discussion of the
emergence of quantum physical phenomena in the brain.

According to Hameroff and Penrose, quantum physical processes take place in the micro-
tubules and other structures of the neurons in the brain, and the building block of microtubuli,
the protein tubulin dimer, may exist in two different states, which is due to different electron
localization associated with different mass distributions. These two states exist in a quantum
mechanical superposition of entanglement before collapsing into a final state. From our
discussion about entangled quantum bits we remember, that unlike bits in a von Neumann

298 Penrose Roger (1991): The Emperor’s New Mind Concerning Computers, Minds, and the Laws of
Physics; Oxford: Oxford University Press

299 Penrose Roger (1994): Shadows of the mind – a search for the missing science of consciousness;
Oxford: Oxford University Press

226 8 Quantum physics and the biological brain

machine, whose general state can only be one of the 2௡ products of |0〉 and |1〉, a general state
of ݊ Qbits is a superposition of these 2௡ product states and cannot, in general, be expressed as
a product of any set of 1-Qbit states. Individual Qbits that make up a multi-Qbit system
cannot always be characterized as having individual states of their own - in contrast to the bits
in a von Neumann machine – as they may be in nonproduct-states called entangled states
(please see the description at 7.1.4.3 Quantum entanglement).300 Back to ORCH OR, quantum
coherence or quantum linear superposition simply put means that different parts become a
single state, which is described by the Schrödinger wave equation (see 7.1.2.4 Quantum
dynamics) and should now be able to extend to larger areas, presumably driven by thermal
and biochemical energy, such as described by Fröhlich. Penrose's idea is that the two different
potential states of the tubulin receive different mass distributions with increasing coherence
time, and therefore the result is a divergence of the space-time geometry of the two
possibilities, until a threshold in quantum gravity is exceeded and a self-organized collapse of
the wave function, thus the end of the entangled state in favour of a real state of the tubulin
dimers, occurs. The reduction of the wave packet within the microtubules is the ‘Orchestrated
Objective Reduction’ (ORCH OR), because in this type of natural measurement process the
MAPs, genetic and other changes of tubulin proteins determine this process in an unspecified,
not in detail described, but not causal manner. The usual Copenhagen interpretation of
quantum physics, which makes no statements about quantum phenomena in living systems,
on the other hand is based on the random reduction ܴ of the wave packet. The consciousness
interpretation due to Wigner, however, assumes a subjective reduction of SR obtained by
consciousness. Penrose's idea of the OR represents some sort of natural measurement process
by the action of the hypothetical quantum gravity. He is of the opinion that an objective
criterion for a collapse in the sense of quantum gravity threshold is present. With Penrose's
increasing devotion to a living organism, he adds a required extension with the self-organized
ORCH OR. However, how to bring together the non-objective, but condition- and experience-
dependent processes in organisms with an objective reduction remains still to be clarified
within this model. Although he recognizes, due to his previous thoughts on Gödel's
incompleteness theorem and its consequent rejection of the possibility in principle of artificial
intelligence, the OR as non-algorithmizable and thus not computable, this still does not solve
the fundamental contradiction between his objectively formulated concept and the probability
propositions of quantum physics and self-organization.

Penrose takes over the assumption expressed by the neurophysiologist Benjamin Libet in his
time-on theory that only via the duration of neural activity can be determined what becomes
aware in one’s mind. Libet determined that about one-third to one-half seconds of lead time of
unconscious neural activity are necessary (in terms of a readiness potential postulated by
Kornhuber and Deecke in the sixties, thus a slowly rising negative voltage shift that points
unerringly to the same onset activity). Penrose then puts the coherence length of the
microtubules on a level with the second half of unconscious neural activity and thus tries to
equal the transition from unconscious processes to conscious processes with the processes in
the microtubules. The various formations of microtubules components (the protein tubulin
dimers) for Penrose form the threshold for the transition of quantum physics to the classical
description, as after the self-collapse the impetus for further neurophysiological processes and
functions can then be described classically, thus causally and locally. The formula for the
quantification of quantum gravity threshold is

300 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

8.2 The Hameroff-Penrose model of orchestrated objective reduction 227

ܶ = ℏ
ா

 (8-3)

where ܶ is the duration of the superposition between the tubulin, ℏ the reduced Planck's
constant and ܧ the gravitational energy of the different mass distributions of the two tubulin
states, certainly depending on the number of coherent tubulin proteins. Penrose assumes an
average superposition time of half of a second and comes to the following calculations: a
typical neuron features around 10଻ tubulin dimers. If about 10଺ , thus around 10% of the
tubulin dimers, constitute a state of quantum coherence, then around 1,000 neurons, which
would be correlated for half a second, would exceed the threshold of quantum gravity; the
orchestrated objective reduction of the wave function happens. The conclusion is that an
organism that is capable of maintaining quantum coherence over 10ଽ tubulin dimers for
around 500 ∗ 10ିଷ sec is capable of experiencing conscious experiences. More tubulin for a
shorter time or lower for a longer time allow the same.

Now that quantum states are not local, each ORCH OR can tie together various super-
positions, which either emerged spatially distributed or at different times. The only condition
would be the exceeding of the gravitational threshold at a specific moment. According to his
calculation also a single electron could gain consciousness (here Penrose's concept of
complete randomness of the occurrence of consciousness becomes obvious). However, for
this an electron would have to be in undisturbed isolation and able to maintain the
superposition for longer than the age of the universe. If the electron is not capable of doing
this, then the random reduction ܴ with its environment occurs. We can see that the theory
distinguishes between random and non-random, non-algorithmizable OR. The dubious nature
of this distinction is reflected in so that certain parts of the organism only work completely
random, whereas the microtubules cause non-random processes. However, even this does not
happen exclusively, microtubules are home to both classical and quantum mechanical pro-
cesses. The polarity of tubulin final states that can change in 10ିଽ sec increments propagates
locally (classically) on neighboring regions to form patterns and may act as signal relay. This
can be done at a speed from 8 to 800 meters per second and is thus just as fast as the
forwarding of the action potentials. This classical process Hameroff and Penrose set equal
with autonomous, not mind-enabled activities, while the far-reaching, long-lasting quantum
physical coherences within the microtubules are set equal with the unconscious, but
consciousness-causing processes.

The theory strongly depends from the maintenance of a quantum linear superpositions, or
coherences. For such isolation is required, thus an energy gap to the environment, and the
theory mentions three possible mechanisms for this:

– This isolation may be caused by the ordered water which fills the microtubuli and may
surround them up to 3 ∗ 10ିଽ m.

– A hull of gelatine may shield the microtubule, where the surrounding cytoplasma may
occur in two phases, either as separation fluid or as gel.

– The inner space of the microtubule may be responsible for the isolating function.

What is currently not clear is even if the microtubules would provide enough isolation for
maintaining a superposition within, how the synapses can be bridged over so that coherence
can be maintained over several nerve cells. Furthermore, if the theory is true, the role of
classical signal processing, thus nerve impulses by action potentials over dendrites, synapses,
cell bodies and axons has to be reconsidered. Maybe signal processing and interpretation is
split in the sense that signal processing required for consciousness only happens on quantum

228 8 Quantum physics and the biological brain

layer and everything else on classical layer? Or maybe conscious experiences are both pro-
cessed on classical and quantum level? For information processing in an artificial conscious
entity we could make use of a combined approach, such as described at 10.5.1.4
Entanglement, where both classical communication and such on quantum level are used for
processing information.

8.3 Further models

A theory going beyond the optical conductivity of microtubules maintains that microtubules
forward not only photons of light, but are also constructed and structured of light photons. 301
The cause of this phenomenon is the focus of coherent waves, which creates the conditions
for the arrangement and concatenation of matter along to the radiation beam, thus a mutual
stabilization of coherent radiation and matter.

Another theory has the same form as the Schrödinger wave equation in quantum mechanics,
in which interference plays a crucial role in the neural wave equation because each spatio-
temporal order goes over to a non-local implicate order if it goes over in an interference. 302,303
If the brain is considered from the viewpoint of quantum mechanics, this means that if an
input reaches the interference of the brain waves, it goes into a non-local, thus ubiquitous
order, so it will be interpenetrated by other patterns, leaving no trace behind. This implicit,
non-local, quantum physical order must be distinguished from the macro physical, local order
of topological maps, which is researched on in the main branch of the brain researchers in its
description of the brain areal-bound functions.

A further theory describes a transition from a local composite pattern, e.g. a meaningless
syntactic form to a non-local activity.304 The jump is thus interpreted as a form of non-local
phenomenon, and the microtubule hypothesis is extended beyond the membrane on the
extracellular space and hence in the synaptic cleft. These protein tubes are called extracellular
matrix, and they are often linked from the inside out via hydrogen bonds, which is considered
as a quantum physical system, for with its charge the net captures non-local photons. Water
molecules are also closely associated with the net, have a weak electrical charge and fit
together to form a huge molecule of water, which spans about 50 micron regions. A molecule
of that size requires a quantum mechanical description, thus the non-locality is preserved, and
the mediating instances of the transfer function of the cells are huge water molecules and light.

The last theory to be mentioned here focuses on the synapses. 305 In it, quantum operations
can play a role throughout the electrophysiological process of the neuron only there. In the
basic synaptic units (boutons) exocytosis takes place, which is nothing more than the
temporary opening of a channel in the pre-synaptic membrane and the release of transmitter
substance into the synaptic cleft. Exocytosis always takes happens in the way that if the

301 Quantum Mind: Quantum Mind [2013-09-01]; URL: http://www.quantum-mind.co.uk/qbd-3-
c58.html

302 Ricciardi L. M., Umezawa U. (1967): Brain physics and many-body problems, cybernetics, vol. 4
303 Quantum Mind: Quantum Mind [2013-09-01]; URL: http://www.quantum-mind.co.uk/jibu-yasue-

c575.html
304 Globus Gordon (2003): Quantum Closures and Disclosures: Thinking-together Postpheno-

menology and Quantum Brain Dynamics; Amsterdam: John Benjamins Publishing
305 Eccles John C. (1994): How the self controls the brain; Berlin Heidelberg: Springer-Verlag

8.4 Summary 229

transmitter substance is released, then all of it. An analysis showed that a pulse which is
transmitted from an axon to a basic synaptic unit with an average probability of 25% triggers
a release, for which a quantum mechanical description has been developed. In this case, it was
assumed that a tunnel of a quasi-particle movement is the release mechanism of exocytosis, so
the idea is that the mental intent is active in selected areas of the cortex by a momentary
increase in the probability of exocytosis. In the language of quantum physics, this means that
a selection of events was already prepared with a certain probability. The time frame refers to
experiments306 that yielded an interval of 200 ∗ 10ିଷ seconds between conscious will and the
execution of a voluntary act.

8.4 Summary

Where does that leave us now? At least for me, it is very appealing to search for explanations
for how the human mind works in the field of quantum mechanics. The ORCH-OR model is
partially based on experimental results that cannot be ignored, such as Penrose’s experiments
with the Paramecium or Hameroff’s explanations on how anesthesia eliminates conscious-
ness. However, the question is if the human brain can be reduced to a quantum computer; I
personally am of the opinion that only by the fact that self-organization occurs within
biological brains, such are capable of what they currently are. Apart from that, quantum
effects have so far been detected only in highly artificially isolated systems to a maximum of -
140° C. It is believed that at 37° C in living tissue quantum states completely collapse, as they
interact with their environment. Without isolation and a consequent energy gap coherence
seems to be lost permanently. Be that as it may, by now the extraordinary effectiveness of the
entanglement of protons in normal water at normal room temperature has been detected, so
that a natural constant, the scattering angle, measured from the proton bombardment by
neutrons, is no longer a constant. The entanglement of the individual protons changes very
quickly high 10ିଵଵ seconds, but it is believed that around 25 – 50% of the protons are
correlated at any time. Unfortunately, these assumptions are still not convincing, as yet no
theory for decoherence has been developed, so if a residual memory remains at two particles
that have just separated, is currently not known. Although the microtubules and the
microphysical quantum phenomena feature the same size range, for triggering a conscious
perception the activity of several tens of thousands of synapses is needed, so that nearly all
neuroscientists exclusively consider a classical description adequate. This could be argued as
a counter-argument: if one photon hits the eye, it can be seen in total darkness. Furthermore, it
has been shown that decision-making processes in a cell feature at least the degree of fineness
of a molecule. Another argument against quantum physical approach of brain activity is the
measurement problem. So far, there is no way in sight to actually verify such approaches also
experimentally, because it is required to do this on living tissue. However, in order to measure
something, one has to prepare it; unfortunately, for a living organism this would mean to kill it.

Anyway, as stated beforehand, it is not my aim to dismantle the discussed theories down to a
level where no proof for their plausibility can be found – within this elaboration I use parts of
them for modelling possible implementation scenarios for machine consciousness. For this, I
consider a implementation relying on both information processing on classical as well as on
quantum level to be promising.

306 Philosophie verständlich: Die Libet-Experimente [2013-09-01]; URL: http://www.
philosophieverstaendlich.de/freiheit/aktuell/libet.html

9 Matter and consciousness

As we have seen in the last chapter, the model of consciousness brought forward by Hameroff
and Penrose seems to be very promising, although for me, as a computer scientist, a solely
physical explanation of human consciousness seems to be true only partially. I suppose that
the brain as the structure being responsible for complex thought processes, information
storage as well as home of our consciousness does benefit from quantum effects, however, not
solely. It is required to take the organic specialties of living organisms into consideration as
well. Hameroff already mentioned that the cytoskeleton of a nerve cell differs from the one of
other eukaryotic cells in the sense that the in the brain neurons are placed in parallel instead of
radially, are more stable due to the support of proteins, are distributed more densely and form
larger networks. However, there still remains the classical activity we can observe, like the
firing of neurons, the building/ strengthening/ weakening of connections between single
neurons (remember also 3.3.3.4 Hebb's learning rule or 3.3.3.5 Delta rule) or the release of
neurotransmitters. Furthermore, one has to consider the development of the brain during
growth, as all the neurons are already present at birth. However, only ~ 2,500 synaptic
connections exist, which increase sixfold up to 15,000 at the age of 3. So if all the neurons
already exist at birth, would not theoretically conscious experiences be possible to the full
extent as well? Although I have heard of exceptional circumstances where people tell that
they already had conscious experiences in their early days, this is for sure no common
situation. Sure, one might argue that qualia serve as the input for the (maybe quantum
physical) neural computer that produces conscious experiences. So, for the beginning, it is
required to define what qualia actually are.

9.1 Qualia

Qualia are defined as the subjective content of experience of mental states. However, this is
the only thing what can be said about qualia that has been widely accepted, as opinions
widely differ, however Thomas Nagel has characterized the idiom that qualia can be
interpreted as ‘what is it like’. An example is a person that has had enough food so that he/she
is not hungry any more. Manifold neural processes are conducted within the person’s brain
and the person may behave in a special way, like grinning and leaning back in the chair.
Additionally, the person encounters the special feeling of being not hungry any more. To be
complete here, this only functions when the person in consideration has understood what
subjective contents of experience are. However, we can surely include things like our five
senses into qualia, as they help us to

– experience visually,
– receive tactile feedback (including pain or pleasures),
– taste,
– feel, and
– smell.
– Furthermore, we may include
– emotions,
– proprioceptions, that is the knowledge humans have about the location of their body in

space as well as their performed bodily movements, based on feedback from their nerve
endings into the central nervous system,

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_9

232 9 Matter and consciousness

– sensations like the beforehand mentioned feeling of being not hungry any longer, or
feeling coldness or heat,

and maybe also

– ecstatic experiences,
– understanding,
– confusions, and the like.

The difficulty with qualia is, as already indicated, that they are subjective. Therefore, it is a
major difficulty to measure or quantize any of them, which at least in part is required for our
understanding on how to allow an artificial entity to experience the same, thus conscious
experiences. Due to these restrictions, qualia have the negative connotation of not being
exactly describable. So, assuming that conscious experiences or the mind as a whole is a sort
of software running on the brain including some random operations, is it then possible to
write such a software and process it on massively parallel processing classical (von Neumann)
computers, as we may describe our brain in terms of information technology, or does our
brain benefit from quantum effects as well and thus the same mind-program would allow
conscious perceptions only on a quantum computer? Maybe we should first try to understand
the meaning of qualia for conscious experiences even better, starting with why qualia may be
required for experiencing conscious perceptions, however, even before that it is required to
provide a very short overview of some theories of consciousness with respect to artificial
intelligence.

9.2 Materialism

Materialism assumes that the human brain is a computer, and that it can be fully understood in
terms of architecture and structure. It assumes that as soon as the smallest parts of the brain
have been understood and how they are connected it can be replicated on any other platform
that does not necessarily need to constitute of the same ingredients – there should not exist
any limitation that dictates why all brain functionality must be limited to biological neurons.
One of the main arguments against materialism from comes from idealistic side and is that
one can understand human mental abilities such as self-confidence is not material and cannot
be fully attributed to matter. In contrast, one of the main arguments against idealism from the
materialistic point of view is that idealism cannot explain the autonomy of the sensible world
and the observed independence of mental processes. It is, however, ignored that any form of
sensory perception and observation beyond mental processes is impossible. Further arguments
against materialism contain that materialism cannot explain itself, since it does not occur as a
theory and as matter. Moreover, the concept of truth cannot be understood purely material.
The epistemology will shorten the materialism of an empirical science. Cultural content, ideas
and all intangible forms have no independent existence of its own. A critique of knowledge or
an independent reflection of knowledge were not, or only in a very limited materialism. A
review of scientific hypotheses is possible only within certain metaphysical preconditions.

Back to consciousness, a major point of criticism takes the products of human mind as a
starting point for its argument. Even under the assumption that ideas, theories, (building)
plans, technical know- how and more are produced by the brain (and not from consciousness),
such could exist independently from their authors. Because man is surrounded by a spiritual

9.3 Functionalism 233

world, the making up its cultural heritage, without which he would always start at the level of
a pre- stone age-people.

9.2.1 Eliminative materialism

The idea behind eliminative materialism is that claims about mentality are a weakly explana-
tory concept that will be eliminated as soon as science progresses.307 Thus, it takes the posi-
tions that our mind and qualia should be eliminated for being superseded by scientific ways of
their description. However, humans do experience things and thus feature qualia, which are
bound to the human mind, thus mental states. As the scientific community has generally
accepted the existence and notion of qualia, this point of view, as well as materialism in
general, can hardly be held.

9.2.2 Noneliminative materialism

Qualia are real, and are the direct causal product of some purely physical aspect of the brain.
The question that arises is the one after how matter should be capable of producing
consciousness? Two possibilities have to be taken into consideration:

– Qualia emanate from some special substance in the brain
– Some dynamic but still physics-based property of the brain yield qualia

 Ordinary physics such as electromagnetic fields
 Quantum physics308

As Katz further mentions, there exist some problems with noneliminative materialism,
namely that the production of conscious content is linked to neural activity – although not all
neural activity may produce content, it can, as far as we can say today, only be produced by
neural activity. Yet neural activity is defined as neurons submitting or receiving electrical
signals, and not by producing molecules, like the special substance that may be emanated in
the first explanation above. Furthermore, if such a substance would actually correspond to our
consciousness, what would happen if it was extracted and injected into another brain? On the
other hand, it cannot be denied that the physical explanation may partially support a possible
explanation. Quantum theory seems to be a promising candidate for explaining some of the
phenomena occurring in the human brain, as we have learned from the ORCH OR model of
consciousness.

9.3 Functionalism

Functionalism currently is the most well-known and popularly discussed theory of mind, a
fact that it owes the influence of IT on our society. It denies that mental states are identical to
physical states, or that the former ones can be reduced to the latter ones. It thus states that the

307 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC, p. 101 ff.

308 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC, p. 103

234 9 Matter and consciousness

mind is an algorithm that is processed on the brain, like the software is processed on a
computer. This mind-software would also incorporate all that has been mentioned at 9.1
Qualia. Functionalism dictates that being in a mental state is being in a state that transforms
inputs into appropriate outputs, which serve a functional role.309

Due to the fact that functionalism does not demand a human brain for processing what we got
to know as mind-algorithm nonchalant, it offers some interesting perspectives. Most of us
would agree that animals like cats or dogs do feature some sort of rudimentary consciousness.
Not only mammals may have that privilege, as Stuart Hameroff showed by describing the
paramecium’s clever behavior.310 The paramecium consists of one single eukaryotic cell and a
cytoskeleton rich in microtubules, which seems to be sufficient for learning behavior.
However, this does not belong to the area of functionalism, but should just help to put the
imagination in the right way – neither only humans may benefit from conscious experiences,
nor exists the requirement that entities experiencing such are carbon-based (to avoid
misunderstandings: the paramecium is). Functionalism seems to be incomplete the sense of
what we are searching for, namely an explanation of how we can describe how the creation of
conscious experiences works. Some major problems have been identified.

9.3.1 The problem of absent or inverted qualia

Theoretically, from an engineering point of view it could be possible to create an artificial
brain with the same architecture than a biological one, but which cannot experience qualia. If
such an approach would be successful, qualia cannot be explained with functionalism.
Inverted qualia means that it may be possible to re-engineer a human brain that is capable of
experiencing qualia by sensory inputs, but to invert these experiences. An example used very
often is the inverted color spectrum: two persons declare an item to be red, and both persons
experience ‘redness’ although one of the two sees blue (which, in fact, is red for this person).

9.3.2 The Chinese Room argument

The philosopher John Searle described a closed space in which a person resides. To this
person a paper with stories in Chinese is delivered through a slot in the door. The person is
not capable of understanding the Chinese language, and is thus not only unable to understand
single words, but also the whole meaning of the story. Furthermore, the person receives a
paper with questions about the story (also in Chinese). Additionally, the person finds stack of
Chinese scripts and a manual with rules written in his native language. The manual allows the
person to connect the symbols with the history, but only at the level of character recognition
(about the shape of the characters). From the manual, the person finds instructions which
character he has to transfer (depending on the character of the story and the questions) on the
answer paper. The person follows purely mechanical instructions and pushes the result, thus
the ‘answers’ to the questions, through the door slot without having understood the story or
the questions.

309 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC, p. 110

310 Hameroff Stuart: Can quantum mechanics explain free will [2013-09-11]; URL: http://www.
quantumconsciousness.org/views/freewill.html

9.4 The Identity Theory 235

In front of the door, a Chinese native speaker is waiting and reading the responses. Because of
the meaningfulness of the responses the Chinese native speaker comes to the result that in the
room there is another Chinese-speaking person. Searle thus argues that functionalism cannot
account for intentionality.

9.3.3 The knowledge argument

Frank Jackson put forward an argument that suggests that qualia do not supervene on the
physical architecture or structure of a human brain and therefore, cannot be explained
physically or functionally. Summing up, he asks to imagine a neuroscientist named Mary who
is brought up in a room that does not feature any color – it is just black and white. Mary
becomes an expert in understanding which functional roles brain states are important for color
vision; she is able to gather comprehensive knowledge about that special area. However,
although she has that intense knowledge about the neurophysiological workings of color
vision, Jackson assumes that she would learn something new the first time she leaves her
black and white-only room. The point is that her knowledge did not allow her to predict the
qualia experienced the first time after experiencing color vision.

Despite these arguments, functionalism has gathered lots of supporters, also in the field of
artificial intelligence research. The usual functionalist example for a computer is the one of a
computer adding two numbers. There are two levels that have to be taken into consideration,
the hardware and the software. On the one hand, what is happening internally when adding
two numbers is dependent from the hardware, however, the process of calculation cannot be
described as hardware activity, as different computers feature different hardware. This is
where software adding the two numbers comes into play, namely in terms of a function
implemented on the hardware. Thus, hardware only serves for the realization of the
calculation (by means of software), but does not implement the calculation. This has led
supporters of strong artificial intelligence to the concept of functionalism. To be complete
here: supporters of strong artificial intelligence argue that once a computer will be built that is
capable of implementing a conscious entity to the full extent (capable of reasoning, thinking
…), whereas supporters of weak artificial intelligence claim that such behavior can only be
simulated and computers thus only seem to act consciously. This brings up another question,
namely when a simulation is well enough so it is not regarded as simulation any longer.

9.4 The Identity Theory

Identity theory states that for each sensation we experience, there exists an exact neurological
state in the brain. Thus, according to this theory any sensation may trigger the interaction or
firing of a set of neurons. Therefore, any experience would theoretically be observable and
furthermore, that any observed activity in the brain can e.g. be brought into connection with
specific qualia or thoughts. In a certain manner this means that there is no difference between
mind and brain. Although this theory seems to be promising at a first glance, especially when
taking possible technical implementations into consideration, a closer investigation reveals
some weaknesses, from which especially one is critical: we can say that different people react
differently to the same situations, depending from their gathered experiences or knowledge.
So when we consider that a specific visual experience, like seeing the president speak on TV,
results in a specific brain state, then we have to consider that for one person this could result

236 9 Matter and consciousness

in positive emotions and for another person in negative ones, and an additional person may be
concerned by a specific political situation some years ago, when another president used the
same words. The conclusion is that the same brain state, namely seeing the president on TV,
does not mean the same for different people. Followers of this theory may encounter this by
stating that seeing the president on TV does not correspond to a brain state, instead it is what
each individual experiences, which may differ.

9.5 Summary

Within this chapter the fundamental ideas for being able to form a model of mind and reverse
engineering the mind have been discussed. When trying to describe the mind in a technical
way, which is indeed the way that is needed for fulfilling our purposes, then it gets obvious
that different external sensations do not affect everybody in the same way, thus cannot form
the foundation for modelling our mind. Noneliminative materialism contains very interesting
ideas like quantum physical explanations of the mind; however, it does not take into account
the software, thus the algorithm of mind, working on the hardware. Functionalism does that in
the way that it states that the mind is the software running on our brains, and that different
physical implementations may be realized for processing the ‘mind-algorithm’. Apart from
that, identity theory states that each external sensation may cause different internal sensations,
which of course may be different from individual to individual, but if the resulting internal
sensation of two individuals is the same, also the same areas of the brain are affected. This is
also very interesting for our purposes, as we do seek a possible form of implementation that
can serve as a computer for minds of different people, and not just the mind of one specific
person. From a biological point of view, this theory may not be true, as although the basic
structure of all human brains (see 1.1 Anatomy of the human brain) is the same, there are
differences in the number and structure of neural connections or brain functionality on neural
layer. Hence, a combination of all three theories will not necessarily be the correct one from a
philosophical point of view, but a valid approach from an engineering position.

10 Reverse engineering the mind

Within this chapter all the requirements for reverse engineering the mind based on the
knowledge imparted in the previous chapters will be discussed, and open questions attempted
to be solved. A suitable theory of mind that on one side may not be the whole truth from a
philosophical point of view, but serves as a valid foundation from an engineering point of
view on the other side is introduced. Furthermore, as I indicated more than once, I am of the
opinion that both quantum physics as well as self-organization occupy the most important
roles in how our brain works and lets us experience conscious content and again, it is required
to plunge into the information theoretical approach to quantum physics, quantum computer
science. All of these fields will be discussed in detail, but the borderlines blur very often, as
from a superior point of view (which is our brain as a whole) all these fields must interact
closely.

10.1 Theory of mind

We got to know the required theories of mind for being able to formulate the one that will
serve as a foundation for reverse engineering the mind. First of all, non-eliminative
materialism and materialism in general incorporate some of the features we need, namely

– the assumption that the human brain as a computer can be fully understood in terms of
structure and architecture and that

– the brain can be replicated on any other platform as soon we have gained this
understanding.

The smallest parts in our brain we have to understand are those acting on quantum level, thus
elementary particles, atoms or molecules. ORCH OR already suggests that quantum
coherence may be maintained over larger areas, due to the occurrence of ordered water
occurring within microtubules, which shows the same effects as a Bose-Einstein condensate
and can thus be described as an extreme physical state of a system of indistinguishable
particles, where the majority of the particles exist in the same quantum state in what we
perceive as time. This is only possible if the particles are bosons and therefore subject to
Bose-Einstein statistics, the latter describing a probability distribution in quantum systems
(we remember that spontaneous violations of the symmetry can result in quantum states
within the brain, which are long-range correlated waves, called Goldstone-Bosons, see also
Chapter 8). Thus, from noneliminative materialism we gathered the insight that the brain can
be fully understood in terms of functionality and for our purposes thus hardware capable of
implementing quantum coherence effects is required. However, to be equipped with the
quantum-hardware alone is not sufficient for the chosen approach. As mentioned multiple
times, self-organization is one of the most important factors in the human brain, so two
probable approaches may be followed, the

– self-organization of hardware followed by the assumption that the implementation of
software is not required or the

– implementation of self-organizing software on the quantum-hardware.

The second approach seems to be more promising than the first one, as we just have to ensure
that the hardware is capable of processing all the functions the software is implementing,
which can be specified even if the software is self-organizing. Even the first approach

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_10

238 10 Reverse engineering the mind

contradicts a purely materialist view, as also self-organizing must implement software, as can
be made clear by having a look at claytronics, a sort of programmable matter being researched
on at Carnegie Mellon University in cooperation with Intel.311 Hence, also functionalism must
be included into our theory, thus the idea that the mind can be recreated algorithmically. If the
mind was just an algorithm, then we could easily program it. As of our current knowledge, the
mind does not work deterministically, so the implementation of a mind-algorithm would be
difficult and the classical functionalist view drops out. A solution to this dilemma is that the
software must be self-organizing has to work within pre-defined parameters; it must be
allowed to structure and develop itself, but within boundaries as also our brain does. Our
brain seems to work at the borders of chaos, but never becomes a chaotic system although it
features numerous, if not infinite degrees of freedom. This is what we have to try to
implement through our software. Last, but not least also identity theory features some
important aspects, as it states that each external sensation may cause different internal
sensations. These may, of course, be differ within each individual, but if we only focus on the
internal sensation created by an external one and take into consideration that two people
experience the same internal sensation caused by a specific external one, then the idea that
this affects the same neural activity may not be true from a biological point of view, but
nevertheless seems to be promising from an information theoretical approach. This is, because
the hard- and software we are seeking for reverse engineering the mind should not only be
capable of implementing the mind of a specific subject with a specific brain structure, but
rather on the one side be so generic that different evolutions would result in different final
states, and on the other hand so programmable that functional on neural layer can be
identified with high accuracy.

Summing up, our theory incorporates ideas from noneliminative materialism, functionalism
and the identity theory. The assumption is that the brain can be rebuilt through on a specific
form of hardware that is capable of generating and maintaining quantum effects. These effects
are triggered by self-organizing software at specific events, like the experience of conscious
content. The software works within predefined parameters on the border to chaotic systems,
but is never allowed to become chaotic, despite its possibly infinite degrees of freedom. The
implementation of self-organizing software on quantum-hardware must allow the assignment
of specific sensations to specific parts of the software, thus the software must be definable
within itself although the only thing we can do before it starts working is to parameterize its
environment.

10.2 Quantum linear superposition in artificial brains

The ORCH-OR model has described that within a human brain quantum linear superposition
may occur in the ordered water of microtubules and that it may also be a large-scale effect.
Even if this is not the case in a biological brain, it is a more than promising approach for
artificial brains. At first we should discuss why there exists the assumption of neuroscientists
that large scale quantum effects in a biological brain are not of relevance, followed by some
explanations why it may nevertheless useful in an artificial implementation.

311 Carnegie Mellon: Welcome to the Claytronics Project [2013-09-22]; URL: http://www.cs.
cmu.edu/~claytronics/

10.2 Quantum linear superposition in artificial brains 239

Regarding relevant quantum effects within our brain it is at first required to reconsider the
functionality of neural information transfer as far as we understand it today. It is commonly
known that neurons transmit and receive electrical signals; however, before a neural signal
can be transmitted from one neuron to the next, it has to travel along the axon. The physical
and chemical gradients can be coupled efficiently and serve as an energy source. The axons of
the neurons conduct electrical pulses, called action potentials, which travel along nerve fibers,
like waves along a jump rope. This works, because the axonal membranes contain ion
channels that open and close to let bypass electrically charged ions. Some channels allow
through ܰܽା ions, other ܭା ions. If the channels open, the ܰܽା and ܭା-ions flow along the
opposite chemical and electrical gradients in the cell in or out as a result of the electrical
depolarization of the membrane. If an action potential begins the cell body, the ܰܽା channels
open first. A wave of ܰܽା-ions travels into the cell and a new equilibrium occurs within a
millisecond. In an instant, the transmembrane voltage changes by about 100 mV. The inner
membrane potential changes from negative (about-70 mV) to positive (about +30 mV). This
change opens ܭା channels and a wave of ܭା −ions flow out of the cell, almost as soon as the
ܰܽା ions that are passed inwardly. This means that the membrane potential inside of its
negative part returns to its initial value. For this to happen, only very few ions are required to
cross the membrane – the concentration of ܰܽା and ܭା ions in the cytoplasm does not
change significantly during the action potential. Thus, the firing of neurons includes transfer
of ions, which is also a counter-argument against the first noneliminative materialism-
approach, which dictates that some special substance may emanate conscious content, as not
new substances are created, let alone one that contains conscious experiences.

The above explanation does entirely go without any quantum physical phenomena. However,
the remaining question is still if only the neural signal transmission and reception can account
for conscious experiences. Even if every conscious event causes areas of neurons to fire, the
quantum layer may play a role that has not yet been understood. What I want to say is that
even if we would fully understand the classical level of our brain we could not exclude the
relevance of actions on quantum layer in the brain, for we would not have a proof against it.
The idea that quantum physics may play a role in producing conscious experiences is, at least
to me, very appealing; however, as already indicated, neither am I of the opinion that quantum
physics alone can be made responsible for the existence of consciousness, nor do I believe
that classical physics alone can account for that. Either way, within this elaboration reverse
engineering does not stand for analysis, understanding and cloning; it stands for analysis,
understanding and implementation of functionalities, irrespective of differences in architect-
ture that may be encountered. The proposition of reverse engineering mind functionalities is
approached from an information theoretical perspective, which may include everything that is
of value for a possible realization scenario, irrespective of its relevance for the human brain
has been proved or not. Thus, if quantum physics is considered to be useful, it will be
included in the proposal, irrespective if it features some effective impact on our minds. What
has already been mentioned is that the brain is a complex self-organizing structure, featuring
infinite degrees of freedom. Hence, an artificial neural network or better, a combination of
artificial neural networks seems to be a promising idea. However, this cannot be an artificial
neural network as described in 3.3 Neural networks or even chapter 4. The only neural
network that would be able to encounter the requirements of what we are looking for can be
one that is processed on a quantum computer. Thus, not the hardware will be self-organizing,
but the software and the software will be capable massively parallel information processing
due to quantum hardware, such as described in 10.5 Quantum physics and the artificial brain.
However, before going into detailed descriptions of quantum artificial neural networks, an

240 10 Reverse engineering the mind

equivalent for the ordered water within microtubules described by the ORCH OR-procedure
needs to be found. Such large-scale coherent quantum states are called Bose-Einstein
condensates, but today we encounter several problems when we try to produce such. Bose-
Einstein condensates are macroscopic quantum objects, in which the individual bosons are
completely delocalized. The probability of each boson to be found at a certain point is the
same everywhere within the condensate. The state can thus be described by a single wave
function. This results in properties such as superfluidity, superconductivity or coherence over
macroscopic distances. The latter allows interference experiments with Bose-Einstein
condensates and the implementation of an atom laser, which can be maintained through
controlled extraction of a part of the matter wave from the trap holding the condensate trap.
The phase transition of a conventional atomic gas to a Bose-Einstein condensation occurs
when a critical phase bulk density is achieved, e.g. when the density of particles having
almost the same impulse is large enough. The atoms are quantum particles whose motion is
represented by a wave packet. The extent of this wave packet is the thermal de Broglie
wavelength, which becomes larger, the more the temperature falls. If the de Broglie
wavelength reaches the mean distance between two atoms, the quantum properties come into
effect. In a three-dimensional ensemble the Bose-Einstein condensation sets in. Therefore, it
is required to increase the density of the gas and to reduce the temperature for being able to
reach the phase transition. In the framework of statistical physics, by the application of the
Bose-Einstein statistics, the critical temperature ௖ܶ of an ideal Bose gas can be calculated,
below which the Bose-Einstein condensation sets in:

௖ܶ = ௛మ

ଶగ௠௞ಳ
ඨቆ ௡

(ଶௌାଵ)఍ቀయ
మቁ

ቇ
ଶ

య
 (10-1)

where ℎ is the Planck’s constant, m the particle mass, ݇஻ Boltzmann’s constant, ݊ the particle
density, ܵ the particle spin and

ቀଷ
ଶ
ቁ ≈ 2,6124 (10-2)

Riemann’s Zeta-function. The Bose-Einstein statistics or Bose-Einstein distribution is a
probability distribution in quantum statistics. It describes the mean occupation number 〈݊(ܧ)〉
a quantum state of the energy ܧ being in the thermodynamic equilibrium at the absolute
temperature ܶ, for identical bosons as occupying particles. Analogous there is the Fermi-
Dirac statistics for fermions, which goes, as well as the Bose-Einstein statistics, in the
Boltzmann statistics in the limit of large energy ܧ. The core of the Bose-Einstein statistics is
that at simultaneous exchange of all four variables ݔ, ,ݕ ,ݖ ݉ of two bosons (,ݔ ,ݕ ݖ
representing the position in space, and ݉ the spin), the wave function ߰, respectively the state
vector of a many-body system does not change its sign (߰ → ߰), while it does change the
sign in the Fermi-Dirac statistics ((߰ → −߰)). In contrast to fermions, several bosons can
therefore be in the same one-particle state, thus featuring the same quantum numbers.

The usual method for generating Bose-Einstein condensates of atoms consists of two phases:

– First, the atoms are trapped in a magneto-optical trap and precooled by laser cooling.
However, the laser has a lower limit for cooling temperatures (typically about 100 ܭߤ),
which is due to the recoil of the spontaneous emission of photons.

– The average velocity of the atoms cooled by that way is of only a few centimeters per
second, which is small enough to be captured in a magnetic or optical trap. Through

10.3 Self-organization 241

evaporative cooling, e.g. continuously removing the most energetic atoms, the
temperature of the cloud of atoms can be reduced further. In this process, usually more
than 99.9% of the atoms are selectively removed. Thus, the remaining atoms reach the
necessary phase space density to complete the phase transition to a Bose -Einstein
condensate.

Until 2004, it was possible to reach at ultralow temperatures of 10ି଻ ܭ and to create Bose-
Einstein condensation for many different isotopes in this way. Furthermore, Bose-Einstein
condensation could be realized with one hydrogen atom, albeit with slightly different
methods.

That the above mentioned gases show bosonic and not fermionic behavior is based on a subtle
interplay of electron and nuclear spin at ultralow temperatures: at correspondingly low
excitation energies the half-integer total spin of the electron shell of atoms and also half-
integer nuclear spin by the weak hyperfine interaction are coupled to an integer total spin of
the system. In contrast, the behavior at room temperature is determined solely by the spin of
the electron shell, because here the thermal energies are much larger than the hyperfine field
energies. The search for an equivalent of Bose-Einstein condensates, thus some sort of matter
that allows wide-scale quantum coherence effects, it is required to recall the idea of
implementation. The idea is that quantum coherence should be realized within an artificial
neural network, a quantum artificial neural network, which has already been found (see
10.5.1.8 Envisaged implementations of a quantum artificial neural network).

10.3 Self-organization

As already indicated, I find the idea of considering the brain as quantum computer appealing,
but it is also required to take into account neural information processing and self-organization.
The ORCH OR model mentions the property of self-organization in the way that it explains
that microtubules are self-assembling hollow crystalline cylinders whose walls are hexagonal
lattices of subunit proteins known as tubulin and that in neurons, microtubules self-assemble
to extend axons and dendrites and form synaptic connections for helping to maintain and
regulate synaptic strengths responsible for learning and cognitive functions. 312 The human
brain, with all its neural connections, can be understood as self-organizing computer.
Depending from sensual inputs and environmental stimuli, connections between neurons
form, are strengthened or weakened. Furthermore, self-organization is not something that our
brain experiences once, it is a continuous process. Thus, our brain is a dynamical, self-
organizing and distributed system. Through each impulse of awareness, neural structures, thus
multiple neurons, are affected in the sense that learning happens. A major advantage is that
every new input is compared to existing experiences with the goal that similar sensations are
processed in the same neural area. This leads to pattern and connection stabilization of the
respective structures. The more often such stimuli reach a specific neural pattern, the more
stable it gets and the more likely it is that these pattern can be actualized and used for
processing similar inputs (see also 3.3.3.4 Hebb's learning rule).

312 Hameroff Stuart: Quantum computation in brain microtubules? The Penrose-Hameroff "Orch OR"
model of consciousness [2013-09-18]; URL: http://www.quantumconsciousness.org/penrose-
hameroff/quantumcomputation.html

242 10 Reverse engineering the mind

An important structure in learning and thus self-organization is the hippocampus (see 1.1.2.2
Hippocampus), which evaluates sensory inputs in the sense that it classifies the actual input
into categories like ‘already known’, ‘new’, ‘old’, ‘important’, ‘interesting’,... The hippo-
campus is, as far as we know today, also important for experiencing conscious content, as it
ensures that events, news, facts, etc… are experienced consciously. New experiences,
associations … may be stored within this part of the brain, but only for a short time as its
storage capacity is very low. Therefore, the hippocampus transmits the information it
considers to be important to the cortex (1.1.3 Cortex and neocortex), which is more suitable
for storing information permanently. We can imagine the hippocampus as trained neural
network that trains another neural network. The learning approach itself can be compared
with chapter 5.1, which copies information from one artificial neural network to another.

On taking stock we see that the human brain benefits from plasticity (called neuroplasticity in
neuroscience), which is the ability of the central nervous system to structurally and
functionally adjust through internal change processes due to external conditions and to
changing requirements. Our perception, our capacity, our speech and language ability are
becoming more sophisticated and extensive as in the course of child development. In the first
years of life, not the number of neurons not necessarily increases, but the synaptic density as
well as large neural bundles and connections are partially restructured and contoured. Change
processes happen due to the fact that the neural structures and connections become finer
through development-related neurochemical processes. Furthermore, the respective situations
and challenges of life evoke the development and adaptation of neural structures. As far as we
know today, not only individual nerve cells can change depending on new utility models
(synaptic plasticity), but that whole areas of the brain can adapt to new challenges (cortical
plasticity).

Before going into further detail with self-organization, it is required to define some termini
that are important in this context.

10.3.1 Structure and system

In mathematics, the term structure is defined as the kind of relations and definable operations
on a quantity of different elements. A structure of a system is the kind of ordinance and the
conjunction of elements, or the entirety of relations between these elements. There exist
spatial and temporal structures, and in terms of functionality we have to differentiate between
conservative and dissipative ones, whereas only the latter one is of interest for us.

– A system is a relatively stable, ordered entirety of elements and relations that is charac-
terized by the existence of specific laws.

– Structure building can be characterized as the creation of new structures; however, here
structure building is seen the emergence of higher, more ordered structures, like the
enhancement of a neural network by the adding or removal of synaptic connections.

10.3.1.1 Conservative structure

A conservative structure is a structure that heads for a local minimum of potential energy.
This means that a system that is deprived warmth, obtains a higher degree of order. An
example is a ferromagnet that loses its spontaneous magnetization at high temperatures, but

10.3 Self-organization 243

regains it at low temperatures, which happens because on microscopic layer the interacting
elementary magnets act cooperatively, and arrange in parallel when the thermal movement
ceases. Such conservative structures are static, separable and mostly of microscopic
magnitude. This is where thermodynamics comes into play, as a reduction of entropy through
the lowering of the temperature acting on the structure occurs.

10.3.1.2 Dissipative structure

Conservative structures cannot be used to explain biological systems, as cooling results in
death. Living organisms can only function by permanently exchanging matter and energy
with their environment. This means that chemical energy is supplied in terms of relatively
unstructured nourishments, which subsequently is changed into ordered aspects like
regulation or movements. Furthermore, this chemical energy is released into its environment
by warmth and inferior substances. A system based on a dissipative structure is in continuous
imbalance with its environment, thus continuously exchanging matter and energy, which
allows continuous export of entropy and structure formation. A neural network, e.g., is a
nonlinear dissipative system.

10.3.2 Self-organization in computational intelligence

Without doubt, self-organization in the brain is one of its most extraordinary features. On the
classical level, the brain complexity is achieved not only by the number of neurons it consists
of, but by causal collaboration of these, which is possible because of the neural
interconnections. These dynamically forming interconnections are the connection to self-
organization, as somehow the information of how the evolution within such a complex system
can be achieved must be coded within the gene structure. Let assume, our brain is a system
with infinite degrees of freedom, and let us compare a possible evolution of an artificial brain
with selection and evolution, as on a classical level neural, the correct set of neural
interconnections for an area of neurons may be determined by the application of genetic
algorithms, as introduced in chapters 3.3.3.7 Genetic learning (NeuroEvolution)or 5.1. A
major challenge to both brain research and our instincts is the dispersed association of our
brains. The neurobiological confirmation amassed throughout the most recent decades has
prompted radical changes in our perspectives of the brain. In former days, instinct and
contemplation were the major wellsprings of information for the detailing of theories about
the association of the cerebrum. Right away it has been discovered that these instincts are in
exceptional clash with the confirmation furnished by experimental examinations, raising the
fascinating address of why the mind is so agnostic to its own particular association. Instinct
recommends that at some place in the cerebrum there should be a merging focus where all
data is meeting up to be amiable to lucid understandings. This might be the site where
perception takes place, where the intentional agent is active, where decisions are reached,
where plans are developed and where the Self is seated. We expect various levelled structures
and we likewise reproduce them in the social and practical world – most likely not
dependably further bolstering our good fortune, in light of the fact that they may be
maladapted when frameworks come to be extremely unpredictable. The actuality of our brains
is altogether different. The cerebral cortex contains an expansive number of distinctive zones
that, contingent upon their data, fulfil diverse capacities however utilize comparative
computational algorithms. In this manner, the configuration of replaceable data is dependably

244 10 Reverse engineering the mind

the same and correspondence around cortical regions can profit by this. This is an important
essential for generalization, deliberation, typical encoding and, last yet not slightest, for the
constitution of the solidarity of cognizance. The shocking finding is that the associations
connecting these territories give just minimal confirmation for serial preparing in strictly
various levelled architectures. Rather, the connectivity plan is commanded by standards of
parallelism, correspondence and distributedness. Subsequently, neurons placed in the visual
cortex can talk straightforwardly to neurons in the limbic system or in official territories, and
a large portion of these collaborations are equal. This meshwork of associations is remarkably
thick and complex yet a long way from arbitrary. It is exceedingly organized and has the
structure of small world networks. This building design is the fittings acknowledgment of the
projects as per which brains process data and it is likewise the groundwork of saved
knowledge. Let assume a person is confronted with a dangerously-looking dog, which it
touches nevertheless and considers it benevolent then. Hence all visual zones will be active
and take part in the identification of the mentioned dog, the same holds for the tactile areas,
which investigate the surface of its hide, the sound-related regions that disentangle the
yapping and the limbic zones that include the passionate essences. There is no single locus for
the representation of the coordinated percept of this animal. Rather, the representation
comprises of a mind boggling spatio-temporal example of conveyed neural movement. In this
manner, the mind exhibits itself as a profoundly conveyed, self-organizing system. Actually,
nonetheless, there is no single focus; there is no identifiable seat of the cognizant, purposeful
self. The mind is a circulated framework that self composes and produces each one of the
aforementioned remarkable phenomena that we as spectators credit to the individual, the Self.
The mind, in spite of the fact that it displays nonlinear elements, is tuned to accept that the
methodologies to be investigated are straight so as to have the capacity to make sensible
forecasts. Notwithstanding, if the cerebrum expects the same concerning its own particular
working, provided that it accepts that it executes predominantly straight operations, it is
certain to hypothesize a mover, in light of the fact that direct frameworks can't without anyone
else's input produce all the striking capacities that we watch, they can't be imaginative, open
towards what's to come and intentional.

Self-organizing, distributed and objective administered systems require effective and
adaptable components for organization and binding, in a connection subordinate manner, the
numerous disseminated neighborhood forms into intelligible wholes. Restricted to tie
dispersed effects is meeting in dedicated anatomical circuits. Provided that the messages
encoded by units X and Y are to be bound it suffices to associate their yields with a third unit
Z and after that to select suitable thresholds for unit Z, with the intention that Z is just
animated when X and Y are active in the meantime. Thusly relations could be assessed in
unbending, anatomical architectures and communicated by the reactions of conjunction
particular neurons. The mind utilizes this technique, however on account of its inflexibility
and resoluteness, this methodology can apply just for the encoding of every now and again
happening stereotyped relations. The elective is to express relations by dynamic marks, with
the intention that the representation remains circulated however capacities as a sound entire, a
methodology called get assembly coding. With 10ଵଵ neurons, each one having the part of an
image, and an adaptable recombination component, a basically interminable number of
distinctive dispersed representations could be shaped. The representations of novel questions,
of the perpetually changing heavenly bodies of true conditions and of adjustable engine
reactions, are, consequently, actualized best by progressively configured assemblies. Be that
as it may, in get assembly coding, one needs a code that characterizes from example to
occurrence which subset of the bunch animated neurons truly helps a specific representation.

10.3 Self-organization 245

As there will dependably be some coinciding congregations, an unambiguous indicator is
wanted that advises to whatever is left of the mind which neurons are truly bound together in
a gathering. In this manner, neurons supporting gathering codes need to pass on two messages
in parallel. To begin with, they need to indicator if the characteristic for which they serve as
image is available and, second, they need to demonstrate, in parallel, with which different
neurons they are truly working together so as to structure the lucid entire to which they help
their characteristic. According to common assertions, they indicate the vicinity of the
characteristic for which they stand as image, by expanding the recurrence of their releases, by
coming to be more dynamic. The signature for the relatedness of the cells fitting in with a get
together is the exact synchronization of unique releases that, much of the time, experience
likewise an oscillatory regulation. The needed exactness is in the reach of milliseconds which,
in guideline, permits the meaning of relations with the fleeting determination important to
reconfigure assemblies at a quick pace. Furthermore, there are to be sure systems that render
neurons especially susceptible to synchronous, e.g. coincidental inputs. Since the revelation of
boost ward synchronization of oscillatory reactions, numerous research facilities have joined
the quest for its practical suggestions. A major essential for those studies is to example at the
same time the reactions of no less than two neurons, ideally of whatever number as could be
allowed, in light of the fact that generally fleeting relations can't be surveyed. In this
connection it is imperative that, up to this point, it has only been recorded from only one
neuron at once, and related to the firing of these isolated cells stimuli or behavior have been
used in order to identify their functional properties. This blocked dissection of relations and
thus the Id of practically bound congregations. Provided that one acknowledges the
unpredictability of the framework it is evident that even the multisite recordings have their
points of confinement. In spite of all advancement, currently we still are at the exact start of
comprehension the mind methodologies underlying higher cognitive functions. Since its
revelation, synchronization of oscillatory movement has turned into a hopeful instrument for
numerous distinctive capacities. One is the recently said dynamic tying, the adaptable
meaning of relations. Nonetheless, synchronization likewise appears included in attentional
mechanisms that select motions for further transforming. It seems to serve the readout of data
that is archived in the connectivity and it additionally seems, by all accounts, to be utilized to
tie diverse sub-frameworks together, for example tactile and engine frameworks.
Confirmation additionally shows that synchronization of oscillatory action serves the specific
tracking of indicators over the exceptionally interconnected systems of the cerebral cortex.
The instrument takes after the tuning of a radio to the recurrence of a certain transmitter,
along these lines permitting cerebrum centers to communicate something specific with high
selectivity from focus X to focus Y without spreading it to the various others, additionally
associated, structures. This particular steering is an exceptionally challenging issue in a quite
joined framework and may be understood by synchronization of oscillatory action. There are
additionally signs that entrainment into lucid motions assumes a part in the space and support
of data in fleeting memory; and, at long last, expansive scale synchronization has all the
earmarks of being an essential for indicators to have admittance to cognizant processing.313

313 Singer Wolf (2009): The Brain, a Complex Self-organizing System; European Review, Vol. 17,
No. 2, pp. 321–329

246 10 Reverse engineering the mind

10.3.2.1 Self-organized learning

On cellular level, the cerebrum and the nervous system are made out of an endless system of
interconnected cells called neurons. Neurons might be of numerous sorts and shapes, however
eventually they capacity in a comparable way. In case the brain is self-organized, neurons
might be the unique components that connect with a specific end goal to shape one global
pattern. Neurons hold long and short enlargements called axons and dendrites, separately. The
neurons are joined with one another through these amplifications. Dendrites convey electric
possibilities towards the cell and axons divert them from the unit. The dendrite of one neuron
is associated with the axon of an alternate, with a minor hole in the middle of called the
synaptic crevice or synapse. So as to transmit data starting with one neuron then onto the next
the neuron transmits an electric signs that ventures down the axon and makes the arrival of
neurotransmitters that travel through the synapse the other unit. This sort of cooperation is
totally local. The associations around neurons are not static, in any case. Associations are
reinforced and debilitated continually, and this sort of face to face time structures the premise
of studying. In spite of the fact that they are the essential units that make up the cerebrum,
neurons are a long way from straightforward independent from anyone else. Coordination of
sensory information throughout studying is all the additionally amazing when we consider
that two neurons in, say, the visual and audial cortices of the mind, are divided by billions of
interceding neurons and offer no normal synapses that can accelerate simple combination of
data. An alternate significant part of studying is the capacity to recognize critical data from
immaterial data. Hebbian learning (see 3.3.3.4 Hebb's learning rule) is important here, as well
as competitive learning, which has not been introduced yet. Adaptive Resonance Theory
ANNs, which utilize competitive learning as well as some different runs to beat the steadiness
versatility issue, is likewise talked over. Truth be told, the vast majority of the fruitful models
use Hebb’s learning rule, in which neurons utilize just local data. These models have a
considerable lot of the attributes required in self-organized systems.

10.3.2.2 Learning with respect to self-organization

The basic surmise utilized within most models of the cerebrum is the presence of Hebbian
synaptic versatility, or Hebbian learning. The algorithm, by which neurons change the quality
of their associations with different neurons, was at first proposed by Donald Hebb and is as
follows:314

The point when an axon of neuron A is close enough to excite neuron B repeatedly or
tirelessly partakes in firing it, some development prepare or metabolic change happens in one
or both cells such that A's productivity, as one of the neurons firing to B, is increased.

The definitive hypothesis has been adjusted and cleared up since its commencement with a
specific end goal to include some key attributes. The principal characteristic is that this
system is local, as the neurons react to local information through their association with
neighboring neurons. This doesn't discount global control signs that may be utilized to control
Hebbian versatility in an aggregation of units. There is some proof that neuromodulators
might act in this part. A second significant characteristic is that the cooperation requires

314 Brown T.H., Chattarji S. (1995): Hebbian Synaptic Plasticity; The Handbook of Brain Theory and
Neural Networks; Massachusetts: MIT Press, pp. 454–459

10.3 Self-organization 247

action on both sides of the synapse. This brings about neurons that follow up on correlated
input for reinforcing each other. The last characteristic of this model is that the right timing of
the presynaptic and post-synaptic movement of neuron A and neuron B, separately is crucial
in verifying how the associations are changed. Hebbian studying is a standout amongst the
most critical ideas utilized for unsupervised studying within Neural Networks. One use of
systems utilizing this control is within making an associated memory. An acquainted memory
is a framework that can review mappings between particular inputs and particular yields.
Additionally, it has been demonstrated that the standard execution is optimal in finding
associations under the presumption of Gaussian noise. Let assume that there exists an
artificial neural network consisting of ௜ܰ neurons, each one joined with different neurons and
the quality of the connection between neuron ݅ and neuron ݆ is ݓ௜௝ . We already got to know
Hebb’s learning rule with respect to artificial neural networks, but not everything about it has
been said. Just to remember, the weight change within an artificial neural network according
to Hebb’s rule is calculated as follows:

ݐ)௜ݓ + 1) = (ݐ)௜ݓ + ௜ݓ∆ (10-3)

Through ∆ݓ௜ the necessary change (delta) in the weight of the corresponding connection is
calculated at the point in time ݐ + 1, as the following equation shows:

௜ݓ∆ = (4-10) ݕ௜ݔߤ

Considering not only the weight change, but the resulting output, we remember the single
layer perceptron equation

ݕ = ݂(∑ ߱௜
௡
௜ୀଵ ௜ݔ + (ߠ + ߳௧ (10-5)

which in principle equals a single neuron output of a multi-layer perceptron:

௜ݕ = ∑ ௝௝ݔ௜௝ݓ (10-6)

where ݕ௜ is the output of the ݅௧௛ neuron, ݔ௝ the output of the presynaptic neuron and ݓ௜௝ the
weight between these neurons.

Hebb's learning rule states that the change in weight between neuron ݅ and ݆ is impacted by
the learning rate ߤ, the input gained from the presynaptic neuron ݆, and the output of neuron ݅
(post-synaptic). The learning rate is normally a modest number that could be diminished
through time. This implies that if the two neurons fire concurrently, then the weight of their
connection will expand relatively to the firing strength. When substituting the equation for the
weight change into the equation for the output of a multi-layer perceptron’s single neuron, the
result is

௜௝ݓ∆ = ௝ݔߤ ∑ ௞ݔ௜௞ݓ = ௞ߤ ∑ ௞௞ݔ௜௞ݓ ௝ (10-7)ݔ

It might be demonstrated utilizing this last mathematical statement that the system utilizing
this rule has the capacity to find associations in the data set. This straightforward tenet is
insufficient, on the other hand, since it is shaky; rehashed utilization can build the weights of
the connections without limits, and the execution will corrupt since all the neurons will be
saturized to their maximum values. This is to some extent because of the positive feedback in
the system: Larger weights results in larger outputs, which will bring about a larger increase
of weights. It is likewise biologically unrealistic since there is a limit on the number and

248 10 Reverse engineering the mind

effectiveness of synapses for every neuron. Thus, rules featuring a decay term have come up,
which could be implemented utilizing negative feedback. The single neuron output equation
continues as before, yet the firing from one cycle is fed back over to the following as
inhibition to give:

ݐ)௝ݔ + 1) = (ݐ)௝ݔ − ∑ ௞ݕ௞௝ݓ
ெ
௞ୀଵ (10-8)

resulting in

௜௝ݓ∆ = ݐ)௝ݔ௜ݕ௧ߤ + 1) = (ݐ)௝ݔ௜൫ݕ௧ߤ − ∑ ௟ݕ௟௝ݓ
ெ
௟ୀଵ ൯ (10-9)

after substitution, where ݔ௝(ݐ) and ݔ௝(ݐ + 1) show the difference of activation times. With
these particular changes, the weights converge and it has been indicated that the systems
winds up doing primary component analysis (PCA). PCA uncovers the best linear
compression of data by uncovering the straight support of an information set that minimizes
the mean squared error between the compressed and uncompressed data. An alternate method
to overcome the issue of boundlessly increasing connection weights is to renormalize the sum
synaptic weights of all inputs, so the total input weight becomes a constant. This brings about
competition, since an increment in weight from one neuron brings about a decline in the
weights of connections with other neurons. There have been numerous varieties of Hebb's
learning rule that bring about altogether different designs or functions coming about.
Furthermore, and of utmost importance for understanding the learning functions in the human
brain, some proof for Hebb's guideline was later discovered in the hippocampus as Long
Term Potentiation (LTP). Due to the study of animal brains, it was discovered that certain
stimulation of axons in the hippocampus expedite an expansion in the synaptic strength as
measured by the post-synaptic reaction, and it was discovered to last anyplace between a
couple of hours and a couple of days. LTP may be seen as an extension to Hebb's learning
rule and states that if a weak and a strong input act on a synapse simultaneously, the weak
synaptic connection gets stronger. Likewise, if a second weak input exists, which is yet active
while the strong synapse is active, unlike the first week input, it won't be strengthened.

10.3.2.2.1 Competitive learning

An algorithmic execution of Hebb's learning rule in artificial neural networks is called
competitive learning, and it alludes to a group of calculations that utilize a competition
between lateral neurons throughout learning. Accordingly, the error function itself works as
feedback signal that educates the system of the course in which changes are needed. As of
late, intense studying has appropriated impressive consideration, not only because of its
biological plausibility. Normalization of the aggregate of inputs to a neuron, as implemented
in Hebb's learning rule is one basic type of that. In an ordinary competitive artificial neural
network, neurons in every layer are joined with a layer above as in standard artificial neural
networks; however moreover, there are parallel (lateral) connections between neurons in the
same layer which make the competition. Competitive learning incorporates a wide mixture of
algorithms performing diverse tasks, for example clustering or classification, and is likewise
alluded to as self-organized or unsupervised learning. This shows it rather than supervised
learning, where the network appropriates sentiment as target outputs (see also 3.3.2.1
Supervised and unsupervised learning). In unsupervised learning, the learner chooses which
parts of the input indicate structure to catch in the output. Basically, the learner fabricates a
probabilistic model of data and utilizes this to create a recognition distribution, given a
particular example of the input. Reaction in competitive artificial neural networks happens at
two levels:

10.3 Self-organization 249

1. The competitive artificial neural uses feedback, as parallel (lateral) inhibitory connections
and self-excitation, to pick the competition's winning neuron.

2. The victor's weight vector is changed to minimize the error between the input data and
the weights.

Competitive learning algorithms utilize rivalry through lateral connections between neurons
in the same layer. Again, there are two approaches we can differ between:

1. Hard competition results in a final activity of a single neuron – only the winning one.
2. Soft competition does not reduce neural activity of all losing neurons down to zero, as

practical applications have shown that hard competition results in neurons that never win
a competition. This is a problem as such neurons are still required for ensuring the
network’s functionality, although they are not used. Thus, they must be considered to be
probably hazardous for the network’s configuration. An alternate issue with hard
completive learning is that distinctive arbitrary initializations might expedite broadly
varying outputs, as local changes within the network may be unable to get it out of the
local minimum in which training has started. All of these issues can be overcome by the
application of soft competition approaches.

The biological conceivability of competitive learning might be deduced from the way that the
neurons in competitive neural networks improve into feature-sensitive indicators, which we
currently know do also exist in biological brains and may thus be related to what we perceive
as mind. It has also been shown that inhibition plays a major role regarding orientation in the
visual and sensory cortices.315,316,317

10.3.2.2.2 Competitive learning in artificial neural networks

Competitive learning artificial neural networks embody the feed forward excitatory network
and the lateral inhibitory network, where the former one normally is used for implementing an
excitatory Hebb's learning rule and the latter one an inhibitory one. During learning, the
network selects winning neurons due to a competitive learning rule, and depending from the
rule, the winner may receive the largest input and all other neurons nothing (what would be
the case with hard competition). Let assume a neuron featuring lateral positive (excitatory
weighted) connections (the neurons feature self-connections – see also 3.3.2.8 Recurrent
artificial neural network) and featuring negative (inhibitory weighted) connections to the
other neurons within the same layer is presented a vector ݔ:

ݕ = ∑ ௝௝ݔ௜ݓ (10-10)

Each neuron then computes the weighted sum ݕ of this vector‘s inputs. Some other neuron ݖ
may feature a value of ݕ bigger than any possible in the layer. It is currently asserted that, if
the network activation ℎ, is permitted to develop by making utilization of the lateral connec-
tions, then neuron ݖ will improve a maximal value while the others get decreased. The time

315 Merzenich R.J. et al. (1988): Cortical representation plasticity; Neurobiology of Neocortex; New
York: Wiley; pp. 41–68

316 von der Malsburg Christoph (1973): Self-organization of orientation sensitive cells in the striate
cortex; Kybernetik, 14:85–100

317 Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the Brain;
Atlanta: Georgia Institute of Technology

250 10 Reverse engineering the mind

advancement of the neuron is normally represented by a comparison which confirms the rate
of progress of the activation. This needs to incorporate the input from the lateral connections
and also the external input given by ݕ.

ௗ௛
ௗ௧

= ܿ௬ݕ + ܿ௦ܵ − ܿ௛ℎ (10-11)

In the equation ܿ௬ and ܿ௛ represent the positive (excitatory) constants and ܿ௦ a negative
(inhibitory) one, working on the weighted input sum of the lateral connections ܵ. ℎ represents
the neuron activation threshold (not the activation function). Observation suggests that the
neuron z with the most significant excitation y from the input has its activation increased
straightforwardly by this and by implication through the self-excitatory connection. This
brings about restraint of the neighboring neurons, whose inhibition of z thus, is then further
decreased. This process is continued until stability occurs. There is thusly a competition for
activation over the layer and the system is said to advance by means of competitive dynamics.
Throughout the learning stage, the network is provided a training set of inputs, and every
input data set is represented by a vector. As has already been described, the objective for the
ANN is to find a weight vector setup that minimizes the network's total error with respect to
the training set and by the application of a learning algorithm. Keeping in mind the end goal
to attain this objective, the weight vectors must be changed so they match the training set. The
neuron z with the closest vector is that which gives the most input data excitation y since this
is simply the dot product of the weight and input vectors. The weight vector of neuron ݖ may
be arranged all the more nearly with the input if a change is made consistent with the
following equation:

ݓ∆ = ݔ)ߙ − (12-10) (ݓ

Competitive dynamics is helpful in figuring out the neuron ݖ, which is determined by hard
competition. Assuming that ݋ is the output of a neuron, where ݋ is zero for all nodes with the
exception of ݖ, then the change in weights for every neuron is made consistent with

ݓ∆ = ݔ)ߙ − (13-10) ݋(ݓ

Summing up, the learning algorithm is as follows

Start

1. Create initial ANN and randomize weights.
2. Repeat

a) For each input vector
i. Calculate

ݕ = ∑ ௝௝ݔ௜ݓ
ii. Update the ANN according to

݀ℎ
ݐ݀ = ܿ௬ݕ + ܿ௦ܵ − ܿ௛ℎ

3. Until criteria are reached

End

Algorithm 24 – Competitive training

10.3 Self-organization 251

Breakdown:

 of a vector‘s inputs ݕ weighted sum :ݕ
௜: the ݅௧௛ݓ weight from a neuron ݆
ܿ௬, ܿ௛: positive (excitatory) constants
ܿ௦: negative (inhibitory) constant

From the learning algorithm it becomes obvious that the weight vectors are learned unsuper-
vised or in a self-organized manner, as the network is not taught the nature of the input.

10.3.2.3 Adaptive Resonance Theory

Most training algorithms, including competitive learning and SOFMs, work just on static
input data. In the event that a system is prepared on a set of input vectors, it is capable of
classifying the input data accurately just if it is not dynamic. If the input data is self-
organizing and dynamic, the exactness of a network diminishes quickly since the fixed
weights anticipate the system from its adaptation to the dynamic environment resulting in
networks being not plastic. To overcome this issue, the network might be retrained on another
set of data vectors, so it is able to adjust to any progressions in the input data; however, this
makes a fast decline of exactness by which it classifies the old inputs, since the old data is
lost. This is what has been explained as the stability-plasticity dilemma at 3.3.4 Stability-
plasticity dilemma. Amongst others, adaptive resonance theory (ART)-networks have been
developed explicitly to tackle this issue, as it relies on an incremental clustering algorithm by
which it is able to self-organize progressively and to produce stable recognition while
learning input patterns past those initially stored (within the weight matrix). ART consolidates
feedback both at the level of the competitive network and between different modules at the
network level, as both inhibitory and excitatory connections are utilized to attain learning
success. The least complex ART ANN is a vector classifier accepting a vector as input data
and classifying it into a category hinging upon the stored pattern it most closely corresponds.
When a pattern is discovered, it is altered to take after the input vector. Provided that the input
vector does not match any stored pattern inside a certain tolerance, then another category is
made by storing another example comparable to the input vector. Hence, no stored example is
ever altered unless it matches the input vector inside a certain tolerance. Such ANNs have
been successfully applied within a wide range of areas such as for the classification of ECG
patterns, for applications requiring associative memory and semantic information processing,
or even the building of expert systems, which requires concept discovery – a field only such
kind of ANNs can be successfully used within.318,319,320,321,322 ART1 is the simplest ART
network - learning unsupervised and capable of processing only binary values. It commonly

318 Barro S. et. al. (1998): Classifying multichannel ECG patterns with an adaptive neural network;
IEEE Engineering in Medicine and Biology Magazine; 17(1):45–55

319 Grossberg S. (1976): Adaptive pattern classification and universal recording, 1: Parallel develop-
ment and coding of neural feature detectors; Biological Cybernetics; 23:121–134

320 Tan A. (1997): Cascade artmap: Integrating neural computation and symbolic knowledge pro-
cessing; IEEE Transactions on Neural Networks; 8(2):237–250

321 Williamson J.R. (1996): Gaussian artmap: A neural network for fast incremental learning of noisy
multidimensional maps; Neural Networks; 9(5):881–897

322 Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the Brain;
Atlanta: Georgia Institute of Technology

252 10 Reverse engineering the mind

comprises of an orienting subsystem, an attentional subsystem (see Figure 75 - ART1
Structure), a vigilance parameter and as well as a reset module. The vigilance parameter has
respectable impact on the system. High vigilance processes more detailed remembrances, e.g.
fine classes, while lower vigilance brings about additional general remembrances. The ART1
attentional subsystem features two competitive networks, a comparison field layer F1 and the
recognition field layer F2, two control gains Gain1 and Gain2 and two short term memory
(STM) stages F1 and F2. Long term memory (LTM) follow between F1 and F2 multiply the
signal in these pathways.

Orienting subsystemAttentional subsystem

Gain 2 Recognition layer F2

Comparison layer F1 Reset waveGain 1

++

+

+
+

+ +

-

-

i1 i2 in

j1 j2 jn

Figure 75 - ART1 Structure

Gains control empowers F1 and F2 to recognize the present phases of the running cycle. The
STM reset wave inhibits animated F2 cells, if confounds between the bottom-up and top-
down indicators happen at F1. The comparison layer gains the twofold outside input passing it
to the recognition layer answerable for matching it to a classification category. This come about
is passed again to the comparison layer to discover if the category matches that of the input
vector. In the event that there is a match, another input vector is perused and the cycle begins
once more. Assuming that there is a mismatch, the orienting system is responsible for

10.3 Self-organization 253

inhibiting the past category to get another category match in the recognition layer. The two
gains control the movement of the recognition and the comparison layer separately. The
orienting subsystem creates a reset wave to F2 when the bottom-up input pattern and top-down
model pattern at F1, consistent with the vigilance criterion. The reset wave specifically and
enduringly inhibits the animated F2 cell until the present is stopped. Offset of the input pattern
ends its handling at F1 and triggers offset of Gain2. Gain2 offset causes quick rot of STM at
F2 and consequently gets ready F2 to encode the following input pattern without bias.323
Thus, adaptive resonance theory comprises a type of ANN as well as a learning approach:

Start

1. Initialize ݓ௜௝
௕ and ݓ௜௝

௙:
a) For each ࢝࢐࢏

࢈
௜௝ݓ

௕ (0) = 1
b) For each ࢝࢐࢏

ࢌ

௜௝ݓ
௙(0) =

1
1 + ܰ

2. Repeat
a) For each value ݔ௜ of the input pattern ݔ calculate ݕ௜:

௜ݕ = ෍ ௜௝(௧)ݓ
௙ ௜ݔ

ே

௝ୀଵ

b) Select winning neuron k
c) If

࢝࢑(࢚)
࢈ ࢞
࢞࢞ > ߩ

go to step 2. ݂)
d) Disable k from further activity and go to step 2. ܾ)
e) For each l, where 0 ≤ l < ܰ

௞௟(௧ାଵ)ݓ
௕ = ௞௟(௧)ݓ

௕ ௟ݔ

௜௝௟(௧ାଵ)ݓ
௙ =

௞௟(௧)ݓ
௕ ௟ݔ

1
2 + ∑ ௞௜(௧)ݓ

௕ ௜ݔ
ே
௜ୀଵ

f) Reenable all neurons in F2
3. Until criteria are reached

End

Algorithm 25 – Adaptive resonance theory

Breakdown:

௜௝ݓ
௕ : binary-valued backward long term memory weights

323 Mbaitiga Zacharie (2007): Adaptive Resonance Theory 1 (ART1) Neural Network Based
Horizontal and Vertical Classification of 0-9 Digits Recognition; Okinawa National College of
Technology

254 10 Reverse engineering the mind

௜௝ݓ
௙ : continuous-valued forward long term memory weights

ܰ: number of neurons in F1
 ௜: activation valuesݕ

10.3.3 The transition to the human brain

Basically, two kinds of experiments in neuroscience have proofed to be of value in the
understanding of how brain functionality corresponds with the body:

– Uncovering the relations between segments of the brain and parts of the body they are
responsible for.

– Uncovering the relations between groups of neurons and the type of sensory input they
respond to.

It has been shown that the latter correspondence is spatial, implying that groups of neurons
managing comparable characteristics are likewise placed close to one another in the brain.
Spatial organization of neurons in a neural network is additionally attractive in pattern
classification issues. Another important development has been the self-organizing feature map
(see 3.3.2.9.4 Self-organizing feature map), a topographic map learning with an algorithm that
generates spatially arranged neural networks. A percentage of the most striking proof for self-
organization in the brain is the presence of different tonotopic, somatosensory, and retinotopic
maps, in which columns or sheets of neurons reacting to similar features of the sensory input,
are placed close to one another. As such, neurons organize themselves in a way that a
topographic map of the skin on the body, sound frequencies, or visual features, is created.
Thus, there exist maps for body movement and the visual and auditory fields. This sort of
emergent pattern is not stable or fixed, and changes depending from the environment the
subject (e.g. a monkey) is subjected to; an example are the somatosensory maps of monkeys
who had a finger removed changed in such a path, to the point that the zones for the different
fingers ventured into the district that was delicate to the excised finger. It is not only that the
local adjacent areas expand, but many regions’ size increases as these changes propagate
through the whole map – something that even occurs in adult brains. This could be verified in
numerous experiments, and what this suggests is that a sort of pre-defined procedure model or
function does not exist or is not being utilized, which results in the self-organization-
assumption. Moreover, numerous models utilizing Hebb’s learning rule as a foundation have
been developed, which can represent plenty of the features in these maps.

Numerous research efforts have targeted the visual cortex, thus the corresponding sensory
maps are those we know most about. The primary visual cortex is a topographic map in which
neighboring neurons react to neighboring areas of the visual field, and different neurons react
stronger to specific features of the input, e.g. ocularity, size, or temporality. By and large,
neurons with the same feature characteristics tend to group themselves together into columns:

– Assuming that electrodes are moved vertically through the thickness of the cortex, it has
been discovered that most neurons feature the same orientation and ocularity inclination.

– Assuming that the electrodes are moved tangentially through the cortex, the neurons first
react to left eye inputs, then both, then right eye, then both, then left eye, and so on.

– Provided that the electrodes are moved tangentially in the orthogonal direction, it was
discovered that the neurons are selective for vertical inputs, then inclining, then flat, and
so on.

10.3 Self-organization 255

Figure 76 - Monkey striate cortex recording, which has been acquired by optical recording in
macaque monkey striate cortex, shows the arrangement of orientation domains and their
association with ocular dominance segment boundaries (white lines); the resulting selectivity
patterns can be identified.324

Figure 76 - Monkey striate cortex recording325,326

Every color shows a field of orientation preferences, while the white lines border the visual
dominance columns. The maps are not superbly constant; instead there are points around
which the orientation preference changes ceaselessly and circularly. These are called
singularities or pinwheels. Between neighboring singularities there are areas where the
orientation preference changes gradually and persistently in a circular manner, called linear
zones. There are other regions between singularities where local minima of orientation
preference in orthogonal directions exist, called saddle points. It is likewise worth noting that
ocularity and orientation patterns are not independent – Figure 76 - Monkey striate cortex
recording shows that the lines speaking to areas of diverse ocularity are to some degree
orthogonal to the lengthened circle shapes, which are regions of similar orientation. The
neuronal specialization that happens is not fixed or hardwired – it has been discovered that
even an adult cortex can experience reorganization of the connections when encountering
sensory or cortical manipulations (i.e. lesions). Be that as it may, some specialization does
happen before organized visual stimuli are encountered, and in a few animals it even may
exists before birth.

324 Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the Brain;
Atlanta: Georgia Institute of Technology

325 Swindale N. V. (1996): The development of topography in the visual cortex: a review of models;
Network 7:161–247 (reprinted with permission from Swindale N. V.)

326 Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the Brain;
Atlanta: Georgia Institute of Technology

256 10 Reverse engineering the mind

Later presentation of organized visual input skews the circulation of orientation selectivity,
and referring back to computational intelligence, it has been showed that a feed-forward
artificial neural network utilizing Hebb’s learning rule could advance orientation preference
comparative to that seen in the visual cortex even given unstructured visual input (e.g.
spontaneously happening retinal movement, which some have even inferred could be
genetically-encoded and internally generated input patterns). Numerous models leveraging
self-organization have been proposed for explaining the manifold patterns occurring in the
visual cortex, and most of the models share similar concepts, i.e. leverage Hebbian synapses
and normalize synapse strength. Connections may be fixed or correlated/ show locally
patterned activity; the former between cortical neurons, which react inhibitory at large distan-
ces and excitatory locally, and the latter in the cortical neuron’s afferent nerves.327,328,329,330
The Von der Malsburg-model331 (containing inhibitory and excitatory cortical cells, as well as
retinal cells) leveraged a competitive Hebb's learning rule (once the strength to one neuron
increases, the strength to another decreases) first, yet in a less difficult way than portrayed in
the recent past. Normalization keeps the summed incoming connections to a neuron constant,
which lets neurons react to correlated inputs, e.g. in the event that two inputs are enacted by
correlated neural activity, this results in a common strengthening of their connections since
they both cooperate in order to activate the target cell. The two cell types of the model are
used to represent a network featuring two layers, despite the fact that one layer is simply the
input given to the system.

Something that is thought to happen in brains is that a constant number of inhibitory and
excitatory cells are wired together unchangeably, so that the inhibitory connections go
somewhat further than excitatory ones, and every excitatory cell features connections to every
one of the retinal input neurons, as well as every retinal neuron has a connection to each
excitatory cell. At the beginning, the weights of the excitatory cells are randomized, and the
non-linear differential equation models the response changes in the cell:

ௗுೖ(௧)
ௗ௧

= (ݐ)௞ܪ௞ߙ− + ∑ ௟ܪ௟௞݌
(ݐ)∗ + ∑ ௜ܣ௜௞ݏ

ெ(ݐ)∗
௜ୀ௟

ே
௟ୀଵ (10-14)

where −ߙ௞ܪ௞(ݐ) in general is the decay of a neuron over time, ߙ௞ the decay constant and
∑ .ݐ the neural response at time (ݐ)௞ܪ ௟ܪ௟௞݌

ே(ݐ)∗
௟ୀଵ is the description of the excitation and

inhibition the neuron receives from other lateral neurons, where ݌௟௞ is the connection strength
between cell ݈ and cell ݇ and ܪ௟

 after the application of a threshold (ݐ)௟ܪ is the value of (ݐ)∗
function. ∑ ௜ܣ௜௞ݏ

ெ(ݐ)∗
௜ୀ௟ describes the effect of the retinal cells, where ݏ௜௞ is the strength of the

connection and ܣ௜
(ݐ)∗ is the stimulus strength of retinal cell ݅ after applying a threshold

function to it. For changing the weights of the input connections both between cortical and
retinal cells the following update rule is used:

327 Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the Brain;
Atlanta: Georgia Institute of Technology

328 Bednar J.A., Miikkulainen R. (2003): Learning Innate Face Preferences; Neural Computation,
15(7)

329 Erwin E. et al. (1995): Models of orientation and ocular dominance columns in the visual cortex:
A critical comparison; Neural Computation, 7:425– 468

330 Swindale N.V. (1996): The development of topography in the visual cortex: a review of models;
Network 7:161–247

331 von der Malsburg Christoph (1973): Self-organization of orientation sensitive cells in the striate
cortex; Kybernetik, 14:85–100

10.3 Self-organization 257

௜௞ݏ߂ ∝ ௜ܣ
௞ܪ∗ (10-15)

Normalization of the summed synaptic strengths going into any single cortical cell happens
by multiplication with a factor that is proportional to

ଵ
∑ ௦೔ೖ೔

 (10-16)

It is important that the weights between horizontal cells ݌௟௞ remain unchanged. This model
was the first leveraging local connectivity featuring short distance excitatory connections and
long distance inhibitory connections cell sheets, as well as the first model to bring out this
pattern. 332 This is where models applying the SOFM described at 3.3.2.9.4 Self-organizing
feature map feature major advantages.

10.3.3.1 Laterally interconnected synergetically self-organizing maps

It is critical to recognize that lateral and afferent connections exist in neuronal structures, as
well as that lateral connections are the inhibitory and excitatory connections around neurons,
and afferent connections are connections between various layers. As discussed beforehand,
lateral connections are thought to unchanging, and excitatory connections are shorter than in-
hibitory ones. Receptive Field Laterally Interconnected Synergetically Self-Organizing Maps
(RF-LISSOM) is a model in which both lateral and afferent connections emerge together and
may represent orientation, visual predominance, and measure selectivity columns as well as
low-level phenomena. 333 Lissom self-organizing computational models intend to imitate the
neural structure of the visual cortex of human beings, where the key proposal is that the
cortex organizes itself utilizing general learning rules to catch correspondences in both visual
inputs and inside produced wellsprings of enactment. The learning rules comprise of basic
changes in the strengths of feed-forward and horizontal connections between neurons.
Furthermore, the model has been indicated to show large portions of the same offers dis-
covered in human and test animal cortex, and as basic idea for these models served the self-
organizing feature maps algorithm broadly utilized for information visualization. RF-
LISSOM amplifies SOFMs to be more effective and all the more biologically realistic by
utilizing Hebb’s learning rule and by incorporating parallel connections between neurons.
There have been made some extensions to the initial model, as

– RF-LISSOM displays just the essential visual cortex (V1), whereas
– CRF- LISSOM incorporates a model for the information processing handling within the

retina and the sidelong geniculate core, which permits the model to work with regular
picture stimuli.

– HLISSOM further amplifies CRF- LISSOM to incorporate cortical regions past V1,
permitting it to clarify observation of articles, e.g. confronts, and low-level picture
characteristics, and thus is a model of the mammalian visual system, not just V1.

All of these models make use of layers of columns of interconnected neurons, and through
afferent connections every neuron gets input from an open surface and, additionally, features

332 Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the Brain;
Atlanta: Georgia Institute of Technology

333 Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the Brain;
Atlanta: Georgia Institute of Technology

258 10 Reverse engineering the mind

reciprocal lateral excitatory and inhibitory connections (again, lateral inhibitory connections
run for more extended distances), which are similar to SOFMs. Every neuron in the ܰ ∗ ܰ
network gets input from a receptive field of size ݏ ∗ ,being half the measure of the retina ݏ ,ݏ
thus the receptive surface. The weights of both afferent and parallel connections are positive,
randomly initialized, and weight change happens by application of Hebb’s learning rules. The
initial response of a neuron is determined by

݊௜௝ = ∑൫ߪ ௥భߦ ,௥మ௥భ,௥మ ௜௝,௥భ,௥మ൯ (10-17)ߤ

where ݊௜௝ is the response of neuron (݅, ௥భ,௥మ represents the activation level of the retinalߦ ,(݆
receptor (ݎଵ, ௜௝,௥భ,௥మ describes the strength ofߤ ଶ) within the receptive field of the neuron, andݎ
the afferent neural connection. ߪ represents a gradually linear approximation of the sigmoidal
activation function, and at each iteration, the neural response is modified by

݊௜௝ = ߪ ቀ∑ ௥భ,௥మ௥భ,௥మߦ ௜௝,௥భ,௥మߤ + ௘ߛ ∑ ௜௝,௞௟௞,௟ܧ ݐ)௞௟ߟ − (ݐߜ − ௜ߛ ∑ ௜௝,௞௟௞,௟ܫ ݐ)௞௟ߟ − ቁ(10-18)(ݐߜ

where the first expression represents the afferent connection, the second term the impact of
the excitatory connections, and the third term the impact of the inhibitory connections. ߛ௘ and
 ௜ are simply scaling variables verifying what amount of parallel excitatory and inhibitoryߛ
interaction is wanted. Right away, the action on the responsive field is spread out over the
topographic map, yet after a couple of emphases it will stabilize in a patch of activity. After
this, both afferent and lateral weights of the connections are altered by

ݐ)௜௝,௠௡ݓ + 1) = ௪೔ೕ,೘೙(௧)ାఈఎ೔ೕ௑೘೙

∑ [௪೔ೕ,೘೙(௧)ା೘೙ ఈఎ೔ೕ௑೘೙]
 (10-19)

which is essentially Hebb’s learning rule, but normalized, as both the inhibitory and excita-
tory lateral connections are reinforced by correlated action, and since correlated activity is
extraordinary around neurons far from one another the long range connections in the long run
come to be weak, which are physically pruned by the system, occasionally in the event that
they come to be too weak, implying that such connections disappear at an early development
stage of the animal. The radius of lateral excitatory reaction times is diminished until it
considers just closest neighbors, although it is large at the beginning. As the system works
through thousands of training iterations, the activity-radius of the pattern decreases and finally
converges to a very small area. In spite, or maybe of the fact that the model is more than
complex than most of the others, an extensive variety of patterns and relationships occurring
in animals can be explained therewith.334’335 There has been an incredible arrangement of
neuroscientific and hypothetical examination regarding the systems that empower the mind,
and self-organization is a feasible hopeful and has been solidly connected to model the mind.

334 Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the Brain;
Atlanta: Georgia Institute of Technology

335 Miikkulainen Risto et al. (1997): Selforganization, plasticity, and low-level visual phenomena in a
laterally connected map model of the primary visual cortex; Perceptual Learning of Psychology of
Learning and Motivation, vol. 36; San Diego: Academic Press; pp. 257–308.

10.3 Self-organization 259

10.3.3.2 The pruning neocortex

We know that within the human brain there exist around 10ଵଵ neurons, each featuring around
7,000 synaptic connections to other neurons. Current estimates claim that a three year old
child’s brain has 10ଵହ synaptic connections, compared to an adult brain with 10ଵସ to 5 ∗ 10ଵସ
synapses.336 This can simply be explained when closely examining a learning neocortex. The
information coded into our DNA cannot account for all the complex patterns mapped in our
neocortex, as well as for all structural differences. What I am up to is that according to our
current knowledge, the 2.9 billion base pairs of the haploid human genome correspond to a
maximum of about 725 megabytes of data, since every base pair can be coded by 2 bits. Since
individual genomes vary by less than 1% from each other, they can be compressed losslessly
to roughly 4 megabytes.337 Ray Kurzweil even argues that the amount of unique information
in the genome after lossless compression as applied to the brain is about 2.5 ∗ 10଻ bytes.338
As a remark here: haploidy is spoken of if the genome of a cell or a prokaryote (such as
bacterium) is present only once, thus each allele occurs in a single form. The haploid set of
chromosomes of a human germ cell has 23 different chromosomes (22 autosomes and 1 gono-
some). Back to the learning neocortex, this relatively small amount of information encoded
into the human genome cannot account for the information that would be required for
building such a complex neural structure. Therefore, the assumption is that the initial neo-
cortex is made up of numerous copies of smaller structures, and nearly fully connected.
During learning, some connections are strengthened and weakened, such as we also do within
ANN learning with Hebb’s learning rule. However, by solely applying Hebb’s rule unused
connections or even neurons are still included into the network, which is not how our brain
organizes itself. Unused connections are eliminated, or pruned away finally developing the
neocortex towards the complex structure it has in an adult human being (which does not mean
that it is static then). This structural modification is also something that we apply within
neural network learning, additionally to structural evolution paradigms like the one introduced
at 5.3 Structural evolution. The modification of the artificial neural network architecture is
based on an analysis providing information on how much each neuron contributes to the final
result produced by the network. If Hebb’s learning has resulted in a massive decrease of the
significance of a synapse for the overall output, it will be pruned. If all connections to or from
a neuron have been pruned, the overall neuron will be pruned as well. Pruning does may
increase the effectiveness of an ANN, but it increases efficiency in processing for sure, which
is especially important when needing to process numerous ANNs hierarchically, as it happens
within the neocortex – ANNs are allowed to process more information in a given timeframe.
This is not the only reason for doing this; the effectiveness of an ANN may be improved in
the way that if a weak connection is pruned, the network’s accuracy may be improved. On the
other hand, it is also possible to decrease the performance by pruning the wrong synaptic
connections. Basically, there are two pruning approaches,

– selective and
– incremental pruning.

336 Drachman D. (2005): Do we have brain to spare?; Neurology 64 (12): 2004–5
337 Stackoverflow (2012): How much memory would be required to store human DNA? [2013-11-

17]; URL: http://stackoverflow.com/questions/8954571/how-much-memory-would-be-required-
to-store-human-dna

338 Kurzweil Ray (2012): How to create a mind; London: Penguin Books

260 10 Reverse engineering the mind

Selective pruning starts with a neuron- and synapse-rich ANN and prunes away connections
and neurons as long as the error rate remains within the allowed parameters. Incremental
pruning is the converse approach, as it starts with an ANN featuring little neurons and neural
connections (and most likely with a high error rate) and ends when the number of hidden
neurons and connections added results in an error rate within the allowed parameters. The
detailed algorithms of both methods will not be explained here, as both can be derived from
the structured evolution discussed in the training algorithms section of this elaboration.

10.3.3.2.1 Incremental pruning

The foundation for incremental pruning is an ANN that has not experienced supervised
training before. A suitable training algorithm trains the ANN for a pre-defined number of
iterations and then matches the result with the expected allowed error, such as the RMSE. The
number of iterations can be defined either by a threshold that has to be reached by the number
of training iterations, or by a threshold value that is continuously compared with the number
of iterations that have been conducted without a change in the ANN error. The challenge here
is that the training algorithm has to be applied to each new structure to verify if the structure
at point in time ݐ outperforms the one at point in time ݐ − 1, which means that the processing
time for completely applying incremental pruning may become very high, especially when
taking into account that the ANN structures required for re-modelling the higher cognitive
brain functions of the neocortex are very complex.

10.3.3.2.2 Selective pruning

On the contrary to incremental pruning, the selective pruning algorithm starts with a trained
ANN, removes connections and neurons one by one and compares the resulting error value
with the allowed error parameters. If the error value does not exceed the allowed maximally
error value, the object (neuron or synapse) is pruned. This is repeated as long as the error
threshold is not exceeded. Compared to incremental pruning, the algorithm is fast, as it does
not require training after each structural modification, however, it also results in more
inaccurate ANNs, as with incremental pruning the training algorithm adapts the weight matrix
related to the current structure.

10.3.3.2.3 Pruning and quantum artificial neural networks

As incremental pruning is the more accurate way of modifying a structure of an ANN, a
solution for dealing with the high processing requirements is required. Especially when
considering that the human neocortex is organized hierarchically, thus is organized in lists of
ANNs, each entry referencing to lower level ANNs, it is required to conduct training as fast as
possible, as not only spatial, but also temporal resolution of events has to be taken into
account (events as an input from real-world cannot be compared to classical data mining tasks
such as predicting weather, in which the time required for training is more or less obsolete).
Thus, quantum linear superpositions of a number of different ANN structures could be created
at once, and each of them be queried for the optimal result (see 10.5 Quantum physics and the
artificial brain) for determining the optimal solution.

10.4 Mechanisms apart from self-organization 261

10.3.4 Arguments for self-organization in artificial neural systems

Consequently, in spite of the fact that none of the other organizing standards can represent the
complete cerebrum, this recommends that not just one instrument is included. Since the cere-
brum as well as the mind itself is such a complex system, it may be the case that the sum of
the different organizing routines is utilized, incorporating self-organization. Luckily, develop-
ments in engineering utilized by neuroscientists may permit a more excellent comprehension
of these methodologies sometime to come. Self-organized AI-systems were intended to
explicitly fuse systems that are applied within the brain. Notwithstanding, in keeping with the
distinctive provision needs, there has been a uniqueness between biology and AI. While
feedback mechanisms exist at diverse levels in the ANN structures mentioned beforehand, not
the sum of these lead to self-organized behavior. In competitive learning, for instance,
feedback happens at both the neuron connection level, as well as throughout adjustment of
weights. Feedback through lateral inter-neuronal connections heads the development of a
winning neuron exclusively through local communications and constitutes self-organized
behavior. Be that as it may, the alteration of weights is finished with the point of driving the
weight vectors closer to the input. Here every neuron gains the input vector and consequently,
this constitutes global knowledge, or learning success. The progressions in the system are
likewise made remembering the last objective to be accomplished, e.g. a matching of input
and weight vectors. Additionally, in the ART-1 network talked about formerly, sentiment
happens in the F1 and F2 modules that are competitive networks. Common positive criticism
is additionally dynamic between the attentional and orientational sub-systems and prompts
resonance, which thusly brings about learning. The learning, be that as it may, is not self-
organized in that the resonance state is not realized by any self-organized component working
at the module level of the network. Kohonen networks realize topological requesting through
a competitive network that has a neighborhood capacity connected with weight changes. As in
the recent past, self-organization happens at the neuronal level. Also, the network likewise
organizes itself topologically in respect to the input through just local cooperation. The weight
acclimatization in neighborhood areas accelerates a spatially grouped representation of the
input. An outcome of utilizing such a component is, to the point that the correctness of the
network builds monotonically both with expanding number of hubs and with more amazing
learning knowledge. This is not the situation with, say, back-propagation networks that can
experience the ill effects of over-learning, where the network correctness diminishes with all
the more learning.

10.4 Mechanisms apart from self-organization

It has been assumed that four different manifestations of organization are

– leader,
– blueprint
– recipe and
– template.339, 340

339 Camazine Scott et al. (2001): Selforganization in Biological Systems; Princeton: Princeton
University Press

262 10 Reverse engineering the mind

One leader neuron or area of the mind presumably can't stay informed regarding the billions
of neurons in the cerebrum, and such a plan might leave even a modest measure of cerebrum
harm deadly provided that it was in the ideal spot. This doesn't, be that as it may, discount a
various leveled system of administration when taken a gander at from a bigger scale.

10.4.1 Leader

The cerebrum (1.1 Anatomy of the human brain) has been demonstrated to be made up of to
some degree specific locales that do specific things well, which has been found through
imaging of the mind to see which parts are dynamic throughout particular undertakings. One
well known sample is that the hippocampus (see 1.1.2.2 Hippocampus) has been discovered
to be included in the working of memory. Taking a gander at it from this view does not
discount self-organization, since the parts themselves are made of an incredible arrangement
of neurons that are left to be clarified for. It is totally conceivable that the self-organizing
process brings about the specialization of different parts of the mind; that could be the pattern
that develops. There is some priority for this in the visual cortex, since distinctive neurons
advance specializations to diverse characteristics of the input.

10.4.2 Blueprint

DNA can likewise perhaps go about as a blueprint for the mind, yet it doesn't have enough
data to record for the greater part of the connections in the cerebrum from a data theoretic
perspective. Besides, it is well realized that everybody has an alternate mind particularly
when it is produced or encountering distinctive situations. This is accurate indeed, for
indistinguishable twins who have the same DNA. The data held in DNA is unrealistic to hold
possibilities for all conceivable situations the mind may experience.

10.4.3 Recipe

An alternate strategy, a recipe, is additionally impossible for the same explanations, as it
might experience the same data measure issue.

10.4.4 Template

It is not clear at the outset if the cerebrum could be structured from an arrangement. It can be
assumed that nature itself domain decidedly guides the pattern development. The different
somatosensory maps, for example those discovered in the visual cortex reorganize themselves
relying upon the visual input it is given all around its lifetime, particularly throughout
advancement however indeed, throughout adulthood. The last pattern, then again, is
unquestionably not encoded or specified in the life form itself. It is likewise possibly precisely
the same shape or estimate, in spite of the fact that the relative sizes may have some solid
correspondence. This is unquestionably accurate for different cases of self-organization since
the environment ants live in shapes the pattern; however is not found inside the organism.
Thus, this type of impact does not appear to fit this particular meaning of a template.

340 Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the Brain;
Atlanta: Georgia Institute of Technology

10.5 Quantum physics and the artificial brain 263

10.5 Quantum physics and the artificial brain

Although it has not been affirmed by research that quantum effects occur in the brain, it is a
very reasonable approach to make use of such when constructing an artificial brain. The
ORCH OR model suggests that conscious experiences are related to the collapse of a quantum
state over a affecting a large area of the brain. Apart from that, incremental pruning can
massively benefit from quantum ANNs, as different structural architectures may be created in
superpositions, so that each of these can be queried for the optimal result a lot faster than it
would take by training each structure in parallel. Why quantum ANNs may also be of use for
information processing in artificial intelligence is explained in detail at 10.6.3.5 Quantum
pattern recognizers. Via the quantum artificial neural network approach described within this
chapter, the research provides an outlook on a possible future of artificial intelligence, as
sooner or later quantum computers may replace classical von Neumann machines. The
introduced quantum artificial neural network is a classical feed forward ANN making use of
quantum mechanical effects, and should help to understand how simple neural processing
may be implemented on a quantum computer (although we will later on see that it is most
likely not the neurons that function in a quantum linear superposition). To begin with, we
define a quantum artificial neural network (QANN) as a physical system whose multiple
occurrences (component networks) are trained according to the set of patterns of interest.
Thus, it is a physical system instantiated from a set of physical parameters,341 which is not
different from other physical systems.

10.5.1 Quantum artificial neural network

Thitherto, several different prototypes of quantum artificial neural networks have been
introduced342,343,344, some of them very different from the already explained ANN structures
like quantum dot345, lattice346 or phase shifting ANNs. The one proposed in this elaboration
relies on classical feed forward structures, with the difference of the weights being switched
into superposition instead of continuously changing them through learning. The introduced
quantum ANN makes use of simulated quantum effects for learning. Thus, the ANN is
supervised and requires a teacher. For the introduced quantum artificial neural network,
especially the simulation of the quantum mechanical theorems and paradigms of

– quantum parallelism,
– entanglement and
– interference

341 Singh Gurwinder (2009): Quantum Neural Network Application for Weather Forecasting; Thapar:
Thapar University

342 Altaisky M.V. (2001): Quantum neural network; Technical report; URL: http://xxx.lanl.gov/
quantph/0107012.

343 Narayanan Ajit; Menneer Tammy (2000): Quantum artificial neural network architectures and
components; Information Sciences, volume 124. 1-4, p. 231–255

344 Behrman Elizabeth C., Niemel Jari, Steck James E., Skinner S. R. (1996): A quantum dot neural
network; Proceedings of the 4th Workshop on Physics of Computation, p. 22–24

345 Behrman Elizabeth C., Niemel Jari, Steck James E., Skinner S. R. (1996): A quantum dot neural
network; Proceedings of the 4th Workshop on Physics of Computation, p. 22–24

346 Fujita Yukari, Matsui Tetsuo (2002): Quantum gauged neural network: U(1) gauge theory;
Technical report; URL: http://xxx.lanl.gov/cond-mat/0207023.

264 10 Reverse engineering the mind

are of interest. Moreover, the simulation of quantum bits for processing the information goes
along with the concept of quantum parallelism, as only such may be described by a wave
function ߰ that exists in Hilbert space. Certainly, all quantum effects the system benefits from
have been simulated, as quantum computers with the required architecture are not available at
these times. However, despite all the negative effect on performance in terms of computation
time this comes along with, the simulation of an environment suitable for processing informa-
tion with quantum bits has an enormous advantage: the elimination of all irrelevant effects a
real world physical system would subject on these bits. In the real world, a quantum computer
would use particles for data representation, and in case of a quantum artificial neural network,
these particles might represent neurons with all their features, like axons and dendrites
(weights) or their thresholds and activation functions. A Qbit could be represented well by
two-particle systems as a hydrogen-like ion is one, which additionally to the atomic nucleus
consists of one electron. Depending on the distance between nucleus and electron, the for
quantum mechanics utmost important Schrödinger equation, a partial differentiation describ-
ing the change of a physical system's quantum state over time (eq. (7-24)) can be solved. The
orbit of the hydrogen-like ion's electron may vary, depending on the energy levels. Physicists
name this the ‘existence in different energy levels’ (see excursus: quantum numbers). The
orbital position of the electron is then used to represent either 0 or 1, or according to Dirac's
BraKet notation, either the state |0〉 or the state |1〉 and the highest orbital position
representing the latter one, the lowest the former one.347

10.5.1.1 Structure

The structure of a quantum feed forward artificial neural network does not differ from a
normal one, but the concept of linear superposition is one of the differences that can be
described graphically (Figure 77 - Quantum artificial neural network).

Figure 77 - Quantum artificial neural network shows that neurons are represented as quantum
registers |iଵଵ〉, … , |i୫୬〉, where m represents the number of the data sets and n the number of
the input neurons, which are presented the input datasets of the actual training data set.
Assuming that a QANN shall be used to learn how to solve a problem statement based on
input datasets each consisting of three attributes, it would feature three input registers (input
neurons in a standard ANN). Further considering the example network, for each input data set
the registers |iଵଵ〉, … , |i୫ଷ〉 need to be created. Consequently, the network features
|oଵଵ〉, … , |o୫ଶ〉 output registers presenting the calculated output values for its respective input
data set. The same holds for the hidden layer, represented by |hଵଵ〉, … , |h୫ସ〉, whose quantum
neuron registers process the calculated, weighted sum of the actual training input coming
from |iଵଵ〉, … , |i୫ଷ〉. Furthermore, the superpositions of the weight vectors are important to
mention here, as these hold every possible weight value they can represent at once,
independent from the training data (detailed explanations follow in 10.5.1.6 Processing).

347 Neukart Florian, Moraru Sorin-Aurel (2012): On Quantum Computers and Artificial Neural
Networks. Journal of Signal Processing Research, vol. 2, 1, 2013

10.5 Quantum physics and the artificial brain 265

|i11›

|i12›

|h11›

|h12› |o11›

ψw i1h1

ψwh2o1

ψw
h1o1

|h13›

|hm4›

|om1›

|im3›

ψwi1h2

ψw i2h2
ψw

i2h3

ψw inh
2

ψwinh3

ψw
inhn

ψw
h2on

ψwh3o1

ψwh3on

ψw h4on

Figure 77 - Quantum artificial neural network

Table 2 – (Quantum) artificial neural network feature comparison, which is based on the
comparison Ezhov and Ventura provide in their work,348 is required for understanding the
differences between classical and quantum ANNs.

Table 2 – (Quantum) artificial neural network feature comparison

Feature ANN QANN
Neuron
encoding

Definite bit
state

௜ݔ ∈ {0,1} Probable Qbit
state

〈ݔ| = 〈ଵ|0ߙ
+ 〈ଶ|1ߙ

Neuron
connections

Weighted
connections

൛߱௜௝ൟ
௜௝

௡ିଵ
 Weighted

connections
൛߰߱௜௝ൟ

௜௝

௡ିଵ

Entanglement |ݔ଴ݔଵ … 〈௡ିଵݔ
Learning Rule e.g.

ݐ)௜௝ݓ∆ + 1)
= ௜ݔ௝ߜߤ + (ݐ)௜௝ݓ∆ߙ

Superposition
of entangled
Qbits

෍ ଴ݔ|ଵߙ
௜

௡

௜ୀଵ

… ௡ିଵݔ
௜ 〉

Desired
solution
determination

Cost function e.g.
݊

= ݉݅݊ ൮ඩ
1
݊ ෍ ௜ݔ

ଶ
௡

௜ୀଵ

మ

൲

Grover’s
search for
optimal solu-
tion in super-
position via
unitary trans-
formation

ܷ: ߰ ⟶ ߰ᇱ
with an oracle
like e.g.
〈݌| ≥ ݊ ∗ ݉ ∗ ݌

Result ݊ Decoherence ෍ 〈௜ݔ|ଵߙ
௜ୀଵ
⇒ 〈௞ݔ|

348 Ezhov Alexandr A., Ventura Dan (-): Quantum neural networks, BSTU Laboratory of Artificial
Neural Networks

266 10 Reverse engineering the mind

10.5.1.2 Quantum bits

The introduced QANN relies on double values, so theoretically an 8 Qbytes or 64 Qbits-
architecture needs to be simulated for being able to process all the information, what would be
the optimum. For the needs of processing this seems to be oversized, as according to physicist
David Deutsch, quantum parallelism allows a quantum computer to work on a million
computations at once, while an ordinary PC works on one. A 30-Qbit quantum computer
would equal the processing power of a conventional computer that could run at 10 teraflops,
where today's typical desktop computers run at speeds measured in gigaflops. 349 The
probability distribution of a Qbit either being |0〉 or |1〉 after the collapse of |߰〉 caused by
measurement is, as already indicated, determined by complex in Hilbert space and not by real
numbers. Therefore, for simulating one Qbit two floating point numbers are required.
Theoretically, for state machines, like auto-associative artificial neural networks are, a
number of two architecture-Qbits would suffice, as their calculation is not based on floating
point numbers, but on signed 2bit-values (-1, 0, 1). Anyway, as the quantum ANN only exists
as a simulation, the optimal architecture, which is a 64-bit one, has been simulated. Moreover,
the number of used Qbits depends from the problem to be solved. Let assume, the QANN
from Figure 77 - Quantum artificial neural network serves as model, then two registers have
to be created, one representing the inputs ݔ and one representing the outputs ݂(ݔ). Besides,
the process of carrying out the function ݂(ݔ) would need lots of additional Qbits, which play
an important part in the entanglement of the input and output register a quantum computer
makes use of.

10.5.1.3 Superposition

A quantum artificial neural network does not only require to put its weights into
superposition, so do its neurons, respectively their dynamic action potentials or thresholds as
well as its underlying mathematical function.

10.5.1.3.1 Superposition of dendrites

The dendrites or weights of a standard feed forward artificial neural network are lifted into
linear superposition, which is the first step towards a quantum ANN. This means that every
weight is changed into a wave and would theoretically contain every possible value at once.
However, as currently the quantum ANN is simulated on a von Neumann machine, infinite
accuracy, or better, any possible ߙଵ and ߙଶ in

|߰〉 = 〈ଵ|0ߙ + 〈ଶ|1ߙ = ቀ
ଵߙ
ଶߙ

ቁ (10-20)

restricted only by the normalization condition

ଵ|ଶߙ| + ଶ|ଶߙ| = 1 (10-21)

would require exponentially more time than restricting the possible peculiarity of the weights
by a range and increasing them only by pre-defined increments starting from the lower

349 Bonsor Kevin, Strickland Jonathan (2000): How Quantum Computers Work [2012-10-18], URL:
http://computer.howstuffworks.com/quantum-computer.htm

10.5 Quantum physics and the artificial brain 267

boundary to the upper boundary. Assuming the basis for the increment is 0.001 and the
weight boundaries reach from -100 to 100, any value in this interval to the granularity of
0.001 will serve as possible weight. The process of setting the weights ݓ଴, … , ௡ݓ into
|߰〉଴, … , |߰〉௡ with the exemplified parameters above happens as follows:

Start

1. Set -100 as ݌௦௧௔௥௧ and 100 as ݌௘௡ௗ
2. For each w

a) Set ݓ௖௨௥௥௘௡௧ to ݌௦௧௔௥௧
b) Repeat

i. Save ݓ௖௨௥௥௘௡௧ into corresponding ߰݊௙݊௧
ii. Set

௖௨௥௥௘௡௧ݓ = ௖௨௥௥௘௡௧ݓ + 0.001
c) Until ࢊ࢔ࢋ࢖ is reached

End

Algorithm 26 - Lifting weights into superposition

Breakdown:

 ߰݊௙݊௧ : Array list holding each possible normalized weight, being the superposition of a
specific weight and ݊௙ being the from-neuron, ݊௧ being the to-neuron
௦௧௔௥௧݌ : Calculation start point
 ௘௡ௗ: Calculation end point݌
 ௖௨௥௥௘௡௧: The current weight, not normalizedݓ

10.5.1.3.2 Superposition of neurons

The registers of each layer are lifted into linear superposition as well. Let say, an example
QANN consists of three layers, like the one described with Figure 77 - Quantum artificial
neural network, and let further assume that any of the QANNs neurons scales its output
through an activation function and makes use of dynamic thresholds, in which a learning
algorithm would scale in standard ANN learning, then, according to the increment and upper
and lower threshold boundaries, logically several thresholds for each superposition of
networks must exist. Let further assume, the lower threshold boundary would be 0.1, the
upper threshold boundary 1 and the increment 0.1, then 9 different values for a threshold
would be possible. In the example QANN this leads to 387,420,489 (9ଽ) possible
configurations of thresholds for one configuration of weights. However, as a specific
configuration of weights only exists once within |߰〉, the whole QANN must be lifted into
superposition.

10.5.1.3.3 Superposition of the quantum artificial neural network

As the linear superposition indeed dictates that any possible configuration of each Qbit exists
at once and as, related to the example QANN, any of these (weight) configurations has
numerous configurations of thresholds, an impracticality occurs, namely the coexistence of

268 10 Reverse engineering the mind

identical configurations in one superposition. Thus, a single configuration of a quantum
artificial neural network must include both the weights and the neuron thresholds.

10.5.1.4 Entanglement

Entanglement within a quantum artificial neural network may be realized by a quantum
physical effect called quantum teleportation (this chapter has strongly been influenced by Li
Weigang’s research on entangled ANNs – for further details see his publication). 350
Entanglement has already been discussed in detail, so we will continue quantum teleportation,
which on the contrary to solely quantum entanglement, includes entangled as well as classical
communication channels. First of all, we recall the first maximally entangled Bell-state

|߶ା〉 = ଵ
√ଶ

(|0〉஺ ⊗ |0〉஻ + |1〉஺ ⊗ |1〉஻) (10-22)

or in a simpler manner of writing

|߶ା〉 = ଵ
√ଶ

(|00〉 + |11〉) (10-23)

A source that is capable of creating such entangled states is an EPR-source such as discussed
at 7.3 The state vector reduction R. Additionally, two entities ܣ and ܤ, the first being the
sender and the second being the receiver, a classical communication channel as well as a the
teleportation system (an EPR-source-creating device) are sufficient for being able to construct
the teleportation-algorithm (the following algorithms will be described with more continuous
text than usual within this work to make them more comprehensible):

Start

1. Each of ܣ and ܤ receives one of the entangled particles emitted from the EPR-
source, so that an EPR pair is created:

|߶ା〉 =
1

√2
(|00〉 + |11〉)

 s Qbit’ܣ intends to submit the state of ܣ .2

|߶〉஺ =
1

√2
〈ଵ|0ߙ) + (〈ଶ|1ߙ

to ܤ via the quantum and the classical channel. Decoding is applied on |߶〉஺ and the
first half of the entangled Qbit (the second is in possession of ܤ):

|߶〉஺ ⊗ |߶ା〉 =
1

√2
൫ߙଵ|0〉 ⊗ (|00〉 + |11〉) + 〈ଶ|1ߙ ⊗ (|00〉 + |11〉)൯

=
1

√2
〈ଵ|000ߙ) + 〈ଵ|110ߙ + 〈ଶ|100ߙ + (〈ଵ|111ߙ

applies c୧୨ ܣ .3 ⊗ I and H ⊗ I ⊗ I on the result:

350 Li Weigang: Entangled Neural Networks; Brazil: University of Brasilia

10.5 Quantum physics and the artificial brain 269

ܪ) ⊗ ܫ ⊗ ൫ܿ௜௝(ܫ ⊗ ߶)൯ܫ ⊗ ߶ା)

= ܪ) ⊗ ܫ ⊗ ൫ܿ௜௝(ܫ ⊗ ൯ܫ
1

√2
〈ଵ|000ߙ) + 〈ଵ|110ߙ + 〈ଶ|100ߙ + (〈ଶ|111ߙ

= ܪ) ⊗ ܫ ⊗ (ܫ
1

√2
〈ଵ|000ߙ) + 〈ଵ|011ߙ + 〈ଶ|110ߙ + (〈ଶ|101ߙ

=
1
2

൫|00〉(ߙଵ|0〉 + (〈ଶ|1ߙ + 〈ଵ|1ߙ)〈01| + (〈ଶ|0ߙ + 〈ଵ|0ߙ)〈10| − (〈ଶ|1ߙ

+ 〈ଵ|1ߙ)〈11| − ଶ|0〉)൯ߙ
 ܣ .is in control of the last one ܤ is in control of the first two Qbits, whereas ܣ .4

measures one of the states |00⟩, |01⟩, |10⟩, |11⟩ on the first two Qbits with equal
probability and submits the result via the classical channel to ܤ.

5. Depending from what ܣ has measured, the state of ܤ’s Qbit is projected to one of
the following states, each one consisting of the phase state + and – as well as the
basic states 0 and 1:

|߶〉஻ = 〈ଵ|0ߙ) + (〈ଶ|1ߙ
|߶〉஻ = 〈ଵ|1ߙ) + (〈ଶ|0ߙ
|߶〉஻ = 〈ଵ|0ߙ) − (〈ଶ|1ߙ
|߶〉஻ = 〈ଵ|1ߙ) − (〈ଶ|0ߙ

ܤ .6 receives the information submitted by ܣ on the classical channel, thus two
classical bits according to which he knows how to decode his Qbit so that it matches
the original state of ܣ’s Qbit:

Classical bits received Final state of Qbit B Transformation to receive final state
૙૙ ߙଵ|0〉 + ܫ 〈ଶ|1ߙ
૙૚ ߙଵ|1〉 + ܺ 〈ଶ|0ߙ
૚૙ ߙଵ|0〉 − ܼ 〈ଶ|1ߙ
૚૚ ߙଵ|1〉 − =) ܻ 〈ଶ|0ߙ ܼܺ)

End

Algorithm 27 – Quantum teleportation

Brought forward to connections within quantum artificial neural networks, the idea of
entanglement may be applied in the way that a receiving neuron may decode the initial state
of a sending neuron, and depending from the result, the signal may be passed over to the next
neuron or not (see Figure 78 – Quantum teleportation network unit).

Figure 78 – Quantum teleportation network unit shows that there exist three units, where the
EPR source represents unit II, the sending neuron unit ܣ and the receiving neuron unit ܤ,
whereby for the following explanations both are considered to be hidden units. Algorithm 28
explains the difference in processing compared to standard quantum teleportation:

270 10 Reverse engineering the mind

Signal from unit 1 Signal to unit 3
Quantum channel

Classical channel

Figure 78 – Quantum teleportation network unit

Start

1. Each of the neurons ܣ and ܤ receives one of the entangled particles emitted from
the EPR-source, so that an EPR pair is created:

|߶ା〉 =
1

√2
(|00〉 + |11〉)

2. Neuron ܣ implements a decision factor that is represented by a Qbit-superposition,
where the squared amplitudes |ߙଵ|ଶ and |ߙଶ|ଶ represent the probability that the state
is collapsing into one result

|߶〉஺ =
1

√2
〈ଵ|0ߙ) + (〈ଶ|1ߙ

3. Neuron ܣ is sent information from one of the neurons attached to it in the previous
layer, whereas the connection may be of classical or quantum nature.

4. Neuron ܣ intends to submit the state of ܣ’s Qbit

|߶〉஺ =
1

√2
〈ଵ|0ߙ) + (〈ଶ|1ߙ

to ܤ via the quantum or the classical channel. For this, decoding is applied on |߶〉஺ and
the first half of the entangled Qbit (the second is in possession of ܤ):

|߶〉஺ ⊗ |߶ା〉 =
1

√2
൫ܽ|0〉 ⊗ (|00〉 + |11〉) + ܾ|1〉 ⊗ (|00〉 + |11〉)൯

=
1

√2
(ܽ|000〉 + ܽ|110〉 + ܾ|100〉 + ܾ|111〉)

5. Neuron ܣ applies c୧୨ ⊗ I and H ⊗ I ⊗ I on the result:
ܪ) ⊗ ܫ ⊗ ൫ܿ௜௝(ܫ ⊗ ߶)൯ܫ ⊗ ߶ା)

= ܪ) ⊗ ܫ ⊗ ൫ܿ௜௝(ܫ ⊗ ൯ܫ
1

√2
〈ଵ|000ߙ) + 〈ଵ|110ߙ + 〈ଶ|100ߙ

+ (〈ଶ|111ߙ

= ܪ) ⊗ ܫ ⊗ (ܫ
1

√2
〈ଵ|000ߙ) + 〈ଵ|011ߙ + 〈ଶ|110ߙ + (〈ଶ|101ߙ

=
1
2

൫|00〉(ߙଵ|0〉 + (〈ଶ|1ߙ + 〈ଵ|1ߙ)〈01| + (〈ଶ|0ߙ

+ 〈ଵ|0ߙ)〈10| − (〈ଶ|1ߙ + 〈ଵ|1ߙ)〈11| − ଶ|0〉)൯ߙ
6. Neuron ܣ is in control of the first two Qbits, whereas ܤ is in control of the last one.

10.5 Quantum physics and the artificial brain 271

Depending from the information out- and inside the unit, this is called decision-key
߬ (the first 2 Qbits could be measured in ܣ, the third one in ܤ). By the use of ߬, ܣ
measures one of the states |00⟩, |01⟩, |10⟩, |11⟩ on the first two Qbits with equal
probability. The result is now defined as measurement-key ߭. By the use of Grover’s
search algorithm, ߬ is amplified to |ߚଵ|ଶ and the probability of all other vectors is
reduced to |ߚଶ|ଶ, where

ଵ|ଶߚ| + ଶ|ଶߚ|3 = 1
and

ଵ|ଶߚ| ≫ ଶ|ଶߚ|
υ, which equals τ with the probability of |βଵ|ଶ, is sent to B via the classical channel.
7. Depending from what has been measured in neuron ܣ, thus ߭, the state of neuron

 s Qbit is projected to one of the following states, each one consisting of the phase’ܤ
state + and – as well as the basic states 0 and 1:

|߶〉஻ = 〈ଵ|0ߙ) + (〈ଶ|1ߙ
|߶〉஻ = 〈ଵ|1ߙ) + (〈ଶ|0ߙ
|߶〉஻ = 〈ଵ|0ߙ) − (〈ଶ|1ߙ
|߶〉஻ = 〈ଵ|1ߙ) − (〈ଶ|0ߙ

8. Neuron ܤ receives the information submitted by neuron ܣ, thus ߭, on the classical
channel. Therefore, one of the following four states can be measured, depending
from the content of ߭:

Classical bits received Final state of Qbit B Transformation to receive final state
૙૙ ߙଵ|0〉 + ܫ 〈ଶ|1ߙ
૙૚ ߙଵ|1〉 + ܺ 〈ଶ|0ߙ
૚૙ ߙଵ|0〉 − ܼ 〈ଶ|1ߙ
૚૚ ߙଵ|1〉 − =) ܻ 〈ଶ|0ߙ ܼܺ)

9. The measurement result may then be transmitted to another unit (neuron) in the next

layer, either by a classical or a quantum connection.

End

Algorithm 28 – Quantum teleportation artificial neural network

Let assume, ߬ = 01, then Grover’s search algorithm would result in

ݎ݁ݒ݋ݎܩ ቀ(ܪ ⊗ ܫ ⊗ ൫ܿ௜௝(ܫ ⊗ ߶)൯ܫ ⊗ ߶ା)ቁ = 〈ଶ|00〉(ܽ|0ߚ + ܾ|1〉) + 〈ଵ|01〉(ܽ|1ߚ +
ܾ|0〉) + 〈ଶ|10〉(ܽ|0ߚ − ܾ|1〉) + 〈ଶ|11〉(ܽ|1ߚ − ܾ|0〉) (10-24)

The phase states as well as the amplitudes are used to represent factors, thus in this example,
the Qbit of neuron ܣ in unit 1 (as in any other unit, but we start with unit 1) is capable of
representing four factors and their inverses:

Neural unit 1

Assuming that the four factors of neuron ܣ are represented by ܽ, ! ܽ, ܾ, ! ܾ then the positive
phase (+) may be used to represent ܽ , the negative phase (-) to represent ! ܽ , the first
amplitude (ߙଵ) to represent ܾ and the second amplitude (ߙଶ) to represent ! ܾ.

272 10 Reverse engineering the mind

Neural unit 2

Assuming that the four factors of neuron ܣ are represented by ܿ, ! ܿ, ݀, ! ݀ then the positive
phase (+) may be used to represent ܿ , the negative phase (-) to represent ! ܿ , the first
amplitude (ߙଵ) to represent ݀ and the second amplitude (ߙଶ) to represent ! ݀.

Neural unit 3

Assuming that the four factors of neuron ܣ are represented by ݁, ! ݁, ݂, ! ݂ then the positive
phase (+) may be used to represent ݁ , the negative phase (-) to represent ! ݁ , the first
amplitude (ߙଵ) to represent ݂ and the second amplitude (ߙଶ) to represent ! ݂.

Based on the assumption that we start processing within unit 1, this unit’s neuron ܣ is defined
as

|߶〉஺ = ଵ
√ଶ

!|ଵߙ) ܾ〉 + ଶ|ܾ〉) (10-25)ߙ

 s quantum state is projected into one of the four states’ܤ

|߶〉஻ = 〈ଵ|0ߙ) + ଶ|1〉) (10-26)ߙ

|߶〉஻ = 〈ଵ|1ߙ) + ଶ|0〉) (10-27)ߙ

|߶〉஻ = 〈ଵ|0ߙ) − ଶ|1〉) (10-28)ߙ

|߶〉஻ = 〈ଵ|1ߙ) − ଶ|0〉) (10-29)ߙ

depending from ߭. Each of these states represents a combination of the factors represented by
the Qbit of neuron ܣ. This results in

|߶〉஻ = 〈ଵ|0ߙ) + (〈ଶ|1ߙ → ൜
(ܽ, ! ܾ) , ଵ|ଶߙ|ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ 0 ݂݅
(ܽ, ܾ) , ଶ|ଶߙ|ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ 1 ݂݅ (10-30)

with precondition

߭ = 00 (10-31)

|߶〉஻ = 〈ଵ|1ߙ) + (〈ଶ|0ߙ → ൜
(ܽ, ܾ) , ଵ|ଶߙ|ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ 0 ݂݅
(ܽ, ! ܾ) , ଶ|ଶߙ|ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ 1 ݂݅ (10-32)

with precondition

߭ = 01 (10-33)

|߶〉஻ = 〈ଵ|0ߙ) − (〈ଶ|1ߙ → ൜
(! ܽ, ! ܾ) , ଵ|ଶߙ|ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ 0 ݂݅

! ܽ, ܾ , ଶ|ଶߙ|ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ 1 ݂݅ (10-34)

with precondition

߭ = 10 (10-35)

|߶〉஻ = 〈ଵ|1ߙ) − (〈ଶ|0ߙ → ൜
(! ܽ, ܾ) , ଵ|ଶߙ|ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ 0 ݂݅
! ܽ, ! ܾ , ଶ|ଶߙ|ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ℎݐ݅ݓ 1 ݂݅ (10-36)

10.5 Quantum physics and the artificial brain 273

with precondition

߭ = 11 (10-37)

for neural unit 1.Each of these therefore allows two measurement results, but all in all there
are just four that differ from each other. These four measurement results represent the possible
decision results of neural unit 1. ߬ both depends from information of inside and outside the
unit, each represented by 0 or 1.

The first number represents the phase state within the unit, whereas the second part represents
what has been learned from outside the neural unit. For being able to represent neuron ܣ’s
Qbit

|߶〉஺ = ଵ
√ଶ

〈ଵ|0ߙ) + ଶ|1〉) (10-38)ߙ

it is required to represent the states from the Qbits emitted by the EPR-source

|߶ା〉 = ଵ
√ଶ

(|00〉 + |11〉) (10-39)

Basically, this is similar to the representation of neural unit 1 described earlier, with the
difference that the phase states are also represented by 0 and 1:

Neural unit 1 (inside information)

Assuming that the four factors of neuron ܣ are represented by ܽ, ! ܽ, ܾ, ! ܾ then the positive
phase (+, but described by 0) may be used to represent ܽ, the negative phase (but described by
1) to represent ! ܽ, the first amplitude (ߙଵ) to represent ܾ and the second amplitude (ߙଶ) to
represent ! ܾ.

Neural unit 2 (inside information)

Assuming that the four factors of neuron ܣ are represented by ܿ, ! ܿ, ݀, ! ݀ then the positive
phase (+, but described by 0) may be used to represent ܿ, the negative phase (-,but described
by 1) to represent ! ܿ, the first amplitude (ߙଵ) to represent ݀ and the second amplitude (ߙଶ) to
represent ! ݀.

Neural unit 3 (inside information)

Assuming that the four factors of neuron ܣ are represented by ݁, ! ݁, ݂, ! ݂ then the positive
phase (+, but described by 0) may be used to represent ݁, the negative phase (-,but described
by 1) to represent ! ݁, the first amplitude (ߙଵ) to represent ݂ and the second amplitude (ߙଶ) to
represent ! ݂.

Outside information

The information learned from outside does not feature amplitudes, so only the phases are
represented by 0 and 1 as described in any other neural unit.

Given this information, it is possible to describe how exactly ߬ is determined. First of all, we
get back to the example: From now on, the representations of the phases are concluded as
requirement factors, and the amplitudes as influence factors, so that the problem statement
that has to be solved demands ! ܽ, ! ܿ, ݁ as solution, each of them coded into a different neural

274 10 Reverse engineering the mind

unit. These requirement factors can be influenced by the amplitudes, or influence factors.
Thus, the network is trained to determine the requirements factors based on the influence
factors as input – a classical classification problem. Furthermore, expected decision results are
defined as a combination of requirement and influence factors of neural unit 3:
݁, ݂; ݁, ! ݂; ! ݁, ݂; ! ݁, ! ݂

Start

1. Starting in neural unit 1, where ! a is represented by 1 (phases are represented by 0
and 1, as described earlier), the first part of τ is thus 1.

2. The second part comes from outside, and is the factor e (which is also represented in
neural unit 3, but the outside information is required), which is represented by 0.
Thus, the decision key for neural unit 1 is 10.

3. Repeat
a) Now that the decision key is known, the measurement key υ equals the

decision key with the probability of |βଵ|ଶ according to
ݎ݁ݒ݋ݎܩ ቀ(ܪ ⊗ ܫ ⊗ ൫ܿ௜௝(ܫ ⊗ ߶)൯ܫ ⊗ ߶ା)ቁ

= 〈ଶ|00〉(ܽ|0ߚ + ܾ|1〉) + 〈ଶ|01〉(ܽ|1ߚ + ܾ|0〉) + 〈ଵ|10〉(ܽ|0ߚ − ܾ|1〉)
+ 〈ଶ|11〉(ܽ|1ߚ − ܾ|0〉)

and depending from what has been measured at neuron ܣ. If Grover’s search
algorithm has projected all vectors that we do not want to measure ortho-
gonal to what we want to measure, then neuron ܤ’s Qbit has been projected
into

|߶〉஻ = 〈ଵ|1ߙ) − (〈ଶ|0ߙ

which is

|߶〉஻ = !)|ଵߙ) ܽ, ! ܾ)〉 − !)|ଶߙ ܽ, ܾ)〉)

as described beforehand (the measurement key is 10, thus the possible results
are restricted in advance). The decision result is obtained with the pro-
babilities |ߙଵ|ଶ, |ߙଶ|ଶ respectively.

b) The next step is to use the decision result for defining the outside informa-
tion-part of the decision key of neural unit 2. Assuming that the measure-
ment resulted in (! a, b), then the state b in neural unit 1 may be used to
orientate neuron ܤ in neural unit 2 towards the state d.

c) Finally, the requirement factor of unit 2, thus ! c, is represented as 1, so the
decision key of unit 2 is 10.

4. Until all units have been processed

End

Algorithm 29 – Quantum teleportation artificial neural network processing

10.5 Quantum physics and the artificial brain 275

10.5.1.5 Interference

Quantum interference is especially interesting when dealing with stochastic ANNs, such as
the Hopfield ANN or the Boltzmann machine, as via this phenomenon stochastic processes
which are coupled via quantum interference can be modelled. Furthermore, the interference of
presented patterns offers possibilities classical ANNs do not.

Remembering the single layer perceptron with one neuron,

ݕ = ݂(∑ ௜ݓ
௡
௜ୀଵ ௜ݔ + (ߠ + ߳௧ (10-40)

or better a single layer perceptron with multiple neurons in its layer

௧ݔ = ݂൫∑ ௧ି௜ݔ௜௝ݓ
௣
௜ୀଵ ൯ + ߳௧ (10-41)

calculating the network’s output ݔ at time ݐ, then a quantum representation considering the
state vector

ଵߙ଴ߙ … ௡ߙ = ⟨߰| (10-42)

and without uncertainty is as follows:

௜(௧)ߙ = ݂൫∑ ௜ܷ௝ߙ௝(௧ି௜)
௣
௜ୀଵ ൯ (10-43)

where the probability of the transition of mapping the ݅௧௛ eigenvector to the ݆௧௛ eigenvector

{00100} → {00100} (10-44)

(the 1 on the left side represents the ݅௧௛ eigenvector, and the one on the right side the ݆௧௛
eigenvector) is given by

௜݌
௝ = ห ௝ܷ௜หଶ (10-45)

where

∑ ௜݌
௝௡

௜ୀଵ = 1 (10-46)

Thus, the matrix ݌௜
௝ represents the transition matrix.

More on measurement is explained later, but if a measurement on the state (amplitudes)
vector is made, it is mapped on into an eigenstate vector:

ଵߙ଴ߙ} … {௡ߙ → {0,0 … 1 … 0} (10-47)

If the architecture of the QANN is based on one measurement per iteration, and ݈ measure-
ments are conducted, then then the mapping becomes

ଵߙ଴ߙ} … {௡ߙ → ቄ0, … , ଵ
√௟

, … , ଵ
√௟

, … ቅ (10-48)

with the probability that the ݅௞
௧௛ component of the new state vector is not zero of

௜௞݌ = ௜௞ߙ
ଶ (10-49)

276 10 Reverse engineering the mind

If a sequence of transformations for the state vector ⟨߰|

|߰(0)⟩ → ܷ|߰(0)⟩ → ݂(ܷ|߰(0)⟩) = |߰௧ାଵ⟩ (10-50)

is assumed, which formally represents eq. (9-41), then for the continuation of the sequence
the quantum device needs to be reset, so that the measured eigenstate can serve as new input,
resulting in the QANN described with eq. (9-42). Assuming that the activation function is a
sigmoidal one and corresponds to the explained vector mapping, the equation for the QANN
can be rewritten as

௜(௧)ߙ = ௟൛ߪ ௜ܷ௝ߙ௝(௧ିଵ)ൟ (10-51)

Considering an architecture with two measurements, the mapping described in (9-43) changes
to

ଵ
√ଶ

{00110} → ଵ
√ଶ

{00110} (10-52)

where we simply assume that before and after the mapping the ݅ଵ
௧௛ and the ݆ଵ

௧௛ is the third bit
from the left, and the ݅ଶ

௧௛ and the ݆ଶ
௧௛ is the fourth bit from the left, so that

݅ଵ + ݅ଶ → ݆ଵ + ݆ଶ (10-53)

where ݅ଵ, ݅ଶ, ݆ଵ, ݆ଶ represent eigenstates with the unit 1 at the ݅ଵ
௧௛ , ݆ଵ

௧௛ , ݅ଶ
௧௛ , ݆ଶ

௧௛ locations. This
results in the transitional probability of mapping

௜భ,௜మ݌
௝భ (݅ଵ + ݅ଶ → ݆ଵ) = ଵ

ଶ
|݆ଵܷ(݅ଵ + ݅ଶ)|ଶ = ଵ

ଶ
ห ௝ܷభ௜భ + ௝ܷభ௜మหଶ (10-54)

௜భ,௜మ݌
௝మ (݅ଵ + ݅ଶ → ݆ଶ) = ଵ

ଶ
|݆ଶܷ(݅ଵ + ݅ଶ)|ଶ = ଵ

ଶ
ห ௝ܷమ௜భ + ௝ܷమ௜మหଶ (10-55)

Both mappings result from independent measurements, so the joint transition probability is
simply

௜భ,௜మ݌
௝భ,௝మ = (݅ଵ + ݅ଶ → ݆ଵ + ݆ଶ) = ௜భ,௜మ݌

௝భ ௜భ,௜మ݌
௝మ = ଵ

ସ
ห ௝ܷభ௜భ + ௝ܷభ௜మ หଶห ௝ܷమ௜భ + ௝ܷమ௜మหଶ (10-56)

Quantum interference now comes into play as the input patterns ݅ଵ and ݅ଶ interfere with each
other, which means that their probabilities have to be added as they are subject to unitary
transformations. The output patterns ݆ଵ and ݆ଶ do not interfere with each other, as they result
from two independent measurements. Thus, the joint transition probabilities for both stochas-
tic processes, which are coupled via quantum interference

௜భ,௜మ݌
௝భ,௝మ = ଵ

ସ
ห ௝ܷభ௜భ + ௝ܷభ௜మหଶห ௝ܷమ௜భ + ௝ܷమ௜మหଶ (10-57)

are considered at the same time as each single one

݅ଵ + ݅ଶ → ݆ଵ + ݆ଶ (10-58)

of the stochastic processes.

10.5 Quantum physics and the artificial brain 277

10.5.1.6 Processing

The calculations within the QANN need to be carried out as it is done in a standard FFANN.
However, as already indicated on several occasions, one of the major advantages of quantum
mechanics is its superposition and the resulting quantum parallelism. For the QANN-internal
calculations done by the function ݂ on all configurations of ݔ the reversible unitary trans-
formation ௙ܷ , only taking basis states (|0〉 and |1〉) into such, will serve as example proces-
sing of one of the QANN’s Qbits:

௙ܷ(|ݔ〉௡|ݕ〉௠) = ௠ (10-59)〈(ݔ)݂⨁ݕ|௡〈ݔ|

where ⨁ indicates a modulo-2 bitwise addition or exclusive or. If ݔ and ݕ are ݉-bit integers
whose ݆௧௛ bits are ݔ௝ and ݕ௝, then ݕ⨁ݔ is the ݉-bit integer whose ݆௧௛ bit is ݔ௝⨁ݕ௝. |ݔ〉௡|ݕ〉௠
represents a tensor product and it may also be written as |ݔ〉௡⨂|ݕ〉௠ or |ݔ௡ݕ௠〉. Within this
elaboration all representations will be used, depending on the situation.

1101⨁0111 = 1010 (10-60)

Furthermore, if the initial value represented by the output register is

ݕ = 0 (10-61)

then

௙ܷ(|ݔ〉௡|0〉௠) = ௠ (10-62)〈(ݔ)݂|௡〈ݔ|

and ݂(ݔ) would represent the result in the output register, where regardless to the initial state
of ݕ the input register remains in its initial state |ݔ〉௡ . Furthermore, ௙ܷ fulfils another
important criterion, which is that it is invertible:

௙ܷ ௙ܷ|ݕ|〈ݔ〉 = ௙ܷ(|(ݔ)݂⨁ݕ|〈ݔ〉) = 〈(ݔ)݂⨁(ݔ)݂⨁ݕ〈ݔ| = (63-10) 〈ݕ|〈ݔ|

as

ݖ⨁ݖ = 0 (10-64)

for any ݖ. Equation (10-62) shows an important feature of quantum computation, namely that
the application of the 1-Qbit Hadamard transformation ܪ on each Qbit in the 2-Qbit state
results in

ܪ) ⊗ (〈0|〈0|)(ܪ = 〈଴|0〉|0ܪଵܪ = (〈0|ܪ)(〈0|ܪ) = ଵ
√ଶ

(|0〉 + |1〉) ଵ
√ଶ

(|0〉 + |1〉) =
ଵ

√ଶ
(|0〉|0〉 + |0〉|1〉 + |1〉|0〉 + |1〉|1〉) 10-65)

which leads to the generalization of the n-fold tensor product of ݊ Hadamard transformations
on the ݊-Qbit state

(0〉௡|)(௡⨂ܪ) = ଵ
ଶ೙/మ ∑ ௡଴ஸ௫ழଶ೙〈ݔ | (10-66)

278 10 Reverse engineering the mind

of first use in equation (10-73). If the initial state of an input register is |0〉, the application of
݊-fold Hadamard transformations transforms the state of this register into an equally weighted
superposition of all n-Qbit inputs.351

10.5.1.6.1 Entanglement

Considering the example described in Figure 77 - Quantum artificial neural network, a
possible implementation of a quantum artificial neural network could begin with the super-
position |߰〉௪௫೙௬೙ of all possible weight vectors, which allows classifying all training
examples with respect to every weight vector at once. Furthermore, a performance register |݌〉
is used for storing the number of correctly classified training examples; its update may happen
through the comparison of the network’s actual output with verification registers
,〈ଵଵݒ| … , ௡ଶ〉, each holding the desired values of the respective input training sets. If theݒ|
actual output corresponds with the desired output, the related specific performance registers
,〈ଵଵ݌ݏ| … , ௡ଶ〉 receive 1, otherwise nothing. After the training set has been processed, the݌ݏ|
specific performance registers are summed up and the result is then sent to the overall
performance register |݌〉:

〈௜݌| = ∑ ௠௡〉௜݌ݏ| (10-67)

where ݉ represents the number of data sets, ݊ the number of output values and ݅ the
networks’ ݅௧௛ weight configuration within the superposition. The update of the performance
register with respect to each configuration of the QANN creates an entanglement between
 ௜ the performance value݌ ଵ,…,௡〉 and |߰〉ଵ,…,௡, where |߰〉௜ represents all weights of the ݅௧௛ and݌|
of the same. Thus the oracle is

〈݌| = ݅ ∗ (68-10) ݋

where ݅ represents the number of training examples (inputs) and ݋ the number of output
neurons. As it may occur that either no configuration of a network within the superposition is
able to classify all training examples correctly (and therefore every vector has an equal chance
of being measured) or the amount of time required for finding a vector is increasing with the
number of bits in the weight vector and thus exponential complexity:

ܱ ቀඥ2௕/ݐቁ (10-69)

For avoiding the first case, Ventura and Ricks352 suggest modifying the search oracle to

〈݌| ≥ ݅ ∗ ݋ ∗ (70-10) ݌

where ݌ is the percentage of correctly classified training examples. With respect to quantum
artificial neural networks, this means that any possible configuration of the quantum ANN is
kept within the quantum linear superposition. However, there is still the problem of
measurement, as measurement needs to be done when probability of receiving a desired result
is high. Let assume a quantum register consisting of 64 Qbits each in the already known state

351 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

352 Ricks Bob, Ventura Dan (2003): Training a Quantum Neural Network; Provo: Brigham Young
University

10.5 Quantum physics and the artificial brain 279

|߰〉 = ଵ
ଶ

(|0〉 + |1〉) (10-71)

then every possible state, or every value (double) that can be expressed with these 64 bits may
be measured, but with the same probability distribution, so any of these double values would
exist in this quantum register at once. This is where quantum entanglement comes into play,
as each possible weight vector has been entangled with a slot in the performance register due
to processing. Therefore, a measurement on the performance register when the probability of
measuring the desired output (see eq. (10-70)) is close to 1 will also reveal the desired overall
weight vector (ANN configuration) due to the resulting loss of coherence in the processing
bits (10.5.1.7 Measurement). A more complicated substitute to equation (10-68) might be an
operator ௙ܷ , applying the already known ANN performance calculations represented by a
function ݂ on |߰௜〉:

௥௠௦௘ݔ = ටଵ
௡

∑ ௜ݔ
ଶ௡

௜ୀଵ
మ (10-72)

This could be done by summing the results from each ௙ܷ|߰〉 (௙ܷ on each training set) into
another quantum register |߶௜〉, ݅ representing the respective weight vector. When applying a
quantum search on |߶〉 after all, this then must include an average calculation, resulting in the
overall RMSE. However, the input and output register-Qbits will become entangled by the
calculation-Qbits, which in fact is a problem, as in this case both registers cannot be assigned
a state on their own (see 10.5.1.6.4 Reduction of and information about the quantum
perceptron equations).

10.5.1.6.2 Quantum parallelism

Let assume a training set consists of several hundreds of input data sets each consisting of
several attributes, then the input register would at first grow and secondly ௙ܷ in a classical
computer would have to be applied on every single input data set consecutively not only once,
but ݊ − 1 times, where ݊ represents the number of iterations (weigt adaptions) a training
algorithm requires for adapting the overall weight vector of an ANN. Let further assume, 100
(fictive and not related to the inputs, but in numbers easier to describe) Hadamard
transformations (gates) would be applied on every Qbit before the application of ௙ܷ , like

௙ܷ(ܪ⨂௡⨂1௠)(|0〉௡|0〉௠) = ଵ
ଶ೙/మ ∑ ௙ܷ଴ஸ௫ழଶ೙ (10-73) (௡|0〉௠〈ݔ |)

then the final state would contain 2ଵ଴଴ or ≈ 10ଷ଴ applications of ௙ܷ .353 However, quantum
parallelism allows the performance of an exponentially high quantity of ௙ܷ in unitary time.
This means that indeed every training set would require one application of ௙ܷ , but only once,
as all possible weight vectors coexist in quantum linear superposition.

10.5.1.6.3 From basic operators to the quantum transfer function

Figure 84 - Quantum single layer perceptron diagram and Figure 85 - Quantum multi layer
perceptron diagram both describe the whole processing of the quantum artificial neural

353 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

280 10 Reverse engineering the mind

network as single transformation. However, it is required to detail the processing with regards
to the activation or transfer function used by the neurons of the input- and hidden layer.
Equation (10-141) describes the sigmoid function as quantum function

〈(ݔ)݂| = 〈߶|߰〉 = ଵ
ଵା௘ష|ೣ〉 (10-74)

where the quantum linear superposed |ݔ〉 contains all possible values resulting from
calculation based on the previous neuron layer output multiplied by the related weight vectors
in superposition. This has not solved the basic challenge of arithmetic operations, like the
multiplication or division required for all introduced quantum functions. As mentioned at the
beginning, quantum operators must be linear, which means that

ܽ)߉ ଵ݂ + ܾ ଶ݂) = ߉ܽ ଵ݂ + ߉ܾ ଶ݂ (10-75)

where ଵ݂ and ଶ݂ represent functions, and ܽ and ܾ constants. To be complete here, the appli-
cation of a logarithm is an example for a non-linear function, as e.g.

݃݋݈ ݔ2 = 2 ݃݋݈ (76-10) ݔ

is not true for all values of ݔ. Thus, the first required operator, the multiplication, fulfils the
requirements, as it is a linear operator. This multiplication, as any other arithmetic operation
used within the perceptron equations needs to be included in one of the beforehand described
unitary transformations. For this, the quantum operators described at the beginning of this
chapter will form the basis – especially the Hadamard transformation ܪ and the cNOT
operator ܿ௜௝ are of importance, as these may be used to create operators like addition and
multiplication. The basis for the cNOT-operator is the unitary matrix operator c-ܸ (controlled
ܸ) described by the equations (10-77) – (10-79):

ܸ = ቀ1 0
0 ݅ ቁ (10-77)

ܸ|0〉 = ቀ1 0
0 ݅ ቁ ቀ1

0ቁ = ቀ1
0ቁ = |0〉 (10-78)

ܸ|0〉 = ቀ1 0
0 ݅ ቁ ቀ0

1ቁ = ቀ0
݅ ቁ = ݅|1〉 (10-79)

After four subsequent applications of controlled ܸ, the result is identity, and further three
applications of the same operator result in its inverse, which is also its complex conjugate
transpose ܸற. As mentioned beforehand, all operators must be linear, thus

ܸறܸ = ܸܸற = (80-10) ܫ

where ܸற is the complex conjugate transpose, or adjunct, of ܸ, and ܫ the identity operator.
Therefore, the resulting operator is c-ܸற . Back to cNOT, this operator can be built as in
Figure 79 - cNOT from H and V:

10.5 Quantum physics and the artificial brain 281

Figure 79 - cNOT from H and V

|0〉|0〉 ⟶ |0〉 ଵ
√ଶ

(|0〉 + |1〉) ⟶ |0〉 ଵ
√ଶ

(|0〉 + |1〉) ⟶ |0〉|0〉 (10-81)

|0〉|1〉 ⟶ |0〉 ଵ
√ଶ

(|0〉 − |1〉) ⟶ |0〉 ଵ
√ଶ

(|0〉 − |1〉) ⟶ |0〉|1〉 (10-82)

|1〉|0〉 ⟶ |1〉 ଵ
√ଶ

(|0〉 + ݅|1〉) ⟶ |1〉 ଵ
√ଶ

(|0〉 + ݅ଶ|1〉) ⟶ |1〉 ଵ
√ଶ

(|0〉 − |1〉) ⟶ |1〉|1〉(10-83)

|1〉|1〉 ⟶ |1〉 ଵ
√ଶ

(|0〉 − ݅|1〉) ⟶ |1〉 ଵ
√ଶ

(|0〉 − ݅ଶ|1〉) ⟶ |1〉|0〉 (10-84)

This forms a very good basis for creating further operators, and indeed this needs to be done:
for being able to perform all the arithmetic of the perceptron equations, another operator must
be created, which is the ccNOT-operator (controlled-controlled-NOT), also known as Toffoli-
gate354 (Figure 80 - Toffoli gate with controlled V and Figure 81 - Toffoli-gate with complex
conjugate transpose V):

Figure 80 - Toffoli gate with controlled V

Or, with the already introduced quantum gate ܸற:

354 Toffoli Tommaso (1981): Mathematical Systems Theory 14 13.

282 10 Reverse engineering the mind

Figure 81 - Toffoli-gate with complex conjugate transpose V

This can be described in mathematical form by the quantum operations in the equations
(10-85) and (10-86):

|110〉 ⟶ |11〉 ଵ
√ଶ

(|0〉 + |1〉) ⟶ |11〉 ଵ
√ଶ

(|0〉 + ݅|1〉) ⟶ |10〉 ଵ
√ଶ

(|0〉 + ݅|1〉) ⟶

|10〉 ଵ
√ଶ

(|0〉 + ݅|1〉) ⟶ |11〉 ଵ
√ଶ

(|0〉 + |1〉) ⟶ |11〉 ଵ
√ଶ

(|0〉 + ݅ଶ|1〉) =

|11〉 ଵ
√ଶ

(|0〉 +|1〉) ⟶ |111〉 (10-85)

|111〉 ⟶ |11〉 ଵ
√ଶ

(|0〉 − |1〉) ⟶ |11〉 ଵ
√ଶ

(|0〉 − ݅|1〉) ⟶ |10〉 ଵ
√ଶ

(|0〉 − ݅|1〉) ⟶

|10〉 ଵ
√ଶ

(|0〉 − ݅|1〉) ⟶ |11〉 ଵ
√ଶ

(|0〉 − ݅|1〉) ⟶ |11〉 ଵ
√ଶ

(|0〉 − ݅ଶ|1〉) =

|11〉 ଵ
√ଶ

(|0〉 +|1〉) ⟶ |110〉 (10-86)

The Toffoli-gate, as controlled-controlled-NOT gate, features two control-bits, one more than
the original cNOT-gate. The target bit is flipped only, and only when both of the control bits
feature the state |1〉|1〉. Furthermore this provides a very important feature for multiplication
(which in fact on binary level is an addition), namely a reversible AND-gate, if the target has
initially featured the state |0〉: the target becomes the logical AND-operator of the two control
bits as described in equation (10-87).355

,ଵݔ| 〈ଶ〉|0ݔ ⟶ ,ଵݔ| ଵݔ|〈ଶݔ ∧ ଶ〉 (10-87)ݔ

Thus, all required arithmetic operations, which are NOT, AND and XOR (cNOT), are
available now as unitary transformations, which means that they can be stacked together to a
larger unitary transformation for approaching the quantum perceptron equations. A combina-
tion of the Toffoli-gate and the cNOT-operator as quantum-adder form the basis for full
addition and multiplication (Figure 82 - Quantum addition):

355 Quantiki (2005): Basic concepts in quantum computation [2013-01-02]; URL: http://www.
quantiki.org/wiki/Basic_concepts_in_quantum_computation

10.5 Quantum physics and the artificial brain 283

Figure 82 - Quantum addition

Furthermore, any Boolean function which maps ݊ bits from an input register to ݉ bits of an
output register may be evaluated (equation (10-143)):

{0,1}௡ ⟶ {0,1}௠ (10-88)

As the operation of AND is not reversible, it needs to be embedded into the ccNOT-operator.
If the third bit has initially been set to 1 instead of 0 then the value |ݔଵ ∧ .ଶ〉 is flippedݔ
Generally, the action of the Toffoli-gate is written as described in equation (10-144):

,ଵݔ| 〈ݕ|〈ଶݔ ⟶ ,ଵݔ| ݕ)|〈ଶݔ + ଵݔ) ∧ ଶ))⨁2௠〉 (10-89)ݔ

Summing up, the function evaluation may be described as unitary evolution of the input and
output registers (equation (10-145)):

,ݔ| 〈ݕ ⟶ ,ݔ| ݕ) + 2௠〉 (10-90)⨁((ݔ)݂

Thus, also more complex functions like the quantum sigmoid function ((10-74)), which
include power functions like ݁ି|௫〉 may be constructed, as the example of

(ݔ)݂ = ଶ (10-91)ݔ

A quantum network (the construct of quantum operators) calculating

݂: {0,1}ଶ ⟶ {0,1}ଷ (10-92)

such that equation (10-91) acts as described in (10-93) – (10-96):

|00〉|000〉 ⟶ |00〉|000〉 (10-93)

|01〉|000〉 ⟶ |01〉|001〉 (10-94)

|10|000〉 ⟶ |10|100〉 (10-95)

|11|000〉 ⟶ |11〉|001〉 (10-96)

which in terms of quantum computation is

,ݔ| 0〉 ⟶ ,ݔ| ଶ⨁8〉 (10-97)ݔ

284 10 Reverse engineering the mind

an example being (10-98), which is (10-97):356

3ଶ⨁2ଷ = 1 (10-98)

It becomes obvious from the above explanations that arithmetic operations like multiplication
are not ones that benefit from quantum effects, as these still are step-by-step-operations. The
benefit occurs, when multiple of these operations for different configurations coexist and can
be calculated simultaneously due to quantum parallelism in the quantum state of a physical
system, like an artificial neural network in quantum linear superposition.

10.5.1.6.4 Reduction of and information about the quantum perceptron equations

The nontrivial question is now, although both ݔ and ݂(ݔ) are available, how to measure the
required output, or in other words, how to get to know the content of a closed box without
being allowed to look inside. As input and output are entangled now, a measurement of the
output register would also let the input register collapse and furthermore, no information
about ݂ can be gathered, which in fact represents the QANN. Thus, one has to dismiss the
general opinion which does not require one to know what happens between the input and
output neurons exactly, but to extract as many information about the internal calculations on
all configurations of the QANN in |߰〉 as possible. This may be achieved with unitary
quantum gates applied on all registers before and after the application of ௙ܷ and by combining
these with measurements of some values, thus subsets of Qbits, of the QANN. It is not a
hundred percent clear now how this may happen, but when the whole QANN is measured,
this would on the one hand theoretically allow gaining useful relations between ݔ and ݂, and
all this from one calculation, but on the other hand according to Heisenberg's uncertainty
principle not allow determining ݂(ݔ) for a specific ݔ. Shor, for example, has developed a
quantum algorithm (which is of course probabilistic) for factorization and by the use of the
discrete Fourier transformation. But back to QANNs, Mermin,357 when explaining Deutsch's
problem,358 gives a quite well example of how to reduce the probability of measuring a
configuration, or better, gathering information of configurations of ݂(ݔ) that are not desired.

Let assume, ݔ specifies a choice of two different inputs to an elaborate subroutine that
requires many additional Qbits, then one can think of ݂(ݔ) as characterizing a two-valued
property of this subroutine's output. It has also been mentioned that the input and output
registers are not allowed to be entangled with the subroutine's Qbits after having finished
processing, as in case of entanglement the input and output registers would not have final
states on their own, which does not allow describing the computational process as unitary
transformation at all. A simple linear transformation (10-59) may then be used to determine
the net effects to the input and output register. The output

௙ܷ(1⨂ܪ)(|0|〈0〉) = ଵ
√ଶ

|0〉|݂(0)〉 + ଵ
√ଶ

|1〉|݂(1)〉 (10-99)

356 Quantiki (2005): Basic concepts in quantum computation [2013-01-02]; URL: http://www.
quantiki.org/wiki/Basic_concepts_in_quantum_computation

357 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

358 Deutsch David (1985): The Church-Turing principle and the universal quantum computer;
Proceedings of the Royal Society of London A. 400, 1985, p. 97.

10.5 Quantum physics and the artificial brain 285

has been achieved by applying ௙ܷ on the input. Initially, the input and output registers need to
be in the state |0〉, followed by the application of ܺ on the input and output registers, again
followed by the application of ܪ on both. The input for ௙ܷ becomes then

(〈0|⨂〈0|)(ܺ⨂ܺ)(ܪ⨂ܪ) = (〈1|⨂〈1|)(ܪ⨂ܪ) = ቀ ଵ
√ଶ

|0〉 − ଵ
√ଶ

|1〉ቁ ቀ ଵ
√ଶ

|0〉 − ଵ
√ଶ

|1〉ቁ =
ଵ
ଶ

(|0〉|0〉 − |1〉|0〉 − |0〉|1〉 + |1〉|1〉) (10-100)

and the result

ଵ
ଶ ௙ܷ ቀ ௙ܷ(|0〉|0〉) − ௙ܷ(|1〉|0〉) − ௙ܷ(|0〉|1〉) + ௙ܷ(|1〉|1〉)ቁ (10-101)

which in terms of the function ݂(ݔ) is then
ଵ
ଶ

൫|0〉|݂(0)〉 − |1〉|݂(1)〉 − |0〉| ሚ݂(0)〉 + |1〉| ሚ݂(1)〉൯ (10-102)

where

෤ݔ = (103-10) ݔ⨁1

and

1෨ = 0 (10-104)

and

0෨ = 1 (10-105)

and

ሚ݂(ݔ) = (106-10) (ݔ)݂⨁1

If

݂(0) = ݂(1) (10-107)

then the output state is
ଵ
ଶ

൫|0〉|݂(0)〉 − |1〉|݂(1)〉 − |0〉| ሚ݂(0)〉 + |1〉| ሚ݂(1)〉൯ (10-108)

or

ଵ
ଶ

ቀ(|0〉 − |1〉)൫|݂(0)〉 − | ሚ݂(0)〉൯ቁ (10-109)

else if

݂(0) ≠ ݂(1) (10-110)

then
ଵ
ଶ

൫|0〉|݂(0)〉 + |1〉|݂(1)〉 − |0〉| ሚ݂(0)〉 + |1〉| ሚ݂(1)〉൯ (10-111)

or

286 10 Reverse engineering the mind

ଵ
ଶ

ቀ(|0〉 + |1〉)൫|݂(0)〉 − | ሚ݂(0)〉൯ቁ (10-112)

 on the input register leads to ܪ

݂(0) = ݂(1) ⟶ |1〉 ଵ
√ଶ

|݂(0)〉 − | ሚ݂(0)〉 (10-113)

and

݂(0) ≠ ݂(1) ⟶ |0〉 ଵ
√ଶ

|݂(0)〉 − | ሚ݂(0)〉 (10-114)

summed up as

(1⨂ܪ) ௙ܷ(ܪ⨂ܪ)(ܺ⨂ܺ)(|0|⨂〈0〉) = ቐ
|1〉 ଵ

√ଶ
|݂(0)〉 − | ሚ݂(0)〉 , ݂(0) = ݂(1)

|0〉 ଵ
√ଶ

|݂(0)〉 − | ሚ݂(0)〉 , ݂(0) ≠ ݂(1)
 (10-115)

This states that the input register is either |0〉 or |1〉, but depends on what is true, equation
(10-107) or (10-110). The clue is that two of four possible representations of the function ݂
have been eliminated, just by one operation, which again is a quantum computer-specific
ability. In terms of the QANN the same must now happen in more complex ways, as not only
one Qbit needs to be taken into consideration and the internal calculations of an ANN require
more than a few quantum operators and transformations. Currently, exactly this is subject of
further research.

However, this is not enough. The transformation ௙ܷ does not consider the additional Qbits
required for the calculations within the QANN. Thus, let assume a further transformation ௙ܹ ,
again inspired by Mermin's naming convention taking these bits into consideration. Whereas

௙ܷ only considered the Qbits of the input and output registers, ௙ܹ takes into account all Qbits.
In terms of the QANN, this can is described schematically by Figure 83 – Quantum artificial
neural network calculations

Figure 83 – Quantum artificial neural network calculations359

359 This is only a schematic representation used to explain the relation between inputs and outputs. I
am careful to point out that this diagram is a lot simpler than the quantum circuit diagram
breaking down the whole QANN instruction to single gates.

10.5 Quantum physics and the artificial brain 287

where the thick lines represent multiple Qbit-inputs, with multiple Qbit-registers, as the
calculation must be reversible. ݉ and ݊ represent the Qbits of the input and output registers,
and ݎ represents the additional Qbits required for the QANN-internal computation. The ݎ
Qbits required for the computations are as well in superposition and after computation
entangled with the input and output register. Thus the following quantum perceptron
equations have to be set up.

Quantum single layer perceptron equation

〈(ݔ)݂| = 〈߶|߰〉 = ℎ(∑ |߱௜
௡
௜ୀଵ 〈௜ݔ + (ߠ + ߳௧ (10-116)

where ℎ is the activation function, applied to the summed weights in linear superposition |߱〉௜
multiplied by the input values in linear superposition |ݔ〉௜ , if the threshold is exceeded. ݊
represents the number of inputs. The activation function needs to be in superposition as well,
as the dynamic action potentials of the neurons lead to multiple configurations of ݂. ߳௧ is the
uncertainty variable of the ANN and additionally, the equation takes into consideration a bias
 which is not necessarily used. This adapts Figure 83 – Quantum artificial neural network ,ߠ
calculations to Figure 84 - Quantum single layer perceptron diagram

Figure 84 - Quantum single layer perceptron diagram360

Quantum multi layer perceptron equation

〈(௧ݔ)݂| = 〈߶௧|߰〉 = ℎଶ(ݓ଴ + ∑ ଴௝ݓ)௝〉ℎଵݓ|
௟
௝ୀଵ + ∑ ((〈௧ି௜ݔ௜௝ݓ| + ߳௧

௣
௜ୀଵ (10-117)

where the input layer has ݌ inputs ݔ௧ିଵ, … , ௧ି௣, the hidden layer has ݈ hidden nodes and theݔ
output, and there is a single output for the output layer ݔ௧. Layers are fully connected by
weights, where |ݓ〉௜௝ in linear superposition represents ݅௧௛ input for the ݆௧௛ node in the hidden
layer, whereas |ݓ〉௝ is the weight assigned to the ݆௧௛ node in the hidden layer for the output.
଴ݓ and ݓ଴௝ are the biases, ℎଵ and ℎଶ are activation functions. Again, the dynamic action
potentials of the neurons must be in linear superposition as well, which then leads to multiple

360 This is only a schematic representation used to explain the relation between inputs and outputs. I
am careful to point out that this diagram is a lot simpler than the quantum circuit diagram
breaking down the whole QANN instruction to single gates.

288 10 Reverse engineering the mind

configurations of not only the weights, but also the neurons. This finally results in Figure 85 -
Quantum multi layer perceptron diagram

Figure 85 - Quantum multi layer perceptron diagram361

However, Figure 85 - Quantum multi layer perceptron diagram may not be the final state, as
this requires unentangled states of the registers. Moreover, in the initial state of the system it
is required to ensure the independency between the input and output registers' initial states
and the additional calculation-Qbits initial states. The independence of the calculation-Qbits
can be achieved by setting them to an initial state |߰〉௥ and also taking care of the final state
|߶〉௥ , which should be identical to |߰〉௥ , which can be achieved by reversible unitary
transformations:

௙ܹ = ௙ܸ
௠ܥ∗ ௙ܸ (10-118)

or described graphically with Figure 86 - Reverse the calculation bits

Figure 86 - Reverse the calculation bits362
where ௙ܸ is a unitary transformation on the input register ݉ and the calculation Qbit-register
 which creates an own state for both. Furthermore, this allows constructing the function ,ݎ
 .in a subset of the output register ݊, based on the entangled input and calculation Qbits (ݔ)݂
Then |ݕ〉௠ is transformed into |(ݔ)݂⨁ݕ〉௠ without influencing the bits of the input register or
the bits of the calculation register by the unitary transformation ܥ௠. ܥ௠ does not affect the
input or the calculation register, the inverse of ௙ܸ , namely ௙ܸ

∗ can be used to restore the initial

361 This is only a schematic representation used to explain the relation between inputs and outputs. I
am careful to point out that this diagram is a lot simpler than the quantum circuit diagram
breaking down the whole QANN instruction to single gates.

362 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

10.5 Quantum physics and the artificial brain 289

state of |߰〉௥.363 However, it is not always required to go that far, as the QANN is a mathe-
matical function, where the variables in Figure 83 – Quantum artificial neural network
calculations are replaced by real numbers. Therefore, just for gathering information about ݂, it
is not required to revert the unitary transformation ௙ܸ with ௙ܸ

∗, but it is indeed required when
there is the need to verify if ݂(ݔ) equals ݂(ݕ), which may be the case for an auto-associative
QANN.

However, although the elimination of possible configurations of ݂ decreases the probability of
measuring an undesired configuration and the time needed for quantum search, it does not
reveal the desired configuration. Thus, a further register is required for measuring the
performance of the quantum artificial neural network, for which continuous entanglement
with the calculation register is absolutely necessary. After having applied the unitary transfor-
mations clearing away the entanglement between the input, calculation and output registers,
there should only remain entanglement of the calculation and performance registers. When
applying a quantum search on the performance register, which in fact manipulates the phases
of the possible performance values until the probability of measuring the desired output is
near unity, the following measurement also lets the calculation register collapse, which then
reveals the desired function ݂, thus the quantum artificial neural network one is searching for
(detailed explanation follows in 10.5.1.7 Measurement).

10.5.1.6.5 Normalization

As in terms of input scaling a quantum feed forward artificial neural network still processes
information in the same way an ordinary one does, the need for input normalization does not
vanish. Thus, the input has to be scaled to a peculiarity between 0 and 1 for positive values
and -1 and 0 for negative values.

Start
1. Create normalization factor

݂ =
1

ට∑ ௜ݔ
ଶ௡ିଵ

௜ୀ଴
మ

2. For each
 ݓ

a) Normalize ݓ௖௨௥௥௘௡௧ with ݂ to ݓ௖௨௥௥௘௡௧
௡௢௥௠௔௟௜௭௘ௗ

b) Save ݓ௖௨௥௥௘௡௧
௡௢௥௠௔௟௜௭௘ௗ into corresponding ݊௙݊௧

End

Algorithm 30 – Quantum input normalization
Breakdown:

 ௖௨௥௥௘௡௧: The current weight, not normalizedݓ
௖௨௥௥௘௡௧ݓ

௡௢௥௠௔௟௜௭௘ௗ : The current weight, normalized
݂: The normalization factor according to multiplicative normalization

363 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

290 10 Reverse engineering the mind

݊௙݊௧ : Array list holding each possible weight, ݊௙ being the from-neuron, ݊௧ being the to-
neuron

Data normalization happens before processing the quantum ANN and does not necessarily be
carried out by the quantum computer, as the processing is straightforward and not NP-hard.

10.5.1.7 Measurement

Finally, all of this fails to consider the basic search problem, as a configuration of the QANN
within the allowed parameters has to be found within its superposition. This is where
Grover's364 algorithm needs to be applied, which is used for searching a special configuration
or item in an unsorted database (which is in case of the QANN the performance register in
linear superposition). Grover's algorithm provides the answer to when the system shall be
measured, as measurement lets the superposition collapse, which eliminates all possible
configurations of the QANN except the measured one. It is important to mention that the
algorithm is capable of finding the desired solution in ܱ(√ܰ) time (iterations), which is
nothing that can be done on a von Neumann computer.

10.5.1.7.1 Quantum artificial neural network configuration search function

When searching an unstructured database, containing ܰ = 2௡ datasets, and with the search
function ݂(ݔ), called search oracle, then according to probability theory the probability ܲ for
finding the desired dataset ݔௗ is ݇/ܰ, where ݇ is the number of randomly chosen database
entries. Thus, on a von Neumann computer searching ݔௗ requires an oracle querying all
datasets (equation (10-119)).

ܱ(ܰ) = ܱ(2௡) (10-119)

calls of the oracle ݂(ݔ), if

(ݔ)݂ = ൜1, ݔ ݂݅ = ௗݔ
0, !ݔ ݂݅ = ௗݔ

 (10-120)

According to Grover’s search algorithm, the number of oracle calls can be reduced drama-
tically, when inverting the phase of the desired basis states followed by an inversion of all
basis states about the average amplitude of all states. The repetition of this process produces
an increase of the amplitude of the desired basis state to near unity, followed by a correspond-
ing decrease in the amplitude of the desired state back to its original magnitude.365 Grover
detected that this routine just needs to be called a number of repetitions that does not exceed
గ
ସ √ܰ , which is ܱ(√ܰ) iterations and thus, although the search is stochastic somehow, it
outperforms a classical computer.

When ℋଶ describes a two-dimensional Hilbert-space with the already known orthonormal
basis of {|0〉, |1〉} and {|0〉, |1〉, … , |ܰ − 1〉} describes the orthonormal basis the Hilbert space

364 Grover Lov K. (1996): A fast quantum mechanical algorithm for database search, Proceedings of
the 28th Annual ACM Symposium on the Theory of Computation, pp.212-219.

365 Ezhov Alexandr A., Ventura Dan (-): Quantum neural networks, BSTU Laboratory of Artificial
Neural Networks

10.5 Quantum physics and the artificial brain 291

ℋ =
݊ − 1

⨂
0

ℋଶ (10-121)

where ⨂ again represents the tensor product. Here, the unitary transformation ௙ܷ represents
the oracle function ݂(ݔ) by

〈ݕ|⨂〈ݔ| ⟶ (122-10) 〈ݕ⨁(ݔ)݂|⨂〈ݔ|

⨁ again representing the exclusive or, identically to equation (10-59). However, as already
indicated beforehand, the inner workings of the unitary transformation ௙ܷ are not known.
However, it may be replaced by another computationally equivalent unitary transformation,
namely

(〈ݔ|)〈௫೏|ܫ = (−1)௙(௫)|ݔ〉 = ൜−|ݔௗ〉, ݔ ݂݅ = ௗݔ
,〈ݔ| !ݔ ݂݅ = ௗݔ

 (10-123)

Equivalence is given, as

௙ܷ⨂|ݔ〉 ቀ|଴〉ି|ଵ〉
√ଶ

ቁ = ൫ܫ|௫೏〉(|ݔ〉))൯⨂ |଴〉ି|ଵ〉
√ଶ

 (10-124)

Furthermore, ௙ܷ results from a controlled ܫ|௫೏〉 and two one-bit Hadamard transformations,
and is, in fact, an inversion in ܪ about the hyperplane orthogonal to |ݔௗ〉. Thus, ܫ|௫೏〉 may also
be expressed as the tensor product of the desired ket with its bra and the identity
transformation ݔ ,ܫௗ now represented as a ray:366,367

〈ట|ܫ = ܫ − 2|߰〉〈߰| (10-125)

10.5.1.7.2 Example processing

The already explained Hadamard-transformation needs to be applied for creating a
superposition of all database entries, as described with equation (10-73). In terms of the
quantum artificial neural network, a conglomerate of all basis states each in a specific state
represent one configuration. The Hadamard transformation applied for creating |߰〉 is

|߰〉 = ଵ
√ே

∑ |݅〉ேିଵ
௜ୀ଴ (10-126)

where ܰ is the number of datasets and ݅ represents the possible basis states of a neuron or
even a whole artificial neural network. It is important to mention here that |߰〉 contains |ݔௗ〉
amongst all other basis states. Both states span a Euclidean plane, and Grover’s algorithm
rotates |߰〉 about its origin as often as it takes this state to be as close to |ݔௗ〉 as possible. This
is the time the measurement needs to be done. However, before that the unitary
transformation

ܳ = ௫೏〉 (10-127)|ܫ〈ట೏|ܫ−

366 Lomonaco Samuel J. Jr. (2000): Grover’s Quantum Search Algorithm; Mathematics Subject
Classification. Primary 81P68; Secondary 81-01.

367 Kitaev Alexej (1995): Quantum measurements and the Abelian Stabilizer Problem; L. D. Landau
Institute for Theoretial Physics

292 10 Reverse engineering the mind

is applied, where |߰ௗ〉 denotes the desired vector that is going to be measured, given from

ܳ = ௫೏〉 (10-128)|ܫଵିܪ〈଴|ܫܪ−

 :ట೏〉 in its basic form, being an inversion of the following character|ܫ ଴〉 , or|ܫ

〈ట|ܫ = ܫ − 2|߰〉〈߰| (10-129)

(10-129) shows that the unitary transformation ܫ|ట〉 is an inversion in ℋ about the hyperplane
perpendicular to ݔௗ , thus the value the algorithm is searching for (the ܫ without subscript
represents the identity transformation). Therefore, for any unit length ket |߰〉 〈ట|ܫ , is an
inversion in ℋ about the hyperplane orthogonal to |߰〉. 368 From this, one can say that if |߰〉 is
a unit length ket in the Hilbert space ℋ and ௙ܷ a unitary transformation on ℋ, then

௙ܷܫ|ట〉 ௙ܷ
ିଵ = ௎೑|ట〉 (10-130)ܫ

This means that ௙ܷ applied on the inversion of the ket |߰〉, followed by the application of the
inversion of the ௙ܷ , namely ௙ܷ

ିଵ , results in ܫ௎೑|ట〉 , thus the inversion of ௙ܷ on |߰〉 . It is
important to know that the inversion of a unitary operator is always its adjunct. If this is not
the case, the operator is not unitary. The result of equation (10-130) is then the inversion of
|߰〉 after ௙ܷ has worked on it. Back to ܳ and equation (10-127) this means that ܳ is a rotation
of the state |߰ௗ〉, which is an equal superposition of all the standard basis states, within |߰〉
towards the desired value of the query |ݔௗ〉 by a specific angle ߚ. The rotation starts from two
unit length vectors orthogonal to |߰ௗ〉 and |ݔௗ〉, namely |ݔௗ

ୄ〉 and |߰ௗ
ୄ〉 with the same origin

and ߚ being the angle between these. The application of the transformation (10-127) on these
two vectors will result in a reflection in |ݔௗ

ୄ〉 followed by a reflection in |߰ௗ〉, which is the
same as a rotation by 2ߚ. Summing up,

ܳ = ట೏|ܫ−
 ௫೏〉 (10-131)|ܫ〈఼

is a rotation of |߰ௗ〉 by 2ߚ towards |ݔௗ〉 (Figure 87 - Rotation towards |ݔௗ〉).369

368 Lomonaco Samuel J. Jr. (2000): Grover’s Quantum Search Algorithm; Mathematics Subject
Classification. Primary 81P68; Secondary 81-01.

369 Lomonaco Samuel J. Jr. (2000): Grover’s Quantum Search Algorithm; Mathematics Subject
Classification. Primary 81P68; Secondary 81-01.

10.5 Quantum physics and the artificial brain 293

Figure 87 - Rotation towards |ݔௗ〉

It is important to mention here that the rotations are carried out in Euclidian plane, thus the
real 2-dimensional inner product space of ℋ. The definitions (10-132) and (10-133) help to
understand this. Let assume that |߶〉 and |߰〉 are two Kets in ℋ with a real dot product 〈߶|߰〉
(which, as already indicated, is the probability of |߰〉 collapsing into |߶〉), then (10-132) is the
sub-space of ℋ spanned by both |߶〉 and |߰〉:

ܵℂ = ,〈߶|)ℂ݊ܽ݌ܵ |߰〉) = 〈߶|ߙ} + ,ߙ|ℋ߳〈߰|ߚ ℂ} (10-132)߳ߚ

Then there must be a real inner space in ܵℂ:

ܵℝ = ,〈߶|)ℝ݊ܽ݌ܵ |߰〉) = {ܽ|߶〉 + ܾ|߰〉߳ℋ|ܽ, ܾ߳ℝ} (10-133)

Thus, if |߶〉 and |߰〉 are linearly independent, then ܵℝ is the mentioned 2-dimensional inner
product space of ℋ.370 Finally, the number of rotations needs to be determined, as too many
rotations will rotate |߰ௗ〉 past |ݔௗ〉 and too few of them would lead to a stop way before it.
Both are not desirable. From the latter explanations and Figure 45 - Rotation towards |ݔௗ〉 it is
obvious that

|߰ௗ〉 = ݊݅ݏ 〈ௗݔ|ߚ + ݏ݋ܿ ௗݔ|ߚ
ୄ〉 (10-134)

After ݊ rotations, or ݊ applications of ܳ the resulting state is

|߰௡〉 = ܳ௡|߰ௗ〉 = 2݊)] ݊݅ݏ + 〈ௗݔ|[ߚ(1 + 2݊)] ݏ݋ܿ + ௗݔ|[ߚ(1
ୄ〉 (10-135)

Moreover, Lomonaco371 describes that the target now is to find an integer ݊ so that sin [(2݊ +
is as close to one as possible, or in another term, an integer that (2݊ [ߚ(1 + is very close ߚ(1
to గ

ଶ
. As a consequence,

370 Lomonaco Samuel J. Jr. (2000): Grover’s Quantum Search Algorithm; Mathematics Subject
Classification. Primary 81P68; Secondary 81-01.

371 Lomonaco Samuel J. Jr. (2000): Grover’s Quantum Search Algorithm; Mathematics Subject
Classification. Primary 81P68; Secondary 81-01.

294 10 Reverse engineering the mind

݊ = గ
ସఉ

− ଵ
ଶ

= ቔ గ
ସఉ

ቕ (10-136)

However, for being able to calculate these equations, it is required to determine ߚ at first. At
first, it is important to know that the angle ߙ is complimentary to ߚ (see Figure 87 - Rotation
towards |ݔௗ〉):

ߙ + ߚ = గ
ଶ
 (10-137)

It follows that

ଵ
√ே

= 〈ௗ|߰ௗݔ〉 = ݏ݋ܿ ߙ = ݏ݋ܿ ቀగ
ଶ

− ቁߚ = ݊݅ݏ (10-138) ߚ

and according to this

ߚ = ଵି݊݅ݏ ቀ ଵ
√ே

ቁ ≈ ଵ
√ே

 (10-139)

Finally, the number of required rotations is given by

݊ = ቞ గ
ସ ௦௜௡షభቀ భ

√ಿ
ቁ
቟ ≈ గ

ସ √ܰ (10-140)

Although the algorithm is generally described as database search algorithm, it would be more
suitable to describe it as function inverter. This is, because for a given function ݂(ݔ) the
algorithm is able to determine ݕ. Ricks and Ventura372 made a very interesting proposal of
how the optimal solution may be determined by a generalization of the of Grover’s algorithm
initially presented by Boyer et al.373

Another approach could be as follows: the output of a node would be ݂(ݔ) and according to
Grover’s algorithm the determination of ݕ is possible, which has to happen with a quantum
search routine ௙ܷ . This search routine must then calculate backwards through the network,
which is quite different from any other approach in neural network learning. Usually, ݕ is
given and one tries to determine ݂(ݔ) and adapts ݂(ݔ) through a learning algorithm as long as
it is required to fulfil a stopping criterions, like the RMSE. However, as only ݂(ݔ) is given,

௙ܷ is required to find the correct input to the desired output. Thus, the calculated output must
be taken and the calculation must go backwards. Let assume the perceptron equation is as
follows:

〈(ݔ)݂| = ∑)݊ܽݐ |߱〉௜
௡
௜ୀଵ ௜〈ݔ| + (ߠ + ߳௧ (10-141)

Then ௙ܷ must be

௜〈ݔ| = ௔௥௖௧௔௡(|௬〉೔ିఢ೟)ିఏ
∑ |ఠ〉೔

೙
೔సభ

 (10-142)

372 Ricks Bob, Ventura Dan (2003): Training a Quantum Neural Network; Provo: Brigham Young
University

373 Boyer Michael, Brassard Gilles, Hoyer Peter, Tapp Alain (1996): Tight Bounds on Quantum
Searching, Fourth Workshop on Physics and Computation

10.5 Quantum physics and the artificial brain 295

and the error calculation

〈௥௠௦௘ݕ| = ටଵ
௡

∑ ଶ〉௜ݕ|
௡
௜ୀଵ

మ (10-143)

where ݊ represents the number of outputs and ݕ the input values.

However, again and before that, the input register consisting of a number of ݊ Qbits has to be
put into superposition as it has already been done in equation (10-66):

|߶〉 = ௡|0〉௡⨂ܪ = ଵ
ଶ೙/మ ∑ ௡〈ݔ|

ଶ೙ିଵ
௫ୀ଴ (10-144)

Also, the already introduced unitary transformation ܸ is required, plus an additional unitary
transformation ܹ acting on the input register as ܸ with a fixed form not depending on ܽ and
preserving the component of any state along the standard (initial) state |߶〉, but changing the
sign of its component orthogonal to |߶〉:

ܹ = 2|߶〉〈߶| − 1 (10-145)

|߶〉〈߶| representing the projection operator on |߶〉.374 Given these transformations, Grover’s
algorithm applies the Product ܹܸ many times onto the input register in |߶〉. Furthermore,
each invocation of ܹܸ requires the quantum search routine or unitary operator ௙ܷ to be
executed, which must be able to work with the superpositions of the QANN’s states and
which compares the entries of the database, or in the case of a quantum artificial neural
network, the desired output with the calculated output. Summing up, in both algorithms the
quantum search seeks to let the system fall into decoherence when the probability amplitudes
for measuring the desired state near unity.

10.5.1.8 Envisaged implementations of a quantum artificial neural network

At first, the basic analogue to a hard disk or RAM for representing bits must be found. A
suitable option are fermions, or spin-1/2 objects, because the possible spin directions allow
the representation of |0〉 by spin up with |↑〉 and of |1〉 by spin down with |↓〉 along the z-axis.
In a 3-d real vector space, the complex amplitudes of a Qbit ߙଵ|0〉 + ଵ|1〉 are then describedߙ
by

ଵߙ = ݁
ష೔ഝ

మ ݏ݋ܿ ఏ
ଶ
 (10-146)

ଶߙ = ݁
೔ഝ
మ ݏ݋ܿ ఏ

ଶ
 (10-147)

where ߠ is the polar angle (the angle between the vector and the z-axis), and ߶ is the
azimuthal angle (the angle between the x-axis and the vector’s projection onto the two-
dimensional x|y-plane). The angle between the vector (formerly described as a ray in Hilbert-
space) and the z-axis determines the probabilities of obtaining |↑〉 or |↓〉 along this axis,

374 Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge: Cambridge
University Press

296 10 Reverse engineering the mind

whereas the azimuthal angle represents the relative phase. Thus, the vector points into the
positive range of z, when

ଵߙ = |↓〉 ∧ ଶߙ = |↑〉 (10-148)

and into the negative range of z, when

ଵߙ = |↑〉 ∧ ଶߙ = |↓〉 (10-149)

which is a representation of the general Qbit, existing in 2-d Hilbert-space, in 3-d real vector
space.375 Apart from that, there are several difficulties one faces when trying to implement a
quantum computer. One of the major ones is the elimination of the physical system’s (that a
quantum computer certainly is) own irrelevant properties, so that the superposition, or
coherence, can be established. This is not only difficult when thinking of possible
implementations of a quantum artificial neural network, but a general issue. However, there
may be a chance of implementing quantum systems capable of processing a quantum artificial
neural network before standard quantum computers may be implemented. This is, because the
first implementations will possibly target auto-associative artificial neural networks, not
relying on double values for processing, but on but on signed 2bit-values values (-1, 0, 1).
Thus, the architecture would not consist of 64 Qbits, but on 2 Qbits. Given such an auto-
associative quantum artificial neural network for recognizing patterns consisting of 3 input
values would just require 3 Qbits in case of a Hopfield artificial neural network (Figure 88 -
Quantum Hopfield artificial neural network), and maybe 7 (depending from the number of the
hidden classifiers) in case of a Boltzmann machine (Figure 89 - Quantum Boltzmann
machine). Furthermore, there exist proposals for the implementation of quantum hidden
Markov models.376

Figure 88 - Quantum Hopfield artificial neural network

375 Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL: http://red.csie.
ntu.edu.tw/QC/peng/chap1.pdf

376 Monras Alex et al. (2012): Hidden Quantum Markov Models and non-adaptive read-out of many-
body states [2012-10-22]; URL: http://arxiv.org/abs/1002.2337v2

10.5 Quantum physics and the artificial brain 297

Figure 89 - Quantum Boltzmann machine

Another challenge is the realization of the required interconnection of the network’s neurons.
The calculation of the connection weights happens in the perceptron equation and thus
creating entanglement of the calculation bits. Therefore, the weighted neuron connections
exist as entangled Qbit-states. According to DiVincenzo, physical systems implementing
quantum computers must provide the following (DiVincenzo criteria):

– A scalable system of well-characterized Qbits,
– which must offer the possibility of proper initialization and
– which must have much longer coherence times than the time scales required for the

fundamental operations,
– a universal set of quantum gates and
– a Qbit-specific measurement.

Additionally, DiVincenzo demands for

– the ability to interconvert stationary and flying Qbits and
– the ability to faithfully transmit flying Qbits between specified locations.377

Technically, there exist no fundamental obstacles in implementing a fault-tolerant quantum
computer; however, there is no best approach, although a few top candidates exist. The
implementation of a quantum system being capable of processing an artificial neural network
may be realized by the use of the following systems:

377 DiVincenzo David. P. (2001): Dogma and heresy in quantum computing; Quantum Information
Comp. 1, 1.

298 10 Reverse engineering the mind

10.5.1.8.1 Adiabatic quantum annealing

One potential implementation and the most promising one, although completely different in
architecture and not developed with the target of achieving universal quantum computing, is
the adiabatic quantum annealing model. A basic building block is the SQUID (super-
conducting quantum interference device), and interference in that case refers to the fact that
electrons produce interference patterns resulting in quantum effects. This means that the
SQUID behaves as a Qbit, which is due to the fact that these are implemented as tiny metal-
rings made of niobium. Niobium, when cooled down, becomes a superconductor, meaning
that charged particles traveling through it do not experience any resistance. The SQUID
represents the two possible states of a Qbit by magnetic fields, pointing up or down, which is
caused by electrons travelling in both directions in the ring at once (which is only possible in
a superconductor). Controlling the amount of charge flowing in either of the directions allows
direct manipulation of the probability amplitudes.

Multiple Qbits must be coupled, and in a quantum annealer this happens with Josephson
junctions, also called couplers, which are made of superconducting rings as well. If several
Qbits and couplers are brought together, a quantum neural network can be implemented
directly in hardware. Finding an optimal solution in an ANN is an optimization problem, in
which we aim to minimize the error. If translated into an optimization function, the D-
Wave 378 represents the errors surface of an ANN by an energy surface, and what the
optimization function does is try to find the minimum energy configuration of the system. The
objective function is given by

ܱܾ݆൫ܽ௜, ௜ܾ௝ ; ௜൯ݍ = ∑ ܽ௜ݍ௜ + ∑ ௜ܾ௝ݍ௜ݍ௝௜௝௜ (10-150)

where q୧ represents the Qbit participating in the annealing cycle and finally converging to a
computational basis state, q୧q୨ is the coupler (Josephson junction) that allows one Qbit q୧ to
influence another Qbit q୨, the weight a୧ is a real-valued constant associated with Qbit q୧ (the
probability amplitude), and b୧୨ is a real-valued constant controlling the strength of influence
carried out by one Qbit q୧ to another Qbit q୨.

Thus, the D-Wave samples from the q୧ minimizing the objective and the translation of a
problem into the objective function must be done by the programmer.

10.5.1.8.2 Nuclear magnetic resonance

NMR seems to be a promising approach for implementing a quantum artificial neural net-
work, as although the number of bits is currently limited, linear superposition can be kept up
to milliseconds, thus long enough for allowing calculation, quantum search and measurement.
Chuang and Gershenfeld 379 made an experimental verification using a nuclear magnetic
resonance system made up of two Qbits, the first having been the spin of a carbon isotope’s
 proton (ାܪ) nucleus, the second having been described by the spin of a hydrogen ion’s (ଵଷܥ)

378 D-Wave (2016): The D-Wave 2X System [2016-07-21], URL: http://www.dwavesys.com/d-
wave-two-system

379 Gershenfeld Neil, Chuang Isaac L. (1996): Quantum Computing with Molecules [2012-12-19];
URL: http://www.mat.ucm.es/catedramdeguzman/old/01historias/haciaelfuturo/Burgos090900/
quantumcomputingSciAmer/0698gershenfeld.html

10.6 The artificial neocortex 299

spin. However, although their system is a real quantum system, they compute the statistical
average of many copies of the system, thus molecules.

10.5.1.8.3 Others

Other promising systems are quantum dot systems, consisting of an electron, trapped in an
atomic cage, ion traps, or quantum electrodynamics of atoms in optical cavities.

10.6 The artificial neocortex

“Consciousness” is one of these suitcase words from psychology that helps us to discuss a
complex subject no scientist or philosopher has been able to describe or demystify for millen-
nia. It enables us to include yet unknown processes and (changes of) states associated with the
human brain in our everyday-language with ease, not only without being able to describe
what accounts for a conscious experience on neuronal or (sub-) atomic layers, but also with-
out being able to explain what consciousness is on a more abstract layer. Lots of scientists
from different fields have been working on disclosing the secret of consciousness, and
numerous different explanations have been published and discussed controversially. Most of
these theories feature a common denominator – the inclusion of a feature set, which is
associated with the perception of consciousness. It would be counterproductive to reject such
approaches, as only the detailed description and combination of single features will allow us
to reproduce conscious behavior in artificial entities. However, lots of these theories share one
more thing: they try to simplify the enormous complexity of different information processing
levels, such as self-conscious reflection, (self-) reflective or deliberative thinking, or sub-
jectivity in conscious experiences, which, amongst others, incorporates learned behavior and
experience. Simplification has been very applicable for physical theories, but we assume that
more complex theories are required to approach the explanation of which features, brain states
or processes consciousness comprises. We will not provide such a theory here, as this would
go beyond the scope of this elaboration, but we will approach such one by starting to combine
and technically explain features that we consider such a theory needs to take into account.

Although there has always been criticism on ANNs over the last decades, we consider them as
a useful tool for implementing consciousness in an artificial entity. Taking deep learning
ANNs as one of the foundations for processing, it may be possible to implement powerful
structures such as context classifiers, used for interpreting the context of a situation. The
description of quantum artificial neural networks has shown that in theory networks with
arbitrary depth can be created and processed, such as the human brain is one. It is obvious that
not only one artificial neural network alone will be capable of processing all information
provided by sensory inputs, such as vision. Thus, we consider that the following structures
and methods are a good starting point for achieving what we are looking for, however not all
of these will be dealt with in detail, as this goes beyond the scope of this book:

– Search and optimization
 (Automated) reasoning (i.e. through trees of goals and subgoals, inference engines,

theorem provers, classifiers)
 Access to knowledge (i.e. index-based search, weighted result sets)

– Logic and reasoning
 Logic (i.e. first order logic, formal logic, description logic)

300 10 Reverse engineering the mind

 Deductive and inductive reasoning (i.e. logic, mathematical reasoning, knowledge-
based reasoning, reducing problem to search)

 Planning (i.e. search through trees of goals and subgoals, means-ends analysis, logic)
 Decision making (i.e. knowledge-based reasoning)
 Data-based reasoning
 Uncertain reasoning (probabilistic methods)

– Perception, pattern recognition and -understanding
 Object recognition and cene understanding (i.e. ANNs + access to knowledge)
 Context recognition and -classification (i.e. logic and reasoning + ANNs)
 Clustering of information (i.e.ANNs)
 Long short-term memory (i.e.LSTM ANNs)
 Ability to make predictions (i.e.ANNs)

– Natural language
 Understanding and deriving meaning from text (i.e. deep ANNs, text mining, hierar-

chical analysis and representation of language)
 Natural language understanding (i.e. segmentation, part-of-speech tagging, dis-

ambiguation)
 Natural language generation (i.e., conversion of information in databases in human

readable language)
 Information retrieval (i.e. storing, searching, retrieving information)

– Conscious experiences
 Understanding of concepts (i.e. by hierarchical structure of language, abstraction in

deep neural networks)
 Conscious experiences (i.e. collapse of a superposition in a large quantum neural

network from a multitude of possibilities to one definite state)

Additionally, access to knowledge is required, thus to

– (knowledge) databases,
– ontologies,
– semantic nets,
– systems architecture,
– frames,
– rules,
– indices via search engines,
– expert systems, and
– information processors, thus agents

 collecting
 processing,
 ranking, and
 selecting context-sensitive information.

From the listing we can see that I suggest not only classical means of information technology
and artificial intelligence, such as databases containing information or expert systems
correctly accessing context-sensitive information, but also quantum physical approaches,
which has also been the reason to going into detail with quantum mechanics and especially
quantum artificial neural networks. It cannot be taken for granted that an artificial mind can
only be implemented by merging both fields to one strong component. Even if our brain does
not work in that manner, so that e.g. for learning or the execution of some limb motion

10.6 The artificial neocortex 301

information access and processing may happen on the classical neural level only, and
experiencing conscious content may involve signal processing on the quantum physical layer
as well, a combination for an ACE seems to be promising.

I will start the explanation of my ideas by discussing two further concepts, namely the one of
context recognition as well as the concept of hierarchies. This is, because one of the major
powers of our brains is that we can extract context from a situation. For this and other para-
digms, such as language processing, to work, it is required to understand hierarchical informa-
tion structuring and processing. The first concept mainly concerns the acquisition of know-
ledge and is discussed in the following part, whereas the second concept has to do with the
organization of patterns in our (and the artificial entity’s) brain, which is discussed at 10.6.3
Implementation. I already mentioned that natural language processing (and understanding) is
one of the key concepts for the human brain development, and therefore I will explain the
proposed artificial neocortex based on the implementation of language processing starting
with chapter 10.6.2 Context recognition and hierarchical learning. Before that, it is required to
understand how knowledge can be represented, accessed and stored.

10.6.1 Knowledge and data

To start with, it is required to understand what knowledge exactly is, and in the field of know-
ledge representation research is concerned with only that. Knowledge representation within
knowledge modeling is to formally reflect knowledge in knowledge-based systems. For this,
various formal languages and notations have been proposed. A collection in this way
represented knowledge is called knowledge; in the semantic web formalized knowledge is
stored in a distributed way. In contrast to the representation of knowledge, the focus of the
organization of knowledge is more on the order of existing knowledge that not even shown,
but are described by metadata. Means of knowledge representation are, amongst others,
applied at the construction of expert systems, machine translation programs, systems for
computer-assisted maintenance and database query programs.

In ordinary language, a person possesses knowledge about an issue if the following conditions
about an issue if the following three conditions are true:

1. the knowledge carrier keeps the facts to be true
2. the speaker also keeps the facts to be true
3. the knowledge carrier can describe the facts

The third condition also requires that the verb "to know" is used to describe conscious states,
that is, those that can be verbalized.

In computational linguistics and AI research one speaks of knowledge, however, even if the
above conditions 2 and 3 are not met, that is, even where it comes that someone believes
something or thinks, knows, or can something. When using “can” is clear that it is not just
about facts, but also to methods and procedures is (procedural knowledge). With the distinc-
tion between “know” and “can” the distinction between so-called declarative and procedural
knowledge has already been touched upon. In AI there exists a distinction accordingly
between declarative and procedural forms of knowledge representation. It should be noted,
though, that procedural knowledge and procedural knowledge representation do not necessa-
rily need to cover. Declarative knowledge can be represented procedurally as well, and vice
versa.

302 10 Reverse engineering the mind

– Procedural knowledge representations describe methods for design, link and application
of knowledge.

– Methods for controlling the use of declarative and procedural knowledge descriptions are
called control knowledge. Control knowledge is meta knowledge.

10.6.1.1 Knowledge representation

Several forms of knowledge exist per definition, and also several ways of representing
knowledge in order to be used in an artificially intelligent system. We distinguish between
four different kinds of knowledge:

– Objects: typically, we consider knowledge as the knowledge of facts about objects in the
world around us: Cars have tires. Some mountains are high. We therefore have to re-
present objects, classes or categories of objects, descriptions of objects and relationships
between objects.

– Events: we also possess knowledge of processes and events in the world: A car sped at
220 km/h in the city. Besides the presentation of the events themselves, a representation
formalism possibly also contains the timing of a sequence of events and the difference
between the cause-effect-relationships.

– Practical knowledge: a capacity requires not only knowledge of objects and events also
knowledge about how certain actions are to be executed. Also, most cognitive skills such
as the formation of sentences or the theorem proving require such action knowledge.

– Meta knowledge: we also make use of knowledge about our knowledge, so-called meta
knowledge. For example, we know something about the scope and origin of our know-
ledge of a specific subject on the reliability of certain information, or about the relative
importance of specific facts about the world. For meta-knowledge also includes the
assessment of our own cognitive abilities and knowledge about ways of acquiring
knowledge.

The most important criterion for the assessment of various methods of knowledge represent-
tation is what use of the illustrated knowledge ultimately is to be made. The processing of
knowledge in AI systems involves three main stages:

– The acquisition of new knowledge (knowledge acquisition).
– Finding the relevant facts regarding the current problem in the knowledge base (know-

ledge retrieval)
– Reasoning (reasoning) with these facts in search of a solution to the problem.

The knowledge used and manipulated by expert systems corresponds to what the simulated
procedure of specialists is based upon. Depending on whether knowledge content is described
as “passive data” or applicable procedures leads to different forms of knowledge represe-
ntation:

10.6.1.2 Declarative knowledge representation

Declarative representations of knowledge content give descriptions of situations which do not
contain information about the construction and use of knowledge, i.e. “the sum of 5 and 4 is
9” or the formula: 5 + 4 = 9. Declarative forms of knowledge representation are

10.6 The artificial neocortex 303

– Semantic networks
– Object-attribute-value-triples
– Frames (schemes, scripts)
– Production rules
– Predicate logic

10.6.1.2.1 Semantic networks

Semantic networks (see Figure 90 – Semantic network): semantic networks were originally
designed as psychological models of cognitive structures such as associations in memory, and
later to describe the semantic structure of sentences. A semantic network is a directed graph
of a set of nodes, which represent objects (terms and concepts), as well as an amount of
directed edges (arcs or links) representing relations between objects. Usually both nodes and
edges are named.

Figure 90 – Semantic network

Nodes are used to represent objects and descriptors. Objects can be physical objects that one
can see or touch. Objects can also be mental elements, e.g. actions, events or abstract cate-
gories, and descriptors provide additional information (attributes, properties) on objects.

Edges represent relations, connecting objects and descriptors. Some frequent connections are:

– Is-a: represents the relation between the class and case, i.e. “An Audi A3 is a car.” Often,
however, but also the subset relationship or a subcategory is represented therewith, i.e. “A
car is a means of transportation.” These two uses should however be distinguished. For
example, the relation between case and class could be described by “element-by” or
“instance of”.

– Has: has-connections identify relations between parts and sub-elements, i.e. “A car has an
engine”.

304 10 Reverse engineering the mind

One of the main advantages of this representation scheme is its flexibility. New nodes and
links can be defined as required. If we, for example, represent an electric machine as a
network, then the nodes can represent items, “wired-with” other items. An essential feature of
networks is the inheritance of properties, which is the basis for knowledge manipulation in
such networks.

Inheritance refers to the fact that a node can inherit the characteristics of other nodes to which
it is connected. The inheritance of properties is due to the is-a relation, and means that all
individual cases of a class take over all properties of the parent class to which they belong.

From the foregoing presentation it is clear that semantic networks are suitable for representing
relationships that would appear in predicate logic as two-place predicates. The question then
is how three or more digit predicates can be represented, i.e. “Alice gave the key to Bob.” For
this, the whole sentence is first conceived to be an instance of an event class “give”. There are
a number of process operators who are in certain respects to the event (see Figure 91 –
Representation of n-digit predicates):

– Agens = agent
– Patiens = entity directly affected by the action
– Recipient

Figure 91 – Representation of n-digit predicates

10.6.1.2.2 Object-attribute-value-triplet

Another common method to represent knowledge content is the representation of an object-
attribute-value triplet or O-A-V-triplet (associative triplet). This representation scheme has
i.e. been used in the medical expert system MYCIN. This is a special case of representation
by semantic networks (see Figure 92 – O-A-V-triplet).

10.6 The artificial neocortex 305

Figure 92 – O-A-V-triplet

Conceptual units can be either objects or physical entities. Attributes are general characteris-
tics or properties that are associated with objects. Size, shape and color are typical attributes
of physical objects. The third element of the triple is the value of an attribute. The value
indicates the specific nature of an attribute in a particular situation. Table 3 – O-A-V-triplet
provides an example.

Table 3 – O-A-V-triplet

Object Attribute Value

Rose Color Red

Rose Origin Germany

Rose Durability Medium

10.6.1.2.3 Frames

Frames have been introduced by Marvin Minsky as means of representation in image pro-
cessing: When one encounters a new situation (or makes a substantial change in one's view of
the present problem), one selects from memory a structure called a frame. This is a remem-
bered framework to be adapted to fit reality by changing details as necessary. A frame is a

306 10 Reverse engineering the mind

data-structure for representing a stereotyped situation, like being in a certain kind of living
room, or going to a child's birthday party. Attached to each frame are several kinds of infor-
mation. Some of this information is about how to use the frame. Some is about what one can
expect to happen next. Some is about what to do if these expectations are not confirmed. We
can think of a frame as a network of nodes and relations…380 A frame is a grouping of nodes
and attribute-value pairs in a semantic network describing a stereotyped object, an action, or
an event in its entirety. Thus, a frame is a data structure that includes all knowledge about a
particular object. Knowledge in a frame is partitioned into slots, in declarative (e.g., the color
of a car) and procedural knowledge (e.g., activate a certain rule if a value exceeds a given
level). The content of a frame are slots and facets, where by a slot is a set of attributes
describing the object, and a facet describes knowledge about attributes in the slot. One slot
contains one or more facets. Frames may also contain other frames or sub-frames. Examples
for frames are Table 4 – Car-frame and Table 5 – Engine-frame.

Table 4 – Car-frame

Automobile frame

Class of: Transportation

Name of manufacturer: AUDI AG

Origin of manufacturer: Germany

Model: Audi S3

Type of car: Sportback

Weight: 1380 kg

Wheelbase: 2595–2637 mm

Number of doors: 5

Transmission: 6 gear S-tronic

Number of wheels: 4

Engine:

– Type: TFSI
– Number of cylinders: 4

Acceleration

0-100: 4.9 – 5.3 s

Gas mileage 100 km: 6.9–7.0 l

380 Minsky M. (1981): A Framework for Representing Knowledge; In: J.Haugeland (ed.); Mind
Design; Cambridge; MA: The MIT Press, 95-128.

10.6 The artificial neocortex 307

Table 5 – Engine-frame

Engine frame

Cubic capacity: 1984 cm³

Ventiles: 16

CO2-emission combined: 159–162 g/km

Fuel system: TFSI

Horsepower: 300

Torque: 380 Nm/1800–5500

Frames can initially be regarded as a partial view in a semantic network in which all with O-
A-V-triples associated with an object are combined into a whole. Thus, a semantic network is
a frame hierarchy.

Knowledge-based systems

The need to represent knowledge in a way usable for software firstly found application in
knowledge-based system (KBS). A KBS reasons and uses a knowledge base to solve complex
problems. The term is broad and is used to refer to many different kinds of systems. The one
common theme that unites all knowledge based systems is an attempt to represent knowledge
explicitly via tools such as ontologies and rules rather than implicitly via code the way a
conventional computer program does. A knowledge based system has two types of sub-
systems: a knowledge base and an inference engine. The knowledge base represents facts
about the world, often in some form of subsumption ontology. The inference engine
represents logical assertions and conditions about the world, usually represented via IF-THEN
rules.381

Early knowledge-based systems were primarily expert systems. In fact, the term is often used
synonymously with expert systems. The difference is in the view taken to describe the system.
Expert system refers to the type of task the system is trying to solve, to replace or aid a human
expert in a complex task. Knowledge-based system refers to the architecture of the system,
that it represents knowledge explicitly rather than as procedural code. While the earliest
knowledge-based systems were almost all expert systems, the same tools and architectures
can and have since been used for a whole host of other types of systems. I.e., virtually all
expert systems are knowledge-based systems but many knowledge-based systems are not
expert systems.

The first knowledge-based systems were rule based expert systems. One of the most famous
was MYCIN, a program for medical diagnosis. These early expert systems represented facts

381 Smith Reid (1985): Knowledge-Based Systems Concepts, Techniques, Examples [2016-07-14];
URL: http://www.reidgsmith.com. Schlumberger-Doll Research

308 10 Reverse engineering the mind

about the world as simple assertions in a flat database and used rules to reason about and as a
result add to these assertions. Representing knowledge explicitly via rules had several
advantages:

– Acquisition & Maintenance. Using rules meant that domain experts could often define
and maintain the rules themselves rather than via a programmer.

– Explanation. Representing knowledge explicitly allowed systems to reason about how
they came to a conclusion and use this information to explain results to users, i.e.
following the chain of inferences that led to a diagnosis and use these facts to explain the
diagnosis.

– Reasoning. Decoupling the knowledge from the processing of that knowledge enabled
general purpose inference engines to be developed. These systems could develop
conclusions that followed from a data set that the initial developers may not have even
been aware of.382

As KBS became more complex the techniques used to represent the knowledge base became
more sophisticated. Rather than representing facts as assertions about data, the knowledge-
base became more structured, representing information using similar techniques to object-
oriented programming such as hierarchies of classes and subclasses, relations between
classes, and behavior of objects. As the knowledge base became more structured reasoning
could occur both by independent rules and by interactions within the knowledge base itself.
For example, procedures stored as demons on objects could fire and could replicate the
chaining behavior of rules.383 Another advancement was the development of special purpose
automated reasoning systems called classifiers. Rather than statically declare the subsumption
relations in a knowledge-base a classifier allows the developer to simply declare facts about
the world and let the classifier deduce the relations. In this way a classifier also can play the
role of an inference engine.384

The most recent advancement of knowledge-based systems has been to adopt the technologies
for the development of systems that use the internet. The internet often has to deal with
complex, unstructured data that can't be relied on to fit a specific data model. The technology
of knowledge-based systems and especially the ability to classify objects on demand is ideal
for such systems. The model for these kinds of knowledge-based Internet systems is known as
the Semantic Web.385 The term is broad, and is used to refer to many kinds of systems;
examples include IBM's Watson386 and the Wolfram Language.387

382 Hayes-Roth F., Waterman D., Lenat D. (1983): Building Expert Systems. Addison-Wesley.
383 Mettrey W. (1987): An Assessment of Tools for Building Large Knowledge- BasedSystems; AI

Magazine 8 (4)
384 MacGregor R. (1991): Using a description classifier to enhance knowledge representation; IEEE

Expert 6 (3): 41–46
385 Berners-Lee T., Hendler J., Lassila O. (2001): The Semantic Web A new form of Web content

that is meaningful to computers will unleash a revolution of new possibilities; Scientific American
284: 34–43

386 ibm.com: What is IBM Watson? [2016-07-14]; URL: http://www.ibm.com/watson/what-is-
watson.html

387 wolfram.com: Wolfram Language for Knowledge-Based Programming [2016-07-14]; URL:
https://www.wolfram.com/language/

10.6 The artificial neocortex 309

10.6.2 Context recognition and hierarchical learning

Now that it is clear how knowledge can be represented, it is required to define what context
actually means. Our brain is capable abstracting information, thus it can convert a situation
rich on information into something more common, by implementing an inductive thought
process and leaving off details. If we e.g. take a photograph picturing a laughing man and a
woman, sitting in a meadow on a blanket under a tree, between them two glasses of wine and
some food, then the context is that they are picnicking. A lot of information that may be
depicted on the picture is irrelevant for a human brain correctly recognizing the context, e.g. it
does not matter what exactly is on the blanket, or which clothes both wear. What is obvious
for us is difficult to implement so that an artificial conscious entity is able to conclude the
same. Before dealing with visual information, we will try to solve the problem with textual
information such as speech or texts describing a situation. In terms of textual information, an
example for a context problem is as follows: Let assume that there are three textual
propositions:

1. Injury
2. Car
3. Speed

Let further assume that there exist two contexts:

a) Accident
b) No accident

Textual proposition 1 and 2 are true in the context of a, whereby propositions 2 and 3 are true
in the context of b. Without further information, this is not only a complex situation for an
artificially intelligent software system, but also for humans.

The meaning of context permits the reconciliation of statistical measures of context examina-
tion utilizing the terms of context formalization, and for a series of propositions there exists a
collection of sets of contexts, and the outer context ܥ is defined by

,ܥ൫݁ݑݎݐ ⋂ ௜௝ܥ)݁ݑݎݐ , ௜ܶ)௠
௜ୀଵ ൯∀݆ (10-151)

where ଵܶ, . . . , ௠ܶ represents as a series of textual propositions, and in case ∀ ௜ܶ there is a set of
contexts ܥ௜௝. For each ݅ then ܥ)݁ݑݎݐ௜௝ , ௜ܶ) ∀݆, which states that ௜ܲ is true for each ܥ௜௝, and ܥ௜௝
are not structured hierarchically in advance, instead such are created according to specific sets
of textual propositions. The number of existing contexts is assumed to be finite and to satisfy

,ܥ ௜௝ܥ ⊆ ௖ܷ (10-152)

where ௖ܷ is the unity of all existing contexts. This results in two sub-problems:

1. What are the possible contexts ܥ௜ satisfying ܥ)݁ݑݎݐ௜ , ܶ) ∀݅ if ܶ is defined as single text?
2. If ଵܶ, . . . , ௠ܶ is set of textual propositions satisfying the condition that for each text ௜ܶ

there is a set of contexts ܥ௜௝ so that ܥ)݁ݑݎݐ௜௝ , ܶ) ∀݅. What is the outer context ܥ so that

,ܥ൫݁ݑݎݐ ⋂ ௜௝ܥ)݁ݑݎݐ , ௜ܲ)௠
௜ୀଵ ൯∀݆ (10-153)

310 10 Reverse engineering the mind

The first problem requires some text ܶ to be received, whereby each of the texts may feature a
set of contexts that are true for ܶ. An example is the phrase ‘to put away’, which can represent
different activities, such as ‘scoffing’, or ‘tidying away’. The challenge is how to figure out
these possible contexts from all existing contexts.

The second problem goes one step further in the sense that more than one text is presented,
namely a series ଵܶ, . . . , ௠ܶ . Each of these texts ௜ܶ features a number of contexts and the
challenge is to select the correct combined contexts of the remaining contexts for each ௜ܶ. The
most suitable contexts are chosen by ranking in the stage of specialization and refinement.
Considering the first given example, there exist the text propositions ‘injury’, ‘car’, and
‘speed’ with the two existing contexts ‘accident’ and ‘no accident’, whereby the textual pro-
positions ‘injury’ and ‘car’ are true in context ‘accident’, while the propositions ‘car’ and
‘speed’ are true in context ‘no accident’. We can see that the outer context would include both
‘accident’ and ‘no accident’, which is a contradiction resulting from a lack of information.
More information would result in higher contextual ranking and another outcome.388

10.6.2.1 Definition of context-sensitive information

A textual context description consists of phrases, words or sentences, each of these describing
accurately one facet of the full context. First of all, it is required to consolidate the data, which
may be delivered in different forms, such as sentences, words or phrases. A simple procedure
then is responsible for splitting the text into single words, which are then compared with the
content of some dictionaries. The first (exclusion-)dictionary may be built upon words that do
not help to understand the context of a situation, such as personal pronouns or articles. As a
next step, it would be required to classify the remaining words, thus to translate them into
knowledge. For this, additional domain-specific dictionaries are required, the number depend-
ing on what knowledge the artificial entity should be able to process. We have to bear in mind
that also humans do not feature domain-spanning knowledge, so we should not presuppose
that an artificial entity can do that at first. However, in theory there are not bounds. Each
single word is then compared with the contents of the knowledge dictionaries and will be con-
sidered for further context analysis, if it is found. A short algorithm describing the situation is
as follows:

Start

1. Collect and split text
2. Create context-array ܣ௖ and exclusion-array ܣ௘
3. For each

word
a) compare word with exclusion-dictionary

If
word matches with entry in exclusion-dictionary
update ܣ௘ with word

Else
update ܣ௖ with word

388 Segev Aviv et al. (2007): Context recognition using internet as a knowledge base; Journal for
Intelligent Information Systems; 29:305–327

10.6 The artificial neocortex 311

4. For each
entry in ܣ௖

a) compare word with knowledge-dictionaries
If

word matches with entry in knowledge-dictionaries
do nothing

Else
remove word from ܣ௖

End

Algorithm 31 – Word comparison

Breakdown:

 ௖: Array list holding the words used for context-analysisܣ
 ௖: Array list holding the words ignored at context-analysisܣ

Basically, this can be compared with how context-sensitive information in brains is pre-
processed. Information useless for exactly interpreting what happens in a situation is removed
– this has been mentioned beforehand as abstraction.

10.6.2.2 Information Clustering

The textual information gathered in the last step will be used to query one or many informa-
tion clusters, such as our brain would do. When again considering the example of two
picnicking persons, then our brain would not search for information regarding the situation in
our memories of cars or houses. Instead, our hierarchical thinking starts with conceiving the
overall information on the picture to specific information depending on memories, knowledge
and experience. This is what we also have to do with the memory of the artificial entity, such
as a context-database. A context-database may be implemented by leveraging the power of
distributed file system oriented databases and graph databases for encoding relations,
allowing the storage and management of hundreds of millions of files in combination as well
as exploiting the knowledge representation forms discussed in chapter 10.6.1 Knowledge and
data. However, before querying specific files, thus knowledge, defined by specific contexts, it
is required to get back to the self-organizing feature maps discussed in 10.3.3 The transition
to the human brain. As our human brain, this specific kind of artificial neural networks is
capable of clustering content. Furthermore, human thinking happens hierarchically, which
will also be considered in the introduced approach.

As an artificial entity should also be able to learn new things and to extend its knowledge,
continuous clustering of information is absolutely required. Otherwise, each context inter-
pretation would happen over the entity’s overall knowledge, which would result in incorrect
interpretation with high probability. Therefore, it is required to automatically detect and create
preliminary contexts on existing knowledge (which we have to differ from preliminary
contexts one level deeper, of which more lately). The approach applied is a tree view based

312 10 Reverse engineering the mind

hierarchical document clustering approach. 389 As the SOFM is an unsupervised learning
ANN, no prior training is required, which makes it a perfect approach for clustering a huge
amount of unstructured data, which the knowledge of the entity in consideration without
doubt should be. Before being able to cluster the information, some pre-processing must be
applied, such as indexing by the vector space model (VSM)390 for determining the occurrence
frequency of words or terms within a document, resulting in a juxtaposition of the term
occurrence frequency in documents. Again, a so-called stop-list or exclusion-dictionary is
applied on all the documents contained within the distributed file system database for discard-
ing information with little knowledge and importance for context interpretation, followed by
the application of stemming algorithms.391 The VSM-term-document-matrix forms the basis
for further processing, such as described in 10.6.2.3 Context analysis.

10.6.2.3 Context analysis

After only the context-sensitive textual information has remained, it has to be compared with
information stored in context-databases. As already mentioned, a context-sensitive database
may be implemented by a distributed file system oriented database, such as Apache Hadoop,
in the sense that stored contextual information refers to clusters of files. This context-sensitive
database is then queried with the textual information determined within 10.6.2.1 Definition of
context-sensitive information, whereby each query delivers the foundation for contextual
information; the delivered information can only form a foundation, as most of the files will
not contain only information useful for correctly interpreting knowledge. Instead, the infor-
mation within the search results needs to be clustered, resulting in preliminary contextual
information. Clustering can be done by done by an algorithm such as the Term Frequency /
Inverse Document Frequency (TF/IDF),392 which is used in information retrieval for assessing
the relevance of terms in documents from a document collection. With the so-calculated
weighting of a word regarding the document in which it is contained, documents can be
arranged as a word-based search results in better search results than would be possible alone,
e.g., the term frequency. A term’s frequency of occurrence is determined by

,ݐ)݂ݐ ݀) = ௙(௧,ௗ)
௠௔௫{௙(௪,ௗ):௪∈ௗ}

 (10-154)

where ݐ represents the term occurring in document ݀. The equation contains a normalization,
thus a division by the maximum number of occurrences of a term ݓ in ݀, which is applied for
avoiding a falsification of the results in long documents. This simply means it is reasonable
that multiple occurrences of a term do not equally contribute to its relevance. The inverse
document frequency measures the general meaning of the term for the total amount of the
actual documents, and it does not does not depend on the individual document, but the
document corpus, which is the total amount of all documents in the retrieval scenario.

389 Freeman Richard et al. (2002): Self-Organising Maps for Tree View Based Hierarchical
Document Clustering; Honolulu: Proceedings of the IEEE IJCNN'02; vol. 2, pp. 1906-1911

390 Salton G. (1988): Automatic text processing: the transformation, analysis, and retrieval of
information by Computer; Addison-Wesley: Massachusetts

391 Porter M. F (1980): An algorithm for suffix stripping: Program, 14 no3, pp 130-137
392 Salton G., McGill M. J. (1983): Introduction to modern information retrieval; New York:

McGraw-Hill

10.6 The artificial neocortex 313

௜,௝ݓ = ݐ ௜݂,௝ ∗ ݅݀ ௜݂ (10-155)

where

݅݀ ௜݂ = ݃݋݈ ே
௡೔

 (10-156)

݅݀ ௜݂ represents the inverse document frequency, and

ܰ = (157-10) |ܦ|

where ܦ is the overall amount of documents within the retrieval scenario, ݊௜ the number of
documents containing the term ݅, and ݓ௜,௝ the weight of a term ݅ in document ݆. Once the
document vectors have been determined, clustering can be applied, whereby we will focus on
hierarchical clustering (such as done within our brain) by self-organizing feature maps. The
document vector itself is determined by the beforehand mentioned VSM, which is an
algebraic model that may be used for representing text documents as vectors of identifiers,
such as index terms. VSM represents documents and queries as vectors:

݀௜ = ଵ,௜ݓ , ,ଶ,௜ݓ … , ௡,௜ݓ (10-158)

ݍ = ଵ,௤ݓ , ଶ,௤ݓ , … , ௡,௤ݓ (10-159)

where ݀௜ is the ݅௧௛ document, ݍ a query and ݓ௡,௜ represents the weights of the ݊௧௛ term within
݀௜. Terms, however, are not necessarily single words, but may also be phrases.

10.6.2.4 Hierarchical learning

The hierarchical representation of information is a method that is strongly applied by our
brains, so it has proved to be a valuable approach. Hierarchical clustering via SOFMs works
in the same way as non-hierarchical clustering would do, with the difference that the under-
lying document structure is segmented into different levels, which are then processed sub-
sequently (with still one SOFM). Furthermore, it is required to apply an algorithm for the
growth of the SOFM, as the optimal structure cannot be determined in advance, preferably
one that allows the ANN to take arbitrary structures. Algorithm capable of this is are the
growing-SOFM algorithms, 393,394 first growing the structure of the SOFM to the optimal size,
and finally fine-tuning it. An advanced algorithm suitable for our purposes is as follows,
whereby the number of starting nodes may vary:

Start

1. Initialize weight vectors of starting nodes randomly
2. Calculate growth threshold ௚ܶ for the given data set according to definition
3. Present input to network
4. Repeat

393 Bauer H. U., Villmann T. (1995): Growing a Hypercubical Output Space in a Self-Organizing
Feature Map; ICSI Tech Rep. TR-95-030

394 Alahakoon D. et al. (2000): Dynamic self organizing maps with controlled growth for knowledge
discovery; IEEE Transactions on Neural Networks; vol. 11, pp. 601--614

314 10 Reverse engineering the mind

For each
input value

i. Determine the winning neuron ݊௪
ii. Apply weight vector adaptation to neighborhood of winner ݊௪ and

winner itself only by

௝(௧)ݓ = ቊ
௝(௧ିଵ)ݓ , ݂݅ ݆ ∉ ௧ܰ

௝(௧ିଵ)ݓ + ௧ݔ൫(௧ିଵ)ߙ − ,௝(௧ିଵ)൯ݓ ݂݅ ݆ ∈ ௧ܰ

iii. Increase winner’s error value
If
௜ܧܶ < ௚ܶ

If
݅ is boundary node

a. grow node
b. Initialize new node weight vectors to match neighboring

node weight
Else

distribute weight to neighbors
iv. Initialize learning rate to its starting value

5. Until node growth is reduced to a minimum level
6. Reduce learning rate and fix a small starting neighborhood
7. Find winner and adapt the weights of winner and neighbors in the same way as in

growing phase.
End

Algorithm 32 – Growing SOFM

Breakdown:

௚ܶ: growth threshold
݊௪: weight vector closest to input vector mapped to current SOFM
 ݅ total error of node :ܧܶ
 learning rate :ߙ

As the approach should be as dynamic as possible, it should take into consideration both the
growth between already existing neurons and boundary neurons, on the contrary to commonly
applied SOFM growth algorithms. The growing grid algorithm 395 extends an existing
structure by inserting new neurons as layers (rows or columns) within existing nodes, where-
by as the basic growing SOFM algorithm inserts new neurons at the boundaries only; how-
ever, in the former approach the weights are determined by interpolation, as well as in the
latter for the insertion between existing neurons. The weights for inserted neurons at the
boundaries are then determined by extrapolation. As both hierarchical and growing features
need to be combined, an approach relying on independently spun and dynamically growing
one-dimensional SOFM, 396 applying the Growing SOFM algorithm for growth seems to be

395 Fritzke B. (1995): Growing Grid: A self-organizing network with constant neighborhood range
and adaptation strength; Neural Processing Letters, 2(5)

396 Freeman Richard et al. (2002): Self-Organising Maps for Tree View Based Hierarchical Docu-
ment Clustering; Honolulu: Proceedings of the IEEE IJCNN'02; vol. 2, pp. 1906-1911

10.6 The artificial neocortex 315

the most useful for our purposes. The use of independent SOFMs has the advantage that
hierarchies can be modelled perfectly well. For correctly parsing the clusters, thus finding the
correct branch of knowledge within the context-related search so that not the whole know-
ledge must be parsed, it is required to label these in a suitable manner, e.g. by LabelSOM, 397
which is capable of determining the features of the input space that are most relevant for the
mapping of an input vector onto a specific unit. Basically, this happens by determining the
contribution of every element in the vector towards the overall Euclidean distance between an
input vector and the winners' weight vector, which forms the basis of the SOM training
process.398 At first, the quantization error (QE) for each term within a cluster has to be deter-
mined (the beforehand mentioned Euclidean distance between word vectors and weights). The
QE is then used for performing a ranking, whereby the first ݊ words represent the label of the
cluster or hierarchy node. A neuron’s weight as well as the document similarity may be
determined by

݀(ܽ, ܾ) = ∑ |ܽ௜ − ௜ܾ|௜ (10-160)

which is the Manhattan-metric, where ݀(ܽ, ܾ) is the distance between two points ܽ and ܾ, and
݅ is the current position in the two-dimensional coordinate system. The number of starting
nodes for two-dimensional SOFMs within this structure adaptation is usually four, which may
remain the same for one-dimensional maps, with the difference of one-dimensionality. The
minimum number would be two. After the top-level clusters have been detected, clustering
with one-dimensional SOFMs below these clusters can be done, so that a hierarchical struc-
ture of SOFMs would be the result.

10.6.2.5 Interpreting the context

Now that the artificial entity commands over context-sensitive knowledge this knowledge can
be applied on incoming interpretation requests. What a hypothetical artificial entity would be
capable of so far is

– Abstraction
The reduction of information to relevant parts

– Hierarchical knowledge structure
The creation of a hierarchical knowledge structure based / creation of preliminary con-
texts on knowledge provided to the entity

This is quite a lot, but before being able to show intelligent behavior of any kind, be it extra-
verted by speech or deeds, it must be able to connect the abstracted information with its
knowledge. For this, the whole knowledge base is queried with the context-sensitive
information determined from the input (10.6.2.1 Definition of context-sensitive information).
The result is then one to many different contexts, based on the hierarchical learning the
artificial entity has conducted. For each context, the number of appearances of the words is
compared and based on this, a ranking can be created. Furthermore, a lexical database such as

397 Rauber Andreas (1999): LabelSOM: On the labelling of selforganizing maps; Washington:
Proceedings International Joint Conference on Neural Networks

398 Rauber Andreas (1999): LabelSOM: On the Labeling of Self-Organizing Maps [2013-11-01];
URL: http://www.ifs.tuwien.ac.at/ifs/research/pub_html/rau_ijcnn99/ijcnn99.html

316 10 Reverse engineering the mind

WordNet399 should be applied, so synonyms are included in the search, as well as the lexical
meaning of words.

Start

1. Receive pre-processed input texts
2. For each

Term
a) Query database

i. Determine full meaning by inclusion of lexical databases
ii. Apply algorithm from 10.6.2.1 Definition of context-sensitive

information on lexical meanings
iii. Query database with pre-processed input texts, lexical meanings and

synonyms
iv. Determine contexts

b) Summarize similar contexts
c) Determine

i. number of actual text appearances
ii. number of actual document references (if the documents have been

linked)
3. Rank contexts based on number of text appearances and number of document references

Calculate context weighting400
i. Determine difference between each value of the number of references

and its nearest lower value neighbor ݀௔
ii. Determine difference between each value of the number of appearances

and its nearest lower value neighbor ݀௥

௖ܹ = ඨ൬
2݀௔ݎ௠

3ܽ௠
൰

ଶ

+ ݀௥
ଶ

4. Determine maximum weight value
5. Determine all contexts appearing before the maximum weight value
End

Algorithm 33 – Context interpretation

Breakdown:

 ௠: maximum number of referencesݎ
ܽ௠: maximum number of appearances
݀௔: appearance difference to nearest lower neighbor
݀௥: reference difference to nearest lower neighbor

399 WordNet (2013): WordNet a lexical database for English [2013-11-03]; URL: http://wordnet.
princeton.edu/

400 Segev Aviv et al. (2006): Context recognition using internet as a knowledge base; Journal of
Intelligent Information Systems (2007) 29:305–327

10.6 The artificial neocortex 317

It is not necessarily required to perform a ranking according to the weight equation; however,
results seem to be better than when just performing a ranking based on the number of
appearances only.

10.6.2.6 Hidden Markov models and conceptual hierarchies in the neocortex

Apart from artificial neural networks, there exist lots of other classifying, predicting, auto-
associating and clustering (network) structures. One that we need to discuss here is a special
model developed by the Russian mathematician Andrei Andrejewitsch Markow, the Markov
chain, or more precisely, the hierarchically hidden Markov model, derived from the hidden
Markov model, which in turn has been derived from simpler Markov models such as the
Markov chain. Not all processes always run into a fixed deterministic order and are therefore
relatively easy to describe. Usually a system follows basic rules though, but it may not behave
deterministically – I consider our brain to be such a system. Also, there are processes that
cannot be observed directly but from which we can detect and evaluate signals. These must
then be sufficient to draw conclusions on the true events. For a description of such hidden
running, nondeterministic processes to statistical modelling, such as the hidden Markov
models, may be used. Hidden Markov models are now with various issues, such as speech and
handwriting recognition, in Biology for classification of protein sequences, as well as for
modelling of economic processes.

Hidden Markov models (HMM) indicate a two-stage stochastic process. The first stage
corresponds to a Markov chain whose states are not visible from outside (hidden). A second
stage generates a stochastic process with so-called observations, which are the output symbols
that can be observed at any time according to a probability distribution. The aim is to
conclude from the sequence of output symbols upon the sequence of the non-visible states.
HMMs are used in the recognition of patterns in sequential data, e.g. stored speech sequences
in the context of speech recognition or price behavior in the stock market. The hidden states
of the Markov chain correspond to semantic units that are that have to be detected in
sequential data, which are semantic models. A hidden Markov model describes a two-stage
stochastic process. The first stage forms a discrete stochastic process that can be described as
a sequence of random variables, which can take values from a discrete, finite set of states
(thus states).

ܳ = {ܵ1, ܵ2, … , (161-10) {ܮܵ

The process thus describes probabilistic state transitions in a discrete, finite state space.

ܵ = ݐ|௧ݍ} = 1,2, … , ܰ} (10-162)

where ݍ௧ ∈ ܳ in the sequence ݍଵ, … , ,௧ିଵݍ .௧ݍ

The stochastic process ܵ is

– stationary, that is, independent of the (absolute) time ݐ,
– causal, that is, the probability distribution of the random variable ௧ܵ only depends on the

past states and possibly, and it is
– simple, that is, the distribution of ௧ܵ only depends from the immediate predecessor’s state,

which then corresponds to a HMM of first order:

318 10 Reverse engineering the mind

,ଵݍ|௧ݍ)ܲ ,ଶݍ … , (௧ିଵݍ = (10-163) (௧ିଵݍ|௧ݍ)ܲ

The stochastic process ܵ can be regarded as a finite state machine with state set {1,2, ܰ}. State
transitions occur according to the state transition probabilities:

ܽ௜௝ = ௧ݍ)ܲ = ௝ܵ|ݍ௧ିଵ = ௜ܵ) (10-164)

The state transition probabilities can be summarized in the state probability matrix

ܣ = ൣܽ௜௝൧
௅௫௅

 (10-165)

where

(∀݅, ݆)൫ܽ௜௝ ≥ 0൯ (10-166)

and

(∀݅)൫∑ ܽ௜௝
௅
௝ୀଵ = 1൯ (10-167)

If the Markov-chain does not require starting in a defined state ௜ܵ then additional probabilities
are required:

ߨ = ,ଵߨ) … , ௅) (10-168)ߨ

where

௜ߨ = ଵݍ)ܲ = ௜ܵ) (10-169)

and

∑ ௜ߨ
௅
௝ୀଵ = 1 (10-170)

The stochastic behavior or a homogeneous Markov-chain is fully defined by the parameters
,ߨ) (ܣ . A very often used illustration of a Markov-chain is a simple form of weather
prediction, where three states

ܳ = { ଵܵ, ܵଶ, ܵଷ} (10-171)

are given, where ଵܵ represents rain, ܵଶ clouds and ܵଷ sunshine. ܮ = 3 as well, as the unit of
time is a day.

ܣ = ൣܽ௜௝൧
௅௫௅

= ൥
0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

൩ (10-172)

The model allows the answering of different questions, such as the question after the probabi-
lity that after a sunny day the weather may be sunny, sunny, rainy, rainy, sunny, cloudy, and
sunny in the following seven days. The Markov-chain in this situation is defined as

ܲ(ܵଷܵଷ ଵܵ ଵܵܵଷܵଶܵଷ|ܵଷ) =
ܲ(ܵଷ|ܵଷ)ܲ(ܵଷ|ܵଷ)ܲ(ଵܵ|ܵଷ)ܲ(ଵܵ| ଵܵ)ܲ(ܵଷ| ଵܵ)ܲ(ܵଶ|ܵଷ)ܲ(ܵଷ|ܵଶ) =
ܽଷଷܽଷଷܽଷଵܽଵଵܽଵଷܽଷଶܽଶଷ = 1.539 ∗ 10ିସ (10-173)

10.6 The artificial neocortex 319

0.3

0.2

0.2
0.10.1

0.3

0.4 0.6

0.8

Figure 93 - Markov chain weather prediction

Another application are the interpretation of speech signals of letters, where the states of are
not known, but the signals or derived attributes.

Figure 94 - Markov chain interpretation of speech signals

Hidden Markov models extend what has been discussed above in the sense that at each point
in time ݐ not only an unknown state is taken, but additionally a symbol from a finite alphabet.

ܸ = ,ଵݒ} … , ௄} (10-174)ݒ

The observer can only observe the generated sequence of symbols

ܱ = ,ଵ݋ … , ்݋ (10-175)

where

௜݋ ∈ ܸ (10-176)

The states that have led to the output of the sequence of symbols ܱ are unknown, or hidden,
thus such a model is called hidden Markov model. The output of the symbols ܱ௧ is arbitrary
and only depends from the state ݍ௧, never from formerly taken states and output symbols:

ଵ݋|௧݋)ܲ … ,௧ିଵ݋ ଵݍ … (௧ݍ௧ିଵݍ = (10-177) (௧ݍ|௧݋)ܲ

In each state ௝ܵ each Symbol ݒ௞ may be put out, with the probabilities

ܤ = ൣ ௝ܾ௞൧
௅௫௄

 (10-178)

where

320 10 Reverse engineering the mind

௝ܾ௞ = ܲ൫ݒ௞| ௝ܵ൯ (10-179)

Furthermore,

(∀݅, ݇)൫ ௝ܾ௞ ≥ 0൯ (10-180)

and

(∀݆)൫∑ ௝ܾ௞
௄
௞ୀଵ = 1൯ (10-181)

The hidden Markov model is fully defined by the parameters (ߨ, ,ܣ Figure 95 - Markov .(ܤ
chain and Figure 96 - Hidden Markov model graphically describe the differences between the
two approaches - ߱௜ describe the states.

a13

a31

a32
a23a21

a12

a11 a22

a33

Figure 95 - Markov chain

10.6 The artificial neocortex 321

a13

a31

a32
a23a21

a12

a11 a22

a33

v2

b34 v4

v1

v2

v3

v4

v1

v2

v3 v4

v1

b22

b23

b24

b21

b12

b13
b14

b11

b32

b33
v3

b31

Figure 96 - Hidden Markov model

The algorithm for the generation of the sequence of symbols ܱ = ,ଵ݋ … , :is as follows ்݋

Start

1. Set ݐ = 1 and select an initial state
ଵݍ = ௜ܵ

under consideration of ߨ.
2. Repeat

a) Select an observation symbol
௧݋ = ௞ݒ

under consideration of
 (௧ݍ|௞ݒ)ܲ

from the matrix B.
b) If ࢚ < ܶ

pass over to the state
௧ାଵݍ = ௝ܵ

under consideration of the matrix ܣ.
else

End process.
c) Set ݐ = ݐ + 1

3. Until ࢀ has been reached.
End

Algorithm 34 – Creation of the sequence of symbols

322 10 Reverse engineering the mind

Breakdown:

 Point in time :ݐ
,ଵߨ) Starting probabilities :ߨ … , (௅ߨ
ൣ Symbol output probability matrix :ܤ ௝ܾ௞൧

௅௫௄

: State probability matrix ൣܽ௜௝൧
௅௫௅

௝ܵ: Current state

 ݐ ௧: Observation at݋
 ௞: Symbol taken for ܱ௧ݒ
 ݐ ௧: State atݍ

As a simple example of a hidden Markov model two weather observations may serve:

0.7

0.2

0.6

0.4

0.3 0.8

0.4

0.6

Figure 97 - Hidden Markov model weather observations

In the scenario described in Figure 97 - Hidden Markov model weather observations it is
possible to observe rainy and sunny weather. The two hidden states are high and low air
pressure. The transition probabilities are

(′ݓ݋݈′|′ݓ݋݈′)ܲ = 0.3 (10-182)

ܲ(′ℎ݅݃ℎ′|′݈ݓ݋′) = 0.7 (10-183)

(′ℎ݅݃ℎ′|′ݓ݋݈′)ܲ = 0.2 (10-184)

ܲ(′ℎ݅݃ℎ′|′ℎ݅݃ℎ′) = 0.8 (10-185)

and the output probabilities are

(′ݓ݋݈′|′݊݅ܽݎ′)ܲ = 0.6 (10-186)

(′ݓ݋݈′|′݊ݑݏ′)ܲ = 0.4 (10-187)

(′ℎ݅݃ℎ′|′݊݅ܽݎ′)ܲ = 0.4 (10-188)

(′ℎ݅݃ℎ′|′݊ݑݏ′)ܲ = 0.3 (10-189)

10.6 The artificial neocortex 323

All possible sequences of the hidden states are described as

ܲ({ᇱ݊ݑݏᇱ,ᇱ {ᇱ݊݅ܽݎ =
ܲ({ᇱ݊ݑݏᇱ,ᇱ ,{ᇱ݊݅ܽݎ {ᇱ݈ݓ݋ᇱ,ᇱ ᇱݓ݋݈ + ܲ({ᇱ݊ݑݏᇱ,ᇱ ,{ᇱ݊݅ܽݎ {ᇱ݈ݓ݋ᇱ,ᇱ ℎ݅݃ℎᇱ +
ܲ({ᇱ݊ݑݏᇱ,ᇱ ,{ᇱ݊݅ܽݎ {ᇱℎ݅݃ℎᇱ,ᇱ {ᇱݓ݋݈ + ܲ({ᇱ݊ݑݏᇱ,ᇱ ,{ᇱ݊݅ܽݎ {′ℎ݅݃ℎ′, ′ℎ݅݃ℎ′}) (10-190)

and considering just the first term (‘low’) the result would be

ܲ({ᇱ݊ݑݏᇱ,ᇱ ,{ᇱ݊݅ܽݎ {ᇱ݈ݓ݋ᇱ,ᇱ ᇱݓ݋݈ = ܲ({ᇱ݊ݑݏᇱ,ᇱ ᇱ,ᇱݓ݋ᇱ}|{ᇱ݈݊݅ܽݎ {ᇱݓ݋݈ ∗ ܲ({ᇱ݈ݓ݋ᇱ,ᇱ {ᇱݓ݋݈ =
(ᇱݓ݋ᇱ|ᇱ݈݊ݑݏ′)ܲ ∗ (ᇱݓ݋ᇱ|ᇱ݈݊݅ܽݎ′)ܲ ∗ (ᇱݓ݋݈′)ܲ ∗ (′ݓ݋݈′|′ݓ݋݈′)ܲ = 0.4 ∗ 0.6 ∗ 0.4 ∗ 0.3 =
0.01152 (10-191)

According to their capabilities, hidden Markov models may be applied for three types of
problem statements, which are

– Decoding
A model M and an observed sequence of ܵ is given. Within the decoding problem it is
determined what the most likely path through M that generates ܵ is, which may happen
according to the Viterbi algorithm.

– Classification
A model ܯ and an observed sequence ܵ is given. Within the classification problem it is
determined how large the total probability ெܲ(ܵ) of ܯ is, so that ܵ is emitted, which may
happen according to the forward algorithm.

– Training
A set of training sequences and a model structure is given. Within the training problem it
is determined what the best model parameters (state transition- and emission probabi-
lities) that the training set allows are, which may be done according to the Baum-Welch
algorithm.

Hidden Markov models are important in the task of engineering an artificial mind, as they
allow abstraction, which I already mentioned is a major strength of our neocortex. Artificial
neural networks do that as well, however, I do not consider it as the correct approach to solely
rely on one paradigm. What is more, hierarchically hidden Markov models as auto associative
pattern recognizers have proven to outperform ANNs in some domains, such as speech
recognition. Furthermore, HHMMs work hierarchically, such as the pattern recognizers in our
neocortex, activating only the higher hierarchy-pattern recognizers required for further
processing incoming data. Thus, we will continue examining HHMMs.

HHMMs can be seen as hierarchical and recursive generalization of the hidden Markov
models discussed beforehand. The difference to the former ones is that each of the hidden
states becomes a probabilistic model as well, which simply means that each of the hidden
states is a hierarchically hidden Markov model as well. This is important, as the structure of
the neocortex is organized in that way as well – neural structures are organized in lists whose
entries are lists again, or in other words, pattern recognizers of a lower conceptual hierarchy
refer to pattern recognizers on a higher hierarchical level (see 10.6.3 Implementation). Hierar-
chically hidden Markov models thus do not emit single symbols, such as described before-
hand, but sequences. HHMMs extend the already discussed HMMs in the sense that they are
not restricted to emitting single observations. The states of HHMMs are HHMMs themselves,
which again contain sub-states and which are capable of emitting strings of observations.
States being able to emit strings of observations are called abstract states, on the contrary to
states that have single emissions and are called production states. The internal states of

324 10 Reverse engineering the mind

HHMMs may be called recursively, so that after the run has been completed control is
returned to the abstract state. HHMMs can be represented by HMMs, where each HMM state
consists of the production state and the abstract state higher up the hierarchy of the
HHMM.401 However, it should be mentioned that both the HMM and the HHMM belong to
the same type of classifiers and may be used for solving the identical set of problem state-
ments. Basically, the HHMM may be transformed into a standard HMM; however, the latter
one utilizes its structure for solving a subset of those problem statements more efficiently.

Figure 98 - Hierarchically hidden Markov model

The point when a state in an HHMM is activated it will activate its own particular proba-
bilistic model. Thus, it will activate one of the states of the underlying HHMM, which then
may activate its underlying HHMM and so forth. The procedure is rehashed until the pro-
duction state is activated, which we learned are the states emitting observation symbols in the
HMM sense. The point when the production state has emitted a symbol, control comes back
to the state that activated the production state. The enactment of a state in a HHMM under an
internal state is known as a vertical transition. After a vertical transition is finished, a
horizontal transition occurs at a state inside the same level. The point when a horizontal tran-
sition results in a terminating state, control is come back to the state in the HHMM, higher up
in the hierarchy that generated the last vertical transition. A vertical transition can bring about
additional vertical transitions before arriving at a succession of production states and at last
coming back to the top level. Consequently, the production states visited offers ascent to a
succession of observation symbols that is processed by the state at the top level. The strategies

401 Heller Katherine A. et al. (2009): Infinite Hierarchical Hidden Markov Models; Proceedings of
the 12th International Conference on Artificial Intelligence and Statistics; Florida: Clearwater
Beach

10.6 The artificial neocortex 325

for evaluating the HHMM parameters and model structure are more intricate than for the
HMM.

10.6.3 Implementation

We already got to know that the neocortex is organized in a hierarchical structure. Additio-
nally to the biological knowledge of our brain, we got to know all of the ingredients required
for implementing an artificial neocortex within this elaboration, where the most important
ones are

– different sorts of pattern recognizers, comprising
 auto associative,
 classifying, and
 predictive ones

– learning algorithms for pattern recognizers
– self-organization and artificial self-organizing structures
– differently structured databases, and
– search engines.

Further ideas may be of importance as well, but are not absolutely required, such as quantum
information theory in terms of quantum artificial neural networks. The neocortex consists of 6
layers, each of which is connected with the next-higher and/ or next-lower layer. Within these
layers, it is assumed that hierarchical information processing occurs, which means that at first
information from a lower conceptual layer is passed over to the next-higher conceptual layer
in the sense of ‘rough’ pattern recognition up to detailed pattern recognition. This can be
imagined very simply by the recognition of a face. A face consists of numerous features, but
at first it is a face. Thus, the lowest conceptual layer is responsible for detecting basic
structures, maybe rough shapes. There is not only one pattern recognizer active at once, but
all. Figure 99 - Pattern presented to multiple pattern recognizers shows the presentation of a
pattern to two pattern recognizers – in fact it would be hundreds of thousands or more. This
is, because it is required to present the basic face-patterns to all pattern recognizers at once –
this is one of the massive parallel processing tasks we often hear of in the context of the
human brain.

After the input has been presented, some of the pattern recognizers will fire, if the pattern has
been recognized. What happens if it is a new pattern, such as a face we have not known
beforehand, will be discussed later. So, assuming that the pattern has already been learned,
some of the pattern recognizers will fire and transmit a signal via their axon to the next higher
hierarchy, but not to all pattern recognizers within this level, but rather to specific ones,
namely the ones the pattern recognizers of the first level are connected to. The signal they
transmit to the next-higher hierarchy tells the pattern recognizers in the higher hierarchy that
they have to expect a pattern that they should try to recognize. The pattern is then passed over
to all of the pattern recognizers of the next-higher hierarchy, which then do the same as the
pattern recognizers on the next-lower level. The pattern is then passed over up to the highest
conceptual level, where it is finally recognized. Figure 100 - Hierarchical pattern processing
shows a simple auto associative ANN (left) passing over its result to another pattern
recognizer one hierarchy above (right).

326 10 Reverse engineering the mind

i1

i2

h1

h2 o1
wh2o1

h3

hn

on

in

wh3on

i1

i2

h1

h2 o1
wh2o1

h3

hn

on

in

wh3on

Figure 99 - Pattern presented to multiple pattern recognizers

10.6 The artificial neocortex 327

i1

i2

h1

h2

h3

hn

in

wh1h2

wh2h3

wh3hn

wi1i2

wi2in

wh1h3

wh1hn

wh2hn

wi1in

i1

i2

h1

h2

h3

hn

in

wh1h2

wh2h3

wh3hn

wi1i2

wi2in

wh1h3

wh1hn

wh2hn

wi1in

Figure 100 - Hierarchical pattern processing

There are thousands of pattern recognizers active at once, as we need to consider that not only
all pattern recognizers on the lowest conceptual level need to be presented the incoming
pattern, but also that each stored pattern (such as a specific face) is represented by numerous
pattern recognizers, as a face must be recognized also when it is distorted, like when it is
wearing sunglasses or a beard, or when it is viewed from the profile instead of from the front,
or when the light is lighter, darker, … This is basically what our neocortex consists of (and
what allows us to philosophize about the human mind or to read and think about this text):

– Specific pattern recognizers, and their
– redundant counterparts, as well as
– hierarchical structures of pattern recognizers.

However, hierarchies do not only work in one direction, it is also assumed that pattern
recognizers on higher hierarchical levels inform pattern recognizers on lower conceptual
levels that a pattern is likely to be recognized. Thus, we have to deal with communication in
both ways, up the hierarchy when lower level-pattern recognizers recognize a pattern, and
down the hierarchy when higher-level pattern recognizers assume that a pattern will likely be
recognized. This happens, as higher-level pattern recognizers do receive input from numerous
lower-level pattern recognizers, and when a cluster of lower level-pattern recognizers is not
able to auto associate the pattern they are responsible for (such as a mouth that is not only
distorted by e.g. a beard, but covered by a blue scarf), some others responsible for the same
higher level-pattern (such as a face) may recognize the pattern they are responsible for (such
as eyes or a nose). Triggered by these lower level-pattern recognizers, the respective higher
level ones may have enough information so that the overall pattern (such as the face of a
specific person) can be recognized and pass over the information to the lower-level cluster
that has failed to recognize the pattern. The information that could not be identified (the
mouth with the scarf) is then learned, thus stored into a new pattern recognizer for this
specific face, which we can easily create within an artificial entity. It is also possible that the
specific face is linked to the pattern of the blue scarf, which our entity may have already been
stored, so that the face of the specific person is also recognized easily in the future if it is
partially covered with a blue scarf. In our biological neocortex (and most likely also in an
artificial one), it is not always granted that a distorted pattern is recognized correctly. Most of

328 10 Reverse engineering the mind

us have made this experience when we fail to recognize a specific person we know very well
or if we think that we have recognized a specific person that actually is someone that we do
not know. From a computer science point of view, the hierarchies can be represented as multi-
dimensional arrays of pattern recognizers, or lists pattern recognizers referring to other lists of
pattern recognizers. We got to know two methods of implementing pattern recognizers, which
are artificial neural networks and (hierarchically hidden) Markov models. Both have their
qualities, thus both with find application in the proposed solution.

10.6.3.1 Acquisition of basic knowledge

First and foremost, it is required that the artificial entity is capable of learning. However,
learning is a very loose concept, thus it has been split in four major parts, which overlap.
Besides, the sequence of the steps discussed here is not predefined – some of them may be
carried out in parallel, some of them in sequence. To begin with, it is required that the
artificial entity features knowledge, but how can access to knowledge be given? There exist
several different approaches, whereby I consider access to the internet as the first and
foremost thing. Furthermore, different knowledge databases should be provided, which may
be very different in structure, thus file-system oriented, relational or even OLAP-databases.
The internet contains most of the knowledge of our species, and we are used to access it for
learning new things. This is what an artificial conscious entity should also be capable of,
however, access to the internet alone is not where acquisition of knowledge can start, as the
ACE must be able to ask questions, as we do it. Thus, what is required at first is the capability
of asking questions, or better, purposeful search for information. As an approach, I suggest to
use a file system with information deposited into knowledge categories, such as discussed at
10.3 Self-organization and 10.6.2 Context recognition and hierarchical learning. This may be
implemented by a file system oriented database as well as meta information referencing to the
correct knowledge categories. This information is not stored hierarchically, thus in categories
and subcategories. For the ACE being able to access and extend knowledge purposeful, it is
required to structure this knowledge so that it is stored hierarchically, which can be done by a
self-organizing clustering method, such as a self-organizing feature map, or even better by an
approach incorporating adaptive resonance theory ANNs, such as fuzzy ARTMAP (see
10.3.2.3 Adaptive Resonance Theory). Approaches relying on ART do not suffer from the
stability/plasticity-problem, which means that also the input data can be self-organizing or
dynamic and change over time. Thus, anew clustering would not require complete re-training
of the clustering approach, as continuous training allows the network to keep old knowledge
as well as adapt to new. After the knowledge has been clustered, access may be given to
limited knowledge databases, such as Wikipedia (I call it limited, because although Wikipedia
contains millions of pages belonging to most of the knowledge categories we can differentiate
from each other, the whole internet contains even more). Another step required is that the
ACE is allowed to cross-reference the knowledge learned, which has been partially done by
the permission for assigning knowledge to not only one, but many categories, such as an
apple may be accessible through the category ‘plants’ as well as the category ‘food’.
Furthermore, access to synonym databases such as WordNet is required, so that the ACE is
not only able to access information, but also synonyms, which can be used to further
interconnect information. Moreover, such databases provide access to verbs and adjectives
belonging to specific nouns as well, so that even more information interconnection may be
achieved. For the extension of existing knowledge categories different document similarity
measurement methods may be applied, a simple one being TD/IDF already discussed at

10.6 The artificial neocortex 329

10.6.2.2 Information Clustering. This implies that only a specific amount of knowledge for
each category is stored, which I suggest should happen both in distributed file system data-
bases, as well as via meta information, such as links to websites containing more knowledge. I
suggest this shared approach for the following reasons:

– For the ACE it is not useful to store and organize the whole internet as a distributed file
system database, although technically viable. The internet as knowledge entity is dynamic
and subjected to continuous changes, thus it would require enormous resources for
continuously querying, storing and clustering newly available information.

– It is not required for the ACE to have all existing knowledge to its avail in its brain
(which the distributed file system database is a part of), as it is possible to store meta
information, such as links, additionally to specific knowledge on a high conceptual level,
as well as to let the ACE query the internet as we do it when we do not know something.

– As a next step, it is required to encode the conceptual and hierarchically structured
knowledge into patterns.

Additionally to the textual information, pictures to specific kinds of knowledge should be
stored and linked to the respective textual concept, such as the pictures of apples to the textual
concept of an apple. Thus, the ACE now not only has textual, but also visual information to
its avail.

10.6.3.2 Encoding the acquired knowledge into pattern recognizers

We humans do not store knowledge in the form of texts within our brains, but within patterns.
One may argue that if the ACE accesses its knowledge by a query of its databases, and puts
out an answer to a question that has been based on a statistical weighting, then this does not
go along with understanding. However, this is the same what happens within our brain when
we access knowledge. Beforehand I mentioned that it has been estimated that within our
neocortex there exist around 3 ∗ 10଼ pattern recognizers, which are organized hierarchically.
This means that some pattern recognizers on the lowest conceptual level are able to recognize,
say, the crossbar of the letter A. On higher conceptual levels the whole letter is recognized. If
the brain is dealing with a word, such as ‘Apple’, then the same happens with all the letters
within the word, so all of the letters are recognized and signals from the pattern recognizers of
the lower levels converge on a higher conceptual level – the word ‘Apple’. However, this is
not quite right, as we are dealing with auto associative neural networks, which are able to
complete the word if some parts are missing, if the pattern as a whole is disturbed in a not
overly great manner, or even during the pattern is being processed. Let assume, the first four
letters of the word have been read and processed, then the ‘Apple’-pattern recognizers are
already in standby position and may also communicate down the hierarchy to the ‘e’-
recognizers telling it that it as a whole may be required to fire soon. What happens then is that
the firing thresholds of the ‘e’-recognizers are lowered so that they can fire more easily.
However, I have been writing about pattern recognition and the querying of clustered and
hierarchically stored textual information. Again, I consider a shared approach as useful, which
means that knowledge within a database for querying textual information is absolutely useful,
but it is also required to translate visual information into queries, and this requires auto
associative pattern recognizers (see also 3.3.2.9 Fully connected artificial neural network).
Such auto associative pattern recognizers, often thermal artificial neural networks, are
presented specific patterns, such as the pattern of an apple, and then they are able to recall it,
even if it is slightly modified or disturbed. For a simple concept such as an apple (and all

330 10 Reverse engineering the mind

other concepts as well), it is required to create hundreds of pattern recognizers with different
inputs, and to structure the pattern recognizers hierarchically. The human brain is not
organized highly redundant, as simply not enough neurons are available for achieving this.
Thus, the input pattern must be split up in simpler patterns at first, or better, in different input
streams directing their information directly to all pattern recognizers on the lowest conceptual
level. One of the input streams may present the curves of the apple’s round shape, one its
color, one its muster … The human visual cortex processes 12 such input streams, and what
happens is the same. The lowest conceptual pattern recognizers (all of them) are addressed,
and some of them fire. Thus, if one of the recognizers responsible for curved shapes, one for
the color red, one for specific muster of an apple, and some more fire, they fire up the
hierarchy to all of the pattern recognizers they are connected to. All other lower-hierarchy
pattern recognizers do nothing, as no pattern has been recognizes (as edges, e.g.). What
happens is that in the best case only one of the apple-pattern recognizers has received inputs
from most of the lower-hierarchy pattern recognizers that fired. Certainly, this does not only
happen via two hierarchies – the brain e.g. uses six, based on the fact that the neocortex is six-
fold, whereby this means that there exist six layers of abstraction, each of which is organized
hierarchically.

Possible means for implementing a hierarchical artificial neural structure are so-called deep
learning architectures, such as Hinton’s deep belief network. Basically, such complex
networks consist of stacked ANNs, such as restricted Boltzmann machines, where the output
of each layer (each Boltzmann machine) serves as input for the next layer. The problem is that
such architecture only make use of some sort of hierarchical processing for preparing the
initialization of weights, which is not exactly what is required here. What would be required
is that each of these auto-associative layers is trained separately on specific patterns, resulting
in a structure in which lower level pattern recognizers activate processing in higher level
areas. However, there is another challenge: hierarchical processing within brains happens
does not only pass over the input from one lower level pattern recognizer to higher
hierarchies, but from many. So if we again imagine the image of the apple (which is not
stored as an image in our brain, but as a hierarchy of patterns), some shape pattern recog-
nizers, some color-recognizers and more do fire at once and propagate their signals via axons
up to the higher hierarchical level. Again, on the next level, some pattern recognizers fire as
they have been activated from the next-lower level by the patterns of the lower level (we
remember that the ANNs used are auto-associative, so what they do is to reproduce a pattern
when they recognize it). Processing in that way continues until the highest conceptual
hierarchy has been reached and finally, the apple has been recognized. Thus, information
from lower conceptual hierarchies is converged in higher conceptual hierarchies, so the
chosen approach should combine ideas from decision trees and ANNs. A decision tree is a
structure consisting of nodes organized in a tree structure, whereby there are two kinds of
nodes:

– Internal nodes, which make local decisions based on the local information they have to
their avail.

– Terminal nodes, which are used for making a final decision.

10.6 The artificial neocortex 331

Figure 101 - Binary decision tree

Figure 101 - Binary decision tree shows a tree where each of the grey internal nodes results in
two decisions (thus binary). The terminal nodes are represented by the white nodes. Each
internal node makes its local decision based on a function ݂(ݔ), whereby a binary decision
tree may simply decide according to

݀௜ = ൜ ,ݐ݂݈݁ (ݔ)݂ ݂݅ < 0
,ݐℎ݃݅ݎ (ݔ)݂ ݂݅ > 0 (10-192)

and usually

(ݔ) = ௜ݔ − ܽ௜ (10-193)

where ܽ௜ represents the feature a on the ݅௧௛ node that is used for coming to local decisions.
The tree assigns a distribution of data to each terminal node, which is then used for coming to
a final decision. If the decision tree is not binary, then it is required to build classes, so data
belonging to the class ܿଵ, is structured beneath the terminal node ݊ଵ. The weather outlook,
e.g., can be structured in classes, such as ‘rainy’, ‘sunny’ or ‘cloudy’. Thus, if all data as-
signed to a node belongs to the same class, the node is a terminal node, as no further decisions
than the final decision can be made. If this is not the case and more than one class exists, a
decision function selecting one of the nodes has to be defined. Although decision trees are
easy to define and understand, they may become very complex for complex problem state-
ments, and hierarchical pattern recognition in human brains for sure is. If it was the size only,
this can be tackled by multivariate decision functions, such as the linear combination of the
features. In case of hierarchical information processing, the decision tree must be created and
processed bottom-up, and each of the nodes is represented by an auto-associative ANN (see
Figure 102 - Bottom-up ANN tree):

332 10 Reverse engineering the mind

i1

i2

h1

h2

h3

hn

in

wh1h2

wh2h3

wh3hn

wi1i2

wi2in

wh1h3

wh1hn

wh2hn

wi1in

Figure 102 - Bottom-up ANN tree

The next difference is that we are not exactly dealing with a decision tree, but with a structure
that is like a decision tree. Would the ANN tree be processed top-down, then the result would
not be the activation of just one terminal node, but of many. Furthermore, due to redundant
use of patterns, lower level pattern recognizers do not just propagate their patterns up the
hierarchy in a decision tree-like manner, as each node may have more than one parent node
(see Figure 103 - Cumulative activation).

10.6 The artificial neocortex 333

Cumulative activation

Figure 103 - Cumulative activation

The dashed lines show the activation of some lower level pattern recognizers, which in turn
activate some higher level pattern recognizers and so on. In Figure 103 - Cumulative
activation, the cumulative activation of all dashed pattern recognizers results in the
recognition of (a specific sort of) tree. Furthermore, on the third hierarchy from below on the
right side a pattern recognizer is activated by the firing of a pattern recognizer from below as
well, however, in the example this does not result the activation of the highest level pattern
recognizer (for another kind of tree) – cumulative activation of more nodes from the right path
would be required. Such structures can be implemented easily, as well as pruning and adding
of connections between the nodes. What has to be considered is the number of input neurons
for each pattern recognizer, whereby the optimal number of input neurons does not
necessarily need to be defined in advance for optimally recognizing a specific pattern – auto
associative ANNs are even capable of recognizing their specific patterns when these are
incomplete or disturbed.

10.6.3.3 Access to knowledge and how search engines are similar to the brain

Now that the knowledge has been structured and visual information has been encoded into
patterns, these two components have to be set into relation. Although within a human brain
everything is stored in patterns, even all knowledge of different domains a person may
possess, I do not consider it required to do the same for an ACE. For the internal information
processing of an ACE I consider it required to distinguish between

– knowledge about world and
– expert knowledge.

334 10 Reverse engineering the mind

There exist many more subcategories and I am aware that especially the second category
provides an ample scope, but in the beginning it is essential that the creators of the ACE
distinguish between them. After the ACE has been equipped with basic knowledge about the
world and some expert knowledge, it can learn and take over categorization itself.

The first category incorporates visual information about the environment the ACE is moving,
which includes basic information about entities, objects and their purpose, as well as context-
sensitive information, so far as possible. Getting back to the example of the picnic, visual
information about entities and objects may include patterns of people, flora, fauna and food
that the ACE is capable of processing visual information in a way that allows it to correctly
recognize what it perceives. Contextual information is modeled in patterns as well, as the
activation of the visually perceived objects does not only allow the identification of such, but
also the recognition of a situation, such as the picnic. I do not consider it as a requirement that
a context such as a picnic is recognized at first, as even we fail in some situations and the
ACE is capable of learning.

The second category incorporates knowledge of the world as well, such as descriptions of
objects on atomic layer or specific knowledge of information technology. Such expert-
knowledge does not necessarily need to be encoded into patterns as within our brain, but may
be stored in large and distributed database structures, comprising different database types
such as distributed file system-, OLAP- and relational databases, whereby the first category
may serve as storage for knowledge stored in pages or files such information provided by
Wikipedia, and the latter ones e.g. for processing complex (knowledge-related) stored
procedures, for storing the results of calculations, or even for the analysis of specific
knowledge stored in a cube.

Databases may also serve as short-term extension to a short-term memory that has been
modeled in patterns, but more on that later. The connection between knowledge and patterns
is enabled by translating incoming visual information (patterns) into textual information. If
one is of the opinion that the translation of visual information into text for accessing
knowledge is nothing a biological conscious entity would do, I admit that she is correct;
however, I do not see an obstacle in creating an ACE by changing the way of how
information is accessed. Thus, the suggestion is to store simple and shot textual information
additionally to each pattern (such as the word ‘apple’ for the pictures of apples), which then
can be used to query the knowledge stored in databases when patterns are presented through
visual channels.

In current search technologies we see many similarities to the human brain in terms of how
information is retrieved and stored. Before a search engine can provide information about
where a file or document resides, it has to find this information within numerous files or web
sites on different servers. In order to get to achieve this ambitious target, agents extract
significant words from these files or sites and store them in lists. In terms of the human brain
it has already been discussed that neural connections are more likely to fire the more often
they are used, which means that clusters of neurons over the neocortical hierarchy reacting to
the recognition of a specific object will fire easier the more often this object has been
recognized. Thus the search for whether an object is a ball or an apple in the human brain
happens by providing the features of the object through the visual system and ranking the top-
firing neuron clusters first. To put it in a suitable analogy: only the most popular search
results, thus neuron clusters firing intensely, appear in the result-set.

10.6 The artificial neocortex 335

In common web search engines, the agents (spiders) usually start indexing the words on
frequently visited websites, as well as follow every link on each site – the agents traverse the
whole complex graph of web sites, or in other words, literally travel all over the world. The
spiders in the human brain are the transformed features propagated through the neocortical
hierarchies. In search engines, work is parallelized, thus multiple spiders act at once and each
of them maintains hundreds of parallel connections at once. This is similar to what happens in
the human brain: search is parallelized as well, thus the search paths are not pursed in
sequence, but in parallel. There are different approaches for how to implement spiders, i.e.
indexing only significant words and leaving out stop-words (a, the, an, etc.) keeping track of
where the words occur (title, subtitle, meta tags etc.). In 10.6.1 Knowledge and data we
already saw how knowledge can be represented and that knowledge about knowledge is
relevant as well. In terms of search technologies, there exists a similar concept, called meta
tags. Meta tags allow the owner of a page to specify key words and concepts under which the
page will be indexed. This can be helpful, especially in cases in which the words on the page
might have double or triple meanings -- the meta tags can guide the search engine in choosing
which of the several possible meanings for these words is correct. To protect against non-
matching tags, spiders will correlate meta tags with page content, rejecting the meta tags that
don't match the words on the page.

The more knowledge the ACE can access, the more difficult it will be to find relevant infor-
mation and to accurately identify context. For this, exclusion-conditions can be implemented,
i.e. that when several features for an apple have been identified, the result can never be a tree.
This is also what is successfully applied in search technologies, as many times, a page’s
owner doesn’t want it showing up on a major search engine, or doesn't want the activity of a
spider accessing the page. In order to avoid this, the robot exclusion protocol was developed –
a spider is told by the protocol in the meta-tag section of a site that it must not conduct its
operations, i.e. traverse further along the links, or extract words.

As the internet is ever-changing, spiders continuously crawl the web about new or changed
information, and the more data is collected the more important it is how this data is stored and
maintained. Again, this is similar to what happens in the human brain when it comes to
learning: learning is a continuous process, and the information must be encoded in a way that
makes it useful. We already discussed encoding knowledge into pattern recognizers as well as
several forms of knowledge representation, such as semantic networks. When it comes to
search technologies, there are two key components involved in making the gathered data
accessible to users:

– How indexing of the information is conducted, and
– which information is stored together with the data.

By just storing an identifier and a reference (key and value), such as a word and a URL,
which gives the location where the word can be found, practical use would be severely
limited. It would not be possible to figure out if the word was used often, it is important in
terms of the contexts it has been used, or if the page found at the specified URL contains links
to other pages, in which this word is used. Additionally, any search will not come up with
only one result, thus a ranking of the results based on importance is required, which can only
be done by storing more than just key-value pairs containing word and URL. A common
approach is to weight the entries based on different criteria, i.e. how often the word occurs in
a document, and where it occurs (heading, body, meta tag, etc.).

336 10 Reverse engineering the mind

In terms of the human brain, independent from what scenario we are facing, i.e. object
recognition or talking to another human – mostly object recognizers are involved (whereby I
define object not only as physical object, but also as words, context, etc., so literally anything
that can be recognized), and search refers to correctly executing the neuron clusters
responsible for recognizing an object, but nevertheless it is not required to achieve the same
target by the same means. An apple looks similar to a pear, but more neural clusters for apple
fire, although some of them may also be firing (voting) for pear. Ranking in an ACE could be
conducted in a way that fits its personality, thus more cautious actions may be proposed for an
ACE whose task it is to negotiate.

In the human brain we also see a sort of compression in terms of reusable neural clusters, i.e.
the cluster for recognizing diagonal lines may be used to recognize a part of the letter A as
well as a part of a houses’ roof. Of course, this is also something that needs to happen when
storing data for search engines, as storage capacity does not increase in the same way
available data increases. Finally, an index is created on the data, which helps to find relevant
information a lot quicker than in the raw data. Numerous ways for creating an index exist, and
one of the most common ones is hashing, where the output of a formula is attached to each
word; basically what happens is that entries are distributed evenly across a predefined number
of domains. The distribution of the words in a document is different to the overall distribution
of words in a specific language, i.e. there exist more words beginning with the letter M than
words beginning with other letters, resulting in longer search time for a word starting with M.
Hashing simply compensates this difference so that all words are found in more or less the
same time, and segregates the actual entry from the index. The hash-table can also be seen as
a key-value store, as it contains a hashed number as well as a pointer to the actual data, and
this in combination with advanced storage concepts result in quick responses also when
complex search requests are submitted. If more complex queries are built, single words must
be connected by the use of Boolean operators. In terms of the ACE, search must be fuzzy, as
the input is not directly a word, but most often a stream of unstructured information. From
this stream of information, pattern recognizers must extract the (hidden) features, which allow
the ACE to understand a situation. Current research also focuses on translating unstructured in
formation in more structured information, i.e. generating texts from images. This, in turn,
allows leveraging the full capacity of knowledge representation and / or searching
technologies. The Boolean operators usually used in search technology are AND, OR, NOT,
as well as

– FOLLOWED BY: one of the terms must be directly followed by the other.
– NEAR: one of the terms must be within a specified number of words of the other.
– Quotation marks: the words between the quotation marks are treated as a phrase, and that

phrase must be found within the document or file.402

Building more complex queries in ACE would of course include all of the above mentioned,
but as brains are fuzzy, also fuzzy gates (operators) should be implemented, which can be
happen by probabilistic networks or ANNs. Literal searches pose challenges in the sense that
some words may have multiple meanings and are thus used in multiple contexts. Thus,
context must be added (word sense disambiguation), which is done by concept-based search,
founded on statistical analysis of word counts, word collocation, concordance, collocation,

402 Franklin Curt (2000): How Internet Search Engines Work; URL:http://computer.howstuffworks.
com/internet/basics/search-engine.htm

10.6 The artificial neocortex 337

collostructional analysis, keyword linguistics, pattern grammar, etc., which allows to find
relevant search results. As a lot more data has to be stored for such an approach, performance
problems resulted in another strain of research, where queries are based on natural language
input; Boolean operators are then obsolete (see also 2.4 Language and communication). The
challenge, which also closes the circle, is again how to represent language in order to be able
to figure out meaningful results. Logic is one way, semantic networks another, and to
consider language as the most simple representation of itself, one more.

10.6.3.4 Language processing and understanding

Clustered, interconnected knowledge provided via textual and visual information does not
enable the ACE to communicate, so the ability to process natural language or another
approach for communication is required as well. Language processing incorporates numerous
different approaches and paradigms, such as probabilistic models of language, statistical
natural language processing, information extraction, text mining, robust textual interference,
statistical parsing, grammar induction, constraint-based theories of grammar, and computa-
tional lexicography. An approach that can be applied are hidden Markov models (see 10.6.2.6
Hidden Markov models and conceptual hierarchies in the neocortex). Such models have
proven to perform well at processing speech or parts of speech. Part-of-speech tagging
(POST) is the part of corpus linguistics that will serve for explanations here. Basically, POST
considers the context as well as the definition of a particular part of speech for making up a
word within a text, such as a document or speech, as belonging to a specific part of speech.
Part of speech refers to a linguistic category of words, generally defined by
the syntactic or morphological behavior of the lexical item in question. POST is more difficult
than just considering words and their correct part of speech, as words may have more than
one meaning. An example is the German word ‘einen’, which can both be an indefinite article
and a verb. A commonly used example in English is ‘The sailor dogs the hatch’, where the
word dogs alone may represent the plural of dog, what would be definitely wrong in that
context, in which it is used as a verb. Both grammatical and semantic analysis may result in
the desired tagging, where via the former one analysis would state that the plural noun is
definitely wrong here, and the latter one that the verb would occur in the context of sailor and
hatch more likely. Summing up, POST is the task of tagging each word in a text with its
appropriate part of speech, such as

The[AT] representative[NN] put[VBD] chairs[NNS] on[IN] the[AT] table[NN].

or

The[AT] representative[JJ] put[NN] chairs[VBZ] on[IN] the[AT] table[NN].403

A well-known POST-corpus is the Brown-corpus, 404 from which the tags above came from.
The first example shows that the word ‘representative’ has been tagged as a singular noun,
whereby in the second example it has been tagged as an adjective. The words ‘put’ and ‘chair’
allow for the same. Thus, some sort of probability model has to be applied for correctly

403 Dror Gideon (2009): Part-of-Speech Tagging [2013-12-08]; URL: http://www2.mta.
ac.il/~gideon/courses/nlp/slides/chap10_pos.pdf

404 Leeds University: Automatic Mapping Among Lexico-Grammatical Annotation Models [2013-
12-08]; URL: http://www.comp.leeds.ac.uk/amalgam/tagsets/brown.html

338 10 Reverse engineering the mind

identifying the context of a sentence, and one of them are HMMs. It has already been
explained that processing of the current state within HMMs only depends from the last step.
The states are represented by POST tags, whereby observations are sequences of words. The
transition probability is represented by the bigram model for POST tags, the observation
probability by the probability of generating each token from a given PIST tag. A bigram is
every sequence of two adjacent elements in a string of tokens, which can be e.g. words or
letters. The bigram frequency distribution within strings can be used for statistical analysis of
text, such as within HMMs:

ܲ(௡ܹ| ௡ܹିଵ) = ௉(ௐ೙షభ,ௐ೙)
௉(ௐ೙షభ)

 (10-194)

where the probability ܲ of a token ௡ܹ with the preceding token ௡ܹିଵ is given by the
probability of their bigram, which is the co-occurrence of the two tokens ܲ(௡ܹ| ௡ܹିଵ)
divided by the probability of the preceding token. Again, hidden within the HMM means that
the sequence of POS tags (states) that is responsible for generating the sequence of words
(observations) is hidden. The Viterbi algorithm is used within HMMs for decoding (POST in
the example here), which we remember is the discovery of a best hidden state sequence ܳ
given an observation sequence ܱ (and an HMM). Decoding is capable of detecting the most
probable sequence of states that has produced the observed sequence:

7.6*10-6

0.00725

0

0

0.00031

1.3*10-5

0.0002

7.2*10-5

1.3*10-7

0 0

0

0

0

4.3*10-6

2.6*10-9

Figure 104 - Viterbi example

Figure 104 - Viterbi example shows how a HMM determines the most probable tags for
words in a context. The Viterbi-algorithm therefore determines the most likely sequence of
hidden states in a given HMM and an observable sequence of symbols. From the HMM
description we know that the sequence of observable symbols is defined as

ܱ = ,ଵ݋ … , ்݋ (10-195)

where

௜݋ ∈ ܸ∗ (10-196)

10.6 The artificial neocortex 339

Now the most likely sequence of states

ܳ∗ = ଵݍ
∗, … , ்ݍ

∗ (10-197)

where

௜ݍ ∈ ்ܵ (10-198)

shall be determined. ܵ is the quantity of hidden states, and ܸ the alphabet of observable
symbols (emissions). Thus, the sequence of hidden states that maximizes the value of
ܲ(ܳ|ܱ; ran ߣ amongst the sequences ܳ with the length ܶ is the probability that the model (ߣ
through the states ܳ at output ܱ.

ܲ(ܳ|ܱ; (ߣ = ௉(ை;ொ|ఒ)
௉(ை|ఒ)

 (10-199)

 does not depend from ܳ, thus (ߣ|ܱ)ܲ

ܲ(ܱ; (ߣ|∗ܳ = ;ܱ)ܲݔܽ݉ (10-200) (ߣ|ܳ

For the calculation, two further variables are required, where the first one is the maximal joint
probability ߴ௧(݅), which is stored at point in time 1 ≤ ݐ ≤ ܶ if the prefix ܱଵ, … , ܱ௧ has been
observed when running through a sequence of states of length ݐ and ends in the state ݏ௜ ∈ ܵ:

(݅)௧ߴ =
ݔܽ݉

ܳ ∈ ்ܵ

௧ݍ = ௜ݏ

,ଵ݋)ܲ … , ;௧݋ ,ଵݍ … , (10-201) (ߣ|௧ݍ

The second variable is ߰௧(݅), which remembers for every point in time and state which
preceding state has contributed to the maximum. The Viterbi-algorithm is then as follows:

Start

1. Initialization: For each
state ݏ from 1 to ܰ do

(݅)ଵߴ = ௜ߨ ௜ܾ(݋ଵ)
߰௧(݅) = 0

2. Recursion: For each
time step ݐ from 2 to ܶ do

For each
state ݏ from 1 to ܰ do

(݅)ଵߴ = ௜ܾ(݋௧) ݔܽ݉
1 ≤ ݅ ≤ ܰ ቀܽ௜௝ߴ௧ିଵ(݆)ቁ

߰௧(݅) =
ݔܽ݉݃ݎܽ

1 ≤ ݅ ≤ ܰ ቀܽ௜௝ߴ௧ିଵ(݆)ቁ
3. Termination: Terminate

ܲ(ܱ; (ߣ|∗ܳ = ݔܽ݉
1 ≤ ݅ ≤ (݆)்ߴܰ

்ݍ
∗ =

ݔܽ݉݃ݎܽ
1 ≤ ݅ ≤ (݆)்ߴܰ

4. Return backtrace path
்ݍ

∗ = ߰௧ାଵ(ݍ௧ାଵ
∗)

End

Algorithm 35 – Viterbi algorithm

340 10 Reverse engineering the mind

Breakdown:

 state :ݏ
ܰ: number of states
ܶ: length of state sequence
 point in time :ݐ
ܽ௜௝: transition probability from previous state ݍ௜ to current state ݍ௝

௜ܾ(݋௧): state observation likelihood of the observation symbol ݋௧ given the current state ݆

 determines the set of points of a given argument for which the given function :ݔܽ݉݃ݎܽ
attains its maximum value

 the maximum value of an element :ݔܽ݉

Having discussed the HMM decoding problem, which asks to discover the best hidden state
sequence ܳ by a given observation sequence ܱ and an HMM ߣ = ,ܣ) we now know how ,(ܤ
ߣ can determine POS-tags for words. However, before an HMM can do that, it must be
trained, similar to an ANN which also has to be trained. There exist three types of training for
HMMs, which are supervised, unsupervised and semi-supervised. In supervised training all
training sequences are tagged, meaning that e.g. a human expert has labelled the words with
tags beforehand. The model thus would be trained to learn that ‘Students’ is a noun, ‘need’ is
a verb, etc. whereas in unsupervised learning all training sets are unlabelled, thus the tags are
unknown.

Supervised learning relies on the estimation of state transition probabilities on tag bigram and
unigram statistics in the labelled data:

௜௝ߙ = ஼൫௤೟ୀ௦೔,௤೟శభୀ௦ೕ൯
஼(௤೟ୀ௦೔)

 (10-202)

where ߙ௜௝ is the probability of the state transition from state ݅ to state ݆, ݍ௧ିଵ the state at point
in time ݐ − 1 and ݍ௧ the state at point in time ݏ .ݐ௜ is the ݅௧௛ state that ݍ௧ can take and ݏ௝ the
݆௧௛ state ݍ௧ାଵ can take (see Figure 105 - Variable explanation).

qt qt+1

a1j

aij

anj

Figure 105 - Variable explanation

10.6 The artificial neocortex 341

௜ܾ(݇) = ஼(௤೔ୀ௦೔,௢೔ୀ௩ೖ)
஼(௤೟షభୀ௦ೕ)

 (10-203)

Thus, supervised learning is a maximum likelihood estimation.

For unsupervised learning, it is required to discuss the remaining two HMM problems in
detail, as it relies on the forward-backward algorithm (Baum-Welch algorithm). The forward-
part can be explained by solving the first HMM problem, which is the determination of the
likelihood ܲ(ܱ| ߣ), given an observation sequence ܱ and an HMM ߣ = ,ܣ) -The likely .(ܤ
hood of an observation itself depends from the Markov assumption that states that the
probability of any state at time ݐ only depends on the probability of each possible state at time
ݐ − 1. First of all, considering the paths in Figure 105 - Variable explanation, the probabilities
of all possible ways of getting to ݏ௝ at time ݐ + 1 by coming from all possible states ݏ௜ have to
be determined and summed to get the overall probability of being in state ݏ௝ at ݐ + 1 while
accounting for the first ݐ observations. Finally, the result has to be multiplied with the
probability of observing ݋௧ in ݏ௝:

Start

1. Initialization: For each
state ݏ from 1 to ܰ do

(݅)ଵߙ = ,ଵ݋)ܲ ଵݍ = (ߣ|௜ݏ = ௜ߨ ௜ܾ(݋ଵ)
2. Recursion: For each

time step ݐ from 2 to ܶ do
For each
state ݏ from 1 to ܰ do

(݆)௧ାଵߙ = ܲ൫݋ଵ, ,ଵ݋ … , ,௧ାଵ݋ ௧ାଵݍ = ௝൯ݏ = ෍ ܲ൫݋ଵ, ,ଵ݋ … , ,௧ାଵ݋ ௧ݍ = ,௜ݏ ௧ାଵݍ = ௝൯ݏ
ே

௜ୀଵ

= ෍ ,ଵ݋)ܲ ,ଵ݋ … , ,௧ାଵ݋ ௧ݍ = ௜)ܽ௜௝ݏ ௝ܾ(݋௧ାଵ)
ே

௜ୀଵ

= ෍ ௧(݅)ܽ௜௝ߙ ௝ܾ(݋௧ାଵ)
ே

௜ୀଵ

3. Termination: Terminate

(ߣ|ܱ)ܲ = ෍ (݅)்ߙ
ே

௜ୀଵ

4. Return
 (ߣ|ܱ)ܲ

End

Algorithm 36 – Forward recursion

Breakdown:

 state :ݏ
ܰ: number of states
ܶ: length of state sequence
 point in time :ݐ
ܽ௜௝: transition probability from previous state ݍ௜ to current state ݍ௝

342 10 Reverse engineering the mind

௜ܾ(݋௧): state observation likelihood of the observation symbol ݋௧ given the current state ݆

For the last problem, which states that a sequence of observation is given, for which the tran-
sition- and output-probabilities of ߣ need to be determined that most likely result in the output
sequence, also the backward recursion is required:

Start

1. Initialization: For each
state ݏ from 1 to ܰ do

(݅)௧ߚ = ,௧ାଵ݋)ܲ ,௧ାଶ݋ … , ௧ݍ|்݋ = ௜ݏ , (ߣ
(݅)்ߚ = 1,1 ≤ ݅ ≤ ܰ

2. Recursion: For each
time step ݐ from 2 to ܶ do

For each
state ݏ from 1 to ܰ do

(݆)௧ାଵߙ = ܲ൫݋௧ାଵ, ,௧ାଶ݋ … , ௧ݍ|்݋ = ௝൯ݏ = ෍ ܲ൫݋௧ାଵ, ,௧ାଶ݋ … , ்݋ , ௧ାଵݍ = ௜ݏ , ௧ݍ = ௝൯ݏ
ே

௝ୀଵ

= ෍ ,௧ାଶ݋)ܲ ,௧ାଷ݋ … , ௧ାଵݍ|்݋ = ௜)ܽ௜௝ݏ ௝ܾ(݋௧ାଵ)
ே

௝ୀଵ

= ෍ ௧ାଵ(݆)ܽ௜௝ߚ ௝ܾ(݋௧ାଵ)
ே

௝ୀଵ

3. Termination: Terminate

(ߣ|ܱ)ܲ = ෍ ௜ߨ(݅)ଵߚ ௜ܾ(݋ଵ)
ே

௝ୀଵ

4. Return
 (ߣ|ܱ)ܲ

End

Algorithm 37 – Backward recursion

Breakdown:

 state :ݏ
ܰ: number of states
ܶ: length of state sequence
 point in time :ݐ
ܽ௜௝: transition probability from previous state ݍ௜ to current state ݍ௝

௜ܾ(݋௧): state observation likelihood of the observation symbol ݋௧ given the current state ݆

The forward–backward algorithm is used for finding the most likely state for any point in
time, on the contrary to the Viterbi-algorithm, which is used for finding the most likely
sequence of states. Assuming an HMM with ܰ states (or POS-tags, for language processing),
its initial parameters are set randomly. Until the HMM converges, the forward-backward
algorithm is used for determining the probability of various possible state sequences for

10.6 The artificial neocortex 343

generating the training data (often described by E(xpectation)). In the Baum-Welch algorithm,
these probabilities are then used for re-estimating the values for all of the parameters of the
HMM (often described by M(aximization)). Each iteration modifies the HMM-parameters in
a way that guarantees for the increase of the likelihood of the data (ܲ(ܱ|ߣ)). The algorithm
can be stopped at any time before convergence for getting an approximated solution.

That leaves us at a point where POST of words becomes possible, which forms one of the
basis features of natural language processing and in consequence, natural language
understanding. These two fields comprise numerous subfields of research (see 2.4 Language
and communication). As numerous books and other sorts of publications have been written on
these topics, I will not go into further detail here. For me, it was important to describe a
paradigm that an artificial entity can make use of for processing and even understanding
language, such as the hidden Markov model, and how information processing within such a
model works. Furthermore, in 10.6.2.6 Hidden Markov models and conceptual hierarchies in
the neocortex similarities between the neocortex and HMMs have been discussed, so it is only
fair to describe its basic functional principles here.

10.6.3.5 Quantum pattern recognizers

A large part within this elaboration has been dedicated to quantum mechanics and theore-
tically possible applications in machine learning. This has been done with a special purpose,
namely the discussion of a possible processing approach for the numerous pattern recognizers
of the ACE. Even if it may not be that case that quantum effects are required for producing
conscious experiences in human brains, we may nevertheless make use them within ACEs, if
advantages prevail. Breaking down quantum information processing to single pattern
recognizers, it has already been discussed that the training performance can be significantly
increased (see 10.5 Quantum physics and the artificial brain) by lifting all possible
configurations of the ANN in quantum linear superposition at once and searching for the
required configuration with Grover’s search algorithm. However, it has been shown that with
an ANN of arbitrary largeness the search for the solution on the performance register would
still require exponential time with respect to the composite weight vector’s size, which is

ܱ ቆටଶ್

்
ቇ (10-204)

There are ways to deal with this situation, such as the application of randomized training
algorithms, but there are further advantages that suggest the implementation of quantum
neurocomputer, and this is the capability for solving so-called hard problems. The problem of
combinatorial explosion could be solved by exploiting physical phenomena directly, such as
analogue or quantum computers do. Initially, the idea was described by Richard Feinman405
who was able to show that exponential complexity related to calculated probabilities can be
reduced to a problem of polynomial complexity related to simulated probabilities, and a
similar proceeding may be applied to NP-complete problems. A neurocomputer, which our
brain or to some degree also an artificial neural network is (the latter one is not exactly a
neurocomputer, as a classical ANN is not processed on neurons) belongs to another problem
class, and compared to NP-hard problems, their complexity comprises not only an

405 Feynman Richard (1982): International Journal of Theoretical Physics, Vol. 21, No. 6/7

344 10 Reverse engineering the mind

exponentially large number of simple computations, but an unknown analytical structure.
Unfortunately, an analogue computer is not universal, slow and inaccurate. A possible way
for tackling the problem may be the introduction of non-deterministic approaches to
computations, which may be the not here discussed Monte Carlo method, as well as
randomized algorithms. Both can be utilized for solving combinatorial problems, and the
theory of computational complexity states that polynomial time nondeterministic algorithms,
compared to polynomial time deterministic ones, are more efficient in the sense that there
exist algorithms of the former category that can solve problems probably within polynomial
time or even within polynomial time for sure. To put it briefly, this means that such
algorithms exchange complexity with completeness or correctness. Nevertheless they provide
a solution for the problem, would not there be the problem of number randomization –
random number generators are slow and unreliable in the sense that no real random numbers
are generated; instead an algorithm is used for it. Quantum physics allows the creation of an
analogue computer with real randomization, which means with such a device polynomial time
nondeterministic algorithms can be directly implemented and solved on the hardware, and it is
universal. Back to quantum artificial neural networks and the brain, very often I mentioned
auto associative neural networks, which are trained to recognize one or more patterns even if
the presented pattern is distorted or incomplete. The associative memory problem can be
described as the storage of ݍ ݊-dimensional patterns as dynamical attractor:

௜ߦ
ఎ(ߟ = 1,2, … , ;ݍ ݅ = 1,2, … , ݊) (10-205)

and if a pattern ߦ௜ is then presented to the network, its similarity is compared to the stored
patterns ߦ௜

ఎ . If the presented pattern is similar enough (depending from the allowed error rate)
to one specific stored pattern, it is related to the specific attractor and a dynamic process is
initialized, which eventually converges to the sample pattern. It has been explained in
10.5.1.7.1 Quantum artificial neural network configuration search function that within a
QANN the goal is to find the configuration of weights, or Hamiltonian ܪ in quantum
terminology, which provides a solution within the pre-defined ANN parameters, which in
terms of an associative QANN are a prescribed number of attractors at specific locations and
of specific type. Zak and William406 state that compared to a classical ANN, the approach is
completely different, as the structure converges to an attractor via a training algorithm.
Arguments for favouring QANNs (instead of classical ANNs) are

– The dimension of the unitary matrix (ܪ) implemented on quantum hardware may be
exponentially larger within the same space. As a consequence, the QANN capacity, or the
number of patterns the QANN is able to store, as well as the number of dimensions of
these patterns, are exponentially larger as well.

– Through interference of patterns, a sort of grammar may be introduced to a QANN (apart
from that, only a QANN with high dimensionality and complexity would be able to
process such information). This means that if e.g. letters are stored in the form of
stochastic attractors ߦఎ are stored within the QANN then the simultaneous presentation of
a specific number of letters to the QANN is accompanied by quantum interference effects
in the sense that they will converge to a new attractor, which not only preserves the
identity of the single letters, but simultaneously is not only a sum of these. This is similar
to sentences consisting of words, and words consisting of letters. By changing the phases

406 Zak Michail, William Colin P.: Quantum Neural Nets; Center for Space Microelectronics Tech-
nology: Jet Propulsion Laboratory; Pasadena: Caltech

10.6 The artificial neocortex 345

of the single components ܪ௜௝ , also the grammar may be changed, let say from English to
German.

– QANNs feature attractors representing stochastic processes, as described above.

The application QANNs within an ACE would therefore be beneficial, as a lot more complex
and deep artificial neural networks could be used. The major problem with deep ANNs has
always been their training, although some approaches have been found that deal with the
problem. However, such algorithms either deal with the depth, thus the vertical structure of an
ANN, or the horizontal structure, thus the number of neurons within a hidden layer.
Additionally to restricted Boltzmann machines, I personally have made very good experience
with genetic or thermal algorithms for training deep structures, especially as the latter work
well independent from both structural dimensions. However, when dimensionality increases,
also such algorithms’ performance decreases exponentially. Thus, for training deep and broad
networks such as the one(s) in a human brain, the search for the optimal configuration via
Grover’s algorithm, be it via entangled performance registers or in another way, is a lot more
promising than attractor dynamics in classical ANNs.

10.6.3.6 Real world input and new experiences

Now that the ACE is capable of learning from different kinds of databases (whereby I
consider the internet as heterogeneous and unstructured database here as well) and structuring
this information efficiently, it is required to determine how sensual information is interpreted.
Well, for with respect to visual information both spatial and temporal information is of
relevance, thus how the content of a scene changes with respect to time. The information we
visually perceive is much unstructured, but may be organized on a higher conceptual level.
For example, when the ACE would walk down a street, heading from one location A to
another location B, then it may interpret objects, which belong to one of the low conceptual
levels of the scene (I call it scene, although the whole process may consist of several scenes)
simply by scanning the environment. A low conceptual level in this scene may comprise cars,
people, a street, a crossing. With this information, the ACE may gain contextual information,
such as described in 10.6.2 Context recognition and hierarchical learning. Contextual infor-
mation in this scene may comprise information such as ‘busy’, ‘accident at crossing’,
‘dangerous’, ‘how to pass crossing', etc… Equipped with this contextual information,
behavior can be derived, either from stored patterns or databases. Behavior may be the
avoidance of collision with objects or other people, how to pass a crossing, etc… I will not go
into technical detail here on how visual information can be interpreted with pattern
recognizers, as this has been already discussed extensively. However, the information
described above could also have been extracted from a static image, thus does not necessarily
feature a temporal component. It is improbable that all people and objects in our scene are
static; instead they are moving and have their own targets. For the ACE, it is not required to
know all these targets, as even we humans do not know that. Nevertheless, what we do is to
predict the situation. Our neocortex has been developed for prediction and it does that all the
time. It predicts where a car may be in 2 seconds and from that we derive if it is save to cross
the street or not, or it predicts where someone heading towards us will be most likely in 3
seconds, so that we can avoid collision. This is also what an ACE should do, which means
that it is on the one hand required to access knowledge or trained ANNs, but on the other
hand to train such instantaneously for predicting patterns as quickly as possible. For this, not
auto associative ANNs are used, but feed forward ones, or better, QANNs, as only the latter

346 10 Reverse engineering the mind

ones may be trained quickly enough for predicting a complete scene. For sure, it is not
required to predict the whole scene, but in the given example to extract features of moving
objects for a time sequence, and when one of these objects becomes relevant for the ACE, to
predict its behavior and derive own behavior from the results.

Not everything may be interpreted correctly, and an inexperienced ACE may make mistakes,
as inexperienced humans do. Consider a child having never seen a butterfly before and thus
running after one, ignoring its environment, which may not be dangerous on a flat meadow,
but in a city. Thus, not even new information about objects, but also about context are
collected continuously. For an ACE, there is no need to forget anything, even if the informa-
tion is of no relevance for its desires and aims. Basically, the interpretation of new infor-
mation happens in the same way as with basic knowledge, described at 10.6.3.1 Acquisition
of basic knowledge, with the difference that it is stored and brought into context with existing
knowledge. This then transforms new information into knowledge, or experience. The
difference between experience and knowledge is that experience is based on knowledge, thus
it is a higher conceptual level of information. From a computer science point of view,
experience may be interpreted as a cluster of knowledge, whereby knowledge here does not
only comprise hard facts, but of stored situations linked to stored knowledge. These stored
situations may be enriched with Meta information and tagged, so that they can be queried and
compared to an actual situation, which is then handled based on the results, thus experience. If
the handling was successful although the situation differed from the experience in a higher
amount, then the related experience-cluster may be extended by the variational information of
the new situation. Knowledge may be stored as new pattern recognizers (which encode
patterns), and a situation may be stored in manifold ways, one of which I would suggest are
sequences situation-relevant patterns.

10.6.3.7 Automatic information interconnection

A human brain does interconnect information, which is the reason why we can learn in one
domain from another domain, or explain complex information such as physical processes in
metaphors. This is what is also required to happen within an ACE. Information interconnec-
tion may be implemented in different areas and ways. The intercompatibility of patterns or a
cascade of patterns may e.g. be verified by understanding the type of a problem, or ‘what it
really is’. Having understood that evolution, the behavior of ants when searching for food, the
cooling of metal or learning within an artificial neural network all are optimization problems,
has resulted in the creation of ANN training algorithms that copy paradigms from nature e.g.
for predicting weather. The type of a problem can very often be figured out easily by
understanding its nature, and understanding its nature has very often to do with understanding
context. The implementation of checking for pattern intercompatibility is a meaningful means
for solving unsolved problems, thus the ACE may be able to derive solutions from different
categories of knowledge, as we humans do.

10.6.4 A superior goal

Now that the theoretical ACE features all the interesting capabilities, it must be equipped with
a superior goal. IBM Watson‘s goal e.g. was to answer Jeopardy questions, but this was not a
superior goal it pursued itself. The goal of its ingenious developers was to show that Watson
can understand and intelligently process input provided in natural language, which in fact was

10.7 A distributed mind 347

an extraordinary achievement. However, when Watson is not provided input, he is not
pursuing a superior goal, such as continuously improving itself (in fact, he may partially do
that in the sense of structuring and learning information, but only when he is told to do so), or
contributing to the world’s progress. Our goals, for example, are relatively easy to explain
from a scientific point of view. For all we do, be it the contact to others, eating or moving we
have motivation, which is a central drive deeply rooted in our brain and established
evolutionary. The clock for the motivation is the reward system that regulates what we
perceive as pleasant or less pleasant by the release of the neurotransmitter dopamine. In
former times, when our neocortex has not been as developed as it is now, dopamine may have
been released by successfully hunting down an animal, and nowadays it may be the reward of
our boss or the money we collect each month. For the ACE, if it should be included in our
society, the same reward principle may be implemented – only the goal may be more flexible
than we are able to define ours. This sounds difficult at first, but there is a machine learning
approach where we actually apply this, namely particle swarm optimization, in which
individuals of a swarm represent solutions to a problem moving through ݊-dimensional space.
The movement of each individual is influenced by its local and best-known position as well as
the best known positions in the whole search-space. These positions are updated as soon as
better positions have been detected by other individuals, which results in an overall movement
of the swarm towards the best solution. Schematically, the best solution in case of an ACE
may be encoded as the superior goal, whereby the superior goal must be implemented as
continuously moving towards infinity, so that it can never really be reached. This is not
something mean, as if we think on contributions for improving the world it is far from being
perfect – moreover, who can really describe what a perfect world for everybody is like?

10.7 A distributed mind

The search for approaches that allow machines to experience, act and feel in the same way as
humans do, brings up not only ethical discussions (which have not been considered within
this elaboration), but also new possibilities. In fact, the question after we have been able to
reverse-engineer parts of the human mind will be the one on how it will be possible to transfer
the human mind into a vessel capable of storing and processing it. What has always disturbed
me when thinking on how a mind may be transported from a human brain into an artificial
one is the fact that what is commonly described as transport in literature is making a copy –
referring to this, quantum teleportation may be more than just an analogy. After having copied
one’s mind into a vessel capable of holding it, there would remain the fact that the original
would still exist. Quantum teleportation, by which quantum information (like the state of a
photon) can be transmitted over distance, requires both the use of traditional communication
and quantum entanglement between the sending and receiving parties. On the grounds that it
relies on upon established communication, which according to special relativity can never
reach the speed of light, it cannot be utilized for superluminal transport or correspondence.
What's more, it’s impossible to violate the no-cloning hypothesis by preparing two duplicates
of the framework. Quantum teleportation doesn't transport the quantum system itself and thus
it is, regardless of the name, best considered a sort of communication, instead of a real
transportation.

It does not matter if conscious experiences are based on quantum effects or not, pure
extraction of what we consider to be our mind is, at least according to our current physical
understanding, impossible. The solution for the dilemma may be a sort of distributed mind,

348 10 Reverse engineering the mind

thus a constant connection of the human mind with the artificial vessel holding the mind after
biological death – shared consciousness between an artificial and a human brain. After
biological death, the collective mind can survive, as it would just be partially reduced. The
artificial entity does not necessarily need to be sealed off from all environmental stimuli, so
that it only acts as mirror of the biological entity’s mind, or a better storage device. It would
even be more beneficial for the common interface – the mind – if both entities were given the
chance of experiencing conscious content. With sufficient spatial and temporal resolution, it
should be possible to train a conglomerate of sophisticated machine learning approaches
directly by reading and interpreting the signals within a human brain. Apart from difficulties
of realizing an artificial conscious entity capable of not only mimicking, but creating
conscious content itself (when is a simulation detailed enough that it cannot be counted as
simulation any longer, regardless from the implementation?), there now arise new difficulties,
namely the question after how the information and the mind located in a biological entity’s
brain can be shared between it and an artificial counterpart. It is required to have a look on
brain machine interfaces (BMI) or brain computer interfaces (BCI) for finding a possible
solution. The first thing that has to be realized is the signal detection from the human brain,
what can currently be realized by

– non-invasive transducers, by which electrical, magnetic or light-signals produced within
the brain are read from the scalp,

– semi-invasive transducers, which are placed on the surface of the cortex, and
– invasive transducers, which require the direct implantation in the human brain.

Any common manifestation of communication or control requires peripheral nerves and
muscles, whereby each of these processes starts with the user’s intention, which triggers an
unpredictable process in which specific areas within the brain are activated. Subsequently,
signals are transmitted through the peripheral nervous system (the motor pathways), to the
relating muscles, which thus perform the movement fundamental for the communication or
control task. The movement coming about because of this process is regularly called motor
yield or efferent yield. Efferent methods pass on impulses from the fundamental to the
peripheral nervous system and further to an effector, thus a muscle.

Afferent portrays communication from the sensory receptors to the central nervous system,
thus vice versa. For movement control, the motor pathway is crucial, whereas the sensory
pathway is especially paramount for studying motor abilities and tasks requiring dexterity.
BCIs can be applied for offering an alternative method for communication and control – it is
an artificial system that detours the form's ordinary efferent pathways, which are the
neuromuscular output channels. In place of relying upon peripheral nerves and muscles, a
BCI measures mind movement connected with the user’s expectation and deciphers the
recorded brain activity into comparing control motions for BCI applications, which includes
pattern recognition or signal processing, which in turn is ordinarily done by software. Since
the measured action begins straight from the brain and not from the peripheral systems or
muscles, the system is known as a brain–computer Interface. A BCI in general should be
capable of

– activity recording straightforwardly from the brain invasively or non-invasively,
– real-time feedback provision to the user, as well as
– reacting on intentional control. That is, the user should decide to perform a mental

assignment at whatever point he needs to fulfil an objective with the BCI. Gadgets that

10.7 A distributed mind 349

just inactively distinguish changes in cerebrum action that happen without any goal are
not BCIs.

Neuroprostheses, to which BCIs belong to, are gadgets that cannot just receive output from
the nervous system, yet can additionally provide input. In addition, they can collaborate with
the peripheral and the central nervous system. They are, as recently depicted in the definitions
above, immediate fake yield channels from the mind. Unlike other human–computer
interfaces, which require muscle movement, BCIs provide non-muscular communication.407
In general, BCIs offer options to people that are locked within their bodies due to some sort of
disablement, but another field of application may be the reading of neural functions from a
brain for training the neural networks of an ACE.

10.7.1 Non-invasive transducers

As brain activity produces electrical and attractive action, sensors can be applied for
discovering diverse sorts of changes in electrical or attractive action at distinctive times over
distinctive regions of the mind. Most BCIs depend on electrical measures of brain action, and
further depend on sensors set over the head to measure this movement. Via a BCI continuous
brain activity for brain patterns originating specific areas can be analysed. To get predictable
recordings from particular districts of the head, researchers depend on a standard system for
faultlessly placing electrodes (known as the international 10–20 system).

Electroencephalography (EEG) alludes to recording electrical action from the scalp with
electrodes. Although the temporal resolution is good, EEG also has a major disadvantage in
the sense that the spatial resolution and the frequency extent are limited, in the sense that it is
sensitive to bioelectrical contaminations caused by activities requiring bioelecticity (artifacts),
such as muscle movement or even external electromagnetic sources. Another thing to
consider is the unwieldy setup procedure EEG comes along with, comprising amongst others
skin preparation with abrasive electrode gel. The number of such wet electrodes required can
reach up to above 100, which in combination with the electrode gel shows that the application
is impractical, and dry electrodes do not provide an equal signal quality to date.

Magnetoencephalography (MEG) records the attractive fields connected with brain activity,
whereby functional magnetic resonance imaging (fMRI) measures modest changes in the
blood oxygenation level-dependent (BOLD) signals connected with cortical activity. Like
fMRI, additionally close infrared spectroscopy (NIRS) is a hemodynamic based technique for
assessment of functional activity in the human cortex, where diverse oxygen levels of the
blood bring about distinctive optical properties which might be measured. All of these
techniques have been utilized for brain–computer communication, yet they all have burdens
which make them unrealistic for most BCI requisitions, such as MEG and fMRI are large
devices and very expensive and additionally, NIRS and fMRI feature poor temporal
resolution. 408,409,410,411,412

407 Graimann Bernhard et al. (2010): Brain-Computer Interfaces: A Gentle Introduction; Berlin
Heidelberg: Springer; p. 3 ff.

408 Graimann Bernhard et al. (2010): Brain-Computer Interfaces: A Gentle Introduction; Berlin
Heidelberg: Springer; p. 3 ff.

350 10 Reverse engineering the mind

10.7.2 Semi-invasive, invasive transducers and the neural grid

Both approaches require surgery incorporating the opening of the skull through a surgical
technique called a craniotomy and cutting the films that blanket the cerebrum. The point when
the electrodes are set on the surface of the cortex, the signals recorded from these electrodes is
known as the electrocorticogram (ECoG) and thus this approach does not harm any neurons in
light of the fact that no electrodes infiltrate the brain.

The signals recorded from electrodes that enter brain tissue is called intra-cortical recording,
whereby such approaches usually come along with excellent signal quality, a higher fre-
quency range, and good spatial resolution. Furthermore, bioelectrical contaminations caused
by activities requiring bioelectricity can be dealt with better, and complicated procedures for
placing electrodes are not required. Intra-cortical electrodes can record the neural action of a
solitary brain cell or agglomerations of such, and it records the coordinated activity of a much
bigger number of neurons that are in the closeness of the ECoG electrodes.

Any invasive strategy has preferable spatial resolution compared to the EEG, and invasive
systems feature advantages over non-invasive techniques, but these come along with the
requirement of surgery. Apart from that, budgetary and moral obligations make neurosurgery
unreasonable aside from a few users who depend from such kind of BCI to communicate.
Understandably, ethical reasons make research on invasive and semi-invasive transducers
difficult and restrict it to patients with brain damage or malfunction. It is additionally
indistinct if both ECoG and intra-cortical recordings can furnish safe and stable recording
over years. Long-term soundness may be particularly dangerous on account of intra-cortical
recordings. Electrodes embedded into the brain tissue can cause tissue responses that
accelerate breaking down sign quality or even failure of the electrode.413

In the not so distant future, we will rely on far more advanced technology. Neural grids,
spanning the brain surface and growing through all layers of the neocortex, will allow direct
connection on the neuron level. As this allows arbitrary spatial resolution, this will be the first
seamless interface between a brain and electronics. Apart from potentially enhancing the
capabilities of biological brains, this technology will allow reprogramming of the brain by
influencing the intra-neural electrochemical signals by releasing or blocking chemicals.

10.7.3 Signal processing

All of these approaches most likely require a transformation of the output signal, as although
the artificial entity’s brain may feature the same or even extended capabilities, however, may

409 Niedermeyer E., Silva F. L. D. (2004): Electroencephalography: Basic principles, clinical
applications, and related fields; Philadelphia: Lippincott Williams & Wilkins

410 Wolpaw J. R. et al. (2006): BCI Meeting 2005 – workshop on signals and recording methods;
IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of IEEE
Engineering in Medicine and Biology Society 14, Jun., 138–141

411 Bauernfeind G. et al. (2008): Development, set-up and first results for a one-channel near-infrared
spectroscopy system; Biomedizinische Technik, Biomedical Engineering 53, 36–43

412 Dornhege G. et al. (2007): Toward Brain-Computer Interfacing; Massachussetts: The MIT Press
413 Graimann Bernhard et al. (2010): Brain-Computer Interfaces: A Gentle Introduction; Berlin

Heidelberg: Springer; p. 3 ff.

10.7 A distributed mind 351

not be capable of interpreting the incoming signals directly. Further questions concern the bit-
rate of available or consumed data communication resources expressed in bits per time unit,
thus the bandwidth, as well as the degrees of freedom, which refers to the number of different
channels that can be used for producing the information. A high bandwidth alone cannot solve
the problem of information transfer, as it may not be possible to separate to partition the
information into separate channels in order to create arbitrary degrees of freedom, as it may
not be possible for the brain to produce these orthogonal streams. 414 This simply means that if
two or more activities require conscious attention, then these may not be separated into
distinct streams of information. The brain patterns utilized as a part of BCIs are portrayed by
certain characteristics or properties, such as amplitudes and frequencies, which are vital
characteristics of sensorimotor rhythms and SSVEPs. Furthermore, the firing rate of distinct
neurons is a significant characteristic of invasive BCIs utilizing intra-cortical recordings.
Thus, a BCI measures brain signals and processes these progressively to catch certain patterns
that reflect the user’s intention, which can be divided into three stages:

10.7.3.1 Pre-processing

The signal that has to be interpreted by the BCI has to be pre-processed, which means that it
is either required to apply modification, normalization, etc. on the incoming values, but also
to reduce the signal-to-noise ratio (SNR). The SNR is a measure for the technical quality of a
signal, such as EEG, that is superimposed by a noise signal. It is defined as the ratio of the
average power of the desired signal to the average noise power of the interference signal. A
bed SNR ratio makes it difficult to interpret the incoming signal, which in case of a BCI
means that the desired brain patterns cannot be extracted from the signal (what may happen
through artefacts in EEG). If the SNR is good, then the detection and interpretation of the
desired brain patterns usually works out well. Similar to an ETL-process in data warehousing,
filters or transformations can be applied on the signal, which then allow it to collect the
desired information.

10.7.3.2 Feature extraction

After the signal has been cleansed from noise so that the features have become readable the
desired information can be extracted. Thus, the BCI does not make use of the whole cleansed
signal, but from a dimensionality reduced one. The reason is simply the simplification of the
resource amount required for being able to describe a large data set accurately. A machine
learning approach useful for feature extraction is, amongst others, artificial neural networks.

10.7.3.3 Detection and classification

The detection and classification of brain patterns is the purpose of BCIs, whereby the user
creates brain patterns by performing mental tasks, and the BCI detects, classifies and translate
these patterns into commands for BCI applications. This recognition and classification
process could be improved when the user communicates with the BCI just in decently

414 Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC, p. 187

352 10 Reverse engineering the mind

characterized time periods, and such a time period is indicated by the BCI by visual or
acoustic signals. For instance, a beep briefs the user that he could send a command throughout
the upcoming time period, throughout which the user is supposed to perform a particular
mental task. The BCI then tries to classify the brain signs recorded in this timeline, and as this
type of BCI does not take about the plausibility that the user does not wish to communicate
anything throughout one of these time spans into consideration, or that the user to
communicate outside of a specified time span. This mode of operation is called synchronous
or prompt paced and BCIs utilizing this mode of operation are called synchronous or a cue-
paced BCIs. In spite of the fact that these BCIs are moderately simple to advance and use,
they are unfeasible in numerous true settings. A signal passed BCI is to a degree as a console
that can just be utilized at sure times. In an asynchronous or self-paced BCI, users can connect
with a BCI at any time they want, without stressing over overall characterized timelines.
Therefore, asynchronous BCIs need to scan the brain activity continuously, and this mode of
operation is demanding on the one hand side, but on the other hand it offers a more
characteristic and advantageous manifestation of communication with the BCI.

10.7.4 BCI requirements for the distributed mind

The requirements a BCI (or a combination of BCIs) are only proposed roughly here, as
detailed explanations will be published after further research has been done. At least, the BCI-
requirements for implementing a distributed mind are

– The propagation of information (experiences) from the biological entity A to the artificial
entity B. The information must incorporate not only sensual information, but the
accompanying qualia. As qualia are specific to individuals, the artificial vessel B sharing
this information is also specifically suitable and trained for A.

– The interpretation of information on the side of B, which means that A’s outgoing signals
must be translated in the sense that B is capable of perceiving the same experience as A.

– The interpretation of information on the side of A, as also B is capable of producing
conscious experiences.

– Continuous activity recording. Data transfer is not necessarily required to happen
synchronous. Activity recording must incorporate sensual information, thus external
information influencing internal processing, and qualia, thus internal information.

– The training of artificial neural networks in B, be it quantum or classical ones, may be
achieved by extracting the structure and processing information A’s of neural networks in
the sense that the signals propagated via neurons resulting from the activation of a
specific pattern in A is translated into a trained artificial neural network in B.

From the requirements we can see that at least two BCIs are required for sharing conscious
experiences – one for the artificial conscious entity and one for the biological entity.
Furthermore, if external conditions are responsible for creating experiences, these must be
recorded and transferred as well, as only then the same experience may be reproduced in the
artificial conscious entity. Current BCIs do not feature enough spatial and temporal resolution
for extracting signals created by experiences on the level of single neurons, however, even
with non-invasive approaches great progress has been made within the last years. My guess is
that in around 15 years first implementations will be feasible.

10.8 Summary 353

10.8 Summary

Although quantum effects in human brains may not play a significant or even any role in
information processing, I think it has become obvious that from such theories we can learn a
lot for creating an artificial mind. The use of quantum computers e.g. for processing artificial
neural networks is beneficial in the sense that compared to classical computation a lot more
complex and deep artificial neural networks may be created. This is, because major problems
with deep ANNs can be dealt with, such as their training performance. Quantum computers
feature abilities that classical computers do not have, like the ability of working with quantum
linear superpositions or entanglement, which do not have a counterpart in classical
computation. We have seen that processing an artificial neural network on a quantum
computer might theoretically be possible, however, we would require a combination of
numerous and large neural networks for being able to emulate a whole brain. In terms of
quantum artificial neural networks, the difficulty is to measure the system, which means to
destroy the superposition exactly when the system's state fulfils the required learning criteria,
e.g. the number of correctly classified training examples. Moreover, when taking the internal
calculations, dynamic thresholds and the weights into consideration, the possible configure-
tions of the ANN within its superposition grow exponentially in the size of the combined
input vector plus threshold values. However, quantum computer science does not only allow
new approaches for information processing; it opens the door to the future of artificial intelli-
gence. The massive parallel processing quantum computers are capable of resembling some
kind of the parallel information processing of the human brain. Thitherto, it has not been fully
understood how information in the human brain is processed, not to mention the emergence of
human consciousness. The brain is such a complex structure that not only its continuous study
will lead to the full understanding, but also several experiments. These experiments may in
the near future not only consist of invasive, semi-invasive or non-invasive approaches, but
also in the simulation of a brain with all of its ~ 10ଵଵ neurons and its capability for processing
information in parallel with quasi one processor. Although the human brain that may process
2ଵଷ analog operations and although it is already slower than current supercomputers, it does
not require that much energy (only 15-20 watts). Furthermore, the whole neural network
allowing unique information processing has more than once been declared to be the most
complex information system and thus it is a structure worth being imitated. It is very likely
that this will be possible and happen sometime with a quantum computer simulating a
biological neural network by a corresponding artificial one. A combination of classical and
quantum computation seems to be a useful approach, as I do not want to reduce the brain, be
it biological or artificial to a quantum computer.

Furthermore, we are nowadays capable of developing self-organizing models, such as the one
described for hierarchical clustering of information. The human brain is a complex self-
organizing system, built upon repetitive structures. The self-organization lies in the inter-
connection of these structures, which remarkably change and increase during reaching
adulthood. Apart from that, it is likely that self-organization occurs in numerous other
structures; diverse Hebb’s learning rules may be utilized as a part of the brain, with distinctive
patterns and outcomes developing. It has been mentioned that depending from sensual inputs
and environmental stimuli, connections between neurons form, are strengthened or weakened,
thus self-organization is not something that our brain experiences once, it is a continuous
process – our brain is a dynamical, self-organizing and distributed system. Through each
impulse of awareness, neural structures are affected in the sense that learning happens. A
major advantage is that every new input is compared to existing experiences with the goal that

354 10 Reverse engineering the mind

similar sensations are processed in the same neural area. It has been explained how the same
may be implemented in an artificial brain.

Regarding the required training and learning of the artificial conscious entity’s brain, learning
from unstructured and structured data structures, from new inputs (experiences) as well as
association of knowledge and hierarchical structuring of knowledge have to be taken into
consideration. How learning can happen has been explained in detail, whereby an approach
combining brain computer interfaces with an artificial brain for creating a distributed mind is
an approach that has just been roughly touched on and a lot of research has to be done.
Current BMI technologies seem to be not technically sophisticated enough for fulfilling the
purpose of extracting information of human brains in the spatial and temporal resolution we
would need. Nevertheless, even some of non-invasive technologies are promising, like NIRS,
although it features low temporal resolution. Most likely, a combination of non-invasive and
(semi-) invasive transducers may be the solution for the problem of information extraction,
but this will be discussed in further elaborations.

11 Conclusion

From what has been discussed within this elaboration it is evident that the creation of artificial
conscious entities is only a matter of time – the required technology and methodology already
exists or is researched on in ambitious projects such as the human brain project.415 The
question therefore is not if it will be possible or not, but how this will influence the world we
live in. Ethical questions must be prompted, as we will have to decide upon how we treat
artificial conscious entities, namely as conscious beings or as objects such as a today’s
computer, and which rights will be granted to them, because if an ACE is capable of
questioning the world and oneself it will also question its creators.

Apart from that, if we go one step further and consider what it means for humanity and
evolution if we advance technology in a way that allows to transfer our minds into an artificial
vessel, not only questions of ethics, but also from religious groups will come up. I personally
pursue a transhumanist opinion and consider the next step in human evolution towards
machine consciousness is not an option, but an absolute requirement, as with continuous
population growth the resources earth can provide us with will not suffice, and this will
happen before we will be able to conduct interstellar journeys.

415 Human brain project [2013-12-20]; URL: https://www.humanbrainproject.eu/de

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7_11

Glossary – computational intelligence

Not all the below explained terms occur within the thesis, but as research on relevant topics
might require to understand abbreviations, the thesis glossary has been extended by the
general ANN-glossary from Altafkhan416.

Activation function
is the transform applied to the weighted sum of inputs plus offset for computing the
output of a neuron. Also known as the squashing function.

Affine group invariance
The property of a group due to which it stays unchanged after the application of an affine
transform.

Affine transform
is a transform from the set of rotations, shifts, scaling, or any combinations thereof.

Alopex
is a stochastic learning procedure which uses local correlations between changes in
individual weights and changes in the cost function to update weights. This procedure
predates the current resurgence in neural network learning by more than a decade and was
originally proposed for mapping visual receptive fields.

Approximation property
is the ability of a set functions to approximate a specific class of functions to any desired
accuracy.

Approximation property
is the property of an approximation scheme on a set of functions to select a function that
is at a minimum distance from the function to be approximated.

ART-EMAP
is ARTMAP with added spatial and temporal evidence accumulation processes.

ARTMAP
is a supervised learning procedure explicitly based on neurobiology.

ARTMAP-IC
is ARTMAP with an instance counting procedure and a match tracking algorithm.

Attribute
is an element of the input vector. Also known as a feature.

Auto associator
A system for which the desired output response is the same as the input.

416 Altafkhan (2005-2006): Neural Nets Glossary [2012-01-18]; URL: http://www.altafkhan.
com/ib/neural-nets-glossary.htm

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7

358 Glossary – computational intelligence

Back propagation
is an procedure in which the difference between the actual and desired responses of the
neurons in the output layer is minimised using the steepest-descent heuristic.

Balanced data set
is set in which all classes are equally represented.

Bayesian classifier
assigns a class to an object in such a way that the expectation value of misclassification is
minimised. Also known as the minimum risk classifier, and belief network.

Bayesian statistics
differs from the conventional 'frequent' approach to statistics in that it allows the
probability of an event to be expressed as `degree of belief' in a particular outcome
instead of basing it solely on a set of observations.

Bayes's theorem
allows prior estimates of the probability of an event to be revised in accordance with new
observations. It states that probability of an event A given another event B, P(A|B), is
equal to P(B|A)P(A)/P(B).

Black-hole mechanism
is a rounding mechanism for 'nearly discrete' weights.

Black-hole radius
If the value of a weight gets within this radius of a discrete value, it becomes that discrete
value.

Bootstrap
A random sample is selected by sampling with replacement from the data set and is used
to train the network. The trained network is then tested on the remaining data. This
procedure is repeated a large number of times. The average of all such test errors is an
estimate of the generalization performance metric.

Borel measurable functions
Just about all functions that one may encounter are Borel measurable. Functions that are
not Borel measurable do exist but are known to mathematicians only as mathematical
peculiarities.

Cascade-correlation
learning method starts with a network without any hidden neurons and systematically
increases their number during training until the required performance is achieved.

Classification
is a task in which the desired responses are restricted to a finite set of values.

Cost function
is the quantity that is to be minimized in an optimization experiment. In the case of feed-
forward networks this quantity is usually the RMS error in the output of the network.
Also known as error measure.

Glossary – computational intelligence 359

Cross-validation
The data set is divided equally into k randomly selected, mutually exclusive subsets
called folds. k-1 networks are trained sequentially on all combinations of k-1 folds, while
the performance of the trained networks is tested on the one remaining folds. The average
of k-1 such errors is an estimate of the generalization performance metric.

Decision sensitivity
is the likelihood that an event will be detected if it occurs. It is the ratio of true positives
to the sum of true positives and false negatives. This metric is especially of importance
when it is critical that a an event be detected. Also known as True Positive Ratio.

Decision specificity
is the likelihood that the absence of an even is detected given that it is present. It is the
ratio of the true negatives to all negatives. Also known as True Negative Ratio.

Decision surface
is the plot of the response of an output neuron with respect to the inputs.

Disjunctive normal form (DNF).
The form of a logical expression consisting of a single conjunction (·) of a set of
disjunctions(+). All logical expressions are expressible in this form.

Effective sample size
(for classification learning tasks) is the number of examples representing the smallest
classification group.

EM algorithm.
Expectation Maximisation algorithm calculates the probability density of observations
based on parameters and not observations.

Epoch
is the cycle in which all examples in the training set are presented to the network.

Ergodic process
A random process is ergodic if its ensemble and temporal averages are the same.

Error surface
is the plot of the cost-function with respect to all of the weights in a network.

Feed-forward network
consists of a layer of inputs, zero or more layers of hidden neurons, and an output layer of
neurons. Generally all neurons in adjacent layers are fully connected to each other with
feed-forward synapses only. There are no intra-layer synapses. Also known as the
multilayer perceptron.

Fitting (over)
An over-fit is due to the trained network having a higher complexity than the concept
embedded in the training data. Also known as memorization and over-specialization.

Fitting (under)
An under-fit is caused by the trained network having a complexity lower than that of the
concept embedded in the training data.

360 Glossary – computational intelligence

Forward pass
The process by which a network computes the output vector in response to an input
vector. Also known as recall.

Function approximation
is a task in which the desired output values are continuous. Also known as regression.

Functional
is a scalar-valued continuous linear function defined on a normed linear space.

Generalisation performance
is the accuracy of decision of a trained network on a set of data which is similar to but not
the same as the training data set.

Hebbian learning
The main idea behind Hebbian learning is that the synapse between two neurons should
be strengthened if they fire simultaneously.

Hidden layer
is the layer of neurons which is not directly connected to the network inputs or outputs.

k-nearest neighbors
is a clustering algorithm that minimises the the sum of squares of distances between the
training data and k points.

Lp-norm
measures is a popular form of the cost function for feed-forward networks.

Learning
is the process in which a feed-forward network is forced to adjust its weights such that the
network's response to a given input vector becomes closer to the desired response.

Learning (batch)
The type of learning during which weights are updated at the end of every epoch. Also
known as off-line learning.

Learning (in-situ)
differs from on-line learning in that the former is the property of a network requiring the
deployed network to have adaptive weights, whereas the later is a property of the learning
procedure, requiring the weights to be updated on the presentation of every example.

Learning (on-line)
The type of learning during which weights are updated after the presentation of every
training example. Also known as pattern and incremental learning.

Learning (supervised)
The learning process in which a system's internal parameters are modified in order to
minimize the error in its output with respect to a desired value.

Learning (unsupervised)
The learning process in which a system's internal parameters are modified so that similar
input patterns result in similar outputs.

Glossary – computational intelligence 361

Learning rate
determines the size of the weight modification at each training step.

Likelihood
is the probability density of observations calculated from parameters and not obser-
vations.

Linear separability
The property of a classification task by which the members of one class can be separated
from the ones from all other classes by a single hyperplane.

Loading problem
The problem of finding the optimal weight values for a given network such that the
network performs the required mapping.

Logistic discriminant analysis
chooses classification hyper planes with respect to maximizing a conditional likelihood
cost-function and not optimizing a quadratic cost-function which is the case for linear
discriminant analysis.

Margin
Error in the output of a neuron is not back propagated if it is within this small margin.

Minima (global)
The points of minimum error on an error surface.

Minima (local)
The points of zero gradient on an error surface which are not global minima.

Mixture representation
of data use a linear combination of Gaussian distributions to represent arbitrary
distributions.

Momentum
is a training parameter used in a very common variation on standard error back
propagation learning procedure. It controls the effect of the last weight modification on
the current weight update.

n-layer network
is a feed-forward network with n - 1 hidden layers.

NP-complete problems.
(non-polynomial time problems) The time required to find the optimal solution for this
class of problems grows exponentially with the size of the problem. Also known as
intractable problems.

Neural network (artificial)
is a set of interconnected artificial neurons.

Neuron (artificial)
is the fundamental processing element in an artificial neural network. It performs a
weighted sum of its inputs, adds the offset value to that sum, and then outputs a certain
transform of that sum. Also known as node and processing element (PE).

362 Glossary – computational intelligence

Ockham's Razor
is the conjecture that if, for a given problem, two solutions with similar performances are
available then the one with the lower computational complexity should be preferred.

Offset
is the value added to the weighted sum before the transform is applied to compute a
neuron's output. Also known as threshold and bias.

Over-trained
networks have a complexity higher than what is required to learn the concept embedded
in training data. They act as look-up tables for the training data and are poor generalizes.

Perceptron
is a feed-forward network with no hidden neurons.

Probability (prior)
is the probability assigned to an event in advance of any empirical evidence. Also known
as a priori probability.

Probability (posterior)
is the probability assigned to an event based on observations. Also known as ‘a posteriori’
probability.

Projection pursuit regression
is a generalisation of the feed-forward network in that it allows more than one type of
activation function in the hidden layer. These non-homogeneous activation functions are
data-dependent and constructed during learning.

Regularisation
A class of methods designed to avoid overfitting to the training data by enforcing
smoothness of the fit.

Ridge regression
The precision of least-squares estimates gets worse with with an increase in dependence
between the input variables. Ridge regression estimators are more precise in those
situations and are obtained as the estimators whose distance to an ellipsoid centered at a
least-squares estimate from the origin of a parameter space is a minimum.

Ridging (constrained)
Optimization procedure in which some norm of the weights is constrained to a specific
value.

Ridging (penalized)
Optimization procedure in which the cost function is augmented by a penalty term.

Ridging (smoothed)
Optimization procedure in which noise is introduced in the inputs.

Root Mean Square error
is computed by summing the output layer errors for all examples in a training or test set,
dividing the sum by the total number of examples and the number of the output layer
neurons, and taking the square root of the resultant. The output layer error is computed by

Glossary – computational intelligence 363

summing the squares of the individual neuron errors with respect to the desired output.
An individual output-layer neuron's error is set to zero if it is less than the margin.

Sampling with replacement
may result in successive samples that are not mutually exclusive, some of the examples
may never appear in any of the samples, and there may be repetitions within an individual
sample.

Set (closed)
A subset M of metric space N is a closed set if it contains each of its limit points.

Set (finite)
A is finite if all of its elements can be displayed as {a1, a2, . . . ,an} for some integer n.

Set (open)
is the subset G of the metric space X if each point of G is the center of some open sphere
contained in G.

Shattered
If a set of functions F includes all possible dichotomies on a set S of points, then S is said
to be shattered by F.

Shrinkage
The difference between the training set accuracy of a network and its accuracy on a test
set.

Sigmoidal functions
Definitions vary but are generally taken to be bounded, monotone, and continuous, e.g.
logistic and tanh(·) functions.

Simulated annealing
is a stochastic optimisation technique inspired by the physical process of annealing.

Skip-layer synapses
Synapses connecting neurons in two non-adjacent layers. Also known as short-cut
synapses. Known as main effects in the statistical literature.

Smoothing spline modelling
is piecewise approximation by polynomials of degree n with the requirement that the
derivatives of the polynomials are continuous up to degree n-1 at the junctions.

Softmax
The purpose of the softmax activation function is to make the sum of the output neuron
responses equal to one, so that the outputs are interpretable as posterior probabilities. Also
known as the multiple-logistic function.

Synapse
is a measure of the effect that a neuron's output has on the output of another neuron at the
other end of the synapse. Also known as connection, edge, and weight.

Testing
is the process of verifying the function of a trained network against a set of examples
which is different from the training examples set.

364 Glossary – computational intelligence

Training
See Learning.

Training example
is a pair: an input vector, and the desired response to that input vector.

Weight
is the value of a synapse or an offset.

Weight decay
is a common regularisation technique used in feed-forward network training in which the
cost-function is augmented with a term which penalises large weight values.

Weight depth
is the number of binary bits in a weight.

Weight elimination
is a regularisation technique used in feed-forward network training in which the cost-
function is augmented with a term which penalises the number of non-zero weights.

Weight perturbation
is a hardware-friendly alternative to BP learning. In this method, all of the weights are
perturbed in turn and the associated change in the output of the network is used to
approximate local gradients.

Weight sharing
is a regularisation technique used in feed-forward network training in which the cost-
function is augmented with a term which penalises the number of independent weights.

Glossary – quantum physics

All the following explanations find application within the thesis. Some of the short explana-
tions of the quantum computer science glossary have been taken from Wikipedia417, but have
been extended and corrected due to some inconsistencies and errors.

A complete set of wavefunctions
is the basis of the Hilbert space of wavefunctions with respect to a system.

Born's rule
is the probability of the state |ߙ〉 collapsing to an eigenstate |݇〉 of an observable is given
by |〈݇|ߙ〉|ଶ.

Bound state
A state is called bound state if its position probability density at infinite tends to zero for
all the time. Roughly speaking, we can expect to find the particle(s) in a finite size region
with certain probability.

bra
The Hermitian conjugate of a ket is called a bra 〈ߙ| = .’ற. See ‘bra-ket notation〈ߙ|

bra-ket notation
The bra-ket notation is a way to represent the states and operators of a system by angle
brackets and vertical bars, for example, |ߙ〉 and |ߙ〉 〈ߚ|.

Collapse
‘Collapse’ means the sudden process which the state of the system will ‘suddenly’ change
to an eigenstate of the observable during measurement.

Degeneracy
See ‘degenerate energy level’.

Degenerate energy level
If the energy of different state (wavefunctions which are not scalar multiple of each other)
is the same, the energy level is called degenerate. There is no degeneracy in a 1D system.

Density matrix
Physically, the density matrix is a way to represent pure states and mixed states. The
density matrix of pure state whose ket is |ߙ〉 is |ߙ〉 〈ߙ|.

Density operator
Synonymous to ‘density matrix’.

Dirac notation
Synonymous to ‘bra-ket notation’.

Eigenstate

An eigenstate of an operator ܣ is a vector satisfying the eigenvalue equation:

417 Wikipedia (2011): Glossary of elementary quantum mechanics [2013-02-17]; URL: http://en.
wikipedia.org/wiki/Glossary_of_elementary_quantum_mechanics

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7

366 Glossary – quantum physics

〈ߙ|ܣ = 〈ߙ|ܿ

where ܿ is a scalar. Usually, in bra-ket notation, the eigenstate will be represented by its
corresponding eigenvalue if the corresponding observable is understood.

Energy spectrum
The energy spectrum refers to the possible energy of a system. For bound system (bound
states), the energy spectrum is discrete; for unbound system (scattering states), the energy
spectrum is continuous.

Expectation value
The expectation value 〈ܹ〉 of the observable ܹ with respect to a state |ߙ〉 is the average
outcome of measuring ܹ with respect to an ensemble of state |ߙ〉. 〈ܹ〉 is calculated as
follows:

〈ܹ〉 = 〈ߙ|ܹ|ߙ〉

Hamiltonian ࡴ෡

ݎ෡߰ܪ = −
ℏଶ

2݉ Δ߰(ݎ) + (ݎ)߰(ݎ)ܸ

The operator represents total energy of the system, where Δ is the Laplace operator, ℏ the
reduced Plack constant, ݎ the 3D-location in space, ܸ the potential energy.

Hermitian operator
An operator satisfying ܣ = .றܣ

Equivalently,

〈ߙ|ܣ|ߙ〉 = 〈ߙ|றܣ|ߙ〉

for all allowable wavefunction |ߙ〉.

Hilbert space
Given a system, the possible pure state can be represented as a vector in a Hilbert space.
Each ray (vectors differ by phase and magnitude only) in the corresponding Hilbert
space represent a state.

ket
A wavefunction expressed in the form |ߙ〉 is called a ket. See ‘bra-ket notation’.

Mixed state
A mixed state is a statistical ensemble of pure state.

Normalizable wavefunction
A wavefunction |ߙᇱ〉 is said to be normalizable if 〈ߙᇱ|ߙᇱ〉 < ∞ . A normalizable
wavefunction can be made to be normalized by

〈ᇱߙ| ⟶ ߙ =
〈ᇱߙ|

〈ᇱߙ|ᇱߙ〉

Normalized wavefunction
A wavefunction |ߙ〉 is said to be normalized if 〈ߙ|ߙ〉 = 1.

Glossary – quantum physics 367

Observable
Mathematically, it is represented by a Hermitian operator.

Position representation and momentum representation
Position representation of a wavefunction: ߰ఈ(ݔ, (ݐ ≔ 〈ߙ|ݔ〉

Momentum representation of a wavefunction: ߰ఈ(݌, (ݐ ≔ 〈ߙ|݌〉

where |ݔ〉 is the position eigenstate and |݌〉 the momentum eigenstate respectively. The
two representations are linked by Fourier transform.

Probability amplitude
Synonymous to ‘probability density’.

Probability current
Having the metaphor of probability density as mass density, then probability current is
the current:

,ݔ)ܬ (ݐ =
݅ℏ

2݉ ൬߰
߲߰∗

ݔ߲ −
߲߰
ݔ߲ ߰൰

The probability current and probability density together satisfy the continuity equation:

߲
ݐ߲ ,ݔ)߰| ଶ|(ݐ + ,ݔ)ܬ∇ (ݐ = 0

where ∇ represents the gradient.

Probability density
Given the wavefunction of a particle, |߰(ݔ, ଶ|(ݐ is the probability density at
position ݔ and time ݔ)߰| .ݐௗ, .ௗݔ means the probability of finding the particle near ݔଶ݀|(ݐ

Pure state
A state which can be represented as a wavefunction / ket in Hilbert space / solution of
Schrödinger equation is called pure state. See ‘mixed state’.

Quantum numbers
A way of representing a state by several numbers, which corresponds to a complete set of
commuting observables. A common example of quantum numbers is the possible state of
an electron in a central potential: ݊, ݈, ݉, ݏ , which corresponds to the eigenstate of
observables ܪ (in terms of ݎ).

– ݊ represents the principal quantum number and thus describes the ‘shell’ (electron
cloud) of an electron. The basic state is given by ݊ = 1, the next state by ݊ = 2
,.., ݊ = 7 . The larger ݊ is, the lower is the binding energy of the electron and
therefore, the larger is the probability that the electron is farther from the nucleus.

– ݈ represents the secondary or azimuthal quantum number, describing in which of the
allowed states of angular momentum an electron actually is. With given ݊, ݈ may
take ݊ values, but at maximum ݊ − 1 : ݈ = 1, . . , ݈ = ݊ − 1

– ݉ represents the magnetic quantum number, describing the orientation of an orbital
in space.

 .represents the spin quantum number, describing the spin of the electron ݏ –

368 Glossary – quantum physics

Schrödinger equation

−
ℏଶ

2݉
߲ଶ߰(ݔ, (ݐ

ଶݔ߲ + ܸ߰ = ݅ℏ
,ݔ)߲߰ (ݐ

ݐ߲

Spin wavefunction
Part of a wavefunction of particle(s). See ‘total wavefunction of a particle’.

Spinor
Synonymous to ‘spin wavefunction’.

Spatial wavefunction
Part of a wavefunction of particle(s). See ‘total wavefunction of a particle’.

Square-integrable
Square-integrable is a necessary condition for a function being the position/momentum
representation of a wavefunction of a bound state of the system. Given the position
representation ߰(ݔ, :of a state vector of a wavefunction, square-integrable means (ݐ

1D:

න ,ݔ)߰| ݔଶ݀|(ݐ < +∞
ାஶ

ିஶ

3D:

න ,ݎ)߰| ଶܸ݀|(ݐ < +∞
ାஶ

௏

Stationary state
A stationary state of a bound system is an eigenstate of Hamiltonian operator. Classically,
it corresponds to standing wave. It is equivalent to the following things:

– an eigenstate of the Hamiltonian operator
– an eigenfunction of Time-Independent Schrödinger Equation
– a state of definite energy
– a state which ‘every expectation value is constant in time’
– a state whose probability density |߰(ݔ, .ଶ does not change with respect to time, e.g|(ݐ

߲
ݐ߲ ,ݔ)߰| ଶ|(ݐ = 0

State
A state is a complete description of the observable properties of a physical system.
Sometimes the word is used as a synonym of ‘wavefunction’ or ‘pure state’.

State vector
synonymous to ‘wavefunction’.

Statistical ensemble
A large number of copies of a system.

Glossary – quantum physics 369

System
A sufficiently isolated part in the universe for investigation.

Tensor product of Hilbert space
When we are considering the total system as a composite system of two subsystems A
and B, the wavefunctions of the composite system are in a Hilbert space ܪ஺⨂ܪ஻ , if the
Hilbert space of the wavefunctions for ܣ and ܤ are ܪ஺ and ܪ஻ respectively.

Time-Independent Schrödinger Equation (TISE)
A modification of the time-dependent Schrödinger equation as an eigenvalue problem.
The solutions are energy eigenstate of the system.

෡߰ܪ = ߰ܧ

Total wavefunction of a particle
For single-particle system, the total wavefunction ߰ of a particle can be expressed as a
product of spatial wavefunction and the spinor. The total wavefunctions are in the tensor
product space of the Hilbert space of the spatial part (which is spanned by the position
eigenstates) and the Hilbert space for the spin.

Wavefunction
The word ‘wavefunction’ could mean one of following:

1. A vector in Hilbert space which can represent a state; synonymous to ‘ket’ or ‘state
vector’.

2. The state vector in a specific basis. It can be seen as a covariant vector in this case.
3. The state vector in position representation, e.g. ߰ఈ(ݔ଴) = ଴〉 is theݔ| where , 〈ߙ|଴ݔ〉

position eigenstate.

Bibliography

Books

1. Abraham Ajith, Crina Grosan, Pedrycz Witold (2008): Engineering Evolutionary Intelli-
gent Systems; Berlin Heidelberg: Springer-Verlag

2. Abraham Ajith, Hassanien Aboul-Ella, Snáel Vaclav (2009): Foundations of Computa-
tional Intelligence Volume 4: Bio-Inspired Data Mining; Berlin Heidelberg: Springer-
Verlag

3. Abraham Ajith, Hassanien Aboul-Ella, de Leon F. de Carvalho André Ponce, Snáel
Vaclav (2009): Foundations of Computational Intelligence Volume 6: Data Mining;
Berlin Heidelberg: Springer-Verlag

4. Abraham Ajith, Hassanien Aboul-Ella, Siarry Patrick, Engelbrecht Andries (2009):
Foundations of Computational Intelligence Volume 3 Global Optimization; Berlin
Heidelberg: Springer-Verlag

5. Abraham Ajith, Hassanien Aboul-Ella, Snáel Vaclav (2009): Foundations of Computa-
tional Intelligence Volume 5: Function Approximation and Classification; Berlin Heidel-
berg: Springer-Verlag

6. Adeli Hojjat, Hung Shih-Lin (1995):Machine Learning Neural Networks, Genetic
Algorithms and Fuzzy Systems; John Wiley and Sons, New York

7. Anderberg Michael R. (1973): Cluster Analysis for Applications, New York: Academic
Press Inc.

8. Andreas Tolk (2009): Complex Systems in Knowledge-based Environments: Theory,
Models and Applications; Berlin Heidelberg: Springer-Verlag

9. Aziz-Alaoui Moulay, Bertelle Cyril (2009): From System Complexity to Emergent
Properties; Berlin Heidelberg: Springer-Verlag

10. Bäck T., Fogel D.B., Michalewicz Z. (1997): Handbook of Evolutionary Computation,
Institute of Physics Publishing, New York

11. Bell John S. (1987): Speakable and Unspeakable in Quantum Mechanics, Cambridge:
Cambridge University Press

12. Bertelle Cyrille, Duchamp Gérard H. E., Kadri-Dahmani Hakima (2009): Complex
Systems and Self-organization Modelling; Berlin Heidelberg: Springer-Verlag

13. Berthold Ed (1999): Intelligent Data Analysis: An Introduction; New York: Springer-
Verlag

14. Brown T.H., Chattarji S. (1995): Hebbian Synaptic Plasticity; The Handbook of Brain
Theory and Neural Networks; Cambridge: MIT Press

15. Chamoni Peter, Gluchowski Peter (2006): Analytische Informationssysteme: Business
Intelligence- Technologien und –Anwendungen, 3rd. ed.; Berlin: Springer-Verlag

© Springer Fachmedien Wiesbaden GmbH 2017
F. Neukart, Reverse Engineering the Mind, AutoUni –
Schriftenreihe 94, DOI 10.1007/978-3-658-16176-7

372 Bibliography

16. Cloete Ian, Zurada Jacek M. (2000): Knowledge-Based Neurocomputing; Cambridge:
MIT Press

17. Crowley J. L., Christensen H. I. (1995): Vision as a Process: Basic Research on
Computer Vision Systems, Berlin: Springer

18. Dickmanns E. D. (1991): Dynamic Vision for Perception and Control of Motion,
London: Springer, 2007

19. Dornhege Guido et al. (2007): Toward Brain-Computer Interfacing; Massachussetts: The
MIT Press

20. Durfee E. H. (1999): Coordination for Distributed Problem Solvers, Boston, MA:
Kluwer Academic, 1988

21. Eberhart Russel C., Simpson Patrick K., Dobbins Roy (1996): Computational
Intelligence PC Tools; Boston MA: Academic Press

22. Eccles John C. (1994): How the self controls the brain; Berlin Heidelberg: Springer-
Verlag

23. Ertel Wolfgang (2008): Grundkurs Künstliche Intelligenz: Eine praxisorientierte
Einführung; Wiesbaden: Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH

24. Falconer Kenneth (2003): Fractal Geometry: Mathematical Foundations and
Applications; New York: Wiley

25. Fayyad Usama M., Piatetsky-Shapiro Gregory, Uthurusamy Ramasamy (1996):
Advances in Knowledge Discovery and Data Mining; Menlo Park: AAAI Press

26. Franco Leonardo, José M. Jerez (2009): Constructive Neural Networks; Berlin
Heidelberg: Springer-Verlag

27. Frankish K., Ramsey W. M. (2014): The Cambridge handbook of artificial intelligence,
Cambridge: Cambridge University Press

28. Fulcher John (2008): Computational Intelligence: A Compendium; Berlin Heidelberg:
Springer-Verlag

29. Globus Gordon (2003): Quantum Closures and Disclosures: Thinking-together
Postphenomenology and Quantum Brain Dynamics; Amsterdam: John Benjamins
Publishing

30. Han Jiawei, Kamber Micheline, Pei Jian (2000): Data Mining: Concepts and Techniques;
Morgan Kaufmann Publishers

31. Hand David J., Mannila Heikki, Smyth Padhraic (2001): Principles of Data Mining;
Cambridge: MIT Press

32. Hannig Uwe (2002): Knowledge Management und Business Intelligence, 1st ed.;
Springer: Berlin

33. Harel David (2004): Algorithmics: The Spirit of Computing, 3rd ed.; Amsterdam:
Addison-Wesley

Bibliography 373

34. Hassanien Aboul-Ella, Abraham Arjith, Herrera Francisco (2009): Foundations of
Computational Intelligence Volume 2: Approximate Reasoning; Berlin Heidelberg:
Springer-Verlag

35. Hassanien Aboul-Ella, Abraham Ajith, Vasilakos Athanasios V., Witold Pedrycz (2009):
Foundations of Computational Intelligence Volume 1: Learning and Approximation;
Berlin Heidelberg: Springer-Verlag

36. Hayes-Roth F., Waterman D., Lenat D. (1983): Building Expert Systems. Addison-
Wesley.

37. Heaton Jeff (2008): Introduction to Neural Networks for Java, 2nd ed.; Chesterfield:
Heaton Research, Inc.

38. Heaton Jeff (2010): Introduction to Encog 2.5 for Java, Rev. 3; Chesterfield: Heaton
Research, Inc.

39. Heaton Jeff (2010): Programming Neural Networks with Encog 2 in Java; Chesterfield:
Heaton Research, Inc.

40. Hebb Donald (1949): Organization of behavior; New York: John Wiley

41. Hornik Mark F., Marcade Erik, Venkayala Sunil (2007): Java Data Mining: Strategy,
Standard, and Practice. A Practical Guide for Architecture, Design, and Implementation
(Morgan Kaufmann Series in Data Management Systems); San Francisco: Elsevier, Inc.

42. Inuiguchi Masahiro, Hirano Shoji, Tsumoto Shusaku (2003): Rough Set Theory and
Granular Computing; Berlin: Springer-Verlag

43. Jain Lakhmi C. (1998): Soft Computing for Intelligent Robotic Systems: Physica-Verlag

44. Jain Lakhmi C. (2008): Computational Intelligence Paradigms: Innovative Applications;
Berlin Heidelberg: Springer-Verlag

45. Jain Lakhmi C., Nguyen Ngoc Thanh (2009): Knowledge Processing and Decision
Making in Agent-Based Systems; Berlin Heidelberg: Springer-Verlag

46. Jensen Finn V., Nielsen Thomas Dyhre (2001): Bayesian Networks and Decision
Graphs; Berlin: Springer-Verlag

47. Katz Bruce F. (2011): Neuroengineering the future - Virtual minds and the creation of
immortality; Massachusetts: Infinity Science Press LLC

48. Kaynak Okyay, Zadeh Lofti A., Türksen Burhan (1998): Computational Intelligence:
Soft Computing and Fuzzy-Neuro Integration with Applications; Berlin: Springer-Verlag

49. Kemper Hans-Georg, Mehanna Walid, Unger Carsten (2010): Business Intelligence –
Grundlagen und praktische Anwendungen, 3rd ed.; Wiesbaden: Vieweg+Teubner Verlag
| Springer Fachmedien

50. Kolman Eyal, Margaliot Michael (2009): Knowledge-Based Neurocomputing: A Fuzzy
Logic Approach; Berlin Heidelberg: Springer-Verlag

374 Bibliography

51. Kramer Oliver (2009): Computational Intelligence: Eine Einführung; Berlin Heidelberg:
Springer-Verlag

52. Kreiszig Erwin (1999): Advanced Engineering Mathematics, 8th ed.; Singapore: John
Wiley & Sons

53. Krengel Ulrich (1988): Einführung in die Wahrscheinlichkeitstheorie und Statistik;
Braunschweig/Wiesbaden 1988: Verlag Friedrich Vieweg & Sohn

54. Kung Sun.Y. (1993): Digital Neural Networks. Englewood Cliffs: PTR Prentice Hall

55. Kurzweil Ray (2012): How to create a mind; London: Penguin Books

56. Lau Clifford (1991): Neural networks, theoretical foundations and analysis; Los
Alamitos: IEEE Press

57. Lavarac N., Dzeroski S. (1994): Inductive Logic Programming, vol. 3: Nonmonotonic
Reasoning and Uncertain Reasoning, Oxford University Press: Oxford

58. Levy Steven (1997): Artificial Life: A Report From the Frontier: Where Computers Meet
Biology; New York: Vintage Books

59. Liu Dikai, Wang Lingfeng, Tan Kay Chen (2009): Design and Control of Intelligent
Robotic Systems; Berlin Heidelberg: Springer-Verlag

60. Mallat Stephane (1999): A Wavelet Tour of Signal Processing; Boston MA: Academic
Press

61. Mandic Danilo P., Chamber Jonathon (2001): Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures, and Stability; New York: Wiley

62. Mange D., Tomassin M. (1998): Bio-Inspired Computing Machines. Presses, Laussanne:
Polytechniques et Universitaries Romandes

63. Mermin David N. (2007): Quantum Computer Science: An Introduction; Cambridge:
Cambridge University Press

64. Nedjah Nadia et al. (2009): Innovative Applications in Data Mining; Berlin Heidelberg:
Springer-Verlag

65. Nedjah Nadia et al. (2009): Intelligent Text Categorization and Clustering; Berlin
Heidelberg: Springer-Verlag

66. Nolfi Stefano, Floreano Dolfi (2000): Evolutionary Robotics: The Biology, Intelligence,
and Technology of Self-Organizing Machines; Bradford Books

67. Onwubolu Godfrey C. (2009): Hybrid Self-Organizing Modeling Systems Berlin
Heidelberg: Springer-Verlag

68. Ott Edward (2002): Chaos in Dynamical Systems, UK: Cambridge University Press

69. Padgham Lin, Winikoff Michael (2004): Developing Intelligent Agent Systems: A
Practical Guide to Designing, Building, Implementing and Testing Agent Systems
(Wiley Series in Agent Technology); New York: Wiley

Bibliography 375

70. Penrose Roger (1991): The Emperor’s New Mind Concerning Computers, Minds, and
the Laws of Physics; Oxford: Oxford University Press

71. Penrose Roger (1994): Shadows of the mind – a search for the missing science of
consciousness; Oxford: Oxford University Press, p. 335 ff.

72. Phillips-Wren Gloria, Ichalkaranje Nikhil (2008): Intelligent Decision Making: An AI-
Based Approach (Studies in Computational Intelligence); Berlin Heidelberg: Springer-
Verlag

73. Rahm Erhard (2009): Data Cleansing: Problems and Current Approaches; Leipzig:
University of Leipzig

74. Ricciardi L. M., Umezawa U. (1967): Brain physics and many-body problems,
cybernetics, vol. 4

75. Ritter Helge, Martinez Thomas, Schulten Klaus (1991): Neuronale Netze. Eine
Einführung in die Neuroinformatik selbstorganisierender Netzwerke; Addison Wesley

76. Ruan Da, Hardeman Frank, van der Meer Klaas (2008): Intelligent Decision and Policy
Making Support Systems (Studies in Computational Intelligence); Berlin Heidelberg:
Springer-Verlag

77. Runkler Thomas A. (2010): Data Mining - Methoden und Algorithmen intelligenter
Datenanalyse; Wiesbaden: Vieweg+Teubner | GWV Fachverlage GmbH

78. Rutkowski Leszek (2008): Computational Intelligence Methods and Techniques; Berlin
Heidelberg: Springer-Verlag

79. Shawe-Taylor Cristianni N. (2000): Support Vector Machines and Other Kernel-based
Learning Methods; UK: Cambridge University Press

80. Smolensky Pavel (1986): Information processing in dynamical systems: Foundations of
harmony theory. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed
Processing: Volume 1: Foundations, pages 194-281. MIT Press, Cambridge, MA.

81. Tahir Mukarram A. (2007): Java Implementation of Neural Networks; USA: Booksurge
Publishing Inc.

82. Teshnehlab M., Watanabe K. (1999): Intelligent Control Based on Flexible Neural
Networks (Intelligent Systems, Control and Automation: Science and Engineering);
Dordrecht: Kluwer Academic Publishers

83. Tolk Andreas (2009): Complex Systems in Knowledge-based Environments: Theory,
Models and Applications (Studies in Computational Intelligence); Berlin Heidelberg:
Springer-Verlag

84. Tsau Lin Y., Xie Ying, Wasilewska Anita, Liau Churn-Jung (2008): Data Mining:
Foundations and Practice; Berlin Heidelberg: Springer-Verlag

85. Vasantha Kalyani D., Rajasekaran Sundaramoorthy (2009): Pattern Recognition Using
Neural and Functional Networks; Berlin Heidelberg: Springer-Verlag

376 Bibliography

86. Venugopal K. R., Srinivasa K. G., Patnaik L. M. (2009): Soft Computing for Data
Mining Applications (Studies in Computational Intelligence); Berlin Heidelberg:
Springer-Verlag

87. Wasserman Philip D. (1989): Neural Computing: Theory and Practice; New York: Van
Nostrand Reinhold

88. Watanabe Keigo, Hashem M. M. A. (2004): Evolutionary Computations: New Algo-
rithms and Their Applications to Evolutionary Robotics; Heidelberg: Springer-Verlag

89. Watson Ian (1997): Applying Case-Based Reasoning: Techniques for Enterprise
Systems; San Francisco: Morgan Kaufmann

90. Yin Yong, Kaku Ikou, Tang Jiafu, Zhu JianMing (2011): Data Mining: Concepts, Me-
thods and Applications in Management and Engineering Design (Decision Engineering),
UK: Springer-Verlag

Articles / Book Chapters / Papers

91. Alahakoon D. et al. (2000): Dynamic self organizing maps with controlled growth for
knowledge discovery; IEEE Transactions on Neural Networks; vol. 11, pp. 601--614

92. Alcubierre Miguel (1994): The warp drive: hyper-fast travel within general relativity;
Classical and.Quantum.Gravity 11:L73-L77, 1994

93. Aschbacher Helmut, Neukart Florian, Schatzl, Sebastian (2009): The use of Business
Intelligence and Data Mining for improving the detection of Customer Needs in Service
Engineering; Graz: Campus02 University of Applied Sciences

94. Bahrammirzaee Arash (2010): A comparative survey of artificial intelligence
applications in finance: artificial neural networks, expert system and hybrid intelligent
systems; Neural Computing and Applications, 8(19): 1165 – 1195

95. Bajcsy R. (1988): Active perception, Proceedings of the IEEE, 76:996-1005

96. Barro S. et. al. (1998): Classifying multichannel ECG patterns with an adaptive neural
network; IEEE Engineering in Medicine and Biology Magazine; 17(1):45–55

97. Bartz-Beielstein Thomas et al. (2005): Sequential Parameter Optimization; MCKAY, B.:
Proceedings of the IEEE Congress on Evolutionary Computation; IEEE Press, 1: p. 773–
780

98. Bauer H. U., Villmann T. (1995): Growing a Hypercubical Output Space in a Self-
Organizing Feature Map; ICSI Tech Rep. TR-95-030

99. Bauernfeind G. et al. (2008): Development, set-up and first results for a one-channel
near-infrared spectroscopy system; Biomedizinische Technik, Biomedical Engineering
53, 36–43

100. Bednar J.A., Miikkulainen R. (2003): Learning Innate Face Preferences; Neural
Computation, 15(7)

Bibliography 377

101. Behrman Elizabeth C., Niemel Jari, Steck James E., Skinner S. R. (1996): A quantum dot
neural network; Proceedings of the 4th Workshop on Physics of Computation, p. 22–24

102. Bezdek James (1980): A convergence theorem for the fuzzy isodata clustering
algorithms.;IEEE Trans. Pattern Analysis and Machine Intelligence 2, 1–8

103. Bond H. Ah., Gasser L. (1988): Readings in Distributed Artificial Intelligence, San
Mateo, CA: Morgan Kaufmann

104. Bonet Blai et al. (2001): Planning and Control in Artificial Intelligence: A Unifying
Perspective; Applied Intelligence, 3(14): 237 – 252

105. Bratman M., Israel D. J., Pollack M. E. (1988): Plans and resource-bounded practical
reasoning, Computational Intelligence, 4: 156-72

106. Burnet Frank M. (1959): The Clonal Selection Theory of Acquired Immunity;
Cambridge University Press.

107. Busoniu L., Babuska R., De Schutter B. (2008): A comprehensive survey of multi-agent
reinforcement learning, IEEE Transactions on Systems, Man, and Cybernetics – Part C:
Applications and Reviews 38: 156-72

108. Buxton H. (2003): Learning and understanding dynamic scene activity: A review, Vision
Computing, 21: 125-36

109. Camazine Scott et al. (2001): Selforganization in Biological Systems; Princeton:
Princeton University Press

110. Chaumette F., Hutchinson S. (2006): Visual servo control I: Basic approaches, IEEE
Robotics and Automation Magazine, 13(4): 82-90

111. Cheng Tai W., Goldgof Dimitry, Hall Lawrence (1998): Fast fuzzy clustering. Fuzzy
Sets and Systems 93, 49–56

112. Cover T. M., Hart P.E. (1967): Nearest neighboring pattern classification. IEEE Trans.
Information Theory 13, 21–27

113. Dave R. N., Krishnapuram R. (1997): Robust clustering methods: a united view. IEEE
Trans. Fuzzy Systems 5, 270–293

114. de Castro L. N., Von Zuben F. J. (2001): An immunological approach to initialize
centers of radial basis function neural networks. In Proc. of 5th Brazilian Conference on
Neural Networks, 79–84

115. DiVincenzo David. P. (2001): Dogma and heresy in quantum computing; Quantum
Information Comp. 1, 1.

116. Drachman D. (2005): Do we have brain to spare?; Neurology 64 (12): 2004–5

117. Edelman G. (2001): Naturalizing consciousness: A theoretical framework; Proceedings
of the National Academy of Sciences USA, 100, 5520 - 5524

118. Elman J. L. (1990): Finding Structure in Time; Cognitive Science, 14, 179-211

378 Bibliography

119. Erwin E. et al. (1995): Models of orientation and ocular dominance columns in the visual
cortex: A critical comparison; Neural Computation, 7:425– 468

120. Eschrich S., Ke J., Hall L., Goldgof D. (2003): Fast accurate fuzzy clustering through
data reduction. IEEE Trans. Fuzzy Systems 11, 262–270

121. Ezhov Alexandr A., Ventura Dan (-): Quantum neural networks, BSTU Laboratory of
Artificial Neural Networks

122. Fahrmeir L. et al. (1996): Regressionsanalyse; In: Fahrmeir, L. et al. (Hrsg.):
Multivariate statistiche Verfahren. 2nd ed.; Berlin, New York, S. 93 – 168

123. Feynman Richard (1982): International Journal of Theoretical Physics, Vol. 21, No. 6/7

124. Forrest S., Perelson A. S., Allen L., Cherukuri R. (1994). Self-nonself discrimination in a
computer. In Proceedings of 1994 IEEE Symposium on Research in Security and
Privacy, p. 132–143

125. Frawlwy William J. et al. (1992): Knowledge Discovery in Databases - An Overview; AI
Magazine: 213-228

126. Frean M. (1990): The upstart algorithm: a method for constructing and training feed-
forward neural networks; Neural Computation 2: 198–209

127. Freeman Richard et al. (2002): Self-Organising Maps for Tree View Based Hierarchical
Document Clustering; Honolulu: Proceedings of the IEEE IJCNN'02; vol. 2, pp. 1906-
1911

128. Fritzke B. (1995): Growing Grid: A self-organizing network with constant neighborhood
range and adaptation strength; Neural Processing Letters, 2(5)

129. Fukushima K. (1980): Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position; Biological Cybernetics,
36, 193–202.

130. Garrett Simon M. (2005): How Do We Evaluate Artificial Immune Systems?; Evolu-
tionary Computation 13(2): 145-178

131. Graimann Bernhard et al. (2010): Brain-Computer Interfaces: A Gentle Introduction;
Berlin Heidelberg: Springer; p. 3 ff.

132. Grigorescu Costin-Marius, Moraru Sorin-Aurel, Neukart Florian, Badea Milian (2010):
BUFFERING APPLICATION FOR AN INDUSTRIAL MONITORING SOFTWARE
SYSTEM. Proceedings of Optimization of Electrical and Electronic Equipment
(OPTIM), 2010 12th International Conference on, p. 780-785.

133. Grossberg S. (1976): Adaptive pattern classification and universal recording, 1: Parallel
development and coding of neural feature detectors; Biological Cybernetics; 23:121–134

134. Grover Lov K. (1996): A fast quantum mechanical algorithm for database search,
Proceedings of the 28th Annual ACM Symposium on the Theory of Computation,
pp.212-219.

Bibliography 379

135. Heller Katherine A. et al. (2009): Infinite Hierarchical Hidden Markov Models;
Proceedings of the 12th International Conference on Artificial Intelligence and Statistics;
Florida: Clearwater Beach

136. Hinton Geoffrey E., Salakhutdinov Ruslan R. (2006): Reducing the dimensionality of
data with neural networks,y Science, vol. 313, no. 5786, pp. 504–507.

137. Hinton Geoffrey E., Sejnowski Terrence J. (1983): Optimal Perceptual Inference.
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
Washington DC, pp. 448-453.

138. Hoiem D., Efros A. A., Hebert M. (2006): Putting objects in perspective, Proceedings of
the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2137-44

139. Hopfield Joseph J. (1982): Neural networks and physical systems with emergent
collective computational properties; Proceedings Nat. Acad. Sci. (USA) 79, 2554-2558.

140. Hou Zeng-Guang et al. (2009): Editorial to special issue: computational intelligence for
optimization, modeling and control; Neural Computing & Applications, 5(18): 407-408.

141. Hsieh William W. (2009): Machine Learning Methods in the Environmental Sciences,
In: Hsieh, William W. (eds) Neural Networks and Kernels; Vancouver: University of
British Columbia

142. Hubel D., Wiesel T. (1968): Receptive fields and functional architecture of monkey
striate cortex; Journal of Physiology (London), 195, 215–243.Fukushima, K. (1980):
Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position; Biological Cybernetics, 36, 193–202.

143. Ichimura Takumi et al. (2004): A learning method of immune multi-agent neural
networks; NEURAL COMPUTING & APPLICATIONS, 14(2): 132 – 148

144. Jerne N. (1974): Towards a network theory of the immune system. Annals of
Immunology, 125: 373–389

145. Jordan Michael I. (1986): Attractor dynamics and parallelism in a connectionist
sequential machine; Proceedings of the Eighth Annual Conference of the Cognitive
Science Society; Englewood Cliffs: Erlbaum, pp. 531-546

146. Karaboga Dervis et al. (2009): A survey: algorithms simulating bee swarm intelligence;
Artificial Intelligence Review, 1-4(31): 61 – 85

147. Kirkpatrick Scott et al. (1983): Optimization by simulated annealing; Science,
220(4598): 671–680

148. Kitaev Alexej (1995): Quantum measurements and the Abelian Stabilizer Problem; L. D.
Landau Institute for Theoretial Physics

149. Kohonen Teuvo (1990): The Self-Organizing Map; Proceedings of the IEEE 78, Nr. 9, p.
1464-1480

380 Bibliography

150. Kryzhanovsky M.V. et al. (2010): Neuron network methods of task assignment in
multiprocessing system; Optical Memory and Neural Networks, 17(3): 213 – 219

151. LeCun Yann, Bottou Léon, Bengio Yoshua, and Haffner Patrick (1998): Gradient-based
learning applied to document recognition; Proceedings of the IEEE, 86(11), 2278–2324

152. Leech G., Garside R., Bryant M. (1994): CLAWS4: The tagging of the British National
Corpus. In Proceedings of the 15th International Conference on Computational
Linguistics (COLING 94) Kyoto, Japan, pp. 622-628

153. Legg Shane et al. (2007): Universal Intelligence: A Definition of Machine Intelligence,
Minds and Machines; 4(17): 391 – 444.

154. Li Weigang: Entangled Neural Networks; Brazil: University of Brasilia

155. Lin Y. T. (1999): Granular computing: fuzzy logic and rough sets. In: Zadeh LA,
Kacprzyk J. (eds.): Computing with Words in Information/Intelligent Systems; Springer-
Verlag: Berlin

156. Lohn I. D., Reggia J. A. (1997): Automatic discovery of self-replicating structures in
cellular automata; IEEE Trans. Evolutionary Computation, 1(3): 165–178

157. Lomonaco Samuel J. Jr. (2000): Grover’s Quantum Search Algorithm; Mathematics
Subject Classification. Primary 81P68; Secondary 81-01.

158. Lucadou Walter von (1986): Experimentelle Untersuchungen zur Beeinflußbarkeit von
stochastischen quantenphysikalischen Systemen durch den Beobachter; Frankfurt am
Main

159. MacGregor R. (1991): Using a description classifier to enhance knowledge
representation; IEEE Expert 6 (3): 41–46

160. MacQueen J. B. (1967): Some Methods for Classification and Analysis of Multivariate
Observations; Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability; Berkeley: University of California Press, 1:281-297

161. Mascioli F. et al. (1995): A constructive algorithm for binary neural networks: the oil
spot algorithm; IEEE Trans Neural Netw 6(3): 794–797

162. Matzinger P. (2002): The Danger Model: A renewed sense of self. Science, 296(5566):
301–305

163. Merzenich R.J. et al. (1988): Cortical representation plasticity; Neurobiology of
Neocortex; New York: Wiley; pp. 41–68

164. Mettrey W. (1987): An Assessment of Tools for Building Large Knowledge-
BasedSystems; AI Magazine 8 (4)

165. Monras Alex et al. (2012): Hidden Quantum Markov Models and non-adaptive read-out
of many-body states [2012-10-22]; URL: http://arxiv.org/abs/1002.2337v2

166. Narayanan Ajit; Menneer Tammy (2000): Quantum artificial neural network archi-
tectures and components; Information Sciences, volume 124. 1-4, p. 231–255

Bibliography 381

167. Neukart Florian (2012): A sample algorithm for the system-side adaptation of artificial
neural network architectures. Scribd. - The World's Largest Online Library

168. Neukart Florian (2012): Are deep artificial neural network architectures a suitable
approach for solving complex business-related problem statements? Scribd. - The
World's Largest Online Library

169. Neukart Florian (2013): Accuracy through Complexity - One Step further in Time-Series
Prediction and Classification, Knowledge Discovery in Databases.

170. Neukart Florian, Moraru Sorin-Aurel, Grigorescu Costin-Marius (2011): High Order
Computational Intelligence in Data Mining - A generic approach to systemic intelligent
Data Mining. Proceedings of Speech Technology and Human-Computer Dialogue
(SpeD), 2011 6th Conference on, p. 1-9.

171. Neukart Florian, Moraru Sorin-Aurel, Grigorescu Costin-Marius, Szakazs-Simon Peter
(2012), Artificial Immune System-inspired NeuroEvolution. Proceedings of DAAM,
2012

172. Neukart Florian, Moraru Sorin-Aurel, Grigorescu Costin-Marius, Szakazs-Simon Peter
(2012): Cortical Artificial Neural Networks and their Evolution - Consciousness-inspired
Data Mining. Proceedings of OPTIM 2012

173. Neukart Florian, Moraru Sorin-Aurel, Grigorescu Costin-Marius, Szakazs-Simon Peter
(2012): Transgenetic NeuroEvolution. Proceedings of OPTIM 2012

174. Neukart Florian, Moraru Sorin-Aurel, Szakazs-Simon Peter (2011): Problem-dependent,
genetically evolving Data Mining solutions. Proceedings of DAAAM 2011

175. Newell A., Simon H. A.: Computer science as empirical enquiry: Symbols and search,
Communications of the ACM 19:113-26

176. Niedermeyer E., Silva F. L. D. (2004): Electroencephalography: Basic principles, clinical
applications, and related fields; Philadelphia: Lippincott Williams & Wilkins

177. Omlin C. W. et al. (1993): Pruning recurrent neural networks for improved
generalization performance; Technical report No 93-6, CS Department, Rensselaer
Institute, Troy, NY

178. Philippides A. et al. (1999): Diffusible neuromodulation in real and artificial neural
networks; In: AI Symposium, Second International Conference on Cybernetics, Applied
Mathematics and Physics: CIMAF 1999: Editorial Academia

179. Porter M. F (1980): An algorithm for suffix stripping: Program, 14 no3, pp 130-137

180. Rahm Erhard, Hai Do Hong (2009): Data Cleansing: Problems and Current Approaches,
Leipzig: University of Leipzig

181. Ranganathan Ananth, Zsolt Kira: Self-Organization in Artificial Intelligence and the
Brain; Atlanta: Georgia Institute of Technology

182. Rauber Andreas (1999): LabelSOM: On the labelling of selforganizing maps; Washing-
ton: Proceedings International Joint Conference on Neural Networks

382 Bibliography

183. Ricks Bob, Ventura Dan (2003): Training a Quantum Neural Network; Provo: Brigham
Young University

184. Riedmiller Martin et al. (1993): A direct adaptive method for faster back propagation
learning: The Rprop algorithm; Proceedings of the IEEE International Conference on
Neural Networks, IEEE Press: 586-591

185. Rosenblatt Frank (1958): The Perceptron. A Probabilistic Model for Information Storage
and Organization in the Brain; Psychological Reviews, 65: 386–408

186. Salton G. (1988): Automatic text processing: the transformation, analysis, and retrieval
of information by Computer; Addison-Wesley: Massachusetts

187. Salton G., McGill M. J. (1983): Introduction to modern information retrieval; New York:
McGraw-Hill

188. Schaffer J. D. et al. (1992): Combinations of genetic algorithms and neural networks: a
survey of the state of the art. In: Proceedings of the International Workshop of Genetic
Algorithms and Neural Networks, pp. 1–37

189. Segev Aviv et al. (2006): Context recognition using internet as a knowledge base;
Journal of Intelligent Information Systems (2007) 29:305–327

190. Serre T., Wolf L., Bileschi S., and Riesenhuber M. (2007): Robust object recog- nition
with cortex-like mechanisms; IEEE Trans. Pattern Anal. Mach. Intell., 29(3), 411–426.
Member-Poggio, Tomaso.

191. Sim Kwang Mong (2001): Bilattices and Reasoning in Artificial Intelligence: Concepts
and Foundations; Artificial Intelligence Review, 3(15): 219 – 240

192. Singer Wolf (2009): The Brain, a Complex Self-organizing System; European Review,
Vol. 17, No. 2, 321–329

193. Sipper M., Sanchez E., Mange D., Tomassini M., Perez-Uribe A., Stauffer A. (1997): A
phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems; IEEE
Trans. Evolutionary Computation, 1(1): 83–97

194. Sirivastava Nitish, Hinton Geoffrey, Krizhevsky Alex, Sutskever Ilya, Salakhutdinov
Ruslan (2014): Dropout: A Simple Way to Prevent Neural Networks from Overfitting;
Journal of Machine Learning Research 15; 1929-1958

195. Spärck Jones K. (1999): Information retrieval and artificial intelligence, Artificial
Intelligence 141: 257-81

196. Stanley O. Kenneth et al. (2002): Evolving Neural Networks through Augmenting
Topologies; Evolutionary Computation 10(2): 99-127

197. Stepniewski S. W. et al. (1997): Pruning back propagation neural networks using modern
stochastic optimization techniques; Neural Computation Applications 5: 76–98

198. Swindale N.V. (1996): The development of topography in the visual cortex: a review of
models, Network 7:161–247

Bibliography 383

199. T. M. Straat, M. A. Fischler: Context-based vision: Recognizing objects using
information from both 2D and 3D imagery, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13: 1050-65

200. Tan A. (1997): Cascade artmap: Integrating neural computation and symbolic knowledge
processing; IEEE Transactions on Neural Networks; 8(2):237–250

201. Toffoli Tommaso (1981): Mathematical Systems Theory 14 13

202. Vapnik V. (1998): The support vector method of function estimation. In: Suykens J.,
Vandewalle J. (eds.): Nonlinear Modeling: Advanced Black-Box Techniques; Boston
MA: Kluwer: 55–85

203. von der Malsburg Christoph (1973): Self-organization of orientation sensitive cells in the
striate cortex; Kybernetik, 14:85–100

204. Wang L. P. (1998): On chaotic simulated annealing; IEEE Trans. Neural Networks, 9:
716–718

205. Wang L. P. (2004): A noisy chaotic neural network for solving combinatorial
optimization problems: Stochastic chaotic simulated annealing; IEEE Trans. System,
Man, Cybernetics, Part B – Cybernetics, 34(5): 2119–2125

206. Weiss G.: Multiagent Systems: A modern approach to distributed artificial intelligence,
Cambridge, MA: MIT Press

207. Williamson J. R. (1996): Gaussian artmap: A neural network for fast incremental
learning of noisy multidimensional maps; Neural Networks; 9(5):881–897

208. Wolpaw J. R. et al. (2006): BCI Meeting 2005 – workshop on signals and recording
methods; IEEE Transactions on Neural Systems and Rehabilitation Engineering: A
Publication of IEEE Engineering in Medicine and Biology Society 14, Jun., 138–141

209. Wong Eugene (1991): Stochastic Neural Networks; California: University of Berkelay,
Department of Electrical Engineering and Computer Science

210. Yang M.-S., Ko C.-H. (1996): On a class of fuzzy c-numbers clustering procedures for
fuzzy data. Fuzzy Sets and Systems 84(1), 49–60

211. Yao X. (1999): Evolving neural networks; Proceedings of the IEEE 87(9), 1423–1447

212. Yu Tina et al. (2008): Evolutionary Computation in Practice: Studies in Computational
Intelligence, Genetic Programming and Evolvable Machines, 4(9): 371 – 372

213. Zak Michail, William Colin P.: Quantum Neural Nets; Center for Space Microelectronics
Technology: Jet Propulsion Laboratory; Pasadena: Caltech

214. Zhang Nevin Lianwen (1998): Computational Properties of Two Exact Algorithms for
Bayesian Networks; Applied Intelligence, 2(9): 173 – 183

384 Bibliography

Theses

215. Costea A. (2007): COMPUTATIONAL INTELLIGENCE METHODS FOR
QUANTITATIVE DATA MINING; PhD Thesis; Turku: Abo Akedemi University

216. Gorman B. (2009): Imitation Learning Through Games: Theory, Implementation and
Evaluation; PhD Thesis; Dublin: Dublin City University

217. Neukart Florian (2013): System Applying High Order Computational Intelligence in
Data Mining and Quantum Computational Considerations Concerning the Future of
Artificial Intelligence; Brasov: Transilvania University of Brasov

218. Sasu Lucian Mircea (2006): Computational Intelligence Techniques in Data Mining;
PhD Thesis; Brasov: Transilvania University of Brasov

219. Singh Gurwinder (2009): Quantum Neural Network Application for Weather
Forecasting; Thapar: Thapar University

URLs

220. Apache foundation: hadoop; [2013-10-29]; URL: http://hadoop.apache.org/

221. AISWeb (2012): Immune-Inspired Algorithms [2012-03-13]; AISWeb; URL: http://
www.artificial-immune-systems.org/algorithms.shtml

222. Altafkhan (2005-2006): Neural Nets Glossary [2012-01-18]; URL: http://www.
altafkhan.com/ib/neural-nets-glossary.htm

223. Altaisky M.V. (2001): Quantum neural network; Technical report; URL: http://xxx.lanl.
gov/quantph/0107012

224. Berners-Lee T., Hendler J., Lassila O. (2001): The Semantic Web A new form of Web
content that is meaningful to computers will unleash a revolution of new possibilities;
Scientific American 284: 34–43

225. Bonsor Kevin, Strickland Jonathan (2000): How Quantum Computers Work [2012-10-
18], URL: http://computer.howstuffworks.com/quantum-computer.htm

226. Budnik Paul: The measurement problem [2012-10-06]; URL: http://www.mtnmath.com/
faq/meas-qm-2.html

227. Carnegie Mellon: Welcome to the Claytronics Project [2013-09-22]; URL: http://www.
cs.cmu.edu/~claytronics/

228. Deeplearning.net (2012): Restricted Boltzmann Machines (RBM) [2012-15-08];
Deeplearning.net; URL: http://deeplearning.net/tutorial/rbm.html

229. Deeplearning4j.org (2016): Convolutional networks [2016-06-19]; URL: http://
deeplearning4j.org/convolutionalnets

230. Dipartimento di Elettronica e Informazione, Politecnico Di Milano: Clustering [2011-18-
09]; Dipartimento di Elettronica e Informazione; URL: http://www.elet.polimi.it/
upload/matteucc/Clustering/tutorial_html

Bibliography 385

231. Douglass Jeremy (2001): Self-Organizing Maps [2011-22-07]; University of California
Santa Barbara; URL: http://www.english.ucsb.edu/grad/studentpages/jdouglass/
coursework/hyperliterature/soms/#SOMs

232. Dror Gideon (2009): Part-of-Speech Tagging [2013-12-08]; URL: http://www2.
mta.ac.il/~gideon/courses/nlp/slides/chap10_pos.pdf

233. DTREG (2011): RBF Neural Networks [2012-01-01]; URL: http://www.dtreg.com/
rbf.htm

234. Edwin Chen’s Blog (2011): Introduction to Restricted Boltzmann Machines [2012-28-
08]; URL: http://blog.echen.me/2011/18/introduction-to -restricted-boltzmann-machines

235. Fujita Yukari, Matsui Tetsuo (2002): Quantum gauged neural network: U(1) gauge
theory; Technical report; URL: http://xxx.lanl.gov/cond-mat/0207023.

236. Gershenfeld Neil, Chuang Isaac L. (1996): Quantum Computing with Molecules [2012-
12-19]; URL: http://www.mat.ucm.es/catedramdeguzman/old/01historias/haciaelfuturo/
Burgos090900/quantumcomputingSciAmer/0698gershenfeld.html

237. Hameroff Stuart: Quantum consciousness [2013-07-28]; URL: http://www.quantum
consciousness.org

238. Han Jiawei et. al. (2006): Data Preprocessing [2011-11-08]; University of Illinois; URL:
http://www.cs.uiuc.edu/homes/hanj/bk2/02.ppt

239. Heaton Research (2005 - 2011): Applying Multithreading to Resilient Propagation and
Back propagation [2009-26-10]; Heaton Research; URL: http://www.heatonresearch.
com/encog/mprop/compare.html

240. Heaton Research (2005 - 2011): Encog [2011-22-11]; Heaton Research; URL:
http://www.heatonresearch.com/encog/

241. Heaton Research (2010): Introduction to Neural Networks for Java, Session 7 [2011-24-
09]; Heaton Research; URL: http://www.heatonresearch.com/course/intro-neural-nets-
java/7

242. Heaton Research (2005 - 2011): A Really Simple Introduction to Normalization [2011-
12-08]; Heaton Research; URL: http://www.heatonresearch.com/content/really-simple-
introduction-normalization

243. Heaton Research (2005 - 2011): The number of Hidden Layers [2011-28-09]; URL:
http://www.heatonresearch.com/node/707

244. Heaton Research (2005 - 2012): Quantum Computing; [2012-10-11]; URL: http://www.
heatonresearch.com/articles/1/page5.html

245. Held Werner: Quantenphysikalische Ansätze des Bewusstseins [2013-06-22]; URL:
http://www.werner-held.de/pdf/qc.pdf

246. Human brain project [2013-12-20]; URL: https://www.humanbrainproject.eu/de

386 Bibliography

247. IBM: The data mining process [2011-10-08]; IBM; URL: http://publib.boulder.ibm.
com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.im.easy.doc/c_dm_process.html

248. IBM: What is IBM Watson? [2016-07-14]; URL: http://www.ibm.com/watson/what-is-
watson.html

249. Jyh Ying Peng (2003): Quantum Computation Lecture Notes [2012-10-06]; URL:
http://red.csie.ntu.edu.tw/QC/peng/chap1.pdf

250. Leeds University: Automatic Mapping Among Lexico-Grammatical Annotation Models
[2013-12-08]; URL: http://www.comp.leeds.ac.uk/amalgam/tagsets/brown.html

251. Mache Niels: RPROP [2011-31-08]; Hong Kong Polytechnic University; URL:
http://www.eie.polyu.edu.hk/~enzheru/snns/SNNSinfo/UserManual/node152.html#man

252. Milenova Briana et. al. (2002): O-Cluster: Scalable Clustering of Large High
Dimensional Datasets [2011-18-09]; Oracle Corporation; URL: http://www.oracle.
com/technology/products/bi/odm/pdf/o_cluster_algorithm.pdf

253. Nielsen Michael (2016): Neural Networks and Deep Learning [2016-07-04]; URL:
http://neuralnetworksanddeeplearning.com/chap5.html

254. Onboard CRM: Data Cleansing [2011-24-09]; OnboardCRM; URL: http://www.onboard
crm.com/services/data-cleansing.html

255. Philosophie verständlich: Die Libet-Experimente [2013-09-01]; URL: http://www.
philosophieverstaendlich.de/freiheit/aktuell/libet.html

256. Quantiki (2005): Basic concepts in quantum computation [2013-01-02]; URL: http://
www.quantiki.org/wiki/Basic_concepts_in_quantum_computation

257. Quantum Mind: Quantum Mind [2013-09-01]; URL: http://www.quantum-mind.co.uk

258. Rauber Andreas (1999): LabelSOM: On the Labeling of Self-Organizing Maps [2013-
11-01]; URL: http://www.ifs.tuwien.ac.at/ifs/research/pub_html/rau_ijcnn99/ijcnn99.
html

259. Rey Günter D.: Neuronale Netze: Eine Einführung [2011-25-08]; Rey Günter D.; URL:
http://www.neuronalesnetz.de/aktivitaet.html

260. Scientific Consultant Services (2003): Neural Network Test Data [04-04-2012]; URL:
http://www.scientific-consultants.com/nnbd.html

261. Scholarpedia (2011): Boltzmann Machine (2012-15-08); Scholarpedia; URL: http://
www.scholarpedia.org/article/Boltzmann_machine#Restricted_Boltzmann_machines

262. Smith Reid (1985): Knowledge-Based Systems Concepts, Techniques, Examples [2016-
07-14]; URL: http://www.reidgsmith.com

263. Stackoverflow (2012): How much memory would be required to store human DNA?
[2013-11-17]; URL: http://stackoverflow.com/questions/8954571/how-much-memory-
would-be-required-to-store-human-dna

Bibliography 387

264. Stanley O. Kenneth (2004): NeuroEvolution of Augmenting Topologies [2011-12-12];
Carnegie Mellon School of Computer Science; URL: http://www.cs.
cmu.edu/afs/cs/project/jair/pub/volume21/stanley04a-html/node3.html

265. Tittensor Derek P. et al. (2011): How Many Species Are There on Earth and in the
Ocean? [2013-10-24]; URL: http://www.plosbiology.org/article/info%3Adoi%2F10.
1371%2Fjournal.pbio.1001127

266. tutis.ca (2013): The Visual Cortex [2016-06-19]; URL: http://www.tutis.ca/
NeuroMD/L2V123/V123.pdf

267. University of Köln: Imputation (Substitution of missing values) [2011-12-08]; University
of Köln; URL: http://eswf.uni-koeln.de/lehre/06/05/s11.pdf

268. University of Wuppertal (2013): Der Hamiltonoperator [2013-01-25]; URL: http://
hydrogen.physik.uni-wuppertal.de/hyperphysics/hyperphysics/hbase/quantum/hamil.html

269. whatis.com (2011): double-slit experiment [2012-10-06]; URL: http://whatis.
techtarget.com/definition/double-slit-experiment

270. Wikipedia (2011): Glossary of elementary quantum mechanics [2013-02-17]; URL:
http://en.wikipedia.org/wiki/Glossary_of_elementary_quantum_mechanics

271. WolframMathworld: Colvolution [2016-16-21]; URL: http://mathworld.wolfram.
com/Convolution.html

272. wolfram.com: Wolfram Language for Knowledge-Based Programming [2016-07-14];
URL: https://www.wolfram.com/language/

273. WordNet (2013): WordNet a lexical database for English [2013-11-03]; URL:
http://wordnet.princeton.edu/

Every revolutionary idea seems to evoke three stages of reaction.
They may be summed up by the phrases:

(1) It’s completely impossible.
(2) It’s possible, but it’s not worth doing.

(3) I said it was a good idea all along.

Sir Arthur C. Clarke

	Preface
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Structure
	1 Evolution’s most extraordinary achievement
	1.1 Anatomy of the human brain
	1.1.1 Truncus cerebri
	1.1.1.1 Cerebellum
	1.1.1.2 Mesencephalon
	1.1.1.3 Pons
	1.1.1.4 Medulla oblongata

	1.1.2 Paleomammalian
	1.1.2.1 Corpus amygdaloideum
	1.1.2.2 Hippocampus
	1.1.2.3 Diencephalon
	1.1.2.4 Cingulate gyrus

	1.1.3 Cortex and neocortex
	1.1.3.1 Frontal lobe
	1.1.3.2 Parietal lobe
	1.1.3.3 Temporal lobe
	1.1.3.4 Occipital lobe

	1.2 Neural information transfer
	1.3 Summary

	2 Pillars of artificial intelligence
	2.1 Machine learning
	2.1.1 Supervised learning algorithms
	2.1.2 Unsupervised Learning Algorithms

	2.2 Computer Vision
	2.3 Logic and reasoning
	2.4 Language and communication
	2.5 Agents and actions
	2.5.1 Principles of the new agent-centered approach
	2.5.2 Multi-agent behavior
	2.5.3 Multi-agent learning

	2.6 Summary

	3 An outline of artificial neural networks
	3.1 Definition
	3.2 Paradigms of computational intelligence
	3.3 Neural networks
	3.3.1 Artificial neural networks
	3.3.1.1 Suitable problems
	3.3.1.2 Basic knowledge
	3.3.1.3 Activation functions
	3.3.1.4 Regularization

	3.3.2 Types of artificial neural networks
	3.3.2.1 Supervised and unsupervised learning
	3.3.2.2 Feed-forward artificial neural network
	3.3.2.3 Feed-forward artificial neural network with feedback connections
	3.3.2.4 Fully connected artificial neural network
	3.3.2.5 Basic artificial neural network structure
	3.3.2.6 Perceptron
	3.3.2.7 Radial basis artificial neural network
	3.3.2.8 Recurrent artificial neural network
	3.3.2.9 Fully connected artificial neural network

	3.3.3 Training and learning
	3.3.3.1 Supervised and unsupervised training
	3.3.3.2 (Root) mean squared error
	3.3.3.3 Estimators
	3.3.3.4 Hebb's learning rule
	3.3.3.5 Delta rule
	3.3.3.6 Propagation learning
	3.3.3.7 Genetic learning (NeuroEvolution)
	3.3.3.8 Simulated annealing
	3.3.3.9 NeuroEvolution of augmenting topologies (NEAT)

	3.3.4 Stability-plasticity dilemma

	3.4 Summary

	4 Advanced artificial perception and pattern recognition
	4.1 Convolutional artificial neural networks
	4.1.1 Data representation
	4.1.2 Structure
	4.1.2.1 Convolutional layers
	4.1.2.2 Different ways of perception and processing
	4.1.2.3 Maxpooling/ downsampling layers
	4.1.2.4 Feature maps
	4.1.2.5 Fully connected layers
	4.1.2.6 Number of neurons

	4.1.3 Training

	4.2 Deep belief artificial neural network
	4.2.1 Stacking together RBMs
	4.2.2 Training

	4.3 Cortical artificial neural network
	4.3.1 Structure
	4.3.1.1 Cortices
	4.3.1.2 Number of neurons
	4.3.1.3 Synapses

	4.3.2 A generic cortical artificial neural network
	4.3.3 Purpose
	4.3.4 Evolution and weight initialization

	4.4 SHOCID recurrent artificial neural network
	4.4.1 Structure
	4.4.1.1 Recurrent layer one
	4.4.1.2 Recurrent layer two
	4.4.1.3 Number of neurons
	4.4.1.4 Synapses

	4.4.2 Purpose
	4.4.3 Evolution and weight initialization

	4.5 Summary

	5 Advanced nature-inspired evolution and learning strategies
	5.1 Transgenetic NeuroEvolution
	5.1.1 Fundamentals
	5.1.2 Host genetic material
	5.1.3 Endosymbiont
	5.1.4 Algorithm
	5.1.5 Horizontal (endosymbiotic) gene (sequence) transfer
	5.1.5.1 Weight plasmid
	5.1.5.2 Structure plasmid

	5.1.6 Transposon mutation
	5.1.6.1 Jump and swap transposon
	5.1.6.2 Erase and jump transposon

	5.1.7 Usage

	5.2 Artificial immune system-inspired NeuroEvolution
	5.2.1 Fundamentals
	5.2.2 Clonal selection and somatic hypermutation
	5.2.3 Danger theory, virus attack and hyperrecombination
	5.2.4 Negative selection
	5.2.5 Overall algorithm
	5.2.6 Causality
	5.2.7 Usage

	5.3 Structural evolution
	5.3.1 Fundamentals
	5.3.2 Algorithm
	5.3.3 Generic determination of artificial neural network quality
	5.3.4 Parameterization
	5.3.5 Usage

	5.4 Summary

	6 Autonomously acting cars and predicting market
behaviour: some application scenarios for ANNs
	6.1 Analysis and knowledge
	6.1.1 Supervised and unsupervised functions
	6.1.2 Classification
	6.1.3 Regression
	6.1.4 Clustering
	6.1.5 Attribute importance
	6.1.6 Association
	6.1.7 Interesting knowledge
	6.1.8 Accurate knowledge
	6.1.9 Interpretable knowledge
	6.1.10 Intelligent processing
	6.1.11 Efficient processing

	6.2 Autonomously acting cars
	6.2.1 V2X-communication
	6.2.2 Massively equip car with processing power and AI-algorithms
	6.2.3 Artificial intelligence and environment sensing
	6.2.3.1 Cameras and how AI is applied to related data
	6.2.3.2 RADAR and how AI is applied to related data
	6.2.3.3 LiDAR and how AI is applied to related data
	6.2.3.4 Additional sensors and how AI is applied to related data
	6.2.3.5 GPS and how AI is applied to related data
	6.2.3.6 Microphones and how AI is applied to related data
	6.2.3.7 Autonomously acting car’s brain – the domain controller

	6.3 Summary

	7 An outline of quantum mechanics
	7.1 Quantum systems in general
	7.1.1 Quantum theory
	7.1.1.1 Quantum states
	7.1.1.2 Observables
	7.1.1.3 Quantum measurements
	7.1.1.4 Quantum dynamics

	7.1.2 Quantum operators
	7.1.3 Quantum physical effects
	7.1.3.1 Quantum interference
	7.1.3.2 Quantum linear superposition
	7.1.3.3 Quantum entanglement

	7.2 The unitary evolution U
	7.3 The state vector reduction R
	7.4 Summary

	8 Quantum physics and the biological brain
	8.1 Difficulties with U in the macroscopic world
	8.2 The Hameroff-Penrose model of orchestrated objective reduction
	8.2.1 The idea
	8.2.2 Microtubules

	8.3 Further models
	8.4 Summary

	9 Matter and consciousness
	9.1 Qualia
	9.2 Materialism
	9.2.1 Eliminative materialism
	9.2.2 Noneliminative materialism

	9.3 Functionalism
	9.3.1 The problem of absent or inverted qualia
	9.3.2 The Chinese Room argument
	9.3.3 The knowledge argument

	9.4 The Identity Theory
	9.5 Summary

	10 Reverse engineering the mind
	10.1 Theory of mind
	10.2 Quantum linear superposition in artificial brains
	10.3 Self-organization
	10.3.1 Structure and system
	10.3.1.1 Conservative structure
	10.3.1.2 Dissipative structure

	10.3.2 Self-organization in computational intelligence
	10.3.2.1 Self-organized learning
	10.3.2.2 Learning with respect to self-organization
	10.3.2.3 Adaptive Resonance Theory

	10.3.3 The transition to the human brain
	10.3.3.1 Laterally interconnected synergetically self-organizing maps
	10.3.3.2 The pruning neocortex

	10.3.4 Arguments for self-organization in artificial neural systems

	10.4 Mechanisms apart from self-organization
	10.4.1 Leader
	10.4.2 Blueprint
	10.4.3 Recipe
	10.4.4 Template

	10.5 Quantum physics and the artificial brain
	10.5.1 Quantum artificial neural network
	10.5.1.1 Structure
	10.5.1.2 Quantum bits
	10.5.1.3 Superposition
	10.5.1.4 Entanglement
	10.5.1.5 Interference
	10.5.1.6 Processing
	10.5.1.7 Measurement
	10.5.1.8 Envisaged implementations of a quantum artificial neural network

	10.6 The artificial neocortex
	10.6.1 Knowledge and data
	10.6.1.1 Knowledge representation
	10.6.1.2 Declarative knowledge representation

	10.6.2 Context recognition and hierarchical learning
	10.6.2.1 Definition of context-sensitive information
	10.6.2.2 Information Clustering
	10.6.2.3 Context analysis
	10.6.2.4 Hierarchical learning
	10.6.2.5 Interpreting the context
	10.6.2.6 Hidden Markov models and conceptual hierarchies in the neocortex

	10.6.3 Implementation
	10.6.3.1 Acquisition of basic knowledge
	10.6.3.2 Encoding the acquired knowledge into pattern recognizers
	10.6.3.3 Access to knowledge and how search engines are similar to the brain
	10.6.3.4 Language processing and understanding
	10.6.3.5 Quantum pattern recognizers
	10.6.3.6 Real world input and new experiences
	10.6.3.7 Automatic information interconnection

	10.6.4 A superior goal

	10.7 A distributed mind
	10.7.1 Non-invasive transducers
	10.7.2 Semi-invasive, invasive transducers and the neural grid
	10.7.3 Signal processing
	10.7.3.1 Pre-processing

	10.7.3.2 Feature extraction
	10.7.3.3 Detection and classification

	10.7.4 BCI requirements for the distributed mind

	10.8 Summary

	11 Conclusion
	Glossary – computational intelligence
	Glossary – quantum physics
	Bibliography

