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Foreword 

In the early 1970s Lawrence Edwards came to the Camphill Community 
at Aberdeen in Scotland to tell us something of his work on the form 
of pine cones and eggs and buds and hearts. I was in the audience. We 
learned of the existence of the path curve and heard that this marvellous 
entity represents the most elementary and fundamental transformation 
of space into itself. He said that this most simple of all forms is taken 
up, not approximately, but exactly, by certain living things as they come 
into physical being. He said he had measured a good many of them, and 
found it so. 

Now, what was this? Did he truly mean to say that he could, from path 
curve geometry - just the geometry - and a few measurements of the 
actual item predict all the dimensions of a real bud on a real tree, or of a 
real egg laid by a real hen; all of them? The implications were profound, 
so I listened with mounting wonder, and was at last convinced that he 
truly did mean what he said, and could do it. 

So he could do what none could before; he could say what living form 
is from first principles. So far as I knew until that day, all that had ever 
been managed by way of exact assessment of living form was statisti
cal, and represented by Gaussian-style distributions and a collection of 
norms. Norms have their uses, but in the end they are just compilations 
of measurements, and reveal nothing of principle. No one knew how the 
numbers fall out as they do. 

I suppose most still believe there are no principles of living form. 
Biologists are still apt to say with Darwin that forms come by lottery; 
that new forms arise at random, following no particular rule. Winners 
propagate forms that work best on test, and so form evolves by no more 
than selection of those chance productions that best aid the grapple with 
real life. By that bare criterion, the actual principles that might underlie 
these purely adventitious forms hardly matter. All that signifies is that 
whatever comes should work better than what came before. Lawrence 
Edwards showed us on that day that matters are otherwise. 
I decided there and then that I had to understand this astounding science 
in detail enough to do it. I began correspondence with him that led to 
cooperation between us at several levels over decades - and, for me, 
a deeply valued friendship. Of course I learned far more from him than 
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10 THE VORTEX OF LIFE 

he did from me, and I was not by any means the only one to notice the 
importance of what he did. 

There is now a kind of research fellowship for those doing science 
based on or assisted by projective geometry; its members hold their 
conferences in Strontian, Scotland, which was for so Jong Lawrence 
Edward's home, in his honour and in recognition of his fundamental and 
pioneering contributions to this work. The fellowship provides a focus 
and a point of exchange for the work, and a place from which it can be 
fostered. There is much still to do. 

Not Jong ago it was suggested to Lawrence that a fresh edition of The 
Vortex of Life, one possibly including new research, should be prepared. 
Lawrence said that I should see to it - and I was very happy to do this. 
Now there was nothing of his original that could be improved, or needed 
correction, so I had in this respect an easy time of it. As for the new 
research, I have added a little of my own; there is a study confirming his 
work on the heart, and something of my attempt to understand just one 
of his several discoveries, the bud phase-shift. 

Graham Calderwood 
March 2006 



Preface 

It is nearly forty-five years ago that I first came in touch with the work 
of George Adams (1894-1963), and for many years thereafter I had 
the privilege of learning from him, and working with him. During this 
period I was able to benefit from his remarkable ability to take the most 
abstruse mathematical concepts and make imaginative realities of them, 
without sacrificing the essential precision of thought in which they had 
been conceived; also, with growing respect, I learned to value his almost 
intuitive vision as to how these realities can be conceived, and almost 
seen, to be at work in the spiritual-physical world around us. 

After his death it was, and has always continued to be, my aim to follow 
this work further in every way in which I could, but especially in relation 
to the forms of living nature. And this book, paits of which were first pub
lished ten years ago under the title, The Field of Form, is a description of 
some of the research since then, especially Chapters 12 to 16. 

In preparing this new edition I have had two main purposes in view. 
Firstly to give as clear and vivid an account of the work as possible to 
the lay reader. To this end the main body of the book has been rewritten 
with the non-mathematical reader wholly in mind. No hint of equation 
or formula has been allowed to insert itself into the text, but without, I 
hope, sacrificing essential accuracy and clarity of thought. It must be left 
to my readers to judge how successful I have been in this. 

The other aim has been to encourage mathematically inclined readers 
to take such lines of research for themselves. This book is really little 
more than a set of unanswered, or at best partially answered, questions. 
Only consistent and detailed work will enable further progress to be 
made. For those who wish to essay such progress, the basic relevant 
mathematical tools will be found in the appendices. May good fortune 
attend those who wish to try! 

In recent years, there has been a great change in my working methods. 
Up to 1987, hand measurements and calculations were all taken from 
analysis of photographic records of the selected buds. The methods for this, 
and the subsequent calculations, are described in Chapter 5 and Appendix 
3. They involve measuring the diameter of the bud at a series of equally
spaced intervals along the long axis of the bud. These calculations are time
consuming and tedious, and these days it is better to use a computer. 
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12 THE VORTEX OF LIFE 

Since the summer of 1987 I have taken no more photographs. At that 
time I was gifted by the Margaret Wilkinson Research Fund with an 
electronic scanner which eliminates the necessity for photography. This 
remarkable machine not only does all one's calculations but also makes 
the measurements on which they are based. It consists essentially of a 
computer with a wide range of memory, an extra monitor screen and a 
TV camera. When the buds, mounted on their glass measuring plate, are 
put into the machine, an enlarged image of them appears on the com
puter screen, and from there a message is sent to the computer giving, 
firstly the x-y co-ordinates of the tip of each bud, then of its base, and 
thereafter of the left- and right-hand ends of each diameter, working 
from the base end upwards. This data goes into a new file for each bud, 
numbered from 1 to 20. The computer program then goes from file to 
file, works out the dimensions of the mean bud of the whole set, and 
delivers all the required calculations. 

When the machine arrived, it was found to give results satisfactorily 
consistent with those which were already being achieved by the most 
careful hand measurement and of equal reliability and accuracy. But 
where the machine really scores is in its speed of working. By using it, 
I was able to do between four and five times as much work in a set time 
as previously. After this, nearly all the work has been done with twenty 
buds per day instead of the previous ten, thus giving greatly increased 
reliability, whilst covering twice as many species. I should like to record 
here my very great thanks to the Margaret Wilkinson Research Fund for 
the great help to the work that this has meant. 

In the autumn of 1991, the Fund bought another such machine and 
this is now in use in the south of England. Just about the same time my 
friend, Graham Calderwood, of Camphill, Aberdeen, completed the 
construction of another similar machine, with which he has been doing 
most useful work. So since the beginning of 1992, we can hope to have 
results from at least three independent observers separated by five hun
dred miles of countryside. 

Lawrence Edwards 
Strontian, Argyll 



Introduction 

As we stand in life so we find ourselves immersed in a world which 
seems too wonderful for our comprehension. We find ourselves sur
rounded by questions to which we may, perhaps, come to despair of find
ing adequate answers. It was Rudolf Steiner (philosopher and scientist, 
1861-1925) who pointed out to us that this difficulty in comprehending 
our world stems from a peculiarity of our own human organization. The 
world confronting us is essentially a unity, an undivided whole; but we, 
as human beings, are condemned to apprehend it from two opposite 
directions; on the one hand there is that which comes to us through our 
senses, through seeing, hearing, touching and so on, the percept: on the 
other is that part of reality which we approach through our thinking, the 
concept. As long as these two things remain separate in our conscious
ness the world presents nothing but incomprehensible riddles to us. The 
act of knowing must be the activity of bringing these two aspects mean
ingfully together again. 

He pointed out to us the remarkable progress achieved in this direc
tion by the great German natural philosopher, Johann Wolfgang von 
Goethe. Goethe sought to immerse himself in the world of pure percept, 
with such devotion, and so selflessly, that out of these perceptions the 
concepts would speak themselves to him. He sought as it were to per
ceive his ideas in the living texture of nature itself. And the wonderful 
achievements which he inaugurated have been developed by others in 
our day into a whole discipline of what is sometimes called Goethean 
thinking. And if I now suggest that this is not the only way of approach 
which we may take to the realities of the world, it is not because I wish 
in any way to denigrate it. May I come, in time, to practise it more per
fectly than I can now! 

But I believe that there is another path. It was Rudolf Steiner again 
who called upon us to develop 'sense-free thinking.' To do this we must 
plunge ourselves into the world of pure concept. And if we do this, suf
ficiently concretely, and sufficiently imaginatively, perhaps we can allow 
the concepts themselves to lead us to their relevant percepts. To do so is 
to take our start from an exactly opposite standpoint from that adopted by 
Goethe. He wished, as it were, that he should perceive his ideas, working 
as living forces of nature; on the other hand it might be possible to make 
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14 THE VORTEX OF LIFE 

one's conceiving so concrete, and vivid, that it would encompass and 
illumine our perceiving. Perhaps we might be allowed to characterize 
such activity as being polar-Goethean thinking, in which case, the whole 
of this book is simply an essay in polar-Goethean thinking. 

In using this expression there can be no suggestion of trying to put 
forward some kind of antithesis of Goethean thinking. It is indeed just 
within that thinking, and also within our geometry, that we come to 
appreciate the peculiarly intimate relationship that exists between true 
polar opposites. They become for us twin aspects of the one essential 
reality. Speaking in this sense, to say that a person is practising polar
Goethean thinking would mean that he is being as Goethean as it is pos
sible for him to be! 

But Goethean or polar-Goethean, the end-result which is sought is 
the same: the truthful bringing together of inward thought and outward 
perception, the healing of the split which the limitations of our organism 
have imposed on our apprehension of an undivided world. (We call it a 
universe, do we not?) And when that which seemed to be two becomes 
one, then indeed we stand at the threshold of the act of knowing. 

But we speak of plunging into a world of pure concept. Where can 
this be found more truly and more directly than in the study of mathe
matics? Here indeed we enter a realm of self-existent conceptual reality. 
The danger in doing so is that we get carried away into regions of pure 
abstraction; bemused by our own cleverness we allow the symbols to 
become mathematical playthings, devoid of essential reality. But in the 
study of projective geometry, carried out properly, we have a discipline 
which can in a remarkable way imbue our thinking with imaginative 
reality, and this in its turn can cast much light on other realms of math
ematical thought. And this thinking can then become, I believe, a true 
illuminator of the way our perceiving should take. 

But I would like to try to express the matter somewhat differently. The 
question is sometimes asked: These invariant tetrahedra, these in-curv
ing and out-swelling logarithmic spirals, these twisting vortices, which 
we can conceive and describe through our studies of projective geom
etry, are they to be thought of as being really there in living nature? Now 
this is a question which I would rather not answer; in fact it is one which 
I would really rather not ask. I do not think it leads in the direction of 
truth. I think that things are otherwise. I believe that reality is something 
spiritual-physical, and that it is more wonderful by far than anything 
the mind can conceive or the eye ever see. But when this reality comes 
to expression in the mind of a mathematician it does so in the beautiful 



INTRODUCTION 15 

forms, some of which I have tried to describe in the following pages: and 
when it comes to expression in the outer world it does so in the manifold 
forms of living nature. And when we bring these two things together, 
being expressions of the same reality, we find that they fit. And when we 
bring them together, provided that we can summon the wit and the will 
to proceed properly further, we can find that we stand at the gateway (the 
gateway only, be it noted) of knowing. 

But on such a path we must proceed with the utmost circumspection. 
No hint of wishful thinking or fantastical prejudice must be allowed to 
cloud our judgement. Again and again, and ever again, we must put our 
questions to Nature. And when she answers 'No' this answer must be 
accepted unequivocally and absolutely. Balaam's ass was a wise teacher. 
And a negative answer, if it is heeded carefully, may sometimes be found 
to give a hint for further progress. Two instances of this are described in 
Chapters JO and 14. Other instances of straight-forward negatives I have 
not detailed; they would make dull reading. 

Now does all this mean that anyone aspiring to knowledge needs to 
become a mathematician? By no means! This is only one of several 
paths; and even on this, it is possible to let the results achieved illumine 
one's imagination, without mastering the details by which they have 
been achieved. Indeed, the non-mathematician may at times fare bet
ter; his imagination is free to roam, while that of his more technically 
trained brother runs the danger of getting bogged down in the mechani
cal details. 





1. Concerning 'Whole' and 'Straight' 

One of the principal problems confronting biology today concerns the 
fundamental nature of the living organism when considered as a whole 
thing. We have been accustomed so long to regarding the living being 
as a great conglomeration of cells, and each cell as an admixture of its 
constituent molecules, that it easily becomes almost second nature with 
us to see the living organism simply as an aggregate of its parts. Such 
a viewpoint, often labelled (sometimes one feels with a certain degree 
of denigration) reductionism, has undoubtedly been the source of many 
wonderful advances in knowledge, but it is necessary that we should 
realize its inherent, and very serious, limitations. One reduces the expe
rience of the living whole to the concepts of its various parts; but when 
one tries to put these parts together again, concept upon concept, the idea 
of the total living being all too easily evades one; one is left with sim
ply a physical mechanism, knit together in ways which are still totally 
incomprehensible. 

Many of our most percipient biologists have been coming to see, in 
recent years especially, that the living organism as a whole thing must 
be considered as something greater than the sum of its component 
parts. The separate parts must be there of course; but something else 
is needed, some overriding reality which takes these parts and organ
izes them into the close-knit unity which is the real living thing, and 
which has 'reality,' in its own right, just as truly as any of the parts 
which we can feel and handle. We may decide to speak of a 'network 
of relationships' or an 'organizing principle' or a 'body of formative 
forces' but the important thing is to see whether, by careful observa
tion and unprejudiced thought, it is possible to approach some idea 
of this overriding reality. I am not suggesting that the work which I 
am describing here has done more than open up the beginning of one 
possible way which one day may lead to a real vision of these things, 
but if it does only that, I should consider it to have been worth the 
doing. 

It was Rudolf Steiner who, many years ago, suggested that people 
who were concerning themselves with such matters would do well to 
study projective geometry; and this indication was taken up by just a few 
of his followers and friends (notably George Adams, to whom I am so 
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18 THE VORTEX OF LIFE 

much indebted) with definitely fruitful results. And as this present work 
is based almost wholly on projective methods it would perhaps be advis
able to say a few words about this geometry here. 

What is projective geometry, and how does it differ from other geo
metrical forms of thought? This is a question about which a whole book 
could well be written, and what I am about to say cannot be more than 
an incomplete and perhaps rather naive description of just one aspect of 
a wide-ranging matter. 

Right at the start of our geometrical studies we normally define a 
point as that which has position, but no magnitude. And if we consider 
an infinite set of such points, lying side by side, we have a line. Over 
two thousand years ago Euclid told us that if this line lies 'evenly' 
between its end points, then it is 'straight.' Now immediately we notice 
two things; firstly that the line is defined in terms of its constituent parts, 
and secondly that the quality of straightness is not defined at all. What 
is 'straight'? Well, it is 'evenly.' But if we had gone to Euclid and asked 
him, 'What is "evenly"?' I think he would perforce have had to agree 
with us that it means 'straight.' The thing is little more than a tautology, 
and it would give us no idea whatever of what straightness is, unless we 
had already experienced it as a concept before we ever started on the 
study of geometry. 

Now in projective geometry we take our start from a rather dif
ferent standpoint. We say that the primary elements of space are 
three: point, line (meaning always 'straight line,' otherwise we call 
it a 'curve'), and plane (the plane having in its 'flatness' a quality 
intimately connected with the 'straightness' of the line). Each of 
these elements is considered to be equally primary with the others; 
for instance a line can be considered as 'containing' an infinitude of 
points, but a point can also be considered as 'containing' an infini
tude of lines (all those which pass through it). And straightness (and 
with it, flatness) are not normally attempted to be defined. They are 
qualities which it is assumed that we have already intuitively expe
rienced. We must already know (or think we know) what the straight 
line and the flat plane are (and are like) before we start our studies. 
And strangely this, which in reality is the most difficult of all matters, 
normally causes the student least trouble. For we all 'know,' deeply 
and intuitively what straightness is, and whether a thing is straight or 
crooked. This was borne in upon me very incisively recently when 
I was speaking on just this matter to a roomful of mathematicians. 
I suddenly became aware that in the whole city in which we were 
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living, we were probably the only people who were not confidently 
and absolutely sure about this question! Had I gone to any man in 
the street and asked him whether he knew what straightness was, he 
would have considered me a fool even to have asked such a question. 
In a world filled with doubts and fears, everyone knows this! Yet in 
spite of such inner sureness, it is a concept which grows more and 
more elusive, the more one thinks about it. Those who hold that it is 
an elementary experience, incapable of being defined in terms more 
primary than itself, surely have a good case. 

At this point it would be useful to consider a characterization of geo
metrical study from a rather different point of view. During the past 
century the study of almost all geometry has been seen to be intimately 
connected with that of 'transformation'; this is true almost as much of 
the classical Euclidean geometry as of the many newer ones which have 
been developed. In modern topology for instance, many kinds of sophis-
ticated and very powerful transformations are studied. /\ 

This ---------- can turn into this ~ , and this ~ into 
this (:::;'.J without any sort of trouble at all. But if we go to the text
books and ask what it is that distinguishes a projective transformation 
from all the others, we are told in book after book that the projective 
transformation is 'algebraic.' And since this little word seems to be a 
vitally distinguishing one for our geometry it is well that we should look 
at it rather more closely. 

What do we mean when we say that a transformation is algebraic? 
It simply means that it is one which can be expressed by an algebraic 
equation. But this is another tautology! What does it mean to be alge
braic? Let us consider the simple equations of our school days: these 
xs and ys, what are they? They are certainly not numbers, because nor
mally they bear no fixed quantity. But we can say of them that they are 
quantityless elements, which nevertheless behave according to all the 
laws of number. And when we say that our projective transformations 
are algebraic, we are in fact stating that our geometry is one which 
works according to the laws of number. If we are looking for reasons to 
support our believe that the truths of projective geometry are specially 
significant we could at this point hark back to the ancient Pythagorean 
doctrine that the secret of number is the secret of all things, and that the 
universe peals with a cosmic music which at all times sounds forth as 
the nature of number. 

But it will perhaps be more useful for us to recall a little of our school
day algebra. We will remember that if we have any simple equation with 
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Figure I. Only those equations which have the indices of both x and y os unity 
(the indices are then usually not written) are able to produce a straight line as 
their graph. 

two variables, say x and y, we can express it as a simple graph. In Figure 
I we see three such simple graphs, with their relevant equations. As we 
look at them we become aware that the third has a unique quality which 
sets it immediately apart from the other two: it is straight whereas they 
are curved. And when we look to the equations to see where the differ
ence lies, we see that in the two curved ones, at least one of the vari
ables, x or y, carries an index (the little number up in the air), whereas 
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in the straight-line equation, no index appears. But this is something of 
an illusion; in reality every x and y bears an index, but where that index 
is unity (1) mathematicians do not generally trouble to write it; they 
allow it to be understood. (The art of mathematics is bound up with that 
of simplification; no mathematician worthy of his salt would like to be 
found guilty of making an unnecessary stroke on his page!) 

Now we can enunciate a general rule: whenever an equation has the 
indices of all its valiables unity, and only then, will its graph be straight. 
And here, I am beginning to feel, we have the possibility of making our 
way towards a definition of straightness which is perhaps even more 
primary than the concept of straightness itself. We begin to see straight
ness as that quality which is associated with oneness, indeed which may 
be looked on as the picture, so to speak, of oneness in our spatial con
sciousness. And in the deepest depth of my being, at the most primary 
level of all, I do know the difference between unity and plurality. And, 
fundamentally, I know this difference because I am an ego-conscious 
being. I know what it is to be One! 

Surely the significance of these things shows in the life around us. 
It is my ego-consciousness that separates me in the realm of soul from 
the beasts; and in the realm of space I am distinguished by my upright 
posture, that I can stand erect. It enters into our speech. When a man is 
honest, when what he says and what he means are one, then we say of 
him, that he is 'straight.' And when he means one thing and says another, 
we say that he is practising duplicity, and we call him crooked. We are 
bound up here with the whole question of integrity. When Christ cast 
the devil out of the man of the Gadarenes he asked him his name, and 
the devil replied: 'My name is Legion; for we are many' (Mark 5:9). 
This man was sick because he was many; to be healed he had to become 
one. How often in the Old Testament does one read that such-and-such 
a person was an 'upright man'; even as a child when this was read to 
me I never supposed that it referred to his posture, although today I can 
believe that he would also have held his head high. When Chlist asked 
of the suppliant: 'What would you that I should do for you?' we are told 
again and again that the answer was not: 'Lord, that I should be healed' 
but: 'Lord, that I be made whole,' made one. 

This set of interrelated concepts, wholeness, oneness, straightness, 
we come upon as soon as we follow the consequences of allowing our 
world of thought to be 'algebraic,' that is permeated with the essence of 
the laws of number, and it is this same quality which characterizes the 
nature of our projective transformations. Is it any great wonder then that 
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at the very heart of our projective geometry we find the intuitive notions 
of straightness and flatness? The projective geometer cannot take a sin
gle step without them. 

The fact that these relations hold good is borne out by the fact that 
for many generations of mathematicians any process or transformation 
which relies solely on the first powers of its variables has been called 
'linear'; and mathematicians have always realized that when they are 
dealing with linear functions or processes, they are working with some
thing of peculiarly fundamental significance. Now at the heart of pro
jective geometry there stand just two kinds of transformation which are 
linear; they are called collineation and correlation; they stand so near to 
the heart of the geometry that some purists would wish to regard as truly 
projective geometry only those things which arise from these two linear 
processes. In fact, by using projective methods, we can extend our stud
ies to include many other kinds of transformation of higher order (and 
therefore less fundamental) that are still algebraic, and most of us will 
wish to retain the freedom to include these things also in our projective 
studies. But the heart of the matter lies with the linear processes, and, for 
our purposes, especially with collineation. 

Collineation 

In Figure 2a we see a simple diagram, an equilateral triangle with its 
inscribed circle. In Figure 2b we see it transformed by a quadratic trans
formation, one which, if it were to be expressed in algebraic form would 
contain at least one second ( or squared) power of the variables. We 
notice the very dramatic nature of the change; the straight sides of the 
triangle have changed into a sort of 'cocked hat' form, and the circle has 
changed into another rather similar one within it. In this particular case 
something of the symmetry of the original figure has been preserved, 
but that is only because of the particular way in which the transforma
tion was applied. In a more general case the symmetry would also have 
completely vanished. In Figure 2c we see the result of submitting the 
original diagram to a collineation. Again the changes are marked and 
important, although not quite so dramatic. The circle has changed into a 
curve of quite different shape (in this particular case, an ellipse); the fact 
that it used to touch the sides of the triangle at their midpoints no longer 
holds; all traces of the original symmetry have vanished; the equality of 
the lengths of the sides of the triangle has gone; but what was straight in 
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Figure 2. Figure 2a has been transfor,ned into 2c by ,neans of a collineation 
( a linear transforn1ation) and the straightness of all straight lines has been 
preserved. A nzore sophisticated transfor,nation has been used to change 2a 
into 2b, and eve,ything has beconie curved. 
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the beginning inevitably remains so in the sequel. Collineation is a linear 
transformation and it will not surprise us that of all transformations it is 
this one which always recognizes and preserves straightness. 

All this places the collineation in a special position. It arises from the 
most fundamental and elementary processes possible in the whole realm 
of number relations, and it embodies these qualities in spatial change 
and movement. At the same time it is intimately involved with the qual
ity of straightness which we experience so deeply and intuitively out of 
the integrity of our own self-conscious being. Indeed I think we can say 
that it is a process which is very near to the foundation of being itself. 
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All the work described in this book, up to and including Chapter 8, has 
arisen completely from the study of collineation. Only in Chapters 9, 10, 
12 and 13, where we come to consider the ovary and seed-bearing activi
ties, and after them the embryonic development, has it been necessary to 
have recourse to a more sophisticated process, the pivot transformation. 
And even this arises as a direct consequence of the collineation itself. 

At this point the reader, after a casual glance through the book, might 
ask how it comes about that of the forms and surfaces pictured, so many 
are curved, and so comparatively few are straight or flat. Here we confront 
one of the remarkable aspects of this realm of thought. It is a fact that we 
have only to set the most simple and primary processes into action, to 
find, without our having to import any further complications, that more 
sophisticated considerations are already implied, inherent within them. 
And these first curves and curved surfaces, that thus arise, are probably the 
most elementary things of their kind which it is possible to find. 

We meet here a strange parallel with one of the troublesome problems 
of current biology. Darwinian evolution is often pictured as Nature's 
struggle towards achieving that quality which has been described as 
'fitness to survive.' But many of the primordial few-celled organisms 
have the greatest survival value of all. If the grand goal is really 'fitness 
to survive' one is driven to ask why Nature should ever have embarked 
on the perilous journey towards more complex organisms, which face 
much greater hazards from their environment. One finds in Nature a 
continuous urge towards ever increasing complexity which is completely 
unexplained by the law of the survival of the fittest. 

And here in the realm of pure thought it is not possible to set the sim
plest linear processes in action without having an increasingly sophisti
cated set of complications arise, as it were of itself. And these, arising 
as they do with a certain inevitability out of the most elementary linear 
processes, express themselves in the first instance as the path curves and 
surfaces with which this work is concerned. 

Before going any further we must spend a short time considering the 
polar opposite qualities of space. George Adams' work on what he some
times called positive and negative Euclidean space, or extensive and 
intensive space, was one of the outstanding contributions to the thought 
of our century. These things were worked out by him in very great detail 
but can only be touched upon lightly here. 

As was pointed out earlier in this chapter, projective geometry sees the 
primary elements of space as being threefold - point, line and plane - and 
it has frequently been shown that the first and last of these stand in polar 
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Figure 3. The circle of points can picture for us an extensive sphere; whereas if 
each line be taken to represent a plane, the totality of these lines will represent 
for us an intensive sphere. 
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opposite relation to one another. If in any figure made up of points, lines and 
planes, we interchange the functions of point and plane, we come upon a 
new figure which is in every respect the polar opposite of the first one, the 
lines playing a similar role in each of them. And we find that the new figure 
is an inside-out equivalent of the first one. 

It became an important task for George Adams to apply this process 
not to any particular figure, but to our concept of the whole of space 
itself. An observer in extensive space feels himself point-centred in the 
middle of his universe, and he looks out through the extent of space to an 
infinitude without-the so-called plane at infinity of our ordinary projec
tive text books. In intensive space he has to regard himself as a planar 
entity, in some sense a peripheral being, gazing inwards to a point
centred infinitude, the infinitude within. In extensive space, we find it 
convenient, and natural, to see our objects as being made up from points 
(atoms if you like) while the planes are formed from, and implied by, 
myriads of points. Whereas in intensive space the fundamental building 
blocks for our figures will be enveloping planes. 

These two spaces stand in polar relationship to one another, and as we 
study them we become increasingly convinced that extensive space, with 
its space-filling figures made up fundamentally of points, applies princi
pally to the physical world of objects; and intensive space, with its inward
looking and enveloping forms, made up in the first place from tangent 
planes, is more suited to what we may call the ethereal world of life. 

To take a simple example of such forms, an extensive sphere will con
sist of all the points contained on its surface and within it (Figure 3). Its 
presence will imply a whole set of planes - those which are tangent to 
its surface. Its inside is the space where its points are, and the outside is 
where they are not. On the other hand an intensive sphere is made up of all 
its tangent planes. It is a hollow and enveloping form. Its presence implies 
a whole set of points, the points at which each plane touches its surface, 
their points of contact. Its inside will be where the planes are (that is, what 
we, with ordinary consciousness, would regard as its outside) while its 
outside will be where its planes are not (what we would normally consider 
its inside). As the extensive sphere grows larger, its points will cover more 
and more space, until at last it will merge into the plane at infinity. As the 
intensive sphere grows 'larger' it will seem to ordinary consciousness to 
be shrinking, until it merges into the point at infinity within. 

With these thoughts in mind, let us consider an extensive line, that is, 
an infinite set of points, all bound together by the quality of straightness 
(Figure 4). As against this we can put the intensive line, that is, an infinite 
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Figure 4. An extensive line is made up of an infinitude of points. When this 
set of points loses all its straightness, it becon1es a tivo-dinzensional extensive 
curve, all the points still lying in one plane. 

set of planes all bound together by the straightness of the line which they 
all share in common (Figure 5). Notice that no matter from which point 
of space your eye views the intensive line, it will always lie in just one of 
its planes. The extensive line is infinitely big because it extends to infinity 
in both directions. The intensive line is infinitely big, not for this reason, 
although of course it does extend infinitely in each direction, but because 

Figure 5. An intensive line is made up of an infinitude of planes. 
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it contains an infinitude of planes. The extensive line is in a sense a space
filling entity; it is as though its points are saying: 'You cannot be here, 
because we are filling this space'; while the intensive line gives one much 
more a hollow feeling - it is like a receiver into which the qualities of all 
space flow, along its component planes. 

Now suppose we have an extensive line, but some transformation 
comes to bear upon it which causes its points to break free from the 
straightness which bound them together, maybe into some spiral curve. 
What would be the equivalent picture for an intensive line? Its compo
nent planes would unwrap into a spiral cone (Figure 6). This cone must 
be imagined entirely planewise; it consists only of its tangent planes, 
each lying in the central common point, just as the extensive curve con
sists of points each lying in the common plane of the page. 

Figure 6. When the set of planes forming an intensive line loses its straightness 
it becomes a two-dilnensional intensive cone made up entirely of its tangent 
planes, two of which are drawn here. All these planes lie in one point-the apex 
of the cone. 
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Figure 7. Straightness: An extensive expression of the principal of oneness. The 
radiant line: An intensive expression of the principle of oneness. 

In plane geometry these things have a two-dimensional equivalent. 
Here the polar forms are simply point and line, and these have to be seen 
as each being equally primary as the other. In as far as I see a line as an 
aggregate of points, so I must be prepared to see a point as an aggregate 
(a meeting place) of lines. This latter picture was named by Leonardo da 
Vinci, with something that seems almost like a cry of joy in his notebook 
on perspective, the radiant line. 

I set a series of points 'in line,' that is, I link them by the principle of 
oneness. Then I say that they are straight. Straightness becomes for me 
an extensive picture of this unity principle. 

I set a series of lines 'in point.' Again I have linked them by the prin
ciple of oneness; and I can now speak of the radiant line. And in this I 
have an intensive picture of this same unity principle (Figure 7). 



2. Straightness in Action 

In the previous chapter we have developed a whole set of ideas about 
straightness, but it was all done in concept. How about our perceptual 
world? Where do we see straightness, or its approximation, in our sur
roundings? We see it in a multitude of places: the edges of our tables 
and desks, the posts and lintels of our doors, in wall, floor and ceiling, 
in mast, tower and spire. In fact it might be argued that if we had not 
experienced at least some of these things, quite nafvely, a large part of 
the preceding chapter would have been completely incomprehensible to 
us. But all these things are artefacts of man. Can we find it in nature? 
Now this is not so easy. Living nature hardly ever exhibits it exactly, 
although in the stems of plants we are probably justified in seeing a real 
striving towards the straight. Occasionally we find it in the mineral, for 
instance the edges and faces of a crystal. But in one phenomenon nature 
expresses this quality for us with great exactness over and over again. It 
is in the edges of a beam of light. In the beam of light I believe that we 
get an archetypal experience of straightness. 

In Figure 8 we have a diagram which could have been taken from the 
early pages of almost any textbook of elementary projective geometry. 
We have two lines, m1 and m2, and a raying point 0. * And we have a 
transformation of the points of m1 into those of m2; A1 transforms into A,, 
B 1 into B2, and so on. This elementary transformation is called perspec
tive. It is related only loosely to the artist's laws of perspective, but the 
use of the word is evidence of the early projective geometricians' clear 
perception that we are dealing here with the fundamental laws of light. 
And the study of projective geometry starts with examining the changes 
in distance relationships which take place (and more especially those 
which do not take place) between the points of m1, before transforma
tion and those of m,, afterwards. And now we can see that this process 
is wholly linear; the points of m1 are in line; so are those of m

2
• They are 

straight, extensively. The lines joining A1 to A2, B1 to B2, and so on are 'in 
point'; we could say, if we wish, that they also are 'straight,' intensively. 
The thing is permeated with this principle of oneness; nothing else is 
allowed to work into it. 

* We shall follow the convention that points are always labelled with capital letters, and 
lines with small ones. 

30 
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m, 

Figure 8. The fundamental projective transformation works by the raying of 
linesfronz a point. It is silnilar to the working of light in space. 

An ordinary slide show is a three-dimensional equivalent of this. The 
line m1 represents our transparency, m2 our screen, and point O our pro
jector. Our science is not called 'projective' geometry for nothing; again 
we see how truly we are working in the realm of light. If the slide and the 
screen are parallel the transformation is one of pure enlargement; all the 
shapes and proportions are unchanged; the image on the screen is sim
ply bigger; and this is how we like it! But if we set the screen at various 
other angles with the slide we can produce all sorts of distortions of the 
image. Well, this is not strictly true; no matter how wildly we distort the 
image, one distortion will never be achieved: a line which was straight 
on the slide will always be straight on the screen. It is a linear process; 
straightness is recognized, and preserved; it is sacrosanct. 

But let us return to our two-dimensional example. It would be per
fectly possible to repeat the process and perspect the points of m2 from 
a second source of light, on to a third line or, more interesting for our 
present purposes, back on to the line m1 from which they came. 



3. Path Curves in One 
and Two Dimensions 

Growth measure 

We are now going to take some of the questions posed at the end of 
Chapter 2 and subject them to much closer attention. Let us look back to 
Figure 9. There we found a simple method of transforming the points of 
line m; A, transforms into A2, and obviously any other general point of 
the line can similarly be transformed into another point using exactly the 
same process. We considered the possibility, after we have transformed 
A, into A2, of transforming A2 into another point A3, and then transform
ing that into yet another, which we call A4 , and continuing this process 
indefinitely until we arrive at a series of points which would show suc
cessive positions of point A under repeated applications of the same 
transformation. What would such a series of points look like? And would 
it have any special mathematical qualities? 

In Figure 10 we show a line m, with one of its points treated in just 
such a way. We find that we have a series of points which are quite 
widely spread in the middle part of the line, and more narrowly spaced 
to the right and to the left of this middle section. On more careful exami
nation this proves to be a very important geometrical form and one pos
sessing some remarkable properties. George Adams called such a series 
of points a growth measure, and we shall continue to do so after him. 
The appropriateness of the name will become increasingly apparent as 
our studies proceed. 

This one-dimensional collineation is entirely linear in character and it 
is the simplest and most elementary way possible of transforming a line 
into itself; it has only to be applied over and over again to set every point 
of that line moving in growth measure. 

Now when a mathematician comes upon any transformation which 
causes the elements of some form to change, one of the first questions 
he asks himself is whether there will be any elements of that form which 
will not change, which will be invariant, under that transformation. The 
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m 
ym 

Figure I 0. We find the 'history' of point A under repeated applications of the 
san1e transfor,nation. 

case of the collineation of a line is such an important and basic one that 
it has been minutely examined, and the answer to our question is to be 
found in all the elementary textbooks of projective geometry. There is 
not space here to go into all the reasoning which is involved; we will take 
it as a given fact: In any projective transformation of a line into itself 
(that is collineation) there will always be - must always be - just two 
points which do not move, which are invariant. In Figure IO we find 
these points at X and Y, where the intermediate line i, meets the base line 
111, and where the line joining 0 1 to 0 2 meets the base line. 

Geometric series 

Now it is a remarkable fact that if we take a projection of such a growth 
measure from its line 111 on to some other line, according to the process 
shown in Figure 8, in such a way that either one of the fixed points X or 
Y is projected to infinity along that line, then all the points of the meas
ure take up positions along a perfect geometric series, their distances 
being measured from the other fixed point as zero. To do this, makes a 
somewhat complicated diagram, but there is an easier way to proceed. 
We can redraw Figure 10, taking care that we make the line joining 0 1 

to 0 2 parallel to the base line 111. This diagram is so easy to draw, and so 
fundamental in its implications, that you are strongly urged to make it 
for yourself (Figure 11 ). If, having done this, you take the distance XA4, 

and divide it by the distance XA3, you will have found the number by 
which you must multiply XA3 to transform it into XA 4 • And if you do the 
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x 

Figure 11. A sitnple growth measure produces a perfect ,nultiplicative se
quence as soon as the line joining O 1 to 0 2 is ,nade parallel ·with the base line 
of the ,neasure. 

same thing to any other pair of consecutive points along the line, you 
will be led, within the limits of the accuracy of your drawing, to exactly 
the same number. Your points A 1 A2 A3 etc. have fallen into a perfect 
multiplicative sequence, and no matter how accustomed we become, 
in the course of time and experience, to this wonde1ful fact, we should 
never allow familiarity to blunt the edge of our wonder. For notice that, 
apart from making the line 0 1 0 2 parallel with line m, Figure 11 was 
produced without any regard for number or measure; it could all have 
been done with an ungraduated straight edge alone. Yet the end result is a 
series of points which is permeated with number relationships, and these 
relationships are of the nature of the process of multiplication. When we 
placed points O 1 and 0 2 and line i on our page we were, consciously or 
unconsciously, choosing the number by which our transformation was 
going to multiply. The actual process of multiplication, as we know it 
in elementary arithmetic, does not appear until one of the fixed points 
stands at infinity. But the quality of this process is already there in any 
general growth measure. 

Notice that any growth measure contains an endless number of 
points. Point A will have to take an infinite number of steps before it 
reaches to Y, and it has already taken an infinite number in emerging 
from X. Such a measure is called, in some of the textbooks, a hyper
bolic metric. 
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Step measure 

It is perfectly possible to perform the above construction in such a 
way that we ensure that the two fixed points become coincident. We 
then have just the one double point, X = Y. and the line 0 1 0 2 must 
pass through it; so, from another direction, must the line i. Making 
such a construction we find that we have a measure of points which 
streams out from the fixed point X = Yin one direction, passes right 
through infinity and crowds in again towards X = Y from the other 
side (Figure 12). 

Following George Adams we shall call this a step measure. For, 
if we now project the fixed point to infinity, as before, we shall find 
that all the other points take up exactly equally spaced positions 
along the line. The step measure contains the qualities of addition 
(Figure 13). 

When we were at school we were taught to add first, and then 
multiplication was shown to us as the result of repeated addition; we 
saw multiplication as a higher, or potentized, form of addition. And 
this is a perfectly valid viewpoint in its own right. But in dealing with 

,, ,, 

Figure 12. We ,nake the invariant points coincide, and ive find that point A 
1noves in step ,neasure. 
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"" 9 

Figure 13. We construct on line ma step ,neasure using the ,nethod of Figure 
12. This step ,neasure has its invariant point, X = Y, and goes frornP 1 to P 5 

and thence through infinity to P6 and so on to P9. Next 1--ve project this ,neas
ure on to line n in such a lvay that the invariant point goes to infinity along 
linen. This is easily done; we put the projecting point O anywhere on the 
page provided that the line joining it to X = Y is parallel to line n. The result
ing projections, points Q, to Q9, are then found to be exactly equally spaced 
along line n. 

these archetypal scales we are coming near to the bedrock of thought, 
and here things appear differently. We say to a line 'Transform!' Left 
to itself, it will multiply. Only when we impose our will upon it, and 
force it to do it in some special way, will it add. We can begin to see 
multiplication as the archetypal process, and addition as a 'fallen' 
aspect of it. 

Perhaps the fact that all living nature grows by the laws of multiplica
tion, and that only when we come to the mineral world and to the prod
ucts of man-made machines do we find the additive element in the world 
around us, may link itself with these facts in our minds. 
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Two-dimensional path curves 

Next we must ask what is the two-dimensional equivalent of this. What 
happens if we let a whole plane transform on to itself, and we go on 
applying this same transformation again and again? 

Firstly the elementary textbooks of projective geometry show that 
there must be just three points which are invariant, and these stand at 
the corners of any triangle, which has been chosen by the particular 
transformation which is at work. We can call this the invariant triangle 
XYZ. This triangle will be found to have each of its three lines covered 
with growth measure, moving between the invariant points of that line. 
And if we join each invariant point to the points of the growth measure 
which stands opposite to it, we find that each invariant point contains a 
growth measure of lines. 

Considering Figure 14, since X remains invariant, and A moves to B, 
the line XA (= a) moves to XB (= b). Similarly the line YS moves to YT. 

Figure 14. Growth measures 1noving along the sides of the invariant triangle 
generate path curves across the rest of the plane. 
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It follows that the point M must move to the point N. By following the 
diagonals across the little quadrilaterals formed by the net of lines, we 
can trace the curve which shows the successive positions of the point M 
under repeated applications of this transformation. Obviously a whole 
lot of other points can similarly have their histories traced from this one 
diagram; in fact the whole plane becomes covered with such curves. 
These are the path curves discovered and published by Felix Klein and 
Sephus Lie in the nineteenth century. 

Before we go on to study them in greater detail we must note how 
wonderfully this process is balanced between the extensive and the 
intensive qualities of space. We have three growth measures of points set 
'in line' - extensively 'straight' - and three growth measures of lines, 
set 'in point' - intensively 'straight' - and out of their weaving there 
arises a whole set of beautiful curves. Figure 15 shows a typical set. This 
diagram represents the simplest, most elementary, set of curves which 
it is possible to envisage, that is those showing the movements caused 
by the simple one-to-one transformation of any plane onto itself. We 
can think of it as a two-dimensional growth measure. But whereas the 
growth measure treats its invariant points symmetrically, moving in to 
one, and out from the other, in exactly the same sort of measure, this one 
treats its invariant triangle asymmetrically. All the curves pass through 
two of the points, and none through the third; all of them are tangent to 
two sides of the triangle and none to the third. 

We must remember that whereas every general point of the plane is 
moving, under repeated applications of the transformation, around the 
curve on which it finds itself, the points on the lines of the invariant 
triangle, XYZ, are each moving in growth measure along their lines. In 
fact, these lines may be considered as special 'curves' of the family. 
And along each of these lines the movement is an expression of some 
'multiplier'; this will only appear to our naive consciousness as ordinary 
multiplication, of course, when one of the points of the triangle is at 
infinity; nevertheless the spirit of the process is present in every case, 
and the multiplier in question can be found by ways which are described 
in the Appendices. 

Further study shows us that the shape of the entire family of curves is 
determined by the multipliers which are working along any two sides of 
the triangle. Details of this are somewhat complicated and will be found 
in Appendix 2, but putting it very briefly we can say that if we take the 
ratio of the logarithms of these two numbers, this leads us to a number 
(or parameter) to which we give the name lambda A (the Greek letter L); 
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Figure 16. Tivo fields of path curves having the Cartesian axes and the line at 
infinity as their invariant triangle. 

organism; the substance of which it is made was not in it yesterday, and 
will not be in it tomorrow; as far as its matter is concerned it is in a state 
of continual flux; the substance flows in and flows out; if the organism 
was simply its substance we would not be able to recognize it from one 
day to another. Yet its being and largely its form are invariant from one 
moment to another, and from one day to another. The form can live 
within the flux. Something greater than the substance takes it up, moulds 
it, uses it, and then casts it away. 
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Figure 15. A set of path curves. 

and that the value of A informs us of the form of the complete family 
of curves. For instance, if the multipliers along two of the sides happen 
to be equal to one another, that is A = 1, then the curves become conic 
sections - ellipses, hyperbolas and an occasional parabola thrown in 
for good measure. The farther A departs from unity the more sharply do 
these curves leave the form of the conic section. In the ordinary way we 
are accustomed to regard the conic as the most elementary and funda
mental kind of curve which it is possible to find, but now we learn to see 
it as simply a special case of the much more general path curve. 

Now, looking at Figure 15 we have to ask ourselves: What actually is 
invariant here? The answer is that not only the three points and lines of 
the triangle, but the whole set of curves, in its totality, is invariant. For 
notice that whereas, apart from the triangle itself, every point and line of 
the plane is in movement, all the points (and tangent lines) of each curve 
transform into fresh points (and tangent lines) of the same curve. Each 
curve, taken as a whole thing, remains invariant, in the same sense as the 
invariant lines of the triangle, taken as whole things, remain invariant. 
In fact the lines of the triangle can be taken as special, degenerate, cases 
of the curves. 

We have a plane in which everything is moving. What can live, can 
hold itself intact, within the flux? It is the whole set of path curves, and 
nothing else! Qualitatively we have a similar situation in any living 
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Figure 17. Tivo ,norefields of path curves, this tbne having t1vo of their 
invariant points finitely placed, and one at infinity. 

roots of the negative numbers, and they have, rather unfortunately, been 
named imaginary numbers; unfortunately, because of all things in the 
realm of thought these are probably least able to be visualized with the 
pictorial powers of true imagination. More unfortunately still, the num
bers we have known from our childhood were then called real, which 
gives one the very untrue impression that the imaginary numbers are 
somehow fake. However, this terminology is so firmly fixed by tradition 
now, that we must continue to follow it. 

Once the possibility of imaginary numbers had been realized, and the 
rules for working them had been discovered, all in the algebraic realm 
be it noted, the search was on for their spatial representatives, the imagi
nary points, lines and planes. Today these are well-known, and can be 
manipulated at will. They are, by their very nature, for ever invisible, and 
beyond the range of visual imagination, yet their presence is very real, 
working from behind the scenes as it were, to influence the forms which 
appear on our diagram. 

We will not go into the details of their working except to point out that 
they always come as the result of taking square roots, and square roots 
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Although in the normal way a set of path curves will resemble Figure 
15, there are cases where the appearance can be quite different. One 
such case arises when both points X and Y move off to infinity forming 
an infinitely large invariant triangle. Figure 16 represents a weaving of 
two such sets of curves, formed by two different transformations work
ing through the same invariant triangle. The growth measures along the 
x- and y-axes are here true geometric series, and it is thus a very easy 
diagram to draw, and the reader is encouraged to try it. Great variation is 
possible. If the multipliers along the axes are equal to one another then 
we get families of hyperbolas and parabolas; in all other cases we get 
curves which look superficially similar but have quite different math
ematical qualities. It is not necessary that Y should go off to infinity in 
a direction at right angles to that in which X has gone; in other words 
the axes may be inclined to one another at all sorts of angles, and this 
introduces most interesting variants. 

Another important case comes when we keep both points X and Yon 
the page, and let Z move off to infinity. Here we get a family of egg-like 
curves which will prove to be of great importance in our further studies. 
The sides of the invariant triangle are now parallel (meeting Z at infin
ity) and the growth measures along these sides are true geometric series, 
starting at X and Y. If their multipliers are equal then the 'eggs' will be 
elliptic - neither blunt nor sharp at either end. But this is a special case. 
Normally one will be larger than the other, and the sharp end of the 'egg' 
will always point towards that side which has the larger multiplier. In 
Figure 17 this is the side passing through X. Here again it is not neces
sary for the line XY to be at right angles to the parallel lines through X 
and Y and many interesting variants can be drawn. 

We have seen from our studies so far that these beautiful families of 
flowing path curves have a wide range of variations in the appearance 
they can present to us; nevertheless their possibilities are strictly limited. 
The things they cannot do, and the kinds of form which they cannot 
assume, are far more numerous than those which they can. It may sound 
paradoxical, but it is true, to say that they are infinitely variable within a 
strictly limited range of possibilities which we have not yet mentioned. 

To describe these we will have to touch upon a matter which non
mathematicians often find hard to visualize. We have seen in the first 
chapter how our projective geometry, through its algebraic quality, is a 
spatial expression of number relationships. During the past few centuries 
mathematicians have discovered the possibility of quite other kinds of 
number than those with which we ordinarily count. These are the square 
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always come in pairs. The square roots of 9 are +3 and-3, and so on. So 
it comes about that in the normal way, imaginary points, lines and planes 
come in pairs. Thus it can happen that a path curve transformation is 
such that it has a so-called imaginary triangle for its invariant organism; 
that is to say, a triangle consisting of one real point, and one imaginary 
pair. In such a case the form of the visible path curves become very much 
changed. Figure 18 shows a typical field of such curves. The real invari
ant point is at Z, and the imaginary pair, X and Y, must be envisaged as 
floating insubstantially in cyclic movements along the line where they 
are marked. The rest of the plane is filled with sweeping vortex-like 
curves of great beauty. 

Further variation is then possible. If the real invariant line of the tri
angle, that is the one containing X and Y, moves out to merge into the 
line at infinity, and if X and Ybecome a special pair of imaginary points, 
well-known to mathematicians as the Absolute Circling Points at Infinity 
( called I and J), then the path curves become logarithmic spirals (Figure 
19). This is the first place where we see these curves showing themselves 
in the realm of living nature, for they are similar to the patterns which 
we see in the seedhead of the sun flower, and, rather less exactly, in the 
centres of many daisy-like flowers. 

Figure 18. A general.field of path curves ivith respect to an ilnagincuy triangle. 
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Figure 19. Afa,nily of path curves with respect to an invariant triangle 
of which two points have beco,ne itnagina1y. In this particular case the 
inzaginary points are I and J 011 the line at infinity and the curves are 
logarithmic spirals. 

These spirals may curve outwards, away from their centre, more or 
less steeply, according to the particular transformation which is at work. 
A possible limiting case is found when the outward striving becomes 
zero, and the curves become circular. So we see that our old friend, a 
family of concentric circles, is in fact a set of path curves with respect 
to an imaginary triangle. 



4. Path Curves in Three Dimensions 

When we come to transform the whole of space by this simplest possible 
projective transformation we find, from purely geometrical considera
tions, that there must always be just four points which remain invariant, 
and these stand at the corners of some tetrahedron (a triangular-sided 
pyramid) which is picked out for us by the particular transformation 
which we are using. This tetrahedron is made up of four points, six 
connecting lines, and four planes; it is thus self-dual, that is, the points 
and planes play similar roles, and therefore the invariant organism is 
perfectly balanced between extensive and intensive space, as we have 
seen is true also with the two-dimensional cases. 

We next find that all the points of these six invariant lines will be 
moving in growth measure along their lines between the invariant points 
of those lines, and all the points situated in the planes (sides) of the 
tetrahedron will be moving in two-dimensional path curves within their 
planes. All the other points of space will be moving in a set of beautiful 
path curves which weave through all of space, all such curves passing 
through two of the points of the tetrahedron, and all avoiding the other 
two. Figure 20 is an attempt to portray a simplified version of this very 
complex and beautiful configuration. Only one space curve, of the infini
tudes present, is shown (in dark) passing into, through and out of, the 
tetrahedron, with a cusp at Y. Just two of the four families of plane curves 
are indicated (in light), belonging to planes XYZ and YZW. 

I have never seen anything in the realm of nature which seems to me 
to resemble such families of curves and we will not spend further time 
in describing them here. 

But when we come to the semi-imaginary case things stand very dif
ferently. Here we have two of the invariant points become imaginary 
while the other two remain real, and therefore visible. This can happen 
in various ways; we will describe one of the most fundamental and ele
mentary of them. Starting from Figure 20, we will keep points X and Y 
real, and here, and imagine the line XY, which of course will also remain 
real, to be vertical. Now let us imagine the line WZ to recede further and 
further into the distance until it merges into the horizontal line at infin
ity. In the course of this we can see how the planes XZW and YZW will 
be sloping toward one another less and less steeply, until finally they 
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Figure 20. One of a family of three-dimensional path curves set within its 
invariant tetrahedron. 

become parallel horizontal planes through X and Y (Figure 21). Zand 
W, becoming imaginary, and merging into I and J (seep. 45) now func
tion as groups of cyclic transformations, circling in the horizontal line 
at infinity, which line remains as a real line of the invariant tetrahedron. 
The other four lines and two planes disappear into the imaginary. The 
two real invariant planes will be filled with path curves having the imagi
nary invariant triangles XIJ and YIJ. We have already seen what these 
would look like - logarithmic spirals as shown in Figure 19. Figure 21 
pictures what this invariant tetrahedron would look like, in as far as we 
have so far described it; for the sake of simplicity only one spiral of each 
family has been drawn in. 
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Figure 21. The semi-imaginary case. The invariant planes XZW andYZW of 
Figure 20 have beconze parallel horizontal planes through the invariant points 
X andY. 

But this is only half the picture - the extensive half. We have seen in 
two dimensions how the invariant organism is always self-dual, that is, 
perfectly balanced between its extensive and intensive aspects, and the 
same thing holds here. If we look back to Figure 6 we see how a point 
can be regarded as a little two-dimensional world, holding a spiral cone 
of planes in the same way that a plane holds a spiral curve of points. 
And here we see it in action; just as the parallel invariant planes of the 
tetrahedron hold spiral curves of points, so the invariant points, X and Y, 
hold spiral cones of planes; and these cones are incident with the curves. 
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Figure 22. Looked at intensively, the extensive picture of Figure 21 reveals two 
fa,nilies ofinte1penetrating spiral cones held in the invariant points X andY. 

Figure 22 pictures this in a partial way. To complete the picture one 
would have to see in one's imagination not just one spiral cone radiating 
from X and from Y, but a whole infinite family of such from each. 

This tells us how the points of the invariant planes, and the planes of 
the invariant points, move within the transformation, but how about all 
the other points and planes of space? They will be moving, each in its 
own path curve, which will assume a corkscrew form, winding endlessly 
out of one of the invariant points, around and around the central axis, 
and endlessly into the other one. And if one asks how these windings 
are controlled, the answer is that they take place on the intersections of 
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Figure 23. The path curve followed by any general point of space lies on the 
intersection ofhvo spiral cones. 
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these interpenetrating spiral cones. Spatially the matter is very complex 
and not easy to hold concretely in one's imagination. Figure 23 is an 
attempt to picture just two of such cones, meeting on such a spiral curve, 
winding in front of, and then behind, the central axis. And now one must 
enlarge one's picture to include all the points of space, both between the 
invariant planes and outside them, to be behaving similarly. 

But here we must enlarge the range of our ideas still further. Every 
time we move into a new dimension the range of possibilities increases. 
We have seen how in two dimensions the set of path curves forms a 
kind of invariant organism which can live within the moving flux of the 
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transformation - they are the invariant curves of the transformation 
- so now in three dimensions we can have not only invariant curves, 
but also invariant surfaces. These surfaces are of great beauty, and can 
be immensely complicated, but always they are completely covered 
with path curves. All their points, and their tangent lines and planes, 
are in constant movement, but as they move they remain on their sur
face which, itself, remains unchanged. The simplest, and probably the 
most fundamental of these surfaces is fairly easily envisaged. Imagine 
a plane somewhere between the two invariant planes and parallel with 
them, and in this plane a circle whose centre lies on the point in which 
the central axis cuts the plane. And now consider the set of path curves 
which go through all the points of this circle. Imagine the infinitude of 
them, all there, lying side by side. They will form a surface in space, and 
when one plots the form of it, it turns out to be, in the general case, egg
shaped, rather sharper at one end and blunter at the other; and of course, 
by the very way in which it has been made, completely covered by the 
path curves which have generated it (Figure 24). All the elements which 
go to make this surface (points, lines and planes) are continually moving, 
but they move in such a way that the form of the egg remains invariant 
within the movement. There are other invariant surfaces possible within 
this transformation, but many of them are little more than variants on 
this one; the egg, with the infinite possibilities of spiral families upon it, 
is probably the simplest and most fundamental of them all, and must be 
considered as an archetypal form of all space. 

Next we must consider the families of logarithmic spirals which appear 
on the top and bottom planes of the invariant tetrahedron, in more detail. 
These curves appear by projective processes which are similar in nature to 
those which produce the growth measure. Looking back to Figure 19 we 
see curves which tum about their centre, Z, in such a way that their distance 
outwards from Z increases by a constant multiplicative factor, for any given 
angle turned. The size of this factor naturally varies, for any given curve, 
with the size of the angle turned, by means of which one has decided to 
measure it, but it will then remain constant for measurements on all other 
parts of that curve. We can thus speak of a logarithmic spiral as 'multiply
ing' by a certain number. It is the number of times by which its distance 
outwards from the centre increases for every radian* turned, and it is the 
same for all the members of any given family of path curves. When our 

* A standard measure of angular turning which is found to be the most fundamental 
and 'natural' unit of angular measure which one can apply to such a case. It is slightly 
more than 57°. 
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Figure 24. One of the most archetypal and prima,y forms of space is the egg, 
having its sha,p and blunt ends on the invariant points ofX andY, and covered 
with an infinite family of path curves. 

transformation, according to its nature, fixes a multiplier for its logarithmic 
spirals, the form of the whole family of curves is completely determined. 

Now there is nothing in the path curve process which ensures that the 
multipliers on the top and bottom invariant planes must be the same as 
one another. In fact, unless we have done something very definite about 
it, they will be different. And this difference completely determines the 
whole form of the path curves and invariant surfaces with which that 
transformation fills space. 
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The situation here is closely parallel with that which we met when 
studying Figure 14. If we make a fraction, putting the logarithm of the 
multiplier for the top plane over that for the bottom, we get a param
eter, A, which informs us of the complete shape of the resulting forms 
(seep. 41). If we ask 'What is A?,' then we may say that it is a number 
which represents the relative speeds of winding inwards and outwards 
of the spirals in the top and bottom invariant planes, or, what comes to 
the same thing, the relative speeds of unwinding of the interpenetrating 
spiral cones of Figure 22. 

The above is a rather simplistic and partial explanation of what is a 
considerably more complicated matter, but it should be enough for the 
reader to get a true feeling for the meaning and significance of what fol
lows in the rest of the book. Those who want greater detail are referred 
to the appendices. 

We must next examine the significance of A in the field of visible form. 
To do so we will cease to picture the forms in full perspective as in the last 
few figures. Instead we will depict them in orthogonal perspective, that 
is, in elevation. This is to see them as they would appear from an infinite 
distance seen through an infinitely powerful telescope, with our eye in 
the meeting line of the two horizontal invariant planes. These planes now 
appear as two horizontal lines passing through the top and bottom poles of 
the egg. The spirals in these planes now cut these lines in points in growth 
measure, that is, in geometric series. We are now back to Figure 17; set the 
forms which are portrayed there into rotation about the central axis, XY, 
and you have the true egg form which we are dealing with here. 

When the multipliers on the top and bottom planes are equal to one 
another, that is, when A= 1, then the egg-form is neither blunt nor sharp 
at either end; it is elliptical in cross-section (Figure 25). As A increases 
above 1, the top end gradually sharpens and the bottom end correspond
ingly becomes blunt. When A is high (say over 3), the form becomes 
quite tense-looking - very sharp at one end and very blunt at the other. 
As A sinks below 1, the same set of forms is repeated, but now upside 
down. It works inversely; A = 1/ 2 gives the same shape as A = 2, A = 1/ 3, 

the same as A = 3, and so on. As A approaches zero, the form becomes 
exceedingly sharp below and blunt above. When A = 0 (which can here 
be taken as the inverse of infinity), the thing straightens into a cone. 
Then as A passes the zero mark and becomes a negative number, the cone 
curves itself into a beautiful vortex form. So we see that in this context 
the negative of an egg is a vortex, a fact which proves to be of tremen
dous significance in the fmther development of the work. 
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>..=-0.5 

Figure 25. The sbnple process of dhninished A causes the Jann to pass through 
an 'opening' gesture. 

Here again it is important to stress that although with the variation of 
A from -oo to +oo we have a spectrum of forms, from vortices to eggs, 
which are infinitely variable, this variability is available within strictly 
limited confines. For instance the degree of sharpening and bluntening at 
the two ends of the egg is always exactly balanced. One can never find 
one which is very sharp at the top and slightly blunt at the bottom, or 
slightly sharp and very blunt, or sharp at both ends, or blunt at both. The 
things they cannot do are far more numerous than those which they can. 
And similar restrictions apply to the vortices. 

We must be aware that a transformation of the kind we are studying 
never confronts one with a single egg, or vortex, in isolation; always 
there is a whole field of them, filling all space, and lying one within the 
other rather like the Russian dolls of our childhood. Figure 26 depicts 
such a field as far as it is possible to do so in a two-dimensional dia
gram. To imagine the thing in its three-dimensional reality one would 
have to see the whole thing rotated about the vertical central axis. In 
this particular drawing A has a value of 3, so the forms are moderately 
sharp and blunt. Egg-forms proper, as we know them in ordinary life, are 
found between the invariant planes; outside these planes lie forms which 
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Figure 26. Afield of eggjorms seen in orthogonal perspective. 

I sometimes call 'hyperbolic eggs'; their upper and lower parts join up 
with themselves at infinity rather in the manner of hyperbolas, but they 
retain the same amount of sharpening and blunting at their poles as the 
ordinary eggs. We can see from this that A definitely does not control the 
shape of these forms, as shape is ordinarily understood. They all have 
the same A but the inner forms are long and thin, while the outer ones are 
wide and fat. A controls the quality of the form; they are all equally sharp 
and blunt. It is true to say that whenever A becomes very large, or very 
near to zero, the forms tend to become tense and straightened; but when 
A is near to unity the forms become relaxed and gently rounded. 

Next we must think in a little more detail about the spiral curves 
which lie upon these vortex- and egg-forms. The quality of the curves, 
in particular the steepness with which they spiral round their form, is 
given by another parameter, which we usually call e (epsilon). When e 
is zero, the spirals degenerate into horizontal circles girdling their egg
or vortex-like lines of latitude. As e increases the curves spiral upwards 
with ever increasing steepness, until as e approaches oo they tend to 
become upright, like lines of longitude. The curves spiral infinitely out 
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e = 0.2 e = 1.0 

'}.. = 1.2 '}.. = 2.5 '}.. = 5.0 

Figure 27. The top eggs both have A= 2.5 but es of0.2 and 1.0. The lower eggs 
all have e = 0.2 but AS of 1.2, 2.5 and 5.0. 

of one pole and infinitely into the other, never reaching either in a finite 
number of steps. Each particular egg or vortex is so formed that it can 
be covered by an infinite family of curves in infinitely different ways 
- one for each value of e between O and = (Figure 27). 

We will close this short description of the three-dimensional path 
curves and surfaces with a few words about what happens when one's 
transformation is such that the invariant tetrahedron becomes all-imagi
nary - as far as that is possible. In such case, all four points and planes 
become imaginary, and also four of their six connecting lines, but the 
other two, which are a skew pair (not meeting one another) remain real. 
We can place these two lines in any relationship to one another which 
we wish, provided we keep them apart, but we will describe here only 
the case which is simplest to visualize, and probably most fundamental, 
when one of them is a vertical central axis, and the other is the horizontal 
line at infinity. 
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Figure 28. The Chalice Swface, generated from path curves with respect to an 
all-imagina,y tetrahedron. 

One can ask what happens to the egg if the points of accumulation at 
its poles melt into the imaginary. Well, the curves and the surfaces on 
which they lie will flow right through. Eggs can no longer be in question. 
In the field of such forms the vortex is paramount. But it will always 
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be a vortex without beginning or end, spanning all space from infinity 
to infinity. Figure 28 shows what is perhaps the simplest form of such 
a case. When I first came upon it in my exploration of this field I was 
so struck by its beauty and suggestiveness that I named it The Chalice 
Surface. What is drawn here is only a small part of it. One must imagine 
it flowing upwards and outwards to infinity, passing through infinity, and 
coming back from below in the shape of a much wider cup-like form 
which repeats the general form of this one in wider reaches of space. 
Or alternatively we can let our imagination follow the printed form 
downwards to, and through, infinity, and see it returning from above as 
a much thinner cup, passing through the centre of the printed one. Such a 
surface will have an infinitude of branches threading within and without 
one another. And the same transformation which generates this surface 
will fill the spaces between its branches with a field of similar surfaces. 
The whole of space becomes one mighty chalice-like gesture. But the 
whole thing floats. Without real invariant points, nowhere can it come 
to earth or to rest. 

Perhaps for this reason we shall find that forms generated by the all
imaginary case are not to be found so easily where nature is coming to 
expression in sense-perceptible substance. 



5. Path Curves in Eggs and 
in the Plant Kingdom 

The main work on the foundations of the path curves and surfaces was 
achieved by Felix Klein and Sophus Lie in the later decades of the nine
teenth century. Seeing its importance it is strange that the geometrical 
aspect of it should have made so little impact on the culture of their day; 
and the work lay almost forgotten for over half a century. It was in 1950 
that George Adams brought his rediscovery of this work to a small group 
of us at a mathematical conference in Forest Row, and I was immediately 
fascinated. To produce such beautiful forms by purely inward contem
plation, and then to find them 'speak' - it seemed to me - so clearly 
and eloquently of forms in living nature, was something which I thought 
must be significant. In the ensuing years I spent much time studying and 
marvelling at the whole field of form which was thus opened up for me; 
but it was not till fourteen years later, in 1964, that the impulse came to 
me to investigate with the most precise measurement possible whether, 
and to what extent, the forms of nature really follow such mathematical 
models. When out of pure thinking the form of the egg covered with its 
spiralling curves appears to my imagination, and then later I find the 
wood littered with pine cones, to what extent am I justified in seeing this 
as a significant linkage of concept and percept, or may it perhaps just be 
a chance resemblance which is beguiling me? 

At the outset one is faced by two, related, problems. Firstly, given 
some form of nature, how can one devise a system of measurement and 
analysis which will show the path-curve parameters ( especially A and 
e) which must have been at work in producing that form - if indeed 
they have been at work. And secondly one would need to find a way of 
calculating and denoting exactly how far the given form deviates from 
the mathematical one. 

These problems are easily handled, and full details of the method of 
working are given in Appendix 3. Here it is necessary to describe the 
main outline of the steps taken, in order to understand clearly what fol
lows. The long axis of the given form is divided into a number of equal 
steps; eight is found to be a convenient number, and is the one which I 
have used for most of this work. This gives us seven levels on the form, 
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Diameter 

0.80 2.38 

1.16 2.39 

1.50 2.35 

1.76 T 
I 

1.89 ---G-f---- 2.97 
! 

1.91 ---8 
I 

2.98 

1.73 2.25 

MW 8.8% 

MRD 1.5% 

A 2.47 

Figure 29. This illustrates the basic method for calculating A. It is found that 
the values of those levels ivhich are nearer the poles, e.g. A and F, are 111ore 
reliable and rnore significant than those nearer the rniddle of the Jann. There
fore the final figure far A is a weighted mean of those at the various levels. Full 
details of this will be found in Appendix 3. 

which are labelled A B C T D E and F from below upwards, as shown 
on Figure 29. Next the diameter at each level is measured; since in the 
subsequent calculation only ratios are significant, the units used for 
the measurement are irrelevant. Then it is easy to calculate that unique 
value of A which would put a path curve accurately through the levels 
at A and at T; then we find other A-values for levels B and T, C and T, 
and so on. When this is completed we have six A-values, one for each 
of the levels A to F. If these six values are all the same, then the given 
form is a perfect path curve as far as those seven levels are concerned 
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and, unless there are outstanding irregularities in the outline, the whole 
form is almost certain to be a very good fit indeed along the whole of its 
length. And in as far as these values vary as one moves from one level 
to another, so far does the form depart from the true mathematical ideal. 
It is as simple as that! 

And when measuring a form from living nature these numbers are 
never the same all the way down the list - of course! One could never 
expect that a living thing, struggling for existence in a rude world, and 
subject to all the accidents of wind and weather, would ever be able to 
grow exactly to its archetype. What we can do is to take the mean of these 
six values and accept that as the best A which can be found for the form 
we are measuring. And a consideration of the values at the separate levels 
can tell us just where, and how, the thing deviates from the ideal form. 

Next we can calculate by how much the A at each level differs from 
the mean value (which we are now accepting as the true value for the 
form as a whole) and express this as a percentage. The mean of these 
percentage differences for the six levels gives us the Mean Lambda 
Deviation (MLD) for the form we are measuring; and this proves to be a 
good measure of how accurately the form is following a true path curve 
shape. And this leads to the important question: 'When can we say that 
we have good evidence that a given form is really of path curve origin?' 
It is difficult here to avoid seeming somewhat arbitrary. Much experi
menting has shown that if the MLD is less than 20% the fit between a 
given form and its path curve ideal is remarkably close, and if the MLD 
is less than 10% it is very exact indeed. We have to draw the line some
where! And in all the early years of the work I have accepted an MLD 
of under 20% as showing a 'Satisfactory' fit, and one of under 10% as 
being 'Very Good Indeed.' Between 20% and 30% the case is doubtful; 
the path curve forces may have been at work, but clearly other things 
have also intervened; or maybe it is just a chance resemblance. 

Twenty per cent may seem at first sight a high figure to set as a divid
ing line; but experience shows that the MLD is a very sensitive measure 
of deviation indeed, and 20% in A-deviation means very little in terms of 
the visible form. This shows a definite disadvantage in using the MLD; it 
does not easily convey any real idea of the actual deviation involved. For 
this reason, in recent years, I have taken to working rather differently. 
Having once found the best A possible for a given form, it is easy to 
calculate the exact radius which the form ought to have if it is to be true 
to the mathematics, at each level. These figures can then be compared 
with the measured radii at those levels, and the difference expressed as 
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a percentage. From this we can get the Mean Radius Deviation (MRD). 
Experience shows that an MRD of less than 4% represents a moderately 
good fit to the mathematical ideal, under 3% shows a good fit, under 2% 
a very good, and under 1 % an almost perfect, fit. In the latter case the 
deviations are so minute as to be barely measurable except with a very 
high degree of enlargement and under a powerful lens. 

At this point in the writing it occurred to me to conduct a simple 
experiment. After working with these forms for nearly forty years I think 
that I am able to draw a pretty good path curve form free-hand. I there
fore did so, with all the care I could summon. The result is the egg-form 
of Figure 29, which I then measured and analysed. How well did I do? 
Not so badly, one might say: an MRD of 1.5% represents a Very Good 
Fit. This form had originated from a background - my mind - where 
the path curve laws had been actively at work; and the mathematics 
acknowledges it. But as you read on in this book you will meet numer
ous cases of tiny organisms of one sort or another which do considerably 
better in spite of their apparent fragility or vulnerability to the uncertain 
forces of an erratic environment. 

When considering deviations we must remember that these can be of 
two kinds. There is what I would call 'accidental deviation' - lambda 
values above and below the mean, occurring irregularly along the length 
of the form, showing, as it were, as 'noise' in one's figures. This I think is 
due to the growing organism being unable to cope sufficiently accurately 
with the disturbing influence in its environment. But there is another 
possibility. I think we must grant to any living thing the privilege of 
being able to take its archetype and mould it, adapt it, to the special cir
cumstances of its environment, or its role in life. Such adaptation would 
show normally as a small but systematic variation along the length of the 
form, and we shall meet several cases later in this book. If such variation 
grows large enough one would reach the point where one would have to 
say that we have no longer firm evidence that this is really a path curve 
form at all, but the decision when this point is reached is one which has 
to be left to our human judgment. 

Eggs 

Now, having developed our basic method of measurement and analysis, 
on what should we employ it? When, nearly a quarter of a century ago, I 
started on the practical application of this work, my first move was with 
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the ordinary hen's egg. Why not? I had been calling these forms 'eggs' 
for years, and they were immediately to hand. I could not know what 
the result would be. Maybe the deviations would be such as to deny any 
real connection between the path curves and actual eggs. I was prepared 
for this possibility and would then probably have abandoned the whole 
investigation. I could not foresee that I was starting a task which, some 
twenty-five years later, I would have to regard as barely begun. Below 
are the full results for two eggs selected at random from the larder, and 
then photographed. 

Level A value Level A value 

F 1.18 F 1.05 
E 1.22 E 1.07 
D 1.20 D 1.11 
c 1.21 c 1.09 
B 1.20 B 1.06 
A 1.15 A 1.03 

MLD= 1.9% MLD= 1.7% 
MRD=0.5% MRD=0.4% 
A= 1.18 A= 1.06 

It will be seen that the humble hen, crouched on her nest, producing 
forms with an MRD of one half of one percent, was working three times 
more precisely than I was able to do with all those years of experience 
behind me. The actual deviation on the egg itself lies in the neighbour
hood of one hundredth part of an inch - at the very limits of measure
ment even using a lens. Notice that the two forms are quite distinct; the 
lowest value of the first one being higher than the highest of the second. 
The one thing they share in common is that they are both almost perfect 
path curve forms. A third egg studied at the same time had;\= 1.12 with 
an MRD of 0.7% - not quite as precise as the two previous ones, but 
still of almost uncanny accuracy, and twice as good as my own effort. 

This made an auspicious beginning; nevertheless I did not take these 
first results very seriously. Had I been able to descry good-fitting path 
curves on the surface of these eggs it would have made the case more 
convincing! And just three cases might conceivably have been coinci
dental. But later developments in the work caused me to take the eggs 
very seriously indeed. And I was very happy, years later, when my friend 
Douglas Baker, mathematics teacher in Connecticut, offered to under
take a more thorough research into this whole field of the eggs. I am 
indebted to him for the following results. 
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He analysed the eggs of 250 different kinds of bird, and found that all 
but nine of them were good path curves, with MRDs of less than 4%. No 
less than 77% had MRDs of less than 2% (Very Good to Almost Perfect) 
and a further 191

/ 2% had MRDs between 2% and 4% (Satisfactory to 
Good). Only 31

/ 2% had MRDs greater than 4% and none of them were 
above 5%. 

This is a really remarkable result and suggests that the eggs of a great 
part of the bird kingdom follow the path curve form with amazing preci
sion. We may remember that, in ancient mythologies, this form of the 
egg was the first form as such to appear in the history of creation. Clearly 
it is still with us in a remarkably pure and exact manifestation. 

The birds whose eggs had an MRD greater than 4% were: 

Arctic Tern 
Curlew 
Phalarope 
Plover 
Ruff 

Sandpiper (two kinds) 
Snipe 
Turnstone 

It is interesting, and maybe significant, to note that all these are shore
or water-loving birds, in spite of the fact that such kinds of bird took up 
only 41 % of the original list. 

Baker also analysed the eggs of eleven turtles, a garter snake and two 
lizards. The average MRD for the turtles was 1.6% and for the others 
2.3%, all of them thus being good path curves. 

Some time after the above words were written I received from my friend 
Dr Stuart Brown a box of six duck's eggs, which had been beautifully 
'blown' by him; and these, when held at a suitable angle to the light reveal 
spiral markings, or striations, of just the kind which are suggested by the 
path curve transformations. These spiral curves are seen very clearly in the 
double white membrane just underneath the shell, but are also membered 
into the very calcium of the shell itself, showing themselves there as subtle 
but quite distinct differences of translucency. These spirals have proved 
difficult to photograph with clarity, and computer images are produced 
from measurements of the eggs (Figure 30). When analysed in the way 
described in Appendix 3, the parameters came out thus: 

Left-hand egg ;>.. = 1.08 
Right-hand egg ;>.. = 1.16 

£ = 1.3 
£ = 0.3 

MRD=0.6% 
MRD= 1.05% 

With MRDs of around 1 % they were both exceedingly accurate path 
curves, being virtually perfect. When these parameters were put into the 
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Figure 30. Above: ducks" eggs. The right-hand egg has been cut in half and 
photographed from the inside. Below: computer images produced from meas
urements of the eggs. 

egg-program printed in Appendix 5, together with suitable width factors 
(0.415 for the left egg, and 0.38 for the right one) the computer produced 
the two images printed here (see Figure 30). One can see what a very 
close resemblance these path curves bear to the actual forms of nature. 
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Clearly much more research is needed here. How widely are these 
spiral markings to be found in the realm of the eggs? I have never found 
them in the shell of the hen's egg, but a suggestion of them can some
times be found, not nearly as marked or continuous as with these duck's 
eggs, on the double membrane underneath the shell; this is most easily 
seen with very brown eggs, the pigmentation in the shell seeming to help 
in making it visible. The whole range of other species' eggs is in this 
respect yet unexplored. 

As for the genesis of these spirals I think one would have to look to 
the spiral structure of the mucous glands in the oviduct of the bird, and 
these are described in Chapter 12 of this book. As far as my actual expe
rience goes these spirals, both in the oviduct and in the actual eggs have 
always been left-handed ones. 

Thus it would appear that this form, which arises from a consideration 
of some of the most basic (i.e. linear) mathematical thinking, lies also 
very near to the heart of the life processes in the world around us. And 
in this respect seems to be very widely disseminated in that world. But 
are eggs the only place where it is found? 

Cones 

Obviously the next thing to try was the pine cone, since here the resem
blance is perhaps at its greatest. The Scots pines grew on the hill only a 
quarter of a mile away and offered a ready field of study. I picked a group 
of them and made large-scale photographs. Here one meets a difficulty 
which is not to be found with the egg; the outline of the cone is irregular 
and not amenable to exact measurement in the same way. What I did was 
to draw a smooth curve through the irregularities, to do this for a set of 
cones from the same tree, and then to take the mean of the measurements 
from all these. This, it seemed to me, would give the nearest I could get 
to the archetypal form which this species was striving to produce in this 
particular set of circumstances. Another difference from the work with 
the eggs was that here, not only was the form covered with well-marked 
spirals, but these were marked by the separate scales on its surface, so 
that one would have the possibility of calculating not only A (for the form 
of the outline) and e (for the steepness of the spirals) but also a form of 
the latter to show the discrete steps of the transformation as it moves 
from one scale to the next. Having done this one could construct a picture 
of the form, using simply the parameters which one had obtained, and 
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Figure 31. The cone of the Scots pine. After the mean dimensions of the cones 
had been 1neasuredfro,n the photographs, and the resulting paranieters had 
been calculated, these paranieters were used, fron1 the pure 1nathen1atics and 
ivithout further reference to nature, to produce the black outlines shown here. 
A tracing fro111 one of the photographs was then superinzposed, in grey, so 
that we can see how close the correspondence is. Here A= 3.03 and e = 0.22, 
MRD = 1.3%. 

then superimpose on this a tracing from a photograph of one of the cones. 
Figure 31 shows the result of one of my first efforts in this direction and 
it gave me a strong feeling of confidence that these cones are really, and 
with great exactitude, a manifestation of these path curve processes. We 
notice that A here is slightly greater than three, and therefore we mnst 
expect to see the form much more pointed and blunt than with the egg, 
where A is commonly about one and a quarter. We note also that the spi
rals fit the curves on the cone very closely, even to the discrete placing 
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of the separate scales, along the greater part of the length of the cone, but 
not near the lower and upper poles. These are mathematical infinitudes, 
into and out of which the curves wind endlessly; substance cannot reach 
to infinity, and we could not expect the correspondence to hold here; but 
along most of the length of the cone - quite four-fifths of it - the fit is 
remarkably good. 

Figure 32 shows the result of a similar experiment, done about the 
same time-very early on in the work, with the cone of the larch. Here A 
is lower - only about 1.7 - so we have a form which is rounder (less 
pointed and blunt) than with the Scots pine. The form also is looser and 
less well-defined, but again I think it gives the impression of a very real 
correspondence with the mathematics. 

Figure 32. The cone of the Larch. Here A= 1.7 and e = 0.23, MRD = 0.9%. 
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Buds 

This whole realm of the cones is quite a wide one and it has not been 
studied, from the point of view of the path curves, with the kind of detail 
which it deserves. From many passing observations I believe that it will 
one day prove to be a fruitful one, but before I could find the time to settle 
down to it, my attention was drawn to another aspect of this study which 
then absorbed all my energies for a long time. It was late spring, and I was 
passing a rose bush which was covered with buds, and as I looked at them 
I saw that not only did they appear to have this same egg-shaped form, but 
that the petal-edges curved upwards on them in very beautiful spirals. This 
opened up the possibility that the flower buds, as they open themselves to 
the light and air, are also manifesting this same archetypal form. If this 
should prove to be the case, then it would be a vast field of study indeed! 

But this was only rather meaningless speculation until it had been tested 
by exact experiment. I gathered and photographed a set of ten buds and 
averaged their measurements. In the event it turned out that, with an MRD 
of only 1.2%, this bush was producing buds that were almost perfect path 
curve surfaces. This bush produced single (five-petalled) blossoms similar 
to the wild roses, but no doubt had some degree of artificial breeding in 
it. I prefer to work as much as possible with wild flowers, which I feel 
are nearer to nature. So a week or so later I gathered some real wild roses 
- they were white ones as it happened - and treated them in the same 
way. The result was even more striking; with an MRD of 0.6% these were 
perfect path curves within the limits of the most accurate measurements 
which I could make; and this gave me the confidence to go ahead keenly 
with an extended study of this whole field of the buds. 

Looking back on it I feel that things happened in this respect in a rather 
strange way. For further research over many years has shown that of all 
the flowers, so many of which conform so accurately and reliably to the 
path curve ideal, the rose is one of the most variable, and indeed wayward. 
Although from time to time it produces almost perfect path curves, more 
often than not its forms are very considerably removed from the simple 
mathematical one. Of all the flower species this one most deserves the 
adjective 'deviant.' In Chapter 7 we shall try to penetrate into something of 
the deeper meaning of this. Had I with my first efforts chanced upon some 
of the more extreme and wayward types of rose I might well have been led 
to conclude that flower buds are not in fact true path curves, in which case 
I might have abandoned this whole line of research. 
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Figure 33. This Rose bud, with a A of over 4.5 is sharper a11d blu11ter than most 
flower buds. 

The result of this first encounter with the buds is shown in Figure 33. 
The grey shaded form shows the mean shape of the ten buds, and on this 
is a tracing of the petal edges taken from one individual bud of the set. 
Superimposed on this, in black, is the pure mathematical form, worked 
out from the parameters which had been deduced. With an MRD of 1.2% 
the observed and the calculated outlines are virtually indistinguishable, 
as we would expect. The fact that the petal edges do not coincide with 
the spiral curves is irrelevant. The mathematical form is covered with an 
infinite family of such curves, forming a field of form on this surface. 
What are shown are only those which I chose, or had time, to draw. The 
fact that concerns us is whether the gesture of the petal edges conforms 
to that of the field. Here A = 4.58, considerably higher than with most 
flower buds, and we note the corresponding sharpness and bluntness of 
the form. High numbers like this are characteristic of the rose. 

After this I spent years studying a very great number of species and 
found a high proportion of them to have buds which are good or almost 
perfect path curve forms. Lack of space makes it impossible to show 
more than a very few here; for the moment we will confine ourselves to 
two more examples. 
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Buttercup 

The buttercup is one of the commonest and most beautiful of our wild 
flowers. On this occasion (it was in 1969) I picked eight buds, found the 
average of their measurements, and in this way got as close as was pos
sible to the ideal form which this species was manifesting at that time and 
place. A came out to be 1.97 with an MRD of 2.1 % thus showing that it 
was a very good fit to its mathematical archetype (Figure 34). The figure 
shows the mean shape as photographed, in grey shading, and the mathe
matical form in black curves. One can thus see just what kind of deviation 
in f01m is implied by an MRD of about 2%. The petals on these buds are 
extremely delicate and will be shifted by the slightest touch. It is clear that 
one of them has moved slightly during mounting for photography, but the 
others can be seen to follow our calculated spirals closely, although not 
quite as closely as with the firmer and more compact bud of the rose. 

The \-values in this case turned out to be rather lower than the mean 
in the lower part of the bud, and rather higher in the upper part. These 
tendencies make the bud rather too narrow both in its lower and its upper 
parts. But reference to the figure will show how very minute these devia
tions are. The actual bud of course is very much smaller than its por
trayal in our figure, its real mean deviation being in the neighbourhood 

Figure 34. A Buttercup bud with A= 1.97 and MRD = 2.1% 
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Figure 35. The Wood Sorrel is one of the most graceful of our wild flower buds. 

of 1
/ 500 of an inch, or approximately 1

/ 20 of a millimetre, such deviation 
only being measurable under a high degree of enlargement. One can 
only marvel that such a delicate organism as this little bud can grow 
with such an amazing degree of precision; and when one finds species 
after species growing in a similar way one begins to feel that even these 
minute details of form are a matter of significance. 

Wood sorrel 

The other case we will illustrate is that of the wood sorrel. This deli
cate little plant has a bud which follows the path curve form with quite 
remarkable fidelity and constancy from year to year. The mean meas
urements of the set of buds which was picked on the occasion we are 
illustrating gave a A-value of 1.90 with a mean A-deviation of 6.4% 
and a mean radius deviation of only 1.1 %. The grey shading in Figure 
35 shows the mean outline of the set, and a petal-edge from one of the 
individual buds. Superimposed in black, as in the previous cases, we see 
the form which arises from pure calculation, the spiral curves which are 
shown being just a random selection from the infinite family which is 
mathematically present. We see that the bud follows the mathematical 
form with hardly any visible deviation. 
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Leaf buds 

Another realm where similar things are found is that of the leaf buds 
of our great deciduous trees, the oak and beech, and so on. This has 
since proved to be a field of specially fruitful study, and much more 
will be said about it later in the book. Here we will confine ourselves 
to picturing a leaf bud of the oak (Figure 36). These buds had a mean 
A of 1.7, and an MRD of only just over 1 %. They were therefore 
almost perfect path curve forms. It would not have been useful to 
have added to the drawing the calculated outline in black; it would 
simply have obscured the edge as drawn. And most of the leaf buds 
of our great trees follow the path curve form with a similar degree 
of accuracy. 

Figure 36. The leaf bud of an Oak. 
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Figure 37. The outer form of the Rhododendron quickly revealed itself as not 
being a good path curve form. 

Rhododendron 

However, it was not all plain sailing. Soon I came up against the rhododen
dron. This is more an inflorescence than an individual bud, but its appear
ance left me in little doubt that here indeed the path curve form was to be 
seen. However, on measuring it the results came out differently from what 
I had expected (Figure 37). Here are the A-values for levels A to F. 

Level A-value 

A 1.3 
B 1.2 
c 2.1 
D 3.8 
E 6.0 
F 7.0 

Mean A 3.6 
Mean A-deviation 56% 

The ve1y high values of E and F show that the bud is too narrow and 
pointed at the top, and the low values at A and B show that it is not blunt 
enough at the bottom or, phrasing it a little differently, too nan·ow also there. 
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Alternatively one can say that the bud is too wide in the middle; but however 
one chooses to look at it, the fact is inescapable that in no way can the path 
curve form be made to adapt itself to this shape. Figure 37 shows, in the 
grey shading, the tracing from the photo of the actual bud, and superimposed 
on it, in black outline, the nearest path curve form which can attempt to fit 
it. The MLD of 56% means here an MRD of just over 12% - a long way 
above the limit of 4% which we set ourselves for a satisfactory fit. 

This was a disappointment. However much I might think that I could 
descry the path-curve form in this rhododendron bud, the mathematics 
told me that I was wrong. But in this it was also a reassurance. It was 
clear that the mathematics would quickly spot a case in which the path 
curve appearance is simply a resemblance, and not strictly true. 

In this particular case there was more that one could do. I started with 
some forceps carefully picking away the little green sepals, one by one, 
and continued until I reached the actual flower inflorescence which nes
tled within. This was January, several months before the flower was due 
to see the light, but already the little buds were delicately coloured. 

This form, pictured in Figure 38, subjected to a similar analysis gave 
the following results: 

Level A-value 

A 1.65 
B 1.8 
c 1.9 
D 1.85 
E 2.0 
F 1.9 

Mean A 1.85 
MLD 8% 
MRD 1.2% 

The MLD came out at 8% and this indicates a good fit indeed with 
the path-curve form. 

Hollyhock 

This result was later confirmed by the study of the Hollyhock. This bud is 
covered with thick green sepals, and photographed in this form gave a mean 
A-deviation well over 20%. In this case it was found impossible to remove 
the sepals without completely deforming the coloured prut of the bud within. 
However, this bud is compact and firmly built, and it was found possible 
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Figure 38. Inside the Rhododendron bud one comes upon the little coloured 
inflorescence of buds, \Vhiclz, taken as a lvhole thing, 1,vith an MLD of 8% and 
an MRD of 1.2, is a very accurate path curve Jann. 

to cut it in vertical cross-section with a sharp knife, without defmming its 
shape. The coloured part of the bud thus revealed turned out to be an almost 
perfect path curve, with an MLD of only 6% and an MRD of I .0%. 

These results showed me that the path-curve form proper is to be 
found chiefly in the actual petals, the coloured part of the bud. And one 
of the problems met in this work on the buds is that of removing the outer 
layer of green sepals so carefully that the form of the petals within is not 
interfered with. When it is found impossible to remove the outer sepals 
without injuring the bud within, one is forced to measure and work with 
the form of the sepals. When one does this one often finds nevertheless 
that the form is still a good path curve, but it may be deformed, in other 
cases, to a greater or lesser degree. 

Random tests 

Results such as these might be considered striking enough, but the ques
tion still remained as to how widely this quality is to be found in the 
plant world. And so, after working for two or three years along these 
lines I felt that I must have a 'stocktaking' of results so far. I found at 
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that date that I had analysed the buds of fifty-five different kinds of plant, 
and that the A-deviations were disposed as follows: 

Mean A-deviation % Percentage of buds 

0--10 54.5 
10--20 36.5 
over20 9.0 

Over half of them were of the same order of accuracy as the Wood 
Sorrel, and less than one tenth of them fell outside the 20% limit. 

The doubt still remained as to how flexible this path-curve transforma
tion really is; how easily can it accommodate itself to all sorts of random 
ovals? Sets of random ovals are not easily obtainable! I solved the problem 
by asking each of twenty-five young people to draw me an oval. 

Before doing this I had to consider another possible cause of doubt. It is 
obvious to any observer of the plant kingdom that not all kinds of plant pro
duce buds of this general form. To take just one instance, the leguminosae 
have buds in which there is clearly some other factor at work. If I find a bud 
that is obviously not a path curve I do not go to the trouble of photographing 
it in order to prove the fact to myself. It seemed to me to be a significant fact 
that I could find so easily in my immediate enviromnent something like fifty 
different species which follow the path form so minutely, but I could not 
hide from myself that there had been, more or less unconsciously, a certain 
(I hope, small) factor of selectivity in my choosing of them. If my experi
ment with the random ovals were to be valid something would need to be 
incorporated into it to balance this small element of selectivity. I therefore 
asked the pupils to make their ovals symmetrical about a central ax.is, and to 
let them tend to be rather more blunt at one end, and sharp at the other. When 
doing this I felt I was in effect simply ordering a set of path curves. 

In the event the result was far otherwise. On analysis the mean ;\

deviations of these ovals were as follows: 

Mean A-deviation % Percentage of ovals 

0-10 0 
10--20 16 
over 20 84 

A further experiment carried out some time later, with a different set 
of pupils, this time, asking them simply, 'Draw me a bud' gave a gener

ally similar result. 
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These figures show that the chances that a randomly produced oval, 
even if it bears superficial resemblances to the bud form, should be in 
fact a good path-curve form are remote, and the figures actually obtained 
for the growing buds become highly significant. 

The question as to what percentage of forms which are good path 
curves can be expected in a set which is not specifically connected with 
the path curve realm is such an important one that it deserves some more 
attention. There are two further ways in which the plant world continu
ously presents us with oval forms more or less of this nature - these are 
in the ovaries, and the leaves. Treating the ovaries as though they were 
path-curve forms, the mean deviations came out as follows: 

Mean A-deviation % Percentage of 
ovaries 

0-10 15 
10-20 25 
over 20 60 

I then analysed leaves from thirty-five different species of plant. Here 
again a certain selectivity had to be employed. Some leaves, for instance 
ivy, holly and maple, are so shaped that they are hardly susceptible to 
the kinds of measurement which we are making here. I chose the first 
thirty-five species which came to hand, whose leaves were smoothly 
oval, which in fact, could reasonably be expected to fit a path curve sort 
of form. Their mean deviations were disposed as follows: 

Mean A-deviation % Percentage of leaves 

0-10 9 
10-20 14 
over 20 77 

Of all leaves 43% had mean deviations greater than 50%. 
Now I think it is obvious that we have no right to consider either the 

ovaries or the leaves as random ovals. They must have organizing princi
ples at work in them which would prevent them from being in any sense 
random. But as we look at these figures I think it is equally obvious that 
these principles are not straightforward path-curve ones. And I find it 
reassuring that the methods which we are using here are such as to make 
it abundantly clear to us when the path-curve process is not at work. 
The figures for the leaves and the ovaries are, in general, quite similar to 
those deriving from the 'random ovals' drawn for me by my classes of 
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helpers, and I am reasonably convinced that they do show what is to be 
expected when the forms we are analysing are not really connected with 
the path curve realm. And the comparison of these with what we find, 
again and again, by measuring the actual buds, is most revealing. 

After twelve years of working practically, in this way, with the forms 
of nature, I found that I had analysed the buds of 150 different species of 
plant, chiefly in Scotland, but also many in New Zealand and Australia. 
A full examination of results showed that no less than 92% of these were 
producing buds which were either a Good, or a Very Good, fit with the 
path curve form, and only 8% could be classed as 'deviant.' This is really 
a very important matter, and I do not think that so much time spent on 
it could be regarded as wasted. Unless we have evidence, gathered with 
sobriety and care, that these buds are really manifesting this form, we 
cannot continue our research with any confidence that we are not follow
ing some will-o' -the-wisp of fantasy or wishful thinking. 

At this point it is useful to mention that Professor Clopper Almon of 
Maryland University has shown interest in this work. Investigating the 
path curves from the point of view of modern linear algebra he arrived 
at a series of equations which employ rather different parameters from 
the ones I have described, but which are in every essential respect the 
equivalent of the results which I have used. His excellent monograph 
(see bibliography) is to be recommended to anyone wishing to approach 
the realm of the path curves from the point of view of linear algebra. At 
the time, I sent Professor Almon the data of the measurements which I 
had made on a long series of buds, and he fitted these to the path curves 
using his equations; and then made a fairly full statistical analysis of the 
results, using greater computer power than I possessed. Since he was 
using different parameters he did not come upon mean deviations for A, 
but in his published results he gave the mean radius deviation (MRD). It 
is interesting to take notice of these because they have been arrived at by 
computational methods which are independent of mine. 

Out of a total of one hundred and fifty species, only four had a mean radius 
deviation of more than 4% (all of these from the southern hemisphere), and 
a further thirteen had deviations between 3% and 4%. No less than one hun
dred and sixteen of them (77% of the total) had deviations of less than 2%. 
Consideration of these figures gives one a heightened appreciation of the 
accuracy with which these little buds grow according to their ideal model. 
And they show what a sensitive measure the A-deviation really is. 

When I was first working on these matters I was doing so on the 
assumption that each species would be found to have its characteristic 
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A-value, and that this number would, I hoped, then help to throw some 
light on the nature or quality of its species. Further work has shown me 
that things are not quite like this. We find that a plant will have differ
ent A-values from day to day as it passes through different stages of its 
development; and two plants of the same species may have different A.
values even at approximately the same stage of development. And there 
is a suggestion that the same species, growing in a different environment, 
will differ in its A-values. The matter is infinitely complex. The one thing 
that nearly all have in common is that their forms are good path curves. 
The absolute value of A found at any one moment is not the important 
thing. It nevertheless remains a fact that some species have buds with 
consistently low A-values, and some with generally high ones. A list of 
these is instructive. 

Buds with low A-values: 

Daffodil 
Bluebell (wild hyacinth) 
Hawthorn 
Comfrey 
May 
Blackberry 
Peach 
Cabbage 
Viburnum 
Ginger 
Apple 
Bush Clematis (New Zealand) 
Poroporo (New Zealand) 
Cress 
Cherry 

It is interesting to note how many of these provide edible fruits or 
other food. 

Buds with high A-values: 

Rose 
Campion 
Fuchsia 
Convolvulus 
Garlic 
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Clematis (Scotland) 
Columbine 
Periwinkle 
Fremontia 
Flax 
Mallow 
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Most of the others which I have measured come into the middle 
region, where A = 1.5 to 3. 

Individual buds 

All the work described so far concerns average measurements taken 
from sets of buds. The individual bud, growing amidst all the accidents 
of its environment, on the whole, fares remarkably well. Here are some 
typical sets of ten buds each. 

Firstly, the ash leaf bud. This very remarkable little bud seems to 
consist of two path curve profiles set at right angles to one another, and 
strangely intertwined. The figures given are for the average measure
ments of the two profiles for each bud. The buds are very compact and 
firm, and not liable to damage. 

A-value Mean A-deviation % 

1.95 4.5 
2.41 4.6 
2.04 4.4 
1.83 14.8 
2.47 4.3 
1.92 5.0 
2.70 16.4 
1.99 3.5 
1.81 16.5 
2.55 18.3 

Six of them are almost perfect, and none of the other four strays far 
from the ideal form. 

A big contrast is the buttercup. These buds are so fragile that one has 
to be very careful indeed when picking them. The slightest clumsiness 
can disturb the petals and change the shape of the bud, either in gather
ing them or mounting them for photography. 
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A-value Mean A-deviation% 

1.41 15.7 
2.13 10.1 
1.22 6.7 
1.18 16.0 
1.34 5.5 
1.18 6.7 
1.14 17.0 
1.90 36.4 
1.14 9.7 
1.09 14.7 

We note the comparatively wide range of A-values; but also the fact that 
no less than half of them have mean deviations ranging from about 10% 
downwards, and only one, at 36%, has failed to survive unscathed. With 
a variation in A from just above 1 to just above 2, there must have been 
a considerable change, from one bud to another, in the sharpness of the 
form in the top part of the bud, yet in every case except one, this was quite 
precisely counter-balanced by a corresponding change in the form of the 
blunt part of the bud below, and this, in a bud which is remarkable for its 
delicacy and fragility. I think the buttercup is to be congratulated! 

Many other cases could be cited. I will give only one more here: the 
little flower bud of the honesty. When taken early, as these buds were, the 
petals are tightly packed within their sepals, and one has to be very care
ful indeed that the petals do not press outwards as soon as the restraining 
sepals are removed, thus changing the shape of the bud. Often the petals 
look a little crushed, making the outline of the bud rather uneven, and hard 
to measure. Nevertheless the path curve form is preserved with remarkable 
fidelity, only two of the separate buds coming above the 20% level. 

A-value Mean A-deviation % 

l.43 16.7 
1.43 16.8 
1.68 12.6 
1.86 9.0 
1.35 24.8 
1.58 15.7 
1.83 27.4 
1.58 11.8 
1.89 7.9 
1.76 10.5 

These figures are fairly typical and show that on the whole the indi
vidual buds grow with remarkable constancy and accuracy. But we will 



84 THE VORTEX OF LIFE 

close this section with details of one of the deviant buds, the snowdrop, 
about which much more has to be said later. 

A-value Mean A-deviation % 

2.18 19.5 
2.08 18.3 
2.01 19.2 
2.26 19.7 
2.02 20.6 
2.10 28.7 
2.04 20.3 
1.86 21.7 
1.95 13.1 
2.05 22.4 

These buds are firm and compact. Notice how extraordinarily con
stant the A-values are; these buds are almost identical within the limits 
of what one is able to measure, even under a high degree of enlarge
ment. And they are constant also with their deviation. This deviation is 
no accident of growth, but something which is deeply significant for the 
life and quality of the plant. This is a comparatively mild case; at certain 
moments of their development the snowdrops will reach a deviation of 
30% or even more. If we wish to see what such a deviation means in 
terms of actual form we should tum to Figure 44; this should give us 
a new respect for the accuracy of those buds whose deviations remain 
below the 20% level. 

Spirals 

Having dealt with the form of the bud, and its A-value, we next have 
to consider the curves taken by the petal edges as they spiral around 
the bud. This is a matter of greater difficulty. In the first place we must 
remember that these path curves are logarithmic in character, that is they 
spiral infinitely into and away from their poles. Neither the petal edges, 
nor any other curves in nature, can be expected to do this; substance can
not reach infinity! But in the middle part of the bud in many cases the 
petal edges will be seen to take a truly spiral path, closely resembling 
the kind of path curves which cover this sort of surface. The parameter 
which measures these spirals is the one written as e. If e is zero the path 
curves become horizontal 'circles of latitude' and as e increases towards 
infinity they tend to 'lines of longitude.' 
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The wild rose, a 
beautifully regular 
intenveaving. 

In convolvulus e 
beco1nes large,: 

Celandine tries to do the 
sa,ne thing, but is ,nuch 
more fragile. 

In the abnost spherical 
bud of red may the 
spiral ele,nent is not 
so ea~y to see. 

Figure 39. Some examples of£. 

Wild strawberry - very 
small, very delicate, 
very beautiful - and 
abnost inzpossible to 
n1easure! 

In the hollyhock it is almost 
obscured; one can have 
abnost any value fore that 
one lvishes, according to 
lvhere the points Mand N 
are placed (Figure 164); 
just say 'every large.' 
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When e is low (say 0.1 to 0.3) the petal edges wind round the bud at a 
fairly small angle to the horizontal, and their spiral character is then usu
ally quite easily seen. This remains so on the rose (e ~ 0.5) and even with 
higher values of e. However, when e becomes very high the spiralling 
character is not so easily evident, and the buds merge into those in which 
one would hardly have suspected spiralling unless one had already seen 
it in the other cases. Figure 39 shows some typical examples of e. 

Summary 

I think that we can now really say that these path curves and their related 
surfaces, arising as they do from the simplest, most elementary math
ematical thought-forms, are significantly at work in the realm of these 
opening buds. It must be a matter of some moment to the plant whether 
the A of its buds is high or low. But the evidence goes to show that plants, 
even within the same species, have considerable freedom to 'play' with 
this value of A, although they seldom depart far from the general path 
curve form itself. It would seem that the absolute value of A attained at 
any moment is Jess important than the way that this value varies dur
ing the course of development, and Jess also than the disposition of the 
deviations along the central axis of the bud. More will be said about this 
important matter later in the book. 

Further considerations 

Before going on to enquire about other kingdoms of nature it would be 
well to ask ourselves whether this path curve form is confined, within 
the plants, to that of the buds alone. How about the plant as a whole 
thing? Obviously the difficulties of investigation here are much greater 
than with the bud, which fills its space so compactly and so easily-lo
be-measured. The ideal form within which the branches and leaves of 
the plant develop is not so easy to descry. But there is a related problem; 
if the whole plant is growing on a path curve plan, it would be natural 
to expect the separate branches to leave the main stem at intervals of a 
growth measure. 

On this I have done a small amount of work and give this account in 
the hope of its being a stimulus for other people's work rather than for 
any definite results achieved. 
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When I was in Sydney, my friend Erwin Berney produced two very 
fine photographs of fern fronds of the type which grow so profusely 
there. Together we measured the space of the leaves and applied the 
formulae of p. 303. I think we were expecting growth measure, but in 
each case we actually got step measure (see pp. 34, 37). In the first case 
the invariant point came about 7 to 10 cm beyond the end of the frond 
and in the second one about 18 to 20 cm beyond the end. Step measure 
was well established. 

But it is not always so. I have tried with eleven stems of stinging 
nettles taken in the autumn when they were fully grown. Quite good 
growth measures were found, with a multiplier of 1.46 (the mean 
result of all the stems) and mean deviations ranging from 5 % to 
13%. On nine green-pea stems the results were even better: m = 1.46 
with the average mean deviation only 4.5%. However in both cases 
there was a small but distinct tendency for the multiplier to increase 
towards the base of the stem. I had fixed the invariant points as being 
at the tip of the stem, and at the point where the stem passes into 
root. If I allowed the lower invariant point to be between 5 and 8 cm 
lower, in fact about the middle of the roots, then the growth measure 
became almost perfect, the mean deviation in the case of the green 
pea shrinking to only 2.4%. 

I have an idea that this tendency for the multiplier to grow too large 
just at the lower end of the stem may turn out to be a fairly general one; 
I don't know. I have also measured the spacing of side-stems on the dead 
nettle, and on carrot leaves; in both cases the growth measure was almost 
perfect, within the limits of the probable error of the measurement. With 
the dead nettle, m = 2.49, mean deviation 2%; with the carrot, m = 1.7, 
and mean deviations ranged from 4% to 8%. But in both cases there 
were no side-stems anywhere near the root end of the main stem. 

This brings us back to our first, and very important, question. We 
know that a large proportion of buds grow on a path-curve plan, but 
what about the plant as a whole? We see the branches and leaves of a 
plant growing outwards from the main stem, and then at a certain point 
the further outward growth ceases; does it cease on the boundary of an 
otherwise invisible path-curve form belonging to the plant? 

With certain trees (particularly the conifers) one feels that one can see 
the path-curve form in front of one's eyes; with other trees and bushes it 
is not so easily discerned and with the flowering plants not at all. But if 
one were to measure the outward growth of the tip of each side-stem of 
such a plant, and were to plot it on a diagram against the height above 
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Figure 40. Dead nettle. A first, rather primitive, attempt to record the mean 
form of a whole plant. 

the ground which it had attained, and were to do this for very many side
stems of many similar plants of the same species, would one then find a 
path curve form appearing on one's page? Obviously such an investiga
tion would be attended with many difficulties, and a very accurate form 
could hardly be expected. I have tried it once or twice, with not very 
convincing results, but I have not had time to give the problem the care 
it deserves, and a great deal more work needs to be done on this mat
ter. While doing the dead nettles I measured the positions of the tips of 
the side-stems: how far out they were and how high above the ground. 
Figure 40 shows these positions. Clearly the 'scatter' is too great to give 
a very convincing result. I have drawn a smooth curve through them as 
well as I could. It is in fact a good path curve, with A = 0.38 and mean 
deviation 10%. I give it for what it is worth. 



6. Path Curves in Other 
Kingdoms of Nature 

Once our imagination is opened to them, we begin to see the possibili
ties of path-curve forms in a wide variety of places in the surrounding 
world. The temptation to become fanatical and in a facile way to see 
them 'everywhere' must be resisted. Fortunately the mathematics itself 
is a fairly strong corrective for this; we know that the chances of any 
random oval being a good path curve form are, in fact, slight; if we are 
being fanciful, the mathematics will soon tell us; but if we find that 
such ovals, again and again, are accurate path curves, then we have at 
least good preliminary evidence that the path-curve process is signifi
cantly at work. 

Douglas Baker found that a series of turtle plastrons (undershells) 
were all good path curves, and some further work which he was able to 
do suggested that the whole field of the insect carapace might prove a 
very fruitful one to study in this respect. Obviously it would be a very 
large task. I have not been able to follow it up, and must leave this to 
some enterprising reader. 

A further, and obvious, field of application for these path curve 
forms would be that of the sea shells. I have done no practical work 
in this direction, but I have the strong expectation that the mono
valves will one day be found to be almost perfect path-curve forms. 
The bivalves may present a more difficult problem, but I wonder 
whether some of the special cases, where two, three, or even four, 
of the points of the invariant tetrahedron become coincident, will be 
found to apply. 

I have done some work with the sea urchin. The shells of these 
beautiful little creatures have an exactly circular horizontal cross
section, and in vertical profile they are strongly reminiscent of the 
path-curve form. Analysed thus, five specimens gave the following 
results: 
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Figure 41. The vertical profile of a sea urchin is an almost pe,fect path 
curve fortn. 

Specimen No. A-value Mean A-deviation % 

I 1.44 II 
2 1.48 JO 
3 1.43 12 
4 1.37 9 
5 1.56 II 

The constancy of the A-value in specimens which varied in size by 
a factor of more than 2 is remarkable; and the fidelity with which they 
follow the mathematical model is only slightly less than that of the eggs. 
The distribution of the deviations was also remarkably constant, in every 
case A being rather too high near the base. This merits further considera
tion. Figure 41 shows the outline of specimen No. 5. 

The distribution of the deviations strongly suggested that the 'true' 
pole of the form should be very slightly below the centre of its base. 
It was found that if the lower pole is taken as being 5 mm below the 
observed base then the resultant A-value is 1.38 and the mean deviation 
3.7%. 

Figure 42. The teeth of the sea urchin project through the hole in the 
bottom of the shell. 
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Now the gap in the lower part of our outline represents a small circu
lar hole in the base of the shell, and this is the mouth of the creature. In 
life its teeth project through this, and it walks across the seabed, liter
ally, on its teeth. Some years after making the observations which are 
described here, I found on the seashore a fragment of a sea urchin shell 
with the teeth still in place (Figure 42). They formed a perfect little five
membered cone, projecting through the mouth. 

I measured as accurately as I could just how far the point of this little 
cone projected below the base of the shell. It came to between 5.6 mm 
and 6.1 mm, a figure very close indeed to that to which the adjustment 
process has pointed. 

I believe that with further investigation we shall find that this gen
eral form is much more widely spread in the world around us than we 
at the moment can realize. Stephen Eberhart has pointed to two cases 
where creatures of microscopic size have assumed this form with really 
remarkable accuracy: the Euglina and a plant chromosome.* 

Also Barry Christian has written an exceedingly interesting articlet on 
the megalithic stone circles of the western and northern parts of Britain. 
Many of these are not circular, but egg-shaped, and follow the path
curve form with remarkable fidelity. In all these, and probably in other 
realms, it is clear that a great deal of further research is still needed. 

I would refer the reader also to an excellent article by Stephen 
Eberhartt on 'Grecian amphorae as path-curve shapes,' but as these are 
artefacts rather than living forms of nature further details perhaps hardly 
belong in this book. 

* Mathen1atical-Physical CorreJpondence, No. 19 and No. 20. 
t Mathen1atical-Physical Correspondence, No. 30. 
:j: Mathe,natical-Physical Correspondence, No. 27. 



7. Further Considerations 
About Flower Buds 

In the early stages of the work with the plant buds I had assumed that 
each species would have its typical A-parameter, and that this value 
would be characteristic of the species. Further work did not support this 
assumption. It later became clear that different plants of the same spe
cies may produce buds with considerably different A-values according to 
the environments in which the plants are growing, the stage of develop
ment which the buds have reached when they are picked, and probably 
a number of other factors. Nature, I think, works like a musician playing 
variations on a theme. The basic theme is the whole range of path-curve 
possibilities; and each plant, according to its species, its environmental 
conditions and its stage of growth, picks a value of A which is 'right' for 
it at that moment. 

A qualitative consideration of the A-value 

I think that it is important that we should now consider these matters 
from a more qualitative point of view. Through many years of consider
ing and dealing with these forms I am beginning to have a growing feel
ing that a high A is to be associated with a certain situation of tension. A 
high A implies a great difference between the multiplicative factor, of the 
logarithmic spirals in the top and bottom invariant planes of the transfor
mation; but a A near to unity arises when the spirals in those planes run 
easily and naturally, in harness with one another, as it were. I would not 
wish to draw any close comparison with the field of electricity, but one 
thinks of the high tension current induced by a large potential difference 
in the ends of a wire. And if one contemplates the forms implied by a 
low and a high A, I think this feeling can be strengthened. 

The lower A, that is, near to unity, gives a gentle, rounded, easy-going 
form, one which, we feel, could easily open itself to the world around 
it. But the higher A gives a form much more angular, much more tightly 
woven, more tightly closed upon itself. The left-hand form of Figure 
43 is in some way relaxed, out-breathing; and the right-hand one is 
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A= 1.2 A= 6.0 

Figure 43. On the left the form is relaxed and out-breathing in quality. On the 
right it is ,nore tense; one is ren1inded of in-breathing. 

more tensed and in-breathing in character. One is reminded of Rudolf 
Steiner's words about out-breathing and in-breathing, pleasure and pain, 
joy and sorrow, laughter and weeping.* These feelings may seem fanci
ful on my part, but such fancies may also contain truth; and they have 
been supported by other facts which have come to light. 

Variations on a theme 

In considering the matter of variations on the theme, it is important to 
ask whether some plants not only choose their particular numerical value 
for ),. but may also be playing some sort of variation on the path curve 
theme itself. It is fairly easy to see when such is the case. If, looking 
down the A-values calculated for the levels A to F, we find the deviations 
from the mean disposed randomly, first plus and then minus, and so on, 
we are probably dealing with a bud which has grown true to the path
curve form, excepting that accidental variations have occurred along its 
length. But when the variations show some systematic trend then we 
know that this particular bud is departing, perhaps only slightly, from the 
path-curve form itself. In the majority of buds so far studied (probably as 
many as 85%) such systematic deviation is so slight as to be negligible, 

* See Paths of Experience, Chapter V. 
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but there is a residue of buds which do show small but definite system
atic deviations; and these it is important to study. 

Looking through my notebooks of many years of observation and 
measurement of well over a hundred species it becomes clear, to 
just a preliminary view, that these deviant buds fall into two quite 
distinct groups. The first group I should like to name after one of 
its prominent members, the snowdrop. (There are other members of 
the group which could equally well have been taken to name it, but 
the snowdrop is perhaps specially characteristic; it grows wild in 
Scotland through the woodlands and in the hedgerows, and I have 
done more work on it in one way and another than perhaps on any 
other kind of flower.) 

The characteristics of this group are that each bud maintains an almost 
perfect invariance in A through all the lower levels, from A to D, but then 
suffers a sharp decrease in A near the tip, at levels E and F. And almost 
all the members of this group have a fairly low A-value, below about 2.2. 
When one looks at such a bud, one's first impression is, what a perfect 
form! But as soon as one compares it with the mathematical model one 
sees immediately that it is just slightly too broad, too wide open as it 
were, near the tip (Figure 44 ). 

Other strong and very characteristic members of this group are the 
primrose, daffodil and bluebell (wild hyacinth). In a more moderate 
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Figure 44. Comparison of a Snowdrop bud with the ideal mathematical form 
reveals a quality in the former which might not otherwise have been suspected. 
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form we have the winter jasmine and the little yellow flower of the cab
bage. The narcissus shows the decrease in A near the tip, but differs from 
the rest of the group in having a higher A-value. 

Now if we review the characteristics of this group of plants we see 
that, with the exception of the cabbage, they all have one thing in com
mon: they are early spring flowers. They bloom at a time when all nature 
is streaming into manifestation; one can get the impression that, carried 
on this springtide, they are almost over-ready to open themselves to the 
light and air. I begin to see this form as one which carries the gesture of 
the low-A forms a stage further; it is the gesture in a very special way of 
opening, relaxation, out-breathing, of the purely vegetative life forces. 

The other group shows the opposite tendency: A becomes to high in 
the upper part of the bud. One can have no hesitation or difficulty in 
naming this group. One plant is so pre-eminently characteristic of it that 
it has no rival. This is the wild rose. 

The rose bud deserves some paragraphs all to itself. I cannot think 
of another bud which has these very special and peculiar characteristics 
developed to such a degree. The A-values vary greatly from plant to 
plant, but are always high, from about 3 upwards, even sometimes to =. 
In order to understand the matter clearly it is necessary to realize that 
the method of appraising forms by their A-deviation is a vitally important 
one, in that it leads us directly to a view of what is really going on in 
the transformation processes which have led to these forms; but also it 
is necessary to realize that when applied to the 'closeness of fit' of the 
actual physical form which is visible to us in space, this method has 
definite limitations which must be borne in mind. 

::\.-deviation 

To get a full picture we need to find also the radius-deviation at each 
level. This gives us a view of the physical form in the same way as 
the A-deviation gives us a view of the transformation process which is 
involved. The A-deviation is a very sensitive measure. In a general way 
we can say that a deviation of 10% in A is equivalent to one of only about 
3% in radius. But this varies with the size of A. When A is near to unity, a 
form, if it is to be a good fit, needs to have a A-deviation of not more than 
10% to 12%. When A gets to the neighbourhood of 2 or 2.5, the A-devia
tion becomes much more sensitive and mean deviations of 20% become 
fairly acceptable; and with very high A this deviation measure becomes 
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so sensitive that it has to be used with great circumspection. (In the early 
work I fixed 20% mean deviation as a general limit for a good-fitting 
bud; one had to draw the line somewhere. But it was always clear that 
these ideas must be refined and elaborated considerably in due course.) 

The next thing to realize is that the sensitiveness of the >..-deviation 
varies considerably from one part of the bud to another. In fact it var
ies with the gradient of the curves shown in the nomographic method 
described in the appendix. This means that the sensitiveness of the >..
deviations is not only greater for the higher >..s, but it is also much greater 
at levels C and D than at levels A and F. Thus it comes about that with 
high >..s one can have very high >..-deviations indeed, more especially in 
the middle part of the bud, without the actual radius-deviations becom
ing alarmingly large. 

And this is what happens, quite often, in the case of the rose. Two 
varieties of rose were the first flower buds I measured; and those first 
two plants were ones whose buds were moderate forms. And this gave 
me the encouragement to continue with the study. Later, the rose became 
a source of some embarrassment, when so many more extreme forms 
were found; but by then I had done enough other kinds of plants to real
ize that the rose is in some way a special case. Had I come upon the 
more extreme specimen of rose right at the start I might well have con
cluded that buds are not really path curves at all, and might never have 
proceeded with their study. 

Here are the figures for a rose bud: 

Level >..-value 

A 4.02 
B 4.75 
c 6.29 
D 11.5 
E 10.6 
F 4.72 

This is a fairly moderate, and typical, rose bud. It has a mean >.. 
(weighted* x 4, 2, 1, 1, 2, 4) of almost exactly 6 and a mean deviation 
(also weighted) of 36%. In an ordinary bud this would mean that it is not 
a good path curve, but because of the size of >.. here, and of the special 
disposition of the values at the various levels, this particular bud has a 
mean radius deviation of under 4% as is shown in Chapter 5. Notice that 

* See Appendix 3 for weighting procedure which is used from now on. 



7. FURTHER CONSIDERATIONS ABOUT FLOWER BUDS 97 

the upper part of the bud (D to F) has a mean A of 7.4 and the lower part 

(A to C) has A equal to only 4.6. The fact that the highest values occur 

not right at the tip but just below it, is typical of this kind of form. 

Now let us look at a more extreme rose bud form. This was a speci

men of the ordinary pink wild rose that grows so freely in our hedge

rows. (The first two rose buds which I measured were both white ones; I 

have the impression that the more extreme forms come more often with 

the deeper colours, but I have not at the moment enough evidence to 

support this firmly.) Here are the figures: 

Level A-value

A 5.28 
B 18.3 

c 00 

D 00 

E 00 

F 7.65 

Wherever oo is noted it means that the value has run up to oo, or 

beyond, coming out as a negative number. Let us just call it, for the 

moment, 'very large indeed.' Notice that these numbers, although they 

look at first sight to be so different from those of the previous example, 

are in fact disposed in a similar way. It is a typical form. 

One cannot of course calculate a mean A, or a mean A-deviation for 

such a form, but one can endeavour to see what sort of fit is possible. 

We could for instance calculate a form for, say, A = 15. We then find 

that this bud has a mean radius-deviation of 9%, which means a very 

perceptible deviation from the calculated form, but not nearly as wild as 

one might have expected from the above figures. Figure 45 shows what 

it looks like. 

On the left is shown the form of the bud itself, and on the right, the 

bud compared with the path-curve form ( dotted curve) calculated for 

A = 15. The more moderate form of the rose bud quoted above would 

have an outline which would come somewhere intermediate between 

the two superimposed forms on the right-hand diagram; in fact we can 

see that its form would not be greatly different from the more extreme 

form we are now dealing with. 

At this point, if we are to make further progress we must have the 

courage to contemplate these forms qualitatively. Firstly I think we can 

agree that although this more extreme form shows perceptible deviation, 

it is still nevertheless recognizably of the path-curve quality. The plant 
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Figure 45. The Rose shows an opposite gesture from the Snowdrop; notice how 
pinched and narroiv it beconzes in its middle and upper part. 

has obviously taken the liberty of making a considerably free variation, 
but it is still a variation of the original theme. Next we look at the mid
dle and upper part of the bud; we see how closed it has become, how 
tightly woven upon itself. We compare it with the form of the snowdrop. 
These two surely show opposite gestures in the language of form. If the 
snowdrop is out-breathing, opening to the light and the world, the rose is 
in-breathing, tightly closed, a little withdrawn. The snowdrop is like an 
eager child; the rose is virginal. The one is innocent; the other chaste. 

I would refer again to Steiner's words on out-breathing and in-breath
ing (see p. 93); I am sure he does not mean simply the taking in and 
out of air in the lungs; an organism can breathe in and out the spiritual 
essence of its being, can incarnate and excarnate; and he shows how, in 
the higher kingdoms, with in-breathing a heightening of consciousness 
can take place, a heightening which in the last resort can take the form of 
pain. In-breathing in just such a way does not take place with the plants, 
but I believe that a shadow, a reflection, of it does. If the plants could 
share a similar consciousness with us, then I believe that, of all plants, it 
is the rose which would be able to feel pain. 

Down through many ages the rose has had a special connection with 
Man and his consciousness; its thorny nature, just as much as its beauty 
and fragrance, has permeated literature and poetry, even to the point, in 
the Middle Ages, where it was taken as the symbol and picture of the 
purified blood. 

Such considerations go beyond the numbers, and I would not wish to 
put them forward in any dogmatic sense; but I believe that the param
eters can guide us to them. 
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The rose plays extreme variations on the theme, so much so that some
times, in the outline of its form, there appear two inflexions on each side, 
one usually just above the middle (level T) and the other near the top. Such 
behaviour is most unusual among the buds; in fact it is hard to find, in all 
my collection of measurements, another plant which behaves just like this. 
Nevertheless there is a small group of plants which follows the rose in a 
more moderate way, most of them never coming to the point of having 
flexes in their outline, but definitely showing a systematic increase in A in 
the top half of their buds. They also have high As, from about 2.5 upwards. 
It is interesting to consider which plants come into this small group; at first 
sight they make a rather strange-seeming set of bed-fellows. 

Firstly comes the wild garlic. The garlic bud usually has a A of between 
4 and 5, and shares many of the qualities of the rose bud form. Botanically 
the plant is quite different from the rose; what can it have in common with 
it? Firstly we are struck with the powerful and pungent taste and smell of 
the garlic. Of all plants this is one which, in a way, calls us to conscious
ness! It is a diuretic, acting on the kidneys and stimulating the flow of 
urine, that process which, of all those working below the abdomen, is most 
intimately connected with our consciousness (as for instance in cases of 
fear and anxiety). And it has been pointed out to me that the garlic and the 
rose are 'friendly' plants: they assist one another when planted together. 

Then in my notebooks I find two separate varieties of poppy. The 
figures for these must be taken with reserve. There are many kinds of 
poppy; the ones I measured were taken from the hedgerow, growing 
wild; the buds were covered with thick green sepals which were very 
difficult to remove without changing the shape of the bud. Nevertheless, 
when I had done my best with them, the results were definitely in the 
rose group of forms. I think I need not comment further than just to 
remind ourselves of the traditional connection of the poppy with drugs, 
and their powerful effect on consciousness. 

Next on the list, and much more moderately, comes the geranium. This 
was rather a puzzle to me until a friend pointed out that the geranium has 
a powerful scent, and one moreover that is so similar to the rose that per
fume manufacturers often substitute it when rose petals become scarce. 

This rose group is not a large one. I have not many more examples to 
give. In a mild way the buttercup, the wild iris that grows in the Scottish 
Highlands and also the type of water-lily which grows wild on our lochs, 
come into this group. (It would be interesting to know whether water 
lilies in general share this characteristic; would there be any connection 
with the lotus?) 
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How does a bud open? 

The next stage of the investigation obviously must be to find out what 
changes of form a bud goes through in the course of its development as 
it opens. From the foregoing I think it becomes clear that the general 
gesture of opening will be connected with a decrease in A. In order to 
test how true this would be, I made the set of drawings shown in Figure 
25. In these six drawings e has been kept constant, at 0.75, but A has 
been gradually reduced from +2 to -0.5. We see the form passing from 
a typical bud shape, through the elliptical cross-section (A = 1 ), through 
the conical form (A = 0) until it opens, with the negative values of A, 
into a vortex form. The question then was: How closely does an actual 
bud follow such forms during its opening? As sometimes happens, this 
primary question became somewhat over-shadowed by other considera
tions as soon as the investigation got really under way. 

Obviously it will vary with the type of bud; equally obviously there 
will be many buds which will not pass through the conical form during 
their development; nevertheless, it is surprising how many buds are to be 
found which do pass through a very approximate conical stage. As a bud 
opens, its parts become so loosely connected that one could not expect 
anything but approximate results at that stage. 

What I wanted to do was to photograph an individual bud day by day 
in the course of its development. This posed difficulties; the part of the 
bud in which I was interested was the coloured petals, and most buds 
grow surrounded by their sepals. However, it was midwinter and the 
winter jasmine was in bud. These buds emerge from their sepals about 
halfway through their development and they seemed therefore a possible 
species on which to start. The photography proved difficult; it was hard 
to get the camera into just the right position from which to photograph 
the bud on the living stem; the light was dim; so it happened that I had 
only poor photos from which to work. However, I persevered, day by 
day, waiting for the decrease in A which would signify the start of the 
opening process and which I thought must inevitably come. 

For nearly a week the A-values remained almost constant, and then, 
to my surprise, I took a photo which registered a slight increase. It was 
so slight - and unexpected - and the photos were so poor, that I found 
it hard to believe that it was significant. However the next day the rise 
seemed to be confirmed, and after that the value of A began to plunge 
quickly; the opening process had started at last. 
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Figure 46. This sholvs app1vxin1ately the variation in A in the course of the 
development of the Rose-bud. 

101 

I had the distinct impression that this little bud had been waitmg 
( eagerly, can we say?) for the great moment when it should open itself to 
the light, and to the world, and then, just before the actual opening, it had 
had a moment of hesitation, of withdrawal, of tension, before the final 
relaxation of opening. It was as though it passed through a little moment 
of climax, a little climactic rhythm. But the whole thing was so slight 
that I could not be sure that it had really happened. Observations on two 
further buds were no more conclusive; the whole thing was so subtle; the 
further observations were consistent with such a thing happening, but 
could not furnish evidence for its reality. 

And in this unsatisfactory state I left the problem, my attention being 
diverted to some other phenomena. However, six months later, in the 
course of these further investigations, I was standing in front of a wild 
rose bush; it was covered with buds, in all stages of development from 
the smallest to those which were almost open; and as I looked at them it 
seemed to me that these buds were doing, in quite an obvious and even 
dramatic way, just what the little winter jasmine had been hinting at so 
subtly six months earlier. It was not possible to follow the progress of 
an individual bud since each was firmly encased in its sepals through
out most of its development. I therefore decided that I would take bud 
length to be a measure of 'stage of development.' I picked some two 
dozen buds, from the smallest which could be divested of their sepals, 
right up to some which were nearly open. Their ;\s, when plotted on a 
graph, showed a dramatic rise just before the final fall which signified 
the actual opening. Figure 46 shows the graph which resulted. 
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The buds have been divided into class-lengths and the mean of each 
class taken. But length is plotted along the x-axis, which may stand for 
'stage of development'; and this of course may be thought of as a sort of 
approximate time-axis. 

Within a couple of months I found that the buttercup, the hypericum 
and the cabbage flower all gave similar graphs, although rather less 
markedly. And the next winter I returned to the winter jasmine, with 
improved photographic technique, and was able to convince myself that 
my suppositions of the previous season were indeed true: the winter jas
mine, in a very subtle and slight way, was behaving similarly. And these 
further measurements confirmed something else which I had suspected 
in the previous year; during the climactic moment the two halves of the 
bud, the top and bottom, tend to behave a little independently of one 
another. I then went back to my photographs of the rose, the hypericum, 
the buttercup and the cabbage flower; on remeasuring, with the exception 
of the buttercup, all of these showed this same peculiarity. This means of 
course that if the bud is a good path curve during its early development, 
it will probably become a less good one during the climactic rhythm, and 
this in general seems to be the case, the bud often returning to its better 
fit at the actual start of opening. 

Since then I have studied fourteen different species from this point of 
view, and the climactic rhythm has shown itself in every case. It seems to 
be a rule of plant growth that just before the moment of opening the bud 
goes through a little climax of closing, of withdrawal, of in-breathing 
before out-breathing, of tension before relaxation. But the ways in which 
the different kinds of plant do it are considerably varied. Here again the 
manifold variety of the living world manifests; and I have been at pains 
to try to find whether there is any general pattern of behaviour, and what 
it can be. And as one works, a general pattern does seem to emerge, 
although individual species vary this according to their nature. 

In the first place we have the quality that the bud is a good path curve 
form in its early stages, and then becomes less good, as it were, under the 
stress of the climax, returning to a better fit just before, or during, the actual 
opening. In eight cases out of the fourteen this seemed to be definitely true, 
and rather more questionably and slightly in two further cases. 

Secondly, we have the quality that the climax hits the top of the bud 
first, and affects the bottom part shortly afterwards; the climax passes 
from the tip towards the base. This was found to be true also in eight 
cases out of the fourteen; in two cases the top and bottom halves seemed 
to be affected simultaneously, and in only one case was the bottom half 
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Figure 47. Honesty. 

apparently affected first. In two cases the top part only was affected, and 
in one the bottom half only. 

A further rule seemed to be suggested, although much more work will 
need to be done to substantiate it firmly. That is that during the climax 
the bud tends to accentuate its type. If it inclines to the snowdrop type, 
that is if it tends to have lower l<s in its top part ( even if this tendency is 
so slight that one does not feel inclined to put it definitely into the snow
drop group) then this tendency becomes exaggerated during the climax. 
Similarly, if it inclines to the rose type, it accentuates its type. 

It seems therefore to be a general rule that during the climactic 
moment the bud endures a state of tension which draws it somewhat 
away from the true path-curve form; but that it returns towards this form 
immediately after. And that this state of tension moves generally from 
the tip to the base. 

Here follow some typical graphs showing this in particular cases. 
The A for the top half of the bud is shown in dotted curves, and that for 
the lower half in continuous curves. A perfect path-curve form would 
demand that these curves should coincide exactly; their separation there
fore shows some measure of the degree to which the form diverges from 
the perfect mathematical model. The horizontal axis, representing in an 
approximate way the time element, is usually plotted in stages of bud 
length. In a few cases however it is plotted in actual stages of develop
ment; for instance the snowdrop increases its length very little during 
most of its development, but it passes through definite, and visible, 
stages of development, when it bursts out of one sheath after another, 
and when it starts to hang its head, and so on. 
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Figure 48. Wild Rose. 

The honesty (Figure 47) starts off as very mildly of snowdrop type. 
The top half of the bud (dotted curve) has A a little lower than the bot
tom half (continuous curve). Notice that during the climax this becomes 
accentuated, but is 'healed' later. 

The wild rose (Figure 48). This particular rose started life as an almost 
perfect path curve, but the climax took it immediately and dramatically 
into the 'rose gesture' (note the scale of the vertical axis). In the actual 
opening phase it was again a very good path curve. 

The primrose (Figure 49) shows a typical climax except that one 
cannot see any clear indication of the top half of the bud being affected 
earlier than the bottom. The stages of development are: 

A. Bud very low down in its sepals. 
B. Bud fairly low in its sepals. 
C. Tip nearly reached the top of the sepals. 
D. Tip just at the top of the sepals. 
E. Tip just above the top of the sepals. 
F. Bud just starting to open. 
G. Bud half open. 
H. Almost fully open. 

The wild garlic (Figure 50) is an interesting case compared with the 
rose. I started work on this very early in the season, when only the very 
smallest buds were to be found. Then work was interrupted. When I was 
able to resume, the plants had become much more mature, and there 
were no small buds to be had, thus the break in the graphs. In the mean
time the forms had become much less extreme, but the same general 
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upward tendency for A was preserved. After the buds had reached a size 
of about 10 mm there was no further increase in size observable, but 
there were still clear stages of development. 

Forsythia (Figure 51) shows a typical climax. The bud starts at an 
early stage as an almost pe1fect path curve, and thereafter for quite a 
time it is a very good fit but with a slight tendency to the snowdrop type. 
This becomes greatly accentuated just at the climax. The A is rather high 
for a normal member of the snowdrop group. 

As leader of a group the snowdrop (Figure 52) maybe has the right to 
be a little eccentric! The lower part of the bud is completely untouched 
by the climax. The uninte1rnpted plunge of the curve is the indication of 
this little plant's steady surge toward manifestation. Only the tip suffers 
an increase in A, and that so slightly and subtly that it almost escapes 
measurement. In fact it was not until I had done two further sets of buds 
and had got similar results that I was convinced of the climax here. The 
stages of development chosen were: 

A. Bud is low down in its outer sheath. 
B. Bud stands high in the outer sheath. 
C. Bud is upstanding, clear of outer sheath but still within inner 

sheath. 
D. Bud has just burst free from inner sheath. 
E. It hangs its head. 
F. Starting to open. 
G. Well advanced in opening. 

Stages A to D take several weeks to accomplish, but stages E to G are 
over in a few hours, so it remains a fact that the snowdrop gesture ( dotted 
curve is below the continuous one on the graph) does predominate for 
nearly the whole time. 



8. The Heart 

The investigations described in the previous chapter were the first into 
which I was able to introduce a certain element of time and it seemed to 
me significant that these led immediately to a consideration of rhythm, 
of in-breathing and out-breathing. I think that perhaps the essence of 
time is only to be truly approached in the realm of such rhythms and 
rhythmic elements. And this led my thoughts back to some work I had 
done many years before on the form of the heart. 

I had noticed, whenever I had occasion to consult an anatomical atlas, 
that fmms of the general path-curve quality seemed again and again to leap 
to the eye. This was partly so when looking at pictures of the bones, but 
especially so when studying the forms of the muscles and muscle fibres. It 
was tantalizing; over and over again I sensed possibilities, but when I tried 
to find the exact point at which concrete research could start - just where 
would the invariant tetrahedron be?-the essential elements eluded me. To 
this there was one exception: the heart. The heart is surely the perfect, the 
archetypal, muscle of the whole body. After a time we can come to the feel
ing that all the other muscles are really variants of the hemt, transformed 
and adapted to the needs of their various situations. And just to superficial 
observation it seemed that the heart could be as perfect a path-curve form 
as any muscle could attain. 

So I decided to start with the heart. There were initial difficulties. I 
was interested not only in the outward form of the organ, but also in the 
detailed configuration of the muscle fibres which compose it, and the 
books, although agreeing that this is a matter of great complexity, were 
not always clear, or in agreement with one another, about the details. 
There was also the problem of getting good specimens to work with, and 
to photograph; human ones were of course not available to me. 

The work of J. Bell Pettigrew 

At this point I received great help from the work of the Scottish anato
mist, J. Bell Pettigrew, who worked during the last half of the nineteenth 
century. Towards the end of his life he published his great work, Design 
in Nature, three volumes filled with drawings and observations taken 

108 
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from a lifetime of research, and enlivened with many flashes of truly 
Goethean insight. Pettigrew had made a specially intensive study of the 
heart, and his observations are of particular interest to us. In describing 
this four-chambered organ Pettigrew remarks that the auricles are to be 
regarded as little more than an extension of the whole vascular system 
turned inwards, as though at this point the veins have simply turned in, 
involuted, upon themselves. He suggests that in studying the essence of 
the heart one should, from a certain point of view anyway, remove the 
auricles, and deal just with the ventricles. Further, he points out that if 
one cuts very lightly along the shallow groove which marks the septum 
dividing the ventricles, one can peel off the right ventricle, leaving only 
the left in one's hand. And then one finds that what had formed the 
right ventricle is no more than a pathetic little bundle of spiralling fibres 
which it is difficult to imagine had once formed a chamber; and one 
finds that in the left ventricle one has something like 95% of the original 
substance of the heart, what he calls the 'heart of the heart,' and this, he 
says, is what he proposes to describe in detail. 

In this paragraph I am trying to give just a precis of some of the things 
which Pettigrew says about the left ventricle. It takes the approximate 
form of an inverted asymmetric cone, the outer wall of which consists 
of fibres lying in a left-handed vortex passing steeply from the base to 
the apex. (It must be remembered that, as it is situated in the hnman, the 
apex of the heart points downwards, and the so-called base therefore 
forms the top part of the heart.) Pettigrew then goes on to say that the 
wall of this chamber is formed of seven distinct layers; what we see 
when we hold it in our hand is simply the first, outer layer. Inside is 
another layer, the second, the fibres of which spiral, still left-handedly 
downwards, but at a less steep pitch; the third layer is similar, but with 
the spirals even more horizontally pitched. The fourth layer is unique, in 
that the fibres do not really spiral at all; they run horizontally round the 
ventricle. The fifth layer is similar to the third, with the fibres running 
at about the same pitch or steepness, but now the vortex is right-handed, 
going 'upwards' against the 'downwards' of the third layer. Similarly 
he found that the sixth layer is a kind of right-handed reflection of the 
second, and the seventh of the first. 

Figure 53 is Pettigrew's drawings which I have simplified in Figure 
54 to illustrate the general 'idea' which is at work; my diagram does not 
pretend to follow exact forms and dimensions. 

Now we must consider a little more closely just what is implied by 
this remarkable description of Pettigrew. If I draw a spiral curve on a 
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Figure 53. The sevenfold structure of the wall of the left ventricle according to 
Pettigrew.from his dissections and photographs. 

sheet of transparent paper, I can draw it in such a way that it turns clock
wise as it grows outwards (that is when viewed from its centre, it moves 
outwards from left to right); I could call this, if I wished, a right-handed 
spiral. But ifI were to turn the paper over and view it from the other side, 
this 'right-handed' spiral would immediately be seen as a 'left-handed' 
one. In fact it is not possible to label a plane spiral as either right-handed 
or left-handed; it depends on the direction from which one views it. But 
as soon as my spiral becomes a space curve, that is to say, it leaves the 
plane and starts to move through the three dimensions of space, the case 
is different. 

If the reader has any doubts about this let him take a piece of wire and 
bend it into a rough coil; he will find that as he moves from one end of 
the coil to the other, the curve is either turning clockwise or anti-clock
wise; in the first case we call it a right-handed helix, and in the second a 
left-handed one. If he now goes to the other end of his coil and retraces 
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Figure 54. Sbnplijication of Pettigreiv's dra1rvings, shoiving the principle at ivork. 

his movement, going in the opposite direction, he will find inevitably 
that his coil still has the same handedness; it is intrinsically either 
right-handed or left-handed, and it will remain so from whatever direc
tion, or however he views it. This last statement is not absolutely true; 
if he views his helical coil of wire in a mirror, behold, its handedness 
will have changed! The mathematical transformation of mirror-reflec
tion is the one which changes left-handedness into right-handedness. 
And in effect Pettigrew is saying that, as far as the spiralling fibres are 
concerned, this central, unique, fourth layer in the wall of the ventricle 
is acting as a mirror which reflects the outer into the inner parts of the 
heart. And it is interesting to note that he says of this central layer, whose 
fibres run more or less horizontally, that 'the fourth layer is composed of 
loops of very oblique figure-of-eight spiral fibres.' 

This remarkable picture was discovered by Pettigrew in 1858, yet I 
have not found it paralleled in any other book. Working with sheep's 
hearts (which Pettigrew recommends as being very near in size and form 
to the human) I have tried to confirm or deny it by my own experience. 
But my dissection-skill has not been sufficient. Pettigrew appears to have 
developed many special techniques, for instance, setting the specimen in 
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wax, dissecting under a jet of hot steam, and maybe he used one of these 
in order to separate his seven layers. I do not know. But I have, from my 
own experience, been able to confirm quite definitely that the general 
change in direction of the fibres, as one cuts deeper and deeper into the 
ventricle wall, is very much as Pettigrew describes it. 

Be that as it may, it was the outer, first, layer with which I would be 
interested in the first place. I decided to work with sheeps' hearts, and in 
the course of the work I analysed some seven or eight of these, as well 
as several pigs'. The work is much more difficult than with the buds, 
chiefly owing to the asymmetry which is involved. One has to start with 
a number of assumptions, particularly with regard to the size and shape 
of the invariant tetrahedron; and one has to be constantly on the alert, as 
the work continues, for indications which suggest needful modifications 
or changes to these assumptions. 

In the first place I was unwilling to separate the two ventricles. I felt 
that I wanted to work with the whole thing! And this I attempted. But 
after many hours of work I became convinced that in no way would I 
find it possible to represent the two ventricles taken as a single organism, 
by any path-curve system which I knew or could devise. I was driven by 
my experience to follow Pettigrew's advice, and separate the ventricles. 

The sheep's heart 

As soon as I started working with the left ventricle alone, things were 
different. First I had to decide on the most probable disposition of the 
invariant tetrahedron. To do this one has to consider how the heart 
stands in the human frame. It is displaced rather to the left side of the 
chest cavity, and it faces towards the left front, with its apex pointing 
downwards. Its top part, the so-called base, is like a platform sloping 
downwards towards the back right, that is, in the general direction of the 
spine. It seemed to me that the top plane of this tetrahedron would be 
marked by this sloping base, and the bottom plane would touch the apex 
more or less horizontally. These two planes would then meet, maybe 
in the neighbourhood of the spine or just beyond it, in an invariant line 
which would run from back-left to front-right. This line would be the 
equivalent for the heart of the horizontal line at infinity for the bud. The 
direction from which to photograph the left ventricle would then be from 
back-left. I therefore set it up in such a position and photographed it, 
getting the profile which is illustrated in Figure 55. 
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Figure 55. The left ventricle, seen from left-back, in relation to its probable 
invariant tetrahedron. 

The line YZ represents the top invariant plane of the tetrahedron, tan
gent to the sloping base of the heart; it must be pictured as being roughly 
at right angles to the plane of the paper on which it is drawn. I felt that 
the shape of the profile of the ventricle enabled me to fix this line, YZ, 

with some degree of confidence. The other invariant plane, represented 
by line XZ, is also to be pictured as being approximately perpendicular 
to the page; but this line, XZ, cannot be so confidently placed, simply by 
looking at the profile; there is quite a range of positions which it could 
hold, tangent to the profile in the general neighbourhood of the apex. 
After considerable experimenting I came to the conclusion that its most 
probable positions are round about when the angle YXZ is a right angle, 
therefore in all the succeeding work I have taken care to choose the tet
rahedron so that this angle is exactly 90°. It is not that I believe that there 
is any special virtue in the precise 90° - plus or minus five, or perhaps 
even ten, degrees might well be just as good - but in the course of the 
work many occasions have arisen in which one needs to compare the 
shape of one heart with another, or the form of a heart at one moment 
with its form a moment later, and one needs a definite rule like this in 
order to make such comparisons as valid as possible. 

Now we have to ask ourselves in how far this is a good path-curve 
form, and if it differs, where exactly are the deviations to be found? The 
general method to be employed is the same as that for the buds, except 
that instead of taking ratios along the two lines YZ and XZ one has to 
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take cross-ratios. The details of the method are given in Appendix 3. The 
results for this profile are as follows: 

Level A-value 

Left side Right side 

A 1.74 3.33 
B 1.74 4.23 
c 1.91 4.39 
D 1.83 2.49 
E 1.84 2.10 
F 1.58 1.45 

Mean A ( weighted) 1.73 2.76 
Mean A-deviation 5% 35% 

We see that the left-hand side of the profile is a perfect path curve; a 
mean deviation of 5% signifies that any deviations present are smaller 
than the probable error of the finest measurements one is able to make; 
and results such as this were common to almost all the hearts I analysed. 
On the right side however, there is obviously appreciable deviation; but 
when we come to examine the figures we see that this is almost wholly 
confined to levels A, B and C. Now this is very near to the region where 
the mitral valve gives connection to the left auricle; it is a place where 
the ordinary muscular development of the heart is impinged upon by 
quite other forces, and where one might well expect deviations from the 
general form. If we disregard just these three points we find that we have 
as our result for the ventricle as a whole: 

Mean A= 1.75 
Mean A-deviation (MLD) 10% 

This result compares for accuracy favourably with the best of the 
flower buds. Thus we can sum up by saying that, apart from this region 
around the mitral valve, this profile of the left ventricle is a remarkably 
good path curve (Figure 56). And this kind of result was general for all 
the hearts of sheep and pigs which I analysed. 

I have sketched in three of the muscle fibres from the photograph; it 
is much harder to be precise over these, but analysis of these in a similar 
way to that which we used for the flower buds, showed that these are 
quite good path curves, at any rate during their middle parts, and that 
they all have an E-value of almost exactly unity. 
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Figure 56. This shows just how closely the left ventricle follows the ideal path 
curve for111. The black dots at the intersections of the lines sholv the calculated 
fonn; the dotted curve sholvs the tracing of the actual outlinefro,n the photograph. 

At this point a further step became possible in attempting to test 
whether this ventricle is a really good path curve form. Having found 
that it appears so from the back-left view, and having found the param
eters which apply to that view, we can calculate, and construct, a picture 
of what it ought to look like from the front-left view. And we can then 
compare this with the photograph of the front-left view. In doing this a 
further assumption had to be made. We have assumed that the axis YZ is 
at right angles to the line XZ representing the lower invariant plane when 
seen from the back-left view; will it also be at right angles to this plane 
when seen from the front-left? Seeing that this seemed to be a reason
able assumption, and that I had no evidence to suggest that it ought to 
be otherwise, I assumed a right angle here also. Having decided on this 
I produced Figure 57. 

The left one shows the form which ought to have come if my path 
curve measurements and assumptions were correct, and the right one is 
the tracing from the actual photograph. I was not wholly satisfied with the 
relationship of these two drawings, but at the time I was not able to see 
any way of improving it, and I left the matter there for the time being. 
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Figure 57. This shows the first attempt at calculating the left1'ront view of the 
ventricle. The left-hand drawing shows what the ventricle ought to look like, 
starting fro,n the para,neters obtainedf1v1n the left-back view, and assu,ning 
that the organ is a good path-curve form. On the right is the tracing from the 
relevant photograph. 

I next went on to consider the relationship of the two ventricles with 
one another. Holding a complete organ in my hand it seemed to me that 
the probable and reasonable solution to the problem was that the ventri
cles should be represented by two separate interpenetrating path-curve 
systems. And that in order to do this one would have to represent the axis 
of the left ventricle, when seen from the left-front, not as shown in the 
left drawing of Figure 58, which is the way I had pictured it till then, but 
rather the two axes as shown in the right drawing. 

Since I had now changed the angle of the axis of the left ventricle it 
meant that the previous drawing had to be recalculated. When I had done 
so it looked like the left-hand drawing of Figure 59. I give beside it the 

Left 
axis 

Lower invariant plane 

Right 
axis 

Left 
aJiis 

Lower invariant plane 

Figure 58. By considering the interrelationship of the two ventricles, a change 
in the slope of their axes lvas suggested. 
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Figure 59. The view from left-front. The calculated form, using the new axis, is 
shown on the left, and the tracing from the photograph on the right. 

actual tracing from the photograph, for the purpose of easy comparison. 
It will be noted that most of the discrepancies which had been there 
previously were now ironed out. The thing had become a remarkably 
good fit. 

According to this theory the right ventricle would not be easy to 
deal with, since a large part of its ideal form would be hidden where 
it interpenetrates the left one. However, working with that part of it 
which could be seen, I was able to get approximate figures. It came out 
to be a fairly good path-curve form, with mean deviation of 14%, but 
for the particular heart shown its A-value was higher than that for the 
left ventricle, 2.9 instead of 1.75. That is for the particular heart shown; 
other hearts had parameters which varied a little above and below these 
figures. The e-value, denoting the angle at which the fibres run on the 
right ventricle, was not easy to measure but was obviously very high, the 
fibres running almost longitudinally. 

Taking all these parameters which I had arrived at, and with the axes 
which I had now assumed, I was able to draw perspective pictures of 
what these intersecting path-curve forms would look like, and to com
pare them with the actual heart photographs. Figure 60 shows the front
left view. 

The left-hand picture is of the two intersecting path-curve forms, 
and the right-hand one is the tracing of the actual ventricles from the 
photograph. 

Next we show the back-right view of the same thing (Figure 61). 
Had I spent more time with the manipulation of parameters and axes 

I am sure that I could have got the agreement to be even closer than 
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ventricle 

Figure 60. The two path-curve forms inte1penetrating, viewed from the left
front: the calculated form on the left, and the tracing from the photograph on 
the right. 

this. But I was carrying a full school timetable at the time, besides 
other responsibilities, and in addition other aspects of this research 
work were crying out to be tackled, so I did not think that this would be 
the most fruitful way to spend my time. Nevertheless what I had done 
was enough to convince me that the ventricular part of the heart can be 
represented very closely indeed by these two intersecting path-curve 
forms, and that the heart is really an expression of those forces which 
show themselves in the linear process which leads to such a transfor
mation as collineation. 

Figure 61. This is similar to Figure 60 but seen from the right-back. 
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This was satisfactory as far as it went, but I was still dissatisfied on 
two counts. Firstly, I was able to deal with only animal hearts, and I 
would dearly have liked to measure some human ones. Secondly, and 
more importantly, the thing I was working with was dead. The heart is a 
living organ, perhaps more living than any other. It is continually moving, 
continually changing, never static. But the thing I was photographing and 
measuring was inert and still: the dead ash only, of a living process. 

The human heart 

The hearts I had studied were considerably different from one another 
in shape; was this due to some inherent difference in the animal or in 
the circumstances of its death? In the moment of death, does the form of 
the heart 'freeze' in that phase of the beat in which it happens to be? Or 
does it fall back into some relaxed condition? I had no means of know
ing. And the buds were crying out to be studied! So I laid this aspect of 
the work aside for many years. 

But when, some time later, I found the little climactic rhythm which 
the buds go through as they open, the desire to know just how the heart 
beats arose in me so strongly that I was driven to further action. I wrote 
to the Royal Infirmary in Edinburgh to ask whether, with modern X-ray 
technique, they had anything which could help me in this problem, and 
there I was introduced to the study of the angiogram, an X-ray moving 
picture of the beating heart. Shorn of technicalities the method can be 
described thus: an artery is opened and a long rubber catheter is inserted; 
this catheter is pushed right through the arterial system until the end of 
it passes through the aortic valve and into the left ventricle. Once it is 
there, some opaque substance is squeezed through the catheter into the 
ventricle, and for about three or four heart beats the ventricle can be 
filmed by X-ray. Once developed the film can be run through a machine 
which throws the whole process on a screen; and by pressing a button 
the sequence can be stopped at any desired moment so that one can take 
a tracing. The machine in use in Edinburgh takes 50 frames per second, 
so one can follow the beating of the heart each 0.02 second. 

I had so often tried to imagine what it would be like; and it was a thrill 
now to be able actually to watch it, even in terms of the dim shadows 
of an X-ray screen. What a wonderful organ this is, so mobile, so ever
changing; sometimes little ripples of contraction seem to pass from one 
end to the other, always rhythmic, always nevertiring. For a few minutes, 
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Figure 62. A typical X-ray picture of the left ventricle, shortly after the moment 
of full diastole (greatest relaxation). 

I watched it at normal speed; then I slowed it down and studied it in more 
detail; and finally I started taking tracings of the separate pictures. 

I was excited because here, at last, was the human heart. Now I would 
be able to find the difference between human and animal! The quickly 
I realized that this was not so. My sheep's heart drawings are of the 
outside, Pettigrew's first layer; now I was dealing with the inside, his 
seventh layer. The two things were not comparable. 

But the first thing was to find out whether the angiogram was present
ing me with a true path curve form. Figure 62 is a tracing of a ventricle 
taken a short time after the moment of extreme diastole, that is, at a 
moment when the muscle has started to contract, but is still compara
tively large and relaxed, and filled with blood. 

The first thing to notice is that this, as it stands, is certainly not a path
curve form. But we should not pass judgment on it until we have learned 
a little 'geography.' The line from B to C marks the position of the aortic 
valve; this is the top of the ventricle, and from a medical point of view 
marks its termination; all above there is artery. The little approximately 
quadrilateral space ABCD is called the aortic vestibule, and it is here that 
the blood gathers before it is expelled into the aorta. The rather strange 
protuberance DEF appears on the photographs of all the hearts which 
I have studied, more or less strongly marked. It marks the position of 
the mitral valve, a region where the ordinary muscular activity of the 
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ventricular wall is very definitely interfered with. It is this same region 
which gave the biggest deviations on the profile of the outside of the 
sheep's heart (see Figure 55, levels A, Band Con the right hand side). 

Now we must bear keenly in mind that the heart is, fundamentally, 
'muscle'; I believe that it is the archetype of all the muscles of the body; 
its being is ceaseless activity and rhythmic change; and the wonders of 
its rhythmic activity and its muscular development are probably to be 
seen in their purest essence in the form and the life of the left ventri
cle. Yet this ventricle in at least two places is non-muscular. These two 
places are the aortic vestibule, and the immediate region of the mitral 
valve. In an organ which is in a state of continual flux, this part of the 
profile, from A through B and C to F, is largely invariant. It does not take 
part in the beating of the heart. And the significant thing is that if we 
ignore just this part of the profile, the remainder is found to fit the path 
curve form quite closely. 

In order to measure the left-hand side of this profile one has to draw 
a smooth continuation of the curve above level T, and this renders the 
measures for this top left-hand corner of the profile rather questionable, 
but the whole of the rest of the outline can be measured just as it stands. 
The A-values for the various levels come out as follows: 

Level A-value 

Left-hand Right-hand 

A 3.07 2.11 
B 2.55 1.54 
c 2.22 1.61 
D 3.11 3.75 
E 2.43 2.31 
F 1.75 2.35 

Mean A (weighted) 2.34 
Mean A-deviation 18% 

This is a result which is comparable with quite a number of the flower 
buds. What this 18% deviation means in real terms can be seen by 
looking at the dotted curve of Figure 63, which is the actual calculated 
result. The only appreciably visible deviations are at level Fon the left
hand side, and level B on the right, and neither of these is larger than 
the little ripples of expansion and contraction which seem to be moving 
constantly across the surface of this very mobile organ. This is a fairly 
typical result for a photograph taken at this stage of the heart's cycle. 
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Figure 63. The human left ventricle, placed within its probable invariant tetra
hedron, shown by triangle, XYZ. The dotted curve shows the calculated form, 

with A= 2.34, the continuous curve being the tracing from the photograph. 

The value of A calculated for levels A, Band Con the left-hand side can, of 
course, only be ve,y approxitnate. 

Earlier, at full diastole, when the organ is totally relaxed, the mean devia
tion will often be less than this; later, as systole approaches, it becomes 
very much greater. 

The next interesting thing to notice is the form of the invariant tetra
hedron, which is indicated in section by the triangle X'YZ. The line YZ 
has had to be drawn using one's judgment. In all the work which follows 
I have made it lie along the bottom level of the aortic vestibule, and I 
think that this is the most probable and correct place for it. Line XZ has 
been drawn following the right-angle rule (YXZ = 90°). Further experi
ence may lead us to vary the details of this procedure; but in studying the 
way the heart beats I think the most important thing is that the procedure 
should be strictly constant through all stages of the heart's cycle. 

One must realize that the invariant lines of the tetrahedron are two, 
the axis XY and a line through Z approximately perpendicular to the page 
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of the diagram. Now it is a general rule, in all the various hearts which 
I have studied in this way, that the size of this tetrahedron varies during 
the heart-beat. In full diastole, Z is far away, right off the page of Figure 
63, and occasionally almost infinitely distant. As systole proceeds, Z 
comes swinging in; in our picture we have caught it part way in; a few 
fractions of a second later it will occupy a position only a half, or a third 
of this distance from X. Then as soon as the moment of full systole is 
past, and the organ starts to relax, Z retreats again into the distance. Thus 
we must see the contraction of the heart as being associated with the 
swinging in of this invariant line from the far depths of space to a close 
position, and then back again. This immediately gives us the impression 
of systole as an in-breathing, and diastole as out-breathing. 

The next interesting thing to notice is the similarity of this picture 
with that of the sheep's heart which we have already seen (Figure 55). 
This becomes more than interesting, definitely intriguing, when one 
realizes that these two pictures were taken from diametrically opposite 
directions. I photographed the sheep's heart from the back-left; in taking 
their angiograms the doctors work from front-right. The fact that these 
two pictures look so much alike means that the tetrahedron which one is 
led to from studying Pettigrew's inner, seventh, layer, is an almost exact 
mirror image of that which one finds in the outer, first, layer. And this, 
coupled with Pettigrew's assertion that as far as their fibre-spiralling is 
concerned these two layers are mirror-images of one another, must I 
think be taken as a highly significant fact. 

The beating of the heart 

When one comes to study what occurs during the course of a heartbeat, 
further significant things come to light. In the first place my experience 
in studying these X-ray photographs has impressed again upon me the 
extraordinary variety of living nature. Not only does the actual shape of 
the heart vary considerably from one person to another, but the details 
of the actual way of beating are quite individual. These individual dif
ferences may become important in further study, but in this preliminary 
work I have been concerned to find the general rules which are common 
to all, or at any rate, the majority of hearts. One thing that can be said, 
I think, absolutely generally, is that although in diastole A is quite low, 
usually between about 1.8 and 2.8, with the onset of systole it suffers a 
gradual rise, which then usually becomes dramatic; by the moment of 
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full systole;\ will be very high, sometimes reaching to infinity or beyond; 
and this gradually falls to a low level as diastole proceeds. I think we see 
here a further confirmation of what I had earlier supposed, that high ;\s 
are connected with in-breathing, and a certain state of tension. 

However there is more to it than this. In nearly every case I have 
found that this increase in ;\ affects the apex half of the organ (levels D, 
E and F) much more strongly than the base half. In fact, as my studies 
have continued, it has become increasingly and strikingly clear to me 
that the dispositions of the ;\-values at the various levels, as the moment 
of full systole approaches, take on a special and characteristic form. It is 
a form which in all my studies of the living world I have met in only one 
other place: the bud of the wild rose. 

The actual, absolute, ;\-values yielded by the buds of different rose 
bushes vary considerably from one bush to another, but the way they are 
disposed is generally characteristic, and fairly constant. Let us take the 
values for a moderate type of rose bud, already quoted in Chapter 7. 

Level A-value 

A 4.02 
B 4.75 
c 6.29 
D 11.5 
E 10.6 
F 4.72 

We notice that ;\ is a little higher at F than at A, but that it reaches its 
maximum value at D and E, with C also fairly high. 

Now we compare this with the values for one of the heart sequences, a 
picture taken 7 frames (0.14 second) before the moment of full systole. 

Level A-value 

A 4.78 
B 5.74 
c 4.28 
D 8.34 
E 6.41 
F 7.84 

Again the value of F is higher than that at A, and the maximum value 
is at D, although the increase in the region D and E is only just start
ing. 

Two frames (0.04 second) later, we have the following figures: 
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Level A-value 

A 7.53 
B 7.04 
c 4.39 
D = 
E 17.3 
F 6.59 

Three frames (0.06 second) later still, we find these figures: 

Level A-value 

A 6.08 
B 8.99 
c = 
D = 
E = 
F 13.2 

Now let us compare this with the figures given earlier for a rose of the 
more extreme kind. 

Level A-value 

A 5.28 
B 18.3 
c = 
D = 
E = 
F 7.65 

Where we are dealing with such a mobile field of form we must 
expect considerable variations in the actual figures, but the general trend 
and similarity between the two forms is unmistakable. 

Now we must ask ourselves what these figures mean in terms of 
actual visible form. Figures 65-67 show the three moments in the heart 
cycle which we have discussed here. The dotted curves show the cal
culated form. Of course it is not possible to calculate a mean A for the 
second and third cases; I have adopted A= 12 for the second, and A= 20 
for the third; with such high As a considerable change in A makes very 
little difference to the visible form, so I think these dotted curves do give 
a fair impression of how good a fit it is possible to get. 

First we show this same heart at about the moment of full diastole, 
for the sake of comparison (Figure 64). This particular heart had higher 
mean deviations than are usual at this part of the cycle, having already, 
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Figure 64. The left ventricle at the moment of full diastole. The form is gently 

rounded, less so in this case than often, as this particular heart had a higher A 
than usual. 

. 
/ 

Figure 65. The same ventricle 0.14 seconds before full systole. The form is becoming 
more straight-sided; and the point Z is already swinging in on to the page. 
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Figure 66. The same, 0.10 seconds before full systole. 

Figure 67. 0.04 seconds before full systole. Point Z has reached its most inward 
position; and the organ has assu,ned abnost the /01111 of a thorn. 
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even at that time, a slight tendency to the rose gesture, that is, higher ;\s 
at the apex end than the base. Could one speak of this as being an unusu
ally 'ardent' heart? It would be interesting to know something about the 
people whose hearts I had studied! 

In these pictures one can sense more than just the physical contrac
tion of the form, that is, its decrease in volume; there is a change in the 
quality of the form. The rounded sides and the gentle curve of the apex, 
seen in the diastolic form, give way to the straight sides and a sharp apex 
almost like the point of a cone. Everything bespeaks a state of growing 
tension; the thing has taken on the form almost of a thorn. And if one 
speaks of 'pain' now in the sense in which I used the word in a previous 
chapter when referring to the rose, meaning not 'what hurts' but rather 
that condition in which spirit sinks itself into matter, immerses itself in 
the bond of substance, then I think we are entitled to say that the heart in 
this moment, just for a fraction of a second, suffers what we may speak 
of as an ecstasy of pain. 

But now we must go further and ask ourselves what this ventricle 
undergoes in the course of transforming itself from the rounded forms 
of diastole to the sharp ones of systole. To do this we will study our ;\
values on a graph; along the x-axis we put 'time,' each unit representing 
one frame (0.02 second); on the y-axis we put the ;\-values; we plot the 
mean ;\ for the apex half of the organ (levels D, E and F) in a dotted 
curve, and the mean ;\ for the base half in a continuous curve. Figure 68 
is the graph for the particular heart we have been studying. 

Along the time axis we mark our zero ordinate at the moment, as far 
as we can determine it, of full systole. Five frames (0.1 second) before 
full systole is shown as -5; +5 means 5 frames after systole. 

Now let us study this extremely interesting graph. Firstly we notice 
that almost the whole time the dotted curve (apex halt) is above the 
continuous one; it has the gesture of the rose, and that this is much more 
strongly marked between -10 and + I 0, while the ventricle is under 
contraction. On the whole the continuous curve (base halt) echoes the 
movement of the dotted one, but in a much milder way (in this particu
lar graph this tendency is broken between about -12 and -7, but this is 
exceptional; other similar graphs do not show this). This ensures that as 
;\ increases, the form of the organ changes thus strongly into the extreme 
rose form. 
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Pulsation during heartbeat 

But now we see that this extreme rose form seems to be achieved 
not smoothly, or once, during each heart beat, but several times, in 
a series of leaps and bounds. The dotted curve goes very high at 
-10 and to infinity thereafter no less than three times. And even the 
smooth curve follows it twice, during the moments of extreme ten
sion. In fact the whole graph gives one a strongly cyclic feeling, as 
though the heart is pulsating during the course of the single beat. 
But when I took the tracings for this and a number of other similar 
graphs I had not expected any phenomenon like this, and therefore I 
had not thought it necessary to take tracings of every picture; I had 
contented myself with every second, or, in the case of diastole, every 
third or even every fourth, frame. With so few observations to work 
with, and a degree of probable error in the figures which is not easy 
to determine, one is not entitled just to join the points of one's graph 
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Figure 68. An early chart showing the variation of A during the complete 

heart beat. The dotted curve shows the A value for the apex half of the heart 
(the lower portion) and the continuous curve shows that for the base half(the 
upper part). 



130 THE VORTEX OF LIFE 

>. 5 

4 
I 

,, ;[\ 
-, / f'-, I,- i--.. -- '\ " 

\ I 
' 

3 

2 

Figure 69. Pulsations within the heart beat. ).. value falling with diastole. 
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Figure 70. Pulsations ivithin the heart beat. A value starting to rise as the 
organ goes into systole. 

into a nice smooth curve, and then announce to the world that one 
has discovered a cyclic pulsation! How far are these 'pulses' just the 
result of random errors asserting themselves? What was happening to 
the ventricle during those spaces between these rather widely spaced 
observations? 

Clearly I needed a set of tracings which should include every frame. 
Now I had several such to hand, which I had taken for a rather different 
purpose, but they included only that part of the heart beat from a little 
before the moment of full diastole to a little after it, that is the time when 
the ventricle is comparatively relaxed and large. This is the time when 
the ventricle shows up most clearly on the X-ray film and one can get the 
most accurate tracings; as the organ goes into systole the photos become 
more confused and difficult to follow, and sometimes it is almost impos
sible to get a reliable tracing. 

I therefore set to work analysing and making graphs for these sets 
of tracings. I found that I had seven such sets, and in the result I found 
that one of them did not appear to show such a quick pulsation, two of 
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-10 0 +10 +20 

Figure 71. A co,nplete heart beat, using eve,y available picture. The consist
ency of the observations is re,narkable. In a situation lvhere a slight slip of the 
pencil can throlv the result seriously out lve have, out of the fifty observations, 
only two for the apex half (at -I I and +18) and two for the base ha/f (at-3 
and +3) lvhich do not lie closely on the sn1ooth curve 1vhich has been dra1vn. 

them seemed to show it, but not with a very great degree of certainty, 
and the remaining four seemed to me to show it with a satisfactory 
degree of certainty. I show here two of the graphs so that the reader 
cau see for himself what they are like. Figure 69 shows A plunging into 
the trough of diastole, and Figure 70 shows it as it is just about to start 
climbing out of it. We see that in nearly every case each maximum and 
minimum of the curve is supported by at least two observations and 
usually more. 

Looking at this whole set of graphs I found that I had thirteen places 
where I could arrive at a measure for the wave length of this little pulsa
tion, that is the time from one maximum to another or from one mini
mum to another. The wave lengths varied from 3 to 8 frames, but their 
mean value came out at 5.8 frames, nearly six. Now the average rate of 
heart beat is usually considered to be 72 per minute, which means that 
the average heart beat will take just 42 frames. So if these little pulsa
tions are really there, and if these were on the whole average hearts I was 
measuring, and if the pulsation continues through systole at the same 
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rate that I had observed during the diastolic part of the rhythm, then we 
could expect to find just seven little pulsations to every single beat of the 
heart. Quite a lot of 'ifs' but an interesting result! 

At this point I came in touch with Dr George Aitken, an experienced 
radiologist, who showed interest in this work; and he offered to make 
for me a set of tracings for every frame, for a complete beat of a heart. 
This was an offer which I was very happy to accept. The interpretation of 
these rather shadowy X-ray pictures is not always an easy matter, espe
cially to a layman like me, and I have not always been quite sure where 
my pencil should go. To have an expert hand on the job was a great 
relief. As soon as the tracings came to hand I measured and analysed 
them, and produced the graph of Figure 71. 

The first thing to notice about this diagram is its essential similarity 
with most of the others which I had already got from my own tracings. 
We see the A of the apex half of the organ (the dotted line) rising in a 
series of bounds, two of which shoot right off the page; we see the curve 
for the base half echoing this rhythm, but in a much more modest way. 
The great gap between the curves around times -5 to +5 indicates the 
extreme form of the 'rose parameters' which the organ assumes just at 
the time of full systole. But beyond all this the graph shows more clearly 
than I had dared to expect the sevenfold pulse within the single heart 
beat which I had been led to look for. 

Now can we say that in every beat of every heart we shall always 
find this sevenfold pulse? I doubt that we are in a position to make such 
a forthright statement. The matter is infinitely subtle, and individual. 
One thing I have learnt during this study is that each heart beats dif
ferently. The thing is further complicated by the conditions in which 
the photographs are taken. All the hospitals which have helped me 
in this investigation have assured me that they are showing me only 
photographs of healthy hearts. Nevertheless I am sure that it is a fact 
that many of the angiograms which I have worked with are those of 
patients, people who have come in with symptoms which have led 
the doctors to suspect heart disease. Does the fact that they have been 
subsequently cleared of actual heart disease guarantee that in these 
moments their hearts are really beating normally, especially in such a 
subtle respect as this? Some of the hearts have been beating at a rate 
of up to 160 beats per minute, over twice the normal rate. Such rates 
are found only in three kinds of circumstance: great physical exertion 
(unlikely on the X-ray couch), disease, or extreme mental and emo
tional stress. These photographs are not normally taken under general 
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Figure 72. An attempted visualization of the invisible part of the heart. 
Through the points labelled I, 2, 3, 5, 6 and 7 one must imagine lines, approxi-
1nately pe1pendicular to the plane of our page; during systole these lines ivould 
con1e siveeping in toivards the physical fornz of the organ, and in diastole they 
ivould retreat once again into the depths of space. 

anaesthesia but under fairly heavy sedation; people's tolerance for such 
treatment, while remaining reasonably imperturbable, varies greatly 
from one individual to another; can a heartbeat photographed under 
conditions of fear and anxiety really be taken as a normal one? The 
matter is beset with so many difficulties that it would be surprising if 
I had not found some hearts which do not show such a subtle rhythm 
very clearly. 

Nevertheless I have found this little sevenfold pulse, or traces of 
it, in so many cases that I am becoming convinced that it is in fact a 
feature of the normal heart beat; and that this wonderful organ which 
Pettigrew assures us is seven-walled, is also seven-pulsed within each 
single beat. 

It is important to realize that these little pulses do not represent 
changes in size, but rather changes in form. The organ becomes more 
rounded, or less; in other words, less straight-sided in its shape, or 
more so. 

At this point it is tempting to speculate what the complete form of 
the invisible part of this wonderful organ could possibly be like. Let 
us assume for the moment the truth of Pettigrew's assertion about the 
seven walls. We have some knowledge from actual measurement of what 
the invariant tetrahedra must be like for the first and for the seventh. In 
Figure 72 I give a picture of what I suppose the whole thing might look 
like, as seen from the back-left. 

Through each of the points labelled 1, 2, 3, 5, 6 and 7 one would need 
to envisage a real invariant line, more or less at right angles to the plane 
of the page. The spirals sweeping inwards from behind, from lines 1, 2 
and 3, would fashion the outer part of the ventricle, and those sweeping 
inwards from the front, from lines 5, 6 and 7, would form the inner part 
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of the organ. The generating line for the middle, fourth layer would be 
the line at infinity, and under the aegis of this, the spirals would merge 
into grand circling movements whose intricacies we can hardly begin to 
guess at this stage, but which would, in some way, form the balancing, 
mirroring, agency which would link 1 and 7, 2 and 6, 3 and 5. And now 
imagine, in the course of the heart-beat, from front and from behind, 
these lines breathing inwards, in tension, for systole, and then relaxing 
outwards, for diastole, into the far reaches of space. Each heart beat 
would fill the cosmos. 

Of course such a picture must be treated with circumspection. We 
must be ready to modify it with each new piece of evidence which arises. 
But I do not think it is too fanciful to hold in one's imagination, until 
further insight comes to us. 

Since the first appearance of the above account I have measured and 
analysed a series of further angiograms. The images appear on the film 
with varying degrees of clarity, but in every case, without exception, my 
measurements have yielded evidence, with more or less certainty, for 
the existence of this little seven-phased rhythm within each single heart 
beat. And it has been universally the case that the clearer the pictures, 
the more clearly does the rhythm show itself. This further experience 
has been such as to dispel any lingering doubts I may have had as to the 
reality of this little rhythm. In view of what I have to say in Chapter 16 I 
think this an important matter, involving man's one-ness with the whole 
of nature. 

Some time after I had done the main work of this chapter, a friend 
drew my attention to a lecture given by Rudolf Steiner in the spring of 
1920, and with which, until that time, I was unfamiliar. In the course of 
this he says: 

... imagine a wind whirling with a certain velocity from 
above downwards, and another from below upwards, and 
they whirl into one another ... One whirls downwards, and 
because the other whirls upwards with a greater velocity 
... [there arises] through the collision, a condensation, a 
certain figure. This figure, disregarding imperfections, is a 
silhouette of the human heart.* 

* Man, hieroglyph of the Universe, Lecture 14, p. 193f. 
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I find this a remarkable description coming from a man who, as far 
as we can ascertain, did not possess the details of this particular branch 
of geometry. If we compare what he says with Figures 21-23, and what 
was said about them, I think we can have no doubt that he is speaking 
about the same things. By what particular means of cognition he reached 
a perception of these things I do not know, but I do know that if I were to 
attempt to give a purely descriptive, non-mathematical, account, I could 
not do better. 

He, as a seer, insisted that it is the difference between the speeds of 
whirling of the two vortices which imparts to the heart its characteristic 
form; and I, as a geometrician, know that the contrast between these two 
speeds (technically speaking it is a quotient rather than a difference) 
gives me that parameter which we designate as lambda (A). 

Rudolf Steiner had a keen appreciation of the importance of keep
ing a clear distinction between those things in our world which can 
be calculated, and those which lie more within the chaotic ambit of 
the incalculable. And he told his audience that the form of the heart 
definitely comes within the sphere of the calculable; 'but,' he said, 
'the calculation cannot be followed up here, first because it would 
take too long and secondly because you would not be able to follow 
it.'* The moment passed, and this crucial calculation was not given. I 
say 'crucial' because from it there follows the possibility of discover
ing the seven-fold beat in the pulse, the fourteen-day rhythms of the 
buds described in Chapter 15, the seven year rhythm of the phase-shift 
chart, also in the same chapter, and indeed almost everything which is 
in this book. 

The pineal gland 

At this point, where we are describing how this egg-like form appears in 
the breast of man, it is perhaps most fitting to include a uote of another 
place in the human organism where something very like it appears, that 
is, the pineal gland. This mysterious little organ has not received the 
attention that it deserves from medical science, and not a great deal is 
known about it. Its name derives from its close resemblance to a pine 
cone - a fact which alone should be enough to excite our interest! 
It is very small - scarcely more than one third of an inch in length. 

* Ibid. p. 193. 
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With its long axis approximately horizontal and the sharp end pointing 
posteriorly, it is buried deep in the heart of the brain. The rather scanty 
literature which has gathered around it (improving somewhat in very 
recent years) largely ignores its gross morphology, and I have found it 
a matter of very great difficulty to obtain good pictures of it. The best 
one I could find, which claims to be an actual photograph, shows a 
moderately clear outline but gives no indication whatever of the spiral 
forms which I think we must suppose lie on its surface, because of its 
name, if nothing else. The outline, when measured and analysed, gave 
the following result: 

;>.. = 2.05 
MRD 1.8% 

Thus in the upper part of our organism, this form is present, with a qual
ity and an accuracy fully comparable with the world of the plant buds 
and the ventricles of the heart. 

In certain primitive creatures, the pineal gland can appear in two 
apparent capacities, one of which comes near the surface and shows 
strongly optical qualities, sometimes possessing a clearly developed 
cornea, lens and retina. It is hard to reject the idea that this was once 
something of a single eye. One thinks of the Cyclops. But in the higher 
mammals and Man it has completely lost this quality and has sunk down 
into the deepest and darkest regions of the brain. 

Even down there however it has not lost its relationship with the 
light. Strong light falling on our bodies stimulates, in ways that are not 
fully understood, its activity of secreting melatonin, which among other 
things, is involved in the tanning of our skin. Various procreative cycles 
are probably also affected. 

I am sure that this little organ has been in the past, and will again 
be in the future, of vital importance to our whole evolution and 
development. But what chiefly concerns us at the moment is that 
here again, and now in the upper part of man, we find this egg-like 
form which is intimately connected with the most ancient aspects of 
our history. 
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More on the heart 

by Graham Calderwood 

As we read in Lawrence Edward's own account of his work with the 
heart, measurements of a ventricle were done by hand and eye, using a 
ruler and a pencil, and were set out on his estimate of the most likely 
position and disposition of an invariant triangle. Relatively few estimates 
and corresponding sets of measurements were practicable because of 
the considerable, time-consuming labour entailed by them - too few, 
in fact, for complete confidence in the results obtained from them. A 
computer program was developed to tackle the problem. 

Using a random-trial method, the program converges on the invari
ant triangle yielding the best match of a path curve to the outline of the 
ventricle. It does this for each successive frame of the 'movie,' X-ray 
ventriculogram, and supplies the A-value corresponding to that fit. As 
it runs, the program plots these values against the corresponding frame 
numbers on a chart, so that eventually most-probable-values of A for 
the whole beat of the heart are presented, along with the corresponding 
quality-of-fit numbers. For nearly all the samples available, the fit is 
excellent throughout the beat (the correlation coefficient stays above 
99% ), except close to the moment of systole, when the ventricles con
tract to minimum volume and - in Edward's description - assume 
almost thorn-like form. The coefficient drops just then, though not 
below 0.8 even in the worst case. The program thus confirms that the 
ventricle is indeed a good path curve, and is very probably formed 
according to path principles. 

The program may be directed to do its work on either the left or 
the right side of the ventricle, or on both sides taken together. But, as 
one side (the left as the ventricle is presented) is the interventricular 
septum, or 'party wall' between left and right ventricles, and has an 
embedded valve which interferes with its form, a match to a path curve 
is usually sought only for the right side. Figure 72a is an example. 

As may be seen, the seven A-peaks corresponding to the sevenfold 
'beat-within-a-beat' detected by Edwards emerge to view distinctly, and 
confirm its existence with high probability. Shown below (Figs 72b-h, 
p. 139) are· the ventricle outlines corresponding to these peaks, with their 
matching invariant triangles and fitted path curves. 
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Ag7 Lambda 
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2 7 

Fig 72a A-chart for ventriculogramAg7, containing 54 outlines. 

In Figure 72 on page 133, Edward attempts to provide a view of (in 
his words) 'the invisible part of the heart' - by which, of course, he 
means the invariant triangle - as the heart goes through a beat. If one 
casts one's eye over the sequence of pictures opposite, one must surely 
conclude that his attempt comes very close to the actuality. 

The variations of A to the right of peak 7 on the A-chart for this heart, 
coming as the ventricle relaxes into diastole and refills with blood, 
then prepares for the next contraction by going into full expansion, are 
untypical; most ventriculograms exhibit just a gentle A-wobble. Indeed, 
when watching a ventricle in action using the program's 'movie mode,' 
one usually sees no more than a slight quivering at this phase of the beat. 
This one is unusual. It is also unusual in respect of how well it preserves 
its path form right in to systole; most do not. 

These unusual features may be symptoms of some pathological con
dition present in this particular heart. No doubt a clinical diagnostician 
could tell us whether they are or are not, and indeed it is not beyond 
the bounds of possibility that, in the hands of such an expert, Edward's 
investigations generally into the form of the heart, along with the means 
to make them, could be a clinically useful tool. 

Now I am no sort of expert on the heart, but I suppose it was inevi
table that, as I was developing the program mentioned above, I would, 
in passing as it were, notice several things about the ventricles besides 
their form that would seriously pique my interest. I beg leave briefly to 
present and discuss one of these. 
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An estimate of the rate of ingress and egress of blood at various stages 
of the beat can be obtained from comparison of the areas of the ventricles, 
frame by frame. Here is a graph of the sequence of these areas for Ag7. 

50.0 
,m2 

Max 

Systole Oiastole 

Frame No. 

Figure 72i Ag7 ventricle area versusfrarne nu,nbe,: 

The gradient of this area-trace is, roughly, the rate of flow. We notice 
at once that there are three main phases: first there is a period of reduc
ing area (negative gradient) indicating outflow from the ventricle, then 
a very curious period during which there is no flow (the plateau of con
stant area, zero gradient), and finally a period of rising area and positive 
gradient, indicating inflow. 

The first surprising thing to note from this graph (which is, inciden
tally, a typical one), is that the heart never quite empties. If one thinks 
that the heart is a pump, surely this failure to empty itself completely 
means it is pumping inefficiently. 

It is also striking that inflow, showing about twice the gradient of the 
outflow, is around twice as fast as outflow. One might have expected the 
reverse to be the case; the heart, one would have thought, would seek 
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to deliver blood as urgently as possible, and then retrieve it either at the 
same rate, or possibly some more leisurely rate. Instead, against expecta
tion, the ventricle fills faster than it empties. 

Now, the plateau signifying absence of flow occurs at a most signifi
cant moment in the beat; it begins precisely at the instant of full systole, 
when the ventricle is just reaching its limit of contraction, and when, 
until it is abruptly halted at this point, blood is leaving the ventricle at its 
greatest rate for this phase. Flow stops because both of the valves serv
ing the ventricle and controlling blood flow shut down together. Why 
do they both close, and why just then? What utility is there in halting 
delivery exactly at its height? 

Physically, the heart is quantity of relatively soft tissue with a mass I 
would guess to be on the order of a kilogram. It is anchored firmly at its 
base, so cannot move much there; all movement of the heart must occur 
roughly on a line between this anchorage and the heart's apex - and 
so it appears in movie view. One sees a mass of flesh and blood launch 
itself towards the anchor point; one sees it plucking itself into motion as 
it embarks upon its discharge phase. Then, just when it is moving at it 
fastest, and before it completely empties, it is brought to an abrupt and 
literally shuddering halt (the shudders sometimes show up on the A-chart 
as 'noise'). Why? 

I have done simple experiments with very thin, soft-plastic tubes, and 
liquids with viscosities similar to that of blood, and these showed that 
a very considerable expenditure of energy (in the order of kilowatts) 
would be needed to drive blood continuously through a vascular system 
like that in the human body - far more than could possibly be available 
from a pump with the dimensions of the heart. The simplest conclusion 
to draw from this is that the heart is not a pump of this kind. So, since 
it seems clear that it is a pump of some kind (for blood is delivered and 
delivery stops if the heart stops), what kind is it? 

Well, the blood flow is not continuous; it comes in pulses, with a 
certain duty-cycle. If we estimate this cycle to be around 50%, then we 
have at a stroke reduced the energy expenditure by half, but still not by 
far enough for the heart to cope with the burden of delivering it. Another 
means of accounting for the energies in the system is needed. 

I suspect that the body and the heart together form a partially con
servative system; I mean by this that the total energy shared between 
them remains substantially constant. How could this work? If the vas
cular system and the tissue in which it is embedded are elastic to some 
degree and are inflated, then they hold potential energy in the tensions 
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of this inflation - which they may release back to the mechanism that 
presumably produced these tensions; the heart. There may be small 
losses to the external world in the exchange. There probably are; the 
body is not an energy-closed system, as anyone who has either shivered 
or perspired may testify. 

I wish to suggest that the heart is called upon only to replace these 
losses as it otherwise mediates the energy exchange; it is not called upon 
to supply the entire energy involved in blood transport on each and every 
beat. But how precisely does it do this? 

Consider only the discharge phase for the moment. A small volume 
of blood is to be sent to augment a large volume, by way of a portal 
of small area. This is classical 'hydraulic ram' territory! This is how 
enormous tyres may be inflated to huge pressures by small pumps; the 
pumps are rams. It works because the force needed at the portal to effect 
the transfer of fluid is proportional to the area of the portal, and that area 
is generally small. The required force, being small, may be supplied by 
relatively modest apparatus. 

Of course, there must be some way of preventing back-flow after 
delivery, such as one-way-only valves, and both the heart and the arte
rial system have plenty of these. I consider their presence to be good 
evidence in favour of what I am now proposing, for why would they 
be there if no back-pressure were expected? They are there, so there is 
back-pressure. From what does it come? Not from the heart; it delivers 
fo1ward pressure. It must come from the vascular system. 

But all this does not account immediately for the sudden, strangely 
illogical-seeming cessation of flow at its height. Nevertheless I think we 
may understand it in terms of the energy exchange and the need to bring 
it about with the least strain on the heart. A very simple demonstration 
will show what I have in mind: place three coins in line and touching each 
other on a flat, smooth surface. Place a finger on the middle of the three, 
to pin it firmly in position, then with the other hand draw aside a flanking 
coin, and use it to deliver a smart blow to the pinned coin. The third coin 
will be seen to fly away as if it had received the blow directly, not as it in 
fact does, via the pinned coin, which will move hardly at all. 

Now think of the pinned coin as a closed heart valve, and of the mass 
of the heart and still-contained blood together crashing into it as the coin 
delivering the blow, and it will be seen that what is sent flying on its way 
like the third coin is the blood delivered up to the point of valve-closure. 
The closed door may stop the blood flow, but is no impediment at all to 
the transmission of momentum, and the corresponding energy. 
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I think that for just a moment in the course of a beat, the heart con
verts from ram-pump to hammer. It does this in order to use inertia and 
conservation of momentum in elastic collision to supply just-delivered 
blood with energy enough to re-inflate the system - energy the heart 
had recovered in large measure from the system during the preceding 
diastole. 

This may also help to explain why the ventricle fills faster than it 
empties: the back pressure from it during its re-inflation is probably 
smaller than the by-now forward pressure of the system, simply because 
the heart has the smaller volume of the two. The system has no need of 
a hammer to help it return blood and energy. 

But how do the body and heart first come by the total quantity of 
energy they together conserve and must continually top up? The obvious 
answer, and possibly the correct one, is that they do so slowly, using the 
very same mechanism that maintains the conservation, as both body and 
heart develop from embryo to adulthood. 

This, for what it is worth, is my thesis, and my contribution to the 
resolution of a debate that sometimes rages quite hotly in some circles 
on the topic of whether the heart is, or is not, a pump. I did not find an 
opportunity to discuss it with Lawrence Edwards before he died. I would 
have been most interested in his opinion. 
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The thoughts which I am going to detail in this chapter are ones which 
the non-mathematical reader may not find easy. Nevertheless the first 
several pages are descriptive and I believe can stir the imagination to a 
new feeling for the wonderful ways in which things can move in three
dimensional space; and at the end of the chapter I will put a paragraph 
detailing, as far as it is possible in non-mathematical terms, the general 
results reached, so that we can go on to the very important ideas of 
Chapter 10, with some understanding of the things involved. 

Positive and negative Euclidean space 

These ideas arose from the work which I did with the late George Adams 
during the fifties and sixties. He, in England, and Dr Louis Locher in 
Switzerland, had been simultaneously and quite independently develop
ing the concepts of what Adams called positive and negative Euclidean 
space, and of what Locher called Raum and Gegenraum. The details 
of their work have been published elsewhere (see bibliography) and 
it would be superfluous to repeat them here, but it will be helpful to 
remind ourselves of the basic principles because unless we experience 
intensively the fundamental ideas, the relevance of what follows cannot 
be apparent to us. 

In positive Euclidean space we have a metric imposed on pure pro
jective space by a given absolute plane (the plane at infinity) and an 
absolute imaginary circle contained within it. Dualizing this concept 
we have a space governed by an absolute point containing an absolute 
imaginary cone, and within the metric of this space we have to see that 
this point is as unreachable (infinitely distant) as the plane at infinity is 
for positive space. George Adams often called this the 'infinite centre' 
of his negative space. 

It is important for us to realize as vividly as possible the qualitative 
difference between these two concepts of space. Positive space is essen
tially extensive in quality. It is governed by an extensive absolute and it 
is the space in which our minds and imaginations, which are normally 
extensive in nature, move easily and naturally. When we wish to simplify 
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matters by restricting ourselves to two dimensions, we write books on 
plane geometry, that is two-dimensional configurations spread out over 
the plane. On the other hand the natural basic element for such a space 
is the point; normally, and easily, we think 'pointwise' and we readily 
picture lines and planes as infinite manifolds of points lying 'evenly.' 

Negative space is much more difficult for us to picture to ourselves. 
Here we have an intensive space, governed by an intensive absolute. 
Working with the consciousness of negative space we should be led to 
write books on point geometry. It is not easy for us to see the point as a 
two-dimensional element (that is as containing = 2 of lines and planes) 
and to realize that within it there is just as great a richness of configura
tion between its lines and planes as there is between the lines and points 
of the plane. In negative space the basic element, the one which is most 
easily and naturally handled, is the plane, considered not as an infinite 
set of extensively placed points, but as a thing in itself. 

And just as in positive space a plane is normally pictured in just this 
extensive way, so in negative space we have to learn to think of a point 
as being the meeting ground for infinitudes of planes (all those which it 
'contains'). 

Now those who have studied the work of Rudolf Steiner will be 
familiar with the descriptions which he gives of the hidden world of life 
forces (which he terms the etheric world) and with the strange and often 
seemingly paradoxical statements which he makes about them; and it is 
a strange fact that as soon as one moves into the realm of negative space 
one meets as naturally-occurring phenomena just those things which oth
erwise seem strangest and hardest to believe in Steiner's statements. This 
led Adams and Locher, and other anthroposophical mathematicians, to 
the conviction that in the metric of negative space we have a mathemati
cal instrument for the detailed study of Steiner's etheric world. 

In particular Steiner contrasts physical consciousness, within the 
body, with that which a seer experiences when he is outside it. Here 
we feel ourselves point-centred while looking outwards to an extensive 
outer world; but there, we would have to imagine our consciousness as 
being spread out through all the periphery while we gaze inwardly into 
an intensive not-self. He speaks at one point of being turned inside out 
like a glove. 

Now let us consider a pointful of planes and lines as it could be 
imagined to be 'seen' by such a peripheral consciousness. Imagine this 
peripheral consciousness gazing in and in, from all directions, towards 
its central point. It would be immersed into a two-dimensional cosmos, 
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so small that it is contained in a single point, yet as vast in the ramifica
tions of its possible configurations as all the possibilities of an infinite 
plane. Within it the peripheral consciousness would have the possibility 
of 'seeing' all sorts of things! 

Let us suppose that at some particular moment it 'sees' a cone. This 
cone would be formed of a single infinitude of generating lines and a sin
gle infinitude of tangent planes. But these planes would be seen as things 
in themselves, not as extensive manifolds of points; the extensively
placed points of each plane simply would not enter the consciousness; 
each plane would be 'seen' (I cannot find words to express it otherwise) 
as the essence of flatness in a certain direction as it passes through the 
central point. And the cone itself would be 'seen' as the quintessence of 
cone concentrated into the point where all its tangent planes and gener
ating lines pass through that point. Points placed on what we, with our 
normal extensive consciousness, would regard as the surface of the cone, 
would simply not exist for this peripheral consciousness. 

In this way we can build up a picture of what such a peripheral con
sciousness could 'see' in any point of a negative space, but if it were to 
gaze into the three-dimensionality of a negative space it could 'see' mul
titudes of other two-dimensional forms, as surfaces (spheres, perhaps, 
or hyperboloids) all enveloped by their tangent planes, each plane being 
apprehended as a thing-in-itself and not as an aggregate of points. 

George Adams continually insisted that although one could have 
what one might call pseudo-positive-Euclidean spaces, that is, metrics in 
which some randomly-chosen, finitely-placed, plane is chosen as one's 
absolute, with a random absolute conic placed within it, these could not 
be thought of as having any more relevance to reality than just interest
ing exercises in thought. The plane at infinity stands as such an obvious 
and necessary absolute that one cannot imagine any other which would 
have any bearing on reality. 

But when we come to consider the infinite centre of a negative space 
no point has superior merits to any other. Whereas there can only be con
sidered to be one positive space, there are multitudes of negative ones, 
all interpenetrating one another. And it became a life-quest for George 
Adams to seek for what places, in the sense-perceptible world around 
him, he could truly conceive that infinite centres of negative spaces 
would be at work. 

It was shortly after the Second World War, and just before I started 
work with him that, in a moment of what I believe to have been true 
inspiration, he apprehended one such place. It was spring, and he was 
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observing the unfolding of the new leaf buds. One can find, as one pen
etrates inwards towards the centre of such a bud, leaf upon leaf upon 
leaf, as though the plant is there sheltering its most precious possession. 
But when one actually reaches the centre, what is it that one finds? 
Physically there is nothing; it is a little hollow space! And there, where 
substance is not, George Adams saw that one must conceive the infinite 
centre of a negative space. Towards this point, as towards an unreachable 
absolute, the life forces stream peripherally. 

One thinks of gravity forces as working concentrically, outwards, 
from a centre of mass. One can picture a set of spheres stepping out
wards towards the infinite rim of our world, with equally increasing 
radius. What would be the polar of this? In negative space one would 
see a set of spheres, 'increasing' in negative size, as they shrink towards 
their infinite centre, in step measure (see Figure 12). There would be 
an infinite number of spheres before one could reach the centre; this 
latter is truly the unreachable place.* And all these spheres would have 
to be thought of planewise, with the sheltering quality of their tangent 
planes. 

Such a conception, developed only thus far, is still quite primitive, but 
as a primitive beginning it contains, I believe, the possibility of studying 
the polar qualities of the force of gravity, and that force which George 
Adams, amongst others, would call levity. And in the course of his life 
he did much detailed work to follow up these ideas. But for our present 
purposes I want just to consider the primitive notions involved, to see 
and to feel, the qualitative similarity of the two pictures: the planar, 
sheltering quality of the leaves as they crowd in towards their centre 
which they never reach (or alternatively one can think of them as grow
ing outwards from this centre, as from an infinite well of life), and the 
planewise spheres growing inwards towards their unreachable infinite 
(Figure 73). 

Again at this point I would like to stress that we are not concerned 
so far with exact comparisons (all sorts of detailed work must follow 
afterwards) but simply with feeling the qualitative similarity of the two 
pictures. And working for many years with George Adams on the more 
detailed concepts of negative space I became imbued with the convic
tion that these considerations do provide a true basis for a detailed 

* In such a dual drawing the former arithmetic means of positive step measure would 
appear as harmonic means to our positive eyesight, though they would satisfy the 
algebraic definition of arithmetic means in their own negative space. 
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Figure 73. A set of circles equally spaced in negative space bears a certain 
qualitative silnilarity to the situation of the leaflets in a leaf bud. 
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study of the life forces of nature. And when, many years later, I was led 
to study the connections of the path curves with the bud forms of the 
plant world, I very much wanted to bring these two aspects of thought 
together. There grew up in me the conviction that it should be possible 
one day to find what peripheral, planewise, forms one would have to 
conceive as working inward towards the centre of the bud which, when 
they were appropriately transformed, would give rise to what physi
cally follows the budding process, the forms of the seed-bearing part 
of the plant. 

Clearly there are two separate questions involved here. Firstly what 
kind of negative, planewise forms we must see as working into the nega
tive space of the bud, and secondly what sort of transformation would 
govern their relationship with the physically-following forms of the 
seed-bearing part of the plant. And it is with this second question that 
this chapter is concerned. 

The relevant transformation process 

What qualities would such a transformation need to have? We are 
thinking of our generating forms as being essentially planewise but the 
seed-forms must surely be seen as pointwise (the great advances made 
by molecular biology, especially as regards the genetic forces, can be 
seen as an indication of this). We need a transformation which will turn 
negative space into positive, plane into point. And clearly it must be 
basically simple. 
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There is no bound to the scope of human ingenuity! One could devise 
artificial transformations to do almost any task. If one allowed oneself 
the use of as many parameters as one wanted (and one had a large 
enough computer to do all the necessary calculations) I suppose that one 
could turn anything into absolutely anything. But no-one would believe 
that anything significant had been achieved, except perhaps the compu
ter salesman, who would have demonstrated the power of his machine. 

Now so far there is an obvious candidate for the post: the transfor
mation of pole and polar. It changes planes into points, and one cannot 
have anything more basic or fundamental than this first degree process. 
But strangely enough this very virtue turns out in a way to be a disad
vantage. This transformation changes the quality of a form, but not any 
of its logical interconnections. It adds nothing to, and subtracts nothing 
from, the woven texture of inter-relations which forms a given figure. 
Of course it would always be theoretically possible to take any seed
bearing form whatever, as a pointwise figure, and to transform it into a 
planewise equivalent, by pole and polar. Whether the resulting planewise 
form would be possible to visualize with one's imagination is question
able; what is certain is that basically nothing new would have arisen; one 
would simply have taken an incomprehensible complexity in one realm 
and have transferred it into an equally incomprehensible complexity in 
another. What would one have achieved? 

It is clear that our transformation, if it is to be of any real service to 
us, should have the power of being able to produce something like the 
manifold complexity of the observed organic world, out of forms which 
are comparatively more simple. 

The pole and polar transformation suffers from another disadvantage 
in that, in order to work with it, one must somewhere have a polarizing 
quadric surface. What should it be? Sphere, spheroid, ellipsoid, parabo
loid, hyperboloid; of what eccentricity and what radius, where centred? 
The possibilities of choice are bewildering, and embarrassing! And 
our observation of the plant gives us no clue as to the answer. In fact 
it becomes uneasily clear that the plant gives us no hint that any such 
quadric exists. And in fact we have seriously to ask ourselves what right 
we have to impose on any living organism such a process, just to produce 
a planewise precedent for the pointwise form which we see there. 

Then one day, quite suddenly - I do not know how the thought 
had been hidden from me for so long - I realized that I did not any 
more need to search for such a transformation; it was there before my 
eyes in the plant itself! The path-curve form of the bud is just such a 
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Figure 74. A point 1noving along 
a line, lvhile that line turns about 
the point. 
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Figure 75. A line turning around a 
point, ivhile that point ,naves along 
the line. 

transforming agent. It is there whether I recognize the fact or not; and 
it turns planes into points; it produces, as I found after further study, 
complexity out of comparative simplicity; and its basic concepts are as 
simple and fundamental as one could wish. 

In order to see how this can come about I think it is useful to consider 
a little of what George Adams sometimes called 'movement geometry.' 
I wish to speak here descriptively, and maybe a little loosely, leaving a 
more closely-reasoned treatment to those who have finer logical sen
sibilities than I. I wish to speak of the 'momentary movement' of an 
element, its movement within an infinitesimal moment. And I wish to 
speak of 'neighbouring positions' of that element within its movement, 
positions which are distinct yet are infinitesimally close. (Logicians 
please allow me!) And now we must ask: Within the plane, how can a 
point momentarily move? And the answer is: Only in one way, along a 
line. This follows immediately from the axiom that two neighbouring 
positions of the point must have just one line in common. Dually: How 
can a line momentarily move within a plane? Answer: Only in one way, 
around one of its points. (Even if it is moving parallel to itself it is mov
ing around its point at infinity.) 

But now suppose that a point is moving along a line, while that line is 
simultaneously turning around that point. We make a picture of it, letting 
neighbouring positions of the elements have a finite distance between 
them, so that we can see what is happening. Let the gaps between the 
elements get smaller and smaller, and in the limit we have a smooth 
curve (Figure 74). 

But if we now imagine a line turning about one of its points, while 
that point moves along the line, and if we draw it in a similar way, we 
come to identically the same picture (Figure 75). 
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In the first case the line of movement is the tangent implied by a poin
twise curve, and in the second the point of turning is the point of contact 
implied by a linewise curve. The curve is in this sense a completely self
dual organism. I call this the anatomy of a plane curve. 

In three dimensions the case is more complicated. In the first place 
two Jines may have a point in common (in which case they also have 
a plane in common) or they may be skew (with nothing in common). 
Therefore there are two distinct and different ways in which a line may 
momentarily move. It may move skew to itself; then two neighbouring 
positions of the line will have neither point nor plane in common, and 
the line will generate a ruled surface (a line-woven single-sheeted hyper
boloid is a typical example). Or it may move around one of its points, in 
which case it follows a twisted ( or space) curve. 

Now Jet us consider a twisted curve. We have a point moving, 
momentarily, along one of its lines while that line is turning around the 
point. But this means that two neighbouring positions of the line have a 
point in common, and they therefore also have a plane in common. This 
is the plane in which both the point and the line are momentarily mov
ing, the so-called osculating plane of the curve at that point. Now we 
can describe the complicated organism which is a twisted curve: A point 
moving along a line and in a plane, while that line is turning around the 
point and in the plane, while that plane is turning around that line and 
in that point. 

Any twisted curve is a close-knit threefold organism, and the points, 
lines and planes which form it are each of them as basic and fundamental 
as each of the others. It is only our extensive consciousness which sees 
the curve so easily as a collection of points, Jess easily as a set of implied 
tangent Jines, and Jess easily still with the implied osculating planes. 
If we had negative space consciousness we would see the curve as a 
manifold of planes, each one seen not extensively as spread out evenly in 
space, but as the essence of flatness just in that place where it is turning 
around its curve. The points of the curve would be pictured only with 
difficulty and as they are implied by the moving plane. 

We must Jive as intensively with this thought as possible. I have only 
to move my finger tip in any arbitrary curve which I like, to have deter
mined a linkage between an infinitude of points with an infinitude of their 
related planes, each point of the movement being related to its osculating 
plane in the curve, and, reciprocally, each plane of the movement being 
related to the point around which it is pivoting, its pivot point - to say 
nothing of the tangent lines as well. And movement is of the essence of 
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life, whether it be the slow movement of the growth and development of 
a plant, or the quicker movements of an animal or human. 

Now if we have a path-curve transformation, this sets every point, line 
and plane of space moving, excepting those which are in the invariant 
tetrahedron. It thus links every point to its osculating plane, and every 
plane to its pivot point. In general the relationship, or transformation, is 
one-to-one, but owing to the presence of the invariant elements it is not 
universally so, and the transformation is not of first degree. (The case of 
the lines of space is a little more complicated, and due to lack of space a 
fuller treatment of this is perhaps best left to another place.) 

Now I would like to return to our concept of the peripheral conscious
ness gazing in and in, to the vast little two-dimensional world contained 
within its central point. Let us vividly imagine what it would 'see' there, 
as it is enwrapped in its own little cosmos. Apart from the central point 
itself, it sees no points whatever, only lines and planes, each seen inten
sively as the essence of direction or the essence of flatness concentrated 
within the central point. And within this inward-looking world it would 
'see' some form, a cone perhaps. 

And now this little world comes within the field of a path-curve 
transformation. What will happen? Each of the planes of this cone will 
start to move, each around its pivot point, determined for it by the path
curve transformation, and these pivot points will be extensively placed 
throughout space. The peripheral consciousness would feel its hitherto 
closed universe rocking about points which till then it had not known 
to exist! It would have to become conscious of an extensive, pointwise 
form in what, to it, would be a new world. 

In this way I pictured the path-curve transformation as a force which 
would take any planewise form and would produce from it a new, poin
twise, form, the form around which the planewise form is set moving. I 
feel that this description is hardly adequate; perhaps some may consider 
what I have written as naYve. I do not know any other way to describe 
things which are so far removed from our normal ideas but which are 
basic to the fundamental rules of movement and space. 

Once this pivot transformation has been envisaged it must be clear to 
us that, conceptually, it has to be present wherever the path-curve trans
formation is seen to be at work; and this we know is the fact for a very 
large number of plant species. It therefore immediately became a matter of 
importance to find out just how such a transformation works. The resulting 
mathematics is given in Appendix 5; here we will confine ourselves to giv
ing a description of how this transformation looks to our imagination. 
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Let us look back to Figure 5. There we saw a planewise, we might say 
an ethereal, form, a line made up of all the planes which pass through it; 
or, stating it otherwise, a little one-dimensional world (that is, a single 
infinitude) of planes all bound together by the straightness of their com
mon line. There we saw how, under the influence of some transformation 
the planes could be induced to new positions, maybe taking up these new 
positions as tangent planes to a planewise cone, as pictured in Figure 6. 
But now we are asking a different question: Supposing this planewise line 
is approached, not by a transformation which seeks to move its planes, but 
by one which will transform each plane into a point, where will all these 
points be found to lie? The answer is that if the transforming agent is of 
the simplest kind, a linear transformation, of first degree (the well-known 
theorem of pole and polar would be such a case), then if the original planes 
all lay in a straight line, their transformed points would also lie in a straight 
line. Any linear transformation preserves straightness. 

But when I came to apply the first rules for the pivot transformation 
just to this case - a straight line of planes - I found to my intense 
interest, that the transformed points do not lie on a line, but on a beauti
ful spiralling curve called a Twisted Cubic. This was the first indication 
I had that this transformation which I had found is a more potent one 
than the ordinary linear projective transformations such as correlation, 
or its special case, pole and polar. More potent in that it effects more 
dramatic changes - it raises forms of first order into ones of third order, 
for instance - having more sophistication, but at the same time, for this 
very reason, being less near to the elementary heart of things. 

The twisted cubic is such an interesting, and important form that it 
deserves a mention to itself. 

If we look back to Figure 1, we see there three curves with their asso
ciated equations. (The first curve consists of a wing-like branch and also 
an apparently separate egg-shaped curve; but from the point of view of 
the mathematics these two have to be seen as parts of one and the same 
curve.) The first equation has as its highest index a '3' (x cubed); the sec
ond has as its highest index a '2' (x squared) and the third one has only 
'1 's, assumed for its variables, but not written. These facts are intimately 
connected with the fact that it is possible to find lines which cut the first 
curve in three points, whereby it is said to be of third order ( or a cubic), 
whereas it is only possible to find lines which cut the second curve in 
two points. It is therefore of second order; and clearly the straight line 
of the third diagram is a curve of first order. It can be proved that, no 
matter how far we seek, we shall never be able to find curves of second 
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order outside three main types: ellipses (amongst which we must include 
the circle), parabolas and hyperbolas. These three types of curve are all 
projectively equivalent; they can be transformed one into the other with 
the greatest of ease; and they are known by the collective name of 'con
ics' (because they can all be generated as sections of a cone). When we 
consider the cubics we enter a realm of much greater variety. 

Thus we see that the conic is the simplest and most fundamental kind of 
curve which it is possible to find. It is the aristocrat in the realm of curves. 
But this is only the case as long as we remain within the plane. As soon 
as we let our curve leave the plane and start moving freely through three
dimensional space it becomes known as a 'space curve' or more frequently 
a 'twisted curve,' and it can be shown that it is not possible ever to get a 
twisted curve of second order. The simplest and most fundamental space 
curve possible, the doyen of all space curves as it were, is the twisted 
cubic, and it is into just such a form, I found, that the pivot transformation 
changes every straight line of space. When we start working with the pivot 
transformation we move into a realm where the twisted cubic plays in a 
way a similar role to that played by the straight line in ordinary space. 

We are all familiar with ellipses and parabolas, but what does the 
twisted cubic look like? It can of course assume an infinitude of particu
lar forms, but they all share certain distinguishing features in common. 
It is always infinitely long, moving from infinity to infinity, and joining 
up with itself there. It may move through space in one strand, or in three, 
running side by side, but never in two. The curve is always spiralling in 
quality, but not endlessly turning like a helix; in the whole of its journey 
through space it makes only one turn. Coming in from vast distances it 
is almost straight for a large part of the way, then as it approaches its 
central part, it makes a graceful spiralling curve of nearly a whole turn, 
before settling down for an almost straight journey on to the infinite 
distance again. The cubic quality of this curve is seen in the fact that it 
cuts any plane of space in just three points, although it may happen in 
any particular case that two of these cutting points are imaginary and 
therefore not visible to the imagination. Figure 76 can only give a very 
inadequate idea of the richness of concept and relationship which is to 
be found associated with this wonderful curve. 

All sorts of interesting constructions can be made. Figure 77 for 
instance, is an elevation view of the pivot form of a thin cylinder passing 
close, but skew, to the central axis of a path curve system. It is of course 
woven all over with twisted cubics, one for each of the generating lines 
of the cylinder. 
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Figure 76. A twisted cubic cuts any arbitrary plane of space in just three points. 

Figure 77. We take a thin cylinder passing skew to the central axis of the 
transfor1nation. Each line of the cylinder transfor111s into a twisted cubic. 
Thus we get a beautiful surface entirely tvoven over with twisted cubics. 
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Summary 

To sum up the results of this chapter, we can say that if we have a path
curve field, then every general plane of space is set moving by this field, 
each one about one of its points, around which it is momentarily pivot
ing. Thus if we have any form composed of tangent planes, and we place 
it within a path curve field, then immediately we can find within this 
form another hidden, pointwise form, composed of all the points around 
which the planes of the original form are pivoting. We can speak of the 
new form as representing the momentarily stationary element in the 
movement which has been imparted to the original one. In a rather free 
and easy way, we can speak of the original form as pivoting around the 
elements of the new one. Thus we find that the path-curve form, which 
we can see so clearly and measure so accurately in the plants, is itself 
a transforming agent which turns planewise encompassing forms into 
pointwise, atomic ones. 



10. Ethereal and Physical Spaces in 
Flower and Fruit Forms 

We have seen how wonderful egg-like form appears out of the most 
elementary geometrical thinking, and how by observation and exact 
measurement one can test just where this form is really manifesting itself 
in nature - eggs, opening buds, plant inflorescences, pine cones, the 
ventricle of the heart, and so on. But equally, and by the same methods, 
we are shown realms where, despite apparent, superficial resemblances, 
it becomes clear that this form is not in fact showing itself with a sig
nificant degree of precision. Something else, and maybe more sophis
ticated, must be at work. And this is markedly the case when we come 
to consider the seed-bearing part of the plant: the gynoecium and the 
ovaries. And for many years it was my wish to find the relation between 
this central mystery of the plant world, this capacity for self-reproduc
tion, and the manifest path-curve forms to be seen in the growth of the 
plant itself. 

As a first step to this, we have considered the bud, with its path
curve form, in relation to the metric of negative- or counter-space. This 
metric sees a finitely-placed central point as its absolute, its 'infinite 
centre,' and its fundamental forms are made up of enveloping planes, in 
contradistinction to our ordinary Euclidean space which has an exten
sive absolute, in the plane at infinity, and whose most easily-handled 
forms are made up fundamentally of points. We saw how in positive 
Euclidean space we could envisage an evenly-moving expansion, out
wards towards the plane-at-infinity; and how, in negative space, this 
would be countered by an inward 'expansion' shrinking ever closer and 
closer to, but never reaching, the infinite centre. And some questions 
were posed. Can we see the infinite centre of a negative space as a 'life 
centre' towards which the ethereal forces of life stream from the outer
most periphery? Can such a centre be functioning in the hollow space 
at the heart of a living bud? If it does, what sort of planar, enveloping 
forms must be envisaged as working towards or in this centre? And can 
we conceive a transformation which would take these planewise forms 
and produce from them the forms of the more pointwise, seed-bearing 
part of the plant? 

158 
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The pivot transformation could be just such a transformation. It is 
present, mathematically at any rate, wherever a path-curve system is 
present - path curves can be seen, and measured, in so many of our 
buds - and the laws of this transformation stem from the most funda
mental laws of movement which, one might think, must be very near to 
the principle of life itself. 

Now we must describe a search to see whether the pivot transfonna
tion could provide any consistent and convincing answers to these ques
tions, and to find what sort of answers these would need to be. 

The question was: Could one find some fundamental planewise form 
working in or towards some centre within the bud which, when trans
formed by the movement-principles of the bud itself, would produce the 
more pointwise, seed-bearing part of the plant? 

The most obvious way to answer this was to try and see. And so I 
tried. I tried firstly cones, of varying vertical angles, set at varying incli
nations and centred at various heights within the bud. When these failed 
I tried hyperboloids, I tried spheres and segments of spheres, and then 
various other types of surfaces. The resulting transforms were always 
intriguing, often beautiful, and many of them had a distinctly organic 
appearance; but none of them bore any resemblance to the seed-bearing 
part of the plant. 

At this time I was working with the transformation of the bud of 
the wild rose (le = 3.1, e = 0.5) and I had the photographs of the buds, 
and under each bud, of course, was the curved swelling of the rose 
hip. Seeing that a frontal attack on the problem had had no results, I 
decided to reverse my method of working. Using the inverse process 
I would start from the points on the outline of the hip, and ask what 
planes would be necessary to produce them. And as I worked there 
came on my drawing, shadowy and rather approximate but distinctly 
to be seen, a form which I thought I recognized. It looked rather like 
Figure 78, the dotted curves showing the bud and hip, and the lines 
representing sections of the planewise form, the planes being at right 
angles to that of the page. It seemed to me that it was like a vortex 
outline. Now the vortex is just as much a fundamental path-curve form 
(A negative) as is the egg (A positive). Furthermore I thought I could 
guess the invariant tetrahedron which would be needed to give such 
a form. 

This tetrahedron is so important that it deserves a paragraph to itself. 
It is the semi-imaginary case, where two points and planes are real 
and two imaginary, two lines are real and four imaginary (seep. 44). 
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Figure 78. The form of the rose led to the concept that the bud would mediate 
between a planewise vortex and the form of the hip. 

Imagine our ordinary egg transformation, with invariant point X at the 
top pole, and Y at the bottom; now take X to infinity in a direction at 
right angles to the invariant plane through Y. The two real points are 
X and Y and the two imaginary are I and J determining equal-angled 
circling measures along the horizontal line at infinity. The two real 
planes are the plane at infinity itself and the horizontal plane through 
Y, and the two imaginary planes are represented by circling measures 
of planes contained in the vertical axis through Y. The two real lines 
are the horizontal line at infinity and the vertical axis through Y, and 
the imaginaries are represented by circling measures of lines centred 
in Y and in the horizontal plane through Y, and by circling measures in 
the plane at infinity centred in X. If we now let the infinite centre of a 
negative space be at Y we find that this tetrahedron bears remarkable 
relationships with the absolutes of both positive and negative space. 
One of its planes is the absolute plane of positive space, and one of 
its points is the absolute point of negative space. Two of its points are 
points of the absolute imaginary circle of positive space, and two of 
its planes are planes of the absolute imaginary cone of negative space. 
It has a point and a line which are pole and polar with respect to the 
absolute circle of positive space, and it has a plane and a line which are 
pole and polar with respect to the absolute cone of negative space. It 
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is interwoven, through and through, with the absolutes of positive and 
negative space. Also it is the largest tetrahedron which it is possible to 
have: they don't come any larger. It spans all space. In one of my less 
prosaic moments I named it the cosmic tetrahedron. 

And this was the tetrahedron which, it seemed to me, would be needed 
to produce the vortex-like form which had appeared on my drawing. And 
it seemed to me appropriate, and intellectually satisfying, that this tetrahe
dron, which mediates in such a wonde1ful way between the outer periph
ery and the inward centre, should be the one in question. It was certainly 
interesting, and possibly instructive, but, so far, largely guesswork. 

The crucial question now was: Given the measured parameters of the 
rose-bud, and given the cosmic tetrahedron with its centre somewhere 
within the rose-bud, would it be possible to find a path-curve vortex 
within that tetrahedron which, when transformed by the bud, would give 
a form exactly like that which had been measured for the rose-hip? The 
possibilities of variation within the path-curve forms are strictly limited 
and it was not at all certain that such a vortex could be found. But if it 
were found to be possible one would be interested to know just where 
the infinite centre would have to be placed within the bud, and what 
(negative) A the vortex would need to have. 

The details of the somewhat tedious system of measurement and cal
culation by which these questions can be answered are given in Appendix 
5. Here we shall just give an account of their results. At the end of one's 
working one is able to draw what I call the b-A chart. This is a graph of 
which the upright axis shows the A of the vortex (always, of course, a 
negative number) and the horizontal axis shows b, which is the height 
of the centre of the vortex above the bottom pole of the bud. Now as the 
result of one's calculations one can plot three curves on this b-\ chart and 
know for certain that unless one's three curves all meet at one point on the 
graph, there can be no path-curve vortex which will fit the case. If they do 
all meet on the graph then we have a very high degree of probability that a 
vortex with the given A, and its centre situated at the height indicated by b, 
will give an exceedingly good fit along all the length of the ovary. 

As soon as this method was developed I applied it with some eager
ness to the case of the rose. The resulting b-\ chart is shown in Figure 
79. This gave some certainty, and added precision to my first intuitive 
guess. A vortex with a A of -2.6 with its centre situated 0.77 of the bud 
height above its base, when transformed by the movement qualities of 
the bud itself would indeed give a form which would be very close to 
that of the rose hip. 
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To picture what this means we have to remember that path-curve forms, 
whether they are egg-shaped or vortex-like, never come singly. They are 
always part of a whole field of similar forms, one within another (see 
Figure 26). Thus when we speak of a planewise vortex of some particular 
A, and in such and such a situation, we mean a whole field of such vortices, 
and on transformation they will yield a veritable field of form within which 
the ovary-form will be developing. Figure 80 shows four selected forms 
from this field, calculated for the wild rose with which I was working at 
the time, shaded in grey, and the black dots show positions on the outline of 
the ovary as they were actually measured from the photograph. We notice 
that any discrepancies between the calculated and the measured form are 
so slight as to be almost invisible to the unaided eye. Note also that no 
ordinary path curve could possibly accommodate itself to this form. The 
amount of sharpness at either end would demand a corresponding degree of 
bluntness at the other; whereas this form tends to be sharp at both ends. 

This was a promising beginning, but taken by itself it did not prove any
thing except that in the case of this particular rose there did happen to be 
a possible path-curve vortex which would transform exactly into the form 
of the hip. It did not prove that this was a matter of significance; it might 
have been a coincidence. It was needful to test species after species to see 
whether what had been found for the rose was in fact a general phenom
enon. And as species after species was found to respond in a similar way, so 
the probability that this was a matter of real significance began to grow. 

Figure 79. There is no mathematical necessity that the three curves on the b-A 
chart ,nust ,neet sonzewhere on the chart, but if they do then we know that there 
is a possible path-curve vortex which will transform closely into the ovary form 
which we are seeking. 
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Figure 80. The field of form for the hip of the Wild Rose, compared with the 
actual 1neasuren1ents of one such hip. 

Figure 81 shows, in a similar way to Figure 80, the field of form 
calculated for the ovary of the Campanula, with the dotted outline of 
the actual ovary, taken from the photograph, superimposed. It will be 
seen that although the fit is not quite as exact as with the rose hip, it is 
remarkably close. Notice that although this form is indeed rather blunter 

Figure 81. The field of form for the ova,y ofCampanula. 
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at one end and sharper at the other, no path-curve form could be found 
to fit it; it is as though, during their middle part, these curves are almost 
trying to be straight, and then, above and below this, there is a tendency 
for them to have something of a 'shoulder' as they tum sharply in 
towards their poles. This is something no path-curve form can do, but is 
a phenomenon which is seen fairly frequently in the world of vegetable, 
fruit and ovary forms. It will be seen from Figure 81 that the only dis
crepancy is that the actual ovary displayed a rather sharper shoulder in 
its upper part than the calculated field. I believe that had I taken point P, 
of Figure 174, (see Appendix 5, pp. 361f) rather higher on the form, the 
resulting parameters could have been refined, and a better fit still have 
been obtained. 

This degree of accuracy is typical of the many cases that I have inves
tigated, and shows that the pivot transformation of these vortices has a 
remarkable capacity for producing just those kinds of form which one 
finds in the seed-bearing parts of the plant. In fact when I first began to 
sense the importance of the vortex in this respect, my immediate reaction 
was to produce a series of drawings, using random bud and vortex parame
ters, just to see what sort of forms would be forthcoming; and I was struck 
by their general similarity to the seed-bearing parts of the plant kingdom; 
ovaries, fruits, nuts, pumpkins, seemed to multiply on the page. 

Test for significance 

Next we have to ask ourselves a similar question to that asked when we 
were considering the evidence that the buds are true path-curve forms. 
How adaptable is this process? Could the transformations of these 
vortices be made to fit almost anything? The question is not as easily 
answered as with the path curves. The latter, as far as just their profile is 
concerned, form a one-parameter family. (A only), but the curves we are 
considering now are a two-parameter family (b and A,)* and they must 
be expected to be more flexible than the ordinary path curves. I have 
not a finally convincing answer to this, but I did an experiment in which 
I took a set of typical bud parameters, and confronted them with a set 
of six ovary-forms, each of which was, I thought, a perfectly possible 
kind of shape which a plant might produce. In only three of the six cases 
did the curves meet on the b-A chart. I repeated the experiment with six 

* A
0 

denoting A of the cosn1ic vortex, not that of the relevant bud. 
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further - as I thought - possible forms, and the result was the same. 
This leaves me with the impression that if this pivot transformation of 
the vortex is not of significance, meetings of the b-'A. chart should not 
come, in the long run, on more than about 50% of the cases. 

In actual fact, out of thirty-one different kinds of plants studied in this 
way, twenty-eight of them respond perfectly. The other three all have the 
curves meeting, but in one case, the wild iris, the centre of the vortex 
would have to be minutely below the bottom of the bud (about 0.7% of 
the total bud height) and the other two, syringa and sibirica, would have 
to have it about the same amount above the top of the bud. Many of these 
ovary forms are small and not easy to measure accurately, and probable 
errors in the measurements could easily account for these cases. These 
figures are subject to one important reservation, which will be discussed 
at the end of the chapter. 

Having reached the idea of a vortex for the planewise form working 
into the infinite centre within the bud, the next question which arises is 
as to what pitch the spirals will have upon it, that is, the e of the vortex 
transformation. The only way to answer this, as with all such questions, 
is to go to the plant and observe what we see there. 

Now it is an interesting, and I think highly significant, fact that the 
plant, in almost all its members, is intimately concerned with spiralling 
movements; we see this continually, more or less explicitly, in the phyl
lotactic arrangements of the leaves and branch stems, in the spiralling 
petal-edges of the buds, and in many other places, but when we come to 
the form of the ovary itself, and the whole seed-bearing part of the plant 
surrounding it, all hint of spiralling ceases; or so I have usually found it. 
No matter how carefully we examine the seed chamber, and indeed the 
ovaries themselves, for any evidence of spiralling construction, either in 
the general form or in the fibrous constitution, it is in vain. The whole 
form, and its fibrous construction, seems to speak only of the direction 
'up and down'; everything lies along lines of longitude. 

It seems as though the plant, in the act of preparing for seed-produc
tion, finds the wonderful spiralling movements in which it has been 
growing and developing, freeze into a certain immobility. It seems that 
we have to envisage this vortex transformation withe==, when the path 
curves on it would be like lines of longitude, each one remaining all the 
time in one of the planes of the central axis. 

We can visualize the movement of the planes of our form, all of them 
being held at the outset in the horizontal line at infinity, then each one 
sliding inwards, always tangent to the profile of the vortex until they 
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all merge together into the central axis; a grand vortical procession of 
planes moving simultaneously inwards from every direction of the hori
zontal infinite, into the central upright, but, as far as our evidence goes, 
without actually spiralling in the process. We hear much of the comple
mentary qualities of expansion and contraction between the centre and 
the periphery, and as a rule I think we are inclined to picture this as a 
spherical process, movement between a central point and a peripheral 
plane, but here we are led to see it in a rather different form, as move
ment from line to line, and ending in the upright Staff of Life. And it is 
this whole inward and outward movement-organism which, when taken 
hold of and transformed by the spiralling bud transformation, produces 
the form of the ovaries or the ovary-bearing part of the plant. 

Some years after I had been led to these ideas my attention was drawn 
by a friend to Steiner's description of the two contrasting parts of the 
plant, that which manifests in the spiralling metamorphosis from leaf to 
sepal to petal to stamen (which he mentions as being connected with the 
planetary movements) and that which is seen in the upright stalk, which 
then swells out ('elongates' is the word used in the English translation) 
into the ovaries and gynoecium, and which he connects with the influ
ence of the sun. And he points out that the direction of this stalk is found 
by connecting the centre point of the earth with the sun: 

Thus we have to compose the whole plant out of that which 
grows towards the sun or towards the centre of the earth; 
and that which winds itself round and copies in the stipules 
the movements of the planets. 

He then goes on to say that: 

both these forces are brought together ... at that time of 
the year when the plant progress towards its fructification. 
The spiral principle of movement is then united with the 
principle which works in the stalk ... [as he later says] ... 
in a sort of marriage.* 

On reading this I asked myself whether I dare believe that in the 
pivot transformation, by which the spiralling path curves of the bud 
take hold of, and transform, the forms of the vortex (which do not 

* The Spiritual Beings in the Heavenly Bodies and in the Kingdonzs of Nature, p. 17lff. 
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spiral but are always striving towards the upright of the central axis) 
we have found a mathematical expression of at least something which 
is working in this 'marriage.' 

The field of form 

I have chosen the name carefully - field of form - because I think we 
should be in serious error if we were to confuse this with being anything 
like the physicist's field of force. Here we are dealing with form only 
- just pure form. A field of force is anchored in space; it has position and 
size; we can point, and say, just here the force has such-and-such a direc
tion and such-and-such magnitude, and here at some other point it is dif
ferent. I think the field of form must be envisaged more like the medieval 
philosopher's IDEA; there is only one idea 'rose,' but it can manifest in 
a thousand different places and times. Would it make sense to ask of the 
idea, where it is, or how big it is, or even in what direction it faces? Surely, 
in a way, it fills the cosmos. But high in importance in its list of qualities 
will be its form; this is one of the foremost ways in which we recognize a 
· rose when we see one. I believe that something is at work in the plant that 
has the qualities of pure form, divested of any spatial limitations (apart of 
course from form itself); that this can be brought to visible manifestation 
by the organism of the plant, when it immediately and necessarily accepts 
limitations of place and size; and I dare to hope that in the field of form 
this same entity comes to expression in the mind of the thinker, whereupon 
on his drawing-board it takes visible form, but again, and this time by 
mathematical necessity, limited by place and size. But when one compares 
these two things, the plant reality, and the mathematical drawing, they are 
found to be identical in form, because this is the thing which gave birth 
to them both. 

Watery and airy vortex 

Now we must deal with the reservation which I referred to earlier in this 
chapter. We must be clear that the form of vortex pictured in Figure 78 
is not the only kind possible. Such a vortex has a A which is less than -1 
and on transformation by the pivot transformation this always gives us a 
seed-chamber form which stretches downwards from the bottom of the 
bud, what a botanist calls an inferior ovary. But it is perfectly possible to 
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Figure 82. The wate1y vortex, in this case with A = -2. 7. 

Figure 83. The airy vortex, with A = -0.4. 

envisage a vortex whose A, while remaining negative, is greater than -1, 
that is, somewhere between -1 and zero. 

These two vortices are so important in the further development of this 
work that we illustrate examples of each in Figures 82 and 83. In making 
these general drawings e has been given a finite value, so they are covered 
with spiralling curves, but it need not necessarily be so. It has been pointed 
out to me by a friend that these two types of spiral give one a very differ
ent qualitative feel; the first, where A,< -1, could be a picture of water 
disappearing down a hole, or alternatively water welling up, spreading 
out, and finding its level. It has a quiet, tranquillizing effect. The second, 
where -1 < A, < 0, has nothing of this tranquil feel; it is cyclonic in appear
ance; it gives one an airy feel. Now I felt that this very unmathematical 



10. ETHEREAL AND PI-IYSICAL SPACES 169 

observation is also in some sense a significant one; and since then I have 
always thought and spoken of them as the watery, and the airy, vortices. 
But I do not mean by this to suggest that I am trying to link them in any 
technical sense with the ancient Greek elements of these names. I am 
using them simply as convenient, and descriptive, names for these forms. 

Now it is an interesting fact that the airy vortex, placed with its centre 
somewhere within the bud, gives superior seed-chamber forms, growing 
up into the interior of the bud, like the superior ovaries. It can be treated 
for a b-A chart, using the same equations as are given in this article; the 
method is similar but has one necessary difference, which makes the 
working much more tedious, and less neat in the way it comes out. And 
the first plant I tried with it, the hypericum, came out with a good meet
ing of the three curves, and a near-perfect fit for the form of the ovary. 
I thought that I had the secret: airy vortex for the superior case, and 
watery for the inferior. However, as the work continued I met many cases 
where the three curves stubbornly refused to meet. The matter became 
so depressing that I decided to have a review of everything I had done. I 
found that, whereas every case of the inferior ovaries, using the watery 
vortex, had worked perfectly (I had not at that time done the wild iris), 
a great many of the superior ones, using the airy vortex, had no possible 
vortex which would fit the observed form. It became obvious that the 
airy vortex could not any longer be considered as a generator for these 
ovary forms. Figure 84 is the b-A chart for the geranium, typical of many 
others like it. 

1 2 3 4 b 

Figure 84. The b-;\ chart for the Geranium ova,y. 
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Figure 85. The Red Campion bud, with ovary. 

This was disappointing but it did give point to the fact that there is 
no mathematical necessity for these curves to meet, and that it really is 
remarkable that the watery vortex should be so consistently successful 
in the inferior cases. 

While casting around for what could be the solution of this prob
lem, I tried one day, rather idly, inverting one of the superior ovary
forms, and letting it reach downward from the lower pole of the bud. 
Using the watery vortex, I immediately got a b-A chart with a good 
meeting of the three curves, and subsequently an ovary-form with a 
near-perfect fit. This was all right for one case, but there were nine
teen others. One by one I tried them, and found that they all gave 
perfect or near-perfect results, except two, and even these had good 
meeting points, but with the centre of the vortex very slightly above 
the top of the bud. 

Now what are we to say about this? That the field of form includes 
its mirror reflection in the bottom plane of the bud transformation? 
Or that the field shows the form that the swelling of the stalk (which 
becomes the ovaries) will take, regardless of its orientation, up or 
down? Can we find some justification for this latter view, in Rudolf 
Steiner's words already quoted (see p. 166), where he is speaking of 
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the sun forces worldng in the stalk and he says: 'Thus we have to con
nect the whole plant world with that which grows towards the sun or 
towards the centre of the earth .. .' as though the vital thing here is the 
orientation of the line between sun and earth, rather than the direction, 
up or down, taken along it? 

When one deals with individual plants one comes upon anomalous 
situations, for instance the campion (Figure 85). This bud consists of 
two parts, a long, tubular, neutrally-coloured part, surmounted by a col
oured spiralling part. The ovary is contained within the tubular part, and 
I suppose a botanist would say that it is superior. The top spiralling part 
is a good path curve and its lower pole is at the top of the ovary case. Is 
it this, or should we regard it as a superior ovary which has somehow 
slipped down, or the bottom pole of whose bud has somehow grown 
above it? I have consulted several botanists, but none would venture an 
authoritative answer in view of the geometrical considerations. And this 
is not the only case where one finds it had to decide whether the ovary 
is growing downwards or upwards. Another for instance, is the prim
rose, and in Australia I met cases where the ovary seems to be almost 
bisected by what seemed like the lower plane of the bud (but then the 
eucalypts are strange things). No-one would say whether it was superior 
or inferior. 

I don't think the last word has been said on this matter; but this I 
know: that in over thirty cases the pivot transformation of the watery 
vortex has given exactly the form that the swelling of the stem will take 
in forming the ovaries or the ovary-bearing part of the plant. And the airy 
vortex, which we have had to reject in our studies of the plant, can be 
shown in further work to have a remarkable bearing on many aspects of 
animal and human embryonic development. 

I close with a list of the 11.-values for the vortices of the plants which 
I have calculated by the foregoing methods. The probable error for 
these figures must be considered as rather larger than that for the bud-
11. and it must vary considerably from bud to bud, according to the size 
of the ovaries (sometimes very small), the ease with which they could 
be measured, and the reliability of the e-value found for the bud, also 
a variable matter. The probable error ranges from about ±0.1 to about 
±0.4 in the hardest cases. It is interesting to note the complete absence 
of 11. in the range -I to -2, and the great concentration between -2.6 
and -2.8. 

It should be remembered that the 11.-value is not just determined 
by the shape of the ovary, but by this shape in combination with the 
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bud-parameters. Thus the buds, for instance, included in the range 
-2.6 to -2.8 have, many of them, ovaries of quite different shape 
from one another. 

Plant Ac-value 

Syringa -2.0 
Hypericum -2.05 
Potentilla -2.2 
Geranium -2.2 
Convolvulus -2.25 
Wild Cherry -2.4 
Bluebell -2.4 
Stitchwort -2.5 
Sibirica -2.5 
Chickweed -2.6 
Forsythia -2.7 
Snowdrop -2.7 
Daffodil -2.7 
Wild Rose -2.7 
Primrose -2.7 
Foxglove -2.8 
Buttercup -2.9 
Wood Sorrel -3.0 
Narcissus -3.1 
Campanula -3.2 
Lady's Smock -3.4 
Red Campion -3.6 
Wild Iris -3.6 
Honesty -3.6 
Aubretia -3.75 
Speedwell -3.8 
Summer Snow -3.9 
Winter Jasmine -3.9 
Star of Bethlehem -4.3 
Wild Garlic -4.8 
White Campion -5.0 



11. The Watery Vortex 

In the previous chapter I showed how a planewise path-curve vortex, 
working within what I there called the cosmic tetrahedron ( consisting 
of the two absolute imaginary points I and J in the horizontal line at 
infinity, and two real points, one at the centre and the other at infinity 
along the vertical line), when transformed by the pivot transformation 
could give an almost perfect pointwise delineation of the form of the 
seed-bearing part of the plant. The type of vortex under consideration I 
named, for purely qualitative and imaginative reasons, the watery vortex. 
On a number of occasions, when speaking about this, I have been asked 
whether this is in fact the same type of vortex which water assumes 
when it runs down a plug-hole; and until recently I have always had to 
answer simply that I do not know. 

However, after I had left Australia some years ago, my friend John 
Blackwood of Sydney had the initiative to try to answer this question. 
He designed and built an apparatus to generate and photograph vorti
ces in water. It consists of a transparent-walled tank from which water 
can flow at a strictly controlled rate through a narrow pipe in the centre 
of its base, while a second pipe delivers water at the same rate into the 
top of the tank, so that the water level remains constant throughout the 
experiment. The resulting vortex can be photographed through the side 
of the tank. 

As a result I received some really beautiful colour photos of three 
vortices, made by letting the water run out at three different speeds. At 
first glance the three vortices seem very differently proportioned, that 
made by letting the water run out at a high rate being long and thin, 
and that which had the water running out slowly being short and dumpy 
in form. The outline of the vortex was in each case somewhat uneven, 
almost rope-like in appearance, but I thought one could confidently draw 
a smooth curve through the slightly crinkled edge to arrive at the basic 
form which the vortex had assumed. 

One of the first, and often greatest, difficulties which one encounters 
when one wishes to analyse a form of this kind is that of fixing with 
certainty the top and bottom poles of the transformation, that is of iden
tifying the real part of the invariant tetrahedron. In this case I thought 
there would be no trouble; the photos showed the water level and also 
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Figure 86. If lVe let the lower invariant point of our tetrahedron be at the vis
ible bottom point of the vortex, then it is not possible to find a path curve form 
which will be a good fit all along the length of the vortex. 

the bottom tip of the vortex with wonderful clarity. In the first instance at 
any rate there seemed no excuse for doing other than placing the top pole 
X in the centre of the vortex at water level, and the lower pole Y at the 
bottom tip of the vortex. It was then easy to divide the distance from X 
to Y into the usual eight equal parts, and to calculate the A-values for the 
six levels, A, B, C, D, E and F. Doing this, however, I was letting myself 
in for a disappointment. Working with the largest of the three vortices 
the A-values came out thus: 
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Level A-value 

A +0.43 
B +0.115 
c -0.07 
D -0.17 
E -0.32 
F -0.37 

Mean A (weighted) -0.03 
Mean A-deviation 787% 

The alarming figure for the mean deviation need not startle us too 
much. Obviously, to express it as a percentage of so small a A-number is 
no valid way of carrying on; just as obviously however, when we look 
at the figures themselves, it is clear that their deviation is unacceptably 
large. This is not a good path curve form; not, at any rate, within this 
tetrahedron. Measurements for the two smaller vortices gave similar 
results. 

It is interesting to see what these deviations imply in terms of the 
actual form. Figure 86 shows, with the dotted curve, the tracing of the 
actual outline of the vortex from the photograph, and with the continu
ous curve, the mathematical form calculated so that it should be a good 
fit at the level T, halfway between the poles X and Y. It will be seen that 
the mathematical form is distinctly too narrow both above and below this 
level. Of course by calculating the mathematical form for a much wider 
radius one could contrive to get a rather better fit at the top end of the 
diagram, but only at the expense of having it much too wide in the mid
dle part. In fact it is clear that the mathematical form is just the wrong 
shape, being much too flat-sided. 

There remained however another possibility: that the lower pole Y 
should be at infinity, that the ideal form should be infinitely long, and 
that the actual water vortex should be seeking to reach this form as far 
as the limitations of substance rendered it possible. At any rate it seemed 
necessary to find how closely, or otherwise, the actual form approxi
mated to such an ideal one. 

The method of working had to be somewhat different since obvi
ously one cannot divide the infinite distance between X and Y into 
eight equal parts! The details of the revised method are given in 
Appendix 3. 

Applying this idea to our largest vortex we immediately get much 
more satisfactory results: 
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Figure 87. As soon as we let our tetrahedron be the sa,ne as the one which we 
used for the plant ovaries, that is with point Y at infinity, then we get an almost 
perfect fit with the form of the vortex. The dotted curve is the tracing from the 
photograph. 

Level A-value 

A -1.66 
B -1.70 
c -2.00 
D -1.82 
E -1.71 
F -1.82 

Mean A (weighted) -1.75 
Mean A-deviation 5.4% 

The results for the two smaller vortices were A = -1.71 with mean 
deviation 4.0%, and A = -1.74 with mean deviation 5.5%. Figure 87 
shows how close a fit these figures imply. 
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Thus we see that the vortex which seems to play such an important 
role in the reproduction of plants, is in fact of exactly the same type 
as that assumed by water, at any rate to within the limits of the finest 
measurements I have been able to make. And the fact that these three 
vortices, whose photographs John Blackwood sent me, and which had 
such different apparent proportions, yield almost identical projective 
parameters (meaning that the different vortices for different rates of flow 
are different contours of essentially one and the same field of form) gives 
confidence that this projective approach is a significant one. 

Later John Blackwood photographed and measured three further 
examples, with substantially the same results. He wrote to me: 

If you had seen the vortex actually running as, of course, 
I did you would probably have jumped straight for the 
cosmic tetrahedron! It is a wonderfully sensitive form, like 
a mobile jewel ... The smallest change in flow-rate alters 
the depth where the 'molecular' or 'surface-tension' effects 
supervene. 



12. From Seeds to Embryos 

The next stage of the work came, it would seem, almost by accident, 
and quite unexpectedly to me. On page 77 it was pointed out that not 
all types of bud are amenable to fitting by a straightforward path curve 
form; what further things may be working in these more sophisticated 
forms awaits future research. Until now I have confined myself to those 
species which are symmetrical about a central axis, and in such cases the 
symmetry almost always extends to the ovary and seed formation also. 
Thus it was a very natural thing to envisage the watery vortex as having 
its central axis coincident with that of the bud itself; and this proceeding 
has accounted satisfactorily for all the cases which have been studied. 
This left an unanswered question: What kind of form would be produced 
if the axis of the vortex were to be asymmetric to that of the transform
ing bud form? 

This question lay for quite a long time unanswered. I did not think it 
was a matter of great importance; I felt it was a question of intellectual 
curiosity and I was too busy with more important matters to spend much 
time on it. However this 'tag-end' of a question began to nag at me and 
the time came when I felt that I must try to find an answer. 

I therefore selected six vortices from a field of them, and set their 
central axis parallel to, but to one side of, that of the transforming bud
form. This was just prior to the time when I came to realize that the 
watery vortex was the only one which was giving me effective results, 
and it just happened that I decided to work with an airy vortex field. The 
situation I was envisaging is pictured in Figure 88. The dotted curve 
represents the transforming bud form. This transformation also contains 
a whole field of forms, of course, but since as a transforming agent it is 
working as a whole thing, it has only been represented by a single one 
of its forms. The vortices on the other hand, although all belonging to a 
single field, are going to be transformed one by one, so they have been 
drawn in separately. 

Now the question was this: Each of the vortices must be imagined as 
being made up of all its tangent planes; when these planes are taken up 
by the transforming bud field, and made to start moving, around which 
of its points would each plane be pivoting? We would start with six 
planewise forms and end with six pointwise ones. 
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Figure 88. This is the situation ivhich lvas envisaged for that first experi111e11t 
to see what would happen when so,ne asy1111netrically placed vortices are sub
jected to the pivot transfonnation. 

Right at the start it was obvious that the asymmetry would make the 
problem far more difficult and complicated than had been the case with 
the ovary forms which have just been described. With them the result
ing form was a solid of rotation. All one had to do was to calculate its 
outline in one of the planes of the central axis, and then in imagination 
set this outline in rotation about that axis. Every horizontal section of the 
resulting form would be a circle. With the asymmetric case it was clear 
that the horizontal sections would not be circular, and furthermore their 
shape would vary as one passed up the length of the form. The only way 
to proceed was to construct the horizontal cross-section at a low level 
of the form, and then do the same for successively higher levels; then 
one would be able to put these contours together in one's imagination to 
obtain a picture of the whole form. 
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Figure 89. We let the forms resulting from the experiment of Figure 88 be cut 
by a horizontal plane at a fairly low level in the fornzs. Their cross-sections 
becorne a series of fiat-sided ovals. 

Since there were six vortices being transformed, each cross-section 
would contain six forms. The method which was devised for doing this 
is shown in Appendix 5; here we just show the result. Figure 89 shows 
the horizontal cross-section at a low level of the resulting forms. The 
inside oval results from the narrowest of the vortices, and the others in 
order outwards. These ovals are not ellipses, being too flat on the side 
which faces towards the top of the page. We notice that one axis of sym
metry has been retained, that which gives balance from left to right. In 
the sequel it became clear that this is because the axis of the vortices, 
although asymmetric to that of the transforming bud, is parallel, and 
therefore co-planar, with it. 

The next step was to move the level of the cutting plane a short way 
up the height of the form I was constructing, and see what the new 
cross-sections would look like. As I worked I had no idea what the 
result would be. In the event the new forms proved to be as illustrated in 
Figure 90. What had been the flat 'top' to the ovals began to heap up into 
two bulges on either side of the central axis, the heaping being largest in 
the form arising from the largest vortex. 
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Figure 90. We raise the level of the cutting plane a little, and the cross-sections 
begin to bulge slightly on either side of their axis of symmetry. 

By moving the cutting plane a step further up the height of the bud, 
this process was accentuated as shown in Figure 91. 

The next stage gave more trouble in the construction. After I had 
sorted the matter out I found that the bulges in the outer form had, in 
the meantime, become so large that they had met one another at the top, 
had there fused to form the largest enclosing form, and at the same time 
dropped a little 'egg' into the middle of the form, as shown in Figure 
92. At this stage one can see that the next form is shortly about to do a 
similar thing. 

Figure 93 shows a further stage in the process. Three of the forms 
have gone through this 'egg' producing metamorphosis, while three 
more are still waiting their turn to do so. 

Now this whole remarkable metamorphosis came as a surprise to 
me. At this time I did not know much about embryology, neither had I 
expected this area of inexperience to be broached; but I did know enough 
to recognize the general gesture of invagination when I met it. And it 
seemed to me a matter of significance that the process which I had been 
led to by considering the formation of the seeds and ovaries should now, 
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Figure 91. As the cutting plane is raised further the bulging becomes more 
pronounced. 

with these small changes, be presenting me with embryological forms. 
And with this my attention was turned very keenly to this field. 

Notice that the 'egg' dropped by the outermost of the six fo1ms 
becomes, in the final result, the innermost, surrounded in turn by the 
'eggs' dropped by successively smaller forms. The figure undergoes an 
inversion, outside into inside. 

The next question to ask was: What happens if we do away with the 
last trace of symmetry in the generating forms? We let the axis of the 
vortex be not parallel with that of the transforming bnd transformation, 
but skew to it, passing it by with complete asymmetry. In such a case the 
cross-section we are constructing loses all trace of symmetry; one bulge 
increases in size while the other decreases; the form becomes more sug
gestive still of embryonic gesture, a clear indication of 'head' and 'tail' 
appearing. 
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Figure 92. A further rise in the cutting plane produces a critical situation: the 
largest bulges join at the top, dropping a little egg-like form into the middle. 

At this point I set myself to rove freely for a time in this new realm 
of form. I would set a vortex axis in some position freely chosen with 
regard to that of the transforming bud, then move it in some methodi
cal way, and watch what metamorphosis of forms was produced in the 
cross-section form. From such an exercise I discovered that this embryo
like form is in such circumstances fairly ubiquitous; in one variant or 
another it appears again and again. 

For instance, one day I set a vortex with its axis cutting asym
metrically through the bud transformation, kept its apex fixed, and then 
allowed its axis to move in a vertical plane of that apex, making a 'cut' 
right through the bud transformation. I Jet it move in six stages and 
constructed the resulting cross-sections in a horizontal plane of the apex 
point, that is, one which is at right angles to the axis of the bud transfor
mation. Figure 94 shows the resulting six forms, passing through shapes 
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Figure 93. The process pictured in the previous figures continues for vortex after 
vortex as the level of the cutting plane continues to rise. 

that are strangely reminiscent of embryonic development, until at the last 
stage the 'head' and 'tail' link to tie into a queer little knot. If one cruTies 
the process further this knot becomes more and more elaborate and the 
form as a whole less and less like what one normally associates with an 
embryonic gesture, but even there one can still trace those parts of the 
form which have metamorphosed out of the more recognizable features 
of the ordinary embryonic gesture; it becomes like a deeply involuted 
embryo form. 
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This is only one of many experiments which I did at that time. One 
can do various things. One can keep the apex of the vortex fixed and 
allow the axis to move stage by stage round a cone of that apex. The cone 
can have all kinds of orientations and vertex angles. Again and again one 
finds metamorphoses similar in general character to that of Figure 94, 
but different of course in many details. 

Figure 94. This shows the general kind of metamorphosis which is obtained 
1-vhen one allows the axis of an airy vortex to ,nave in so1ne consistent lvay 
through the field of the transforming egg-transformation. 
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Figure 95. The general situation which we can envisage for the fonnation of 
the chick emb1yo. 

All this led me to take my work on the eggs, some years previously, 
much more seriously than I had then done. Clearly we are moving into 
a realm here, where the activity of the bud transformation, as trans
forming agent, is to be taken over by that of the egg. The general situ
ation is pictured in Figure 95. Here we have the egg, and within it the 
fertilized germ, lying somewhere on the border between albumen (the 
white) and yolk. To begin with we are not seeking to 'prove' anything 
tremendously dramatic, but rather to ask and, if possible answer, a 
significant question: Would it be possible to find some path-curve vor
tex which with some simple change or movement, when taken up and 
transformed by the egg transformation, would portray for us something 
of the general gesture which the evolving chick is going to make within 
that egg? And if so, what kind of change would have to be envisaged 
in the vortex? 

We remember from Chapter 4 that these path-curve forms, although 
they appear within a certain infinite variability, nevertheless occur within 
strictly defined limitations. The things which they cannot do are more 
numerous than those which they can. It was by no means a foregone 
conclusion that the answer to the first of these questions would be in the 
affirmative. And before an answer could be even attempted there was 
another formidable problem to be overcome. 
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Anyone who has worked with the details of the pivot transformation, as 
given in Appendix 5, must be well aware that these constructions cannot 
be made unless one has full knowledge of the parameters of the transform
ing bud-, or as the case may be, egg-transformation which is involved. 
This means determining not only A but also s, and the latter has to be found 
by measuring the steepness of the spirals. But there are in the ordinary 
way no spirals to be seen on the surface of the egg!* This problem held 
the work up for a considerable time and further progress was not possible 
until I had learnt more of the biology of hens and of egg-laying. 

When a hen is dissected, one comes across the ovaries, looking like a 
brightly coloured bunch of yellow grapes, varying in size from about a 
small pea to that of a golf ball. These are the ova, each of which is due, in 
the course of time, to become the yolk of an egg. When an ovum is ready 
to leave the ovary it is already a fully grown and constituted yolk and little 
further development is needed to it. Connecting the ovaries with the uterus, 
which is the chamber from which the egg will ultimately be laid, is a long 
tubular organ called the oviduct. The oviduct is coiled closely upon itself 
and held by a membrane called the messentery. If we remove an oviduct 
and straighten it out it reveals itself as a tube, some 12 to 15 inches (30 to 
40 cm) long. When an ovum is completely developed some little hairs, or 
cilia, at the top of the oviduct reach out, grip the ovum, and draw it down 
into the oviduct to start its journey downwards towards the uterus. 

Now the inner wall of the oviduct is thickly covered by mucous 
glands, and these secrete albumen (the white of the egg) around the yolk 
as it passes by. When the egg reaches a lower part of the oviduct, called 
the isthmus, the shell membranes are laid down upon it, and lower still, 
in the uterus, it receives the calcium, which then hardens into the shell 
as it is laid. 

The mucous glands which secrete the albumen, and which line a very 
large part of the oviduct, are all situated in spiral curves, and it seems 
very probable that the egg twists slowly in these spirals as it makes its 
downward journey. Once, when dissecting a hen, we found an egg half
way down the oviduct, and I was able to photograph it in this critical 
phase of its development. Although the spirally placed glands are situ
ated on the inner wall of the oviduct, the position and direction of the 
spirals were clearly visible from without. Figure 96 is a diagrammatic 
tracing from this photograph. We see the bulge in the wall of the oviduct 
caused by the presence of the rapidly growing egg, and we cannot help 

* This was before I kne,v about the spirals pictured in Figure 30. 
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Figure 96. A tracing from the photograph of the partially-formed egg part of 
the 1vay down the oviduct. 

being struck by the resemblance of the whole thing to the egg path-curve 
form which is now so familiar to us from our studies. 

I measured and analysed this, and found that for a very large part of 
its length this is an almost perfect path-curve form. I could find no per
ceptible sharpening or blunting at either end: A = 1; and the value for E 

also came out to be just about unity. From the study of the curves in other 
oviducts it seems probable that this value may vary in individual cases 
but is usually somewhere between 0.7 and 1.3. Unity seemed as good a 
value as one could get, and this parameter was used in the subsequent 
calculations. I then made the construction of the purely mathematical 
form, using unity for these two parameters, and this is shown by the 
grey shading of Figure 97 with the tracing from the photograph shown 
in black lines over it. We see that the fit is almost perfect, apart from 
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Figure 97. This shoivs Figure 96 co1npared ivith the nearest path curve 
equivalent which could be found. 

189 

the small regions close to the poles of the form. These are the places 
where the mathematics runs to infinity; substance could not in any case 
follow it there, as we have seen, both in the case of the buds and the 
ventricles. 

We see here, I believe, in its true genesis, the egg cradled and nurtured 
in a little path-curve cosmos of form. Let us be quite clear that it is form, 
not substance, which is important here; as the egg moves on its way 
the substance around it changes from moment to moment, but the form 
remains, largely at any rate, invariant, for the whole of its journey. And 
this form, I believe, is the true active element in its further development. 
What later appears in the shape of the shell is a last frozen manifestation 
of the more living processes which went before it. So it was with these 
parameters from the oviduct that I went on to do my further work. 
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And now we can return to the question of a few paragraphs back: 
Would it be possible that the general gesture of the developing embryo 
could be shown by some simple movement of a vortex, being trans
formed by the egg transformation which has just been described? 
Obviously the matter is one of immense complexity and difficulty, and 
we are surrounded by 'unknowns.' At the moment we are able to make 
only a preliminary and tentative study, just to explore possibilities. And 
we have to confine ourselves to drawing just the 'shadow' of gestures, 
as it were, on some horizontal cutting plane. 

Where should the apex of the vortex be placed? The obvious place 
would be in the fructified germ, nestling there in the surface between 
white and yolk. And the cutting plane which shall receive our drawings 
could well be the horizontal plane (that is, at right angles to the long 
axis of the egg) through that point. This is the only real finite plane of 
the cosmic tetrahedron described on page 161; and this we shall use; it 
seems the obvious and 'right' one for our purpose. 

The question we are asking ourselves is one that can never be 
answered on purely theoretic grounds. If we could answer it in such a 
way there would be no need to ask it! In the last resort we must go to 
nature and see what she says. The theory will enable us to construct 
pictures of the kinds of form possible. They cover a large range. Many 
scores of pictures had to be drawn. And as one's eye ranged over the 
field of possibilities thus brought to view, always comparing them with 
the things which nature actually shows us, gradually a structured form 
for the movement of the vortex axis began to reveal itself. 

I found that if we let the apex of the vortex be in the fructified germ, 
a typical position for which we can take from the textbooks, and let the 
axis of the vortex move in part of a simple cone, while the radius of 
the vortex gradually decreases somewhat, then the cross-section in the 
horizontal plane through that point goes through a succession of forms 
very close to the general gesture of the developing embryo. Figure 98 
shows this in elevation, the axis of the egg, and the point, G, of the germ, 
lying in the plane of our page. GM, is the first position of the axis of the 
vortex, also lying in the plane of our page, and cutting the top invariant 
plane of the egg transformation at M,. Notice that this means that the 
axis of the vortex and that of the egg have a common point; they meet 
on the plane of our page, and, by what has gone before, this means that 
the first cross-section will have an axis of symmetry. Thereafter, while 
the axis of the vortex is still centred in point G, in its conical movement 
it moves away from the plane of our page, and all symmetry is lost in 
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Figure 98. This is the situation lve are led to, by co,nparing the geornetrical 
possibilities lvith the actual pheno111ena displayed to us by nature. 

the cross-sections. Line XM, represents the top invariant plane of the egg 
transformation, and in Figure 99 we see it in plan, that is, as seen from 
above. G is here the orthogonal projection of G on the top plane, M 1, M2, 

M, and M4 show successive positions of the points in which the vortex 
axis cuts the top plane, each surrounded by its circle showing the radius 
of the vortex at that moment. 

In Figure 100, on the right are shown the cross-section forms which 
are produced when the vortices whose axes cut the top invariant plane 
in the points M are transformed by the egg transformation. These all lie 
in the horizontal plane of point G. Opposite them, on the left are shown 
sketches of the relevant stages in the development of the embryo, taken 
from an ordinary text book of biology. At stage 1 we see the embryo, 
wider at top and bottom, with a comparatively narrow 'waist' in between, 
where the earliest somites are beginning to show. In stage 2 we see the 
narrow waisted part of the geometry rising to the top of the form, and 
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tying itself into a strange little knot there, making the first recognizable 
differentiation of 'head' and 'tail.' The thinly drawn part just below the 
'head' marks the form of the incoming heart. Thereafter stages 3 and 4 
show the continuous enlargement and development of the head as com
pared with that of the trunk. 

I do not claim that this is anything more than a preliminary and 
incomplete approach to a subject of immense complexity and dif
ficulty. It cannot be looked upon as anything but a first tentative and 
imperfect effort. A large amount of work was called for. It was done 
just before the advent of the personal computer; each drawing, of 
many scores, had to be made by hand; had I had the time to do much 
more I believe that more satisfactory results might have been possible. 

Figure 99. This is looking down, from above, on to the situation of Figure 98. 
It sho}vs four successive positions of the vortex, where they cut the top invari
ant plane. 
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Figure 100. On the left: sketches of the relevant stages of the development of 
an e1nb1yo. On the right: cross-sections produced by transfonning the vortices 
shown in Figure 99. 
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However the work left me with the conviction that the general gestures 
of embryonic development are indeed to be found by these transforma
tion processes. 

Next I was anxious to come to the human case and see whether simi
lar things might be possible there. It seemed to me obvious at the time 
that the role taken by the bud in the plant and by the egg in the bird 
creation would here be taken by the uterus. So the first question was 
to see whether the uterus is a recognizable path curve form; and it was 
immediately obvious that in normal life it is manifestly not; it is a small 
shrunken T-shaped organ quite unlike any path-curve form which I know. 
However in the first weeks and months of pregnancy it swells out to a 
shape which is certainly reminiscent of the path curves. The difficulty 
was to get a really accurate picture of it, at such a time. Eventually I set
tled for a pencil sketch from one of the standard textbooks of the subject, 
made by a surgeon, as being probably the most careful and authentic; 
it is illustrated in Figure 101. Except that it is not closed at the bottom, 
the inner cavity certainly looks like a path curve. During pregnancy the 
lower end is filled by a plug of mucous, and here we have to 'dot in' the 
completion of the form as well as we are able; the measurement of level 
F must be treated with reserve. 

It is highly improbable that the surgeon who made this drawing had 
any knowledge of projective geometry, yet he has in fact produced a 
very passable path curve form. On analysis it turns out to have a A-value 
of 2.8 with MRD equal to 1.5%, a result comparable with many of the 
buds and the eggs. 

However, when we come to consider the spiralling element things 
are not so easy. We have seen in the case of the heart how the twisting 
muscle fibres show very clearly the spiralling element of the path curves. 
In the uterus the muscle fibres also spiral, but not in any manner which 
I can find to be a path curve. It was not for want of trying! I spent many 
hours on the problem. If we wish to understand this I think we must 
look back to the embryonic development of the uterus itself. There we 
find that it takes its start from the fusion of two little tubes, and I believe 
that its final form, including the spiralling of the muscle fibres, can be 
explained from this genesis. But it is not a path curve. However, wonder
fully, it produces a form which is capable of bearing the imprint of the 
path-curve form when this is needed - in the first weeks of pregnancy. 
Probably a somewhat similar thing is seen in the case of the heart. In its 
first embryonic appearance the heart is not a path-curve form at all; but 
it receives the stamp of this form very early on, while still in the embryo, 
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Figure 1 OJ. A surgeon's sketch of a uterus in the early 1nonths of pregnancy. On 
analysis the inner part of this reveals itself as quite an accurate path curve Jann. 

and it retains it for the rest of life. In the uterus this happens much later 
- only when the organ is needed for use - and the change does not 
extend to the directions of the muscle fibres. 

This leads to an important consideration. From what has gone before 
in this book it might seem that I am suggesting that the natures of the 
development of seeds and bird embryos are caused by the forms of 
bud and egg. Well, maybe - but not by the substantial nature of these 
organs. When I speak of the form of bud or egg I mean the active forces 
at work there. These are essentially invisible and non-sensible. The sub
stance involved flows into the field of these forces and is deposited there 
and forms an accurate picture of these forces. Then I have something 
which I can see and measure. 

I have said that it seems that during the first weeks of pregnancy this 
form is imprinted on the uterus. Whence does it come? I believe that it 
comes from the forces of the fertilized ovum itself. It is a notable fact 
that in the very first stage of its journey from the ovary into life the ovum 
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Figure 102. Tracing of a scan of a six-1,veek en1bryo in its arnniotic sac. 

has to negotiate a hazard. Between the ovary and the top of the fallopian 
tube there is a gap, and this has to be safely crossed. Normally the hair
like cilia at the top of the tube draw the ovum safely down into the tube. 
But it can occasionally happen that the ovum fails to make this crossing 
and falls into the peritoneal tract of the mother; and it can ve1y occasion
ally happen that in the course of this the ovum becomes impregnated. 
In such case it will implant itself in the wall of the peritoneum, and 
start developing there. Normally such a pregnancy is terminated fairly 
quickly, but it can happen, very rarely indeed, that it goes full term, and 
the child is delivered by Caesarian section not from its mother's womb 
but from her peritoneal cavity. This shows us that although the environ
ment of the womb is highly desirable for the development of the embryo, 
it is not strictly essential. The form-producing forces seem to be carried 
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by the impregnated ovum itself; when nature seeks to provide the ideal 
environment for the subsequent development, something of these form
producing forces is impressed into the shape of the uterus, and there we 
can see and measure it. 

This must all be seen in connection with something else. From its 
very earliest day the embryo undergoes its development within a series 
of watery sheaths. There is the chorionic sac, within this the amniotic 
sac, and within that again the embryo itself. With the latest scanning 
techniques these can now be photographed with great accuracy and clar
ity, and the latest observations show that these sacs are in fact path-curve 
egg-forms of quite remarkable accuracy. Their AS are not the same as that 
of the uterus, being much more in line with those of the bird creation. We 
see the embryo, right from its inception, immersed in a highly complex 
path-curve environment, of which the actual form of the uterus is only 
one part. This path-curve form, which comes from the most elementary 
mathematical thoughts we can find, seems to be almost ubiquitously 
present right from the very start of life itself, manifesting wherever the 
fertilized ovum finds itself. 

Figure 102 shows a tracing of a scan of a six-week embryo in its 
amniotic sac. The latter has a A of 1.1 I and is such a perfect path curve 
form that its MRD is only 0.3%. Figure 103 is a tracing of a scan of a 
seven-week embryo in its amniotic sac, and that, within the chorionic 
sac. The former has A equal as nearly as measurement can make it to 
unity, again with the remarkable MRD of 0.3%. The chorion has A equal 
to 1.16; it is not such a perfect mathematical form but with MRD equal 
to about 3.8% it is still recognizably path-curve in form. 

Figure 103. Tracing of a sevenMiveek en1b1yo in its chorionic and cunniotic sacs. 
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Figure 104. This shows the botto,n invariant plane of the uterus transfonnation, 
and how the vortex needs to cut this, in order to generate the main gesture of the 
early, evolving, e,nbryo. 

This all goes to underline to us how deeply the beginnings of life are 
immersed in these path-curve fields but I have yet to find a place where 
the spiralling element manifests itself in a substantial measurable form. 
For the following calculations I therefore took unity as a likely value 
for e, the same as for the hen's egg, and worked with that. If with fur
ther experience we find cause to change this value of e, it would make 
changes of detail but not of the general quality of the final results. 

The question now confronting us is the same as we faced with the 
hen's egg and the chick. Would it be possible to find a path-curve vortex 
such that, with its apex in the point of implantation of the fertilized ovum 
in the wall of the uterus, and with some simple movement, it would 
describe for us the general gesture of the developing human embryo? 
And the method of trying to answer this question must be the same. We 
will catch our cross-sections on the horizontal plane through G, the posi
tion of the ovum, and having made many scores of such drawings we 
will be able to make for ourselves a picture of the whole field of possible 
form involved. Then by comparing this with the actual forms which the 
embryo goes through we can arrive at a suggestion of an answer. And 
having done this the answer came out similarly with that of the chick, 
but with some notable differences. 

Firstly it became clear that we must envisage the vortex striking upwards 
from below, and that its axis must then tum in part of a simple cone centred 
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on point G. However it must turn in the opposite direction from the case of 
the chick and while doing this must slowly increase in radius rather than 
decrease. Figure 104 pictures the situation, as seen in plan, from above. The 
double circle represents the widest part of the uterus, at approximately level 
B of Figure 101. This is a typical point of implantation for the ovum, so we 
have put point G there, in the wall of the uterus. The rest of the diagram 
must be visualized as being on the horizontal plane through the pointed end 
of the uterus, below level F of Figure 101. M1, M2 and M3 show successive 
points in which the vortex axis will cut this bottom invariant plane of the 
uterus transformation, and the circles around them show the cross-sec
tions which the vortex will make with the invmiant plane as it increases its 
radius. Note that the first position of the vortex, needed to show the form 
of the very early embryo, will have its axis passing through, or at any rate 
very close to, the pointed end of the uterus itself. 

Figure 105 shows, on the right, the cross-sections which result from 
this simple change of the vortex, and on the left are some tracings of 
the relevant stages from a textbook of embryology. In the course of this 
both the actual embryo and the geometrical cross-section are growing 
rapidly, but for ease of comparison they have all been drawn to the same 
size. I think it will be agreed that the similarity of the geometry to the 
biological reality is very striking, perhaps even more so than in the case 
of the chick. 

On the left, at M1 we see a drawing of a very early embryo, sketched 
with its amniotic sac; at M2 we have a 24-somite embryo, at about 28 days, 
and at M3 we see a tracing from a photograph of a 37-day embryo. 

It must be stressed that by the very nature of things a diagram such as 
that shown in Figure 104 has to be considered as approximate. When one 
has many fairly similar forms to compare, it must be a matter of judg
ment which particular ones are considered to be the best fit. By slightly 
changing the A of the vortex, or its radius, one could arrive at conical 
movements for the vortex axis which would be a little different in detail 
from the one shown here. But the general, overall form of the movement 
of the axis is not in doubt. 

This work was done making all the geometric drawings by hand - a 
very long and tedious process - and only a few score drawings were 
made. Shortly afterwards there came the arrival of the computer and it 
was possible to program it, as described in Appendix 5. This gave rise to 
nearly five hundred drawings, and with these it was possible to cover the 
whole field much more thoroughly. We shall see that the final answer did 
not differ greatly from that which had been obtained by hand work. 
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Figure 105. On the right we see the cross-sections arrived at by pure geo,netry 
from the dispositions of the vortex illustrated in Figure 104; and on the left, 
relevant tracings from a textbook of emb1yology. 
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Figure 106. This is the san1e exercise as Figure 104, but done 1nore thoroughly 
by the con1pute1: 

It is interesting to compare what the machine was able to do with that 
which had been achieved by hand (see Figures 105 and 107, also Figures 
104 and 106). Similar to Figure 104, Figure 106 shows the points in 
which the vortex axis will need to cut the invariant plane through the 
pointed pole of the uterus transformation (that is, the lower end as it is 
placed in the organism). Since we now have so many more drawings to 
guide us this must be considered a more thoroughly researched result 
than that of Figure 104, and it has been possible to carry the metamor
phosis to a further stage. However the main result is almost identical. 
The vortex axis has to move in part of a cone, while its radius slowly 
increases. 

Figure 107 shows, on the right hand side, the six geometrical forms 
resulting from the positions of the vortex axis pictured in Figure 106, 
and on the left a selection of tracings from an embryology textbook for 
comparison. 

Modern molecular biology has had many triumphs. It is possible 
today to explain many of the details of any particular organism from 
purely genetic considerations, but our best genetic science has not 
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Figure 107. On the left: a selection of tracings from an embryology textbook. 
On the right: the six geonzetrical fonns resulting fronz the positions of the vor
tex axis pictured in Figure 106. 
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even begun to understand the great formative gestures which shape the 
organism as a whole. It has been said that we can find encoded in our 
DNA the information as to whether we shall have blue, brown or squint 
eyes. But nowhere, and never, shall we find encoded there the wisdom 
- how to build an eye! I am daring to hope that in the work which has 
been described here we see the first slight beginning of an approach 
towards a view of the great shaping gestures which impart the wonders 
of the human form. And if this is the case we see the formative forces, 
not arising from the molecular intricacies of the genes, but streaming, 
vortex-like, from the bounds of cosmic space which must be recognized 
as giving birth to it. 

But also, if this is the case, we must see how imperfect and tentative 
this first attempt has to be. All we have been able to do is to catch as it 
were a two-dimensional shadow of the thing we are seeking on a suitably 
chosen plane. Nevertheless we may hope that this will show the way 
forward for future work. 

However, further consideration can show us that the form described at 
the start of this chapter does in fact contain significant three-dimensional 
truth and this we must next go on to investigate. 



13. The Human Embryo: 
A Three-Dimensional Picture 

In the previous chapter we considered the cross-sections through the 
form which arises when an airy vortex is transformed by the uterus 
transformation; and we found that in a remarkable way these two
dimensional cross-sections show us the general gestures of embryonic 
development. Now we must unite these cross-sections in our imagina
tion to achieve a picture of the whole three-dimensional form. Imagine 
Figures 89 to 93 placed one behind the other, Figure 89 being closest 
to us and 93 furthest away. This is depicted by hand in Figure 108 and 
by the computer in Figure 113. We see a rather plate-like form, with a 
flat top in that part which is nearest to us, but as our eye travels along 
its length we see the form heaping up on either side, leaving an ever 
deepening groove along the middle. At a certain point the heapings up 
on either side become so high that they would meet one another at the 
top, and thereafter leave a little tube which extends along the rest of 
the length of the form. 

It is a remarkable picture that is presented to us. Notice that the widest 
vortex produces a form which achieves the closing of the tube by Figure 
92; that the two next widest only achieve this by Figure 93, and that the 
remainder have yet to manage this. It follows that if we think of a sin
gle rather narrow vortex steadily increasing in width, we shall see this 
plate-like form on which the sides will heap up until at a certain moment 
they will meet one another to form the beginning of a tube at one end, 
and thereafter, as the vortex continues just to grow in width, the closing 
of the tube will run along the length of the form until the tube is closed 
all along. And to obtain this remarkable metamorphosis all we need is 
simply to let a vortex grow in width. 

Figure 109 is an early attempt to picture this, as seen in plan, looking 
down from above on to the plate. In the first picture the heaping up has 
reached the stage at which the two sides are about to meet just at the 
bottom end of the form. In the succeeding pictures we see the closing 
up of the tube travelling steadily across the length of the form, as the 
diameter of the vortex increases. These pictures were drawn by hand, 
using the constructions and equations given in Appendix 5. Later these 

204 
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Figure 108. An hnage of.the cross-sections in Figures 89-93 placed one behind 
the othe1: Freehand sketch of the con1puter delineation of the progra,n 'EMB 1' 
given in Appendix 4. 

same equations were fed into a computer and pictures like Figures 108 
and 113 resulted. Here we see the same form, but in a different perspec
tive, and it has been copied free-hand in Figure 108 to give a greater 
distance between the different cross-sections so that the eye can pick out 
with greater clarity just what is happening from one end of the form to 
the other. 

At this point it is well to remind ourselves of the early stages of 
embryonic development. From the moment of conception onwards, 
for a period of rather more than two weeks, the process of cell divi
sion produces a series of wonderful metamorphoses of form, but 
within them, to begin with, nothing appears which one could really 
identify as a true beginning of the embryo which is to come. It is as 
though an artist were preparing his canvas with infinite care before 
making a single brush-stroke of the picture which is to come; or a 
dramatist setting his stage with utmost attention to every detail before 
allowing a single character to come on and act his part. And by the 
fifteenth or sixteenth day the stage is indeed set for the enactment of 
the greatest miracle which we can find in the whole world-order of 
events. 
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Figure 109. Succession of images produced by the widening of an airy vortex 
tluvugh a uterus transfonnation. 
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Chorion 

Amnion 

Yolk sac 

Figure 1 J 0. A very approxin1ate diagra1111natic sketch of the environ111ent of the 
en1b1yonic disc in the very early }Veeks of develop111e11t. 

At this time the whole thing is still very minute, but out of the complex 
and remarkable changes taking place there gradually emerges a small, flat, 
plate-like form, the embryonic disc, comparatively round in shape to begin 
with, and then elongating into a long oval-like form. Over it there arches 
the membrane of the amniotic sac, filled with fluid, and under it, also 
fluid-filled, lies the yolk sac. Sun-otmding all is another membrane, the 
chorionic sac, within whose embrace the multitudinous processes which 
are to take place will be welded into a marvellous organic unity. Figure 
110 is a diagrammatic representation of what we should see if our eye 
were to be in the plane of the disc, looking at it so that we see its long side. 
It is a wonderful picture. Looking at it we can see the disc itself (shaded) 
as the ground on which we walk and act, with the curve of the amniotic sac 
like the arch of the starry heavens above, and the yolk sac like the bowels 
of the earth below-truly a stage set for human activity and effort. And we 
have seen the significant fact that as development progresses both the 
amniotic and the chorionic sacs show themselves as being not hemispheri
cal but definitely egg-shaped in form. 
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Figure 111. Diagran11natic representation of the for,nation of the neural canal, 
sho1rvn in four stages. 

Next we must consider the remarkable events which are about to take 
place on the upper surface of the disc itself. Only a few days after the 
disc is prepared the substance on its upper surface begins to heap up 
into two parallel ridges, with a little valley between them - the neural 
groove - along the length of the disc. This groove to begin with is open 
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to the amniotic fluid above, but at a certain point the two ridges rise to 
such a height that they join above and form the start of a little tube. The 
closing of this little tube then runs along the length of the disc, and later 
will form the spinal column of a being who is going to stand upright. 
Figure 111 shows several stages in the formation of this little tube, quite 
diagrammatically as it would be seen if one were looking towards the 
narrow end of the disc. 

As has been pointed out, in order to produce this very remarkable 
transformation all we need to do, geometrically, is to let an airy vortex, 
transformed by the uterus transformation, simply grow in radius. But 
once the thing is programmed on to a computer, and we can therefore 
make as many drawings as we wish, in a short time, it becomes clear 
that the matter is much more general than this. We find that we can 
keep the radius of the vortex unchanged and just let the vortex move 
upwards from below, as at A in Figure 112, or move downwards from 
above, as at B, or inwards from either side, as at C and D; in each case, 
although the exact proportions of the resulting figure vary somewhat, 
its general gesture remains that which we have already shown here. 
This surprising fact can be confirmed by anyone who programmes this 
construction as it is given in Appendix 5. Figure 113 shows three actual 

y 

Figure 112. Here are four different 1vays in ivhich the inconiing vortex ,nay 
,nave, in order to produce the general gesture of the fanning of the neural canal. 
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Figure 113. Three coniputer drawings n1ade with all parameters, except one, 
unchanged. The ).. of the vortex is -0.5 and its axis is approximately parallel 
with that of the uterus. Its apex is 0.2 of the uterus height from the blunt end to 
the sharp, but its distance outwards is 0.9, 0.6 and 0.3 of the uterus height from 
the uterus axis. 
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computer drawings illustrating what happens to the final form when the 
vortex is made to move inwards from one side, as at C in Figure 112. The 
formation, and gradual closing of the neural canal can be clearly seen. It 
seems that the general gesture of this first really decisive act in the great 
drama of embryonic development can follow from the approach of such 
a vortex from almost any direction of space. This is a fact which perhaps 
allows for the very great variety in unity we display. We are all human 
beings but how much we differ from one another! 

The foregoing covers the case of the general gesture of the forming 
of the neural canal fairly well, but when we go further into details we 
find that the matter is more complex than this. If we ask, in which direc
tion does the closing up of the tube take place, from the head towards 
the tail? - or the reverse? - we get the rather surprising answer that 
it is neither of these things. The closing up starts rather in the middle of 
the neural plate, somewhat in the region of what will later become the 
shoulders or the base of the neck, and it then proceeds simultaneously, 
forwards towards the head and backwards dpwn the presumptive spine. 
And after many hours of work I have convinced myself that I cannot find 
a single vortex situated in such a way as to produce these two opposite 
movements. And I am beginning to believe that I never shall. My human 
nature is poised between two opposite poles of my being. My head is 
the seat of consciousness and knowledge; here is 'wisdom,' the ultimate 
crystallization of past experience, inert, shorn now of life, but invested 
with clarity. In trunk and limbs I have the region of unconsciousness, 
warm, thrilling and alive with the strength of my will, which can now 
lead to future action. 

I think it is significant that the geometry, at any rate so far, has refused 
to link two such opposite things in a single transformation. To get the 
whole gesture which we see in the embryo it is necessary to envisage 
two vortices, coming in from opposite directions, it could be simultane
ously as at A and B in Figure 112, or as at C and D. You can think of 
these as one coming in from the past, and the other stretching into the 
future, if you like, or as one mediating to us the conscious part of our 
being, and the other the unconscious part, but two vortices, it would 
seem, it has to be. When one comes to make the actual drawings of 
this, one finds that the two movements, headwards and tailwards, tend 
to overlap one another, and interpenetrate somewhat along the length of 
the neural plate, but apart from this the vortices as situated in Figure 112 
produce a remarkably true and complete picture of the whole gesture of 
the forming of the neural tube. 
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Once the neural tube is complete, along the whole length of the 
embryonic disc, the next act in the drama is a remarkable one. In order 
to appreciate it we must forsake our view of the narrow aspect of the 
embryonic disc, as represented in Figure 111, and view it at right angles 
to this, in its long aspect, as shown in Figure ll 0. The tube by now 
extends all the way along the disc, from extreme left to right. The whole 
thing now begins to bend downwards at its two ends, towards the yolk 
sac, the head gradually forming at the left end (as we see it in Figure 
110) and the tail at the right. This metamorphosis we have already seen; 
it is that pictured in Figures 105 and 107, and with it the whole wonder 
of the human form begins to show itself. I have never seen it suggested 
that these two great acts in the early generation of the human form are 
fundamentally the same gesture, repeating itself the second time in a 
direction at right angles to the first, and with just one further element, of 
asymmetry, added to it, but the geometry reveals that this is so. And our 
understanding of this adds an element of unification to our appreciation 
of what is in so many other ways such a vastly complex and complicated 
process. 



14. The Relationship of Form to Life 

The next aspect of the work was prompted by yet another question which 
I found myself putting to Nature. If we look back to Chapter 5 we find 
there the results of considering not only the mean form of the buds of 
some species, but the forms of a series of individual buds; and it became 
apparent how remarkably accurately most of these delicate little buds 
achieve the ideal form, amidst all the accidents of a rigorous physical 
world in which they have had to grow. In a set of ten buds, picked at 
random, it is usual to find that five or six have mean deviations so low 
as to indicate that they are exceedingly accurate path-curve forms, and 
commonly, of the remainder, only one or two will deviate at all seriously 
from this form. Nevertheless these deviants are there, and they have to be 
considered. And the question then arises: ls it a matter of concern to the 
plant whether its buds are good path-curve forms or not? Or, to put it a 
little differently: If we have two buds, one a perfect path-curve form, and 
the other deviating sensibly from it, can we find that the life forces of the 
plant are working more strongly in the first than in the second? 

In order to find an answer to this question it is clear that we must find 
some way of estimating how strongly the life forces are working in any 
particular bud. At first glance this does not seem an easy matter, but, on 
consideration, more than one possible ways suggest themselves. 

For my first attempts I used the method of capillary dynamolysis 
developed by L. Kolisko in collaboration with Rudolf Steiner. The 
details of the method have been described in quite an extensive literature 
(see bibliography); here we will confine ourselves to a description of the 
main outlines of the procedure employed. 

The substance to be analysed, in this case a plant sap, is put into a 
shallow dish and a cylinder of filter paper is stood in the dish until the 
sap is completely absorbed into the paper by capillary action. When 
it has been allowed to dry, this sap forms a narrow, and often almost 
invisible, ring round the bottom of the cylinder. The cylinder is next 
stood in a dish containing a measured amount of metal reagent, com
monly silver nitrate, until the reagent has risen through the sap up into 
the filter paper. When this is dry, and in the course of being submitted 
to light, the paper begins to 'print out' into a series of interesting and 
striking patterns. 

213 



214 THE VORTEX OF LIFE 

In the course of nearly half a century since this method was first 
developed, many scientific workers have come to recognize that the 
sap pictures, both in their quality and their strength, represent in some 
way an expression of the qualities of the life forces which were work
ing in the plant to produce that sap. If no sap is present in the paper, 
then no pictures arise, and it has been established that the pictures are 
produced by the presence of various metaboloids, that is, the results of 
the metabolic, life, forces which were working in the plant. And I think 
it a reasonable assumption that a strongly developed picture indicates 
a greater presence of metaboloids, and stronger life forces in the plant, 
than a weaker picture. 

The first thing was to test how such a situation works in practice. 
Suppose I take ten buds from the same branch of a tree, or ten flower buds 
from the same patch of ground, and make a picture from each, how will 
these compare with one another? Before we go on to answer this, we must 
be very careful of the validity of what we are doing. Since we are test
ing for a possible correlation between form and life forces, we must take 
every possible precaution to ensure that all other factors remain invariant. 
In the case of flower buds we must try to see that the plants from which 
they are gathered are all growing in the same kind of soil and atmospheric 
conditions and, above all, that each bud is at exactly the same stage in its 
development. With many species that latter is difficult or almost impos
sible to ensure. The best species to work with I have found are those in 
which the bud starts its life totally enclosed in green sepals but finishes its 
development as a bud with its coloured petals fully bared to view. In such 
a bud there is a moment when the sepals are just beginning to part, and the 
coloured petals within are just starting to show. This forms a quite exact 
and easily identified moment of development in the life of the bud, and 
with many of the species with which I have done a lot of my work, this is 
the moment I have confined myself to. 

With the leaf buds of the deciduous trees the matter is easier. One 
gathers the buds at the same moment, from the same part of the same 
branch, taking care to distinguish between terminal and lateral ones. 

If one proceeds thus, and takes say ten buds which are as identical as 
possible, both in their size, stage of development and the conditions of 
their growth, and makes a separate picture from each, one normally finds 
that these pictures will all be of the same general quality ( depending 
largely on species and season) but will differ markedly in strength. Some 
of them will be strongly etched and striking in appearance, and others 
will be so weak as to be almost invisible. It would seem that the strength 
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of the life forces, as expressed in these capillary-dynamic pictures, varies 
considerably from one bud to another. 

And we also know that these buds differ from one another in the 
exactitude with which they adhere to the mathematical archetype to 
which they are growing. The question before us is whether there can be 
a correlation between these two things. Are the more exact buds growing 
more 'successfully' than the others? 

With a set of such pictures in front of one it is possible to grade them 
with a fair degree of confidence into stronger and weaker, and thus to 
produce a graded set. I do it in this way. Each bud, and of course its 
picture, has been assigned, quite arbitrarily, a number from one to ten. A 
graded set would then look something like this: 

5 3 8 I 9 4 10 6 2 7 

This would mean that bud number 5 produced the strongest picture, 
number 3 the next strongest, and so on all the way down to number 7 
which would have the weakest picture of all. But before these buds were 
crushed to obtain their sap, they will have been photographed; and when 
their MRDs are calculated one can make another graded set having the 
buds with the smallest MRDs, that is, those with the most mathematically 
accurate form, on the left, down to the least accurate ones on the right. 

If one makes two such sets in this way, will one find that they corre
late? Will those buds which are found in the left, or the right, ends of the 
first set be found also, significantly in the same ends of the second? 

There is a well-tried method of testing two ranges for such a correla
tion. It is called the Spearman's Rank Correlation Index. It is not difficult 
to calculate but the details must be left to the textbooks of statistics. It 
is sufficient for us to understand that if the Spearman Index comes to 
zero, then there is no indication at all of a correlation. A positive index 
indicates evidence in favour of correlation, the correlation being perfect 
when the index becomes + I. A negative index indicates what one could 
call anti-correlation; that is, there is some degree of correlation, but it is 
in the opposite direction from what one expected, the opposite c01Tela
tion being perfect when the index becomes -1. 

In the kind of case which we are considering one could not expect 
to find anything near to a pe1fect correlation. The growth of a living 
organism is too subtle, and is affected by too many diverse influences 
for any one of them to be strongly dominant. Therefore it would not be 
possible to draw any firm conclusion from doing just a few sets of buds; 
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but if over a long series of observations one were to find that the Index 
consistently comes positive much more often than negative, then one has 
evidence to show that something of a correlation is actually at work. 

Proceeding in this way I set to work. But after photographing and 
analysing many hundred buds I was forced to the conclusion that no 
evidence could be found for a correlation of this sort. As far as the life 
forces are concerned it seemed to be a matter of indifference whether 
the bud was a perfect path curve or not. The question had been put to 
Nature, and she had answered: 'No.' And I was about to give up this line 
of investigation altogether, and turn to other apparently more fruitful 
directions when, on having a last look through my figures, I noticed, or 
thought that I noticed, something else. 

It is clear that if we have any set of, say, ten buds, it will present us with 
a range of deviations from the perfect mathematical form, some being 
more perfect and others Jess. But it will also present us with a range of 
AS. There will be a mean A of the set, and each bud will deviate from 
this, above or below, more or less widely. And now as I looked through 
my figures it seemed to me that those buds which deviated widely from 
the mean, both above it and below, were consistently appearing more 
often in the right-hand part of the range which showed picture strength. 
In other words these deviant buds were producing weaker pictures and, I 
had to assume, were Jess vitally alive than those which were near to the 
mean of their group. 

Could it be that I had been putting the wrong question to Nature? As 
a mathematician I had expected her to favour those buds which I deemed 
the best, those which followed my mathematical ideal most closely. But 
she answered with something different. It was as though she were say
ing: 'Each plant, at any moment of its development, has an ideal form 
toward which it is striving; and those buds which achieve just this form 
are the ones into which my life forces will more strongly flow.' 

My method of working now had to change. For each set of buds I 
would have to find the mean A, and take this as the ideal towards which 
the plant at that moment was striving. Then my range of deviations 
would not show deviation from the pure mathematical form but devia
tion from this ideal A. And as soon as I started working in this way, the 
evidence for a correlation between the two ranges began to accumulate. 

That year I analysed thirty-five sets of buds and found that twenty
seven of them (77%) gave a positive Spearman index, the mean index 
being +0.222. On the face of it, this ought to be considered a significant 
result. This is a straightforward Yes/No question. If I toss a fair coin 
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thirty-five times, the odds against getting twenty-seven heads can easily 
be calculated, and they are very heavily against. Nevertheless I hesitated to 
be wholly convinced. This is a matter of great difficulty, and complete cer
tainty is far to reach. I had tried it with a fairly wide variety of species: leaf 
buds of our great deciduous trees and quite a number of kinds of flower 
buds. Not all species seem to react positively, notably the horse chestnut, 
dandelion and, often, the sycamore. Probably the outer form of these buds, 
which is what I was measuring, is not the significant thing, as we know is 
the case with the rhododendron. Then we must remember that the correct
ness of this calculation depends wholly on having achieved a true value of 
the mean A for the day; each bud is measured twice, from two directions at 
right angles to one another; but the mean of only twenty measurements is 
bound to have uncertainties. The decision as to which pictures are stronger 
and weaker is, I think, usually fairly clear, but here human judgment nec
essarily comes in, and there are sometimes unce1tainties in this. It is not 
always easy to be absolutely certain that one has picked the buds at exactly 
the same stage of development. Nevertheless after working with the great
est care possible, I was left with the impression that we have here at any 
rate preliminary evidence for the reality of a correlation between the finer 
form of these buds and the life forces working within them. 

The following year I returned to the matter, and measured a further 
thirty-three sets of buds. This time only 67% of them gave a positive 
Spearman index with a mean value of +0.121; but these included a 
number of dandelion and sycamore, which had already shown them
selves as not responding to this treatment. Ignoring these I found that I 
had 80% of sets with a positive index, its mean value being +0.242, a 
result completely consistent with that of the previous year. 

At this point I thought I saw a rather different way of working. An 
outstanding characteristic of a living organism as compared with the 
mineral, is the flow of liquid which we find in the former: sap in the 
plant, blood and lymph in animal and man. A bud which is filled with 
sap is surely more fully alive than one which is dry and shrivelled. If I 
could find a way of measuring the sap content of each bud this would be 
an indication of the strength of the life forces which had been working in 
it. I therefore had made for me an exceedingly sensitive torsion balance; 
it would weigh, literally, a hair from one's head. The method of working 
then was to take one's bud, shred it finely, weigh the shredded pieces, 
subject them to a stream of hot air until they were completely dessi
cated, and to weigh them again. The difference in weight represented 
the amount of moisture which was driven off and a simple calculation 
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would then give the percentage water content of the bud. My graded set 
would now have the most watery, that is, living, buds at the left end, and 
the driest at the right. 

I worked for two years along these lines, measuring seventy-seven 
sets of buds; of these, fifty-nine sets had a positive index (77%) with a 
mean value of +0.22. The following table gives some particulars of these 
results. These figures are also typical of those coming from the capillary 
dynamic pictures of the two previous years: 

Species Total nun1ber Number of sets Mean Spearman 
of sets with positive index Index 

Beech leaf buds 18 13 (72%) +0.17 
Oak leaf buds 17 14 (82%) +0.26 
Wild rose 14 12 (86%) +0.32 
Primrose 13 9 (69%) +0.12 
Buttercup 9 8 (89%) +0.26 
Wild Iris 6 3 (50%) +0.13 

Total 77 59 (77%) +0.22 

The probability of such a result happening by chance comes out at 
0.0003%. This, combined with the consistency with which these results 
echoed those of previous years, did much to resolve the doubts that I 
still harboured. 

However I considered this such an important matter that some four 
years later I took up this branch of the research again, this time returning 
to the use of the capillary dynamic filter paper pictures. In that year I 
measured fifty-one sets of buds, recording that 80% of them had a posi
tive index, with a mean value of +0.244. Two years later I did another 
thirty-eight sets, of which 78% came out with a positive index, with a 
mean value of +0.249. 

As a further test of the validity of what I had been doing, I took 
three of the years' work and recalculated the indices 'marrying' the sets 
wrongly; that is to say I compared one day's set of graded sap pictures 
with the following day's set of graded 11.s. The results of this exercise are 
shown in the following table: 

Year Percentage of Sets having Mean Spearman Index 
a Positive Index 

1978 46% -0.016 
1986 51% -0.04 
1988 41% -0.12 
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With a random exercise like this one ought to expect that results 
would be roughly half-and-half, and we see that this is just what they 
are - approximately 50% positive and 50% negative, and with the mean 
index near to zero. If there is a slight bias in the working it seems to be 
leaning slightly toward the negative, and this makes our consistently 
positive results over six years of working all the more convincing. And 
after many years of working I have been slowly convinced. 

Now this is a very remarkable matter. In most cases the difference 
between the A-values of the various buds in a set has not been great, 
representing the very finest shades of difference in the visible form, 
sometimes only to be detected by exact measurement. Yet we find, again 
and again, that these differences correlate with the life forces working 
in the bud. 

What can this mean? In the first place, I think, one of two things. It 
could be that the plant brings stronger or weaker life forces to bear on 
each of its buds, and according to this is able to form the bud more or 
less perfectly to its ideal form for that moment of its development. For 
different plants growing on the same bank I think that this is a tenable 
idea. But each set of leaf buds from beech and oak was gathered not only 
from the one tree, but from the same branch, even almost the same twig. 
Can we imagine that the closely integrated life-organism of a tree would 
differentiate thus between its various buds growing side by side on the 
same twig? Possibly; but I feel that it is unlikely. 

The other possibility is that the form of the buds - just the pure form 
itself - acts as a vehicle for the life force. It could be that the plant, 
working in the intractable world of substance, to build its buds as closely 
to the ideal form as the accidents of that world will allow, has greater 
success with one bud than another; and that those buds which achieve 
the ideal form most closely are those which are able to receive the life 
forces most strongly. In this view the bud would have to be seen rather 
as a chalice, but its capacity to bear the life forces into the substantial 
world would rest not alone with its substance (although that is doubtless 
of importance) but also with its pure form. Form becomes a vehicle for 
spirit. 

We have here two possible ways of looking at the world. One sees 
form as a necessary adjunct of matter. The substance is there, therefore 
it must have a form of some sort or another. The form is there because of 
the substance. The other sees form as the primary reality, which can only 
then become visible to our eyes when it takes up substance and moulds 
it to its purpose. The substance is there because of the form. 
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To me it seems possible that the full reality might take account of both 
aspects. A bud, at its first appearance, finds itself close to the ideal form; 
because of this it is able, from the start, to take up strong life forces, which 
then in their tum steer its progress vigorously further towards the ideal 
form. Another bud, also at its first appearance, maybe due to some acci
dent of wind and weather, finds itself ill-formed, and therefore finds itself 
inhibited from taking up the life forces strongly, which then in their turn 
are unable to mould it so well in the way it should go. It has been said, has 
it not: 'To him that has, shall be given; and from him that has not, shall 
be taken even that which he seems to have.' I wonder sometimes whether, 
from certain aspects, this is a rather wide-ranging Jaw of life. 

Such ideas, with their possible implications, if really established 
could, I believe, be described as revolutionary for science. All I have 
been able to do these past years is to adduce jnst a little evidence which 
may point in this direction; but I think it explains why I think this is a 
very important chapter of the work. 

However, one more point of exceptional interest needs to be dealt with. 
It is clear that once our interest is diverted from the deviation from the true 
path-curve form to the divergence from the mean form, there is no longer a 
necessity to calculate A, or indeed to use projective geometry at all. It is the 
easiest thing possible simply to find the mean of all one's measurements, 
and denote this as the ideal form for that moment, for that plant. Each 
individual bud could then be compared with this, and its divergence from it 
calculated; no more than schoolboy arithmetic would be needed. And from 
this one could make a graded range, ranking the buds by their divergence 
from the mean shape, just as the range described above ranks them by their 
divergence from the mean A. What would be the difference, in meaning, 
between these two ranges? The answer is that the new range would rank the 
buds according to the difference in their physical shape, as they stand before 
us in space, and as they are photographed; whereas the previous range ranks 
them according to the difference in the geometrical process which generates 
the form they have assumed: the winding and unwinding of the logarithmic 
spirals on the top and bottom planes of the invariant tetrahedron, the process 
which generates the form of the bud in the physical world, and is at the same 
time, for our calculations, implied by it. 

When we do our calculations by these two methods, that of the shape 
and that of the A-process, we must expect our answers to come very 
nearly alike. Were they not to do so we would be Jed to suspect that 
something had gone wrong with our sums! Nevertheless, owing to the 
subtle way in which the geometrical processes work into the world of 
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three-dimensional form there will inevitably be small differences in the 
final results. If a correlation shows when we calculate the ;\-divergen
cies, it will also show when we calculate the shape-divergencies; but not 
necessarily to the same extent. 

Let us assume for the moment that a correlation has firmly been estab
lished. Then it becomes possible to put yet another question to Nature: 
'Which really concerns you, the finished form which you put into the 
physical world, or the living process by which you put it there?' The fac
tors which are the most significant in causing the correlation may well 
be expected to be the ones which will show it the most clearly in the 
calculations. Thus it becomes a matter of great interest to know which 
divergencies - those of simple shape, or those of the A-process - show 
the correlation most strongly. 

Those who study Appendix 3 will find that there is more than one way 
of calculating ;\; the answers one gets by the various methods are usu
ally very close together, and it is not easy to judge on purely theoretical 
grounds that one method is 'right' and another 'wrong'; it depends on 
the criteria one uses in making the calculation. But I had hoped that the 
above considerations might, just possibly, throw some light on which 
method is the more significant for the life of the plant. 

Here are the results from 235 sets (2350 buds) using two of the meth
ods for calculating ;\ which are described in Appendix 3, and also using 
just the divergencies from the simple shape as calculated from elemen
tary arithmetic: 

Projective Method Regreesion Method Shape 

Year % of sets Mean % of sets Mean % of sets Mean 
Spearman Spearman Spearman 

positive Index positive Index positive Index 

1978 77% I +0.222 70% +0.219 78% +0.189 

1979 80% +0.242 72% +0.237 68% +0.179 
I 

1980 80% +0.200 l 76% +0.219 72% +0.158 

1981 I 
I 

1986 80% +0.244 78% 
I 

+0.205 78% +0.180 

1988 78% +0.249 77% +0.244 74% 
I 

+0.182 

Mean 79% I +0.231 75% +0.225 74% +0.178 
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The first thing to notice is the quite remarkable consistency in all 
the results, from year to year. Secondly, although the results calculated 
according to the simple physical shape of the buds are uniformly posi
tive, they are consistently, and significantly, less strongly so than with 
either of the two A-methods. I think this is clear experimental evidence 
that the true projective quality of these curves is something of signifi
cance for the life of the plant. Thirdly, although the projective method 
appears to have done marginally better than that based on regression, I 
do not think the difference is sufficiently marked for us to draw any firm 
conclusions about their respective merits from the point of view of the 
plant. 
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The validity of the work described in the previous chapter depended very 
strongly on my having achieved true values for the mean A of the buds 
day by day; and by the beginning of 1982 I had amassed many hundred 
such figures for various species including amongst them several of our 
great deciduous trees, oak, beech, ash, and so on. Earlier on in the work I 
had imagined that each species would have its characteristic value which 
it would adhere to pretty strictly. However experience has shown that 
nature is more mobile than this, and in that spring of 1982, while looking 
through my figures it became apparent that these buds, even those grow
ing on the same branch of the same tree, seemed to be going through 
subtle variations from week to week. Although I had many observations 
to guide me, they had not been taken with a view to studying such a 
variation, and I did not have a consistent, day-to-day account of any tree 
or species. And I resolved that the following autumn, when the new leaf 
buds of the deciduous trees should appear, I must make it my business to 
find out exactly what these little buds are doing during their long winter 
wait on the branch. 

These leaf buds of our great trees are a somewhat strange phenom
enon. Next year's buds appear on the branch somewhere about midsum
mer; by the end of September they are fully fashioned, and thereafter 
they hang on their branch all the winter, dormant as the biologist says, 
till they are ready to open in the following spring. Dormant they might 
be, but it now seemed that they were twisting and turning just a little in 
their sleep! 

I decided that I needed to have daily measurements of each bud studied, 
over the period of a whole winter. This presented difficulties. Normally I 
pick the bud and measure it in my specially designed machine at home, 
getting very precise results. To photograph it while it is still on the tree 
is not so easy. A slight change in the point of view from which it is pho
tographed will make a small change in the calculated 1'; but it was only 
small changes which I was looking for anyway. How could I be certain 
that the bud had been photographed from exactly the same point of view 
day after day? Eventually I devised a method. I would take a small piece 
of transparent Perspex, say about 3 x I inches (75 x 25 mm), and after 
drilling needle-sized holes in it in suitable places, would strap the bud 
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down on to it, with fine fuse wire. The strip of Perspex would then be left 
hanging on the tree. Next I made a wooden framework into which my 
camera would fit, having a slot the size of the Perspex strip, so arranged 
that when the strip was placed in the slot I knew that the bud was in the 
centre of the field of view, was in focus, and, of course, was being seen 
from day to day from exactly the same point of view. 

The next problem was to decide which species to study. The leaf buds 
of the deciduous trees were obvious first candidates; they are mostly 
very good path curves and therefore easy to measure for really accu
rate A-values; and they are present in a fairly constant state for many 
months at a time. But there was another aspect which, I must confess, 
swayed my choice. The previous spring, the figures which I already had, 
although not numerous or consistent enough to tell me anything definite, 
had given me hints that there might possibly be astronomical connec
tions here. Now Rudolf Steiner, whose anthroposophy gave me the basic 
inspiration for the work I have been doing, suggested the following cor
relations between trees and planets: 

Sun 
Moon 
Mercury 
Venus 
Mars 
Jupiter 
Saturn 

Ash 
Cherry 
Elm 
Birch 
Oak 
Maple, Sycamore 
Hornbeam, Beech and the Conifers 

At the time I had no knowledge of what the detailed connection could 
be, or that any connection would be found at all; but the fact that such sug
gestions had been made certainly heightened the interest of the search. 

I therefore chose five buds - ash, cherry, elm, oak and beech -
strapped them down on their pieces of Perspex and in the autumn of 1982 
started work. 

Leaf buds 

There were difficulties. Often traces of the night's dew were still on the 
strip making the obtaining of a sharp image difficult, and it had to be 
dried with blotting paper. Sometimes the strip was encased with frost or 
ice, which had to be melted away by breathing on it, and then, of course, 
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Figure 114. Mean),. values for Oak leaf buds, winter 1982-83, with 
corresponding align,nents of Moon and Mars. 
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dried. It was not clear how hard one could bind the bud down without 
killing it; sometimes after a windy night I suspected that it had moved in 
its bonds. And always one was plagued by the very dull midwinter light 
in the Scottish Highlands. The enlarged images which I got were not 
always as clear and sharp as I needed for really exact measurement. But 
I persisted through that winter. 

It was the oak which proved most amenable to exact measure
ment in this case. Figure 114 shows the graph of its A-values from 
November to the end of April. It shows a clear fortnightly rhythm, the 
A-value dropping below 2.1 at two-weekly intervals, and, except for 
February 11, at no other time. On consulting an ephemeris one finds 
that these were the times, to the day, when the Moon and Mars had 
drawn into straight line with the Earth, that is, when they were to be 
seen in conjunction or opposition in the sky. We notice that the graph 
does not seem to make any distinction between these two aspects, and 
until such a distinction makes itself apparent I am calling them by the 
same name: 'alignment.' The moments of such alignments are shown 
on this, and all succeeding graphs, by little downward or upward 
pointing arrows. 
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The general form of the graph is worth noting. It set a pattern which 
was to be repeated in one form or another many times over in succeed
ing years. We see the rhythm clearly and strongly during the autumn, but 
as mid-December approaches the amplitude of the variation grows less, 
until in early January the bud becomes almost inert. In fact at that time 
I thought that I must have strapped it down too tightly, and had killed it. 
I went so far as to strap another bud down on to a new piece of Perspex 
and start with that. Hardly had I done so when the original bud 'awoke' 
and continued with its variation, although not quite as strongly as it had 
done so in the autumn. I cannot state that this midwinter sleep always 
takes place with the leaf buds, but it does seem to be a common feature 
with them. 

The steep descent at the end of the graph marks the true opening 
of the bud; the start of this was apparent to my exact measurements 
some ten days before ordinary observation would have noticed it on 
the tree. 

Now what do we understand by a result like this? Every time the 
Moon and Mars come into alignment with the Earth, this little oak bud 
responds with a subtle gesture which takes it a little way towards open
ing and almost immediately closing again. Can we believe that this is 
true for all oak buds all over the world? Certainly not on the evidence of 
this one little bud alone. What about the beech and the elm? Owing to the 
imperfections of these midwinter photographs the evidence here was far 
from conclusive, but their graphs could certainly be interpreted as being 
consistent with the beech behaving similarly on alignments of Moon and 
Saturn, and the elm on alignments of Moon and Mercury. From the ash 
during that first winter I could get no evidence of such response at all. 

The cherry, if it was to be judged in a similar way to these others, 
posed something of a problem; one can hardly imagine the Moon com
ing into alignment with itself! In the event this leaf bud of the cherry 
proved to have a well-marked fourteen-day cycle of its own, the A-value 
coming, not to a dip, but to a peak, every fortnight. And throughout that 
winter these peaks coincided every time with alignments of Moon and 
Sun, that is, full moon and new moon. Figure 115 shows the A-graph 
for the che1Ty that winter. Notice that the variation was vigorous dur
ing the autumn but that as the new year approached the amplitude grew 
gradually smaller until the alignment of January 13 was hardly measur
able; and strong variation did not resume until the middle of February. 
Although the actual variation was inverted the general pattern bore a 
distinct resemblance to that of the oak. 
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Figure 115. Mean A values for cheny leaf buds, winter 1982-83, with corre
sponding alignn1ents of Sun and Moon. 

The results described here represented a whole winter's work with 
the buds, but they could not be described as more than a very meagre 
beginning to an important aspect of the work. The variation was on 
the whole small and subtle, and I was aware that, in some cases espe
cially, I had been working near to the limits of possible error in my 
measurements. At the end of the season I made a careful reappraisal of 
all results, going to the length of getting out old negatives, re-enlarg
ing and re-measuring, in random order, so that while measuring I was 
not aware of the dates written on the back of each picture. The most 
sober re-assessment convinced me that although the results for the 
elm and the beech could be seen as consistent with such variation they 
could not be accepted as firm evidence to prove it; but that those for 
the oak and the cherry could be seen as some real, positive, evidence. 
Obviously much more work needed to be done, but it would have to 
wait some six months until the new buds were ready for examination 
the next autumn. 
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Primrose 

Meanwhile the spring was upon us and the pri1moses were already com
ing into bud; and the question arose whether, just possibly, these flower 
buds might be behaving in a similar way. Here the question being asked 
of nature had to be phrased a little differently. A leaf bud hangs on its 
branch, in a more or less invariant state, all the winter, and if one deci
phers what that single bud was doing all that time one can hope to have a 
picture of what the whole tree, maybe the whole species, was doing. And 
this is the thing we are aiming for. With the flower bud it is different; it is 
too delicate to be strapped down on to a piece of Perspex without killing 
it; and we have already studied, and described on pages 100-7, what the 
single flower bud is doing in the course of its development. Here we are 
concerned with what the whole species is doing in the weeks of its bud
ding season. The method followed must be to pick, say, ten buds each 
day, gathered under the most identical conditions possible, find their 
mean A, take this to be the A of the species for that day, and to investigate 
how this value varies from week to week. Obviously the validity of such 
work depends on the complete constancy of the conditions in which the 
buds are picked, and especially that they are all taken exactly at the same 
stage in their development. This is not easy to ensure with all species, 
but the primrose is a very good subject in this respect. The moment when 
the coloured petals first begin to push through the green covering sepals 

Primrose 1983 
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Figure 116. Mean A values for Primrose buds, spring 1983, with corresponding 
align,nents of Sun and Moon. 
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is clearly identifiable, and all buds for this experiment were picked at 
exactly that moment. 

Figure 116 shows the results of these first observations of this sort 
on a flower bud - the primrose 1983. When examining this, one must 
remember that what is plotted on one's graph are mean values of A, and 
mean values, by the very nature of things, can never be exact; according 
to the random selection of the buds each day, more, or less, high, or low, 
values may creep into each mean; thus the mean value will fluctuate, 
from day to day, above and below the real trend which we are seeking, 
forming a certain amount of 'noise' in the graph. A useful way of trying 
to eliminate some of this noise is to plot three-day means - that is, for 
each day we plot the mean of the preceding day, the day itself and the 
following day. Such a curve shows the general trend of the observations 
better, and in Figure 116 it is drawn in heavy lines. The light lines weav
ing above and below it show the actual daily values so that the interested 
reader can judge for himself the consistency of the observations. And all 
graphs following this one will be made in a similar way. 

Looking at Figure 116 we see that the A-value fell below 2.5 just three 
times, at fortnightly intervals. We have no theoretical reason for assign
ing any astronomical aspect to these dips in the curve, but working quite 
empirically we find that they coincide in each case with alignments of 
Sun and Moon, that is, new moon and full moon. With observations 
extending over scarcely six weeks and only two dips fully plotted this 
can by itself not make a very convincing case - it might have been 
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Figure 117. Mean A values for Primrose buds, spring 1984, with correspo11di11g 
align,nents of Sun and Moon. 
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coincidence! It is therefore worthwhile to jump a year and to show the 
corresponding graph for 1984 (Figure 117). Again we see a curve which 
dips below 2.5 just twice, at fortnightly intervals, and again these coin
cide with alignments of Sun and Moon. These two seasons' observations 
taken together do give us, I believe, a good indication that something 
significant is at work here. 

If we ask what it is, we find ourselves on more debatable ground. If 
we are to judge the flower buds in the same way as the leaf buds of the 
trees then we would say that the primrose probably comes under the 
influence of the Sun. I say 'probably' because lunar alignments with 
Mercury and Venus tend to come close to those with the Sun, and they 
are therefore hard to disentangle; further work has shown that the Sun in 
this case is more likely than the other two. 

Can we envisage the primrose as a Sun plant? If we gaze into the 
heart of the plant, we will see there upwards of half a dozen or more 
little buds, radiating from the central stem, each encased in its sheath of 
green sepals, of a glowing yellow; one can get the impression of a source 
of radiating light, bravely growing there in the cold days of early spring. 
The poet had an intuition that the primrose growing by the river's brim 
was something more than just a primrose; can we see it as a ray of the 
spiritual sun shining forth from our winter-frozen earth? Well ... let us 
get back to our facts and figures. 

Stitchwort 

Just as the primrose buds are finishing, the little white-starred flower of 
the stitchwort is beginning to show itself in our hedgerows. This little 
bud also grows ensheathed in green sepals until at a certain moment the 
white of the petals begins to show through and it is therefore suitable 
for similar treatment. Figure 118 shows the graph for the stitchwort in 
1983. We see two dips, at approximately a fortnightly interval; after 
May 24 I had to be away from home, but returned just in time to catch 
A, maybe, recovering from another dip in the first week of June. Like the 
primrose, taken by itself, this graph cannot prove very much, but taken 
in conjunction with the work of succeeding years I think it is highly 
significant. I could find no lunar alignments to coincide with these dips 
but they both come just one day before those of Moon and Saturn, and as 
we shall see from the work done since then, this appears to be a Saturn 
phenomenon. 
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Figure 118. Mean A values for Siitclnvort, spring 1983, with corresponding 
alig11111ents of Moon and Saturn. 
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Figure 119. Mean A values for Gera11iu1n, su1111ner 1983, lvith corresponding 
align111ents of Moon and Mars. 

Geranium 

That first summer's work ended with a series on a small pink garden 
geranium, again always picking the buds just as the first signs of red 
were showing through the green sepals. This plant produced beautifully 
consistent results from day to day and a strongly marked fortnightly 
rhythm (Figure 119). I was not able to identify any lunar alignments with 
the dips in the curve, but the peaks in the curve were almost absolutely 
coincident with alignments of Moon with both Sun and Mars. The work 
of later years soon ruled out the Sun, but Mars continued to be relevant, 
and I think there is little doubt that this is indeed a Mars plant. 
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Further observations 

So there were the results of that first year's work on this aspect of the 
research. In no Jess than five species - two leaf buds of trees and three 
flower buds - there seemed to be consistent evidence of approximately 
fortnightly rhythms, relating themselves to astronomical configurations 
which were valid, not only for the west coast of Scotland where I was 
working, but for the whole world. The picture which was beginning to 
build itself up in my mind was of a series of mighty 'heart beats' of 
nature, expressing themselves in these subtle variations of form in the 
great plant garment which girdles our planet. However beautiful one 
might feel such an idea to be, it had to stand or fall by one thing only: 
Was it true? I began to realize that this was a very big idea indeed and 
it would need far more evidence before it could be put forward with the 
kind of confidence which I wanted. 

I therefore decided that I would spend the following winter, 1983/84, 
getting definite evidence - for, or against - in the simplest way pos
sible. I would pare the problem down to its simplest elements. Take the 
hypothesis, for the beech tree, that when the Moon is in alignment with 
Saturn, 11. is lower than when it is 90° from it; and test this week by week 
throughout the winter. This is a straightforward Yes/No question and 
could surely be answered! 

The method of strapping the buds down on to a piece of Perspex had 
proved to have serious disadvantages and I decided to work with the leaf 
buds the same way as I had with the flower buds; ten buds were taken 
each day, in as identical conditions as possible - from the same part of 
the same branch - and their mean 11. was taken as the 11. for the day. The 
following table shows the results for that first experiment in the autumn 
of 1983. On October 15, when the Moon was approximately 90° from 
Saturn, the 11. of the buds was 2.54; a week later, on October 22, when 
the Moon was aligned with Saturn, it had fallen to 2.37; and a week later 
again, it had risen to 2.65. Column A shows all the observations when 
the Moon was approximately 90° from Saturn, and column B when it 
was in alignment with it. The third column, difference, is always calcu
lated A - B, so that whenever the figure here is positive it is evidence in 
favour of the hypothesis, and whenever it is zero or negative, it is evi
dence against. If there is no truth in the hypothesis, then the figures in the 
third column should be approximately equally plus and minus. 
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Beech 1983-84 

A B (A-B) A B (A-B) 

Date Moon 90° Moon align Difference 
from Sat. with Saturn 

Date Moon 90° Moon align Difference 
from Sat. \Vith Saturn 

Oct 15 2.54 Jan 5 2.60 +0.17 
Oct 22 2.37 

+0.28 
Oct 27 2.65 

+0.24 
Nov4 2.41 

+0.27 

+0.08 
Jan 13 2.52 

+0.18 
Jan 20 2.70 

+0.03 
Jan 26 2.67 

+0.11 
Nov II 2.68 

+0.10 
Nov 18 2.58 

+0.14 
Nov25 2.72 

+0.10 
Dec2 2.62 

+0.19 
Dec 9 2.81 

+0.29 
Dec 16 2.52 

Dec 23 

Dec 29 

Feb 2 2.78 
+0.30 

Feb 9 2.48 
+0.20 

Feb 16 2.68 
+0.11 

Feb 22 2.57 
+0.16 

Mar 1 2.73 
+0.20 

Mar8 2.53 
+0.09 

Mar 13 2.62 
+0.16 

Mar20 12.46 

Mean 2.68 2.52 +0.16 

In the event we see that throughout that winter the 'difference' 
results were positive on every occasion. The odds against such a result 
coming by chance are almost impossibly against. For good measure I 
did the same thing with another beech growing some fifty yards from 
the first one. This time out of twenty 'difference' results, nineteen were 
positive, a very small negative (-0.01) coming in the second week of 
January, when we know this rhythm is at its smallest anyway; so this 
second tree had almost as strikingly a positive general result as the 
first one. 

The next table shows the results of a similar experiment conducted 
with an oak, this time the relevant configurations being between Moon 
and Mars. Here we see, out of seventeen differences, that no less than 
sixteen are positive, again a result which cannot possibly be reconciled 
with chance. 
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Oak 1983-84 

A B (A-B) A B (A-B) 

Date Moon 90° Moon align Difference Date Moon 90° Moon align Difference 
from Mars with Mars from Mars with Mars 

Oct 25 2.17 +0.12 
Jan 12 2.05 

+0.19 
Nov 1 2.05 

+0.12 
Nov 8 2.17 

+0.19 

Jan 19 2.24 
+0.27 

Jan 25 1.97 
+0.14 

Nov 15 1.98 Jan 31 2.11 
0.0 +0.08 

Nov24 2.06 Feb 9 2.11 
+0.19 +0.13 

Nov 29 1.93 Feb 16 2.30 
+0.25 +0.29 

Dec 5 2.22 
+0.17 

Feb 22 2.05 
+0.24 

Dec 14 2.05 Mar 1 2.29 
+0.20 

Dec 21 Mar8 2.09 
+0.20 

Dec 28 Mar 15 2.29 
+0.29 

Jan 6 
+0.10 

2.15 Mar21 2.00 

Mean 2.20 12.03 +0.17 

That same winter I did shorter series on the birch, in relation to Venus 
(eight differences with seven positive); the ash, in relation to the Sun 
(eight differences, all positive); and the elm, in relation to Mercury (six 
differences, five of them positive); so considering these further three 
species we have definite, if preliminary, evidence for the truth of the 
hypothesis. 

At this time a new and unexpected factor inserted itself into the 
research. Owing to the way of working that winter, I only needed to 
visit each tree once a week, and this left me time for some further 
work; so I decided to start a new daily series on a beech, taking the 
mean A of ten buds a day, all gathered from the same branch, as the 
A for the day. This method has proved so successful that it is the one 
I have followed ever since (except that in recent years the number 
of buds taken each day has been greater than ten in many cases). 
However in this case I was due for a surprise. The day of the align
ment came, and passed, and the buds gave no acknowledgment of it 
at all. Apart altogether from the other species, the beech tree of the 
previous winter had suggested such variation, and the two beeches 
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of that same winter were showing it strongly - why was this one 
failing to do so? 

Even while I was photographing and measuring the buds of this lat
est tree I had had a slightly uneasy feeling that they were in some way 
different from the others. Usually the beech buds are long and thin, and 
almost completely straight; however most of them show a very slight 
bend in their long axis. This bend is often so slight as to be almost 
invisible. I have always taken it to be a phyllotactic effect, imposed on 
an organism whose archetypal form is fundamentally straight. The light 
plays more strongly on the growing buds from above than from below, 
and they reach ever so slightly towards the light. But in the case of these 
buds the curvature was much more severe; some of them looked more 
like claws. Then most beech buds are fairly shiny in appearance and 
of a warm brown colour. These had a rather dessicated look; it was as 
though they had been dusted with cement powder. I had had the feel
ing that I was working with something that had the qualities of old age. 
Could it possibly be that I had selected an old and tired tree that had lost 
its capacity to respond to these subtle rhythms? I went to have a closer 
look. It was less than half the size of a normal mature beech and I could 
find no evidence that it was very old or in any other way different from 
the others. 

I was turning away in some bewilderment when I suddenly saw what 
of course I had really known all the time, but not had the wit to appreci
ate, that this tree was growing only a few yards from an electricity sub
station; the great transformer was humming away just the other side of a 
fence labelled DANGER - 33,000 VOLTS, and the high tension cable 
came into the sub-station only a few feet above the topmost branches of 
my tree. It was obviously growing in a powerful artificial magnetic and 
electric field; and the question naturally arose whether such conditions 
formed a shield which would cut a plant off from the cosmic connections 
in which it is otherwise enmeshed. 

As soon as this situation became clear I put the tree down on my 
list of those which I would follow week by week through the winter. 
The measurements which resulted from this are given in the table 
overleaf. 



236 THE VORTEX OF LlFE 

Beech (1983-84) growing under High Tension Cables 

A B (A-B) A B (A-B) 

Date Moon90° Moon align Difference Date Moon 90° Moon align Difference 
from Sat. with Saturn from Sat. with Saturn 

Nov25 2.46 Feb 2 2.46 

-0.06 
Deel 2.52 

+0.11 
Dec 9 2.63 

-0.04 

+0.15 
Feb 9 2.31 

+0.35 
Feb 16 2.66 

0.19 
Dec 16 2.67 Feb 22 2.85 

-0.10 
Dec 23 Mar 1 2.75 

+0.40 
Dec 29 MarS 2.35 

+0.02 
Jan 5 

Jan 13 

Jan 20 

Jan 26 

2.44 
-0.27 

2.71 

Mar 13 2.37 
-0.20 

Mar20 2.57 
-0.25 

2.46 
+0.08 

Mean 2.53 2.55 -0.02 

2.38 
+0.08 

As it turned out that winter, for this tree we had fourteen differences, 
seven of them positive and seven negative; and the mean difference was 
exceedingly close to zero. Now this is exactly the sort of result which 
we could confidently expect if the growth of this tree had no correlation 
with the astronomical events which were being considered; and we see 
that the methods being used here clearly show this when it is the case. 

This being the case I immediately set about seeing whether I could get 
further evidence to support, or deny, the idea that a strong artificial electric 
or magnetic field would prevent a plant from responding to these subtle 
rhythms. It was not easy. The electric company do not like trees growing 
under their power lines. From time to time they cut a swathe through all 
the vegetation growing under the cables, and trees of any size are particu
larly destined to destrnction. I do not know why the one I had studied had 
been left so long intact. Finally, after much searching, I found a small oak 
sapling growing under the cable out on the moorland some five miles from 
home (it has since been felled). These buds, it seemed to me, also had the 
rather dessicated and grey look of the beech buds just described. Was I 
'seeing' what I expected (or wanted?) to see? It is a subtle matter; I could 
not tell for sure. But the measurements which followed during the next 
two months could not be anything but objective. The final table proved to 
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be very similar to the one for the beech shown above. Out of eight differ
ences, three were positive and five were negative; and the mean difference 
was -0.05. The thing was not quite as evenly balanced as it was with the 
beech but still very nearly neutral; where it departed from this it was to 
lean ever so slightly towards the negative. Again I had found a tree which 
was not responding. 

It was in this way that these preliminary observations seemed to indi
cate that the presence of an artificial electric field could act as a screen 
which isolates the plants from their cosmic connections; within this screen 
they continue to do all the 'proper' things, germinating, budding, blossom
ing, seeding, but now out of time with any heavenly context. But we must 
beware of making too much of this at this stage. A great deal more work 
needs to be done on this before we can speak with any sense of assur
ance. And this work I have not been able to do, partly because, as already 
mentioned, it is not at all easy to find good examples to work on, but also 
partly for lack of time. I felt that priority must be given to establishing as 
thoroughly as possible what happens in the way of nonnal nature before 
we can hope to appreciate properly the divergencies which may arise with 
exceptional circumstances. And the first of these tasks has proved so vast, 
and so complex, as to take up all my available time. 

The fact that things are more complex than the simple rule that I had 
enunciated became clear during the summer of 1984. During that season 
the behaviour of both the stitchwort and the geranium were in a general 
way similar to the previous summer, but greatly reduced in amplitude, 
that is, in strength of variation. Figure 120 shows the behaviour of the 
geranium for that year, and is interesting to compare with Figure 119. 
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Figure 120. Mean A values for Geraniu111, su111111er 1984, ivith corresponding 
align,nents of Moon and Mars, but a possible inhibito1y effectfro111 Saturn. 
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Figure 121. Mean A values for Beech leaf buds, winter 1984-85, with 
corresponding alignrnents of Moon and Saturn. 
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The peak in the curve towards the end of June has become so slight as 
to be barely measurable, and a somewhat similar effect was to be seen 
with the stitchwort. Now it is a fact that during that time Mars and 
Saturn were in close alignment with one another, and the resnlts seemed 
to be inhibitory on the part of both of them. The figures along the top 
of Figure 120 show the number of degrees of longitude separating Mars 
and Saturn during that time, and it will be seen that variation of the kind 
of strength which was observed in the previous year, and which has been 
seen since, did not show itself until these two planets were at least 5° to 
6° apart. Further work in more recent years has gone to confirm this rela
tionship between these two planets which traditionally have such oppo
site natures. Further relationships of this kind - either of inhibition or 
enhancement - between various planets may well come to light in due 
course, but I have no specific examples of this yet which I can report. 

The phase-shift 

However, the fact that things were going to prove more complex, and 
stranger, than I had imagined was really born in upon me by the work of 
the winter of 1984-85. I decided to pursue a consistent and long-sustained 
study of the buds of a mature beech tree, taking ten buds per day through
out the winter. This aspect of the work was still new to me at that time and 
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I was not at all confident that significant results would show themselves. 
However, in the event it was clear that I need not have feared. Figure 121 
shows the resulting A-values. Apart from one small particular I could hardly 
have hoped for a more consistent corroboration of previous years' results. 
We see, in the autumn, a strong and clear fmtnightly rhythm; as mid
December approaches we see the amplitude of this rhythm getting smaller 
and smaller until by January it is hardly measurable. Not until the begin
ning of February do the buds wake up, and resume their two-weekly varia
tion, but now not quite as strongly as they had done in the early autumn. 

There was just one unexpected feature. The arrows on the graph, as with 
all those so far, show the moments of the relevant alignments, in this case 
those of Moon and Saturn. The first dip in the curve, on October 11, seemed 
to come something like a day before the actual moment of the alignment. 
This did not cause me much anxiety; worldng with mean values as I was, 
the exact timing of a dip in the curve is not easy, and, working from past 
experience I was fairly confident that with the next dip things would be 
found to be back on time again. However when it came, as a glance at the 
graph will show, it was fully two days before the astronomical alignment. 
And all through that winter this old tree obstinately insisted on reacting to 
the alignments about two days before they actually occurred. And far from 
this tendency diminishing we see, in February and March, that this tree was 
pre-empting by almost three rather than two days. 

At this time I had no means of knowing whether this was a peculiar
ity of this particular tree, or perhaps of that particular season; but a few 
weeks later, when I came to study the primroses, I had my first intimation 
that this was a phenomenon that affected a much wider range of organ
isms than the old beech I had selected for study during that winter. Figure 
122 shows the A-values for the primrose during that spring of 1985. We 
see the curve dipping below 2.5 three times, at fortnightly intervals. It is 
very similar indeed to previous years, except that the whole thing has been 
translated some two to three days to the left. The first dip comes some two
and-a-half days early, the second one about one day, and the third one fully 
three days, before the moments of the Sun/Moon alignments. 

At this point, in order to make a very strange situation as clear as pos
sible, it should perhaps be pointed out straightaway that this tendency 
for the buds to pre-empt the astronomical aspects has, in the months 
and years since 1985, proved to be a slowly but consistently increasing 
phenomenon. It is an idea which I resisted as long as possible. The preci
sion and punctuality with which the buds had responded to the celestial 
configurations in 1982 and 1983 was something which had caused me 
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Figure 122. Mean A values for Primrose buds, spring 1985, with 
corresponding alignments of Sun and Moon. 

much satisfaction and I would have liked to keep it this way. But by the 
beginning of 1985 I could no longer close my eyes to the fact that things 
were proving more complex than this. And in the following years I have 
seen the amount of pre-emption grow gradually larger and larger. It was 
as though this primary fortnightly rhythm, which one can observe from 
month to month, is overlaid by another of much longer period. By early 
1985 this phase-shift amounted to about three days; as this gradually 
increases, and if it continues this way long enough, a time will come 
when the dips in the curves are coming fourteen days early, then they 
will be on time again, and the overlying rhythm will have completed just 
one (or maybe possibly, a half) cycle. And it became a matter of impor
tance to me to find just how long such a cycle would take. 

At this point I felt it needful to develop a tenninology to deal with this 
phenomenon. When I speak of the buds, in any particular season, having a 
phase-shift of-3, I mean that the turning points in the A-curves (usually dips, 
but sometimes peaks) are coming three days before the relevant alignment. 
But with a phase-shift of+ 3 they would be coming three days after the align
ment. Clearly then, as it gradually increases the phase-shift will pass from -6 
to -7. But seven days early will be approximately the same thing as seven 
days late; we can call it ± 7. And thereafter it would go on to +6, + 5 and so 
on until it becomes zero again, and the secondary cycle is completed. 

In the realm of the stars, rhythms and cycles are always of this general 
nature. Never does one find a rhythm working on its own; always it is 
overlaid by other rhythms, and they in their turn by others again. And 
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Figure 123. Mean;\ values for Beech leaf buds, autumn 1985, with phase-shift 
fro,n corresponding align,nents of Moon and Saturn. 

if we find celestial correlations working in the realm of the plants we 
should expect to find patterns of this general nature working there also. 
Nevertheless to find a variable phase-shift of just such a pattern is, as 
far as I know, something without precedent. Such a finding should not 
be put forward without careful consideration, and powerful evidence to 
support it. It is not possible within the limits of a book like this, to show 
all the evidence which has come to hand in recent years, but I think it 
important to print enough typical results that the reader can judge what 
sort of weight this evidence has, and just where it is leading. 

Up to this point the arrows on the graphs have marked the actual 
moments of the alignments, but from now on an arrow conjoined with a 
number will mark the moment of the alignment altered by the correspond
ing phase-shift: that is, an lliTOW marked -4 will show the moment four 
days before the alignment, and one marked +5 will show the moment nine 
days ahead of the alignment, or five days after the preceding one. 

With this in mind, let ns move from the spring of 1985 to the autumn 
of the same year. Figure 123 shows the graph given by the buds of a 
beech tree at that time. We see that this is characteristic of those given 
by the beech in previous years, except that all the dips, with the excep
tion of that of October 24, come between four and five days earlier than 
their alignments, the exceptional dip coming nearer six days early. It is 
safe to say that the beech was running at a phase-shift of -4 1/ 2 to -5 days 
at that time. Simultaneously with this, observations on an oak showed a 
clear phase-shift of -5 days. 
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At this point two questions presented themselves. In the course of the 
three years from autumn 1982 to 1985 the size of the phase-shift had 
grown from zero to about 43/ 4 days. Provided that it was to continue in 
this way, it was easy to calculate that the complete phase-shift of four
teen days, marking the end of a whole cycle of the secondary rhythm, 
would be achieved in almost exactly nine years. This is very close to the 
time that the line of the lunar nodes takes to make a half-circle of the 
zodiac and to lie once again upon the position it first had; and this led me 
at that time to speculate that this strange phenomenon of the increasing 
phase-shift might be in some way connected with the changing relation
ships of the lunar nodes. I was aware of course that I was here extrapo
lating on very insufficient evidence, and when later observations forced 
me to abandon this idea it came as no great surprise. We shall see later at 
least one of the underlying factors which caused this misapprehension at 
that time, and it is a matter of great significance I believe for our future 
understanding of this work. 

The other question was why, if this tendency had been going on for 
three years, it had taken me rather over two years to notice it. In this 
connection it is interesting to look back to Figures 117 and 120, the 
primroses and geraniums of 1984, and even to Figures 116 and 118, 
the primroses and stitchworts of 1983, to see, with hindsight, that this 
tendency was already showing itself, although so slightly that I had not 
been alert enough to spot it. The reason why the indications were so 
slight, even as late as the summer of 1984, is again something that we 
shall see later. 

But first let us go forward from the autumn of 1985 to the late spring 
of 1986. Figure 124 shows the results for the stitchwort in May and June. 
We see a characteristic curve, with three dips at phase-shifts of about 
-53/ 4, -5 1/ 2 and-61/ 4, a mean shift of about-6 days. The primrose, in the 
preceding month, had had a phase-shift of about -5 1

/ 2 days. 
And some four or five months later, in October of 1986 we find the 

oak (Figure 125) running just about seven days early. It is interesting 
to notice in this graph of the oak that the fortnightly rhythm in which 
we are chiefly interested seems to be superimposed on another slower 
change, probably of a rhythmic character, but with a much longer period. 
Through all that autumn the general level of A was undergoing a slow but 
consistent rise. A phenomenon of this sort is not always seen, but it is 
by no means unusual; sometimes the general level is found to be slowly 
rising, sometimes falling, and sometimes even falling to a minimum and 
starting to rise again. Much more research is needed here. 
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Figure 124. Mean A values for Stitchwort, summer 1986, with phase-shift from 
corresponding align111ents of Moon and Saturn. 
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Figure 125. Mean).. values for Oak leaf buds, autumn 1986, with phase-shift 
fro111 corresponding align111ents of Moon and Mars. 

Meanwhile we note that a phase-shift of -7 is the same thing as one 
of+ 7. At the same time a Beech tree was also running at a phase-shift of 
± 7. One half of the secondary cycle was completed, and if things were 
to continue like this one wonld expect the phase-shift to move into posi
tive numbers. And this is what actually happened, the numbers denoting 
the phase-shift gradually and consistently decreasing until in due course 
zero was again reached. 
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Figure 126. Mean A values for Primrose buds, spring 1987, with corresponding 
phase-shift. 
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Figure 127. Mean A values for Oak leaf buds, autumn 1987, with corresponding 
phase-shift. 

In a book of this sort it would seem superfluous to go on printing 
graphs ad nauseam; and only a few typical ones will be shown, of many 
which have been recorded. 

Let us go on to the primrose in the spring of 1987 (Figure 126). Here 
we see a characteristic graph for the primrose. The heavy curve, showing 
the main trend, falls below the level of 2.5 just three times, at fortnightly 
intervals, and on each occasion these coincide exactly with a phase-shift 
of +5 days. 
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Figure 128. Mean A values for Geraniutn buds, sununer 1988, ivith 
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Figure 129. Mean A values for Oak leaf buds, spring 1989, with corresponding 
phase-shift. 

Six months later, an oak (Figure 127) in Autumn 1987, was running 
at a phase-shift of +4 days, or maybe, in the case of the first dip, very 
slightly under. 

The following summer, in June and July 1988, (Figure 128) the gera
niums gave a most interesting graph, with a series of peaks, the first and 
third of which came at a phase-shift of+ I day, the third at +3 and the 
fourth probably at about +2 1/ 2 to +3 days - a mean phase-shift of about 
+2 days. 
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Figure 129 shows the graph for an oak tree in the following spring, 
February 1989. The phase-shift here has reduced to just +1 day. And two 
months later, in April and May, the primroses registered a phase-shift of 
zero. During all that summer of 1989, and on into the autumn, of six dif
ferent species studied, five had a phase-shift of zero, and one of +1

/ 2 day. 
We had come, in the fullness of time, 'full circle.' Once again, the turn
ing points in the curves were coming exactly 'on time' with the celestial 
alignments, as they had when this aspect of the work started in 1982. The 
period of the oveniding rhythm was not 93/ 4 years as I had at one time sup
posed, but just seven years. It was now clear that this over-riding rhythm 
has nothing to do with the lunar nodes, but must have quite other connec
tions, the possibilities of which will be discussed in the next chapter. 

Meanwhile we should notice a subtle change in quality which the graphs 
had shown during the course of the years. If we look back to Figure 114, 
for the oak in 1982, we see that the dips in the curve are quite short, each 
lasting not much more than a couple of days. Thereafter, as the phase-shift 
increased, the graphs showed a change which came on so gradually as to 
be almost unnoticed at the time. The dips became progressively broader 
until, in Figures 124 and 125, when the phase-shift had become numeri
cally about a maximum, the curves became almost similar to sine waves. 
But if we look on to Figure 129, when the phase-shift is only + 1 day, we 
see the dips so narrow that they only show for one day at a time. This 
means that they are almost obscured in the heavy trend-curve showing 
the three-day means, and one has to look to the lighter curve showing the 
daily values to appreciate that they are there. And this quality was seen in 
nearly all the graphs for that summer and autumn of 1989. Without further 
investigation it is not possible to be sure that it is always the case, but there 
does seem to be a tendency that the smaller the numerical value of the 
phase-shift, the shorter and sharper are the dips in the curve. 

Our next task is to examine this varying value of the phase-shift in 
greater detail; and for tl1is purpose we make a Phase-Shift Chart (Figure 
130). Along the vertical axis we mark the phase-shift, going all the way 
from +14 (fourteen days late) through zero to -14 (fourteen days early); 
and we have seen that these three phase-shifts are in fact equivalent; 
thus the 'two' curves which appear on our chmt are in fact one and the 
same, appearing in two of its repetitions. Along the horizontal axis we 
have 'time' stmting with 1982 when this aspect of the work began. Each 
point on the chart marks the mean of a whole species, for one season. For 
instance the leftmost point represents the oak for the autumn of 1982; the 
third from the left shows the primroses for the spring of 1983; the fourth 
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Figure I 30. Overall phase-shift chart, 1982-92. 

from the left, the stitchwort for the late spring of that year; and so on. Thus 
each point represents the results of measuring some 500 to 2000 buds. 

That early extrapolation to find the periodicity of the overriding 
rhythm which led to an answer of between nine and ten years was based 
on the assumption that the rate of change of the phase-shift was constant 
from month to month and year to year; that is, that the points on the 
phase-shift chart would lie on a straight line. When later I came actually 
to plot these points it soon became apparent that their form is anything 
but straight. And the form of the curve explains fully why its periodicity 
had been so difficult to predict, and also why during those months of 
1983 and the early part of 1984 the phenomenon had remained unno
ticed. But even up to the end of 1989 it was not possible to guess what 
the curve would do next. After levelling off on the zero line during the 
summer and autumn of 1989 would the curve plunge downward again, 
as it had in 1983? Or would it decide to turn upwards again? 

I had no means of predicting, and for the first eight months of 1990 
the buds continued to keep me guessing. However with the coming 
of autumn the trend for the future really seemed to be showing itself. 
During that season, of three beech trees studied, two seemed to be show
ing a very slight and rather uncertain tendency to respond maybe 1/ 4 to 
1
/ 2 a day early, and three oaks were united in showing a phase-shift of 

fully minus a whole day. By the spring of 1991 the trend seemed to be 
fully established. A long period of measurements on a beech tree then 
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showed a clear mean phase-shift of about -1 1/ 2, and an oak at the same 
time showed one of -2. And so it has continued up to the moment of 
publication of this edition. 

Of course no-one can predict what will happen next. I can only record 
the phenomenon as I have measured it, with the greatest care. The phase
shift chart shows a consistency of rhythm and symmetry which leaves 
me rather bewildered but at the same time somewhat reassured. I know 
of no other phenomenon in the world of nature quite like it. Maybe it 
is something which can only show itself just in this very subtle field of 
form which we are studying here. But if we cannot understand it, at least 
we must take note of it. 

We see that the phase-shift was zero about January 1983 and then 
again about January 1990 so we have to say that the periodicity of 
this variation is just about seven years. But this is almost certainly an 
oversimplification of a much more complex and subtle reality. Seldom 
does nature present us with any rhythm which works with clockwork 
regularity. Always there are other overlying rhythms and also some
times incidental irregularities as well. Particularly is this the case in the 
astronomical realm. For instance we read below (see page 252) that the 
periodicity for the alignments of Moon and Saturn is 13.7 days and that 
this figure has a constant value. Considered as a mean this is true, but the 
actual figure varies month by month by several hours, above and below 
this value. A careful examination of the phase-shift chart reveals that 
something of the kind seems to be happening here. There is slight but 
distinct evidence to show that the rate of change of the phase-shift has 
been quickening somewhat in the most recent years. The curve is more 
sharply curved in 1990/91 than it was in 1983/84. In autumn 1984 the 
phase-shift was -2 to -2 1/ 2 days, but in autumn 1991 it was -3 to -3 1/ 2 

days. An extrapolation on these figures would give a value for the perio
dicity of about 61/ 2 years. On the other hand the curve between January 
1988 and January 1992 appears to be exactly symmetrical about the 
January 1990 line. Is this an indication that the quickening of the rate of 
change has now reached its maximum, and that it will begin to revert to a 
slower rate of change henceforth? This is a new phenomenon and we are 
filled with questions. Only time, and much more research, will tell. 

Having surveyed the strange business of this varying phase-shift on 
the phase-shift chart, there are a number of further questions which 
may be asked. The first of these is: How widely spread is this phe
nomenon in the field of nature? Obviously this cannot be properly 
answered without a great deal of further work being done. The work 
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is exceedingly time-consuming, and I have not had time to do more 
than start upon it. In my description in this chapter I have deliberately 
confined myself to five species, three of flower buds and two of tree 
buds, in order that comparisons from year to year can be the more 
easily made. But I have many graphs for the leaf-buds of birch (vary
ing with alignments of Moon and Venus), the sycamore (Moon and 
Jupiter) and the flower heads of knapweed (Moon and Jupiter, the 
alignment being marked with a peak in the curve, as with the gera
nium). In each of these cases the current phase-shift has been the same 
as with the various species which feature on the phase-shift chart of 
Figure 130. Further than this nothing can be said except on the basis 
of more research but on the available evidence it would seem probable 
that this is a widely-spread phenomenon. In this connection we should 
always consider the possibility that some species might be found to be 
sensitive to the alignments of more than one planet, and in such a case 
it would of course be much more difficult to establish. 

The knapweed proved an interesting case. It grows in wild profu
sion all over our lower hillsides and meadows here in the north-west of 
Scotland. Being one of the Compositae this species does not produce a 
bud in the normal sense, but rather a bud-head of little flowerlets con
tained in a small brown case. In the course of their long budding season 
(over two months) these cases undergo considerable changes of shape, 
but remain the whole time as almost perfect path curve forms. They are 
covered with little hairs which are set in perfect path curve spirals, but 
which pose a problem for the researcher, making it difficult to get a clear 
measurable image. However by soaking the buds for a short time before 
measuring, the hairs are laid and a good clear outline can be obtained. 

When the buds first appear they have very low A-values but in the 
course of the next few weeks these values steadily increase. Just before 
the casing opens, to reveal the lovely inflorescence of little purple 
flowerlets within, a small white spot appears at its tip, and the first 
appearance of this spot is a firmly identifiable moment of development 
at which the buds may be picked day by day. However these spots do 
not begin to appear until the budding season is halfway finished and if 
one confines oneself to them one loses half of one's data. The policy is 
therefore followed of starting work when the first buds appear, choosing 
each day twenty of the most fully developed buds that can be found, and 
continuing like this until the time when the first white spots are begin
ning to show. Following such a policy one would expect to see a steadily 
climbing curve on the A-chart, until near the end of the budding season. 
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Figure 131. Mean A values for Knapweed buds, summer 1991, with phase-shift 
froni corresponding align,nents of Moon and Jupiter. 

What in fact eventuates is a curve increasing in a series of fourteen-day 
leaps. The first year I discovered this, the maximum points of these leaps 
coincided fairly closely with alignments of Sun and Moon (new moon, 
full moon, etc) but also with alignments of Moon and Jupiter. 

Experience in subsequent years went to show that the soli-lunar rela
tionships are irrelevant to this phenomenon, but the peaks in the curve 
continued to coincide with the Moon-Jupiter alignments very closely, 
always consonant with the current phase-shift as shown by the other spe
cies being studied, and as can be read off the phase-shift chart of Figure 
130. Figure 131 shows the results from the latest series of measurements 
to be taken, completed in August 1991. The arrows show the moments 
of Moon-Jupiter alignments, altered by the indicated amount of phase
shift. This graph is typical of the results found in each of the five seasons 
in which this species has been studied. 

The knapweed proves to be of special interest because some of these 
plants are to be found growing underneath the high tension cables. In my 
immediate neighbourhood the number of buds in such a situation is not 
very great, and it is often not easy to find a sufficient number of buds at 
the requisite stage of development, each day. However on two occasions I 
have managed to follow such buds through a large part of the budding sea
son. Figure 132 shows the result of this in 1985. The continuous curve is 
derived from buds growing on open hillsides, and the dotted curve shows 
those which were gathered from under the cables. Both these curves are 
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Figure 132. Mean:\. values far Knapweed buds, summer 1985, with 
corre~ponding phase-shift. The dotted curve shoivs buds gathered under 
high-tension cables. 
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for three-day means. On the only other occasion on which I have so far 
carried such an exercise through, the results were similar to this, although 
rather less striking. Much more research is needed here. 

Another question often arises when I am describing this work to some
one, who then says: 'Well, weren't you lucky to have started this phase of 
the work just at the time when the phase-shift was zero. Suppose you had 
started it at some other time ... .' Well, yes, indeed. Suppose I had. For 
instance let us consider Figure 123 once again. If I had started the work 
in November 1985 I would have found that the dip in the curve for the 
beech on November 9 coincided with an alignment of Moon and Mars, 
and furthermore the dip on November 27 also fell on the same day as 
the next alignment of Moon and Mars. If I had been quicker at drawing 
conclusions than I am, I could then have gone around saying that I had 
evidence to show that the beech buds vary in the rhythms of the Moon/ 
Mars alignments. However, if I had continued on such lines I would 
soon have found the Moon/Mars alignments rapidly, and in the course of 
time erratically, growing out of step with the behaviour of the buds, very 
much more rapidly than the exceedingly slow, and steady, movement of 
the phase-shift. And if I examine several years of observations, armed 
with an ephemeris I can find dips in the beech curves to coincide with 
alignments of Moon with almost any planet which I wish. What right 
have I then to say that the Saturn alignments are the significant ones, 
rather than any of the others? 
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The answer to this is, that when synchronicity lets us down, as it 
clearly does as soon as the phase-shift is acknowledged, periodicity 
comes to our aid. The period between one alignment of the Moon with 
any particular planet, and the next such alignment, varies somewhat 
from month to month, but the mean period is quite constant, is different 
for each planet, and can be easily and accurately calculated. The follow
ing table shows these mean periods for each planet. The lefthand column 
of figures shows the actual period, and the righthand column shows 
how much this period would be if one takes into account the seven-year 
period of the changing phase-shift. 

Sun Mercury Venus 14.77 days 14.68 days 

Mars 14.23 days 14.15 days 
Jupiter 13.75 days 13.67 days 
Saturn 13.70 days 13.61 days 

The beech is the species for which I have by far the longest and best 
sets of observations. Going through my figures I find that the mean 
period between dips in the curve comes out at 13.60 days. This is from 
many thousands of observations and must be very close indeed to the 
correct figure. We see in fact that it matches the Saturn period almost 
exactly and it could not possibly apply to any of the others. 

A similarly calculated figure for the oak came to 14.29 days. This 
comes very close indeed to the figure for Mars, and again could not pos
sibly apply to any of the other planets. 

The periods between turning points in the curves for stitchwort and 
geranium, for which I have much fewer observations, come to 13.45 
and 14.38 days respectively. These do not tally with Saturn and Mars 
with quite the same precision as the two preceding examples, but they 
are very close, and again could not possibly apply to any of the other 
planets. 

Similar remarks apply to the knapweed and Jupiter with a period 
between turning points of 13.87 days. 

When we come to the cases of primrose and birch the situation is 
rather more difficult. With periods between dips of 14.63 and 14.69 days 
respectively they equate with quite remarkable precision with the periods 
for Sun, Mercury and Venus, but considerations of periodicity alone do 
not make it possible to distinguish between these three heavenly bodies. 
Sun and Mercury stay so close together in the sky that it will always be 
difficult to differentiate between them. Venus on the other hand moves 
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quite widely apart from the Sun, from time to time, and there is fairly 
strong evidence, on two or three occasions, that the Venus alignments do 
not always fit with the primrose dips, but that they always do with those 
of the Birch. This, combined with Rudolf Steiner's intuition on the mat
ter, gives me fair confidence that the birch and Venus are truly linked. 
With regard to the primrose I can only say that it is my belief that this 
plant varies with the alignments of Moon and Sun, but that as far as the 
observations go at the moment it could equally be Moon and Mercury. 

These considerations give us good evidence that the correlations 
between planets and plants which were occurring on time in 1982 and 
again in 1989 are in fact the correct ones. 

It is important that work such as is being described here should be 
treated with all sobriety and caution, and in this respect another question 
needs to be confronted. Apart from those of 1982, all the graphs shown 
in this chapter are depicting mean values. Now mean values are never 
exact; they always contain an element of uncertainty owing to the ran
dom picking of the buds; on any particular day an extra number of high, 
or low, values may have coincided. It is important to be sure that the size 
of the dips is larger than this degree of uncertainty; if it is not so one can 
hardly consider the dip as being something of significance. By analysing 
our measurements we can find what is called their standard deviation, 
and from this we can calculate, by statistical theory, the probability that 
the mean values will stay within certain limits. For instance we can 
calculate the limits within which our mean values can be expected to lie 
with a probability of 95%, and any mean value which reaches this limit 
is said, with the most sober statistical judgment, to be probably signifi
cant in its difference from the Mean of all the means. Further we can 
calculate the limits between which all values may be expected to lie with 
a probability of 99 1

/ 2% and any result reaching this value is said to have a 
difference from the Mean which is definitely significant. In practice any 
value which comes between these two limits - the 95% and the 991/ 2% 
- must be considered as being really significant in its difference from 
the mean. 

In this connection Figure 133 is interesting to study. It is one of a 
number of similar diagrams to be found in my notebooks. It represents 
the results of an extended series of observations on a Beech tree dur
ing the winter of 1989/90. The arrows show the actual moments of the 
Moon/Saturn alignments, the general phase-shift at that time being as 
near zero as it was possible to ascertain. By taking nine-day means one 
can smooth almost all the short-term variation from the curve, and the 
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Figure 133. Mean A values for Beech leaf buds, winter 1989-90, with 
corresponding alignments of Moon and Saturn, apparently influenced by 
the conjunction of Mars with Saturn in Februa1y/March. 

central, continuous curve, showing the general trend of the variation 
during the whole of the winter, was obtained in this way. We see a slow 
and steady rise in A until the early days of February, followed by an 
increasingly steep drop towards the end of March. This latter is probably 
due to the bud starting very slightly to swell, prior to its opening a few 
weeks later. The dotted curves above and below it show the two stand
ard-deviation confidence limits. Any variation beyond these limits has 
a probability of significance of more than 95%. Between the middle of 
October and the middle of February, during the time of actual observa
tions, we see that there were eight alignments of Moon and Saturn, and 
all of these are acknowledged by dips in the A-curve; and in no less than 
seven of them the dips come well below the 95% limit; and they do so 
on no other occasion. 

However, on February 28, Mars moved into conjunction with 
Saturn, and since on a number of occasions in the past these two plan
ets have seemed to inhibit one another when they are in alignment, it 
was interesting to see, once again, what would happen. The numbers 
on the graph during the last half of February and the first week of 
March, show the numbers of degrees of longitude separating Mars and 
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Saturn. We see that the fortnightly dips in the curve, coinciding with 
alignments of Moon and Saturn, which had been regularly present 
during all the preceding months, cease from the middle of February 
onwards. To my disappointment they were not re-instated even by the 
end of March, when observations had to be discontinued. Possibly this 
was due to the fact that we had come so near to the end of the season. 
Apart from this, this general result was one which might have been 
expected from past experience. 

What was not expected was that, once the influence of Saturn had 
been annulled, there appeared to be a smaller, residual variation, involv
ing two peaks, on March 5 and 18. If this were all the evidence which I 
had to go upon, I would have been inclined to treat this simply as 'noise' 
in the graph. However, it happened that I was at the time doing a series 
on another beech tree growing on the other side of the river, and I found 
that this was behaving in almost exactly the same way. The behaviour of 
these two trees was so similar that I was forced to consider the possibil
ity that this residual variation was a significant reality. These little peaks 
in the curve coincide very closely with alignments of Moon and Jupiter. 
Can it be that while the beech responds principally to Saturn, it is also, in 
a much slighter way, influenced by Jupiter? Much more evidence would 
be needed before such a statement could be made, and in the normal way 
it would be very difficult to get. I simply record the suggestion here, in 
the hope that one day someone may be able to make observations which 
either support, or reject, it. 

The main purpose of Figure 133 was to examine the degree of signifi
cance which we can attribute to the dips in these A-curves, and to show 
that it is nearly always greater than 95% probability, and usually nearer 
to 98% or 99%. Almost all the similar graphs which I have in my notes 
are of similar nature in this respect. 

Just one year later, in the spring of 1991 there was an interesting 
sequel to this. A further beech tree studied then, yielded the graph which 
is shown in Figure 134. We have here a tree whose behaviour, for the 
first part of the period under study, was almost identical with that of its 
fellow a year earlier; however, on March 16, Jupiter moved into align
ment with Saturn; already in the first week of March the two planets 
had come close to opposition, and again, as in the previous year, we see 
significant variation ceasing from this moment on. It would seem that 
we have to posit a rule that rhythmic variation of the sort which is being 
described here is often strongly inhibited when the ruling planet of the 
species is encumbered by alignments with other planetary bodies. 



256 THE VORTEX OF LIFE 

-2 -.2 -2 -2 -2 
• ' ' ' ' ' ' Beech 1991 _"_I -,-- -f \ J --

li \ --r-.. ~ - . .../ -- --
3-0 

2·9 

; v I ) \ \/ ·-I 
' - - - ...._ A 

-\- '"\" -- v -. : ~ -. ---- . 
. -

\ --.. 
2·8 , F• b 1' 2' M• r 1' 

Figure 134. Mean A values for Beech leaf buds, spring 1991, with 
corresponding alignments of Moon and Saturn, apparently itifluenced by 
the conjunction of Jupiter with Saturn during March. 

Just as this edition was due to go to press an important new phase of 
the research was opened when I was joined in the work by my friend 
Graham Calderwood of Aberdeen. For the first time it became possible 
to observe two trees simultaneously, growing in different parts of the 
country, the work being done by two completely independent observers. 
We had very short time, from the first appearance of the buds near the 
end of August, until the middle of October, so only the merest hint of a 
beginning can be reported here. 

We decided to start with two beech trees. They would be growing in 
quite different environments and almost opposite climatic conditions, 
the one in Strontian in the moist and mild air of the west coast, and the 
other in the cold and bracing climate of Aberdeen. They would be sepa
rated by some 160 miles, and observed by quite independent observers. 

Before we can assess the results of this particular piece of work we 
must be aware of the special conditions imposed by the limitations of 
time. The beech buds are not properly fully developed until the first or 
second weeks of October. If one starts work before that time, the expe
rience of many years' work shows that one must expect a quite typical 
pattern to show itself in one's results. Starting near the beginning of 
September one finds A to be abnormally high, and during the next six 
weeks one measures a steady fall, the fall however being punctuated by 
the fortnightly dips in the curve which correspond to the Moon/Saturn 
alignments, always with due allowance being made for the current 
phase-shift, of course. Each dip in the curve is strongly marked but 
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Figure 135. A typical mean ).. curve for Beech Leaf buds, autumn 1990. 

followed by a comparatively small rise, followed by a very strong dip 
again. Figure 135 is a typical curve from previous years; of the three dips 
shown, two have zero phase-shift and the other fully -1; we could say a 
mean phase-shift for Autumn 1990 of - 1/ 3• 

Figure 136 shows the observations made in 1991 in Strontian, and 
pictures an almost identical result to 1990, except that the phase-shift has 
in the meantime advanced to about -3. The last dip, on October 13 was 
obviously present, but illness prevented me from recording it in detail. 
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Figure 136. Mean A values for Beech leaf buds observed in Strontian, autu,nn 
1991. 
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Figure 137. Mean A values for Beech leaf buds observed in Aberdeen during 
the sanie period as in Figure 136. 

When we look to the Aberdeen result (Figure 137), seeing that so 
many variables are present, we could not expect that the curves would 
be exactly the same. Nevertheless the resemblances are substantial and 
reassuring. The same general downward trend is seen, punctuated by 
the same dips on the same days. One could hardly have expected better 
corroboration. What was not expected is the much greater liveliness of 
the Aberdeen tree, its greater range of variation. Whether this will prove 
to be characteristic of the two places must remain a question for further 
research to answer. But what is of importance is that we have here the 
first piece of objective evidence that the phenomena described in this 
chapter are indeed not confined just to the west coast of Scotland, but 
are to be observed by other people, in other places. 



16. From Space to Time 

This concluding chapter has a somewhat different purpose from those 
that preceded it, and it must be rather differently written. Up to this point 
it has been my aim to remain as far as possible with the normal processes 
of thinking and observation which are available to the ordinary man 
or woman of our day, and to see just how far these can carry us in the 
direction of such investigations. Anyone reading thus far must be aware 
that that far-seeing philosopher of the early years of our century, Rudolf 
Steiner, has provided inspiration for my efforts; yet his name appears 
but rarely in this book, and his words hardly at all. The things which I 
have written here do not stand under the authority of Rudolf Steiner. The 
only authority I can claim, or would wish to claim, is that which derives 
from the nature of thinking and the characteristics of ordinary sense 
observation. Study the geometry, I say; go out into the field; measure 
the forms of heart, and egg, and cone; gather the buds, and see whether 
they are behaving as I have described. This is the only authority which 
I can give. 

When I started on this line of research, over forty years ago, I had 
no idea of where it would lead. And it has led into realms of experience 
which I could not have guessed. And some of them, to the ordinary 
thinking of our day, must seem strange indeed. What I have written so far 
is, for the most part, simply a factual description of what I have found. 
If, by following the indications given by a man like Rudolf Steiner, who 
has shown himself in many respects to have insights which go beyond 
the normal consciousness of his day, we can see these facts in a new and 
comprehensive perspective, the attempt is surely worth making. 

We consider his vision of the living organism, seen as a whole thing 
- a single, unitary entity, gathering, subsisting on, and dominating, its 
parts, imposing on them a web of relationships which spring from its 
own essential nature. It is perhaps a matter of temperament whether one 
prefers to see the organism simply as the sum total of its separate parts, 
or as a thing-in-itself, which is the real cause and reason for those parts 
being there at all. Both views can be defended and may be of use, but 
surely it is with the second one that we come near to the heart of reality. 
Rudolf Steiner was speaking against reductionism many years before the 
word itself had been coined. 

259 



260 THE VORTEX OF LIFE 

An extraordinarily intimate interdependence between its various parts 
is one of the distinguishing marks of the living organism. No single part 
can change, or be changed, without all the others being affected, and 
responding. Another typical mark of the living organism is that it stamps 
something of the quality of its being, considered as a whole entity, in 
one way or another, on each of its component parts. Each part becomes, 
in its own way, a little image of the whole thing whose life it helps to 
support. 

A form which is such that each of its parts resembles the whole 
thing is sometimes said to be self-similar, and this quality of self
similarity has been discovered in remarkable ways by the recent com
puter-aided work which has come to be known as Chaos Research. 
Here mathematicians, by repeatedly iterating quite simple processes, 
in ways which are somewhat similar to those by which we produce 
our path curves, have discovered forms of quite amazing complexity 
and interest. Not only does each part mirror the form of the whole, 
but each part of each part, and again each part of each smaller part. 
The modern computer is able to carry this process to great lengths; 
there seem to be no limits, theoretically, to where one could go; it is 
possible to say that such forms are almost literally of infinite com
plexity; and yet they are, in a way, of great simplicity, in that the one 
motif informs all their parts. 

Such forms are said to be fractal in quality. Chaos researchers have 
come to see this fractal quality, in a more general way in the forms 
of much that surrounds us, of mountains and their component boul
ders, of coastlines and clouds and trees. Moreover they have detected 
fractal qualities in many processes occurring in time, mysteriously in 
recurring weather patterns, in the fertility of crops year by year, and 
so in the changes of prices on the corn and other world markets. It 
is as though organisms exist in the realm of time whereby variations 
during short periods are found remarkably to mirror those of longer 
duration. 

Artists have long known how to impart a sense of organic unity to 
their work by ensuring that each separate part of a picture, each in its 
own way, mirrors forth the essential theme which pervades the whole; 
and the beholder, perhaps unconscious of the device being used, 
nevertheless greets this feeling of wholeness with satisfaction and 
joy. Great works of music, especially in their more fugal moments, 
where some simple theme appears and re-appears again and again, 
in one variation after another, fall into the same class. In a burst of 
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the two processes go hand in hand, every big outbreathing being pre
ceded by a little moment of inbreathing. 

At this point the reader might object that while it is interesting 
to find such rhythms at work so widely in the plant kingdom, if one 
reads Chapter 7 critically one will realize that the actual changes 
of shape recorded there are very slight in magnitude. Can we really 
believe that such slight changes are of significance? In this connec
tion we should bear in mind the work which is described in Chapter 
14. This work is some of the hardest to verify with certainty of all 
that is contained in this book. The results of any single season's 
work could not be considered as more than suggestive. But over no 
less than six years' work the results have been so consistent that I 
think they must be given credence. And, taken over all these years, 
they show that there really is a correlation between subtle and slight 
differences in form and the actual way in which the buds grow, in 
which the life forces manifest in them. It would seem that just this 
form which has come down to us from such ancient days is especially 
sensitive regarding the minute proportions of its shape. And there 
is more than a little evidence that just the pure FORM of the bud, 
considered as a thing in itself, can act in some way as a medium, a 
bearer, of life force. And when we consider that all the winter, and 
in the spring, we are surrounded by countless millions of such little 
buds, all acting in concert, the work described in Chapter 15 begins 
to assume great importance in our minds. 

The phenomena which began to reveal themselves as soon as I 
persisted with a consistent daily record of the AS of the buds can be 
described I think, without exaggeration, as revolutionary. We begin to 
see this world in which we live as a vast organism, in which the roles 
of planet and plant are intimately interwoven, one with the other. No 
star can move, but a plant responds. The glory of the heavens is not 
only spread out above our heads; its rhythms come to meet us from the 
ground under our feet. 

These little approximately fourteen-day rhythms what I once 
referred to as the Dance of the Buds - like a great heartbeat of 
nature, have they really been going on, all these ages, all around 
us, un-noticed? I was slow to allow myself to be convinced. I said: 
'This once, this twice, these three times, these buds have responded 
to the astronomical alignment; it may have been coincidence; what 
of tomorrow? next month? next year?' The next phases of the work 
started as a determined effort to test the truth of the matter, with 



266 THE VORTEX OF LIFE 

all objectivity possible, over a long period. But its character soon 
changed. There were surprises in store. Things did not always go the 
way I had expected. This group of phenomena proved more complex 
and wide-ranging than I could have foreseen. The search for a proof 
of the reality of one phenomenon changed into a quest for a clear 
overview of a whole field of related phenomena. 

The first thing, as I first saw it, concerned the leaf buds of our great 
deciduous trees. All the long winter they lie on their branch, awaiting 
the great day when, in the spring, they will open to the light and air of 
the world around them. This opening will be denoted in the geometry 
when their A plunges away down into the negative numbers. But all that 
long winter they are not idle. Roughly once in every fourteen days their 
A makes a little fall. All the buds of any particular species make a little 
gesture, all in concert. It is rather like an opening of the hands, a ges
ture; of what? Of asking? Of receiving? Of gratitude? Who can say? But 
almost immediately it becomes clear that it is too early; the time is not 
yet ... not yet. A returns to its normal value; the bud closes tight again, 
for another fourteen days of waiting. 

This 'breathing' rhythm of the deciduous trees is, I believe, the basic, 
the archetypal one in this realm, and having watched and measured it 
for nearly nine years now, continuing unfailingly, I can have no doubt 
of its reality. 

But it soon became apparent that these things go far beyond just this 
rhythm of the deciduous trees. There is convincing evidence that some 
species of flower buds, opening in spring and summer, follow somewhat 
analogous rhythms. The work is much more difficult here. One can
not follow any species for longer than the period of its budding season 
- some four to six weeks in a favourable case and any results which 
one may find cannot be relied upon unless they have been confirmed 
in several different years. Many species are not suitable for this kind 
of observation because they do not present us with a clearly identifi
able moment of development in the course of their opening. Here the 
great diversity of the plant kingdom shows itself; sometimes a species 
will show, not a decrease, but an increase in A, to coincide with some 
particular alignment, year after year. Why some species should work the 
one way, and others the opposite way, I do not know. How widely this 
phenomenon is spread through the plant kingdom I do not know. There 
is a whole world of discovery waiting to be made here. 

But meanwhile we should return to the main phenomenon, the breath
ing rhythm of the deciduous trees, and try to see it in relation to the 
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breathing rhythm of the year. During the autumn this great plant garment 
of the earth is busily withdrawing its essence within itself, until at last 
its virtue is totally concentrated into the outwardly insignificant forms of 
the seed; also in the case of the great trees, into the forms of the tightly 
closed leafbuds. By midwinter the earth is filled with these little 'fire
points' of the seeds, and the great trees stand gaunt, and bare of their 
foliage. Rudolf Steiner points out that then the earth is fully inbreathed, 
fully awake, and waiting. 

Following this the opposite process begins. Week by week, and 
month by month, in sprouting green, in opening bud and unfolding 
leaf, form by form and colour by colour, the plants move on to the 
open manifestation of their glory and beauty in mid-summer. And then 
one can see the Earth, in the long hot days, amidst the droning of the 
myriad insect life, given over to its midsummer dreams. The Earth is 
fully outbreathed. 

But half way during this time, at mid-spring, the outbreathing proc
ess is at its strongest. This is the time when, each year, we experience 
anew the Easter miracle: the transformation of Egg into Cup. For these 
are the two ancient symbols of Easter and the Easter time of year, 
are they not? We have the enclosed, and enclosing, form of the egg, 
and the bud, enshrining within them the forces of our most elemental 
beginnings; and we see them, before our very eyes, changing into the 
form of the cup, the chalice, open to whatever the future may bring. 
This Easter mystery is enacted before us each year, and only custom, 
and the dullness of our spirit, blunt the full sense of wonder which we 
should always feel for it. 

And in the geometry, all we need, that this miraculous transforma
tion should be fulfilled, is that ;\ should move from the positive to the 
negative numbers. These two types of form are really one and the same 
thing. We cannot have the one without the possibility of the other being 
present (Figure 138). 

And now we think of those long winter months. Approximately every 
fourteen days the tree experiences a 'little Easter,' all in consonance with 
the music of moon and planet. Just for a few hours ;\ falls, the buds take 
a little step, just a little one, in the direction of their Easter apotheosis 
and then - the time is not ripe; and another fourteen days of waiting 
commences. 

And one may feel urged to ask the question: 'Do our great trees, 
twice every month, live once again the glories of a past Easter? Or are 
they living, in anticipation as it were, that which is to come?' Who can 



268 THE VORTEX OF LIFE 

A= 2.2 
A=-0.5 

Beech buds 

March May 

Figure 138. The Easter Miracle. 
Above: Archetype: a simple fall in A changes the enclosed form of the bud into 
the open chalice of the vortex. 
Be/01,v: Phenornenon: the passage of tbne transfor1ns the tightly-closed bud 
into the open whorl of nelv leaves. 
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say? Perhaps the question is unnecessary, even irrelevant. The impor
tant thing to realize is that this great organism of transformation in 
which, as Earth dwellers, we are all immersed, is fractal throughout. 
It is fractal in space, stretching from the heavens above, to the ground 
under our feet: as Above, so Below. And it is fractal in Time; each lit
tle portion of the winter mirrors the culmination of the year: as in the 
Great, so in the Small. 

But we are not able to see this picture whole as long as we 
exclude ourselves from it. The antithesis between human and plant 
is remarkable, and complete; the one has to be recognized as an 
inverted replica of the other. The plant obtains its nourishment from 
below upwards, by means of its roots, and stem. Man obtains his 
from above downwards, through mouth and gullet. The plant holds 
its reproductive organs - the blossom containing ovum and seed, 
and so on - upwards and opens them to the light and the air. In the 
human, all the generative organs, both male and female, point down
wards, towards the darkness. Reproduction in the plant takes place in 
a realm of beauty and innocence; in the human, over long ages, it has 
become associated with feelings of guilt and shame. The one can be 
seen pictured in the steady flow of the green sap, and the other in the 
hot pulse of the thick red blood. Red and green are complementary 
colours. 

In the middle realm, that of the spreading leaves, we find the breath
ing organism of the plant; so also in Man, as we have already described. 
Draw a picture of bronchi and lungs, and show it to any class of school
children. The cry goes up straight away: 'Why, it's a tree!' The recogni
tion is immediate and spontaneous. And then: 'But it's upside down!' 
Even the chemistry is back to front. The plant breathes in carbon diox
ide, and oxygen out; with the human it is the other way round. Plant and 
man are the perfect companions to live side by side on earth; what is life 
to one is death to the other. 

All this being so, we should count it as no surprise that in the middle 
sphere of man, in the breast, this ancient form of our evolution should 
appear again, in the ventricles of the heart. Just as in the middle sphere 
of the plants, that of the leaves, the buds appear, characteristically 
pointing upwards, and finding their final metamorphosis in the blos
som which opens in the expanses of the heavens, so in the human we 
find this form primarily represented in the ventricles in the breast, but 
coming to a kind of metamorphosis below in the downward-pointing 
form of the uterus. 
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And these phenomena are oppositely-related also in their behaviour. All 
the long winter the tree buds are waiting, tightly closed, for the moment of 
their apotheosis in the spring, when with a plunge of their A they will open 
to the light and the air of their surroundings. When we come to consider 
the cycle of the heartbeat we find that most of the time the ventricle lies 
there, relaxed and rounded in form, with low A, in a condition of diastole, 
waiting for the moment of culmination, when with the coming of systole, 
A shoots up high and the form becomes tight and tense. This we could call 
'the inner Easter,' the magic moment, lasting only the twinkling of an eye, 
which we have to associate with something like an ecstasy of 'pain,' using 
that word in the sense of the descriptions of Chapter 8. 

And just as, approximately fourteen times during the long winter, 
the trees experience their little Easter, so in the course of each single 
heartbeat, the ventricle suffers its little Easter, just seven times. Is it at 
this moment living anew the ecstasy of the last systole, or savouring in 
advance the one which is to come? Who can say? But one thing is clear: 
just as in Figure 72 we endeavoured to picture the heart as a sevenfold 
organism in space, here we are dealing with it as a sevenfold organism 
in time, and as such we find it to be fractal throughout. Each seventh part 
of the cycle min-ors the form of the whole. 

And now we can begin to see the world as organism, as an organic unity, 
in which Man and Nature are immersed in one another, both paits of the 
same whole. And the ancient Hermetic teaching appears again: as Without, 
so Within. But the inner picture is inverted, and introverted: inside out. 

The changing phase-shift 

The picture which has emerged up to this point is one with which 
I would willingly have been content. It seemed to me that it was 
one which was, in a way, complete and satisfying. The further work 
which I next proposed to do was with the purpose of verifying that 
this wonderful rhythmic interweaving of star and plant, and its reflec
tion in the pulse really represented the truth. It was something which 
needed to be tested, and tested, and tested yet again. And it was in the 
course of this next phase of the work that the strange business of the 
changing phase-shift began to make itself apparent. I did not expect 
it, nor did I seek it. You may say that I did not want it. I was happy 
with things as they were. The phenomenon asserted itself so gradually 
that at first I did not notice it. Only later, when I came to look over 
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my earlier figures did I see that the first signs of it had already been 
there. When I could no longer ignore it, I resisted it. But it continued, 
and grew through the years, with such consistency that at last I had to 
acknowledge it. 

It was years before its true form became apparent, and even now we 
must be prepared to modify our view of it in the light of further observa
tions. Nevertheless I believe that Figure 130 really does give a true idea 
of the way it is working. To begin with I toyed with the idea that it might 
have been due to some sort of atmospheric or electrical pollution, but the 
consistency and, above all, the symmetry, with which it was seen to work 
through many years, has convinced me that it is indeed a natural phe
nomenon. For a time I believed that the rate of change would be constant 
until observations over a long period proved the opposite. 

And now, what can one say about a thing like this? I do not know 
any other place in the natural world where quite such a thing has been 
observed. At the moment it shows me only one thing with certainty: that 
this world is a more complex, and wonderful, place than the present 
range of my concepts can embrace. And I think it will be many years 
before the last word can be said about this matter. 

Perhaps it is premature to speculate about such a thing at this 
moment, but I cannot bring myself to close this book without express
ing a few thoughts which may indicate a possible future direction 
which research may take. And I can find a basis for such thoughts only 
in the work of Rudolf Steiner. On numerous occasions he stressed the 
importance of our coming to a true understanding of the element of 
Time, time seen as the ongoing activity of spiritual being. We cannot 
go here into the complexity of all he had to say about this subject, 
but we should remember that he distinguished two separate streams 
of time, the ordinary one we know in this our physical world, which 
flows from past to future, and another negative, backward-flowing, 
stream, belonging to a more spiritual world which interpenetrates our 
physical world. Maybe in certain special circumstances this backward 
flow of time, streaming from future towards the past, can, in some 
sense, overflow, as it were, into our physical world. And a symptom 
that such a thing is occurring would be when we find the Effect com
ing before the Cause. The whole realm of these egg-like forms, which 
expresses itself in bud and cone, in blossom and seed, in ventricle and 
uterus and pineal gland, which then works into the forms of develop
ing embryos, and manifesting in the vortex movements of water and 
air, has shown itself to be sensitive to the most subtle differentiations 
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of form, and also to be intimately concerned with the genesis and 
the flow of time: would it be possibie that this subtle realm of furn 
is one into which something of this backward-streaming time could 
sometimes overflow? 

I think we have to be very careful indeed in our working with the ideas 
of Cause and Effect; and in our modern thinking we often apportion these 
concepts with undue confidence. We believe that everything in life is sub
ject to the laws of cause and effect; but, is it? And especially when dealing 
with the living organism, the matter is often far from clear. There is a cer
tain centre in the brain which controls the beating of the heart. If this cen
tre fails, the heartbeat ceases. Can we then say that the brain is the cause 
of the heartbeat? But if for any reason the heart stops beating, the brain 
dies. Can we then say that the heartbeat is the cause of life of the brain? 
Rather must we see these two aspects of the organism as being intimately 
interrelated with one another, but neither having ultimate precedence over 
the other. And when we come to view this mighty organism of our world, 
involving the closely interrelated activities of plant and planet, and their 
complex reflections in the organisms of man and animal, this is I believe 
a good and fruitful way to proceed. 

Nevertheless, the concepts of Cause and Effect are also truly operative 
in many places and many ways, and should also be taken into account. 
There are places in the world process where I can say of something: 
'Here is a cause, and from it a certain effect can be expected to follow.' 
In this strange interrelation between star and plant it would not be pos
sible for me to imagine that the Moon comes into alignment with Mars 
because some oak-buds make a certain gesture; the alignment could 
have been predicted many years before those trees were even in exist
ence. But it is perfectly possible to imagine that those little changes in 
form were made as an effect, a consequence, of the heavenly alignment. 
And if we see it this way, we see, again and again, and increasingly in 
the course of the years, the consequence, the effect, coming before the 
relevant cause. 

Figure 130 stands there as the result of observed fact. Nine years' 
work and the measurement of somewhere in the neighbourhood of 
forty thousand buds stands behind it. We may not understand it, but it 
stands there as Phenomenon, and as such it has to be contended with. 
But it contains as it were an inbuilt ambiguity. Of no single point in it 
can we say: 'This point marks an effect which is Early, or Late.' Each 
one is either, or both! Five days early is, approximately at any rate, the 
same thing as nine days late. But one thing about this figure is definite, 
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and unambiguous, and that is the gradient of the curve appearing on it. 
And through all those nine years, apart from short periods in 1982 and 
1989/90, that gradient was consistently negative. If one cannot say at any 
moment that these effects were early, one can say that through all that 
time they were obstinately and consistently coming earlier, and this in 
spite of my wishes or expectations! 

And now we have to ask the question, and at the moment it cannot be 
more than that: 'Is this the result of an inflow of negative time from a 
more spiritual world than ours, into this subtle realm of form which we 
have been studying?' If this is the case, and if Figure 130 continues the 
way it has been going these last nine years, then we would have to say 
that negative time flows into our world in seven year surges. The last 
such surge started some time in 1982, culminated about the end of 1986 
(the moment of steepest gradient) and came to a close in the autumn of 
1989; since then a new surge has now started. 

It is hardly possible to consider these twin streams of time with
out being reminded of the work which was described in Chapter 13, 
culminating particularly in what was shown in Figure 112. There 
we saw how, if this first subtle gesture of the developing embryo is 
to be understood, it can only be in terms of two vortices coming in 
from opposite directions. As this closing of the neural canal proceeds 
forwards towards the head it is as though something is streaming for
wards to us from the past, while with the closing downwards towards 
the trunk something is streaming backwards to us from our future. 
And the confluence of these two streams of time will lie, in the adult 
organism, in the general region of the neck. Here, in a certain way, 
is a nodal point, a meeting of Past and Future. And here we come 
upon a remarkable parallel with something which we meet in the 
lower part of our body. Deep in the pelvic region we find the uterus, 
with the Fallopian tubes rising up on each side of it to the ovaries. 
And high up, above the cage of the thorax we see the pharynx with 
its Eustachian tubes rising up on each side of it to the semi-circular 
canals in the ears. The uterus, at any rate during a large part of the 
period of pregnancy, assumes a path-curve form, and the muscles of 
the neck, which enclose the pharynx, bear a decided resemblance 
to the path curves of the all-imaginary case, such as are pictured in 
Figure 28. 

Now we have seen, in Chapter 13, how a simple path-curve vortex 
interpenetrating the uterus form will engender the much more complex 
gesture of the closing of the neural canal in the early embryo. In the 
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case of the neck we cannot, unfortunately, work with such precision. 
The enclosing form of the pharynx, although not greatly dissimilar 
from that of the uterus, is only an approximation to a path-curve form. 
Nevertheless if we suppose it to have, in its whole form and function, 
some of these path curve qualities, then the appearance of a simple vor
tex interpenetrating it, would give rise to a similar appearance to those 
which were pictured in Chapter 13. 

Figure 139 shows a tracing from an ordinary anatomical textbook. 
It shows a posterior view of some of the organs of the neck. Outside 
we see some of the enveloping muscles of the pharynx, and within, 
rather like a little 20/22-day-old embryo, nestles the larynx. Compare 
this with Figure 109; the resemblance is quite striking. We can begin 
to see the larynx, this wonderful organ of speech, as being still almost 
embryonic in nature. Most of its growth and development lie still 
ahead of it. 

By the very nature of the case this cannot be supported by precise 
observation and measurement as have so many of the things in the ear
lier part of this book. If the reader feels that this is all too vague and 
fanciful for belief or serious consideration he may close the book here 
and now. But I was anxious to ascertain just how close to the truth this 
could be. 

I procured a cow's larynx, divested it of its surrounding tissues, 
except the two little arytenoid cartilages which I feared to remove 
in case of deforming the organ as a whole, and photographed it from 
what would have been the posterior view in a human. A tracing of 
the result is seen in the left hand portion of Figure 140. I then asked 
myself the question: 'If I impute to the surrounding pharyngeal tis
sues the same path curve qualities which I have been using for the 
uterus, how closely could a transformed path-curve vortex resemble 
this?' The right hand portion of Figure 140 shows the best result I 
was able to achieve. The fit is not perfect; considering the paucity of 
our knowledge and understanding we could hardly expect it to be so. 
But I think it must be agreed that it is remarkably close. We are not 
working here in the realm of ascertained fact, but in that of imagina
tion; and this may lead us farther towards the truth in future than we 
can now foresee. 
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Figure 139. Posterior view of sonie of the organs of the neck, including the 
pharynx and la1ynx. 
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Figure 140. Left: a cow's la,ynx, with the two a1ytenoid cartilages left intact. 
Right: the Jann which arises ·when one allolvs a path curve vortex to inte,pen
etrate the path-curve-like tissues of the phmynx. 
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More on the phase-shift 

by Graham Calderwood 

In the first edition of this book, Lawrence Edwards said of the phase shift, 
by then charted from the tum of 1982/1983 to about mid-1992, ' ... if we 
cannot understand it, at least we must make note of it.' He went on making 
note of it until October 1999, and the complete chart of his observations 
is shown below. 
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Figure 140a Phase-shift at Strontian, Scotland ( 1983-2000). 

I have attempted to understand this phenomenon since it first came 
to light. 

The fact that the time 'slip' of the phase-shift is substantially the same 
for all species and bodies has led me to concentrate on the idea that the 
shift is governed by all the bodies in the solar system acting in some way 
together. Now, there are literally thousands of ways in which they could 
do this, and I have searched through a large selection of these ways in 
the hope of finding one which yields a credible fit to Edward's observed 
data. I will not provide a detailed history of that search here: it would 
fill a book, and much of it was fruitless in any case. Instead, I will show 
my most successful result to date, and discuss what it might imply if it 
is correct. 

But I must first provide a few definitions. I call the mean position of 
all the bodies, the mean body: if all the bodies were in one place, this 
would be that place. It is very simply found by summing the Cartesian 
coordinates of the bodies ( deriving from a reference frame based on the 
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vernal equinox and either the ecliptic or the equatorial plane - most 
usually the former), and dividing the sums by the total number of bod
ies in the system. It is just an ordinary, arithmetic average. I stress that 
although it is an aggregated position of bodies, it is non-corporeal. It has 
no 'stuff' in it. It is a geometric point, and nothing else. 

I fear that the name, 'mean body,' has by now lodged in my mind, and 
I persist in using it, but it would have been better to have called this posi
tion something like the 'systemic position,' or, 'systemic mean position,' 
instead, as there is another mean position with perhaps a superior claim 
to the title of 'body,' for this other mean is corporeal: it has to do with 
mass. It is the place where all the mass of the bodies of the solar system 
would be were it to be gathered at one place. And having said this, I 
must at once qualify it: the mass in question is inertial, not gravitic. If 
we could connect the separate bodies of the system with a framework of 
stiff but massless rods so as to render the entire ensemble perfectly rigid, 
a point could be found within it at which to apply a force from any direc
tion whatever that would accelerate the whole thing away without the 
least hint of rotation. I call this point the centre of mass, or mass centre. 
It is not a centre of gravity. It would exist even if gravity did not. 

These two positions are not the same and are generally well-sepa
rated, and on the move, and each has velocity and acceleration. 

I now must speak of directivity. This is a measure of the degree of 
direction, not of direction itself. The idea of this measure arose from the 
observed behaviour of the buds in res~ .... vl. vl' li1~i1 a\..;...llUW ~cUi:,cU UuUic:'), 
and from the need to find a measur,, which best captured the 'spirit' of 
that behaviour. It seems that buds are neither concerned with inter-body 
distances, nor with the order in which the bodies appear in the relevant 
line-ups. That is, neither distance nor sense, both of which are point-to
point affairs, seems to bear upon what the buds do in respect of their 
bodies. Only direction - which is a line-to-line affair - appears to 
affect things. We know this from the fact that in the normal way of things 
a bud event (a dip or peak of;\) occurs twice per lunar circuit. 

Early in his studies, before the phase-shift began to show itself, 
Edwards said that a bud event could be expected whenever the bud's 
acknowledged body falls into alignment with Earth and Moon. It follows 
that a bud event is least to be expected when these bodies are as far out 
of line as they can be - that is, when they are most misaligned. 

When the phase shift came to light, I found it at least conceivable that 
the buds would all be 'in time' (synchronized) with their bodies when all 
the bodies were most aligned with each othe1; and as 'out of time' as they 
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could be (7 days) when all the bodies taken together were as misaligned 
as they could be. 

On investigation, this hypothesis proved untenable, but to make the 
investigation at all I needed a measure of alignment that could, while 
retaining and responding to direction, ignore both distance and sense, 
and could moreover cope with ensembles. In an ideal universe, all I 
should need to do with such a measure to find a phase shift, in days, from 
it is multiply the number it supplies by fourteen. Well, it is not an ideal 
universe, but I found my measure in cosine squared. 

The technical details are in Appendix 4 (pp. 340-45). The essentials 
are that the measure is always positive, equal to one (1.0) on perfect 
alignment (zero or 180°), zero (0.0) on maximum misalignment (odd 
multiples of 90°) and half (0.5) on half-alignment ( odd multiples of 45°). 
These 'directivities' can be added, subtracted and averaged, so apply to 
ensembles and, unlike pure angle, show no discontinuities, so can be 
differentiated too. This last property is important in that it enables the 
finding of what might be termed the 'best direction' of an ensemble of 
directions: in our case it gives the orientation of the entire system of 
bodies. It is no doubt obvious that the single direction best representing 
two directions is the direction of their bisector, half way between them. 
The best direction of several directions is a bisectoid, in that it comes as 
close as it can to being half way between all of them at once. How well 
it does this is the bisectoid's (in this case the system's) directivity. 

Now that we have the means to interpret it, here is the promised result. 

,,.. "" "" ,m ,,.. 
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Figure 140b Directivity of the bisector of the angle made by the heliocentric 
direction of the 1nean body and the direction of the acceleration of the ,nass 
centre, compared to the phase-shift recorded from 1983-2000 by Lawrence 
Edwards. 
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Figure 140c. 
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The things to which this graph pertains are depicted in Figure 140c (in 
what an architect would call a 'plan view' of the ecliptic) as they stood 
around the end of October 1986, the moment approximately indicated by 
the up-arrow on the graph. The diagram is heliocentric (the Sun is at the 
origin), and shows the disposition of some of the planets on the date of 
the 'snapshot.' It also shows the position of the mean body on that date, 
and the position of the centre of mass. The line from Sun to mean body 
and the line of acceleration of the mass centre form an angle, and it is 
with half of this angle (indicated on the diagram by the 'bisector') that 
we are concerned. 

The graph (Figure 140b) shows a plot of the square of the cosine of this 
half angle against time, superimposed on Edward's phase shift markers, so 
it is also a plot of its directivity relative to both the heliocentric direction of 
the mean body and the mass centre's acceleration direction. 

I think the correspondence between this directivity and the phase shift 
markers is good enough for us to venture that the two things match, at 
least to a first approximation, according to the simple equation, 

.6.T = -14.0cos'( <JJ,,,. ~<p'°"' ) days, with {O::; (<JJ,,,. -<JJ,
0
,,,)::; 1t} 

Where cj,,,,, is the heliocentric longitude of the mean body, <l>,m,, is the 
angle of the centre of mass acceleration vector to the vernal equinox, and 
!J.T is the phase advance in days. 

Let us see how well this works for a A series of a beech bud, B3, from 
a tree in our garden here in Aberdeen, Scotland, photographed daily 
from October 1998 to April 1999. 
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Beech 83 Aberdeen, Scotland. Lunar Alignments with Mars. 
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Figure J 40d Beech bud A, 
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This series was subjected to Fourier analysis, then re-synthesized as 
depicted above from the resulting spectrum, to help eliminate 'noise' 
and facilitate accurate location of dips. As the variation of A is of inter
est to us here, rather than its actual value, the A scale has been omitted. 
The cosine-squared curve for the period of observation is superimposed, 
and bold down-arrows indicate the moments at which, according to that 
curve, dips should occur, relative to actual epochs of lunar alignment, in 
this case with Mars. 

I think it can be said that the prediction works well on the whole, 
though there are fairly serious discrepancies in the final quarter or so of 
the chart: two predicted dips actually fall on A peaks. 

Edward's observations of the phase-shift in the period of this series are 
on the graph too, and we see that prediction matches the first three of these 
very well, but the final two less well: only to within about two days. 

However, this particular series is anomalous - and therefore very 
interesting! Beech is usually found to be a Saturn bud, not a Mars bud. 
But when this series is examined against Saturn, there is almost no cor
relation, no acknowledgement of Saturn to be found. 

This is worth examining in some detail, so I give below two raster 
views of the series. 

The name, 'raster,' is borrowed from the world of television: fol
lowing a TV signal, a TV picture is rapidly painted in successive, left
to-right horizontal stripes down the screen, in a scan-structure known 
as a raster. A TV signal must be sent serially, in time, but a picture 
is seen 'all at once': the raster structure (rather ingeniously, I always 
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think) allows this. If we are to see a coherent picture, the raster must 
be synchronized with the signal, which accordingly carries embedded 
'clock' pulses which a TV receiver can act upon to bring about this 
synchrony. 

In our raster views, the clock pulses that start scan-lines are the 
lunar 'axial moments,' that is, the moments when the Moon passes 
through perigee or apogee (the apsides), which lie in the lunar orbit 
at its intersections with its major axis - so, 'axial moments': I could 
have called them 'apsidal epochs.' This provides a very accurate 
and relevant clock, and a rock-steady 'picture.' Each scan line falls 
between two such moments, and markers on the lines show the true 
epochs of lunar alignment of any planet or body of interest, along 
with timing markers for any other event of interest - such as the 
A-dips. The computer program that generates the raster view also 
allows the dip markers to be artificially moved as group left or right 
from their true positions by a controlled amount, and it is then pos
sible to see at a glance whether or not the group falls on and matches 
well (or badly) with some planet's alignment moments. With luck, 
we will discover from a raster view what body is acknowledged by 
the bud, and obtain a direct estimate of the phase-shift. Here are the 
raster views for B3. 
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Figure 140e Two raster views of Beech bud B3 with respect to Mars. The left 
view is unshifted; the right is artificially shifted right by 3.25 days. 
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Both raster views show the lunar alignment epochs of Mars and 
Saturn, 'joined up.' The view on the left shows the dip markers for B3, 
just as they were found, distributed over the semi-lunar, roughly 14 day, 
line-scans of the raster. The view on the right shows the same dip-mark
ers artificially shifted right by three and a quarter days. It is rather clear 
from this view that, if this beech bud is correlating with any planet at all, 
it is correlating with Mars, with a phase shift of just over three days. In 
neither view are markers matching up with Saturn to any serious extent. 
In the left-hand, unshifted view, only one, the sixth, does so exactly. 

I do not know what to make of the group of dips that accompanies the 
group that directly correlates with Mars: many come very approximately 
a week away from correlating dips, suggesting that they correlate with 
misalignments. This needs investigation! 

Apogee 

Figure 140! Towards understanding the variation of inter-alignment period 
(the 'zigzag'). 

It will be noticed that the alignment epoch markers 'zigzag' down the 
raster, apparently doing this least when the markers stray closest to the 
limits of the scan lines, giving the epochs of the Moon's transits of the 
apsides. This zigzag indicates that intervals between lunar alignments 
are alternately short and long within varying limits. It may be understood 
through an appeal to Kepler's second law, which states that the radius 
of an orbiting body sweeps out equal areas in equal times. The times for 
the Moon to pass from conjunction with a Body at C to opposition at O 
via the perigee, then back to C via the apogee, stand in the ratio of the 
corresponding swept areas A2 and A,: these are most different when the 
Earth-Body line is at right angles to the major lunar axis, and the same 
when that line is in the major axis. Clearly, then, the degree of zigzag is 
'body-specific.' 
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The fact that the dip-markers tend to match and follow this zigzag 
is excellent evidence that the bud really is following its body's rhythm 
with respect to the Moon, and confirms directly what Edwards found 
statistically; that rhythm is preserved in the dips when synchronicity 
is lost. 

Two other beech buds, B 1 and B4, from the same tree and photo
graphed over the same period as B3, show similar correlation with 
Mars - and lack of correlation with Saturn - though not so clearly 
and definitely. They appear to exhibit the same phase shift, how
ever. 

I do not know what general conclusion is to be drawn from this and 
other, similar anomalies that I have seen, except perhaps that rulership is 
less firmly established than we had thought it to be. 

Edwards mentions (page 254f) that, in spring 1990, buds from no 
fewer than three beech trees at Strontian, though mainly responding 
as expected to Saturn, seemed also to be showing a small response 
to Jupiter. As we have just seen, my raster views have revealed three 
beech buds, from a single tree, that followed Mars, not Jupiter, and 
to all seeming actually ignored Saturn. Indeed, my raster views have 
sometimes shown me buds that appear to have switched allegiance 
among several planets in the course of a season! It is difficult to be 
sure that they did; such behaviour is hard to distinguish from rando
micity. 

But it seems to me that there is a growing body of evidence to sug
gest that the buds can and do pay homage to more than one heavenly 
master. I have already mentioned Fourier analysis, and synthesis: I have 
used these mathematical techniques to devise a kind of filter capable 
of 'tuning in' to specific planetary rhythms present in A series, and, 
while using the filter for just this purpose, have detected phenomena 
very reminiscent of 'heterodyning.' Now, heterodyning is well known 
to piano tuners. They hear its effects in the 'beats' produced in the 
sounding together of mutually mistuned notes. Essentially, they hear 
the changing loudness of a sum of rhythms. The A chart of a single bud 
seen through the filter seems sometimes to be just such a sum, though 
not of sounds. But this is a topic for another day. It is part of a growing 
chapter of new research. 

Whatever the rulership, and however it is established or changed, it seems 
that the phase-shift is unaffected by it, and, for that matter, vice versa. 

It is as if bud and planet were being carried on the stream of time 
like revellers dancing on a great cruise liner. The revellers enjoy the 
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intricacies of their measures and delightful interweaving, all oblivious 
to the location of the ship on which they travel. Where they are on the 
ocean of time is not their business; it is the captain's. All they need to 
know to be on with their dance is that they are safely somewhere! 

This may be more than mere metaphor: I think we may take seri
ously, and propose as a testable hypothesis, that things not made of 
'time-stuff' are linked in a variable way to things that are. What do I 
mean by this? 

It is probably accepted, and certainly experienced, that events pass 
over a threshold from future to past. Once over the threshold, events 
cannot return over it to their former places in the future: 'what is done 
is done, and cannot be undone.' For some events it seems inevitable 
that they must traverse this threshold in just the way they do. For oth
ers, it seems there is choice. For yet others, notably subatomic ones, 
transits appear to occur without rhyme or reason - at random. For 
these, apparently, anything can happen, until something does. One 
thing seems sure: that time itself always crosses the threshold, one 
imagines as a stream of moments. The question seems to be whether 
or not anything else accompanies these moments across it, and if they 
do how they do it. 

How do we measure time? We think of it as a line, and, at least 
in imagination, set down equidistant markers on the line, calling the 
intervals between them hours, or seconds, or years, and so define a 
ruler or metric for time, analogous to the carpenter's rule that meas
ures lengths of, say, wood, in space. But how far does the analogy 
truly reach? 

How many and which of the features of a space ruler carry over and 
apply to a time ruler? Well, it obviously depends, and the dependency is 
very interesting. 

There needs to be things to measure, for the ticks of a clock do not 
measure themselves, any more than do the marks on a ruler. These things 
will, presumably, be events. What is an event? 

I wish to suggest that an event is something that is not time making 
an association with time in some way. For example, mass is not time, 
but mass under acceleration is mass associated with time, which makes 
the mass/acceleration an event. If we accept this suggestion we will be 
speaking of events as types of linkage between the non-temporal and the 
temporal, and at least considering that a number of different types of 
linkage, ranging from none (to cover the impossible) to random (to cover 
the unpredictable), might exist. 
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I wish also to suggest that, if we find a set of non-temporal 'items' 
linked strictly one-to-one with a set of temporal 'items' (which I sup
pose can only be moments), we have also found an event that is what 
might be called a 'cause-effect pair.' Until such an event happens, it is 
only cause. After it happens, it is only effect While it happens, cause 
converts to effect This event, I suggest, is one thing (made one by 
linkage) characterized by two possible states, between which it can be 
switched by happening. It is both a unary and a binary thing. If this is 
thought preposterously strange, I submit that stranger things, such as 
quanta, and photons, actually exist So what is this 'happening' that 
can switch an event from cause to effect? 

I think that 'happening' is simply passage over time's threshold 
from future to past And if we seek for a place to put the origin of the 
ordinate by which we measure time (our time ruler), this threshold is 
rather obviously that place. For to one side of it is the irrecoverable 
Past, and to the other side of it is the unborn and uncertain Future: the 
states of events are according to which side of this origin they lie, and 
how far they are from it And even if we would, perhaps for reasons of 
convenience, put the origin elsewhere on the ruler, this is clearly where 
Nature wants it to be. 

I am not done making hypotheses! I say, ' ... where Nature wants 
it to be.' Nature has many domains, has she not? They divide one 
from another along many boundaries. Perhaps the greatest and longest 
of these separates the living from the dead - the animate from the 
inanimate. And if Nature sets down one origin of time, could she not 
set down two, or more, as befit her domains? I suggest that she could, 
and that she does. 

Suppose that we are observing events with respect to the origin or 
zero-threshold that applies to us, and that we notice things that, by the 
definition of cause and effect ventured above, appear to be coming in 
the wrong order; that is, things that by our reckoning ought to be effects 
precede things that by that same reckoning ought to be their causes. Of 
course, I have the negative slip that is the phase-shift in mind, but I want 
to find as general an approach to the issue as possible before focussing 
specifically upon the phase-shift 

Now, if there are two origins, one for us, and one for the for-us-anom
alous events, and if the origin for the anomalous events lies up-stream 
of ours, then the anomalies are explained; they have already 'happened' 
with respect to that origin - that is, the events have switched from cause 
to effect - but have not yet 'happened' with respect to ours. 
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Already I hear, in my imagination, the thundering of the physicists. 
'This,' I hear them say, 'would make nonsense of conservation of mass 
and energy!' And they would be right; so it would- if we were not talk
ing of two different types of linkage with time, which I think we prob
ably are. Bud-events are changes of form, just pure form. Neither mass 
nor energy (at any rate of the ordinary kinds), is significantly involved 
in them. Whatever it is that causatively associates the apparently lifeless 
domain of astronomy with the domain of living form, it is likely to be 
something quite new to us - and is the object of our search, or if you 
like, the subject of our research. 

Going back now to the correlation with which this article began, if it 
is correct, then it furnishes clues to the nature of this new ... well, what? 
Shall we call it an 'agency?' 

Direction, or rather directivity, matters to it, very much, and motion, 
specifically change of motion with time. Distance and sense do not mat
ter. It concerns aggregates, one corporeal, one not, and separation of 
sources by type and time-origin. It seems heliocentric, Sun-based. 

There is a good deal of work ahead! 
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The two worlds 

The problem of the relationship between the two worlds, the inner one 
of thought and imagination, which comes to expression so beautifully in 
our geometry, and the outer one of sense perceptible phenomena, is one 
which has been with mankind through the ages. It has been the aim of 
this book to explore, with all mathematical precision, just how far we are 
justified in seeing the one as an expression of the other. And it is found 
that, in one perhaps rather restricted but nevertheless fundamentally 
important sector of our experience - that of the egg-like and cone-like 
forms - we are so justified to a quite remarkable extent. But in the first 
place this is so only as long as we confine ourselves to the manifest, and 
what we may in a certain sense regard as the finished, forms of nature: 
the eggs, pine cones, buds, ventricles, and so on. 

As soon as we come to study the mysterious pmcesses by which these 
come into being, the realm of the ovum and the gynoecium, and that of 
embryo-genesis in general, then we have to allow further, purely ideal, forms 
to intrude themselves into our considerations: the vortices whose workings are 
described in Chapters 9 to 13. And the fact that these tum out to be of exactly 
the same mathematical nature as the forms which they are helping to generate, 
may be taken as a tribute to the unitary quality of this field of form. 

Inevitably the question arises as to what these vortices really are. 

Obviously something very potent and real is at work, but should we 
envisage them as working in and around the space of the plant and the 
womb? Increasingly I am coming to feel that we should not. I believe 
that we are dealing here with forms not of Space, but of Time. And I feel 
strongly, but alas, only so far dimly, that the truths behind the undulating 
curve on the phase-shift chart are connected in some way with the flow 
of some vast, seven-year vortex in time. 

What would a 'vmtex in time' be like? Well, if I could see it, that is to 
say if it could express itself spatially, it would be what I envisage and what 
I draw on my page. Within its own spatial context this would be a true 
picture of it; and I could learn from it. But to approach its reality I believe 
we would have to rise to something more like a musical experience; and 
this is something that would lie outside the scope of this book. 

If all this is accepted, then a book which started with considerations of 
Space, has ended before the portals of Time. In which case eve1ything that 
has been written here has to be considered as merely a preparation for the 
beginning of what needs to come; and I am content that this should be so. 





Appendices 

The full evidence 

The phenomena described in this book, if established in general belief, 
would lead to a very different picture of our world from the one which is 
usually held in our civilization - a world in which the activities of plant 
and planet are inextricably bound together in intermingling rhythms, 
a world behaving like a great living organism. However beautiful, or 
philosophically satisfying, one may, or may not, find such a conception, 
in the last resort it will stand or fall by one thing and one thing only - in 
sober reality, is it true? But no-one can form a balanced opinion about 
this unless all the available evidence is to hand. And it is not possible 
for a book of this kind to present the great mass of material which this 
would entail. 

The author has put together a number of supplements and sequels 
containing all the evidence which has accrued over twenty years' con
centrated activity, as well as much that has been found subsequent to the 
original publication of this book. With it the reader will be in as good a 
position as possible to assess the worth of this work, and its credibility. 

The supplements also give full details of the methods of working, and 
the precautions which need to be taken, for the help of those who would 
like to pursue the work further on their own behalf - and it is hoped 
there will be not a few. 

The supplements can be downloaded from the Floris Books website: 

www.florisbooks.co.uk 
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Appendix 1 

Path Curves in Two Dimensions 

Number or multiplier 

Firstly we must have a closer look at the growth measure. We know, 
from elementary projective geometry, that a transformation of a line 
onto itself is completely determined by the giving of three different 
pairs of points. Thus we can see that, having chosen our two fixed 
points wherever we wish, we can still move a third point A arbitrar
ily to any point A, that we like. Our transformation, and thereby our 
growth measure, is then completely determined. In choosing our 
intermediate line i, and our raying points 0 1 and 0 2, arbitrarily, we 
are in effect doing just this. And in doing this we have, consciously 
or unconsciously, chosen some number by which the growth measure 
will multiply. This number may be said to completely characterize the 
resulting growth measure, and I will call it the characteristic number 
or multiplier of that measure. 

If we consider any four consecutive points of the measure, A, B, C, 
D, we realize that they will transform into the next four B, C, D, E, and 
so on all along the line. It is thus apparent that a growth measure is such 
that any four consecutive points have a constant cross-ratio all along 
the measure. Similarly, consider any consecutive pair together with the 
fixed points, X and Y,· X, A, B, Y transform into X, B, C, Y, and so on. Thus 
we can say that any consecutive pair together with the fixed points have 
a constant cross-ratio all along the measure. This cross-ratio is not the 
same as the one mentioned above, but is a simple function of it. 

We know that the points X, A, B, Y can be associated with one another 
in twenty-four ways to give a cross-ratio. Any one of these ways can be 
selected by us, and as long as we agree to stick to it in all our further 
considerations, we.can ignore all the rest. The way we shall decide to do 
it is to call our cross-ratio 

XB XA 
BY AY 
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and to calculate this as 

XB YA -x-
BY AX 

THE VORTEX OF LIFE 

(This is, of course, numerically equal to (XBIBY)x(AY/XA), but fol
lows the flow more naturally along the line.) 

The cross-ratio calculated in this way has the advantage of being 
identical with the characteristic number (the multiplier) of the growth 
measure, instead of being some function of it, and all cross-ratios in 
what follows will be considered as being calculated in this way unless it 
is stated to the contrary. 

Note that a growth measure has one unique characteristic number, but 
that this number (provided a pair of fixed points has been given) has a sin
gle infinity of growth measures associated with it, that is the set of all the 
growth measures with that multiplier, starting from different points A. 

Two-dimensional path curves 

The general appearance of what happens when we let a whole plane 
transform into itself has been described in the main body of the book. 
The fact that in such a case there will always be an invariant triangle is 
fully described in the ordinary textbooks of projective geometry. This 
triangle is made of three lines, each of which, considered as a whole line, 
is invariant, but the points of which are all moving in growth measure 
between the two fixed points of that line. Similarly the three invariant 
points will each contain a pencil of lines in growth measure between the 
two fixed lines of that point. It will be seen that the invariant organism is 
completely self-dual, and this holds for all path curve situations. 

Notice that in order to determine completely a set of path curves all 
we need to do is to choose our invariant triangle arbitrarily and then to 
move one point M to another point N, again arbitrarily. Having done this, 
the whole thing is fixed, and every other point of the plane now begins 
to move along its determined curve. The movement from M to N (see 
Figure 14) of course fixes that from S to T and from A to B, and thereby 
determines the two growth measures along the sides of the triangle. All 
the rest follows. 

We now have to ask: if movements along two sides of the triangle 
determine the whole thing, what about the third side? To answer this 
important question we must refer to a theorem of projective geometry. 
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Figure 141. The lcnv of cross-ratios round the sides of the invariant triangle. 

Given any triangle XYZ and two points M and N, we project M and N 
from the points of the triangle onto the opposite sides as M,, N,, M2, N2, 

M3, N3, as shown in Figure 141. Let cross-ratio XM3N3Y equal a, YM,N,Z 
equal ~. and ZM2N2X equal y. Then the theorem tells us that 

Applying the theorem to our actual diagram, and going round the tri
angle clockwise from X, we find that XM3N3Y, that is a, equals approxi
mately 3.41. Next we find YN,M,Z to be approximately l.70. But we 
notice that we have gone 'backwards' past the points, N to M instead 
of M to N. This involves the inverse process-division instead of multi
plication. We must find the reciprocal of 1.70; ~ = 0.588. Similarly the 
cross-ratio from Z to X comes out at approximately 2.00 and here again 
we have to take the reciprocal, y = 0.5. Simple calculation confirms for 
us that these have a product of unity. This arithmetic example shows 
how we must be careful always to take the ordering of the points into 
consideration when deciding whether to multiply or divide by the cross
ratio that we have found. 
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Returning now to Figure 141 we see that if the multiplier along XZ is 
~ and along ZY is a then that along YX is already fixed: it is 1/a~. The 
fact that it is less than 1 is an indication that the movement will be in the 
opposite direction, that is from X to Y, and reference to the diagram will 
confirm that this is the case, the actual multiplier from X to Y being, of 
course, a~. If one takes some point other than M, and joins its succes
sive positions to Z, the lines so formed will not make the same growth 
measure along XY, but it will be another measure of the same sort, that 
is having the same multiplier. 

The A-parameter 

Next we must ask ourselves what sort of a curve we have produced. Seeing 
that, being given a particular invariant t1iangle, the whole process is deter
mined by the multipliers a and ~, the shape of the curve must in some way 
depend just on them. It transpires that the form of the whole family of 
curves depends, not on the ratio of a to ~, but on what one might describe 
as their 'exponential ratio,' the ratio of their powers, or in other words the 
ratio between their logarithms. For this reason we do not normally deal 
with the parameters a and ~, but with their logarithms. Where a = Ina, and 
b = In~, the form of the family is determined by the parameter 

a A=
b 

This is a parameter of great importance in the further study of these 
curves. (It is usual to take the logs to the base e, although of course for 
the purpose of evaluating A the choice of base makes no difference.) 

Thus itis clear that ifwe had a case where a= 16 and~ =4, and a second 
case where a= 9 and ~ = 3, the curves produced would be identical in form; 
the difference would be that, per step of the transf01mation, the points would 
move in larger intervals round the first than they would around the second. 
Given a constant A we can make a, and therefore ~, as small as we wish, 
obtaining in the limit, the infinitesimal case, smooth, continuous curves. 

The general path curve 

In Figure 15 we have seen what such a system of path curves looks like, 
and how the invariant triangle treats the curves asymmetrically, all the 
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curves passing through two of the points and all of them avoiding the 
third. Reference to Figure 141 shows the reason why this must be so. 
While passing round the sides of the triangle in one direction, we come 
on M and Nin that order on two of them, and in the reverse order, N and 
M, on the third of them. No matter how we place the original M and N 
in the middle of the triangle, there will always be just one of the sides 
which will be 'odd man out.' This is the side which contains the two 
points through which all curves pass, and it will also be the side which is 
tangent to none of them. (The special case where M and N are collinear 
with one of the invariant points will be dealt with later.) 

The equations of these path curves are as elementary as the primeval 
nature of the geometry would suggest. If we take a, b, and c to be the 
natural logarithms of a, p, and y, and if we take the invariant triangle as 
the triangle of reference of a system of homogeneous co-ordinates, the 
equation for the whole set of curves is simply 

Since apy = 1, a + b + c = 0, and this equation is of degree zero on 
both sides, thus preserving its homogeneity. As we run through different 
values of k we pass from one curve to another of the system. 

Looking at Figure 15 we must envisage all the points streaming infi
nitely outwards, in all directions, from X, and infinitely inwards towards 
Y; or of course, with the inverse transformation, the other way round. If 
we follow a point in its journey towards Y we realize that it can never 
reach it: it has an infinite number of steps to take before it can get there. 
The question as to what it does after it has passed through Y has not, 
in this sense, any meaning. Nevertheless taking the curve as an entity 
in itself, as a whole thing, we can ask where it goes after it has passed 
through Y. And the strange thing is that by the very nature of the case, 
the geometry is unable ever to give us an answer to this question. As 
far as the form of the curve is concerned it is equally possible that it 
curves back on itself at Y, making the line ZY one of its tangents, or that 
it crosses this line while passing through Y, making ZY a flex-tangent, or 
that it 'backs out' from Y, forming a cusp there. 

But the algebra can, in some sense, do what the geometry cannot. Let 
us suppose that the parameters a, b and c are rational to one another. Since 
the form of the curves depends only on the ratios a:b:c we will suppose 
that these have been cancelled down to the smallest whole numbers pos
sible, that is they have no common factor. They cannot then all be even 
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or they will have the common factor 2; since they add up to zero it is not 
possible for two of them to be even without the third also being even; no 
three odd numbers can add up to zero; there is only one possibility left to 
us: two of them must be odd, and the other one even. Notice also that two 
of them must be of one sign, either plus or minus, while the third, which 
will be the greatest numerically, must be of the opposite sign, either minus 
or plus. Again, out of the pure number relations, we see the asymmetry 
with regard to the points and sides of the triangle. That parameter, a, b or 
c, which is greatest numerically, that is, that has the opposite sign from the 
other two, will lie along that side of the triangle which is tangent to none 
of the curves, and the point opposite it will be the point of avoidance of 
all curves. If this greatest parameter (numerically) is odd, the curves will 
have a cusp at one of the invaiiant points and a flex at the other. If on the 
other hand this parameter is even, the curves will not cross the invariant 
lines, but will just be ordinarily tangent to them. 

If, however, a and b are irrational to one another - and this is the 
most likely thing, unless we have done something very consciously 
about it - even the algebra cannot say which way they go. The curves 
themselves do not know; one can say that they float! 

We could consider the case where a= 100, b = 201, and c = -301. This 
would give a set of curves of a certain shape, having cusps and flexes. If on 
the other hand we were to have a= 99, b = 201 and c = -300 we would have 
curves of almost exactly the same shape, but without cusp or flex. Obviously, 
by taking large enough numbers, we could get the shapes of our curves to be 
as nearly identical as we wished, while still keeping one of them cusped and 
flexed and the other not. And, no matter how close to one another they come 
in shape, in between them would be a whole host of irrational possibilities 
- lost souls who don't even know which way they are going! 

Thus we see that although the variation of form which these path 
curves can assume is rigorously limited, within these limitations there is 
also an infinite richness of possibility. 

Special path curves: two points at infinity 

Certain special cases are instructive to examine. In Figure 16 we let Z 
stay in the centre of our page, and send X and Y to infinity, preferably, 
though not necessarily, at right angle to one another. The growth meas
ures along ZX and ZY then become ordinary geometric series and the 
curves assume the forms associated with the Cartesian equation y = kx'. 
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Figure 142. 

These can form a field of rectangular hyperbolas when a = -1, a pen
cil of lines when a = + 1, a field of parabolas when a = 2, cubics when a 
= 3, etc. All these are simply special forms of path curves. Two typical 
such sets are shown, interlacing one another, in Figure 16. The constant 
ratio along the x-axis has been taken as 2 and along the y-axis as 1.5. 

Suppose, to begin with, we let the measures work inwards towards Z 
along the y-axis, and outwards towards X on the x-axis. This will give 
us the set of hyperbola-looking curves. Figure 142 shows the projective 
case of this, line XY representing the line at infinity. Along YZ we have 
the parameter 0.405 (]nl.5) and along ZX the parameter will be 0.693 
(]n2). It follows that the parameter along XY must be -1.098, that is to 
say + 1.098 in the direction YX. This means that the lines joining succes
sive points of the curve to Z will turn rapidly in a clockwise direction as 
the measure moves from Y towards Z, and reference to Figure 16 con
firms that this is the case. The equation of the set will be 

.x".405 yO·'" z-1.098 = k. 

Transforming into Cartesian co-ordinates we have 

.x".405 yO·'" = k 
or y = hx".40510_,,, 

or y = hx"·584 

(where h is a simple function of k). 
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Figure 143. 

But suppose the transformation is such that while the measure along 
the y-axis moves inwards towards Z the one along the x-axis also moves 
inwards towards Z. We shall now have the parabola-like curves. The 
projective picture will look like Figure 143. The parameter along YZ 
will again be 0.405 but the movement from X to Z having a parameter 
of 0.693, the true parameter along ZX will be -0.693. This gives us a 
necessary parameter along XY of +0.288. 

Thus, as the measure moves inward from Y to Z, and of course also 
inwards from X to Z, we shall expect to see a slow anticlockwise turning 
of the line joining the points of the curve to Z. And again, reference to 
Figure 16 confirms this. The equation of this set will be 

x o.4os y-o.693 20.2ss = k, 

and putting this into Cartesian co-ordinates we have 

y = kx,0,584, 

showing that these curves are in fact very nearly (but not quite) true 
parabolas. 

The important thing to notice about this exercise is that we must first 
of all choose one direction (normally the anticlockwise) with respect 
to which all our measurements are taken. Having done this we must 
remember that every arrow pointing in this direction shows us the true 
parameter of that movement. However every arrow attached to a positive 
number shows us the true direction of the movement along that axis. 

We have gone into some detail over this because, in the sequel, a clear 
understanding of the above paragraph is essential. 



APPENDIX 1 299 

Special path curves: one point at infinity 

Another case of importance arises when X and Y are at finite positions 
on our page, and Z goes to infinity, again preferably, but not necessarily, 
at right angles to the line XY. The growth measures along XZ and YZ will 
again be ordinary geometric series. In Figure 17 we have again taken 
their constant ratios (multipliers) to be 2 along XZ and l.5 along YZ. 

First we consider the case where the measures move inwards from 
Z to X and outwards from Y to Z. We obtain a set of egg-shaped forms, 
rather blunted at Y and rather sharper at X. Projectively this is fundamen
tally the same case as Figure 142, but for ease of comparison with Figure 
17 we draw it again (Figure 144 ). 

We see that the parameter from X to Y is -1.098, thus involving an 
actual movement, while the measure runs inwards from Z to X, from Y to 
X with a parameter of+ l.098. This means that if we take two consecu
tive pairs of points on one of the eggs, join them by horizontal lines, and 
let these lines cut the central axis at S and T. then the cross-ratio YSTX 
will have a natural logarithm of l.098, a fact which we can easily verify 
by measurement from the diagram. Notice that if we consider only the 
arrows with positive numbers, that is the actual directions of the move
ments involved, then it is the movement Y to X which runs counter to the 
other two, giving Z as the point of avoidance. 

If on the other hand (Figure 145), we take as our transformation one 
which has the measures running inwards from Z to X and also from Z to 
Y we get the other set of curves, all flowing inwards from Zand upwards 
to X. Only four of these have been drawn, and in order that the diagram 
should not become overloaded their counterparts above and below the 
lines have been omitted. 

Figure 144. 
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z 

Figure 145. 

We see that the true parameters are +0.693 along ZX and -0.405 along 
YZ, giving us, by our rule, a true parameter of -0.288 along XY. This, of 
course, means an actual movement from Y to X with much smaller steps 
than from S to Tin Figure 17, and just a glance at that diagram verifies 
this. Notice that if we consider only those arrows with positive numbers 
we see that the Z to X movement is the one flowing in an opposite sense 
from the other two, giving Y as the point of avoidance. 

We can define A in this diagram as 

A = log multiplier from Z to X 
log multiplier from Y to Z 

Here A= +0.693/+0.405 =+I. 71 for the egg-shapes and +0.693/-0.405 
= -1. 71 for the other set of curves. 

If A = 1 the egg curves become a set of ellipses, and if it equals -1 the 
other set of curves degenerates into ho1izontal straight lines. This latter case 
needs to be examined more carefully from a projective point of view. 

In Figure 146 we have a set of path curves with equal parameters, 
a, working along XZ and ZY. These two growth measures therefore are 
projective ranges of points. It follows that XZ is a tangent to the system. 
Similarly with YZ. And the curves are conics. This is the case where A = 
1 and the results follow from elementary projective considerations. 

But now suppose that the transformation is such that the growth meas
ure has a parameter of a in the direction XZ and one of a in the direc
tion YZ. In the limit, in one direction, the line YZ of Y will correspond 
with XZ of X. Therefore all curves will pass through Z. In the limit, in 
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the other direction, the line l'X of Y will coJTespond with XY of X. The 
pencils will thus have a self-corresponding line; they will be in direct 
perspective and the meets (intersections) of corresponding lines will all 
lie on lines, which, of course, pass through Z. 

In such a case the parameter along XZ will be a, and that along ZY will 
be -a. It follows that the parameter along XY will be zero. The transforma
tion along that line will be 'identity' - nothing moves. This is the alge
braic equivalent of the geometrical reason why the second set of 'curves' 
will be straight lines through Z. This is the case where A = -1. The trans
formation is now a simple homology, centre Zand invariant line XY. So we 
see that homology is a special case of path-c111ve transformation. 

In this latter transformation all points move along straight lines of Z. 

But a moment's consideration of the diagram will show us that those 
lines which we have drawn are arranged in growth measure, cutting XY 
with parameter 2a. We thus see that we have constructed a net of conics 
and lines, each of which cuts the others in growth measure. With such a 
net we can immediately draw any number of other sets of path curves. 
For instance we could start from any intersection for our first point, then 
move one conic away and two lines away for our next, then again one 

Figure 146. In the special case lvhere the 1nultipliers along tlvo sides of the in
variant triangle are equal, the path curves beco,ne a set of conics and straight 
lines. 
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conic and two lines away; continuing like this we should have a path 
curve of quite a new set. Or we could have chosen to move, say, three 
conics and two lines away each time; this would have given us a path 
curve of yet another set. In fact our net represents growth measure move
ments which can be compounded in any proportions we like, similar to 
the way in which we add two vectors to give us a third. 

Circling measure 

Now we must refer to some known facts of projective geometry. They 
have been described in full in my book Projective Geometry (see bibli
ography). It would take up too much space to repeat these descriptions 
here but we summarize the results. 

In addition to growth and step measure, there is a third kind of measure, 
which George Adams, and we after him, called circling measure. (Any 
equiangular pencil of lines will cut a general line of the plane in a set of 
points which form a circling measure. The textbooks sometimes call it an 
elliptic metric.) Any circling measure is the exact projective equivalent of 
a growth measure, except that the fixed points, which in the growth meas
ure are real, have now become imaginary ( conjugate complex). All copla
nar circles cut the infinite line of their common plane in one special pair of 
such imaginary points, the so-called absolute circling points at infinity. We 
will call them I and J. The circling measures controlled by the fixed points 
I and J are those along the line at infinity whose points are equiangularly 
spaced. (From this derives the well-known Euclidean theorem that all the 
angles in a given segment of a circle are equal, and so on.) In fact we could 
give a projective definition of a circle as any conic which cuts the line at 
infinity in the points I and J. 

Special path curves: two imaginary points 

Now we are ready to construct an imaginary analogue of Figure 146. We 
will let two of the invariant points, say X and Y, become conjugate imagi
nary (hence having a real line in common). To begin with we will let them 
be I and J, so that we have sent one line of our triangle (their real joining 
line) to infinity. Z we will keep real (the intersection point of the conjugate 
imaginary lines of the other two sides of the triangle) and on our page. The 
conics of our diagram now become circles. Notice that in Figure 146 Zand 
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line XY are common pole and polar to the whole system. So they will be 
in our new diagram. Z will be the common pole of the line at infinity for 
all the circles. We see that concentric circles are just a special case of path 
curves. The pencil of lines through the new Z will cut the line at infinity in 
a 'growth measure' with double points I and J. But I and J are imaginary, 
so this will in fact be a circling measure. The lines through Z will be an 
equiangular pencil, another special case of path curves. 

Notice that in Figure 146 the path curves cut the lines of Zin growth 
measure. Therefore in our new diagram the concentric circles will cut 
the lines of the equiangular pencil in growth measures which all have 
one of their fixed points on the line at infinity. The circles will have radii 
in geometric series. 

And now if we move across the curves and lines of our new net, say 
one circle out and one line round, or, perhaps, two circles out and three 
lines round, or any other combination of movements we like, our new 
path curves will be logarithmic spirals (Figure 19). 

By taking a projective transformation of Figure 19 we can easily pro
duce a more general picture of a set of path curves having an imaginary 
invariant triangle (Figure 18). 

Some further formulae 

If we do not know the position of the invariant points we can resort to a 
different method. Any four consecutive points in a measure will have a 
constant cross-ratio, R, and it can easily be shown that 

(111 + J)2 
R= -

m 

Rearranging for m we have 

R - 2 ± ...J(R' - 4R) 
in= 2 

This is an interesting little formula; it is so constituted that no matter 
what value we put in for R, the two answers will be reciprocals of one 
another. One takes us forward along the measure, and the other back
ward. If R < 4 we have circling measure (an elliptical collineation); if 
R is > 4 we have growth measure (hyperbolic); and if R = 4, m = I, and 
we have step measure (parabolic, projectible into an arithmetic series). 
Having found m we can calculate the position of points X and Y. 
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Let BX= x and BY= y, both measured positive, outwards, from B; and 
Jet BA = a, BC= c (also measured positive, outwards, from B, where A, 
B and C are any three consecutive points of the measure; then 

ac (I+ m) 
x= me-a 

ac(I +m) 
Y = ma-c 
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Path Curves in Three Dimensions 

General case 

If we imagine the whole of three-dimensional space to be transformed 
onto itself by the most general one-to-one projective transformation, it 
can be shown that there will necessarily be just four points which will 
be self-transforming. In the most general case these will stand at four 
corners of a tetrahedron. Thus we will have four invariant points, four 
invariant planes, and six invariant lines, grouped into three skew pairs. 
All the points of each invariant line will be moving in growth measure 
along their line, and all the points of each invariant plane will be moving 
in path curves within their plane. Dually all the planes of each invari
ant line will be turning in growth measure around their line, and all the 
planes (and lines) of each invariant point will be moving in path cones 
within their point. Not only the invariant organism, but also the whole 
system of movement, is always self-dual. 

It is a general rule that, the invariant elements being given, in order 
to determine completely a path curve transformation the same number 
of independent parameters is needed as the number of dimensions in 
which the movement takes place. Thus a system of growth measures is 
completely specified by the giving of one parameter, the multiplier or 
characteristic number. A plane path curve system is completely specified 
by two parameters, a and b, along two sides of the triangle (the third 
parameter c not being independent). Notice however that if we are con
cerned to know only the shape of the curves, and are not interested in the 
size of the stepping with which the transformation moves round them, 
then one parameter only is needed which is most easily expressed as the 
ratio a:b, or;\ = alb. 

Now it is easy to see that just three parameters, given independently, 
will completely determine the three-dimensional case, provided that 
they do not work along three coplanar lines; obviously, from what has 
gone before, it would not be possible for them to do so. 
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II 
0 r 

be 

Figure 147. Any three tnultipliers, a, b, and c, being given, the 1noven1ents 
along all six sides of the invariant tetrahedron are already detertnined. 

Suppose that we fix three arbitrary multipliers with logarithms of a, b, 

and e, along the lines WY, YZ, and ZX, respectively (Figure 147). By our 
triangle rule, considering triangle WYZ, we know that we would then have 
-ab along ZW or, perhaps more conveniently, +ab along WZ, and this we 
mark in our diagram. Similarly along XY, considering triangle XYZ, we 
have -be, or +be along YX. Now along XW. considering triangle XZW. we 
have -abe, or, along WX, +abe. But if we consider triangle XYW we shall 
see that we again have +abe along WX; the thing is consistent. 

Thus we see that the giving of three arbitrary parameters has com
pletely determined path curve systems within all four invariant planes. 

Now we take any point P, not on an invariant plane (Figure 148). 
We join XP and mark the point X' where this line cuts plane WYZ. We 
note that X' can go anywhere we wish along line XP, but in marking X' 

we have used up our last freedom. We let WX' meet ZY in point S, and 
join SX. Where WP meets SX we mark the point W', the point in which 
WP meets plane XYZ. Similarly, by finding points T and U, we can find 
points Y', in which YP meets plane WXZ, and Z', in which ZP meets 
plane WXY. 

Knowing, from Figure 147, the multipliers along the invariant lines, 
we can now construct the path curves followed by X', Y', Z', W'. Since 
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Figure 148. This is hou, a general point P of space, is projected fro,n the 
invariant points W, X, Y and Z on to the faces of the tetrahed1vn ivhich are 
opposite to the111. 

307 

the four lines XP, YP, ZP and WP are concurrent, and projective transfor
mations leave properties of incidence unchanged, we can be sure that the 
lines into which these four will transform at the next step of the process 
will also be concurrent, and their common point will be the next one in 
the path curve which is being traced out by the point P. In this way it is 
easy to draw three dimensional path curves. Of course, in actual practice, 
it is only necessary to draw two of the plane path curves, the other two 
being taken for granted, but even so it will be found to be a considerably 
toilsome process to get anything like a full drawing of such a set. 

Having made such a drawing we shall find that we have a family of 
invariant curves, weaving through all space, all of them passing through 
two of the invariant points, and none of them passing through the other 
two, and all of them osculating two of the invariant planes and none of 
them osculating the other two. 
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We note that, being given the invariant tetrahedron, we have only to 
move any point P arbitrarily to some point P', to have the whole proc
ess determined. Or, and this is in effect the same thing, we can specify 
multipliers along any three non-coplanar invariant lines. However, if 
we are interested only in the shape of the curves, all we need to specify 
is the ratios a:b:c, this involving fundamentally only two independent 
numbers, say alb and ale. In later work we shall sometimes have to 
change the nature of our parameters, but the number of them which will 
be needed will never change. 

Now let us consider the infinitesimal case - the limit - where the 
points are in smooth movement around their curves, the true picture of 
what we may call a linear flux. Every point of space is moving along its 
determined curve. At any given moment it is moving along the tangent 
line to the curve at that point, and again at the given moment the tangent 
line is moving in the osculating plane of the curve at that point. Dually 
every plane of space is moving around its tangent line and in its oscu
lating, or pivot, point. The tangent line moves in such a way that it is 
always tangent to its curve; it traces out a developable smface. 

It is clear that our transformation assigns to every point of space 
a line, along which that point is momentarily moving in the trans
formation. But we know that whereas the lines of space form a four
dimensional manifold, the points form only a three-dimensional one. 
Thus it is that if we choose any arbitrary line to cut through our path 
curve system, it is probable that it will not be a tangent to any of the 
curves of the system. For every line of space that is tangent to one of 
the curves, there will be infinitely many lines which are not. Those 
lines which are tangent to any of the curves we call path lines of the 
system. 

Thus we may say that any given path curve system chooses, out of the 
=4 lines of space, =' lines for its set of path lines. That is to say that it 
determines a complex of lines. It is interesting to consider what sort of 
complex this must be. 

Consider any path line, m, of the system, and the line m' into which it 
transforms after an infinitesimal step of the transformation. Figure 149 
gives a very 'diagrammatic' picture of what we are considering. Since 
this is an infinitesimal step which we are considering, we may reckon 
that the two lines meet in the point P whose path line is m, and that 
therefore they lie in one plane, re, the osculating plane of P. Consider any 
point A of line m. It will transform into point A' of m', and clearly line 
M' will be the path line of the system assigned to A. 
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Figure 149. The n10111enta1y n1oven1ent of a path line. 

If we think now of the range of points A of 111, and the range of 
points A' of 111' into which they transform, since it is a projective trans
formation, it is clear that they form two projective ranges. Therefore 
their joins envelop a conic. This conic contains the path lines of all the 
points of m. Since plane rr is turning about line 111, it is clear that no 
other point of rr could possibly have its path line in rr. Therefore we 
may say that all the path lines of the system which lie in plane rr form 
a conic envelope in that plane. And this holds for every general plane 
of space. 

We may say therefore that the path lines of a path-curve system form 
a quadratic, or second order, complex. 

If on the other hand we consider any general line of space - not a 
path line of the system - and watch its progress in the course of the 
transformation, we see that it will move skew to itself, and doing so 
will generate a ruled surface. Obviously this surface will be completely 
covered with path curves, and every point of the surface will always 
transform into another point of the surface. Thus we see that in three
dimensional space we have the possibility not only of invariant curves, 
but of a multitude of invariant surfaces. These surfaces are of great 
beauty and, some of them, of great importance, so we must now study 
them more closely. 

Watching the progress of a general line of space through the moves 
of the transformation is not the only, or even the most usual, way of 
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generating such a surface. We have only to draw any arbitrary curve 
whatever through a path curve system and take the path curves pass
ing through every point of this arbitrary curve. The set of path curves 
so chosen will form a surface, often of immense complexity, and a 
moment's thought suffices to show us that this must be an invariant 
surface. (The method described above, watching the movement of a 
general line of space, is clearly just a particular case of this more gen
eral method.) 

Obviously this is an extremely arbitrary way of forming an invariant 
surface, and its very arbitrariness gives us infinite possibilities of varia
tion. By the same token it seems likely that most of these forms are of 
little interest or significance. 

But there are certain surfaces which are of great importance. These are 
so fundamental to the nature of the path-curve system from which they are 
derived that we will call them the fundamental smfaces of the system. 

Suppose that to generate our surface we start, not with an arbitrary 
curve through the system, but with a path curve of some other transfor
mation working within the same invariant tetrahedron. Let us think of 
this path curve as being drawn in blue. Through every point of our blue 
curve we draw the path curves, say in red, of our first transformation. We 
now have an invariant surface covered with red curves. Now the property 
of being a path curve is a projective one, and as the red transformation 
works upon the blue curve, this property will be retained. Thus we see 
clearly that our invariant surface will be covered with two sets of invari
ant curves, belonging to two different transformations within the same 
invariant tetrahedron. The surface will be covered with a network of 
path curves. And now we can begin to move across the diagonals of the 
network, one red and one blue, two red and one blue, two red and three 
blue, just how we like, to form as many different sets of path curves as 
we wish. This is the same way in which we moved across the net of path 
curves in Figure 146. 

Thus although we form such a surface from the path curves of one 
transformation we find that there is an infinite set of transformations, 
all within the same invariant tetrahedron, each of which can completely 
cover the surface with its path curves, and from each of which the 
surface could have been equally easily derived. Whereas an arbitrary 
surface such as is described above is covered with only one infinite fam
ily of path curves, each fundamental surface is covered with an infinite 
family of such infinite families. The range of such surfaces possible is 
much more limited, and many of them are of great significance. 
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Two imaginary points: first case 

Our next task is to consider what happens if two of the invariant points 
become conjugate imaginary. This can of course happen in a multitude 
of ways, but there are two cases of special importance and these we will 
discuss in detail. 

Firstly we will let Zand W of Figure 147 become I and J of the hori
zontal plane in our new tetrahedron. Our tetrahedron, shown in Figure 
150, will now contain two real points, X and Y, two imaginary points, 
I and J; two real (and horizontal) planes, XIJ and YIJ, two imaginary 
planes; two real lines, XY and the line at infinity (IJ), and four imaginary 
lines. The two imaginary planes are represented by involutions of planes 
carried by the line XY, and the two pairs of imaginary lines are repre
sented by involutions of lines centred in X and Yin the horizontal planes. 
For more details about these imaginary elements the reader is referred to 
my book, Projective Geomet,y. 

Along the line at infinity, one of the two real invariant lines of the 
transformation, we shall have a movement in circling measure between 
the invariant points I and J. This will give us constant, equiangular 
movement. Each of the real invariant planes contains an imaginary 
triangle, XIJ and YIJ. The path curves in these planes will therefore be 
logarithmic spirals, the rate of turning being the same, of course, in each. 

PlaneXIJ 

x 

Pline YIJ 

y 

Figure 150. This is the real and visible part of a se,ni-i,naginary tetrahedron. 
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The spirals will usually be of different constant multipliers, and the gen
eral form of the curves will depend to a large extent upon whether, while 
the spirals turn in, say, an anticlockwise direction, they are both working 
inwards, or whether one works inwards and the other works outwards. 
Both possibilities are valid. 

How does a general point of space move within such a transforma
tion? The process is quite simple. In Figure 151 we see a point P set 
between the invariant planes of the transformation. We let XP and YP 
meet the bottom and top planes in Tand S, respectively. Note that XS and 
YT are necessarily parallel. Now Sand Twill be moving with equal, and 
constant, turning speed, say anticlockwise, each in its own logarithmic 
spiral; we suppose in this case that Sis working inwards while Tis work
ing outwards. After one step of the transformation S has reached to S', 
and T to T. Since they are both turning in perspective with the circling 
measure between I and J, XS' and YT' will still be parallel; YS' and XT 
will be concurrent and their common point, P', will be the next point in 
the path curve followed by P. 

A fully perspective view such as is seen in Figure 151 is very tedious 
to draw, as it is necessary to construct perspective views of the spirals in 
the top and bottom planes. It is easier and quicker to make drawings in 
orthogonal perspective, seeing the thing from the horizontal direction. 
The two invariant planes then appear as horizontal lines with points 

x -.s· 
\... .... . s 

T 

Figure 151. The method of plotting how a point moves in the course of the 
path-curve transforn1ation. 
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Figure 152. A typical path curve ·within the seniiwhnaginary tetrahedron. 

moving in geometric series. The details of the construction are perfectly 
straightforward and need not be described here. 

If, as in Figure 151, one spiral winds inward while the other winds 
outward, the general form of the curves is as in Figure 152. The curves 
wind infinitely outward from one pole and inward toward the other. If 
on the other hand both spirals are winding in the same direction, then 
the curves take on a vortex-like appearance, winding from the infinite 
periphery inward toward one of the finite poles only, as shown in Figure 
153. 

If we were to take, let us say, the curve shown in Figure 153 (which 
we shall call the A-curve) and use this as our generating curve for an 
invariant surface, and insert this into the complete transformation-field 
which produces, amongst an infinitude of others, the curve of Figure 
152 (the B-curve), and if we were to draw all the B-curves which pass 
through the points of the A-curve, the totality of these B-curves would 
form for us one of the fundamental surfaces associated with this particu
lar invariant tetrahedron. Having got our surface we would find that not 
only would it contain an infinite family of B-curves, and an infinite fam
ily of A-curves, but also an infinite family of other infinite families, each 
associated with one of the other transformations which work within this 
tetrahedron. The surface would be very difficult to draw (by this means), 
harder still to imagine, but of great interest and beauty. 



314 THE VORTEX OF LIFE 

Fortuuately an easier way presents itself. Amongst all the transfor
mations which are possible within this tetrahedron there is a family of 
special ones, in which the spirals of the top and bottom planes both wind 
inward with the same constant multiplier: they are congruent spirals. In 
such a case, all the path curves become plane logarithmic spirals, each 
lying in its own horizontal plane. Such curves can, just as well as any of 
the others, be used as generating curves for our fundamental surfaces, 
and of course they are much easier to work with. 

So we can say now that to form a fundamental surface within this 
tetrahedron, all we have to do is to place within it any horizontal plane 
containing a logarithmic spiral centred on the point in which line XY 
cuts this plane. All the path curves of the system which pass through the 
points of this spiral form the surface we want. 

The spirals possible form a spectrum with multipliers (per radian 
turned) stretching all the way from zero to infinity. In the former case we 
have a circle, and in the latter a straight line radiating from the central 
axis. The latter case gives us ruled surfaces of spiralling form, and the 
former a series of surfaces of revolution. These turn out to be of such 
importance that we must study them in more detail. 

Suppose we have a transformation of a similar kind to that of Figure 
152, and we place within it a horizontal circle centred on the axis XY, 
and we now take all the path curves which pass through the points of 

-------'-'x!~------
q= 
f 

Figure I 53. The type of path curve which is produced when A becomes negative. 
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Figure 154. The nzethod for constructing the spiral path curves ivhich lie on 
an egg-stuface. 

this circle. What sort of surface will be produced? It will be an egg
shaped surface, rather sharper towards X and blunter towards Y. It will 
be completely covered with spiralling curves, winding infinitely out of, 
and into, the two poles at X and Y. There will be an infinite family of 
other transformations which can each cover it similarly, but each with 
curves that spiral at different pitch. One such surface, with one family of 
covering curves, is shown in Figure 154. 

We suppose that the curve on the top plane is winding inwards with 
a multiplier of 2 for every 60° turned, and on the bottom plane that 
it is winding outwards with a multiplier of 11/ 2 for 60° turned. These 
curves are represented by geometric series with these constant ratios 
along the top and bottom lines of the drawing. The construction now 
continues in the same way as for the plane curves pictured in Figure 
17. Successive points A, B, C, D, and so on show the heights which a 
point will have attained in successive steps of the transformation and 
its distance outwards from the central axis. We have now only to add 
the rotation between the imaginary invariant points I and J. We mark 
the midpoint between B and the axis, the midpoint between C and the 
axis, etc. The curve will go from A to the first of these midpoints, to the 
second of them, and then to D before disappearing round the other side 
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of the surface. And so on. Elementary use of trigonometrical tables will 
easily allow one to cope with transformations which turn at some other 
angle than 60°. 

Proceeding similarly we can make pictures of the surfaces of revolu
tion for transformations of the type shown in Figure 153. These come 
out to be beautiful funnel-like vortices. 

We have now to develop a system of parameters which will enable 
us exactly to determine, and control, these kinds of curves and surfaces. 
We cannot do it with three straightforward parameters, a, b, and c, along 
edges of the tetrahedron, as we did it with the all-real case, since we now 
only have two real edges left. One of these is the line at infinity, and here 
we have rotation with respect to I and J. This movement we designate 8, 
and of course it is always measured in radians. 

We shall be specially interested in the shapes of the egg surfaces, 
pictured in Figure 154, and these shapes we know, from what has gone 
before, are cornpletely determined by the ratios of the logarithms of the 
multipliers along the horizontal lines through X and Y, that is to say, in 
the three-dimensional case, the logarithms of the multipliers of the loga
rithmic spirals in the planes XIJ and YIJ. When, as often happens, we are 
not interested in the size of the discrete stepping of the transformation, 
but only in the shapes of the forms, we let 8 equal unity, and we work 
out the multipliers of the spirals, per one radian turned. 

Now we know that the log multiplier (parameter) along the X-plane, 
plus the parameter along the Y-plane, gives the parameter of the growth 
measure which is then produced working along the central axis, from Y 
to X. So we proceed as follows: We let e be the average of the parameters 
on the X- and Y-planes. The X-parameter then becomes e + a and the Y
parameter e - a, where a is half the difference between the X-parameter 
and the Y-parameter. It is then clear that the parameter of the growth 
measure moving from Y to X will be 2e. Hereafter, as far as the case of 
the semi-imaginary tetrahedron is concerned (that is, two real and two 
imaginary invariant points) we shall not be dealing with what we have 
called above the X-parameter or the Y-parameter. We shall be dealing 
with the three parameters i:, a, and 8. 

Our egg and vortex forms will be generated thus: We have a 8-rotation 
moving with constant speed along the line at infinity ( circling measure 
between I and }), we have logarithmic spirals moving inwards in the 
X-plane with a log-multiplier of e + a per one radian of e turned, and 
logarithmic spirals moving outwards in the Y-plane with a log-multiplier 
of e - a per one radian of 8 turned. Along the central axis we have a 
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Figure 155. The 111oven1ents associated lvith the positive para111eters. 

growth measure moving from Y to X with a log-multiplier of 2e. The 
shape of the set of egg- or vortex-smfaces is exactly determined by the 
parameter A where 

A=e+a 
E-a 

Figure 155 shows us the positions and the directions of these param
eters. Notice that, by the triangle law which was described in the preceding 
chapter, since the parameters along the two horizontal lines are e + a and 
e - a, the one along XY must be -2e. This, of course, implies +2e from 
Y to X, and this is the reason why this parameter, 2e, must be considered 
positive when it is running 'against the tide,' that is to say away from Y. 
Notice also that, although the actual parameters which we are now using 
are different from the ones we employed in the all-real case, the number 
of independent ones - three - is unchanged. 

If we are interested also in the size of the stepping of the transforma
tion, then of course we have to have some other value than unity for e, 
according to the size of the step. And then of course there will be conse
quent changes in e and a. In such a case, where e ;,, I, we generally refer 
to our parameters as e', a', and 6'. Now we know that the size of the 
angular stepping in a circling measure is a geometrical equivalent of the 
argument of a complex number, and arguments behave in a similar way 
to logarithms, that is they add for multiplying and subtract for dividing, 
and so on. Since e and a are both logarithms, it means that e, a, and e 
always change in direct proportion to one another. 
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Thus we may say that the complete transformation is determined by 
the three parameters e', a', and 9'. Disregarding the size of stepping, the 
complete form is determined by the ratios e:a:8. The form of the eggs or 
vortices is determined by the ratio e:a, or more conveniently by A= (e 
+ a)/(e - a). But the pitch of the spirals covering the egg is determined 
by the ratio e:e. 

We are now in a position to picture the whole spectrum of possible 
forms for the fundamental surfaces which are given by a circular cross
section, as A varies. The drawings are vertical cross-sections. 

When A = 1 (Figure 156a), the surfaces are spheroids, with elliptic 
cross-sections between the invariant planes, and hyperbolic outside 
them. 

As A increases above unity (Figure 156b), the eggs become pointed 
above and blunted below. Notice that the amount of sharpening and 
blunting is exactly comparable and is shown by the size of A. One can 
never get an egg which is slightly sharp at one end and very blunt at the 
other, or vice versa. 

As A approaches = (Figure 156c), the egg shape approaches the 
cone. 

As A 'passes through infinity' (Figure 156d), the cone bends slightly 
inward to make a vortex. As A increases towards -2, the vortex becomes 
more and more sharply bent. 

When A= -2 (Figure 156e), the sides of the vortex have assumed a 
hyperbolic cross-section. (This follows from elementary algebra. If A = 
(E + a)/(e - a)= -2, then a= 3e. Substituting this into the formula for A 
we have A= 4e/(-2e). That is to say that the movement along the hori
zontal line through Y is of equal multiplier with the movement from Y 
to X, both are 2e. Thus the pencils of lines in X and Z are projective and 
must meet on conics.) 

As A approaches -1 (Figure 156f), the vortices become more and 
more sharply curved. 

When A = -1 (Figure 156g), the path curves degenerate into plane 
spirals, indicated in cross-section as horizontal lines. 

As A increases from -1 to zero (Figures 156h, i and j), the vortices go 
through exactly the same metamorphoses as from -= to -1, but upside 
down. Congruent forms are given by reciprocal values of A. 

When A= 0 (Figure 156k), the surfaces have again become cones. 
Between zero and unity (Figure 1561) we have the same metamor

phoses as between unity and infinity, but upside down. Again congruent 
forms are given by reciprocal values of A. 
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a. Spheroids 
A=I 

e. Vortices lvith 
hyperbolic 

cross-sections 
"!,. =-2 

i. Vortices lvith 
hyperbolic 

cross-sections 
"!,. = _1;, 

Figure 156. 
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f Vortices 
-2<A<-J 

j. Vortices 
-

11, < "!,. < 0 
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It would perhaps be useful to give here a sample of the calculations 
needed to construct a picture of an egg-form with given parameters. We 
let A = 2.10 and e = 1.50. It follows that 

1.50 +a= 2_10 
1.50- a 

whence a = 0.532. 

This gives us an expression of 2.032/0.968 for A. The top and bottom 
lines of this fraction give us the parameters for the growth measures 
along the top and bottom lines of our drawing, for one radian turned in 
the 6-measure. However, we shall draw our form for a measure of 30° 
turned. These parameters have then to be multiplied by 30n/180, giving 
1.06 for the top line and 0.507 for the bottom. Antilogging (base e) these 
we have multipliers for the top and bottom lines of 2.90 and 1.66. 

We now make our drawing like Figure 154), but using these multipli
ers for our geometric series (Figure 157). And of course referring again 
to Figure 154 we shall have to multiply the distances between A, B, C 
and so on, and the central axis, not only by 0.500 (sin 30°) but also by 
0.866 (sin 60°) in order to draw our path curves on the egg. 

We next have to investigate a little more closely what is the meaning 
of the parameter a. To do this we shall need to repeat Figure 154, but 
this time with the parameters along the X-line and the Y-line the same as 
one another. In other words we make pictures of our egg-surfaces with 

Figure I 57. This diagram shows how the parameters e and A actually work in 
practice. 
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11. = 1, or, which is the same thing, with a = 0. We then find ourselves 
with a set of ellipses in the plane diagram, representing spheroids in the 
three-dimensional reality. 

This is really just a special configuration of Figure 146, and these 
conics and straight lines, representing spheroids and horizontal planes 
through the points of a growth measure along XY. form a pe1fect grid 
for path-curve metrics. Now a shows the multiplicative factor for the 
distance of the point from the central axis, as measured between the 
spheroids of the system. 

We have made our geometric series along the X- and Y-lines with 
a multiplicative factor of 1.492, giving a logarithmic parameter of 
0.4. Horizontal lines through consecutive pairs of points on any of 
the ellipses will cut the line XY in points of a growth measure with 
a parameter of 0.8. Reference to the diagram will show that this 
would mean every other line of those that have been drawn; therefore 
we see that those lines which have been drawn must have a growth 
measure, from Y to X, with a parameter of 0.4. Remembering Figure 
155, we realize that this movement will have a positive e-value in 
this direction. It is easy to see that each horizontal line cuts alternate 
ellipses with a multiplicative factor of 1.492. Therefore to go from 
one ellipse to the next but one involves a parameter of 0.4 and to go 
from one ellipse to the next, consecutive, one, a parameter of 0.2. 
Notice that a works with e along the inwards movement of the top 
line; and against e along the outward movement of the bottom line; 
on both counts therefore it is clear that a represents an inward move
ment in consecutive steps of the transformation - the distance will 
be divided by a each step. 

Now suppose we have a transformation which takes a point from A to 
B to C to D and so on, while 8 turns by one radian per step. Horizontal 
lines through these points cut XY with a parameter of 0.4. This we know 
is 2e, therefore for this transformation e must be 0.2. But the points are 
moving inwards through the spheroids of the system with a parameter of 
0.2, that is a= 0.2. Therefore 

11.=e+a 
e-a 

0.2 + 0.2 =----
0.2 - 0.2 

which in this case we are justified as representing as =. This is the 
conical case of Figure 156c. 



322 THE VORTEX OF LIFE 

However, if the point moves from S to T to U to D and so on, the 
horizontal lines are moving with a parameter of 0.8 along XY, giving a 
value of 0.4 for E. We are still moving inwards through the spheroids of 
the system with a parameter of 0.2, so in this case 

A=s+a 
E-a 

0.4 + 0.2 =---
0.4 - 0.2 

=3 

This is a case like Figure 156b. 
But if we let the point move from L to M to N to O and so on, we see 

that s = 0. 2 but a = 0.4. In this case 

E+ a 
A=s-a 

0.2 + 0.4 =---
0.2 - 0.4 

=-3 

This is the case of Figure 156d, a vortex curve. 
To sum up we can say: 

s is half the parameter with which the transformation moves along the 
central axis, from Y to X; 

a is the parameter with which it moves inwards through the spheroids 
of the system; 

E + a is the parameter with which the logarithmic spiral winds inwards 
on the X-plane; 

E - a is the parameter with which the logarithmic spiral winds outwards 
on the Y-plane; 

A is the parameter which shows the shape of the egg-surface generated 
by a horizontal circle, while E is the parameter which shows the 
pitch of the spirals which lie on it, all these being calculated against 
a constant 8-value of one radian turned. 
When we come to consider the fundamental surfaces which can be 

generated by putting not a circle but a logarithmic spiral on a horizontal 
plane through the path-curve system, we enter a realm of extraordinary 
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subtlety and complexity, and of great beauty and interest. The surfaces are 
of two general kinds: spiral eggs and spiral vortices. If we tum once again 
to Figure 17 and imagine a surface which passes through the right-hand 
edge of the inmost egg, winds round the back, reappears on the left-hand 
edge of the second egg, winds round the front to the right-hand edge of the 
third egg, and so on, we have an idea of the spiral egg. The spiral vortex 
would work similarly with the vortex forms of that diagram. 

Thus we see that the vertical cross-section of such a form is a family 
of cross-sections associated with a A-value of one of the forms generated 
by a circular horizontal cross-section. In order to gain control of these 
we need to introduce two new parameters, ~ which is the log multiplica
tive factor of the horizontal generating spiral (for e = one radian turned, 
of course) and µ which we define as 

Now µ gives us the A-value of the vertical cross-sections of our sur
face: in other words, if µ = 2 then the cross-sections of our surface will 
be the same in shape as those which horizontal circles will generate in a 
transformation whose A is 2. 

Strange things now become possible. Suppose that e = 0.8, a= 0.5, ~ 
= 0.7. Then we find thatµ= -5.0 and A= +4.3. We have egg-like curves 
lying, along all their length, on a spiral vortex. 

But if e = 0.2, a = 0.3, ~ = -0.4, then µ = +0.3 and A = -5. Here we 
have vortex-like curves lying on an egg-like surface. Such things are 
hard to draw, and harder still to imagine. Probably the only effective way 
to tackle them is to make models of them. 

I, v 
<---,Ow 

Iv 

Figure I 58. The constructions needed for ,naking a Perspex 1nodel of the path 
curve Slufaces. 
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This system of parameters enables us to have complete control of what 
we do in the realm of these surfaces. If we keep µ and ~ constant, we have 
a simple relation connecting s and a. If we now vary s, putting in the con
sequent values of a, we keep a constant surface but we run through the dif
ferent kinds of curves with which different transformations will cover it. 
But if we keep sand a constant we get a simple relation between µand~· 
Now by varying ~ we run tlu·ough the gamut of the different surfaces pos
sible within a constant transf01mation; in each case the consequent value 
of µ gives us a clue as to the shape of each smface. We may not be able to 
imagine what it will look like, but we know immediately what it will do. 

Probably the simplest way to make a model is by 'layering.' Suppose 
our model is to measure 50 mm upwards from Y to X: we take twenty 
pieces of Perspex (Plexiglas) each 2.5 mm thick and draw on each the 
horizontal cross-section of the surface at that height. When they are 
placed one on top of the other, the eye makes a fairly satisfactory integra
tion of the separate curves into the appearance of a surface. 

Here is how the calculations for such a surface would start. Let us 
suppose that s = 0.3 and a = 0.1 and that we have decided on some value 
of~· Figure 158 shows the thing in elevation. 

On the top of our first piece of Perspex, at a height of 2.5 mm above Y 
(the height of A in Figure 158) we draw a logarithmic spiral with our given 
parameter ~· Now to draw our second layer, at a height of point B, we must 
calculate by what multiplicative factor each point of the original spiral has 
been carded outward, and by what 8-value it has been rotated. To do this we 
must find out how big a step of the transf01mation is involved by moving 
along the central axis from A to B. We find the cross-ratio concerned to be 

YB XA 5.0 47.5 
sx· AY= 45.o · 2.5 

= 2.11. 

Ln 2.11 = 0.747 

Now one complete step of the transformation will be 2s, so the step 
from A to B represents 0.747/0.6, that is 1.245 times a complete step. 

A= 0.3 + 0.1 
0.3 - 0.1 

A= 0.4 
0.2 

so the multiplicative factor along the top line will be 



APPENDIX 2 

antiln (0.4 x 1.245) = antiln 0.498 
= 1.646 
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Suppose a point of our spiral at the height of A cuts the page of our 
paper at some distance w from the central axis. The line from Y through 
this point will cut the top line of the model at a distance of 20w from X. 
We know that the parameter e + a works inwards along this line, so we 
must divide this distance by our multiplicative factor 1.646, giving us a 
distance outwards of 12.2w (point V). Obviously the distance outwards 
of the new point at the height of B will be one tenth of this, that is l .22w. 
Hence we see that for the move from the height of A to B every point on 
our spiral will have its distance from the centre increased by a factor of 
1.22. Also it will have experienced a rotation in the 8-direction of 1.245 
radians or about 71 °. 

This enables us to draw our new spiral for the height of B, and further 
similar calculations give us those for the other pieces of Perspex. 

Two imaginary points: second case 

The other example of special interest in the sem1-1maginary case is 
when we keep point Yon our page and let X move to infinity, in a direc
tion at right angles to the plane XIJ. The invariant plane through X now 
becomes the plane at infinity itself. 

If we now place the infinite centre of a negative-Euclidean space or 
counter-space at Y we find that this tetrahedron is wonderfully knit with 
the whole interplay between negative and positive space. Two of its ele
ments, the plane at infinity and point Y, are the positive and negative 
absolutes themselves. In the positive absolute our tetrahedron has six 
elements, real point X and real line at infinity, two imaginary lines car
ried by X and two imaginary points I and J, carried by the line at infinity. 
The imaginary points I and J, are points of the absolute imaginary circle 
which presides over Euclidean space, the imaginary lines are tangents to 
it, and point X and the line at infinity are pole and polar with respect to 
it. In the negative absolute we also have six elements, the real (horizon
tal) plane through Y, and the line YX, two imaginary lines carried by the 
point Y (in its horizontal plane) and two imaginary planes carried by the 
line YX. These planes are tangent planes of the imaginary cone which 
presides over the negative space, the imaginary lines also belong to this 
cone, and the real line YX and the horizontal plane through Y are pole 
and polar with respect to it. 
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Figure 159. A vortex path curve siuface, 1-vith a negative A and one of the 

invariant points at infinity. 

This tetrahedron can be said not only to span all space, but to be inter
woven most subtly with the positive and negative interconnections of it, 
and surely the path curves with respect to it must be of interest to us. It 
is quite easy to draw pictures of them using the parameters e - a along 
the horizontal plane and 2e along the central axis. The general form of 
the fundamental invariant surfaces generated by horizontal circles can 
be fairly easily imagined by considering Figures 156 and imagining the 
top invariant point removed to a very great distance. When A = I we 
have a system of paraboloids of revolution. When A is negative we have 
beautiful, and very important, vortex forms. Figure 159 shows one such, 
and it seems worth while putting on record the method of determining 

its A-value. 
We have chosen a multiplier of 2 along the horizontal plane, and one 

of 1.5 along the vertical axis, and, for the sake of convenience in draw
ing, a turn of 60° per step of the transformation. For the moment we 
consider the thing as a plane diagram; the arrows show the directions 
of movement round the sides of our invariant triangle which we have 
conventionally adopted as our standard directions; but we remember 
that 2e is a parameter which has to be considered positive when work
ing 'against the stream,' that is, away from Y Now in moving from A to 
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B we go horizontally outwards from Y with a factor of 2, that is e' - a' 
= ln 2 = 0.693. At the same time we move with a factor of 1.5 from Y 
towards X; this gives a positive value of 0.405 for 2e'. It follows that a' 
= -0.49; therefore 

A= e' + a' 
e' - a' 

0.203-0.49 
0.203 + 0.49 

= -0.414. 

This is a case of Figure 156j. 
Notice that since these calculations have been made against a 8-move

ment of 60° we would have to multiply both e' and a' by I 80/60rr to 
convert them to values of e and a balanced against one radian turned. 

Four imaginary points 

The next thing to consider is what happens if all four of our invariant 
points become imaginary, in two conjugate pairs. The whole of our 
invariant tetrahedron now passes into the imaginary with the exception 

m M 

l 
• 
" 

m 

• T 

Figure 160. A construction 1vhich helps in dra1vi11g path curves 1vith an all
bnagina,y tetrahedron. 
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of two real lines: the central axis, bearer of tbe imaginary pair X and Y, 
and, let us say, the horizontal line at infinity, bearing I and J. 

Drawings of curves and surfaces now become rather more difficult. 
It is best to proceed by making an imaginary analogue of Figure 157. 
The ellipses of this diagram passing through X and Ybecome hyperbolae 
containing the imaginary pair X and Y, and representing single-sheeted 
hyperboloids in the three-dimensional reality. 

If we have an imaginary pair X and Y along the central axis, with a 
given amplitude, 2a, Figure 160 gives an easy way of constructing a 
hyperbola which shall contain these points. Take a point T distant a from 
the axis. Now draw any horizontal line m, to cut the axis in M. The dis
tance MT measured from M along m gives two points of the hyperbola. 
The other hyperbolae of the system are obtained by a simple projective 
stretch parallel to the x-axis. 

Now our path curves will be controlled by the three parameters: 
a, measured in radians along the circling measure of the central axis 
controlled by the imaginary pair X and Y,· b, the logarithm of the mul
tiplicative factor outwards, measured through the hyperboloids of the 
system; and c, measured in radians along the line at infinity between the 
imaginary pair I and J. 

Fundamental invariant surfaces are obtained in the same way as in the 
semi-imaginary case, by putting logarithmic spirals through the system, 
centred on the central axis, and taking path curves through their points. 
The details of the constructions necessary can be left to the reader. 
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The Determination of A 

The projective method 

This is the method which was first devised, and is still the one which I 
mostly use. The main outlines of the method are described on page 60. 
In essence we need to know any two diameters of the egg-form with 
their respective heights above the bottom pole, and we can calculate the 
unique value of A which will put a path curve through the top and bottom 
poles and through the ends of those diameters. If d,, is the diameter at a 
fractional height h,, measured upwards from Y using the distance XY as 
unity, then A is given by 

(If one consults Figure 154 and remembers that the intervals along 
the horizontal lines through X and Y are geometric series representing 
the in- and out-winding logarithmic spirals of the top and bottom invari
ant planes, by the use of similar triangles the above formula is easily 
derived.) 

It is not necessary to use just 7 levels (i.e. dividing the total height 
of the bud by 8) but this is found to be an effective number for a good 
balanced result. 

When doing hand measurement it is convenient to express all 
diameters at the various levels in terms of the diameter at level T. the 
midpoint of XY, as unity. This can be done quickly and easily at the 
time of measuring. We let A, B, C, and so on, represent the diameters 
at levels A, B, C, expressed in terms of the diameter at level T as unity. 
The elementary arithmetic shows that the A-values at the various levels 
are found as: 

329 
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Level A-value 

A 
log (4A) 
log (7/4A) 

B 
log (2B) 
log (3/2B) 

c log (4C/3) 
log (5/4C) 

D 
log (5/4D) 
log (4D/3) 

E 
log (3/2£) 
log (2E) 

F 
log (7/4F) 
log (4F) 

Having found all these we find the mean. 
This is still a tedious calculation, especially if it has to be done many 

times over for a large number of buds, and it can be greatly shortened by 
a further consideration. It is a fact that for any given value of A, there is a 
whole field of egg-like forms, one within another, and all of these can be 
derived from any one of their number by a simple horizontal stretch (a 
stretch at right angles to the XY axis). This means that for any given value 
of A, the ratio of the diameter at any level to that of the diameter at level T 
is constant, whether the egg-like fonn being measured is a wide or a narrow 
one. In other words this ratio is fixed simply by the value of A, and is unaf
fected by the absolute diameter of the form. Thus with the help of the little 
formulae given above one can easily arrive at the graph of Figure 161. 

Along the x-axis we have the diameter at any given level, measured 
in terms of the diameter at level T as unity. Along the y-axis we have the 
corresponding A-values. The body of the graph is made up of six curves, 
one for each of the levels A to F. Having got our diameters at the six 
levels we simply read off the corresponding A-values, and then find their 
mean. It is quite quick and easy. This is how I had done it for years, but 
with the coming of the computer it is easy to program the formula at the 
beginning of this appendix so that the machine will deliver A from the 
measurements of any number of levels which one wishes to make. 

It is quite clear that those levels which are near to the central level, 
T. will give less reliable results than those which are nearer the poles of 
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the form, which suggests that one ought to take a weighted mean of the 
AS derived from the various levels. In fact the reliability of the results 
derived from the various levels varies approximately with the inverse of 
the gradients of the curves in Figure 161. But there is another reason why 
a weighting procedure ought to be followed. The result obtained from 
the diameters at levels A and T gives a value of A which is applicable to 
3/ 8 of the length of the bud, whereas that obtained from the measurement 
at level C concerns only 1

/ 8 of the bud length. It is therefore clear that the 
result obtained from level A ought to weigh more heavily than that from 
level C. It is found that good consistent results are obtained by weighting 
each level according to its distance from level T as measured in terms of 
the transformation movement along the axis XY. The weighting factor at 
level h,, is then given by 

The ;\, for each level should be multiplied by the w for that level, 
and the total result should be divided by the sum of all the w-values. In 
the case where we take 7 levels (i.e. dividing the bud-length by 8) this 
amounts approximately, and sufficiently accurately, to multiplying the 
results from levels A and F by 4, those from levels B and Eby 2, leaving 
the values from levels C and D as they are, and dividing the total of the 
values so obtained by 14. 
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The morphographic method 

This is one of several possible variants of the preceding. Instead of com
paring all diameters at all levels with that at the central level, one com
pares consecutive levels, A with B, B with C, C with D etc. This gives 
us a series of A-values along the length of the bud, from base to tip, and 
the mean of these is taken as the A for the bud as a whole. There seems 
no reason for any weighting procedure, and the straightforward mean is 
accepted. Since the levels being compared with one another are close 
together one would not expect quite such reliable and consistent results 
and experience goes to confirm this. 

However it seems likely that the way in which the A-value varies as 
one passes from the base to the tip might sometimes give useful infor
mation about any peculiarities in the form of the bud, and when this has 
been further researched it may turn out to be a method of some value. It 
is for this reason that I call it the morphographic method. 

The regression method 

I owe this to my friend Graham Calderwood, of Camphill, Aberdeen. If 
we refer back to Figure 154, we see how if we project the ends of the 
diameters, A B C etc. from Y onto the invariant line through X we get 
a series of points which represent for us the branches of the in-circling 
logarithmic spirals which lie in the top invariant plane of the transfor
mation. Thus, if the form which we are measuring is a good path curve, 
we shall find this series of points marking out a geometric series along 
this line. Similarly with the projections from X of the same set of diam
eters, onto the invariant line through Y. Calderwood points out that if we 
take any point of the curve, say A, and consider its projections, from Y 
onto the horizontal line through X, and from X onto the horizontal line 
through Y, we can take the logarithms of the distances of the resulting 
points, from X and from Y respectively, as 'co-ordinates' of point A in a 
system of what we might call path-curve co-ordinates. And if the curve 
we are measuring is a good path curve, this set of co-ordinates, when 
plotted on an ordinary Cartesian grid will lie on a straight line. With our 
new set of co-ordinates we have moved into a new level of experience, 
as it were, and at that level the path curve is an expression of an ordinary 
linear function. 
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At this point we should notice two things. Firstly the distances meas
ured along the invariant line through X, being projections from Y, are best 
called our y co-ordinates, and the others our x co-ordinates. Secondly 
since, when the true movement of the path curve system is inwards 
along the line through X, it will be outwards along the line through Y, 
one of these sets of ordinates will be going, as it were, against the grain 
compared with the other. Therefore if our y co-ordinates are considered 
positive, it will be logical to consider the others negative. 

Now, by the ordinary methods of linear regression, it will be easy 
the find the best fitting straight line for these points, and if the above 
conventions are followed, the gradient of this line will be our param
eter 'A. If we call the distances measured along the line through X our 
x co-ordinates and the others the y co-ordinates, then 'A will be the 
reciprocal of the gradient given by regression. And if we neglect to 
change the signs of one set of co-ordinates, then 'A will be the negative 
of the given gradient. 

This is a quick and easy method of finding 'A, specially when using a 
computer, and gives reliable results. 

Christian's formula 

This useful formula, based on the method of least squares, was first given 
by Barry Christian. In its most convenient form it gives 'A very quickly 
from measurements made at seven levels. The formula is as follows: 

A= 2[ln2(5/3) + ln23 + ln27] _ 1 
ln7[ln(7F/A)] + ln3[ln(3E/B)] + ln(5/3)[ln(5D/3C)] 

where A B C etc. are the measured diameters at those levels. The top 
line is a constant, approximately equal to 10.51. 

Goodness of fit 

When using either of the first two methods described above, the projec
tive and the morphographic, the process itself provides one with a ready 
and easy method of measuring how closely the object being measured 
approximates to a true path curve form. If it is a true path curve form 
the 'A-values at all levels will be identical, and in as far as they vary, the 
object departs from the true mathematical form. Having found the mean 
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A one can quickly calculate the percentage deviation at each level, and 
the mean of these gives us the MLD (mean lambda deviation). 

The MLD is a very sensitive figure. It is found by experience that if 
the MLD is less than 20% the fit is tolerably good, at less than 10% it is 
definitely good, and at less than 5% or 6% it is very good indeed. The 
MLD also suffers from the defect that it is not easy to visualize just what 
any figure for MLD really implies in terms of visible form. 

It is often therefore preferable to use the MRD (mean radius deviation). 
To calculate this we select one of our levels as our standard level and 
assume that the measured radius at that level is correct. Given this, and the 
calculated A for the form, we can calculate what the radius ought to be at 
each of the other levels if the form is a perfect path curve. By comparing 
these radii with those which were actually measured, we can quickly find 
the percentage deviation at each level, and thus arrive at the mean radius 
deviation for the whole form. If our standard radius is r, at fractional 
height, h,, then the radius, r2, at fractional height h2 , is given by 

' 
(

h, (1-h Y);:., 
r, = r, h~ (1-h~)' 

If we now re-calculate the whole thing using another level for our 
standard radius, we shall get an answer which is very nearly the same as 
the first one, although there will normally be some slight difference. For 
ordinary purposes once is enough! But since we are looking for the best 
fit possible, and if we are using the computer, we can easily program the 
machine to calculate the MRD using each of the levels, to select the least 
of these answers, and to deliver that. 

As has been stated in the body of the book, an MRD of less than 4% 
can be considered as fairly satisfactory, one of less than 3% as good, less 
than 2% as very good, and less than 1 % as almost perfect. 

Which method is best? 

If the form which we are measuring is a perfect path curve, all methods 
will give identically the same answer, and it will be the right one! If our 
form is not a true path curve, and no forms of living nature are, then 
there is no 'right' answer. The thing has become an approximation and 
the best any method can do is to give an approximate answer. The ques
tion can then very well be asked which method gives the best approxi
mation; and this is not easily settled. 
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An obvious criterion is to ask: Which method gives a A having the 
smallest MRD? In order to investigate this I took the measurements of 
36 buds selected at random from my notebooks and calculated the AS and 
the MRDs for each of them, by all four methods. The results are given 
in the following table: 

Projective Morphographic Regression Christian's 
n1ethod 1nethod method fonnula 

Number of titnes 15 8 11 8 
that the best result 
\Vas achieved 

MeanMRD 12.17% 2.24% 2.19% 2.18% 

Mean A 1.87 1.96 1.78 1.80 

(The reason why the numbers in the first row add up to more than 36 
is that in several cases two of the methods tied for first place) 

As was rather to be expected the morphographic method, with a mean 
MRD of 2.24% definitely does not do as well as the others, the difference 
between which is marginal, with a slight bias in favour of the projective 
method. For ordimuy purposes I do not think it matters very greatly which 
method is chosen, but when comparing one species with another, or one day 
with another, one should stick to the same method. When one is dealing 
with buds of the snowdrop/primrose group it is noticeable that the projec
tive method usually does better than the others, while when one is dealing 
with buds of the rose group the regression method or Christian's formula 
give definitely lower MRDs. Indeed, with buds of the extreme rose-type, 
the projective method will frequently give values of = or above (that is, 
negative numbers) at certain levels, and obviously in such cases the mean 
value for all the levels is meaningless. Although the projective method in 
such cases cannot be used to obtain a A-value for the bud as a whole, it can 
be very useful indeed by giving infonnation about the peculiarities of the 
form, from the way the A-value varies along the length of the bud. 

Notice that the two methods employing techniques of 'least squares' 
(the regression method and Christian's formula) consistently, but not 
inevitably in every case, give values slightly lower than the projective 
methods. The difference becomes greater with high MRDs. 

I think that the least squares methods, specially Christian's formula, 
are asking rather a different question from the projective methods. The 
former are asking: 'What A will give the best fit to the physical form 
which we have actually measured?' while the projective methods are 
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Figure 162. A construction 1,vhich can be used for calculating the A-value of an 
asyn11netrical fortn. 

asking: 'What A will give the best fit with the invisible geometrical fac
tors which generate this form?' It is for this reason that I prefer to use 
the projective method for my ordinary work, but I have programmed my 
computer always to give me a 'back-up' value by one of the least squares 
methods for checking and for use where it is advisable. 

Asymmetrical forms 

In order to calculate A for an asymmetric form, such as the heart, we 
follow fundamentally the same procedure as with .the original method 
already described, but instead of taking ratios along the lines XZ and 
YZ we have to take cross-ratios. One of the practical difficulties is that 
when we project the points of the curve from X and Y, on to ZY and ZX 
respectively, a number of the points arising are far off the edge of our 
page. It is therefore convenient to project all points on to the central line 
ZT; since cross-ratios are preserved under projection, this is a valid thing 
to do. Referring to Figure 162, the A-value for level Eon the left-hand 
side will be given by 

In [(ZM/MO) · (OTITZ)] 
A= In [(ZT/TO) · (ON/NZ)] 

The value for the right-hand side will be calculated separately using 
measurements for M2 and N2• 

There is an alternative and very useful way of finding this A. For 
simplicity's sake Figure 163 shows it for two levels only, T and C. We 
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project point Z to infinity along line XZ, keeping lines XT and XC fixed, 
and also the points along XY fixed. The new positions of T' and C' now 
lie on a symmetrical egg-like form, which can be treated in exactly the 
same way as the ordinary bud forms, with Figure 161, and so on. 

The infinitely long vortex 

If we have a vortex of the kind described in Chapter 11, and we wish to 
determine its A assuming that the 'true' form reaches to infinity, although 
owing to the limitations of substance only a finite part of it is visible to 
us, we proceed as follows. We divide the visible part of the form into, say, 
seven levels, in the usual way, lettered from above downwards as F, E, D, 
T, C, B, and A. We measure the fraction XT/XF and the natural logarithm 
of this, which we call a, gives us the 2e measure along the central axis. We 
let the radius at F be called/, and that at T, t; then the fraction t!f gives us 
the (e - a) measure along the horizontal invariant line through X. 

We let 
Then 

ln (t/f) = b 
A= (a-b)fb 

We notice that in the case of this sort of vortex b is negative, and the 
task of looking up negative logarithms is often inconvenient; it is there
fore convenient to write A= - (a+ b)fb where b = ln(f/t), that is, always 
putting the larger number in the numerator. 

-----------------

z·=-

z 

Figure 163. An alternative construction for calculating A. 
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N ··········N' 

Figure 164. 

The determination of£ 

2e is the parameter measuring the upward movement of the transfor
mation from Y to X in the course of one radian turned in the 8-rotation 
along the horizontal line at infinity. Thus e is the parameter which 
tells us the steepness of the spirals which lie on our egg. When e is 
zero the spirals become horizontal circles and when it is infinite they 
become vertical lines of longitude. Since these curves are logarithmic 
in character, that is, they wind infinitely into, and out of, their poles at 
X and Y, it is clear that no curves of nature can possibly follow them 
along their whole extent; substance can never reach to infinity! But 
experience goes to show that in many cases in nature - the curves of 
the scales on a pine cone, the petal edges on a bud, the muscle fibres 
in the ventricle, etc. - the path curve spiral is followed very closely 
over a large part of its length; something like the middle three quarters 
or four fifths of the bud. 

To measure e we must first select two points on the curve which mark 
off the middle three quarters of the bud length, approximately, M and 
N (see Figure 164). We must find the multiplier for the transformation 
which carries N' to M'. This is the cross-ratio 

Y N' XM' 
N' X M' Y 

which was measured, on the original of our diagram, as 
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58.7. 59.3 = 8.88 
20.1 19.5 

Ln 8.88 = 2.18 

339 

Next we must find, in the 8-rotation, how far things have turned from 
N to M. We measure NN' and divide it by the radius at level N. 

13·9 = 0.764 
18.2 

Arcsin 0.764 = 49.8° 

This means that N is turned 49 .8° to the left of the central axis. 
Similarly we can find that M is turned 30° to the right. Therefore the 
transformation has turned 79.8° from N to M. We divide this by 57.3 to 
find the number of radians turned ( = 1.39). 

Our parameter now is 2.18 = 1.57 
1.39 

for one radian turned. But this is 2e. So e is 0.79. 

Use of the parameters 

The reader will find that the parameters described here enable one to 
have complete power over these egg-like path curve forms and surfaces. 
We give one very simple example: given A and e, the problem is to draw 
an exact picture of the resulting egg form. 

First we take the equation 

A=e+a 
e- a 

By putting A and e into this we can calculate a. By putting this value 
for a, and the given value of e, into this equation we get a fraction the top 
and bottom lines of which give us the log-multipliers for the geometric 
series of points along the top and bottom horizontal lines of Figure 154. 
However we must remember that these parameters are worked out for 
one radian turned of the transformation, whereas the construction of 
Figure 154 is assuming 60° turned. Therefore these log-multipliers must 
be multiplied by 60/57.3 before they are used. Working this way we shall 
get a true elevation picture of the desired egg-form. 
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Mean Body and Phase-shift 

by Graham Calderwood 

The mean body 

This is the mean, Cartesian position of the N bodies comprising the solar 
system. 

That is, if we have a three-axis Cartesian frame, then the positions of 
bodies relative to it are given by three numbers: x,,, y,, and z,,, where n 
refers to the nth body of the N bodies. The mean body lies at a position, 
also given by three numbers, which are simply the arithmetic averages of 
the N individual ordinates in the respective x, y and z axes. Thus, 

J N 

X=-:I,x11 , 

N11=1 

J N 

y=NL,Y,,, 
J N 

z=-L,z,, 
N n=I 11=1 

Though not a centre (as there are several, different radii), the mean 
body has the character of a centre: it is a 'centroid.' 

The x and y axes usually lie in the ecliptic, with the x axis directed 
along the vernal equinox: the z axis in this case stands at right angles 
to the ecliptic, positive north. The origin of coordinates is usually taken 
either to lie in the Sun, or in the Earth, less often in one of the other bod
ies, and occasionally at some other location, such as the centre of mass. 

. dx .. d 2x 
Using overdot notation x = -, x = - 2-, etc., 

dt dt 

Velocity of the mean body 

-,- If. -,- If. 
Xs = N .£..xn, Ys = N ,L.Yn, 

11"'1 11=! 

Acceleration of the Mean Body 

"' If .. "' If .. 
Xa = N .L..Jxn, Ya= N ,L.._Yn, 

11=\ n=I 

-,- If. 
Zs =-.£..Zn 

N 11=1 

"'_If .. 
Zs --£..Zn 

N11=1 

The mean body is a non-corporeal, massless geometric point. 

340 
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The centre of mass 

This is the centre of inertial mass of the N bodies of the solar system. 
Were the masses to be held rigidly in position relative to each other, the 
centre of mass would be that point in the system at which a force applied 
from any direction would accelerate the whole system without rotation 
- that is, without producing a 'couple.' Alternatively, if the system were 
supported at this point in a uniform gravitational field, it would hold 
whatever orientation it had: it is always in equilibrium. 

It may be found iteratively: the centre is first found for one of the pairs 
of masses, and taken to be the place at which the sum of the two masses 
stands. That is, the two bodies can be considered combined into one 
body at that centre. This 'body' can then be paired with a third, actual 
body. When the centre corresponding to this new pair is then found, the 
mass of the third body is added to the sum of the first two, and the new 
sum is taken to be the mass of a single 'body' located at the new centre, 
ready to be paired with a fourth, actual body - and so on, iteratively, 
until all N bodies are accounted for. 

If d is the distance between the bodies of any such pair, comprised of 
masses m, and 1112, and a is the distance from m, to the centre, then 

d 
a=---

1 +.3_ 
m, 

The mass centre may also be more conveniently found from 
N N N 

In111x11 Im11 y11 In111z11 

C (- - - ) ( n=I I I ) 
Af Xlrt,YJ.1,Zkf = N N N 

Im,, Im,, Im,, 
I I I 

N N N 

Im11 x11 Im11 y 11 Im11 z11 

=}CM(xM,YM,zM)=("='M 'M 'M) 

Velocity of mass centre 

N 

I1n 11Z11 

I ) 

M 
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Acceleration of mass centre 
N N 

Lm11Y11 Im11Z11 

I I ) 

M M 

The mass centre is a corporeal point - it has mass - and may be 
regarded as the location of all the mass of the system. 

The mean body and the mass centre are rarely in the same place. 

Systemic alignment (directivity) 

We consider two kinds of systemic alignment, or directivity: firstly, 
systemic alignment by angular position alone, and secondly, systemic 
alignment by both angular position and mass. 

Systemic alignment by angular position 
We have a set of lines all in a plane, each through the position of a body 
as projected in some manner into the plane and set at an angle cp,, to a 
reference line, which is in our case the vernal equinox. The plane is the 
ecliptic. Subscript n denotes the nth body of the ensemble of N bodies 
comprising the solar system. 

The mean alignment of the set of directions with respect to the chosen 
centre and to an arbitrarily chosen direction at angle cp is then given by 

1 N 
A =-Icos 2 (qi,, -qi) 

Nll'='I 

Because cos 2 0 ea! (1 + cos 20 ) this may be written as 
2 

1 N 
A= -I(!+ cos 2(qi,, -qi)) 

2N "=I 

=}A=- l+-Icos2(qi,,-qi) ,or 1 ( 1 N ) 

2 N "=I 

A=- l+ I-cos2(qi,,-qi) -------------(1.1) l ( N I ) 
2 "=IN 
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Equation (1.1) is the degree to which the line, or direction, at angle cf, 
is aligned to the whole ensemble of directions, and is in fact that direc
tion's systemic alignment. 

We now find the angle, cf,0 , for which this systemic alignment is a 
maximum. This direction may be regarded as the direction with which 
the whole system of lines is best aligned. 

To do this, we differentiate equation (I.I) with respect to cf,, equate 
this to zero, and solve the resulting equation for cj,

0
• That is, we solve 

dA 
dcpo = 0 for <p0 

As, cos(P-Q)ee cosPcosQ+sin Psin Q, we may write 

A=- I+- cos2cpI,cos2cp
0

+sin2cpI,sin2cp,, · ][ ]( N N )~ 

2 N 11=1 n=t 

We note that the sums in cos2cj,,, and sin2cj,,, do not change with cj,, so 

dA = _I_( d cos 2cp f 2"' d sin 2cp f . 2"' ) 
..L.tCOS "Yn+ ,L..Sll1 't'n 

dcp 2N dcp ""' dcp ""' 

] ( N N ) = N -sin2cp~cos2cp,,+cos2cp~sin2cp,, 

Equating this to zero, and because 1/N is not zero, we obtain 

N N 

cos 2cp O I, sin 2cp,, = sin 2cp 
O 
I, cos 2cp,, 

11=[ 11=! 

N 

I,sin 2cp,, 

~'~~=1~-- = tan2cpo 

I,cos 2cp,, 
11=! 

N 

I,sin 2cp,, 
=} "' = _!__tan_, ~"cc"'~--

"Yo 2 N 

I,cos 2cp,, 

- - - - - - - - - - -(1.2) 

11=] 
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This is the required angle of the line through the chosen centre which 
is best aligned to the whole system of directions. 

This systemic direction is not a bisector (since there is more than one 
angle to bisect), but by virtue of lying, as it does, as closely as possible 
to all the directions at once, it has the character of a bisector: it is a 
'bisectoid.' 

Systemic alignment and direction by angular position and mass 
As above, we have a set of lines all through some point regarded as cen
tre, all in a plane, and each through a body with mass m,., but now each 
direction is counted m,. times over. That is, the directions are weighted 
according to the masses through which they pass. 

N 

There is thus a total of M effective directions, where M = Im,, , 
n=l 

and the mean alignment with respect to the chosen centre and an arbi-
trary angle <p is given by I N 

A =-Im,, cos2($,, -$). 
Mn=I 

This is, 
I N 

A= 
2
M~m,,(l+cos2($,, -$)) 

] [ N N J =?A=- Im,,+ Im,,cos2($,,-$) 
2M n=I n=I 

=}A=- l+-Im,,cos2($,,-$) I ( I N ) 

2 M n=I 

=}A=_!_(!+ I, m,, cos 2($,, -$ ))- -- - -- -- -- - - --- - (2.1) 
2 n=I M 

We see that the alignment by mass of the direction, at angle <p with 
the ensemble of what may be termed 'mass directions' is identical to 
alignment by position, except that, here, the contribution of each direc
tion-group is modified according to the ratio of its target mass to the 
total mass. 

By differentiating and equating to zero in the same way as is done for 
the angular position case, we find that the direction of the best systemic 
alignment by mass is given by 
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N 

L'.m,,sin2(jl,, 
,h I -1 ""' 't'm =2tan ..:N=-----

Im,,COS2(jl,, 
------------------ (2.2) 

n=I 

It is perhaps worth remarking that masses are seldom, if ever, integers. 
This implies that when using this method we must consider 'fractional 
directions,' which may give us pause, and should be rigorously justi
fied - we assume validity for the time being. 
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The Pivot Transformation 

Given a planewise form inserted into a path-curve system, we are look
ing for the locus of the pivot points of the planes of the form. How do 
we proceed? 

In the first instance we are interested in path curves of the semi
imaginary case. (Two planes of the invariant tetrahedron are taken 
real, parallel; the other two planes taken as complex conjugate.) The 
bud or egg transformation which I described in Chapter 4 is such a 
case. 

Here are some basic constructions of egg geometry which we shall 
need: 

Construction I. Given a plane, to find its path line, the line around which 
it is turning. 

Recapitulating briefly, we have a 8-rotation moving with constant 
speed along the line at infinity (circling measure between I and }), 
we have logarithmic spirals moving inwards in the X-plane with a 
log-multiplier of (e + a) per one radian of 8 turned, and logarithmic 
spirals moving outwards in the Yplane with a log-multiplier of (e - a) 

per one radian of 8 turned. Along the central axis we have a growth 
measure moving from Y to X with a log-multiplier of 2e (see Figure 
155). The shape of the set of egg- or vortex-surfaces is exactly deter
mined by the parameter A where 

A.=e+a 
e-a 

We remember that the path curves in the top and bottom invariant 
planes are sets of logarithmic spirals, normally with different con
stant ratios, and that if the invariant surfaces are to be eggs, and not 
vortices, they must unwind in opposite directions. Since the top and 
bottom invariant planes are parallel they will be cut by a plane rr in 
a pair of parallel lines 11 and 12, which lines we can take as defining 
plane rr on our diagram (see Figure 165). Now we mark on each of 
lines 11 and 12 the point in which the line touches its spiral of the 

346 
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Figure 165. 
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system, points V1 and V2• This is easily done, using the equiangular 
property of the spirals. The line XV1 will be at an angle of 8 1 with 
line 11 given by 

81 = co,1(e + a) 

and for the bottom plane by 

82 = COt1(£ - a). 

Now line 11 is turning momentarily about V1 and line /2 about V2 so 
plane n is turning momentarily about line V, V2• This line is the path line 
we are seeking. 

Construction 2. To find the path line of a given point P, that is the tangent 
line along which P is moving in its path curve. 

Remembering that the invariant organism of a set of path curves is 
always self-dual, we simply dualize Figure 165 and get Figure 166. 
The new diagram looks surprisingly more complicated. First we find 
lines 11 and 12, being common lines of P and X, and of P and Y. Now in 
Constrnction 1 we had to find the point in which 11 was turning in the spiral 
curve of the top invariant plane. In this constrnction we have to find the 
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Figure 166. 

plane in which 11 is turning in its spiral cone centred in X. To do this we let 
11 meet the bottom invariant plane in point M2, and through M2 we draw 
the tangent line to the spiral, again using the constant angle property. The 
tangent plane we are looking for, dual to V,, is determined by this tangent 
line and the point X and it will cut the top invariant plane in a line through 
X parallel to the tangent through M2, and we let this meet the tangent at 
M, in U,. Similarly we find the plane dual to V2 by letting line 12 meet the 
top invariant plane in point M,, by drawing through M, the tangent to its 
spiral, and by drawing through Ya line in the bottom plane parallel to this 
tangent, meeting the tangent at M2 in U2• Clearly the line we are seeking 
is that which is common to the planes which are dual to V, and V2; this is 
the line U, U2 in our diagram, whose points will be found to be collinear 
with point P (A not altogether easy piece of dualizing!) 

Construction 3. To find the osculating plane of this point P This is a 
simple extension of Construction 2. Through the points U, and U2 we 
put the tangent lines to their spirals, again using the constant angles e, 
and 62• These lines will be found to be parallel, and they determine the 
osculating plane which we are seeking. 
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Construction 4. To find the pivot point of a given plane 11. (And this is 
the one we are really wanting!) We simply follow Constmctions 3 and 2 
backwards. We let plane 11 be determined by the (parallel) lines in which 
it cuts the top and bottom invariant planes. First we find its path line, 
meeting the top and bottom planes in U1 and U2• Through U, we draw 
U,M, parallel to YU, and on it we construct M,, where it meets its spiral 
(using the constant angle 81). Line M,Y meets U,U, at the required pivot 
point P. (Also of course we could have drawn U2M2 parallel to XU,, 
meeting its spiral at M2• Line XM2 would then have been concurrent with 
the other two lines at P.) 

Now we are in a position to draw our first pivot form. Let us find the 
pivot form of a line. We shall not consider it as a line of points; it will 
be a negative-space line, a shaft of planes. What is the locus of the pivot 
points of each of the planes composing this line? 

We make our diagram (Figure 167) as seen from above; all that part 
of the diagram which is above the dotted line is to be taken as being on 
the top invariant plane (close to us) and what is below the dotted line as 
being on the bottom invariant plane (further away from us). 

---~L, 

y 

Figure I 67. 
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We let the top and bottom planes be cut by an arbitrary line in points 
L1 and L2 respectively. Now we consider any plane of our line L/,2• It 
will cut the top and bottom planes in a pair of parallel lines through L1 

and L,, which we draw; and on these lines we mark their points of con
tact with their spirals, U1 and U2, using the constant angles, 81 and 82• 

Note here that we are considering the egg transformation as being point 
upwards therefore 

e + a (for the top plane)> e - a (for the bottom plane) 

and 81 < 82• 

Also that the sense in which the angles are taken must be opposite for 
the two planes, or else our path curve transformation would be a vortex 
one and not an egg one. 

Now by elementary geometry (angles in a segment of a circle are 
equal) it is clear that as the line Lp1 turns around L 1, U1 will describe a 
circle through L1 and through X, while U, will similarly describe a circle 
through L2 and Y. And if we let U1 move in equal steps around its circle, 
U

2 
will do the same around its circle. The point of our locus is some 

point of the line U1 U, and this is a moving generator of a hyperboloid 
passing through the two circles. So our locus, whatever else it may do, 
lies on a hyperboloid. Next we draw the line through U1 parallel to YU,, 
marking on it (again by using the constant angle 81) its point of contact 
M1, with its spiral. The point of our locus will lie on YM1 and will be 
where this line meets U1 U2• 

Now notice that as line L1 U1 turns through some angle <I>, L,U, turns 
through <I>, so does YU, (by elementary geometry again), and so does 
U1M1• Therefore the angle L1 U1M1 is constant and all the lines U1M1 

must be concurrent at some point of the circle through L1, U1 and X. We 
call this point S. But the angle XM1S is constant (n - 81) radians so M1 

must move round a circle through X and S. Therefore the line YM1, which 
contains our locus, describes a cone centred in Y. Therefore our locus is 
the intersection of two quadric surfaces, a cone and a hyperboloid. In 
general this would be a twisted quartic; but we must be careful, and not 
jump to hasty conclusions. 

Let us consider the line U1 U2 a little more carefully. It is a line of the 
hyperboloid, therefore any plane of this line will cut the hyperboloid in 
a generator of the other set. But the parallel lines U1S and U,Y represent 
just such a plane. Therefore the line SY is a generator of the other set, 
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of the hyperboloid. It is also a generator of the cone. Therefore our two 
intersecting quadrics have a common generator and they must intersect 
on a twisted cubic. Since the cone containing our locus is centred on Y, 
and there is clearly another one, also containing our locus, centred on 
X, we can say: 

The pivot form of any arbitrary line of space is a twisted 
cubic passing through the invariant points X and Y. 

This leads to a rather pretty construction. We can repeat Figure 167, 
making points X and Y coincide on our page. This gives us an exact 
plan view of the situation. The point of our locus of course is the com
mon point of the lines U1 U2 and YM1• If we mark this as P we then 
have the ratio YP/PM1 to show us the fractional height by which P is 
raised from the U2-plane towards the U1-plane. Using this we can eas
ily construct an elevation view of the curve. In our diagram, P will be 
found to move in a plane cubic, which is the orthogonal projection of 
the twisted cubic of the three-dimensional reality. However, if we have 
chosen L 1 and L2 in such a way that their common line meets the cen
tral axis, then we shall find that P describes a circle, passing through 
the point X = Y. In this case the twisted cubic has degenerated into a 
horizontal circle taken together with the central axis of the path curve 
transformation. 

But now we must study the plan view of Figure 166 in greater detail. 
We let the central axis of the path-curve system cut our plan-plane in 
the point X = Y. Continuous lines, and the suffix 1 represent top plane 
elements, and dotted lines and the suffix2 represent those on the bottom 
plane; the only exception to this will be where, at one point, the angle 
82 has to be measured on the top plane, and 81 on the bottom. I think the 
context will show this quite clearly. We let the plane whose pivot point 
we are finding cut the top and bottom planes in the parallel lines 11 and 
12 respectively. We let the distance of 11 from X be d 1• Now we find U1 

on 11 by using angle 81, and U2 on 12 by using 82• Now we draw a line 
through U1 parallel to U2Y, thus bringing the angle 82 onto the top plane 
as marked on Figure 168. Then along this line we mark point M 1 using 
the angle 81• 

Now we need to find the distance XM1• Noting the fact that 
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by elementary trigonometry, using the same rule, we find that 

d1sin(81 + 82)cosec81 

sin81 

Doing the same things for the bottom plane, and letting 12 have a dis
tance from Y of d2, we find that M, necessarily lies on the line XM1 and 
that the distance M,Y is given by 

We let 

M,Y = d1sin(81 + 82) 

sin282 

M'k = sin(81 + 82) 
1 sin281 

for the top plane, and 
k, = sin(81 + 82) 

sin282 

for the bottom plane. 
These parameters k1 and k2 turn out to be of fundamental importance 

in these studies and we shall use them again and again. 
Now we see the whole thing in elevation (Figure 169), from a direc

tion at right angles to the plane of the lines XM1 and YM,. 
P is the pivot point of the plane we are considering, and this plane 

will cut the central axis of the path-curve transformation at some point, 
say Q. We let the height of P above the bottom invariant plane be y, and 

Figure 168. 
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we let the distance XY be unity. Then we may call y the fractional height 
of P above the bottom plane. We let the fractional height of Q bey'. We 
want to find y' in terms of y. 

Clearly y' - d, 
I -y' - d, 

whence 

Also 

Solving for y we have 

d-y'd,. 
' - I , -y 

... (*) 

and substituting (*) in this we have 

or, changing the subject 

y = (k,d,y')l(l - y') 
k,d, + (k,d,y')/(1 - y') 

= (k,d,y')/(1 - y') 
[k,d,(l - y') + k,d,y']/(1 -y') 

(k,Y') = ---'-"'--"----
k,y' + k,(l - y') 

and the line XM, is inclined to the direction of 11 and 12 at an angle 
of82 -81• 

l/1\ 
Figure 169. 
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These two little equations, of y and y' in terms of one another, are 
basic to pivot geometry and give the key to most of the problems which 
will face us in the course of further work. We note that d, and d2 have 
dropped out; this means that all planes cutting the central axis at a height 
of y' will have their pivot points on a horizontal plane at a height of y; 
alternatively if we wish to find the horizontal cross-section of some pivot 
form at a height of y we shall be concerned only with those planes of 
the original planewise form which cut the main axis of the path curve 
system at a height of y'. 

We are now in a position to construct the pivot form for a whole 
pointful of planes, the little two-dimensional universe of the peripheral 
consciousness which we have pictured to ourselves earlier. When such 
a pointful of planes comes within the influence of a path-curve system, 
around what locus do all its points start to move? Since there are =' 
planes to be considered, the locus will obviously not be a curve, but a 
surface. In order to be sure that we have really coped with all the lines 
possible, we have simply to take any plane of our point, to consider all 
the lines of our point which lie in that plane (an ordinary plane pencil) 
and now to consider all the planes of each of these lines. 

Now our point, together with the main axis of the path-curve system, 
determines just such a plane, and the lines of the pencil in this plane all meet 
the central axis. Any such line, meeting the axis at a height of y', we know 
will have as its pivot fo1m a horizontal circle at a height ofy. Therefore our 
pivot surface is going to be everywhere circular in horizontal cross-section. 
Clearly, from all the foregoing, if such a line meets the top invariant plane 
at a distance of d, from X, the diameter of its pivot circle-section is going 
to be yk,d1, and it will be at a height of y above the lower invmiant plane. 
The resulting surface is very hard to depict in perspective, and not easy to 
imagine; it is interesting to make a papier mache model of it. 

It is a cubic surface, being cut by any general plane of space in a cubic 
curve; but if this cutting plane contains a line of the invariant tetrahedron 
of the path curve system, then this cross-section degenerates into a conic 
taken together with that line. The general appearance of this surface is 
that of what I would call a 'double trumpet' and it is woven over with 
=' twisted cubics, set in infinite families, and there are =2 such families 
to be found. Any cone, or other one-dimensional form, within our point, 
will have as its pivot form a curve inscribed upon this surface. 

It is of interest to consider one or two of the plane two-dimensional 
possibilities that are inherent in the pivot transformation. Such transfor
mations will turn lines into points. 
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Figure 170. 

As an instance we could have our path curve invariant triangle to be 
XYZ, where X and Y are at oo and we have Z on our page, X and Y being 
at right angles (Figure 170). If we allow the growth measure (a pure 
multiplicative sequence in this case) along ZX to be equal to that along 
YZ our path curves will be rectangular hyperbolae, and each line of the 
plane will find its pivot point where it touches its curve of the family. 
Now we know from elementary geometry that this is at the midpoint 
between the points where it cuts the asymptotes. 

We can now forget about our hyperbolae and simply say, our trans
formation is determined by the putting down of any pair of right-angled 
base lines. Then any third line transforms into the midpoint between the 
points in which it cuts the base lines. This gives us an interesting quad
ratic transformation, very easy and quick to work. We will find that any 
plane pencil transforms into a pointwise conic, and a linewise conic into 
a pointwise curve of fourth order. 

Now we can generalize. The base lines need not be at right angles. 
Generalizing further we can say, put down any three base lines, two blue 
and one red. Any fourth line will transform into the harmonic conjugate 
of the point in which it cuts the red line with respect to the points in 
which it cuts the blue. This in fact makes a very interesting quadratic 
transformation, but one which is not quite so quick and easy to work 
as the foregoing. Figure 171 shows the transformation of a circle with 
respect to an equilateral triangle. 
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Figure 171. 

One could generalize even further and repeat the construction of the last 
diagram letting the transformed point be such that it makes any constant 
anharmonic ratio with the three cutting points on the base triangle. 

Then one could let one's path-curve system have an imaginary tri
angle for its invariant ( one side real, the other two conjugate complex). 
If this is the well-used triangle OIJ, with O at the centre of the page, a 
special case of such path curves is a set of concentric circles. Then any 
line transforms into the point which is at the foot of the perpendicular 
onto it from the centre 0. This is the well-known pedal transformation, 
which turns out to be just a special case of the much more general pivot 
transf01mations. It transforms any pencil of lines into a circle, and conics 
into cardioids, lima9ons, lemniscates, and so on. But the most general 
case of path curves with respect to this triangle, OIJ, is a set of logarith
mic spirals. Then one can repeat the pedal transformation, but this time 
marking not the foot of the perpendicular but of some other constant 
angle (the constant angle of that particular set of spirals). 

So we see that the pivot transformations include a very wide range of 
possibilities. In three dimensions of course the range is much wider still, 
and many of the possibilities are, as far as I know, quite unexplored. I have 
worked on the particular case described earlier in this chapter because I 
felt that it might have relevance to the formations of plant growth, and I 
think that subsequent work has produced some evidence that this is so. 
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Practical application 

The question now confronting us is: given the bud parameters, A and 
e, and the measured form of the seed-chamber, could we find, within 
the existing possibilities of the path curve forms, a vortex which, when 
transformed by that bud transformation, would accurately fit the seed
chamber form? It is by no means certain that the answer to this will be 
positive; but if it is, we next need to know just where the centre of the 
vortex must lie, and what must be its (negative) A. 

First we must construct the picture of the vortex, as seen in eleva
tion. This is easily done (Figure 172). We put a geometric series along 
the horizontal line through Y', and another, usually but not necessar
ily with a different constant ratio, along the vertical axis through Y'. 
The transformation is such that while the points along the horizontal 
axis move in towards Y', those along the vertical axis move outwards 
away from Y'. Thus we connect these points in the way shown in 
the diagram, and the resulting envelope gives us the profile of the 
vortex. The actual form, of course, is a surface of rotation about the 
vertical axis. If the 9-rotation of the transformation, between I and 
Jon the horizontal line at infinity, is zero, then these lines represent 
the movement of a plane, staying always perpendicular to the plane 

• 
l 

Figure 172. The fonn of the vortex is generated by flvo sinzple 1nultiplicative 
1nove111ents along the horizontal and vertical axes. 
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Figure 173. 

of the page, and sliding inwards along the outline of the profile. The 
natural logarithm A of the multiplier along the horizontal axis is - (e 
- a). The natural logarithm B of the multiplier along the vertical axis 
is 2e. Then "A, (cosmic "A) of the vortex is given by 

"A =-A+B 
' A 

(A and B counted as absolute values, that is, always positive.) 
Our method of procedure will be to take a plane of the vortex, deter

mined by its intercepts H with the horizontal plane through Y', and V 
with the vertical axis through Y', and to find its pivot point in the bud 
transformation, which will be labelled with the ordinary x and y nota
tion; its third co-ordinate, 8, in the circling measure between I and J, is 
irrelevant in a surface of rotation such as this. 

Now we must refer to Figure 168. This is a plan view, but we must 
now draw it in elevation (Figure 173). We remember that XM1 = k1d1, and 
XM

2 
= k

2
d

2
. Also that since we are dealing with a surface of rotation we 

are concerned only with the distances of M 1, M2, and so on, outwards 
from X; the angle at which line XM1M2 is situated is not significant for 
us. Therefore in our elevation drawing we can depict the distances XM1 

and XM2 along the same line as d1 and d2, and this we shall do. 
In Figure 173, the continuous sloping line represents the plane whose 

pivot point we are seeking, and Y' is the centre of the cosmic tetrahedron. 
Our plane is thus determined by the distances Hand V The points X and Y 
are the poles of the bud transformation. The pivot point we are seeking is P 
and its distance upwards from Y is its true y co-ordinate. Its x co-ordinate is 
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its distance outwards from the central axis, but its true position will clearly 
be in some other plane of that axis; a and b are the distances of the cosmic 
centre from the poles of the bud transformation. 

Now the y co-ordinate of P was worked out in the previous chapter. 
It is given by 

y = k,y' ............................ (1) 
k2y' + ki(I - y') 

We remember that both y and y' are fractional distances, so y' will 
now be (V + b)l(a + b) in terms of our new diagram, and (1 - y') will 
be (a - VJl(a + b). Putting these into (I) we have yin terms of Hand V, 
expressed as an actual distance 

y =(a+ b) · k,(b + VJ ....... (2) 
V(k, - k,) + ak, + bk, 

Next, working with similar triangles YPV and YM,X, we see that 

x y 
= k,d, a+ b 

whence 

x = kiJiy ········································ ...... (3) a+b 

But also working with similar triangles we see that 

d, a-V 
H = --V-

d, = H(a - VJ ........................................ (4) v 
Putting (2) and (4) into (3) we have 

k1k2H(a - VJ(b + VJ x ................ (5) 
V[V(k2 - k,) + ak, + bk,] 

Given first the parameters of the bud transformation, second the 
position of the cosmic centre, Y', and third the cosmic A of the vortex, 
we can now quite easily construct the profile of the resulting pivot 
form. First gives us k, and k2 ; second gives a and b; third gives us 
the possibility of calculating two corresponding series for H and V. 
These can all be put into equations (2) and (5) and the co-ordinates 
for the profile worked out. (Note: in these equations b and V follow 



360 THE VORTEX OF LIFE 

the usual sign-conventions, b measuring positive upwards from Y, 
and V measuring positive upwards from Y'; but a measures positive 
downwards from X, and Hand x must always be considered as abso
lute quantities.) 

Equations (2) and (5) enable us to find the seed chamber form given 
the position and the A of the vortex. The problem we set ourselves is 
really the inverse of this. Given the form of the seed chamber, to find 
whether there is a possible vortex which will produce it, and if so, to find 
its position and A. One of our variables will now be b (giving the possible 
position of the vortex centre) so we will change the subject of equation 
(2) to give Vin terms of b. We let a + b = t (the total length of the bud) 
and we omit the elementary algebra. We now have 

V = - yk,t - b ........................ (6) 
y(k, - k,) - tk, 

The next thing we must do is to take this value of V put it into equa
tion (5) and rearrange it to give Hin terms of b. To simplify matters we 
let V = m - b. Then we finish with the equation 

H = x[m(k1 - k,) - kif] . (i _ l:) ........ (7) 
k1k2(m - t) m 

We now have all the tools we need to solve our problem: Is there a 
possible vortex which will transform exactly into a given seed-chamber 
form, and if so, what is the height, b, of its infinite centre, and what is its 
A? The method is best shown by applying it to an actual case. 

Campanula. We will take the case of the campanula. This longish white bud 
has A = 1.36 with MLD 9%, according to the measurements I made on it 
some years ago. Its e is high, being about 5. These figures lead us to calcu
late that 81 = 9.9°, 82 = 13.3°, giving k, = 13.4 and k, = 7.45. We are working 
with a 10 cm bud as far as our measurements are concerned (the actual bud 
was of course much smaller) so tk, = 134, tk, = 74.5, and so on. 

The first thing we must realize is that, as far as the geometry is con
cerned, the length of the seed-chamber form is solely determined by the 
parameters of the bud; it is quite independent of either the position or the 
A of the vortex transformation. The position of the lower end of the form 
is given by putting V = oo into equation (2). I call this the limit length of 
the seed-form and it is given by 
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The question may immediately arise as to whether this length is always 
the right one when checked against the observations of the actual plant. I 
think the answer to this question is that it really has no answer; it is a non
question. Most buds are accompanied by the ovaries, sometimes with the 
little chamber which encloses them, at a very early stage indeed. Thereafter 
the growths of the two - the bud itself, and the ovaries - continue at very 
different speeds, the bud usually growing much faster than the seed-bearing 
part. Thus it is useless to ask what is the 'right' ratio of bud to seed-chamber 
length; it varies considerably during the development of the bud. Anyway 
our projective geometry, being intimately connected with form, is not a 
geometry of size or magnitude. It is form which we are seeking. 

The limit length of the seed-bearing form for the campanula comes 
out at 12.5 cm, considerably larger than what I actually measured. It is 
interesting to note that a large part of the 9% deviation in the A-values 
for the bud was due to the values being rather too small at the top end of 
the bud; it was slightly too wide there. And this suggests that perhaps I 
picked the buds a little too late; they were already just beginning to open. 
If I had caught them a little earlier I might have found a smaller mean 
deviation, and the ratio of bud to seed-chamber length would almost cer
tainly have been much nearer to what the mathematical limit predicts. 

It is necessary to enlarge the measurements for the seed-chamber, in 
proportion, so that it has a length equal to the limit length, othe1wise our 
calculations cannot proceed consistently. Now we take three points, P, Q and 
R, on the profile of the seed-chamber, one high up, one in the middle and 
one low down. We take the coordinates of these, x and y, and put them first 
into equation (6) and then into equation (7). This gives us Vand H, in terms 
of b, for each of the points. For the case in question we get these results: 

For point P (x = 4.42 cm, y = -l.565 cm) 
V = -3.22-b, H = 0.514 + O.l59b 

For point Q (x = 4.05 cm, y = -6.23 cm) 
V = -22.45 - b, H = 0.336 + 0.0149b. 

The calculations for point R must be done similarly, but are omitted here 
for the sake of brevity. 

Next we make out a table for point P, giving a series of values for V 
and H to correspond with various values of b: 
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b v, H, 

0 -3.22 0.514 
2 -5.22 0.834 
4 -7.22 1.154 
6 -9.22 1.474 
... . . . . .. 

And another similar table for point Q 

b v, H" 

0 -22.45 0.336 
2 -24.45 0.366 
4 -26.45 0.396 
6 -28.45 0.426 
... . . . . .. 

Now we refer back to the little formula for finding the A of the vortex: 

A=-A+B 
' A 

In this formulaB is of course ln(V/Vp), and A is ln(H,/Hq). So having two 
values of V and H, we can calculate very easily the A which corresponds to b 
= 0. This means that if the centre of the vortex is at height of O above point 
Y, and the vortex has this A, then the resulting transform would be a profile 
which would go exactly through both points P and Q. By putting various 

-~'~ I ·P . l \ . . I I . 
\ l 
\ I 
\ 1/ 
\,1· 

45.0mm 

47.0mm 
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41.1 mm 

36.Bmm 

31.8 mm 

23.9mm 

Figure 174. Thefonn of the Canzpanula ovary, the 1neasurernents having been 
adjusted to fit the limit length of the bud. 
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Figure 175. The b-/\ chart. 

values for b, we can get a curve, on what I call the b-A chart (Figure 175); 
every point on this curve represents a position of b with its corresponding A, 
which would put a profile through P and Q. Now if we do the same thing for 
points P and R we get a second curve on the b-'A chart, and if these curves 
meet, then their common point represents the only b and A which would put 
a profile through all three points, P, Q and R. If they do not meet then no 
vortex is possible to fit the case. (As a check we can repeat the whole thing 
for points Q and R; if the first two curves meet, it is necessary, mathemati
cally, that the third one will be concmTent at the same point.) 

Of course the fact that the three curves meet does not give a proof 
that the curve will be a pe1fect fit all the way round the profile, but as a 
matter of experience I have found that in every one of very many cases 
the fit is quite remarkably exact. 

We see that there is a meeting at b = 1.5 and A = -3.22 (the second 
decimal place was got by calculating several values near to the meeting 
point, and interpolating; it may not be completely reliable). 

In order to find how accurately this vortex will transform into the 
ovary-form, we can take the y-values of the seven measured points on 
the ovary, put them into equation (6) and get their corresponding V-val
ues. Now, starting from the H-value which we have already found for 
the middle point of the form (when y = -6.25 cm) and using the value 
of A = -3.22 we can find the corresponding H-values. We put these into 
equation (5) and this will give us the 'predicted' x-values, which we can 
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compare with our measurements. Having done this the results come out 
as follows, calculated for the 12.52 cm form, from above downwards: 

x (calculated) cm x ( observed) cm error o/o 

4.38 4.42 0.9 
4.52 4.62 2.2 
4.35 4.48 3.0 
4.05 4.05 0 
3.68 3.62 1.6 
3.12 3.12 0 
2.35 2.38 1.3 

The mean en-or in the radius is 1.3%, considerably less than the probable 
en-or of the measurements. 

Airy and watery vortices 

We have seen above, (page 357) an easy way of constructing the enve
lope of a watery vortex, and how to calculate its A. But it could also hap
pen that as the points move outwards along the vertical axis the ones on 
the horizontal axis are also moving outwards. This changes the sign of 
either A or B, and it can easily be verified that A, is now given by 

B-A 
A,=~ 

where A and B are again to be considered as positive quantities. If B > A, 
then A is positive and the vortex is cup-like-really the lower end of an 
infinitely long egg. If B < A then we have the airy vortex, and this form 
we must next study. 

The asymmetric case 

Suppose an airy vortex penetrates into the field of an egg- or bud-trans
formation in such a way that the axis of the vortex is to one side of the 
egg-axis - what sort of form arises when the vortex is transformed by 
the egg-transformation? We will start with the simplest case, where the 
vortex axis has a common point with that of the transforming egg. 

If the axes are coincident, the resulting transform has a symmetri
cal profile, and at every level its horizontal cross-section is circular. 
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However, when the axes are separate the case is more complicated: 
all-round rotational symmetry is lost, and the form of the horizontal 
cross-section differs from one level to another. All one can do is to draw 
horizontal cross-sections at various levels - contours as it were - and 
build up the picture of the finished form by putting these together. 

In order to do this, we remember the rule, that planes which meet the 
central axis of the bud transformation at some point, say Q, will have 
their pivot points all in one horizontal plane which will cut the central 
axis at some point P. If Q had the fractional height of y' between the 
invariant points X and Y of the bud transformation, and P has the frac
tional height of y, then 

Thus we can fix the height of our cutting or contour plane (the plane in 
which we are going to draw the contour of our pivot form), which is the 
plane that must contain the pivot points which we are going to find, any
where we wish. We call this fractional height y, and from this we can cal
culate the fractional height y' of the point Q through which all the planes 
pivoting on these points must pass. While we are drawing this particular 
contour we can ignore all planes except those which pass through Q. 

Now we must remember the basic rule of the pivot transformation. 
This diagram represents the top invariant plane of the bud transforma
tion, seen in plan from above. We have a plane which cuts this top plane 
in line l and which cuts the central axis of the bud transformation in 
point Q, at our calculated fractional height of y'. The process of finding 
the pivot point of this plane has several steps (see Figure 176). Briefly 
summarized, they are: 

I) Drop a perpendicular, XL, onto l from X, 
2) extend XL to L' so that XL'= k,XL, 
3) rotate L' around X to L" by an amount of 90° + 02 - e,, 
4) join L" to Y, the bottom invariant point of the bud transfor

mation; 
5) this line will intersect our horizontal contour plane through P 

in the pivot point we are seeking. 

If we are not interested in the orientation of the final pivot form we 
may ignore the third step, the rotation; and this we will do in the work 
which follows. 
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Figure 176. 
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We must now see the thing in elevation (see Figure 177). The eleva
tion is seen from a direction that is orthogonal to the common plane of 
the two axes. XY is the central axis of the bud transformation, and the 
axis of the vortex passes through O and is inclined to the horizontal at 
an angle of e. (Note: Owing to the nature of the bud and seed-bearing 
process, e in the watery vortex has always so far been found to be 90°, 
but this has been found purely empirically, by observing the forms of 
nature. Geometrically e can assume any value, and in the following 
work we shall need to examine also what happens when it is not a right 
angle.) Q is the point on the central axis through which all planes must 
pass if their pivot points are to lie on our chosen contour plane; it is b 
units measured upwards from Y, and a units measured positive down
wards from X. The centre of the vortex transformation is at point 0, d 
units from the central bud axis, c units upward from the lower invariant 
plane of the bud transformation, and e units measured positive down
wards from the upper invariant plane. Our vortex profile is generated 
by joining successive pairs of points in the geometrical series along the 
lines OH (which represents the finitely-placed real invariant plane of the 
vortex transformation) and OG which is its central axis. Let Hand G be 
one such related pair in these geometric series. Then the line HG will 
be tangent to the vortex profile, and the two dotted lines through G will 
represent, in the full three-dimensional reality, a cone which will be tan
gent to the vortex surface, and which will cut the top invariant plane in a 
circle; we call the radius of this circle R. Just two of the tangent planes 
of this cone will pass through Q and these are the planes with which 
we are concerned. Clearly they will pass through F where the line GQ 

cuts the top invariant plane. We let the distance XF be called N, and the 
distance from X to the centre of the circle (where the vortex axis cuts the 
top invariant plane) be called M. 

Now we must see the top invariant plane again in plan, from above 
(Figure 178). To find where the two planes of the cone which pass 
through Q cut the top invariant plane, we simply draw the two tangents 
from F to the circle. Next we must drop perpendiculars XL onto them 
from X, and produce them out to L' so that XL'= k,XL. The two points L' 
are points on the preliminary curve which we are seeking. By now tak
ing a series of points G along the line OG in their geometric series, and 
coupling them with their corresponding points in the series along OH, 
we can get a series of points L' in our curve on the top invariant plane. 
This curve simply has to be projected from point Y onto our contour 
plane, and we have our desired contour. 
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Figure 178. 

This may sound a long and rather tedious process, but I have not 
found a short cut. However, with a pocket calculator, especially a pro
grammable one, it can in fact be cut down to quite a quick calculation. 
The following little formulae have been worked out from elementary 
mathematics, similar triangles, etc.; it seems superfluous to give their 
complete derivation as surely any interested reader who wishes can 
work them for themselves. (Here x and y are the distances OH and OG, 
respectively.) 

First to find the distance XF. This is given by 

N = a(ycos8 + d) 
ysin8 + c- b 

The radius of the circle in which the cone cuts the top plane is 
given by 

R = I x(e ~ ysin8) I 
ysme 

And the distance of X from the centre of the circle is given by 

M = ecot8 + d. 

Finally we work in polar co-ordinates (r. cp) centred on X, which are 
given by 

r=[ k1NR [ 
M-N 

cl> = cos-1 [ _!!__ [ 
M-N 

the angles to be measured onto the diagram being± cl> when N is posi
tive, and 180° ± cl> when N is negative. 
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In order to draw a contour, we prepare two geometric series - one 
for x (the distance OH) and the other for y (the distance OG) - with 
multipliers determined by the A of the vortex. We decide which term in 
the x-series is to be paired with which in they-series (that is, we decide 
on the width of one's vortex) and then put these pairs (x, y), together with 
the other parameters we have chosen, into the above little formulae; the 
resulting co-ordinates (r, <!>) give us the locus of L', which is the projec
tion from the bottom pole of the bud transformation (Y), of the contour 
we are seeking, on the top invariant plane. 

When we come to work with the case in which the axis of the vortex 
is skew to that of the bud transformation the general method of con
struction is the same, but owing to the greater freedom which has been 
introduced it is convenient to work slightly differently. We will have 
parameters (x1, y1) to mark the position of the centre of the circles, i.e. 
the point at which the vortex axis cuts the top invariant plane of the bud 
transformation, and (x2, y2) which shall be the orthogonal projection 
of point 0, the centre of the vortex, on the top plane. Let a still be the 
distance downwards of our point Q and e the distance downwards of the 
point 0, the centre of the vortex. 

Next we consider the distance from the centre of the circles (x1, y1) 

to point 0, the centre of the vortex, to be divided into N equal parts 
(the larger the number we choose for N the closer together will be the 
points on our final curve). We now introduce a parameter H which 
will fix for us the size of our vortex. We can consider the distance 
from point O to the point (x1, y1) divided by N to be a sort of unit 
measurement along the axis of the vortex. When the centre of our 
cone, point G, is one such unit above point 0, then its corresponding 
point in the horizontal plane through 0, point H, will be H units from 
0. We next introduce a counting number n which shall tell us how 
many such units the point G is from 0. Then by similar triangles we 
can easily calculate that the radius of our circle in the top invariant 
plane is given by 

N-n 
r=-- · Hn' 

n 

where µ = 1/(A + 1 ). For the same number n, the co-ordinates of point 
F (x3, y3) are given by 

a[x,(N - n) + nx1] 

x, = Na - e(N - n) 
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and 

a[y,(N - n) + ny,] 
Y, = Na - e(N - n) 
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Thus we see that each time we assign a value to our counting number 
n, we get a position for our point F (x,, y,) and a corresponding circle 
centred on (x1, y 1). 

We next consider, for each value of n, the tangent from point F to its 
corresponding circle, drop the perpendicular to it from X (which is at the 
origin of course), and then proceed as before. 

Computer programs 

The computer programs below were written in Basic. If they are put 
on to any other computer system they will probably need more or 
less adaptation, especially in the instructions for input and output. 
Therefore only the executive commands are included, the reader being 
left to settle the details of input and output according to the system 
being used. 

Egg 
For this program we need four parameters for the input: 

R, controlling the width of the egg; 
L, giving the A of the egg; 
E, giving the e-parameter which controls the steepness of the spirals on 

the egg; 
M, a magnitude factor which controls the size of the picture. 

The executive lines are then as follows: 

60 FOR S = 0 TO 2 STEP 0.25 
70 FORT= -7 TO 7 STEP 0.05 
80 Y = M*EXP(2*E'T)/(1 +EXP(2*E*T)) 
90 X = 2*Y/EXP((2*E*L*T)/(L + 1 ))*SIN(T +S*rr)*R 

100 IF COS(T+S*rr) < O THEN 120 
110 PLOT (X, -Y) 

120 NEXTT 
130 NEXT S 
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Notes 
R is expressed in terms of the total height of the form as unity. 
If one puts a negative number for L the egg transforms into a vortex. 
Line 60. By reducing the size of the step one puts a greater number of 

spirals on the egg. 
Line 70. By reducing the size of the step one packs the points more 

closely along their spirals. 
Line 100. By reversing the inequality sign one changes the spirals from 

left-handed to right-handed. By deleting this line altogether, the egg 
becomes transparent! 
Suggested parameters would be: 

EMB 

R =0.6 
L = 3 or, say, -0.5 
E = 0.3 
M=200 

The EMB (embryo) is programmed with k, = 3 and k2 = 1. 
For this we need size parameters for our input, taken from Figure 

177. 

L is the A of the vortex, anywhere between O and -1; 
W shows the width of the vortex, effectively the ratio of x to y in Figure 

177; 
C and D, as show in Figure 177, denote the position of the centre of the 

vortex; 
S, the slope of the vortex-axis is marked in Figure 177 as e, measured in 

radians anticlockwise from the horizontal; 
J, a magnitude parameter fixing the size of the picture on the screen. 

The executive lines then are: 

80 FOR P = 0.05 TO 0.95 STEP 0.05 
90 FOR T = -50 TO 300 STEP 2 

100 Y = O.l'EXP(T'0.01) 

110 X = W'EXP(T'0.01/(l+LJ) 
120 B = 3'P/(2'P+ 1) 
130 N = (1-B)'[Y'COS(S)+D)/(Y'SIN(S)+C-B) 
140 R = ABS(X'(l-C-Y'SIN(SJ)/(Y'SIN(SJ) 
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150 M = (1-C)/TAN(S)+D 
160 Z = R/ABS(M-N) 
170 IFZ> 1 THEN 260 
180 0 = -ATN(Z/SOR(-Z'Z+ 1))+ 1.5708 
190 U = ABS(3'N'R/(M-N)) 
200 G = P' J'U'COS( 0) 
210 H = P'J'U'SIN(O) 
220 IF N > O THEN 230 
230 G = -G 
240 PLOT (250'P+H),(G-250'P) 

250 PLOT (250'P-H),(G-250'P) 

260 NEXTT 
270 NEXT P 

Suggested parameters would be: 

L =0.5 
W=0.03 
C =0.2 
D =0.3 
S = 1.7 
J = 200 

THE VORTEX OF LIFE 

It is an interesting exercise to make a series of pictures keeping all 
these constant except one, varying either W, C or D. 

The Embryo (Asymmetric) Program 
We need input of nine parameters: 

X(l) and Y(l), the co-ordinates of the point in which the vortex axis cuts 
the top invariant plane; 

X(2) and Y(2) , the co-ordinates of the projection of the vortex centre on 
the top invariant plane; 

P, the fractional height of the picture plane measured downwards from 
the top pole; 

J, the fractional height of the vortex centre measured downwards from 
the top pole; 

H, a size factor of the vortex; 
L, the A of the vortex (somewhere between O and-1); 
S, the size factor for the picture which is required. 
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The executive commands are then like this: 

110 K=1/(L+1) 
120 E = P/(3-2'P) 
130 FOR N = 0.01 TO 20 STEP 0.05 
140 X(3) = (E'(X(2)'(20-N)+N'X(1)))/(20'E-J'(20-N)) 
150 Y(3) = (E'(X(2)'(20-N)+N'X(1)))/(20'E-J'(20-N)) 
160 R = (20-N)'H'N"(K-1) 
170 G = X(3)-X(1) 
180 F = Y(3)-Y(1) 

190 C = G'2+F'2-R'2 
200 IF C'(G'2+F'2) < C2 THEN 290 
210 M = SQR(-G'F+(C'(G"2+F'2)-C2))/(F'2-C) 
220 X(4) = M'(M'X(3)-Y(3))/(M"2+1) 
222 IF N > O THEN 230 
225 G = -G 
230 Y(4) = -X(4)/M 
240 PLOT (S'X(4)),(S'Y(4)) 
250 M = SOR(-G'F-(C'(G"2+F'2)-C2))/(F'2-C) 
260 X(4) = M'(M'X(3)-Y(3))/(M'2+ 1) 
270 Y(4) = -X(4)/M 
280 PLOT (S'X(4)),(S'Y(4)) 
290 NEXT N 

Six sets of suggested parameters (plus a suitable size factor, S, accord
ing to the machine being used, say 200) would be: 

X(l), Y(l) 0.06, 0 -0.06, 0.38 -0.25, 0.5 -0.5, 0.55 -0.75, 0.5 -0.94, 0.38 
X(2), Y(2) 0.3, 0 0.3, 0 0.3, 0 0.3, 0 0.3, 0 0.3, 0 
p 0.7 0.7 0.7 0.7 0.7 0.7 
J 0.7 0.7 0.7 0.7 0.7 0.7 
H 0.007 0.008 0.009 0.010 0.012 0.015 
L -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 
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