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Foreword

The formulation of a problem is
often more essential than its solution,

which may be merely a matter of
mathematical or experimental skill.

To raise new questions, new possibilities,
to regard old problems from a new angle,

requires creative imagination and marks real advance in science.

—A. Einstein and L. Infeld1

When I was a student, it was commonly understood that one
would study a subject until one became an expert; then, one would
go out into the world and apply that expertise in one’s profes-
sion. It went without saying that the expertise itself, as updated
through one’s experience, would allow the practice of that profes-
sion until retirement. The tacit assumption involved in that world
view was that the knowledge base evolves slowly, an assumption
then already losing validity. Today, we face an explosive growth of
knowledge; by any measure, our knowledge base is doubling every
few years. How do we, as a human culture, prepare ourselves and
our children for this world in which the knowledge base turns over
many times within a single human lifetime?

One answer to this dilemma is specialization: One can be-
come an expert in a specialty that is narrow enough to permit
one to keep up with the changes as they come along. This is the
default solution. In this manner, we can, as it has been said, learn
more and more about less and less, until eventually, we know ev-
erything about nothing! Specialization, as we all know, has its
merits; however, if specialization were to be our only response
to rapidly evolving knowledge, I would view our prospects as a
culture with deep concern, even with alarm.

In his wonderful book, The Act of Creation, Arthur Koestler
(3) defines the creative process as starting with the juxtaposition

1This quotation appears on page 95 of the popular book, The Evolution of
Physics (1). This book has recently been reprinted (2); the quotation appears
on page 92 of the new version.

ix
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x Foreword

of two concepts from separate conceptual spaces. Such a conjunc-
tion creates not merely a new idea but an enlargement of the space
of ideas, a cross-fertilization that is the very stuff of which innova-
tion is made. If we, by education, by scientific practices, by social
norms, restrict the development of individual talents to narrow
specializations, we will thereby lose the ability to innovate.

Fortunately, there is, within our culture, an evolution of
knowledge over and above the addition of facts and the specialized
understanding of those facts. Many phenomena that in the past
were seen as separate are now understood to be the same: Fire is a
chemical reaction, not a separate element; temperature is energy;
light is electromagnetic radiation; molecules are aggregations of
atoms; mechanical forces are electromagnetic in origin; . . . Each
of these equivalences represents a major unification and simplifi-
cation of the knowledge base. Ideas formerly occupying separate
conceptual spaces now occupy the same conceptual space. Each
unification was made possible by a deeper understanding of exist-
ing facts, often triggered by the discovery of a crucial new fact.

It is this unification and simplification of knowledge that gives
us hope for the future of our culture. To the extent that we en-
courage future generations to understand deeply, to see previously
unseen connections, and to follow their conviction that such en-
deavors are noble undertakings of the human spirit, we will have
contributed to a brighter future.

Remarks upon acceptance of the
1999 Lemelson–MIT Prize

April 22, 1999
San Francisco, California
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Personal Preface

As for the search for truth,
I know from my own painful

searching, with its many blind alleys,
how hard it is to take a reliable step, be it ever so small,

toward the understanding of that which is truly significant.

—Albert Einstein1

The material in this little volume has been for me a personal quest
that I began nearly fifty years ago. It came about as a direct result
of my interactions with Richard Feynman. He and I both arrived
at Caltech in 1952—he as a new professor of physics, and I as a
freshman undergraduate. My passionate interest was electronics,
and I avidly consumed any material I could find on the subject:
courses, seminars, books, etc. As a consequence, I was dragged
through several versions of standard electromagnetic theory: �E

and �B, �D and �H, curls of curls, the whole nine yards. The only
bright light in the subject was the vector potential, to which I
was always attracted because, somehow, it made sense to me. It
seemed a shame that the courses I attended didn’t make more use
of it. In my junior year, I took a course in mathematical physics
from Feynman—What a treat ! This man could think conceptually
about physics, not just regurgitate dry formalism. After one quar-
ter of Feynman, the class was spoiled for any other professor. But
when we looked at the registration form for the next quarter, we
found Feynman listed as teaching high-energy physics, instead of
our course. Bad luck! When our first class met, however, here came
Feynman. “So you’re not teaching high-energy physics?” I asked.
“No,” he replied, “low-energy mathematics.” Feynman liked the
vector potential, too; for him it was the link between electromag-
netism and quantum mechanics. As he put it (5),

In the general theory of quantum electrodynamics, one takes

1This quotation was taken from a letter written by Einstein in the year I
was born. It appears on page 38 of the wonderful picture book Essential Ein-
stein (4). This reference contains many historic photographs of Einstein, each
accompanied by a quotation.

xi
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xii Personal Preface

the vector and scalar potentials as fundamental quantities in
a set of equations that replace the Maxwell equations.

I learned enough about it from him to know that, some day, I
wanted to do all of electromagnetic theory that way.

By 1960, I had completed a thesis on transistor physics and
had become a brand-new faculty member in my own right. Fas-
cinated by Leo Esaki’s work on tunnel diodes, I started my own
research on electron tunneling through thin insulating films. Tun-
neling is interesting because it is a purely quantum phenomenon.
Electrons below the zero energy level in a vacuum, or in the for-
bidden gap of a semiconductor or insulator, have wave functions
that die out exponentially with distance. I was working with insu-
lators sufficiently thin that the wave function of electrons on one
side had significant amplitude on the opposite side. The result was
a current that decreased exponentially with the thickness of the
insulator. From the results, I could work out how the exponential
depended on energy. My results didn’t fit with the conventional
theory, which treated the insulator as though it were a vacuum.
But the insulator was not a vacuum, and the calculations were
giving us important information about how the wave function be-
haved in the forbidden gap. Feynman was enthusiastic about this
tunneling work. We shared a graduate student, Karvel Thornber,
who used Feynman’s path integral methods to work out a more
detailed model of the insulator.

In 1961, Feynman undertook the monumental task of devel-
oping a completely new two-year introductory physics course. The
first year covered mechanics; although that topic wasn’t of much
interest to me, it would come up occasionally in our meetings on
the tunneling project. When I heard that Feynman was going to
do electromagnetic theory in the second year, I got very excited—
finally, someone would get it right! Unfortunately, it was not to be.
The following quotation from the forward to Feynman Lectures on
Gravitation (6) tells the story:

It is remarkable that concurrently with this course on gravi-
tation, Feynman was also creating and teaching an innovative
course in sophomore (second-year undergraduate) physics, a
course that would become immortalized as the second and
third volumes of The Feynman Lectures on Physics. Each
Monday Feynman would give his sophomore lecture in the
morning and the lecture on gravitation after lunch. Later in
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Personal Preface xiii

the week would follow a second sophomore lecture and a lec-
ture for scientists at Hughes Research Laboratories in Mal-
ibu. Besides this teaching load and his own research, Feyn-
man was also serving on a panel to review textbooks for the
California State Board of Education, itself a consuming task,
as is vividly recounted in Surely You’re Joking, Mr. Feyn-
man. Steven Frautschi, who attended the lectures as a young
Caltech assistant professor, remembers Feynman later saying
that he was “utterly exhausted” by the end of the 1962–63
academic year.

I was another young Caltech assistant professor who attended the
gravitation lectures, and I remember them vividly. Bill Wagner
(with whom I still communicate over collective electrodynamics
material) took notes, and later worked out the mathematical pre-
sentation in the written version of the lectures. I also attended
many of the sophomore lectures, to which I had mixed reactions.
If you read Vol. II of The Feynman Lectures on Physics (5), you
will find two distinct threads: The first is a perfectly standard
treatment, like that in any introductory book on the subject. In
his preface, Feynman says of this material:

In the second year I was not so satisfied. In the first part of
the course, dealing with electricity and magnetism, I couldn’t
think of any really unique or different way of doing it.

There is a second thread, however, of true vintage Feynman—
the occasional lectures where he waxed eloquent about the vector
potential. Section 15-5 contains a delightful discussion about what
a field is and what makes one field more “real” than another.

What we mean here by a “real” field is this: a real field is a
mathematical function we use for avoiding the idea of action
at a distance . . . A “real” field is then a set of numbers we
specify in such a way that what happens at a point depends
only on the numbers at that point . . . In our sense then, the
A-field is “real” . . .E and B are slowly disappearing from the
modern expression of physical laws; they are being replaced
by A and φ.

In Chapter 25, he develops the equations of electrodynamics in
four-vector form—the approach that I have adopted in this mono-
graph. I can remember feeling very angry with Feynman when I
sat in on this particular lecture. Why hadn’t he started this way
in the first place, and saved us all the mess of a B field, which, as
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xiv Personal Preface

he told us himself, was not real anyway? When I asked him about
it, he said something vague, like:

There are a bunch of classical interactions that you can’t get
at in any simple way without Maxwell’s equations. You need
the v × B term.

I don’t remember his exact words here, only the gist of the discus-
sion. Sure enough, when Vol. II of the lectures was published, the
equation F = q(E + v × B) in table 15-1 appears in the column
labeled “True Always.” The equation is true for the toy electric
motor he shows in Fig. 16-1. It is not true in general. For a real
electric motor, the B field is concentrated in the iron, rather than
in the copper in which the current is flowing, and the equation
gives the wrong answer by a factor of more than 100! That fac-
tor is due to the failure of B to be “real,” precisely in Feynman’s
sense. Somehow he had separated science into two worlds: quan-
tum and classical. For him, the vector potential was primary in the
quantum world, whereas E and B were necessary for the classical
world. These two worlds had not yet come together.

I was an active researcher in solid-state physics at that time,
and I used the quantum nature of electrons in solids every day.
Electrodynamics deals with how electrons interact with other elec-
trons. The classical interactions Feynman was talking about were
between electrons in metals, in which the density of electrons is
so high that quantum interaction is by far the dominant effect.
If we know how the vector potential comes into the phase of the
electron wave function, and if the electron wave function domi-
nates the behavior of metals, then why can’t we do all of electro-
magnetic theory that way? Why didn’t he use his knowledge of
quantum electrodynamics to “take the vector and scalar poten-
tials as fundamental quantities in a set of equations that replace
the Maxwell equations,” as he himself had said? I was mystified;
his cryptic answer prodded me to start working on the problem.
But every time I thought I had an approach, I got stuck.

Bill Fairbank from Stanford had given a seminar on quan-
tized flux in superconducting rings that impressed me very much.
The solid-state physics club was much smaller in those days, and,
because I was working in electron tunneling, I was close to the
people working on tunneling between superconductors. Their re-
sults were breaking in just this same time frame, and Feynman
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gave a lecture about this topic to the sophomores; it appears as
Chapter 21 in Vol. III of The Feynman Lectures on Physics (7).
As I listened to that lecture, my thoughts finally clicked: This is
how we can make the connection! A superconductor is a quantum
system on a classical scale, and that fact allows us to carry out
Feynman’s grand scheme. But I couldn’t get this approach to go
all the way through at that time, so it just sat in the back of my
mind all these years, vaguely tickling me.

Meanwhile my work on tunneling was being recognized, and
Gordon Moore (then at Fairchild) asked me whether tunneling
would be a major limitation on how small we could make transis-
tors in an integrated circuit. That question took me on a detour
that was to last nearly 30 years, but it also led me into another col-
laboration with Feynman, this time on the subject of computation.
Here’s how it happened: In 1968, I was invited to give a talk at a
workshop on semiconductor devices at Lake of the Ozarks. In those
days, you could get everyone who was doing cutting-edge work
into one room, so the workshops were where all the action was. I
had been thinking about Gordon Moore’s question, and decided
to make it the subject of my talk. As I prepared for this event,
I began to have serious doubts about my sanity. My calculations
were telling me that, contrary to all the current lore in the field, we
could scale down the technology such that everything got better.
The circuits got more complex, they ran faster, and they took less
power—WOW! That’s a violation of Murphy’s law that won’t quit!
But the more I looked at the problem, the more I was convinced
that the result was correct, so I went ahead and gave the talk—to
hell with Murphy! That talk provoked considerable debate, and
at the time most people didn’t believe the result. But by the time
the next workshop rolled around, a number of other groups had
worked through the problem for themselves, and we were pretty
much all in agreement. The consequences of this result for modern
information technology have, of course, been staggering.

Back in 1959, Feynman gave a lecture entitled “There’s Plenty
of Room at the Bottom,” in which he discussed how much smaller
things can be made than we ordinarily imagine. That talk had
made a big impression on me; I thought about it often, and it
would sometimes come up in our discussions on the tunneling
work. When I told him about the scaling law for electronic de-
vices, Feynman got jazzed. He came to my seminars on the sub-

[-15](∆v=0.0 [500.0+2.12917])
Monograph:20000413-00:05-v6mm000412.1



Carver A. Mead
Aug. 31, 1997
File: Preface.tex (ed:000412.1PA0F) DRAFT
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ject, and always raised a storm of good questions and comments. I
was working with a graduate student, Bruce Hoeneisen; by 1971,
we had worked out the details of how transistors would look and
work when they are a factor of 100 smaller in linear dimension
than the limits set by the prevailing orthodoxy. Recently, I had
occasion to revisit these questions, and to review the history of
what has happened in the industry since those papers were pub-
lished. I plotted our 1971 predictions alongside the real data; they
have held up extremely well over 25 years, representing a factor of
several thousand in density of integrated circuit components (8).

Because of the scaling work, I became completely absorbed
with how the exponential increase in complexity of integrated
circuits would change the way that we think about computing.
The viewpoint of the computer industry at the time was an out-
growth of the industrial revolution; it was based on what was
then called “the economy of scale.” The thinking went this way:
A 1000-horsepower engine costs only four times as much as a 100-
horsepower engine. Therefore, the cost per horsepower becomes
less as the engine is made larger. It is more cost effective to make
a few large power plants than to make many small ones. Effi-
ciency considerations favor the concentration of technology in a
few large installations. The same must be true of computing. One
company, IBM, was particularly successful following this strat-
egy. The “Computing Center” was the order of the day—a central
concentration of huge machines, with some bureaucrat “in charge”
and plenty of people around to protect the machines from anyone
who might want to use them. This model went well with the bu-
reaucratic mindset of the time—a mindset that has not totally
died out even today.

But as I looked at the physics of the emerging technology, it
didn’t work that way at all. The time required to move data is set
by the velocity of light and related electromagnetic considerations,
so it is far more effective to put whatever computing is required
where the data are located. Efficiency considerations thus favor the
distribution of technology, rather than the concentration of tech-
nology. The economics of information technology are the reverse
of those of mechanical technology.

I gave numerous talks on this topic, but, at that time, what
I had to say was contrary to what the industry wanted to hear.
The story is best told in George Gilder’s book, Microcosm (9).
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Feynman had started this line of thought already in his 1959
lecture, and we had a strong agreement on the general direc-
tion things were headed. He often came to my group meetings,
and we had lively discussions on how to build a machine that
would recognize fingerprints, how to organize many thousand
little computers so they would be more efficient than one big
computer, etc. Those discussions inevitably led us to wonder
about the most distributed computer of all: the human brain.
Years before, Feynman had dabbled in biology, and I had worked
with Max Delbrück on the physics of the nerve membrane, so
I knew a bit about nervous tissue. John Hopfield had delved
much deeper than either Feynman or I had; and, by 1982, he
had a simple model—a caricature of how computation might oc-
cur in the brain.

The three of us decided to offer a course jointly, called “Phys-
ics of Computation.” The first year, Feynman was battling a bout
with cancer, so John and I had to go it alone. We alternated lec-
tures, looking at the topic from markedly different points of view.
Once Feynman rejoined us, we had even more fun—three totally
different streams of consciousness in one course. The three of us
had a blast, and learned a lot from one another, but many of
the students were completely mystified. After the third year, we
decided, in deference to the students, that there was enough ma-
terial for three courses, each with a more-unified theme. Hopfield
taught “Neural Networks,” Feynman taught “Quantum Comput-
ing,” which ended up in the first volume of Feynman Lectures on
Computation (10), and I taught “Neuromorphic Systems,” which
ended up in my book on the subject (11).

There is a vast mythology about Feynman, much of which
is misleading. He had a sensitive side that he didn’t show often.
Over lunch one time, I told him how much he had meant to me
in my student years, and how I would not have gone into science
had it not been for his influence. He looked embarrassed, and
abruptly changed the subject; but he heard me, and that was what
was important. In those days, physics was an openly combative
subject—the one who blinked first lost the argument. Bohr had
won his debate with Einstein that way, and the entire field adopted
the style. Feynman learned the game well—he never blinked. For
this reason, he would never tell anyone when he was working on
something, but instead would spring it, preferably in front of an
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audience, after he had it all worked out. The only way that you
could tell what he cared about was to notice what topics made
him mad when you brought them up.

If Feynman was stuck about something, he had a wonderful
way of throwing up a smoke screen; we used to call it “proof by
intimidation.” There is a good example in Vol. II of the Lectures on
Physics (5), directly related to collective electrodynamics. Section
17-8 contains the following comment:

we would expect that corresponding to the mechanical mo-
mentum p = mv, whose rate of change is the applied force,
there should be an analogous quantity equal to LI, whose rate
of change is V. We have no right, of course, to say that LI is
the real momentum of the circuit; in fact it isn’t. The whole
circuit may be standing still and have no momentum.

Now, this passage does not mean that Feynman was ignorant of
the fact that the electrical current I is made up of moving elec-
trons, that these moving electrons have momentum, and that the
momentum of the electrons does not correspond to the whole cir-
cuit moving in space. But the relations are not as simple as we
might expect, and they do not correspond in the most direct way
to our expectations from classical mechanics. It is exactly this
point that prevented me, over all these years, from seeing how to
do electrodynamics without Maxwell’s equations. Feynman was
perfectly aware that this was a sticking point, and he made sure
that nobody asked any questions about it. There is a related com-
ment in Vol. III of the Lectures on Physics (7), Section 21-3:

It looks as though we have two suggestions for relations of
velocity to momentum . . . The two possibilities differ by the
vector potential. One of them . . . is the momentum obtained
by multiplying the mass by velocity. The other is a more math-
ematical, more abstract momentum

When Feynman said that a concept was “more mathematical”
or “more abstract,” he was not paying it a compliment! He had
no use for theory devoid of physical content. In the Lectures on
Gravitation, he says:

If there is something very slightly wrong in our definition of the
theories, then the full mathematical rigor may convert these
errors into ridiculous conclusions.
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We called that “carrying rigor to the point of rigor mortis.” At
another point, he is even more explicit:

it is the facts that matter, and not the proofs. Physics can
progress without the proofs, but we can’t go on without the
facts . . . if the facts are right, then the proofs are a matter of
playing around with the algebra correctly.

He opened a seminar one time with the statement, “Einstein was
a giant.” A hush fell over the audience. We all sat, expectantly,
waiting for him to elaborate. Finally, he continued, “His head was
in the clouds, but his feet were on the ground.” We all chuckled,
and again we waited. After another long silence, he concluded,
“But those of us who are not that tall have to choose!” Amid the
laughter, you could see that not only a good joke, but also a deep
point, had been made.

Experiments are the ground on which physics must keep its
feet—as Feynman knew well. When any of us had a new result,
he was all ears. He would talk about it, ask questions, brainstorm.
That was the only situation in which I ever personally interacted
with him without his combative behavior getting in the way. Down
deep, he always wanted to do experiments himself. A hilarious ac-
count of how he was “cured” of this craving appears in Surely
You’re Joking, Mr. Feynman. In the end, he had his wish. In
1986, he was asked to join the Rodgers commission to investigate
the Challenger disaster. After talking to the technical people, who
knew perfectly well what the problem was and had tried to post-
pone the launch, he was able to devise an experiment that he
carried out on national, prime-time TV. In true Feynman style,
he sprang it full-blown, with no warning! In his personal appendix
to the commission report, he concluded, “For a successful technol-
ogy, reality must take precedence over public relations, for nature
cannot be fooled.” The day after the report was released was Cal-
tech’s graduation. As we marched together in the faculty proces-
sion, “Did you see the headline this morning?” he asked. “No,” I
replied. “What did it say?” “It said FEYNMAN ISSUES RE-
PORT.” He paused, and then continued with great glee. “Not
Caltech Professor Issues Report, not Commission Mem-
ber Issues Report, but FEYNMAN ISSUES REPORT.”
He was a household word, known and revered by all people every-
where who loved truth. His own public relations were all about
reality, and were, therefore, okay.
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xx Personal Preface

In 1987, one year later, his cancer came back with a vengeance,
and he died in February, 1988. Al Hibbs, a former student, col-
league, and friend of Feynman’s, organized a wake in grand style:
bongo drums, news clips, interviews, and testimonials. It was
deeply moving—we celebrated the life of this man who had, over
the years, come to symbolize not just the spirit of Caltech, but
the spirit of science itself. This man had engendered the most
intense emotions I have ever felt—love, hate, admiration, anger,
jealousy, and, above all, a longing to share and an intense frus-
tration that he would not. As I walked away from Feynman’s
wake, I felt intensely alone. He was the man who had taught
me not only what physics is, but also what science is all about,
what it means to really understand. He was the only person with
whom I could have talked about doing electromagnetism without
Maxwell’s equations—using the quantum nature of matter as the
sole basis. He was the only one who would have understood why it
was important. He was the only one who could have related to this
dream that I had carried for 25 years. This dream came directly
from Feynman, from what he said and from what he scrupulously
avoided saying, from the crystal-clear insights he had, and from
the topics that had made him mad when I brought them up. But
now he was gone. I would have to go it alone. I sobbed myself to
sleep that night, but I never shared those feelings with anyone. I
learned that from him, too.

In 1994, I was invited to give the keynote talk at the Physics of
Computation conference. That invitation gave me the kickstart I
needed to get going. By the next year, I had made enough progress
to ask Caltech for a year relief from teaching so I could concen-
trate on the new research. In June 1997, the six graduate students
working in my lab all received their doctoral degrees, and, for the
first time since I joined the faculty, I was a free man. I finished the
basic paper on Collective Electrodynamics (12), an expanded ver-
sion of which appears in the present monograph as Part 1 (p. 9).
The memorial volume, Feynman and Computation (13), contains
reprints of this paper and the scaling paper mentioned previously,
along with an earlier version of this preface entitled Feynman as
a Colleague.

By the end of 1998, I had developed the subject to the point
where most of the standard problems in electromagnetic theory
could be understood much more easily using this approach than
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Personal Preface xxi

by using standard textbook methods. Early in 1999, I was notified
that I had been chosen to receive the prestigious Lemelson–MIT
award for innovation. The ceremony celebrating this award was a
gala event at which MIT chairman Alex d’Arbeloff stressed the
importance of preparing the students of today to be the innova-
tors of tomorrow. He expressed concern that neither our scientific
establishment nor our educational institutions have developed ap-
proaches that are adequate to meet this challenge. At that mo-
ment, I realized that the work I had been doing was an example
of precisely what was needed—the simplification and unification of
knowledge. The remarks I made upon receiving the award appear
in the foreword to this monograph.

In the end, science is all in how you look at things. Collective
Electrodynamics is a way of looking at the way that electrons
interact. It is a much simpler way than Maxwell’s, because it is
based on experiments that tell us about the electrons directly.
Maxwell had no access to these experiments. The sticking point
I mentioned earlier is resolved in this treatment, in a way that
Feynman would have liked. This monograph is dedicated to him in
the most sincere way I know: It opens with my favorite quotation,
the quotation that defines, for me, what science is all about. In
his epilogue, Feynman tells us his true motivation for giving the
Lectures on Physics:

I wanted most to give you some appreciation of the wonderful
world, and the physicist’s way of looking at it, which, I believe,
is a major part of the true culture of modern times . . . Perhaps
you will not only have some appreciation of this culture; it
is even possible that you may want to join in the greatest
adventure that the human mind has ever begun.

You succeeded, Dick, and we have—Thanks!
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Introduction

Foundations of Physics
But the real glory of science is that we can find
a way of thinking such that the law is evident.

—R.P. Feynman1

It is my firm belief that the last seven decades of the twentieth cen-
tury will be characterized in history as the dark ages of theoretical
physics. Early in this period, a line was drawn between Classical
Physics, containing mechanics, electricity, and magnetism, and
Modern Physics, containing relativity and quantum theory. The
connection between the two domains was supposed to be Bohr’s
Correspondence Principle: The behavior of a quantum system
must approach that of a classical mechanical system in the limit
of large quantum numbers. It is the purpose of this monograph
to redefine that boundary, and to state a more-correct correspon-
dence principle. As a quantum system contains more and more
elements, it exhibits Collective behaviors that differ more and
more widely from the behaviors of a mechanical system. In the
limit of a large number of elements, these behaviors correspond to
electromagnetic phenomena. Thus, physics can indeed be divided
into two disciplines: the first preoccupied with the behavior of in-
coherent systems, and the second concerned with coherent quan-
tum phenomena. In what follows, I show that electromagnetism
falls squarely in the second category.

Modern science began with mechanics; in many ways, we are
all still captive to mechanical ideas. Newton’s success in deriv-
ing the planetary orbits from the 1/r2 law of gravitation became
the paradigm. To Niels Bohr, 250 years later, the atom was still
a miniature solar system, with a nucleus as the sun and elec-
trons as the planets. But there were problems: An accelerating
charge would radiate energy. So the electrons, so busily orbit-
ing the nucleus, would soon radiate away the energy that kept
them in orbit, and finally collapse into the nucleus. It became

1Page 26-3 of Ref. 14.

1
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2 Foundations of Physics

clear that the mechanics of the atom are, in some way, totally
different from the mechanics of ordinary mechanical systems. Out
of the struggle to understand the atom came Quantum Mechan-
ics, a new orthodoxy that replaced the mechanical orthodoxy of
the late nineteenth century.2 Bohr gathered the early contribu-
tors into a clan in Copenhagen, encouraged everyone in the be-
lief that they were developing the ultimate theory of nature, and
argued vigorously against any opposing views. Quantum Mechan-
ics was enormously successful in calculating the spectral lines of
the hydrogen atom, and has become the mantra of physics as
we know it today. The story of the quantum revolution is re-
peated in the popular literature, in science education, and in
specialized physics courses. One must solemnly affirm one’s al-
legiance to the Quantum God before one may be admitted to
the physics clan.

All this mysticism seems out of place in a discipline as ob-
jective as physics, so there must be more to the story. Einstein
and Schrödinger both made central contributions to the emerg-
ing quantum discipline, but never bought into the orthodoxy of
Bohr’s Copenhagen clan. There was no disagreement about the
numbers the equations gave for the hydrogen energy levels; the
dissent was over the conceptual interpretation of the theory. Bohr
insisted that the laws of physics, at the most fundamental level,
are statistical in nature. Einstein and Schrödinger believed in a
continuous space–time, that the statistical nature of the experi-
mental results was a result of our lack of knowledge of the state
of the system, and that the underlying physical laws can be for-
mulated in a continuous manner. Schrödinger put it this way:

I no longer regard this [statistical] interpretation as a finally
satisfactory one, even if it proves useful in practice. To me
it seems to mean a renunciation, much too fundamental in
principle, of all attempt to understand the individual process.

The disagreement culminated in a 1927 debate between Bohr and
Einstein, refereed by Eherenfest. Bohr was a great debater, and
won the contest hands down. A rematch was staged in 1930, and

2An excellent exposition of the early contributions is given by Mehra and
Rechenberg in their multi-volume Historical Development of Quantum Theory
(15), and by Jammer in The Conceptual Development of Quantum
Mechanics (16).
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3

Bohr won again.3 The word was circulated that Einstein had be-
come senile, and could no longer cope with new ideas. Years later,
at the celebration of Einstein’s seventieth birthday, several mem-
bers of the clan used the occasion to roast Einstein once again
for his dissent. His comments in reply4 shed more light on the
controversy than all other commentary combined:

I do not believe that this fundamental concept will provide a
useful basis for the whole of physics.

I am, in fact, firmly convinced that the essentially statisti-
cal character of contemporary quantum theory is solely to be
ascribed to the fact that this [theory] operates with an incom-
plete description of physical systems.

One arrives at very implausible theoretical conceptions, if one
attempts to maintain the thesis that the statistical quantum
theory is in principle capable of producing a complete descrip-
tion of an individual physical system.

Roughly stated the conclusion is this: Within the framework
of statistical quantum theory there is no such thing as a com-
plete description of the individual system. More cautiously it
might be put as follows: The attempt to conceive the quantum-
theoretical description as the complete description of the indi-
vidual systems leads to unnatural theoretical interpretations,
which become immediately unnecessary if one accepts the in-
terpretation that the description refers to ensembles of systems
and not to individual systems. In that case the whole “egg-
walking” performed in order to avoid the “physically real”
becomes superfluous. There exists, however, a simple psycho-
logical reason for the fact that this most nearly obvious inter-
pretation is being shunned. For if the statistical quantum the-
ory does not pretend to describe the individual system (and

3A thoughtful analysis of these debates and developments that followed from
them is given by Whitaker (17), and also by Fine (18). Mara Beller (19) gives
a good discussion of the philosophical excesses engendered by the triumph of
the Copenhagen clan.
4The lectures given on this occasion, and Einstein’s reply, appear in full in
Ref. 20. A thoughtful discussion of the statistical interpretation is given by
Ballentine (21), accompanied by an editorial that illustrates the level of con-
troversy that existed in 1970. Davies and Brown published interviews with
leading physicsts in The Ghost in the Atom (22). These notable figures held
views that spanned the entire space of possible opinion, yet many firmly be-
lieved that theirs was the only view that any thinking person could possibly
hold.
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4 Foundations of Physics

its development in time) completely, it appears unavoidable
to look elsewhere for a complete description of the individual
system; in doing so it would be clear from the very begin-
ning that the elements of such a description are not contained
within the conceptual scheme of the statistical quantum the-
ory. With this one would admit that, in principle, this scheme
could not serve as the basis of theoretical physics. Assum-
ing the success of efforts to accomplish a complete physical
description, the statistical quantum theory would, within the
framework of future physics, take an approximately analogous
position to the statistical mechanics within the framework of
classical mechanics. I am rather firmly convinced that the de-
velopment of theoretical physics will be of this type; but the
path will be lengthy and difficult.

If it should be possible to move forward to a complete descrip-
tion, it is likely that the laws would represent relations among
all the conceptual elements of this description which, per se,
have nothing to do with statistics.

The experiments upon which the conceptual foundations of quan-
tum mechanics were based are extremely crude by modern stan-
dards. At that time, the detectors available were Geiger counters,
cloud chambers, and photographic film; each of these had a high
degree of randomness built into it, and by its very nature could
register only statistical results. The atomic sources available were
similarly constrained: They consisted of large ensembles of atoms
with no mechanism for achieving even the slightest hint of phase
coherence in their emitted radiation. It is understandable that the
experiments that could be imagined would all be of a statisti-
cal sort. In the Schrödinger centenary volume (23), Jon Dorling
makes a convincing case for reviving the continuous space–time
view of Einstein and Schrödinger, arguing that physics would be
in less trouble with their approach than it is now. Greenstein and
Zajonc (24) give a delightful modern perspective on conceptual
issues raised by the statistical quantum theory, and Gribben (25)
presents a thoughtful popular review. It seems to have escaped no-
tice in such discussions that working-level physicists use a totally
distinct interpretation5 to analyze collective systems: The coher-
5 The formalism involved, called Second Quantization, is derived from stan-
dard quantum mechanics using arguments from quantum electrodynamics. A
nice treatment of the technique can be found in the appendix to Pines and
Nozières (26).
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ent state is taken as the starting point, and the statistics are put
where Einstein would have placed them—in the random thermal
excitations out of the perfectly coherent state. The success of this
method can be viewed as a vindication of Einstein’s conjecture.

Despite the muddle and fuss over theory, the past seventy years
have been an age of enlightenment on the experimental front. Of
the astounding experimental discoveries made during that period,
a number are of particular importance for the present discussion:

1933 Persistent Current in Superconducting Ring
1933 Expulsion of Magnetic Field by Superconductor
1954 Maser
1960 Atomic Laser
1961 Quantized Flux in Superconducting Ring
1962 Semiconductor Laser
1964 Superconducting Quantum Interference Device
1980 Integer Quantum Hall Effect
1981 Fractional Quantum Hall Effect
1996 Bose–Einstein Condensate

Each of these discoveries has made a profound difference in
the way we view the physical world. Each represents a coherent,
collective state of matter. Each embodies a fundamental quantum
principle, which is exhibited on a macroscopic scale. Each has been
investigated exclusively by electromagnetic means.

Hindsight is a wonderful thing: We can start at a different
place, go at the subject in a completely different way, and build a
much clearer and simpler conceptual base. The difficult step with
hindsight is to go back far enough to get a really fresh start. I have
found it necessary to start not just before the quantum theory, but
before electromagnetic theory as it has come to be taught. Col-
lective electrodynamics is the result of asking the question: If we
could have looked forward from the mid 1800s with these experi-
mental facts in our hands, would we have built the theory we have
today? I have concluded that we would not. This approach does
not produce a new theory in the sense that it contains startling
new equations, for it does not. The results it derives for stan-
dard electromagnetic problems are identical to those found in any
text on the subject. To be sure, many embarrassing questions that
arise in the standard treatments of electromagnetism have natural
answers in the collective context, as I have noted in the preface.
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6 Foundations of Physics

Collective electrodynamics is important in a completely different
way, for it shows us that quantities we usually think of as being
very different are, in fact, the same, that electromagnetic phenom-
ena are simple and direct manifestations of quantum phenomena.
This is the first step toward reformulating quantum concepts in a
clear and comprehensible manner, but it is only a first step, and
does not claim to be more.

So, how do we get a foothold to start our new approach? It
helps to identify some of the confusions that exist in the stan-
dard quantum picture. The first confusion, the Correspondence
Principle, states that the behavior of a quantum system must ap-
proach that of a classical mechanical system in the limit of large
quantum numbers. Ernst Mach wrote (p. 596 in Ref. 27):

The view that makes mechanics the basis of the remaining
branches of physics, and explains all physical phenomena by
mechanical ideas, is in our judgment a prejudice . . . The me-
chanical theory of nature, is, undoubtedly, in a historical view,
both intelligible and pardonable; and it may also, for a time,
have been of much value. But, upon the whole, it is an artificial
conception.

Classical mechanics is an inappropriate starting point for physics
because it is not fundamental; rather, it is the limit of an inco-
herent aggregation of an enormous number of quantum elements.
Feynman wrote (p. 15-8 in Ref. 5):

There are many changes in concepts that are important when
we go from classical to quantum mechanics . . . Instead of forces,
we deal with the way interactions change the wavelengths
of waves.

To make contact with the fundamental nature of matter, we must
work in a coherent context in which the underlying quantum re-
ality has not been corrupted by an incoherent averaging process.
Traditional treatments of quantum mechanics universally confuse
results that follow from the wave nature of matter with those that
follow from the statistical nature of the experiment. In the usual
picture, these aspects are inextricably intertwined. Einstein him-
self had a massive case of this confusion, and it cost him the debate
with Bohr. Had he stuck to his hunch that the fundamental laws
are continuous, he would have fared better; but to do that, he
would have needed a model quantum system in which statistics
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plays a vanishingly small role. At that time, no such system was
known. Today, we have many such systems, as mentioned above.
Of these, none is more accessible than the superconductor itself; it
is a quantum system on a grand scale, and, all by itself, provides
us strikingly direct access to a near-perfect coherent state. It man-
ifests all the quantum phenomena associated with the wave nature
of matter, without the confusion about statistics. Its behavior is,
in many ways, simpler than that of an isolated single particle.
Of course, the details of how the superconducting state arises in
a real solid are complicated; we will not even approach them in
this introductory treatment. But, given a superconductor, we can
devise a system that we can view as having only one degree of
freedom. Its properties are dominated by known and controllable
interactions within the collective ensemble. The dominant interac-
tion is electromagnetic, because it couples to the charges of the
electrons; and collective, because the properties of each electron
depend on the state of the entire ensemble. Nowhere in natural
phenomena do the basic laws of physics manifest themselves with
more crystalline clarity.
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Part 1

Magnetic Interaction
of Steady Currents
I feel that it is a delusion to think of the electrons and

the fields as two physically different, independent entities.
Since neither can exist without the other,
there is only one reality to be described,

which happens to have two different aspects;
and the theory ought to recognize this from the start

instead of doing things twice.

—Albert Einstein1

In atomic theory we have fields and we have particles.
The fields and the particles are not two different things.

They are two ways of describing the same thing—
two different points of view.

—P.A.M. Dirac2

1.1 Model System
Our model system, shown in Fig. 1.1, is a loop of superconducting
wire—the two ends of the loop are collocated in space and either
shorted (a), or insulated (b), depending on the experimental situ-
ation. Experimentally, the voltage V between the two ends of the
loop in Fig. 1.1b is related to the current I flowing through the
loop by

LI =
∫

V dt = Φ (1.1)

Two quantities are defined by this relationship: Φ, called the mag-
netic flux,3 and L, called the inductance, which depends on the
dimensions of the loop.
1In Ref. 28, E.T. Jaynes puts forth a delightful argument for the approach I
have adopted in this monograph. The Einstein quotation appears on page 383
of this reference.
2This quotation appears on page 1 of Ref. 29.
3This definition is independent of the shape of the loop, and applies even to
coils with multiple turns. For multiturn coils, what we call the flux is commonly
referred to as the total flux linkage.

9
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10 Magnetic Interaction of Steady Currents

I

V

+ −

(a) (b)

Figure 1.1 Loops of superconducting wire: (a) shorted and (b) with
externally applied current.

Current is the flow of charge: I = dQ/dt. Each increment of
charge dQ carries an energy increment dW = V dQ into the loop
as it enters.4 The total energy W stored in the loop is thus

W =
∫

V dQ =
∫

V I dt

= L

∫
dI

dt
I dt = L

∫
I dI =

1
2
LI2

(1.2)

If we reduce the voltage to zero by, for example, connecting the
two ends of the loop to form a closed superconducting path, as
shown in Fig. 1.1a, the current I will continue to flow indefinitely:
a persistent current. If we open the loop and allow it to do work
on an external circuit, we can recover all of the energy W .

If we examine closely the values of currents under a variety of
conditions, we find the full continuum of values for the quantities
I, V, and Φ, except in the case of persistent currents, where only
certain, discrete values occur for any given loop (30, 31). By exper-
imenting with loops of different dimensions, we find the condition

4We use this relation to define the voltage V.
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1.1 Model System 11

that describes the values that occur experimentally:

Φ =
∫

V dt = nΦ0 (1.3)

Here, n is any integer, and Φ0 = 2.06783461×10−15 volt-second is
the flux quantum or fluxoid; its value is accurate to a few parts
in 109, independent of the detailed size, shape, or composition of
the superconductor forming the loop. We also find experimentally
that a rather large energy—sufficient to disrupt the superconduct-
ing state entirely—is required to change the value of n.

The more we reflect on Eq. 1.3, the more remarkable the
result appears. The quantities involved are the voltage and the
magnetic flux. These quantities are integrals of the quantities E
and B that appear in Maxwell’s equations, and are therefore usu-
ally associated with the electromagnetic field. Experimentally, we
know that they can take on a continuum of values—except under
special conditions when the arrangement of matter in the vicinity
causes the flux to take on precisely quantized values. In Maxwell’s
theory, E and B represent the state of strain in a mechanical
medium (the ether) induced by electric charge. Einstein had a
markedly different view, as illustrated by the opening quotation.
At the most-fundamental level, the essence of quantum mechanics
lies in the wave nature of matter. Einstein’s view suggests that
electromagnetic variables are related to the wave properties of
the electrons. Quantization is a familiar phenomenon in systems
where the boundary conditions give rise to standing waves. The
quantization of flux (Eq. 1.3) is a direct manifestation of the wave
nature of matter, expressed in electromagnetic variables.

1.2 Matter
To most nonspecialists, quantum mechanics is a baffling mixture
of waves, statistics, and arbitrary rules, ossified in a matrix of
impenetrable formalism. By using a superconductor, we can avoid
the statistics, the rules, and the formalism, and work directly with
the waves. The wave concept, accessible to both intuition and
common sense, gives us “a way of thinking such that the law is
evident.” Electrons in a superconductor are described by a wave
function that has an amplitude and a phase. The earliest treat-
ment of the wave nature of matter is the 1923 wave mechanics of
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12 Magnetic Interaction of Steady Currents

de Broglie. He applied the 1905 Einstein postulate (W = h̄ω) to
the energy W of an electron wave, and identified the momentum
�p of an electron with the propagation vector of the wave: �p = h̄�k.
Planck’s constant h and its radian equivalent h̄ = h/2π are neces-
sary for merely historical reasons—when our standard units were
defined, it was not yet known that energy and frequency are the
same quantity.

The Einstein–de Broglie relations apply to the collective elec-
trons in a superconductor. The dynamics of the system can be de-
rived from the dispersion relation (32) between ω and �k. Both ω

and �k are properties of the phase of the wave function, and do not
involve the amplitude—which, in collective systems, is usually de-
termined by some normalization condition. In a superconductor,
the constraint of charge neutrality is such a condition. A more-
detailed description of the wave function of a large ensemble of
electrons is given in the Appendix (p. 115).

The wave function must be continuous in space; at any given
time, we can follow the phase along a path from one end of the
loop to the other: The number of radians by which the phase ad-
vances as we traverse the path is the phase accumulation ϕ
around the loop.5 If the phase at one end of the loop changes rel-
ative to that at the other end, that change must be reflected in
the total phase accumulation around the loop. The frequency ω
of the wave function at any point in space is the rate at which
the phase advances per unit of time. If the frequency at one end
of the loop (ω1) is the same as that at the other end (ω2), the
phase difference between the two ends will remain constant, and
the phase accumulation will not change with time. If the frequency
at one end of the loop is higher than that at the other, the phase
accumulation will increase with time, and that change must be
reflected in the rate at which phase accumulates with the distance
l along the path. The rate at which phase around the loop ac-
cumulates with time is the difference in frequency between the
two ends. The rate at which phase accumulates with distance l

is the component of the propagation vector �k in the direction �dl
along the path. Thus, the total phase accumulated around the

5The reference for phase angle is, of course, arbitrary. The phase accumulation
along a path uses a single reference, and thus has none of the arbitrary nature
of the phase at a single point.
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1.2 Matter 13

loop is

ϕ =
∫

(ω1 − ω2) dt =
∮

�k · �dl (1.4)

We can understand quantization as an expression of the single-
valued nature of the phase of the wave function. When the two
ends of the loop are connected to an external circuit, the two
phases can evolve independently. When the ends are connected to
each other, however, the two phases must match up. But the phase
is a quantity that has a cyclic nature—matching up means being
equal modulo 2π. Thus, for a wave that is confined to a closed loop
and has a single-valued, continuous phase, the integral of Eq. 1.4
must be n 2π, where n is an integer. The large energy required to
change n is evidence that the phase constraint is a strong one—as
long as the superconducting state stays intact, the wave function
remains intact, as well.

These relations tell us that the magnetic flux and the propa-
gation vector will be quantized for a given loop; they do not tell
us how the frequency ω in Eq. 1.4 is related to the voltage V in
Eq. 1.1. To make this connection, we must introduce one addi-
tional assumption: The collective electron system represented by
the wave function is made up of elemental charges of magnitude q0.
The voltage V is the difference in the electrostatic potential V at
the two ends of the loop. By the Einstein relation, the energy q0V
of an elemental charge at potential V corresponds to a frequency
ω = q0V/h̄, which is the time rate of change of the wave-function
phase.

1.3 Electrodynamics
Electrodynamics is the interaction of matter via the electro-
magnetic field. We can formulate our first relation between the
electromagnetic quantities V and Φ and the phase accumulation
ϕ of the wave function by comparing Eq. 1.1 with Eq. 1.4. The
voltage V is the difference in potential V between the two ends of
the loop.

ϕ =
∫

(ω1 − ω2) dt

=
q0
h̄

∫
(V1 − V2) dt =

q0
h̄

∫
V dt (1.5)
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14 Magnetic Interaction of Steady Currents

ϕ =
q0
h̄

nΦ0 = n (2π)

From Eq. 1.5, we conclude that Φ0 = h/q0.
When we substitute into Eq. 1.5 the measured value of Φ0

and the known value of h, we obtain for q0 a value that is exactly
twice the charge qe of the free electron. The usual explanation for
this somewhat surprising result is that each state in the super-
conductor is occupied by a pair of electrons, rather than by an
individual electron, so the elemental charge q0 should be 2qe, not
qe. Alternatively, we note that the electron is a spin one-half en-
tity, meaning that its wave function matches up with itself modulo
π rather than modulo 2π as we had naively assumed. Eq. 1.5 then
becomes

ϕ =
qe
h̄
nΦ0 = nπ ⇒ Φ0 =

h

2qe
(1.6)

which is equivalent to choosing q0 = 2qe. Each of these descriptions
expresses a certain aspect of the nature of the collective electron
system.

We have established the correspondence between the poten-
tial V and the frequency ω—the time integral of each of these
equivalent quantities in a closed loop is quantized. The line inte-
gral of the propagation vector �k around a closed loop also is quan-
tized. We would therefore suspect the existence of a corresponding
electromagnetic quantity, whose line integral is the magnetic flux
Φ. That quantity is called the vector potential �A. The gen-
eral relations among these quantities, whether or not the loop is
closed, are

Phase ϕ =
∫

(ω1 − ω2) dt =
∮

�k · �dl

Flux Φ =
∫

V dt =
∮

�A · �dl




Φ =
h̄

q0
ϕ (1.7)

Eq. 1.7 expresses the first set of fundamental relations of collective
electrodynamics.6

6The vector potential was introduced by Maxwell in Art. 405 of his Treatise on
Electricity and Magnetism (33). The connection between the vector potential
and the phase of the electron wave function was introduced by Schrödinger
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1.4 Coupling 15

Loop 1

Loop 2

(a) (b)

Loop 1

Loop 2

Figure 1.2 Coupled loops: (a) closely coupled; (b) separated in space

1.4 Coupling
Up to this point, we have tentatively identified the phase accumu-
lation and the magnetic flux as two representations of the same
physical entity. We assume that “winding up” the wave function
with a voltage produces a propagation vector in the superconduc-
tor that is related to the motion of the electrons, and that this
motion corresponds to a current because the electrons are charged.
This viewpoint will allow us to understand the interaction between
two coupled collective electron systems. We shall develop these re-
lationships in more detail when we study the current distribution
within the wire itself.

Let us consider two identical loops of superconducting wire,
the diameter of the wire being much smaller than the loop radius.
We place an extremely thin insulator between the loops, which
are then superimposed on each other as closely as allowed by the
insulator. In this configuration, shown in Fig. 1.2a, both loops can
be described, to an excellent approximation, by the same path in
space, despite their being electrically distinct. As we experiment
with this configuration, we make the following observations:

1. When the two ends of the second loop are left open, the sec-
ond loop’s presence has no effect on the operation of the first

in the fourth of his epic papers, entitled Quantization as a Problem of Proper
Values (34). These papers are reprinted, together with Schrödinger’s Lectures
on Wave Mechanics, in Ref. 35. The vector potential is introduced on page
119 of this reprint volume. A useful commentary on the history can be found
on page 81 of Ref. 36. Tonomura (37) gives a wonderful modern account of
experiments with electron waves.
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16 Magnetic Interaction of Steady Currents

loop: The relationship between a current flowing in the first
loop and the voltage observed between the ends of the first
loop follows Eq. 1.1, with exactly the same value of L as that
observed when the second loop is absent.

2. The voltage observed between the two ends of the second loop
under open conditions is almost exactly equal to the voltage
observed across the first loop.

3. When the second loop is shorted, the voltage observed across
the first loop is nearly zero, independent of the current.

4. The current observed in the second loop under shorted con-
ditions is nearly equal to that flowing in the first loop, but is
of the opposite sign.

Similar measurements can be performed when the loops are
separated, as shown in Fig. 1.2b. These experiments allow us to
observe how the coupling between the loops depends on their sep-
aration and relative orientation:

5. For a given configuration, the voltage observed across the
second loop remains proportional to the voltage across the
first loop. The constant of proportionality, which is nearly
unity when the loops are superimposed, decreases with the
distance between the loops.

6. The constant of proportionality decreases as the axes of the
two loops are inclined with respect to each other, goes to
zero when the two loops are orthogonal, and reverses when
one loop is flipped with respect to the other.

Observation 1 tells us that the presence of electrons in the
second loop does not per se affect the operation of the first loop.
The voltage across a loop is a direct manifestation of the phase
accumulation around the loop. Observation 2 tells us that current
in a neighboring loop is as effective in producing phase accumula-
tion in the wave function as current in the same loop. The ability
of current in one location to produce phase accumulation in the
wave function of electrons in another location is called magnetic
interaction. Observation 6 tells us that the magnetic interac-
tion is vectorial in nature. After making these and other similar
measurements on many configurations, involving loops of different
sizes and shapes, we arrive at the proper generalization of Eqs. 1.1
and 1.7:
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1.4 Coupling 17∫
V1 dt =

∮
�A · �dl1 = Φ1 = L1 I1 + M I2

∫
V2 dt =

∮
�A · �dl2 = Φ2 = M I1 + L2 I2

(1.8)

Here, the line elements �dl1 and �dl2 are taken along the first and
second loops, respectively. The quantity M, which by observa-
tion 6 can be positive or negative depending on the configuration,
is called the mutual inductance; it is a measure of how effec-
tive the current in one loop is at causing phase accumulation in
the other. When L1 = L2 = L, the magnitude of M can never
exceed L. Observations 1 through 4 were obtained under condi-
tions where M ≈ L. Experiments evaluating the mutual coupling
of loops of different sizes, shapes, orientations, and spacings indi-
cate that each element of wire of length dl carrying the current �I

makes a contribution to �A that is proportional both to �I and to
the inverse of the distance r from the current element to the point
at which �A is evaluated:

�A =
µ0

4π

∫ �I

r
dl ⇒ �A =

µ0

4π

∫ �J

r
dvol (1.9)

The constant µ0 is called the permeability of free space. The
second form follows from the first if we visualize a distribution of
current as being carried by a large number of wires of infinitesimal
cross section, and the current density �J as being the number of
such wires per unit area normal to the current flow. The 1/r form
of the integrand of Eq. 1.9 is called the Green’s function; it tells
us how the vector potential is generated by currents everywhere in
space. (It is perhaps more correct to say that the vector potential
is a bookkeeping device for evaluating the effect at a particular
point of all currents everywhere in space.)

We can express Eq. 1.2 in a way that gives us additional
insight into the energy stored in the coil:

W =
∫

V dQ =
∫

V I dt =
∫

I dΦ (1.10)

Eq. 1.10 is valid for any �A; it is not limited to the �A from the
current in the coil itself. The integrals in Eq. 1.10 involve the

[17](∆v=13.84692 [513.84692+2.12917])
Monograph:20000413-00:05-v6mm000412.1



Carver A. Mead
Aug. 31, 1997
File: Part1.tex (ed:000412.1PA2F) DRAFT

18 Magnetic Interaction of Steady Currents

entire coil; from them, we can take a conceptual step and, using our
visualization of the current density, imagine an energy density
�J · �A ascribed to every point in space:

W =
∫

�I · �Adl =
∫

�J · �Advol (1.11)

The concept of energy density will be developed in greater depth
in Part 3 (p. 49).

1.5 Integral and Differential Forms
Ernst Mach, the great master of classical mechanics, commented
on the power of an integral law of interaction (p. 323 in Ref. 27):

It cannot be denied that when we can command all the phe-
nomena taking place in a medium, together with the large
masses contained in it, by means of a single complete picture,
our concepts are on an entirely different plane from what they
are when only the relations of these isolated masses as regards
acceleration are known . . . The present tendencies in the de-
velopment of physics are entirely in this direction.

It is clear that this statement is as true for electrodynamics as it is
for gravitation—that is why we introduced the basic laws of collec-
tive electrodynamics in integral form. There is a reason, however,
that physicists often prefer to work with differential equations:
When the currents are not known, but rather are the result of
mutual interactions with all other electrons, the equivalent formu-
lation by way of a differential equation provides a more tractable
approach. Fortunately for the interactions of collective electrody-
namics, there is a one-to-one relation between the integral form
and the corresponding differential form:

�A =
µ0

4π

∫ �J

r
dvol ⇒ ∇2 �A = −µ0

�J (1.12)

The 1/r in the integrand on the left is the Green’s function for
the differential form on the right. An excellent discussion of the
relations involved is given in Chapter 7 of Morse and Feshbach
(38). In mathematical circles, Eq. 1.12 is known as Green’s Rep-
resentation Theorem; it is stated with full rigor in Gradshteyn and
Ryzhik (p. 1122 of Ref. 39).
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1.5 Integral and Differential Forms 19

Aside from mathematical niceties, we can understand how
these relations work by considering the distribution of �A from a
highly localized current element �dI = �Jdvol located at the origin.
The vector potential is everywhere in the direction of the current,
so the problem reduces to a scalar relation between the magnitude
J of the current, and the magnitude A of the vector potential.
From the integral form, we know that once we are outside the
current element itself, A dies off as the inverse of the distance
r between the current element and the point of measurement,
independent of direction. We use spherical coordinates to express
the fact that the form of A does not depend on direction, so the
differential equation describing the situation is

∇2A =
1
r

∂2(rA)
∂r2

= −µ0J (1.13)

To make the problem easy, let us assume that the current element
is a tiny sphere of radius r0, filled with current density of magni-
tude J all flowing in one direction. The integral over the volume is
J4πr3

0/3. Far enough from the sphere, the distance to every point
inside the sphere can be taken as equal to the distance r to the
center, so the integral form gives A = µ0Jr

3
0/3r.

We can also find the solution for the differential form. In the
region outside the sphere, J = 0, so ∇2A = 0, which has solution
A ∝ 1/r. Because Eq. 1.12 is linear in the current, we can build
up a solution by taking each current element, multiplying by its
inverse distance from the point of measurement, and adding up
such elementary vector contributions from all of space, which is
exactly the meaning of the integral. So the form of the solution
to the differential equation is the same as the form of the Green’s
function. What about the magnitude?

Eq. 1.13 tells us that the second derivative of the vector po-
tential is proportional to the current density. Because there can
be no physical system that contains an infinite current density, we
know that both A and its derivative are continuous at all points,
including at r = r0. Inside the sphere, the solution to Eq. 1.13 is
A = A0 − µ0Jr

2/6, which can be verified by direct substitution.
The continuity of derivative gives −A(r0)/r0 = −2µ0Jr0/6, from
which we obtain the solution outside the sphere:

A = A(r0)
r0

r
A(r0) = µ0Jr

2
0/3 (1.14)
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20 Magnetic Interaction of Steady Currents

in agreement with the result from the integral form. The continuity
of value gives us A(r0) = A0 − µ0Jr

2
0/6. Substituting A(r0) from

these two expressions gives A0 = µ0Jr
2
0/2 for the vector potential

at the origin. We can obtain A0 more directly from the integral
form by observing that dvol = 4πr2dr:

A0 =
µ0

4π

∫ r0

0

J

r
4πr2dr =

µ0Jr
2
0

2
(1.15)

The latter procedure also serves to eliminate any residual concerns
that we may have been harboring about the possible divergence
of A at r = 0. Thus, we have two methods for evaluating the vec-
tor potential from an arbitrary distribution of current; in showing
their equivalence in this simple case, we have seen how each ap-
proach complements the other.

1.6 Electrodynamic Momentum
Feynman commented on the irrelevance of the concept of force in
a quantum context. At the fundamental level, we can understand
the behavior of a quantum system using only the wave proper-
ties of matter. But we experience forces between currents in every
encounter with electric motors, relays, and other electromagnetic
actuators. How do these forces arise from the underlying quantum
reality? We can make a connection between the classical concept
of force and the quantum nature of matter through the concept
of momentum. Using the de Broglie postulate relating the mo-
mentum �p of an electron to the propagation vector �k of the wave
function, and identifying the two integrands in Eq. 1.7, the elec-
trodynamic momentum of an elemental charge is

�p = h̄�k = q0 �A (1.16)

We shall now investigate the electrodynamic momentum in one
of our loops of superconducting wire. There is an electric field E
along the loop, the line integral of which is the voltage V between
the ends. From a classical point of view, Newton’s law tells us
that the force q0E on a charge should be equal to the time rate of
change of momentum. From Eq. 1.16,

q0 �E =
∂�p

∂t
= q0

∂ �A

∂t
⇒ V =

∮
�E · �dl =

∂Φ
∂t

(1.17)
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1.6 Electrodynamic Momentum 21

Integrating the second form of Eq. 1.17 with respect to time, we
recover Eq. 1.7, so the classical idea of inertia is indeed consistent
with the quantum behavior of our collective system. Electrody-
namic inertia acts exactly as a classical mechanical inertia: It re-
lates the integral of a force to a momentum, which is manifest as
a current. We note that for any system of charges that is overall
charge neutral, as is our superconductor, the net electromagnetic
momentum is zero. For the −q �A of each electron, we have a can-
celing +q �A from one of the background positive charges. The elec-
tric field that accelerates electrons in one direction exerts an equal
force in the opposite direction on the background positive charges.
We have, however, just encountered our first big surprise: We rec-
ognize the second form of Eq. 1.17, which came from Newton’s
law, as the integral form of one of Maxwell’s equations!

We would expect the total momentum P of the collective
electron system to be the momentum per charge times the number
of charges in the loop. If there are η charges per unit length of wire
that take part in the motion, integrating Eq. 1.16 along the loop
gives

P = ηq0

∮
�A · �dl = ηq0Φ = ηq0LI (1.18)

The current I is carried by the η charges per unit length moving
at velocity v; therefore, I = ηq0v, and Eq. 1.18 becomes

P = L (ηq0)
2 v (1.19)

The momentum is proportional to the velocity, as it should be.
It is also proportional to the size of the loop, as reflected by the
inductance L. Here, we have our second big surprise: Instead of
scaling linearly with the number of charges that take part in the
motion, the momentum of a collective system scales as the square
of the number of charges! We can understand this collective behav-
ior as follows: In an arrangement where charges are constrained
to move in concert, each charge produces phase accumulation, not
only for itself but for all the other charges as well. So the inertia of
each charge increases linearly with the number of charges moving
in concert. The inertia of the ensemble of coupled charges must
therefore increase as the square of the number of charges.
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22 Magnetic Interaction of Steady Currents

F

a

I
F

I

Figure 1.3 Two loops carrying persistent currents in the same direction
require a mechanical force F to keep them separate

1.7 Forces on Currents
In our experiments on coupled loops, we have already seen how the
current in one loop induces phase accumulation in another loop;
the relations involved are captured in Eq. 1.8. In any situation
where we change the coupling of collective systems by changing
the spatial arrangement, mechanical work may be involved. Our
model system for studying this interaction consists of two iden-
tical shorted loops of individual inductance L0, each carrying a
persistent flux Φ, as shown in Fig. 1.3. As long as the super-
conducting state retains its integrity, the cyclic constraint on the
wave function guarantees that the flux Φ in each loop will be
constant, independent of the coupling between loops. Because M
enters symmetrically in Eq. 1.8, if the current I started out the
same in both loops, it will continue to be the same throughout
the experiment. Hence, L0 and Φ will remain constant, whereas
M and I will be functions of the spatial arrangement of the loops:
M will be large and positive when the loops are brought together
with their currents flowing in the same direction, and will be large
and negative when the loops are brought together with their cur-
rents flowing in opposite directions. From Eq. 1.8, Φ = (L0+M)I.
Substituting Φ into Eq. 1.10, and noting that the total energy of
the system is twice that for a single coil,

W = 2
∫

I dΦ = (L0 + M)I2 =
Φ2

(L0 + M)
(1.20)

The force Fx along some direction x is defined as the rate of change
of energy with a change in the corresponding coordinate:

Fx =
∂W

∂x
= −

(
Φ

L0 + M

)2 ∂M

∂x
(1.21)
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1.7 Forces on Currents 23

The negative sign indicates an attractive force because the mutual
inductance M increases as the coils—whose currents are circulat-
ing in the same direction—are moved closer. It is well known that
electric charges of the same sign repel each other. We might ex-
pect the current, being the spatial analog of the charge, to behave
in a similar manner. However, Eq. 1.20 indicates that the total
energy of the system decreases as M increases. How does this at-
tractive interaction of currents circulating in the same direction
come about?

The electron velocity is proportional to I. As M is increased,
the electrons in both loops slow down because they have more
inertia due to their coupling with electrons in the other loop. This
effect is evident in Eq. 1.20, where I = Φ/(L0 + M). Thus, there
are two competing effects: the decrease in energy due to the lower
velocity, and the increase in energy due to the increase in inertia
of each electron. The energy goes as the square of the velocity, but
goes only linearly with the inertia, so the velocity wins. The net
effect is a decrease in energy as currents in the same direction are
coupled; hence, an attractive force. We can see how the force law
discovered in 1823 by Ampère arises naturally from the collective
quantum behavior. A classical mechanical argument would give
the opposite sign for the effect.

1.8 Multiturn Coils
The interaction in a collective system scales as the square of the
number of electrons moving in concert. Thus, we might expect the
quantum scaling laws to be most clearly manifest in the properties
of closely coupled multiturn coils, where the number of electrons
is proportional to the number of turns. We can construct an N -
turn coil by connecting in series N identical, closely coupled loops.
In this arrangement, the current through all loops is equal to the
current I through the coil, and the voltage V across the coil is
equal to the sum of the individual voltages across the loops. If A0

is the vector potential from the current in one loop, we expect the
vector potential from N loops to be NA0, because the current in
each loop contributes. The flux integral is taken around N turns,
so the path is N times the length l0 of a single turn. The total
flux integral is thus:

Φ =
∫

V dt =
∫ Nl0

0
NA0 · dl = N2L0I (1.22)
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24 Magnetic Interaction of Steady Currents

From Eq. 1.22, we conclude that an N -turn closely coupled coil has
an inductance L = N2L0. Once again, we see the collective inter-
action scaling as the square of the number of interacting charges.
We noted that collective quantum systems have a correspondence
limit markedly different from that of classical mechanical systems.
When two classical massive bodies, each having a separate inertia,
are bolted together, the inertia of the resulting composite body
is simply the sum of the two individual inertias. The inertia of a
collective system, however, is a manifestation of the interaction,
and cannot be assigned to the elements separately. This difference
between classical and quantum systems has nothing to do with
the size scale of the system. Eq. 1.22 is valid for large as well as
for small systems; it is valid where the total phase accumulation is
an arbitrary number of cycles—where the granularity of the flux
due to h̄ is as small as might be required by any correspondence
procedure. Thus, it is clear that collective quantum systems do not
have a classical correspondence limit.

It is instructive to work out the magnitude of the electron in-
ertia in a concrete case. A small superconducting magnet has 104

turns of NbTi wire approximately 0.1 mm in diameter. The mag-
net is 7 cm long, and just under 5 cm in diameter, and produces
a peak field of 7 tesla at a current of 40 amperes. The magnet
weighs about 0.5 kilograms, and has a measured inductance of
approximately 0.5 henry. There are of the order of 1028 electrons
per cubic meter in the wire, or 1020 electrons per meter length
of wire, corresponding to approximately 10 coulombs of electronic
charge per meter of wire. At 40 amperes, these electrons move at
a velocity v ≈ 4 m/sec. The total length l of wire is about 103

meters, so the total electronic charge in the magnet is about 104

coulombs. Using these values,

A ≈ Φ
l

=
LI

l
≈ 0.02

V sec
meter

(1.23)

The electromagnetic momentum pel of an electron is just this vec-
tor potential multiplied by the electronic charge; from this, we can
infer an electromagnetic mass mel for each electron:

pel = qA = 3.2 × 10−21 coulomb V sec
meter

= melv

⇒ mel ≈ 10−21 kg
(1.24)
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1.8 Multiturn Coils 25

For comparison, the mass of a free electron is approximately 10−30

kg, and the rest mass of a proton is a factor of 1800 larger than
that of an electron. The electromagnetic mass of an electron in our
magnet is thus a factor of 109 larger than the rest mass of a free
electron. The total inertia of the electron system in the magnet
is much larger that the actual mass of all the atoms making up
the magnet. It is curious that the electromagnetic momentum has
been largely ignored in introductory treatments of the subject,
in light of its large role in real situations. For almost all problems
involving currents in wires, the electron density is so high, and the
requirement for charge neutrality enforced so strongly, that the
momentum of the collective, interacting system is overwhelmingly
larger than that calculated by adding the momenta of the free
particles moving at the same velocity. For this reason, people often
speak of the “momentum in the field” instead of recognizing the
collective nature of the system.

1.9 Total Momentum
To understand how our simplistic approach has taken us this far,
we must understand the current distribution within the supercon-
ductor itself. We saw that the vector potential made a contribution
to the momentum of each electron; this we called the electrody-
namic momentum, �pel = q �A. Up to this point, we have been able to
neglect any additional contribution to electron momentum. To un-
derstand the current distribution in the superconductor, we must
include the contribution of the mass m of an electron moving with
velocity �v: �pmv = m�v. The total momentum is the sum of these
two contributions:

h̄�k = �p = �pel + �pmv = q0 �A + m�v (1.25)

The velocity �v = (h̄�k − q0 �A)/m is thus a direct measure of the
imbalance between the total momentum h̄�k and the electrody-
namic momentum q0 �A: When these two quantities are matched,
the velocity is zero. The current density J is just the motion7 of

7Here we are using the most naive relation between current density and mo-
mentum. To do better is a matter of some delicacy, treated nicely by Pines
and Nozières (26). These considerations affect the magnitude of the skin depth,
discussed in the following sections.
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26 Magnetic Interaction of Steady Currents

N elementary charges per unit volume: J = q0N�v. We can thus
express Eq. 1.25 in terms of the wave vector �k, the vector potential
�A, and the current density �J :

�J =
q0N
m

(h̄�k − q0 �A) (1.26)

1.10 Current Distribution
We are now in position to investigate how current distributes itself
inside a superconductor. If �A were constant throughout the wire,
the motion of the electrons would be determined by the common
wave vector �k of the collective electron system; and we would
expect the persistent current for a given flux to be proportional
to the cross-sectional area of the wire, and, thus, the inductance L
of a loop of wire to be inversely related to the cross section of the
wire. When we perform experiments on loops of wire that have
identical paths in space, however, we find that the inductance is
only a weak function of the wire diameter, indicating that the
current is not uniform across the wire, and, therefore, that �A is
far from constant. If we make a loop of superconducting tubing,
instead of wire, we find that it has exactly the same inductance as
does a loop made with wire of the same diameter, indicating that
current is flowing at the surface of the loop, but is not flowing
throughout the bulk.

Before taking on the distribution of current in a wire, we can
examine a simpler example. In a simply connected bulk super-
conductor, the single-valued nature of the wave function can be
satisfied only if the phase is everywhere the same: �k = 0. Any
phase accumulation induced through the �A vector created by an
external current will be canceled by a screening current density
�J in the opposite direction, as we saw in observations 3 and 4.
To make the problem tractable, we consider a situation where a
vector potential A0 at the surface of a bulk superconducting slab
is created by distant currents parallel to the surface of the slab.
The current distribution perpendicular to the surface is a highly
localized phenomenon, so it is most convenient to use the differ-
ential formulation of Eq. 1.9. We suppose that conditions are the
same at all points on the surface, and, therefore, that A changes in
only the x direction, perpendicular to the surface, implying that
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∇2A = ∂2A/∂x2. Using J from Eq. 1.26 we obtain

∇2A =
∂2A

∂x2
= −µ0

�J =
µ0q

2
0N
m

A (1.27)

The solution to Eq. 1.27 is

A = A0 e
−x/λ λ2 =

m

µ0q2
0N

(1.28)

The particular form of Eq. 1.28 depends on the geometry, but the
qualitative result is always the same, and can be understood as
follows: The current is the imbalance between the wave vector and
the vector potential. When an imbalance exists, a current pro-
portional to that imbalance will flow such that it cancels out the
imbalance. The resulting screening current dies out exponentially
with distance from the source of imbalance. The distance scale at
which the decay occurs is given by λ, the screening distance,
penetration depth, or skin depth. For a typical superconduc-
tor, N is of the order of 1028/M3, so λ should be a few tens of
nanometers. Experimentally, simple superconductors have λ ≈ 50
nanometers—many orders of magnitude smaller than the macro-
scopic wire thickness that we are using.

1.11 Current in a Wire
At long last, we can visualize the current distribution within the
superconducting wire itself. Because the skin depth is so small, the
surface of the wire appears flat on that scale, and we can use the
solution for a flat surface. The current will be a maximum at the
surface of the wire, and will die off exponentially with distance into
the interior of the wire. We can appreciate the relations involved
by examining a simple example: A 10-cm-diameter loop of 0.1-
mm-diameter wire has an inductance of 4.4 × 10−7 henry (p. 193
in Ref. 40). A persistent current of 1 ampere in this loop produces
a flux of 4.4 × 10−7 volt-second, which is 2.1 × 108 flux quanta.
The electron wave function thus has a total phase accumulation
of 2.1 × 108 cycles along the length of the wire, corresponding to
a wave vector k = 4.25 × 109 M−1. Due to the cyclic constraint
on the wave function, this phase accumulation is shared by all
electrons in the wire, whether or not they are carrying current.

[27](∆v=−3.89604 [496.10396+2.12917])
Monograph:20000413-00:05-v6mm000412.1



Carver A. Mead
Aug. 31, 1997
File: Part1.tex (ed:000412.1PA2F) DRAFT

28 Magnetic Interaction of Steady Currents

In the region where current is flowing, the moving mass of
the electrons contributes to the total phase accumulation. The 1-
ampere current results from a current density of 6.4×1010 amperes
per square meter flowing in a thin “skin” ≈ λ thick, just inside
the surface. This current density is the result of the 1028 electrons
per cubic meter moving with a velocity of v ≈ 20 meters per sec-
ond. The mass of the electrons moving at this velocity contributes
mv/h̄ = 1.7 × 105 M−1 to the total wave vector of the wave func-
tion, which is less than one part in 104 of that contributed by the
vector potential. That small difference, existing in about 1 part
in 106 of the cross-sectional area, is enough to bring �k and �A into
balance in the interior of the wire.

In the interior of the wire, the propagation vector of the wave
function is matched to the vector potential, and the current is
therefore zero. As we approach the surface, A decreases slightly,
and the difference between k and Aq0/h̄ is manifest as a current.
At the surface, the value and radial slope of A inside and outside
the wire match, and the value of A is still within one part in 104

of that in the center of the wire. So our simplistic view—that
the vector potential and the wave vector are two representations
of the same quantity—is precisely true in the center of the wire,
and is nearly true even at the surface. The current �I is not the
propagation vector �k of the wave, but, for a fixed configuration, �I
is proportional to �k by Eqs. 1.9 and 1.26. For that reason, we could
deduce the electromagnetic laws relating current and voltage from
the quantum relations between wave vector and frequency.

1.12 Summary
We took to heart Einstein’s belief that the electrons and the fields
are two aspects of the same reality, and have been able to treat
the macroscopic quantum system and the electromagnetic field
as elements of a unified subject. We heeded Mach’s advice that
classical mechanics was not the place to start, followed Feynman’s
directive that interactions change the wavelengths of waves, and
saw that there is a correspondence limit more appropriate than
the classical-mechanics version used in traditional introductions
to quantum theory. We found Newton’s law masquerading as one
of Maxwell’s equations. We were able to derive a number of im-
portant results using only the simplest properties of waves, the
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1.12 Summary 29

Einstein postulate relating frequency to energy, the de Broglie pos-
tulate relating momentum to wave vector, and the discrete charge
of the electron. It thus appears possible to formulate a unified,
conceptually correct introduction to both the quantum nature of
matter and the fundamental laws of electromagnetic interaction
without using either Maxwell’s equations or standard quantum
formalism.
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Part 2

Propagating Waves
Now we are unable to conceive of propagation in time,

except either as the flight of a material substance through space,
or as the propagation of a condition of motion or

stress in a medium already existing in space.

—James Clerk Maxwell1

There is no such concept as “the” field,
an independent entity with degrees of freedom of its own.

—J.A. Wheeler and R.P. Feynman2

2.1 A Brief History
In Part 1 (p. 9), we found that the vector potential �A forms the
natural link between the quantum nature of matter and the realm
of electromagnetic phenomena. Although the four canonical equa-
tions that bear Maxwell’s name are expressed in terms of the mag-
netic field �B and the electric field �E, Maxwell himself derived
many of his fundamental results using �A, which he also called the
electromagnetic momentum. In his Treatise on Electricity and
Magnetism, he describes his method:

In this way we have pointed out the existence of the electro-
dynamic momentum �A as a vector whose direction and mag-
nitude vary from one part of space to another, and from this
we have deduced, by a mathematical process, the magnetic
induction �B, as a derived vector.3

Maxwell developed the basic form of the magnetic interaction,
Eq. 1.9, in both its differential and integral forms (Art. 617 of
Ref. 33). As the opening quotation indicates, however, Maxwell
was deeply devoted to the ether as the medium in which electro-
magnetic phenomena take place. �E and �B were to him the degrees
1The Maxwell quotation appears in an impassioned plea for the existence of
an ether in Article 866 of his Treatise on Electricity and Magnetism (33).
2The Wheeler–Feynman quotation is from their 1949 paper (41).
3(Art. 606 in Ref. 33) I have taken the liberty of substituting �A and �B for the
German symbols used in Maxwell’s original text.

31
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32 Propagating Waves

of freedom of the ether that are coupled to the charge in ordinary
matter. This devotion led him to include an additional term, the
displacement current, in his definition of current density. In his
own words,

One of the chief peculiarities of this treatise is the doctrine
which it asserts, that the true electric current, that on which
the electromagnetic phenomena depend, is not the same thing
as the current of conduction, but that the time variation of the
electric displacement must be taken into account in estimating
the total movement of electricity.4

Because of this addition, he narrowly missed the simple and beau-
tiful four-vector form of the electromagnetic laws on which we con-
centrate in this present treatment. This slip dealt the discipline a
severe blow from which it has yet to fully recover.

In 1865, Maxwell showed solutions for the vector potential
that propagated at the velocity of light, and he asserted that light
is an electromagnetic phenomenon. He took this result as strong
evidence for the existence of an ether:

In several parts of this treatise, an attempt has been made to
explain electromagnetic phenomena by means of mechanical
action transmitted from one body to another by means of a
medium occupying the space between them . . . the combina-
tion of the optical with the electrical evidence will produce a
conviction of the reality of the medium similar to that which
we obtain, in the case of other kinds of matter, from the com-
bined evidence of the senses. (Art. 781 in Ref. 33)

Oliver Heaviside and Heinrich Hertz—both thoroughly imbued
with the spirit of the ether—went Maxwell one better. They crit-
icized his extensive use of the vector potential, and developed the
streamlined presentation of Maxwell’s equations that is in use
today. In his 1905 paper, Einstein called these expressions the
Maxwell–Hertz equations. For Heaviside (42),

the question of the propagation of, not merely the electric po-
tential Ψ but the vector potential A . . . when brought forward,
proves to be one of a metaphysical nature . . . the electric force
E and the magnetic force H . . . actually represent the state of
the medium everywhere . . . Granting this, it is perfectly obvi-
ous that in any case of propagation, since it is the physical
state that is propagated, it is E and H that are propagated.

4(Art. 610 in Ref. 33) German symbols omitted in this quotation.
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Hertz5 had a similar criticism:
I may mention the predominance of the vector potential in
[Maxwell’s] fundamental equations. In the construction of the
new theory the potential served as a scaffolding . . . it does not
appear to me that any . . . advantage is attained by the intro-
duction of the vector potential in the fundamental equations;
furthermore, one would expect to find in these equations re-
lations between physical magnitudes which are actually ob-
served, and not between magnitudes which serve for calcula-
tion only.

Hertz’s splendid experiments in 1888 demonstrated the propaga-
tion of electromagnetic waves, and were taken by the community
at large as an unequivocal confirmation of Maxwell’s theory. It
was 70 years later that Aharonov and Bohm (44) suggested a con-
figuration in which �A could be observed in the phase of the wave
function even in the absence of �B; the experiment was carried out
soon after (45, 46, 47), and confirmed their prediction. Feynman
(Sec.15-5 in Ref. 5) analyzes the Aharonov–Bohm effect, ending
with a delightful discussion of what makes a field “real.” That
section concludes with the statement, “In our sense then, the �A
field is ‘real.’ ” Modern experiments demonstrating the Aharonov–
Bohm effect are described in Ref. 37. We can only speculate that
the comments of Hertz and Heaviside would have been quite dif-
ferent had these researchers known, as we do today, that �A is the
magnitude that is actually observed, whereas �B (or �H) is more of
a metaphysical concept.

Meanwhile, the growing popularity of the ether as the medium
in which electromagnetic waves propagate led several groups to
search for more direct evidence of its existence. In 1887, Michelson
and Morley succeeded in carrying out an optical experiment suf-
ficiently sensitive that it could detect the earth’s motion through
the ether. The experiment failed to detect any motion, at any
time of day or night. The same year, W. Voigt (48) published a
little-known paper in which he showed that when the Cartesian
coordinates of a reference system are x, y, z, t, and those of a frame
of reference moving at velocity v in the x direction (with respect
to our reference system) are x′, y′, z′, t′, then Maxwell’s equations,

5(p. 196 in Ref. 43) This source is an excellent English translation of all Hertz’s
relevant papers.

[33](∆v=2.44696 [502.44696+3.0])
Monograph:20000413-00:05-v6mm000412.1



Carver A. Mead
Aug. 31, 1997
File: Part2.tex (ed:000412.1PA3F) DRAFT

34 Propagating Waves

in space free of charges and currents, are not altered by a trans-
formation of the form:

x′ = γ (x− vt)
y′ = y

z′ = z

t′ = γ
(
t− vx/c2

)

x = γ
(
x′ + vt′

)
y = y′

z = z′

t = γ
(
t′ + vx′/c2

)
(2.1)

where γ = 1/
√

1 − v2/c2. This transformation was reinvented in
1892 by H.A. Lorentz, and is today called the Lorentz trans-
formation. Lorentz derived his result independently, but in 1909
referred6 to Voigt’s paper:

which to my regret escaped my notice all these years. The idea
of the transformations used above might therefore have been
borrowed from Voigt, and the proof that it does not alter the
equations for the free ether is contained in his paper.

In his famous 1905 relativity paper (51), Einstein put forth his
thesis:

failure of attempts to detect a motion of the earth relative
to the “light medium,” lead to the conjecture that not only
in mechanics, but in electrodynamics as well, the phenomena
do not have any properties corresponding to the concept of
absolute rest, but that in all coordinate systems in which the
mechanical equations are valid, also the same electrodynamic
and optical laws are valid, as has already been shown for quan-
tities of the first order. We shall raise this conjecture (whose
content will be called “the principle of relativity” hereafter) to
the status of a postulate and shall introduce, in addition, the
postulate, only seemingly incompatible with the former one,
that in empty space light is always propagated with a definite
velocity V which is independent of the velocity of the emit-
ting body. These two postulates suffice for arriving at a simple
and consistent electrodynamics of moving bodies on the basis
of Maxwell’s theory for bodies at rest. The introduction of a
“light ether” will prove superfluous, inasmuch as in accordance
with the concept to be developed here, no “space at absolute
rest” endowed with special properties will be introduced, nor

6A great deal of historical discussion, with many valuable references, is given
in Refs. 49, 50.
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2.1 A Brief History 35

will a velocity vector be assigned to a point of empty space at
which electromagnetic processes are taking place.

Thus, in one stroke, Einstein did away with the ether that gave rise
to Maxwell’s equations in the first place—the ether that made the
vector potential an unacceptable metaphysical concept, the ether
that has ever since haunted us with the specter of a magnetic
field that does not connect with the quantum nature of matter.
Newton’s laws had to be revised, but Maxwell’s equations— �B field
and all—survived! Rindler’s comment (52) is particularly apt:

There is an element of irony in the fact that the discipline
which had always accepted a relativity principle should have
to be amended in the light of the new relativity, whereas clas-
sical electro-magnetic theory, which so firmly committed itself
to the existence of a preferred frame, should, in fact, come
through unscathed.

In a sweeping generalization, Einstein went on to extend his prin-
ciple of relativity to all the laws of physics:

The laws governing the changes of the state of any physical
system do not depend on which one of two coordinate systems
in uniform translational motion relative to each other these
changes of the state are referred to.

In a Voigt–Lorentz–Einstein world, space and time coordinates
are not separable. For that reason, the relativistic nature of phys-
ical law finds its most natural expression in the language of four-
vectors.

2.2 Four-Vectors
A four-vector U (denoted by boldface type) has a spatial part
�U , which behaves as an ordinary three-vector, and a time part
Ut, which is a scalar:

U =
[
�U, Ut

]
(2.2)

The sum of two four vectors is another four-vector, each compo-
nent of which is the sum of the corresponding components of the
constituent vectors:

A + B =
[
�A + �B, At + Bt

]
(2.3)
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The scalar product of two four-vectors is defined as follows:7

A • B = �A · �B −AtBt (2.4)

An important special case is the scalar product of a four-vector
with itself:

U • U = U2 =
∥∥∥�U

∥∥∥2 − U2
t (2.5)

Unlike the square magnitude of an ordinary three-vector, the square
of a four-vector can be positive, negative, or zero. The four-
gradient operator is defined as follows:8

=
[
∇,−1

c

∂

∂t

]
(2.6)

The four-gradient operator and all four-vectors U transform9 ac-
cording to the Lorentz transformation:

U ′
x = γ

(
Ux − v

c
Ut

)

U ′
y = Uy

U ′
z = Uz

U ′
t = γ

(
Ut − v

c
Ux

)

Ux = γ
(
U ′
x +

v

c
U ′
t

)

Uy = U ′
y

Uz = U ′
z

Ut = γ
(
U ′
t +

v

c
U ′
x

)
(2.7)

The scalar product of a four-vector with itself, with another four-
vector, or with the four-gradient operator is a Lorentz invariant:
It has the same value in any inertial frame of reference. This prop-
erty follows directly from the Lorentz transformation, and serves
to define the class of four-vectors. The following are known to be
four-vectors:

7There are almost as many sign conventions in relativity theory as there are
authors. We use the simplest one, which is similar to that used by Feynman
(Chap. 17 in Ref. 14; Chap. 25 in Ref. 5).
8Many authors use the box symbol for the quadratic operator. We follow the
convention of Feynman (14, 5) and of Morse and Feshbach (38).
9We have chosen the sign of the time coordinate of each of our four-vectors
such that it corresponds to what tensor-based relativity treatments call a
contravariant vector Uµ.
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1. The interval between two events, R1,2 = [�r1,2, c(t2 − t1)],
which contains the ordinary distance vector �r and the time
difference10

2. The four-potential, A =
[
�A, V/c

]
, which contains the vec-

tor potential �A and the scalar (electrostatic) potential V
3. The current density,11 J =

[
�J, cρ

]
, which contains the

actual current density �J and charge density ρ

4. The propagation vector, k =
[
�k, ω/c

]
, which contains the

ordinary propagation vector �k and the frequency ω of a rela-
tivistic wave

In this convention, the propagation four-vector is the four-gradient
of the phase ϕ of the wave

k = ϕ ⇒ ω = −∂ϕ

∂t
(2.8)

Thus, the phase increment

dϕ = k • dR = �k · d�r − ωdt

=
∂ϕ

∂x
dx +

∂ϕ

∂y
dy +

∂ϕ

∂z
dz +

∂ϕ

∂t
dt

(2.9)

is a Lorentz invariant (see Fig. 21.1 in Ref. 53). A wave with
positive �k and positive ω propagates in the �k direction. We shall
return to this sign convention when we consider the propagation
of a step function.

2.3 The Riemann–Sommerfeld Equation
Maxwell (p. 490 in Ref. 33) quotes an important precursor to the
four-vector expression of electrodynamics as follows:

In a memoir presented to the Royal Society of Göttingen
in 1858, but afterwards withdrawn, and only published in

10The Lorentz transformation (Eq. 2.7) of this vector reduces to Eq. 2.1 in the
special case where x = x′ = 0 when t = t′ = 0.
11Note that �J does not contain displacement current. The current density
four-vector is often called the four-current.
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Poggendorff’s Annalen, bd.cxxxi. pp. 237–263, in 1867, after
the death of the author, Bernhard Riemann deduces the phe-
nomena of the induction of electric currents from a modified
form of Poisson’s equation

d2V

dx2
+

d2V

dy2
+

d2V

dz2
+ 4πρ =

1
a2

d2V

dt2

where V is the electrostatic potential, and a a velocity.

This equation is of the same form as those which express the
propagation of waves and other disturbances in elastic media.
The author, however, seems to avoid making explicit mention
of any medium through which the propagation takes place.

The four-vector generalization of Riemann’s equation was formu-
lated by Sommerfeld (54) shortly after Einstein’s 1905 paper in-
troduced the special theory of relativity:

2A =
(
∇2 − 1

c2
∂2

∂t2

)
A = −µ0J (2.10)

Treatments of this subject invariably go to great lengths to show
the compatibility of this expression with the Maxwell equations.
Because �A appears in the phase of the wave function, there is no
need for the magnetic field �B, and hence no need for the Maxwell
equations. Thus, Eq. 2.10 (or its equivalent Green’s function inte-
gral form), with the relation that we shall develop between A and
the electron wave function, forms the complete basis for collective
electrodynamics.

Eq. 2.10 is really four equations—one for each component of
the four-vector A. The fourth of these, involving the potential
V, is identical to Riemann’s equation. When the time-derivative
term is negligible compared to the ∇2 term, Riemann’s equation
reduces to Electrostatics, and the spatial components of Eq. 2.10
reduce to the case considered in Part 1 (p. 9), thus quantifying the
notion of slowly varying used there. Both of these special cases
were given in Maxwell’s original treatment. However, the �J used
by Maxwell included the displacement current, unlike the spatial
components of the four-current.
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r1

r2

z

Figure 2.1 Coaxial transmission line

2.4 Model System
As our first example in which the ∂2/∂t2 term in Eq. 2.10 cannot
be neglected compared to the ∇2 term, we consider the propa-
gation of signals in a coaxial transmission line. The line, shown
in Fig. 2.1, consists of a superconducting wire of radius r1 in-
side a superconducting tube of inner radius r2. The space be-
tween the conductors is assumed to be vacuum. Because the cur-
rents and charges are not known a priori, we use the Riemann–
Sommerfeld differential form relating A and J. In cylindrical co-
ordinates, where we assume that there is no angular dependence,
and that A and J have only z and t components, Eq. 2.10 becomes

∂2A
∂r2

+
1
r

∂A
∂r

+
∂2A
∂z2

− 1
c2

∂2A
∂t2

= −µ0J (2.11)

In the region between the coaxial conductors, where J is zero,
functions of the form

A = A0 ln
(r0

r

)
f(t± z/c) (2.12)

solve Eq. 2.11. Thus, a four-potential waveform f(t) will propagate
in the z direction with velocity c, independent of the waveform.
Choosing a value for r0 is equivalent to choosing a reference for the
potential A. Eq. 2.12 is completely symmetrical with respect to a
change in the sign of z, of t, or of both. A general solution is the
sum of terms of all four types, each with a particular coefficient.
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2.5 General Boundary Condition
Eq. 2.12 can be considered a solution of Eq. 2.10 only if it is
consistent with the net charge and current density at the surfaces
of the conductors. In the final two sections of Part 1 (p. 9), we
found that the current density—being the imbalance between the
wave vector and the vector potential—dies out exponentially with
depth into the superconductor. That analysis is valid for the four-
vector quantities as long as the ∂2/∂t2 term in Eq. 2.10 is small
compared with the ∇2 term perpendicular to the surface. In other
words, the time variation of the propagated signal should be slow
compared with the velocity of light divided by the skin depth λ.
Just inside the surface of the conductor, the four-current density
is high, and the ∇2 term in Eq. 2.10 is enormous in the direction
s normal to the surface. Neglecting the other terms,

−µ0J = ∇2A ≈ ∂2A
∂s2

(2.13)

We obtain the relation between four-current and four-potential by
integrating Eq. 2.13 with respect to s through the surface layer:

∂A
∂s

∣∣∣∣∣
surf

= −µ0

∫ surf

bulk
J dr = −µ0Js (2.14)

where the coordinate s is directed from the interior to the exterior
of the superconductor. Eq. 2.14 is the general boundary condition
at a superconducting surface; as with all such four-vector relations,
it encompasses both electric and magnetic cases:

∂ �A

∂s

∣∣∣∣∣
surf

= −µ0
�Js

∂V

∂s

∣∣∣∣∣
surf

= −µ0c
2Qs

(2.15)

2.6 Coaxial Boundary Condition
When Eq. 2.14 is applied to the coaxial line, s = r for the inner
conductor, and s = −r for the outer conductor. For either con-
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2.6 Coaxial Boundary Condition 41

ductor of the coaxial line, ∂A/∂r = −A0/r from Eq. 2.12, so from
Eq. 2.14 we obtain the boundary conditions

A0 =
µ0

2π
2πrJs inner

−A0 =
µ0

2π
2πrJs outer

(2.16)

In other words, the quantity 2πrJs for the two conductors is equal
in magnitude and opposite in sign. The z component of this quan-
tity is the total current I, and the t component is the charge Q per
unit length of the particular conductor. Signals f(t± z/c) propa-
gating along the line are represented by equal and opposite charges
and currents in any cross-section of the two conductors. It is con-
ventional to use the outer conductor as the reference (A = 0),
corresponding to r0 = r2 in Eq. 2.12. We shall henceforth adopt
that convention, and determine the potential of the inner conduc-
tor relative to that reference. For a particular value of z and t,
Eq. 2.12 thus becomes

A(r1) =
µ0

2π
2πrJs ln

(
r2

r1

)
(2.17)

The t component of Eq. 2.17 is thus

V =
µ0c

2

2π
Q ln

(
r2

r1

)
(2.18)

We can then define a capacitance C per unit length:

C =
Q

V
=

2π
µ0c2 ln (r2/r1)

(2.19)

In a similar manner, the z component of Eq. 2.17 is

Az(r1) =
µ0I

2π
ln

(
r2

r1

)
(2.20)

In Part 1 (p. 9), we defined the magnetic flux Φ by the integral
of A around a closed path. In the coaxial structure, we choose the
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42 Propagating Waves

z0z = 0

Figure 2.2 Path of integration for flux in Eq. 2.21

path shown in Fig. 2.2. Starting at z = 0, the path traverses
a distance z0 along the center of the inner conductor where the
vector potential is Az(r1); outward in the r direction into the
outer conductor, where the vector potential is 0; back within the
outer conductor to z = 0; and then inward in the −r direction
to the starting point. Because Ar = 0, the radial segments make
no contribution, so the value of this integral is just Φ = z0Az(r1).
From Eq. 2.20, the inductance L per unit length is thus

L =
Φ
Iz0

=
µ0 ln (r2/r1)

2π
(2.21)

2.7 Current–Voltage Relation
We have seen that a signal propagating along the coaxial structure
is represented by a four-potential. The circuit variables (voltage
and current), being manifestations of the components of the same
four-potential, must be related. We can determine this relation by
finding the relation between the charge density ρ and the current
density �J that results from the conservation of charge. In four-
vector notation, charge conservation is expressed as

• J = ∇ · �J +
∂ρ

∂t
= 0 (2.22)

The positive sign results from one negative sign in the scalar prod-
uct and another in the definition of the four-gradient. If we assume
that the four-current is confined to a thin skin at the surface, that
the thickness of the skin is negligible compared to the macroscopic
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2.7 Current–Voltage Relation 43

dimensions of the conductors, and that therefore �J flows in the z
direction only, Eq. 2.22 becomes

∂Js
∂z

= −∂ρs
∂t

(2.23)

Any solution of the form f(t± z/c) (Eq. 2.12) gives us

Js = cρs ⇒ I = cQ (2.24)

This result is indeed as remarkable as it is easy to remember: The
current is just the net charge moving at the velocity of light!

Substituting Eq. 2.24 into Eqs. 2.18 and 2.20, we obtain the
relation of the vector and scalar potentials:

V = cAz(r1) (2.25)

2.8 Electron Interaction
At this point, it is worthwhile to reflect on how we got here. We
started with a relativistic expression for the potentials �A and V, in
which the currents and charges play the role of sources. We found
a solution for these relations in the region where no sources are
present. We then derived what the sources must be at the surfaces
of the conducting boundaries to generate these solutions. At first
blush, this procedure seems backward: Why not start with the
sources and derive the potentials? In Part 1 (p. 9), we found that
either procedure will provide a solution. In most circumstances, it
is the interaction of the collective electron system that dominates
the behavior, rather than the configuration at a particular loca-
tion: Charges move about such that their behavior is consistent
with that of all other charges. The potentials �A and V are not de-
grees of freedom of their own—they are, as their name implies, the
potential for interaction of the collective degrees of freedom of the
electron system. They represent the net effect of all charges in the
system on an infinitesimal charge at a given point. The solutions
of Eq. 2.10 in a region where J = 0 are just the possible modes of
interaction of charges on the boundaries, constrained by the shape
of the region. If the charges actually present on the boundaries can
fulfill the requirements of a particular solution, that solution will
represent a possible mode of behavior of the system. The super-
conducting nature of the boundaries provides us the additional
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44 Propagating Waves

information necessary to establish boundary conditions on the so-
lutions (Eqs. 2.18 and 2.20). If a solution is indeed correct, it must
be consistent with the Einstein–de Broglie relation for the electron
wave function developed in Part 1 (p. 9). We can visualize these
relations in the present context as follows: In the interior of the
superconductor, the wave function’s phase ϕ advances with time
according to its frequency −∂ϕ/∂t = ω = q0V/h̄, and advances
with distance according to its wave vector ∇ϕ = �k = q0 �A/h̄.
Stated in four-vector notation, these relations take the following
form:

k =
q0
h̄

A (2.26)

By combining this expression with the boundary conditions given
in Section 2.5 (p. 40), we can understand the potentials in the
following way: The vector potential represents the propagation
vector of the electron wave function at which there is zero current,
and the scalar potential represents the frequency of the electron
wave function at which there is zero charge.

2.9 Propagation of Step Function
The relationship between the four-potential and the phase of the
electron wave function is illustrated most clearly by a specific
example: a coaxial line driven by a voltage step V0 u(t) applied
by a signal source to the center conductor of the line at z = 0.
We assume that the initial voltage along the inner conductor is
zero, and visualize the unit step function u(t) as rising smoothly
from 0 to 1 within a rise time that is short compared with
the time required for a signal to propagate a macroscopic dis-
tance along the line, but that is long compared with r2/c. Accord-
ing to Eq. 2.12, the step travels in the positive z direction with
velocity c:

V (z, t) = V0 u(t− z/c) (2.27)

In the region z < ct, the voltage has reached its steady value V0.
From Eqs. 2.25 and 2.26, the electron wave function in that region
has

ω =
q0
h̄

V0

kz =
ω

c
=

q0
h̄

V0

c

(2.28)
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2.9 Propagation of Step Function 45

After a time t has passed, the wave front will have advanced a
distance z = ct, and the total phase accumulation in the region
behind the wave front will have increased by ωt. The phase ac-
cumulation per unit of additional distance behind the wavefront
is just ω/c. Thus, kz is consistent with ω only if the wave front
propagates with velocity c.

We can derive the same result by examining the phase of the
wave function in the neighborhood of the wave front. In the region
z > ct, the step has not yet arrived, and therefore A = 0, ω = 0,
and kz = 0. The wave function in the neighborhood of the step
evolves as follows: As the step arrives at a point on the line, V rises
and the phase begins to advance. As the potential rises further,
the rate of advance increases. From Eq. 2.26, we can express the
phase increment dϕ at some point on the wave front in four-vector
notation:

dϕ = k • dR = kzdz − ωdt (2.29)

For a positive voltage, the energy h̄ω of a negative electron is neg-
ative relative to its reference value in the undisturbed portion of
the line. Because ω = −∂ϕ/∂t, the phase of the electron wave
function advances for positive voltages. The electron wave func-
tion thus has positive phase behind the wave front. The spatial
derivative kz = ∂ϕ/∂z within the wave front is thus negative,
corresponding to motion of electrons in the −z direction, as re-
quired to charge the uncharged portion of the line to a positive
voltage. Because ∂ϕ/∂t is opposite in sign to ∂ϕ/∂z, the contours
of constant phase propagate in the +z direction. From Eq. 2.25,
both the spatial and temporal components of A are given by the
voltage V :

dϕ =
q0
h̄

{
V

c
dz − V dt

}
(2.30)

If the potential is of the form V = f(t − z/c), then a point
on the wave front of a given voltage corresponds to a point of
stationary phase. Thus, the wave front propagates in the same
manner as the zero crossings of the electron wave function. We
have thus come full circle: The Einstein–de Broglie relations for
the electron wave function, expressed in a relativistically in-
variant form, require that a wave front propagate with the ve-
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46 Propagating Waves

locity of light.12 It has become clear that the propagation of
the electromagnetic wave and the propagation of the electron
wave function are, as Einstein posited, two views of the same
reality.

2.10 Waveguides
The coaxial structure we have considered is a particularly simple
example of a transmission line; we chose it to illustrate the rela-
tivistic nature of the electron wave function as clearly as possible.
There are, however, many transmission lines in which electromag-
netic signals travel at velocities slower than c: for example, a rect-
angular superconducting tube, elongated in the z direction. The
internal dimensions of the tube are w in the x direction, and h in
the y direction. For the interior of the tube, J = 0, and Eq. 2.10
becomes

∂2A
∂x2

+
∂2A
∂y2

+
∂2A
∂z2

− 1
c2

∂2A
∂t2

= 0 (2.31)

The simplest nontrivial propagating solution of Eq. 2.31 is of the
form

A = A0 cos kxx eikzz cosωt (2.32)

with kx = π/w. Substituting Eq. 2.32 into Eq. 2.31, we obtain

k2
z =

ω2

c2
−

( π

w

)2
(2.33)

Modes of this kind have no definite velocity of propagation of
the kind we found for the coaxial line (Eq. 2.12). The velocity

12In the electromagnetic limit, the contribution of the electron mass to the
total phase accumulation is negligible compared with that due to the elec-
tromagnetic interaction of the collective electron system. In this limit, the
propagation velocity approaches c. In Hertz’s early experiments, there was a
discrepancy between the measured velocity of propagation in space and that
along a transmission line. A lively debate ensued between Hertz and other
researchers. In the end, Hertz was “amply satisfied by the experiments which
MM. Sarasin and de la Rive have carried out . . . (see Archives de Genève, 29,
pp. 358 and 441). These experiments have proved the equality of the veloc-
ity in air and in wires, and have thus established the full agreement between
experiment and theory.” (p. 14 in Ref. 43)
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2.10 Waveguides 47

of propagation of a sinusoidal signal depends on the signal’s fre-
quency. Below a certain frequency ωc, called the Cutoff Fre-
quency, the structure does not support propagating solutions at
all. From Eq. 2.33

ωc =
cπ

w
(2.34)

For ω < ωc, k2 is negative, and hence k is imaginary, representing
a signal that dies out exponentially with z. Solutions of this kind
are called Evanescent Waves. Above the cutoff frequency, we
can define two velocities: the Phase Velocity vp = ω/kz, which
indicates how fast the contours of constant phase travel, and the
Group Velocity vg = ∂ω/∂kz, which indicates how fast the sig-
nal amplitude travels. Differentiating Eq. 2.33 with respect to kz,
we obtain

ω

kz

∂ω

∂kz
= vpvg = c2 (2.35)

The phase velocity is always faster than c, and the group velocity
is slower than c; the product of the two velocities is equal to c2.
The group velocity describes the net motion of the charge, and it
is sometimes useful to think of it as “the velocity of the electrons.”
At the fundamental level, however, there is only one velocity as-
sociated with the electron wave function: the velocity of light c.
Lower velocities are the result of restrictions on the freedom of
the electron wave function, an extreme example being electrons
in a block of material, as described in the Appendix (p. 115). In
that case, the electron wave function forms a standing wave, and
there is no net propagation of charge. In the case of the rect-
angular waveguide, a certain part of the propagation vector was
tied up in the x direction, and was therefore unable to fully con-
tribute to propagation in the z direction. Detailed description of
the mode behaviors of several useful waveguide configurations are
given in (40).

2.11 Summary
The behavior of collective electron systems is dominated by the
interaction of each element with all the others. It would seem, at
first, that determining the modes of a given system should be a
nasty, complex, nonlinear problem. Two circumstances conspire
to make the task tractable. First, the principle of linear super-
position holds for the four-potential, if the sources are known.
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48 Propagating Waves

Second, the four-current is confined to a thin skin at the surface
of the superconductor. The first circumstance does not help us
directly, because we do not know the distribution of the four-
current. However, the second circumstance allows us to derive
simple boundary conditions relating the propagation four-vector
of the electrons in the superconductor to the four-potential at the
surface. These conditions allow us to invert the problem, and to
solve the linear equations for the four-potential, given the shape
of the superconducting boundaries. In this way, the seemingly in-
tractable, nonlinear self-consistency problem associated with the
electron wave function is, to an excellent approximation, converted
to a boundary-value problem associated with the linear differen-
tial equation for the four-potential. Solutions that are consistent
with the configuration of the superconducting boundaries are pos-
sible behaviors of the system. This view provides the conceptual
basis for the historic success of the boundary-value approach to
electromagnetic problems.

As Einstein (28) said,

there is only one reality to be described, which happens to
have two different aspects; and the theory ought to recognize
this from the start instead of doing things twice.

By following his advice, we found that the behavior of the system
can be expressed in terms of the phase of the wave function, of
the four-potential, or of the circuit variables (voltage and current).
These three sets of variables do indeed represent aspects of the
same reality—they all represent the same underlying degrees of
freedom.
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Part 3

Electromagnetic Energy
I believe that we should adhere to the

strict validity of the energy principle
until we shall have found important

reasons for renouncing this guiding star.

—Albert Einstein1

3.1 Energy in Electromagnetic Systems
In Part 1 (p. 9), we found that the interaction of a current with it-
self, or with other currents, can be expressed in terms of the kinetic
energy of the electrons. This interaction energy scales quadrati-
cally with the number of interacting electrons. In Part 2 (p. 31), we
found that the modes of behavior of regions bounded by supercon-
ducting walls can be expressed in terms of the phase of the electron
wave function; the electromagnetic four-potential; and the circuit
variables, voltage, and current. Each of these sets of variables is
useful in clarifying certain aspects of system behavior, although
all represent the same underlying degrees of freedom. A natural
expression of the electrostatic interaction of charges results from
the relativistic invariance of the underlying four-vector represen-
tation. The energy associated with electrostatics is most naturally
expressed as a potential energy. We shall find that the concepts
of kinetic energy, potential energy, and the conservation of total
energy have a natural relativistic representation, and retain their
utility across all three sets of variables.

Maxwell, in his original treatment of the subject, had a con-
ceptually correct formulation of the kinetic and potential energies
associated with an electromagnetic ensemble. His treatise contains
the following equations:2

1This quotation appeared as part of the debate between Einstein and Ritz,
in which Einstein pointed out that using retarded-only potentials violated the
conservation of energy. The English version of this paper can be found on page
357 of Ref. 55. I discuss this issue at length in Part 4 (p. 73).
2I have expressed these equations (found in Art. 87 of Ref. 56 and Art. 636 of
Ref. 33, respectively), and also the equations found in subsequent quotations
in the notation used in Part 2 (p. 31).
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50 Electromagnetic Energy

W =
1
2

∑
qnVn Potential Energy

(3.1)

W =
1
2

∫
�A · �J dvol Kinetic Energy

After deriving the second of these equations, Maxwell showed that
it is equivalent to a spatial integral involving the magnetic field.
Because he was firmly committed to the ether as the medium in
which all electromagnetic phenomena takes place, he chose the
“energy in the field” as primary. His comment on the choice is
instructive:

The electrokinetic energy of the system may therefore be ex-
pressed either as an integral to be taken where there are elec-
tric currents, or as an integral to be taken over every part of
the field in which magnetic force exists. The first integral, how-
ever, is the natural expression of the theory which supposes
the currents to act upon each other directly at a distance,
while the second is appropriate to the theory which endeav-
ors to explain the action between the currents by means of
some intermediate action in the space between them. As in
this treatise we have adopted the latter method of investiga-
tion, we naturally adopt the second expression as giving the
most significant form to the kinetic energy.

That choice has carried over into essentially all modern treat-
ments, in spite of the vigorous discussion surrounding the Aharnov
and Bohm paper (44), and the experimental verification that it is
indeed �A, not �B, that connects with the phase of the electron wave
function. Feynman’s delightful discussion of which field is “real”
(Sec. 15-5 in Ref. 5) ends with the statement:

�E and �B are slowly disappearing from the modern expression
of physical laws; they are being replaced by �A and V.

Sommerfeld introduces the Lorentz-invariant quantity

S = J • A =
(
�J · �A− ρV

)
(3.2)

which he calls the Schwarzschild invariant (p. 269 in Ref.
54). Sommerfeld’s definition is accompanied with the following
comment:
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3.1 Energy in Electromagnetic Systems 51

K. Schwarzschild, Göttinger Nachr. 1903. See in particular the
first of the three papers . . . Note the date of publication 1903!
Thus Schwarzschild arrived intuitively at the correct postulate
of the theory of invariants six years ahead of Minkowski.3

Feynman, Morinigo, and Wagner (p. 32 of Ref. 6) make the fol-
lowing comment:

The guts of electromagnetism are contained in the specifica-
tion of the interaction between a current and the field as J•A.

The Schwarzschild invariant (Eq. 3.2) is the difference between two
terms: the first is twice the Maxwell kinetic energy, and the sec-
ond is twice the Maxwell potential energy. When integrated over
all four coordinates of space–time, this quantity has the units of
energy×time; it is called the action of the system. When divided
by h̄, this integral is dimensionless. For an isolated free particle,
the phase accumulation of the wave function along a path can, un-
der certain conditions, be associated with this integral (32). As we
have shown in Part 1 (p. 9), for a collective system, the magnetic
flux integral is the phase accumulation of the wave function mul-
tiplied by h̄/q. From our point of view, the action is flux×charge,
rather than energy×time. We shall find the Schwarzschild invari-
ant useful for determining the relative magnitude of potential
and kinetic energies, rather than for evaluating the phase of the
wave function.

In a collective system, the sum of the potential and kinetic
energy terms, when integrated over all space, represents the total
electrodynamic energy. As Maxwell indicated, if the accounting is
done this way, there is no additional “energy in the field” for which
to account. Both forms of energy are the result of interaction; they
are both zero in the absence of four-current, or in the absence
of four-potential (from other four-current); only where the two
overlap is there energy of interaction. Although the total energy
is not a Lorentz invariant, we shall find that its utility as a concept
is not thereby compromised in the slightest.

The factor of 2 discrepancy between Maxwell’s energy den-
sity and that which appears in the Schwarzschild invariant can be
understood as follows: If a current element �j is introduced into a

3W. G. Wagner called this reference to my attention, noting that it was pub-
lished two years before Einstein’s paper on special relativity.
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52 Electromagnetic Energy

vector potential �A generated by other currents, the energy of the
space containing current element �j is increased by the Maxwell
energy �A ·�j/2. However, by the reciprocal nature of magnetic in-
teraction, current element �j increases the vector potential at the
source currents enough to increase their energy by an exactly equal
amount. So, when current element �j is added to the system, the
total energy of the system is increased by �A · �j. If we integrate
over the whole system, the Maxwell expression gives the correct
total energy:

W = Wkin + Wpot

Wkin =
1
2

∫
�J · �A dvol

Wpot =
1
2

∫
ρV dvol

(3.3)

If we integrate over the volume of a small four-current element in a
large applied four-potential, we use twice the Maxwell expression
to obtain the total energy associated with that element.

3.2 Elementary Examples

3.2.1 Inductor For the inductor that we studied in Part 1 (p. 9),
in the presence of steady currents, V = 0, so all of the energy
is kinetic:

Wkin =
1
2

∫
�A · �J dvol (3.4)

where the integral is taken over the region of the wire in which
current is flowing. We can make use of the fact that current is
flowing along the length of the wire to divide the volume integral
into two parts: the first with respect to area elements da in a cross
section of the wire, and the second with respect to area elements
d�l along the length of the wire:

Wkin =
1
2

∫ ∫
J da �A · d�l =

1
2
I

∫
�A · d�l (3.5)

where we have made use of the fact that I is independent of l.
We recognize in the second form of the integral our old friend, the
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L C

Figure 3.1 Coherent quantum resonator

magnetic flux Φ:

Wkin =
1
2
I Φ =

Φ2

2L
=

LI2

2
(3.6)

in agreement with Eq. 1.2.

3.2.2 Capacitor We can conduct a similar evaluation of the
potential energy associated with an electrostatic problem. For ex-
ample, a capacitance C stores a total charge Q = CV on a con-
ducting electrode held at potential V with respect to the reference
electrode. In this case, A = 0, and J = 0, so W = Vρ/2, which we
integrate over the volume of the electrode:

Wpot =
1
2

∫
V ρ dvol =

1
2
V Q =

CV 2

2
(3.7)

3.2.3 Resonator For the superconducting structure shown in
Fig. 3.1, composed of a capacitor in parallel with an inductor,
the current flowing out of the capacitor is I = −C ∂V/∂t. This
same current flows through the inductor: V = L∂I/∂t. The time
derivative of the total energy is

∂

∂t

(
Wkin + Wpot

)
=

∂

∂t

(
LI2

2

)
+

∂

∂t

(
CV 2

2

)

= LI
∂I

∂t
+ CV

∂V

∂t
(3.8)

= V I − IV = 0

Energy can shift between kinetic and potential forms, but the
total energy does not change with time. The principle involved,
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54 Electromagnetic Energy

conservation of energy, is much more general than is indicated
by this simple example. The total energy is conserved for any
particular observer, but it is not a Lorentz invariant: Its magnitude
depends on the motion of the observer.

It is particularly instructive to view this example from the
perspective of the electron wave function. If we use one electrode
of the capacitor as a reference, the wave function phase in the
other electrode is advancing at a rate ω = −qV . The total phase
accumulation in the inductor is thus

ϕ =
∫

ω dt =
∫

�k · d�l (3.9)

where �k is positive in the direction leading from the reference node
to the node in question. For the simplest mode of the system, k is
the same at any point along the length l of the wire forming the
inductor, and hence

dk

dt
∝ ω (3.10)

The propagation vector k determines the rate at which charge
propagates along the wire to the node in question

dQ

dt
∝ k (3.11)

The electrostatic interaction in the capacitor relates potential di-
rectly to the charge: V ∝ Q and, therefore, ω ∝ −Q. Gathering
up these facts, we obtain the usual differential equation

d2ω

dt2
∝ −ω (3.12)

The proportionality constants are embodied in the capacitance C
and inductance L of the elements. Thus, as we found in Part 1
(p. 9) and Part 2 (p. 31), it is possible to reason about the be-
havior of electromagnetic systems directly, using only the phase
of the wave function, of which the circuit and field variables are a
convenient abstraction.
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3.3 Energy of Propagating Solution
The Schwarzschild invariant allows us to make relativistically cor-
rect statements about the difference between kinetic and potential
energy. For a single signal propagating on the coaxial transmis-
sion line treated in Part 2 (p. 31), we can evaluate the two energy
densities by substituting Eqs. 2.24 and 2.21 into Eq. 3.2:

W =
1
2

(
�A · �J − ρV

)
=

1
2

(V
c
· ρc− ρV

)
= 0 (3.13)

At any point along the line, at any given time, the kinetic and
potential energies are exactly equal. Observers moving at differ-
ent velocities will disagree about the magnitude of either energy
density, but will always agree that the two energy densities are
equal. We can use the inductance per unit length from Eq. 2.21
in Eq. 3.6 and the capacitance per unit length from Eq. 2.19 in
Eq. 3.7 to express the energy per unit length of the coaxial line in
terms of the circuit variables:

Wkin = Wpot ⇒ LI2 = CV 2 (3.14)

The equality of kinetic and potential energy is a property of a
single propagating solution; when the behavior requires a super-
position of more than one solution, the two energies are no longer
equal, as we shall see in several examples.

3.4 Characteristic Impedance
Eqs. 3.13 and 3.14 apply to a single solution of the form f(t ±
z/c). That form represents a signal propagating in one direction,
carrying energy as it goes. The energy propagating along the line
is provided by the input signal generator driving the line at z = 0,
with voltage V (0, t) and current I(0, t). Substituting I = Qc from
Eq. 2.24 into Eq. 2.19, we obtain the relationship of V to I, in the
form of the characteristic impedance Z0 of the line:

Z0 =
V

I
=

µ0c

2π
ln

r2

r1
=

ln (r2/r1)
2π

RFS (3.15)

The line looks like a resistor to the signal generator: The voltage is
always in phase with the current, independent of the function f(t).
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Figure 3.2 Signals propagating on finite coaxial line

The quantity RFS = µ0c = 376.7303135 ohms is a fundamental
unit of resistance, called the impedance of free space.

We can also derive the relationship between current and volt-
age from the kinetic and potential energies, which, for a single
solution, are equal. From Eq. 3.14,

LI2 = CV 2 ⇒ Z0 =
V

I
=

√
L

C
(3.16)

Using the capacitance and inductance per unit length from Eqs.
2.19 and 2.21, we recover Eq. 3.15. Once again, these expressions
are valid for only a single solution traveling away from the source.

3.5 Finite Coaxial Line
In Part 2 (p. 31), we saw that the energy associated with a signal
propagating in a transmission line can be expressed in terms of
the propagation four-vector of the electron wave function, the four-
potential, or the voltage and current in the line. Eqs. 3.13 and 3.14
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3.5 Finite Coaxial Line 57

show us that kinetic and potential energies are equal for a single
propagating solution. We have not as yet seen the conservation of
energy at work in the context of a propagating wave. A particular
example that illustrates the relations involved is shown in Fig. 3.2:
a coaxial line of length l, driven at one end. We use a signal source
to apply a voltage step V0u(t) to the line at z = 0 through a diode,
so the source can supply current to the line, but the line cannot
push current back into the source. The initial voltage along the
line is zero, and the end of the line at z = l is an open circuit. The
initial phase of the behavior is the propagation of a step function,
described in Part 2 (p. 31): The step travels in the positive z
direction with velocity c:

V (z, t) = V0 u(t− z/c) t <
l

c
(3.17)

The open-circuit boundary condition at z = l requires that I = 0,
but that requirement cannot be satisfied by the solution of Eq. 3.17
for t > l/c. The source is supplying a current I = V0/Z0, which
is traveling in the z direction at the speed of light. As we found
in Eq. 3.14, this moving charge has kinetic energy just equal to
the potential energy of the line charged to a voltage V0. When
the step reaches the end of the line, that kinetic energy keeps
the charge moving; because it cannot leave the line, however, the
charge starts piling up at the end. That accumulation of charge
increases the voltage at the end of the line, creating an electric
field in the direction that slows down the oncoming charge. When
the potential at the end of the line has reached some new voltage
V1, all the kinetic energy at z = l has been converted to potential
energy, the charge has been brought to rest, and therefore I = 0.
For z < l, the charge is still moving, so the piling up of charge
continues, creating a new step, a reflection, moving back toward
z = 0. At t = 2l/c, the step from V0 to V1 reaches the input; the
diode reverse biases, terminating input current flow; the entire line
is now at V1; and all charge is stationary. What is V1? At t = l/c,
the initial step has just reached the end, and a charge Q = Il/c
has entered the line, just sufficient to charge the line to V0. By
t = 2l/c, an additional charge Q has entered the line, making the
total charge 2Q. Twice the charge implies twice the voltage, so
V1 = 2V0.
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Let’s see whether the energy checks out: At t = 0, both V and
I are zero, so both the potential and kinetic energies are zero. At
t = l/c, the total energy delivered to the line by the signal source
is IV0l/c = QV0, of which half is potential energy QV0/2, and the
other half, by Eq. 3.14, is kinetic energy. By t = 2l/c, twice the
energy has been delivered to the line, all of which now resides in
potential energy, so the potential energy is four times what it was
at t = l/c. Because the potential energy scales as the square of the
voltage, the voltage must be 2V0. So, everything checks out. But,
what about Eq. 3.13? How can we have a situation where we have
potential energy and no kinetic energy? We derived that equation
for a single solution of the form f(t − z/c). But for t > l/c, the
potentials on the line must be described by a superposition of two
solutions, one propagating to the right, and the other propagating
to the left. Because it is derived from the current vector, the kinetic
energy of two superposed solutions does not just add up: When the
currents from the two solutions cancel out, the net current is zero,
and so is the associated kinetic energy. A similar situation holds for
potential energy: When two solutions superpose such that the volt-
ages cancel, the net voltage is zero, and so is the potential energy.

3.6 Reflection and Transmission
The open-circuit at z = l in the previous section is a special case
of a discontinuity in the transmission line. A more general case is
that of an abrupt change in the dimensions of the line at z = 0, as
shown in Fig. 3.3. According to Eq. 3.15, such a discontinuity can
cause a discontinuity in the characteristic impedance of the line,
from Z0 in the region z < 0 to Z1 in the region z > 0. We start with
a solution f(t− z/c)—a step function, for example—approaching
the origin from the −z direction. As long as this incident wave
has not reached the discontinuity, we have V = 0 and I = 0
everywhere in advance of the oncoming wave. Once the wave front
has reached the discontinuity, however, we can no longer satisfy
the boundary conditions in both regions with a single solution. In
general, there is a reflected wave from any kind of discontinuity,
and a transmitted wave propagating into the region of different
characteristic impedance. Therefore, we try a solution of the form

V = f(t− z/c) + αf(t + z/c)

V = β f(t− z/c)

z < 0

z > 0
(3.18)
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Figure 3.3 Reflection and transmission of a signal at a discontinuity

In each section of the line, the current for each individual solution
is equal to V/Z. The current is, however, a vector quantity: It is
positive for a positive-voltage signal traveling in the +z direction,
and negative for a positive-voltage signal traveling in the −z direc-
tion. Thus, the current contributed by the reflected wave will be in
the direction opposite from that contributed by the incident wave:

I =
1
Z0

(
f(t− z/c) − αf(t + z/c)

)

I =
β

Z1
f(t− z/c)

z < 0

z > 0
(3.19)

At the discontinuity (z = 0), two conditions must hold: 1. the
voltage for the z > 0 solution must be the same as that for the
z < 0 solution, and 2. the current for the z > 0 solution must be
the same as that for the z < 0 solution. From Eqs. 3.18 and 3.19,
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these conditions become

1. 1 + α = β

2. (1 − α)Z1 = βZ0
(3.20)

From this, we can determine α and β:

α =
Z1 − Z0

Z1 + Z0

β =
2Z1

Z1 + Z0

(3.21)

Because α determines the amplitude and sign of the reflected wave,
it is called the reflection coefficient of the discontinuity. Sim-
ilarly, β determines the amplitude of the transmitted wave, and
hence is called the transmission coefficient. For an open circuit,
as at z = l in the previous section, Z1 = ∞, so α = 1, indicating
that the reflected wave is equal to the incident wave. For a short
circuit, Z1 = 0, so α = −1, indicating that the reflected wave
is equal in magnitude and opposite in sign to the incident wave,
and β = 0, indicating that no wave is transmitted. For Z1 = Z0,
α = 0, indicating no reflected wave, and β = 1, indicating that
the transmitted wave is equal to the incident wave, as it must be.

We can also use the conservation of energy to derive the gen-
eral relation for transmission and reflection coefficients. A signal
carries total energy V 2/Z per unit time. Before the reflection,
V = 1, so the incident signal has energy 1/Z0. After the reflec-
tion, the reflected signal has energy α2/Z0, and the transmitted
signal carries energy β2/Z1. Conservation of energy requires that
the sum of the energies in the transmitted and reflected signals be
equal to the energy in the original incident signal:

1
Z0

=
α2

Z0
+

β2

Z1
(3.22)

This expression, with the conservation of charge (the second half
of Eq. 3.20), results in Eq. 3.21.

It is instructive to understand these relations in terms of the
behavior of the electron wave function. The Einstein relation tells
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3.6 Reflection and Transmission 61

us that voltage is just another name for the rate of change of the
wave-function phase. Continuity of the phase requires that the
frequency at one point on the line not be different from that at
an immediately adjacent point. Thus, the continuity of voltage
across the discontinuity is just a result of the continuity of phase.
Similarly, the continuity of current is a direct result of the con-
servation of charge. So the behavior of the transmission line at a
discontinuity is, once again, a direct manifestation of the quantum
properties of the collective electron system.

3.7 Infinite-Response Solutions
The behavior described for the finite line provided us with an
example of finite response: Conditions in the line reach a steady
state after a finite time has elapsed. Finite sections of transmis-
sion line are also capable of supporting modes of behavior that
do not die out with time—the constant persistent current in the
closed loop considered in Part 1 (p. 9) being the simplest exam-
ple. Fig. 3.4 shows a section of coaxial line of length l, shorted
at both ends. This configuration provides an example of a closed
loop with interesting time-dependent behaviors. At the center of
the structure, we make a small opening in the outer conductor,
thus gaining access to the inner conductor. We imagine, for the
moment, that we can inject a short pulse of current into the in-
ner conductor at t = 0, and observe the ensuing voltage response
without creating a discontinuity. During the pulse, one-half of the
total current 2I0 that we inject flows in the +z direction; the
other half flows in the −z direction. Thus, two voltage pulses of
amplitude V0 = I0Z0 propagate away from the center, one to-
ward each end. At t = l/2c, when the pulses reach their respective
ends of the line, they are reflected with a coefficient −1, accord-
ing to Eq. 3.20, and begin propagating in the opposite direction
with amplitude −V0. At time t = l/c, the pulses encounter each
other at the center of the line, and the voltages add, resulting in
an observed pulse of amplitude −2V0. The individual pulses con-
tinue on to the opposite ends of the line, where, at t = 3l/2c,
they are once again reflected with coefficient −1. At this time,
each pulse has amplitude +V0, and is propagating in its origi-
nal direction. At t = 2l/c, the pulses overlap at the center of
the line, resulting in a pulse of amplitude +2V0, and we have
arrived at our initial condition. The behavior continues, as long
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Figure 3.4 Signals propagating on finite section of coaxial line shorted
at both ends

as it is not disturbed,4 with period 2l/c. Because the period of
the behavior is twice the transit time, a structure of this kind—
shorted at both ends—is called a half-wave line. It is one of
the basic resonant structures that we can construct from a fi-

4In this discussion, we assume an ideal superconductor. In real superconduc-
tors, a time-varying current of the kind considered here has a long, but finite,
lifetime. Ramo and colleagues provide a good discussion (40).
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nite section of transmission line. As we noted in connection with
Eq. 1.12, a description of the solution requires a superposition
of four types of signals, in this case, positive and negative pulses
traveling in both the +z and −z directions. The change in sign of
V corresponds to the time reversal of the wave function. Before
the signal is injected, the phase accumulation around a closed
path along the inner conductor and back along the outer con-
ductor is zero. The signal does not destroy the superconducting
state, so the total phase accumulation around this path remains
zero. The phase accumulation in one pulse is positive; that in
the other pulse is negative. These interactions, described in terms
of voltage and current, map directly onto the phase of the wave
function by Eqs. 2.24, 2.21, and 2.22. When two pulses overlap
each other, the propagation four-vector of the superposition is
simply the sum of propagation four-vectors of the two individual
pulses.

3.8 Local Conservation of Energy
We can understand the behavior at the ends of the line and in the
region of pulse overlap by applying the principle of conservation
of energy. Consider the superposition of two signals: I1, V1 and
I2, V2. If the signals are propagating in the same direction, they
can be summed into one signal and treated as a single solution. If
they are propagating in opposite directions, the relative signs of
I and V will be reversed, as we saw in the previous example. The
total energy per unit length of the superposition is

W =
L

2
(I1 + I2)2 +

C

2
(V1 + V2)2

=
L

2

(
I2
1 + I2

2 + 2I1I2
)

+
C

2

(
V 2

1 + V 2
2 + 2V1V2

)

=
L

2

(
I2
1 + I2

2

)
+

C

2

(
V 2

1 + V 2
2

)
(3.23)

The cross terms cancel because CV1V2 = −LI1I2 (from Eq. 3.16)
and because of the sign reversal just mentioned. Thus, the total
energy of the superposition is exactly the same as the sum of
the total energies of the two individual signals. We can see this
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Figure 3.5 A signal propagating in a finite coaxial line, as viewed by
a moving observer.

principle in action in the behavior of the half-wave line: Each of
the two original pulses had kinetic energy LI2

0/2 and an equal
potential energy CV 2

0 /2 per unit length. The total energy in each
pulse was therefore τcLI2

0 , where τ is the pulse duration. When a
positive-voltage pulse traveling in the +z direction reaches the end
of the line, it initiates a reflected negative-voltage pulse traveling
in the −z direction. The currents due to both of these superposed
solutions are in the same direction, resulting in a current 2I0 in
the region of overlap. The voltages due to the two solutions are,
however, of the opposite sign, and therefore cancel in the region
of overlap. When one-half of the pulse has disappeared into the
end and reemerges as a negative shadow of its original self, the
voltage is zero everywhere due to the complete cancellation of the
two half-pulses. The potential energy is thus zero everywhere, but
the kinetic energy in the region of overlap is 2LI2

0 per unit length—
four times its original value. The total energy in the overlap region
τc/2 in width is therefore τcLI2

0 , exactly the same as that in the
original pulse.

The pulses also overlap in the center of the line—this time
with the same sign, so the voltage in the region of overlap is 2V0.
The two pulses are, however, traveling in opposite directions, so
their currents cancel. In the region of total overlap of width τc,
the kinetic energy is zero, and the potential energy is 2CV 2

0 per
unit length, or 2τcCV 2

0 in total—exactly the same as the total
energy in the separate pulses. So energy is indeed conserved, not
only before and after the interaction, but also locally, during the
interaction process.
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3.9 Lorentz Transformation Revisited
Einstein wrote (20)

a light signal, which is reflected back and forth between the
ends of a rigid rod, constitutes an ideal clock

The propagation of a step function along the coaxial transmission
line gives us a mechanism for relating time and distance. If we
start a step function propagating in a section of transmission line
of length l, shorted at both ends, the step will bounce back and
forth between the two shorted ends. Each transit of the step from
one end to the other requires a time t = l/c, or t = 2l/c for
a round trip. The arrival of the step at either end can be used
as the “tick” of a clock, our basic time reference. Likewise, the
length l of the transmission line serves as our “meter stick,” the
unit of length. The first experiment we perform is to compare the
period t of our stationary clock to the period t′ of the same clock
viewed by an observer moving with constant velocity v in the
−x direction. The situation is illustrated in Fig. 3.5. The basic
tenet of relativity is that electromagnetic waves propagate with
velocity c, independent of the velocity of their source. In the time
t′ required for one transit as viewed by the moving observer, the
step propagates a distance l in the z direction, and a distance vt′
in the x direction. Because the x coordinate is orthogonal to the
z coordinate, the total distance d traveled by the step is

d2 = l2 + v2t′2 (3.24)

We observe that d = ct′ and l = ct, so Eq. 3.24 can be written

c2t′2 = c2t2 + v2t′2 (3.25)

Combining terms and dividing by c2, we obtain

t′2
(

1 − v2

c2

)
= t2 (3.26)

or
t′ =

t√
1 − v2/c2

= γ t (3.27)

where the expression

γ =
1√

1 − v2/c2
(3.28)
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Figure 3.6 Two clocks: one par-
allel and one perpendicular to the
direction of relative motion. View
(a) is the configuration seen by
an observer in the same coordi-
nate system as the clocks. View
(b) is the configuration seen by
an observer moving with velocity
−v with respect to the clocks.

x = 0

z = 0

v

x = 0

z = 0

(a)

(b)

x =
l

γ

z = l

x = l

z = l

which occurs throughout relativity theory, is called the Lorentz
factor; it is the factor by which moving clocks run slower than
stationary clocks. The round-trip time required for the step to
return to its original position in the moving frame is 2t′.

For our second experiment, we require two clocks, as shown in
Fig. 3.6. The first has one end located at the origin of the station-
ary (unprimed) frame of reference, and its direction of propagation
is oriented parallel to the z axis, as before. The second clock also
has one end located at the origin of the stationary frame of refer-
ence, but its direction of propagation is oriented along the x axis,
parallel to the direction of motion of the moving observer. In the
stationary frame of reference, the steps of both clocks are observed
to arrive at the origin simultaneously. In the moving frame of ref-
erence, the arrival of steps at the origin is also simultaneous, but
slower, as we saw in Eq. 3.27. An observer in the moving (primed)
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frame infers that the step in the second moving clock travels in
the +x direction from the origin for a time t′1 to the opposite end
of the line, which is then at position (l′ + vt′1) = ct′1. The observer
infers that

t′1 =
l′

c− v
(3.29)

The step is reflected and travels in the −x direction for a time
t′2 until it reaches the starting end of the line, having traveled a
distance (l′ − vt′2) = ct2. The moving observer infers that

t′2 =
l′

c + v
(3.30)

At time 2t′ = t′1 + t′2, the steps in both clocks have returned to
their common origin, which is then at position x = vt′.

t′ =
t′1 + t′2

2
=

l′c
c2 − v2

(3.31)

Using t = lc in Eq. 3.27 to eliminate t′ from Eq. 3.31, we conclude

l′ = l
√

1 − v2/c2 =
l

γ
(3.32)

The distance scale along the direction of motion is contracted by
the Lorentz factor.

3.10 The Lorentz Transformation
We have derived how the time and distance scales in two frames of
reference, moving with respect to each other, are related. We are
now in a position to derive the actual coordinates in the moving
frame in terms of those of the stationary frame. The stationary
observer sees the x-directed clock with its origin at x = 0 and its
other end at x = l, keeping time with round-trip period t = 2l/c.
The moving observer sees the same clock with its origin at x′ = 0
at time t′ = 0, and both ends moving in the x′ direction with
velocity v. To the moving observer, any given distance l in the
stationary frame appears as a distance l′ = l/γ in the moving
frame. The moving observer applies this logic to the distance x
from the origin of the stationary system, and thus infers

x′ =
x

γ
+ vt′ (3.33)
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from which he infers

x = γ
(
x′ − vt′

)
(3.34)

Einstein’s theory is based on two postulates, the first that electro-
magnetic waves propagate at velocity c in any inertial frame of ref-
erence, and the second that there is no preferred frame of reference.
The second postulate is really one of symmetry, for any observer
has the right to consider themselves stationary and others as mov-
ing. In the situation analyzed above, the observer in the primed
system is certainly entitled to view the clocks as moving with ve-
locity v in her frame of reference. She then writes Eq. 3.34 as

x′ = γ (x + vt) (3.35)

We can eliminate x from Eqs. 3.34 and 3.35 to obtain an expres-
sion for t:

t = γ

(
t′ − vx′

c2

)
(3.36)

The complete Lorentz transformation for a four-vector

U =
[
�U, Ut

]
(3.37)

is

U ′
x = γ

(
Ux − v

c
Ut

)

U ′
y = Uy

U ′
z = Uz

U ′
t = γ

(
Ut − v

c
Ux

)
(3.38)

Two four-vectors that transform according to Eq. 3.38 have the
property that their dot product is the same in all inertial frames.
We can prove this statement as follows:

U′ · V′ = U ′
xV

′
x + U ′

yV
′
y + U ′

zV
′
z − U ′

tV
′
t

= γ2
(
Ux − v

c
Ut

) (
Vx − v

c
Vt

)
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+ UyVy + UzVz − γ2
(
Ut − v

c
Ux

) (
Vt − v

c
Vx

)

= γ2

(
1 − v2

c2

)
(UxVx − UtVt) + UyVy + UzVz

= UxVx + UyVy + UzVz − UtVt = U · V
(3.39)

3.11 Resistance in Coherent Systems
The resistance RFS derived in Section 3.4 (p. 55) arises from the
charge traveling at the velocity of light away from the source; it is
a direct result of the relativistically invariant statement that the
kinetic and potential energies are exactly equal (W = 0 in Eq. 3.3).
Although we are not, at present, in a position to determine the
class of situations for which this statement can be made, we might
imagine that there are configurations where the applied vector
potential A0 is much larger than what is due to current in the
sample under study, and where W = 0. In such a configuration,
�J · �A = ρV. We consider, for example, a uniform current density
J that is due to the motion of a uniform charge density ρ, flowing
in a strip of thickness z0 and height y0, lying in the xy plane. If
both the �J and �A are in the x direction, and Ax is a function of
y, then the potential will depend on y:

ρ
(
V(y1) − V(y0)

)
= Jx

(
Ax(y1) −Ax(y0)

)
(3.40)

An alternative but much more laborious way to obtain this
result is to notice that the current density Jx is just the charge
density ρ moving at velocity v. Due to the vector potential Ax,
the potential V ′ in the frame of reference of the moving electrons
is modified from the potential V in the laboratory frame via the
Lorentz transformation Eq. 3.38:

V ′ =
V − vAx√
1 − v2/c2

≈ V − vAx (3.41)

where the approximation is valid for v � c. The electrons are con-
strained by the sample to move in the x direction. Any potential
difference in the y direction will accelerate electrons in the y direc-
tion, thus causing an accumulation of charge on the top and bot-
tom surfaces of the sample. This charge accumulation generates
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Figure 3.7 Flux integral for quantum-Hall system.

an electric field in the direction opposite to the original y-directed
field, until the electrons experience zero y-directed electric field in
their own frame of reference:

(
V ′(y1) − V ′(y0)

)
= 0 (3.42)

This condition implies a potential difference in the laboratory
frame of reference:

V(y1) − V(y0) = v
(
Ax(y1) −Ax(y0)

)
(3.43)

Multiplying both sides of Eq. 3.43 by ρ, we recover Eq. 3.40. We
notice that this entire derivation was merely a tedious reconstruc-
tion of a relation that followed directly from the Schwarzschild
invariant.

The dependence of �A on position is called a magnetic field.
The potential gradient transverse to the direction of current flow
created by a magnetic field is called the Hall effect. We can
multiply both sides of Eq. 3.40 by the volume x0y0z0 of a segment
of the strip that is x0 in length:

QV = I
(
Ax(y1) −Ax(y0)

)
x0 (3.44)

where Q is the total charge in the segment, V is the potential
difference between the top and bottom of the segment, and I is
the total current in the sample. A flux integral Φ may be defined
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3.11 Resistance in Coherent Systems 71

for the segment, as shown in Fig. 3.7. The path for the flux integral
is taken along the top of the segment (y = y1) in the +x direction,
down the right face of the segment, back along the bottom of the
segment (y = y0) in the −x direction, and up the left face of the
segment to the starting point. Because A has only an x component,
the left and right faces make no contribution to the integral. If the
value of Ax is independent of x, which is true when x0 is small
enough, the top segment contributes x0Ax(y1) to the integral, and
the bottom segment contributes −x0Ax(y0) to the integral. Hence,

Φ =
(
Ax(y1) −Ax(y0)

)
x0 (3.45)

Thus, Eq. 3.44 can be written

QV = IΦ (3.46)

In a coherent electron system, both Φ and Q are quantized. On the
basis of these considerations alone, we would expect that, under
the proper experimental conditions, the ratio of voltage transverse
to current would be quantized, and Eq. 3.46 could be written

V

I
=

nΦ0

mq0
=

n

m

h

q2
0

(3.47)

where n and m are integers. In extremely pure semiconductors
at cryogenic temperatures, the mutual quantization of charge and
flux is an extremely strong effect, allowing the ratio h/q2

0 to be
determined to a few parts in 109. When q0 is equal to the elec-
tronic charge qe, the resistance defined by Eq. 3.46 with n = m is
RvK = 25812.8056 ohms; this is called the quantized Hall resis-
tance, or the von Klitzing resistance, after its discoverer (57),
and is now the international standard of resistance. Quantization
observed for m ≥ n is called the integer quantum Hall effect,
and that observed for m < n is called the fractional quantum
Hall effect. Excellent reviews with extensive references can be
found in (58) and in (59).

Thus, there are two ways that collective coherent quantum
systems exhibit a voltage proportional to current: The first is in
an open, propagating system; the second is in a closed, quantized
system. In both cases, the proportionality results from the exact
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72 Electromagnetic Energy

equality of kinetic and potential energies. In neither case is energy
dissipated, unlike the usual conception of resistance as having a
dissipative effect. The ratio of these two fundamental resistances is
a dimensionless number. For historical reasons, the ratio that was
first recognized, called the fine-structure constant α, differs
from the resistance ratio by a factor of 2:

RFS

RvK
=

µ0c q
2
e

h
= 2α (3.48)

3.12 Summary
The behavior of collective electron systems is dominated by the
interaction of each element with all of the others. The interaction
energy scales with the square of the number of electrons. The de-
grees of freedom of the system can be expressed in terms of the
phase of the wave function, of the four-potential, or of the circuit
variables (voltage and current). These three sets of variables are
projections of the same reality onto three different screens—each
represents the same underlying degrees of freedom. To illustrate
the power of maintaining these parallel views, we have treated a
number of configurations using more than one approach. We have
found that the concepts of kinetic and potential energy, and the
conservation of total energy are useful in unifying these three rep-
resentations. The energy-density scalar represents all the energy
in the system; no additional “field energy” is required. For certain
systems, the equality of kinetic and potential energies allowed us
to draw far-reaching conclusions concerning the quantized Hall
effect and the fine-structure constant.
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Part 4

Radiation in Free Space
The failure of the conventional quantum field
theory to deal with the problem of infinities

is well known and has remained with us
despite numerous attempts to resolve it.
The success of the alternative approach

described here reminds us that the problem
is not purely local but we need to

include cosmological considerations.

—F. Hoyle and J. Narlikar1

4.1 Integral and Differential Four-Vector Forms
In Part 1 (p. 9), we derived the integral form of magnetic interac-
tion, using the 3-dimensional differential form as a starting point.
We can carry out a similar physically based procedure in four
dimensions, using the Riemann–Sommerfeld differential form in
four-vector notation:

2A = −µ0J (4.1)

For spherically symmetrical situations, Eq. 4.1 can be written

2A =
(
∇2 − ∂2

∂t2

)
A =

1
r

∂2(rA)
∂r2

− 1
c2

∂2A
∂t2

= −µ0J (4.2)

As before, we imagine the current as confined to a small sphere
around the origin. In the region outside the sphere, where no cur-
rent is present, Eq. 4.2 has solutions of the form

A(r, t) =
r0

r
A(r0, t± r/c) (4.3)

We can determine how A(r0) is related to J for rapidly varying
currents. To do so, we suppose that the four-current in our tiny

1These authors have published a series of papers and books based on the
Wheeler–Feynman papers. This quotation appears on the first page of the
preface to their recent monograph on the subject (60), through which the
other material may be traced.
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74 Radiation in Free Space

spherical volume has a time dependence J(t) that changes slowly
on the time scale of r0/c. Eq. 1.14 applies to this situation, so
Eq. 4.3 becomes

A(r, t) =
µ0

4πr
4πr3

0

3
J(t± r/c) (4.4)

The quantity A(r0) is the four-potential, measured at the bound-
ary of our volume element, due to the four-current element alone.
Since we can make r0 as small as we wish, we can consider 4πr3/3
as our volume element, and compute the contribution of this cur-
rent element to the total potential at some distance r 	 r0 outside
of the volume element:

dA(r, t) =
µ0

4π
J(t± r/c)

r
dvol (4.5)

When r 	 r0, the detailed shape of the volume element is im-
material, as long as r is measured to the center. Because of the
linearity of Eq. 4.1, we can add up as many of these elementary
contributions as we wish to obtain the total vector potential:

A(r, t) =
µ0

4π

∫
J(t± r/c)

r
dvol (4.6)

An elegant mathematical proof of this four-dimensional Green’s
function is given in Sommerfeld (54). We describe the time relation
in Eq. 4.6 by saying that the element where A is measured is on the
Light Cone of the current element J. This “cone” is, of course, a
three-dimensional structure in four-dimensional space-time. The
universe on our light cone is, literally, the universe that we see.
We can view the light cone as being all points that are local in
four-space; that is, for which the square of the interval from here
and now is zero. From Section 2.2 (p. 37), the interval squared
contains the spatial distance r and the time difference ∆t:

R2 = R · R = r2 − c2 ∆t2 (4.7)

Eq. 4.6 indicates that the four-potential at a given point in space-
time is determined by all four-currents separated from that point
by zero interval. This definition of locality is the only one that
makes sense in four-space.
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4.2 Retarded and Advanced Potentials
The English-language statement of Eq. 4.6 is that the four-poten-
tial at any point in space-time is the sum of all four-currents on
its light cone, each weighted inversely by its distance from the
point. In this formulation, all directions along the light cone are
treated equally. In particular, there is no distinction between the
“retarded potentials,” generated by currents in the past, and the
“advanced potentials,” generated by currents in the future. It is
our common experience, however, that we send a radar pulse at
a particular time, and receive the return echo at a later time.
There is no evidence of an echo arriving before the pulse has been
transmitted. How does this asymmetry in the direction of time
come about?

The entire matter has an interesting history. The integral
form was first introduced by Ludvig Lorentz in 1867 (61). In that
paper, Lorentz simply assumed that only the retarded solution is
possible:

the action in the point (xyz) at the moment t does not depend
on the simultaneous condition in the point (x′y′z′) but on the
condition in which it was at the moment t − r/a; that is, so
much time in advance as is required to traverse the distance r
with the constant velocity a.

In 1908, Ritz (62) made a strong case for adopting only the re-
tarded solutions:

to eliminate solutions which are physically impossible, we must
adopt a priori the retarded potentials.

Einstein2 responded critically:
In contrast to Mr. Ritz, I regard the forms containing retarded
functions as merely auxiliary mathematical forms. The reason
I see myself compelled to take this view is first of all that those
forms do not subsume the energy principle, while I believe that
we should adhere to the strict validity of the energy principle
until we shall have found important reasons for renouncing
this guiding star.

After defining Eq. 4.6 with the negative sign as f1, and with a
positive sign as f2, he elaborates:

2See Ref. 63 for the original German reference. The English translation of
this and the following Einstein quotations can be found in Einstein’s Collected
Papers (55).
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76 Radiation in Free Space

Putting f(x, y, z, t) = f1 amounts to calculating the electro-
magnetic effect at the point x, y, z from those motions and
configurations of the electric quantities that took place prior
to the instant t. Putting f(x, y, z, t) = f2 we are determining
the above electromagnetic effect from the motions and config-
urations that take place after the instant t.

In the first case the electric field is calculated from the total-
ity of the processes producing it, and in the second case from
the totality of the processes absorbing it. If the whole process
occurs in a (finite) space bounded on all sides, then it can be
represented in the form f = f1 as well as in the form f = f2.
If we consider a field that is emitted from the finite into the
infinite, we can, naturally, use only the form f = f1, precisely
because the totality of the absorbing processes is not taken
into consideration. But here we are dealing with a misleading
paradox of the infinite. Both kinds of representation can al-
ways be used, regardless of how distant the absorbing bodies
are imagined to be. Thus, one cannot conclude that the so-
lution f = f1 is more special than the solution a1f1 + a2f2,
where a1 = a2 = 1.

The spirited debate between Einstein and Ritz led to a joint pub-
lication (64), in which the bases of their respective views were
clarified:

In the special case in which an electromagnetic process re-
mains restricted to a finite space, the process can be repre-
sented by f = f1 as well as in the form f = f2 and in other
forms.

While Einstein believes that one could restrict oneself to this
case without substantially limiting the generality of the con-
sideration, Ritz considers this restriction not to be possible in
principle. If one takes this standpoint, then experience com-
pels one to consider the representation by means of retarded
potentials as the only one possible, if one is inclined to the view
that the fact of irreversibility of radiation processes must al-
ready find its expression in the fundamental equations. Ritz
considers the restriction to the form of retarded potentials as
one of the roots of the second law, while Einstein believes that
irreversibility is exclusively due to reasons of probability.

The dominance of Maxwell’s theory in Einstein’s relativity led to a
widespread belief that action-at-a-distance theories are incapable
of providing solutions in accord with the rapidly growing body of
experiment. Despite numerous problems of the kind mentioned in
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the preface, the Heaviside–Hertz form of Maxwell’s equations was
taught as gospel, without any mention of the conceptual prob-
lems they raised, or of the alternative approaches that had been
advanced. In the 1940s, Wheeler and Feynman published two pa-
pers (65, 41) outlining an action-at-a-distance approach for free
particles that gave results in accord with experiment. In their
words:

(1) There is no such concept as “the” field, an independent
entity with degrees of freedom of its own.

(2) There is no action of an elementary charge upon itself and
consequently no problem of an infinity in the energy of the
electromagnetic field.

(3) The symmetry between past and future in the prescription
for the fields is not a mere logical possibility, as in the usual
theory, but a postulational requirement.

The second item was required because they assumed that the in-
teracting entities were point particles. As we have seen in Section
1.5 (p. 18) and Section 4.1 (p. 73), the Green’s function for collec-
tive systems is totally free of singularities, and cannot, by its very
nature, generate infinities. Wheeler (66) gives a wonderful account
of Feynman’s student days, and of the genesis of the ideas in the
two papers. In his words,

The startling conclusion that Dick Feynman and I reached,
which I still believe to be correct, is that if there were only a
few chunks of matter in the universe . . . the future would, in-
deed, affect the past. What prevents this violation of common
sense and experience is the presence in the universe of a nearly
infinite number of other objects containing electric charge, all
of which can participate in a grand symphony of absorption
and reemission of signals going both forward and backward in
time.

While working on the second of the two papers, Wheeler and Feyn-
man chatted with Einstein about their approach. Wheeler reports
the following Einstein comment:

I have always believed that electrodynamics is completely sym-
metric between events running forward and events running
backward in time. There is nothing fundamental in the laws
that makes things run in only one direction. The one-way flow
of events that is observed is of statistical origin. It comes about
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because of the large number of particles in the universe that
can interact with each other.

In 1980, Bernard Schutz showed that the radiation reaction
can be obtained using time-symmetric laws if one averages over
a random ensemble of initial conditions, but no physical inter-
pretation of this averaging process was given. The treatment
given below can be viewed as a way of deriving Schutz’s initial
conditions.

In the early 1980s, John Cramer (67) extended the Wheeler–
Feynman approach to atomic transitions. His Transactional In-
terpretation of Quantum Mechanics showed how the mathemati-
cal formalism of the usual quantum theory can be interpreted in
terms of direct interaction between emitter and absorber. This im-
portant paper seems to have been overlooked in most discussions
of the subject, except for that of Gribben (25), in which it plays
a central role.

It is curious that Einstein, for whom Minkowski’s four-dimen-
sional space-time played such a central role, and who was gener-
ally convinced that time should play a symmetric role in funda-
mental equations of physical law, took a strong position for local
causality in three-space. The whole matter is clouded by the ongo-
ing debate about quantum mechanics. The Copenhagen clan had
come up with a mathematical formalism that could yield statis-
tical results in accord with experiment—that was agreed by all.
Were there more-fundamental physical laws beneath the statisti-
cal rules? Einstein thought there were, but Bohr said no, there
was no deeper level to be understood. Einstein was still fuming
about the whole thing in 1935, when he coauthored a paper with
Podolsky and Rosen (68) that took up the crusade once again.
The idea went as follows: Suppose an atom emits two photons
simultaneously, as part of the same fundamental transition. The
two photons travel in opposite directions, and have opposite po-
larizations. Once the photons have traveled far away, we measure
the polarization of one, and thereby know the polarization of the
other. So far, so good. But there are several ways to measure po-
larization. If we determine that one photon is right-hand circularly
polarized, we know the other is left-hand. We can also ask if the
first photon is linearly polarized along the y axis, in which case
we know that the other is linearly polarized along the x axis. Now
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suppose we wait until after the photons have been emitted, and
then quickly change the apparatus with which we measure the po-
larization of one of them. Einstein was convinced that there is no
way that the other photon can “know” that the first measurement
had changed. When the experiment was carried out,3 it was in-
deed found to be true that the state of one photon depends on how
the other is measured, a result that was immediately touted as a
triumph for the Copenhagen view. From our present perspective,
however, this result has nothing to do with which interpretation
of quantum mechanics we use. Cramer’s transactional interpreta-
tion gives an even clearer picture of what is going on: The two
photons are part of the same transaction, local in space-time. In
three-space, we describe them by solutions propagating both for-
ward and backward in time, as so elegantly put forth by Wheeler
and Feynman. By now there are an enormous number of experi-
ments for which forward and backward propagating solutions are
by far the most economical explanation. These experiments ef-
fectively preclude the interpretation of photons as little bullets
moving at the velocity of light and carrying energy as they go.
But Einstein did not live to see these experiments completed, and
his feelings about them were all tangled up with the statistical in-
terpretation. So, although he strongly believed that time can run
in both directions in fundamental physical law, he still held out
for local causality in three-space. Causality is, however, not an
idea that has roots in the fundamental laws of physics, but rather
in thermodynamics.

4.3 Thermodynamics
Thermodynamics is based on two postulates, called the first and
second Laws of Thermodynamics. The first law is just the
conservation of energy. The second law involves the monotonic
increase of the entropy of a system. There has been an enormous
amount of controversy over the second law, from the time it was
initially proposed by Boltzmann up to the present day. In a recent,
thoughtful review, Sklar (69) concludes:

3This type of experiment was suggested by John Bell, who participated in
the conference that generated The Quantum Challenge (24). This reference
contains a modern account of the experiments, with many citations to the
original literature.
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Even making the appropriate allowances for the weakened,
statistical, sense in which we wish to hold the Second Law
true, no amount of reliance upon the subtleties of dynamics or
of the constitution of systems allows us to extract coherently
from the theory an explanatory understanding of the temporal
asymmetry of the world.

In the same volume, Price (70) offers the following interpretation:

A century or so ago, Ludwig Boltzmann and others attempted
to explain the temporal asymmetry of the second law of ther-
modynamics. The hard-won lesson of that endeavor—a les-
son still commonly misunderstood—was that the real puzzle
of thermodynamics is not why entropy always increases with
time, but why it was ever so low in the first place.

It is not my intention to indulge in speculation about thermo-
dynamics in general, or about the origin of the universe as we
experience it. I am content to offer a single, simple example in
which totally time-symmetric laws give a time-asymmetric behav-
ior. This example supports the views of Wheeler and Price. The
example is that of an otherwise lossless superconducting resonator
suspended in space.

4.4 Radiation Damping
In our investigation of radiative coupling, we use a superconduct-
ing resonator as a model system. The resonator is a coherent quan-
tum system, interacting within itself in a purely electromagnetic
manner. In this sense, it can be viewed as a “giant atom.” As a
model system, however, it is much simpler than either an atom or
a free particle. Its lowest mode of oscillation has a single degree of
freedom, the configuration of which is known to astounding pre-
cision. Its orientation in space is known and controlled. Its phase
can be measured to extreme accuracy. We can build such a res-
onator from a superconducting loop and a capacitor, as described
in Section 3.2.3 (p. 53). If we suspend the resonator in free space,
far from any other matter, we obtain the following experimental
results:

1. If the resonator is initialized to zero amplitude, its average
amplitude of oscillation increases with time until it fluctuates
around a mean amplitude V0.

2. If the resonator is initially oscillating at an amplitude that is
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Figure 4.1 Coupling of two segments of thin superconducting wire

large compared with V0, the amplitude decreases with time
until it fluctuates around V0.

3. For large amplitudes, the rate of decrease of amplitude is pro-
portional to the amplitude, leading to an exponential damp-
ing of the oscillation.

4. The final approach to V0 from either direction is, on aver-
age, exponential, with the same time constant as the large-
amplitude decay.

5. The value of V0 is dependant on the frequency ω of the res-
onator; the dependence on frequency is that of a black body
at ≈ 3 kelvin.

4.5 Coupled Loops
As a prelude to understanding the damping of a small resonator
in free space, we consider the coupling of two elements of thin wire
separated by a distance R, the first �dl1 being that in which �A1 is
to be evaluated, and the second �dl2 carrying current I2. When the
current is flowing in a thin wire, we can integrate Eq. 4.6 over the
cross-section of the wire:

A1(t) =
µ0

8π

∫
I2(t±R/c)

R
dl2 (4.8)

To be definite, we next consider two straight segments of thin wire,
as shown in Fig. 4.1. Each segment of length l is running in the
y direction. Both segments are centered at y = 0, z = 0. The first
segment is at x = 0, and the second segment is at x = r. The flux
integral along the first segment is

Φ1(t) =
µ0

8π

∫
A1(t) dl1 =

µ0

8π

∫ ∫
I2(t±R/c)

R
dl2dl1 (4.9)
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l

x = 0 x = r

y = 0

Φ1 I2
l l

l

Figure 4.2 Flux Φ1 due to current I2 in superconducting loop that is
far away

In general, both I2 and R in Eq. 4.9 will be functions of y2, and no
further simplification is possible. If the distance r is large enough,
however, the distance from any part of one wire to any part of
the other may be taken as equal, which we can understand as
follows: The distance between the lower end of one wire and the
corresponding end of the other wire is r: the minimum value of
R. The distance between the lower end of one wire and the op-
posite end of the other wire is

√
r2 + l2 = r

√
1 + l2/r2 : the max-

imum value of R. Expanding the radical, we find the maximum
difference ∆R ≈ l2/2r between these two values of R12. As long
as r > l2/2d, the spread in distance is limited by the diameter
d of the wire, rather than by geometric factors. This simplifica-
tion is called the Far Field or Plane Wave approximation. In
the plane-wave approximation, A1 is independent of y1. A par-
ticularly simple case occurs when the plane wave approximation
applies and, in addition, when the current at any particular time
is the same at all values of y2. In this happy circumstance, the
integral over y2 reduces to multiplication by l, as does the integral
over y1.

Φ1(t) ≈ µ0

8π
l2

r
I2(t± r/c) (4.10)

We can use Eq. 4.10 to determine the phase accumulation
around a square loop that is due to the current in another iden-
tical square loop located far away in space, as shown in Fig. 4.2.
For simplicity, we confine our analysis to the case where the di-
mensions of the loops are small, and the distance between them
is large, when compared with a wavelength of the frequency at
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4.5 Coupled Loops 83

which they are driven. Because the loops are small compared to
the wavelength, the current in every element �dl of the loop is the
same. Because the loops are far apart, the far-field approximation
is valid. Suppose both loops are in the plane z = 0, and both are
squares with sides of length l parallel to the x and y axes. The
center of the first loop is at x = 0, and that of the second at x = r.
In the far-field limit, the effect of the sides parallel to the x axis
cancels out, so we can concentrate on the vector potential A in the
segments at x = ±l/2 created by the current I2 in the segments at
x = r± l/2. Furthermore, the 1/R factor is arbitrarily close to 1/r
if r 	 l. In addition, the integration with respect to l2 becomes a
multiplication by l. The vector potential in the segment at x = l/2
is the sum of a positive contribution due to the current in its cor-
responding segment at distance r, and a negative contribution due
to the opposing current in the segment at distance r − l.

A1

(
l

2
, t

)
=

µ0

8π
lI2(t± r/c)

r
− µ0

8π
lI2

(
t± r−l

c

)
r

(4.11)

The vector potential in the segment at x = −l/2 is the sum of
a negative contribution, due to the current in its corresponding
segment at distance r, and a positive contribution, due to the
opposing current in the segment at distance r + l.

A1

(
− l

2
, t

)
=

µ0

8π
lI2

(
t± r+l

c

)
r

− µ0

8π
lI2(t± r/c)

r
(4.12)

Both segments contribute to the phase accumulation; the integra-
tion along the path around the origin corresponds to a multipli-
cation by l for the first segment, and by −l for the second. The
total phase accumulation around the first loop due to current in
the second loop is thus the sum of three contributions:

Φ1

(
t± r

c

)
=

µ0l
2

8πr

(
− I2(t− l/c) + 2I2(t) − I2(t + l/c)

)
(4.13)

where we have now taken the time at loop 2 as our reference. It is
noteworthy that the expression on the right side of Eq. 4.12 is to-
tally independent of the sign of r/c on the left side. In other words,
the coupling between the two loops is exactly the same, whether
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84 Radiation in Free Space

retarded or advanced potentials are used. Any loop couples to any
other on its light cone, whether past or future. We notice that the
total flux in Eq. 4.13 has the form of an approximation to the sec-
ond derivative of the current with respect to time. Using Taylor’s
series, we obtain

Φ1

(
t± r

c

)
≈ −

(
µ0l

4

8πrc2

)
· ∂

2I2
∂t2

(4.14)

These approximations are valid only when the current changes
slowly compared with the time l/c, and when r 	 l 	 d. We
shall henceforth adopt the convention that time is to be measured
relative to the common light cone through the center of the loop,
and not carry along explicit reference to the time of origin. Under
this convention, Eq. 4.14 becomes

Φ1 ≈ −
(

µ0l
4

8πrc2

)
· ∂

2I2
∂t2

(4.15)

The total phase accumulation in a loop is the sum of that due to
its own current, and that due to currents in other loops far away.

4.6 Resonator
We consider the case of one square loop in space, considered in
the previous section. A particular loop has a capacitor C con-
nected across its terminals, thereby forming a resonator, as ana-
lyzed in Section 3.2.3 (p. 53). The voltage across the terminals is
V = ∂Φ/∂t. The voltage across the capacitor opposes current flow
through the loop, so the sign of current I through the loop is op-
posite to the sign of current through the capacitor: −I = C ∂V/∂t.
Eliminating V , we have

I = −C
∂2Φ
∂t2

= −C Φ̈ (4.16)

Our limitation on the frequency allows us to assume that the cur-
rent is the same everywhere in the loop, and, therefore, has the
same magnitude as the current in the capacitor, but of opposite
sign. The flux Φ is the sum of two terms: LI, due to current flow-
ing in the loop itself, and φ, due to currents far away, as given by
Eq. 4.15.

Φ = LI + φ (4.17)
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4.6 Resonator 85

Substituting Eq. 4.16 into Eq. 4.17, we obtain

LC Φ̈ + Φ = φ (4.18)

We can use Eq. 4.15 to express φ in terms of the current I2 in a
distant resonator:

φ ≈ −
(

µ0l
4

8πrc2

)
· ∂

2I2
∂t2

(4.19)

Using Eq. 4.16, we can express φ in terms of the flux Φ2 in the
distant resonator:

φ ≈
(
µ0l

4C

8πrc2

)
· ∂

4Φ2

∂t4
(4.20)

4.7 Two Coupled Resonators
We obtain the equation for two identical coupled resonators by
substituting φ from Eq. 4.20 into Eq. 4.18:

LC
∂2Φ1

∂t2
+ Φ1 =

(
µ0l

4C

8πrc2

)
· ∂

4Φ2

∂t4
(4.21)

The equations governing the behavior of two coupled resonators
are thus

τ2 ∂2Φ1

∂t2
+ Φ1 = δτ4 ∂4Φ2

∂t4

(4.22)

τ2 ∂2Φ2

∂t2
+ Φ2 = δτ4 ∂4Φ1

∂t4

where

δ =
µ0l

4

8πrc2L2C
and τ2 = LC (4.23)

Assuming solutions of the form Φ = eiωt, Eq. 4.22 becomes
(
1 − τ2 ω2

)
Φ1 = δτ4 ω4Φ2

(4.24)(
1 − τ2 ω2

)
Φ2 = δτ4 ω4Φ1
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86 Radiation in Free Space

The result of eliminating the flux variables is an expression for the
frequencies of the normal modes of the system:

(
1 − τ2 ω2

)2 =
(
δτ4 ω4

)2 (4.25)

Substituting Eq. 4.25 into Eq. 4.24, we conclude:

Φ1 = + Φ2 = eiω1t Even Mode
(4.26)

Φ1 = −Φ2 = eiω2t Odd Mode

Because δ is small, the roots of Eq. 4.25 will be very near ω0 = 1/τ ,
which we can use as the first term in our expansion, which assumes
real ω2:

ω2
1 ≈ ω2

0 (1 − δ) Even Mode
(4.27)

ω2
2 ≈ ω2

0 (1 + δ) Odd Mode

In the odd mode, Φ1 is antiphase to Φ2, whereas in the even mode,
the two fluxes are in phase. As we saw in the static case, currents
coupled in the same sense increase the phase accumulation, while
currents coupled in the opposite sense reduce the phase accumu-
lation. The phase accumulation is reflected directly in the flux
per unit current, and therefore in the electrodynamic inertia. The
larger the inertia, the lower the resonant frequency. For this rea-
son, the even mode has a frequency lower than ω0, and the odd
mode has a frequency higher than ω0.

The modes given by Eq. 4.27 are normal modes; they cor-
respond to stationary states of the system. Once the system is
oscillating in one of these modes, it will continue to do so forever.
To understand energy transfer between the resonators, we can use
mixtures of the normal modes. Any weighted sum of the normal
modes is also a legal behavior of the system. The sum of the two
normal modes with equal weight is particularly instructive:

2Φ1 = eiω1t + eiω2t

(4.28)
2Φ2 = eiω1t − eiω2t
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4.7 Two Coupled Resonators 87

This behavior can be expressed in terms of the natural frequency
ω0 of the uncoupled system:

Φ1 = eiω0t cos δω0t = a1(t)eiω0t

(4.29)

Φ2 = ei(ω0t−π/2) sin δω0t = a2(t) ei(ω0t−π/2)

Here, a1 and a2 are the (signed) amplitudes of oscillation in the
two resonators, which vary slowly with time.

4.8 Energy Coupling
According to the viewpoint of collective electrodynamics, the en-
ergy radiated from an antenna cannot appear as an excitation of
space itself, because space has no degrees of freedom. Any energy
leaving one resonator is transferred to some other resonator, some-
where in the universe. That transfer is experienced as a damping
of the oscillation in the source resonator in question. The energy
in a single resonator alternates between the kinetic energy of the
electrons (inductance), and the potential energy of the electrons
(capacitance). At the point in the oscillation where there is no
voltage across the capacitor, the current is at its maximum, and
all of the energy is in the inductance. The shift between kinetic
and potential energy within a resonator happens twice per cycle,
at the frequency ω0 = 1/

√
LC. The peak energy in an inductor

is W = a2/2L. For each resonator in isolation, the total energy
is constant, equal to W . Even when the resonators are coupled,
as long as δ � 1, a1 and a2 change slowly with time, and W is
still a good measure of the energy in each resonator. With the two
resonators coupled, the energy shifts back and forth between the
two resonators in such a way that the total energy is constant,
given by

Wtot =
a2

1

2L
+

a2
2

2L
=

(
sin2 δω0t + cos2 δω0t

)
2L

=
1

2L
(4.30)

The conservation of energy holds despite an arbitrary separation
between the resonators; it is a direct result of the symmetry of the
advanced and retarded potentials. There is no energy “in transit”
between them. From Eq. 4.29 we can ascertain the phase relation-
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88 Radiation in Free Space

ships involved in the energy transfer:

∂a1

∂t
= − δω0a2

(4.31)
∂a2

∂t
= δω0a1

But these relations are not symmetric. Anything resonator 1 can
do to resonator 2, resonator 2 can do to resonator 1. Why is one
derivative positive and the other negative? The apparent asym-
metry is due to our choice of the relative phase of the oscillation.
If we had chosen the convention that resonator 2 was leading in
phase by 90◦, a2 would have been − sin δωt, and the relative signs
in Eq. 4.31 would have been reversed. From Eq. 4.29

∂W1

∂t
=

a1

L

∂a1

∂t
=

− δω0a1a2

L
(4.32)

∂W2

∂t
=

a2

L

∂a2

∂t
=

δω0a1a2

L

Because the amplitudes a1 and a2 can be of either sign, the en-
ergy can flow in either direction. We can understand the energy
transfer only when we know the amplitudes and phases of the two
oscillations, not from a knowledge of the energies alone.

4.9 Interaction with Arbitrary Phase
In the previous section, we explored the transfer of energy between
two identical resonators oscillating with a particular phase rela-
tionship. The next step in generalizing these results is to consider
the coupled resonators from the electromagnetic energy point of
view developed in Part 3 (p. 49). We begin by writing the total
instantaneous energy in a single resonator:

W =
1
2

∫
�J · �A dvol +

1
2

∫
ρV dvol

(4.33)

=
1
2

(IΦ + QV ) =
C

2

(
−Φ̈Φ + Φ̇2

)
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4.9 Interaction with Arbitrary Phase 89

where we have used Eq. 4.16 for the final form. Substituting
Eq. 4.18 into Eq. 4.33, we obtain

W =
Φ2

2L
− Φφ

2L
+

C

2
Φ̇2 (4.34)

Taking the derivative, and using Eq. 4.18 once again, we obtain
the rate of energy transfer from one resonator to the other:

Ẇ =
ΦΦ̇
L

− Φ̇φ

2L
− Φφ̇

2L
+ CΦ̇Φ̈

=
ΦΦ̇
L

− Φ̇φ

2L
− Φφ̇

2L
− Φ̇Φ

L
+

Φ̇φ

L
(4.35)

=
1

2L

(
Φ̇φ− Φφ̇

)

It is interesting that the final result is made up of contributions
from both the potential and kinetic energies, because the flux
appears in both energies. For sinusoidal signals with frequencies
ω ≈ ω0 whose amplitudes, a1 for resonator 1 and a2 for resonator
2, vary slowly with time, we have

Φ = a1 sinωt

Φ̇ ≈ ωa1 cosωt

φ = δa2 sin (ωt + θ)

φ̇ ≈ ωδa2 cos (ωt + θ)
(4.36)

where we have made use of the fact that φ = δΦ2 at ω = ω0 from
Eq. 4.24. From Eq. 4.23, we observe that δ is inversely propor-
tional to the distance between the resonators. The energy stored
in a resonator is a2/2L, and therefore Ẇ = ȧa/L. Thus, Eq. 4.35
becomes

ȧ1 = δω0 a2 sin θ

ȧ2 = − δω0 a1 sin θ
(4.37)

in agreement with Eq. 4.31 for the case of θ = − 90◦ considered
there. The general case of Eq. 4.35 is thus

Ẇ1 = δω0 a1a2 sin θ

Ẇ2 = − δω0 a1a2 sin θ
(4.38)
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Figure 4.3 Amplitude of coupled resonator as given by Eq. 4.40. The
horizontal lines represent the energy increments given by Eq. 4.41.

4.10 Generalized Energy Transfer
In the previous sections, we explored simple examples that illus-
trate how energy conservation works in a theory where space itself
has no degrees of freedom. In a more realistic case, the universe
contains a truly enormous number of resonators, no two of which
are exactly equivalent. How does a single resonator behave in an
inhomogeneous universe full of other matter? In the examples con-
sidered in the preceding sections, we have assumed that the two
resonators have had constant and equal resonant frequencies. In
the real universe, no two resonators have identical resonant fre-
quencies for long; however, it is a common occurrence that two
frequencies will cross, and that energy will be exchanged between
the resonators during the crossing. From the viewpoint of collec-
tive electrodynamics, this exchange of energy is the microscopic
origin of the thermodynamic behavior of the universe as we ob-
serve it. Accordingly, we consider the case in which the change
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4.10 Generalized Energy Transfer 91

in frequency with time is represented by a time-varying phase:
θ = εt2 + ϕ, in which case Eq. 4.37 becomes

ȧ1 = δω0 a2 sin
(
εt2 + ϕ

)
ȧ2 = −δω0 a1 sin

(
εt2 + ϕ

) (4.39)

As our first approximation, we assume that the change in ampli-
tude ∆a experienced by either resonator is small compared to its
amplitude before the crossing, and therefore that we may assume
a1 and a2 on the right hand side of Eq. 4.39 to be approximately
constant for the purposes of computing ȧ1 and ȧ2.

∆a1 = δω0 a2

∫
sin

(
εt2 + ϕ

)
dt

∆a2 = −δω0 a1

∫
sin

(
εt2 + ϕ

)
dt

(4.40)

We can see from Fig. 4.3 that these integrals oscillate around zero,
except in the region where the argument is near zero, where the
entire lasting contribution to the integral takes place. For that
reason, we may approximate the integrals by extending the limits
to ±∞, thereby obtaining a standard definite integral:

∆a1 = δω0 a2

√
π

ε
sin

(
ϕ +

π

4

)

∆a2 = −δω0 a1

√
π

ε
sin

(
ϕ +

π

4

) (4.41)

We can see immediately from Eq. 4.41 that the amplitude incre-
ment due to a crossing can be of either sign, depending on the
relative phase ϕ between the two resonators at the crossing.

4.11 Random Universe
In a random universe, any particular phase is equally likely for any
given crossing. A particular resonator is therefore equally likely to
receive either an increment or a decrement due to a given cross-
ing. Let us consider two crossings, one with phase π/4, and one
with 5π/4; these phases correspond to the maximum positive and
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negative increments ∆a:

∆a1 = ±δω0 a2

√
π

ε

∆a2 = ∓δω0 a1

√
π

ε

(4.42)

These expressions are correct to only the first order, due to our use
of the initial values of a in computing ∆a. As a second iteration,
we use a + ∆a/2 in the right-hand sides of Eq. 4.42:

∆a1 = ±δω0

√
π

ε

(
a2 − ∆ a1

√
π

ε

)

∆a2 = ∓δω0

√
π

ε

(
a1 + ∆ a2

√
π

ε

) (4.43)

The energy stored in a resonator is W = a2/2L. After the crossing,
the energy is

2LW = (a + ∆a)2 = a2 + 2a∆a + (∆a)2 (4.44)

Because the phase ϕ is randomly distributed, the second term will
average to zero over many crossings. If we substitute Eq. 4.43 into
Eq. 4.44 for both resonators, we obtain

∆W1 =
πδ2

2Lε
(
a2

2 − a2
1

)

∆W2 =
πδ2

2Lε
(
a2

1 − a2
2

) (4.45)

In a random universe, there is no first-order effect in which energy
flows from the high-amplitude resonator to the low-amplitude res-
onator; there is, however, a second-order effect in which energy
flows, on the average, from the high-amplitude resonator to the
low-amplitude resonator. The rate of energy flow is proportional
to the difference in energies, and to the inverse square of the dis-
tance. In collective electrodynamics, this effect is the origin of the
radiation damping of resonators coupled to matter in the rest of
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4.11 Random Universe 93

a random universe. Our analysis has thus established a micro-
scopic mechanism for the damping of an isolated resonator. Our
approach is consistent with Einstein’s view that the second law of
thermodynamics is not a reflection of any asymmetry in the funda-
mental laws, but is of statistical origin. We are in agreement with
Wheeler and Feynman’s assertion that “Radiation is concluded to
be a phenomenon as much of statistical mechanics as of pure elec-
trodynamics.” The statistics, in the present theory, come from the
random phase of excitation of each of the myriad of resonators in
the universe, and from the constant shifting of the resonator fre-
quencies with respect to each other. This randomness averages
the first-order contribution to energy transfer between resonators
to zero, but a finite second-order contribution, proportional to the
difference in energy of excitation, remains. The direction of energy
transfer is determined by the second-order nature of the effect, and
by the phase of oscillation induced in one resonator by another.

With regard to how and when we choose the positive and neg-
ative signs for time in our solutions, our approach is on precisely
the same footing with conventional field theory. We have created
no additional problems there, nor have we eliminated any. In both
cases, solutions of advanced and retarded nature are permissible.
In both cases, we choose the solutions that satisfy the constraints
of the problem at hand. In neither case do we have a complete
understanding of which solutions occur in nature, and why. The
development given above is but one small step toward such an
understanding.

We are, however, in a position to make one additional obser-
vation on the subject: When we transmit a radar signal, we employ
aspects of the universe that are the furthest from thermodynamic
equilibrium. Metals are refined, electric power systems are con-
structed, high-power transmitters are constructed, and electronic
logic circuits control the signal sequence that is transmitted, and
how the echo is detected. Our receiving apparatus uses irreversible
thermodynamic principles to amplify the received signal. Revers-
ing the relative time of transmission and reception does not create
a time-reversed copy of the entire physical situation.

4.12 Cosmological Properties of Radiation Damping
On the basis of the foregoing results, we may draw certain conclu-
sions concerning the makeup of the universe. These conclusions are

[93](∆v=0.0 [500.0+2.12917])
Monograph:20000413-00:05-v6mm000412.1



Carver A. Mead
Aug. 31, 1997
File: Part4.tex (ed:000328.1PA3F*R2) DRAFT

94 Radiation in Free Space

in agreement with some, but not all, of those reached by Wheeler
and Feynman, or by Hoyle and Narlikar (60).

1. The spectral density of distant resonators acting as absorbers
is, of necessity, identical to that of those resonators producing
the local random field, because they are the same resonators.
By Eq. 4.45, a local resonator approaches an equilibrium state
of excitation with energy equal to the mean energy of the far-
away matter at that frequency. If the approach is upward from
zero, it is called noise excitation. If the approach is downward
from a large amplitude oscillation, it is called damping. The
time constant of that approach is independent of the direc-
tion of approach. These statements contain the essence of the
fluctuation-dissipation theorem (71).

2. The present theory, in and of itself, does not connect the di-
rection of energy flow to either the forward or backward light
cone of the emitting resonator. The usual assumption, that
of emission into the future and absorption from the past, if
true, must find its roots outside the considerations presented
here.

3. The rate of energy flow given by Eq. 4.45 is proportional to δ2,
and therefore to the inverse square of the distance. A spherical
shell of the universe of thickness dR at a distance R from a
local resonator has volume dvol = 4πR2dR. If matter is, on
the average, evenly distributed in the universe, each shell of
material makes equal contribution to the radiation damping.
This result is implicit in the Wheeler–Feynman papers, but
was never stated.

4. The cosmic microwave background, with an excitation spec-
trum consistent with a temperature of ≈3K, cannot be as-
cribed to degrees of freedom of the radiation field. It must
originate from matter on either the forward or backward light
cone. Its presence in the universe as we see it strongly suggests
the presence of widely distributed cold matter.

5. The arrow of time introduced by radiation damping is not re-
lated, in any direct way, to the expansion of the universe. It is
strictly the result of the predominance of cold matter in the
universe, together with the second-order nature of resonator
coupling, the randomness in the frequencies and phases of res-
onators, and the continual shifting of resonator frequencies.
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l
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y = − l

2

Figure 4.4 Superconducting electric dipole resonator

4.13 Electric Dipole
The radiating structures we considered in Part 4 (p. 73) were cou-
pled entirely by the vector potential; the scalar potential played
no role. In the more general case, both scalar and vector potentials
contribute to the coupling. We now consider an important special
case of this more general kind of coupling. The coupling between
two loops considered in Part 4 (p. 73) is called magnetic dipole
coupling. It is characterized by its proportionality to the second
derivative of the current with respect to time (Eq. 4.15). A much
stronger coupling can be obtained between two straight sections
of wire, as given by Eq. 4.10. Referred to the light cone, the flux
φ in section 1 due to the current in section 2 becomes

φ ≈ µ0

8π
l2

r
I2 (4.46)

We can imagine a resonator configuration for which this type of
coupling is realizable: Two parallel capacitor plates of capacitance
C are connected by a straight section of superconducting wire of
inductance L between their centers. Such a configuration, shown
in Fig. 4.4, is called an electric dipole. Because there are charges
at the two ends of the dipole, we can have a contribution to the
electric coupling from the scalar potential V as well from the mag-
netic coupling φ from the vector potential �A. By symmetry, the
charge at the top of the dipole (y = l/2) is equal in magnitude
and opposite in sign to that at bottom (y = −l/2). These charges
are equidistant to any point in the x-z plane. By the argument
given in Section 4.5 (p. 82), the electrostatic coupling approaches
zero for other dipoles in the x-z plane at large distances.

4.14 Coupled Electric Dipoles
For two identical y-directed electric dipole resonators in the x-
z plane, separated by a distance R that is large compared with
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96 Radiation in Free Space

a wavelength, the magnetic coupling equations corresponding to
Eq. 4.22 are

∂2Φ1

∂t2
+ ω2

0Φ1 = δ
∂2Φ2

∂t2

∂2Φ2

∂t2
+ ω2

0Φ2 = δ
∂2Φ1

∂t2

(4.47)

where the coupling term is evaluated from Eq. 4.46.

δ =
µ0l

2

8πRL
(4.48)

For Φ = eiωt with real ω, the solutions to Eq. 4.47 are Φ1 =
±Φ2, and the natural frequencies ω1 and ω2 for the two cases are
given by

ω2
1(1 − δ) = ω2

0

ω2
2(1 + δ) = ω2

0

(4.49)

where ω0 = 1/
√
LC. For small δ, Eq. 4.49 is equivalent to Eq. 4.27.

Taking the square root of Eq. 4.49 and expanding the 1± δ term,
we obtain

ω1 ≈ ω0

(
1 +

δ

2

)

ω2 ≈ ω0

(
1 − δ

2

) (4.50)

Thus, in the electric dipole case, as well as in the magnetic dipole
case considered in Part 4 (p. 73), as long as δ is small, we can view
δ as the fractional “splitting” of the two normal mode frequencies
of the coupled system. We can, therefore, compare the coupling
strength of electric dipole resonators with that of magnetic dipole
resonators by comparing the δ in Eq. 4.48 with that in Eq. 4.23:

δelectric
δmagnetic

=
LCc2

l2
=

(
λ0

l

)2

(4.51)

where λ0 is the wavelength at the resonant frequency. In other
words, electric dipole coupling is stronger than magnetic dipole
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4.14 Coupled Electric Dipoles 97

coupling by the square of the ratio of the wavelength to the size of
the element. For radiators that are small compared with a wave-
length, this ratio can be enormous. For example, an atom half
a nanometer in diameter radiates visible light of 500 nanometer
wavelength. In this case, electric dipole coupling is a million times
stronger than magnetic dipole coupling.

4.15 General Electromagnetic Coupling
From Eq. 2.26, we have ascertained that the vector potential repre-
sents the propagation vector of the electron wave function at which
there is zero current, and the scalar potential represents the fre-
quency of the electron wave function at which there is zero charge.
These two conditions allow us to evaluate coupling between two or
more structures where the full four-potential contributes. We use
the coupling between two electric dipoles to illustrate the method.
In the special case where the two y-directed electric dipoles both
lie on the y axis, the charges at the ends of the dipoles are max-
imally separated, and the electric contribution to the coupling
through the scalar potential V is maximum. In addition, there is
the magnetic coupling through the flux φ. We first write the total
flux in terms of the local current I and the flux φ from the distant
resonator:

Φ = φ + LI (4.52)

Because the vector potential represents the phase accumulation of
the electron wave function when there is no current, Φ = φ when
I = 0.

Similarly, we write the voltage V between the capacitor plates
in terms of the difference in scalar potential from the distant res-
onator, and a local term proportional to the charge on the capac-
itor. This voltage is the rate of change of flux in the inductor:

V = Φ̇ = Vtop − Vbot +
Q

C
(4.53)

The scalar potential represents the time rate of change of the
wave function phase when there is no charge. Thus, the difference
in scalar potential between the two capacitor plates represents the
rate of change of phase accumulation along the wire when there
is no charge on the capacitor.
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98 Radiation in Free Space

We pause here to remark upon how naturally the two cou-
pling terms emerge from our view on the relationship between the
electron wave function and the electromagnetic variables.4 The
method of evaluating coupling terms used in this special case is,
in fact, a general one. The local circuit equations can always be
expressed in the form of Eqs. 4.52 and 4.53: One set contains the
magnetic flux from local and distant sources, and the local cur-
rent; and a second set contains the time rate of change of flux, the
scalar potential, and the local charge. Setting the local current to
zero determines the condition where the local flux is equal to the
integral of the vector potential from distant sources; setting the
charge to zero determines the condition where the time derivative
of the local flux (the voltage) is equal to the difference in scalar
potential from distant sources. The vector and scalar potentials
from distant sources are obtained from Eq. 4.6.

4.16 Radiation Pattern
We can now return to the problem at hand, determining the equa-
tions for two coupled electric-dipole resonators in the far-field
limit. Differentiating Eq. 4.53, we obtain:

Φ̈ = V̇top − V̇bot +
I

C
(4.54)

Substituting Eq. 4.54 into Eq. 4.52, we eliminate I and thereby

4In traditional treatments, these terms are derived from Maxwell’s equations,
using an additional term in the electric field. This additional term, the gra-
dient of a scalar, is compatible with Maxwell’s equations in their traditional
Heaviside–Hertz form, but is not required or suggested by them. The scalar
so introduced is then identified with the scalar potential. In this backhanded
manner, a theory based on electric and magnetic fields works its way back to
using the potentials that Heaviside and Hertz worked so hard to eliminate.
The coupling between two radiating structures is then evaluated using some
form of reciprocity theorem. A good presentation of the traditional approach
is given by Stutzman and Thiele (72). Other treatments, for example that of
Ramo et al. (40), use these potentials explicitly, but still require a redefini-
tion of the electric field of the form E = Ȧ + ∇V. This condition, although
natural enough to be passed off as obvious, amounts to an additional ad hoc
assumption within the traditional framework. The electric field so obtained
is then integrated along the receiving structure to obtain the total potential,
including both electric and magnetic coupling.
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obtain a second-order differential equation in Φ:

Φ − φ = LC
(
Φ̈ − V̇top + V̇bot

)
(4.55)

which we can arrange in canonical form:

LC Φ̈ − Φ = LC
(
V̇top − V̇bot

)
− φ (4.56)

The total coupling from far-away resonators is represented by the
right-hand side of Eq. 4.56: The first term is the electrostatic cou-
pling, the second term is the magnetic coupling; both can be eval-
uated from Eq. 4.6. Because the vector potential acts along the
length of the wire, because the resonators are short compared with
a wavelength, and because the resonators are far enough apart that
the far-field approximation is valid, Eq. 4.46 can be used for the
φ term in Eq. 4.56. For the V terms, however, we must separately
evaluate the contribution from the charges at R± l/2. Evaluating
the t component of Eq. 4.6 for the forward light cone,

V(t, l/2) =
µ0c

2

4πR
Q(t + R/c,R + l/2)

+ Q(t + R/c− l/c, R− l/2)

V(t,−l/2) =
µ0c

2

4πR
Q(t + R/c,R− l/2)

+ Q(t + R/c + l/c, R + l/2)

(4.57)

where the c2 arises because the t component of J is cρ and the
t component of A is V/c. We can simplify Eq. 4.57 by using the
fact that, at a particular time, the charges on the capacitor plates
of the source resonator are equal and opposite. Taking the charge
Q/2 as being that on the top plate (y = R + l/2), and −Q/2
as being that on the bottom plate (y = R − l/2), and using the
forward light cone as our time reference, we obtain

Vtop =
µ0c

2

8πR

(
Q(t) −Q(t− l/c)

)

Vbot =
µ0c

2

8πR

(
−Q(t) + Q(t + l/c)

) (4.58)
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100 Radiation in Free Space

which becomes

Vtop − Vbot =
µ0c

2

8πR

(
2Q(t) −Q(t− l/c) −Q(t + l/c)

)
(4.59)

The same result is obtained on the backward light cone. Differen-
tiating and recognizing that Q̇ = I, we obtain:

V̇top − V̇bot =
µ0c

2

8πR

(
2I(t) − I(t− l/c) − I(t + l/c)

)
(4.60)

Using Taylor’s series to approximate a second derivative, we
obtain:

V̇top − V̇bot ≈ −µ0c
2

8πR
l2

c2
Ï = −µ0l

2

8πR
Ï (4.61)

Substituting into Eq. 4.56, we obtain

LC Φ̈ − Φ ≈ −LCµ0l
2

8πR
Ï − φ (4.62)

where φ is obtained from Eq. 4.46:

LC Φ̈ − Φ ≈ −LCµ0l
2

8πR
Ï − µ0

8π
l2

R
I

≈ −µ0l
2

8πR

(
LC Ï + I

) (4.63)

As noted at the beginning of this derivation, the total coupling
from far-away resonators is represented by the right-hand side
of Eq. 4.63, the first term being the electrostatic coupling, and
the second term being the magnetic coupling. Because the source
resonator is very far away, we can evaluate I from ordinary circuit
considerations, as if the coupling were zero:

V = Lİ I = −CV̇ (4.64)

from which we obtain
I = −LCÏ (4.65)

We therefore conclude that the coupling between electric dipole
resonators aligned along their axes, as given by the right-hand side
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4.16 Radiation Pattern 101

of Eq. 4.63, is identically zero. The electric coupling is exactly
equal to and opposite in sign from the magnetic coupling. We
noted in the previous section that the electric coupling between
two y-directed dipoles in the xz plane is zero, and therefore that
the total coupling is equal to the magnetic coupling. For dipoles at
intermediate angles, the electric coupling cancels some, but not all,
of the magnetic coupling. We can evaluate the angular dependence
as a function of angle in the far-field limit by noting that each
factor l/c in the l2/c2 in Eq. 4.61 represents the delay between
the potentials from the two ends of one dipole with respect to the
line joining the two dipoles. The general form of Eq. 4.61 thus
becomes

V̇top − V̇bot ≈ −µ0c
2

8πR
l2

c2
cos θ1 cos θ2 Ï

= −µ0l
2

8πR
cos θ1 cos θ2 Ï

(4.66)

where θ1 and θ2 are the angles between the axes of the two dipoles
and the line joining them. For dipoles that are small compared
with a wavelength, the magnetic coupling φ does not depend on
time delay. One l of the l2 in Eq. 4.46 represents the integral of the
current along the source dipole, which has no angular dependence.
The second l represents the distance along which the �A vector is
integrated. Because it is the component of the �A vector from dipole
2 along the axis of dipole 1 that determines the magnitude of the
flux integral, the general form of Eq. 4.46 is

φ ≈ µ0

8π
l2

R
cos (θ1 − θ2) I2 (4.67)

The general far-field form of Eq. 4.63, including the total coupling
strength as a function of the angle between the axes of the two
dipoles and the line joining them, is, therefore:

LC Φ̈ − Φ ≈ −µ0l
2

8πR

(
LCÏ cos θ1 cos θ2 + I cos (θ1 − θ2)

)

= −µ0l
2 I

8πR

(
− cos θ1 cos θ2 + cos (θ1 − θ2)

)

=
µ0l

2 I

8πR
sin θ1 sin θ2

(4.68)
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102 Radiation in Free Space

of which Eqs. 4.47 and 4.63 are special cases. The angular de-
pendence of the right-hand side of Eq. 4.68 is called the radia-
tion pattern of the dipole, each factor of sin θ normally being
attributed to its respective dipole. For a practical antenna, the
radiation pattern is one of the key design objectives. Many books
on antenna theory are totally occupied with such questions, and
have developed elaborate shorthand methods to aid the calcula-
tions. The point of our abbreviated treatment is to illustrate that
any such calculation, involving electric and magnetic coupling of
structures of any shape, can be carried out easily from first prin-
ciples using the direct interaction of electron wave functions given
by Eq. 4.6.
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Part 5

Electromagnetic Interaction
of Atoms

The wave function Ψ for an electron in an atom does not,
then, describe a smeared-out electron with a smooth

charge density. The electron is either here, or there, or
somewhere else, but wherever it is, it is a point charge.

—R.P. Feynman1

Concepts which have proved useful for ordering things
easily assume so great an authority over us, that
we forget their terrestrial origin and accept them

as unalterable facts . . . The road of scientific progress is
frequently blocked for long periods by such errors.

—Albert Einstein2

There are no quantum jumps, nor are there particles!

—H.D. Zeh3

At long last, we are in a position to treat the interaction of atoms
through electromagnetic coupling—the topic that gave rise to quan-
tum mechanics in the first place. We have outlined some of the de-
bate between Einstein and Bohr in earlier parts of this manuscript.
Einstein was firmly of the belief that statistics have no place in
the fundamental laws of physics, while Bohr believed that only
statistical information is meaningful in quantum theory. Unfortu-
nately, much of the debate centered around the uncertainty rela-
tion, which, from our present point of view, is not about statistics
at all, but results from the wave nature of matter. At the time,
there were no compelling experiments where the wave nature of

1The Feynman quotation appears on page 21-6 of Ref. 7, in the section in
which he discusses the two kinds of momentum. This section contains a number
of misconceptions, as I have mentioned in the preface; it certainly does not
represent Feynman at his best.
2This quotation is from his 1916 obituary for Mach, quoted on page 15 of
Fine’s book, The Shaky Game (18).
3This quotation is the title of Zeh’s manifesto (73).
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104 Electromagnetic Interaction of Atoms

matter was manifest in a non-statistical manner. During that en-
tire period, there was spirited debate in and around the appar-
ently discontinuous nature of quantum transitions, a retrospective
of which is Schrödinger’s paper, Are there quantum jumps? (74).
Under the pressure of Bohr’s constant verbal abuse, Schrödinger
finally gave up his quest for a theory that would be continuous in
both space and time. It was much later that this quest was put
on a firm foundation, most notably by Barut,4 Zeh, and their col-
laborators. I will not attempt to review the development of these
ideas here because an outstanding reference (76) is available. In-
stead, I shall describe continuous quantum transitions in a simple
and intuitively appealing way by extending the notions of collec-
tive electrodynamics to the wave function of a single electron. We
shall require only the most rudimentary techniques of conventional
quantum theory, applied in the sense described by Barut(75) and
Zeh (73).

5.1 The Two-State System
Let us consider a simple two-state system. The system has a single
positive charge around which there are two eigenstates, labeled 1
and 2, that an electron can occupy. In State 1, the electron has
wave function Ψ1 and energy E1; in State 2, it has wave function
Ψ2 and energy E2 > E1:

Ψ1 = R1e
i
E1
h̄

t Ψ2 = R2e
i
E2
h̄

t (5.1)

We visualize the wave function as an abstraction of a totally
continuous matter wave, and take R1 and R2 as real functions
of the space coordinates. We can interpret all of the usual op-
erations involving the wave function as methods for computing
properties of this continuous distribution. The only particularly
quantal assumption involved is that the wave function obeys a
normalization condition:∫

Ψ∗Ψ = 1 (5.2)

This condition assures that the total charge will be a single elec-
tronic charge, and the total mass will be a single electronic mass.

4The most accessible treatment is given by Barut and Dowling (75).
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5.1 The Two-State System 105

The first moment < x > of the electron distribution along
some coordinate x is:

< x > =
∫

Ψ∗xΨ (5.3)

where the integral is taken over all space where the wave func-
tion is non-vanishing. This moment, when multiplied by the elec-
tronic mass, gives the center of mass; and, when multiplied by the
electronic charge, gives the electric dipole moment of the charge
distribution. For the purposes of estimating radiative coupling be-
tween two atoms, the moment < x > can be identified with the
length l of the dipole resonator discussed in Part 4 (p. 73). We
notice that there is no need to introduce the notion of probabil-
ity at any point in the discussion. The issue of probability comes
up when we consider disordered systems where the phases of in-
dividual interactions are unknown. Statistical quantum texts are
preoccupied with the question of which quantities are “measur-
able” and which are not—that question does not appear in the
present discussion.

From Eqs. 5.3 and 5.1, the first moment for either eigen-
state is:

< xi > =
∫

Ψ∗
ixΨi =

∫
R∗

i xRi =
∫

R2
i x (5.4)

For symmetrical wave functions, the integral vanishes, and the
dipole moment is zero. Even if the wave function is not symmet-
rical, the dipole moment, and all higher moments as well, are
independent of time. By their very nature, eigenstates are sta-
tionary states—none of their spatial attributes are functions of
time. The notion of stationarity is the quantum answer to the
original question about atoms: why doesn’t the electron orbiting
the nucleus radiate its energy away? Even Schrödinger was am-
bivalent about this point. In the notes for a 1955 lecture (77),
he wrote:

Then I don’t know why the pure proper modes should be
any more “stationary” than any superposition, why the sys-
tem should have any preference for remaining in such a state
rather than . . .
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106 Electromagnetic Interaction of Atoms

In his 1917 book, The Electron, R.A. Millikan5 anticipates the
solution in his comment about the

. . . apparent contradiction involved in the non-radiating elec-
tronic orbit—a contradiction which would disappear, however,
if the negative electron itself, when inside the atom, were a ring
of some sort, capable of expanding to various radii, and ca-
pable, only when freed from the atom, of assuming essentially
the properties of a point charge

Ten years before the statistical quantum theory was put in place,
Millikan had clearly seen that a continuous, symmetric electronic
charge distribution would not radiate, and that the real prob-
lem was the assumption of a point charge. The continuous wave
nature of the electron implies a continuous charge distribution.
That smooth charge distribution can propagate around the nu-
cleus and thereby generate a magnetic moment, as observed in
many atoms. The smooth propagation around the nucleus does
not imply radiation.

5.2 Transitions
In order to radiate electromagnetic energy, the charge distribution
must change with time. Because the spatial attributes of the sys-
tem in an eigenstate are stationary, the system in an eigenstate
cannot radiate energy. Because the eigenstates of the system form
a complete basis set, any behavior of the system can be expressed
by forming a linear combination of eigenstates. We consider the
simplest such combination:

Ψ = AΨ1 + BΨ2 (5.5)

The spatial attributes of this mixed state are functions of
time. Computing the electric dipole moment using the definitions
of Ψ1 and Ψ2 from Eq. 5.1 in Eq. 5.3, we obtain:

< x > = A2

∫
Ψ∗

1xΨ1 + B2

∫
Ψ∗

2xΨ2 (5.6)

5See Ref. 78. Millikan was the first researcher to directly observe and measure
the quantized charge on the electron with his famous oil-drop experiment, for
which he later received the Nobel prize. This reference contains a fascinat-
ing discussion of these experiments, and a wonderful section contrasting the
corpuscular and the ether theories of radiation.
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+ AB

∫
(Ψ∗

1xΨ2 + Ψ∗
2xΨ1)

= constant + ABd cosωt

where ω = (E2 − E1)/h̄. The dipole moment of a superposition
oscillates with a frequency that corresponds to the difference in
energy between its two states, whereas the dipole moment of a
pure eigenstate is not a function of time. Eq. 5.6 makes it abun-
dantly clear why the system can stay in an eigenstate but not
in a superposition: An oscillating dipole moment radiates energy;
a stationary dipole moment does not. The factor d = 4

∫
R1R2x

is a measure of the maximum strength of the oscillating dipole
moment. If one R is an even function of x and the other is an
odd function of x, then this factor is nonzero, and the transition
is said to be electric dipole allowed. If both R1 and R2 are
either even or odd functions of x, then this factor is zero, and
the transition is said to be electric dipole forbidden. Even in
this case, some other moment of the distribution generally will be
nonzero, and the transition can proceed by magnetic dipole, mag-
netic quadrapole, or other higher-order moments. For now, we will
assume that the transition is electric dipole allowed. The atom in
a superposition state is thus a very small quantum resonator, with
properties much like those of the electric dipole resonator treated
in Section 4.13 (p. 95).

5.3 Transitions in Macroscopic Quantum Resonator
There is an essential difference between the atomic and the macro-
scopic quantum resonators. In the macroscopic dipole resonator,
the electron wave function is constrained by the fixed physical
shape of the superconductor. Because the capacitor breaks the su-
perconducting loop, the phase accumulation from one end to the
other can take on any one of a continuum of values. In the case of
the atom, however, the wave function is constrained to come back
on itself, exactly like the wave function in a closed superconduct-
ing loop. Each eigenstate corresponds to a wave function having
a different integral phase around the loop. With any given integer
number of half-cycles around the loop, the phase maps back on
itself, and the properties of the system are stationary. The only
way to get something between an integer number of half-cycles
is to “break” the superconducting state, thereby combining two
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108 Electromagnetic Interaction of Atoms

eigenstates into a superposition. The charge density of this super-
position oscillates with time, and thus radiates energy.

In a simple superconducting loop, such as the one described
in Section 1.1 (p. 9), there is no simple way to mix two states of
different phase accumulation. If, however, we insert a “weak link”
in the superconductor at one point in the loop, we can arrange
to develop additional phase shift across the link. In this way, we
can generate transient states with a phase accumulation that is
not an integral number of cycles. A full treatment of this situa-
tion is well beyond the scope of the present discussion.6 For the
moment, we will simply assume that we can form a state Ψ with
nonintegral phase accumulation by a simple superposition of two
eigenstates Ψ1 and Ψ2, which have phase accumulations n1Φ0 and
n2Φ0, respectively. From Eq. 5.1,

Ψ1 = Rei(n1Θ+E1t/h̄)

(5.7)

Ψ2 = Rei(n2Θ+E2t/h̄)

where R is a function that confines the wave function to within the
superconductor, Φ0 is the flux quantum, Θ is the angle around the
loop, and the energies are related to the fluxes and the inductance
L of the loop. Using the Eq. 3.6 for the energies,

E1 = n2
1

Φ2
0

2L
= n2

1 E0

(5.8)

E2 = n2
2

Φ2
0

2L
= n2

2 E0

A superposition of these two states is:

Ψ = Ψ2 + Ψ2 = R
(
Aei(n1Θ+E1t/h̄) + B ei(n2Θ+E2t/h̄)

)
(5.9)

6Phenomena associated with structures of this type were first discussed by
Brian Josephson (79, 80). Devices with two weak links are called Supercon-
ducting Quantum Interference Devices (SQIDs). A nice account is given by
Tinkham (Chapter 6 of Ref. 81).
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5.3 Transitions in Macroscopic Quantum Resonator 109

The electron density is given by Eq. 5.2:

Ψ∗Ψ = constant + 2ABR2
(
ei(∆nΘ+ω t) + e−i(∆nΘ+ω t)

)
+ O(2n)

= constant + 4ABR2 cos (∆n Θ + ω t) + O(2n)

(5.10)

where ω = (E2−E1)/h̄, ∆n = n2−n1, and O(2n) indicates high-
order terms that are of no interest in the present discussion. For
the special case of ∆n = 1, the time-varying part of the electron
density is:

Density = 4ABR2 cos (Θ + ω t) (5.11)

In other words, the net charge density is a sinusoidal function of
angle around the loop, rotating with angular frequency ω. This
rotating dipole couples to any other dipole on its light cone. The
rotating four-potential of this distribution is called circularly po-
larized radiation. Along either the x or y axis, the dipole be-
haves exactly like that of Eq. 5.6.

The operational significance of the phase constraint around
the loop is that the dipole moment is not fixed by the physical
length of the resonator, but depends instead on the state of the
system. In an eigenstate, the dipole moment is zero. As the super-
position state develops, the dipole moment increases, reaching a
maximum when the upper and lower states make equal contribu-
tions to the total wave function (A = B). Therefore, the problem
of two coupled quantum systems in a superposition state is essen-
tially nonlinear in character. This nonlinearity leads to the appear-
ance of rapid transitions between eigenstates, which in traditional
treatments of quantum mechanics were taken to be discontinuous.
We will now trace the continuous trajectory of the state of two
radiatively coupled atoms through such a “quantum jump.”

5.4 Radiation Transfer Between Atoms
We have developed a detailed description of the energy-transfer
process between macroscopic quantum resonators in Part 4 (p. 73).
We are now in a position to understand the radiative transfer be-
tween two identical atomic systems. Let us consider one atom in
an initial state that is nearly the eigenstate of the upper energy
level, but that has been ever so slightly perturbed by a tiny addi-
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110 Electromagnetic Interaction of Atoms

tion of the wave function of the lower energy level. Such a state
can be written:

A2
1 = ε B2

1 = 1 − ε (5.12)

In addition, we suppose that the first atom is coupled to a second,
identical atom in the lower energy level, and perturbed in a way
that is perfectly matched to the perturbation of the first atom:

A2
2 = 1 − ε B2

2 = ε (5.13)

According to Eq. 5.6, the dipole moment of each system will oscil-
late with a small amplitude proportional to

√
ε. Because Eq. 5.6 is

symmetric in A and B, if A1 = B2 and A2 = B1, the amplitude of
oscillation of the two atoms is identical. Now, let us suppose that
the relative phase of the two systems is also that considered in
Eq. 4.68. The two atoms act like two small dipole resonators, and
energy is radiatively transferred from the first to the second. The
frequency of the radiation is ω = (E2 − E1)/h̄. By the Hellman–
Feynman theorem, the total energy E of a system whose wave
function is a mixture of eigenstates is:

E = A2E1 + B2E2 = A2E1 +
(
1 −A2

)
E2 (5.14)

The radiative coupling decreases the energy of the first atom, thus
decreasing B1 and increasing A1, and concomitantly increasing B2

and decreasing A2, as required by Eq. 5.14. We can solve explicitly
for the amplitude of the oscillation as a function of time for this
transition. The rate of energy transfer will, according to Eq. 4.68,
be proportional to l2 ∝ ε. From Eq. 5.6, dAB is the amplitude of
the oscillation of both systems. The rate of energy loss of the first
atom and of energy gain of the second, both due to radiation, is
proportional to the square of this amplitude. For the first atom,

−∂E

∂t
∝ B2

1

(
1 −B2

1

)
(5.15)

Solving Eq. 5.14 for B2
1 , we obtain:

B2 =
E − E1

E2 − E1
(5.16)
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5.4 Radiation Transfer Between Atoms 111

In other words, B2
1 is just the energy of the first atom, normalized

to the transition energy, and using E1 as its reference energy.
Differentiating Eq. 5.16 and substituting into Eq. 5.15, we obtain:

−∂B2
1

∂t
∝ B2

1

(
1 −B2

1

)
(5.17)

The solution7 of Eq. 5.17 is of the form:

B2
1 =

1
eαt + 1

A2
1 =

1
e−αt + 1

(5.18)

Following the same set of steps for the second atom, we obtain:

A2
2 =

1
eαt + 1

B2
2 =

1
e−αt + 1

(5.19)

where
α =

1
τ
∝ (dq)2 (5.20)

Here, α is called the decay constant of the transition, and τ is
called the lifetime of the excited state Ψ2.

We have thus derived the natural, continuous form of a “quan-
tum jump.” We can understand the transition from the following
simple model: In the beginning of a transition, some perturbation
couples two atoms, and puts both in a mixed state with exactly
the same difference of energies and exactly the right phase. One
of these atoms must start in the upper energy level, and the other
in the lower energy level. Once the coupled mixed state starts to
develop, it becomes self-reinforcing. The energy transferred from
one atom to the other causes an increase in the minority state
of the superposition, thus increasing the dipole moment of both
states, and thereby increasing the coupling and, hence, the rate
of energy transfer. This self-reinforcing behavior gives the transi-
tion its initial exponential character. Once the transition is fully
under way, the two states are nearly equally represented in the
superposition, and the coupled system closely resembles the cou-
pled resonators analyzed in Part 4 (p. 73). Once the transition
has run its course, each atom settles into its final eigenstate. H.A.

7The author thanks Rahul Sarpeshkar for pointing out this solution.
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112 Electromagnetic Interaction of Atoms

Lorentz,8 for whom the Lorentz transformation was named, had
this description of the transition:

It is, perhaps, more satisfactory to suppose that on the occa-
sion of a quantum jump the atom itself is transformed into
a vibrator. This would imply that the jump is by no means
instantaneous, but that the atom passes from the first station-
ary state to the state of a vibrator, and acquires the second
stationary state only at the moment at which, radiating as a
vibrator, it has reached the energy of the second stationary
state, and then passes into that state and ceases to radiate.

The rate of energy transfer from atom 1 to atom 2 is obtained by
substituting Eq. 5.18 into Eq. 5.17.

∂B2
1

∂t
=

eαt

(eαt + 1)2
(5.21)

By the time the transition is complete, B1 has changed from unity
to zero; hence, by Eq. 5.16, the first atom has transferred a total
amount of energy

∆E = ∆B1 (E2 − E1) = E2 − E1 = h̄ω (5.22)

to the second. This electromagnetic transfer of a certain quantity
of energy that is proportional to frequency is called a photon.
Our description differs from Lorentz’s only in detail. The pas-
sage from the initial stationary state to the state of a vibrator is
accomplished smoothly; the superposed state develops an oscil-
lating dipole moment as it loses energy. The coupled system also
approaches its final state smoothly as both atoms lose all dipole
moment and each settles into its stationary state.

We can thus answer Schrödinger’s rhetorical question, “Are
there quantum jumps?” Indeed, there are quantum jumps, but
they are not discontinuities. They may look discontinuous because
of the nonlinear, self-reinforcing nature of a quantum transition;
but at the fundamental level, everything can be followed in a
smooth and continuous way, and we can view nature as being
continuous in both space and time. This picture of nature is what
Einstein wanted most. But to arrive at this picture, we had to give

8This quotation appears on page 151 of Ref. 82.
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5.4 Radiation Transfer Between Atoms 113

up the one-way direction of time, and allow coupling to everything
on the light cone. This, too, was okay with Einstein. So why was
he so hung up on local causality? Why do all the textbooks state
that the coupling of states unified by a light cone is a violation of
relativity? In science, as in all other aspects of human endeavor,
each age has its blind spots, and what is impossible to comprehend
in one generation seems natural and obvious to another. So, after
only one generation, Zeh could say, “There are no quantum jumps,
nor are there particles.” The coherent world has continuous wave
functions, and abrupt-but-continuous quantum transitions.

It has often been said, as reflected in the Feynman quota-
tion at the beginning of this section, that one cannot obtain the
correct answers for the energy levels of the hydrogen atom by
using a continuous charge distribution. As it turns out, these pro-
nouncements are simply wrong. Throughout this derivation, we
have treated the electron as a wave, continuous in space, carrying
a continuous charge density with it. Ed Jaynes (83, 84) set the
stage for this approach in 1958; Barut9 showed that one obtains
the correct energy levels as well as all the other effects that had
been touted as triumphs of traditional quantum electrodynamics.
Arriving at the correct results required taking into account the
interaction of the electron with itself, exactly as we have done in
the case of the superconducting loop. The electron wave function
depends on the potential; the potential depends on the charge den-
sity that is determined by the wave function. Thus, we have an
inherently nonlinear problem, as Jaynes had already pointed out.
The nonlinearity of the problem poses some computational issues,
but no conceptual issues. Conceptually, the continuous charge dis-
tribution of the electron wave function is much more understand-
able than are the multiple levels of infinity that result from point
charges (23). By using a continuous, self-interacting quantum sys-
tem as the conceptual basis for electromagnetic theory, we have
advanced one step closer to a simpler and more unified discipline.

9See Barut and Dowling (75) and the earlier references cited therein.
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Appendix

The Fermi Sphere
It is typical of modern physicists that

they will erect skyscrapers of theory
upon the slender foundations

of outrageously simplified models.

—J.M. Ziman1

A.1 Monolithic Solid
In a solid, the most appropriate electronic states are traveling
waves described by a wave function ψ:

ψ = ei(ωt−k·r) (A.1)

where, for example, in Cartesian coordinates:

k · r = kxx + kyy + kzz (A.2)

The propagation vector or wave vector k has three components:
kx, ky, and kz; its “length” |k| is given by |k|2 = k2

x + k2
y + k2

z .
We can think of the solid as a “box” with sides perpendicular

to the coordinate axes, and having dimensions lx, ly, and lz. The
electrons are confined to the solid, so the wave function must be
zero outside the box. Only certain values of k satisfy the boundary
conditions that require that the wave function vanish at the edges
of the box. We write these conditions as:

kx lx = π nx ky ly = π ny kz lz = π nz (A.3)

By the Pauli exclusion principle,2 two electrons with the same
spin are not allowed in the same state. The first electrons we add
to a solid fill the lowest energy states, which are the states of
lowest k (longest wavelength). We notice that for every state with
wave vector k there is another state of precisely the same energy

1A delightful discussion of the Fermi Surface is given by Ziman (85). The
opening quotation can be found on page 8 of that reference.
2An extended discussion of this topic, with many useful references, is given in
Ref. 86.
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116 The Fermi Sphere

with wave vector −k. Thus, at any state of “fill,” the electron
system will have a remarkable kind of symmetry: Every electron
in a state k will have a matching electron in state −k, and the
two together form a standing wave. As long as states are occupied
symmetrically, neither the individual pairs of electrons nor the
entire collective state has any net propagation. This symmetry
is not dependent on any symmetry properties of the solid, but
is a result of the time-reversal symmetry of the electron wave
function. The collective wave function is symmetric in a spatial as
well as a temporal sense. Each of the individual component wave
functions has a different k; by construction, these wave functions
are spatially orthogonal. The sum of a very large number of them
becomes spatially extraordinarily smooth and featureless.

At some point, we will have added just enough electrons to
neutralize the positive charges in the solid; it will then be electri-
cally neutral, and we can stop. For a typical metal, we will have
added of the order of 1023 electrons per cubic centimeter. The elec-
trons fill up all the states to a certain energy, called the Fermi
energy or Fermi level Ef .

A.2 The k-Lattice
A construction that is universally used to visualize the relation
between energy and wave vector takes place in a coordinate sys-
tem whose axes are kx, ky, and kz. The remarkable property of
states expressed in this “k-space” can be seen from Eq. A.3—the
states form a periodic lattice in k space. In general, the spacing of
the lattice will be different in the three principal directions. The
volume of one unit cell in k-space is:

unit cell volume in k space =
π

lx
· π
ly

· π
lz

=
π3

volume in real space

(A.4)

A.3 Fermi Sphere
A given energy corresponds to a surface in k-space. In particular,
the most important energy, the Fermi energy, forms the Fermi
surface. Each state lying within the Fermi surface contains two
electrons of opposite spin; those outside the Fermi surface are
empty (at zero temperature).
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A.3 Fermi Sphere 117

For simplicity, we assume that the solid is totally symmetric:
Any direction is equivalent to any other.3 For our idealized sym-
metrical solid, the energy surfaces are spheres. The value of wave
vector kf , corresponding to electrons at the Fermi level, is just the
“radius” of the Fermi sphere in k-space. That sphere must con-
tain one state for every pair of electrons we have added. The total
number of electrons is just the density n of electrons multiplied
by the volume of the solid in real space. Multiplying both sides of
Eq. A.4 by the number of electron pairs, we obtain

Volume in k space =
π3

2

(
Electron density in real space

)
(A.5)

where the factor of 2 comes from counting electrons instead of
electron pairs:

4
3
πk3

f =
π3

2
n ⇒ k3

f =
3
8
π2 n (A.6)

It is significant that this result does not depend on the size or
shape of the solid, but only on the density of the electrons.

A.4 Ring Geometry
The monolithic solid we have considered thus far has helped us
understand the nature of electronic states in a solid, but it is
limited by exactly the time-reversal symmetry that we found so
remarkable—the collective state has no net motion in any direc-
tion. We can, however, create a geometry in which the general
nature of the states developed above remain valid, but which al-
lows net motion of the electron system: This geometry is a loop
of wire. The quantization conditions in the two directions, y and
z, perpendicular to the length are identical to those that led to
Eq. A.3. Along the length of the wire (x direction), we have a
cyclic constraint instead of a boundary condition—the wave func-
tion must come back in phase with itself after a trip around the
loop. If the length of the loop is lx, the condition is kxlx = 2πnx.
This condition is really the same as that of Eq. A.3, where the
“round trip” distance is 2lx—across the solid and back.

3This approximation is equivalent to assuming the positive charge is “spread
out” in a uniform manner. Such a construction is called “Jellium” (26).
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A.5 Collective States
The simplest non-stationary state in this geometry can be gener-
ated by translating the Fermi sphere one lattice unit ε = 2π/lx in
the kx direction. This operation corresponds to multiplying each
individual wave function by a factor eiεx. The resulting collective
wave function is no longer featureless, but takes on the period-
icity eiεx that is shared by all of its components. It is in this
way that an enormous, complex, macroscopic ensemble can man-
ifest quantum effects that we normally associate with a system
of atomic dimensions. We need make no assumptions about the
detailed character of the individual states, nor about the inter-
action among the states, other than that the quantization occurs
as a result of the single-valued nature of the wave function in a
spatially constrained geometry.

Because of the periodic nature of the lattice in k-space, we can
construct states of higher net propagation vector by translating
the Fermi sphere several lattice units rather than just one. In a
ring geometry, the state formed by translating the Fermi sphere
m lattice units corresponds to a magnetic flux of mh/2q.

A.6 Classes of Solids
The preceding discussion applies to any solid. It is well known,
however, that solids can be classed as normal metals, supercon-
ductors, and semiconductors. All of these distinctions have to do
with the details of electron states around the Fermi energy. Nor-
mal metals have a continuous distribution of states in the energy
range around the Fermi energy, whereas superconductors and pure
semiconductors have an energy gap—a region of energy where
there are no electron states. In a semiconductor, the energy gap
is fixed with respect to the lattice, so no states of net propagation
are possible without exciting electrons past the energy gap. In a
superconductor, however, the energy gap is the result of collective
interaction (87, 88) among the electrons. For that reason, the en-
ergy gap translates in k-space along with the Fermi sphere. Thus,
the energy gap prevents electrons from being scattered into lower
energy states outside the Fermi sphere, and ensures the existence
of a stable macroscopic quantum state that shares a common dis-
placement in k-space.4

4Fritz London (89) seems to have been the first to recognize the superconduc-
tor as a quantum state of macroscopic dimensions. A fascinating history of
superconductivity is recounted by Dahl (90).
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Assuming the success of efforts to accomplish a complete
physical description, the statistical quantum theory would,

within the framework of future physics, take an approximately
analogous position to the statistical mechanics within

the framework of classical mechanics. I am rather firmly
convinced that the development of theoretical physics will be

of this type, but the path will be lengthy and difficult.

—Albert Einstein1

The early pioneers saw the quantum nature of matter indirectly,
obscured by the statistical nature of the systems that exhibited
it: black-body radiation, spectral lines in glowing gasses, dark-
ened grains in photographic emulsion. It is a tribute to their in-
sight and persistence that they were able to construct a formalism
that still gives useful results to the present day. Much has been
written on the brilliance of their contributions, and I will not re-
peat those kudos here. Much has also been written on the to-
tal failure of the Copenhagen statistical interpretation to provide
a satisfactory conceptual framework for understanding quantum
phenomena. Each of us who make our living working with ordi-
nary, every-day, hands-on quantum systems has had to develop
our own intuitive understanding of real quantum phenomena. By
the orthodoxy of the age, any discussion of this intuitive under-
standing was prohibited. As more examples of collective, coher-
ent quantum systems were developed, the actual understanding
of each system departed more fundamentally from the statistical
view. The emission of photons by glowing gasses was the origi-
nal example around which the Copenhagen interpretation formed.
Lasers, in which glowing gasses emit coherent light, are put forth
as the quintessential example of quantum theory in action. But
the statistical interpretation misses the very reason that the laser
is interesting. In his epic textbook on lasers, Tony Siegman has
this to say:2

1This quotation appears on page 672 of Ref. 20.
2This quotation appears in a delightful discussion of the importance of coher-
ence, entitled Coherence and “Photons,” on page 33 of Ref. 91.
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We have hardly mentioned photons yet in this book. Many
descriptions of laser action use a photon picture . . . in which
billiard-ball-like photons travel through the laser medium. Each
photon, if it strikes a lower-level atom, is absorbed and causes
the atom to make a “jump” upward. On the other hand, a pho-
ton, when it strikes an upper-level atom, causes that atom to
drop down to the lower level, releasing another photon in the
process. Laser amplification then appears as a kind of photon
avalanche process.

Although this picture is not exactly incorrect, we will avoid
using it to describe laser amplification and oscillation, in order
to focus from the beginning on the coherent nature of the
stimulated transition process. The problem with the simple
photon description . . . is that it leaves out and even hides the
important wave aspects of the laser interaction process . . . the
whole stimulated transition process should be treated, not as
a “photon process” but as a coherent wave process.

This monograph has shown how the traditional discipline of elec-
tromagnetism is most economically viewed as the study of coher-
ent electron wave functions. These wave functions are continuous
in space, representing a charge distribution that is distributed in
space, and that interacts with itself. Any theory based on this view
is essentially nonlinear in nature; that the nonlinear theory gives
the correct energy levels for the hydrogen atom has been shown
only recently (75).

The fundamentally nonlinear and nonlocal nature of atomic
transitions was difficult for early workers. After their brilliant ex-
position of the oscillating dipole moment, Rice and Teller (92)
provided this description:

It may be seen that, although the electron does not “move”
in a stationary state, motion can be readily produced as soon
as an electron is in a superposition of two stationary states.

But, rather than follow this line of thought, they immediately
adopted the party line:

In this case, however, we can make only probability statements
as to the energy of the electron.

From our present perspective, it is hard to imagine how the second
sentence could possibly follow from the first. Fortunately, they
were kind enough to share with us the conceptual problem:
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It seems very tempting to identify the frequency of the elec-
tronic motion with the frequency of the light emitted or ab-
sorbed. But we must not consider emission or absorption of
light as a consequence of this electron oscillation, but rather
as a phenomenon corresponding to it. Otherwise, we would
obtain the result that a hydrogen atom which at the moment
is with certainty in the first excited state does not move, does
not oscillate, and does not emit light.

So the conceptual problem was not how energy is radiated by the
oscillating wave function, but how the transition can be initiated
in the first place. It is by now a common experimental fact that an
atom, if sufficiently isolated from the rest of the universe, can stay
in an excited state for an arbitrarily long period. It is also true that
achieving that degree of isolation was not possible until the last
few years. The mechanism for initiating an atomic transition is
not present in the isolated atom; it is the direct result of coupling
with the rest of the universe.

Ironically, the quantum nature of radiation was an invention
of Einstein. In his 1905 paper (p. 86 in Ref. 55), he introduces this
possibility:

According to the assumption to be contemplated here, when
a light ray is spreading from a point, the energy is not dis-
tributed continuously over ever-increasing spaces, but consists
of a finite number of energy quanta that are localized in points
in space, move without dividing, and can be absorbed or gen-
erated only as a whole.

His viewpoint reflected the then-universal belief, that the radiation
itself contains the degrees of freedom in which the energy resides.
The following year, in the paper that would eventually win him
the Nobel prize (p. 192 in Ref. 55) he applied this line of reasoning
to the photoelectric effect. Referring to his earlier (1905) paper,
he comments:

By a route described in that study, I was led to the view that
light . . . can only be absorbed or emitted in quanta of energy

This statement contains no reference to where the energy is lo-
cated. In 1909, Einstein gave an overview talk (p. 379 in
Ref. 55) that clarified his views even further:

According to the prevailing theory, an oscillating ion produces
an outwardly propagated spherical wave. The opposite process
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does not exist as an elementary process. It is true that the
inwardly propagated spherical wave is mathematically possi-
ble; however, its approximate realization requires an enormous
amount of emitting elementary structures. Thus, the elemen-
tary process of light radiation as such does not possess the
character of reversibility. Here, I believe, our wave theory is
off the mark.

In other words, the elementary radiation process seems to pro-
ceed such that it does not, as the wave theory would require,
distribute and scatter the energy of the primary electron in a
spherical wave propagating in all directions. Rather, it seems
that at least a large part of this energy is available at some
location . . . the elementary process of radiation seems to be
directed.

From these statements, and from his 1905 paper, it might seem
that Einstein would continue to pursue the idea of light quanta
as little bullets carrying energy. Instead, he reached a tentative
conclusion very much in keeping with the views put forward in
this monograph:

Would it not be possible to replace the hypothesis of light
quanta by another assumption that would also fit the known
phenomena? If it is necessary to modify the elements of the
theory, would it not be possible to retain at least the equations
for the propagation of radiation and conceive only the elemen-
tary processes of emission and absorption differently than they
have been until now?

By 1909, Einstein had already moved past the naive “bullet” view
of quanta that overtook physics in the late 1920s. Can there be
any wonder that he was frustrated with the Copenhagen clan?

It is precisely Einstein and Schrödinger’s program that is car-
ried out in Part 5 (p. 103). Initiating a transition requires that sig-
nals propagate forward and backward in time, what Einstein called
“the character of reversibility.” The inwardly propagated spheri-
cal wave that Einstein saw as a mere mathematical possibility is,
in reality, composed of the advanced waves from all atoms on the
light cone that are responding to the atom in question, the same
waves that caused radiation damping of our resonator in Part 4
(p. 73). In a time-symmetric universe, an isolated system does
not exist. The electron wave function in an atom is particularly
sensitive to coupling with other electrons; it is coupled either to
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far-away matter in the universe or to other electrons in a resonant
cavity or other local structure. In the initial parts of this mono-
graph, we were able to ignore coupling to far-away matter because
we used a collective structure in which there are 1023 electrons,
arranged in such a way that the collective properties intrinsic to
the structure scaled as the square of the number of electrons. In
this way, we could see the basic laws clearly, and could include
coupling to far-away matter as a perturbation.

Once we were able to derive the behavior of a macroscopic
quantum resonator, we used only the most rudimentary assump-
tions of standard quantum theory to connect our treatment to
the behavior of atomic transitions. We required the highly non-
linear, self-reinforcing nature of the quantum transition to make
the transaction “directed” in Einstein’s sense. Both the time-
symmetric nature of quantum coupling and the nonlinear, self-
reinforcing nature of the quantum transition are essential to make
an Einstein-Schrödinger theory viable. The possibility of carrying
out such a program was foreseen with considerable clarity by Dor-
ling (23), and the connection with standard quantum formalism
was articulated by Cramer (67).

Bohr was adamant that the only role of theory in science
is to calculate certain “observables.” Einstein foresaw a quantum
theory that could be “understood” as well as provide an algorithm
for obtaining certain numerical results. Dirac, originally accepting
Bohr’s line of reasoning, later thought better of it (93):

Some physicists may be happy to have a set of working rules
leading to results in agreement with observation. They may
think that this is the goal of physics. But it is not enough.
One wants to understand how Nature works.

Statistical quantum mechanics has never helped us understand
how nature works; in fact, it actively impedes our understand-
ing by hiding the coherent wave aspects of physical processes.
It has forced us to wander seventy years in the bewilderness of
“principles”—complementarity, correspondence, and uncertainty.
We have seen that complementarity and uncertainty are natural
attributes of any wave theory. Correspondence to classical me-
chanics was the root cause of the worst conceptual nightmares.
The idea of a point particle brought with it infinite energies that
must be “renormalized” away. Degrees of freedom in the vacuum
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brought even more infinities, and made a sensible theory of gravi-
tation impossible. The path has been, as Einstein predicted,
lengthy and difficult; the challenge now is to put all of that behind
us, and to start anew.

Following the tradition of Einstein and Schrödinger, the pio-
neers in this new endeavor, Jaynes, Cramer, Barut, Zeh, and oth-
ers, have given us a great foundation: They have shown that tra-
ditional criticisms of this new approach are groundless. They have
put us in a position to finally settle the Einstein–Bohr debate—
with a resounding victory for Einstein.

Starting in the 1960s, astounding experimental demonstra-
tions of numerous coherent, collective systems have provided a new
conceptual base for Dirac’s “understanding how Nature works.”
They give us Feynman’s “way of thinking such that the law is ev-
ident.” We have followed the line of reasoning suggested by these
experiments far enough to see that electromagnetism is a direct
expression of the coherent electron wave function. There is, as
Einstein said, “only one reality to be described,” so we have built
a theory that “recognized this from the start instead of doing
things twice.”

I opened this monograph by acknowledging my debt of grati-
tude to Dick Feynman. I close by recognizing the enormous wealth
of insight we have inherited from Einstein, only a minuscule frac-
tion of which has, as yet, entered the consciousness of physics as
a whole.
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