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Preface

It is not an exaggeration to say that one of the most exciting predictions of Einstein's
theory of gravitation is that there may exist "black holes": putative objects whose
gravitational fields are so strong that no physical bodies or signals can break free of
their pull and escape. The proof that black holes do exist, and an analysis of their
properties, would have a significance going far beyond astrophysics. Indeed, what is
involved is not just the discovery of yet another even if extremely remarkable, astro
physical object, but a test of the correctness of our understanding of the properties
of space and time in extremely strong gravitational fields.

Theoretical research into the properties of black holes, and into the possible corol
laries of the hypothesis that they exist, has been carried out with special vigor since
the beginning of the 1970's. In addition to those specific features of black holes that
are important for the interpretation of their possible astrophysical manifestations, the
theory has revealed a number of unexpected characteristics of physical interactions
involving black holes. By the middle of the 1980's a fairly detailed understanding
had been achieved of the properties of the black holes, their possible astrophysical
manifestations, and the specifics of the various physical processes involved. Even
though a completely reliable detection of a black hole had not yet been made at
that time, several objects among those scrutinized by astrophysicists were considered
as strong candidates to be confirmed as being black holes. Furthermore, profound
links were found between black hole theory and such seemingly very distant fields as
thermodynamics, information theory, and quantum theory. The branch of physics
that is now referred to as black hole physics was born and actually took shape as a
full-blooded scientific discipline during the past two decades at the junction of the
theory of gravitation, astrophysics, and classical and quantum field theories.

In 1986 we published in Russian a book "Physics of Black Holes" devoted to this
relatively young and rapidly developing branch of physics. In 1989 the book was
translated and published in English. During the years that have passed since then,
the physics of black holes enjoyed a period of rapid growth. First of all, great progress
was achieved in the observational astrophysics of black holes. Ten years ago there
were only a few black hole candidates in binary systems in which the companion was
a normal star. In spite of enormous efforts, no unequivocal signature of black holes
had been found in these systems. Today after great improvements in the quantity and
quality of the observational material, our confidence that we observe the manifestac

xiv
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tion of black holes in at least a few binaries is almost a hundred per cent. Moreover,
impressive progress in optical, radio, and X -ray astronomy greatly bolstered the ev
idence for supermassive black holes (up to several billion solar mass) in the centers
of galaxies. During the same period of time, great progress was made also in the de
velopment of the theoretical and mathematical aspects of black hole physics. Black
hole collisions might be one of the most powerful sources of gravitational radiation in
the Universe. The gravitational wave observations that might become possible after
construction of the LIGO and other gravitational antennas of the new generation re
quired developments in numerical relativity and analytical methods for the analysis
of the gravitational radiation generated by black holes.

More than five years ago we were requested to prepare a second edition of the book
to reflect the enormous progress in our knowledge concerning black holes. We started
work on this project, and quite soon we realized that it is virtually impossible to keep
the book unchanged and restrict ourselves to tiny "cosmetic" improvements. As a
result, in order to update the book, we practically rewrote it though we preserved its
original structure and certainly used much of the old material.

This monograph is the result of our attempts to understand the modern status of
black hole physics. This new book is twice longer than the old one; it contains four
new chapters. We also added a lot of new material in the form of appendices which
cover more mathematical subject.

This book is written to introduce the reader to the physics of black holes and
the methods employed in it, and to review the main results of this branch of physics.
But attention is focused primarily on questions that were answered relatively recently,
and thus could not be adequately reflected in earlier textbooks and reviews. Those
aspectsthat are relatively familiar are presented concisely (but as clearly as possible).

We have tried to make the representation lucid not only for a specialist, but also
for a broad spectrum of physicists and astrophysicists who do not have a special
knowledge of black hole physics. An attempt is made to explain, first and foremost,
the physical essentials of the phenomena, and only after this do we pass on to the
mathematical means of describing them. These objectives determined both the spec
trum of selected topics and the style of presentation. A conscious attempt has been
made to avoid excessive rigor in the formulations and proofs of theorems on black
holes. Quite often, only the principal idea is given instead of a complete proof; then
the successive stages of the proof are outlined, and references to the original papers
are supplied where the reader will find the required details. This approach was cho
sen not only because the excellent monographs of Penrose (1968), Hawking and Ellis
(1973), Chandrasekhar (1983), and Thorne, Price and Macdonald (1986) cover most
of the material omitted in this book, but also because we are of the opinion that
excessive rigor stands in the way of understanding the physical ideas that are at the
foundation of the specific properties of black holes.

The material in the book is partly based on the courses of lectures which the
authors have presented during a number of years at the University of Copenhagen
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Chapter 1

Introduction: Brief History of
Black Hole Physics

A black hole is, by definition, a region in spacetime in which the gravitational field is
so strong that it precludes even light from escaping to infinity.

A black hole is formed when a body of mass M contracts to a size less than the so
called gravitational radius rg = 2GM/c2 (G is Newton's gravitational constant, and
c is the speed of light). The velocity required to leave the boundary of the black hole
and move away to infinity (the escape velocity) equals the speed of light. One easily
concludes then that neither signals nor particles can escape from the region inside
the black hole since the speed of light is the limiting propagation velocity for physical
signals. This conclusion is of absolute nature in Einstein's theory of gravitation
because the gravitational interaction is universal. The role of gravitational charge is
played by mass whose value is proportional to the total energy of the system. Hence,
all objects with nonzero energy participate in the gravitational interaction.

Einstein's theory of gravitation, alias general relativity, is employed to the full in
the description of black holes. It may appear at first glance that one cannot hope
to obtain an acceptably complete description of black holes, owing to the complex
ity of the equations involved and, among other factors, their essential nonlinearity.
Fortunately, it was found that shortly after its formation, any black hole becomes
stationary, and its field is determined in a unique manner by a small number of pa
rameters; namely, its mass and angular momentum, and its electric charge (if it is
charged). The physical reason for this striking property of black holes is the fact that
in the extremely strong field of a black hole in empty space, only very special types of
configuration of physical fields (including the gravitational field) can be stationary.

Since signals cannot escape from a black hole, while physical objects and radiation
can fall into it, the surface bounding the black hole in spacetime (called the event
horizon) is a lightlike surface. The birth of a black hole signifies the formation of a
non-trivial causal structure in spacetime. As a result of these specific features, new
methods had to be developed to analyze the interaction of black holes with physical

3



4 CHAPTER 1. INTRODUCTION

fields and matter, and with other black holes.

The term "black hole" was introduced by Wheeler in 1967 although the theoretical
study of these object has quite a long history. The very possibility of the existence of
such objects was first discussed by Michell and Laplace within the framework of the
Newtonian theory at the end of the 18th century [see Barrow and Silk (1983), Israel
(1987), Novikov (1990)]. In fact, in general relativity, the problem arose within a year
after the theory had been developed, i.e., after Schwarzschild (1916) obtained the first
exact (spherically symmetric) solution of Einstein's equations in vacuum. In addition
to a singularity at the center of symmetry (at r == 0), this solution had an additional
singularity on the gravitational-radius surface (at r == rg ). More than a third of a
century elapsed before a profound understanding of the structure of spacetime in
strong gravitational fields was achieved as a result of analyses of the "unexpected"
features of the Schwarzschild solution by Flamm (1916), Weyl (1917), Eddington
(1924), Lemaitre (1933), Einstein and Rosen (1935), and the complete solution of
the formulated problem was obtained [Synge (1950), Finkelstein (1958), Fronsdal
(1959), Kruskal (1960), Szekeres (1960), Novikov (1963, 1964a)]. The length of this
interval may have been influenced by the general belief that nature could not admit
a body whose size would be comparable to its gravitational radius; this viewpoint
was shared by the creator of general relativity himself [see e.g., Israel (1987) and
references therein]. Some interest in the properties of very compact gravitational
systems was stimulated in the thirties after Chandrallekhar's (1931) work on white
dwarfs and the works of Landau (1932), Baade and Zwicky (1934), and Oppenheimer
and Volkoff (1939) who showed that neutron stars are possible, with a radius only
a few times that of the gravitational radius. The gravitational collapse of a massive
star which produces a black hole was first described by Oppenheimer and Snyder
(1939).

The next period began in the middle sixties when intensive theoretical studies
were initiated on the general properties of black holes and their classical interactions,
after the work of Synge (1950), Kruskal (1960) and others who obtained the COIll

plete solution for the Schwarzschild problem, and of Kerr (1963) who discovered a
solution describing the gravitational field of a rotating black hole. Before this pe
riod specialists had considered black holes as dead objects, ultimate final stage of
the evolution of massive stars, and probably of more massive objects. The names
"frozen" or "collapsed" stars used by specialists until the end of sixties for the de
scription of these objects reflected such an attitude. This point of view proved to
be rather restrictive when processes in the close vicinity of these objects became the
focus of interest. Moreover, it prevents from the outset even formulating any ideas
concerning the physical processes inside them. In the middle of the sixties a new
approach (paradigm) gained ascendancy in the community of theorists working in
general relativity (but not among astronomers who mainly were very far from the
problems of black holes, and even discussions of these problems were not welcomed
in the "decent society" D. This new point of view was a historical development of the
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Figure 1.1: The first public use of the term "black hole". Lecture (given by J .A.Wheeler)
appeared in the Phi Beta Kapper journal "The American Scholar" (VoI.37, No.2, Spring
1968, pp.248) and in the Sigma Xi journal, "American Scientist" VoI.56 No.1 Spring 1968,
pp. 1-20. This page was sent to the authors by John Wheeler with his handwritten Hates.
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route initiated by the work of Oppenheimer and Snyder (1939), where it was shown
that an observer on the surface of a collapsing star sees no "freezing" at all, but can
register events both outside and inside the gravitational radius. This point of view
implied that an object formed after the gravitational collapse could be considered in
some sense as a "hole" in spacetime.

Just at this time Wheeler (1968) coined the name "black hole". When in 1992 we
started working on this book in Copenhagen, John Wheeler visited us and in very
lively fashion recalled his lecture in late 1967 when he used this name for the first
time (see Figure 1.1). Soon after that this name was adopted enthusiastically by
everybody. We believe that readers would agree that this graphic expression reflects
very picturesquely the remarkable properties of the object.

The now-classic theorems stating that "black holes have no hair" (that is, no
external individual attributes except mass, angular momentum, and charge), that
a black hole contains a singularity inside it, and that the black hole area cannot
decrease were proved during this period. These and other results made it possible to
construct a qualitative picture of the formation of a black hole, its possible further
evolution, and its interaction with matter and classical physical fields. Many of these
results were summarized in the well-known monographs of Zel'dovich and Novikov
(1967b, 1971a,b), Misner, Thorne, and Wheeler (1973), Hawking and Ellis (1973),
Thorne, Price, and Macdonald (1986), and Novikov and Frolov (1989).

After pulsars (neutron stars) were discovered at the end of the sixties, astrophysi
cists had to examine the prospects for the observational detection of black holes. The
analysis of the accretion of matter onto isolated black holes and onto black holes in
binary systems predicted that accreting black holes may constitute powerful sources
of X-rays [Novikovand Zel'dovich (1966), Shklovsky (1967b), Burbidge (1972)]. The
progress of X-ray astronomy and the studies using X-ray satellites that began in
the 1970's led to the discovery of a number of X-ray sources. The hypothesis was
pi'oposed that some of them are black holes in binary stellar systems.

More than 25 years of constant study of these objects provided confirmation of
the initial hypothesis. Now at the end of nineties we are sure that black holes with
stellar masses do exist in a number of binaries in our Galaxy [Thorne (1994b)]. There
is also good reason to believe that the nuclei of active galaxies (and possibly of any
galaxy) and quasars contain massive or supermassive black holes [see Blandford and
Thorne (1979), Rees (1982), Begelman and Rees (1996)]. Two recent discoveries 
one by astronomers using the Hubble Telescope [Ford et al. (1994), Harms et al.
(1994)], the other by radioastronomers [Miyoshi et al. (1995)] - gave clear evidence
for huge black holes in the centers of galaxies. In both cases observations revealed
disks of gas orbiting the central objects, and it is possible to give robust arguments
that these objects can be nothing but supermassive black holes.

The discussion of the possible observational aspects of black hole study drew
considerable attention to the problem of the motion of particles and propagation of
physical fields in the spacetime of stationary black holes. This problem, which is pre-
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dominantly mathematical and involves the integration of the equations of geodesics
and the solution (by expansion in eigenfunctions) of the wave equations in the Kerr
metric, has now been completely solved. Numerous relevant results are summarized
in the monograph by Chandrasekhar (1983).

The sensational "news" of the possible discovery of a black hole in an X -ray
binary (Cygnus X-1) had scarcely died down when a new unexpected result obtained
by Hawking (1974, 1975) again focussed physicists' attention on black holes. It was
found that as a result of the instability of the vacuum in the strong gravitational
field of a black hole, these objects are sources of quantum radiation. The most
intriguing property of this radiation is that it has a thermal spectrum. In other
words, if one neglects the scattering of the radiation by the external gravitational
field, a black hole radiates like a heated black body. If the black hole mass is small,
it decays over a time shorter than the age of the Universe. Such small black holes,
now called primordial black holes, may have been formed only at a very early stage
of the Universe's evolution [Zel'dovich and Novikov (1966, 1967b), Hawking (1971)].
In principle, the discovery of primordial black holes or of their decay products would
supply valuable information on the physical processes occurring in the Universe at
that period.

Hawking's discovery stimulated a large number of papers which analyzed specific
features of quantum effects in black holes. In addition to a detailed description of the
effects due to the creation of real particles escaping to infinity, substantial progress
has been achieved in the understanding of the effect of vacuum polarization in the
vicinity of a black hole. This effect is important for the construction of a complete
quantum description of an "evaporating" black hole. l

It is quite interesting that not so many (say 15-20) years ago, black holes were
considered as highly exotic objects, and the general attitude in the wider physical
and astrophysical community (i.e., among the scientists who were not working on
this subject) to these objects was quite cautious. Now the situation has changed
drastically. It happened both because of new astrophysical data and because of the
development of the theory.

In binary systems and in galactic centers, accretion of gas onto a black hole
generates radiation of light or X-rays. The efficiency of this process is so high that
the accretion of matter onto a black hole is one of the most powerful energy sources
in the Universe. That is why black holes recently became the favored hypothesis for
trying to explain processes with huge energy release from compact regions of space.
This is what gives black holes their current importance in astrophysics.

I There were a number of review articles written in the 1970's and early 1980's which had summa
rized main results obtained during this "heroic" period of black hole physics. These are references
to some of them: Penrose (1972), Carter (1973a, 1976), Sexl (1975), Israel (1983), Markov (1970,
1973), De Witt (1975), Sciama (1976), Dymnikova (1986), Bekenstein (1980), Ruffini (1979), Frolov
(1976b, 1978b, 1983b). See also a remarkable review article by Israel (1987) which describes the
history of evolution of the black hole idea.
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More recently another aspect of black hole physics became very important for
astrophysical applications. The collision of a black hole with a neutron star or coa
lescence of a pair of black holes in binary systems is a powerful source of gravitational
radiation which might be strong enough to reach the Earth and be observed in a new
generation of gravitational wave experiments (LIGO, LISA, and others). The de
tection of gravitational waves from these sources requires a detailed description of
the gravitational field of a black hole during the collision. In principle, gravitational
astronomy opens remarkable opportunities to test gravitational field theory in the
limit of very strong gravitational fields. In order to be able to do this, besides the
construction of the gravitational antennas, it is also necessary to obtain the solution
of the gravitational equations describing this type of situation. Until now there exist
no analytical tools which allow this to be done. Under these conditions one of the
important problems is the numerical study of colliding black holes.

Besides its direct astrophysical application, the physics of black holes has a more
general importance. The existence of black holes introduces into physics a new con
cept which can be called the concept of invisibility. In the presence of a black hole,
physically important classes of observers, at rest or moving in the black hole exterior
(external observers), would agree that there exists a spacetime region which is in
principle unobservable in their reference frame. Since exactly these frames are used
in astrophysics, we have a situation which never occurred before. Is there any sense
in discussing what happens inside a black hole if there is no way to compare our
predictions with observations outside a black hole or to transfer our knowledge to the
external observer if we decide to dive into a black hole? Perhaps the general answer
to this almost philosophical question lies somewhere outside physics itself. 2

The very existence of "invisible" regions ("holes") in spacetime has a number of
important physical consequences. One of them is the thermal nature of the Hawking
radiation. In the process of black hole formation the information concerning the
state of quantum fields inside the horizon is lost for an external observer. Even if at
the beginning (before the collapse) a system was in a pure quantum state, after the
black hole formation the state outside the horizon is mixed, and it is described by
a density matrix. According to Hawking, this density matrix is thermal. In other
words, the combination of gravity and quantum mechanics in the presence of black
holes requires for its consistency the introduction of thermodynamical methods. The
statistical mechanical foundations of the thermodynamics of black holes still remain
one of the most intriguing problems in theoretical physics.

An important new development of black hole physics is connected with t.he at
tempts to construct a unified theory of all interactions. Unification of gravity with
other gauge theories made it interesting to study black-hole-like solutions, describ
ing a black hole with "colored" and "quantum hair". Modern superstring theory,

2We should add here that the standard assertion about the impossibility of seeing what. happens
inside a black hole is to be taken with care. A gedanken experiment. has been proposed [Frolov and
Novikov (1993a)] where one can probe a black hole interior.
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which explains gravity as some collective state of fundamental string excitations, re
produces general relativity in the low energy limit. This theory requires additional
fundamental fields (e.g., the dilaton field), which inevitably violate the equivalence
principle. The study of black-hole-like solutions in string-generated gravity attracted
the attention of theorists, many of whom have been working in high energy physics
and superstring theory.

Besides the main solved and unsolved problems in black hole physics listed above,
there are a lot of other questions connected with black hole physics and its applica
tions. It is now virtually impossible to write a book where all these problems and
questions are discussed in detail. Every month new issues of Physical Review D,
Astrophysical Journal, and other physical and astrophysical journals add scores of
new publications on the subject of black holes. In writing a book on this subject we
were restricted by space and time. We tried to include material that is connected to
the basic concepts of black hole physics and their recent development. Both of the
authors have been working in the area of black hole physics for more than 30 years.
Certainly we have our favorite topics. The reader should excuse the authors if some
subjects are treated in more detail than other that are more important from his or
her point of view.

This book presents a systematic exposition of black hole physics. The first part
of the book (Chapters 2 to 9) contains what might be called the "classical physics
of black holes" and its applications. In order to introduce certain important notions
descriptively and to place emphasis on the fundamental problems, the authors have
attempted to make the presentation in the opening chapters particularly simple and
clear. This is especially true of Chapter 2 which describes the properties of the sim
plest spherical black hole. This chapter also presents the properties of the spacetime
within a black hole.

Chapter 3 introduces the most important properties of rotating black holes and of
those having a nonzero electric charge. Special attention in Chapters 2 and 3 is paid
to the special reference frames used for the study of properties of black holes and to
other tools which allow one to visualize the properties of these unusual objects.

Chapter 4 (written jointly with N. Andersson) treats the propagation of weak
physical fields near black holes. The main focus is on the evolution of weak gravita
tional fields. This is especially important in the problem of the stability of a black
hole under external perturbations, and in the problem of the emission of gravitational
waves by bodies (and fields) moving in the neighborhood of a black hole. Here, we
also treat the formation of a black hole in the collapse of a slightly non-spherical
body.

Chapter 5 presents the general theory of non-stationary black holes and results on
the existence of singularities inside black holes. We also discuss the cosmic censorship
conjecture and critical behavior in black hole formation.

Chapter 6 is devoted to properties of stationary black holes. We give a formulation
and proof of the uniqueness theorems for stationary black holes in the Einstein-
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Maxwell theory.
Chapter 7 describes various physical effects in the gravitational field of a black

hole: superradiance, shift in the self-energy of a charged particle, the transformation
of electromagnetic waves into gravitational waves, and the inverse process. The
motion and deformation of black holes in an external field, interaction between black
holes, and interaction of cosmic strings with a black hole are also discussed in this
chapter. We conclude the chapter by presenting the recent numerical results on the
head-on collision of two black holes.

Chapter 8 treats black hole electrodynamics. The membrane approach is used to
reformulate the electrodynamics in (3+1)-form. As the most important application
of these formulation we discuss the structure of black hole magnetospheres.

Chapter 9 contains a review of black hole astrophysics. Primary attention is paid
to observational evidence for the existence of black holes.

The second part ofthe book (beginning with Chapter 10) concel'1lS more advanced
subjects of black hole physics and its quantum generalization.

The quantum physics of black holes is the subject of Chapters lQ and 11. Chap
ter 10 gives the general solution to the problem of the creation of particles in the
field of a stationary black hole. Chapter 11 summarizes the results on vacuum polar
ization in the neighborhood of a black hole and discusses properties of black holes as
quantum objects.

The thermodynamics of black holes and the problem of its statistical-mechanical
foundations is discussed in Chapter 12.

Black holes in unified theories and in theories of gravity in spacetimes with di
mensions less or higher that four are considered in Chapter 13.

Chapter 14 treats various aspects of the structure of spacetime inside black holes,
including the instability of Cauchy horizons and so-called mass inflation.

The problem of the final state of an evaporating black hole is the subject of Chap
ter 15. We discuss different possible outcomes of this process and the information
loss puzzle.

Chapter 16 analyzes some general aspects of the relation between the topology
of spacetime and causality. It contains a brief introduction into wormholes and time
machines.

The book has a number of appendices which collect results from Riemannian
geometry and general relativity. We included in the appendices the derivation of
some of the results used in the main text. They also contain useful formulas which
might be needed to verify some of the relations in the main part of the book that are
given without derivation. In particular, they set out some mathematical relations for
the Kerr-Newman geometry. We also included in the appendices a brief summary of
quantum field theory in curved spacetime and its application to quantum theory in
the Kerr metric.

In Chapter 2 all formulas are written with dimensional physical constants c and
G. Beginning with Chapter 3, where more complicated material is treated and the use
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of dimensional constants would yield unwieldy expressions, we employ (except in the
final formulas or where specified otherwise) the system of units c == G == Ii == k == 1.
The signs in the definitions of metric, curvature tensor, and Ricci tensor are chosen
as in t.he monograph of Misner, Thorne, and Wheeler (1973).



Chapter 2

Spherically Symmetric Black Holes

2.1 Spherically Symmetric Gravitational Field

We begin the analysis of the physical properties of black holes with the simplest case
in which both the black hole and its gravitational field are spherically symmetric. The
spherically symmetric gmvitational field (spacetime with spherical three-dimensional
space) is described in every textbook on general relativity [see, e.g., Landau and
Lifshitz (1975), Misner, Thorne, and Wheeler (1973)]. Therefore, here we will only
reproduce the necessary results. Mathematical details connected with definition and
properties of a spherically symmetric gravitational field can be found in Appendix B.

Let us write the expression for the metric1 in a region far from strong gravitational
fields (i.e., where special relativity is valid), using the spherical spatial coordinate
system (r, (}, r/J):

(2.1.1)

where c is the speed of light, and dl is the distance in three-dimensional space.
Consider now a curved spacetime but preserve the condition of spatial spherical

symmetry. Spacetime is not necessarily empty, it may contain matter and phys
ical fields (which are, of course, also spherically symmetric if their gravitation is
considered). It can be shown (see, e.g., Misner, Thorne, and Wheeler (1973), and
Appendix B) that there exist coordinates (X

O
, Xl, (}, r/J) in a spherically symmetric

spacetime such that its metric is of the form

d 2 (0 1) d 0' 2 (0 1) dOd 1· (0 1) d I'.8 = goo X ,x X + gOI X , X ,x x + gll X , X ,x

(2.1.2)

I We use (-, +, +, +) signature convention for the spacetime metric ds2 = 91'v dxl' d:c v
, Greek in

dices fl., II take values 0,1,2,3, while small Latin indices i, j = 1,2,3 enumerate "spatial" coordinates,
For definition and properties of other geometrical quantities used in the book see Appendix A.

12
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It is evident that there is a freedom in a choice of coordinates (XO, Xl, (), ¢). The form
of the met.ric (2.1.2) remains unchanged under the coordinate transformations

¢=¢. (2.1.3)

Quite often it is convenient to use coordinate tl'ansformat.ion (2.1.3) to banish g01
coefficient of the metric (2.1.2) so that the metric takes the form

ds2 = goo(XO, Xl) dx0
2+ gll (xo, Xl) dX l2 + gdxO, Xl )(d(}2 + sin2 () d¢2) . (2.1.4)

The remaining coordinate freedom after this is one function of two variables. This
freedom can be used for further simplification of the metric. For example, if the
gradient of the function g22(XO,XI) does not vanish in some region, this function can
be chosen there as a new coordinate (say Xl). In these coordinates the spherically
symmetric metric takes the form

(2.1.5)

For fixed values of XO and Xl the metric (2.1.5) is the met.ric on a two-dimensional
sphere. Its surface area is 47T(X I )2. For this reason, the coordinate Xl is invariantly
defined and has a well-defined meaning. The coordinates in which the expression for
g22 is written in the form (xl? clrt> called curvature coordinates. Usually by analogy
to (2.1.1) the Xl coordinate is denoted by r ("radius") and xO/c == t ("time"). We
will see that this choice of symbols is not always logically justified inside a black hole
(see Section 2.4).

If a spherical gravitational field is considered not in vacuum, then in the general
case matter moves radially in the three-dimensional coordinate system defined by
the coordinates Xl, (), ¢; that is, energy flows exist. Sometimes it is more convenient
to choose a different frame of reference; for example, a one comoving to the matter,
but which is also sphericallY symmetric. All such reference frames where the metric
is of the form (2.1.4) possess the following property. The points of which one such
reference frame is composed move radially with respect to some other frame. A point
Xl = const which is at rest in the older reference frame moves with respect to a
new reference frame. If the coordinates in the new reference frame are marked with
a tilde, then this motion is described by the equation Xl = xl(XO,X I ). Once the
function xl(XO,X I ) has been chosen, thus defining the new frame of reference, it is
always possible to choose XO = XO(XO, Xl), which defines the time coordinate XO in the
new system in such a way that the component 901 would not arise, and the general
expression for ds2 would have the same form as (2.1.4)

ds2= 900(xo, Xl )dx0
2+ 911 (XO, Xl) dx l2 + 922(XO, xl )(d(}2 + sin2 () d¢2) . (2.1.6)

If we start with metric (2.1.5) in the curvature coordinates, then the expression for
922 can be written in the form

r;:- 1(-0 -I)V g22 = X X ,X , (2.1.7)
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where xl = XI(XO, Xl) is the solution of (2.1.3) for Xl. It describes the radial motion
of the points of the new reference frame (with the coordinate Xl = const) with respect
to the older one.

2.2 Spherically Symmetric Gravitational Field In
Vacuum

2.2.1 Schwarzschild metric

Consider a spherical gravitational field in vacuum. The solution to Einstein's equa
tions for this case was found by Schwarzschild (1916). It has the following form (see
Appendix B.4.1):

Here G is Newton's gravitational constant, and M is the mass of the field source.
An important property of.this solution is that it is independent of the temporal

coordinate t. The solution is determined by a single parameter M; that is, the total
mass of the gravitational source which produces the field. This interpretation of the
parameter M immediately follows from the asymptotic form of the metric. Far from
the center of gravity (as r --+ 00), spacetime approaches the flat Minkowski spacetime
with metric (2.1.1), and the gravitational field can be described by using the weak
field approximation. In this approximation - gtt = 1 + 2'{J/ c2 , where '{J = - GM Ir
is the Newtonian grovitational potential. By comparing this result of the weak field
approximation with the metric (2.2.1), one concludes that M is the mass of the
gravitating system.

Even if the field source involves radial motions (which preserve spherical sym
metry), the field beyond the region occupied by matter remains constant, and it is
always described by metric (2.2.1). This statement is known as Birkhoff's theorem
(Birkhoff (1923); see also Appendix B.3).

2.2.2 Schwarzschild reference frame

The coordinates (t, r, (}, r/J) in which (2.2.1) is written are called Schwarzschild co
ordinates, and the frame of reference which they form is called the Schwarzschild
reference frome.

For ordinary measurement of length in a small neighborhood of each spatial point,
we can use a local Cartesian coordinate system (x,y,z). Let (ej,e2,e3) be three
spatial orthonormal vectors at a chosen point p. Then the displacement vector or for
the position of it point in a small neighborhood of p can be characterized by three
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numbers (ox, oy, oz) : or = oxej + oye'J. +oze3. If ej, e'J., and e3 are directed along
r, B, and ¢, respectively, then

(
2GM)-1/2

ox = Vihl dr = 1 - ~ dr,

oy = v'922 dB = r dB,

oz = v'933d¢ = r sinBd¢.

(2.2.2)

(2.2.3)

(2.2.4)

The factor (1- 2GM/ c2r)-1/2 in (2.2.2) reflects the curvature of the three-dimensional
space.

The physical time T at a point r is given by the expression

(
2GM) 1/2

dT = c-1J-goodxO = J-goodt = 1-~ dt, (2.2..5)

(2.2.6)

where x O = C t. If eo is a unit time-directed vector orthogonal to em (m = 1,2,3),
then the position of any event with respect to the local frame can be presented as
cOTeo+or.

Far from the gravitational center (as r --+ 00), we have dT = dt; that is, t is
the physical time of the observer located at infinity. At smaller r, the time T runs
progressively slower in comparison with the time t at infinity. As r --+ 2GM / c2 , we
find dT --+ O.

Let us now calculate the acceleration of free fall of a body which is initially at
rest (or moves at a low velocity v « c) in the Schwarzschild reference frame. Using
formulae (A.42) and (A.43) of the Appendix A, we find

.;;;:;;J GM
a= ai a'= r2(1-2GM/c2r)I/2'

The acceleration points along the radius and is directed toward the center. As r --+
2GM / c2 , the acceleration tends to infinity. The singularity in the flow of time arising
as r --+ 2GM/c2 [see (2.2.5)J and in the expression for acceleration a [see (2.2.6)J
demonstrates that at this value of r, the Schwarzschild reference frame has a physical
singularity.2 The quantity r = r g = 2GM / c2 is called the Schwarzschild radius

2If a test body is at rest with respect to the Schwarzschild reference frame, its motion is not
geodesic. Expression (2.2.6) gives the acceleration, and F o = m a gives the force acting on a body
of mass m, measured by an observer located near this body at a point TO' If the body is suspended
by a weightless absolutely rigid string, then the force applied to the free end of the string at the
point TI is

As TO tends t.o 2GM / c2 , Fo ~ 00, while F 1 remains finite.
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(or gravitational radius), and the sphere of radius Tg is said to be the SchwaTzschild
sphere. We will later give a detailed analysis of the physical meaning of the singularity
at T = Tg.

The Schwarzschild reference frame is static, and hence rigid [Dik = 0; see (A.44)].
The three-dimensional geometry of the space gij and the gravitational potential goo
in it do not depend on time t. The generator of this time-symmetry transformation
is known as the Killing vectoT e(t): ~~l = o~. The Schwarzschild reference frame can
be thought of as a coordinate lattice 'welded" out of weightless rigid rods which fill
the space around the black hole. We can study the motion of particles relative to this
lattice, the evolution of physical fields at different points of this lattice, and so on.
The Schwarzschild lattice thus, to some extent, resembles the lattice of fixed coordi
nates in the absolute Newtonian space of non-relativistic physics. When we speak of
the motion of particles or the evolution of a field in the Schwarzschild spacetime, we
always mean the motion and evolution of the field in this analogue of absolute New
tonian space.3 This similarity of the Schwarzschild and Newtonian frames is a great
help to our intuition. Of course, the geometry of the three-dimensional Schwarzschild
space around a gravitational center is non-Euclidean, in contrast to the Euclidean
Newtonian space of non-relativistic physics. Indeed, the 3-geometry of a space section
t = const is

(2.2.7)

To "visualize" the properties of this three-dimensional curved space, one may consider
its various two-dimensional sections. For example, Figure 2.1 shows the embedding
diagram representing the geometry of the equatorial plane () = 7r /2.

As a result of the preSence of the critical radius, T g = 2GM/ c2 , in the spherical field
in vacuum, where the free-fall acceleration a with respect to the Schwarzschild frame
becomes infinite, such a rigid non-deformable lattice cannot be extended to T :::; T g'

since this region contains no non-deformable space (no analogue of the Newtonian
space). The fact that the free fall acceleration a. tends to infinity at Tg is an indication
that for T :::; Tg all systems must be nonrigid in the sense that go{3 must be a function
of time and all systems must be deformed (all bodies must fall to the center). We
will see that this is indeed the case.

Note that these peculiarities at T = Tg do not indicate that there is a singularity
of infinite curvature, or something similar, in the geometry of the four-dimensional
spacetime. We shall see later that the spacetime near the gravitational radius is
quite regular, and the singularity at Tg points to a physical singularity only in the
Schwarzschild reference frame; that is, it signifies the impossibility of extending this
reference frame as a rigid and non-deformable one (not falling on the center) to r :::; Tg .

3Recall that, in the general case of nonspherical time-dependent gravitational fields, it is not
possible to introduce a rigid three-dimensional space; this fact quite often stands in the way of dear
intuitive concepts and inhibits calculations.
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Gravitational
radius

Figure 2.1: Embedding diagram for the geometry on the equatorial piauI' in the

Schwarzschild spacetime. The. two-geometry dl2 = (1- ~)-I dr2 + r2 d¢J2 (obtained
from the Schwarzschild metric (2.2.1) by putting there dt =0 and () = 1r/2) is isometric to
the internal geometry on the two-dimensional surface of rotation z = 2J2M(r - 2m) in a
flat three-dimensional space ds2 '" dz2 + dr2 + r 2 d¢J2 (see Appendix B.5.4). A coordinate
lattice "welded" from rigid rods which fill the space around the black hole is schematically
shown.
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Note in conclusion that rg is extremely small even for celestial bodies. Thus,
rg ~ 0.9 em for the Earth's mass and Tg ~ 3 km for the solar mass. If r » r g, the
gravitational field is weak, and it can be described by the Newtonian approximation
with a very high accuracy. The free fall acceleration a = GM/r2 , and the curvature
of the three-dimensional space is negligible. Outside typical celestial bodies (and all
ordinary bodies as well), the gravitational field is the Newtonian field because their
sizes are typically much greater than rg' (The only known exceptions are neutron stars
and black holes.) The Schwarzschild solution is not valid within these bodies, but,
obviously, the gravitational field is still Newtonian with enormously high accuracy.

We will see later that a spherical black hole is formed when a non-rotating spher
ical body collapses to a size below its gravitational radius. But before we discuss this
process of the birth of a black hole, we need to look at the laws of radial motion of
test particles in the Schwarzschild field.

2.3 Radial Motion of Test Particles in the
Schwarzschild Field

2.3.1 Radial motion of light

We begin with a radial motion of a photon, which always propagates at the funda
mental velocity c. This is also true for any other ultra-relativistic particle. For this
particle, ds = O. For radial motion,dB = dr/J = O. Substituting ds = dB = dr/J = 0
into (2.2.1), we find the equation of motion

dr (rg )dt = ±c 1- -; . (2.3.1 )
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(2.3.3)

Recall that d1' / dt is the rate at which the coordinate l' changes with the time t
of a distant observer; that is, this is the coordinate (not the physical) velocity. The
physical velocity is the rate of change of physical distance, dx [see (2.2.2)], in the
physical time T [see (2.2.5)J

dx yfgII d1'
-=± =±c. (2.3.2)
dT J-goodt

Of course, the physical velocity of the photon (in any reference frame) is always equal
to c.

From the standpoint of a distant observer (and acconling to his clock), the change
dx in the physical radial distance with t is

dx (1' ) 1/2-=±c 1-..J? .
dt l'

Therefore, a distant observer finds that a light ray close to 1'g moves slower, and as
T --+ Tg , dx/dt --+ O. Obviously, this behavior reflects the slowing down of time close
to 1'g [see (2.2.5)J.

How long does a photon take, by the clock of a distant observer, to reach the
point rg if the motion starts radially from l' = 1'I? We integrate equation (2.3.1) and
obtain

1'1 - 1'. 1'g I (1'1 - 1'g )t =-- +- n --- + t l ,
C C l' - 1'g

(2.3.4)

(2.3.5)

where 1'1 is the position occupied by the photon at the moment ti' Expression (2.3.4)
shows that t --+ 00 as l' --+ 1'g . Whatever the coordinate 1'1 from which the photon
starts its fall, by the clock of the distant observer, the time t taken by the photon to
reach r g is infinite.

How does the photon energy change in the course of the radial motion? Energy
is proportional to frequency. Let us look at the evolution of frequency. Suppose that
light flashes are emitted from a point l' = 1'1 at an interval !:i.t. The field being static,
the flashes will reach the observer at l' = 1'2 after the same interval !1t. The ratio of
the proper time intervals at these two points is

!:i.TI J-gooh)!:i.t

!1T2 = J -gooh)!1t ;

hence, the ratio of frequencies is

1 - rg/r2
1-rg/1'I'

(2.3.6)

,
The frequency of a quantum decreases as it leaves the gravitational field and increases
as it moves to smaller values of r. These effects are called the gravitational 1'edshift
and blueshift, respectively.
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2.4 Spacetime Within the Schwarzschild Sphere

2.4.1 Lemaitre reference frame
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(2.4.1)

The fact that the proper time of fall to the Schwarzschild sphere is finite, suggests
a method of constructing a reference frame which can be extended to l' < 1'g.5 The
ref('rence frame must be fixed to the freely falling particles. No infinite accelerat.ions a
and no corresponding infinite forces will arise at the gravitational radius of this system
because the particles of the system fall freely, and a is identically zero everywhere.
The simplest such frame of reference, so-called Lemaftre reference frame, consists of
freely falling particles that have zero velocity at spatial infinity [Lemaitre (1933), see
also Rylov (1961)J. The motion of these particles is described by equation (2.3.12).

In order to introduce this reference frame, we choose for the time coordinate the
time T measured by a clock fixed to the falling particles. At a certain instant of time
T (say at T = 0), the different freely falling particles of the ensemble are located at
different 1'1' We can choose these values of 1'1, which mark the particles and remain
unchanged for each of them, as the new radial coordinate in this reference frame.

The metric in the frame of freely falling particles is written in the form

l' dr2

ds 2 = - c2 dT2+~B1 + B 2r~ (dB2+sin2 Bd¢2) ,
r g

[
3/2 J~ .where B = (rl/rg) - (3cT)/(21'g) . It is more convenient to use instead of 1'1

a new radial coordinate R

R= ~ l' (.1'1) 3/2
3 g l'g

The metric (2.4.1) is now transformed to the form

(2.4.2)

(2.4.3)

5Histotically the first system of coordinates without singularities on the gravitational radius r g
was constructed by Painleve (1921) and Gullstrand (1922). It is obtained by transformation

cT =ct + j(1'). dj 1 fig--±-- -
d1' - 1- 1'g r'

The Schwarzschild metric in coordinates (T, 1', (I, ¢) is

This metric is evidently regular at the gravitational radius. [For more details see historical articles
by Eisenstaedt (1982) and Israel (1987).]
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B= [3(R_CT)]2/3
2rg

The reference frame with interval (2.4.3) (the Lemaitre reference fmme) indeed
has no singularity on the Schwarzschild sphere. In order to show this, we write the
explicit relation between the Schwarzschild and Lemaitre coordinates

[
3 ] 2/31'= B7'g = r g

l
/

3 2"(R-cT) ,

_7'g{ 2(1')3/2 (1')1/2 l(r/7'g)I/2+ 11 R}t - - - - - - 2 - + In + -
c 3 rg 1"g (r/rg)1/2 -1 rg '

(2.4.4)

(2.4.5)

Setting l' = 7'g in (2.4.4), we obtain an equation for the position of the Schwarzschild
sphere in the Lemaltre reference frame:

B = 1 and
3

l'g = 2" (R - c T) . (2.4.6)

Components of the metric go{3 in (2.4.3) on the Schwarzschild sphere are regular, with
out any singularity. The calculation of invariants of the curvature of four-dimensional
spacetime also reveals no singularities on the Schwarzschild sphere. The Lemaitre ref
erence frame extends to l' < rg . The spacetime in the Lemaltre (T, R)-coordinates
is shown in Figure 2.2 (by virtue of symmetry, the angular coordinates e and ¢ are
irrelevant) .

This reference frame can be extended up to l' = 0, or up to R = c T in the
Lemaltre coordinates [see (2.4.4)]. Here we find the true singularity of spacetime;
namely, infinite curvature. For example, the curvature invariant R0 {3-y5 Ro{3-y5, which
for the Schwarzschild metric is 12ri/r6, is finite at the gravitational radius, but
grows infinitely as (R - c T) --t 0. The infinity in this invariant signifies an infinity
of gravitational tidal forces,

AB shown in Figure 2.2, each freely falling particle with R = const in the Lemaitre
reference frame moves with time T to smaller r. The particle reaches rg at a time
T = c-I(R- 3rg ), keeps falling, and reaches the true singularity r = 0 at T = c- I R.6

Spacetime cannot be extended beyond the singularity at which gravitational tidal
forces grow infinitely and particles would be destroyed. In the neighborhood of 7' =
0, quantum effects of the gravitational field become important; this aspect will be
discussed in Chapter 14.

6The fact that the lines r = const are plotted in (R, T)-coordinates by straight lines is a corollary
of the special choice of R [see (2.4.2)]. This is one of the reasons why we choose the coordinate R
instead of rl'
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2.3.2 Radial motion of particles
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(2.3.7)

Let us now look at the radial motion of non-relativistic particles in vacuum. We
begin with free motion in which no non-gravitational forces act on a particle (free
fall, motion along a geodesic). The integration of the equation for a geodesic in the
case dO = d¢ = 0 [see Bogorodsky (1962)] yields the expression

dr (1 - r /r)[(E/mc2j2 - 1 + r /rjl /2--± g g c
~ - E~n2 '

where E is the constant of motion4 describing the total energy of a particle, including
its mass m. If the particle is at rest at infinity where the gravitational field vanishes,
then E = mc2. In the general case, the value E /mc2 may be greater or smaller than
unity, but E is invariably positive for a particle moving outside the sphere of radius
l'g.

At a large distance r » r g , we find that for non-relativistic particles 11- E /mc21«
1, and expression (2.3.7) takes the form

1 (dr)2 2 GmM-m - =(E-mc)+--.
2 dt r

(2.3.8)

The quantity £ = E - mc2 is the energy of a particle in Newtonian theory (where
the rest, or proper, mass is not included in the energy), and thus expression (2.3.8)
reduces to the energy conservation law in Newtonian theory.

Recall again that dr/dt in (2.3.7) is the coordinate (not the physical) velocity,
The physical velocity v measured by an observer who is at rest in the Schwarzschild
reference frame situated in the neighborhood of the freely moving body is

v = dx = J911 dr = ± [(E/mc
2

)2 - 1 + rg /rjl /2 c.
dT 19001 dt E/mc2 (2.3.9)

4The energy of a particle or a field propagating in a stationary (i.e., time independent) gravit.a
tional field is conserved. This conservation law is a consequence of Noether's theorem. If u" is the
four-velocity of a particle of mass m freely moving in a stationary gravitational field (8g,," 18xo = 0),
then the conserved energy is E = -mc2 u" ~f,) = -mc2uo. Here ~f,) is the Killing vector generat
ing time-symmetry transformations. In a static gravitational field (I.e., when gOi =0), the energy
E = mc2(-goo)uO is always positive in the region where goo < O. The energy in a static spacetime
can be rewritten in the form

where v is the physical three-velocity, defined as the rate of change of the physical distance in the
physical time: v2 = gij dx i dx j I( -goo) dt2. For radial motion in the Schwarzschild metric

where A = 1 - rg/r, and r = dr I(cdt). This relation implies (2.3.7)
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If the falling body approaches I'g, the physical velocity v = dx/dT constantly increases:
v -t C as l' -t I'g. By the clock of the distant observer, the velocity dx/dt tends to
zero as l' -t I'g, as in the case of the photon. This fact reflects the slowing down of
time as l' -t I'g.

What is the time required for a body falling from a point l' = 1'1 to reach the
gravitational radius I'g (by the clock of the distant observer)? The time of motion
from 1'1 to I'g is given by the integral of (2.3.7). This integral diverges a', l' -t I'g.

This result is not surprising because /'::"t -t 00 as l' -t I'g even for light, and nothing
is allowed t.o move faster than light. Furthermore, the divergence of /'::"t for a falling
body is of the same type as for light because the physical velocity of the body, v,
always tends to c as l' -t l'g' Obviously, whatever the force acting on a particle, the
time /'::"t to reach l'g is always infinite because in this case again v < c. We conclude
that both free fall and motion towards l'g with any acceleration always t.ake an infinite
time measured by the clock of the distant observer.

Let us return to a freely moving particle. What is the time /'::,,1' to reach I'g

measured by the clock of the falling particle itself? It is found from the formula

l1r1

/'::,,1'= - Idsl,
c rg

(2.3.10)

where ds is taken along the world line of the particle. Here, using t.he expression for
ds from (2.2.1), for dO = d¢ = 0, we find

l1r1

/'::,,1'= -
c rg I 900 I

(dl'/cdt)2 + 911 dl'. (2.3.11)

In order to calculate /'::,,1', we substitute into (2.3.11) the expression for dl'/dt from
(2.3.7). It is easy to show that the integral converges and the interval/'::,,1' is finite. In
the particular ca..<;e E = mc2

, when the particle falls at the parabolic (escape) velocity
(i.e., dl'/dt = 0 at I' -t 00), we find for the time of fall from 1'1 to l'

2 ' [( )3/2 ( )3/2]tiT = _ !..! 1'1 _!:.- .
3 c I'g I'g

(2.3.12)

We thus conclude that while the duration /'::"t of falling is infinite for the distant
observer, the time /'::,,1' measured by the clock of the particle itself is finite. This result,
which at first glance seems quite unexpected, can be given the following physical
interpretation. The clock on the particle falling toward I'g is slowed down relative to
the clock at infinity, first, because time is slowed down in the gravitational field [see
(2.2.5)J, and second,because of the Lorentz contraction of time when the velocity of
the clock v -t c as l' -t I'g. As a result, the interval in t is infinite, but it becomes
finite when clocked in T.
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forward physical interpretation of this system if r < rg ? Indeed, there is [Novikov
(1961)J. As was demonstrated above, the l' coordinate cannot be the radial spatial
coordinate in the region r < rg • However, it can play the role of the temporal co
ordinate, as follows from (2.2.1) where the coefficient with dr 2 reverses its sign on
crossing the Schwarzschild sphere and is negative where r < r g • On the other hand,
now the coordinate t can be used as the spatial coordinate, thG coefficient of dt2 being
positive for r < rg . The coordinates rand t thus change their roles when r becomes
less than 1"g. We change the variables, r = -cT, t = R/c, and rewrite (2.2.1) in the
form

ds 2 = _[~ _ I] -1 c2 dT2 +[~ _ 1] dR2+
(-cT) (-cT)

+ c2 T2(d02 + sin2 0 drll) ,

0< -cT < r g , -oo<R<oo.

(2.4.8)

(2.4.9)

(2.4.10)

(2.4.11)

The frame of reference (2.4.8)-(2.4.9) can be realized by free test particles moving
along geodesics inside the sphere r = rg . A three-dimensional section T = const has
an infinite spatial extension along the coordinate R, while along the coordinates e
and rjJ it is closed, constituting on the whole a topological product of the sphere 8 2

by a straight line R I
. The tbi" dimensional volume of this section is infinite. The

system is nonstationary; it contracts along eand rjJ (the radius of the sphere decreases
from rg to 0) and expands along ii.. Its proper lifetime is finite:

/

0 _ 1r

T= ../-goodT=-rg •
-rg/c 2

The world lines of the particles with R = const that form the frame are plotted in
Lemaitre coordinates (2.4.3) in Figure 2.3. This figure shows that the particles move
within the Schwarzschild sphere, and the system is by no means an extension of the
Schwarzschild system to r < rg (its world lines r = const are shown in the same
figure). Time and the spatial radial direction undergo a peculiar change of roles in
these systems.

2.4.3 Eddington-Finkelstein coordinates

Now we describe another reference frame without singularities on rg constructed by
Eddington (1924) and Finkelstein (1958). This reference frame is fixed to radially
moving photons. The equation of motion of photons is given by (2.3.4). In the region
r > rg the photons moving towards the center are characterized by r decreasing with
t. Expression (2.3.4) for such photons can be rewritten in the form

Ir '" v

et =v - r., r. = r + r g In - - 1 + -.
r g c
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Figure 2.3: R= const world lines of particles, forming the frame of reference (2.4.9) in
Lemaitre coordinates.

Here r. is a so-called tortoise coordinate, and v is a constant characterizing the radial
coordinate of the photon at a fixed instant t.

The logarithm in r, involves the modulus of the difference r Irg - 1 so that I', is
defined both for r > rg and I' < rg' If we take a set of photons at a fixed t and
assign to each photon a number v which remains unchanged during the motion of the
photon, this v can be chosen as another new coordinate. This is similar to our choice
of 1'[ for a new radial coordinate in the case of a non-relativistic particle [see (2.3.12)].
However, an essential difference must not be overlooked. Namely, 110 observer can
move together with a phOtOll, so that in this sense the new frame does not fall, strictly
speaking, under the definition of a reference frame. Nevertheless, such a "system" of
test photons proves to be convenient. One needs to remember, though, that v (usually
called an advanced time) is a lightlike coordinate (neither spatial nor temporal). For
a second coordinate, we can choose the familiar coordinate r. Differentiating (2.4.11)
and substituting the obtained expression for dt into (2.2.1), we find

(2.4.12)

Expression (2.4.12) is regular on r = rg . Indeed, the coefficient with dv 2 vanishes
on rg , but the presence of the term 2dvdr ensures that the metric (and hence the
coordinate system) remains non-degenerate. The spacetime in the coordinates (v,r)
is shown in Figure 2.4. Coordinate lines of constant v, representing ingoing radial
null rays, are plotted on a 45-degree slant, just as they would be in flat spacetime.

Later we shall use another type of the Eddington-Finkelstein coordinates (u, I', e, rjJ),
where u = c t - r, is the retarded time. In this coordinates the Schwarzschild metric
takes the form

(2.4.13)
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Figure 2.2: Schwarzschild spacetime in Lemaitre coordinates. Dashed lines are lines of
r = const; ABC is the world line of a photon falling toward a black hole. Segments of the
world lines of photons moving in the opposite direction are shown at points A, B, C.
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Figure 2.2 also shows the world lines of radial light rays. They are found from
(2.4.3) by imposing the conditions ds = 0, dO = d¢> = 0:

dT [ ]1/3__ ± r g

c dR - i(R-cT)
(2.4.7)

The position oflight cones in Figure 2.2 immediately demonstrates why the Schwarzsch
sphere plays a special role in the spherical vacuum gravitational field, in general, and
in the Schwarzschild reference frame, in particular. Indeed, consider radial lines
e= const, ¢> = const. If r > rg , then the r = const world lines lie within the light,
cone, and they are timelike. The r = rg line coincides with the outgoing photon's
world line, and it is lightlike. Finally, if r < rg' the r = const world lines are spacelike.
This is why the Schwarzschild reference frame formed by particles with r = const
cannot be extended to r < rg'

This situation is found to be typical for general relativity and const.itutes the
difference between it and ordinary field theory in flat space. Special coordinates must
be chosen for solving Einstein's equations. Correspondingly, additional conditions
are to be introduced in order to fix the form of metrics. In general, it is impossible
to guarantee that the chosen coordinates cover the entire spacetime because the
spacetime of general relativity may have a non-trivial global (topological and causal)
structure. That was the situation encountered above in the attempts to describe
the entire spherically symmetric spacetime in curvature coordinates (2.1.5). The
general method of establishing whether the obtained solution indeed describes the
entire spacetime or only part of it is to analyze the motion of test particles and light
rays. If some of the particles reach the "boundary" of the chosen coordinate system
in a finite proper time (or for a finite value of the affine parameter for photons), and
there are no physical singularities at the "final" points of particle trajectories, then
this coordinate system is incomplete. By changing the coordinates and switching to
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metric (2.4.1), we were able to cover a greater part of the spacetime and, among
other things, describe attainable events below the gravitational radius. A discussion
of whether the Lemaitre coordinate system is indeed complete and whether metric
(2.4.1) describes the entire spacetime will be deferred to Section 2.7.

2.4.2 R- and T-regions

After these general remarks we return to consider the properties of the Schwarz
schild sphere and the region of spacetime within it. The most striking feature of the
Schwarzschild sphere is the following. An outgoing light ray (a ray moving to the
right in Figure 2.2) from a point with r > rg travels to greater r ancl escapes to
spatial infinity. For points with r < rg , both rays (moving to the right and to the
left in Figure 2.2), travel toward smaller r; they do not escape to spatial infinity but
are "stopped" at the singularity r = O. The world line of any particle necessarily lies
within the light cone. For this reason, if r < rg , all particles have to move t.oward
r = 0: this is the direction into the future. Motion toward greater r is impossible in
the region r < rg [see Finkelstein (1958)]. It should be emphasized t.hat this is true
not only for freely falling particles (I.e., particles moving along geodesics) but also
for particles moving with arbitrary accelerations. Neither radiation nor particles can
escape from within the Schwarzschild sphere to the distant observer.

In (2.2.1), we defined r as the radial coordinate in the curvature coordinate system
so that 922 = r2

• Formally, r within the Schwarzschild sphere is defined in the same
manner, and 41rr2 still is the area of two-dimensional sphere (r, t) = const. But world
lines of "observers" at constant r are no longer timelike. If r < rg, the quantity g22 is
always a function of time, and a monotone function in any reference frame determined
by relation (2.1.4). At r < rg all reference frames are nonstatic, and both radial rays
travel only to smaller r (and hence to smaller g22). Spacetime regions possessing
this property are referred to as T-regions [Novikov (I962a,b, I964a)]. The spacetime
region outside the Schwarzschild sphere is said to form the R-region.

R- and T-regions can be defined in an arbitrary (not necessarily empty) spherically
symmetric spacetime. By the definition of a spherically symmetric gravitational field,
its metric can locally be written in the form (2.1..5). If the xl = const, 0 = const,
r/> = const world line in the neighborhood of a given point is timelike, this point
belongs to the R-region. If this line is spacelike, the point in question belongs to the
T-region.

Let us return to the case of a spherically symmetric gravitational field in vacuum.
Apart from the already described Lemaitre reference frame, other reference frames
are employed for analyzing regions both inside and outside the Schwarzschild sphere.
Here and in the sections that follow, we describe some of these frames.

First of all, we again turn to coordinate system (2.2.1). As we have shown in
Section 2.2, this system has a singularity on the Schwarzschild sphere. But if l' is
strictly less than rg, the metric coefficients are again regular. Is there a straight-
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r2 = f(R) + F(R) ,
'I'

('1")2
911(T, R) = 1 + f(R) ,

81rGp F'(R)
C2 1",/,2'
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(2.6.2)

(2.6.3)

(2.6.4)

Here a dot denotes differentiation with respect to cT, and a prime, differentiation
with respect to R; f( R) and F( R) are two arbitrary functions of R (subject to the
condition 1 + f(R) > 0). These functions are specified by fixing initial conditions.
Three functions r(To, R), r(To, R), and p(To, R) must be given at an initial moment
of time To. Only two of these three functions are really important because the choice
of the coordinate R at the moment To is arbitrary and the coordinate transformation
R -t R = R(R) does not change physical observables. These two functions describe
the initial distribution and radial velocity of the matter.

It is convenient to choose the coordinate R so that R = 0 at the center of the
cloud, and R = R[ at its boundary. Equations (2.6.2) and (2.6.4) being considered
at T = To determine functions f(R) and F(R). In particular, one has

The bonndary condition F(O) = 0 follows from the condition r(O, T) = 0 which must
be satisfied at the center 'I' = 0 of the cloud. For our problem r(R) is a monotonic
positive function. That is why F(R) 2': O.

By solving equation (2.6.2), one obtains r(T, R). Equations (2.6.3) and (2.6.4)
determine 911 (T, R) and p(T, R), respeCtively. Thus, one gets a complete solution of
the problem.

Differentiating (2.6.2) with respect to the time T, one has

.. F
'1'=-

2'1'2 '

and since F 2': 0, r is non-positive. For this reason, each particle with fixed Rand
r < 0 reaches the point 'I' = 0, where the spacetime has a true singularity, in a finite
timeT.

If the coordinate R[ determines the boundary of the sphere, then beyond the
sphere (at R> Rd we find p = 0 and F = const. Outside the matter, the metric of
spacetime is determined in a unique manner by the value of F at the boundary R I . In
vacuum this metric is the Schwarzschild metric (see Section 2.2). The other function
f(R) which enters the Tolman solution can be chosen arbitrarily. In the absence of
matter the change of f(R) simply corresponds to the change of the reference frame
without changing the gravitational field.
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Figure 2.7: Spacetime of a contract
ing spherical cloud creating a black
hole: Lemaitre coordinates. The re
gion inside the sphere is hatched.

Figure 2.8: Spacetime of a con
tracting spherical cloud creating a
black hole: Eddington-Finkelstein co
ordinates.

The particles on the boundary surface R = R I are freely falling in the outer
metric so that their motion can also be described as motion along radial geodesics
in the Schwarzschild metric [see (2.3.7)]. As a special case we can consider the
contraction of a spherical cloud on whose boundary surface the particles fall at the
parabolic (escape) velocity. The motion of such particles is described by especially
simple formulas [see (2.3.12)]. In the Lemaitre reference frame the equation of such
a boundary is R = R I . In the Eddington-Finkelstein reference frame the equation
of the same boundary is given parametrically by expressions (2.4.11), (2.4.4), (2.4.5)
provided we set R = R I in the last two formulas.

Figures 2.7 and 2.8 represent the spacetime in the case of the contracting spheri
cal dust cloud in Lemaitre and Eddington-Finkelstein coordinates, respectively. Fig
ure 2.8, which also shows one of the angular coordinates, is especially illustrative. The
surface of the contracting spherical cloud reaches the Schwarzschild sphere r = l'g in
a finite proper time and then contracts to a point at r = O. This process is known
as relativistic gravitational collapse. As a result of the collapse, a spacetime region is
formed within the Schwarzschild sphere from which no signals can escape to spatial
infinity. This region is defined as a black hole. The relativistic gravitational collapse
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Figure 2.4: Schwarzschild spacetime in Eddington-Finkelstein coordinates (2.4.12) . The
equation v = const describes the world lines of photons falling toward r = O. Lines 1, 2, 3
are the world lines of outgoing photons moving in the direction opposite to that of v = const.

2.5 Contracting and Expanding T-Regions
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The properties, discussed above, of reference frames within the Schwarzschild sphere
in the T-region are quite peculiar. Indeed, we notice that all these coordinate systems
must contract along the e and 1> directions, and the coefficient 922 must decrease in
time (this is equivalent to r decreasing with time). This fact can be rephrased as
the inevitable motion of all light rays and all particles in the T-region toward the
singularity. We know that Einstein's equations are invariant under time reversal. All
the formulas given above remain a solution of Einstein's equations if the following
change of variables is made: t -+ -t, T -+ -T, T -+ -T, v -+ -u, where u
enumerates the outgoing rays (u = 2t - v). However, this change is equivalent to
time reversal. Hence, reference frames are possible which are similar to the Lemai'tre
and Eddington reference frames but which expand from below the Schwarzschild
sphere and are formed by particles dashing out the singularity in the T-region, later
intersecting the Schwarzschild sphere and escaping to infinity (Figures 2.5 and 2.6).

Is this conclusion of the escape of particles from below the Schwarzschild sphere
compatible with the statement, emphasized on several occasions above, that no par
ticle can escape from this sphere? The situation is as follows. No particle can escape
from aT-region (or from within the Schwarzschild sphere) if this (or some other)
particle entered this region from the external space (r > rg) before. In other words,
if the Schwarzschild sphere ca.n be entered, it cannot be escaped. The T-region which
appears in the solution with reversed time is a quite different T-region, with very dif
ferent properties. While only contraction was possible in the former T-region, only
expansion is possible in the latter one so that nothing can fall into it (this is very
clear in Figures 2.5 and 2.6).

Note that the external space (beyond the r = rg sphere) is essentially the same
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Figure 2.5: Schwarzschild spacetime
in expanding Lemaitre coordinates.
The time arrow is reversed in compar
ison with Figure 2.3.

r

Figure 2.6: Schwarzschild spacetime
in expanding Eddington-Finkelstein
coordinates. The time arrow is re
versed in comparison with Figure 2.4.

in the two cases. Its metric is reduced to (2.2.1) by a transformation of coordinates,
but it can be extended within the Schwarzschild sphere in two ways: either as a con
tracting T-region, or as an expanding T-region (but these modes are incompatible !).
It depends on boundary or initial conditions which type of T-region is realized in a
specific situation. This aspect is treated in detail in the next section. The contracting
T-region is usually denoted by T_, and the expanding one by T+.

2.6 Formation of a Black Hole in a Gravitational
Collapse

2.6.1 Gravitational collapse

In this sect,ion we analyze the process of formation of a black hole as a result of the
contraction of a spherical mass to a size less than 1·g . In order to eliminate effects
which are not directly relevant to the formation of a black hole and can only make
the solution more difficult to obtain, we consider the contraction of a spherical cloud
of matter at zero pressure p = 0 (dust cloud). There is no ueed then to include in
the analysis the hydrodynamic phenomena due to the pressure gradient. All dust
particles move along geodesics, being subjected only to the gravitational field. The
solution of Einstein's equations for this case was obt.ained by 'I'olman (1934) (see
Appendix E.6). In the solution below, the reference frame is comoviug with the
matter; that is, dust particles have constant R, e, 1>:

(2.6.1)
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Figure 2.11: World Jiue of a particle escaping fwm the Schwarzschild sphere, in eontractillg
Lemaitre coordinates.

sphere. Its world lilie in the contracting Lemai'tre coordinate system is given by the
expression

2cT-R [3(R-CT)]1/3 {[!!(R-CT)r/3+r~/3}
----. - 4 + 2ln 2 ::= const

I' '),' [3 (R . T)] 1/3 1/3g ~ g - -c -1'. 2 g

(2.7.1)

and is plotted in Figure 2.11. Continued into the past, this line asymptotically
approaches the line r ::= r g' without intersecting it. In the time T of the Lemaitre
frame the particle exists beginning from T = -00. Butwe know that the path from
l'g to any finite r takes a finite interval of proper time. Therefore, Figure 2.11 does
not cover the entire past of the particle in question from T ::= -00 in its proper clock.
The history of a free particle does not terminate on the Schwarzschild sphere. The
world line of such a particle must either continue indefinitely in its proper time or
must terminate at the true singularity of spacetime, where new physical laws take
over. Consequently, the map is incomplete and does not cover the entire space.

2.7.2 Complete empty spherically symmetric spacetime

Is it possible to construct an everywhere empty spacetime with an eternal black hole
which is complete in the sense that it covers the histories of all particles moving
in this space? The answer was found to be affirmative although it includes not
only an eternal black hole but also an eternal white hole. In order to approach
this construction in a natural way, consider a white hole with an expanding dust ball.
Assume that the energy of motion of particles in the dust ball is such that the surface
of the cloud does not escape to infinity but reaches a maximal radius and then again
contracts to the size rg and subsequently collapses to r = O.

According to formula (2.3.7), the specific energy E /mc2 of a particle on the surface
of the dust cloud must be less than unity to ensure that dr / dt = 0 for a certain 1'. In
Tolman's solution, (2.6.1)-(2.6.4), this expansion to a finite radius corresponds to the
choice f(R) < O. A qualitative representation of the spacetime with an expanding
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Figure 2.12: Expansion of a
spherical cloud from within the
Schwarzschild sphere, followed by
contraction back into the sphere. The
region inside the spherical cloud is
hatched.

Figure 2.13: The embedding dia
gram for the geometry 011 the equato
rial plane of the slice taken at the mo
ment 1/ = 7r of maximal expansion of
the dust ball in the spacetime shown
in Figure 2.12.

and then contracting dust ball is shown in Figure 2.12. This spacetime first contains
a white hole and then develops a black hole. Note that the lines r = 0 and r = rg

are represented in this solution on this figure by lines which are not straight as we
had in the case of motion at a parabolic velocity (see Figures 2.7 and 2.9).

Let us begin to reduce the specific energy E /mc2 of the particles on the surface
of the dust ball, assuming the total mass M of the ball, and hence the value of rg

to be fixed. In other words, by reducing E/mc2
, we reduce the share of the kinetic

energy of outwards motion in the total energy M c2 of the dust ball. As a result, the
cloud will expand to gradually smaller radii. Finally, the cloud expands to r = rg

when E/mc2 = O. A qualitative map of the spacetime is then seen in Figure 2.14.
What if the constant E is reduced further and made negative? At first glance, this

is physically meaningless; formally, it leads to enhanced maximum expansion radius
r which is found by equating dr / dt in (2.3.7) to zero. Actually, there is nothing
meaningless in this operation. In order to clarify the situation, let us look again
at formulas (2.6.1)-(2.6.4) (see also Appendix 8.6). Assume that the dust cloud
whose evolution we analyze is homogeneous. Then the spacetime metric within the
cloud corresponds to the metric of a homogeneous isotropic Universe. In the solution
(2.6.1)-(2.6.4), this metric corresponds to choosing the functions

f(R) = -sin2 R,

F(R) = asin3 R,

(2.7.2)

(2.7.3)
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Figure 2.9: Expansion of a spherical
cloud from within the Schwarzschild
sphere in expanding Lemaitre coordi
nates.

Figure 2.10: Expansion of a
spherical cloud from within the
Schwarzschild sphere in Eddington
Finkelstein coordinates.

of a spherical non-rotating body thus generates a spherical black hole.

Note now that the assumption made above on the absence of pressure produces
no qualitative changes in the picture of the birth of a spherical black hole. We find
the same behavior in the general case of the contraction of a sphere at a nonzero
pressure (p i= 0). When the surface of the contracting spherical cloud approaches the
Schwarzschild sphere, no pressure can prevent the formation of the black hole [for
details, see Zel'dovich and Novikov (1971b)]. These aspects connected with the role
of pressure do not directly concern us here so the specifics are omitted.

The gravitational collapse produces a contracting T_-region within the Schwarz
schild sphere. We know that r on the boundary surface (or the coefficient 922 of the
angular spatial term of the metric) decreases with time. But the regularity of the
spacetime requires that r is a continuous function in the vicinity of the boundary.
Therefore, r will decrease, owing to the continuity, also outside the spherical cloud
(for r < rg). The region within the r = rg sphere is the contracting T_-region.
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2.6.2 White holes

What are the conditions necessary for the formation of an expanding T+-region?
Reversing the time arrow in Figures 2.7 and 2.8, we obtain Figures 2.9 and 2.10.
They represent the expansion of a spherical cloud from within the Schwarzschild
sphere. Now the continuity of 922 at the boundary of the sphere implies that the
vacuum spacetime beyond the spherical cloud but within the Schwarzschild sphere
r = rg contains the expanding T+-region. Figure 2.9 clearly illustrates the general
situation. Recall that the r = 0 line is spacelike so that a reference frame exists in
which all events on this line are simultaneous. Therefore, one cannot say (as one
would be tempted to conclude at first glance) (see Figures 2.9 and 2.10) that first the
singularity I' = 0 existed in vacuum, and then the matter of the spherical cloud began
to expand from the singularity. These events are not connected by a timelike interval.
It is more correct to say that the nature of the spacelike singularity at r = 0 is such
that it produces the expansion in vacuum (expanding T+-region) to the right of R)
and the expanding matter of spherical cloud to the left of R) (see Figure 2.9). Note
that no particle coming from the spatial infinity (or from any region of I' > r g ) can
penetrate the expanding T+-region. Such regions of spacetime are called white holes
[Novikov (1964b), Ne'eman (1965)]. These objects cannot appear in the Universe as
a result of collapse of some body, but could be formed, in principle, in the expanding
Universe at the moment the expansion set in. This range of problem is discussed in
detail in Section 15.2.

To conclude the section, we again emphasize that it is mathematically impossible
to extend the solution beyond the true spacetime singularity at r = O. Therefore,
geueral relativity cannot answer the question what will happen after the contraction
to r = 0 in a T_-region, or what was there before the start of the expansion from
r = 0 in a T+-region (or even say whether these questions are correctly formulated).
It is physically clear that in the neighborhood of r = 0 quantum processes become
essential for the spacetime itself (this effect is not described by general relativity); we
return t.o this phenomenon in Chapter 14.

2.7 Eternal Black and White Holes

2.7.1 Incompleteness of the Lemaitre frame

At first glance, it seems that an eternal black hole might exist perpetually in empty
space in the form shown in Figures 2.2 and 2.4. Such a spacetime wonld contain a
Schwarzschild sphere but would have no contracting material cloud. Surprisingly, the
existence of such a "pure" eternal black hole is forbidden in principle. The reason
is as follows. The picture (or rather, map) of the spacetime shown in Figure 2.2
(or Figure 2.4) does not cover the entire spacetime. In order to demonstrate this,
consider a particle which moves freely along the radius away from the Schwarzschild
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Figure 2.16; Expansion and con
traction ofa semi-closed world.

Figure 2.17: The corresponding em
bedding diagram for the moment of
maximal expansion of the dust ball.
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As R 1 -+ 11", the boundary R 1 gradually shifts to the left in Figure 2.16, leaving a
progressively greater fraction of R" free. The ratio rmax/rg tends to infinity, and the
ratio M / M., to zero. In the limit R1 = 11", the region occupied by matter vanishes,
leaving the entire spacetime empty (Figure 2.18). It contains a white hole T+, a black
hole 7'-, and two identical outer spaces R' and R" which are asymptotically flat at
their spatial infinities. This spacetime is complete in the sense that any geodesic now
either continues infinitely or terminates at the true singularity.

The reference frame covering the entire spacetime in Figure 2.18 is described by
a solution of type (2.7.6), where now it is convenient to place the origin of R at the
minimum of the function f(R). Then

1
f(R) = - R2 + 1 ' F =rg , -oo<R<oo. (2.7.12)

The complete, everywhere empty spacetime shown in Figure 2.18 was first con
structed by Synge (1950) and then by Fronsdal (1959), Kruskal (1960), and Szekeres
(1960). The physical arguments given above and the solution (2.7.12) were obtained
by Novikov (1962b, 1963).

We have thus obtained an everywhere empty space with a white and a black
holes (essentially together). These holes can be described as "eternal" because for
distant observers which are at rest in R' and R" these holes are eternal. The physical
meaning of the second "outer space" R" has become clear above, where we described
the evolution of a spherical cloud with progressively lower specific energy M / M •.
In Section 15.2 we discuss whether eternal black and white holes (similar to those
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Figure 2.18: Everywhere empty
spacetime with a white hole and a
black hole.

Figure 2.19: The corresponding em
bedding diagram for tile moment of
maximal expansion of the reference
frame. This geometry is known as the
Einstein- Rosen bridge.

in Figure 2.18) completely devoid of matter can really exist; this is related to the
problem of stability of white holes.

2.7.3 Kruskal coordinates

To conclude this section, we give the coordinate system suggested by Kruskal (1960)
and Szekeres (1960) (see Appendix B.5). Like the system (2.7.12), this one covers the
entire spacetime of eternal white and black holes. In these coordinates, the metric is
written in the form

ds 2 = 4ri e-(r/rg-l) (-dT2 + dR2 ) + r2 ( d(P + sin2 () d¢?) ,
r

where r is a function of T and k

(2.7.13)

(2.7.14)

In these coordinates the R' (R") region is defined by the coudition R > IT I (-R >
ITI), while the L (T+)-region is defined by the condition T > IRI (-T > IRI).
The curvature singularity r = 0 is located at T2

- R2 = e-1
.
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Figure 2.14: The boundary of the
spherical cloud expands only up to the
Schwarzschild sphere and then con
tracts.

Figure 2.15: The corresponding em
bedding diagram for the moment of
maximal expansion of t.he dust hall.

where a is the scale factor determined by the density Po within the spherical cloud
at the moment of its maximum expansion:

a = J8:~PO . (2.7.4)

The matter of the cloud extends from R = 0 up to the boundary value of the coor
dinate R = R I . The value R I may be in the range 0 < R I ~ 1L

The time evolution of the cloud can be presented in the following parametric form

r=~sinR(l-cosT/), T=~(T/-SinT/)' (2.7.5)

At the moment T = 0 of proper time T in the comoving frame the cloud begins its
expansion from r = O. The cloud reaches its maximum size at T = arr /2, and at this
moment r = a sin R. After this the cloud collapses and all its particles simultaneously
reach r = 0 at T = arr.

In the vacuum outside the cloud (at R > Rd, the particles that constitute the
reference frame move freely along radial geodesics. The metric is determined by the
following functions [Novikov (1963, 1964a)] (see also Appendix E.6):

f(R) = - 1 ,F(R) = r g . (2.7.6)
. (R + cot R I - R I )2 + 1

In this situation,

2GM .3
r g == --2- = asm R I ·

c
(2.7.7)
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The quantity M (the gravitational mass) characterizes the total energy ofthe particles
in the cloud, the gravitational energy included. It can be measured at far distances
from a gravi tating system by registering the acceleration of test particles.

In the general case the gravitational mass M differs from the proper mass M.
defined as the sum of the masses of the particles making up the cloud. The latter
equals the product of density by the ball volume:

3ac
2

( 1. )
M.:::: 40 R I - 2"sm2R I .. (2.7.8)

If the boundary coordinate R1 lies in the range 1r/2 < R I < 1r, the inner region of the
sphere is the so-called semi-closed world [Klein (1961), see also Novikov (1962a, 1963,
1964a), Zel'dovich (1962c), Zel'dovich and Novikov (1975, 1983)J. In these conditions
an increase in RI (addition of new layers of matter) increases M. but diminishes M
(because of a large gravitational defect of mass).

Our objective is to analyze the sequence of spacetimes when we supply progres
sively smaller and smaller specific energy to the cloud particles. This means that we
will take progressively smaller ratios M/ M•. In order to find the result of this change,
we can take different values of the ratio M / M., while fixing either M or M•. This
choice is of methodological significance only. When we are interested in the metric
outside the dust cloud, we fix M which determines the outer metric.

The ratio M/M. is determined by (2.7.7) and (2.7.8):

(2.7.9)

The ratio of the maximum radius of expansion of the cloud boundary, r max , to the
gravitational radius rg is:

r max (. R )-2-- = sin I .
r g

(2.7.10)

When RI « 1r/2, the ratio M / M. is only slightly less than unity; a qualitative picture
of the evolution is shown in Figure 2.12 (rmax/rg ~ 1). If R1 =1r/2, then

M

M.

4
31r

and rmax/rg = 1; (2.7.11)

the corresponding situation is shown in Figure 2.14. If R I > 1r/2, the dust ball is
a semi-closed world, and the ratio M / M. decreases as R1 approaches 1r. Now the
metric looks as shown in Figure 2.16. In the latter case a qualitatively new feature
has emerged. The ratio rmax/rg is again greater than uuity. But. now the boundary
of the cloud does not emerge from under the sphere of radius rg int.o the space of the
distant observer R'. A new region R" has appeared outside the spherical cloud which
is perfectly identical to R' .
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Figure 2.21: Effective black hole potential.
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The qualitative features of the motion are revealed iIi the following way. Setting
d1'/dt equal to zero, we find the turning points; that is, the points of maximum
approach of the particle to the black hole and the maximum distance from it. The
right-hand side (2.8.1) vanishes when the equality

(2.8.3)

is satisfied. The function V(r) is called the effective potential. A typical form of the
effective potential V(r) for a fixed L is plotted in Figure 2.21.

The specific energy of the moving particle remains constant; in Figure 2.21 this
motion is shown by a horizontal line. Since the numerator of (2.8.1) must be positive,
the horizontal segment representing the motion of the particle lies above the curve
representing the effective potential. The intersection of the horizontal line with the
effective potential determines the turning PEints. Figure 2.21 shows horizontal lines
for typical motions. The horizontal line E1 < 1 corresponds to the motion in a
bounded region in space between rl and r2; this is an analogue of elliptic motion
in Newtonian theory (an example of such a trajectory is shown in Figure 2.22a). It
should be stressed that the corresponding trajectory is not a conic section, and, in
general, is not closed. If the orbit as a whole lies far from the black hole, it is an
ellipse which slowly rotates in the plane of motion.

The segment £2 > 1 corresponds to a particle arriving from infinity and again
moving away to infinity (an analogue of the hyperbolic motion). An example of this
trajectory is plotted in Figure 2.22b. Finally, the segment E3 does not intersect the

that V2/C2 = A-2,:2 +A-Ir2~2, where A = 1 - rg/r, and r = dr/edt. Note also that the physical
velocity v of the particle, measured by a local observer by his clock, T, is directly related to the
specific energy E: E2 = (1- rg/r)(l - v2/Cl)-1 .
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d

Figure 2.22: Trajectories of particles with energies (a) El , (b) E2 , (c) E3 , and (e1) E4

potential curve but passes above its maximum Emax • It corresponds to a particle
falling into the black hole (gravitational capture). This type of motion is impossible
in Newtonian theory and is characteristic for the black hole. The trajectory of this
motion is shown in Figure 2.22c. Gravitational capture becomes possible because
the effective potential has a maximum. No such maximum appears in the effective
potential of Newtonian theory.

In addition, another type of motion is possible in the neighborhood of a black
hole; namely, a motion corresponding to the horizontal segment E4 in Figure 2.21.
This line may lie below or above unity (in the latter case, for Emax > 1), stretching
from Tg to the intersection with the curve V(r). This segment represents the motion
of a particle which first recedes from the black hole and reaches rmax [at the point
of intersection of E4 and V(r)], and then again falls toward the black hole and is
absorbed by it (Figure 2.22d).
_ A body can escape to infinity if its specific energy E ? 1. From the equation
E 2 = (1 - rg /r)(I- V 2/C2 )-1 = 1 we find that the escape velocity V.sc is

vesc = c Jrg/r = J2GM/r, (2.8.4)

which coincides with the expression given by Newtonian theory.
Note that in Newtonian theory, in the gravitational field of a point-like mass, the

escape velocity guarantees escape to infinity regardless of the direction of motion.
The case of the black hole is different. Even if a particle_has th~ escape velocity,
it can be trapped by the black hole (trajectories of type E4 or E3 in Figure 2.21,
the latter occurring if the particle moves towards the black hole). We have already
mentioned this effect called gravitational capture.

2.8.2 Circular motion

Circular motion around a black hole is an important particular case of motion of a
particle, in which dr/dt = O. This motion is represented in Figure 2.21 by a point at
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Figure 2.20: Spherically symmetric vacuum spacetime in Kruskal coordinates_

The following formulas give the relation between the (t, H)-coordinates and (1', t)
coordinates in the regions R' and T_:

In R' (for l' > 1'g ) :

In T_ (for l' < 1'g ) :

{
H= (1'/1'g _1)1/2 e(r-rg)/2rg cosh (ct/21'g ) ,

(2.7.15)
t = (1'/1'g - 1)1/2 e (r-rg)/2rg sinh (et/2rg),

{
H= (1 - 1'/1' )1/2 e(r-rg)/2rg sinh (et/2r ),

g g (2.7.16)
t = (1- 1'/1'g )I/2 e(r-rg)/2rg cosh (et/2rg).

(2.7.17)

Similar relations in the regions R" and T+ are obtained by the change of variables
H ----+ - H, t ----+ - t. The convinience of the Kruskal coordinate system lies in that
the radial null geodesics are always represented by straight lines inclined at an angle
of 45° to coordinate axes (see Figure 2.20).

Quite often null coordinates U = t - Hand V = t +Hare used instead of (H, t).
In these coordinates the Kruskal metric takes the form

41'3
ds2 = - _9 e-(r/rg-I) dV dU + 1'2 (dB2 + sin2 Bd¢}) ,

l'

(2.7.18)

Usually the Kruskal metric is obtained as a result of the analytical continuation of the
Schwarzschild metric (see, e.g., Misner, Thorne, and Wheeler (1973) and Appendix
8.5.3). The direct proof that the Kruskal metric (2.7.17)-(2.7.18) is a spherically
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symmetric vacuum solution of the Einstein equations can be found in the Appendix
B.5.1.

It is easy to see that the relation r =rg in Kruskal coordinates implies that either
U = 0 or V = O. The null surface U = 0 which separates the exterior region R' and
the black hole region T_ is called the event horizon. The null surface V = 0 which
separates the exterior region and white hole region is called the past horizon.

2.8 Celestial Mechanics in the Gravitational
Field of the Black Hole

2.8.1 Equations of motion of a free test particle

Let us return to the discussion of processes in the black hole exterior, in the space
outside the Schwarzschild sphere. In this section, we consider the motion of test
particles along geodesics in the gravitational field of a black hole. These phenomena
were analyzed in detail a long time ago and included in text books and monographs
[see e.g., Zel'dovich and Novikov (1971b), Misner, Thorne, and Wheeler (1973)J. Here
we will briefly discuss those features of the motion which are specific for black holes,
not just for strong gravitational fields (say, the field around a neutron star).

As before, we describe the motion of particles with respect to the Schwarzschild
reference frame, clocked by an observer at infinity (Section 2.2). The gravitational
field being spherically symmetric, the trajectory of a particle is planar; we ca.n assume
it to lie in the plane B= 1r/2. The equations of motion have the form

(
!!!-)2 = (l-rg/r)2[E2 - (l-rg/r)(I+L2r~/r2)J

edt E2

.:!::I!.- _ (1- rg/r)Lrg
edt Er2

(2.8.1)

(2.8.2)

Here E is the specific energy of a particle (E =: E/me2 , E being the energy, and In

being the mass of the particle). L is the specific angular momentum (L = L/mrrg ,

L being the angular momentum). These two quantities are conserved in the course
of motion. 7

7 As we discussed earlier, the energy E is conserved because the gravitational field is st.atic.
The conserved energy can be rewritten as E = mc2.J-goo/,jI- 1/2/C2, where II is t.he physical
three-velocity, defined as the rate of change of the physical distance in the physical time: v2 =
gii dxi dx i /( -goo)dt2. The spherically symmetric metric does not depend on the angular coordinate
</J (8gpv /8</J = 0). The conservation of the angular momentum L is the consequence ofthis synnnetry
generated by the Killing vector €(¢): €r</» = 8~. The conserved angular momentum is L = mllp. «</» =

mcu</> = mc2r2¢(-go~)-1/2 (1_112)-1/2, where ¢ = d</J/cdt. Equation (2.8.2) directly follows from
this relation. Equation (2.8.1) can be easily obtained from the expression for the energy if we note
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Figure 2.23: Effective potentials for different values of L.

the extremum of the effective potential curve. A point at the minimum corresponds
to a stable motion; and that at the maximum, to an unstable one. The latter motion
has no analogue in Newtonian theory. It is specific to black holes. Generally speaking,
motion along an unstable trajectory is impossible. However, if the motion of a particle
is represented by a horizontal line E = const very close to Emax, then the particle
makes many turns around the black hole at radii close to r corresponding to Emax

before the orbit moves far away from this value of r. An example of this motion is
shown by the orbit of Figure 2.22b. The shape and position of the potential V(r) are
different for different L: the corresponding curves for some values of L are shown in
Figure 2.23.

The maximum and minimum appear on the V(r) curves when L > J3. If
L < J3, the V(r) curve is monotone. Hence, motion on circular orbits is possible
only if L > J3. The minima of the curves then lie at r > 3rg • Stable circular
orbits thus exist only for r > 3rg [Hagihara (1931)]. At smaller dis~nce, there are
only unstable circular orbits corresponding to the maxima of the Emax curves. If
L -+ 00, the coordinates of the maxima on the Emax curves decrease to r = 1.5 rg'

Even unstable inertial circular motion becomes impossible for l' less than 1.5 rg.B

The critical circular orbit that separates stable motions from unstable ones cor
responds to r = 31'g ' Particles move along it at a velocity v = c/2, the energy of
a particle being E = V8f9 ~ 0.943. This is the motion with the maximum pos
sible binding energy E ~ 0.057mc2

• The velocity of motion on (unstable) orbits
with r < 31'g increases as r decreases, from c/2 to c on the last circular orbit with
r = 1.5 r g' When r = 2rg' the particle's energy is E= 1; that is, the circular velocity

81f there is an external non-gravitational force acting on a particle, then it could move along a
circular orbit inside r = 1.5 r g . This type of motion will be considered in Section 2.8.4.
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Figure 2.24: The position of extrema in T on the trajectory of an ultra-relativistic particle
as a function of impact parameter b.

is equal to the escape velocity. If r is still smal1er, the escape velocity is smal1er
than the circular velocity. There is no paradox in this since the circular motion here
is unst.able and even the tiniest perturbation (supplying momentum away from t,he
black hole) transfers the particle to an orbit removing it to infinity; that is, an orbit
corresponding to hyperbolic motion.

2.8.3 Motion of an ultra-relativistic particle

Let us consider the motion of an ultra-relativistic particle. In (2.8.1), (2.8.2) it
corresponds to the limit v ---+ C, so that E ---+ 00 and I ---+ 00. One must keep in mind
that in this limit the ratio LIE is equal to blrg' where b is the impact parameter of
particle at infinity. In view of this remark, we obtain, instead of (2.8.1), (2.8.2),

(
dr ) 2 ( r) 2 [ b

2
( r )]

c dt == 1 - r
g

1 - r2 1 - r
g

,

drjJ _ (1 r g ) b
c dt - - -;:- r 2 •

(2.8.5)

(2.8.6)

Formulas (2.8.5), (2.8.6) describe the bending of the trajectories of an ultra-relativistic
particle and a light beam moving close to the black hole. Setting the expression in
the square brackets in (2.8.5) equal to zero, we find the relation between the posi
tion of the radial turning point on the trajectory and the impact parameter b. The
corresponding b(r) curve is shown in Figure 2.24. The sign of b depends 011 the
sense of motion; we assume that b is positive. In this figure the motion of an ultra
relativistic particle with a given b is represented by a horizontal line b == canst. A
particle approaches the black hole, passes by it at the minimal distance correspond
ing to the point of intersection of b == const with the right-hand branch of the b(r)
curve, and again recedes to infinity. If the intersection occurs close to the minimum
bmin == 3V3 x r g/2, the particle may go through a large number of turns before it
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flies away to infinity. The exact minimum of the curve b(r) corresponds to (unstable)
motion on a circle of radius r = 1.5rg at the velocity v = c. Note that the left-hand
branch of b(r) in Figure 2.24 corresponds to the maximum distance between the ultra
relativistic particle and the black hole; the particle first recedes to r < 1.5 r g but then
again fans toward the black hole. Obviously, for such a motion the parameter b does
not have the literal meaning of an impact parameter at infinity since the partirle
never recedes to infinity. For a given coordinate r, this parameter can be found as
a function of the angle 1/J between the trajectory of the particle and the direction to
the center of the black hole:

b = rl tan 1/J I (2.8.7)
)(1- rg /r)(1 + tan 2 1/J)

If an ultra-relativistic particle approaches the black hole on the way from infinity and
the parameter b is less than the critical value bmin = 3v'3rg/2, this particle fans into
the black hole. .

2.8.4 Non-inertial circular motion

We consider now another special type of motion; namely, a circular motion of a test
particle around a black hole with a constant angular velocity 0:::= 7J,¢!/ut , where u4J

and ut are non-vanishing constant components of the four-velocity of the particle.
This angular velocity can have an arbitrary value and may differ from the Keplerian
value OK calculated for the chosen radius of the orbit. In the general case such a
motioll is not geodesic (non-inertial), and in order to support the particle in the orbit,
there must be a non-gravitational force acting on the particle. Such a motion could
probably occur in some astrophysical phenomena (for example, in disk accretion onto
a relativistic black hole) as wen as in gedanken experiments with astronauts moving
near a black hole.

The four-acceleration wI'- = ulJ ul'-'I) for a circular motion can be easily calculated.
The radial component of the acceler~tionW r is

GM/r2 - 02r
w r = (2.8.8)

1- 2GM/c2r - 02r 2/c2

Note that the physical value of the circular velocity is

rd¢ Or
Vcirc == J-goodt = (1- 2GM/c2r)I/2' (2.8.9)

!'his velocity satisfies the relation Vcirc.~ c. Thus, the denominator in (2.8.8) is always
positive. It tends to zero when Vcirc --+ c. The circular motion along the geodesic
line corresponds to the case W r = 0 (free motion). This gives the expression for the
Keplerian angular velocity OK

OK == (~~) 1/2 , (2.8.10)
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and the physical value of the Keplerian velocity is

_(GM) 1/2 ( 2GM) -1/2
VI( - -- 1---

r c2r
(2.8.11)

From this equation and the inequality VI( ~ c oue can conclude that motion with
the Keplerian circular velocity is possible only in the region r ~ 1.5rg' We alteady
mentioned this fact in Section 2.8.2. If n < nK, then an outward force (for example,
rocket thrust) is needed to hold the particle on a circular orbit. For orbits located
at r > 1.5rg an increase of n leads to decrease of Wr' This is in accordance with our
intuition: The increase of n results in increase of the centrifugal force, and hence in
decrease of the required rocket thrust.

Abramowicz and collaborators [Abramowicz and Lasota (1986), Abramowicz and
Prasanna (1990), Abramowicz (1990, 1992)] drew attention to the fact that in the
region r < 1.5rg the situation is different: An increase of n requires increase of the
needed rocket thrust. Indeed, differentiation of (2.8.8) with respect to n gives

(2.8.12)

Thus, for r > 1.5rg the signs of variations of W r and n are opposite, while for I' < 1.51·g
they are the same. Abramowicz and co-authors interpreted this result in terms of
reversal of the action of the centrifugal force at r = 1.5rg .

Other authors [for example, see de Felice (1991, 1994), Page (1993a), Semerak
(1994), and Barrabes, Boisseau, and Israel (1995)] gave another interpretation. They
emphasize that the effect depends crucially on the dependence of the denominator in
the expression (2.8.8) on n. This dependence describes the special-relativistic effect
of increase of mass with velocity. This increase, literally speaking, outweighs the
effect of the centrifugal force in the region r < 1.5rg . Of course, the effect itself
does not depend on the particular interpretation, but still we believe that the latter
interpretation is more physical. The following arguments are in favor of this point of
view.

Centrifugal force in a flat spacetime is absent for a body moving along a straight
line. It is reasonable to define centrifugal force in a curved space in such a way
that it also vanishes when a body is moving with a constant velocity along a three
dimensional geodesic, so that

(2.8.13)

where l is a proper length. For such a motion in a static spacetime with the line
element

(2.8.14)
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the spatial components of the four-acceleration wit can be written as

i_r i (dt)2 dX
i

d
2
l(dl)-1

10 - 00 - +-- -
dT edT dT2 dT
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(2.8.15)

Define a three-dimensional (coordinate) velocity dl/dt == v, then using the relations

dt 1

dT jF - (v/c)2'

we get

dl V

dT = jF - (v/c)2 ,
(2.8.16)

(2.8.17)

(2.8.18)

(2.8.19)

Here vi = dxi/dt. Now consider a motion along a three-dimensional geodesic with
a constant proper velocity dl/dT. Then d21/dT2 = 0, and the second t.erms on the
right-hand sides of (2.8.15) and (2.8.17) vanish so that 1/i takes the form

1 ViF
10 I - _ -::------,,.---,--:-=

2 F - (v/c)2'

It. is reasonable to interpret this acceleration as the "gravitational acceleration" in
a static spacetime because there is neither a centrifugal acceleration (for motioll
along the three-dimensional geodesics) nor an inertial acceleration (for motion with
constant proper velocity). By comparing the expression (2.8.18) with the relation
(2.8.8), we can identify the term

n2r

with the centrifugal acceleration. For this definition of the centrifugal acceleration
we have

OWcent.r,r 1 - 2GM/c2r
an = -2nr (1- 2GM/c2r _ fJ.2 r2/c2)2

(2.8.20)

so that everywhere outside the gravitational radius the sign of 01llcentr,r/ofJ. remains
the same as in the usual non-relativistic theory.

2.9 Gravitational Capture

In this section we deal with a motion of a test particle such that its trajectory termi
nates in the black hole. Two types of such motion are possible. First, the trajectory
of the particle starts at infinity and ends in the black hole; second, the trajectory
starts and ends in the black hole. Of course, a particle cannot be ejected from the
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black hole. Hence, the motion on the second-type trajectory becomes possible either
if the particle was placed on this trajectory via a non-geodesic curve or the particle
was created close to the black hole.9

The gravitational capture of a particle coming from infinity is of special interest.
Let us have a closer look at this case. It is clear from the analysis of motion given in
the preceding section that a particle coming from infinity can be capt.ured if its specific
energy E is greater, for a given I, than the maximum Emax on the curve V(r). Let
us consider the gravitational capture in two limiting cases, one for a particle whose
velocity at infinity is much lower than t.he speed of light (voo/c« 1) and the other
for a particle which is ultra-relativistic at infinity.

In the former case, E ~ 1. The curve V(r), which has Emax = 1, corresponds
to I er = 2 (see Figure 2.23). The maximum of this curve lies at. l' = 21·g• Hence,
this radius is minimal for the periastra of the orbits of particles with V oo = 0 which
approach the black hole and again recede to infinity. If I :s 2, gravitational capture
ta.kes place. The angular momentum of a particle moving with the velocit.y Voo at.
infinity is L = mvoob, where b is an impact paramet.er. The condition I == L/mcl'g =2
defines the critical value ber,nonrel =2rg (c/voo ) of the impact parameter for which the
capture takes place. The capture cross-section for a non-relativistic particle is

(2,9.1)

For an ultra-relativistic particle, ber = 3J3 l'g/2, and the capture cross-section is

_ 27 2
arel- 4 1rrg . (2.9.2)

(2.9.3)

Owing to a possible gravitational capture, not every particle whose velocity ex
ceeds the escape limit flies away to infinity. In addition, it is necessary that the angle
'l/J between the direction to the black hole center and the trajectory be larger than a
certain critical value 'l/Jer' For the velocity equal to the escape threshold this critical
angle is given by the expression

2 vI(1 - rg/r)rg/r
tan'l/Jcr,ese = ± VI _4rg/r(l- rg/r)

The plus sign is chosen for l' > 21'g ('l/Jer < 90°), and the minus sign is chosen for
l' < 2rg (1/)er > 90°).

For an ultra-relativistic particle, the critical angle is given by the formula

viI - rg/r
tan'l/Jer,rel = ± .

Jrg/r - 1 + 17 (r/rg )2

The plus sign is taken for l' > 1.5 l'g, and the minus, for l' < 1.5rg .

(2.9.4)

gOf course, a particle may escape from a white hole and fall into a black one; examples of this
kind were discussed in Section 2.7.
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2.10 The Motion of Particles Corrected for
Gravitational Radiation

In relativistic theory, celestial mechanics differs from Newtonian theory in an addi
tional factor not yet discussed above: emission of gravitational waves by accelerated
bodies. As a rC:'sult, the energy E and angular momentum Lare not strictly integrals
of the Illotion. The emission of gravitational waves decelerates the moving particle
(it loses energy and angular momentum). The force of deceleration is related to the
interactioll of the test particle of mass m with its own gravitational field and is pro
portional to m 2

, while the interaction with the external field is proportional to mM.
Therefore, if m/M is small, the force of "radiative friction" is a small correction to
the main force, and the motion of the test particle is almost indistinguishable from
Illotion along a geodesic. Nevertheless, these small corrections may accumulate over
long periods of time, and thus cause appreciable deviations of the motion from the
initial trajectory.

Let us evaluate the change in the cross-section of the capture of a test particle
approaching the black hole from infillity, taking into account the emission of grav
itational waves and the process of gradual capture of the body circling the center
[Zel'dovich and Novikov (1964a, 1971b)]. The gravitational radiation can be calcu
lated by analyzing the small perturbations of the Schwarzschild metric. We shall
discuss this type of calculations in detail in Chapter 4. Here we just mention that
the analysis shows that an evaluation of the changes in motion within the framework
of the weak field theory and for non-relativistic velocities gives a good approximation
in all interesting cases.

Let us consider a particle approaching a black hole from infinity where its velocity
was small. As a result of the loss of energy due to the gravitational radiation, which
mostly occurs at the periastron of the orbit, the orbit changes. If the loss of energy
is big enough, the particle cannot escape to infinity after it passes by the black
hole (as would happen without radiation). It switches to a bound eloilgated orbit,
which brings the particle back to the black hole. Emission will occur again at the
periastron, etc., until the particle falls into the hole. After the first passage past the
black hole at a distance TI at periastron, the particle recedes to a maximum distance
Tmax (apoastron) given by the approximate formula

[ ( )
3/5 2]-1

T ~ T /2 m Tg _ V oo
max g M TI 2c2

(2.10.1)

If TI is small, Tmax rapidly decreases after subsequent passages until the particle falls
into the black hole.

Taking this into consideratioil, one arrives at the following approximate formula
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(2.10.2)

for the capture cross-section of a particle of mass m and velocity V oo at infinity:

O"grav,rad ~ 1r (v:) 2 (2x)2/7 T';'

This formula is valid for x == (c2/v'/x,)m/M »26 • If x ::; 26 , the cross-section
practically coincides with (2.9.1) for lion-relativistic particles.

Let us look lIOW at the effect of gravitational radiatioll Oil the circular motioll
of particles (for more detailed discussion, see Section 4.10.1). If a particle lllOves at
T' » rg , the gradual decrease of the orbital radius obeys the following law [Landau
and Lifshitz (1975)]:

dr = ~ c(!!:) (rg )3.
dt 5 M r

(2.10.3)

This process lasts until the limiting stable circular orbit at r = 3rg is reached. At
this orbit the binding energy e ~ 0.057mc2 (see page 43). This energy is emitted
during the entire preceding motion. The energy emitted by the particle during one
revolution on the critical circle r = 3rg is oe ~ 0.1 mc2 (m/'N}. Then the particle
slips into a spiraling infall into the black hole; this takes about (&1l./rn)1/3 additional
revolutions. The amount of energy radiated away at this stage is much less than that
lost before r = 3rg was reached.

2.11 Tidal Interaction of Extended Bodies with a
Black Hole

2.11.1 Equations of motion

In the above consideration of the motion of test bodies in the gravitational field of
a black hole up to now we neglected their size, and described such a body as a test
point-like particle. In other words, we neglected all effects connected with the finite
size of a body. In this section we consider the tidal interaction of an extended body
(a star), with a black hole. We again assume that the mass of the body is small
compared with the mass of the black hole so that its gravitational effects can be
neglected. We suppose also that the backreaction of the tidal forces on the motion
of the body (tidal friction) is small, and the trajectory of the center of mass of the
extended body is practically a geodesic. We analyze properties of the relativistic tidal
forces and compare them with the non-relativistic ones. The tidal interaction can be
important for close encounters of stars with supermas;,ive black holes in the centers
of galaxies (see Section 9.6). Bearing in mind this application, we focus our attention
on the case where the velocity of a test body at infinity is much smaller then it is
during the close encounter. Under this condition, with high accuracy the motion of
the body near the black hole can be described as "parabolic", for which the specific
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(2.11.1)

energy E == E/mc2 = 1. In the subsequent discussion we follow the work of Frolov
et al. (1994).

To describe a motion of an extended test body moving in the Schwarzschild space
time, we consider first a trajectory representing the motion of its center of mass. We
choose coordinates in such a way that this trajectory lies in the equatorial plane
() = n-/2. Its equations are given by (2.8.1) and (2.8.2). Besides these equations, we
shall use also the equation

dt E
dT 1 - Tg/r

relating t and the proper time T. As before, E and L are specific energy and specific
angular momentum. For parabolic motion E= 1, and trajectories are characterized
by one dimensionless constant L. It is convenient to introduce the following notations:

tp = L31'g / c , Ji = L-1 = (1'g / Rp)I/2,

x(T')=1'(T)/Rp, t*=t/tp .

(2.11.2)

(2.11.3)

In these notations the equations of motion take the form

( dX)2 =.!._~+Jl2~,
dT' X x2 x3 (2.11.4)

d¢ 1 dt' 1
dT' = l-Ji2/x '

(2.11.5)

We choose T' = 0 at the point of periastron l' = l'p = Rp x p , where x p = ~ (1 +
~). At this point dx/dT' changes sign from negative (for T' < 0) to positive
(for T' > 0). We also choose ¢(T' = 0) = 0 so that ¢ is negative (positive) for T' < 0
(T·>O).

The parameter Ji = (1'g/Rp )l/2 characterizes relativistic corrections. If it vanishes,
It = 0, the equations of motion take their non-relativistic form, and Rp coincides with
the radius of peria.<;tron in the non-relativistic problem.

The function x(T') is even, while ¢(T*) is an odd function of T·. That is why it is
sufficient to find their values for T' 2 O. The equations of motion can be integrated
in terms of el1iptic integrals. In particular, we have (for T' 2 0)

T' = ~ vfX Jx2
- X + tJ.2 (x + 2 - Ji)

3 X-Ji

2
+ 3Jl+2jl [(1- Ji2) F(cp\O!) - (1 + 2Ji) E(cp\O!)] ,

2
¢ = Jl+2jl F(<p\a) ,

(2.11.6)

(2.11.7)



52 CHAPTER 2. SPHERICALLY SYMMETRIC BLACK HOLES

where F and E are elliptic integrals of the first and second kind, respectively, and

. Jx2 - X + J.l2
Slll<p = ,

x-J.l

.f4il
Sill 0' = Vl+2;J, . (2.11.8)

Equation (2.11.7) determines the trajectory, while equation (2.11.6) determines the
position of the body on the trajectory as the function of proper time.

2.11.2 Tidal forces

To determine tidal forces acting on an extended body moving in the gravitational
field, we shall use a local comoving non-rotating reference frame (see Appendix A.ll).
This reference frame is a natural generalization of the usual inertial reference frames
of a flat. spacetime to the case when the spacetime is curved. For a given geodesic
line representing the motion of the body a local reference frame is defined by an
orthonormal tetrad em (m = 0, ... ,3) along the world line. The first of the vectors
(eo) is chosen to coincide with the four-velocity of the body, and the tetrad em is
chosen to be parallelly propagated along the trajectory. Under these conditions it is
nniquely defined if it is fixed at some initial point. The equation of parallel transport
in a vacuum stationary black hole metric can be solved analytically [Marek (1983)]
and for the Schwarzschild black hole one has [Lumi1H'1 Hild Marek (1985)]

cit = cos 1/! Ni - sin 'I/; A~ ,

where

e~ = sin 1/) Af + cos 1/) Aj , (2.11.9)

(2.11.10)

and

The function 1/' = '1/;(T*) satisfies the equation

(2.11.11)

(2.11.12)
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and the initial condition '1/;(T* = 0) = O. The solution of this equation can be written
in terms of elliptic integrals:

1
1/-' = arctan }x -1 + J12/X + JI+"2IL F(rp\a).

1+ 2J1
(2.11.13)

The tetrad is chosen in such a way that the vector ej at the point of periastron T = 0
is directed toward the black hole center.

The geodesic line 1 representing the motion of a test particle together with the
tetrad e,h form a comoving local reference frame. The position of a point of a star
with respect to the chosen reference frame can be described by a three-vector

3

x= L:Xiei.
;=1

(2.11.14)

(2.11.15 )

Consider first a test body which is formed from pressure-free matter (dust), and let
Xi = Xi (T) be the coordinates of a chosen volume element of matter in the comoving
reference frame. The geodesic deviation equation (see Appendix A.9) can be used to
show that

d2X i aU
dT 2 = - aX; ,

where

1 ..
U = '2 Gij X' Xl, (2.11.16)

(2.11.17)

and Rofh6 are the components of the Riemann curvature tensor calculated on the
world line representing the moving body (i.e., at the begiJtning of the comoving
reference frame). The non-vanishing components of the tensor Gij in the comoving
reference frame are [Marck (1983), Luminet and Marck (1985))

GM 1
Gij = R3 3 (Jij ,

P X

x 2 + J12 2
(Jll = 1 - 3 --2- cos '1/;,

x

x 2 + J12 • 2
(J33 = 1 - 3 --2- sm '1/;,

x

x 2 + J12 •
(J13 = (J31 =-3--

2
-sm'l/;cos'l/;. (2.11.18)

x

The quantities x = x(T*) andlj; = '1/;(T*) are to be calculated on the chosen trajectory.
The tidal gravitational potential U takes quite a simple form if one uses spherical

coordinates p, e, and <I> instead of the Cartesian comoving coordinates Xi :

Xl = psinecos<l>, X 2 = -pcose, X 3 = psin esin q,. (2.11.19)
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In these coordinates

1 GM p2
[1=--

2 R~ x3

where

(2.11.20)

In the presence of pressure, equation (2.11.15) is to be modified by the preHsure forces:

(2.11.22)

To compare the motion of a relativistic star with a non-relativistic one, we fix in
both problems the same conserved quantity - the angular momentum of the body,
which for a parabolic motion unambiguously fixes the trajectory. The following rel
ativistic effects are important:

1. Relativistic shift of the periastron radius. The difference ~xp between :rp and
its non-relativistic limit xp,nonrel = 1 is ~xp = -1/2(1 - Jl- 41l 2 ). For small
II this difference is ~xp ~ -1l2

• In other words, the relativistic periastron lies
at the radius which is closer to the gravitating center by the value ~rp ~ r g •

2. Relativistic time delay. It takes a longer time (as measured by the clock of
a distant observer) for the relativistic body to pass near a black hole and to
return to the same initial radius than for the non-relativistic motion with the
same angular momentum. The time delay is ~T = 31T/4 (r:/Rp ) 1/2.

3. Relativistic precession. Let a non-rotating test body have three orthogonal axes
rigidly attached to it. The orientation of these axes in space, after a test body
moving in the gravitational field passes near a black hole and then recedes,
will slightly differ from their initial orientation. This effect remains even if the
body is absolutely rigid. In the case under consideration this effect results in a
difference of the angle 'I/; which enters equation (2.11.9) from the angle ¢. The
total precession angle is

. 2
~¢prec = 2 hm (¢ - '1/;) = Jf+2IL K - 1T,

x-+oo + 21l
(2.11.23)

where K = K(41l/(1 + 21l») is the complete elliptic integral of the first kind.
For small II one has

(2.11.24)
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4. The tensorial strlLcture of tidal forces is different in the relativistic and non
relativistic cases. In both (relativistic and non-relativistic) cases the tidal force
tensor written in a parallelly propagated frame is non-diagonal. This tensor
can be easily diagonalized by using a frame (>'j, e2, >'j). The diagonal elements
of the tensor 17 in this new frame are

J12
17jj=-2-3 2 ,

x

J12
1722 = 1 + 3 2 ,

x
17jj = 1. (2.11.25)

The extra term 3J12/X2 which enters these relations describes the relativistic
effects. These effects lead to an additional increase of the tidal acceleration
in the orbital plane, without changing the acceleration in the perpendicular
direction. The effect is maximized for the limiting value J1 = 1/2, when at
periastron the star is stretched in the radial direction with a strength 5/2 times
larger, and compressed in the orthogonal direction with a strength 4 times
larger than in the non-relativistic case.

The formulas obtained in this section can be directly applied to study the dis
tortion and disruption of stars passing near a black hole. Results of the numerical
computations and astrophysical consequences of the process are discussed in the pa
per by Frolov et al. (1994). Tidal interaction of a star with a massive rotating black
hole was considered by Diener et al. (1997).



Chapter 3

Rotating Black Holes

3.1 Formation of a Rotating Black Hole

In the preceding chapter we have demonstrated that the gravitational collapse of a
spherical non-rotating mass produces a spherically symmetric black hole when the
radius of the collapsing body becomes less than the gravitational radius. Suppose
the collapsing body deviates considerably from spherical symmetry and/or its angular
momentum and electromagnetic field are large. Will a black hole form? If it does,
what will its properties be?

In order to answer these questions, we are to be able to generalize the defini
tion of a black hole so that it can be applied to non-stationary spacetimes without
symmetry. This general theory will be developed in Chapter 5. It will be argued
that if contraction to a sufficiently small size of an arbitrary mass possessing rotation
and an electromagnetic field produces a black hole, then such a black hole rapidly
becomes stationary and after this all its properties and its external gravitational field
are completely determined by three parameters: mass M, angular momentum J, and
electric charge Q.l Other properties of the collapsing body, such as its composition,
asymmetry in the distribution of mass and electric charge, the magnetic field and its
characteristics and so forth, do not influence the properties of the resulting stationary
black hole. 2

This conclusion follows qualitatively from an analysis of the behavior of small per
turbations in the course of the formation of the spherical black hole (Section 4.2). In
the collapse of a body slightly deviating from spherical symmetry, all deviations from

I It. will be clear hereafter that the black hole forms only if the inequality M 2 2: j2 / M 2 + Q2 is
satisfied. This inequality is written in the system of units where G = c = 1.

2Strictly speaking, this conclusion is valid only in the framework of the Einstein-Maxwell theory.
We shall see in Chapter 13 that in more general unified theories that include Einstein gravity and
Maxwell field as it.s part stationary black holes might have some additional characteristics. The
Einstein-Maxwell t.heory certainly is valid with high accuracy in astrophysical applicat.iolls. Bearing
this in mind, we post.pone till Chapter 13 the discussion of modified theories that might be important
for microscopically small black holes.
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spherical symmetry rapidly disappear, except those due to small angular momentum
J. Gravitational radiation carries off a part of the energy and angular momentum
of the collapsing mass in the course of the gravitational collapse when the deviations
from symmetry are large. As a result, M and J for the black hole become slightly
smaller than those the body had before the collapse (this will be discussed later).
This reduction could not be found in the analysis of small perturbations because the
backreaction of the perturbations on the metric was assumed to be negligible.

If the collapsing body has an electric charge, then after the formation of a black
hole radiative multipoles of the electromagnetic field also rapidly disappear, and only
a non-radiative mode determined by the electric charge Q survives. Macroscopic
physics knows no other "classical" physical fields besides gravitational and electro
magnetic ones with other (non-radiative) modes. That is why a stationary metric
describing a "final" state of an isolated black hole is determined by the three param
eters M, J, Q. In astrophysics, the total electric charge of a body can typically be
treated as small and accordingly neglected. Therefore, we first consider the case of
Q = O. The case of nonzero charge is discussed in Section 3.6.

3.2 Gravitational Field of a Rotating Black Hole

3.2.1 Kerr metric

What is the gravitational field of a stationary black hole with nonzero angnlar mo
mentum J? It will be shown in Section 6.4 that the most general solution describing
such a black hole is axisymmetric, and it coincides with the vacuum stationary ax
isymmetric solution of Einstein's equations which was found by Kerr (1963). We
consider now the Kerr metric and describe the physical properties of the external
space of a rotating black hole.

In the case of a rotating black hole (Kerr metric), the spacetime outside it is
stationary, and one can choose a time-independent reference frame which asymptot
ically tends to the Lorentz frame at infinity. The coordinates proposed by Boyer
and Lindquist (1967) represent such a frame of reference. The Kerr metric in these
coordinates is:

ds2 = _ (1- 2MT) dt2 4Mrasin
2

8 dtd¢+'£dr2+Ed(;2+ Asin
2

8 d¢2 (3.2.1)
E E ~ E'

where

(3.2.2)

Mathematical properties of the Kerr metric and its generalization with electric charge
included (the Kerr-Newman metric) are discussed in the Appendix D. For our pur
pose, now it is sufficient to mention only its simplest properties.
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The Kerr metric depends on two parameters M and a. The physical meaning of
them can be easily obtained by analyzing the asymptotic behavior of the metric. At
large distances (1' -t 00) the metric has the following asymptotic form

d 2 (1 2M)d 2 4Masin
2

0 dds;::,:- -- t- t¢
l' l'

(:3.2.3)

Comparing this with the results of calculations in the weak field approximation, one
may conclude that a is the specific angular momentum (a = JIM, J is the angular
momentum) and M is the black hole mass.3 Presumably, the physically meaningful
solutions are those with M 2 ~ J (see note 1 to page 56).

In the absence of rotation, a = 0, the Kerr metric obviously reduces to the
Schwarzschild metric. On the other hand, if we take the limit J = °and M = °but
keep the parameter a constant, the metric (3.2.1) takes the form

(:~.2.4)

It can be shown that the curvature of this metric vanishes identically, and hence this
is the metric of a flat spacetime

The coordinates (1',0, ¢) are connected with Cartesian coordinates (x, y, z) by

x = ";1'2 + a2 sinOcos¢, y= ";1'2 + a2 sin oSill ¢, z = TcosB.

(3.2.5)

(3.2.6)

(3.2.7)

The surfaces l' = consI. are oblate ellipsoids of rotation

x 2 + y2 z2
--+-=1.
1'2 +a2 1"2

The Kerr metric is stationary (time-independent) and axisymmetric. We denote
by ~(t) and ~(4)) the Killing vectors which are the generators of the corresponding
symmetry transformations. We choose the Killing vector field ~(t) in such a way
that far from the black hole (at infinity) the Killing vector is directed along the
time lines of the Lorentz coordinate system defined by the asymptotic form of the
metric (3.2.1). This clarification is necessary because a linear combination of two
Killing vectors is again a Killing vector (i.e., in our case we can combine a shift in

3We recall the reader that beginning from this chapter we shall use the system of units in which
c =G = 1. This is standard practice because keeping c, G, and other dimensional constants makes
complicated formulas practically unreadable. It is not difficult to restore the correct dimensions in
the final formulas. From time to time we shall write some of the final important relations in their
complete form with all the dimensional constants restored.
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time with a rotation around a spatial axis). We single out a Killing vector e(t) that
corresponds to the absence of any rotation of the space grid around the symmetry
axis at large distances from the black hole (T -+ 00). In a similar manner the Killing
vector e(</» is unambiguously singled out by the condition that its integral lines are
closed. For this choice ~ft) = of and ~r</» = t5~. The coefficients 9tt, 91</>, and 9M of
the Kerr metric coincide with the scalar products e(t) • e(t), eft) • e(</» , and e(</>l • e(</>l'
respectively. Since the metric coefficient 9t</> does not vanish, the Kerr metric (3.2.1)
is not invariant under reflection of time t -+ -to In other words, the Kerr metric is
stationary but not static. The symmetry is restored if the inversion of time t -+ -t
(changing the sign of the angular momentum) is accompanied by the transformation
¢J -t -¢J (changing the direction of rotation).

3.2.2 The (3 + I)-split of the spacetime outside the black
hole

To discuss the physical properties of the gravitational field of a rotating black hole
and of matter propagating in its background, it is important to choose a convenient
reference frame. In the absence of rotation such a reference frame was discussed in the
previous chapter. The Schwarzschild reference frame used there is static, independent
of time, and uniquely defined for each black hole. Recall the main properties of this
frame. At large distances from the black hole, this reference frame turns into the
Lorentz frame in which the black hole is at rest. It can be thought of as a lattice
"welded" out of weightless rigid rods. The motion of particles was defined with
respect to this lattice. For the time variable, we used the time t of an observer placed
at infinity. True, the rate of the flow of the physical (proper) time T at each point of
our lattice did not coincide with that of t (time is slowed down in the neighborhood
of a black hole), but in this "parameterization" t = const meant simultaneity in
our enti re frame of reference. The Schwarzschild reference frame in a certain sense
resembles the absolute Newtonian space in which objects move, and t resembles the
absolute Newtonian time of the equations of motion. Of course, important differences
exist. Our "absolute" space is curved (curved very strongly close to the black hole),
and the "time" t is not the physical time.

This reference frame is used not only to facilitate mathematical manipulations
in solving, say, the equations of motion, but also to increase pictorial clarity. We
make use of the familiar concepts of the Newtonian physics (the "absolute" rigid
space as the scene on which events take place, and absolute time) and thereby help
our intuition. Although the Schwarzschild reference frame has a singularity at T g'

we choose this reference frame for the spacetime outside the black hole and not, say,
the Lemaitre frame which has no singularity at Tg but is everywhere deformable.
Obviously, a rigid reference frame can be chosen only because the metric outside the
black hole is time independent. In the general case of a variable gravitational fielcl,
this choice is impossible since the spatial grid would be deformed with time.
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The natural generalization of the Schwarzschild reference frame to the case of
a rotating black hole is easily obtained if we use the fact that the Kerr metric is
stationary. The properties of the three-dimensional space t = const in the metric
(3.2.1), which is external with respect to the black hole, do not change with time.
Shifting the spatial section along the Killing vector field e(tl (a generator of time
symmetry transformations), we pass from one section to another identical to it. We
can thus "trace" in the space a grid which remains invariant in the transition from
one section to another along the Killing vector field e(t). The variable t, the time of
distant observers, can serve as a uni versal "time" labeling the spatial sections, as was
the case for the Schwarzschild spacetime.

Important differences must be mentioned, of course:

1. In the case of the Schwarzschild field, the transition from one three-dimensional
section to another, preserving the coordinate grid, is carried out by shifting
along the time lines perpendicular to the spatial section. The situation in the
Kerr field is different. Since the component gt,p of the metric does not vanish,
the Killing vector field e(tl is tilted with respect to the section t = const. The
tilting angle is different for different r and e.

2. The Killing vector ~(tl that generates the transition from one section to an
other becomes spacelike at points close to the boundary of the black hole. This
happens in the region where ~(tl/L ~ftl == gtt > O. The part of this region ly
ing outside the black hole is called ergosphere. The external boundary of the
ergosphere is the surface r = M + viM2 - a2 cos2 (). This means that a three
dimensional rigid grid extended from infinity and constructed from material
bodies ("welded" out of rods) cannot be continued inside the ergosphere. In
side the ergosphere, this grid would move at superluminal velocity with respect
to any observer (on a timelike world line).

Despite these specifics, we can still operate with our space sections t = const as with
"absolute" rigid space (resembling the Newtonian case) and with t, as with a "time"
which is universal in the entire "space" (of course, subject to all the qualifications
given above).

We conclude this section with the following general remark. In general relativ
ity, the splitting of spacet,ime in an arbitrary gravitational field int.o a family of
three-dimensional spatial sections (in general, their geometries vary from section to
section) and a universal "time" that labels these sections is referred to as a (3+1)
split of spacetime,4 or the kinemetric method [Vladimirov (1982)]. This method is

4 Anot.her approach t.o the (3+1)-split is possible, where one chooses first. not three-dime nsional
sections but congruences of timelike lines. This approach is known as the ch7'Onometl'ic meth.od
[Zel'manov (1956)]. In a stationary spacetime it is convenient to use a congruence of Killing tra
ject,ories. These trajectories can be considered as points of a new three-dimensional space so that
four-dimensional tensor fields and field equations can be reduced to three-dimensional ones. For
more det.ails concerning this approach, see e.g., [Geroch (1971), Perjes (1993), Boersma and Dray
(l995a-cl] and Appendices A.9 and A.10.
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Figure 3.1: Embedding diagram for the geometry on the equatorial plane in the Kerr
spacetime with a = O.999M. A coordinate lattice "welded" of rigid rods, which fill the space
around the black hole, is schematically shown. The rigid coordinate frame constructed from
these "rods" cannot be continued beyond the static limit.
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(3.3.1 )

especially useful when all spatial sections are identical and the motion of particles,
electromagnetic processes, etc., that unfold on this invariant "scene" can be described
in terms of a universal "time" t. We have already mentioned that in this case our
intuition is supported by our "visual" images of space and time supplied by every
day experience. Studying the processes in the vicinity of stationary black holes, we
employ the kinemetl'ic method. As spatial sections, we choose the t = const sections
in metric (3.2.1); t is the time coordinate.

3.3 Reference Frames. Event Horizon

3.3.1 Chronometric reference frame

First we consider the geometric properties of our "absolute" space. They are de
scribed by a three-dimensional metric obtained from (3.2.1) by setting dt = O. The
3-geometry of a space section t =const is

dl2 = .d id j = Ed 2 Ede2 Asin
2
e dri.2

g" X x II r + + EOf"

To "visualize" the properties of this three-dimensional curved space, one may consider
its different two-dimensional sections. For example, Figure 3.1 shows the embedding
diagram representing the geometry on the equatorial plane e = 1f/2. It should be
stressed that other sections have a geometry different from that shown in Figure 3.1.

Consider now the reference frame of observers who are at rest in the "absolute"
space t = const; that is, observers who "sit still" on our rigid non-deformable lattice.
This frame of reference is called the chronometric [Vladimirov (1982)J, Lagrange
[Thorne and Macdonald (1982), Macdonald and Thorne (1982), Thorne, Price, and
Macdonald (1986)J or Killing reference frame. The latter name is connected with the
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(3.3.2)ii¢ = O.

fact that the world lines of the observers in this reference frame are tangent to the
Killing vector field e(t).

Let us look at the forces acting in this frame due to the presence of a rotating
black hole. The four-velocity of the observers is uP = ~lt) 11~(t)ll/2, and their four

acceleration wI' == uVuP;v is WI' = (1/2)[ln(-~(t))];P (see Appendix A.1O.1). A freely
falling body which is moving along a geodesic will have an acceleration aIL = -Wi' with
respect to the frame. The three-dimensional components of the free fall acceleration
vector iii in the coordinates (r, 8, r/J) can be easily calculated (see Vladimirov (1982)
and Appendix 0.5.1). The result is

_ M(E - 21.2 ) _ Mra2sin 28
ar =E(E_2Mr)' aO =E(E_2Mr)'

We mark all quantities in this chronometric reference frame by a tilde to avoid con
fusing them with the quantities used hereafter.

The physical components of acceleration are5

_ M(E-2r2)V'K _ Mra2sin28
aT = E3/2(E _ 2Mr)' au = E3/2(E _ 2Mr) , iiJ> = O. (3.3.3)

The reference frame is rigid so that the deformation rate tensor vanishes [see (A.53)J:

Dik = O. (3.3.4)

The vorticity tensor (A.60) calculated for the Kerr metric is (see Appendix 0.5.1):

_ Ma(E-2r2 )sin2 8 _ Mrasin28ll_
wr ¢ = - El/2(E _ 2Mr)3/2' wo¢ = - El/2(E _ 2Mr)3/2' Wr8 = O. (3.3.5)

The non-vanishing tensor Wik signifies that gyroscopes which are at rest in the
reference frame are precessing with respect to it, and hence with respect to distant
objects because at a large distance our rigid reference frame becomes Lorentzian.
The tensor Wik is proportional to the specific angular momentum of the black hole
and reflects the presence of a "vortex" gravitational field due to its rotation.

The following important difference between the external fields of a rotating and
a non-rotating black holes must be emphasized. If a black hole is non-rotating, the
condition t = const signifies physical simultaneity in the entire external space for
observers that are at rest in it (with respect to a rigid reference frame). In the
case of a rotating black hole, a non-vanishing component 9t¢ in the rigid reference
frame forbids [see Landau and Lifshitz (1975)J the introduction of the concept of
simultaneity. Usually, the events with equal t are said to be simultaneous in the time
of a distant observer. But this does not at all mean the physical simultaneity of these
events for the chosen set of observers which is determined by the synchronization of
clocks by exchange of light signals between these observers.

5am are the components of the acceleration vector measured directly by an observer at rest in
the given reference frame. In formula (3.3.3), they are given in a local Cartesian coordinate system
em whose axes are aligned along the directions of r, 0, and 1/>: a = iimem .
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3.3.2 Ergosphere. Event horizon

We already noted that the Killing vector ~lt) becomes null at the boundary of the
ergosphere. This happens at a so-called sto,tic limit surface Sst where the component
gu in (3.2.1) (which determines the rate of flow of time) vanishes. The equation of
this surface is

(3.3.6)

It can be also rewritten in the explicit form r = rst> where rst is given by the relation

rst = M + viM2 - a2cos2 0 . (3.3.7)

(3.3.8)r = r(f,t),

Note that the components aT, ae, the components Wik, and the angular velocity of
precession npr of a gyroscope, calculated using these components [see (A.46)], tend
to infinity at Sst. These properties signify that a physical singularity exists at this
surface in the reference frame, and this frame cannot be extended closer to the black
hole; that is, observers cannot be at rest relative to our grid.6 Formally, the reason
for this is the same as in the Schwarzschild field at r = rg . Namely, the world line of
observer, r = const, 0 = const, r/J = const, ceases to be timelike, as indicated by the
reversal of sign of gtt at r < rst. However, an essential difference in comparison with
the Schwarzschild field must be emphasized.

In order to obtain a world line inside the light cone in a non-rotating black hole
for r < rg , it was sufficient to perform the transformation

or
ot = v of O.

With a suitable choice of v = v(r) < 0, the coordinate line (f, r/J, 0 = const) becomes
timelike. This means that at r < r g , a body necessarily moves to the center along
the radius, and that rg is the boundary of an isolated black hole.

In the case of a rotating black hole [we assume II > 0; see (3.2.1)] a transformation
of the type of (3.3.8) cannot generate a timelike world line in the region r > rst. But
a transformation of the type

r/J=r/J(¢,r,O,t), or/J = w of 0
ot

(3.3.9)

makes this possible (w is a function of rand 0). To illustrate this, consider a special
type of motion; namely, circular motion with r = const and 0 = const. For t,his
motion u ~ e(t) + we(¢), and w = dr/Jldt = u¢lut is the angular velocity of rotation.
The condition that the vector u is timelike requires w_ < w < w+, where

(3.3.10)

60f course, the coordinate grid can be extended closer to the black -hole, but it cannot be
constructed of material bodies.
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Figure 3.2: A rotating black hole: i-horizon, 2-ergosphere, 3~static limit.

The limiting values w = w± correspond to motion with the velocity of light. Outside
the static limit surface (where 9tt < 0), w+ is positive, while w_ is negative. It
means that in this region both types of motion (with increase and with decrease of
the angular coordinate ¢) are possible. In the ergosphere only motion with w > 0
is allowed. For circular motion r remains constant, but by a small deformation we
can get a motion directed outward (toward increasing r). This fact signifies that if
r < rst and II > 0, all bodies necessarily participate in the rotation around the black
hole (the direction of rotation is determined by the sign of aj see below) with respect
to a rigid coordinate grid that stretches to infinity. As for motion along the radius r,
bodies can move in the range r < rst> II > 0 both increasing and decreasing the value
of r. Therefore, the static limit rst has a quite different nature for a rotating black
hole than in the Schwarzschild field. Inside it, bodies are unavoidably dragged into
rotation although rst is not the event horizon because particles or light propagat,ing
inside the ergosphere can escape from this region and reach infinity (see Section 3.4).

For (9t",)2 - 9u9",,,, = 0, w+ = w_. Using equation (D.9), one may conclude that
this occurs when II = O. This equation defines the event horizon which lies at r = r+,
where

(3.3.11)

For r < r+, where II < 0, it is impossible to have motion with u 2 S; 0 without falling
to the center (Le., without decrease of 1"). In the absence of rotation (a = 0) r+
coincides with the gravitational radius rrg = 2Al. The name "event horizon" is used
for the boundary of any black hole. The exact definit,ion of the event horizon in the
general case will be given in Chapter 5.

A rigid, static frame of reference which is at rest relative to a distant observer
and which is made of material bodies does not extend to 1"+ (see Figure 3.1). The
static limit lies beyond the horizon and coincides with it at the poles (Figure 3.2).
An important feature of a static reference frame is the precession of gyroscopes in it,
as we have mentioned above. Our reference frame rotates at each of its points with
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respect to the local Lorentz frame. 7 This is, of course, a reflection of the fact that
the rotation of the black hole changes the state of motion of local Lorentz frames,
dragging them into rotation around the black hole. This effect has been known
qualitatively for quite a long time in the case of the weak gravitational field of a
rotating body [Thirrillg and Lense (1918)J.

3.3.3 Reference frame of locally non-rotating observers

Now we introduce into the external space of a rotating black hole another reference
frame which does not rotate, in the sense given above. Obviously, such a frame cannot
be rigid. To introduce it, we trace a congruence of world lines which are everywhere
orthogonal to the spatial sections t = const that we choose. A future-directed unit
vector u tangent to these world lines is (see Appendix D.5.2)

_ ,0
up. - -aup" a= JE:. (3.3_12)

By definition, these timelike lines are not twisted and form the sought reference frame.
Observers that are at rest in this frame are said to be locally non-rotating observers
[sometimes this reference frame is referred to as Eulerian; see Thorne and Macdonald
(1982)J. Since up. ~(¢) = 0, the angular momentum for particles moving with the
four-velocity u vanishes. For this reason, the reference frame is also known as ,the
reference frame of zero angular momentum observers (ZAMO) [see Thorne, Price,
and Macdonald (1986)J. (The discussion of more general reference frames based on
stationary congruences can be found in [Page (1997)J.)

These observers move with respect to the Boyer-Lindquist coordinate system; that
is, they move in the "absolute" space.8 This motion takes place at constant rand 0,

7This point requires some explanation. If a motion of an origin of a local reference frame is
fixed, there still exists ambigutity in the directions of its three mutually orthogonal basic vectors
connected with the spatial orientation of the reference frame. The following gedanken experiment
can be used to single out frames where the orientation is not changed with time so that the frames
are non-rotating. Consider light emitted at the origin of the frame, and place at some small distauce
a mirror orthogonal to the light ray. It is easy to verify that for this experiment performed in an
inertial frame in a flat spacetime the reflected ray returns to the origin if and only if the reference
frame in which the mirror is at rest is non-rotating. The same experiment can be used to define
a non-rotating frame in a curved spacetime for an arbitrary (not necessary inertial) motion. It
can be shown that this definition is equivalent to the requirement that the tetrad vectors forming
the frame are Fermi-transported along the trajectory (for more discussions, see Synge (1960) and
Appendices A.7 and A_ll). We call such a non-rotating inertial local frame a local Lorentz frame.

SLet us make several remarks on terminology. In fact, it is not uniform among different authors
and even in different papers of one author. Thus, Macdonald and Thorne (1982) refer to the space
that we describe in Section 3.2 as "absolutely rigid" and specify that locally non-rotating observers
move in this space [see Section 2 of their paper prior to formula (2.6)]. In another paper, Thorne
(1985) refers to the space comovlng with locally non-rotating observers as absolute, and says that the
observers are at rest in the "absolute" space [see Thorne (1985), p. 11; see also Thorne, Price, and
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(3.3.14)

at a constant (in time) angular velocity in r/J. If the angular velocity w is determined
with respect to the universal time t (time of the distant observer), then

_ dr/J 9¢1 2Mar
w = - = - - = (3.3.13)

dt 9¢¢ (r2+ a2)2 - lla2sin2 8 '

where 9¢1 and 9¢q, are taken from (3.2.1). Comparing this expression with equation
(3.3.10), we can also write was w = (w+ + w_)!2.

If angular velocity is measured by the clock of a locally non-rotating observer,
then

w
Dr = .

J-9tt - 2w 9t¢ - w2
9¢",

The physical linear velocity of locally non-rotating observers with respect to a rigid
reference frame is

2Mrasin8
v¢ =

EVL\
(3.3.15)

(3.3.16)

At the static limitl surface E = 2Mrand II = a2 sin2 8. Hence, as would be expected,
this velocity becom'es equal to the speed oflight at the static limit r = rst and exceeds
it in the ergosphere.

We again emphasize that the proper time T of locally non-rotating observers is
not equal to the universal "time" t. Their ratio is equal to the "lapse" function a:

(dT) (Ell)I/2
dt ZAMO =:a= A

The components of the vector a of acceleration of free fall in the reference frame of
locally nOll-rotating observers are (see Appendix D.5.2):

aq, = O.

ar = E:A [(r2+a2)2(a2cos28-r2)+4Mr3a2sin28],

2 . 28 Mr(r2+ a2)
ao=a Sill Ell'

This vector is related to a as follows:

a= -Vlna.

(3.3.17)

(3.3.18)

The tensor of deformation rates of the reference frame can be written in the form
(see Appendix D.5.2)

Drr = Dre = Dee = D¢q, = 0 ,

Macdonald (1986)]. We invariably hold to the former viewpoint. We have mentioned that several
terms are used to indicate the chronometric reference frame (see page 61). Partly this "discord" has
historical roots, but it continues to the present.
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Dr ¢ = -Ma [2r2 (r2 + 0,2) + E(r2
- a2 )J sin2 0 (E3

fl A t 1
/

2
,

Do¢ = 2Mr 0,3 sin3 0 cosO fll/2 (E3 A t 1/ 2 ,
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(3.3.19)

(3.3.20)

and the vorticity tensor Wik = O.
The introduced frame of reference has no singularities at the static limit surface

and extends into the ergosphere up to the boundary of the black hole, r = r+. At
r ::; r+, descent along r necessarily occurs in addition to rotation around the black
hole. At r = r+, the reference frame of locally non-rotating observers has a physical
singularity: ar -+ 00 as r -+ r+ [see formula (3.3.17)J.

As we approach the event horizon, the angular velocity W of locally non-rotating
observers tends to the limit

a a
W+ = 2M r+ = r~ + 0,2 •

This limit is constant at the horizon, being independent of O. It is called the angular
velocity of rotation of the black hole (or horizon), nH . Restoring the dimensional
constants e and G, we have

ae

r~ + 0,2 '
(3.3.21 )

J
0,=-.

Me
(3.3.22)

At spatial infinity, the reference frame of locally non-rotating observers trans
forms into the same Lorentz frame as the Boyer-Lindquist coordinate system (the
chronometric reference frame) does.

To conclude this section, consider the precession of gyroscopes in the reference
frame of locally non-rotating observers. Because of the absence of vorticity (Wik = 0),
this set of observers has the following property. Single out an observer "I, and consider
a local non-rotating frame K. The mutually orthogonal unit vectors forming the
frame K are Fermi-transported along the world line of the chosen observer (see, e.g.,
Synge (1960) and Appendix A.ll). Consider now another observer "I' from the set.
Then the direction to this observer "I' determined in the local frame K always remains
the same. Certainly, the distance between "I and "I' may depend on time. It remains
unchanged only if the system of observers is rigid, Dij = O. Evidently, there is no
precession of gyroscopes in the reference frame K.

On the other hand, it is said in the monograph of Misner, Thorne, and Wheeler
(1973), that gyroscopes precess with respect to locally non-rotating observers at an
angular velocity

9M [w.o fll/2 w.r ]
2 -ef - ---eli '

9tt - W 9¢¢ P P
(3.3.23)
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Figure 3.3: Tilting of the diagonal OA owing to anisotropic deformation of a volume
element along the directions OB and OC.

where ei' and eij are unit vectors along rand e, respectively, and the quantities go(3

are taken from (3.2.1). Is it possible to make these statements compatible?

The paradox is solved in the following way. Recall that the motion of a small
element of an arbitrary frame of reference with respect to a chosen frame K consists
of a rotation around the instantaneous rotation axis and of a deformation along the
principal axes of the deformation rate tensor. In the case of no rotation (Wik = 0), we
have only deformation. A gyroscope whose center of mass is at rest in the reference
frame K does not precess with respect to the principal axes of the deformation rate
tensor. If lines comoving with the frame of reference (lines "glued" to it) are traced
along these directions, a gyroscope cannot change its orientation with respect to these
lines. But this does not mean that the gyroscope does not change its orientation with
respect to any line traced in a given element of volume in the comoving reference
frame. Indeed, Figure 3.3 shows that anisotropic deformation tilts the lines traced,
say, at an angle of 45° to the principal axes of the deformation tensor, so that they
turn closer to the direction of greatest extension. The gyroscope precesses with
respect to these lines even though Wik = O. It is this situation that we find in the
case of locally non-rotating observers in the Kerr metric.

Consider locally non-rotating observers in the equatorial plane. Everywhere Wi!' =
0, and formulas (3.3.19) imply that only the component Dr</! is nonzero. This means
that the instantaneous orientations of the principal axes of the deformation tensor lie
at an angle of 45° to the vectors ei' and e~. Note that the coordinate lines are "glued"
to the reference frame. A gyroscope does not rotate with respect to the principal axes
but, in view of the remark made above, does rotate relative to the rjJ coordinate line,
and hence relative to e~ (and therefore relative to the vector er, perpendicular to e~,

which is not "glued" to the reference frame; see below).

If a locally non-rotating observer always orients his frame vectors along the direc
tions er, e~, and eli, the gyroscope thus precesses with respect to this frame as given
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(3.4.1)

by formula (3.3.23) although in the observers frame of reference we have Wik = O. The
efl e~, eii frame is a natural one; the precession of a gyroscope must be determined
with respect to this frame because it is dictated by the symmetry of the space around
the observer. Nevertheless, we could introduce a different frame, a frame which is
also fixed to locally non-rotating observers but does not rotate with respect to the
instantaneously comoving Lorentz frame. Obviously, gyroscopes do not precess in
such a frame.

Finally, we notice that if we choose, at some instant of time, one system of coor
dinate lines "glued" to locally non-rotating observers and oriented strictly along r,
and another system oriented along </>, the coordinate lines directed along </> slide with
time in the "absolute" space along themselves, while the lines perpendicular to them
"wind" on the black hole and become helical because they are dragged by a faster
motion of the observers located closer to the black hole; hence, these lines rotate with
respect to the </> lines.

3.4 Celestial Mechanics Near a Rotating
Black Hole

3.4.1 Equations of motion. First integrals

Consider the motion of test particles along geodesics in the gravitational field of a
rotating black hole. In the general case, the trajectories are fairly complicated be
cause the field has no spherical symmetry. For detailed analysis, see Bardeen et al.
(1972), Stewart and Walker (1973), Ruffini and Wheeler (1971b), Misner, Thorne,
and Wheeler (1973), Sharp (1979), Chandrasekhar (1983), Shapiro and Teukolsky
(1983), Dymnikova (1986), and Bibik et al. (1993). Important aspects of the grav
itational capture of particles by a rotating black hole were treated by Dymnikova
(1982) and Bicak and Stuchlfk (1976). The references given above cite numerous
original publications.

We consider the motion of test particles with respect to the "absolute" space in
troduced in Section 3.2, that is, with respect to the rigid lattice of the chronometric
reference frame described by the Boyer-Lindquist coordinates (see Section 3.3). Be
cause of the symmetries of the Kerr spacetime, there exist four integrals of motion,
and equations of motion can be written in the form (see Appendix D.4)

E dr = ±nl/2
d)' ,

E dO = 0.1/2
d)' ±u ,

d</> Lz a [ (2 2) ]E - = -- - aE + - E r + a - L a
d)' sin20.6. z ,

(3.4.2)

(3.4.3)



70 CHAPTER 3. ROTATING BLACK HOLES

where

(3.4.4 )

(3.4.5 )

(3.4.6)

Here, m is the test particle mass; ). =Tim; T is the proper time of the particle;
E is the constant energy of the test particle; L z is the constant projection of the
angular momentum of a particle on the rotation axis of the black hole. The quantity
Q is the integral of the motion found by Carter (1968a):9

(3.4.7)

where Po is the () component of the four-momentum of the test particle. The motion
of an ultra-relativistic particle corresponds to the limit as m -+ O. It should be noted
that the signs ± which enter (3.4.1) and (3.4.2) are independent from one another.

The physical meaning of the Carter integral of motion Q can be obtained by
considering motion of a particle at a large distance from the black hole, where the
metric takes the asymptotic form (3.2.3). The total angular momentum L of such a
particle is

In the asymptotic region equations (3.4.2) and (3.4.3) take the form

2. d¢J Lz
ml' sm (}oo -d = -.-()- ,

T sm 00

Using these relations, we get

Q = L2
- L~ - a2 (E2

- m 2
) cos2

(}oo·

(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)

In the Schwarzschild spacetime Q + L; is the square of the conserved total angular
momentum of the particle.

9 E and L z are constant since the spacetime is stationary and axisymmetric. Integral of motion
Q is implied by the existence of a Killing tensor field ~pv in the Kerr metric. For the particle with
the four-velocity uP the conserved quantity is JC = m 2{pv uP u V

• This quantity is connected with
the integral of motion Q as Q = JC - (Ea - L,)2. (See Carter (1968a, 1973a, 1977), Walker and
Penrose (1970) and Appendix 0.4).
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3.4.2 General properties
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The geodesic world line of a particle in the Kerr metric is completely determined
by the first integrals of motion E, Lz , and Q. Consider n given by (3.4.5) as the
function of r for fixed values of other parameters

(3.4.12)

At large distances the leading term ('" r 4 ) on the right-hand side is positive if E 2 >
m 2

• Only in this case can the orbit extend to infinity. It is possible to show [Wilkins
(1972)] that, ill fact, all orbits with Elm> 1 are unbound except for a "measure
zero" set of unstable orbits. For E2 < m2 the orbit is always bounded, i.e., the
particle cannot reach infinity.

To study qualitative characteristics of the motion of test particles in the Kerr
metric, it is convenient to use the effective potential. Let us rewrite n as

(3.4.13)

where

(3.4.14)

The radial turning points n = 0 are defined by the condition E = V(r) , where

V± = {3 ± / {32 - 01 .
o

(3.4.15)

The quantities V± are known as the effective potentials. They are functions of 1', and
of integrals of motion L z and Q as well as the parameters M and a characterizing the
black hole. A general discussion of the topology of sets of the parameters for which
the motion is possible can be found in [Zakharov (1986, 1989)].

The limiting values of the effective potentials V± at the infinity and at the horizon
are

(3.4.16)

where w+ is the angular velocity (3.3.20) of the black hole. The motion of a particle
with energy E is possible only in the regions where either E ;::: V+ or E ::; V_.
Expression (3.4.12) for n remains invariant under transformations E -+ -E, L z -+
- Lz relating these regions. In the Schwarzschild geometry the second region E ::; V_
is excluded because E 2: 0 in the exterior of the black hole, while V_ < o.
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Simple analysis shows that for the motion in the Kerr geometry with E2 > m 2

there can exist at most two turning points, while for E2 < m2 there cannot be more
than three turning points [Dymnikova (1986)].

Consider now the equation (3.4.2). Since 8 ~ 0, bounded motion with E 2 < m2

is possible only if Q ~ O. The bounded orbit is characterized by the value Q == 0
if and only if it is restricted to the equatorial plane. Non-equatorial bounded orbits
with e= const do not exist in the Kerr metric. For Q 2: 0, there exist both bounded
and unbounded trajectories. They intersect the equatorial plane or (for Q == 0) are
entirely situated in it. The particles with Q < 0 never cross the equatorial plane and
move between two cones e == e+ and e == e_, where e± are solutions of the equation
8= O.

3.4.3 Motion in the equatorial plane

First, we consider the characteristic features of the motion of particles in the equato
rial plane of a rotating black hole. In this case, the expressions for dr / d>. and d¢J/ d>.
can be written in the form

d¢J (r - 2M)Lz + 2o.M E
d>' rtl.

(3.4.18)

These expressions are analogues of equations (2.8.1)-(2.8.2) for a Schwarzschild black
hole. An analysis of the characteristics of the motion is performed in the same way
as in Section 2.8 by using the effective potential (3.4.15).

The most important class of orbits are circular orbits. For given E and L z the
radius 1'0 of a circular orbit can be found by solving simultaneously the equations

dRI =0.
dl'

TO

(3.4.19)

One can also use these equations to obtain the expressions for the energy Ecire and
angular momentum Loire as functions of the radius r of the circular motion [Bardeell,
Press, and Teukolsky (1972)]

E r 2
- 2Mr ±o.JlVfT

'eire/
m == r(I·2 _ 3Mr ± 20. .,fiJT)1/2 '

.,fiJT (r 2 T 20. JlVfT + 0.
2

)

Loire/m = ± r(r2 _ 3Mr ± 20. JlVfT )1/2 .

(3.4.20)

(3.4.21)



3.4. Celestial Mechanics 73

The upper signs ill these and subsequent formulas correspond to direct orbits (i.e.,
corotatillg with L z > 0), and the lower signs correspond to retrograde orbits (counter
rotating with L z < 0). We always assume that a 2: O. The coordinate angular velocity
of a particle at the circular orbit is

deP ± ..;x;r;.
Weire = dt = r 2 ± a..;x;r;. . (3.4.22)

Circular orbits can exist only for those values of 1" for which the denominator in
(3.4.20) and (3.4.21) is real so that

r 2
- 3M1" ± 2a vAJ;. ? O. (3.4.23)

(3.4.24)

The radius of the circular orbit closest to the black hole (the motion along it being
at the speed of light) is

l"photon = 2M { 1 + cos [~ arccos (T :r)]}.
This orbit is unstable. For a = 0, Tphoton = 3AI, while for a = AI, 1"photon = !Vi
(direct Illotion) or T photon = 4M (retrograde motion).

The circular orbits with T > T photon and Elm 2: 1 are unstable. A small pertur
bation directed outward forces this particle to leave its orbit and escape to infinity
on an asymptotically hyperbolic trajectory.

The unstable circular orbit on which Eeiee =m is given by the expression

(3.4.25)

These values of the radius are the minima of periastra of all parabolic orbits. If
a particle moving in the equatorial plane comes in from infinity (where its velocity
Voo « c) and passes within a radius Tbind, it will be captured.

Finally, the radius of the boundary circle separating stable circular orbits from
unstable ones is given by the expression

(3.4.26)

where

(3.4.27)

The quantities Tphoton, Tbind, and Tbound as the functions of the rotation parameter
alM are shown in Figure 3.4.

Table 3.4.3 lists Tphoton, rbind, and Tbound (in units of Tg = 2GMlc2
) for a black

hole rotating at the limiting angular velocity, a = M, and gives a comparison with
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Figure 3.4: rphotoll' rbilld, and rbOUlld as the functions of the rotation parameter (tIM.
The quantities corresponding to the direct and retrograde motions are shown by dashed and
dotted lines, respectively.

the case of a = O. Note that as a -+ M, the invariant distance from a point l' to the
horizon 1'+, equal to

i T r'd1"

T+ .6. 1/ 2(r') ,

diverges. As a result, it is not true that all three orbits coincide in this limit and lie
at the horizon even though for 1., > 0 the radii r of all three orbits tend to the same
limit r + [see Bardeen et at. (1972)].

Finally, we will give the values of specific energy Elm, specific binding energy
(m - E)/m, and specific angular momentum 11., I/mM of a test particle at the last

Orbit a=O a=M
1.,>0 1.,<0

rphoton 1.5 0.5 2.0

rbind 2.0 0.5 2.92

rbound 3.0 0.5 4.5

Table 3.1: rphotoll' rbilld, and rbOUlld (in units ofrg =2GMlc2
) for anon-rotating (a =0)

and extremely rotating (a = M) black holes.
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stable circular orbit, 1'bound (see Table 3.4.3).

a=O a=M
£>0 £<0

E/m J819 Jl13 }25/27

(m - E)/m 0.0572 0.4236 0.0377

1£I/mM 2..)3 2/..)3 22/3..)3

Table 3.2: Specific energy Elm, specific binding energy (m - E)/m, and specific angular
momentum IL I/mM of a test particle at the last stable circular orbit.
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Equation (3.4.17) shows that particle motion with negative E is possible in the
neighborhood of a rotating black hole. Let us solve this equation for E:

The positive sign of the radical was chosen in order to have the four-momentum of
the particle pointing into future light cone [Misner, Thorne, and Wheeler (1973)].
In fact, for motion in the equatorial plane equation (3.4.4) implies that dt/d>' > 0
only if E > 2aM£./(1'3 + a21' + 2Ma2 ), so that the negative sign of the radical in
(3.4.28) is excluded. The numerator in (3.4.28) is negative if £ < 0 and the first
term is of greater magnitude than the square root of the expression in brackets. The
terms in the last parentheses can be made arbitrarily small (m '-t 0 corresponds to
the transition to an ultra-relativistic particle, and d1' / d>' '-t 0 is the transition to
the motion in the azimuthal direction). Then E may become negative if we choose
points inside the ergosphere, l' < 1'8(' Additional constraints appear if m i= 0 and
dr/d>. i= O.

The expression (3.4.28) holds only for () = IT /2. It is easy to show that orbits with
negative E are possible within the ergosphere for any () i= 0 and e i= IT. This follows
from the fact that the Killing vector e(t) is spacelike inside the ergosphere. The
energy E is defined as E = -PI-< ~tt). Local analysis shows that for a fixed spacelike
vector e(t) it is always possible to find a timelike or null vector pI-< representing the
momentum of a particle or a photon so that E is negative. Orbits with E < 0 make
it possible to devise processes that extract the "rotational energy" of the black hole.
Such processes were discovered by Penrose (1969). This phenomenon and its physical
implications are discussed in detail in Section 7.1.
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3.4.4 Motion off the equatorial plane

Now we consider some forms of motion of test particles off the equatorial plane. The
simplest case is when particles are moving quasi-radially along trajectories on which
the value of the polar angle B remains constant, B = Bo. The relation between the
integrals of motions corresponding to this type of motion can be found by solving
simultaneously the equations

e(Bo) = 0, del
dB 8

0

= o. (3.4.29)

There always exist trivial solutions: eo = 0, Bo = IT, and Bo = IT12. The first two
solutions correspond to motion along the axis of symmetry, pcl.';sing either through the
"north" or "south" pole. The last solution corresponds to motion in the equatorial
plane, which we already discussed. If we exclude these cases, the relations between
the integrals of motion can be written in the form

(3.4.30)

(3.4.31 )

Equation (3.4.30) shows that motion with constant B eo is possible only when
Elm> 1 (unbounded motion). For this motion Q < O. We mentioned this fact
already earlier.

Non-relativistic particles moving at parabolic velocity (voo = 0) and zero angular
momentum (L z = 0) form a special limiting case. Such particles fall at constant e
and are dragged into the rotation around the black hole in the latitudinal direction
at angular velocity (3.3.14). Therefore, these particles fall radially at each point in
the reference frame of locally "non-rotating observers" .

Another important limiting case is the infall of ultra-relativistic particles (pho
tons) which move at infinity with dBld).. = 0 and Lz = aEsin2 e. Equations (3.4.1)
(3.4.4) reduce for such particles to

dr
d)" = -E,

dB
d)" =0,

dt
d)"

(3.4.32)

The world lines of these photons will be used in constructing the I<crr coordinate
system (Section 3.5).

3.4.5 Gravitational capture

By analogy to Section 2.9, consider the gravitational capture of particles by a rotating
black hole [this topic is reviewed in Dymnikova (1986)].
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Figure 3.5: The capture impact parameter for particles moving with Voo ---t 0 at right
angles to the rotation axis of a black hole with a = M. Coordinate axes are marked off in
units of M /voo ' The x-direction is in the equatorial plane and z-direction is perpendicular
to it.
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The impact parameter b.L for capture of a non-relativistic particle moving in the
equatorial plane is given by the expression

(3.4.33)

The-capture impact parameter for non-relativistic particles falling perpendicularly to
the rotation axis of the black hole with a = M plotted in Figure 3.5 [Young (1976)].
The corresponding capture cross-section is

(3.4.34)

The impact parameter of particles falling parallel to the rotation axis, bll , can be
found in the following manner. Let us define bll = blllM, ii = aiM. Then bll is found
as the solution of the equation

(3.4.35)

where qo = v~(b~ - ii2
). If ii = 1, then

(3.4.36)

Consider now ultra-relativistic particles. The impact parameter of capture, b.L'
for motion in the equatorial plane is

b.L = {8COS3[~(1r-arCCOSii)] +ii,

M _ 8 cos3 Garccos 1ii I) +ii , L z < O.
(3.4.37)
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The capture cross-section for photons falling perpendicularly to the rotation axis of
the black hole with a = M is

(;3.4.38)

For photons propagating parallel to the rotation axis of the black hole with a = M,
we have

b
M

il = ')(1· + 1n2 ), - 23 3 "1 2
_ V " (Til - . 7f 11'\ • (:~.4.:3!J)

A comparison of cross-sections given in this section with those of Section 2.9 for
a = 0 demonstrates that a rotating black hole captures incident particles with lower
efficiency that a non-rotating black hole of the same mass.

3.5 Spacetime of a Rotating Black Hole

Let us consider some general properties of the spacetime of a rotating black hole
described by the solution of (3.2.1). At first, we introduce a coordinate system which
does not have coordinate singularities at the event horizon r+ ill the same manner as
was done in the Schwarzschild spacetime. 1o In that case we could use the world lines
of photons moving the center along the radii as coordinate lines [see (2.4.11)]. The
world lines of photons moving toward a rotating black hole can also be chosen, but
now the trajectories of the photons wind around the black hole in its neighborhood
because they are dragged into rotation by the "vortex" gravitational field. Therefore,
if the black hole rotates, we have to supplement the substitution of new coordinates
[like (2.4.11)] with a "twist" in the coordinate ¢.

The simplest expression for the metric is obtained if we use the world lines of
photons that move at infinity at constant eand whose projection of the angular mo
mentum on the rotation axis ofthe black hole is Lz = aEsin2 e[see equation (3.4.30)],
where E is the photon energy at infinity. It can be shown that a transition to such
a reference frame of "freely falling" photons is achieved by a change of coordinates:

2 ? dr
dv = dt + (r +a-) Ll '

- dr
d¢ =d¢ +a Ll . (3.5.1)

The resulting coordinates are known as the Kerr ingoing coordinates [Kerr (1963)]:

(3.5.2)
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2

Figure 3.6: Spacetime of a rotating black hole: I-null world line along the static limit,
2-"outgoing" photons forming the horizon, 3-photons falling into the black hole.

These coordinates are regular on the future event horizon.
The general properties of the geometry of a rotating black hole are best seen

on a spacetime diagram in Kerr ingoing coordinates shown in Figure 3.6. Here the
time coordinate f = v - T is substituted for the coordinates v. We have a.lready
employed such diagrams in the Eddington coordinates in Chapter 2. The case we
are considering now is essentially different in that the Kerr metric has axial but not
spherical spatial symmetry.

Since one of the rotational degrees of freedom (the rotation translating a point
along the "meridians" of fJ) is not shown in these diagrams, they display information
only on one chosen section (e.g., the equatorial plane 0 = IT /2, as we see on Figure 3.6).
This figure plots several world lines of photons that are important for describing the
properties of the Kerr geometry. The first thing to remember is that the closer the
coordinates are to the horizon, the more they are twisted around the black hole. In
these coordinates the world lines of photons falling into the black hole are mapped
by straight lines. In Boyer-Lindquist coordinates (a rigid grid; see Sections 3.2 and
3.3), they would appear twisted. Here the coordinate lines are twisted just as the
photon trajectories are, so that these trajectories appear as straight with respect to
the coordinate lines (in fact, we choose the coordinate lines precisely to have them
coincide with the trajectories of the falling photons). At the static limit Tst [see
(3.3.7)], the T, 0, 1> = const world line is a null line tangent to the light cone. At
T < Tst, all photons and particles necessarily participate in the rotational motion
around the black hole, moving at d¢ldl > O. But they can escape from below the

lOaf course, we ignore the trivial coordinate singularity at the pole of the spherical coordinate
system: everyone is used to it and its meaning is obvious.
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static limit to l' > rst.

At the horizon, all timelike and null world lines point into the black hole, except
a single null line, unique for each point of the horizon, of an "escaping" photon; this
null line is tangent to the horizon. This family of world lines "winds up" on the
horizon (see Figure 3.6), always staying on it. In Kerr coordinates, the equation of
these null geodesics is

- av
l' = 1'+ , 8 = canst, ¢ = -2-- . (3.5.3)

1'+ +0.2

All other photons and particles have to continue falling into the black hole after they
reach the horizon.

If we put dv = dr = 0 and l' = 1'+ into the metric (3.5.2), we get the following
two-dimensional metric describing the geometry of a section v = const of the event
horizon

(1'2 + 0.2 )2 _
dl 2 = (1'2 + 0.2 cos28) d82 + + sin28d¢2. (3.5.4)

+ r~ + 0.2 cos2 8

The Gaussian curvature K for this metric is [Smarr (1973b)]

1'2 - 30.2 cos2 8
J( = (r~ + 0.2 ) (~ 2 28)3 . (3.5.5)

1'+ + a cos

For a < J3 M /2 the Gaussian curvature is positive. The embedding diagram for this
geometry is shown in Figure 3.7 . For a > J3 M /2, regions near the poles 8 =0 and
8 = 7r have negative Gaussian curvature, and it is impossible to realize this geometry
on a surface of rotation embedded in a three-dimensional flat space. The surface area
of the black hole is

A =f ·.)goo gr/Jr/J d8 d¢ = 47r(r~ + 0.2 ) • (3.5.6)

The Kerr metric is invariant under the transformation t -t -t, ¢ -t -¢ which
transforms incoming light rays into outgoing ones; hence, this transformation can be
performed in (3.5.1). The Kerr outgoing coordinates (u, 1', 8,4», defined as

2 2 dr
dll = dt - (1' + a ) ~ , (3.5.7)

are regular on the past horizon. The equations u = const, 4> = const. describe
the family of outgoing light rays, and the coordinate u at infinity coincides with
the ordinary coordinate of retarded time. The Kerr metric is obtained in these
coordinates from (3.5.2) by the transformation v = -u, 1> = -4>.

In contrast to the Schwarzschild metric, here we do not consider the cont.inuation
of the Kerr metric into the region within the horizon. II The reason is as follows. In

llThe st.ructure of t.he maximal analyt.ic continuat.ion of t.he Kerr-Newman met.ric is discussed in
Section 6.6 .
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Figure 3.7; The embedding diagram for a two-dimensional section of the event horizoll
(v = const, r = r +). The diagram is constr.ucted for the critical value aiM = ,,(3/2 of the
rotation parameter so that the Gaussian curvature vanishes at the poles K(f) = 0) = K(f} =
n) =0.
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the collapse of a spherical body (generating a Schwarzschild black hole), the space
time metric beyond the collapsing body is exactly Schwarzschild one both inside and
outside the black hole. In the collapse of a non-rotating slightly non-spherical body,
the metric outside the black hole rapidly tends to the Schwarzschild metric as t -t 00.

We will see in Chapter 14 that the same property holds inside the Schwarzschild black
hole. The inner region of the Schwarzschild metric thus describes the real "interior"
of a non-rotating black hole.

These arguments do not hold for the Kerr metric. First, when an arbitrary rotat
ing body contracts and turns into a black hole, the metric outside the body cannot
become stationary immediately (and hence cannot be a Kerr metric) because gravita
tional waves are emitted in the course of the collapse. This statement holds both for
the region outside the horizon and for that inside it. Outside the horizon all deriva
tions from the Kerr metric are radiated away via gravitational waves (see Chapter 4),
and the limiting metric at t -t 00 is the Kerr solution (Chapter 6). In the external
spacetime, therefore, the Kerr metric describes the real rotating black hole.

In the region r '" r _ = M - VM2 - a2 inside the horizon, however, the metric
does not tend to the Kerr solution either immediately after the collapse or at later
stages. For this reason, this solution does not describe (inside the horizon) the inner
structure of real rotating black hole (the detailed structure of black hole region inside
the horizon is treated in Chapter 14). Note that all the above-discussed properties of
the black hole spacetime are valid only if M 2: 1a I. Otherwise, the horizon vanishes
from the solution, and it ceases to describe the black hole. Pathological features
appear [Hawking and Ellis (1973)] so that this solution may hardly relate to reality.
From a physical standpoint, the formation of an object with M < I a 1 requires the
compression of a rotating body with such a high angular momentum that at r ;:::: M
the linear velocity of rotation inevitably exceeds the speed of light. Hereafter we
always assume (for uncharged black holes) that M 2: 1a I.
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3.6 Charged Rotating Black Holes

3.6.1 Kerr-Newman geometry

In any realistic situation, the electric charge of a black hole is negligible. As a rule,
the ratio of the charge Q to mass M of a black hole cannot exceed 10-18 [Wald
(1984)]. For example, the charge-to-mass ratio of the electron and the protOI1 are
(q/m)e = 1021 and (q/m)p = 1018

, respectively. The ratio of the gravitational force
to the electrostatic one in the interaction of these particles with the black hole of
charge Q and mass M are, in order of magnitude, qQ /mM. The ratio Q / M cannot
be greater than (q/m)-l; otherwise, charges of like sign would be repelled from the
black hole, while charges of the opposite sign would fall into it and neutralize the
electric charge of the black hole.

However, on theoretical grounds, it would be interesting to discuss, at least briefiy,
the general case of a rotating charged black hole.

The Kerr-Newman metric describing the geometry of a rotating charged black
hole written in Boyer-Lindquist coordinates xl-' = (t,r,O,¢» (similar to (3.2.1) is

ds2 = _ (1 _ 2M1~- Q2) dt2 _ (2Mr - ~)2aSin2 0 dt d¢>

E ( (2M r - Q2)a2sin20)+~ dr2+ E d02+ r2+ a2+ E sin20 d¢>2.

Here we use the standard notations

(3.6.1 )

(3.6.2)

In addition to the gravitational field, the black hole is now surrounded with a sta
tionary electromagnetic field which is completely determined by the charge Q and
rotation parameter a. The vector potential of this field in the Boyer-Lindquist coor
dinates is written in the form

(3.6.3)

If a '= 0, the black hole does not rotate and the metric represents a spherically
symmetric charged black hole with a spherically symmetric electric field (the Reissner
(1916)-Nordstrom (1918) solution).

If the black hole rotates (a =f 0), the electric field is supplemented by a magnetic
field due to the dragging of the inertial reference frames into rotational motion around
the black hole. At large distances from a black hole in the "rigid" reference frame
(chronometric frame; see Section 3.3), which transforms at infinity into the Lorentz
frame, the largest components of the electromagnetic field correspond to a monopole
electric field with charge Q and a dipole magnetic field with magnetic moment /1" =
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(3.6.10)

Qa. Other moments of the field are also expressed in terms of Q and a in a unique
manner [for details, see Cohen and Wald (1971), Hanni and Ruffini (1973)]. For
non-vanishing electric charge, the Kerr-Newman solution has a horizon only if M 2 2:
Q2 + 0.2

• We consider only such solutions (cf. the discussion in Section 3.4).
The event horizon (~ = 0) is defined by the relation l' = 1'+, where

1'+ = M + J M2 - Q2 - 0.2 . (3.6.4)

The surface area of a charged rotating black hole is

A = 47f(r~ + 0.2) . (3.6.5)

A static limit surface (gft = 0) is defined as l' = r.t., with

r.t. = M + J M2 - Q2 - 0.2cos2 e. (3.6.6)

As for the uncharged black hole, the static limit surface is located outside the event
horizon and crosses it at two polar points e = 0 and e = 7f. As before, the region
1'+ < l' < r.t. between the static limit surface and the horizon is called the eTgospheTe.

3.6.2 Motion of test particles

The motion of a test particle in the Kerr-Newman metric can be written in a form
similar to (3.4.1)-(3.4.4). We denote by E the conserved energy of the particle with
charge q and mass m, and by LZ! the conserved projection of angular momentum on
the black hole axis. Then we have

E = - (Pt + qAt) , L z = P1> + q A1>, (3.6.7)

where Po is the four-momentum of the particle. The equations of motion are written
in the form

E :: = ± {[E(r2+ 0.2) - Lz a - qQrf - ~ [m2r2+ (L z - 0.£)2 + Qj}I/2,(3.6.8)

E ~~ = ± { Q - cos2e [a2(m2 _ E2) + si~;e]} 1/2, (3.6.9)

drj> ( L.) a [ 2 2 ]I: - = - aE - --:-i- +- E(r +a ) - L z a - qQr ,
d)" sm e ~

E :~ = - a(aE sin2 e- L z ) + (1'2 + 0.
2)~ -1 [E(r2 + 0.2) - L z 0.- qQr] (3.6.11)

[the expression for Q is given in (3.4.7)]. The signs ± which enter (3.6.8) and (3.6.9)
are independent of each another.

It must be emphasized that in this general form, the equations describe not only
phenomena specific to black holes (these were mostly discussed in the preceding sec
tions) but also their combination with ordinary effects caused by the motion of a test
particle in an electromagnetic field. Special types of motion of charged test particles
in the Kerr-Newman geometry were analyzed by Johnston and Ruffini (1974), Young
(1976), Bic<ik el at. (1989), and Balek et at. (1989).
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3.7 Problem of "visualization" of Black Holes and
the Membrane Paradigm

In this as well as in the previous chapter we used different reference frames and various
diagrams for visualizing numerous properties of black holes. Each diagram helps our
intuition to catch one or another feature of these unusual objects. But probably
neither of them is well suited for describing all of the details. This happens because
the spacetime of a black hole is four-dimensional and highly curved, which makes
the problem of its "visualization" very complicated. Fortunately, there are different
tricks which can help. For example, to study spherically symmetric collapse it is
possible to omit angular coordinates and to reduce the problem to a two-dimensional
one. For different black hole problems different approaches could be specially useful.
To study t.he interior of a black hole, it is useful to "look" at the processes through
a "freely-falling observer's eyes" (Section 2.4). On the other hand, for many aspects
of physics in the black hole exterior the point of view of a distant observer can be
convenient. In the vicinity of the horizon the point of view of the "Rindler observer"
is appropriate (see Appendix C). Penrose-Carter conformal diagrams, which will be
described in Chapter 5 , allow one easily to get information about the global causal
structure of spacetime in the presence of a black hole.

For many types of gedanken experiments with black holes and especially in the
numerous astrophysical applications it is very convenient and fruitful to treat a black
hole as some "object" in space and time, which has physical properties more or less
similar to ordinary astrophysical objects (planets, stars, etc.), and hence which are
familiar to us. The natural idea is to surround a black hole by some surface which is
considered as the "boundary" of a black hole. The interaction of the black hole with
the outside world can then be described in terms of special boundary conditions at
this "boundary" surface. One of the possibilities is to identify the event horizon with
such a surface. The corresponding formalism was developed by Znajek (1978) and
Damour (1978). This formalism is very useful, but there is one property by which
this "boundary" differs from the boundaries of ordinary bodies: The event horizon is
null, while the boundaries of ordinary bodies are timelike. Thorne and collaborators
[Thorne et at. (1986)J proposed to choose the "boundary" surface representing a
black hole to be located slightly outside the event horizon. This surface is known
as a stretched horizon. It is timelike and possesses a number of useful properties
which allowed Thorne and collaborators to develop a powerful approach to black
hole physics which they called the membrane paradigm. In the framework of this
paradigm black holes are described as bodies which not only have mass, charge, and
angular momentum, but have definite entropy, surface temperature, slIrface densities
of charge and electric current, surface viscosity, and so on.

The membrane approach uses a (3+1)-split of spacetime outside the black hole,
discussed in Section 3.2. The most striking property of a black hole as an isolated
object is that from the point of view of an external observer all physical processes
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are infinitely slowed down near the event horizon. This is connected with the delay
of signal propagation and the "freezing" of time in the regions close to the horizon
in a system of an external observer (lapse function Q -t 0; see (3.3.16)). For a
rotating black hole we identify the reference frame of an external observer with the
ZAMO frame (see Section 3.3). In the non-rotating limit it reduces to the standard
Schwarzschild trarne. In both cases in the vicinity of the horizon these frames coincide
with very high accuracy with the Rindler reference frame (see Appendix C).

A freely falling particle in the spacetime of a rotating black hole crosses the
horizon in a finite proper time. From the point of view of a distant observer it takes
an infinite time. Therefore, its velocity is slowed down, while its angular velocity
measured by a distant observer tends to a universal limit (angular velocity of the
black hole): [0 = c3a/(2GMr+) (see (3.3.21)). This is the same angular velocity as
for ZAMO observers near the horizon. In this sense freely falling particles become
"frozen" at the horizon. The same happens with physical fields (see Section 8.3). This
means that from the point of view of an external observer the structure of the field
in the very thin layer near the horizon is very complicated. In fact, all the previous
history of the field evolution and particles which have fallen down is imprinted in this
layer. The data in this layer practically do not influence the events in the exterior
region. If we are not interested in all these details in the immediate vicinity of the
horizon, we can restrict our reference frame by a stretched horizon. The position of
the stretched horizon is chosen so that it coincides with an equipotential surface of the
lapse function Q =const. The exact value of Q is not specified, but it is chosen to be
sufficiently small. As a result of the "freezing" effect, basic physical characteristics
near the stretched horizon depend mainly on Q. It is convenient to "normalize"
them by multiplying by a suitable power of Q. The boundary conditions for these
"normalized" quantities at the stretched horizon to leading order are independent of
the position of the stretched horizon. For small values of Q the stretched horizon
is practically a membrane, which can be penetrated by fields and particles from the
exterior, but practically nothing can go through it from inside.

The properties of this membrane are quite attractive. The stretched horizon is
a timelike surface as it is for an ordinary body. For concrete physical problems
one can simply exclude the black hole interior from our considerations, by imposing
special boundary conditions at the stretched horizon. In the process of stretching
the horizon the entire distant past history of the fields at t = const close to the
event horizon is cut off and ignored (see Figure 3.8). The concept of the stretched
horiron works perfectly not only for stationary black holes but also in fully dynamical
situations; for example, for the collision of a body of finite mass with a black hole.
The membrane paradigm is discussed in detail in the book by Thorne et al. (1986),
where the relevant bibliography can be found. In our book we shall discuss some
aspects of the membrane approach in Chapter 8 in connection with astrophysical
applications of black hole physics. A special attraction of the membrane approach
for the consideration of astrophysical problems is connected with the possibility of
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Figure 3.8: (3+1)-split of spacetime close to the black hole horizon: 1 - black hole event
horizon, 2 - stretched horizon, 3 - t =const sections.

transferring directly to black hole problems methods of electrodynamics and plasma
physics developed earlier for pulsar physics.

In concluding this section, we would like to emphasize that the membrane ap
proach is a useful technique, but certainly there are no physical membranes outside
a black hole. A freely falling observer will see no "special membrane". This surface
in spacetime as well as the event horizon have no special local properties which allow
one to distinguish their points from other points of the spacetime. A free falling ob
server discovers that the membrane with its "familiar properties" is fictitious, while
an observer who remains outside the stretched horizon might insist that it (as well as
surface charges, currents, and so on) is "perfectly real". Let us stress once again that
the membrane approach is useful only for the description of physics in the exterior
region. When we are interested in physics in the black hole interior, we should use
other methods.



Chapter 4

Black hole Perturbations l

4.1 Introduction

This chapter is devoted to problems involving perturbed black holes. We describe the
evolution of physical fields in the exterior of Schwarzschild and Kerr black holes. As
we shall see, an understanding of wave propagation in black hole geometries opens
the door to studies of:

• The radiation from a slightly non-spherical gravitational collapse

• The radiation generated by bodies falling into black holes

• The late-time (after black hole formation) behavior of the gravitational field

• Scattering and absorption of waves by black holes

• The stability of the Schwarzschild and the Kerr solutions

• The generation of gravitational waves by coalescing binary systems

and several other relevant problems.
The physical fields considered here are always assumed to be weak in the sense

that the effect of their energy-momentum on the background metric of a black hole
can be neglected. In essence, we consider only linear perturbations of Schwarzschild
and Kerr black holes. One may object that such studies can have little relevance
since general relativity is a manifestly nonlinear theory. However, it turns out that
the linear approximation is surprisingly robust. It provides useful approximations
that serve as benchmark tests for fully nonlinear studies.

Theoretical studies of perturbed black holes were pioneered by Regge and Wheeler
in the late 1950's. Their aim was to find whether a small perturbation of a black hole
would become unbounded if evolved according to the linearized version of Einstein's
equations. If that were the case, black holes could clearly not be considered as

I Written jointly with N. Andersson
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astrophysically relevant. In their original work, Regge and Wheeler (1957) studied
perturbations of the metric directly. In principle, this is done by introducing

g - gbackground + h
I1v - I1v I1v, (4.1.1)

where Ihl'v I is considered (in Some sense) small. Then only terms linear in hJlv are
retained in all calculations. This way it can be shown that a wave equation with all
effective potential governs linear perturbations of a Schwarzschild black hole. This
equation is (for obvious reasons) now known as the Regge- Wheeler equation.

An infinitesimal coordinate transformation xl' -t xlJ +elJ(x) in the decomposition
(4.1.1) implies that the metric perturbations will transform as hlJv -t hjtV + 2€(It;v)'
One would expect that the quantity determined by the Regge-Wheeler eqllatioll de
pends on the chosen gauge. However, although the original derivation of Regge and
Wheeler was carried out in a specific gauge, one can show that the quantity gov
erned by the final wave equation is gauge invariant [Moncrief (1974a)J. Thus, all the
information contained in the Regge-Wheeler equation is physically relevant.

One of the first applications of the theory of small gravitational perturbations
was an analysis of a collapse of slightly non-spherical rotating bodies [Doroshkevich,
Zel'dovich, and Novikov (1965) and Novikov (1969)]. This analysis shows that only
rotational perturbations, are not "dying", while all other deflections from sphericity
disappear.

The approach of Regge and Wheeler was later extended to the case of electrically
charged (Reissner-Nordstr6m) black holes [Zerilli (1974), Moncrief (l974bc, 1975),
Bicak (1972, 1980b, 1982)], but the problem was found to be far more complicated
in the case of rotating (Kerr) black holes. That it is possible to reduce also the Kerr
problem to a single wave equation was shown by Teukolsky (1972, 1973) who used
the Newman-Penrose formalism (see Appendix E). This leads to an elegant - gauge
and tetrad invariant - description of perturbed black holes.

This chapter will deal only briefly with the derivation of the perturbation equa
tions for black holes. We will focus more on their application in various physical
scenarios. Nevertheless, it is important to understand that the formulation of these
problems required an enormous effort by many physicists. An interesting account
that puts some of this work into its proper historical context has recently been given
by Thorne (1994b). Here the emphasis will be on the formulation of various physically
relevant problems. We will outline the method of solution and highlight the most
important conclusions. We refer the interested reader to the original texts for furt.her
details. A more complete mathematical treatment can be found in Chandrasekhar's
book (1983). A physically clear representation of the main aspects can be fonnd
in the monograph of Misner, Thorne, and Wheeler (1973). Perturbation theory is
reviewed and used in the context of gravitational synchrotron radiation in Breuer's
book (1975). The scattering theory in the context of black holes is discussed in great
detail in the book by Futterman, Handler, and Matzner (1988). Review articles that
contain relevant material cover gravitational collapse and power-law tails [Thorne
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(1972)], the astrophysics of black holes [Eardley and Press (1975)], gravitational
waves [Thorne (1978)], quasinormal modes [Detweiler (1979)], the mathematical de
scription of the perturbation problem [Chandrasekhar (1979b)] and test bodies falling
into black holes [Nakamura, Oohara, and Kojima (1987)]. These texts provide useful
complements and alternatives to the present material [see also Andersson (1997)J.

4.2 Weak Fields in the Schwarzschild Metric

4.2.1 Scalar field near a spherically symmetric black hole

In order to demonstrate essentials of the perturbation problem, we begin by consider
ing a test massless scalar field in the Schwarzschild geometry. Even though this case
is somewhat unphysical, we will use it to illustrate the basic concepts in black-hole
perturbation theory throughout this chapter. We do so because the analytical com
plexity of physically more relevant fields (spin 1/2, 1, 2) often obscures the simple
underlying ideas. This is especially true for problems involving Kerr black holes.

A massless scalar field <I> evolves according to the Klein-Gordon equation

(4.2.1)

where g is the determinant of the metric tensor g/Lv' The components of g/LV follow
immediately from the Schwarzschild line element

( 2M) (2M)-1ds 2 = - 1 - -:;:- de + 1 - -:;:- dr 2 + r 2 (d82 + sin2 8drji) . (4.2.2)

Because the metric is spherically symmetric, it is natural to introduce the mode
decomposition

<I> - ue(r,t)v (8 A-.)
lm - ~lm ,tp ,

r
(4.2.3)

where Ylm are the standard spherical harmonics. The function ue(r, t) then solves
the wave equation

(4.2.4)

In the above equation we have used the so-called tortoise coordinate r. that was
first introduced by Wheeler (1955) and that is related to the standard Schwarzschild
radial coordinate r by

(4.2.5)
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Figure 4.1: The effective potential Vi for f. == 0,1,2 as the function of T (a) and T. (b).
The constant in the definition (4.2.7) of T. is fixed so that T. == 0 for T = 3M.

or

I'. = r + 2M log (2~ - 1) + constant. (4.2.6)

We already met this coordinate in Section 2.4.3. It is the natural variable to use in
the perturbation problem because dr. = ± dt are null radial lines in the background
geometry. The choice of integration constant in (4.2.6) is irrelevant in most situations,
but a specific choice can prove useful in considerations of wave scattering by black
holes [Futterman, Handler, and Matzner (1988)J.

If we further assume a harmonic time dependence, Ut{I', t) = Ut{r,w) e-iwt , we get
the ordinary differential equation

[I::; +w2
- Ve{r)] iiAr,w) = O. (4.2.7)

I

As we shall see In Section 4.2.4, this equation has the same form as that derived by
Regge and Wheeler for gravitational perturbations in 1957. Hence, we will from now
on refer to (4.2.7) as the Regge- Wheeler equation.

The effective potential in (4.2.7) can be written

Ve{r) ::::: (1 _2M) [l'{l' + 1) + 2M] ,
r r 2 r 3

(4.2.8)

where M is the mass of the black hole. Thus, the scalar field problem is, in many ways,
remarkably simple. The effective potential Vt{r) corresponds to a single potential
barrier, the maxiJhum of which is at roughly the location of the unstable circular
photon orbit (r = 3M) (see Figure 4.1). Hence, most problems concerning perturbed
black holes involve elements familiar from potential scattering in quantum mechanics.
For example, one would expect waves of short wavelength A « 2M to be easily
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transmitted t.hrough the barrier. Waves with A- 2M will be partly transmitted and
partly reflected, and finally waves with A » 2M should be completely reflected by
the black hole barrier.

Since the potential vanishes at both spatial infinity and the event horizon of t.he
black hole, it follows immediately that two linearly independent solutions to (4.2.7)
behave asymptotically as

(4.2.9)

both as r -t +00 and r -t 2M. The tortoise coordinate differs from what might be an
ordinary radial variable by a logarithmic term. This has the effect that r. -t +00 as
r -t +00 (at spatial infinity), but r. -t -00 as r -t 2M (at the event horizon). Thus,
the semi-infinite interval (2M, +00), representing the spacetime external to the black
hole, is mapped into the infinite interval (-00, +00). The event horizon ha.<; been
"pushed all the way to -00". For large r the logarithmic behavior in (4.2.6) acts in
the same way as the Coulomb logarithmic phase in qtlalltum mechanical problems. It
introduces a phase-shift that arises even at great distances from the black hole. This
effect of the long-range nature of Newtonian gravity (or the Coulomb interaction) is
evident in (4.2.9).

4.2.2 A useful set of basic solutions

In virttlally, all applications of the theory of black holes (a.nd certainly in the astro
physical ones) it is implicitly assumed that a black hole is formed as a result of the
gravitational collapse of matter. The Schwarzschild metric is, of course, valid only in
a region outside the collapsing matter. Similarly, the Kerr metric describes spacetime
accurately only some time after the collapse of a rotating non-spherical body. When
working in the late-time region, it is often convenient to "forget" about the details
of the collapse. For example, to describe the wave scattering by black holes or the
radiation from a moving test particle, it is sufficient to work in the corresponding
Schwarzschild or Kerr metric. But one should keep in mind that these are identical
to the "real" geometry only in the late-time region.

If we want to construct a simple basis in the space of solutions to wave equations
in the black hole spacetime, the following trick proves to be very useful. Consider an
eternal black hole2 with the same parameters as the metric in the late-time region.
We call this the eternal version of the black hole. To specify useful basic solutions,
one can then impose boundary conditions at past infinity and the past horizon in the
spacetime of the eternal version of the black hole. When propagated to the future

2Following adopted tradition, we use the notion "eternal black hole" as the synonym for the
complet.e empt.y Schwarzschild or Kerr spacetime. Strictly speaking, this terminology is not. very
accurat.e since, as we have seen earlier (in Section 2.7), such a spacet.ime always cont.ains bot.h black
and white holes.
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according to the field equations, these solutions evidently form a basis in the late-time
region.

Given the asymptotic behavior (4.2.9), it is easy to define solutions to (4.2.7) that
satisfy simple boundary conditions. One such solution satisfies the causal condition
that no waves should emerge from the black hole. In the notation of Chrzanowski
and Misner (I974) this is the [N-~ode, which is defined by

r. -t -00 ,

(4.2.10)
r. -t +00 ,

where w is assumed to be real and positive. Note that this leaves the actual normal
ization of the solution unspecified. In the problems that we discuss in the present
chapter we never need to specify this normalization. The situation is different when
one considers quantum processes. We will discuss this in more detail in Chapter 10.

It is well known (and easy to demonstrate) that the Wronskian of any two linearly
independent solutions to (4.2.7) must be a constant. Hence, using u~n and its complex
conjugate (the OUT-mode) and evaluating the Wronskian at r. = ± 00, one can show
that

1 + 1Aout 1
2 = 1Ain 1

2
•

Introducing the transmission (T) and reflection (R) amplitudes

(4.2.11 )

1
T=-A. '

In
(4.2.12)

this can be recognized as the standard scattering relation

(4.2.13)

(·1.2.14)

Thus, the part of an incident wave that is not absorbed by the black hole is reflected
back to infinity. The quantities 1T 1

2 and 1R 1
2 are known as the transition and

reflection probabilities (or coefficients), respectively.
A second pair of basic solutions (the UP- and DOWN-modes) can be defined in a

similar way. The UP-mode corresponds to purely outgoing waves at spatial infinity,
and is specified by the asymptotics

{

BOllt(w) eiwr• + Bin(w) e- iwr., 1'. -t -00 ,

iI.?(r.,w) -
e+iwr• , r. -t +00 .

The DOl'I'N-mode is the complex conjugate of this function. The coefflcient.s in
(4.2.14) are not independent of those that defined the IN-mode. Again using constant
Wronskians, one can show that

(4.2.15 )
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Figure 4.2: IN-, UP-,. OUT" and DOWN-modes.

(4.2.16)

A bar is used to denote the complex conjugate. Any two of the set introduced above
(IN-, UP-, OUT-, and DOWN-modes) can be chosen as basic solutions in a given
problem. In the following sections we will typically use the combination IN-UP and
the Wronskian

(4.2.17)

will then prove useful.
Let us digress on the physical meaning of these solutions. By combining the

radial solutions with exp(-iwt), we get functions describing wave propagation. They
have simple physical interpretations. The DO WN-solution satisfies the boundary
condition that there is no radiation escaping to infinity. This means that exactly the
right amount of radiation with just the right phase must emerge from the past horizon
H- to cancel any radiation that might otherwise be scattered back to infinity from a
wave originally incoming from past infinity. Thus, in this solution there is radiation
corning in from infinity, radiation emerging from H- to meet it, and radiation going
down the black hole at H+. The amplitudes of the various waves are such that
DOWN-mode is an acceptable solution to the radial wave equation (4.2.7). The UP
mode is defined analogously by the boundary condition that there be no incoming
radiation from infinity. In a similar way the IN-solution does not contain radiation
outgoing from H-, while the OUT-mode has no radiation going down the black hole,
at H+. The situation is presented graphically in Figure 4.2.
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One can use the diagrams presented in Figure 4.2 as mnemonic rules for the defi
nition of the basic functions. The regions inside the squares represent the spacetime
in the exterior of the eternal version of the black hole. The straight lines at the angle
of 45° represent null rays. Two boundaries :1+ and :1- correspond to asymptotic
future and past infinities. The other two boundaries H+ and H- are the event hOl'i
zon and the past horizon, respectively. We shall see in Chapter 5 that this type of
diagrams can be obtained by special conformal transformations that bring infinitely
removed points of the spacetime to a finite distance. The corresponding Penrose
Garter conformal diagram proved to be a very powerful tool for the study of the
global structure ora spacetime. Asymptotic values of massless fields in an asymptot
ically flat physical spacetime are related to the boundary values at the null surfaces
.1+ and .1-, representing the so-called future and past null infinities. We shall give
the exact definition of an asymptotically flat spacetime and discuss Penrose-Carter
conformal diagrams in more detail in the next chapter. In this chapter we shall refer
to diagrams presented in Figure 4.2 only in order to recall the boundary conditions
used in the definition of different basic solutions.

4.2.3 Weak fields of higher spins

Let us now consider a general massless field with integral spin s in the Schwarzschild
spacetime [Thorne (1976)]. For s = 0 this is the scalar case that was considered above,
s = 1 corresponds to electromagnetic waves, and s = 2 pertains to gravitational
waves. A complete set of gauge-invariant dynamic variables can be found for each
field. That is, there exist a set of functions <1>(8), defined in the exterior of the black
hole, such that [Price (1972a,b), Bardeen and Press (1973)]:

1. <1>(8) and Ot<l>(8) can be fixed at any initial instant of time.

2. Once <1>(8) and Ot<l>(8) are fixed, their evolution is completely determined by a
single wave equation.

3. Once <1>(8) is known, it is straightforward to calculate all relevant quantities for
the field (such as the energy and the angular momentum flux).

4. <1>(8) can be determined from given parameters of the field.

Thus, knowledge of the behavior of <1>(8) is equivalent to knowing the evolution of the
field of interest. The perturbation problem consequently reduces to the one of finding
<1>(8) •

The general approach to this problem is as follows. First, the field is expanded
into spherical harmonics (scalar harmonics for s = 0, vector harmonics for s = 1,
tensor harmonics for s = 2, and so on). Each spherical harmonic is characterized by
its multipole index f: f = 0 for a monopole, f = 1 for a dipole, etcetera. Multipoles for
which f < s do not evolve with time. They correspond to conserved quantities. For
obvious reasons, we consider only the non-trivial "radiative" multipoles with f ;::: s
in the following. For gravitational perturbations only multipoles with e~ 2 are thus
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relevant. A gravitational perturbation with f = 0 describes a change in the black
hole mass, and f =1 corresponds to a displacement as well as a small increment of
angular momentum (rotation of the black hole).

Price (1972a,b) showed that for each radiative multipole (of any spin s) there is
a scalar field <I>~s) that depends only on rand t. From this scalar quantity one can

reconstruct all components of the original field. Each of the functions <I>~s) satisfies
a wave equation [similar to (4.2.4)] with an effective potential. This potential is a
function of f and s (and, of course, rand M as well) and can be written as

(4.2.18)

Hence, the potentials for fields of different spin are very similar. For this reason, one
would expect the evolution of radiative multipoles with different values of s to be
quite similar as well. In his study Price found that multipoles corresponding to f 2: s
are completely radiated away. Thus, only the conserved multi poles remain, and (as
Wheeler put it) "the black hole has no hair".

The case of gravitational perturbations is especially interesting. It will be dis
cussed in more detail in the following section. But before moving on to that discus
sion we refer the reader interested in the analysis of non-classical fields to papers by
Hartle (1971,1972), Unruh (1973, 1974), Martellini and Treves (1977), Iyer and Ku
mar (1978), Lee (1977) and Chandrasekhar (1976b). The books by Chandrasekhar
(198.3) and Sibgatullin (1984) also contain relevant discussions.

4.2.4 Gravitational perturbations of a Schwarzschild black
hole

Gravitational perturbations (s = 2) of a black hole are of special interest because
of the ongoing search for gravitational waves (see Section 9.9 for an introductory
discussion). If we manage to open the gravitational-wave window to the Universe,
it is important that we have some understanding of the physics involved in the gen
eration of such waves. Black holes with their extremely large gravitational field
are considered among the most promising sources of the gravitational waves ill the
Universe [see Thorne (1987, 1994a) for a discussion of the large-scale interferomet
ric gravitational-wave detectors that are presently under construction and possible
sOlll"ces of gravitational waves] . Hence, there has been much work devoted to gravi
tationally perturbed black holes.

Gravitational perturbations are fundamentally different from scalar and electro
magnetic ones. Whereas the latter two correspond to wave fields which evolve in a
fixed background geometry, the gravitational case corresponds to minute changes in
the metric itself. It therefore seems natural to begin by considering a general per
turbation of the Schwarzschild metric. The perturbed metric can be written in the
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general axisymmetric form [Chandrasekhar (1983)]

ds2 = _e2v dt2+ e2'" (d¢ - ql dt - q2 dr - q3 d(})2 + e2
/l2 dr2+ e2IL3 d(}2 . (4.2.19)

In the unperturbed case

2v -21'2 2111e =e =1--,
r

and

eIL3 = r, e'" = r sin (), ql = q2 = q3 = 0 .

When this metric is perturbed by an external agent:

• qj, q2, and q3 become first-order quantities

• Linear increments 81l, 81jJ, 8J.L2, and 8J.L3 must be taken into account

(4.2.20)

(4.2.21)

(4.2.22)

It is easy to see that these two cases correspond to different kinds of perturbations.
The first induces dragging of inertial frames (rotation of the black hole), whereas
the second set is independent of the sign of ¢ and therefore does not induce rota
tion. In the following we will refer to the first kind of perturbations as "axial" and
the second, as "polar". This terminology was introduced by Chandrasekhar (1983).
In the literature the different perturbations are often referred to as odd-parity and
even-parity, respectively. The reason for this nomenclature is that the first set trans
forms as (-1)' under space inversion. The second set, on the other hand, transforms
as (-1)'+1. Strictly speaking, this means that the first kind of perturbations are
of alternating odd/even parity for even/odd multi poles f. Chandrasekhar's (1983)
terminology avoids this confusion.

It turns out that the two kinds of perturbations decouple and can consequently
be studied separately. In both cases one can derive a wave equation analogous to
(4.2.4). The axial equation was first derived by Regge and Wheeler in 1957 and the
corresponding effective potential vt(2)(r) is given by (4.2.18) above. The equation
governing polar perturbations was first derived by Zerilli (1970b) [see also Edelstein
and Vishveshwara (1970)], and the relevant effective potential can be written

Vf(l') = 2(1 _2M) n
2
(n + 1)r

3 + 3n
2
Mr

2 + 9nM
2
r + 9M

3
,

r 1·3 (m· + 3M)2

where

1
n="2(C-1)(f+2). (4.2.23)

Even though the axial and the polar potentials have quite different mathemat
ical appearance, they contain much the same physical information. For example,
the corresponding reflection and transmission coefficients are identical. The reflected
waves differ only in their phases. As was shown by Chandrasekhar (1975) [see also
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(4.2.24)

(4.2.25)

(4.2.27)

Chrzanowski (1975), Heading (1977) and Chandrasekhar (1980)], the different equa
tions can be transformed into each other by means of differential operations. They
are also connected to the master equation that Bardeen and Press (1973) derived via
the Newman-Penrose formalism. In fact, one can show that there exist an infinite
number of potentials that contain the same information [Anderson and Price (1991)].
A legitimate question is whether it is possible to further simplify the equations. An
derson and Price conclude that it is not, but the reduction of a general perturbation
problem into one of a single wave equation is, by itself, remarkable.

4.2.5 Solutions in the high- and low-frequency limits

Before ending this general description of the equations that govern a perturbed
black hole, we will briefly discuss two limiting cases for which approximate solu
tions can be obtained analytically. These cases correspond to high and low frequen
cies, respectively. For clarity we will only give the results for scalar perturbations of
Schwarzschild black holes, but similar formulas can be derived for other spin fields
(and also for Kerr black holes).

In the high frequency limit, when wM ---t +00, the Regge-Wheeler equation can
be approximated by a confluent hypergeometric equation [see e.g., Liu and Mashhoon
(1995)]. Then one can show that the asymptotic amplitudes that are relevant for the
construction of the solution ut(r.,w), ef. (4.2.10), are

r(1 - 4iwM)(4iwM)-I/2+4iwM .
A - . -4,wM

out'" .;:;r . e 1

A- _ ir(1 - 4iwM)(4iwMtl/1
III - r(1/2 - 4iwM)

Given these equations, it is easy to use Stirling's formula and show that the reflection
coefficient behaves as

1R 1
2- e- S1rwM as wM ---t +00 . (4.2.26)

This is the anticipated behavior: For very high frequencies a wave is hardly affected
by the presence of the curvature potential at all, and the reflection coefficient is
exponentially small.

For low frequencies, when wM « 1, the desired approximations can be obtained,
using the approach of Starobinsky and Churilov (1973) [see also Page (1976b)]. They
approached the problem for Kerr black holes and arbitrary spin. The overall solu
tion is found by matching two solutions: For large r the differential equation again
becomes a confluent hypergeometric equation, and for small r it reduces to a hyper
geometric equation. By matching the two, one can infer that (for scalar waves and
Schwarzschild black holes)

. -t-l{ 1 [ (£!)3]2 2l+2}
Aout - (4zwM) 1 -"4 (2£)!(2£ + 1)! (4wM) ,
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A_(-4iwM)-l-1 {I +! [ (£!)3 ]2 (4WM)UH}
m 4 (2£)!(2£ + 1)1 .

(4.2.28)

(A similar approximation was recently derived by Poisson and Sasaki (1995).) It
follows frolll this result that the behavior of the reflection coefficient for low-frequency
waves is

1 1
2 [(£!)3]2 2£+2

R :::::: 1 - (2£)'(2£ + I)! (4wM) . (4.2.29)

That is, as wM -t 0, waves are totally reflected by the black hole barrier (the
reflection coefficient approaches unity). This is, of course, exactly what one would
expect.

4.3 Evolution of Wave Fields Around a Black Hole

4.3.1 Early "numerical relativity"

In the early 1970's perturbation equations like (4.2.4) were used as the basis for
numerical investigations of various "physical" scenarios involving black holes. The
problems that were studied fall into three main categories:

• Wavepackets scattering by black holes [Vishveshwara (l970a), Press (1971)]

• Small bodies (test particles) falling into - or passing close by - black holes
[Davis et at. (1971, 1972), Ruffini (1973)]

• Slightly non-spherical gravitational collapse to form a black hole [de la Cruz,
Chase, and Israel (1970); Cunningham, Price, and Moncrief (1978,1979); Gaiser
and Wagoner (1980)]

These studies led to some surprising results. The radiation generated when a black.
hole interacts dynamically with its surroundings is almost completely independent of
the perturbing agent. The general features of the emitted waves are always similar,
and can be divided into three components:

L An initial wave burst that contains radiation emitted directly by the source of
the perturbation

2. Exponentially damped "ringing" at frequencies that do not depend on the
source of the perturbation at all

3. A power-law "tail" that arises because of backscattering by the long-range grav
itational field

These features are illustrated in Figure 4.3.
It became clear that a perturbed black hole oscillates at frequencies that are

characteristic to the black hole. The spectrum depends only on the three parameters
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Figure 4.3: The response of a Schwarzschild black hole as a Gaussian wavepacket of scalar
waves impinges upon it. The first bump (at t = 50M) is the initial Gaussian passing by the
observer on its way towards the black hole. Quasinormal-mode ringing clearly dominates
the signal after t ~ 150M. At very late times (after t ~ 300M) the signal is dominated by
a power-law fall-off with time.

of the black hole: its mass, electric charge, and angular momentum. The frequencies
have complex values because of radiation damping. These ringing modes are now
known as the "quasinormal" modes of the black hole. We will discuss these modes
in more detail in Section 4.4.

4.3.2 A Green's function analysis

Let us analyze the response of a black hole to an external perturbation in somewhat
more detail. As a useful example, we consider the evolution of a scalar massless
field from given initial data. That is, we solve (4.2.4) for the case when ue(r., 0) and
OtUe(r.,O) are given. The extension of the discussion below to the case of gravitational
perturbations is straightforward. Early studies along these lines were carried out by
Detweiler (1978) and Gaiser and Wagoner (1980).

The time evolution of the field ue(r., t) from given initial data can be written

ue(r., t) = / G(r., y, t) OtUe(Y, 0) dy + / OtG(r., y, t) ue(Y, 0) dy (4.3.1)
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(4.3.2)

(4.3.3)

for t > O. The retarded Green's function is defined by

[::; - :t22
- Ve(r)] C(r.,y,t) = 8(t) 8(1'. - y)

together with the initial condition C(r., y, t) = 0 for t < O.
One would typically use an integral transform to reduce the problem to an ordi

nary differential equation. The integral transform

O(r.,y,w) = roo C(r.,y,t)eiwtdt
lo-

is well defined as long as 1m w :::: O. In fact, 0(1'., y, w) is a holomorphic function of
w = Wo + iWI for WI > O. For the analysis to be meaningful, it is also necessary that
ue(r., t) is pointwise bounded for all values of r. and t. This is equal to a requirement
that the black hole is stable against perturbations. We will discuss the stability of
black holes further in Section 4.9.

A change s = -iw makes our transform (4.3.3) equal to the standard Laplace
transform as used in the black hole studies of Leaver (1985), Sun and Price (1988),
and Nollert and Schmidt (1992). We prefer to use the form (4.3.3) here since it is
analogous to the Fourier-transform that has been assumed in most of the existing
black hole literature.

Anyway, it follows immediat.ely that

[
d2 2 ] A

dr; + w - Ve(r) C(r., y,w) = 8(1'. - y). (4.3.4)

The required Green's function can now be expressed in terms of two linearly inde
pendent solutions to the homogeneous equation (4.2.7). One of these solutions is
determined by the causal boundary condition that no waves emerge from I/-. We
represent this solution by the IN-mode discussed previously; see (4.2.10). This so
lution is square integrable at r. ---t -00 for w in the upper half-plane. A second
solution, which is square integrable at r. ---t +00, corresponds to purely outgoing
waves at infinity (.1+) and a linear combination of outgoing and ingoing waves at
the event horizon. This is clearly the UP-mode defined by (4.2.14). In terms of these
solutions the Green's function can be written

{

Aiu( ) AUP( )A_I Ue r.,w Ue y,w , r. < y ,
C(r.,y,w) - - . A ( )2zw . w . U

III uiU(y,w)u/(t.,W),l'.>y,
(4.3.5)

(4.3.6)

where we have used the Wronskian relation (4.2.17). Finally, the integral transform
must be inverted in order to recover the time domain. Then we get the final expression
for the Green's function that propagates the initial data:

1 l+oo+iC
A •C(l'.,y,t) = - C(l'.,y,w)e-,wt dw,

211" -oo+;c
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c

Figure 4.4: Integration contours in the complex w-plane. The crosses represent the first
few quasinormal modes, and the necessary branch cut is taken along the negative imaginary
axis.

where c is some positive number (that ensures convergence of the integral).
In order to infer the behavior of the Green's function in different time intervals, it

is convenient to deform the contour of integration in (4.3.6) in the complex w-plane.
For this purpose, we need to know the analytic properties of ni and tl?, not only
in the upper half-plane where they are a holomorphic functions of w, but also in
the lower half-plane. It turns out that the Wronskian W(IN, UP) = 2iwA in (w) has
isolated zeros there. This leads to poles of the Green's function G(1'.,y,W). These
singularities correspond directly to the quasinormal modes of the black hole, and
their contribution to the radiation can be accounted for by means of the residue
theorem [Leaver (1986b)]. It is straightforward to show that the quasinormal modes
are symmetrically distributed with respect to the imaginary w-axisj if W n corresponds
to Ain = 0, then -wn must also do so (see Figure 4.4).

In the upper half of the complexw-plane the solutions to (4.2.7) which are bounded
at either end must behave like

u~n(r.,w) ,..., e-iwr• as r. -+ -00,

(4.3.7)

Their analytical continuations into the lower half-plane will show the same behavior.
Hence, the time-domain Green's function always satisfies "future outgoing" condi
tions. This Green's function propagates waves emitted by the source to H+ and J+.
It is therefore clear that the solutions corresponding to the quasinormal modes are
regular both at H+ and J+. But it also follows that they will diverge at H- and
J-.
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Careful analysis shows that it is necessary to introduce a branch cut in order t.o
make it? a single-valued function [Ching et al. (1995b )]. This cut is customarily
placed along the negative imaginary axis, as in Figure 4.4. Given this information,
the radiat.ion produced in response to a perturbation of the black hole can be dividt'd
into three components, in accordance with the contributions of different parts of t.he
deformed contour in the lower half of the w-plane:

1. Radiation emitted directly by the source

2. Exponentially damped quasinormal-mode oscillations [contribution uf the poles
of the Green's function]

3. A power-law tail [contribution of the branch-cut integral]

These conclusions are in perfect agreement with the observations made in the previous
section.

It is worth pointing out that the quasinormal modes of the black hole do not. form
a complete set of dynamical variables for the system. The power-law tail and the
transients propagating directly from a source to an observer can not be described by
an expansion in terms of quasinormal modes. However, it has recently been shown
[Ching et al. (1995c,d)] that the modes can be made complete by introducing an
infinitesimal change in the potential (for example, letting V(r) == 0 for very large
r). Such a change typically affects the mode spectrum considerably, but it may
nevertheless prove useful. This kind of analysis stems from relevant astrophysical
questions. For example, to what extent will the black holes environment, an accretion
disk or a host galaxy affect the spectrum of quasinormal modes?

4.4 Quasinormal Modes

If a black hole is to be an astrophysically realistic proposition, solutions to the original
wave equation (4.2.4) must be damped with time for each value of r•. Hence, all
acceptable mode solutions [to (4.2.7)] should have 1m W n < O. This means that
a quasinormal mode is distinguished by solutions to the radial equation that grow
exponentially as we approach r. = ±oo. At first, this may seem peculiar (and
indeed undesirable), but it is easy to see why this happens. Properly defined, the
modes correspond to purely outgoing waves reaching l/+ and J+. For example,
at J+ we expect to have Ut(r.,t) ,..., exp[-iwn(t - r.)]. From this it is clear that
once we have used the integral transform (4.3.3), we require solutions that behave ac;

iii"'" exp(iwnr.), and for 1m wn < 0 the solution will diverge as r. -+ +00. In other
words: Because a mode solution is expected to be damped with time at any fixed
value of r., it must diverge as r. -+ +00 at any fixed value of t. In the complete
solution, the apparent divergence is balanced by the fact that it takes a signal an
infinite time to reach e.g., J+.

Anyway, we are clearly not dealing with a standard Sturm-Liouville eigenvalue
problem, and the identification of quasinormal modes is somewhat complicated. In
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order to identify a mode, one must ensure that no contamination of ingoing waves
remains at infinity - and that no waves are coming out of the horizon - but these
unwanted contributions are exponentially small. In this section we will briefly discuss
some of the methods that have been developed to handle this problem, but let us
first discuss some simple approximations that lead to surprisingly good results.

4.4.1 Simple approximations

As mentioned previously, the black hole problem is similar to the problem of quantum
scattering of a particle by a potential barrier. Hence, the concepts of quantum me
chanics might be useful. It is commonly accepted that scattering resonances (which
are the quantum analogues to quasinormal modes) arise for energies close to the top
of a potential barrier. In the black hole case, this immediately leads to the approxi
mation [Schutz and Will (1985), Ferrari and Mashhoon (1984a,b)]

(4.4.1)

Here we have neglected the field-dependent term in the potential (4.2.18). This
approximation for the fundamental mode is poor for lowe (the error is something
like 30 percent for e= 2), but it rapidly gets accurate as eincreases.

For the imaginary part of the frequency - the lifetime of the resonance - the
curvature of the potential contains the relevant information [Schutz and Will (1985)].
One finds that

1m Wo ~ _! 1_1
_ d

2

Ve 1
1

/

2

~ - IV38M3 ,
2 2Ve dr~ r=rmax

(4.4.2)

which is accurate to within 10 percent for the fundamental mode.
Interestingly, similar approximations follow from a (seemingly) different approach.

Consider a congruence of null rays circling the black hole in the unstable photon orbit
at r = 3M. The fundamental mode frequency then follows if the beam contains e
cycles [Thorne (1978)]. The damping rate of the mode can be inferred from the decay
rate of the congruence if the null orbit is slightly perturbed [Mashhoon (1985)].

It is interesting to compare a black hole to other resonant systems in nature. If
we define a quality factor in analogy with the standard harmonic oscillator,

(4.4.3)

the quasinormal-mode approximations given here lead to Q ~ e. This should be
compared to the typical value for an atom: Q,..., 106 • The Schwarzschild black hole
is thus a very poor oscillator.
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4.4.2 The complete spectrum of black hole modes

During the last twenty years there have been numerous attempts to calculate quasi
normal-mode frequencies with acceptable accuracy. Accurate integration of the Regge
Wheeler equation (4.2.7) is difficult since the unwanted solutions - corresponding to,
for example, waves coming in from infinity - inevitably become smaller than the
numerical uncertainty in the exponentially growing mode solution. Still, by study
ing the logarithmic derivative of ilt, Chandrasekhar and Detweiler (1975a) computed
the first few modes. Ten years later, Leaver (1985) determined very accurate values
fOT the quasinormal-mode frequencies using a three-term recurrence relation together
with a numerical solution of continued fractions [for an alternative way of using the
recurrence relation, see Majumdar and Panchapakesan (1989)]. Leaver's calculations
suggested that an infinite number of modes exist for each value of e, For a given
value of ethe real part of the mode frequencies approaches a nonzero constant, and
at the same time the damping increases in a systematic way,

There have been many attempts to verify Leaver's results. Among the methods
employed are:

• WKB-type approximation schemes [Schutz and Will (1985), Iyer and Will
(1987), Iyer (1987), Guinn et ai, (1990), Zaslavskii (1991), Galtsov and Matiu
khin (1992), Froman et ai, (1992), Andersson and Linn~us (1992), Andersson,
Araujo, and Schutz (1993a,b); Araujo, Nicholson and Schutz (1993)]

• Use of the inverted black hole potential [Blome and Mashhoon (1984), Ferrari
and Mashhoon (1984a,b)]

• Laplace-transform combined with analytic continuation [Nollert and Schmidt
(1992)]

• Numerical integration using complex coordinates [Andersson (1992)]

Most of these schemes give good results for the first few modes, but break down as
the damping increases, However, several studies have shown that Leaver's results
are reliable [Nollert and Schmidt (1992), Andersson (1992), Andersson and Linn~us

(1992)], Now there are (at least) four independent methods that lead to results
that agree perfectly for the first ten or so modes for each value of e. The first five
quasinormal-mode frequencies for e= 2,3,4 are given in Table 4.4.2.

Bachelot and Motet-Bachelot (1992) have shown that an infinite number of quasi
normal modes should exist for each given €. Their work does not however shrd any
light on the asymptotic behavior of the mode frequencies, This behavior was elu
cidated by Nollert (1993). He analyzed the asymptotic behavior of the continued
fraction that had been used by Leaver, and found that (for gravitational perturba
tions)

W n M ;;::: 0,0437 - ~ (n +D+ 0 ( v'n1
+1) (4.4.4)
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n £=2 £=3 £=4

0 0.37367 - 0.08896i 0.59944 - 0.09270i 0.80918 - 0.09416i

1 0.34671 - 0.27391i 0.58264 - 0.28130i 0.79663 - 0.28433i

2 0.30105 - 0.47828i 0.55168 - 0.47909i 0.77271 - 0.47991i

3 0.25150 - 0.70514i 0.51196 - 0.69034i 0.73984 - 0.68392i

4 0.20751 - 0.94684i 0.47017 - 0.91565i 0.70152 - 0.89824i

Table 4.1: The first five quasinormal-mode frequencies for the three lowest radiating lIlul
tipoles (l 2: 2) of a gravitationally perturbed Schwarzschild black hole. The frequencies
are given in units of [GM/c3J-l ::= 21r(32312 Hz) X (M/M0 )-I. This means that for a ten
solar-mass black hole the fundamental oscillation frequency would be roughly 7.6 kHz.

when the positive mode index n is very large. The behavior is independent of the
value of e to leading order, cf. Figure 4.5. This formula has been tested against
the semi-analytic method of Andersson and Linnaeus (1992). By comparing the two,
one finds that they agree to one part in 105 for n = 105 [Andersson (1993b)]. The
same asymptotic behavior for the damping was derived in recent work by Liu (1995).
He showed that the damping is the same to leading order for all fields. Moreover,
Liu and Mashhoon (1995) Lwc argued that the high overtone spacing is intimately
connected with the long-range nature of gravity.

4.4.3 Quasinormal modes for charged and rotating black holes

Electrically charged black holes

Although it is hard to imagine a physically realistic situation where the electric
net charge of a black hole is significant, an investigation of the Reissner-Nordstrom
solution does not lack interest. On the contrary, since it provides a more general
framework than the Schwarzschild geometry, this case may contribute significantly
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Figure 4.5: The spectrum of quasinormal modes for a Schwarzschild black hole. The first
fifty modes for l = 2 (diamonds) and l = 3 (crosses) are shown. [The modes were calculated
using the method of Andersson and Linnams (1992)1

to our understanding of more complicated spacetimes.3

Perturbation equations relevant for electrically charged, non-rotating black holes
were first derived by Zerilli (1974) and Moncrief (1974b,c, 1975). They have also been
discussed by Chandrasekhar (1979a) and Bicak (1980b, 1982). It is known that the
equations decouple into two second-order differential equations of the form (4.2.7) for
axial and polar perturbations. However, whereas electromagnetic and gravitational
perturbations can be studied separately in the Schwarzschild limit (when the charge
of the black hole vanishes), this is not the case for charged black holes. In a charged
environment a variation in the electromagnetic field will induce gravitational radia
tion and vice versa; see Section 7.3. A quasinormal mode of a Reissner-Nordstrom
black hole therefore generally corresponds to emission of both gravitational and elec
tromagnetic radiation.

The Reissner-Nordstrom blackhole provides the simplest context in which one can
study the conversion of gravitational waves into electromagnetic ones (and vice versa)
(see Section 7.3). An obvious question regards what fraction of the incident energy is
reflected as waves of the other kind. Interestingly, one can show that the conversion
factor is the same whether the incident energy is gravitational or electromagnetic
[Chandrasekhar (1979a)]. Gunter (1980) considered the problem numerically and
showed that the conversion is relevant only in a narrow frequency band: It vanishes

3In fact, the highly charged case may give us some information about what to expect ill an
investigation of a rapidly rotating Kerr black hole. We shall see that the Reissner-Nordstrom
solution for a charged black hole similar to the Kerr metric has an inner (Cauchy) horizon as well as
the event horizon. In this respect the effect of the charge is similar to that of the angular momentum
in the Kerr case. This is particularly relevant for studies of black holes interior (see Chapter 14),
but. the existence of the inner horizon also affects the appearance of the perturbation equations for
the exterior spacetime.
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both as W -+ 00 and W -+ O.
Several of the methods used to determine quasinormal-mode frequencies for Schwa

rzschild black holes have been generalized to the electrically charged case, e.g., the
inverted potential approach [Ferrari and Mashhoon (1984a,b)] and the WKB-type
methods [Kokkotas and Schutz (1988); Andersson, Araujo, and Schutz (1994)]. To
the lowest order of approximation, the WKB studies suggest the following approxi
mate behavior for the slowest damped mode

( 1) [M Q2] 1/2Re Wo ~ e+ - - - - ,
2 Tg T~

1m Wo ~ _! [~ _ Q
4

2
] 1/2 [3M _ 4~2] 1/2

2 To TO TO To

(4.4.5)

(4.4.6)

in the limit e» 1. Here Q :s; M is the charge of the black hole, and we have defined
TO as the position where the black hole potential attains its maximum value. This
means that 2To = 3M + J9M2 - 8Q2 .

These approximations indicate the general behavior of a quasinormal-mode fre
quency as the charge of the black hole increases. The oscillation frequency increases,
and the damping rate reaches a maximum value after which it decreases rapidly.
These features have been verified by more accurate numerical work. The most accu
rate results to date are those obtained by Leaver's (1990) continued fraction approach
and Andersson's (1993a) numerical integration scheme.

The present understanding is the following. For modes adhering to the function
that corresponds to purely gravitational waves in the Schwarzschild limit, both the
real and t.he imaginary part of the frequency attain extreme values as Q approaches its
limiting value (Q = M). These extrema are followed by tiny wiggles (for Q > 0.9M
or so); see Figure 3 of Andersson (1993a). For the other function, that limits to
purely electromagnetic waves as Q -+ 0, the oscillation frequency does not, reach a
maximum. It increases monotonically with Q. The peculiar behavior of the mode
frequencies close to the limit of extremely charged black hole is not well understood.4

Rotating black holes

Whereas it is unlikely that we will ever observe astrophysical black holes with a
considerable net charge, most black holes are expected to be rotating. Hence, per
t.urbation studies of the Kerr solution are of great interest. We will discuss the per
turbation equations for rotating black holes in some detail in 4.8. The Kerr problem

4Recently numerical calculations by Onozawa et al. (1996) and Andersson and Onozawa (1996)
have shown that the quasinormal frequency trajectories of photons (s = 1) , gravitino (s = 3/2),
and gravitons (s = 2) with increasing charge meet at the same point in the extreme black hole limit
Q = M. General explanation of this property by using the ideas of supersymmetry was proposed
by Kallosh, Rahmfeld, and Wong (1997).
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(4.4.7)

(4.4.8)

is considerably more involved than the Schwarzschild one. Nevertheless, one can find
quasinormal modes also for rotating black holes. When the black hole has nonzero
angular momentum, a, the azimuthal degeneracy is split. For a multipole f there are
consequently 2f + 1 distinct modes that approach each Schwarzschild mode in the
limit a -t O. These modes correspond to different values of m, where -f :s; m :s; f.

Quasinormal modes for Kerr black holes were first calculated by Detweiler (1980a,b
Some typical resonance frequencies are shown as functions of the rotation parameter
a in Figure 4.6. (Here and later on the figures in this chapter we use a notation
(J = Re wand a = -1m w.) The results are in many ways similar to those for
Reissner-Nordstrom black holes. Specifically, Detweiler found that

{
1m Wn is almost constant }for f = m as a -t M ,
Re W n increases monotonically

and

{
1m Wn -t 0 }for e= -m as a -t M .
Re Wn -t -m/2

This behavior has been verified by accurate calculations by Leaver (1985). The
problem has also been approached approximately [Ferrari and IVlashhoon (1984a,b),
Seidel and Iyer (1990), Kokkotas (1991)].

The available results suggest that a large number of quasinormal modes become
very slowly damped as a -t M. Leaver suggests that these modes all coalesce to an
undamped one for a = M. They all approach the critical frequency m Q H for super
radiant scattering (see Section 4.8 for a discussion of this effect). Interestingly, the
limit a -t M is amenable to analytic methods [Teukolsky and Press (1974), Detweiler
(1980b), Sasaki and Nakamura (1990)]. One can show that in the ext.reme Kerr limit
(a. = M) and for f = m there exist an infinite sequence of resonant frequencies with
a common limiting point. However, it seems likely that every quasinormal mode of
a physically realizable black hole (a < M) will have at least some small damping
[Leaver (1985), Sasaki, and Nakamura (1990)].

The fact that some quasinormal modes become very long-lived for rapidly rotating
black holes could potentially be of great importance for gravitational-wave detection.
This is basically because the effective amplitude of a periodic signal buried in noise im
proves as Jncyc , where n cyc is the number of observed cycles. Hence, it. is imperative
that the contribution of long-lived modes to the black hole response be investigated
in det.ail. Ferrari and Mashhoon (1984a,b) have addressed this issue within their
approximate framework. They argue that the contribution of these modes t.o t.he ra
diation becomes small as a -t M (it vanishes in the limit). On the ot.her hand, Sasaki
and Nakamura (1990) determine the contribution to the Green's function (see the fol
lowing Section) from each mode. They argue that the corresponding flux diverges
logarithmically. This could indicate that the extremal Kerr black hole is marginally
unstable. It is clear that the behavior of the quasi normal modes as the black hole
approaches maximal rotation warrant.s more detailed investigations.
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Figure 4.6: Resonance frequencies w = u - in as functions of the parameter a for different
I and m [data from Detweiler (1980b)).
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Finally, it should be mentioned that the WKB method has been applied to massive
scalar perturbations in the Kerr background [Simone and Will (1992)J. This method
was also used by Kokkotas (1993) in one of the two available mode studies for black
holes which are both electrically charged and rotating; the Kerr-Newman solution.
Kerr-Newman quasinormal modes were obtained in the eikonal approximation (e =

Im I» 1) by Mashhoon (1985).

4.4.4 Quasinormal-mode contribution to the radiation

Let us now return to the initial-value problem considered in Section 4.3, and take a
closer look at the contribution from the quasinormal modes to the radiation. It is a
straightforward task to continue the integration in (4.3.6) into the lower half of the
complex w-plane and then use the residue theorem to infer the contribution to the
integral from each pole {Leaver (1986b)J.
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Before doing this, let us assume (for clarity of presentation) that the observer
is situated sufficiently far away from the black hole that we can use the asymptotic
form for u? Then we get

1 j+OO+iC oin( )
G(r., y, t) = __. Ut y, W e-iw(t-r.) dw.

41T~ -oo+ic WAin (w)
(4.4.9)

The quasinormal-mode contribution is then (using the fact that modes in the thiro
and fourth qu,!-drants are in one-to-one correspondence)

(4.4.10)

where we sum only over poles in the fourth quadrant of the w-plane. We have defined
an according to

(4.4.11)

close to the nth quasinormal-mode frequency.
In order to use expression (4.4.10), we must be able to compute an' Although

many methods have been designed to the task of finding the eigenfrequencies, very
few attempts to proceed to actual calculations for initial-value problems have been
made. The only available results for the residues an are those of Leaver (1986b) and
Andersson (1995a).

To evaluate (4.4.10), one must also compute the integral over the product of the
quasillormal-mode eigenfunctions and the initial data. This is not a trivial - if at
all possible - task since the eigenfunction iLr(r.,wn) (say) diverges as r. -+ ±oo.
Nevertheless, it has been shown that (4.4.10) accurately accounts for the excitation
of quasinormal modes in cases when the integrand can be evaluated [Leaver (1986b),
Sun and Price (1988)J. Such cases include, most importantly, initial data of compact
support.

A simple, but surprisingly accurate, approximation suitable for data that is ini
tially localized far away from the black hole is obtained if one assumes that the initial
data has considerable support only in the region where ur{r., wn ) can be replaced by
its asymptotic form. Then equation (4.4.10) simplifies to

(4.4.12)

This form facilitates analytic calculation of the quasillormal-mode excitation for many
kinds of initial data. Results obtained in this way for Gaussian initial data are
presented in Figure 3 of Andersson (1995a).
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4.5 Power-Law Tails

4.5.1 Late-time behavior
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Let us now consider the asymptotic behavior of a perturbation as the black hole
returns to its unperturbed state as t -+ 00. A typical process for which this behavior
is relevant is when a nearly spherical star collapses to form a black hole. The question
is: Does an initial deformation of the star remain small during the collapse, or will
the perturbation grow and halt the collapse in some way?

When a star undergoes gravitational collapse its surface approaches the black hole
boundary (i.e., moves towards r. = -00) at a physical velocity tending to the speed
of light (see Chapter 2). This means that as t -+ 00, all processes in the perturbation
source must "freeze" according to an observer at rest in the Schwarzschild reference
frame (see Chapter 2). Due to time dilation, a perturbation field of> will take the
following form at the surface of the star (for any integer-spin field and any multi pole e)

of>=a+bexpC~j~/)' (4.5.1)

where a and b are constants [Price (1972a,b)J. The characteristic time-scale of the
exponentially decaying term is such that the wave part of of> will partly be reflected
by the potential barrier that surrounds the hole and fall back onto it (return to
to r. = -00). The remainder will pass through the barrier and escape t.o infinity
(r. = 00). At the same time, the constant term, a, generates a perturbation of
infinite wavelength that will be completely reflected by the black hole barrier and
cannot reach an external observer. As a result, only exponentially decaying waves
can reach the observer. The curvature of spacetime prevents any information about
the final surface field from emerging.

But the damping of the radiation that is seen by a distant observer will not be
purely exponential. He will also see waves that have been scattered by the "tail"
of the potential barrier (i.e., by the spacetime curvature). Price (1972a) found that
backscattering by the asymptotic "tail" of the potential gives rise to a power-law fall
off at late times. Specifically, he inferred the late-time behavior [a clear motivation
of this behavior can be found in Thorne (1972)J

of> rv t-(2l+3j . (4.5.21

Price put his conclusions in the following succinct form: "Anything that can be
radiated will be radiated". Consequently, a black hole rids itself from all bumps
after it is formed by a non-spherical collapsing star. That a similar result holds for
neutrinos was shown by Hartle (1972). That a power-law tail dominates the late
t.ime behavior is clear from, for example, the gravitational collapse calculations by
Cunningham, Price, and Moncrief (1978, 1979).

In his Green's function analysis of perturbed black holes, Leaver (1986b) asso
ciated the power-law tail with the branch-cut integral along the negative imaginary
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axis in the complex w-plane. He showed that the behavior (4.5.2) follows from a
consideration of the IwMI « 1 part of that integral. He also indicated that there
would be "radiative" tails observable at :1+ and H+. This result was verified by
recent work of Gundlach, Price, and Pullin (1994a).

Interest.ingly, the late-time behavior is the same also for Reissner-Nordstrom black
holes and fields of different spin. Furthermore, a fully nonlinear study of a collapsing
scalar field shows that tails develop even when no black hole is formed [Gundlach,
Price, and Pullin (1994b)J. This is strong evidence that the late-time power-law tail
depends only on the gravitational field in the far zone and not on the details of the
central body (if there is one). Thus, the same power-law tail should be observed from
a perturbed black hole, an imploding field that fails to form a black hole, or even a
perturbed star.

4.5.2 Analyzing the Green's function

We will now outline a detailed analysis of the tail phenomenon. As already mentioned,
the power-law tail can be associated with the branch cut (usually taken along the
imaginary w-axis; see Figure 4.4) in the Green's function (4.3.5) [Leaver (1986b)J.
The existence of such a cut depends on the asymptotics of the effective black hole
potential. Specifically, a cut is a general feature if Vi(r.) asymptotically tends to zero
slower than an exponential [Ching et at. (1995a,b)J. In the case of black holes, one
can show that [cf. (4.2.18)J

£(£+1) 4M£(£+I)1 (2) t.../-o
2 + 3 og 2M ' t,. ,I'. -+ +00 ;

r. r.

£(£+I)+I-s2 (1'.)
(2M)2 exp 2M '

£ = 0, r. -+ +00; (4.5.3)

r. -+ -00 .

Hence, there will be a cut in the Green's function (4.3.5). The cut is associated with
the function it~P(1'., w), that corresponds to purely outgoing waves at spatial infinity.
Because the potential falls off exponentially as r. -+ -00, there will be no such cut
in the function lJt(r.,w), which is purely ingoing at the black-hole event horizon.

We must therefore consider the function it? in some detail, especially for r. -+ 00.
From (4 ..5.3) it is clear that it is sufficient to consider an effective potential

(4.5.4)

as long as we restrict the analysis the £ # O. [For £ = 0 the analysis proceeds in a
simila.r way, see Ching et at. (l995b)J. The required function it? is thus a solution
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(4.5.5)

(4.5.6)

that behaves as purely outgoing waves as r. -+ 00. One can now consider the right
hand side as "small" perturbation, and use the Born approximation [Ching et ai.
(1995b)]. This way the contribution from the branch-cut integral to the Green's
function can be deduced.

For a Schwarzschild black hole this result.s in a branch-cut contribution to the
Green's function [Leaver (1986b), Ching et al. (1995b)]

G ( ) _ ( )l+l (2£ + 2)1 4M(r.y)t+l
B r.,y,t - -1 [(2£+ 1)!!]2 t21+3

This result - leaving no adjustable parameters - has been shown to agree perfectly
with numerical studies.

One final comment is in order here. The above result suggests that for initial
data that are static on a Cauchy hypersurface the predicted power-law tail will be
t-{2lH). At first sight, this seems to be in contradiction with the result of Gundlach,
Price, and Pullin (1994a) who find that "static" initial data lead to a tail t-{2t+2).
The difference is that in the latter description initial data was introduced on a null
surface. It is therefore not surprising that the two results differ, but, unfortunately,
there is no apparent way to translate one into the other. The important result is
that the two studies predict the same result in the general case, when the data is not
static.

4.6 Gravitational Radiation from a Test Particle
in the Field of a Black Hole

In general, the equation governing a black hole perturbation is not homogeneous.
One must typically also include a source term for the physical situation under con
sideration. Perhaps the simplest relevant problem is that of a test particle moving in
the gravitational field of a black hole. When the mass m of the particle is sufficiently
small compared to that of the black hole (m « M), this problem can be viewed as
a perturbation problem. In this Section we assume that this is the case, and we also
neglect a.ny backreaction of the radiation on the motion of the particle. The particle
thus moves along a geodesic of the unperturbed spacetime.

4.6.1 Particles plunging into the black hole

The radiation emitted by a test particle of mass m which falls radially into a Schwarz
schild black hole was calculated as one of the first astrophysical applications of the
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Figure 4.7: The spectrum of quadrupole (l = 2) gravitational radiation emitted when a
particle falls radially into a Schwarzschild black hole. The particle starts off at rest at infinity.
The spectrum (averaged over all directions) peaks at the slowest damped quasinormal-mode
frequency (wM Rj 0.37) [data from Davis et al. (1971)].

perturbation equations [Davis et ai. (1971, 1972)). Typical results obtained for the
case when the particle starts off at rest at infinity (i.e., for a parabolic motion5

)

are shown in Figures 4.7 and 4.8. Figure 4.7 shows the spectrum of gravitational
radiation (averaged over all directions) as measured by a distant observer. The
spectrum is clearly peaked at the slowest damped quadrupole quasinorrnal mode
(at wM :::::: 0.37). The total energy emitted is !:!.E :::::: 0.01m2 jM, and roughly 90%
of this energy is radiated through the quadrupole modes. In fact, 97% of the total
energy goes into quasinormal-mode oscillations. That the radiation is dominated by
quasinormal-mode ringing at late times is obvious from Figure 4.8. Here we show the
typical form of the resultant gravitational waves (represented by one of the metric
perturbations). The particle reaches the event horizon at roughly t = 0 in Figure 4.8,
and a final burst of radiation directly from the particle is followed by typical mode
ringing. The power-law tail that should dominate at very late times cannot be seen on
this scale. Worth noticing is the similarity between this radiation and that resulting
from scattering of a wavepacket by the black hole; see Figure 4.4. A reasonable
approximation of the initial wave burst is obtained if one assumes that the particle
radiates as if it were moving through flat space [Ruffini and Sasaki (1981)).

Qualitatively, these results are hardly altered at all if the particle of mass m is
given some initial specific angular momentum L = Lj(2Mm) or an initial veloCity
[Detweiler and Szedenitz (1979), Oohara and Nakamura (1983a,b)). The energy spec
trum in each multipole peaks at the relevant quasinormal-mode frequency. Moreover,
one finds that the contribution from in = egenerally dominates the radiation.6 An

5We recall that the total energy E for a parabolic motion of a test particle is mc2
, and the

velocity of the particle at infinity vanishes. Different types of the parabolic motion are specified by
their angular momentum L. Sometimes, we shall say that a particle is at rest at infinity. This does
not mean that the particle is moving radially since, in the general case, its angular momentum does
not vanish.

61n order to distinguish between the mass of the particle (m) and its azimuthal quantum number,
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Figul"e 4.8: Typical quadrupole (f = 2) gravitational waves radiated when a test particle
plunges radially int.o a non-rotating black hole. The particle starts off at rest at infinity.
The direction e= 0 coincides with the trajectory of the particle. At late times the radiation
is clearly dominated by quasinormal-mode ringing [data from Petrich, Shapiro, and Wasser
man (1985)]. The sign of h in this and other similar figures depends on the convention;
different authors use different definitions, which is of no great significance.

interesting empirical relation for the total energy radiated in each multipole was first
noted by Davis et al. (1971). It turns out that the emerging energy obeys the relation

(4.6.1)

(Here m is the mass of the particle, and M is the mass of the black hole.) Thus, the
quadrupole radiation always dominates. The coefficients a and b obviously vary with
the initial angular momentum of the particle. As L increases, b decreases, and thus
the importance of the higher mllitipoies is enhanced [Detweiler and Szedenitz (1979)].
In Figure 4.9 we show the total radiated energy !:!.E and angular momentum !:!.L (the
angular momentum spectrum is similar to the energy one) as functions of the initial
specific angular momentum L. The radiated energy can be increased by as much
as a factor of 50 if the particle is given initial angular momentum. The apparent
divergence at L = 2 should not be taken too seriously. That case corresponds to
injecting the partide in a circular orbit. Since these calculations neglect the effect of
radiation reaction on the particles motion, the particle will stay in a circular orbit
forever. Consequently, the total radiated energy must be infinite.

we denote the latter (only in this section) by m.
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Figure 4.9: The total radiated energy I1E and angular momentum I1L shown as functions
of the initial angular momentum of the particle. The particle is initially at rest at infinity
[data from Oohara and Nakamura (1984)].

Let us also mention an interesting result for R.eissner-Nordstrom black holes.
Johnston, Ruffini, and Zerilli (1973) considered an uncharged particle falling into
an electrically charged black hole. This problem can be used as indicator of the
efficiency of the conversion of gravitational energy into electromagnetic energy that
will be a feature of a charged environment. One finds that the gravitationally induced
electromagnetic radiation carry a total energy t:.E :::::: O.03m2Q2/ M 3 . Notably, this is
of the same order as the energy radiated as gravitational waves if the black hole has
a considerable charge.

Particles scattered by the black hole

When the particle (initially at rest at infinity) has initial specific angular momentum
L > 2, it is not ca.ptured by the black hole. Instead it escapes to infinity; that is, it is
"scattered" by the black hole. The greater the initial value of L is, the further away
from the black hole does the particle reach periastron. Hence, one would expect less
radiation to be emitted as L increases (see Figure 4.9). When L becomes very large,
the particle never gets close enough to the black hole to induce relat.ivistic effects.
Typical waveforms for a particle scattered off a Schwarzschild black hole are shown
in Figure 4.10.

We have seen that the bulk of the energy is radiated through the quasinormal
modes when the particle falls into the hole. In contrast, the modes are hardly ex
cited at all when the particle is scattered off to infinity. This is true even when
periastron is quite close to the black hole. A typical spectrum for a scattered particle
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Figure 4.10: Gravitational waves generated when a particle is scattered by a Schwarzschild
black hole. The particle starts off at rest at infinity and with initial specific angular mo
mentum (a) L= 2.005 and (b) L=2.5. An observer which registers this radiation is in the
plane of the orbit in the direction of the periastron of the particle's trajectory. In the first
case one can clearly see that the particle orbits the black hole several time before it escapes
to infinity. Note the absence of quasinormal-mode ringing in both cases [data from Oohara
and Nakamura (1984)].

is shown in Figure 4.11. Here the peak of each multipole spectrum is unrelated to
the quasinormal-mode frequency. Instead, the peak frequency depends on the initial
angular momentum L of the particle. One can show that the spectrum depends Oil

the angular velocity Qp at periastron [Oohara and Nakamura (1983a,b, 1984)]. The
position of all peaks in the spectrum are explained in the same way: The source term
contains a factor cos(wt - iiu/». Close to periastron it is reasonable toapproximate
¢ ~ flp t. Then it follows that the spectrum will be peaked at w ~ fit flp , or since the
fit = eterm dominates: Wmax ~ eflpo The smaller peaks should correspond to other
maxima of the cosine in the source term [Oohara and Nakamura (1984)].

This also explains why the quasinormal modes are not excited. For a particle
that falls into the black hole the quasinormal modes are excited as the particle passes
through the peak of the potential barrier. For a scattered particle, the modes can
only be excited by the part of the gravitational radiation emitted by the particle
that falls onto the hole. 'But the frequency of these gravitational waves is typically
such that they get reflected off the black-hole potential barrier before getting close
to the hole. For example, for f = 2 one gets Wmax M < 0.2, and such waves will
not excite the quasinormal modes considerably. For this very reason, the standard
formula [Landau and Lifshitz (1975)] which is valid for particles moving at v « c in
flat space (and ignores quasinormal modes) provides a reasonable approximation of
the radiated energy (we will discuss this in more detail in Section 4.10).

Finally, let us consider the gravitational radiation emitted when the particle is
given an initial velocity. The total energy radiated will clearly increase with the
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Figure 4.11: Spectrum of gravitational radiation generated by a particle with initial an
gular momentum i = 2.005 and zero velocity at infinity [data from Oohara and Nakamura
(1984)].

initial velocity. Furthermore, the relative importance of the higher multipoles is
enhanced [Ruffini (1973), Ferrari and Ruffini (1981)]. When an ultra-relativistic
particle - that is, a particle that is injected from infinity with a velocity close to
the speed of light - scatters off the black hole, the quasinormal modes are excited
[Oohara (1984)]. There are two factors that stimulate this excitation. The first one
is that the periastron of such a particle may be much closer to the black hole than
for a particle that starts from rest at infinity. In fact, periastron may lie inside the
peak of the potential barrier. If so, one would expect the particles passage to excite
quasinormal-mode ringing. Secondly, an ultra-relativistic particle emits gravitational
waves at frequencies that are much higher than that corresponding to the velocity
at periastron. This is because of the generated gravitational synchrotron radiation
[see, e.g., Doroshkevich et al. (1972), Chrzanowski and Misner (1974), Ternov et al.
(1975), and Breuer (1975)]. Such high-frequency waves can penetrate through the
barrier and excite the quasinormal modes.

Radiation from extended bodies

Once one has done a calculation for a test particle moving in the geometry of a
black hole, the generalization to the case of "extended" bodies is quite simple. For
example, one can study the effect of a "finite-sized" star or a dust shell falling onto the
black hole [Sasaki and Nakamura (1981a), Haugan, Shapiro, and Wasserman (1982),
Oohara and Nakamura (1983a,b)]. In a way, the latter process approximates a non-
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spherical gravitational collapse [Shapiro and Wasserman (1982), Petrich, Shapiro,
and Wasserman (1985)]. To the lowest order of approximation, each particle follows
a geodesic in the background spacetime and is unaffected by the presence of other
particles. The total perturbation of the metric simply follows as the sum of the
various individual contributions.

The general consensus from these studies is that, for a fixed amount of infalling
mass less gravitational radiation is generated than in the case of a single particle. The
energy emitted by infalling dust will never exceed that of a particle with the same
mass [Shapiro and Wasserman (1982), Petrich, Shapiro and Wasserman (1985)]. For
a shell of total mass m one finds that the radiated energy will not be greater than
!:!.E :::::: 7.8 x 1O-4m2 / M [Sasaki and Nakamura (1981a)]. This is more than a factor
of ten smaller than the energy emitted in the test-particle case. The reduction is
mainly due to phase cancellations. An extended body essentially acts as a collection
of particles and the gravitational waves generated by each such particle interfere
destructively with each other.

The results obtained from test-particle calculations are in reasonable agreement
with fully relativistic numerical calculations. The waves emitted during a gravita
tional collapse are strongly dominated by a few quasinormal modes [Stark and Piran
(1985), Seidel (1991), Abrahams and Evans (1992)]. The situation is similar for two
colliding black holes [Anninos, Hobill et ai. (1993)]. In fact, if extrapolated to the case
of two equal masses, the predictions from test-particle calculations agree surprisingly
well with the results of numerical relativity.

4.7 Scattering of Waves by Black Holes

4.7.1 The scattering problem

Much can be learned about a physical system by letting waves of a known character
be scattered off it. A considerable effort has gone into studies of waves scattered off
black holes. In this section we discuss some of the obtained results. More details can
be found in the book by Futterman, Handler, and Matzner (1988) which is devoted
entirely to this subject.

The basic scattering problem is simple. One assumes that a plane wave impinges
on the black hole. The asymptotic behavior of the resultant field can then be used
as a probe of spacetime close to the black hole. The key quantity that tells us what
effect. the central object has on the original wave is the scattering amplitude /(8). If
we, for simplicity, focus on massless scalar waves in the Schwarzschild geometry, the
scattering amplitude can be extracted from the field at infinity

.h .h + /(8) eiwr. +
'" ~ "'plane , r. ~ 00.

r
(4.7.1)
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The scalar field is, of course, described by (4.2.1). The differential cross-section - the
intensity scattered into a certain solid angle - follows immediately from

(4.7.2)

(4.7.3)

Here dD. is an element of the solid angle (dD. = 211" sin BdB) .
In order to extract the relevant information, we need to solve two problems. First,

we need to define what we mean by a "plane" wave in a black hole spacetime, and
then we need to solve (4.2.7) for the field of interest. For a massless scalar field, the
first issue has been discussed by Matzner (1968) [see Chrzanowski et ai. (1976) for a
discussion of other fields]. He found that the desired expression for a plane wave at
infinity is

<l>pl.ne~ ~r~ie(2€+I)Pe(COSB) sin (wr.- e;) asr. ~+oo.

It should be noted that we retain the standard flat spacetime description by replacing
r. in (4.7.3) by r. The situation is analogous to the well-known one of Coulomb
scattering. This is not very surprising. When described in terms of the Schwarzschild
coordinate r, the perturbation equation (4.2.7) is a Schr6dinger-like equation with a
long-range potential (that falls off as l/r for large r).

Now it is straightforward to show [using solution (4.2.10)] that

1 00

/(B) = -. ~)2£+ 1) [e2i6t
- 1] Pe(cosB) ,

2lW
e=o

where the phase-shifts be are defined as, cr. (4.2.10),

(4.7.4)

(4.7.5)

The phase-shifts are typically complex valued. The imaginary part accounts for
absorption by the black hole.

Before discussing results obtained in this way, we will provide some useful ap
proximations.

4.7.2 Approximate results

Forward focusing

In the classical problem of scattering of a beam of parallel rays off a spherically
symmetric center, one has the following expression for the different.ial cross-section

da = b db (sin Btl .
do' dB

(4.7.6)
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(4.7.7)

Here b = b(B) is the impact parameter of a ray that is deflected by an angle B
away from the direction of incidence. For a black hole, and in the geometrical optics
approximation, the dependence b = b(B) can be obtained by solving equations (2.8.5)
(2.8.6). The calculation of the corresponding cross-section is trivial.

An obvious feature of the black hole cross-section concerns forward scattering
(B :::::: 0). A small scattering angle corresponds to a wave that passes at a large
distance from the black hole (large b or large f in the spherical harmonics expansion).
Then the deflection is essentially governed by the Newtonian potential. This means
that the beam deviation is B~ lib. Substituting this relation into (4.7.6), we obtain

da 1
dfJ. ~ ()4 .

Thus, the cross-section for forward scattering diverges as B~ o.

Low frequencies

As already mentioned above, one would expect the scattering of low-frequency waves
to be essentially elastic and due to the field far away from the black hole. In fact, if
we introduce

(
2M) -1/2 _

y= 1-- u,
r

it follows from the Regge-Wheeler equation (4.2.7) that

[
.!!!.-.- + w2 + 4Mw

2
_ f(f + 1)] y =0

dr2 r r 2

(4.7.8)

(4.7.9)

whenever Mw «f. For low frequencies (or large f) it is sufficient to analyze
this equation. For obvious reasons, Futterman, Handler, and Matzner (1988) refer
to this as "the comparison Newtonian problem". Since (4.7.9) is identical to the
radial Coulomb wave equation, one can take over well-known results from quantum
mechanics. In particular, the corresponding phase-shifts oe are given by

2;. f(f + 1 - 2iMw)
e I = =c-.,------:-:-::--7"

f(f+l+2iMw) ,

and the scattering amplitude is

_ f(1-2iMW)(. ~)-2+4iMW
/(B) - M f(1 +2iMw) slll2

(4.7.10)

(4.7.11)

Note that for small angles B this approximation leads to a differential cross-section
with the anticipated divergence, cf. (4.7.7). The approximation (4.7.11) is valuable,
especially, since it provides a large ecomplement to numerical calculations for the
lowe partial waves [Handler and Matzner (1980)].
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Figure 4.12: Trajectories of rays with impact parameters close to the critical one for glory
scattering, bgl' The path difference between rays is small, and the resulting difference in
phase produces interference.

G lory effect

Whenever the classical cross-section diverges in either the forward or the back
ward direction, a diffraction phenomenon called a glory arises. This phenomenon
is well known in optics, but it also arises in quantum scattering [Ford and Wheeler
(1959a,b)]. For black holes glories arise because a wave can be deflected through an
angle greater than 11'; see Figure 4.12 [Futterman, Handler, and Matzner (1988)]. The
glory scattering is associated with the unstable circular photon orbit at r = 3M. Its
effect is that, for a critical value of the impact parameter, be = 3V3 M, we get a
logarithmic singularity in the deflection; see Figure 4.13. Darwin (1959) deduced the
following approximate expression for the impact parameter close to this singularity

b(8) ::::: 3V3 M + 3.48Me-e . (4.7.12)

(4.7.13)

Here 8 is the total angle of scattering ar a so-called deflection function. Whereas
the scattering angle () is restricted to the interval [0,11'], the function 8 can attain
any value (this is apparent in Figure 4.13). We define bgl as the value of the impact
parameter b corresponding to scattering by () =11'. For high frequencies wM » 1 one
has bgl ::::: 5.35M.

An approximation of the glory effect has been derived for scattering of waves
with arbitrary spin [DeWitt-Marette and Nelson (1984), Zhang and DeWitt-Marette
(1984)]. Far waves of spin s the resultant formula is

da 1 21 db I 2( .dO ::::: 21l'wbgl d() J2s wbgl Sill 8) ,
glory ".

where J2.(x) is the standard Bessel function. When combined with the Darwin
formula (4.7.12) - and using bgl =b(1l') ::::: 5.35M - this provides a good approximation
whenever wM » 1 and I8-1l' 1« 1 (see Matzner et ai. (1985) and also Figure 4.14
here).

From this approximation one can infer that the glory rings are bright at the centre
for a scalar field, but dark in the case of fields with nonzero spin. Thus, one expects
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the cross-section to have a maximum at () = 1T for scalar waves, but minima for
electromagnetic and gravitational waves.

Orbiting resonances

A particle that is scattered by a potential can sometimes orbit the centre several
times before it escapes. This is known as an orbiting resonance [Ford and Wheeler
(1959a,b)J. Orbiting typically leads to dips in the cross-section at certain angles.
Finding an analytic description of this phenomenon has proved an enormous chal
lenge. Recently, Anninos, DeWitt-Morette et at. (1992) have presented an approxi
mation scheme and applied it to scalar wave scattering from black holes.

The scalar wave cross-section due to orbiting can be written as

Here

and

da I M
2

1 iA 1

2

- ::::: -'-4-- 1 + - exp(i(312 )
dQ orbiting sm () /2 a

(3 = -w[be - (1- ())beJ -1T/4 + 4> ,

[ _ b 0 {Wbe I sin 11T[W(2be - bgl) - nJ 1 . 2b (2b - b )}
2 - W e cos og . 1 [b JI + lW e e gl •1T sm 1T W e - n

(4.7.14)

(4.7.15)

(4.7.16)

(4.7.17)

Here n is to be chosen such that w(be - bgl) - n < 1 and wbe - n < 1. We recall that
be =3V3 M, bgl =b(1T), and have introduced the shorthand notation be = b(0). The
approximation (4.7.14) leaves two parameters (A and 4» free, but Anninos, DeWitt
Morette et at. (1992) obtain good results by adjusting these parameters to fit the
overall amplitude and phase of numerically obtained cross-sections. They conclude
that the oscillatory features seen away from the forward and backward directions are
due to orbiting [see Figure 9 of Anninos, DeWitt-Morette et at. (1992)J.

4.7.3 Wave scattering

The approximations described above - although instructive and useful - cannot pro
vide a complete description of black hole scattering. First of all, one must proceed
beyond geometrical optics to the wave problem, which allows for interference effects
and absorption by the black hole. Secondly, it is impossible to obtain approxima
tions that are valid for all scattering angles. Hence, the problem must be approached
numerically. Once the phase-shifts Of are obtained, for a given wave frequency wand
a large number of partial waves e, all physical quantities of interest follow.
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(4.7.18)

The scattering problem has been studied in a multitude of papers. Scalar fields
were considered by Matzner (1968), Sanchez (1976, 1977, 1978a,b, 1997), and recently
by Andersson (1995b). The scattering of various massless fields in the low-frequency
limit was considered by Matzner and Ryan (1977). Extensive calculations for grav
itational waves were made by Matzner and Ryan (1978) and Handler and Matzner
(1980).

When extracting information from a set of phase-shifts, the semi-classical scatter
ing description of Ford and Wheeler (1959a,b) [see also Handler and Matzner (1980)J
is useful. In this picture the impact parameter is related to f (the angular momen
tum), via

b=(e+D~·
That is, each partial wave is considered as impinging on the black hole an initial
distance b away from the axis.

Most of the physical information can be extracted from the deflection function.
It corresponds to the angle by which a certain partial wave is scattered by the black
hole, and is related to the real part of the phase-shifts through

d
8(f) = 2 dfReo{. (4.7.19)

(4.7.20)

(Here it is assumed that f can attain any real value.) An example of this function
for scalar wave scattering is shown in Figure 4.13. For large values of the impact
parameter, b, one would expect the value of the deflection function to agree with the
classic result 8 ::::: -4M/b . As can be seen in Figure 4.13, this is, indeed, the case.

Because of the singularity in the deflection function, one should expect interference
between waves that are scattered t.hrough angles differing by multiples of 1r; see
Figure 4.13. This leads to the glory phenomenon, and it will be most pronounced in
the backward direction () ::::: 1r. Figure 4.14 shows a typical cross-section for scattering
of monochromatic scalar waves off a Schwarzschild black hole. The scattered wave has
a frequency wM = 2. For large values of the deflection angle () a beautiful example of
glory oscillations can be seen. Figure 4.14 demonstrates that the glory approximation
(4.7.13) is in excellent agreement with the partial-wave result for 1() - 1r 1« 1.

A feature of obvious importance in black hole scattering is absorption. For scalar
waves, one can show that the total absorption cross-section is [Sanchez (1978a, 1997),
Andersson (l995b)J

00 00

aahs = :2 ~)2f+ 1) [1-1 R1
2

] = :2 ~)2f+ 1) [1- e-4lm
61

]

{=o (=o

From the low-frequency approximation given in section 4.2 it follows that the quantity
in square brackets in (4.7.20) behaves as w 2l+2 as w --+ O. Thus, it is clear that only
the e= 0 partial wave contributes to absorption in this limit. This means that only
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Figure 4.13: The deflection function for a plane scalar wave scattered from a Schwarzschild
black hole. The frequency of the scattered wave is wM = 10. The deflection function as
obtained from the phase-shifts (solid line) is compared to two approximations (dashed lines):
I) Einstein deflection and 2) the predictions of Darwin's formula. The first is accurate for
large e, and the second is reliable for impact parameters close to that associated with the
unstable photon orbit (f ~ 52 in this case) [data from Andersson (1995b)).

waves that "approach the black hole radially" will be absorbed. Consequently, one
would expect the absorption cross-section to become equal to the surface area of the
black hole in the low-frequency limit. Indeed, given the approximations in Section 4.2,
it is easy to show that the absorption cross-section approaches the anticipated value,
161rM 2 [Unruh (1976c)). In the high-frequency limit the absorption cross-section
approaches the geometrical-optics value 271rM 2

• This means that all high-frequency
waves that have an impact parameter b < 3V3 M will be absorbed.

The analysis of electromagnetic and gravitational wave scattering is, in principle,
identical to that for scalar waves. But in the case of gravitational waves an additional
complication enters. Axial and polar waves scatter differently, and the scattering
amplitude consists of a sum of their individual contributions [Chrzanowski et al.
(1976), Matzner and Ryan (1977, 1978)). Hence, the cross-section may show features
due to interference between these two contributing terms. We will return this issue
when we discuss scattering from rotating black holes in Section 4.8.

4.7.4 The complex angular momentum paradigm

Although calculations are straightforward within the standard partial-wave picture of
scattering, it suffers from some deficiencies. For example, the partial-wave sum (4.7.4)
is formally divergent [Futterman, Handler, and Matzner (1988), Andersson (1995b)).
Moreover, it is not trivial to interpret the results for scattering of gravitational waves.
The situation is especially complicated for Kerr black holes; see Section 4.8. These
are reasons why alternative descriptions are of interest.
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(4.7.21)

Figure 4.14: The differential cross-section for scalar waves scattered off a Schwarzschild
black hole (wM = 2.0, solid). For comparison we also show the glory approximation
(dashed), that agrees well with the partial-wave results [data from Andersson (1995b)).

One such alternative, that makes use of a complex angular momentum, has re
cently been developed for scalar wave scattering [Andersson and Thylwe (1994), An
dersson (1994)J. The generalization of the idea to other fields is \1traightforward.
After a Watson-Sommerfeld transformation, which schematically corresponds to

f({}) = L -+ Jde,
e

the scattering amplitude (4.7.4) splits naturally into two terms. One is a sum over
the so-called Regge poles, and the other is a smooth background integral that can be
approached by asymptotic methods.

The Regge poles are singularities of S(e) = e2i6e , that is correspond to complex
values en such that the solution to the Regge-Wheeler equation behaves as purely
ingoing waves falling across the event horizon, and at the same time behaves as
purely outgoing waves at spatial infinity, cf. (4.7.5). In fact, the Regge poles are
complex-angular-momentum analogues to the quasi normal modes of a black hole; see
Section 4.4. Many of the methods used to compute quasinormal-mode frequencies
could therefore potentially be used also to determine the Regge pole positions en'
The approximations (4.4.1) and (4.4.2) for quasinormal modes can be inverted to
approximate the Regge poles. Approximate values for the first few en, and the corre
sponding residues, in the context of scalar wave scattering from Schwarzschild black
holes have recently been obtained [Andersson (1994)].

Figure 4.15 shows atypical result obtained within the complex angular momentum
description. The Regge-pole sum is dominated by the first pole for large angles
({} ~ 40°). Each consecutive pole then gives a contribution that is roughly two orders
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Figure 4.15: The differential cross-section for scalar waves and wM = 2 as obtained from
phase-shifts (solid line) compared to the individual contribution from each of the first three
Regge poles (dashed lines). A one-pole approximation is sufficient to describe the black hole
glory [data from Andersson (1994)J.

of magnitude smaller than that of the preceding pole. In order to obtain a reasonably
accurate description of the black hole glory, it is sufficient to include only one Regge
pole. In contrast, a large number of partial waves had to be retained in the standard
description.

Figure 4.15 illustrates the usefulness of complex angular momenta for black holes.
But equally important is the interpretative power of the new representation. One
can show that each Regge state should be interpreted as two surface waves that
travel around the black hole in opposite directions [Andersson (1994)J. At the same
time, the waves decay at a rate corresponding to the inverse of the imaginary part
of en. Moreover, it is easy to show that the anticipated diffraction oscillations in the
backward direction (the black hole glory) will have a period of 1r/Re (en + 1/2). One
can also infer that the real part of each Regge pole is associated with the distance
from the black hole at which angular decay occurs, i.e., Re (en + 1/2) ::::: wRn. In the
case of a Schwarzschild black hole such surface waves should be localized close to the
circular unstable photon orbit at T = 3M (or, strictly speaking, the maximum of the
Regge-Wheeler potential). This would correspond to R n = 3V3M::::: 5.196M. The
first Regge pole for various frequencies leads to Rn very close to this value [Andersson
(1994)J.

4.8 Wave Fields around a Rotating Black Hole

The analysis of weak fields in the geometry of a rotating black hole is in many ways
similar to that for non-rotating holes. Thus, perturbations of a Kerr black hole can
be studied using the techniques we have already discussed. This is fortunate since
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the exterior Kerr geometry is believed to be the universal late-time limit reached
by gravitational collapse of any rotating body. Since most stars are rotating, it
seems likely that black holes will be created with at least some angular momentum.
Hence, the Kerr black hole should be of more importance to astrophysics than the
Schwarzschild one.

The analysis of Kerr black holes is not completely identical to that for non-rotating
holes, however. Some additional features arise because the Kerr metric has only axial
symmetry. Carter (1968b) was the first to demonstrate that the variables can be sep
arated for geodesic motion also in the Kerr background. The scalar wave problem was
discussed by Brill et ai. (1972). For some time it was believed that the wave equa
tion would not be separable for fields of nonzero spin. The main reason for this was
that the Regge-Wheeler approach - where one considers direct metric perturbations;
see Section 4.2.4 - leads to a complicated, and seemingly inseparable, set of coupled
equations. Indeed, when separability was demonstrated, it was through the use of an
alternative approach. Teukolsky (1972, 1973) used the Newman-Penrose formalism
(see Appendix E) to study the problem. From the Newman-Penrose point of view, the
Kerr solution is very similar to the Schwarzschild one (Teukolsky's derivation does,
in fact, apply to any Petrov type D vacuum metric), and the perturbation equations
are completely separable into a set of ordinary differential equations. Amazingly, a
single master equation - now known as the Teukoi8ky equation - describes scalar,
electromagnetic and gravitational perturbations of a Kerr black hole. This equation
also governs the evolution of spin 1/2 (neutrino) fields.

4.8.1 The Teukolsky equation

When no sources are present, the Teukolsky equation takes the form (see Teukolsky
(1973) and Appendix G.l)

[
(r2+ 0.2)2 2' 2 ] 82

1jJ 4Mar 82
1jJ [a2 1·] 82

1jJ
Li - a Sill () 8t2 +~ 8t8¢ + Li - sin2 () 8¢2

_ Li-s~ (liS+! 81{') __1_~ (sinl1/J ) _ 28 [a(r - M) + iCOS(}] 8ljJ
8r 8r sin () 8(} 8(} Li sin2 () 8¢

[
M(r2

- a2
) ] 81jJ

- 28 Li - r - ia cOS () 7ft + (82 coe () - 8)ljJ = O. (4.8.1 )

Here, a. ::; M is the rotation parameter, connected with the bla.ck holes angular
momentum J, a = J / M; 8 is the spin-weight of the perturbing field (8 = 0, ±1, ±2),
and we have used standard Boyer-Lindquist coordinates (see Section 3.2). We have
also defined Li == r 2

- 2Mr + a2
. The event horizon of the black hole follows from

Li = 0, and thus correspond to 1'+ = M +VM2 - a2 . The field quantities that satisfy
(4.8.1) are listed in Table 4.2.
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s 0 1 -1 2 -2

1f; 4> 4>0 p-24>2 Wo P-4W4

Table 4.2: The field quantities (in the Newman-Penrose formalism) that correspond to the
function If' in the Tenkolsky equation for various (integer) spin-weights s. The quantity p
is equal to -(r - ia cos B)-I.

The variables in (4.8.1) can be separated by decomposill!,
to

where

lito modes according

(4.8.2)

(4.8.3)sZe",((}, ¢) = ~ sBe",((}) eirrt4>.
y21r

Then the equations governing the radial function sRe", and the angular function
sBern are (suppressing all indices for clarity)

A-s d (A s+1 dR) [f(2 - 2is(r - M)f(. '] R
u - u - + +4'ISW1'-/\ =0

dl' dr Li

and

1 d (. dB) [2 22m2-- - SI1I(}- + a W cos (} - -- - 2awscos(}
sin (} d(} d(} sin2

(}

2ms cos (} 2 2(} E 2] B
- . 2 (} - scot + - s = 0 .

sm

Here we have introduced

and

(4.8.4)

(4.8.5)

(4.8.6)

(4.8.7)

The solutions to the angular equation are generally called spin-weighted spheroidal
harmonics. The analytic properties of the functions sBern and the solutions to the
radial equation were discussed in some detail by Hartle and Wilkins (1974). Leaver
(1986a) derived a power-series expansion for the angular functions and an expansion
in terms of Coulomb wave functions for the radial solutions. We will return to the
radial functions later. The angular eigenfunctions are discussed in Appendix G.2.
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Exactly as for Schwarzschild black holes, one can generate all non-trivial fea
tures of a perturbing field from the solution 1/J to (4.8.1) [Wald (1973)J. Moreover,
Chrzanowski (1975) has shown how the perturbed metric is obtained from Wo and
W4 (see Appendix G.6 for more details). This completes the perturbation picture for
Kerr black holes. The method of separation of variables has been used to analyze
the stability of the Kerr metric and to study the scattering of electromagnetic, grav
itational, and neutrino fields by Kerr black holes. We will discuss the results of such
studies later.

Attempts to separate the variables in the Dirac equation with nonzero mass were
unsuccessful until the work of Chandrasekhar (1976b). He suggested a method in
which the separation of variables was carried out before the system of equations was
decoupled. Page (1976c) extended this approach to t.he case of Kerr-Newman black
holes. Lee (1976), Chitre (1975, 1976), and Bose (1975) treated the interacting elec
tromagnetic and gravitational perturbations in the Kerr-Newman metric. In this
case, one generally finds coupled wave equations for, e.g., 4>2 and W4 • A more COIII

plete exposition of the mathematical theory of the propagation of physical fields in
the spacetime of a rotating black hole can be found in Chandrasekhar's monograph
(1983).

The radial Teukolsky func~ions

Once a solution to the Teukolsky equation (4.8.1) is known, it is possible to calc\llate
all relevant details of the perturbing field. The Kerr problem thus essentially reduces
to an analysis of the radial equation (4.8.4). From that equation, one complication
is obvious: The "effective" potential depends directly on the frequency w, It is also
clear that rotation breaks the angular degeneracy that is present for Schwarzschild
black holes. Hence, all the 2£ + 1 values of m must be considered. Anyway, just as
in the Schwarzschild case, it is useful to introduce a tortoise coordinate defined by

d

dr.
(4.8.8)

and a new variable

Then the radial equation (4.8.4) takes the form

[
.!f..- + K

2
- 2is(r - M)K + Li(4irws - >.) _ G2 _ dG] X = 0

dr; (r 2 + a2 )2 dr.' ,

where the function G is defined as

(4.8.9)

(4.8.10)

(48.11)
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Now, the asymptotic behavior of (4.8.10) implies that the solutions behave as
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as r ---+ 00. (4.8.12)

The different power-law fall-offs are in accordance with the so-called peeling theorem
[Newman and Penrose (1962)J.

Close to the event horizon r+ the behavior is

(4.8.13)

Here rv is defined as rv = w - mOR, where OR = a/(2Mr+) is the angular velocity
of the black hole. For rotating black holes the formulation of the physical boundary
condition at the horizon requires some care. One must require that a wave be ingoing
"in the frames of all physical observers" (who will be dragged around the hole by its
rotation). One cau show that this means that one should impose sRem _ Li-se-i",r.
as r ---+ 1'+ [Teukolsky (1973)J.

The fact that the outgoing and ingoing parts of a solution to (4.8.4) have am
plitudes that diverge asymptotically presents a serious obstacle to numerical studies.
It would clearly be advantageous if one could transform the original equation into
one with a short-range potential. That this may be possible is illustrated by the
Schwarzschild case where the equation derived by Bardeen and Press (1973) [which
corresponds to the a. = 0 limit of (4.8.1)] can be transformed into both the Regge
Wheeler and the Zerilli equations [Chandrasekhar (1975)J. Inspired by this example,
Chandrasekhar and Detweiler approached the Kerr problem in a series of papers.
They found that there are, in principle, an infinite number of alternatives - neither
of which one has reason to prefer a priori. Imposing some reasonable constraints 
that an analytic solution is preferable to one that involves numerical quadratures, for
example - they derive four possible effective potentials for gravitational perturbations
of a Kerr black hole [Chandrasekhar and Detweiler (1975b, 1976)J. These potentials
are all of short range, and two of them limit to the Regge-Wheeler potential, while
two approach the Zerilli potential as a ---+ O. When the black hole is rotating, the
potentials are typically complex valued. It can be shown that all four potentials lead
to identical reflection and transmission coefficients. Unfortunately, the potentials de
rived by Chandrasekhar and Detweiler are rather complicated. Hence, we will not
give them explicitly here. Moreover, the new potentials have some added complica
tions. For example, there may be a singularity in the region r > r+ (outside the
black hole) when one has superradiance (see below for a discussion of this effect).
Yet these equations may be better suited to numerical studies than (4.8.4).

Chandrasekhar (1976a) used a similar approach to derive a short-range poten
tial for an electromagnetic field in the Kerr geometry. As an alternative, Detweiler
derived an equation with a manifestly real-valued effective potential for this case [De
tweiler (1976)J. The neutrino-problem was discussed by Chandrasekhar and Detweiler
(1977).
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Another alternative formulation of the Kerr problem was suggested by Sasaki and
Nakamura (1981b, 1982a). They were motivated by a difficulty that arises when one
considers test-particle motion in a black hole geometry. One encounters divergent
integrals, essentially because one must "integrate over the infinite past history of the
particle". One way of dealing with these divergences is to integrate by parts and
then discard divergent surface terms [Detweiler and Szedenitz (1979)]. Sasaki and
Nakamura take a different route and transform the problem into one without these
divergences [see also Tashiro and Ezawa (1981)]. The resultant equation has a short
range potential and reduces to the Regge-Wheeler equation in the limit when a -t O.
In general, the new equation contains a dldr. term.

The Teukolsky-Starobinsky identities

Before concluding the general discussion of the equations describing perturbations of
a rotating black hole, we want to point out some useful relations. One reason for doing
so is obvious from (4.8.12), which describes the asymptotic behavior of solutions to the
radial Teukolsky equation. If we consider waves of spin-weight s = -2 as an example,
it follows that the Weyl scalar W1 will consist of an "outgoing-wave" part that falls
off as 1/r and an "ingoing-wave" part that falls off as 1/r5 for large values of r.
This result is in accordance with the "peeling theorem" , but we know that we should
calculate the energy flux from the 1/r part of the field. So at first it would seem as if
we can only infer the outgoing wave flux from W4, and this would be inconsistent with
the claim that all non-trivial features of a perturbation can be calculated once a single
solution to the Teukolsky equation is known [Wald (1979a,b)]. In the given example,
we must be able to evaluate also the ingoing-wave flux from W4, i.e., from the 1/r5
part of the field. The resolution to this mystery is more or less obvious. The solutions
for s = -2 (W4) and s = +2 (Wo) are not independent. One solution is obtainable
from the other by means of differential transformations. These relations have been
given by Teukolsky and Press (1974) and Starobinsky and Churilov (1973), and are
often called the Teu.kolsky-Starobinsky identities. They are discussed in more detail
in Chandrasekhar's book (1983). Furthermore, Chandrasekhar (1980) has derived
similar identities for arbitrary spin s.

In the case of gravitational perturbations, these relations imply that a solution

corresponds to

(r - ia cos 8)4 W4 = C -2Rlm -2Sem e-iwt+im</>

(4.8.14)

(4.8.15)

with some constant C.
Given this result, one can make one interesting observation: It is possible to have

W4 = 0 and yet have a nonzero Wo. (The reverse situation is also attainable, but
to see that, we need to use a relation different from the one above.) This situation
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corresponds to a so-called "algebraically special" solution, and arises if the constant
C vanishes. In the Schwarzschild limit (when a = 0) the constant becomes

C = (f - 1)£(£ + 1)(£ + 2) - 12iwM. (4.8.16)

Thus, algebraically special solutions can be found for a single, purely imaginary, fre
quency for Schwarzschild black holes. As it turns out, the perturbation equations
can be solved analytically for this case [Chandrasekhar (1984)]. For example, alge
braically special solutions have also been studied by Couch and Newman (1973).

4.8.2 Superradiant scattering

In general, one would expect an incident wave to partly penetrate the potential barrier
that surrounds a black hole and be absorbed, while the remaining parts of the wave
scatters to infinity (see the discussion in Section 4.2). Thus, one would expect to find
that the amplitude of the scattered waves always is smaller than (or equal to) the
amplitude of the incident wave. An analysis of rotating black holes shows that this
is not necessarily the case. AlI impinging wave can be amplified as it scatters off the
hole. This phenomenon, called supermdiance, was first discussed by Zel'dovich (1970,
1971, 1972) and Misner (1972). The additional energy that is radiated to infinity is
drawn from the rotational energy of the black hole (see Section 7.1).

To illustrate this phenomenon, let us study the specific case of a scalar field, and
extend the discussion of Section 4.2 to the Kerr black hole. A physically acceptable
scalar-field solution to (4.8.10) is defined by

r--+oo.
(4.8.17)

Using this function together with its complex conjugate and the fact that two linearly
independent solutions to (4.8.10) must lead to a constant Wronskian, it is easy to
show that

( 1 - m~H )1 T 12 = 1 _ 1R 12 , (4.8.18)

(4.8.19)

where the transmission amplitude T and the reflection amplitude R are defined as in
Section 4.2. From this equation it is clear that one will have superradiance (R > 1)
if

rna
w < mOH = 2Ml'+ '

.'-'l;.,.h is only achievable for positive values of m.
Alternatively, one can see that energy can be extracted from the black hole im

mediately from the boundary condition (4.8.13).' If rv becomes negative, the solution
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Figure 4.16: Reflection coefficient 1R 12 as a function of w. Superradiance is possible when
w - mflH < 0 [data from Chandrasekhar and Detweiler (1977)].

which behaves as e-iror• and is "ingoing" according to a local observer, will correspond
to waves coming out of the hole according to an observer at infinity.

Superradiance has been discussed by several authors [Press and Teukolsky (1972),
Starobinsky (1973), Starobinsky and Churilov (1973), Teukolsky and Press (1974)].
One finds that the maximum amplification of an incoming wave is 0.3% for scalar
waves, 4.4% for electromagnetic waves, and an impressive 138% for gravitational
waves [Teukolsky and Press (1974)]. Figure 4.16 shows the reflection coefficient 1R 1

2

as a function of the frequency of the incident waves for different types. The figure
reveals superradiance for gravitational and electromagnetic waves in the range w <
mOHo No superradiance is seen for neutrinos. This is connected with the Pauli
principle of exclusion valid for fermions [Unruh (1973), Chandrasekhar and Detweiler
(1977), Martellini and Treves (1977), Chandrasekhar (1979b), and lyer and Kumar
(1978)]. We return to the discussion of this point in Chapter 10, where quantum
aspects of scattering of particles by black holes are considered.

4.8.3 Radiation from a test particle moving in the Kerr back
ground

Let us now turn to the radiation generated by a particle moving in the gravitational
field of a rotating black hole. The problem is, in all essential respects, identical to
that for Schwarzschild black holes [Sasaki and Nakamura (1981b, 1982a)]. Hence, the
main conclusions will be the same as in Section 4.6. Of course, some added features
will enter because the black hole rotates. We focus our attention on these features
here.

The first problem considered in the Kerr background was that of a particle falling
along the symmetry axis of the black hole [Sasaki and Nakamura (1981, 1982b),
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Figure 4.17: The spectrum of gravitational radiation (in different multipoles 1') generated
by a test particle falling into a Kerr black hole. The particle is initially at rest at infinity,
and falls along the symmetry axis of the hole. The case of a rapidly rotating black hole
(aiM = 0.99, solid lines) is compared to the Schwarzschild case (dashed lines) [data from
Sasaki and Nakamura (1982b)].

Nakamura and Sasaki (1981a,b)]. The particle is initially at rest at infinity (parabolic
motion). This problem is relatively simple since one need only consider radiation in
the m = 0 modes. Figure 4.17 shows the spectrum emitted when such a particle falls
into a rapidly rotating black hole (a = 0.99M). For comparison, the corresponding
spectrum for a Schwarzschild black hole (a = 0) is also shown. The spectra in Fig
ure 4.17 peak at the corresponding quasinormal-mode frequencies. Compared to the
Schwarzschild case the peaks are shifted towards higher frequencies because the oscil
lation frequency of the slowest damped m = 0 quasinormal mode typically increases
with increasing a. The smaller peaks at high frequencies in Figure 4.17 probably oc
cur because of coupling between different multipoles [Sasaki and Nakamura (l982b)].
Note that there is a minor peak in the e= 2 spectrum at the same position as the
main peak in the e= 3 spectrum, etc. This explanation can also be used for the
extra bumps in the high espectra at frequencies lower than that of the main peak.

The total energy radiated in this process generally increases (almost quadratically)
with increasing a. When a = 0.99M, the energy radiated is 1.65 times that for a
non-rotating hole. Moreover, the empirical relation (4.6.1) can be shown to hold also
for rotating black holes [Sasaki and Nakamura (1982b)J so that the quadrupole always
dominates the radiation.
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Particles falling in the equatorial plane

The fact that the results for a particle falling along the symmetry axis of a Kerr black
hole are very similar to those for a Schwarzschild hole is perhaps not too surprising.
There is no frame-dragging effect if the particle falls onto the black hole along the
axis. Most of the features that come into play when the black hole is rotating will
be found in the In #- 0 modes. These features should become apparent when one
considers particles plunging int.o the black hole in the equatorial plane (8 = 1r/2).
Indeed, for a particle of zero angular momentum that falls into a Kerr black hole the
spectrum is different from those in Figure 4.17 in one important respect. There are
peaks corresponding to all the different -f :s: In :s: f quasinormal modes for each e[see
Figure 1 of Kojima and Nakamura (1983a)). This has the effect that the spectrum is
extended towards higher frequencies. The total radiated energy is further enhanced,
and for a = 0.99M it is 4.27 times t.hat for a Schwarzschild black hole.

In Figure 4.18 we show the total amount of emitted energy for particles with
moderate angular momentum which are ultimately captured by the black hole (for a
few different values of a). When the black hole is rotating, the curves in Figure 4.18
are clearly asymmetric for positive and negative L. They also do not reach a minimum
at L = 0 as might be expected. Instead, the a. ~ 0.7M curves have minima at the
negative value of L. This can be understood in the following way [Kojima and
Nakamura (l983b, 1984a)]. Posit.ive values of L correspond to a particle that co
rotates with the black hole, whereas negative values are for counter-rotation. When
a particle that was initially counter-rotating reaches the vicinity of the black hole, it
will be slowed down because of frame-dragging. Thus, less gravitational waves are
radiated. Similarly, an initially co-rotating particle is speeded up, and the amount of
gravitational waves that emerges is increased. When the initial angular momentum
is large, it dominates that of the black hole, and the radiated energy increases with

ILl·
We have seen that quasinormal-mode ringing dominates the emerging radiation,

and that most of the energy is radiated through the quadrupole, but what can be
said about the relative excitation of modes corresponding to different values of m?
For co-rotat.ing particles (positive L) the In = emode typically dominates (Kojima
and Nakamura 1984a); see Figure 4.19. The situation is markedly different when t.he
particle is counter-rotating. Then the excitation of the In = -e mode is the largest.
However, this mode is more rapidly damped than the In = f mode (see Figure 4.6).
This has the effect that the relative importance of the other modes is enhanced (see
Figure 4.19).

That the emerging gravitational waves are markedly different for co- and counter
rotating particles is clear from Figure 4.20. Because the In = equasinormal mode
is slower damped, the ringing lasts longer for co-rotating particles than for counter
rotating ones (where the In = -f mode dominates).
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Figure 4.18: Total energy radiated (for m '" 0) by a particle faIling, at rest at infinity,
into a Kerr black hole. The particle moves in the equatorial plane of the black hole. The
radiated energy is shown as a function of the initial angular momentum of the particle for
three different values of a. Also shown is the result for a Schwarzschild black hole [data
from Kojima and Nakamura (1983b)].

Particles scattered by a Kerr black hole

137

Finally, we consider the emission of gravitational waves by a particle that is scattered
by a Kerr black hole. The particles motion is in the equatorial plane (8 = 11"/2); its
velocity at infinity is zero, but its iuitial angular momentum L is sufficiently large
that it will not be captured by the black hole. This problem was treated by Kojima
and Nakamura (1984b).

Recall that when a non-relativistic particle was scattered by a non-rotating black
hole, the quasinormal modes were not excited (see Section 4.6). The main reason
was that periastron of the particles trajectory lies beyond the potential barrier that
surrounds the hole, and the waves emitted by the moving particle have frequencies
that are too low to penetrate the barrier. However, if the black hole is rotating, the
frequency of the gravitational waves emitted at periastron may be sufficiently close
to the quasinormal-mode frequencies that the modes will be excited.

For a scattered particle one can make two general observations. The first one
is that periastron lies further away from the hole (for any given a) for counter
rotating particles than for co-rotating ones. Secondly, for a given ILI periastron
is further away in the co-rotating case. This means that a co-rotating particle can
generally excite the quasinormal modes, whereas a counter-rotating particle can not.
Figures 4.21a and 4.21b show typical gravitational waves from a particle scattered
off a black hole with a = O.99M. The two waveforms correspond to initial specific
angular momenta L == 2.21 and L = 2.6, respectively. In the first case, the periodic
gravitational waves that are due to the particle orbiting the black hole several times
are followed by distinguishable quasinormal-mode ringing. No such ringing can be
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Figure 4.19: Total energy radiated in different multipoles for a particle falling in the
equatorial plane of a rotating black hole (a = a.85M). Here the initial specific angular
momentum of the particle is (a) L = 1.3, i.e., it co-rotates with the black hole. The til = f.
mode clearly dominates the radiation. (b) L = -,-2.25. The particle is thus counter-rotating,
and even though the m = -f. mode dominates the radiation, the importance of the other
modes is enhanced [data from Kojima and Nakamura (1983b)].

seen in the second case. The amplitude of the quasinormal modes is small because
they were excited by gravitational waves impinging on the hole.

4.8.4 Scattering of waves by Kerr black holes

Scattering of gravitational waves incident along the axis of symmetry of a Kerr black
hole was first studied by Matzner and Ryan in 1978, and later reconsidered by Handler
and Matzner (1980). It was found, not very surprisingly, that the shape of the
scattering cross-section depends on the rotation parameter a. Moreover, certain
features evolve as this parameter is changed.

In scattering from Kerr black holes two effects that do not exist for non-rotating
holes playa role: superradiance and the polarization of the incident wave. In the
plane-wave study of Chrzanowski et at. (1976) it is assumed that the impinging wave
is circularly polarized. For incidence along the symmetry axis of the black hole one
can consequently have either co- or counter-rotating waves. The two cases lead to
quite different results [Matzner and Ryan (1978)]. Although the general features
of the corresponding cross-sections are similar, they show different structure in the
backward direction. This difference seemingly arises because of the phase-difference
between axial and polar waves [the two "parities" of gravitational perturbations scat
ter differently, see Chandrasekhar (1980)].

The available results are best illustrated by an example. Let us consider the
case a = O.9M and various frequencies. Typical results are shown in in Figure 4.22.
Consider first the co-rotating case (w > 0). Two features are clear. First, the glory
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Figure 4.20: Typical quadrupole gravitational waves generated by a particle plunging into
a Kerr black hole. The particle moves in the equatorial plane. An observer which registers
this radiation is in the plane of the orbit in the direction of the periastron of the particle's
trajectory. The two cases are the same as in Figure 4.19a (solid curve) and Figure 4.19b
(dashed curve) [data from Kojima and Nakamura (1983b)].

near B = 71" is very pronounced for wM = 0.75 (cr. the discussion of glories in
Section 4.7). Secondly, there is a deep dip near B = 71"/2 for wM = 1.5. This is
presumably due to orbiting [Handler and Matzner (1980)]. Compared to these, the
features of the counter-rotating cross-section (w < 0) are much weaker. As Handler
and Matzner have put it: "The glory is considerably less glorious in the counter
rotating case". Nevertheless, one finds that maxima and minima generally occur at
the same angles in both cases. In general, all cross-sections reach minima as B --+ 71",
as expected from the glory approximation (4.7.13). It also seems as if the effect of
superradiance is to wash out interference minima, cf. Figure 4.23.

It is interesting to estimate the apparent size of the black hole as viewed along the
rotation axis, cr. Table 4.3. It is clear that the size of the black hole appears markedly
different depending on whether the infalling waves are co- or counter-rotating with
the hole. A Kerr black hole appears much smaller to waves that are co-rotating.

4.9 Stability of Black Holes

Maybe the most important question related to the possible existence of black holes in
our Universe is whether or not they are stable against perturbations. This question
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Figure 4.21: Typical gravitational waveforms for a particle scattered off a Kerr black hole
with a = O.99M. The particle is initially at rest at infinity and has initial specific angular
momentum (a) L = 2.21, (b) L = 2.6. An observer which registers this radiation is in the
plane of (,he orbit in the direction of the periastron of the particle's trajectory. The figures
correspond to the m = f. =2 mode. This mode dominates the radiation [data from Kojima
and Nakamura (1984b)].

wM -1.5 -0.75 0.75 1.5
a&bS 80.3Mz 88.7Mz 62.5M2 36.5M2

b 5.06M 5.31M 4.46M 3.41M

Table 4.3: The apparent size b of a Kerr black hole as viewed along the rotation axis.
The values are all for a = O.9M and are estimated from the total absorption cross-section
(7nb. ~ 1rb2 • Positive frequencies co-rotate with the black hole whereas negative ones are
counter-rotating. The values should be compared to b = 5.2M for a Schwarzschild black
hole [dat.a from Handler and Matzner (1980)].

was the original motivation for studies of perturbed black holes, and it dates back to
the seminal work of Regge and Wheeler in 1957. A specific questiOll to be answered
can be formulated in the following way. Suppose we set up a perturbation in a
compact part ofthe region external to a black hole on an initial spacelike hypersurface.
That is, we specify the value <I>(r, 0, ip, t) and Ot<l>(r, 0, ip, t) for t = 0 (say). To the
future of the initial surface the evolution of the perturbation is governed by (4.2.1)
or, more generally, (4.8.1). We then ask whether there is an upper bound for 1<1>1 at
all points in the exterior of the horizon to the future of the initial surface. If lIot, the
perturbation is considered (linearly) unstable.

The first attempts to address this issue ruled out perturbations of the Schwarzschilcl
geometry that grow exponentially with time. A simple argument can be based on
the use of physically acceptable boundary conditions [Vishveshwara (1970b)]. Let us
consider perturbations of a Schwarzschild black hole and an unstable modE' corre
sponding to a purely imaginary frequency w = in; that is, a solution to (4.2.4) with
time-dependence exp(nt). The asymptotic behavior of such solutions lIlUSt be

(4.9.1)
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Figure 4.22: Differential cross-sections for scattering of gravitation radiation by a rotating
black hole with a = 0.9M for different frequencies wM [data from Handler and Matzner
(1980)].

both as r. --+ +00 and r. --+ -00. For regularity at spatial infinity we must clearly
choose the lower sign. But from the fact that the effective potential in the Regge
Wheeler equation is positive definite it follows immediately that a;. <I> never becomes
negative in r E (2M, 00). Hence, the regular solution at spatial infinity cannot be
matched to the regular solution at the horizon, and vice versa. A perturbation that
grows exponentially with time is therefore physically unacceptable, and the metric
should be stable.

This naive argument for mode stability can be put on more rigorous footing by
the use of an "energy"-type integral [Detweiler and Ipser (1973), Wald (1979a)]. For
Schwarzschild black holes the argument is straightforward. Multiply (4.2.4) by {Mit
and add the resultant equation to its complex conjugate. Then we have

~ [aUt aUt + aUt aUt] == ~[/ aUt 1
2

+ 1aUt /2 + vt IUt1 2
] •or. at or. at or. at at or.

The integral on the left-hand side of this relation over r. from -00 to +00 vanishes;
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Figure 4.23: Differential cross-sections for scattering of gravitational radiation with wM =
0.75 by black holes with aiM = 0.9 and aiM = 0.99. Superradiance is an important effect
in the latter case. The curve representing this situation is shifted upwards by unity along
the coordinate axis to make the plot clearer. The number 5 in parenthesis on the coordinate
axis refets only to this curve [data from Handler and Matzner (1980)].

hence,

[~[I ~f12 +1::12 + Velud] dr. = constant.

Since Ve is positive definite, this equation bounds GIUf and excludes exponentially
growing solutions to (4.2.4). Although more satisfactory than our first naive argu
ment, this demonstration of stability has two deficiencies:

1. Perturbations that grow linearly (or slower) with t are not ruled out.

2. We have only obtained a bound for integrals of Ufo The perturbation may still
blow up in an ever narrowing region as t -t 00.

An argument that avoids these two difficulties was provided by Wald (1979a). He
used the Sobolev inequality to show that perturbations of the Schwarzschild geometry
are bounded at each point in spacetime. This constitutes a complete proof of (linear)
stability for Schwarzschild black holes.

An entirely different approach is that of Kay and Wald (1987). They prove
that the solution Uf remains pointwise bounded when (4.2.4) is evolved from smooth
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bounded initial data that has compact support on Cauchy surfaces in the Kruskal
extension. This is the best available result for the initial value problem, and goes
beyond statements of mode stability.

Unfortunately, the above stability proofs are not straightforwardly generalized
to rotating black holes. Many studies have presented unsuccessful searches for in
stabilities, rather than direct proofs of their nonexistence. A typical example is
the work of Press and Teukolsky (1973). They show that mode frequencies do not
cross the real frequency axis into the unstable upper half of the complex w-plane.
Similarly, Detweiler and Ipser (1973) postulate as a sufficient condition for stability
that no eigenmodes exist in the upper half-plane. Their numerical search for such
modes proved unsuccessful, and thus supports stability. Subsequently, Stewart (1975)
showed that no unstable modes will exist for finite Cauchy data, and Friedman and
Schutz (1974) provided an analytic proof (based on a variational principle) that all
axisymmetric modes of a Kerr black hole are stable.

The energy-integral approach is not easily extended to the Kerr case. To see the
reason for this, we specifically consider scalar perturbations. For a scalar field the
Teukolsky equation becomes, d. (4.8.1)

{) [{)if!] 1 {) [ {)if!] [1 a
2
] {)2if!- ~- +--- sinO- + ---- -

{)r {)r sin 0 {)O {)O sin2 0 ~ {)(p2

4aMr {)2if!
------

~ {)t{)¢
(4.9.3)

Problems with the energy-integral approach enter because of the factor in front of
{)~if!. The quantity 1/ sin2 0 - a2/ ~ is not positive definite. Specifically, it becomes
negative inside the ergosphere. Thus, one could imagine the possibility of an unstable
perturbation that is growing in time, with the scalar field energy becoming increas
ingly negative inside the ergosphere, while it grows to a large positive value outside
the ergosphere [Detweiler and Ipser (1973)]. However, Whiting (1989) has showed
that it is possible to find a transformation into new dependent variables for which all
terms in the integral are positive definite. Thus, one can prove mode stability also
for Kerr black holes.

Nevertheless, a complete stability proof for Kerr black holes still eludes us. This
is one of few truly outstanding problems that remain in the field of black hole per
turbations.

4.10 Gravitational Waves from Binary Systems

During the last few years the demands for accurate modeling of processes generating
gravitational waves have increased tremendously. The reason is that construction
of large-scale interferometric detectors for such waves is now under way [Thorne
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(4.10.1)

(1994a)], and accurate theoretical predictions are required to ensure detection (see
Section 9.9 for an introductory discussion). Numerical calculations are required for
the complete study of gravitational radiation from coalescing black holes. This prob
lem provides a fantastic challenge (see Section 7.7). Ij,"i('ver, interestingly, both the
inspiraling phase and the final merger of the two black holes can be modeled using
perturbation theory. We will discuss results obtained in this way in this section.

4.10.1 The inspiraling phase

The problem of binary inspiral is usually approached through some kind of post
Newtonian expansion [Will (1994)]. This essentially comprises of an expansion in
terms of v, where v is a typical velocity inside the matter source. One need impose
no restrictions on (say) the relative masses of the two bodies. Full post-Newtonian
calculations are very cumbersome, however. An interesting alternative is provided by
black-hole perturbation theory. Let us assume that one of the masses in the binary
system is much smaller than the other. This means that ILlM << 1 where the reduced
mass fL is practically equal to the smaller mass, and the total mass M is essentially
the larger mass. The small mass creates a perturbation in the gravitational field
of the larger mass, and the evolution of the binary is governed by the perturbation
equations, e.g., the Teukolsky equation (4.8.1). In contrast with the post-Newtonian
approach we need impose no restrictions on the orbital velocity V.

We thus assume that the large body is a Schwarzschild black hole of mass M.
The small orbiting body is modeled as a point particle of mass fl. For simplicity, but
also because eccentric orbits are expected to be circularized by radiation reaction, we
can choose the world line of the particle to be a circular geodesic of the Schwarzschild
spacetime (see also discussion in Section 2.10). From t,he standard quadrupole for
mula [Landau and Lifshitz (1975)] it then follows that the gravitational-wave lumi
nosity approaches

(dE) _32 1£2 M3

di N=5T

for large orbital radii roo
In the perturbation framework, the binary problem reduces to solving the inho

mogeneous Teukolsky equation with a source term appropriate for a point particle
in circular orbit around the black hole. This problem can be solver! by the Green's
function approach discussed for initial value problems in Section 4.3 (the pf()blem is
identical to that discussed in Section 4.6). This was first done by Det.weiler (1978),
who numerically calculated gravitational waveforms and lumiuosities for rotating
holes. When it was realized that very accurate predictions were needed to ensure
the successful detection of gravitational waves, the problem was reconsidered [Cut
ler et al. (1993)]. Now the accuracy obtainable through post-Newtonian (or other)
approximation schemes was an issue of great importance. Unfortunately, numerical
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(4.10.2)

perturbation calculations indicated that the convergence of the post-Newtonian ex
pansion is very poor, and that one will require corrections of rather high order, at
least O(v6

) [Cutler, Finn, Poisson, and Sussman (1993)].
The perturbation approach is not only well suited for numerical studies of this

problem, however. Oue can combine the perturbation equations with a "slow-motion
approximation" [a low frequency expansion of the solutions to (4.8.1 )]. This facilitates
direct comparison with the Post-Newtonian expansion. Moreover, as long as v « 1
(in the weak field regime, where Ro » 3M), this problem can be solved by analytic
approximations. In the first study along these lines Poisson (1993a) derived the
relativistic corrections to (4.10.1) of order v3 .

Since then there have been several, increasingly accurate, studies of the problem.
Using an ingenious iterative scheme [Sasaki (1994)], Tagoshi and Sasaki (1994) were
able to derive an impressive result for the gravitational wave luminosity,

dE = (dE) [1 _ 1247 v2 + 41f v3 _ 44711 v4 _ 81911f v5
dt dt N 336 . 9072 672

(
6643739519 1712 16 2 3424 I 1712 I ) 6

+ 69854400 - 105 I' + 3 1f - 105 n 2 - 105 n v v

16285 7. (323105549467 232597 1369 2

- 504 1f v + - 3178375200 + 4410 I' - 126 1f

+ 39931 In 2 _ 47385 In3 + 232597 In v) v8 +... ].
294 1568 4410

Here the presence of In v terms should be noticed, as well as that of the Euler number
I' :::: 0.5772. The first four terms reproduce the Post-Newtonian result [Blanchet et
al. (1995)] in the limit J-l/M -t 0 (and when spin-orbit and spin-spin interactions
are neglected). The expression (4.10.2) also agrees perfectly with the high-precision
numerical result of Tagoshi and Nakamura (1994).

Calculations of this type have also been performed for a particle in an eccentric
orbit around the black hole [Tanaka et al. (1993); Apostolatos et al. (1993); Cutler,
Kennefick, and Poisson (1994)]. Furthermore, the perturbation approach has been
extended to rotating black holes: Poisson (1993b) approached the problem analyti
cally in the slow-rotation limit. Shibata et al. (1995) extended these results to rapidly
rotating holes. These studies concern circular orbits, but eccentric orbits have been
considered also for rotating black holes [Tagoshi (1995), Shibata (1993a,b, 1994)].

An interesting question concerns at what order the effects of the event horizon will
enter the calculations. Sasaki (1994) has shown that the existence of the horizon will
not affect the outgoing radiation until at very high order: O(V

I8
). Meanwhile, black

hole absorption will be an effect of order v8 [Poisson and Sasaki (1995)]. The relative
smallness of this effect can be understood in terms of the potential barrier close to
the black hole. Most of the low-frequency gravitational waves traveling towards the
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Figure 4.24: The gravitational-wave luminosity (obtained in various orders of the post
Newtonian expansion) as a function of the orbital velocity v (dashed curves). The solid
curve represents the "exact" numerical result [data from Poisson (1995)J.

hole will be reflected. Consequently, effects associated with the horizon are expected
to be of little relevance for gravitational wave observations of inspiraling binaries.
But the possible presence of an event horizon wi!! obviously be relevant for the final
coalescence of the two bodies.

Given the expression (4.10.2), it is easy to see that the post-Newtonian expansion
converges poorly. For example, the second and the third terms become equal in mag
nitude for a frequency well inside the observational range for the laser-interferometers
(roughly 10 Hz - 2 kHz). So higher order terms must certainly be used. This poor
convergence is a serious obstacle to the construction of accurate measurement tem
plates [Poisson (1995)); see Figure 4.24. It is not clear that pushing to higher orders
in post-Newtonian theory will be sufficient to produce acceptably accurate theoretical
waveforms (the expansion may well be asymptotic). Other ways of dealing with this
problem may be required.

4.10.2 Black hole collisions

One obvious way of studying the binary inspiral would be to avoid approximations
altogether and perform direct numerical integration of Einstein's equations. However,
this is a very difficult problem. Its eventual solution will require state-of-the-art
computing combined with clever formulations of the problem. But even though the
solution to the full problem of two spiraling black holes (assuming no symmetries)
is still remote some progress has been made (see Section 7.7). Recently, Anninos,
Hobill et al. (1993) studied head-on collisions of two black holes of equal mass.

Interestingly, this and similar problems can be approximated using perturbation
theory. Let us assume that the two black holes start off so close together that they
are surroullded by a common horizon. Then one can consider the situation as cor-
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responding to a single perturbed black hole. That this "perturbation" is sufficiently
"small" to make the approach sensible is not obvious, but as was shown by Price and
Pulliu (1994) this idea leads to surprisingly accurate results. They re-expressed the
initial data as "the Schwarzschild background + something else" and showed that
the full problem can be considered as an initial-value problem for the Zerilli equation
(see section 4.2). The new initial data can be written [Anninos, Price et al. (1995)]

2nr
2

{[ rr. d (rYe)] }Ue(r, 0) = nr+3M F Ye-VF dr .,fF +(n+1)ge ,

where

(4.10.3)

(f-1)(f+2)
n=

2 '
F = 1- 2M,

r
(4.10.4)

Here we have also used

(4.10.5)

(4.10.6)

Here ( is the Riemann zeta-function, J.lo = L/M, L is the initial separation of the two
holes, and M is the total mass of the spacetime. For Ito < 1.36 the two black holes
are surrounded by a common horizon. As is apparent from (4.10.3), the parameter J.lo
enters the calculation only through a multiplicative factor. Thus, it affects only the
amplitude of the generated gravitational waves, and a single perturbation calculation
can be used to describe all initial separations.

We have already discussed the evolution of the perturbation equations from given
initial data in Section 4.3. There is essentially nothing new in the evolution that
follows from (4.10.3). The waveforms are dominated by quasinormal-mode ringing,
and at late times they follow the anticipated power-law tail [Price and Pullin (1994)).
However, the extent to which this approximation agrees with the full numerical sim
ulation of the nonlinear equations is somewhat surprising. The results are compared
in Figure 4.25. It is clear that the agreement extends well beyond the small Ito region.
In fact, the perturbation calculation is reasonably accurate also in cases when the
two black holes are not initially surrounded by a single horizon.

Anninos et al. (1995) compared the various results in more detail, including the
actual waveforms that are generated. Their comparison shows that the perturba
tion results are robust, and although this technique will never be able to replace
full numerical relativity, it provides an important complement. It can obviously be
used as a test-bench for numerical simulations, and also predict results and improve
our understanding of the physics involved. Moreover, since it is computationally
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Figure 4.25: Comparing the radiated energy in the close-limit approximation to that of
the full numerical simulation [data from Price and Pullin (1994)).

inexpensive, the approximation can be used to search the parameter space for inter
esting phenomena. Once identified, these phenomena can be studied in more detail
numerically.

TI!" dose limit approximation for colliding black holes can be extended in several
interesting directions. For example, it can be applied to initial data that are only
known numerically. As an illustration of this, Abrahams and Cook (1994) considered
an extension of the initial data that allows the black holes to have initial linear and
angular momentum. They found that the radiation efficiency (t1E / E) saturated
at about 2%. This result seems to suggest that, no matter how large the initial
momentum is, it will be impossible to achieve high efficiency in black hole collisions.
Further details on how numerical initial data can be incorporated in the calculation
have been given by Abrahams and Price (1996a,b).

The close limi t approximation shows that perturbation calculations often are much
more accurate than one has any reason to expect. In the case of colliding black holes
this can be explained by the following argument: The spacetime is only strongly
distorted in the region close to the horizon. Because of the existence of the potential
barrier (that has a peak at roughly r = 3M) in the Zerilli equation, most of this
initial perturbation will never escape to spatial infinity. It will be reflected and fall
down the hole. Hence, the predicted waveforms in the outer region may be very
accurate. But however plausible, this explanation is only based on our intuition. If
the perturbation approach is to provide actual predictions, it need be supplemented
by some kind of error estimate. The obvious way to obtain such an estimate would
be through perturbation calculations to second order. Then the difference between
first- and second-order quantities can be used to estimate the achieved accuracy.

It is not at all straightforward to derive such second-order equations. Nevertheless,
recent work by Gleiser et al. (1995) looks promising. They find that the second-order
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extension of the Zerilli equation has the form

[
83 a3

• a] (2) (I)
0181'; - at3 - V(l) at u f (r,t) = S(Uf ).
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(4.10.7)

The second-order quantity u}2)(r, t) is described by an equation identical to the tim€'
derivative of the first-order equation, cf. (4.2.7), that governs U~I). The source-term
S is a complicated expression quadratic in the first-order perturbations. This result
is interesting, and opens up a multitude of possibilities. In the future many of the
results discussed in this chapter may be extended to higher orders. That is, the first
order perturbation results can be associated with "error bars". At this time, it is too
early to speculate where this may lead, but it is clear that perturbation calculations
will continue to play an important role in black hole physics.



Chapter 5

General Properties of Black Holes

5.1 Asymptotically Flat Spacetimes

5.1.1 Asymptotic properties of Minkowski spacetime

So far we have restricted the description of the properties of black holes to an analysis
of the Schwarzschild and Kerr metrics and their perturbations. Both Schwarzschild
and Kerr spacetimes are stationary and possess certain symmetries. A study of
geodesics (corresponding to the motion of test particles and light rays) and wave
fields in these metrics enabled us to describe a number of interesting and important
features of physical effects in the field of such black holes. It is natural to ask: Are
there black holes that differ from those already described? What are their properties?
In order to answer these questions, the definition must first of all be extended to
the general case of non-stationary spacetime. This generalization is obvious. It is
reasonable to define the black hole in general as the region of spacetime from which
no information-carrying signals are allowed to escape to a distant observer.

However, in order to make this definition rigorous, one must elaborate what class
of observers is meant and what is understood by "distant" in geometrically invariant
terms. The necessary refinement is easily achieved in the physically important case in
which there is no matter and no sources of fields far from the black hole. The greater
the distance from the black hole, the smaller the deviations of the spacetime geometry
are from flatness. A spacetime with this property is said to be asymptotically fiat.

The need for rigorous definitions of seemingly clear concepts is obvious in study
ing black holes because the very existence of these objects modifies the structure
of spacetime and its global properties in a fundamental way as compared with flat
Minkowski spacetime. For example, the Schwarzschild spacetime contains a singu
larity, and some geodesics do not extend to infinity. Note that one such geodesic is
the circular orbit of a light ray at r = 1.5 rg ; this geodesic lies completely outside the
black hole. The formation of black holes, their dynamic interaction, and their merg
ing may produce especially complicated situations. Semi-intuitive, visually plausible
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arguments are clearly inadequate here.
A rigorous definition of asymptotically flat spaces was suggested by Penrose

(1963). The following line of reasoning can be used to arrive at this definition.
Let us consider first the structure of a flat Minkowski spacetime at infinity. To do

this, we use an approach typical in geometry: we perform a conformal transformation
that brings infinitely remote points to a finite distance. First, we transform the ordi
nary spherical coordinates (t,r,e,¢» in spacetime M to new coordinates (7/J,~,e,¢»,

using the following relations:

(5.1.1)

(5.1.2)

Then the interval ds2 takes the form

where

1 1n = 2cos -(7/J +0 cos -(7/J - 0, dw2 = d02 + sin2 ed¢>2 .
2 2

(5.1.3)

(5.1.4)

Points at infinity in Minkowski spacetime correspond to 7/J + ~ and 1/J - ~ as
suming the values ± 1r. At these values the metric ds 2 becomes meaningless, but
the metric ds2 conformal to ds2 is regular. I When studying the conformal structure
on a manifold with a boundary, (5.1.2), we thereby study the conformal structure
of Minkowski spacetime, including the infinitely remote points. Reca.ll that it is the
conformal structure that is important for studying the general properties of spacet,ime
because it determines the causal properties of the neighborhood of a point, including
the properties of null cones.

The ds2 metric is the metric of the four-dimensional cylinder S3 x HI (Figure 5.1a).
Inequalities (5.1.2) cut a region corresponding to M on the cylinder; it is hatched
in Figure 5.1a. (Of course, we can show only two of the four coordinates; e and
¢> are omitted.) For the region M cut out of the cylinder, dissected at the point
/0 and developed on a plane, the result is shown in Figure 5.1b. This is the form
typically chosen to represent the conformal Minkowski world. This is the so-called
Penrose-Carter conformal diagram for M. Recall that the left- and right-hand points
/0 coincide, that is, must be "glued together".

All timelike curves in the Penrose-Carter conformal diagrams begin at the point
/- and end at the point /+, and all spatial sections pass through /0. Therefore, /
is said to be the past timelike infinity; /+ is the future timelike infinity, and [0 is the
spatial infinity.

IThe metric ds2 has removable coordinate singularities at ~ = 0 and ~ = 11.
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a b

Figure 5.1: (a) Conformal structure of Minkowski spacetime. (b) Penrose-Carter conformal
diagram of Minkowski spacetime. The diagram shows timelike (1, 1', ... ), spacelike (2),
and null (3) geodesics.

All null geodesics in M begin at the boundary :7- (at the future null cone of the
point J-) and end at :7+ (at the past null cone of J+). The boundaries :7- and :7+
are said to be the past null infinity and future null infinity, respectively. Clearly, M
is bounded by the "infinities" :7- and :7+ and the points /-, /+, /0.

Penrose-Carter conformal diagrams are especially convenient for studying the
global structure of spacetime when the geometry is curved. The coordinates typ
ically used for this purpose represent null rays by straight lines at 45° angles, (e.g.,
the coordinates 1/) and ~ used above possess this property). The causal structure dic
tated by the arrangement of local null cones is especially clear in such coordinates.
Obviously, two-dimensional Penrose-Carter conformal diagrams map the geometry of
certain two-dimensional sections of spacetime.

Let us now return to the problem of infinitely distant observers. The world lines
of such observers which are at rest at the points r, r' , r", rill (r < r ' < r" < 1.

11I
)

are shown in Figure 5.1b by the lines 1, 1', 1", 1"', respectively. The greater 1', the
closer to :7- and :7+ the corresponding line is. As r -+ 00, it tends to :7- and :7+.
It is thus logical to refer to :7- and :7+ as infinitely distant boundaries of M. Note
that the factor fl in (5.1.3)-(5.1.4), which performs the conformal transformation,
vanishes at :7 == :7- u :7+, and its gradient 8fl/8x l'l.7 # 0 is a null vector tangent
to the generators of the surface :7.

Sometimes it is more convenient to study the regions close to :7, using coordinates
other than (5.1.1)-(5.1.2). Note that the retarded null coordinate u = t - l' can be
used to write the interval in Millkowski world:

(-5.1.5)
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The transformation p = 1.- 1 then gives the following conformal form of the metric

(5.1.6)

where the conformal factor n is

(5.1.7)

In these coordinates the surface .1+ is described by the equation p = O. A point on
.1+ with coordinates !Lo, 80, rPo corresponds to the "end point" r-+ 00 of the outgoing
uull ray u = !Lo, 8 = 80' rP = rPo. Likewise, .1- can be described by replacing u with
the advanced null coordinate v = t + r.

5.1.2 Definition and properties of asymptotically fiat space
time

Assuming that the properties of asymptotic flat spaces in the neighborhood of "infin
ity" must be similar to those of Minkowski space, Penrose (1963, 1964, 1965b, 1968)
suggested the following definitions. The so-called asymptotically simple spacetimes
are defined first.

A spacetime M with metric gill' is said to be asymptotically simple if there exists

another ("unphysical") space M with boundary aM == .1 and a regular metric gil"
on it such that:

1. M \ aM is conformal to M, and gil" = n-2 gil" in M

2. nlM > 0, nl8M = 0, n'1l18M =J °
3. Each null geodesic in M begins and ends on aM
We call M the conformal Penrose space. Pemose proved that if the metric gil"

satisfies Einstein's vacuum equations in the neighborhood of .1 (or Einstein's equa
tions with the energy-momentum tensor that decreases at infinity sufficiently fast)
and the natural conditions of causality and spacetime orientability are satisfied, then
an asymptotically simple space has the following properties:

1. The topology of the space M is R4; its boundary .1 is lightlike and consists of
two unconnected components .1 = .1+ U .1-, each with topology 8 2 x R I •

2. The generators of the surfaces .1± are the null geodesics in M; tangent vectors
to these geodesics coincide with gil" n,IlIJ'

3. The curvature tensor in the physical space M decreases as we move along the
null geodesic to infinity, and the so-called peeling off property holds. Here we do
not focus on this property as its detailed analysis can be found in the literature
[see, e.g., Sachs (1964), Penrose (1968)].
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Property 1 signifies that the global structure of the asymptotically flat space is
the same as that of Minkowski space. For example, it has a similar causal structure
and does not "allow" black holes. In order to take into consideration the possibility of
the existence of localized regions of strong gravitational fields which do not alter the
asymptotic properties (as r -+ 00) of spacetime, it is sufficient to analyze the class
of spaces that can be converted into asymptotically simple spaces by "cutting out"
certain inner regions with singularities of some kind (due to the strong gravitational
field) and by subsequent smooth "patching" of the resultant "holes". Such spaces
are said to be weakly asymptotically simple.

To be more rigorous, a space M is said 19 be weakly asymptotically simpl~f

there~xists an asymptotically simple space M such that for an open subset of M,
K(aM c K), the space MnK is isometricto a subset of M. One says that a weakly
asymptotically simple space is asymptotically fiat if its metric in the neighborhood
of:J satisfies Einstein's vacuum equations (or Einstein's equations with an energy
momentum tensor that decreases sufficiently fast).

5.1.3 Penrose-Carter conformal diagrams

The Schwarzschild spacetime (2.2.1) is asymptotically flat. It is a vacuum solution.
In order to relate it with a weakly asymptotically simple space, one can cut out the
spacetime region of the interior of the sphere of radius R > rg which contains the
black hole and glue the resulting space with a regular internal solution for a spherical
matter distribution which has the same mass as the mass of the black hole. This
construction implies that we really have an asymptotically flat spacetime.

It is evident that the structure of the Schwarzschild space infinity is similar to
the structure of the infinity in flat space. For this reason, one can expect that there
must exist coordinate and conformal transformations similar to (5.1.3)-(5.1.4) that
bring infinitely removed points to a finite distance. To construct the corresponding
transformations consider the Kruskal metric (2.7.17)

-UV = (;g -1) exp (~ - 1) .

(5.1.8)

(5.1.9)

Let us introduce new coordinates (,,1]), connected with (U, V) by the relations

U = sinh[tan(,)], V = sinh[tan(1])]. (5.1.10)

In these coordinates the infinities U = ±oo correspond to the finite values, = ±1l'/2,
and the infinities V = ±oo correspond to the finite values 1] = ±1l'/2 (see Figure 5.2).
The event horizon H+ (U = 0) is given by the equation, = 0, while the past horizon
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Figure 5.2: Penrose-Carter confor
mal diagram for the Schwarzschild
"eternal" black and white holes.
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Figure 5.3: "Canonical form" of
the Penrose-Carter conformal dia
gram. On this diagram the lines rep
resenting the singularities T = 0 are
straightened by the additional coordi
nate transformation given in the text.

H- (V = 0) is given by 1] = O. Near the horizons one has U ~ , and V ~ 1]. In the
coordinates (,,1]) the Kruskal metric (5.1.8) takes the form

-2 4(r/rg - 1) d,d1] d 2
ds = + w .

(r/rg )3 tanh[tan(,)] tanh[tan(1])] cos2 , COS2 1]

(5.1.11)

(5.1.12)

The boundary points (-1r/2 < , < 0, 1] = 1r/2) and (-1r/2 < 1] < 0, , = 1r/2)
correspond to the future null infinities :7+. The boundary points (0 < , < 1r/2, 1] =
-1r/2) and (0 < 1] < 1r/2, ,= -1r/2) correspond to the past null infinities :7-. One
can verify that the conformal metric (5.1.12) remains regular at the points of:7- and
:7+. In t.he coordinates (,,1]) the singularities r = 0 are described by the following
implicit equation

sinh[tan(,)] sinh[tan(1])] = e-1
. (5.1.13)

Certainly the coordinate and conformal transformations with the required prop
erties are not unique. For example, one can make the transformation, -+ i; = 1(,),
1] -+ ii = 1(11), where 1 is a regular monotonic function on the interval (-1r/2,1r/2).
One can use this ambiguity to straighten the lines representing the singularity r = O.
Let 1] = g(,) be a solution of equation (5.1.13). It evidently possesses the property
, = g(1]). The coordinate transformation which straightens the singularity is given
by the function I(x) = (1/2)Lg(x) - x] + 1r/4. The corresponding "canonical form"
of the Penrose-Carter conformal diagram with the straightened singularity lines is
shown in Figure 5.3.

Quite often in the literature, when discussing the causal structure of spacetime,
one makes only a coordinate transformation bringing coordinate infinities to a finite
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"distance", and does not consider a subsequent conformal transformation. For exam
ple, one uses the following coordinate transformations [see e.g., Misner,Thorne, and
Wheeler (1973), Hawking and Ellis (1973)]

U :::: tan x , V = tan y . (5.1.14)

The complete spacetime after this transformation will again be represented by the
domain similar to that shown in Figure 5.3. However, when working in these coordi
nates, one must be careful because these coordinates are not regular at .:J± .2

The Penrose-Carter conformal diagram for a rotating (Kerr) black hole and its
charged (Kerr-Newman) generalization are more complicated. They will be discussed
in Section 6.6.

5.1.4 Bondi-Metzner-Sachs group of asymptotic symmetries

We return now to the discussion of the main properties of asymptotically flat space
times. The decrease of the curvature tensor at infinity (see property 3 at page 153)
signifies that the effects due to curvature are negligible in asymptotically flat spaces
in the neighborhood of .:J, and the spacetime itself near .:J is nearly flat. Thus, the
ordinary law of energy-momentum conservation holds in this region with good accu
racy, and the motion of test particles can be treated as approximately uniform and on
a straight line. Correspondingly, the group of asymptotic symmetries can be defined
in asymptotically flat spaces.

For this purpose, consider first the Poincare transformations of Minkowski space
which in Cartesian coordinates Xil have the form

(5.1.15)

where A/l'v is the Lorentz transformation matrix, and all is the translation vector
corresponding to a shift of the origin of the frame. Now we introduce in Minkowski
space retarded (u, 1', e, ¢» or advanced (v, 1', e, ¢» coordinates and denote by w either
the retarded (u) or advanced (v) time coordinate. Then transformation (5.1.15)
corresponds to the following transformation of the coordinates (w, r, e, ¢»:

w' = w'(w, r,e, ¢»,

e' :::: e'(w, 1', e, ¢»,

1" = r'(w,r,e,¢» ,

¢>' = ¢>'(w, 1', e, ¢» . (5.1.16)

As l' -+ 00, the functions describing this transformation take on a simple form. Thus,
the following transformations correspond in this limit to shifts (N'" :::: on in physical
spacetime:

w' :::: W + 0,0 ± 0.1 sin ecos ¢> ± 0,2 sin () sin ¢> ± 0.3 cose ,
2The anthors are grateful to Don Page for discnssion of this point.
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8'==8, ¢/==r/J. (5.1.17)

(5.1.18)

In these relations signs + and - must be taken for w == u and w == v, respectively.
Formulas (5.1.17) describe shifting the surface:7 along its generators.

This result can be described more formally in a way that admits a natural gen
eralization to the case of arbitrary asymptotically flat spaces. Let ~/l be a Killing
vector field corresponding to the symmetry transformation in the physical space M
(\7(l' ~/l) =0); hence, ~/l in the conformal space M obeys the equation

V(/l ~l') _ ~()( V()( n {jill' == 0,
n

where V/l is the covariant derivative in the metric g/ll' == n2g/ll' •

In the general case, equation (5.1.18) has no non-trivial solutions if the spacetime
M does not allow exact isometries. For example, this is true for general type asymp
totically flat spaces. However, if the analysis is restricted to the neighborhood of :7
and we stipulate that equation (5.1.18) is satisfied only on:7, it again has non-trivial
solutions. These solutions determine vector fields that generate the transformations
of asymptotic symmetries. Note the spectacular fact that the group corresponding to
these transformations is independent of the choice of a specific representative of the
class ofasymptotically flat spaces. This group is known a.~ the Bondi-Metzner-Sachs
group (the BMS-group). A detailed presentation of its properties and a description of
its representations can be found in papers by Sachs (1962), Bondi, van der Burg, and
Metzner (1962), Penrose (1964), McCarthy (1972a,b, 1973), McCarthy and Crampin
(1973), Volovich et al. (1978). Here we only briefly outline the main properties of
this group which are important for the presentation that follows.

The BMS-group is infinite-dimensional; hence, it is much wider than the Poincare
group, which exactly preserves the metric of a flat space. This happens because the
BMS-group preserves only the asymptotic form of the metric and the gravitational
field decreases slowly at infinity. An important property of the BMS-group is that
it contains a uniquely identifiable normal four-dimensional subgroup of translations.
The action of this subgroup on :7 in Minkowski space coincides with that of (5.1.17).
In the general case, it is possible to introduce in the neighborhood of :7, in asymptoti
cally flat spaces, coordinates in which the transformations of the translation subgroup
have the form (5.1.17). Such coordinates are known as conformal Bondi coordinates
[see Tamburino and Winicour (1966)].

We have described a class of asymptotically flat spaces whose asymptotic behavior
is similar to the asymptotic behavior of Minkowski space, and briefly outlined its
properties. The concept of an asymptotically distant observer, who moves almost
inertially, can be very naturally introduced in this class of spaces. Now we can give
a rigorous definition of the black hole. But first, we will briefly treat one further
aspect, connected with the scattering of massless fields in asymptotically flat spaces;
as it will be useful in subsequent chapters.
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5.1.5 Massless fields in asymptotically fiat spacetime

The above definition of asymptotically flat space is especially convenient for dealing
with the problem of the scattering of massless fields and, in particular, for describing
the properties of gravitational radiation. The universal asymptotic behavior (ex: 1/r)
of these fields in the wave zone allows the use of conformal mapping for transforming
the problem of scattering in the physical spacetime into a problem with regular initial
data at the past null boundary of :7- in the conformal Penrose space. It is then found
that the regular behavior of the conformally transformed field in the neighborhood
of:7 implies a specific form of decrease of this field in the asymptotic region.

We will illustrate these arguments with an example of a conformally invariant
massless scalar field described by the equation

1
(O--R)~=O

6
(5.1.19)

in the asymptotically flat space {M,g}. Now'we use the conformal mapping gil" =
n-2 gil" in order to transform {M,g} to the conformal Penrose space {M,g, n},
supplementing it with a conformal mapping of the field, ~ -+ 'i5 = n-1~. We refer
to the values of the field 'i5 at past null infinity :7- and future null infinity :7+ as
the images of the field ~ at :7- and :7+ and denote them by an appropriate capital
letter:

'i51.7± = <I>±.

The field 'i5 in the Penrose space satisfies the equation

(5.1.20)

(5.1.21)

where 0 = gOi{3 VOi V{J, and R is the scalar curvature of the metric gOi{3' Having fixed
the image <1>- of the field 'i5 in the asymptotically simple space, one can find 'i5 by
solving equation (5.1.21) with initial data on the regular null surface :7-, whereby
<1>+ is determined. In other word~, there is a one-to-one correspondence

(5.1.22)

between the field ~ and its images at:7- and :7+.
The condition of asymptotic regularity, that is, the condition of the existence of

regular images at :7, plays the role of the radiation condition, and the problem of
classical scattering theory can be formulated as the problem of finding the image of
a solution ~ at :7+, having a specified image at :7-. Note that the asymptotically
regular field in the asymptotic region (close to :7) is of the form

(5.1.23)
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In Minkowski spaces in (5.1.6) coordinates, the resulting asymptotic behavior in the
wave zone is

iJ>+(u,B, ¢i)
'P~ .

r
(5.1.24)

The method presented above is readily generalized to other massless fields [see e.g.,
Penrose (l965b, 1968), Pirani (1964), Frolov (1979,1986)].

As the asymptotically flat space has a group of asymptotic symmetries, it is
possible to determine characteristics of massless fields such as energy and momentum
of the incoming or outgoing flux. Let ~ra) (a == 0,1,2,3) be the generators of the
translation subgroup of the BMS-group; ~ra) acting on :J±. The expression for the
energy (a == 0) and momentum (a == 1,2,3) of the incoming (outgoing) radiation is

(5.1.25)

where T/lv == n-2 T/lv is the metric energy-momentum tensor of the field of interest.
It can be readily shown that P.1± for asymptotically regular fields in a flat spacetime
coincides with the total energy-momentum of the system provided we define it in
terms of vector Killing fields corresponding to translations. In the general case,
expression (5.1.25) for asymptotically flat space can be written in terms of massless
field images at :J±. Thus, we have for the scalar field satisfying equation (5.1.19)

P.1 == l Na [(OuiJ»2 - ~ O~(iJ>2)] dudw, (5.1.26)

where

Na == (1, sinBcos¢i, sinBsin¢i, cosB), dw == sinBdBd¢i. (5.1.27)

Note that for wavepacket-type fields 'P with finite energy, the value of I ouiJ> 2
1 decreases

as Iu I -+ 00 so that the second term can be dropped

P.1 == l Na(O"iJ»2dudw. (5.1.28)

Expressions for the energy-momentum of the incoming and outgoing fluxes of other
massless fields in terms of field images at :J± can be written in a similar manner [see,
e.g., Frolov (1986)].

5.2 Event Horizon and its Properties

5.2.1 Event horizon

Now we can give a rigorous definition of the concept of a black hole. A black hole in
asymptotically flat spacetime is defined as a region such that no causal signal (i.e., a
signal propagating at a velocity not greater than that of light) from it can reach :J+.
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The causal curve describing the propagation of such a signal is either a smooth
timelike or a null curve (a vector u/l tangent to it has the property u/l u/l ~ 0) or
consists of segments of such curves. Let us define the causal past J- (Q) of a set Q as
the set of point.s with the following property: for each point there is a future-directed
casual curve connecting it with one of the points of Q. The set of points visible to a
distant observer coincides with J- (.:r+). The boundary3 of this set, j- (:1+), denoted
by H+, is called the event horizon. The event horizon constitutes the boundary of
the black hole.

Obviously, not just one but several black holes may exist in a bounded region of
spacetime; new black holes may be created, and those already existing may interact
and merge. In such cases, j- (:1+) is the union of the boundaries of all black holes.
If an asymptotically flat space contains no horizon, then all events taking place in
this space can be recorded, after an appropriate time, by a distant observer. If an
event horizon appeared, it means that a black hole has been born, and the strongly
enhanced gravitational field has produced qualitative changes in the causal structure
of spacetime. The enhanced gravitational field prevents signals from escaping so
that the observer can never find out about the events inside the black hole unless he
chooses to cross the event horizon and fall into it.

Figures 5.4a and 5.4b represent a spherically symmetric black hole produced by
the collapse of a spherical star. We already know that this is the simplest type of black
hole. Figure 5.4a plots the spacetime of this in Eddington-Finkelstein coordinates.
Figure 5.4b is the Penrose-Carter conformal diagram for the corresponding space
time which can be obtained from the Penrose-Carter conformal diagram of the total
spacetime of the eternal black hole, shown in Figure 5.4c, by "cutting" it along line 1
corresponding to the motion of the surface of the collapsing body, and then "gluing"
onto the left the part of the Penrose-Carter conformal diagram that describes the
metric inside the collapsing body. The last figure shows that the gravitational-radius
surface outside the collapsing body coincides with H+; the region inside H+ is the
black hole. The structure of the infinity of this spacetime (Figure 5.4b) is identical
to that of the infinity of Minkowski spacetime. Note also that the region from which
light rays cannot escape to infinity (i.e., the black hole) arises not at the moment 71

when the star contracts to a size equal to its gravitational radius, but at an earlier
moment 70' The event horizon H+ is formed by signals that, having left the center
of the star at a moment 70, propagate at the speed of light and reach the surface of
the star precisely when it collapses to its gravitational radius.

Consider a Cauchy surface 2;, that is, a spacelike hypersurface with global extent.
sufficient t.o specify a unique evolution by means of init.ial Cauchy dat.a. The intersec
tion of the event horizon with a Cauchy surface 2;(7), whose equat,ion is of the type
7(:r) = const, consists in general of a set of closed two-dimensional surfaces 8Bi (7)
(i = 1, .. " n) which can be regarded as boundaries of the black holes t.hat exist. at

3The boundary Q of a set Q is defined as Q= Qn (M - Q), where M is t,he complete spacetime,
and Q is the closure of Q.
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Figure 5.4: (a) Spacetime of a spherically symmetric black hole in Finkelstein coordinates.
(b) Penrose-Carter conformal diagram for the spacetime of a spherically symmetric black
hole. Line I plots the motion of the surface of the collapsing body. The conformal factor is
chosen to have line r = 0 (the center of the body) vertical. (c) Penrose-Carter conformal
diagram for "eternal" black and white holes. Line 1 is the world line of the test particle.
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Figure 5.5: The regular part of the event horizon is a null surface. The assumplion that
the event horizon contains a segment where it is (a) timelike, or (h, c) spacelike produces a
contradiction. The region inside the event horizon is hatched.

time 7. The part of 1:(7) which is bounded by 88;(7) is called the black hole 8;(7)
at the given moment of time. The number of black holes can be time-dependent.

As we see from Figure 5.4a, the surface of the event horizon is not smooth. For
example, there is an apex point at the moment of time 70 when the event horizon is
created. Irregular points can also arise on the event horizon after the fall of matter
into the hole. The surface of the event horizon beyond these irregular points is
lightlike.

It is easy to arrive to a contradiction by assuming that a regular part of the event
horizon is either timelike or spacelike. To show this, let us analyze the situations
presented in Figure 5.5. First, assume that the surface of the event horizon in a
neighborhood of some regular point p of the horizon is timelike (Figure 5.5a). A
contradiction is obtained if we consider the behavior of light rays in a small neigh
borhood of the point p. Because the structure of spacetime is locally the same as
that of Minkowski spacetime, the light rays emitted from p form a future directed
local null cone. The timelike part of the horizon divides this cone into two parts:
the rays go partly into the black hole (to the left of H+) and partly into the space
outside it (to the right of H+). However, the points of the external space are inside
J- (.:7+); hence, a causal signal can be sent from p and reach .:7+. Obviously, this
is also possible for points to the left of H+ that are sufficiently close to p. But this
conclusion contradicts the assumption that these points lie inside the black hole.

Assume now that the event horizon has a regular spacelike part. If the set J- (.:7+)
lies to the future of this part of H+ (Figure 5.5b), then the future-directed light rays
emitted at a point p or its small neighborhood inside H+ can reach J-(.:7+) and
are thus visible to a distant observer. This conclusion is in contradiction with the
assumption that the region inside H+ is a black hole. If the set J- (.:7+) lies toward
the past from the part of H+ that we consider (Figure 5.5c), then a point p exists in
a small neighborhood of this part of H+ such that the future-directed null cone with
its apex at this point crosses H+. This means that the event p cannot be seen by
a distant observer, and p cannot belong to J-(.:7+), which contradicts the original
assumption.

Even though these arguments are not absolutely rigorous, they show why the
regular segments of the event horizon are lightlike surfaces.
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Figure 5.6: Illustration of the Penrose theorem on the structure of the event horizon.

5.2.2 Penrose theorem

163

A more detailed description of the structure of the event horizon is provided by a
theorem proved by Penrose (1968). According to this theorem, the event horizon is
formed by null geodesics (generators) that have no end points in the future.

If we monitor the behavior of any generator in the future, we find that it never
leaves the horizon H+ and never intersects another generator. Two alternatives are
possible in the past-directed motion along a chosen generator: either it always lies on
H+, or this light ray leaves H+ at some point. The null generator enters H+ at this
point having left the region J- (J+) outside the black hole. The entry point of this
generator at H+ is the point of its intersection with other generators (the caustics).
Only one generator passes through each point of the horizon beyond the caustics.

Figure 5.6 illustrates the Penrose theorem. In this figure, new pencils of rays
enter H+ at caustic 2 when matter falls into the black hole. Caustic 1 corresponds
to the point at which the event horizon first appears. Caustics also appear when
gravitational radiation is incident on the black hole, or when two or more black holes
merge. General properties of such caustics are described in [Friedrich and Stewart
(1983)]. (For more details concerning the structure of the event horizon for colliding
black holes see Section 7.7.2.)

The situation shown in Figure 5.7, in which an isolated black hole subjected to
an external influence breaks into two (or more), is impossible. Indeed, in this process
two (or more) points of the black hole surface which are separated at the initial
moment TO move closer and intersect at the moment TI when a bifurcation is formed.
This means that at least two generators of the event horizon intersect when extended
to the future. This conclusion is in contradiction with the Penrose theorem. The
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Figure 5.7: A black hole cannot break in two or more black holes. The situation shown in
the figure (an isolated black hole breaking in two) is impossible.

proposition that a black hole cannot split or vanish can be proved rigorously. The
proof can be found in the monograph by Hawking and Ellis (1973).

5.2.3 Surface topology of black holes

There exist a number of results indicating that the surface topology of black holes
must be simple. The corresponding theorems assume asymptotic flatness and a suit
able energy condition on the matter field. The formulation of the corresponding
energy conditions can be found in the Appendix A.IS.

The first. of these results was obtained by Hawking (1972a) who proved that in
a stationary spacetime the surface topology of a black hole must be a two-sphere
(we shall discuss this result and the corresponding assumptions in the Section 6.2).
The first theorem concerning the topology of non-stationary black holes was proved
by Gannon (1976). This theorem claims: The horizon of the black hole must be
either spherical or toroidal, provided the dominant energy condition is satisfied and
the horizon is smooth to the future of some slice. The latter condition entails in
particular tha.t no new generators enter in the future of that slice.

An extension and generalization of this result uses the so called topological cen
sorship. Consider an asymptotically flat spacetime and denote by 'Yo a t.imelike curve
with past end point at .J- and future end point in .J+ that. lies in a simply connected
neighborhood of .J- U .J+. The theorem proved by Friedman, Schleich, and Witt.
(1993) reads:

Topological censorship theorem. If an asymptotically fiat, globally hyperbolic
spa.cetime satisfies the averaged null energy condition, then every causal curve from
.J- to .J+ can be continuously deformed to 'Yo.

In other words, in such a space any causal curve connecting .J- and .J+ may
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be deformed (in the sense of homotopy) into a similar curve which never enters the
region where the gravitational field is strong.

Jacobson and Venkataramani (1995) pointed out that a black hole with toroidal
surface topology provides a potential mechanism for violating topological censorship.
Specifically, a light ray sent from past null infinity to future null infinity and passing
through the hole in the torus would not be deformable to a ray which did not come
close to the black hole. Thus, topological censorship implies that a toroidal horizon
(if it exists) must close up quickly, before a light ray can pass through. The theorem
proved by Jacobson and Venkataramani (1995) claims that the cross-section of the
event horizon must be topologically a two-sphere, provided the averaged null energy
condition is satisfied and the horizon topology persists for long enough. This theorem
strengthens the result obtained by Browdy and Galloway (1995) who showed that the
surface geometry of a black hole at a given moment of time must be a two-sphere if
no new null generators enter the horizon at later times. Their assumptions include a
lIull energy condition.

Recent computer simulations of the collapse of rotating toroidal configurations of
collisionless particles to Kerr black holes demonstrate the formation of a temporarily
toroidal horizon [Abrahams et al. (1994), Hughes et al. (1994), Shapiro, Teukolsky,
and Winicour (1995)]. In complete agreement with the general results, a temporarily
toroidal horizon exists only for short period of time, which is not enough for a null
ray to pass through the hole of the torus and escape to infinity. In the computational
model, the toroidal black hole has a nonsmooth inner rim. At this rim new generators
emerge from crossover points. The toroid becomes a sphere. Just prior to this moment
the surface of the black hole is not even a (Hausdorff) manifold [Shapiro, Teukolsky,
and Winicour (1995)].

5.3 Ehlers-Sachs Theorem

5.3.1 Light wavefront and light rays

The fact that the event horizon bounding a black hole is a null surface at its regular
points immediately leads to a number of important consequences. Hence, it is logical
to give a more detailed description of the general properties of null surfaces in curved
spacetime before starting the analysis of black hole properties.

Consider a surface r which in coordinates xlJ. is defined by the equation v(xlJ.) = o.
r is a null surface if the gradient v,1J. is a null vector on r, i.e., glJ.V v,1J. v,v Ir = O. In
general, this relation does not hold outside r. But it can be shown [see, e.g., Courant
and Hilbert (1962)] that the freedom of choice of v can be so used that the surface r
can always be included into the one-parameter family of null surfaces r c defined by
the equation v(x) = c. We assume, with no loss of generality, that this choice was
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glJ.Vv,lJ. v,V = o. (5.3.1 )

(5.3.2)

If we define IIJ. = glJ.VV,V , then (5.3.1) signifies that IIJ. is a null vector that is orthogonal
to v,lJ.' and hence is tangent to the surface r c' Furthermore, making use of the property
v,IJ.;V = V,V;I' and of expression (5.3.1), we find IV IIJ.;v = IV Iv;1J. = ~ (Iv Iv),1J. = O. In other
words, the integral curves of the vector field IIJ.,

dxlJ. = IIJ.,
dr

are geodesics, and l' is the affine parameter.
If the initial point of integral curve (5.3.2) lies on the null surface r, the entire

curve belongs to this surface, and r itself is formed by a two-dimensional family
of null geodesics (generators). Let l' be the affine parameter along the generators,
and ya (a = 1,2) be continuous coordinates that parameterize these lines. The
solution to equation v = 0 can then be written in the following parameterized form:
xlJ. = flJ.(r, ya) . In this parameterization

IIJ. = oflJ.
or '

We also have

(5.3.3)

(5.3.4)

From the physical standpoint, the surface r (characteristic) describes the propagation
of a light wavefront, and its generators (bicharacteristics) are light rays perpendicular
to the front.

5.3.2 Optical scalars. Ehlers-Sachs theorem

If we pick a narrow beam of light rays, the following experiment will provide informa
tion on their behavior. Place an opaque object in the path of the beam (perpendicular
to it), and place a screen at some distance from the object also perpendicularly to the
beam. Then the theorem proved by Ehlers and Sachs [Jordan, Ehlers, and Sachs
(1961), Sachs (1961)] states that:

All parts of the shadow reach the screen simultaneously. The size, shape, and orien
tation of the shadow depend only on the position of the screen and are independent of
the velocity of the observer. If the screen is at a shori distance 81' from the object, the
expansion and distortion of the shadow are given by the quantities () 81' and 10' 181',
where

_ 1 0

() - "2 1;0' ( )

1/2

10' I= ~ 10;{3l
o

;{3 _ ()2 (5.3.5)
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Figure 5.8: Illustration of the Ehlers-Sachs theorem on the propagation of light rays.
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Here we reproduce the main steps of the proofof this theorem, adapted to the case
under consideration. This will enable us to describe in detail a number of importa.nt
characteristics of null surfaces.4

Consider a family (beam) of light rays xlJ. = f(r, ya), where ya are parameters
enumerating rays (a = 1,2). Denote by [IJ. tangent vectors to the rays. Let a light
ray 'Yo described by the equation Xl' = flJ.( r, Yo) intersect the world line 1 of the first
observer at a point xi = f!J.(rl, Yo); the four-velocity of the observer at this moment
is Ui' (Figure 5.8). For the observer, the set IT I of the events xi + dxlJ. simultaneous
with this event XJ satisfies the condition

(5.3.6)

Choose the affine parameter r so as to satisfy the condition r = rl at the point. of
int.ersectiolJ of other rays of the beam and IT I . If we demand that in addition to
(5.3.6) t.he displacements dxlJ. sat.isfy the condition

(5.3.7)

t.hen these two conditions jointly define a two-dimensional surface I; perpendicular
(in the reference frame of Un to t.he beam of light rays. Let e~ (a = 1,2) be mutually
orthogonaillnit vectors tangent to I; and rn° = 2- 1

/
2(ef + i e~). This gives

(5.3.8)

Assume now that an object is placed in the path of the beam so that a part of
the two-dimensional surface I; bounded by the curve

(5.3.9)

4For details on congruences of null geodesics in curved spacetime, see, e.g., the reviews by Pirani
(1964) and Frolov (1976a) where the relevant references are given.
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is opaque to light rays. The rays passing through the boundary of the opaque object
form a one-dimensional family parameterized by c/!. For this family the parameters
yg + 8ya( c/!) are determined by the equation

(5.3.10)

A shadow f then forms behind the object. Its boundary of is defined by the equation

(5.3.11)

Let the light ray 10 extended to a point x~ = f!"(1'2,yg) intersect there the world
line 2 of another observer whose velocity at that moment is Uf (see Figure 5.8). For
this observer, the space fh of events simultaneous with x~ is defined by the vectors
dxl' = xl'- - x~ which satisfy the relation U2P, dxl'- = O. We now use the ambiguity
(1' ~ 1" = A(ya)(1'-1'd+l'd in choosing the affine parameter in order to arrange that
l' = 1'2 for all light rays in the beam at the points of their intersection with IT2• The
relation (5.3.3) implies that a two-dimensional area element xl'- = /1'-(1'2, yg + 8y"),
which describes the position of wavefront at the moment x~ in the reference frame of
Uf, is orthogonal to the direction of the light ray whose tangent vector is

of!'
l~ = a;(1'2 , yg) . (5.3.12)

We have therefore proved that all parts of the shadow simultaneously reach the screen
placed perpendicularly to the ray beam.

Consider the boundary zl'(1'2' c/!) of the shadow projected on the screen by the
opaque object. Denote by 8xl'-( c/!) = zl'-( 1'2, c/!) - x~ a vector connecting the center X2
of the screen and the boundary. The size, shape, and orientation of the image 011

the screen are uniquely determined if the scalar products 8xl'-(c/!l)' 8Xp,(c/!2) are known
for an arbitrary pair of points on its boundary. It is not difficult. to verify that the
vectors Ii.TI' (c/!) are transformed in the transition to a different reference frame ut by
the formula 8':rl'(c/!) = 8xl'(c/!) + all'-, while the scalar products remain unchanged:

(5.3.13)

We have thus demonstrated that the size, shape, and orientation of the shadow are
independent of the observer's velocity.

For the sake of convenience, we take for Uf the vector obtained from Ui' by its
parallel transport along 'Yo since the characteristics of the image on the screen are
independent of the choice of observer. Denote by mO(1') the vector obtained by the
parallel transport of mO along 'Yo and m~ == m"(7'2)' Parallel transport preserves
the orthogonality of mO to the vectors ll'- and UI'-; hence, m~ and ih~ span the two
dimensional element of the area of the screen orthogonal to the light beam (in the
reference frame Un Note that the vectors (0(1', c/!) = ((c/!) i11.O(1') + ((c/!) mO(r) are
also parallelly propagated so that

(5.3.14)
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Deline ('O(1',¢) = Z"(7',¢) - r(7',yg), then for vectors 011 the screen located on
the shadow boundary we have

('''(1'2, ¢) = ('(¢)ili~ + (/(¢)m~. (5.3.15 )

The vectors ('0 (1', ¢) are "frozen" into the ray congruence, and hence they are Lie
propagated5 along 10

(5.3.16)

Since the vectors (/a and (0 coincide at the initial point r1, we find for small
distances 8r = 7'2 - r1 that

Mult.iplying both sides of this equality by m o and den~ting

p = -lo;p rna iliP,

we obtain

8( == (' - (= -(pC +a()81'.

The mapping

( -t (' = (+ 8( = ((1 - p8r) - aUr

(5.3.17)

(5.3.18)

(5.3.19)

(5.3.20)

thus establishes the relation between the shape of the object and that of the shadow.
If the projected object is a circle with a boundary ((¢) = exp(i¢), the boundary

of the shadow is given by the expression

(' = (1 - p8r)exp(i¢) - a8rexp(-i¢),

which describes an ellipse with semi-axes

and area

A = Jr a+ a- = Jr[l - (p +p) 8r] .

(5.3.21)

(5.3.22)

(5.3.23)

Thus, the factor (J = - Re p describes the expansion of the linear scale. The shear
modulus 1a 1gives the degree of deformation of the circle; it is found from the relation
a+/a- = 1 + 21 a 18r.

The quantities p and 1a 1 are independent of the choice of vectors (mO,mOl and
characterize the convergence and shear of light ray congruences. They are called

5This relation can be easily verified if one notes that ("(1', </J) =' [8f"(1', yo)/8y"j oy"(</J) and uses
the symmetry relation 82 f" / (8T 8y") =82 f" / (8ya 8T).
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optical scalars. It should be emphasized that p 8r and a 8r are invariants, while
p and a are linearly transformed when the affine parameter changes. It is readily
verified that if the null surface in question, v(x) = 0, is included into a family of null
surfaces v( x) = c and lo = 0ov, then

1 °P=--l2 ;0'
(5.3.24)

Let us emphasize that since lo;p = v;o;P = lp;o' the optical scalar p for the congrnence
of light rays forming the surface r is a real quantity: p = p. The relations obtained
above complete the proof of the Ehlers-Sachs theorem.

5.3.3 Focusing theorem

If the cross-sectional area of a narrow light beam is denoted by 8A, its change is
described by the following equation implied by (5.3.23) for p = p:

:r(8A)1/2 = - p(8A)1/2. (5.3.25 )

If p > 0, the cross-sectional area decreases as the affine parameter increases.
The behavior of optical scalars p and a along the light rays is described by a

system of first-order ordinary differential equations. The derivation of these equations
is based on using the identity

(5.3.26)

Multiplying both sides of this identity by lP mlJ. rno, then choosing mlJ., for the sake of
convenience, to be parallel-transported along llJ., and taking into account the geodesic
condition lit l~1J. = 0 and the relation Rvplv lP = 2 RVlJ.oplv lP mlJ. iho, we arrive at the
following equation:

dp 2 _ )
dr =p +0'0'+<1>, (5.3.27

where <I> = (1/2) Roplo lP. The equation for a is derived in a similar manner:

dO'
dr = o'(p +p) + 111 , (5.3.28)

where 111 = CoP-ralO mPF ma, and CoP-ra is the Weyl tensor.6 It can be easily verified
that 111 does not depend on the particular choice of mlJ. provided I . m = O. If llJ. are
tangent vectors to the null surface, then p satisfies the condition p = p.

6Equation (5.3.27) is the analogue of the Raychaudhuri equation (A.35) for the congruence of
timelike geodesics. Note also that (5.3.27) and (5.3.28) coincide with the first two Newman-Penrose
equations of the system (E.12) adapted for the problem under consideration.
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(5.3.29)

If we assume that there is a test beam, formed of light rays, for which the condition
P == a == 0 is satisfied at an initial moment, then part of the curvature <I> (for 1{1 == 0)
acts as a lens free of astigmatism (a stays equal to zero), while part of the curvature
1{1 (for <I> == 0) acts as a purely astigmatic lens.

Relation (5.3.27) makes it possible to prove the following important proposition.

Focusing theorem. Let <I> 2: 0 and let P == Po > 0 at some point r == ro of the
light beam. Then at some finite distance r - ro ~ POl from this initial point the beam
reaches the focal point where the bemn cross-sectional area drops to zero.

To prove this proposition, it. is sufficient to make use of t.he following relation:

::2 (8A)l/2 == - (aa +<I>)(8A)l/2.

This formula is obtained from (5.3.25) by differentiation and by using (5.3.27). Since
t.he right-hand side of this equality is non-positive for 7' > ro, we have d(8A)l/2/dr ~

-Po(8A)~/2, where A o is the value of A at roo Thus, (8A)l/2 vanishes at a value of
the parameter r which satisfies the inequality 0 < r - ro S POl.

If the gravitational field is described by Einstein's equations, then the condition
<I> 2: 0 is equivalent to the relation Tl'v ll' lV 2: O. For example, this condition is
satisfied if the energy-momentum tensor describing the matter and field dist.ributions
obeys the weak energy condition (see Appendix A.l5); that is, the energy density
T,1V u't uV in the reference frame of an arbitrary observer (ul' u't == -1) is non-negat.ive.
To prove t.hat <I> 2: 0 follows from t.he weak energy condition, it is sufficient to consider
t.he limiting case of a(u) ul' ~ ll'.

There are grounds for assuming that the weak energy condition always holds when
mat.ter and physical fields are described within the framework of classical theory. This
means that if one neglects quantum effects, any energy-momentum flux across the
null surface has a focusing effect on light rays.

5.4 Hawking's Area Theorem

The Penrose theorem implies that the event horizon is a null surface whose generators
never intersect when extended into the future. The caustics at the horizon (p ~ -(0)
can arise as a result of the falling of matter or radiation into a black hole, or upon the
collision and merging of black holes, or when external Source acts on the black hole.
At caustics new bundles of generators enter the horizon. This property toget.her with
t.he focusing theorem, proved in t.he previous section allows one to derive a number
of important propositions on the general properties of black holes.

Let 118 consider an infinitely narrow pencil of generat.ors of the event horizon. Let
the cross-section of this pencil at a point with the affine parameter r be 8A(7')' Note
that in view of Ehlers-Sachs theorem, 8A(r) is independent of the special choice of a
local observer who measures it, and t.hus is invariant. Assume t.hat the cross-sectional
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area begins to decrease at some point ro and the energy-momentum tensor describing
the matter and the physical fields surrounding the black hole (and possibly falling
into it) satisfies the weak energy condition. The focusing theorem then implies that
the generators in the pencil must intersect at a finite value of the affine parameter.
In order to match this result to the Penrose theorem, we have to conclude that either
there is a physical singularity at the horizon and the generators of the horizon reach
it before intersecting, or that the assumption is wrong that the cross-sectional area
of the pencil of generators might start to decrease. In other words, the weak energy
condition and the assumption that there are no singularities that can be encountered
by the event horizon, imply that the cross-section area of the pencil of generators of
the event horizon cannot start to decrease.

Hawking (197Ib, 1972a) proved the theorem that the cross-section of a pencil of
generators does not decrease with time even if the condition of no singularities at
the event horizon is replaced with the condition that no singularities are visible from
.J+. Such singularities (visible from .J+) are said to be naked. More rigorously, the
condition of the absence of naked singularities is formulated as the condition of the
existence of a regular spacelike surface E such that all past directed causal curves that
come out of .J+ necessarily intersect E when extended into the past. The existence
of such a surface guarantees that if initial data are fixed on it so as to describe
completely the state of particles and fields, then the evolution of the system in the
region visible from .J+ is uniquely determined. This is equivalent to stating that
there are no singularities visible from .J+. In Hawking's terminology, such spaces are
asymptotically predictable.

Therefore, on the one hand, if we assume that there are no singularities (either at
t.he event horizon or beyond it), then the cross-section of each pencil of generators of
the event horizon is non-decreasing in time. On the other hand, if the event horizon
contains caustics where new pencils of generators are formed, the horizon cross-section
increases. This implies the sum of areas S(t) of the surfaces of the black holes Bi(T)
is a non-decreasing function of "time" T. (We assume that IILT,IL < 0; that is, the
cross-section of the event horizon at a later instant T corresponds to larger values
of the affine parameter along each generator.) A similar conclusion that the surface
area does not decrease is also valid for an individually taken black hole Bi (T). These
results are stated in the theorem proved by Hawking (1971b, 1972a) (Figure 5.9).

There are assumptions used to prove the theorem: (1) naked singularities are
absent, and (2) the weak energy condition is satisfied.

The absence of a naked singularity was formulated by Penrose (969) as a hypoth
esis known as the cosmic censorship conjecture, which states that a naked singularity
(i.e., a singularity visible to distant observers) cannot evolve from a regular stat.e of
the system under any physically reasonable assumptions concerning the propert.ies
of the matter. We shall discuss this conjecture in Section 5.7. As for the weak en
ergy condition, the following has to be emphasized: Although this condition seelllS
to be satisfied in the analysis of a black hole interaction with matter and {iclds ill
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Creation
of a
block hole

'C=t:, L- ./

Figure 5.9: Possible processes with black holes (illustration for Hawking's theorem). The
planes Tl, T2, T3 are spatial sections at the corresponding moments of time; Sa(T;) is the
area of the black hole a at the instant of time Ti' Two black holes can merge into one and
a new black hole can emerge. The area of a single black hole does not decrease with time.
Hawking's theorem states that the total area of the surface of black holes at a moment T is
a non-decreasing function of time.
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the framework of classical theory, it may be violated (and is indeed violated) when
quantum effects are taken into account.7 Therefore, Hawking's black-hole-area theo
rem is directly applicable only to processes for whose description quantum effects are
negligible.

5.5 Trapped Surfaces. Apparent Horizon

5.5.1 "Teleological nature" of the event horizon

The boundary of a black hole is the event horizon H+. At first glance, the definition
of a black hole as a region inside the event horizon is very natural. However, if we
consider the processes that are possible during the formation of a black hole or in the
course of its subsequent evolution, it becomes clear that this definition actually does
not describe quite what it was meant to do.

Indeed, let us imagine that a spherical shell of mass t::.M falls onto a spherical
black hole of mass M some time after it was formed (Figure 5.10). It would seem that
the boundary of the black hole before the shell reached it was the gravitational radius
rg,l == 2M, and after the fall the boundary widens and becomes r g,2 = 2(M + t::.M).
In fact, the statement that the boundary of the black hole before the fall of t::.M was
the rg,l surface is incorrect. Indeed, after the fall of t::.M into the sphere of radius

7The possible violation of the Hawking's area theorem in the quantum domain was first pointed
out by Markov (1974).
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Figure 5.10: Nonstatic spherically symmetric black hole.

rg,l, the null geodesics running along rg,1 converge and fall into the singularity (see
Figure 5.10). These geodesics are not the boundary of the region from which rays
do not escape to infinity. This region is wider, it is bounded by the rays A shown in
Figure 5.10. Before the fall of the mass t::.M, these rays ran outward from rg ,1 and
somewhat diverged. If t::.M had not fallen in, the rays would have escaped to the
infinity J+. But the falling mass eliminates this divergence and makes the rays go
along rg,2'

The boundary of the black hole, H+, is thus determined not only by some specifics
of the spacetime at a given moment (say, a strong field in some region) but also by the
entire future history (whether a mass t::.M falls or does not fall, etc.). The problem
of finding the event horizon H+ is a problem with final, not initial, conditions. In
order to stress this property, one usually refers to it as the teleological nature of the
horizon, in contrast to the usual causal nature of dynamical systems.s

The following situation is even more impressive. Recall the process of creation of
a spherical black hole (Figure 5.11a). We know that H+ (and hence the black hole)
is born at the moment To, earlier than the star collapses to the gravitational radius
(before Tl)' But imagine that the star explodes at a moment between To and Tl, and
its matter is thrown out to infinity; that is, no black hole is formed (Figure 5.11b).9
Of course, it would be wrong to say that the black hole temporarily existed in the
time interval from To to the explosion because there is no horizon H+ in this example.

The boundary H+ thus bounds not so much a region with an especially strong
gravitational field (although this field is certainly necessary, or H+ would not appear

BNovikov (1997) emphasized that the properties of the event horizon looks causal (not "teleo
logical") if one considers the direction of time from the future into the past. Thus, figuratively
speaking, one can say that a black hole "lives" in time /lowing in the opposite direction.

9Note that after the star has contracted to rg (after 71), the explosion cannot eject the matter
out to infinity. Nothing can escape from under r =Tg.
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a

Figure 5.11: The position of the event horizon at a given moment of time depends on the
entire subsequent evolution of the system. When a spherical collapse forms a black hole (a),
the event horizon appears at a moment TO' An explosion of the collapsing st,ar occurring
aft,er the moment TO may completely preclude the formation of the event horizon (b).

at all) but rather a region with very specific global properties; namely, no rays escape
from this region to infinity. It is this property - the invisibility from infinity, the
impossibility for particles and light rays to escape - that justifies the name "black
hole" for this region. In addition, the event horizon is formed by null geodesics, for
which a number of strong theorems can be formulated (we gave some of them above).
This is another reason for choosing H+ as the definition for the black hole boundary.

5.5.2 Trapped surfaces

There is a question, though: Does the spacetime inside a black hole have specific
properties which are qualitatively different from those outside the black hole at a
given moment, so that it is possible to say that a black hole does exist at this moment,
without analyzing the entire infinite future history of the world? We shall now see
that, in general, sllch specific properties do exist.

As we have already mentioned, the following gedanken experiment can detect the
fall of a spherically collapsing body into a black hole. Let the surface of the collapsing
body emit a flash at some moment of time. If the body is transparent, then after
a short interval of time there are two surfaces, one ontside and one inside the body,
which correspond to the positions of the outer and inner fronts of the light wave. It
is characteristic of the situation inside the black hole that the surface areas of both
the inner and the outer wavefronts decrease with time, and the light rays orthogonal
to them converge. The gravitational field inside the black hole is so strong that it
forces even the outgoing rays that leave the collapsing body to fall to the center (the
positions of null cones inside the black hole are shown in Figure 5.12).

In the general case, closed orientable smooth two-dimensional spacelike surfaces,
such that both families of null geodesics orthogonal to them converge (p > 0), are
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Figure 5.12: Position of local null cones inside and outside the black hole. The areas of
the inner (Sd and outer (S2) radiation wavefronts emitted normally to a two-dimensional
surface So inside the black hole are less than the area of So.

called trapped surfaces. The presence of a trapped surface indicates that the gravita
tional field in the region through which this surface passes is very strong. In asymp
toticaIly flat spaces (with an asymptotically predictable future IO), the trapped surface
canBot be visible from J+, unless the weak energy condition is violated [Hawking
and Ellis (1973)]. In other words, trapped surfaces lie inside black holes and their
existence points to the formation of a black hole.

In the absence of naked singularities the presence of a trapped surface is thus the
condition sufficient for the existence of a black hole at a given moment of time. But
this condition is not necessary. The example shown in Figure 5.lla illustrates this.
A black hole is formed at the moment TO' The star's explosion at Tt (TO < Tt < TI)

prevents the formation of a black hole. In this situation a trapped surface cannot
exist between TO and TI since the existence of such a trapped surface would make the

lOIn proving rigorous results concerning the properties of black holes, one usually has to make
certain assumptions on the global properties of spacetime. These assumptions are reasonable in the
physical context and play an important "technical" role in the proofs of theorems since they allow
us to ignore various "pathological" situations. Such assumptions are usually listed in detail when
the relevant theorems are discussed [see Hawking and Ellis (1973)]. We made an at.t.empt to restrict
as much as possible the use of numerous terms meant to describe these propert.ies. Suffice it to
mention that a partial Cauchy surface is a spacelike surface intersected by each causal curve not.
more than once. By definition, a space with a strongly asymptotically pl'fdictable !llhLl'e is a space
with a partial Cauchy surface such that not only the "exterior" of the black hole but also a small
neighborhood of the event horizon become predictable by fixing initial data on this surface. We
also use the concept of a regularly predicta.ble space. This is a space with a strongly asymptotically
predictable future and a partial Cauchy surface E with the following properties: (1) the intersection
of E and J- (.7+) is contained in J+(.7-) and is homeomorphic to R3 from which an open set. with
compact closure is cut out, and (2) the surface E is simply connected.
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Figure 5.13: An example of a noncompact two-dimensional surface in Minkowski space.
Both orthogonally emerging families of light rays are convergent. Such a surface S is not a
trapped one.

process impossible. We return to the discussion of this subject later.
The condition that a trapped surface is closed is very important. Such a surface

surrounding the gravitating center contracts so "swiftly" that the property described
above (convergence) occurs even for light rays propagating out of this surface. If we
do not impose the condition that the surface is closed, then all other properties of the
trapped surface can be realized without gravitation in Minkowski flat world. Thus,
the intersection of two past null cones for two points PI and P2 in Minkowski space
time (Figure 5.13) gives a two-dimensional spacelike surface S having the required
properties, except for the property of being closed.

Monitoring the behavior of the outgoing radiation is found to be sufficient for
solving a number of problems connected with the propagation of signals in the field
of a black hole. Consequently, the following definition proves to be convenient: An
outer trapped surface is a compact orientable spacelike surface with the property
that the convergence of the outgoing null geodesics orthogonal to this surface is non
negative (p 2: 0). This definition assumes that it is possible to determine in an
invariant manner which of the two families of light rays orthogonal to the surface is
the outgoing one. We next describe how this can be done.

Let the trapped surface S in question arise as a result of the evolution of a system
with initial conditions given on the Cauchy surface E (Figure 5.14). Assume, for
simplicity, thatE is of topology R3 , and consider an arbitrary congruence of smooth
timelike lines (the existence of such congruences can be guaranteed, at least in the
future Cauchy region D+(E) of the surface E [Hawking and Ellis (1973)]).11 The
individual curves of a congruence can be treated as world lines of local observers.
If we trace past-directed congruence lines passing through the surface S, the points
of intersection of these lines with the Cauchy surface E form a closed orientable

liThe region D+ (E) of the Cauchy future o( set E is defined as the set of all points p such that
each causal curve nonextendable into the past and passing through p necessarily intersects E.
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Figure 5.14: Illustration of the definition of an outer trapped surface.

(5.5.1)

surface S'ou E. Finding the outward direction ou this surface is straightforward.
For iustance, oue can take any smooth curve x

"
(>') which begins on S' (xl'(O) E S')

aud reaches the spatial iufiuity. Then the vector (I'- = dxl'- / d>' for >. = 0 defiues
the outward direction at a point xl'(O). As the surface II formed by the cougruellce
passiug through S is orientable, the outward directiou (I' defined at one poiut of this
surface determiues the outward directions at each of its points, including the poiuts
of the original surface S. Such a definition is invariaut aud can be generalized to the
case of asymptotically predictable spaces [Hawking aud Ellis (1973)].

5.5.3 R- and T-regions. Apparent horizon

We say that a point p lies in the trapped region (briefly, T_-regiou) if there exists au
outer trapped surface passing through this point. In the important particular case of
spherically symmetric spaces, a point p belongs to a trapped region if the coudition
(V'r· V'r)p ~ 0 is satisfied.

Figure 5.15a shows a T_-region for the simplest case of the collapse of a spherical
dust cloud not followed by a subsequent fall of matter iuto the black hole. In view of
the importance of this concept, the same spacetime is shown again in Figure 5.15b
iu Lemaitre coordinates (see Section 2.7). The metric inside the dust ball can be
written iu the form

ds2 = _ dT2+ [~ r g - T ] 4/3 (dR2+ R2 dw2) ;
2 r g

the boundary of the ball corresponds to R = rg • The metric outside the ball, in the
vacuum, is of the form

(5.5.2)
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(5.5.3)

(5.5.4)

Figure 5.15: (a) Position of the T_-region in the collapse of a spherical dust cloud; (b)
the same spacetime in Lemaitre coordinates.

where

B = (~ R - T ) 2/3

2 1'g

The boundary of the T_-region in matter (line AB) is described by the equation

T+~rg(R)3=rg .
3 r g

This boundary is spacelike. The boundary of the T_-region outside the matter, in
the vacuum, (line Be) is r g :

3
2(R-T)=rg.

This boundary is lightlike.
The outer component 8Ti (T) of the connected part Ti (T) of the intersection of the

trapped region and a spacelike surface T( x) = const is called the apparent horizon.
The apparent horizon is a two-dimensional surface for which the outgoing ort.hog

onal null geodesics have zero divergence (p = 0). When the weak energy condition is
satisfied, the apparent horizon either coincides with the event horizon or lies inside it.
In stationary black holes, the apparent horizon and the event horizon coincide (e.g.,
this is the case for stationary spherically symmetric black holes; see Figure 5.15).

In the general case, the outgoing rays emerging orthogonally to the apparent
horizon 8T(T) have zero divergence. In view of equation (5.3.27), the condition
p = 0 still holds along these rays until they intersect the region where <I> > 0 or
a i= O. In this region p becomes positive so that light rays leave the apparent horizon
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Figure 5.16: Accretion of matter onto a spherical black hole.

and go into the trapped region. In other words, the outer boundary of the T_-region
is a null surface in the region where a = 0, <I> = 0, but becomes a spacelike region
where a i= 0 and (or) <I> > 0 (see Figure 5.15). If the weak energy condition is
satisfied, there always exists the event horizon located outside the apparent horizon.
Nevertheless, in general, there may be no trapped surfaces inside the event horizon.
On the other hand, several connected components of the trapped region can exist
inside one black hole.

This situation is illustrated in Figure 5.16. This represents a spherically symmetric
black hole that becomes non-stationary for some time because of the matter falling
into it. The L-region lies inside the boundary EDCBJ\B'C'D'E' shown by the dotted
line. The outer boundary of each connected component of the T_-region in the
7 = const section forms the apparent horizon. There is no T_-region (no trapped
surfaces) in the section 7 = 71 = const inside the black hole (inside H+). This
proves that the presence of trapped surfaces in the section 7 = const inside the black
hole is not a necessary condition for the existence of the event horizon. The section
7 = 72 = const contains two connected T_-regions; the inner apparent horizon is
T = Tg,l, and the outer one is T = Tg,2' A similar situation where several connected
components of T_-regions are formed may arise when two black holes merge.

The following definition will prove to be useful: A closed orientable smooth two
dimensional spacelike surface is said to be antitrapped if both families of null geodesics
orthogonal to it are divergent (p < 0). A point belongs to a T+-region ift.here exists
an antitrapped surface passing through it. The formation of T+-regions is typical of
white holes. We refer to the region of spacetime that lies beyond both the L- and
T+-regions as the R-region.
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5.5.4 Dynamics of apparent horizons. N umerica,l results
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The apparent horizon is defined to be the outermost trapped surface. It can be
computed on any given Canchy surfaceE , which gives a slice of spacetime. This
makes the apparent horizon extremely convenient for numerical computations. We
know that the apparent horizon indicates that a black hole has formed. Moreover, in
the stndy of perturbed black holes it was shown by Anninos, Bernstein et a1. (1995)
that apparent horizons can closely approximate the event horizons even in dynamical
spacetimes, and share many dynamical features with them.

Let 5 be a two-surface which is topologically a two-sphere embedded in E, a
T = const spacelike slice of spacetime. Denote by nl' a future-directed unit vector
normal to E, and by sl' the outward-directed spacelike unit vector normal to S in E.
The surface S is called a marginally trapped surface if the null vector kl' = nl' + sl'
obeys the condi tion

k~1' = 0 (5.5.5)

everywhere on 5.
The apparent horizon is the outermost marginally trapped surface. As we men

tioned earlier, it may consist of several disjoint components. Let hij be the induced
3-metric on E, and K ij be its extrinsic curvature. Then equation (5.5.5) can be
written as [York (1989)]

(5.5.6)

where ( ):i denotes the three-dimensional covariant derivative in the metric hij • If
F(xi) = 0 is the equation defining the coordinate location of the marginally trapped
surface 5, then the normal vector Si is proportional to the gradient of F. Thus,
equation (5.5.6) is a second-order nonlinear equation for F. The existence, location,
and physical properties of the apparent horizon for different initial data sets was
discussed by Cadez (1974) and Bishop (1982).

The problem of finding the apparent horizon is greatly simplified under the as
sumption of axial symmetry. In this case, the coordinate position of the apparent
horizon can be fixed by one function of one variable. For example, in cylindrical co
ordinates (z,p, ¢J) the equation of the apparent horizon is z = z(p). Relation (5.5.6)
in this case is reduced to a second-order nonlinear ordinary differential equation for
z(p). The evolution of the apparent horizon in an axially symmetric geometry was
studied in [Abrahams et at. (1992), Bernstein et at. (1994a,b), Anninos, Bernstein
et at. (1994), Brandt and Seidel (1995a,b)]. The analysis of perturbations of single
rotating and nonrotating black holes show close similarities to each other [Anninos,
Bernstein et at. (1994)]. For different types of perturbation the initially highly dis
torted prolate or oblate apparent horizon geometries quickly relax toward an equilib
rium shape. The apparent horizon oscillates at a frequency that is predominantly the
t = 2 quasinormal-mode frequency of the final black hole. These oscillations damp
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away in time as the black hole emits gravitational radiation. The importance of these
results is connected with the fact that the main characteristics of the evolution of
the apparent horizon as well as the accompanying process of the gravitational wave
radiation in this highly nonlinear problem coincides to very high accuracy with the
predictions of perturbation theory (see Chapter 4). According to this picture, a dis
turbance in the gravitational field of a black hole generates gravitational waves at the
peak of the gravitational scattering potential (near r = 3M for a non-rotating black
hole). These waves, emitted at the quasinormal frequency, propagate away from
the peak. The waves propagating outward result in gravitational radiation, while
the waves propagating inward cause both a shearing and expansion of the apparent
horizon. As a result, the apparent horizon oscillates with the quasinormal frequency.

5.6 Theorems on Singularities Inside Black Holes

5.6.1 Singularities in general relativity

We have mentioned in the analysis of spherical collapse that it inevitably produces
a singularity, at least in the framework of general relativity. The invariants charac
terizing the spacetime curvature grow in the course of collapse, and the curvature at
the center of the collapsing body becomes infinite after a finite time as measured by
a clock fixed to the body. This situation sets in when the boundary of the T_-region
crosses the r = 0 line. Further continuation of the world lines of particles and light
rays that "reached" the newly formed singularity becomes impossible. As a result,
the incompleteness of the space due to the cutoff of light rays and world lines at the
singularity at a finite value of the affine parameter cannot, in principle, be eliminated.

A situation in which the density of matter and the tidal forces grow infinitely is
also possible when the collapse of a dust ball is described in terms of the conventional
Newtonian theory of gravitation. The essential feature in the Newtonian case is that
pressure and small deviations from spherical symmetry, when taken into account,
change the picture drastically: The maximal values of matter density and tidal forces
(which in Newtonian theory are analogous to spacetime curvature) become bounded
from above. Singularities in Newtonian theory are thus degenerate and unstable in
the sense that they arise only in very special situations. Small perturbations are
sufficient to eliminate such singularities.

The situation in general relativity is essentially different and the creation of a
singularity inside a black hole happens inevitably under very general conditions.
This conclusion is supported by a number of rigorous theorems.

If one assumes, on the one hand, that the weak energy condition is satisfied and
a trapped surface has formed (in other words, that there is a black hole), the areas of
the wavefronts of both outgoing and incoming radiation will decrease. On the other
hand, since the velocity of motion of matter does not exceed the speed of light, the
gap between these contracting surfaces always contains all the matter that ever got
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int.o t.his region. The mat.t.er will be compressed; it.s densit.y will increase. It. is nat.ural
t.o expect that. a singularit.y or some ot.her "unpleasantness" will appear.

What. "unpleasant.ness" could t.his be? Unt.il now we have int.erpret.ed t.he singu
larity as infinit.e curvature of spacet.ime. This singularit.y is definitely t.o be classified
a.':; physica.l becanse tidal forces become infinitely large near it. Any world line of
a particle that. runs into this singnlarity cannot., in principle, be cont.inned bf'yond
it. Here t.he particle cea.<;es to exist.. But this behavior does not exhaust. all possible
pecnliarities of t.he spacetime that are connected wit.h a singularit.y. For inst.ancf',
consider t.he following situation. Let infinite curvature (a singularity) f'xisl, aI, some
point. in spacet.ime. We now cut. this singularity, toget.her wit.h a neighborhood, ont.
of spacet.ime. The remaining manifold has finit.e curvat.ure only. Can I.his manifold
be considered as free of singularit.ies? Obviously, t.his conclusion would be incorrect..
ThE' point. is that the world lines that. earlier ran int.o infinil;e curvature are now trnn
cated at. the boundary of the excised region. This is also a physical irregularit.y that.
is covered by the term "singularit.y".

Normally, the term singularity encompasses not only infinite curvat.nre but also
any end-point. on the world line of a particle (or a phot.on) or on a t.imelike geodesic
provided the line cannot, in principle, be continned beyond this point. It should 1)('
st.ressed t.hat t.he end-point---t.he singularity-must. lie at a finite distance or at. a
finite value of the affine paramet.er for a null geodesic. In the most general case, I,he
singularity is t.lllts defined a.<; t.he incompleteness of world lines in spacelime [for df'
t.ails and classification of spacetime singularities, sec Geroch (1968), Schmidt. (I !)lI),
Gerocll I'i al. (HJi2), Hawking and Ellis (1973), Clarke (HJ73, 197.5, HJ76), Grroch d
0.1. (I!JR2), Tipler ef af. (1(.J80)].

5.6.2 Theorems on singularities

Having given t.hese clarifications, we can return to discussing the prohlem of the
inevit.ahilit.y of singularities inside t.rapped surfaces. The relevant theorem wa.<; proved
by Penrose (I 965a). It states:

Penrose theorem on singularities. Let the weak energy condition be so. Iisfied,
and a I rapper! 8111Jaee S exisl in a spacetime admilling a 11001compacl Call1'hy sllr(o('('
~:. Thl'll Ihi8 5//(/('l'ii111C canna I be romplete with n'5pel'i 10111111 gror!c.<i(·5.

lu ot.llf'r words, t.he theorelllstates t.hat this space cont.ains at least. one light. ray
I,hat. ra.JIIH)t. he cont.inued and I.hat. ends at a finit.e valuc of the affinc pa.ranH't.eL
lI('nce, Ihe definit.ion given above implies that a singularity ('xists.

The irlm of the proof can be ont.lined as follows. Consider a set J+(.',') of point.s
t.hat ow he ronnerted wit.h S by a causal pa.<;t.-rlirectcd curve (Figure 5.17). Loral
analysis shows that at points where the boundary ()J+(S) of this set is non-singular,
this houndary is IighUike and consist.s of segments of nnll geodesics that. arc orthogonal
to S at t.he initial points. If the null generat.ors of (}J+(S) have end points, UH'Sf'
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Figure 5. t 7: lllust.rat.ion 10 till' proof of t.he Penrose t.heorem on the singularit.y inside a
hlack hole.

points coincide with the singularities of 8.1+(5) (caustics or intersection points). Now
it is possible to prove, using the weak energy condition and the convergpnce of t.he
gpnerat.ors of lJJ+ (5) on the surface S, that each of t.he light rays em itted orthogonally
to S inevit.ably arrives at a canstic; furt.hermore, this occurs when the afTinf' parameter
dews not exceed fls I, wherf' {Is is the maximum value of fI on S for both families of
out.going rays. (The existencf' of (IS is guaranteed by the smoothuess aud comparf.l1ess
of the surface S.) Hence, t.he boundary fJJ+Ul) is compact because it is formed by a
compact. system of finit.e dosed segments. It can be provf'd t.hat aJ+ (8) is a three
dinlPnsional manifold without. f'dg!'. Note that the proof of COinpart,ness of 0.1+ (S)
!'ssputially uses t.he assnmpt.ion that t.he spacetime is complf't.e with resped, t,o nnll
geodesics so t.hat, t.he genprat.ors of aJ+(5) are not terminated hefore arriving at. a
caust,ic or an int.ersection point..

The next. st.f'P of the proof is to est.ablish that the compactness of (JJ+ (8) cont.ra
dict.s t.he noncompact.ness of t.he Canchy surface 1:, aft.er which it. heCOTlH's obvions
that thf' illislllnption on the comp1l'teness of spacetime is incompat.ible with t.he n'st.
of t.h!' hypot.heses of t.he t.heorem.

The cout,radict.ion is estahlished in the following mallllf'r. It. can he shown t.hat.
a congnleTln' of t.imelikf' clIrv!'s exist.R in a spacetime wit.h a Cauchy surface. Since
oIl!' and only one curve of UIC congruence passes t.hrongh each point. of spill'e, and
since a tilTldike curve canuot inters{'d, t.he null surface {JJ+(S) moJ'{' t.han flIICC, this
cougrnl'Uc(' estahlislH's a mntinllons OI1l'-t.o-one correspondpnce l)('fw('clI iJJ+(,c,') and
a dos('d snhsd ~' of the surface 1;. Note that ~' canuot coincide wit.h 1; IH'{';IUSC hy
a.ssumpt.ion ~ is not. compact. lIence, 1;' ha.s a houudary in ~. lIowev!'r, t.his is ill
coutradict.ion wit.h 8.1+(5) !wing a manifold wit.hout. ('dgf', Till' cout.radictiou t.hus
oht.ainro compld.es the proof of thp Prl11'osP t.heorem on siu/!;nlaritirs.

It, mllst he emphasized t.hat, t.he condition of noncompadneRs of the Cal!chy s11Ifacl'
~ was used ollly ill proving that r;' is 1I0t identical t.o E. One could demand im;tead
that at lea.<;t olle timelike ClIrvc of Ute colIgrnence dors not int.ersect. 8J+U"').
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WI' will reproduce herE' oue additiollal theorem 011 sillgularities (ill a :it'J1:>e, this is
the strollgest (HIP aJlIOllg the theorellls of this killd), referrillg the reader illterC':itl'd ill
exact IlmlllJlatiolls t.o t.he papers of PellrDse (l9G8, IV79) , lIawking ami Ellis (lun),
Misnl'r, Tholll(', aud Whel'!f.r (1973), Wald (1984), Tipler d al. (1980).

Hawking-Penrose theorem [Hawkillg alld PPllrose (IU70)]: The space/im(' AI lIeC
cs.wrily conlaills illcolllplt:lc time/ike or nulI geodesics which canuol be ('u/(Iiflued
p-roulfl('(1 lI,e !olluwiuy conditiolls an, satisfied:

1. Thc spacetime coutains no closed tintdike curves.

2..·lrbilmr!l lillle/ike unil '{lectors ·up obey the inequality Il,,,, uP ill.' :::: o.
J. For me/I lime/ike or nulI geodesic with a tangent veclor uP J there l'x/.5Is (l poml

il/ which ulO" R1JhJIe Upj U.., uJ :f- 0,

4- A [nipped sm/ace exists.

All these COIl!litiolls appear to be fairly reasonable alld gelleral. Condition (I)
correspOllds to our collventiona! interpretatioll of causalityP Conditioll (2) sigllilies
that the energy density f is non-negative in allY physical reJ'erellce frame alld f +
3p :::: O. COllditioll (3) is equivalent to stating that we deal with a spacet,ime of a
general t.ype, without special symmetries. Condition (4) is closely connected, as we
have alrpady mentioned, with the existence of a black hole. The Penrose-Hawking
theorem guarantees that a singularity arises also in the case wheiJ a trapped surface
is generat.ed, say, in a closed Universe. Note that in such a case there would be no
noncom pact Cauchy surface and the Penrose theorem would be inapplieable.

The above theorems on singularities can to some extent be generalized. They
permit extension to the case when the energy dominance conditions are met only on
average [for details, see Tipler (1978a,b) and Roman (1986, 1988)],

5.7 Cosmic Censorship Conjecture. Critical Be
havior in Black Hole Formation

5.7.1 Cosmic censorship conjecture

Penrose's cosmic censorship conjecture [Peurose (1969)] plays an important rule in
black hole physics, It is the statement that a naked singularity (i.e., a singularity

12)t must be emphasized that dosed timelike lines do not contradict the broadly interpreted
causality principle. The future cannot be distinguished from the past on a closed time line but this
property, by itself, does not produce any contradictions (see Zel'dovich and Novikov (1975), Novikov
(1983)). All events on such a line are "synchronized" with one another. The past cannot be changed
once the future is known (as is sometimes said) because all the events along the time line "have
already occurred"; they cannot be altered since they are a part of the four-dimensional spacetime.
A different wording is possible: It is wrong to speak of the effect of the future on the past because
these concepts become meaningless. For more details, see Chapter 16.
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visible to distant observers) cannot evolve from a regular initial state of the syst.eJI1
under auy physically reasonable assumptions concerning the properties of the JllatteJ.
The coswic censorship conjecture in this formulation is sometimes refeITl·d to as
"weak", to distinguish it from the "strong" one. The latter principle, suggl'stl'd
al:;o hy 1't~llrose (1978), states that in the general case the singularities produced by
gravitatioual collapse are spacelike :;0 that no observer can see them unti I be falls
into tbl~m.J3

Weak ceusorship effectively postnlates that singularities whicb might dewlojJ iu
gravitational collapse cannot. influence events near future null infinity J+. Oue cau
give the followiug more accurate formulation of the weal.: censorship conjecture [Wald
(IV84)]. Let S be a complete spacelike hypersurface ou which geucric uOIl-sillgular
illitial data (induced metric alld its time derivative on 8) are given. The matter
sources are such as to satisfy some energy condition and physically reasonable ellua
tions of state. Theu the evolutioll of gravitational collapse from.) must. be such that
t.he resulting spacetime is strongly asymptotically predictable.

Tbe weak censorship conjecture guarantees that the region outside tbe hlack bole
is globally hype1'bolic [Tipler, Clarke, and Ellis (1980)]. If a spacetime fails to obey
weak censorship, it must coutain a uaked singularity, i.e., there exists a future direct.ed
causal curve which reaches a distant observer, alld iu the past it terminates at the
singularity.

So far both (weak and strong) cosmic censorship conjectures have not been proved.
Difficulties arise as soon as one tries to give a more rigorous definition of what a sin
gularity is. J4 Another difficulty is connected with the fact that the event. horizon
depends on the whole future behavior of the solution over an infiuite period of time,
whereas t.he present theory of quasi-linear hyperbolic equations guarantee the exis
teuce and regularity of solutions mainly over a finite iuterval only [Israel (1984)]. It is
also difficult to specify whicb kind of conditions must be imposed on the stress-euergy
tensor of matter since there are explicit examples of naked singularities iu spacetimes
satisfying all the usual energy conditions. In addition, only stable siugularities should
be considered as really pathological, but there are 110 sufficiently geueral criteria for
testing stability in general relativity. One of the proposed ideas is that there might
be a connection between the strength of the singularity and its stability [Newman
(198Gb)j.

One of the main arguments in favour of the censorship conjecture is the stability
of black holes wit.h respect to slllall perturbatious (see Section 4.V). On the other
hand, there are a number of results that indicate that at least in its silllpiest form
the censorship conjecture is questionable. Let us consider examples which illustrate
the possible creation of naked singularities in situations which might be cousidered

1Jlt is important that the requirement of generality is imposed. Without it the strong censorship
culljcctl1re can be easily violated. A timelike singularity inside a charged non-rotating black hole
(in Reissner-Nordstriim geometry) is all evident counter-example.

14 For the discussion of singularities and references to relevant publications, see Section 5.6.
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(5.7.1 )

as physically reasonable.
As t.he first example, consider a black hole formed by spherically symmetric radi

ation moving radially with the velocity of light. The corresponding metric is known
as t.he Vaidya (1951, 1953) solution

ds2 = _ (1 - 2~(V)) dv 2 + 2dvdr + 1'2 d.w 2 .

Here v is the advanced null coordinate. The stress-energy tensor for the lIull nuid
ermting this metrids

1 dM
~/II =-42 -d V' II v· lI •1fr .v ' .

(G.7.2)

For dM/dv 2: 0 it obeys the weak energy condition. The radiation collapses to the
origin l' = 0, and we assume that M(v) = 0 for v ~ 0 amI M(v) > 0 for v > O.
The value dM(O)/dv is crucial for the global propert.ies of the solution. In order
to investigate these properties, first consider a simplified case when M during the
interval (0, vo) is a linearly growing function of v,

.M(v)=>.v, (5.7.3)

(S.7A)

where>' > O. The equation for outgoing radial null rays in this case can he easily
int.egrated [see e.g., Volovich et al. (1976)]. Denote by .T = I'1V, then the radial null
rays obey the following relation

I.T - .T+ IX+/(x+-x_) C
I.T - .T_lx-/(x+-x_) r;I ,

wlwre T± = 1/4(1 ± Vl- 16>'). Different rays are enumerated by a positive paralJJ
f'ter C. Nf'ar v = 0, rays for different Care foclll,ed and have the same limiting value
.r = x+. Besides these radial rays, there exist. a family of non-radial rays which are
also emitted from I' = 0, V = O.

The invariant of the square of curvat.ure for the Vaidya metric is

(G.7.S)

aud heuce' for 1) 2: 0, t.here is a curvature singlllarity at. r = O. It is possiblp t.o show
that for /\ ~ I/IG t.he singularit.y v = 0, r = 0 is a 110de of l1ulI geodcRin" which cau
rrac'h J+ [Dwivedi and .Joshi (1989. 1991)]. The radial section of t1w spacd.ime ill
(I, l' )-coordinat.es is shown in Figure 5.18.

The naked singularit.y is strong ill the sense that the curvaturr invariant.s (for
examplf', t.he square of curvat.ure (5.7.5)) are divergent Ilf'ar it.. A nakf'd singularity
wit.h similar propert.ies exist.s in t.he Vaidya solutiolls wit.h an arbitrary lTlass fllnction
M(v) that describes monotonic increase of mass of a black hole from 0 at v = 0 to
some filial value mo at Vo provided dM/dvlv=o ~ 1/16 [Dwivedi and Joshi (U)89,
HH)l), .Joshi (1993)].
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Figure 5.18: A spherical collapse of nnll fluid with A < 1/16. A naked singularity iR formed
at 11 = 0, r = O. Families of mill rays slIfh as ')'1 and 1'2 emitted at. t.he naked singlllarit.y
eSfape to infinit.y. The first family of rays 1'1 leaving the singnlarit,y and reaching infillit,y
form the Caufhy horizon.

Infinit.e curvat.ure is also possible when t.he cont.raction of a st.ar is acc:ompanied
by radiat.ion t.hat. carries away some of it.s mass provided complet.e conversion int.o
radiat.ion of t.he st.ar occurs at. t.he moment. when it, cont.ract.s t.o a point., ami t.hf' SU1'

facf' of t.1l(' st.ar remains ont.side it.s gravitat.ional radius during t.he f'ntirf' compression
phasf' (an event. horizon is not. formed in this ca.<;e, see St.cinllliiln cl al. (1975), Lake
and Hellaby (1981), Kuroda (1984b)].

Other examples of naked singularities were discussed for the modd of spheri
cally symmdric c:ollapsing dust. The corresponding metric (Tolman ,~oltllion) is (see
!\pllf'ndix B.G)

2 2 1./
2

2 2 2
d.. = - dT + -- dR +,. dw ,
. 1 +!

wlwl'(, r = 1'( T, H) is a solution of tJ]f' equation

2 F
i' o-c!+--,

I'

(5.7.6)

and! = fUn and F == F(H) are two arbit.rary functions. which Ml' slH'cifieti h~'

initial condit.ions. Thf' enf'rp;y (If'nsity of tl](' dnst

p'
( == 81T I" 1'2

bf'colJlE'S infinitE' at spacet.ime poi nt.s wherE' eit.ll('r 1" = 0 or r == O. At these points
t.lw square of the H.icd tensor is f'vident.ly infinite. Tire first C1lS(' corrcsponds to
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the situation whl'n different fayers of the dust, descrihed by different values of the
comoving coordinate R illterseet oue another. This type of singularity is known as a
slld/-crussing siltguloTily. A singularity which develops at l' = 0 is known as a shcll
focuslJJY sillyularily. Both types of singularity are generic for a spherical collapse
of dust nlill.tl'r, and with proper choice of iuitial conditions t.hey are globally nakl'd
(i.e., SCl'n from infinity). The nature of shell-nossing singularities appears t.o he well
understood ['\·od7.is d fli. (HJ73, 1974)]. It is shown that they are gravitationally weak
[Newman (19HGa)], and it is generally believed that such shell-crossing singularities
need not be taken seriously as far as the cosmic censorshi p conjecture is concl'rned.
Shell-f()cusiug singularities are to be taken more seriously [Christodouloll (1984),
Newman (1986a) Waugh and Lake (1988) ]. They exist and are gravitationally strong
for a wide class of Tolman models [Grillo (1991), Dwivedi and Joshi (1992), Joshi
(1993)]. These results allow generalization to the case when the pressure does not
vanish. For example, Ori and PiJ'an (1990) proved the existence of naked singularities
for self-similar spherically symmetric collapseDI' matter with pressure.

Formulation of the conditions unde!' which cosmic censorship conjecture is valid
and a rigorous proof of it remain one of the important unsolved problems in black hole
physics [see the review oflsrael (1984) and the book by Joshi (1993), the bibliography
therein, and also Caderui and Calvalli (1979), Calvan i (]9HO), Glass and IIarpaz
(1981), Yang (1979), Lake (1979), Israel (1985)].

5.7.2 Hoop conjecture

It seems that an understanding of non-spherical cullapse might ue crucial for the rl'S
olution of the prohlem of naked singularities. Unfortunately, this is a rather compli
cated problem, and the results are much less complete than in the better understood
spherically symmetric case. For this situatiou quite long ago Thome (1972) proposed
a hoop conjectU1'e: Black holes with horizons fot'm when and only when a mass M
gets compacted into a reg'ion whose circumference in evel'y direction is bounded by

C < 4nM. (5.7.9)

The hoop conjecture is COlli pati ble with the occurrence of naked singularities when
the collapse is highly lion-spherical. For this reason, it might be considered as some
kind of alternative which might be used in case cosmic censorship were found not
to be valid. If the hoop conjecture is indeed correct, then non-spherical collapse
with one or two dimensions larger than the others might lead to a naked singular
ity. Non-spherical collapse might admit a large variety of singularities; for example,
needle-shaped singularities that can result from the collapse of prolate axisymmetric
objects. One may suspect that non-spherical types of singularities might be stronger
than spherical ones. Shapiro and Teukolsky (1992) have provided evidence in sup
port of this assumption. Namely, they numerically analyzed the behavior of 6000
dust particles,. geodesically moving in the average gravitational field of the system,
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starting with an initially static spheroidal configuration. They found that if tI)(' initial
spheroid is prolate and sufficiently elongated, then the resulting final conliguratiun
at Hit' levd of accuracy alluwed by their numerical calculations can 1)(' ilJt.erpreted
as a naked spindle-type singularity. This result suggests the possibilit.y 1(,1'1 open hy
Thorm"s hoop cunjecture that. t.he gravitational collapse of a highly dpf(>IlJ)('d COIJ

liglllation will not produce a singularity which is hidden inside a hlack hol(', hilt. a
naked singularity.

Altliough the huup cOlJject.ure is l<mlJUlated in a very simple manner, t.he at.tl-lIIpt.s
to make it rigorous meet llIany obstacles. First of all, as was already lII('ntioll('d, it is
virtually impossible to conclude that a black hole is formed by studying t.he dat.a at.
a given spacelike surface. This is because the definition of the event horizon involvcs
boundary data at future infinity. For this reason, usually the following modification
of the hoop conjecture is considered: an apparent horizon forms when and only when
a mass M gets compacted into a region whose circumference in every direction is
C < 4'1rM.

Another problem is connected with the definition of the mass M which cnters
(5.7.9). Heuristically, a mass M must be some local characteristic delining the ilillount
of matter located in a compact region under consideration. It is difficult to propose a
ddinition which is both reasonable and covariant. For this reason, when considering
an asymptotically flat spacetime, one usually uses the mass defined at spatial infinity
(or ADM mass).

As for the definition of the circumference C which enters (5.7.9), several dilfer
('nt proposals were made [see e.g., Flanagan (1991), Chiba et al. (HJ9/1)]. For the
axisYlIlmetric case the most satisfactory definition of C is the folluwing [Nakamura,
Shapiro, and Teukolsky (1988)]. Let S be an axisymmetric surface with I.h(' topology
of it two-dimensional sphere surrounding a body. C is defined as the larger of its
equatorial and polar circumferences.

Before discussing different results concerning the hoop conjecture, we remark that
it is possible to derive the following Penrose-Gibbons isoperimetric inequality relating
the surface area A of the apparent horizon and the mass M of the non-rotating body
[Penrose (1973), Gibbons (1972)]

(5.7.10)

The proof assumes the validity of the weak energy condition and is based on the
following sequence of inequalities

(5.7.11)

The first inequality follows because the apparent horizon always lies inside the event
horizon; the second because the mass M/inal of the Schwarzschild black hole inevitably
left at the end of the evolution must not exceed the initial mass; the third because the



5.7. Cosmic Censorship Conjecture 191

area of t.he event horizon can never decrease. The last. equality is simply a r<'lat.ion
between t.he mass and the surface area of the Schwarzschild black hole.

For the sphere t.he circumference C and the surface area A are related as foll(jw~:

C = v;r:A. Equation (5.7.10) when applied to this case implies C ~ 471"M, which
reproduces the inequality (5.7.9). The numerical study of time symmet.ric initial
data for different axisymmetric configurations shows that the necessary condition for
the creation of the apparent horizon is C ~ 15.8M. The quantit.y st.aying on t.he
right-hand side of this inequality is greater than 471" M by t.he factor 1.25 [Nakamura,
Shapiro, and Teukolsky (1988), Chiba et al. (1994)]. A Vl'ry close result (C::; 16M)
was obt.ainl'd by Barrabes et al. (1991, 1992) and Tod (1992) for a particular lllodri
of collapsing convl'X massive t.hin null shells.

Asomewhat broader statement similar in spirit t.o the hoop conjectme is thf' (,l'('nl

horizon cOlljeclure of Israel (1984, 1986a,b). In Sect.ion 5.5 we mention('d t.hat. in t.he
absl'nce of naked singularities (in the asymptotically flat. spacetime with asymptot.i
cally predictable fnture) the existence of a trapped surface guarantee~ th(' ('xist.Pnce
of the event. horizon provided the weak energy condition is satisfied. Israel's event.
horizon conjecture is the requirement that an event horizon with no naked singu
larit.ies must. form whenever the collapse of matter (satisfying appropriatl' energy
conditions) creates a trapped snrface.

5.7.3 Critical behavior in black hole formation

Gravitat.ional collapse is usually accompanied by an outflow of matter and out.going
gravitat.ional radiation. Gravitational collapse may prodnce a black hole. It is also
possible t.hat. in the collapse no black hole is created. An interesting prohlem is t.o
study proc('sscs at. the threshold of black hole formation. Recently the behavior of
black holes at t.he threshold of their formation was investigated [Choptuik (1990)] and
a number of interesting general relations characterizing t.his behavior were estahlisl]('d.

Consider a dynamical system describing self-gravitat.ing matter. Lf't. I[ p] denot.e
t.he one-parameter family of initial states defined above, and let S[ p] be a solntion of
evolntion equat.ions with initial couditions I[ p]. We suppose that for a f]xf'd family
pa.rameter ]J is chosen so that for small values of parameter p the gravitationa.! field
dlll'ing evolut.ion is too weak to form a black hole, while for large valllf's of ]J t.he
black hole is produced. In general, between these two E'xtremes t.here is a rrili('(/1
paramet.er value, p', where black hole formation first. occurs. We will refer t.o t.hl'
solutions S[7) < p.] and S[p > p'] as subcritical and supercritical, respectively. The
quantit.y (p- p') is a natural choice for discussing the ph('nomenology of t.he solut.iow;
S[p].

The characteristic properties of t.he near-critical gravitational collapse were first.
obtained by Choptuik (1993) for t.he spherically symmetric collapse of the masslf'ss
scalar field. lie presented convincing numerical evidence that there is no mass ,gop

in black holf' production; arbitrarily small black holes can be form('d in a collapsl'.
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Moreover, t.he mass of sufficient.ly small black holes is given by

(5.7.]2)

where f3 ::::: 0.37 is a universal exponent (this relation is referred t.o as scaling).
For marginal data, both supercrit.ical and subcritical, t.he evolution approaches

a certain llnivrrsal solution S[ p.] which is the same for all t.hc families of initial
dat.a I[p] (unil'er.Hllity). This solution, which is unique awl corresponds to the
fidd configuration exactly at threshold of black hole formation p., is called critical
solulion, and is now commonly referred t.o as choptuon. It is regular and acts as an
inlc1'nJrdiolc al/raetor in t.he sense t.hat. t.he time evolut.ion first convergps ont.o it., but
t.hl'n l'Vl'llt.lIally diverges from it. t.o f'ither form a black hole or t.o disperse.

The nit.ical solution for t.l](' spherically symmptric gravit.ational collapse of t.he
massl<'ss scalar field ha.c; a discret.e symmetry: It. is periodic in t.he logarit.hm of the
space!.ime scale

I' = ('-~ I. , 1" = e-~ 1',

dS'2 := e-2~ ds2 , ¢J(I', 1") = ¢J(t, r),

(5.7.13)

(.5.7.14)

wi th period 6. ::::: In 30 ::::: 3.4, which is a constant belonging t.o t..he chopt.uon (the
mOllwnt t = 0 capt.ures t.he formation of black hole). This behavior of t.he crit.ical
soillt.ion is referred to as erhoing becanse the solut.ion reppats it..self at evpr-decrea.<;ing
time and lengt.h scale, or discrete self-similarity (OSS).15

These features of the near-critical gravitational collapse appear t.o he quite gen
eral. Calcnlations on gravitational collapse of the massless scalar field using different.
coordinate systems and numerical algorithms [Garfinkle (1995), Hamade and St.ewart
(1996)] confirmed that effects observed by Choptuik are not nllmerical artifacts.

These results were confirmed and generalized in a number of publications which
apPf'ared aft.er t.he paper by Choptuik. Abrahams and Evans (1993) found a similar
phenomcnon in t.he axisymmet.ric collapse of a gravitationa.l wave wit.h almost. t.he
same valne of t..he critical pxponent fJ ::::: 0.38. The corresponding chopt.uolJ is also
dis('fPt.e splf-similar, but t.he constant 6. appears to be different 6. ::::: III 1.8 ::::: 0.6.
Hirschmann and Eardley (199Sa,b) obt.ained the spherically symmet.ric solut.ion for
coupled Einst.ein-complf'x-scalar-field e(jnat.ions which posspsses Chopt.uik-type llni
versal sca.ling and ('choin;!. I,,'havior.

In some rasps, t.he critical sohJt.ion POSSf'ssrs a. st.ronger symmetry than t.hl' dis
crete sdf-similarity described above. It. is called cont.inuous self-similarit.y (CSS), or
homothdicit.y, and is dpfined geomEtrically as t.he presence of a vl'd.or lipId es1]('h
that.

(5./.11i)

15 00 t.he /;l'n('f~1 Reometric r1l'fioition of nisere!e sdf-silllilarit.y see e.g., Gnll(lI~ch (I 9!1:'. I!l97).
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where L~ denotes t.he Lie derivative. The pres('n('(' of the symmetry allowing t.o
elilllillak one of the coordinates from the equat.ions is one of the rl'asons wilY it
is pasi('r to deal witll ('()ntinubus self-similar solntiolls; most analytical caknlat.iolls
ns(' ('Ullt illUOllS sdf-siliIilarity aJlsat;\. An exampit' of critical behavior with (·ont.iI1110us
sclf-sillJilarity was found by Evans alld Coleman (IU94) iii th(' model of the spherically
symIIlPt.rit' collapse of a radiation lInid. Tile critical exponent /i in their casp is
Ii::::: O.:{(i.

III all t.lle casps when the critical behavior was obscrwd, the generic l(~at.un' is
thai t he spacetime is asymptotically flat; therp is transportation of thp enprgy from
11 coll,lpsillg systcm to inlinit,y, and the malll'r ('()ntent is "massless",

Firs! calculations in different models gave very close values for thp IlliLSS scaling
t'XPOIl('lIt rl. These resilits indicated that the meaning of the universality might bp
extended to tllp independence of the nitical exponent of details of the syst.('1II thongh
initially I.hb,; meant its independence of initial data. Later calculations for wider class
of modds did 1I0t confinn this conclusion.

Exact analyth:al solution of the collapse of a thin shell coupled wilh all outgoing
null fluid [Koike and Mishima (1995)] and perturbative analysis of the rollapse of
a perfett fluid with equation of state p = "'rP (with "'r in the range 0 ::; ') ::; O.HH)
[Maison (1996)] both have critical exponent {3 strongly dependent on the panlllwl.l'rs
of the matter 1lI0dei.

The universality of (3 among massless scalar field, gl'avitational waves, and radi
ation fluid seems to be connected with the fact that these three are massless fields,
but there is lIO proof of why it should be so.16 Observed non-universality gOl'S be
yond /i varyiJlg for different matter models; it allects more fundamental properties
of critical solutions. In particular, it was shown by Hirsch mann and Eardley (1995b)
that in spherically symmetric gravitational collapse of the massless complex scalar'
field tho critical solutiOJI is unstable; that is, it has instability other than the ob
vious black hole one, apparently an oscillatory instability toward the original real
choptuon. Especially intriguing is quite recent example of gravitational collapse of a
Yang-l\,lills field [Choptuik, Chmaj, and Bizon (1996)], where there are two distinct.
critical solutions, one discrete self-similarity and allowing black holes of arbitrarIly
small mass, the other one with a mass gap. The results of study of critical phenomena
in gravitational collapse for different models are presented in Table 5.1

A study of the critical behavior in the gravitational collapse requires solutions
of complicated nonlinear partial differential equations. For this reason, main results
were obtained by using numerical simulations. Evans and Coleman (1994) proposed
a perturbation method which can be used to simplify the calculations of the critical
exponent. This method was carried out in more details by Koike, Ham and Adachi
(1995). Briefly the idea of the method is as follows. The critical solutiolJ obtained for
p = p' obeys the self-similarity property, and it usually much easier to find it than

16Note, however, that f3 = 0.387 for massless complex scalar field (Hirschman1\ and Eardley
(199511)] which is slightly but noticeably different from f3 =0.37 for the above three fields.
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~ References U=-'TSYlliill0!YJ
Scalar Fields I

I'vllllisless scalar fideI 1, 2,3 (U7 DSS
4, 5, 6 1/2 ess

7 1/2 --
8, 9 O.~H4 DSS

10 1 ess
CUlllplex scalar field 11, 12 O.3H7 ess
('harged scalar field 13 0.37 DSS

LIVlodel

[

Other Matter Models

Cravitational waves 14 0.37 DSS
H.adiation fluid 15 0.36 ess

16 0.356 ess
P(~rrect fluid 17 varies ess
Thill shell 18 varies -

Yang-Mills field 19 0.20 DSS

[

Other Theones

Axion-dilaton field 20,21 0.264 ess
2D dilaton gravity 22 0.53 -

Nonlinear sigma model 23 varies both
Bralls-Dicke theory 24,25,26 vanes both

[

Table 5.1: Critical behavior in the gravitational collapse. Numbers in Refereuces refer to
the following publications.

1 - Choptuik (1993), 2 - Garfinkle (1995), 3 - Hamade and Stewart (1996), 4 - Brady
(1994),5 -- Brady (1995),6 - Oshiro, Nakamura, and 1bl1limatsu (1994),7 - Kielll (1994),
8 - Gundlach (1995),9 - Gundlach (1997), 10 - A. Frolov (1997), 11 - Hirschmann and
Eardley (1995a), 12 - Hirschmaun and Eardley (1995b), 13 - Hod and Piran (1997),
14 - Abrahallls and Evans (1993), 15 - Evans and Coleman (1994), 16 - Koike, Hara, and
Adachi (1995), 17 - Maison (1996), 18 - Koike and Mishillla (1995),19 - Choptuik, Cluuaj,
and Bizon (1996),20 - Eardley, Hirschmann, and Horne (1995), 21 - Hamade, Horne, and
Stewart (1996), 22 - Peleg, Bose, and Parker (1997), 23 - Hirschmann and Eardley (1997),
24 - Chiba and Soda (1996), 25 - Oliveira (1996), 26 - Liebling and Choptuik (1996)



5.8. Can One See What Happens "Inside a Black Hole"? 195

t.o solve the problem. The characteristic feature of solutions with initial data close
t.o t.hose of the crit.ical solution is that they first approach the latter, but. eVf'nt.ually
run away from it; that is, they contain a factor exp(at). Evans and Coleman (19!H)
proposed to use a linear stabilit.y analysis for study these run-away solutions. Quit.e
general arguments show that the mass of a black hole which is formed as a result. of
tid;.; instability is proportional t.o (p- pO)I/" so the the critical index is Ii = I/O'. This
met.hod allows bot.h the calculation of (3 and a test. of stability of the erit.icalliolnt.ion,
a.nd has heen used in investigation of various mat.t.er models [Evans ami Colf'lTIan
(1994), Koike, Hara and Adachi (1995), Maison (1996), A. Frolov (1997)].

The phenomena described above are striking, but as yet there are almost. no
theoret.ical explanations for the essence of them, especially for the va.llle of t.Ilf' crit.kal
pxponpnt /J and the mechanism hy which self-similarity a1l(1 universalit.y arf' acqnirNI.

5.8 Can One See What Happens "Inside a Black
Hole"?

5.8.1 Formulation of the problem

Is it possihle for a distant observer to receive information about thr interior of a
black hole? Strictly speaking, this is forbidden by the very definition of a black hoIf'.
What. Wf' have in mind in asking t.his question is the following. Suppose t.hen' f'xists a
stationary or stat.ic black hole. Can we, by using some device, get information about
I.hf' regioll lying inside t.he apparent horizon?

Cf'ft.ainly it is possible if one is allowed to violatf' t.he weak energy condit.ion. For
examplf', if one sends into a black hole some amonnt of "matter" of negat.h'f' mass,
thf' snrface of the hlack hole shrinks, and some of t.he rays which previonsly wpre
t.rapped inside the black hole would be able to leave it. If the decrea.'if' of the black
hole mass during this process is small, then only a very narrow region lying dirf'ct.ly
inside the horizon of the former black hole becomes visihle.

In order t.o he a.hle to get information from regions not close the apparent. horizon
hilt deep inside an original black hole, one needs t.o change drastically t.he parametf'rs
of t.Ilf' hlack hole or even completely destroy it. A formal solution corl'f'sponding t.o
snch it dest.ruction can be obtained if one considers a spherically symmetric collapse of
nf'gative mass into a black hole. The black hole destruction occurs whpl\ the negative
ma.'iS of the collapsiug matter becomes equal to t.he original mass of the hlack hole
(Figure 5.1!)). In such a case an external observer can see some region close to the
singnlarit.y. I3nt even in this case the fom-dimensional region of the black holf' int.I'rior
which hecomes visible has a four-dimensional spacetime volume of order M4 It is
much sma.ller than four-volume of the black hole interior, which remains invisiblf' a\l(l
which is of order M 3T, where T is the time interval between the black hole format.ion
and its nestruction (we assume T» M). The price paid for the possihilit.y of seeing
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N

Figure 5.19, Penrose-Cart.er conformal diagram for the spMdime of a spherical black hole
of mass M which is dest.royed hy t.he infall of a massive 1Iull shell N containing negat.ive
mass M.hen := -M. The dott.ed region shows the collapsing matter forming the hlack hole.
fl+ is a l.rue horizon. H'+ is the null line T = Tg = 2M {"old horizon"}. The region lying
insirle IJ + (shaderl by horizontal lines) is invisible from future null infinit.y .1+. The region
lying bdween H+ and 11'+ {shaded by vertical lines} becomes visible from .1+ as a rf'slth.
of t.he negat.ive mass t.hat. falls in.

('V<'II this small part of the depths of the black hole is it.s complete d('st.ruct.ioll.
Does this JI1t'an that. it. is impossible t.o see what happens illsirle the apparent.

horizon without. a dest.ruct.ive int.ervent.ion? We show t.hat snch a possibilit.y t'xist.s
[Frolov r\.lld Novikov (HmO, 1993a)]. In part.icular, we discuss a gedanken t'xperimmt.
which dt'T1Ionst.rat.\'s t.hat t.raversible wormholes (if only t.hey exist) call be lISf'd t.o
I';('t. information from t.he int.('rior of a black hole practically without. changing it.s
gravit.atiOllal lield.

5.8.2 Wormholes in the Schwarzschild geometry

Wormholes will he considered in det.ail later in Chapt.er 16. Here, we shall dt'scrihe
only t.hose f('at.ures of t.raversible wormholes which are requirrd for our gf'dallkrll
t'xp('riment..

III a flat. t.hrt't'-dimensiollal space a wormhole topology arisrs if onf' cut.s t.wo balls
of radius II from t.he space and id('ntifies thrir boundari('s an (0. = 1,2). III this
modd til(' jump of the extrinsic curvat.ure at. t.he sphert' an nwans t.hat. t.IH'rt' is
c5-likt' mass dist.ribut.ion at a". In order to make the geolllPt.ry sll1oot.h, ow' must.
assume that t.here exist.s a smooth dist.ributioll of maUn iu the hall(lI('. A <1ua~i

st.ationary (or traversi hie) wormhole is possible only if this maU.er \·iolat.rs t.he average
weak energy condition (see Chapt.er 16). The entrances (or mout.hs) of a wonnhole
can be loca1.t'd at. arbitrarily larg(' distances from one another a.~ measured ill t.Iw
external surrounding spac(', whil(' t.he dist.auce between t.hem t.hrough til(' handle
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can 1)(" arbit.rarily slllali. This situation is uf thl' llIust interest for our purpose.
The IlIunt.hs of a wunnhule affected by external forces muve like normal physical
bod iI'S (in thl' sanlE' manner as black holes). Fur example, the mouths in an external
~ravit.at.ional field will muve alung geudesics (free fall). We should abo dctcnninl'
till' idl'lltilicatiun of nlOllIl'nts of pruPl'r times on the buundaries (Ja at ;;OIIlC init.ial
monll'Ill. The subsequent correspundence of proper time on the boundaries uf t.hl'
balls is uniquely dl'tenllined and depl'Ilds un their 1lI0tiun [see Froloy and Novikov
(1990)].

Let us suppose now that in the black hole exterior there exists a travl'rsihle wunn
hull'. If the mouths of the wormhole are at rest or move so as remain ill t.Iw extl'rior
region of the black hole, the event horizon is only slightly deformed by the gravi
tational action of the wormhole. We analyze now what happens when one or buth
mouths of the wormhole fall into a static (non-rotating) black hole. In what fol
lows we consider only the case when the radii of the mouths of the wurmhule and
their masses are much smaller than the corresponding parameters of the black hole,
and we describe the free fall motion of the mouths by specifying the geodesic lines
(:l'~ = x~{T), a = 1,2), representing their "center of mass" motion. The param
eter T is a proper time along the geodesics. For simplicity, we assume that both
mouths are freely falling with zero angular momentum and zero velocity at infillity.
We also assume that the clocks are synchronized along a closed path passing through
the wormhole initially. For such a parabolic motion, the position of a mouth a is
described by the equation

[
3 ] 2/3

r (1') = r 3
/

2
- - r l / 2 Ta O,a 2 9 , r g = 2M, (5.8.I)

where iiI is the mass of the black hole, and 1'0,a is the radial coordiuate of mouth a
at the moment T =O.

For the description of the gravitatiollal field of a black hole we shall use, besides
the metric in the standard Schwarzschild coordinates

dr2

ds2 = -Adt2 +._ + r2 dw2
,

A

its form in the Lemaitre coordinates (2.4.3)

B = [3(R - 7')] 2/3

2rg

(5.8.2)

(5.8.3)

The Lemaitre coordinates (1', R) and the Schwarzschild coordinates (t, 1') are related
by equations (2.4.4) and (2.4.5). The mouths are at rest with respect to the Lernaitre
coordinates. It is worthwhile to mention that in the case where the mouths are at rest



198 CHAPTER 5. GENERAL PROPERTIES OF BLACK HOLES

ill a ~tatic gravitational field, tIlC time gap necessarily grows so that ewntually dosed
tillldike curves are formeo [Fl'Olov and Novikov (1990]. But the time gap valli~hl's

IlJr free fall of the mouths, even in the case when HI -I R2 .

TIlt' pre:;l'nce of a wormhole challges the spacetime topology. This lIIeans that
even in thl' GiSl' whell the IllOllths are at large distauccs from the black hok alItl thl'ir
IIla.sscs arl' lIegligible, the geometry differs from the original geonwtry of thl' black
IlOle. Wlll'lI tIll' wormhole's mouths are falling illto the black hole, the hackgroulld
geometry is disturbed ill addition to this obvious topology change. It is possihl<' to
show that when the radius L of the curvature of the background geolllptry (L '"
1·3/2/r~/2) in the vicinity of the mouths remains much larger than the size b of a
mouth and the masses of the mouths are negligibly small, the additional disturbance
of the geometry remains slnall [see Frolov and Novikov (l993a)).

5.8.3 Causal structure of spacetime with a wormhole

If a wormhole connects two distant regions in a flat spacetime, then the light signal
scnt through one of the mouths into the wormhole re-emerges practically at once
from the other mouth. The same is true also when the mouths are moving in an
arbitrary curved spacetime. The formally calculated velocity of signal propagation
in the external space (the distance between the mouths in the external space divided
by the external time difference between the sending of light into one mouth and its
re-emergence from the other) can be arbitrary large. The possibility of information
exchange via a wormhole between events which are separated by a spacelike interval
in the external space may result in changes of the global causal structure of the
spacetime in the presence of a wormhole. Especially interesting possibilities arise
when a wormhole is placed in a spacetime which originally had non-trivial causal
structure. In particular, if one of the mouths of a wormhole is inside the event
horizon of the black hole, while the other is in the exterior region, one can obtain
information from the "black hole interior". We analyze now how the causal structure
of the black hole spacetime is changed.

Consider freely falling mouths (with parabolic velocities). We start by assuming
t.hat the size b of the mouths is negligibly small and denote by /1 and /2 the world
lines of the mouths. In the Lemaitre coordinates they are described by the equations
R = R I and R = R2 , respectively. Points which have the same time coordinate T at
'/'1 and /'2 are to be identified. As we already mentioned, no time gap for the docks
synchronization arises, and no closed timelike curves are created in the spacetime
under consideration. If mouth 1 reaches the singularity T = 0 at the same moment
T = R I when mouth 2 crosses the gravitational radius T = Tg , then R2 - R I = ~ 1·g .

For R2 - RJ < ~ Tg mouth 2 crosses the gravitational radius before T = Rj, and
for R2 - R I > ~ Tg it crosses later than this moment. 111 the latter case the naked
singularity would be seen from :1+. To exclude this in what follows, we consider ollly
the case R2 - R I < ~ Tg.
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Denote the exterior of a static black hole (i.e., the set of event.s which can be
seen from infinity) in the absence of a wormhole by P == J-(J+). The event. horizon
Fl'+ = P in this calle coincides with the Schwarzschild surface. In the presence of a
wormhole the set of events which can be seen from infinity is modified and hecomes
P, == P U J-hd. The event horizon will be also modified and becomes H+ = P,.

In order to describe the st.ructme of the modified horizon H+, we consider t.he
propagation of null rays in t.he S,hwarzschild geometry. Wf' use Eddingt.on-Finkebt.cin
coordinatf's (v, r, (J, if» in which t.he line element (5.8.2) takes the form

ds2 = -A dv2 + 2 dv dr + 1'2 dw 2 , A = 1 _ I'g .
I'

(5.8.4 )

We assume that mouth 1 is moving along the line (J = 7r /2, if> = 0 in \.I1f' equat.orial
plane and consider the past null cone with vertex on the traject.ory of month I. For
symmet.ry rea.<;ons, it is sufficient t.o consider null rays (generat.ors of tIl(' conf') lying
in the equat.orial plane () = 7r/2. The following syst.em of equations descrihes t.he
rays:

(!i.8.G)

TIIf' dot. in t.1ll'se eqnations meanR differentiation wit.h respect. to t.he affine parametf'r
A. The (·onRtant.s C and 11 are t.11f' integrals of motion. We use the amhiguity in \.Iu'
dwin' or t.hp affine paramct('r iII order to set r 2: 0, c = ±l. For t.his elwin' Wf'
haw'

(5.8.H)

Herf'1', meanR that l.' correspoIlds to the rays with t.he ,hosenpararrH'tw E. ))f'llue

.1' = 1'/rg , (!i.R.7)

Thf'll hy diminat.ing the affine parameter, we get t.he systf'm of eqnatioIlR

wlu'rp

d¢

d.l·

dV, :r;(F-c.r2
)

=d.-I: (1 - .r)F ,

F = J.T~ + jJ2(x - x2). (!i.R.!})

Wf' asRIIlIIC t.hat at the moment when mouth 2 crosRes t.he Schwarzs,hild Sl1l'ra,f' fl'+
mouth I is at point PI with radial coordinate 1'0 =rg ;ro. We also choose the advanced
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time coordinate v so that at PI one has v = O. The null generators are specified by
the paramet.er {3 E (-oo, 00). For a chosen value of {3 a null generator is defined by
elliptic intep;rals

[
"'{3

¢ = ¢(J:: .1'0, 11) == - d.T,
Xo F

. [X .T{F - '::;2,2)
\, = \1,(.1';.1"0,11):::::: . ( ) d;r.

"'0 1 - x F

(5.8.10)

(!j.8.11)

TIl(' paramPl.er E = ±1 dist.inguishes t.wo families of rays. Denote by Q t.he rays with
t1 = ±oo which separat.l' \.hl' t.wo families. The functions if>{:r; IO, (3) and \!~(:r; TO'/1)

pm;sess \.he propert.ies

¢(x: TO, 0) = 0,

¢(.T; Xo, ±oo) = ± 2 (arcsin,;x - arcsin yXQ) ,

1 (1 -xo)V,(.1'; .1'0, ±oo) = - V_I (;r; xo, 0) = In -- - (x - .1'0) .
2 1-.1'

By lIsing \.h<'se relat.ions, it. is easy to obtain thl' equations

I [
COS 1/'0 ]. /.V =:2 11 ( /) ± slll(21/'o ± t/J 2) slll(¢/2)

ws1/'0 ± t/J 2

(5.8.12)

(.5.8.13)

(!'i.8.H)

(!i.lU!'i)

(!i.8.IG)

which descrihe \.Ill' rays Q. Here sin 1/10 = (.TO)1/2.
It is easy to spe that only t.he rays of the family.:: = 1 when traced back can cross

the Schwarzschild surface r = r g . The paramet.ric eqna.tion ¢ = ¢(V) of \.he lint' 1'1
where these rays cross the Schwarzschild surface is

if> = t/J(l:J'o,m, (.5.8.17)

III paTticl1lar, these relationsshow that for large values of V the line f l asympt.ot.ically
t.ends 1.0 the null generat.ors of !f'+ definrd by t.he equatioll

t/J± == if>( I;·1'0, ±oo) = ± [ 71' - 2 arcsin .;r;;] . (.').8.18)

By usinp; (!j'8' 10), wp get.

(}t/J( I: .1'. 0, 1'1) [I JA dx
---:--:----= -- > 0,

dr/ xo F3

and hrlH'e t/J at. t.he curve 1'1 grows monotonically wit.h t.he paramet!'r i'J frolll t/J _ till
¢+. In the limit. when Xo t.ends t.o 0, t.he asynlpt.otic equat.ion of 1'1 t.akes the form
1> = ± 71'.
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Figure 5.20: The struct.ure of the (1/ = 1f/2J-section of the event horizon H+ in the case
where a wormhole falls into a black hole (the angular coordinate </J is not shown). Mouth 2
reacltes tlte Schwarzschild surface at point P2 before mouth 1 reaches the singularity l' = O.
Dolled lines represent rays which enter the caustic from the exterior before becoming null
generators of the horizon.

Figure 5.21: The sallie spacetime as in Figure 5.20 with the angular coordinate if! added.
The sections VO represents the section V =0 of the event horizon which passes through the
point Ph and V 1 represents the black hole surface long before the fall of a wormhole.

Figure 5.20 illustrates the structure uf the event hurizon H+ in the case when
a wormhule falls into a black hole. Mouth 2 reaches the Schwarzschikl surface at
point P2 before mouth 1 reaches the singularity 7' = 0 (event PI)' To make this am]
following pictures mure transparent, we assullle that muuth 2 is muving along the
line ¢; = 7r (i.e., frolll the side of the black hule diametrically opposite tu muuth 1).
Events PI and P2 are simultaneous in the Lelllaitre frame. That is why they have
the same value of the time T in the Lemaitre cuordinates but different values uf the
advanced time v. The region between H+ and /l'+ in Figure 5.20 becomes visible
from infinity through the wormhule.

The spacetime picture (in the section () = 7r /2) for the same case is shuwn in Fig
ure 5.21 . The event hurizon is formed by three families (A, B, C) of null generators.
The family A is formed by the rays with E = 1 and (3 E (-00,00). The family B is
formed by rays with E = -land (3 E (-00,00). The family C is formed by the rays
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(a) c

(b)

Figure 5.22: The pictures schematically show the local strurture of lIull generators ill the
vicillity uf mouth 1 (a) alld mouth 2 (b). f 2 shown ill (a) is a raustic. III (b) a part. of t.he
SrhwarzsrhihJ surface is ShOWll, and the rays of the subfamily (" to the left of the mouth
and the caustic f 3 are showll Oil the projection Oil this surface.

propagating along the Schwarzschild surface. The line r 1, which is the intersection
of families Band C, is a caustic on the Schwarzschild surface. The null gpnerators
of Band (,' when traced back in time leave the horizon at 1'\ and enter P"

Up to now the size b of the mouths was supposed to be negligibly small. Now
we take into account the finiteness of the value of b. First of all, we consider rays
propagating in the wormhole geometry. The rays can be separated into four c1assps.
Rays which pass near a mouth at significant distances and practically do not scatter
belong to the first class. Closer rays which deflect appreciably and may even make
a few circles before moving away in the same space belong to the second class. The
analogous rays which move nearer to the mouth and enter through the handle into
the second space with appreciable deflection belong to class 3. The latter two classes
are formed by rays which approach the mouth almost tangentially. And finally, there
are also rays which enter the mouth at a significant angle to its surface and exit into
the second space. These rays belong to class 4.

The finiteness of the mouths' sizes requires a more detailed description of the
horizon. To be concrete, we assume an identification of the mouths points such that
the hemisphere of mouth 1 nearest to the black hole is identified with the nearest
hemisphere of mouth 2. (For other identifications the picture of the continuation of
the rays through the wormhole will obviously be different. Nevertheless, the main
properties of the horizon remain the same.) One cau demonstrate that iu addition
to families /1, B, and C of the horizon generators shown in Figure 5.21 there are
two additional families of the horizon generators A' and C'. They are shown in
Figure 5.22. The generators of these families enter the horizon at caustics.

Let ns trace back in time the generators of the horizon belonging to different
families. The B-generators enter mouth 2 (see Figure 5.22b), exit from mouth 1
(see Figure 5.22a), and leave the horizon at the caustic 1'\ (see Figure 5.21). The A
generators enter mouth 2, exit from mouth I, and go to past infinity (see Figure 5.21).
The A'-generators enter mouth 2 almost tangentially, exit from mouth 1 and leave
the horizon at the caustic f 2 (Figure 5.22a). The C'-generators after scattering on
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Figure 5.23: The sections of the event horizon by null surfan's V = con~t. fOT TO = O.lTg
anrl the values of V =0.02, 0.1, 0.4, 1.5, and 2.2.

20=3

mout.h 2 leave the horizon at caustic f 3 (Figure 5.22b). Those C-generat.ors which
cross caustic f l leave the horizon at these point.s, while the ot.her C-generators (which
never cross fd go to past infinity.

The area of the horizon surface A considered as a function of v derrcilses until
it reaches a minimal value Amin at v = Vmin. After this it retums t.o t.he value
Ao = 47fT;. The value A min becomes smaller when TO tends to zero. Numerical
cakulat.ions show that the absolute minimum (for point-like mouths) is reached at
Umin :::: -0.5rg and Ao - Amin :::: Ao/8.

5.8.4 Energy and information extraction

The possihility of observing t.hrough a wormhole a spacetime region inside HIe Schwarz
schild surface allows one to get information about. these regions and extract bodies
and energy from there. This means t.hat one can use a wormhole as a device not only
to "look inside a black hole", but also to return objects back safely illto the ext.erior
space after their traveling into the black hole int.erior.

In order t.o avoid possible confusions, we emphasize that the spacetime region
lying inside the new modified horizon described above cannot. be seen frolll infinit.y
and, according to the formal definition, is a black hole. The infall of it. wonnlIni<'
rf'sults in t.f'Illporary shrinkage of t.he horizon, while the gravitat.ional fi<'ld out.side
t.hf' lJIo\lths during this process rf'mains practically thf' same. This lllf'allS t.hat t.hf'
iufall of a wonnholf' does not. change t.he gravitational fidd of a black hok, aud 1lf'11("('

il blilck hol<' considerf'd as a physical object remains t.he same. By looking through
a. wormhole', one can see what happens inside this physical object (i.f'., ill t.llf' rq!;ion
lying inside the Schwarzschild surface, or apparent horizon).

It is quite interesting that one can also use an infalling wormhole to ext.ract ellf'rp;y
by lIl;ing the enormous gravitational field in the interior of the "former" hlack hni<'.
For example, consider the following process. A particle of mass m falls frc<'ly in t.he
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gravitat.ional field of a black hole and meets mouth 1 of a wormhole at a point p
inside t.he gravitational raoius . After this the particle goes through the wormhole
and re-appears from mouth 2 at the point poutside the black hole. It can be shown
(sec Frolov and Novikov (1993a)) that the energy E of the out.going partide can be
much larger t.han its init.ial energy E. For example, if t.he point p is dose to l' = 0,
theu

I? ~ }m2 + (J/ToF, (.5.8.20)

where To is t.he value of l' at point p, and J is the angular momentum of the particle.
St.rictly speaking, this process is not the extraction of energy from the black hole.

When a part.ide appears from mouth 2 with energy it the mass of the black hole
ooes not. change at all because no energy passes throngh its horizon. It is t.he mass of
mouth 2 which oecreases by the value E in this process. 17 Thus, a black hole plays
t.he role of a "catalyst" for t.he extraction of energy from a wormhole.

We have shown that, by llsing a wormhole, one can drast.ically change tbe struc
ture of t.he event horizon. Nevertheless, it should be stressed t.hat uo fnndamental
t,heorems concerning black hole physics are violat.ed. The generators of t.he mooified
horiJlou are null geodesics which have no end points in t.he fnt.nre and which ent.er
t.he horizon from t.he black hole exterior at the caustic point.s. ls IImce, t.he Pen
rose t.heol'elll is satisfied. The decrease of the an'a of t.he event. horizon, which looks
"paradoxical" , does not mean a violation of t.he Hawking's area theorem because the
matter in t.he handle of a falling traversible wormhole necessarily violates t.he weak
eUN?;Y condition.

But what. is int.eresting t.hat. this orastic (not. small!) change of the event horizon
is achieved by wormholes which call be arbitrarily small ano contain arbitrarily small
amounts of maHer violating the w('ak energy condition. The study of the black hole
interior pract.ically does not change it.s gravit.ational field. By using one wormhole,
one can ext.ract. information from the interior of the black hole during a period of time
of order 1'g. After this the black hole "returns" to its "initial state". In this sense t.he
above-describeo procedure of stnoying the black hole int.erior by means of wormholes
conld be calico "non-demolition". It is this non-demolishing propert.y of t.he process
that. distinguishes it from other possi bilities of getting informatiou from t.he insioe
of t.he Schwarzschilo surface oiscnssed at. t.he beginning of this sect.iou. T\lorcovN,
oue can increasc t.he visible part. of t.he bla.ck hole int.erior by usillg many wormholes
fallillg a.lollg different. radial direct.ions alld one call in('f('ase tlH' tilllC dnrillg which
t!H' interior is visible by cOlltinuing t.Ilis operation of UJrowillg ill 1\('\\' \\'onnho!C's loug
ellollgh.

17We shOllld renll'mher thai. the mass of the hlack hole even inlTeases when I.he month I falls
rlown int.o it. as well as when a particle m laiN crosses the horizon.

ISBesirles I.he canstics conn('cted wilh t.he formahon of a black hole. ill om ca.~e nIece ~n' '11,11 new
ones which an' ('nnn('c\.erl wit.h the fall of a. wormhole.
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Therefore, we have found that the evcnt horizon is in some sense very nllstable
hera nse by nsing an arbitrarily small amount of matter violating the weak energy
conditioll, it c<In he deformed drastically.



Chapter 6

Stationary Black Holes

6.1 "Black Holes Have No Hair"

As a result of the lightlike nature of the event horizon enclosing the black hole,
tllP hori~on acts as a one-way membrane. Particles and radiation can cross the
event horizon from outside and enter the black hole, but escape is forbidden for
both particles and radiation. Hence, processes involving black holes are essentially
irreversible.

A black hole, if left alone, eventually reaches a stationary state. The following
standard arguments lead to this conclusion. Let collapse produce a black hole, with a
nonp.quilibrium configuration of particles and fields in its exterior. This configuration
will immediately begin to re-arrange itself. The re-arrangement is accompanied by
the radiation of energy to infinity and into the black hole. As the fields and particles
outside the black hole originally had finite energies, and since nothing compensates
for energy radiated away or absorbed into the black hole, it is to be expected that
this process dies down, and the black hole becomes stationary; that is, the geometry
of spacetime around the black hole will gradually differ less and less from that of a
stationary space possessing the Killing vector field Elt)' If the black hole is produced in
a collapse slightly deviating from spherical symmetry, this conclusion is supported by
the results described in Chapter 4. It is also confirmed by the theorem on the stability
of stationary black holes with respect to small perturbations [see Section 4.9 and also
Price (1972a, b), Wald (1979a, 1980)] and by the property [proved by Chandrasekhar
and Detweiler (1975a), Detweiler (1977, 1979), and Chandrasekhar (1983)J that the
gravitational perturbations in the spacetime of a stationary black hole cannot have
eigenmodes with purely real frequency (zero damping) (see also Chapter 4).

It is not difficult to verify that the equilibrium of a given physical field in the
neighborhood of the surface of a stationary black hole implies stringent constraints on
the admissible configurations of the field [Israel (1971)]. For the sake of simplification,
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consider a non-rot.at.ing black hole described by t.he Schwarzschild met.rir

207

2 2 dr2
2 2

ds == - F dt + F + r dw ,
2M

F==l--.
r

(6.l.l)

Let. T'IV be the energy-momentum tensor describing the physical field or mediulll
ill t.he neighhorhood of this hlack hole, This system can be iu equilibriulll if t.he
"weight" of the field or medium in each elemeut of volume is exactly balaucpd out. by
t.he "buoyancy" due to the act.ion of the component.s of the energy-momentum t.ensor
(describing the tension) on the surface endoRing t.he chosen volume. In the local
limit, t.his peculiar version of the "Archimedean principle" reduces t.o the eqnation
(a conservation law)

supplemented with conditions

OIT/1V == 0 (staticity), T rl == T tlJ == TIt/> == 0 (zero fluxes).

(6.1.2)

(o.U)

Under t.heRe conditions, equation (6.1.2) holds ident.ically if IL =1= 1'; if 11== r, it yields
t.he relation

~ orF (Tt _ Tr) == -.!.- 0 (r 2 T r)
,2 F ' r r2 r r +

+ _.1_ oo(sinBr:) + oq,(T!) - ~ (T: +Tt).
sm () l'

(i.l.4)

Consider the tensor T::, which satisfies conditions (6.1.3) and is regular OIl H+. It
is readily shown (e.g., by converting the coordinates t.o the Eddington-Finkelstein
coordinat,es (1', r, B, ¢J) with v == t + r., which are regular at the horizon H+) that its
components in the coordinates (t, r, B, ¢J) as well as the expression F- 1(Tt - T;) are
finite at r == 2M. 1 Otherwise, the configuration cannot be static. What happens if
this cOIIdition is violated? The component T; is then inevitably nonzero, producing
a Jlux of field energy across the horizon: Energy flows until the field [('-arranges and
reachc's a sustainable equilibrium. The characteristic time of this process is of order

I '" r~/r..

Wheeler summarized the results of a large uumber of papers devoted to thp Iinal
st.atrs of t.IH' bla.ck holes and formulated a conject,ure that in it.s evolution t.o t,he st.a
tionary stat.e, an isolated black hole sheds through radiation all those charaeterist.ics
that radiation can remove. Since for a spin-s massless hoson field the radiation is
conuC'eted with changing the mult.ipole moment. l of the syst.em (provilled l ~ 8),
Wheel(\J' conjectnred that a st.at.ionary black hole resulting from a collapse of neutral

I In a spherically symmetric spacetime the condition Tt == T; is necessary and suf!icienl for the
f!;enerali7.ell Birkholf's theorem to hold (see Appendix B.3). Ohviously, this conclition hoicis e,g" il\
the Rcissner-Norrlstrom and de Si U.er spaces.
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matter which interacts only gravitat.ionally (s == 2) is described by a metric having
only t.wo free parameters: the mass (l =: 0) and the angular momentum (I = 1).
TIJis wuclw'\ion was also reached by Doroshkevich et 11./. (1965) and Novikov (1969).
If t.he collapsing matter was electrically charged, the stationary met.ric t.hat finally
l"merges is dl"srribed unambiguously by fixing three parameters: M, J, and Q (the
electric chargl").2 The absence of the (non-monopole) maguetic field of a black hole
wa::> prover! by Giuzhurg (1964) and Ginzburg and Ozernoi (1964).

The aho\'l" argumeuts show that Wheell"r's conjecture is equivalent to the following
pl'opositiou: Rl"gardless of the specific details of the collapse or the st.ructure and
properties of t.he collapsing body, the resulting stationary black hole is described
by a /!;eometry specified by the parameters M, J, and Q. Wheeler expressed this
propl"lty of stat.ionary black holes in the following metaphorical form: "Black holes
have no hair" [Ruffini and Whl"eler (1971a)].

Whef'1("J' focuser! on mass, angular momentum, and eledric charge because all
t.hl"sl" quantitil"s subject. to a Gauss law and can be measured hy a dist.ant. observer.
Onl" conld ddine "hair" as any other configliration of gravitatioual and/or e1edromag
nl"t.il' Held associated with a black hole which for its descript.ion requires additiona.l
paramet.ers (for example, multiple moment.um). In this form the no hn;r conjecl1f.re
is f'quivalf'llt. to the uniqueness theorem; that is, the st.atement that the only st.ation
ary black hole solut.ion of Einstein-Maxwell equations is given by the Kerr-Nf'wman
metric or its special CMes. We discuss t.he validit.y'of this theorem in t.his chapter
(se(' also a book by Heusler (l996a)].

It. should be st.ressed that quite often the no hair conjedure is interpreted in a
more general way. Namely, one defines "hair" as any field (not of gravitationa.l or
electromagnetic nature) associated witII a black hole (for example, SN' [Bekenstein
(1996)]). Th('[e are fields that do obey this conjecture (we discuss examples in Sec
tion 6.7). On the other, hand t.here are now many known black hole solut.ions with
gauge fields (different. from Maxwell's field), dilat.on scalar field, and (it.her fields.
Such blark holes naturally arise in theories that unify gravity with ot.her interact-ions
and Wl" discuss them in Chapt.er 13. Thus, strictly speakiug, the no hair ronject.lII'e
in its wi(kst. interpretation certainly is not correct.

6.2 General Properties of Stationary Black Holes

6.2.1 Stationary spacetime with a black hole

Ampll" reasons l"xist. for assuming t.hat in the absence of ext.cl'Ilal pert.urbat.ions and
wit.h qnant.um effects ignored, til<" final st.at.l" of auy isolated hlack holl" is st ationary:
heuce, it. is nat.ural to begin t.he description of t.he propert.ies of these final st.at.ps with

21f mal(llelk monopoles exist, anel the rollapsilll( sysl.eln POSSI'SSell a magnl't.k d.arl(l'. U.e valne
of this chargl' mnsl. be inl.rolinel'd into the descript.ion of the black hole as a fourth parHlllell'r.
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all allalysis or statiollary hlack holes.
Thl' statiollarity of th(~ span·tillIP sigllilil's that olle can introduce ill it cuordinatl's

sllch that the codli<'ic'llts of the metric are illclPpl'lIdeut of the "timl''' coonlinatc·. III
"IIIOI'e g('olllt't.ric" term::>, this meall8 that the spacetime adillits a olle-parilnlt't.er group
of Illotioll::> (isolllPtril's) whose gl'lIeraton; are ~I' 01" whl're ~" is tlw I<illillg V{'ctor lidd
satisfyillg t.he cquatioll

~(/';") '--= O. (G·:l·O

As we want tllP ::>pau·t.illle not t.o challge lIndl'r "tiull'-t.ramllatioll", it is logical to
demand that thl' vector e he timelih' (e· e< 0 ) at least ill some regioll. lIowl'wr, it
is impossihle to gllaraut.ee ill the gClleral case that e· ehas the same sigu throughout
t.he cntire spacetime. All asympt.ot.ically flat space will be said to Ill' stat,ionary if it
admits a I\illillg vector Iidd ~I' which is timelike.ill the lIeighborhood or .I~ and J-.

Thl' following two assumption::> mllst be made ill ordl'l to prove the uasic propo
siticllls collcel'llillg general properties of statiollary black boles:

I. The spacetime is regularly predictable.

2. The spacetime is either empty or contains fields deseribpd by hypcrholic equa
tions ami satisfyillg the cnergy dominance condition that for arbitrary timelike
vectors ~r alld ~~ the energy-momelltum tensor T'''' of the lield satisIies the
inequality TI''' 61' 6" ~ o.

Assumption 1, concerlling the general causal structure of the spacctime and thor
oughly discussed ill the preceding chapter (see footnote to page 176), is largely tech lIi
cal. The ellergy domillance colldition (which iJllplies, e.g., the weak ellergycollditioll)
signilies that all arbitrary observer finds the local energy to be non-negative and the
local euergy flux to be non-spacelike. Assumption 2 definitely holds for the electro
magnetic field [for additional details, see Hawking and Ellis (HJ73)]. Throughout this
chapter we 3.l;sume that the cOllstraints set above are satisfied.

In a statiollary spacetime, the black hole area is independent of time. As a reslllt,
the convergellce of light rays gellerating the event horizon is identically zero, ami
hence the apparent horizoll coillcides with the event horizoll. Using relations (5.3.25),
(5.3.27), and (5.3.28), it is readily ascertained that the weak ellergy condition (1) ~ 0)
(which is certainly valid ullder the above assumed cOlldition 2) and the cOllstancy
of the black hole area imply that the quantities a, <1>, alld iii vanish at the horizon
surface

allJ+ =0, <1>/H+ = 0, (6.2.2)

The last two equalities can be interpreted as implyillg the absence of the fluxes of
matter and physical fields (<1> := 0) and of gravitational radiatioll (Ijr = 0) across the
event horizon.
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At. pach given instant of t.ime, T, each connec((~d cOlllponeut or t.lle horizou iJ13(r)
iii coni pact and silllply connect.ed in the stationary :;pacetime (as it is iu tl)(· j!,('I1

('J'al ca.';c). Furthermore, Hawking (1972a) has shown that in the stat.ionary ('as(~ t.11('
t.opology of t.hp surface of any black hole is that. of t.he two-dinI('usional splll're .'>'~.

Black holP lilliface topologies distinct from 8 2 are possible if t.he t1olllillallt. ('lIp!gy
('olldit.ioll is violated [Oeroeh ami Hartle (1982)]. In principle, it eaunot 1)(, ('xl'illdnl
t.hat. a stat.ionary spacetillle contains several connect.ed componenlH DB( T) and, COl'·

respondingly, several black holes "at rest". Such equilibrium is ouly possiblP if til('
gravit.atioual at.t.raction is coulpenliated for by ekctrOlnagnetic repulsion (or hy repul
sion dne t.o forces of a difl(~rent nature). For exampk, if there are scv(>ralnou·rot.at.ing
black 1101('» with masses Jnj ami cbarges Qi satisfying the relation III; = Qd,j(j, a sys
t.elll of black IlOles is in equilibriulll [Hartle and Hawking (1972a), Oht.a amI I<innlla
(19~2)].

III what. follows we treat. the case of a single stationary black hole, and I('strict
t.he analysis to the region of spacetime exterior to this black hole. In till' )!,('!H'ral
case, t.he entire spacetime of t.he statiouary black hole lIlay contain, t.ogethpr witll the
event. horizon H+ also the past event horizon H- = j+(.J-) (this is readily veri/ied
for an etl'mal Schwarzschild black hole whose Penrose-Carter conformal diagram is
shown in Figures 5.2 and 5.3). The region J+(:J-) n J-(:J+) of spacetime outside
/I- ami ll+ is said to be the exterior region of a black hole. A propert.y inherent
to events occurring itt the exterior region is that causal curves can be trared which
counert these evellts with both :J- and J+. It can be proved that. in a stationary
space the Killing vector field eis nonzero everywhere in the exterior region and on
the part H+ n J+(:J-) of the event horizon [see, e.g., Hawking allli Ellis (1973)).

6.2.2 Static black holes

For a more detailed description of the properties of stationary spaces, it is couvellient
t.o int.roduce the following differential invariant w a related to the Killiug vector field
~/' by the formula

(6.2.3)

where el',,>.a is a completely antisymmetric tensor. A stationary space is said to be
static if wa = 0. By Frobenius theorem, the necessary and sufficient condition for
the vector field ~I' to be orthogonal t.o a surface is that wa vanishes. In other words,
if wa = 0, two scalar functions, 0 and t, can be foulld·such that

~I' == oJ,I" (6.2.4 )

Iu the region where ~I' t 0, t can be used as oue of the coordinates (the tillle
coordiuate); we supplement it with three other coordinates xi. The coordinates Xi

are couveniently chosen as follows. Let us fix an arbitrary surface t = const, define
the coordinates Xi on it, extend these coordinates to the entire spacetime, demanding
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t.hat they be const.ant along the integral curves of ~/'. In such coordinates, the met.ric
of a static space is

(6.2.5)

It is readily shown, using the Killing equation (6.2.1), that Oth;j = 0, and t.hat. olle
can make use of the arbitrariness t -+ t' == I(t) in order t.o satisfy t.he equalities

(6.2.6)

The still remaining ambiguity in the choice of coordinates corresponds to I,hp trans
formations

t -+ t' = t + f 0 , (6.2.7)

Note that since V and hij are independent of t, metric (6.2.5) is also invariaut. under
t.ime reversal f -+ -to The converse is also t.rue; namely, any st.at.ionary met.ric
possessing an addit.ional time reversal symmetry f -+ -I is static.

An important. property of static black holes is that the Killing vect.or field ~/' is
timelike t.hroughout their exterior region, while on t.he part H+nJ+(:/-) of the pvent
horizon, which bounds the exterior region, ~/l is nonzero, lightlike, and direct.ed along;
the generators of H+. This last property is easily proved. Namely, from the equalit.y
~[I-';v€o) = 0 which follows from the condition W O = 0, and from relation (6.2.1) WP

obtain

(6.2.8)

This equality immediately yields

(6.2.9)

and hence the surface V 2 == 0 is lightlike because the direction of the normal to it,
(V2

);/l' coincides on this surface with that of the null vector €w Since (V 2 ):/1 and €/I
are parallp), we have

(6.2.10)

and hence €/' is it vector tangent t.o the null geodesic (to a generator of the surface
V 2 == 0). These null geodesics, on the one hand, do not emerge on :/+ l)('cause
they always stay on the surface where ~/l ~/l = 0, while on :/+, ~/I ~/l == - L On
the ot.her hand, the divergence of the null generators on the surface V == 0 is zero.
Hence, this surface is the outer trapped surface, and, at the same time, it is the event.
horizon because spacetime is stationary IVishveshwara (1968)]. In the Spction 6.0
these results will be generalized to the case of stationary (but not necessary st.atic)
black holes.
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Figure 6.1: Penrose process. A body falling from a cert.ain distance (position A) enters
the er~osphere of a rot.ating black hole and explodes at a point. B dose t.o the black hole
smfare into t.wo fragments. One fragment is absorbed by the black hole at a point. D (the
"explosion" parameters are rhosen so as t.o give negative energy to t.his fragment.). The
otJler fragment is ejected from t.he ergosphere (point. C) having an energy greater t.han the
energy of the falling body.

6.2.3 Penrose process

If a st.ationary black hole is not stat.ic, the Killing vector field el' inevitably becomes
spa~dike in a part of the exterior region [Hawking and Ellis (1973)). The region of
thp black hole exterior where e > 0 is called the ergosphere.

The formation of the ergosphere outside a stationary nonstatic black hole has a
number of important physical corollaries. They will be discussed in morp detail in
the chapters to follow. Here we consider one of them. Recall t.hat by Noether's theo
rem, the symmdries of spacetime imply the laws of conservation of certain physical
quant.it.ies. Thus, uniformity with respect to time implies the conservation of energy.
For a part.icle moving in a stationary spacetime with a Killing vector field e', this
cons{~rved quantity (energy c) is writt.en in the form (see Appendix A.R)

c = - pI'~I" (G.2.11)

where pi' is the four-momentum of a particle. For particles beyond the ergospherp,
e ~ 0 IJPcaus(' p" is a future-directed timelike or null vector. However, 50n1(' parl.iclE's
or light. rays in t.he ergosphere may satisfy the reversed inequalit.y c < O. Ohviom;ly,
such particles can escape from the ergosphere only by dropping iuto t.he black hole.
This is impossible unless t.he ergosphere has common point.s with thp ('vent. horizon.

Because of the existence of stat.es wit.h negative energy e in the er/!;osphf'f(\ I.he fol
lowing mE'chanism of energy ext.raction from stationary black holes hemmes possihle
[Penrose (1969)J. Imagine that a part.icle with momentum p~ pnt.ers t.hp ergosphere
and t.here decays into a pair of particles with momenta ]it and p~ (p~ = p\' + ,I;) so
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Figure 6.2: A stationary rotating black hole is axially sYlllmetric. Illustration of the proof
of Hawking's theorelll.

that 102 = - p~ e" < 0, and the particle with momentum P~' eSt:apes frow the ergo·
sphere (see Figure 6.1). The energy of the escaping particle, 101 = - pll' ~I' = 100 - 102,

is then greater than the energy of the incident particle, co = - p~ ~,,; hent:e, energy
can indeed be extracted in this process.

An essential difference between the properties of black holes with wI' = 0 and those
with wI' t= 0 is that, in a certain sense, nonstatic stationary blat:k holes are rotating.
The appearance of negative energies of particles moving in the field of a rotating black
hole can be explained jf we take into account the additional gravitational interactioll
of the angular momentum of this particle and the angular momentum of the rotating
black hole. The e/lergy imparted to the particle ejected in the Penrose process is
drawn from the rotational energy of the black hole.

6.2.4 Stationary nonstatic black holes are axisymmetric

Having made these remarks, we can return to discussing the general properties of
stationary black holes and consider the mutual arrangement of the ergosphere and
the event horizon. In principle, it is possible that the ergosphere does 1I0t intersect the
horizon, lying completely outside it. However, this situation appears to be unstable
[Hawking and Ellis (1973)J. Therefore, we assume that the ergosphere does intersect
the horizon in the stationary spacetime describing the final state of a black hole
(for discussioll of this point, see Carter (1987» .. This means that the event horizon
comprises points at which the Killing vector field e" is spacelike. Let us show that in
this case the black hole is Jlecessarily axially symmetric.

Let So be the surface of a black hole at some moment of time. As we have
mentioned earlier, the topology of a stationary black hole surface is that of a two
dimensional sphere, S2. We denote by Sv those sections of the event IlOrizoJl that are
produced by translating the points of So along the integral curves x"(v) of the field
e" (dx" /dv = e") by an amount corresponding to the parameter v (Figure 6.2). Let
a point Po E So transform thereby into a point P~E SV' Denote by 1f., the point of
intersection of Sv and the generator of the event horizon passing through Po. SiJlce
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fl' (a t.allgl>lIt vector to a gClleratur uf the horizolI) is llull, while e' is span'like, t1lese
Vl'dors an~ 1I0t parallel, awl t1w mapping p~ ~ p~ is a lloll-trivial trallsforIuat.ioJ\ of
S,. iJlto itself. As a result of vanishillg of the COlivergence p and sllear (J at till' eVl"nt
llOri;,:oJl of a stationary black hole, the spacing betweell allY two puillts II~, alld IJ~. Oil S"
i:; equal to t.he spacing betwecII the correspondillg puillts Po and qo 011 So. 011 thl' ol.hel
Imlld, ~II i:; the Killing vector fidd su that this spacillg is also equal to tht' t!istallCl'
betwt'l'1I p;, alit! q~. Hence, the transfurmation p~ ~ p~, is a symmetry trallsforIlIatiun
that maps S" inl,o itself. The tupulogy of S" being that of the splwre 8 1

, all poillts
uf S,,, except t.wo (the "poles"), are moved by the described isometry grollp along
dosed circular orbits. In other words, the surface of a stationary 1l011static black bole
is axially symmetric.

If the metric describilIg a statiollary black hole is analytic,3 thell the axial sym
metry of t.he event horizon implies the axial symmetry of the entire spacetinIe. This
result is furmulated in the following

Theorem [Hawking (1972a)]. Let Ihe ergosphel'e in a stationary nOllstutic space
intersect the event horizon at f{+ n )+(J-). Then there exists a olle-pa!"Umele7'
cyclic gro'up of isometries whose generators commute with elJ and whose orb'its are
spacelike ill the vicinity of J+and J- .

This theorem remains valid when the metric is non-analytic in isolated regions
outside tlw horizon.

Tllis t.heorem has the following very important COJJsequence. Consider a rotat
ing black hole surrounded by non-axially-symmetric distribution of matter. SiJJce
the gravitational field of the system is not axially symmetric, the black hole iJJ the
final state cannot have an angular momentum. This means that there exists a JJOJJ
Newtonian gravitational interaction of a black hole with the surrounding matter. As
a result of this interaction the black hole gradually transfers its angular momentum
to the matter [Ipser (1971), Hawking (1972a), Press (1972), Hawking and Hartle
(1972»).

To summarize the results outlined in this section: The final state of an isolated
black hole is thus described by a stationary metric. The black hole either does not
rotate and its metric is static, or it rotates and the spacetime possesses additional
axial synulJetry. In Sections 6.4 and 6.5 we shall prove the so-called uniqueness
theorems, sllOwing that stationary (both static and nonstatic) isolated black holes
have relatively simple structure. Namely, we analyze the stationary solutions of
the EinsteiJJ- Maxwell equations and prove that all such solutions that describe a
stationary black hole reduce to the Kerr-Newman metric (6.5.29). In the case of no
rotation, the solution reduces to the Reissner-Nordstrom solution. But before the
discussion of the uniqueness theorems let us consider properties of the horizon of
stationary black holes in more detail.

30n the analyticity of stationary axisymmetric asymptotically flat solutions of Einstein's equa
tions, see Miiller zum Hagen (1970).



6..3. Killing Horizon

6.3 Killing Horizon

6.3.1 Definition and properties of the Killing horizon

215

In a st.ationary spacetime with a black hole it is possible to int.roduce t.he notion of
a Killing horizon. Let ebe a Killing vector, then a Killing horizon is a null surface,
H, to which the Killing vector field eis normal. This implies t.hat ell is t.angent to
t.he null generators of H, and hence e == ep ep = 0 on H. Note l,hat e = 0 is a
necessary but not a sufficient condition for the Killing horizon. For example, the
equat.ion ell) = 0 in the Kerr spacetime defines the stat.ic limit surface which in t.he
presence of rotation is timelike everywhere outside the poles.

Logically, the notion of Killing horizon is completely independent of t.he notion
of event horizon, but there is a close connection between them. This connection is
est.ablished by the following.

Theorem (see Hawking and Ellis (1973), proposition 9.3.6). Let a stationary, a.~ymp

fotically fiat spacetime contain a black hole and be a solution of Einstein equotions
with matter satisfying suitable hyperbolic equations. Then the event horizon H+ ;$ a
Killing horizon.

In this sect.ion we describe some geometrical propert.ies of Killing horizons [Boyer
(1969), Wald (1984, 1992)J. First. of all, we obtain some useful relations valid for an
arbitrary Killing vector field. The Killing equation

e(n;/l) = 0

can he used to verify that any Killing vector en obeys the relat.ion

Contracting this equation with en;{J, one gets

(6.3.1)

(6.1.2)

(6.3.3)

We call a Killing trajectory (or orbit) the integral line .1. /1 = xl'(v) of I.he Killing
vect.or field:

d I'

--!- = e'(x) .
dlJ

The Killing equation (6.3.1) implies

(6.;~A)

(6.3.5)

Hence, e is constant on any Killing trajectory; thus, one-dimensional Killin/!; trajec
tories cau be classified as spacelike, t.imelike, or null according to the sigu or va,nishing
ofe.
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(6.3.6)

The following propagation equations for (e),o and ~o, respectively, are valid on a
Killing trajectory [Boyer (1969)]

D(e,f» _ (2 {J _ (2 {J 2 {J _ 2 {J-;;;;--<., ;0{J~ - ~ ,{J~ ),o-~ ,{J~ ,o--~ .{J~ ,0'

(6.3.7)

Relat.ion (G.:!.6) shows that e,o vanishes eit.her at all points or at, no point of
a Killing trajectory. (At a fixed point. of the Killing trajectories, e,o = 0.) The
equat.ion (G.:1. 7) shows t.hat <1 Killing trajectory is geodesic if and only if on it.

(6.3.8)

According to the definition, the Killing vector eon the surface H of a Killing
horizon is normal t.o H. This implies that on If eobeys t.he condit.ion4

(6.:1.9)

(6.3.10)

(Herl' and later we use t.he notation !J t.o indicate that the corresponding equalit.y

holds only on 1I.) Since ego, t.he relat.ions (6.3.2) and (6.3.9) imply

elf> e;/Jj !J 0 .

Eqnat.ion (6.:1.10) shows t.hat condit.ion (6.3.8) is satisfied on t.he Killing horizon,
ami hl'n('C' Killing traject.ories lying on t.he horizon are geodesics. This propert.y can
be also proVf'd if one t.akes int.o acconnt. t.hat. the Killing horizon hy defin iUon is a nnll
snrface, and h('\\ce its generators are null geodesics. On t.he other hand, ~I' is t.angent
on fI t.o t.he genC'rat.ors so t.hat Killing t.rajectories at the Killing horizon coincide
wi t.h it,s generat.ors.

6.3.2 Surface gravity

Rdat.ion (6.3.10) shows that

2 IIe,n = -21\.(,. (fU.II)

The <jn<1nt.ity Ii defined on H is called the s1/.rface gravity. Invariance of (6.:3.11) nndN
the isomet.ries generated by eimplies t.hat K, is constant. along each nnll gf'nl'rat.or,

4In the vicinit.y of a regular point of II one can choose coordinat.es ('P, x') so that. <p =°is t.hp <,qlla
t.ion of t.he smfar<, H. In t.he vicinit.y of H one has €/l = P'P:J3+Q(J3, where prO, .r') # 0, Q(O, r') =0,
and (13 is regular at ll. This r<,lation implies at. H , €[O;11 = fb'PJ3I + 'P1;1(OI(l)Q/iJ<p)l(o.T·)' By
multiplying this expression by €f> with furt.her anhsymmet.rizat.ion, we get. the required relation.
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i.e., ~u\7(>" = O. III order to show this, it. is suflicient to apply the operator ~u\70 to
the Ptillat.ion (li.3.11) awl use t.he relations (6.3.6) alld (6.3.7).

Equat.ioll (lU.II) can bp rewritten as

C" CI' i! . el'
(., (.,:v -- h..... , (G.:1.I2)

which shows lhat 1\ \J\e<IHures the failure of the "/(illillg paralllPter til1lP" , 1', t.o t'Oillcide
with "alline paral1It'l,t'r Ume", II, on H; lIamely, oue h,L';

v = ('~l·. (6.3.13)

We recall that in the gelleral case there is an ambiguity in the choice of the alline
parameter V -+ V' = aV + b (with a alld b constant). We fix the ambiguity by
choosing II = I for v = 0 alld V = 0 for v = -00. On the Killing horizon fI olle has

e-.!!........=lJ="v~.
ihl' au 8V

(6.3.14)

If" =I 0 aud the null gi~lIerators of Hare geodesically cOlllplete,5 thc\l alollg each
geuerat.or there exists a point where ~I' = O. The set of these points rorlll a space/ikt·
two-rlilllensional surface of bifurcat.ion of the Killing horizon which we dt'note by S'.

The surfltCe gravity" admits the following lIseful representation

.2!!' _ ~ t . tu:li
,,- 2<'0;13<' .

To show this, we rewrite equation (6.3.9) in the forl1l

Contrading this relation with ~u:1J and using (6.3.12), we get

t t t U ;{3!!. 2.2 t
<,) <,o;{3 <, - - " <')'

which (for~) =I 0) giv('s (6.3.15).
The surface gravity calculated for the Kerr-Newman black hole is

T+ - MIi= ---
1'~ +a2 '

(6.3.15)

(6.3.16)

(6.3.17)

(6.3.18)

5We recall that a geodesic is called complete if it has a representation in terms of an affine
parameter V, which is defined for -00 < V < 00.
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6.3.3 Constancy of surface gravity on H

The ~Ill'face gravit.y " is constant. along null generators of the Killing hOli;;llIl. The
rl'lliarkahle property of Killing hori;;ons is t.hat. Ii also does not. vary from Olll' gl'nerator
tll illlotll!'r, and Ii is globally constant. on H.

In the GiSe where t.he generators of the Killing hori;;on are geodesically rOlllplde,
onl' ("all prove t.hat. Ii does not. vary from generat.or to generator (and JWllce is globally
cOlIst.ant) by IISilig the following simple argument.s (see e.g., Wald (I!J92)). II" h; :J ()
along a gpnerator of the Killing horizon, t.hen (at least. locally in a IIPighborhood of
this gencrator) there exist.s a t.wo-dimensional bifurcation surface, S, on which e= O.
Thc' dprivative of equation (6.3.15) on the bifurcation surface S in a dirpction Sll

tangent to S gives

liS" Ii, =-~s-,c{J' c(J;o=!s-"R 6c r c{J;0=0
,0 2 <, ,0-, <, 2 o{J-, <,. <, • (6.:3.19)

Here we n:-;e relation (A.30) for the Killing vector and that ~o vanishes on S'. The
surl"ace gravity Ii is constant along the generators of the horizon, and hence the vcrlne
of Ii on the generator coincides with its value at the point of intersection of the
gr'lwrat.or with the bifurcation surface. Thus, if Ii =J 0 on any generator, then its
yahI!' ('annot vary from one generator to another. Note that this proof does 1I0t. lise
the Einstein eqnations.

If one does not assume that the generators of 11 are geodesically cOlllplete,G thell
(HIe can also prove that Ii is constant on H [Bardeen et al. (1973)]. This proof,
present.ed below, requires the use of the Einstein equations with matter obeying the
energy dominance condition. Following Bardeen et al. (1973); it is convenient to use

cOinplex null tetrads. We augment III !!o ~Il to a complex null tetrad by choosing
complex lIull vectors mil and m,li taugent to the horizon surface and normalized by
the relation mIt ihll = 1, and a real null vector nil orthogonal to mil and fil ll and
nOfillali;;ed by the condition ill nil = -1.

We assume that the null tetrad is continued outside the horizon, preserving the
normalization conditions. Such a continuation is evidently non-unique, but the corre
sponding ambiguity is not important for our considerations. Using the conlplex null
tetrad (Ill, nil, mil, ihll ), we can write" in the following form:

.!!. I V IIIIi - - V;1'1I . (6.3.20)

Here and later in the proof the following important property of the covariant deriva
tives along Ii (snch as IIl'ilIl , mll'il ll , and ml''ill') is used. Such covariant derivatives
when applied to any tensor field depend only on the value of this tensor field on H.

61n a realistic situation a black hole is formed as a result of gravitational collapse, and a spacetime
metric is time-dependent. The metric becomes stationary only some time after the collapse. If we
are considering a region of stationarity for this problem, the generators of H being restricted to this
region are incomplete.
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Using this property and the relation e"!!: I", we can rewrite equation (6.3.11) in t.he
form

The equation (6.3.20) is obt.ained by multiplying t.his equation by nV
•

Using (6.3.20), we obtain

'" !!. I v II' 0 I v I" 0 I v III '"1n K;a - - 'V:/I.;Q n 1n - '1/:1' n:Q m - U:/I. n ·;0 m .

(fi.3.21 )

(6.:1.22)

The first. of t.he terms on the right-hand side cont.ains covariant derivat.ives only along
H, and hence it depends only on t.he value of III on H. This allows one t.o us!' t.he
fact. t.hat. Ii' on this surface coincides with the Killing vector field £.I'. Thus, w!' cau
lise relat.ion (A.30) for the Killing vector field to recast. t.he first t.erm on the right.
hand side of (6.3.22) in the form - ROP;6/° m(3 P 11.6 . Using (6.3.21) and t.he relat.ion
Iv n V

,,,, = - n" lv,,,,, we rewrite the second term on the right-hand side of (6.3.22) in 1.11('
form I.lv :o n V m"'. Let us now show that this term and the last. one on the right.-hand
side of (G.3.22) cancel. First, we remark that the condit.ions of normalization of 1.11('
null tet.rad yield t.he relation

Making lise of this relation and the conditions of no shea.r or expansion of tilE' ewut.
horizon surface,

I 0 -{3 H 0
(I = - ",:(3 m. In = , - I Q. (3!!.O

(J" - - a;(Jm m - , (().~.21 )

we rewrite the last. term on the right-hand side of (6.3.22) in the form

I " II' 0 !!. I v i·(3 I 0
-";1' 11. ·:0 In - - V:I'- n 9 '(3:0 m

!!. I v Ii' (31 0 !!. _/ v '"- V'I'-. n n '(3:0 m - - Ii '1':0 11. In , ((),:t 2!i)

This expr('ssion differs from t.he second term in (6.:t22) only in sign, ami til<' t.wo
caucel ont.. As a r('snlt, we have

". !!.. I> 10 IJ l' 6m h;o - - 1,,{3;6 m n.

Not.!' t.hat. on t.he horizon surface

I 0 -I~ ,III 0-8 1HO
0:0 m. ;1 m. m = 0:(3 In m':1 m. = .

(G.:t2(j)

(G.:!.2;)

This can 1)(' confirmed using (6.3.23), (6.3.24), and the normalization condit.ions for
t.he t.l'Ir;td vectors. Therefore, in view of (A.30) and (6.3.24), we find

O !!. 1 !!. (I 0 - {3) ; !!.. R 1< 0 ~ {3 ;- - p" m - 0:(3 m In :; m - <0(3, In m. m
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(6.3.28)

This relation and Einstein's equation RO{J lO m{J = 81f To{J lO m{J allow the rewriting
of (6.3.26) in t.he form

o. !!.. 8 T I" {Jm Ii;", - - 1f 0(1' m . (6.3.29)

(6.3.30)

To complete the proof of t.he constancy of K, we assume that t.he energy-momentnm
t.ensor To13 sat.isfies the f'lIrrgy dominance condition; that is, To13 lo is a non-spacelike
v('c!or for t.he null vector to (see Appendix A.15). If this condition is satisfied, the
vect.or To1,Jo has to be null on the event. horizon (the case of a timelike vector is ex-

cluded because at the horizon T,,{J la l{J == <II !f:. 0; see (6.2.2)). Hence, To13 l" m.13 tf: 0,
and relat.ion (G.:3.29) proves that K is constant at the horizon.

LE't us discuss the physical interpretation of K. Consider a stationary obSE'rver
moving near a black hole such that t.he world line of this observrr coincides with a
Killing t.raject.ory.7 The velocity four-vector of t.his Killing observer is

e"
11." = le,,(O 11/2'

Obviously, the motion of this observer is non-geodesic, his four-accelerat.ion u,l' [ef.
(A.!)])] being equal to

(6.3..31)

We use now the rplatioll ((i.3.3) which we rewrite in the form

(6.3.32)

Since era (IJ;11 tf: 0, the gradient of the left-hand side vanishes on t.he horizon. On
t.he ot.her hand, for K i 0 t.he gradient. of (" e" does not vanish on If. That. is why
according to t.he I'Hospital rille the left-hand side of thE' equation (G.3.32) divided
by e IIlUSt. a.pproach zero on the horizon [Wald (1984)]. Using t.his propel'!.y and
(li.:t 1fl), aft.er dividing bot.h sides of the equat.ion (6.:3.32) bye alld taking t.he limit
e -+ 0, one oht,ains

/{=lil1l ((lw),
/I

(G.:U3)

'In t.he general case when a stat.ionary black hole is rot at.inR, t.he spacet.ime is axisymmet.ric
amI t.here exist.s more t.han one Killing vect.or. In t.hi,~ case t.he Killing horizon (which according to
t.he Hawking's t.heorem coincides wit.h t,he event, horizon) is defined wit.h respect. t.o a spedallinear
combinat.ion of t.he Killing vect.ors. It is this linear combinat.ion, which we delloted here bye'. t.hat.
is nsed in t.he considerations. A stat.ionary ohserver, locat.ed near the event. hori7.0n and moving
along slIch a Killing t.raject.ory, rotat,es at, an angnlar velocit.y efJnal t.o t.hat. of t.he black hole.
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Here we dP/ine 1U = Iw" Wi' IJ
/

2 and It == I~iJe IJ
/

2, ami limll indicates t.akiug the
limit ill which the poillt. where the expression alL' is calculated tends to the Killing
horiwn II.

For a !loll-rot.atinl-; black hole, (I is t.he redshift fador (a == J-YIl)' Imagine
t.hat a body of lIlass IlL sllsl)t~nded on a weightless rigid string is at n'st near tlw
evelll hori:wII. In t.his case t.Ilt' st.ring ads on t.Iw body with a forcl' f" such t.hat
/ == IJ~. I"~ P/~ == III W. It can he shown t.hat it is sullirieut. to apply t.Ill' force
fn = 1/1 (I II' to t.I1l' other (distallt.) end of the striug (see Sel·tion 2.2). 'I'1Il' quant.ity
II w call Ill' interpreted as the accderat.ion of a body at rest, ill the vicilJity of 1.11(' blaek
hole, a.~ IIleillilired in the reference frame of a distant observer. 111 otlwr words, the
smface gravity" characterizes t.he liHlit,ing "::ltrengt.hn of the gravitational field on
t.he black hole surface, evaluated by a distant observer. If the black hole is rotating, "
has a similar meaning, the only difference being that the body rotates at t.he angular
velocity of the black hole.

6.3.4 Angular velocity

Fora Kerr-Newman black hole the angular velocity nil == al(r~ + a2 ) (jnst like the
surfacl' gravity iL) is constant on the event horizon. This property is still pH'served
if the black hole is surrounded by matter provided the spacetime geollletry relllains
stationary. Ifa spacetime with a black hole is stationary (but not static), then
according t.o t.he Hawking's theorem ment.ioned at the end of Section (i.2, it IIlttst be
axisymmetric. We show that there is a natural generalization of the notioll of the
black hole ungular velocity to this case and demonstrate that the angular vdocity is
const.ant on the horizon.

In an axisymmetric stationary spacetime, in addition to the Killing vector field
~(t) which is normalized at infinity by the condition ~lt) .~(I)I" == -1, there is also a

spacelike Killing vector field ~(4)) which corresponds to the symI1Ietry of space with

respect to rotation. This field commutes with ~lt) and has closed integral curves.

The field ~("') is nonzero everywhere in the exterior region and at the horizon, except

on the rotation axis, where ~(4)) :::: O. If we define X = ~(4)) ~(4))I'' the condition of
regularity of spacetime at the rotation axis is satisfied when

X'OXol4X =1.
x=o

(6.3.34)

This condition implies that at the rotation axis the spacetime is locally flat (i.e., there
is no conical singularity).

The vector fields ~(,) and ~t4» possessing the properties described above, inel uding

the normalization (6.3.34), are uniquely defined in a stationary axially symmetric
asymptotically flat space.
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III ~lIdt a space, we can introduce coordinate~ t, 4>, XX (X = 1,2) in which t1tp
metric takps the form

ds" = - II d/ 2 + 21VdrjJdl + X det} + 2gtx d:c x d/

((i.:U!i)

alHl the fllllctiow:i II, X, IF) !.1tx, Y.px, and {'Xl' are illdependent of 1 and .p. III thpsp
('(Jordillatl's ~i;) = 5;', ~(:p) = (5~, and

MPlric (6.:3.35) is said to satisfy the circularity condition if coordiuate tran~for

matious call be found that preserve the form (6.3.35) but have the coefficients YIX

and Y</Jx vanish. In this case the two-dimensional surfaces (t = const, c/J = COlist ) are
orthogonal to two-dimensional surfaces formed by the integral curves of thp lield~ ~!;)

aud ~(4)), The necessary and sufficient condition for a lIletric to satisfy the ciiTtiiarity
coudition is that the following relations are satisfied [see, e.g., Kramer el al. (1 D80)]:

01316" "" 0e ,>(.p)o '>(/)13 ,>(lh;5 =, (6.:U7)

It can he shown [Kundt and Trumper (1966), Carter (1973a)] that the~e relations
hold if aud only if the Ricci tensor Ro(J satisfies the condition~

(6.3.38)

Ohvi()II~ly, these couditious are met for the vacuum solutions to Einstein's equations.
It is readily verified that they also hold outside sources in electrovac spaces [Carter
(1 !J69)]. Therefore, the circularity condition is sati~fied in the case of interest here
(~tati()nary axially symmetric solutions of the Einstein-Maxwell equations).

Deline a bivector PI"':

(6.3.40)

Carter (1973a) demonstrated that if the circularity condition is met, the event horizon
of an arbitrary stationary axially symmetric black hole coincides with the set of points
at which the bivector PI'" becomes null

2 1 2
P == - 2' PI''' PP" = w + V X = 0,

and the vector [I' tangent to the event horizon coincides in direction with the null
vector that lies in the two-dimensional plane generated by the vectors ~(I) and ~(4))'

Choosing the normalization [I' in an appropriate manner, we find

II' J/ "I' nH "I'
= '>(1) +,. '>(,p)' (6.3.41)
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Th~ quantity nH which enters this relation is t.he angular velocity of the black hol~.

Sinc.~ /2 Ii: 0, one has

(6.:~.'l2)

and 'I' e~) = ,"~ (('q,) = O.
As follows from spacetime symm~t.ry, the angular velocity nH of the hlack hol~

cannot he a function of eit.her time t or angle ¢J:

(6.3.43)

Moreover, nH (like It and 4» is also independent of th~ "latitude" of a point on th('
black hole surface; that is, it is constant everywhere on the horizon. For proof it
is sufficient to remark that the ev('nt horizon of a stationary black hole coincides
with the Killing horizon, and hence there exists a Killing vector field (/' which at til('
horizon is tangent to its gen('rators

(6.3.41\ )

Using that e, (;;)' and ((q.) obey the Killing equation, on(' derives from (6.3.tItl)

Let s" he a vector tangent to H; then by multiplying this relation by sve;~) and using
(G.3.1\:I), one ha.'i

c 2 .voff H 0
"(q,) 8 H,v = . (6.3.1\5)

This proves that nH is constant everywhere outside th(' axis of symm('try. Sinc(' nIl
is continuous, it r('mains constant. also at the axis of symmetry.

It. is also possible to prove that. nH = const. without using the fact that t.he
event horiu)J} coincides with t.he Killing horizon. Usillg (6.3.42), one has X nIl =
- ~F. If t.his rl"lation is differentiat('d with respl"ct: to xl> and then til(' cOllllllut.at.ivity
[{(I)' e(qI)] = 0 is used, it is not difficult to obtain thl" following equalit.y:

Now we multiply both sides of this equality by P,6 and antiRymmetrizl" it with rl"sp('ct
to thl" iudices 0, 1', and J. If Wl" also take into account the relation
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implied by circularity condition (6.3.37), and recall that the invariant W 2 +X\I == p2

vanishes on t.he horizon, it can be shown that the right-hand side of expression (6.3.46)
f'quals zero, so that

." nil
.\ - .ll." P1nl = o. (6.3.48)

Taken oIT t.he symmet.ry axis (X i 0), this condition implies that n/~ lies in the two
dimennional plane spanned by the vectors ~(I.) and ~(,pj, and relati~n (6.3.4:3) shows
that n/~ = O. The constancy of nH on the event horizon is thereby proved. (At the
poles, iJlI is fOllnd from continuity.)

6.3.5 Electric field potential

In desrrihillg physical effects in the field of a charged black hole, the relevant. expres
sions include, in addition to,.. and nH, another invariant quantity <pH; that. is, the
electric field potf'ntial on t.he black hole surface. This quantity, <pH = QT+/(l'~ +a2),
is constallt. all t.he horizon of a Kerr-Newman black hole. Let liS show that t.his result.
is general and valid for any stationary (not necessarily isolated) black hole.

Let. e'l be a Killing field in a spacetime with a Killing horizoll and ~'" be t.he
e1ectromaglletic field tensor satisfying Maxwell's equations

F[,.v.ol = 0 (6..3.49)

and oheying t.he symmetry condition

(6.3.50)

Thrn it. is rradily shown that the vector E'l = - F,.,,~" satisfies the condition

(6.3.51)

and thrr('fore is the gradient of a funct.ion <f>

(().:l.G2)

Let. liS show t.hat. if A" is t.he vrct.or pot.('ntial of thr firld FI''' satisfying till' SylIlllH't ry
cOlldit.ion

((;.:l.!j;~ )

wr Cil.1I chaos!' for <p th(' quant.ity

Indr('d. diITerrntiating (6.3.54) and then lIsing (6.3.53), we obtain

( (i.:~ ..'i!))
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WI' also Hperify t.hat the potential is chosen in such a mauuer that AI' vanishcH at
iufinity. The vahw <p 1I uf the correspondiug quautity <p at the Killiug horizon b
called the r!('clnf' potential of the black hole. We can show that <pH is constaut, ou
the Illlrizon. 'Ii) do t.his, we remark that the coudition

'I' I"~ {V !J.. UI"' -, ((U.5H)

((U.57)

which is illlplil'd by (H.2.:2) t.o hold Oil the surfact' or au arbitrary Ht.at ioua!')' black

hole (/1' g e'), is (·qllivall'1lt. I'OJ' t.he electrolllaguetic liPId 10 the relatioli

(I" "I" - ~ I.' 1""Ii) II' LV = E" 1.' Ii O·It I/O 4 gill' up - .J ...... 0 - ,

that is,

(ti.:.L5/1)

ou the IlOrizou surface.~ lIeuce, the following equality hol<b for auy Vl'ctor ::;1' taug<'ut
to tlH' evput horizou:

./' ,1.// !i U
.') '¥ ,Jl - , ((U.5!!)

(6.4.1)

which lIleaus that thl' ell'ctric potential <pH at the l'v1'ut horizou is coustantY

6.4 Uniqueness Theorem for Static Black Holes

Let us discuss now the uniqueness theorems for stationary black holes, We begiu
with the uniqueness theorem for static black holeH proved by Israel (1967) which was
historically the first iu the series of these results.

Consider static solutions of Einstein's vacuum equations. We choose the coordi
nates in the static spacetime as outlined in Sectioll 6.2.2 and write the static metric
in the form (6.2.5):

ds
2 = - V 2 dt

2 + hijd2~idxj, (i,i == 1,2,3),

V = V(x l
, 2.

2
, x3

), h ij = hij(X
1

, x 2
, x 3

) •

Denote by (3JR;j the Ricci tensor of three-dimensional space B described by the equa
tion t = const aud havilig the metric hij . Since the extrinsic curvature J(ij of B
vanishes, the Gauss-Codazzi equations (A.76) and (A.78) imply

(3)Rij = Rij - E ij , (3)R= R - 2Rg,

8The quantity tr coincides with the "surface charge density" in the membrane paradigm {cc.
formula (8.4.4)J,

9When a charged rotating black hole is described in the framework of a five-dimensional Kaluza
Klein theory of gravitation, the quantities nH and 4>H enter the expressions in a similar manner,
and their properties are to a certain extent similar (Bleyer et al. (1987)].
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whew (3)R = h;j(3)R;j, R = g/WR,w , and E ofJ = Rp.lwfJep.e·/e. By using relation
(fL{()), one can verify that E ij = -V'J/V, [( ),; denotes the covariant derivative ill
tIll' lIIet,ric hi).] These relations imply that in the static spacetime ((i.4, I) Einstl'in's
vacuulll equations are equivalent to the following cquatiolls:

(0,'1.2)

(LL!)

ASSllill\ Ihat UII' Sparelillll' wil.h lIlctric (6.4.1) olwys the following WllciitiollS:

I. It is a.,;ylJlptot.ically Hat.

2. It. has all event horizon.

a. It has 110 singularities Oil or outside the evelJt horizolJ.

Considered in dl'tail, these assumptions imply that:

I. The space 1: is asymptotically Euclidean; that is, coordinates :ri C<J.n he choscn
such that

(6.4.4)

M = const, r/ = 0(1'-2),

as r == (J;j ~.i x j )I/2 -t (Xl.

2. The function V has zeros on E, the set V(xi ) = 0 being a connected regular
s1ll00th surface, Rigorously speaking, the points at which V = 0, are not
covered by the coordinates (t, :r l ,x2 , x 3 ) because metric (6.4.1) has a coordinate
singularity. The assumption that there exists a regular event horizon implies
that a transition to new coordinates makes it possible to extend the metric
to that part of the spacetime which contains the event horizon. The surface
\1 = 0 can be treated as the boundary of E that arises as a result of the passage
to the limit V = 15 = const as 15 -t +0. The function V satisfies the elliptic
eqnation V; :; = 0, and hence is harmonic. Since V = 1 as T -t (Xl, the values
of V are positive and smaller than 1 at finite values of T outside the horizolJ [on
t.he corresponding property of harmonic functions, see, e.g., Jano and Bochner
(1953)].

3. The invariant n2 = Ru1h6 Roih6 constructed from the four-dimensiolJal tensor
of curvature is finite 'everywhere 011 E (for 0 S V < I).
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The uniqueness theorem for static black holes: Any static solution of Ein
stein's vacuum equations sati4ying conditions {1}-(3} i.s spherically symmetric and
coincides with the Schwarzschild metric.

Israel (1967) proved this theorem under the following additional condition: (4) the
equipotential surfaces II "" const > 0 are regular simply connected two-dimensional
closed surfaces. Later it wa.'l proved [see Miiller ZUni Hagen, Robinson, and Seifert
(1973), Robinson (1 9i7)) that this condition which implies, among other t.hings, that
Va i- 0 everywhere in the interval 0 :s II < 1, follows from condit.ions (I )-(3).

The main st.eps of proving Israel's theorem are as follows. The funct.ion II (Va i=
0) is chosen a.'l a coordinate. The remaining two coordinates 02 and 0-1 on the slll'faces
V = const arc chosen in such a manner that curves of 02 .02 = const he ort.hogonal
to the surfaces V = const. In these coordinates, met.ric (6.4.1) is written in the form

(6.'1.5)

where X,}; = 2,3; p and bxy are functions of V, (J2, and 0.1, and equat.ion (6..1.2)
t.akps t.l1(' form

av (~) = 0, b = det(bxy).

Now we define J(XY by the relation JO

" 1 abxy
/\ SY' = 2p ilV .

(6.4.G)

(6.4.7)

(6.4.R)

For tlH' trace of t.his tensor, K = bXY K xy , we Gill derive t.he exprpssioll /\' ==
r- I n (Ill JT.) /iW; in view of (6.4.6), this gives

ap 2"all = p /\ .

It can 1)(' shown that. equation (6.4.3) is equival('JJt. to t.he following set. of eqnalit.ies

( a I ) /. y IY 1 (2)R rY /" J' YiW + V \ X = - (lix + 2" pOx - P \ \ X ,

(0) \Y 2 2K
-R=-KxY!C +f{ + pV"

(6.4.9)

(6.4.10)

(liA.II)

IOThis two-dimensional tensor is proportional to the extrinsic curvature of the surface \I =nmsl.,
and differs from the latt.er only in sign. Note also that the sign convent.ion in the dl'finit.ioll of the
Ril"ri tensor chosen in Israel (1967) paper differs from the sign convention of this book.
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(6.4.12)

(6.4.13)

wlwre (2)R is the scalar curvature of the two-dimensional surface V = const, and ( )Ix
stands for the covariant derivative in the metric bxy . Equations (6.4.6), (6.4.7), and
(6A.D) make it possible to find how the unknown functions p, bxy , and K XY depend
on V, and equations (6.4.10) and (6.4.11) act as constraints: If they are satisfied for
one value of V, the other equations imply that they are satisfied for all V.

The next. st.ep is to find the conditions imposed on the nnknown functions by
assumption (:3). First, we rewrit.e the invariant n 2 = R ofJ-y6 R"fJ-r6 in terms of p, bxY ,
and K xy :

· IX
~ n2 = (l/p)-2 (/(.n' f(XY + 2 P1;/ + K 2) .

Eqmt.ion (6..1.6) implies that Vb = r(xY)p; hence, the regularit.yoft.lwsurface V = 0
implies I,hal, p(V = 0,02, 03 ) i= O. The regularity of n 2 for V = 0 now gives

!1'Xl'(V =0,02 ,03
) = 0, p(V = 0,02 ,03

) = Po = consL

V~no(l(/V) = ~ Po (2)R(V = 0,02,(3
).

If t.he black hole area Iv=o Vbd02 d(P is denoted by Ao, t.hen by inl.egrating (6.4.6)
jn V from 0 t.o 1, and taking int.o acmunt. the boundary conditions (6.4.4) and (6.4.13),
we fiud

(6.4,14 )

This equality implies that. M is always positive.
The followiug relat.ions can he oht.aiued from equat.ions (fi.4.6) amI (GA.R )-( G.4.10):

i;~ (~~~:) = - 2'[: [(2)~(pl/2)+ p-3/2 GPIX piX + \fI.\T \fiX}')} , (6..1.15)

where

fJ [Vb (. 4)]-,- - II. V + - = - JW [(2)~(lnp)
av p P

(6,4,16)

((1..1,17)(2)~=()IXIX and \fI'\T=(f{Xy-~l(bXY)P'

The last. st.ep of the proof consists of int.egrat.ing rdations (6.4.15) and «;AW) iu
V from 0 t.o 1. Using the boundary conditions (6.4.4) and (6,4, I:l), t.he idelJlit.~f

(G.4,18)
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valid for an arbit.rary SllIooth rllllCt.ioll f, alld the Gauss-Bollllet theorelll,

I ttl/{ Vb d(}~d(}3 = 8n,
\ ,"-C(Jllst

(GA. I!!)

flu 2:1 JIl,

which h(>U)III(' equalit.ies if ami ollly if

Ill.\}· = 0, (GA.21)

'\"l'ywheJ'{' Oil ~.

Comparing (6"1.20) allli (6.4.14), we easily Iiud t.hat these two relatiow; are 1l0t. in
cOlltradict.iou ollly if (6.4.20) coutaius ollly equalit.y sigus, alld hence (GA.21) holds.
Thesc rdatiolls show t.hat. the r('levallt vacuulII $olutiou to Eiusteiu's equatious is
spherically symlllrtric, and hence it coiucides with the Schwarzschild solution in ac
cordance wit.h Birkhofl"s t11l'orelll (Birkhoff (192:3); see also Appendix 13.3).

A similar uniqncuess theorem holds if the conditioll that Einstein's vacuulII cljua
tions ,He valid is dropped. and these are replaced with a system of source-free Einstein
Maxwdl equatious. III this sit.uation, the black hole may be charged. The COl'le
sponding unique solution is spherically symmetric and coiucides with the Heissllcr
Nordstrom metric [Israel (1968), Muller zurn Hagen, Robinson, and Seifert. (19n.
1974), and Rohiusoll (1977»). Some opeu gaps have beeu closed more reeeutly such
as the ext.eusiou of certaiu vacuum results to the electrovac case [Simou (1985)], the
exclusiou of Hlultiple black hole solutions [Silllou (1984), Buuting and Iv1a.sood-ul
Alam (191'17), Ruback (1988), Masood-ul-Alam (1992)), and the proof of the st.atirity
theorem for the Einstein-Maxwell equations [Sudarsky alld Wald (1992)].

6.5 Uniqueness Theorem for Stationary Black
Holes

Now we will discuss the properties of solutions of the Einstein-Maxwell eljnations
that describe stationary axially symmetric blaek holes. As we already meutioued
in Sectiou 6.3.4, the electrovac solutions outside the Sources satisfy the circnlarity
condition so that the metric Call be writtcll as follows:

(0.5.1)

where
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Carter (J9(i!J) proved that if the causality condition is met (t.here arc no closed t.illlelike
lim·s), til(' quantit.ies

((Udj

awl .\ are posit.iYe everywhere in the exterior regiull, except 011 the rut,at.ioll axis,
where .\" = II' = 0, illld 011 the evellt horizoll houndiug t.he ext.erior rq;ioll, whl'n'

fI~ YiwisIH's. For a static hlack hole, W = 0 and the e(Jllatioll of the el'Cllt. hori:wu
\)('COIllCS V == O.

If the Eiusll'in or Eiusteiu-Maxwell equatious are satisfied, the funet.iou () is IlilI"
monic

I . ( Xl")..j1ux../1') OI'P = O. ((j.fd)

Any twu-dillll'nsional metric beiug cOliformally flat, we cau write d')2 in the forlll

Ilowever, it is more collveuient for the descriptioll of tile properties of a nH't ric ill
the llcighborhood of the horizoll to illtroduce new coordillates >. alld Jl wllkh in the
asymptotically distant region (V -t' (0) are related to the conventioual spherical
coordinates rand 0 by the formulas

>.:::::r-M, j.l:::::cosO. (6.5.5)

Ilere /11 is the black hole mass measured by an asymptotically distant observer alld
(1,2 written ill thelSe coordinatelS is

d'''/ = lJ(>.,j.l)d1'g,

~ d)"~ dJt~

dl0 = )..~ _ C2 + 1 - j.l2 .

(6.5.6)

(6.5.7)

Carter (\97\) lShowed that the coordinates t,>., j.l, and ¢J cover the elltire exterior
regioll of a stationary black hole (except for the rotatioll axis where these coordillates
ohviously have a sillgularity). The angle coordillate ¢J is periodic (with a period of
:17r). The time coordillate t varies from -:-00 to +00. The coordinate Jt varies from
.. I to +I, alld its boulldary values are attained 011 the "north" aud "south" polar
axes. The fOordillate >. is defined in the region >. > C > O. The value /\ = C
corresponds to the event horizon, and for asymptotically distant POillt.S, >. -t 00. In
these coordinates, P obtained as a regular'solution of (6.5.3) is

/ = (>'~ - C2)(1 - j.l2). (6.5.8)

The electromagnetic field FlJv outside the sources is written in the form

F;w = olJAv-ovAIJ, AlJdxlJ=~dt+Bd¢J. (6.5.9)

The quantities V, X, W, lJ, ~ and B are functions of >. and j.l.
Now we will outlille the main steps in the proof of the uniqueness theorem for

axially symmetric stationary black holes. These steps are as follows.
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1. The solution of the Einstein-Maxwell equations can be wduced, using the
met.hod developed by Ernst (1968a,b) [see also Kramer et al. (1980)], to solving
a system of two second-order elliptic equations for two complf'x functions of
t.lw variables.\ and Jt (the Ernst ]JQtentials). It is then found t.hat the rcslliting
e(]uations coincide with the equations of motion for a specific Lagrangian.

2. An analysis is carried out of the conditions imposed on the coenlcient.s of t.he
mf't,ric (6.5.1), (6.5.6)-((i,!).7) and on the components of elertromagnptic lipid
(6.5.9). These conditionl:; stem from the constraint of regularit.y of spacrtimf'
in t.he neighborhood of the event horizon and on t.he rot.ation axis, and also
from the a.'35umption that the space is asymptotically flat. Thpse condit.ions are
subsequent.ly reformulated in an equivalent manner as boundary condit,ions for
Ernst potent.ials at the singnlar points .\ :::: C, .\ :::: 00, IJt 1= 1.

3. A differential condition relating two arbitrary solutions is obt.ained, using t.Iw
invariance of the Lagrangian introduced for the problem involved. This con
dition is used to prove that any two solutions sat.isfying the derived bonndary
conditions with fixed values of the arbitrary const.ants are identical.

4. It is shown that the familiar Kerr-Newman solution, describing a rhargpd rotat
ing black hole, satisfies t.he boundary conditions ment.ioned above and contains
the required number of arbitrary constants. This procedure rst.ablishps t.hat
t.his family of solutions exhansts the set of solut.ions describing st.ation;l.ry axi
ally symmet.ric black holes.

TIll' following remark serves a.'i t.he starting point. of t.he program out.linpd herf'.
A:-;SUlllf' t.hat the functions X, IV, <1>, and B corresponding to a certain axially sylll
ITlf'trie stationary asymptotically nat solution of t,he Einst.rin-Maxwell equations ilrC'

known. Then the fnnct.ion V for t;his solution is found from (6.5.8), and t.Iw fnnc
tion [r can he uniquely determined by solving an equation implied by t.lw (,OIl1plptp
Einstein-Maxwell system [Kramer et al. (1980)J.

Then a change of variables <1>, lV to new variables E, Y is carripd out via t.lw
following relatious:

E,I' = (X <I>,~ - HtB..\)/( I - J/2),

I~..\ = - (X <1>,1' - W B,I,)/(.\2 - C2),

)~'I = (X lV,~ - IFX.~)/( 1- J/2) + 2(BI':,11 - EU. I/ ) 1

):.\ = - (X IV" - H/X.I,)/(,\2 - c2) + 2(BE.>.. - IW.,\).

((i..'i.10)

I\prp 0.
1
, and 0,,\ denote partial dprivatives wit.h respect t,o the coordinalps Jf and ,\,

rpspl'ctive!y. It can be shown that. t.he original Einstein-Maxwell syst.pm of equations
provides the consistency condit.ions for system (6.5.10) and yields four uonlinear
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part.ial differential equations for four unknown functions (Ernst potentials) X, Y, E,
B which can be obtained by varying the following "action" functional:

(6.5.11)

wh('re the "Lap;rangian" Cis

C::;: :L~2 [(VX)2 + IVY + 2(EvB - BvE)f] + <~ [(VE)2 + (VB)2] . (6.5.12)

1\11 opNat.ions of contradion and ind('x raising are carri('d out here m;ing the 1.\\70

dilTlC'lIsional metric d,J (6.5./). In the absenc(' of an ('I,ectromagnetic field, it is
snHiri('nt. for solving Einst.('in's vacuum equations t.o set E = B = 0: t.he "Lagrangian"
C t1l('n t.a.kes t.he form

(6.5.13)

Cart.er (1971, 1973a) proved that the boundary conditions which uniqnely deter
mine t.11(' solut.ion X, Y, E, B follow from the following assnmptions: (a) spacet.ime is
asympt.ot.ically flat; (b) spacetime is regular everywhere in t.he exterior r('gion, incllld
inp; t.he symmet.ry axis; (c) the event horizon is a regular surface; that. is, it. contains
no physical singularities. In our case, these assumptions take t.he following form:

(a) /:), Fl, Y, and A-2X are r('gular funct.ions of A-I and JI in thf' asympt.ot.ically
dist.ant r('gion (as A -t 00). Their asympt.ot.ic b('havior is

wherf' .J, Q, and Pare const.ant.s that. play the roles of angnlar mom('nt.lllu, ('I('ctric
charge, and magnetic monopol(' charge of the black hol('.

(h) E, n, X, and Y on the symmet.ry axis (as JI -t ±l) are r('gular functions of
JI and A: fnrt.hcrmore, t.h(' following condit.ions ar(' sat.isfied:

E'li = 0(1), B,A::;: 0(1 - JI2 ),

11./1 = 0 ( I ) ,

X = O( I - J/2) ,

8.A = O( I - J/2) ,

X- 1X." = I +0(1 - J/2).

(r) I,;, n, X, and Y on t.he ('V('11t hori7-on (as /\ -t (') ,11'(' rq';l1la1' functions of JI

and /\, and t·h(' followinp; conditions hold

E,ll =0(1), E,A = 0(1), B. I• = 0(1), n.,\ = 0(1),
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}:,' = 0(1), }~~ = 0(1), x = 0(1). (6.5.16)

lu till' case of no electromagnetic field, setting E = B = 0 transforms the above
condit iOl1s into the boundary conditions for problem (6.5.13).

TIll' ncxt (main) stcp of the proof is to t~stahlish a dilrcrential identity that. rdatt's
t.wo arbit.rary stat.ionary axially symmet.ric solutions. In deriving this ident.ity, we
follow J\lm~ur (19H2). The proof essentially employs t.he invariance of action (1).5.11)

((i.5.J2) under t.he group SU(I,2) of transfonnations of field variables. I I III order to
establish t hi.,; invarianfc, it. is conwnient t.o exchange the variables X, V, E, FJ for
new variables E.,TI via the relations

E+iB= ~.
(+ I

(u.5.17)

In th('8e \'ariahles the Lagrangian density (u.5.12) is rewritten in t.he forlll

L = 2( 1 - (( - r(iW 2

x [( 1 - IJTj)V( V( + (I - (() V'I V11 + (17V'1 V( + 1]( V( Vij] ,

and the condit.ion of posit.iveness of X is equivalent t.o t.he inequalit.y

((+TI11 < I.

Denot.e by <I> the following non-degenerat(~ matrix constructed from ( and 1]:

(6.5.18)

(u.5.19)

Let.

2(
1+((-1]11

21](

2ij )2(11 _ . (6.5.20)
I+r(ij-((

(6.5.21)

where Vy<l> is a mat.rix obt.ained 1'1'0111 <I> by t.erm-by-t.erm different.iation of it.s com
ponent.s. A simple procedure verifies that. Lagrangian densit.y (6.5.18) admits the
following equivalent. re-arrangement.

1'1'1'(' .y)
f.., = 4" r Jy J . (6.5.22)

II Action (6.5.11)-(6.5.12) is a particular case of action of the type

8[Zo1J = JdnxV11ubfJuZo1lJbZo1Co1B,

wherea,b = 1, ... ,n; A,B = I, ... ,N; ')'ab =')'ab(x); CAB = GAB(Z). The extremum ZA(x) of
this action is a harmonic mapping [Misner (1978)J. The invariance mentioned above signifies that in
the case considered here, the unphysical space (ZA are its coordinates, and CAB(Z) is its metric) is
homogeneous. Bunting (1983) suggested a different proof of the uniqueness theorem. His proof does
not make use of this symmetry but is based on the fact that the curvature tensor of this space is
constant in sign. For the exposition of this proof and its possible generalization, see Carter (1985).
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Here Tr deuotes the operation of finding the trace of the matrix, and operations with
t.he iudex Yare carried out, using the metric ""Ylf Y .

Let (J be a pseudo-unitary matrix satisfying the couditiou

(!+IJ (J =TJ, 1J = diag( -1,1,1) , det U = 1.

Th('u the luat.rix

,~= (J<PU- I

(6.5.:2:1)

(6.5.21 )

is of the SeHne f01"l1l as (6.5.20) for the transformed variables 1, and~. If the trausfol"llla
t.iou Illatrix U is iudepelldellt of xl', the Lagrangian deusity (6.5.22) obviously relllaius
iuvariaut under trallsformations (6.5.24). In other words, actiou (6.5.11), (6.5.18) is
invariant lIudl'r the group SU(I,2) of nonlinear transforlJlatiolls ((, 'I) -t (1"ij) gt'u
erated by lillear representation (6.5.24). In accordance with Noether's first theorenl,
this invariance implies conservatiou laws. In our case, they are equivalent to t.he
relation

(6.5.25 )

which holds for the solutions cI> of the field equatiolls.
Consider now two arbitrary fields cI>1 and cI>2 of type (6.5.20), and construct a

matrix cI> = cI>1 <1>2'1. It is then possible to verify the following differential identity:

1'1' {cI> [V'x (pin - V'x (pjn]) +V'x [p V'x (TrcI»]

= p Tr {cI> [jIX it +12X i{ - 2i2X if]} ,

where

(6.5.26)

(6.5.27)

Identity (6.5.26) serves to complete the proof of the uniqueness theorem. Let
(XI, YI, £1, Bd and (X2 , Y'l, £2, B2 ) (or cI>1 and cI>2) be the solutions describing two
stationary axially symmetric black holes and satisfyillg the regularity conditions
(6.5.14)-(6.5.16). Then the first term on the left-hand side of (6.5.26) identically
vanishes, and the second term vanishes if expression (6.5.26) is integrated over the
exterior region ,\ > C, -1 :S 11 < I, and boundary conditions (6.5.14)-(6.5.16) are
taken into account. On the other hand, it can be shown [Mazur (1982, 1984)] that
the expression on the right-halld side of expression (6.5.26) is nOll-negative. Since
the integral of the left-hand side over the region ,\ > C, -1 :S Jl < 1 vanishes, the
right-hand side of (6.5.26) must vanish identically ou the solutions cI>1 and cI>2. It is
then proved that vanishing of the right-hand side of (6.5.26) implies, when bouudary
conditions (6.5.14)-(6.5.16) are taken into account, that

(6.5.28)
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which implies that only one solution of the field equations corresponding to the ac~

tion (6.5.11) with (6.5.18) satisfies the prescribed boundary conditions. It is proved
t.hereby t.hat any stationary axially symmetric black hole is uniquely defined by fixing
the values of four arbitrary parameters: C, J, Q, and P.

To complete t.he proof, consider the following stationary axially symmf't.ric solu
tion of Einstein-Maxwell equat.ions

d 2 ~ (d . 2 2
.S = - Et - a Sill Odr/J)

(6..5.29)

(6.5.30)

where

(6.5.31 )

This is a generalization of the Kerr-Newman metric (see Appendix D.l) which in
cludes an additional paramet.er P. The structure of the electromagnetic fif'ld de
termined by this parameter indica.tes that P must be identified with t.he monopole
magnetic charge.

It can be shown that the solution (6.5.29)-(6.5.30) satisfies boundary condit.ions
(6.5.14)-· (6.5.16) and contains exactly four arbitrary parameters: M, a, Q, and P
(related to the parameters J and C by the formulas J = Ma and C = (M 2

- 0.
2



Q2 _ p2)1/2, respectively). Hence, this solution is t.he most general one, describing
an isolated stationary axially symmetric black hole in t.he Einstein-Maxwell t.1ll'ory.

It is llImally assumed that a bla.ck hole has no monopole magnetic charge (P = 0).
Solution (6.5.29)-(6.5.30) then transforms into the Kerr-Newman metric (D.I )-(D.3).

This proof of the uniqueness theorem is greatly simplified if the black hole has
zero electric and magnetic charges [Carter (19i6)J. This limiting case is obtained by
setting." = E = B = 0 and by denoting by <1>, instead of matrix (6.5.20), t.he '2 x 2
matrix obtained from (6.5.20) by deleting the last. row and the last. column. Identity
(H.5.2(i) t I!pn t.ransforms int.o t~he ident.ity found by Robiuson (197.5) ill provinp; the
uJJiC]l!elH'SH theorem for nonchargl'd st.ationary axially Hymmetric black holes.

6.6 Analytic Continuation of the Kerr-Newman
Metric Inside the Event Horizon

The stationary metric of a rotating uncharged black hole outside the event horizon
was discussed in Section 3.4. We have explained there why the Kerr metric extended
into the region within the event horizon cannot describe the spacetime inside the black
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hole. Of course, the same arguments hold in the general case of charged rotating hole
described by the Kerr-Newman metric (see Section 3.7).12

Nf'vertheless, in this section we consider a formal continuation of the Kerr-Newman
mt't.ric t.o the r('gion within the event horizon. The following rt'asons justify t.his anal
ysis.

First, t.ll(' structllr(' of t.his continuation proved to be quitt' nnexpectt'd. An anal
ysis showcd t.hat the total spacetime in general relativit.y may be topologically very
complicat.cd. lIypothest's were advanced that travel between different. spaces can be
pm,sible if snch a t.otal solution is used providt'd there exist structures similar to those
d<'Scribed by the total Kerr-Newman solution. In reality, the reliability of such hy
pot.h('st's hrcame very problematic after this solution had been proved to be unstable
illsidr the evrnt horizon.

Second, in order to prove the instability of tht' Kerr-Newman solution inside the
black hole, one necessarily begins by giving the solution itself and then proving its
instability. The properties of the analytic continuation of the Kerr-Newman solution
within the event horizon are discussed below in this section, while instabilit.y is proved
in Chapter 14.

The global structure of the Kerr-Newman spacetime is analyzed, in principle, just
a.<; in the case of the Schwarzschild metric. An additional difficulty arises because of
the absence of spherical symmetry. We assume t.hat M 2 ~ Q2 + a2 ; otherwise, the
solut.ion does not describe a black hole. First of all, recall that in Boyer-Lindquist
coordinat.es, t.he event horizon lies at. r = r+ = M + (M 2 - n,2 - Q2)1/2 (see (3.6.1)
and Appendix 0.1). Metric (3.6.1) has a singularity here. In fact, the singularit.y is
a coordinat.e one. This can be established by transforming t.o Kerr coordillates (see
Appendix 0.7). All curvature invariants are finite at r= r +, and t.he spac('t.ime has
no singularit.irs.

When a metric is considered inside a black hole (r < r+), onr has to rrmember
that. t.he coordinates (t, r, 0, r/J) need not have a simple meaning of the temporal and
spherical spatial coordinates, as they had at. infinity in t.he external space. We have
already encountered such behavior when analyzing the Schwar7.schild met.ric (see Sec
t.ioll VI), whrre t.he variable r becamt' the time coordinat.e for r < r~. The physical
mcalling or coordinates in t.heKerr-Newman met.ric is even morr complex. Th(' coor
dinat.e grid is produced by coordinat.e lin<'s "tracrd" in til(' curved fonr-dinH'nsiouaJ
manifold; t.hrir physical meaning can he found at. each point. by considering t.hpir
orirnt<l.tiou with respect. 1.0 t.he l1ull cone.

H r < 1"+, mrt.ric (3.6.1) also ha.<; sillgularities at

r_:=M_(M 2 _a2 _Q2)lf2 ((i.li.1)

a.nd at

(6.6.2)

12Even though we have assumed in t.his section I.hat t.he black hole has no magnet.ic charge, t.he
results presented here are readily generalized to the case when the magnetic charge does not vanish.
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6.6. Analytic Continuation of the Kerr-Newmau Metric

Figure 6.3: Qualitative structure of
the seetion t = cunst, (P = const close
tu ,. = o.

Figure 6.4: Penrose-Carter COII

formal diagram for the total J<err
Newman spacetime.

i.e., at the points where l' = 0 and () = 7f /2. The singularity (6.6.1) is a coordinate
One, like r = 1'+.

Singularity (6,(1.2) is a true singularity where the spacetime curvature is infiuite.
Figure 6.3 shows the qualitative structure of the spacetime section l = wnst, ¢J =
const at r = O. The true singularity in the section l = const is a "ring" r = 0,
() == 7f /2 in the equatorial plane. If we follow the line () == const =1= 7f /2 (follow it
in the mathematical sense), no singularities are met on the way along the line. The
spacetime is regular at r == 0, and we can enter the region where r < O. The spacetime
continues up to r == -00. However, one cannot assume that the section shown in
Figure 6.3 is spacelike. As we see from (3.6.1), the coeffiCient (if d¢J2 becomes negative
at sufficiently small r aud () close to 7f /2; hence, ¢J becomes a timelike coordinate. But
¢J is a cyclic variable with a period of 27f.J3 This means that under these conditions,
the section contains closed lime/ike curves (lines that lie along the singular ring and
close to it).

The conformal Penrose-Carter diagram of Figure 6.4 shows the complete structure
of the true analytic continuation of the Kerr-Newman spacetime.14 A similar diagram

13For metric (3.6.1) to be asymptotically flat at infinity, r --7 00, the variable ¢j must vary frolll 0
to 211', and 0, from 0 to 11'.

14The structure of the maximal analytic continuation for an extremal black hole is somewhat
different (see Carter (1966a), Hawking and Ellis (1973)]. The maximal analytical conlinuatioll for
the Reissner-Nordstrom metric was obtained by Graves and Brill (1960). The maximal analytic
continuation for the Kerr spacetime was given by Carter (1968b). The general method of construct
ing a maximal analytic continuation for stationary metrics with horizons was presented by Walker
(1970). See also O'Neill (1994)
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for the Schwarzschild spacetime contains four distinct regions (see Figure 5.4c); a
white hole, two exterior regions that are asymptotically flat at infinity, and a black
hole. The diagram for the Kerr-Newman solution contains an infinite number of
regions. Regions I and I' correspond to similar asymptotically flat regions of the
Schwarzschild black hole. Region II' corresponds to a white hole, ami region II, to a
black holt>. These regions are not bounded by spacelike true singularities, as they arc
in the case of the Schwarzschild solution. Region II connects to regions III and III'
across two distinct boundaries 1" = r_. Each of these regions ha.~ a ring singularity
like the OIle discussed above; in each of these regiolls it is possible to go illto the- -,
region where 1" < 0 (regions III and III) up to r ~ -00 bypassing the singularity.- -,
As r ~ -00, the spaces III and III become asymptotically flat. Ring singularities
E = 0 manifest themselves in these spaces as "naked singularities" of negative mass.

Regions III and III' are connected across the boundaries r _ to region V' which
is a whitt, hole completely identical in its properties to region II'. Region V', in its
turn, is connected across the boundaries r+ to regions IV and IV' that are completely
identical in their properties to I and I', and so on (to infinity).

The tilIIelike line of a particle that fell into the black hole (region II) 1"1'0111 the
exterior region I continues to the intersection with one of the bonndaries r = ·f_.

Only motions to progressively smaller r are possible in the region II. Having crossed
l' = 1'_, a particle enters either the region III' or 111,15 Here both the 1lI0tions with
decrea.~ing r (down to r ~ -00) and those with illcreasing r are possible. In the
latter case, a particle crosses the boundary r = r_, enters the regioll V' (where only
motion with illcreasing r is possible), and crosses one of the boundaries r = 1"+, thus
emerging in the region IV' and IV. Thus, the particle whose world line is shown in
Figure 6.4 can leave "our" exterior space I and enter allother, identical space IV.

Note that the topological structure shown in Figure 6.4 is preserved in the case
of a charged black hole (Q f. 0) even if the hole is not rotating (a = 0) (provided
Q2 < M 2 ). The only difference is that in this case the singularity E = 0 changes
from a ring singularity (in the t = 0 section) to a point-like one. Now it becomes
impossible to bypass this singularity and enter the region r < O. In this case regions
- -I

III and III are absent although it is again possible to pass from I to IV along a
timelike world line.

The possibility of such "journeys" generated a number of exotic hypotheses about
the outcome of a real gravitational collapse [Novikov (1966a,b, 1970), De la Cruz and
Israel (1967), Bardeen (1968)]. However, we have already mentioned that, owing to
the instability of the Kerr-Newman solution inside the black hole, the diagram of
Figure 6.4 has hardly anything to do with reality.

The boundaries r == r _ of region II are known as the Cauchy horizons. This
designatioll reflects the following fact. If we trace a spacelike Cauchy hypersurfaces

15It is possible to get into the region V' directly from II across the intersection of the boundaries
r_.
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S in the entire spaces I and I' (and possibly, through parts of regions II' and II) as
shown in Figure 6.4, and fix on this surface the Cauchy data for any fields or particles,
then these data define the evolution of the fields and the motion of the particles only
up t.o the boundaries r = r _. Field evolution and part.icle motion in t.he rf'gions III
and III' can be influenced by sources inside these spaC!~s; these saurc('s are d('fined
indf'pedent.ly of t.he data on S. In other words, the spacetime is ulI.pTf'dietable beyond
the Cauchy horizon.

The following factor constitut.es an important property of the Cauchy horizon.
Figure 6.4 shows that the later a light signal from the region I reaches II, t.he closer
its world line passes to the boundary r _. As a result, t.he world lines of all signals
going int.o t.he black hole as t ~ 00 get "accumulated" close to r _. The factor t.hat.
causes the instability of the Kerr-Newman solution inside a black hole wit.h respect.
to small perturbations is this concentration of signals along r = r _ (see Chapt.er 14).

6.7 Generalization of the Uniqueness Theorems

Black holes arf' solutions of highly nonlinear gravity equat.ions that are characterizC'd
by non-trivial topology and causal structure. As compared with the field t.hC'ory
in the given flat spacetime background, one might expect greater diversity of black
hole solutions and an additional complexity of their stmctme. In fact, thC' reverse is
observed, however paradoxical it may seem. In the presence of a Dlack half' thf' class
of possible solutions describing their final stationary configurations narrows down
dramatically, and its complete description becomes possible under certain constraint.s.
The physical reason for this phenomenon is that the gravitational field is universal
and acts on any matter possessiug energy-momentum. When a black hole is formed,
gravitat.ion gets so enhanced that extremely rigid conditions have to be sat.isfied
in its vicinity for physical fields to be in equilibrium; in fact, these conditions are
equivalent to eliminating from the field configuration all df'grees of freedom capable
of propagating. IIence, the genf'ral picture is considerably simplified. The uniquenf'ss
thf'orc'ms proved in t.his chapter give grounds for t.his conclusion.

T!I(' uniquenf'ss throrems for t.he black holes solut.ions of thf' Einst.ein-MaxwC'1I
t.1IC'ory can he p;eneralized and ext.ended to somC' other fields. In t.his section, WC'
discuss briefly these results.

Search for new no hair theorems has quite a long history. First works Wf're t.rying
to proV(' that. barion, lepton, and similar charges cannot be specifif'd for a hlacl< hole.
Hartle (1971, 1972) showed t.hat a lepton charge absorbed into a black holC' caunot.
be det.ected by measuring the forces created by this charge due to til(' pxchauge of a
nentrino-ant.inent.rino pair. Similar results on non-measurability of the lept.on, barioll
and other quantum numbers of a black hole were provf'd by Teitelboim (l972a,h,c).

Bekenst.ein (1972a,b,c) proved t.hat a stationary black hole cannot haV(' hair in
t.he form of massive classic fields. He used t.he following method. Let t.here be a
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(6.7.1)

(6.7.2)

numher of physical fields in addition to the gravitational field. We denot.e this set by
cP A and assume t.hat the collective index A enumerates all components of the fields.
Let t.hese fields be described by the action

~V[cpA] = f C(CPA,CPA.I') J=gd4x.

The equat.ions implied by the action are

_1_ [FiJ~] _ aC =o.
FiJ . aCPA.I'.1' acpA

Mult.iply this equation by CPA, take the sum over all A,and integrate over the entire
exterior region of the black hole. Denoting

w _ ~ aC
{T-~CPA--

A acp A.I'

and making use of Stokes' theorem, we obtain

(6.7.3)

(6.7.4)-f Ii' deJ" +L / (CPA.I' aaC + iPA aaC ) FiJd4
x = O.

A CPA~ CPA

lIpre deJll is an element of the boundary hypersurface, and integration is carried out
oVl'r the elltire boundary of the ext.ernal region of the black hole; t.hat is, t.he event
horizon, spatial infinity, and the null and the timelike infinities of past and future.

The next relevant fact is that bJI in the stationary case for massive fields and
scalar massless field falls off sufficiently rapidly at spatial infinity, while the quantity
li'deJ

"
vanishes at the horizon and at infinite time so that the first int.egral in (6.7.4)

vanishes. If t.he integrand of the second integral is positive definite, its vanishing
implies t.hat. t.he corresponding fields CPA also vanish, which proves t.he sought result
all the absence of "hair" of this field.

Making use of this method, Bekenst.ein (1972a,b,c) ",";:~ able to prove that there
cannot he it static black hole with a regular scalar, vector or tensor massive fields
outside it that are described by linea.r equations wit.hout sources. A similar result.
is valid for stat.ionary axia.lly symmetric black holes provided the lIlet.ric is a..,sumed
t.o satisfy t.he circularity condition [Bekenstein (l972c)]. Unfortunat.l'ly, t.hC' proof of
UlC' validity of t.his condit.ion in the general case was not found. This is au ohst.acle
t.o carrying out. t.he complete proof at. t.he same level of rigor as t.he proof of tile
1Il1iquellf'ss t.Iworem for elcct.rovac black holes.

It call bf'shown [Bekenst.ein (1972b,c), Cha..,e (1970)] t.hat. a hlack hole caullot.
have "hair" due to a scalar massless field cP described by the eqlla.t.ioll (0 - ~ Rlcp = 0
aud vanishing at infinity provided t.he value of cP at the horizoll is finit.p. A similar
result is also proved in t.he Brans-Dicke scalar-t.ensor theory [Hawking (1972b)]. If
t.he condit.ion of finiteness of cP is dropped, it is possible t.o constmet. a solution t.hat.
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descrilJl's all ('xtrl'lIlal 1I01l-rotatillg black hole with a scalar massless field [Bocharova
cf Id. (l~iO), Bekt'llsteill (1975)]. This solutioll was found to be unstable [Bronnikov
and I\in'('v (19i3)].

TIll' 110 hair theorelll can bp proved for a wider class of scalar fields illteracting
with a static black hol('. NalIldy, consid('r till' actioll

II '"' ~- j. <14.1" CO [ll - F pi'" - £(11' <.1)]IGrr V-Y /,v 'r· (li7.J)

/1('1"(' <I.' = (v<,J f, alld £ is a fUllctioll olwyillg COIlllitiollS O£/ {j.p > () ami [; > o.
(Thes(' cOllllitions gllarantee that the energy of the static scalar field is posit.iv('.) Theil
t.hr Ollly static spherically symmetric black hole solution is the Reissner-Nonlstri)1II
one with no scalar field [Bekenstein (1995), Mayo and Bekenstein (1990)]. The theo
rem generalizes earlier results by Beusler (1992,1995) alld Suclarsky (1995). It admits
gen(~ralization to lJIany scalar fields [Bekenstein (1995 )].

Starting with action (6.7.5) and using a conformal transformation with a confor
mal fador depending on the scalar field, one can generate an action containing the
non-millimal interaction of the scalar field with the curvature. By using this approach
Mayo alld Bekenstein (1996) wei"e able to gen(~ralize their result to the theories with
non-minimal coupling. Namely, consider the action

IV == _1_1 d4x r::::g [R - F FJ"']167l" V-Yo /'"

(0.7.6)

where 1'P 12 == cp cp', and DI' == 01' - ieAw Then for any regular potential V and for any
~, the statiollary black hole solutions of the action (6.7.6) can have no charged hair,
and are restricted to the Reissner-Nordstrom family. For positive definite potential
and for ~ ~ 0 or ~ ~ 1/2, the black hole solutions do not have uncharged hair (with
cp real and e == 0). For review of these and.other results on the no hair theorems for a
scalar field interacting with gravitational and electromagnetic fields see [Bekensteiu
(1996)].

The uniqueness theorem can be proved for gravity interacting with the special
class of nonlinear scalar fields kuown as the nonlinear sigma model. The corresJlond
ing action is of the form

(6.7.7)

In this action GAB( cp) is a metric on a Riemannian manifold, and cpA are coordinates
on it. The theorem proved by Heusler (1996b) fUllS as follows: The only stationary
and axisymmetric, asymptotically flat black hole solution for the action (6'.7.7) with
regular event horizon consists of the Kerr metric and constant field cpo
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I\S we already mentioned, the no hair conjecture is not valid for more general
dasses of theories. For example, it is violated if one includes non-Abelian gange
fields. The existence of non-Abelian gauge field hair of black holes was proved in the
early I!l!JU':-;, Now a variety of black hole solutions is known that exhibi t dilren-Ilt
t.vpe~ of hnir. Some of these black holes are characterized by additional new charges
that lh't.erlllille chara<'t.eristics of the hair. Such hair is called pr'imury hair. Fur uthn
hlack holt'S the number of parallwteni specifying tht' solution is not illcrt·a.sed, 11l1d

hair il; IIIliqlldy dl-fined by the "old" parameters (seculldary hair). We shall discnss
111(>1;(' sulu t.iuwi later in Chapter 13 in the more gl'll('ral context of black hull's ill
IIIlilied Ihl'IHies.



Chapter 7

Physical Effects in the Gravitati
onal Field of a Black Hole

7.1 Extraction of Energy from a Black Hole

7.1.1 Irreducible mass

III t.his chapter we continue the discussion of the effects of interaction bet.ween c1a..,sical
particles and fields and black holes.· Let us begin by analyzing the efficiency of energy
extract.ion from black holes. Recall that although a black hole is by definit.ion a region
of no esrape for material bodies and light rays, sit.uations are possible in which energy
can he extracted via certain physical processes. We will see later that t.his energy
is ext.ract.ed from a field connected to the black hole and surrounding it.. Thns,
ext.rartion is possible if the black hole rotates or is charged. We already discnssed
t.wo exampl<,s of snch processes; namely, the Penrose process (Section 6.2.~) and
snperradiance (Section 4.8.2). In ihiR section, we ('st.ahlish some general m;t.rict.ions
on the posRible efficiency of this kind of process.

Consider t.he efficiency of the Penrose process (see Figure 6.1). Let. Cj = - P:' ~(I)/'

bl' t.1l(' ('nergy and ji = P:' ~(<I»I' t.he angular momentnm of a particle or t.yp<' i with
IT\oment.ullI P; 1 whirh moves in t.he gravitational field of a Kerr hlack hol<' (i = 0
dl'not.<,s alI infalling particle d('cayiug in the ergosphere; i = 1, a particll' <,jert.l'I\ t.o
ilIlinit.y. and i = 2, a part.icle ahsorbed into the black hole). Not.(' now t.hat. at. the
<'wnt. horizolI the vect.or

I" -'-- tI' + nil tl'
'-"(') "(<1»' (7.1.1 )

where nu is t.he angular velocit.y of t.he black hole, is null and t.angent. t.o the gen
('('at.on; of t.he horizon. Since P:' is a timelike vector and II' is future direct.ed, we

I Those features of physiral proccsse.~ in the field of a black hole for which qnant.nm pllenomena
arc import.ant. are disrnssed in Chapters III and 11.
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(7.1.2)

Therl'forl', it particle sinking into the black hole obeys t.he inequality

(7.1.3)

Thus, if thp ollt.going particle has a higher energy t.han the infalling one (Cj - Eo =
-'::2 > 0), il similar relation holds for their angular momenta:

(7.1.4)

1'1](' paralllf't.Prs AI ami J of t.he black hole change when a part.icle is ahsorhpd,

(7.1.5)

with condition (7.1.3) signifying that

(7.1.6)

The physical processes, resulting in changes liM and liJ of the black hole parameters
such that. they ohl'y t.he relation

()M /nll
- OJ = 0 , (7.1.7)

are said to be rCl'ersible.
The diffen'nt.ial equation (7.1.7) relating the changes in M and J in a reversible

process can be integrated [Christodoulou (1970)]. Note that the total differential of
the functiou

can he writ,t.('11 in the form

8..4 = J (liM _ fJJ) .
JA!,I - j2 nil

Herl'

nll == __1/._ = _Q_,_ = J
1"~+a2 2Mr+ 2(M2+JM4_.P)M

(7.1.8)

(7.U))

(7.1.10)

is t.he angular velocity of the black hall'.
Rdatious (7.1.6) and (7.1.9) show that the following inequality holds for t.he above

discussed procpsses involving a particle falling into a black hole:

(7.1.11 )
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eqnality holds if and only if the process i::; reversible. The qnantity

Mi , = (..4/2) 1/2

245

(7.1.12)

is known as the il'lf'l!uciblc //lUSS of t.he black hull' [Christodolliou (1970)]. Equat.ions
(7.I.K) and (7.1.12) giw

., ., J2 .,
i\l- = Ali; + A 2 ~ AIi;·

4 IiI'

Thin rdation ilJlplie::; that the Penrose process cannot make the initial ll1il.~S M less
than AliI" and hence the maximal possible energy gaiu in this process is!">.[ = !">.M,
where

~AI = Afu - Mil'(Mo, Ju), (7.I.H)

and Mo and Ju arc the initial mass and angnlar momentum of the black hole;
Mir ( Mu, Jo) is the corresponding to ilTeducible mass.

Simple arguments show that for a given initial mass Mo, the maximal valne of
~M,

~Mmax = (I - 1/v'2) Mo~ O.29Mo (7.1.15)

is reached for an extremal black hole with Jo = Mg.
It is easily shown that the quantity .A diffe..s frolll the area A of the Kl'l'l' black

hole only by a numerical coefficient:

(7.1.16)

In view of this, condition (7.1.11), which signifies non-decreasing black hole area in
the processes analyzed above, is in fact a particular case of the general Hawking's
area theorem (Section 5.4).

Hawking's area theorem makes it possible to draw a number of general conclusions
concerning processes involving black holes. First of all, inequality (7.1.6) can easily
be extended to charged black holes and to processes involving charged particlPs. This
is done simply by making use of expression (7.1.16), where r+ for a charged black
hole is

r+ = M + JM2 - a2 - Q2 .

The condition oA ~ 0 then yields

oM ~ nil oj + <flH oQ,

(7.1.17)

(7.1.18)

where oj and oQ are the changes in the angular momentum and electric charge of
the black hole, and

(7.1.19)
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hi its electric potential.
Pm!'esses for which equality is satisfied in (7.1.18), which generalizes (7.1.7), are

also said to be reversible, The property common to all reversible pmcesses iii I.hal
Ihe area of black holes does not increase.

II slllJIIld be emphasized I.hat 8J in (7.1.18) is till' lotal chullge in the angular lUO
I1ll'ntl1ln of a hlack hole. WIll'ther this change is caused by the angnlar nlOllll'nt I1ln or
the incoming partide (corresponding to its orbitall1lotion), or hy its inherl'lIt angular
nlOnlentlll1l (spin), is irrelevant. The generalized in('qualit,y (7.1.18) applied to till'
lattcr case Herves to show, among other things, that an additional gravitational spin
spin interaction exists between the spin of the particle and the angular I1lOl1lentUl1l
of a rotating black hole [Hawkillg (1972a), Wald (1972), Bekenstein (1973b)].

As an illustration, consider the simplest case of a particle of spin s, charge e, and
energy E falling on a black hole and moving exactly along the synl1lletry axis. If this
particle drops into t.he black hole, we make use of the conservation laws ami obtain

oQ =e, JJ = as, JM 5:. £. (7.1.20)

Here a = 1 if the spin points in the direction of rot.ation of the black hole, and a = -1
otherwise. The inequality in the last of relations (7.1.20) is possible because energy
may be partly radiated away. Relations (7.1.18) and (7.1.20) show that a particle
with 1I0nzem spin can fall illto a black hole only if its energy £ exceeds the quantity
as rlH+ e ep/l. The second· term, e epH, carries the meanillg of stalldard electrostatic
energy ofrepulsion. The first term describes repulsion (a = 1) or attraction (a = -1)
due to the spin-spin iuteraction in gravitation theory. This interaction exists between
any two rotating bodies; for a detailed derivation of the expression for this force,
and the description of the analogy of the gravitational spin-spin interaction and
electromagnetic interaction between magnetic dipoles, see Wald (1972).

7.1.2 Black hole as an amplifier

Since the motion of particles in the geometrical optics is directly related to the prop
agation of wave packets it is logical to expect that there exists an analogue of the
Penrose process for wave scattering Oil black holes. Really, we already saw in Chap
ter 4 that under certain conditions a wave incident on a rotating black hole may also
be enhanced. Let us derive (using Hawking's area theorem) the general conditions
under which it takes place.

The Kerr-Newman metric describing the geometry of charged black holes is sta
tionary and axially symmetric; hence, expansion in eigenfunctions of the operators
~ft) vp. == vt> and ~(q,) vp. == vq, is convenient for describing wave propagation in the
background of this metric. Consider the behavior of the field mode "P A with quantum
uUlllbers w, m. The temporal and angular dependence of the mode is

(7.1.21)
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The field "PA can describe scalar, electromagnetic, or gravitational waves2 (or other
boson fields whose quanta may have, for instance, mMS IL and charge e). Far from t.he
black hole, solution (7.1.21) describes the ensemble of quanta, each having energy n.w,
a ¢>-component of angular momentum lim, and possibly an electric charge e. Hence,
the ratio of the flux of the ¢>-component of angular momentum and of electric charge
across a large sphere surrounding the black hole t.o the flux of energy across t.his
sphere are equal to m/w and e/hw, respectively. (This can be proved rigorously by
using explicit expressions for the energy momentum tensor and current corresponding
t.o t.he field "PA') Making use of the energy and angular momentum conservation laws
which reflect t.he symmetry of the problem at hand, and electric charge conservation,
one can show that t.he interaction of the wave "PA with t.he black hole changes t.he
black hole mass, angular moment.um, and charge by 8M, 8J and 8Q related as follows

8J = m 8M,
w

e
8Q=-8M.

hw
(7.1.22)

Using now t.he inequality (7.1.18) implied by Hawking's area theorem, we oht.ain

8M (1- mn
H

_ e<fl
H

) 2: O.
w hw

Thus, any scattering of the modes which satisfies t.he condition

hw < hmnH +e<flH

(7.1.2:Q

(7.1.21 )

results ill a reduction of the mass of black hole. If t.his condition is satisfipd, the
scat.!;pf('d wave possesses an energy greater than the incident wave; t.hat is, tJJ(' inci
dent. waw is amplified [Zel'dovich (1971, 1972), Misner (1972), Stal'obinsky (Hl73),
St.arobiusky and Churilov (1973), Unruh (1974)]. This dfeet, known as sup('Tmdirw('(',

WilS alrpady discussed in Section 4.8.2.
The possibilit.y of wave amplification by rotating black holes was first. not,icpd by

ZeI'dovich (1971, 1972), who employed an analogy of such black holes t.o rot.at.ing
absorbing bodies. Indeed, consider in ordinary flat space a cylindrical waV(' incidpnt.
on a cylinder of radius H, rotat.ing at an angular vplocity n around an axis ("()in('idin~

with the.:; axis. TIH~ corresponding solution "PA has the form

!p" = !,,(p) exp( - iwt + im¢). (7.1.25)

On t.he cylinder slll'face (p = H) this field corresponds to a perturbation propagating
at a phase velocity d¢/dt =w/m. If the velocity nH at which matt.er moves on t.he
snrface of a dielectric Or conducting cylinder is greater t.han the linear velocity Hw /m.

2Electromagnetic and gravitational waves propagating dose to a charged black hole may trans
form int.o each other (for det.ails, see Section 7.3). This mixing does not. change t.he general condit.ion
of wave amplificat,ion bllt. calls for a more careful analysis.
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at which the phase of the incident wave moves on the cylinder surface, absorption of
t.he wave is replaced by amplification. The corresponding condition is

w<!1m. (7.1.26)

This effect is related to t.he so-called anom.alous DopplerejJect 3.

Note t,hat the amplification condition (7.1.24) is universal and independent of the
spin of the field. For particles with nonzero spin, the azimut.hal quantum number m
corresponds to t.he quantum number of total (orbital and spin) angular momentum.
fly cont.rast, tllf' wave amplification factor depends essentially on the spin of the field.
The maximum increase in t.he energy of electromagnetic waves is only 4.4 %, but for
gravitational waves it is 138 % [Starobinsky and Chnrilov (1973)].

lJllder certain conditions, this amplification is possible also for the gravitat.ional
radiation of a particle moving close to a rotat.ing black hole. If t.he particle gained
the same amount of energy that it emitted to infinity, it could orbit the black hole
without ever falling on it: This particle would be a sort of cat.alyst for extracting
energy from a black hole. Such orbits are called "floa/ing" [Misner (1972), Press and
Teukolsky (1972)]. Unfortnnately, Detweiler (1978) was abl" to show that regardless
of the angular velocity values of the black hole and test p,Hticle, this process cannot
occur.

The following curious effect is connected with superradiance [Damour et al. (1976),
TerIlov d al. (1978), Zonros and Eardley (1979), Detweiler (1980a), Gal'tsov (1986)].
Let a waw packet of a massive scalar field revolve on a circular orbit arouml a
rotat.ing black hole, and let the energy on this orbit be such that ma.<:;sive particles in
this packet. cannot be radiated to infinity. However, these part.irles can move acrosi;
t,he ev"nt hori7,Oll. If the frequency of quanta falling into the black hole satisfies
t,he condition of superradiance, the fall is accompanied by a more intensive out.ward
radiation. The particles of this radiation have the same quantum numbers a.'i the
particles in the packet; hence, they cannot escape to infinity and have t.o accumulate
close t.o the orbit. of the packet.. Finally, t.his results in an instabilit.y. Ternov d ilL
(1978) and Detweiler (1980a) proved that this instabilit.y holds for a scalar field of

31.1'1. we have a t.ransparent. medium wit.h t.he refract.ion coeffirient, n(w) ami an oscillat.or or at.om
moving in it. wit.h a const.ant. velocity v. We assume thaI. t.his syst.em (osrillat.or or at.om) can rarliat.e
at. frequency Wo (as measured in it.s own reference frame) .. Then t.he frequency w of t.he radiat.ion
from t.he moving syst.em measlUed by an observer which is al. rest. wit.h respect. 1.0 l.he IIl1'dillIII is

w(O) = We v'J=V'I .
1 -lln(w)cosO

For t.he emission outside the CherenkOll cone (vn(w) cos 9 < 1) this formula rlescrihes an orrlinary
(normal) Doppler effect.. For a superillminal motion (v > n- I ) and for Ihe direclion ill~ide I.he
Cherenkov cone (vn(w)cos9 > 1), the radiat.ion with positive w is possihle only when Wo < 0; that.
is, when the system emitting phot.ons bl'<'omes excited as a result. of emission. This effect. is known
<1.<:; t.he anomalous Doppler effect [Ginzburg and Frank (1947)]. A det.ailed discussion of I.he effect of
superradiance for moving and rot.ating bodies can be found in [Holotovsky and St.olyarov (I9RO)].
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lIlass II sIKh t.hat 11Af/m~1 « 1; the characteristic time of evolution of thl' instability
is

(7.1.27)

Whl'H' 1111'1 and 11'1 are the Planck lIlass (,,-, 1O-5g) and Planck tilllp (,,-, 10-44 s),
H's))(·divdy. A lIlore detailed discussion of the behavioj' of massivl' fields in the
spacl't.inll' of a rotating black hole can f(lUnd in Gal'tsov (1986) and Gal't.sov cI al.
(HJ8t\). No such instability develops with massless fields [Detweiler andlpser (1973),
Press and Teukolsky (l9n), Teukolsky and Press (1974)].

It. should be mentioned that even though the processes of energy loss by the hlack
hole described earlier in this section (Peurose process and superradiance) are very
important in principle for black hole physics, they could hardly produce appreciable
observable effects in actual astrophysical conditions [Mashhoon (1973), Wald (1974c),
Kovetz and Piran (1975a,b)]. Analogues of the Penrose process, in which the decay
of a particle is replaced by a collision of two particles, may have more attractive
implications. The collision produces two !lew particles one of which is ejectl'd to
infinity [Piran et al. (1975)]. One version of this effect is the Compton scattering of
a freely falling photon on an electron with a large angular momentum, llIoviug in tlIP
ergosphere [Piran ami Shaham (1977)J.

7.2 Electromagnetic Field of a Test Charge

7.2.1 Electric field of a point-like charge in the black hole
exterior

In this section we discuss the structure of an electromagnetic field created by a test
charge in the spacetime of a black hole. This is the silllpiest of the problems connected
with the electrodynamics of black holes, which is the main subject of the next chapter.
We have singled out the problem of the field of electric charges at rest near a black
hole in a separate section because several aspects of this problem are of independent
importance.

Before considering the formal aspects of the problem we make some general re
marks. In the absence of gravitational fields the electric field of a charge is radially
directed and the flux of the field through any closed two-dimensional surface is 47rq,
where q is the electric charge. If we bring the charge into the gravitational field of
a black hole its field will be distorted. Besides the general deformation induced by
the "weight" of the electromagnetic field, there will also be a more specific effect:
Some of the field lines enter the biack hole. It is important to note that until the
charge crosses the horizon the total flux of the electric field through the surface of
the horizon remains unchanged. This means that besides the "ingoing" field lines
there are an equal number of "outgoing" lines. In other words, the electric field of a
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f'igure 7.1: Penrose-Carter conformal diagram for the total spacetime of the Heissner
Nordstrom ulack hole.

charge lIear a black hole to some extent resembles the field near a conducting booy. 4

Since the field lines cannot end at the horizon, they penetrate into the black hole, and
hence there is a non-vanishing electromagnetic field in its interior. An observer falling
into the black hole will be moving with respect to the electromagnetic field.. Such an
observer will register electromagnetic radiation. This effect is closely related to the
effect of radiation of a uniformly accelerated charge. Another important aspect of the
problem is that due to the nonlocality of the electric field and its deformation under
the action of gravity its contribution to the self-energy of a charged particle depends
on the position of the particle. As a result of this effect, there is an additional force
(proportional to q2) acting on a charged particle in the field of a black hole.

We begin by considering the electric field in the black hole exterior created by a
point-like charge at rest near the horizon. Let a point-like test electric charge q be at
rest outside a charged eternal black hole. The black hole metric is fixed and the effect
of the field of the test charge on the metric is neglected.' The Reissner-Nordstrom

4In the next chapter we shall see that this analogy allows a quite rigorous formulation.
5Note that this formulation of the problem is, to a certain extent, idealized. If the field of the

test charge on the background of a charged black hole is treated as perturbation, the equation for
this perturbation would contain additional terms describing the perturbation of the gravitational
field (see Section 7.3). Following Linet and Leaute (1976), we drop these additional terms. This
operation does not change the general conclusion on the specific features of the field inside the
ulack hole. These additional terms disappear if a black hole is uncharged, Q = O. In the present
consideration we also ignore the instability of the charged black hole interior (see Chapter 14).
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met.ric, describing the gravitational field of the charged black hole, is
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(7.2.1 )

where 111 is the mass, and Q is the electric charge of the black hole.
Figure 7.1 shows the Penrose-Cart.er conformal diagram for the et.ernal black hole

in quest.ion. The coordinates (t, r) cover the region I shown in this figure. The world
line of the charge is denoted by'Y.

The electric field AI' created by the test charge at rest at a point (ro, 00 , tPo) was
obtained by Linet (1976) and Leaute and Linet (HJ76) who found and corrected a
minor inaccuracy in the formula derived earlier (for Q == 0) by Copson (1928). This
solution is

(7.2.2)

(7.2. /1)

where

R2 = (r - M)2 + (ro - M)2 - 2(r - M)(ro - M)" - (M 2 _ Q2)( I - )..2),(7.2.3)

n = (1" - M)(ro - M) _ (M2 _ Q2) .. ,

).. = ros 0 cos 00 + sin 0 sin 00 cos(</J - </Jo) . (7.2.'> )

The electric field E i == _gi
j Ao,j for the solution (7.2.2) has non-vanishing T and 0

componentR. One can also characterize the electric field by its components E i in the
physical (orthonormal) frame (eft eti. e~). We discuss the picture of the field lines in
Section 8.5 (see Figure 8.2). Here we just mention that the details of t.he pict.ure of
field lines near the horizon depends whether one uses E i or E i

• It will be shown t.hat
the field lines for E i always enter a static black hole orthogonally to t.he surface of t.he
hori7.0n. At. a great distance from the black hole (at r -+ 00), the eledri<' potf'ntial
Ao t.akes the st.andard monopole form Ao ::::: -q/r.

7.2.2 Electromagnetic field in the black hole interior

Solution (7.2.2) can be extendl'd from region I to t.he regions located inside t.he black
hole, using t.hl' mf't.hod of analytic continuation. For this purpose, it. is conVf'nif'lIt t.o
illt.rodu(f' Kmskal roordinates lJ, V (-00 < U, V < 00) which are reglllar in rf'gions
I, II, I', II', while ill region I t.hey are related to t.he coordinates (r, t) hy thf' forllllllaS

J [
r + - r - ( • )]l = - exp - 2 t - r ,

2r+
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(7.2.6)

The expre~~ion for the metric in these coordinat.es can be fonnd in Appendix 0.7
(formulas (D.70)-(D.RI)).

In Kmskal coordinat.r~ (U, V), t.he nonzero component.s of the analyt.ically con
tinued elect.romagnetir potrnt.ial A,. and the field st.rengt.h F,,,, an'

;\ == A,. d.-c" = _ .!L (M + !!) rt (dV _dlJ) ,
r 1"0 R r + - r _ V U

(7.2.7)

(7.2.8)

flV q {. n r [- 2 2 }P = Br2ro M+"R-R3ro-M-(r-M)cos(}j(ro-2Mro+Q) ,

F vo _ _ q_ sin () r+ - r - ( 2 _ M Q2) V
- 2 R3 2 TO 2 TO + ,

rro r +

Puo _ . q sin () r+ - r - (22M Q2) (!' - -------- r - ro+ .2r TO R3 rt 0

1n thf'sr formulas, r is assumed t.o be a function of U and V, drfinf'd by t.he rdation

(7.2.9)

It. should be noted that. the above solution obtained by t.he analytic continuation
does not solve our problem. The reason is that we are looking for a solution which
has an elrct.ric charge q as its only source. The above solut.ion does not possess this
property. It is not. difficult. to see that this solution is invariant. under t.he transfor
mat.ion 1J -+ -U, V -+ - V which maps region I onto I'. Hence, it. has, in addition
to a singularity corresponding to the world line I of the charge, a singnlarity on the
line "(' corresponding to an additional cha.rge -e in region I'. As a. result, exprrssions
(7.2.7)-(7,2.8) do not give the solut.ion of the formulatf'r1 problem of finding thf' field
produced by a single charge.

TIl(' sOllght. sollltion can be obtained if we take int.o account t.hat it would be
natural to choo~e zero field in regions I' and II' that. lip out~idf' the rf'gion of infinrncf'
of tllf' tf'st. charges.6 This solutiou can be written in thf' following form [Zd'nikov
and Fralov (1982), Demianski and Novikov (1982)J:

v = Frog + Fsing Ftrg F O( lJ")
r I'" I'" I"" I'" = 11/1 V , F sing ,1. r \')

III! == 'I' JILl 0(' ~ (7.2.10)

~A discussion of the boundary condit.ions for t.he field ofa t.est. charRe in t.he spacetime of an
et.ernal hlack hole can be found in Demianski and Novikov (1982).
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where 1';,,, is solution (7.2.8). The singular t.erm 1'~~~'1!, ensures that homogen('ous field
('quations are satislied on the surfa.ce V == O. Substituting (7.2.10) int.o Maxwell's
('qllat.ions F"~" == 0, W(' obta.in

11,1,1 == 0, ~ i),,(hlll'''') = - pt,v!v=o.
y-y .

'I'll(' solnt ion or t.11('s(· (·qllat.ions, bonnded on fl-, t.akes the ronn

(7.:2.11 )

(7.:2.12)
. -v.o v'M2 - CJ2 /11 + J Aj2 - Q2

Ill"" == - 2lJ (\," t>"1 sIn 0 . /
1'0 1'0 - Iv! - V liP -: Q2 cos ()

The analyt.ical wntinuation readily yields A" in regions III and III'. In gell('ral, it
is not possible to extend the solution in a single-valued manuer beyond t.he Cauchy
horizon because in this region the soll1tion depends on I:Onditions that /IIust be ad
ditionally specified. In the limit of Q == 0, the obtained solution describes til(' fidds
produced by point-like sources in the spacetime of an eternal Schwarzscl1ild black
hole.

It. is also possible to obtain a similar solution for a massless scalar field <jJ obeying
the e(luat.ion

D<jJ == O. (7.2.I;J)

The scalar field created by a point-like charge 9 rested at the point Po = (1'0,00, ¢Yo)
is

(7.2.14)

where R is defined by elillation (7.2.3). The solution vanishing in regions I' and I I'
i"

'P = e,.;"'~ + 'Psing
, 'Preg = 'P O(V), 'Psing = IV 8(V). (7.2.15)

(7.2.16)

The singular term 'Psing ensures that the homogeneous field equation is satisfied all

the surface V = O. Substituting (7.2.15) into e(Iuation (7.2.13) yields

(1 _ ,,\2) 8
2

1J1 _ 2,,\ 81J1 _ 1'+ - r - IJI = 0
8,,\2 8,,\ T+ '

,\ = cosO.

If the black hole is not extremal (Q < M), the only solution (7.2.16) bouuded on
H- is II! = O. If the black hole is extremal (Q == M), another solution is IJI == const
although the value of IJI!H- is not determined by the external scalar field, and thus
has no relation to the charge g.
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A c)-type tlingularity in the solutions obtained above for the electromagnetic and
scalar IIJ<Lstllt'stl lield appears because the problem was so formulated that t.he rharge
was aSS111nl'd to be permanently at rest in the neighborhood of the blark hole. A
si1l1ilar singularity appears also in the complete solut.ion describing a (nassive vector
liPid pmducl'd by it source outside the black holt> [Frolov (1978a, 1986)]7

Neitl' t hat in a realistic situation when a black holl' arises as the result. or gravi
t.i1tionall·ollapsl' the past horizon II- simply doetl not exist and till> e!el'tromilgnl'tic
lil'ld (as \\'1'11 as other fields) is regula... In the absl'lIce or incomiug radiatiol1 it l1l1

<t1l1biguonsly dl'termined by speci(ying the world line of the chargl'. But eVl'n if WI'

1'llIIsidl'r an l'terual black hole the singularities at j/ = U do not arise if a charge was
not (ll'l1uanent.ly at rest at a fixed radius but has been inserted close t.o the hlack
holt, at. some !inite moment of time.

7.2.3 Comparison with the field of a uniformly accelerated
charge

The Cllmplete solution derived above for the field of it test charge in a black hole
spacetime is closely related to the solution for the field of a uniformly arcPlerated
charge in lIat spacetime [Zel'nikov and Frolov (IU82)]. In order to find this relation,
we notice when the mass At of a black hole becomes large, then the effect of curvature
in the region of spacetime of finite size L « M close to the event horizon can he
neglec:t.l'11. lIence, the gravitational field in this region can be regarded as uniform
to a high degree of accuracy. The transition to the limit of uniform field is carried
out. as follows. Introduced coordinates (U, V,X, Y) related to Kruskal coordinates
(U, V, 0, 1» by the formulas

(i = 4M U, V = 4M V,

The Kruskalmetric (2.7.17) written in these coordinates becomes

2_ 2M (-r/2M - - (1')2 dX 2 +dy2
ds - - -,-, e dU dV + 2M X2 + y2 ,

1 + 16M2

where l' is related to {; and V by the expression

- - 2( 1') (T )UV = 16 M 1 - 2M exp 2M - 1 .

(7.2.17)

(7.2.18)

(7.2.19)

7On the behavior of a massive vector field in the neighborhood of a Schwarzschild black hole, see
also Gal'tsov et al. (1984b).
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If M now tends to infinity with t,he values of the coordinates Cr, \/', X, Y fixed,
equat.ion (7.2.18) transforms into the metric of flat space,

ds2 = - drr dV + dX2+ dy2 = - dT2+ dZ2+ dX2+ dy2

= - dT2+ dZ2+ dp2+ / d</>2. (7.2.20)

Here
1·. 1..

T="2(U+V), Z=-"2(U-V),

Y
P2 = X 2+ y 2 , t '"an 'I' = X'

The equat.ion T = TO of motion of a test charge then t.akes t.he form
• • _ 2 2 -2
UoVo = - Zo + T = -ll' , Xo = Yo =0, (7.2.22)

where w is t.he modulus of the four-acceleration of the charge. In t.he limit M -+ 00,

the horizon surfaces H± turn into null hyperplanes described by the eqnat.ion (r V = 0
(the "horizons" of the Rindler space (Rindler (1906), see also Appendix C). The
invariant. distance to the horizon for a particle with four-acceleration IV then tends
to a finite value w- I .

In the limit.ing transition described above, expressions (7.2.10) and (7.2.15) take
t.he form (Q = 0)

F:- - = 2q (p2 + ~ + w-
2
) O(V) F.u' p = _ 4wq2~:.• O(V) ,

frV w 2 83 ' ., .•

F- = 4qp (r O(V) _ 2qp 0(V) ,
Vp w283 p2 + 1('-2

_ 9 20(V)
<p= ;-8-'

where

8= [(/_~+1lJ-2)2+4~w-2r/2, ~=(rv.

(7.2.21)

(7.2.25)

Exprf'ssions (7.2.23) for F,t/.' can be derived from t.he following four-potf'ntial:

A
f
! dT" = _ ~ O(V) (p2 - f.c;+ w-

2_ 1) (d? _d~i) _
2 L V U

• pdp
- 2q O(V) 2 2 .

P + w-
(7.2.20)

One can easily show that formulas (7.2.23) coincide with the expression for t.lw fidd
of a uniformly accelerated electric charge [see, e.g., Boulware (1980)J; t.he term pro
port.ional t.o 8(V) in (7.2.23) then reproduces correctly the term with a sin!!;nlarit.y at.
~' = 0 int.roduced by Bondi a.nd Gold (1955).
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7.2.4 The shift in the self-energy

In this section we deal with the change of self-energy of a charged particle placed
in a !>t.at.ionary gravitational field. The effect. is as follows. The tot.al mass of a
charged partide is composed of its "mechanical" mass localized at t.he point where
t.hr. chargf' is located, and the "electromagnetic" mass spread over the region where
df'rt.romagnf'tic field is nonzero. When a charged particle is plac('d in a non-uniform
gravit.at.ional fidd, t.his field affects til(' "local" and "distributed" masses in a different
mallJ1('r, raw;ing a "deformat.ion" of the electric field of the charge; the self-en('rgy
is also alt.Ned. The shift in self-energy depends on the position occupied by the
part.id£'. That is why forces acting in a gravitational field 011 particles with identical
t.ot.al iu£'rtial mass differ when one particle is charged while another is neutral.

The eff('ct. of the gravitational field on the self-energy of an electric charge was
first. analy:r.ed by Fermi (1921). Fermi considered the case of an electric charge at
rest. in a uniform gravitational field and showed that the electromagnet.ic interaction
causing a change in the inertial mass of a particle changes its gravitational mass by
tIl(' same amount, in complete agreement. with the equivalence principle. Arguments
has£'d on the £'quivalence principle do not work for the system as a whole in a non
uuiform gravitat.ional field. In general, one should expect the relationship between
the sdf-enNgy of a charged particle and t.he change in the gravit.ational mass to be
more romplicated.

This is ind('ed the case for a part.icle in the field of a black hole. The necessary
corr£'ctions (in the approximation GM/c2 « 1) were found by Vilenkin (1979a). It
Wili; also shown in this paper that t.he inhomogeneity of t.he field leads to an additional
force t.hat. pulls the charge away from the black hole. Still earlier, Unruh (1976a)
proved t.hat. a similar force acts on a test charge placed inside a thin hollow mils!>ive
!>phNical !>hdl. Smith and Will (1980) and Frolov and Zel'nikov (1980) not.iced that
the shift in the self-energy of an electric charge in the field of a Schwarzschild bla.ck
hole can he calculat.edexactly, and carried out the calculat.ion of the additional
repul!>ive forc('. This result was later generalized to the case of Rei!>sller-Nordstrom
blilrk holes [Zel'nikov and Frolov (1982)], Kerr black holes [Leaute and Linet. (1982)],
and Kerr-N£'wman black holes [Lohiya (1982)].

To ralculate the shift. in t.he self-energy of a charge in the field of a. hlaek hole
we a.<;Sllll1e t.hat. a classical particle; t.hat is, a. system of bound deetric rharges, j!>
at. rf'st. 011 t.he symmet.ry axi!> in a stat.ionary gravitat.ional field: t.he ('quilihrium is
maint.ained by an appropriate external force. Denot.e by ~(,) a Killing vect.or field

that. is timdike at. infinity where it is Ilorma.li:r.ed by the condition t:;:) t:(I)I/ = -1. We

al!>o denot.e by a = I t:(~) t:(t)/t 11/
2 the corr(,!>pollding redshift. factor. 'I'll(' energy of this

system is

E = -l T{wt:(t)da v
, (7.2.27)

where T"v is t.he total energy-moment.um tensor of the system, and da,/ = (5~ A d3
.1·
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is an t'II'mcnt of volume of the hypersurface XO == const [see (A.8!)].
Tu spl'cify t.1H' probIPI1l, we choose a mudel of the charged particle: a stilf" noncon

ducting thin :;phl'l'(' of mass 1110 and radius E, with a charge If uniforl1lly distribnted
uver its :;urfa('(>. In view of the linal transition to the limit of poil1t~like particle,
we aSSllllie 0- to 1)(' IIIl1ch less thau the characteristic size of inhomogeneit.ies of the
gravitat iOllal awl I"xtt'rIlal electromaguetic fields; the tl'rnlS O(.~) in till' liual ,LIIswer
willlw l1q~k('\.(·d. .

'I'll\' total energy H of a particle is madl' lip of:

1. Thl' part of eUNgy /<"0 == (} 1Tt0 which is conlH'('\.ed with the "lIIechauical" lIHL-;S
I/Iu of the particle

2. The self-euergy l<;"eif ur the energy of the sell~action of the particle's c1mrgp

;t The ('!lergy l~~xl of iuteraction between tile particle aud the extelllal lidl!

.1. The ellergy B illl uf the additioual interactiou stabilizing the chargpd particle

The additional interadiun is required to satisfy the Laue theon~l1l. If the t'«lIi
libriuuI radius of all uncharged particle is denote'd by Eo, theu Ein,(E) == h'inl(Eo) +
4f((E - Eo)1 and the changes (due to the intrudlIctiou of the charge into the lield)
in the equilibriulII size, ~E == E - EO, and in energy, ilE = Einl(E) - Einl(EO), can be
made arhitrarily small by choosiug a sufficiently high effective stifflless 1\'. lu what
follows, the increments ~E and ~E are neglected; that is, the stiffness f{ is'assumed
to be suflicicntly high. Having included the cuustant quautity EindEo) iuto Eo, we
can write tile expression for the total energy of a particle as an expansiun in powers
of the charge q of the particle:

E == Eo + E"exl + B••lf . (7.2.28)

hi the case of no extel'llal field and far from gravitating bodies, formula (7.2.28)
reduces to the expression

E == rn == rno + q2/2E. (7.2.29)

The diff"erence between rn and rno arises because uf the field created by the charge. If
an uncharged particle is introduced into a static gravitational field, the work extracted
in this operation reduces the particle's energy to no = a rn. If the particle is charged,
then part of the extracted work goes into changing the field around the particle. As
a result, in general the sum Eo + E••lf is not equal am.

The expressioll for £".elf can be recast as

where

nf3 - 1'f3 CO - -.!- (F Ff3P _ ~ ,f3 F "'PI.') en
- - n <'(t) = 411' ap 4 U", pI.' r <'(/) ,

(7.2.30)

(7.2.31)
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and Fop is the strength of the field produced by the curreut

/,(l')=O~ ~O(l(x,xu)-e). (7.2.:32)
41l'E2 -y(:I')

Expn'ssiou (7.2.32) describt's the charge distribution of the particle. lIerp l(x, xu)
iii th(· invariant distance betwpen a poiut (t, x) and t,(1(' center (I, xu) of the charged
particlP along the gt'odcslc conuecting these poiuts, and E is the invariaut sillc of the
partid\'o The integration or (7.2.:m) is carried out over a spacdike surraf'(' ~ that
iut\'rst'cts th\' horizon H+. Note that the integral (7.'2.30) over t.he part or ~ withill
the evcnt horizon is the t'uergy of the field inside the black hole. Its l'outribution
has alrcady I)('en t.akcn illto accuunt ill the definition of the total l1Iass of t.he black
hole. TIIPrdtu'e, when we are illterested in calculatiug the energy shift iu the field of
a black holt, with known parallleters, we assume these parameters tu be fixed, aud
11('II(·t' illlegrale (7.2.30) over that part of E which lies olltside the black hul('.8

Using IVlaxwell's equatiolls

FI"-';v = 4rr/'",

we can transform expression (7.2.31) to the form

lltl = BPI.' +! cf3 AO J' - J.f3 CO A
;v 2 ~ a ~ (},

(7.2·:m

(7.2.34)

where

fjPv = 8~ WAo FOP - e Ao FOV - 2~o Ao FVP). (7.2.35)

Using Stokes' theorem (A.87), we can reduce the integral of the expression Bf3~v to
the sum of the integral over the black hole surface and the integral over a sUl:face
at infinity. The second of these integrals vanishes because the field falls off rapidly
enough at infiuity. It is readily shown that for a particle on the symmetry axis, the
first integral (over the black hole surface) also vanishes. Finally, taking into account
that f' alld jO are parallel, we find

Eself = - ~hAo j" ~P dCJp . (7.2.36)

To obtaiu an explicit analytical expression for E._If, we can make use of the expression
fuJ' the potential Ao produced by a puint-like charge on the symmetry axis in the Kerr
spacetime [it was found by Linet (1977a»). This gives the following expression for Es_lf;

22M

E - q I 11/ 2 q (7 2 37)
self - 2£ gil + 2" 1'~ + a2 . • •

8Expressions (7.2.30)-(7.2.31) for the self-energy of a charge, together with the above condition
imposed 011 the choice of integration domain E, are in complete agreement with general expression
for the change in the mass of a system, containing the black hole, dUe to a change in the paranleters
of the elltire system which will be obtained in Section 12.2. It is illteresting to note that the integral
over the part of the surface E beneath the JlOrizon is identically zero for the Schwarzschild black
hole.
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If the force necessary to fix this particle at the point TO is compared wit.h that. required
to fix a neutral particle of mass m == rno + q2/(2<:), their difference !1fi' proves to he

tij == I tijl' tif 11/ 2 == l Mro
,. (ra + a2)2

This excess force, tij", applied to the charged particle points along t.he symmet.ry
axis away from the black hole.

If a charged particle (with a scalar, electric, or gravitational charge) is at rest. in
the vicinit.y of a black hole outside its symmetry axis, it is subject to an additional
force [Gal't.sov (1982)]. This force is proportional to the angular momentum of t.he
black hole and to the squared charge of the particle. It arises as a reaction to t.he
tidal force exerted by the part.icle on the black hole and t.ending to slow down it.s
rot.ation. This force vanishes if the particle rotates at. the same angular velocit.y that
t.he black hole has or if it is on the symmetry axis.

7.3 Mutual Transformation of Electromagnetic and
Gravitational Waves

7.3.1 Geometrical optics approximation

The effect of mutual transformation of electromagnet.ic and gravitat.ional waVeR in an
external electric field is a well-known corollary of the nonlinearity of Einst.ein-Maxwell
equat.ionli [for a detailed discussion of this effect and the relevant hibliography, liec,
e.g., Sihgat.ullin (I 984)]. Thili sect.ion will briefly delicribe this effect for t.he part.icular
case of the propagation of photonli and gravitonli in the field of a charged black
hole [Sibgat.nllin (1973,1974, 1984), Sibgatullin and Alekseev (1974), Gerlach (197/1,
1075)J.

Let. t.here be a metric g,.v and an electromagnetic field A,., and let. hltv == /iflltv and
a,l == JA I, be small perturbationli against this background. If assume that. !lot.h liet.s,
{!7ltv + hltv , All + al,} and {gltv, AI'} are solutions of Einstein-Maxwell equationli, t.hen
we get. t.he following linearized system of equat.ions for the perturbations:

I. ;~ k~ k~ I g k;~ 2kO!1 F F. I k F. F,,'1
h IIV'~ - . I"V;~ - V:lt;~ - "2' pI' ;~ - 110 1'13 - 2" ltv 013

(7.~.1 )

(U.2)

Ikre
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(7.3.3)

Indices are lowered and raised, and covariant differentiation is carried out using the
metric gllV ; ~IV is the energy-momentum tensor of the field ~w.

This system is invariant with respect to the gauge transformations

(7.3.4)

The following gauge-fixing conditions conveniently eliminate the gauge freedom:

(7.3.5)

We will consider the effect of the interaction between electromagnetic and gravi
tational pertnrbations due to those terms of (7.3.1) that contain I.he electric field f
and those t<'rms of (7.3.2) that contain the gravitational pertllrbation k. We a<;sume
that the wavelength A of e1<'ct.romagnetic and gravitational waves is mnch shorter
than the charact.eristic size L of inhomogeneities in the background fields th,.. and A"
and usc l,he g(,01nel,rica.l oplics approxim.a.lion.9 In this approximation we can write
t.IJ(' pertnrlmt.ions kllV and a" in the form

(7.3.6)

(7.3.7)

where f is a parameter characterizing the degree of smallness of a t.erm with resp<,ct. to
a dimensionl<,ss paramet.<'r AIL. The phase functions S in (7.3.6)-{7.3.7) are chosen
to be identical. This can be done by redefining t.he preexponential factors if phases
differ hy a factor of order c. Otherwise, if the difference bet.ween the phases Stl
and Sk in the expressions for ai' and k,• is not small [Stl - S'k :::: O(E.°)), t.he t.erms
responsihle for mixing enter with a high-frequency factor exp[ i{Sa - Sk)1f], and t.here
iR no mixing in t.he lowest. order in f.

If we define 10 :::: 5.0 , subst.it.ut.e (7.3.6)-(7.3.7) into equations {7.3. I )-(i.:t2) and
into the gauge conditions (7.3.5), and t.hen set. t.he t.erms of orrIN C 2 and E- I <,qua.!
t.o ZNO, w<' arrive at t.he <,ikonal <,quat.ion

(7.3.~)

and t.h<, eqnationR

(7.:Ul)

90n t.he applicat,ion of t.he geomet,rical opt.ics approach to t.he propagat,ion of high.frequency
gravit.at,ional waves. see [Isaacson (I96Ra.b)]. A detailed presentat.ion of t.his approach for det·t,ro
magnet.k and gravit.at;ional pert,mbat.ions can he fonnrl in [Misner. Thorne, ami Wheeler (J nn)].
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:V I' = { (~F"') h" - F" n.iO)1 Ii 2 ,,') ,

N 1 [/ ' " I /' " { 1 J""iJ {]1,,,, = -.' '" '[I,itU] + 'v 1,,(10 1+ "2911'" (tu Ii .

:Uil

(7.3.10)

(7.:1.11 )

(7.:3.12)

(7.3.l:n

Condit.ion (i.;!.8) shows that the constant phase smface S = const is a nnll smfare.
The integral lines :rll = :rl'(A) defined by the equation

d:r l '- = (II(X)
dA

(7.3.14)

and lying on this surface are therefore null geodesics, and A is an afIinC' parameter.
Now angment the vector field {II to a complex null tetrad ({II, nil, mil, iii"), and

demand that the vectors of this tetrad be normalized by the conditions

(7.3.15)

(the remaining scalar products vanish), while the tetrads themselves be covariantIy
constant along the integral curves {II:

(7.3.16)

The orthogonality condition [iJ mil = 0 implies that the vectors mil and fit l, are
tangent to the surface S = const. It can be shown that the arbitrariness remaining
in the gauge transformations (7.3.4) (they preserve the additional conditions (7.3.9»
can be used to rephrase the expressions for ('til and J.:II" in the form

(7.3.17)

[see, e.g., Sibgatullin (1984)]. Multiplying (7.3.10) by mil and (7.3.11) by mil m"
and defining 4Jlo = pa{J {a ml3 and p = - 4{~{J' we arrive at the following system of
equations:

dA -
dA - pA = 4Jlo H,

dHd>: - pH = - 4Jlo A .

(7.3.18)

(7.3.19)
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These equations imply the relation

CHAPTER 7. PHYS1CAL EFFECTS

(7.:L.W)

which CUI Ill' inl<'rpreted as the law of conservation of the totalnnllllJer of photolls
and gravi tOllS.

The systt'm of equations (7.:3.18)--(7.3.19) can be slightly simplifieu by transforlll
ing frunl the lield variables JI and II to the variables

A=:A, H=zH,

where

(7.;~.21)

(7.3.22)

Equations (7.:US)-(7.3.19) rewritten in terms of these variables take the lillln

riA = <lJ jj
dA 0,

dH -
dA =- <1>0 A. (7.:U3)

If 1\>0 = ,1>0' this system reduces to a second-order equation

d2 )i _
-1" +A=O,'
( :r'

(7.3.24)

where :r = J <1>0 dA. This equation shows that the amplitudes of both electrolllag
netic and gravitational fields undergo oscillations due to the mutual transformations
of photons and gravitons. The period of these oscillations, ,::lA, is found from the
condition [Sibgatullin (1974)]

(7.3.25)

7.3.2 Mutual transformation of photons and gravitons

The arguml'nts given above are directly extended to the case of high-frequency elec
tromagnetic and gravitational waves propagating in the field of a charged black hole.
The eikonal equation (7.3.8),

gill' S'/l 5,1' = 0 ,

in the Reissner-Nordstrom metric (7.2.1) admits a complete integral

5 = t ± R(f) ± 'l1(8) + m 1/>,

where

R(r) =I F- I "II - b2 F/r2 dr,

(7.3.26)

(7.3.27)
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(7.3.28)

Light rays forming the surface S = const are paramet.erized by arhitrary constants
band m denoting the impact parameter and angular momentum, al1ll are described
by t.he equations

as as
S = const., ab = const., am = const.. (7.3.29)

For a given congruence of light. rays, t.he affine parameter ,X is relat,ed to I' b.y the
formula d,X = dr (I - Fb2r-2)-I/2; t.he complex null tet.rad can be chosen t.o make <1>0
a real qnant.it.y having t.he form

(7.3.30)

(7.3.31 )

Equation (7.3.25) for t.he oscillat.ion period now t.akes t.he form

211" = Qb! dr .
r 3 VI - Fb21" 2

If a high-frequency electromagnetic wave with amplit.ude An and impact. param
et.er b is incident. on a charged black hole, t.he result. of it.s passage close t.o t.he hlack
hole (unless the wave is capt.l1red) is t.he creat.ion of out.going electromagnet.ic and
gravit.ational wav('s wit.h amplit.udes Aoul and Hout. [Sibgatullin (1971, 1981)J:

An"t. = AiD cos [2Qbfoo dr ] ,
ro 1'3 VI - Fb2r- 2

(7.:U2)

when' 1'0 is t.he minimal valne of r for a light. ray wit.h a given impact. pilrillTIet.pr h.
This valne coincides wit.h t.he maximal root. of t.he eqnat.ion

For h = bee' wlll're

II;\" = '11H2 [:1' + ~ + Vi + 8:r + (8X)-I( VI + 8.T. - 1)] ,

.1' = I - q2/11I2,

this root. eqnals

M
1"0 = l'cc = 2 (3 + VI + ih)

(7.:U:3)

(7.:U1)

(7.:U!:i)
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and becomes multiple. The integrals in (7.3.32) then diverge. The corresponding
impact parameter corresponds t.o an unstable closed circular orbit. The integrals in
(7.~.~2) divPrge because t.he conditions of validity of the geometrical optics approx
imat,ion aH' violated. A finite answer is obt.ained when the wave propert.ies of light
and gravit.ational radiation are t.aken into account. For example, for an ext.remal
(Q = Iii!) hlack hole it, is found t,hat. when Ib - ber I « O(w- 1) the tot.al intensity
of the outgoing electromagnet.ic and gravitational waves adds up to a considerable
fraction of t.he intensity of t,he incoming electromagnetic radiat.ion. That. is, the
phot,on-t,o-gravit.on conversion rate becomes of order unity, The remaining energy ifi
ahsorbed hy t.he hlack hole.

If th€' black hal€' is rot,at,ing, t.he above-described effect of mut.ual transformation
of phot,ons and gravitons is accompanied by an additional rotation of their planes of
polarizat.ion [Sibgatullin (1984)]. Note that. the effect, of mutual transformation can be
realized only in t.he neighborhood of a charged black hole. Although we have already
ment.ioned t.hat. in realistic astrophysical conditions a black hole is unlikely to have
an appreciahle charge, certain processes which produce a nonzero elect.ric charge on
a black hole are nevertheless possible. One of these processes, caused by an external
magnetic field acting on a black hole, will be described in the next, chapter. Anot.her
possible process suggested by Shvartsman (1971) stems for the difference in t.he effect
of radiativf' pressure on t.he electrons and ions of the matter accreting ont.o a black
hoif'.

7.4 Interaction of Cosmic Strings with a Black
Hole

7.4.1 Gravitational capture of cosmic strings by a black hole

Cosmic st,rinr;s are t.opologically st.ahle one-dimensional objects which are predict.ed
hy grand unified theoriefi. Cosmic st.rings (as well as ot,her topological defect.s)
may appear timing a phasf' transit.ion in t.he early Universe. (Detailed discllssion
of cosmic st.rings and ot,her t.opological defeet.s can be found in t,he hook hy SheI
laI'd and Vilenkin (1994).) The charaderistic t.hickness of a cosmic string is (10 "V

11'1 (mG1TT/mpl), while it.s m<l.'iS II per ullit.lengt.h is p. "V (mpJ/lp,)(mGlTT/mp!l2. Here
ITIGliT is t.\w eharact,eristic mass defining the symmetry breaking in t.he grand unilied
theory which is responsihle for t.he cosmic st,ring formation, and 1111'1 alI(I {PI an' t.IIP
Planck llIasS and lengt,h, respect.ively.

For cosmic strings of <I.'it,rophysical interest, t.he parameter (10 is llluch less than
any ot.her parameters sl1ch as Ihr lengt.h of t.hr string or the' 8i7,r 01' iuhomogr!H,jty
or t.he gravit.ational field so t.hat. oue can idealize the mot,ion of t.IIP string as a two
dimensional world sheet :1'// = .1'// (r, (7) which describes the evolnt.jon in t.ime of t.\J('
line representing the st,ring. It, can he shown [see e.g., Shellanl and Vih'nkin (J fHH)]
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Figure 7.2: The capture impact parameter b as the fundioll of Lhe initial velodLy '11 of the
cosmic string.

that the equationH or motion of a cosmic string in this approximation can be obtained
from the Nalllbu-Goto action

(7.4.1)

Here 91lv is an extemal metric and <;a stands for the world·sheet coordinates (a, b =
0, I, <;0 = T, <;1 = a). A two-dimensional world sheet which provides an extremum to
the Nambu-Goto action is a minimal surface.

We consider the interaction of a cosmic string with a black hole. For this problem
the gravitational field created by the string can be neglected because the dimension
less parameter which characterizes the strength of the field, J-L* =GJ-L/c2 , is negligibly
small (for GUT one has J-L* "" 10-6 ). It means that we can consider the string as a
test object moving in the background of a black hole metric. We also Cllisume that
the length of the string L is much greater than the gravitational radius and use the
infinite-string approximation.

When a cosmic string is moving in the gravitational fields of a black hole and
passes near the horizon, the string can be captured by the black hole. This process reo
sembles the gravitational capture of particles by black holes, discussed in Sectioll 2.9
and Section 3.4.5.

The gravitational capture of cosmic string by a black hole was studies by De Vil
liers and Frolov (1997). They considered a straight string moving in the gravitational
field of a non-rotating black hole with the initial velocity v and used calculations on a
supercomputer to define the capture impact parameter b as the function of v. Their
results are presented in Figure 7.2. In order to solve the problem numerically, a long
finite string with heavy particles of mass m at its ends was considered at first. In
the limit m -+ 00 the end points move along geodesics. Dashed, dotted, and dashed



266 CHAPTER 7. PHYS1CAL EFFECTS

alld dotted lines represent the results for strings of different length L. Calculat.iolls
show tklt for a fixed value of the initial velocity 1! starting with some length L( l!) tll('
illlpact. parameter b practically does not depend on L. For comparison, the solid line
givp the capturl' impact parameter for a test particle with initial velocity P. DUI> to
the tl~nsioll, till' string must come closer to the black hole than a partidl> ill order to
Iw captul"l'l1. (Earlier numerical results obtained by Lonsdale and J'vloss (1988) does
1I0t satisfy this properties, and it seemS that they contain a mistake.)

After a capture the string remains attached to tile black llOle. The actioll of" til('
striug on till' black hole will finally change the velocity of the black 1101e. But lln a
In,lssi VI' black Iioies and small parameter /-to the characterist.ic time 1~ of this pion's:;
is velY large. We restrict ourselves. by considering time scales mudl smaller tllan 1:.
so tlillt this effect can be neglected.

7.4.2 Stationary string near a rotating black hole

Stal ionary configurations of cosmic strings, and especially stationary configllratious
of trapped cosmic strings, are of particular int.erest. One can expect that. these
configurations might play the role of final equilibrium configurations. In this sectioll
we discuss such configurations following the paper by Frolov et al. (1989).

Consider a stationary spacetime with the Killing vector ~it) normalized to unity at
asymptotic infinity. A two-dimensional world sheet E represent a stationary string
if the Killing vector ~it) is tangent to E, and E is a solution of the Nambu-Goto
equations. The metric of a stationary spacetime can be written as [compare (A.57)]

(7.4.2)

where F = - ~ft) ,gi, and hi; are independent of time. Let us choose T = t, then the
string configuration is specified by giving the functions Xi = xi(a) and Nambu-Got.o
action becomes

I = -B j"t,

where

E=Jt!da
dx i dx;

h-
I) dada

(7.4.3)

(7.4.4)

is the energy of the string. The equilibrium stationary configurations correspond to
a minimuIII of the energy, and hence they are geodesics in a three-dimensional space
with the metric

(7.4.5 )

In a static spacetime, the meaning of the expression for the energy of the string is
transparent. The proper mass of a piece of the string is proportional to its proper
length. The integrand in (7.4.4) is nothing but a redshifted proper length.
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For the Kerr-Newman geometry one haslO

6.-a2 sin2 9
F=-----

r2 + a2 cos2 9 '

267

(7.4.6)

• 2 2Mr-Q2
Y,p = a Sln (J 6. 2' 2 9 .. -a sm

(7.4.7)

The metric hi; is diagonal with

6. - a 2 sin2 9
hrr = 6. ,hoo =6.-a2sin29, h,p,p=6.sin29. (7.4.8)

The analysis of stationary string configurations in the Kerr-Newman spacetime is
thus reduced to the problem of finding geodesics in a three-dimensional space with
metric hi;' This problem is similar in many respects to the study of the motion of
test particles in the Kerr-Newman geometry. In particular the geodesic equation in
the space dl2 can be integrated.

7.4.3 Separation of variables

The first integrals of the equations describing stationary string configurat.ions in the
Kerr-Newman geometry can be easily obtained by using the Hamilton-Jacobi md.hod.
The Hamilton-Jacobi equations read

as + hi; as as = 0, (7.4.9)
oa ax' ax'

where the parameter a is a proper distance along the string in metric h;j. For metric
(7.4.8), equation (7.4.9) allows separation of variables [Frolov et al. (1989)]

s = - ~ Jt
2a + £4> + Sr(r) + So(9).

Substitution of (7.4.10) into (7.'1.9) gives

(d~~.Tr =R,

(
d80)2 =e
dO '

where

(7.4.10)

(7.'1.11)

(7.4.12)

(7.4.I~)

IOThc corresponding formulas can be found in Appendix D.5.1. Note that in this section we lise
t.he metric h,j, which differs from the one chosen in the appendix by an additional factor {<'.



268 CHAPTER 7. PHYSICAL EFFECTS

(7.4.14)

A non-negative separation constant Q2 is related to the Killing tensor ~i;

~; = diag(a2 sin2 9, 6., 6. + a2 sin2 9)

by.

(7.'1.15 )

oS
Pi = 8xi '

(7.4.16)

The existence of the Killing tensor (7.4.15) for the metric (7.4.8) is a property which
is inhNitedfrom the original Kerr-Newman metric. The discussion of this mechanism
and the separat.ion of variables for a st.ationary string in a curved spacetime can be
found in [Carter and Frolov (1989); Carter, Frolov, and Heinrich (1991)].

The geodesics of the metric hi; which represent stationary string configurations
follow from

as
i:1Q = const,

8S
8L = const,

8S
OJ.L2 ::= const. (7.4.17)

These relat.ions in explicit form are

(7.4.18)

(7.'1.19)

(7.4.20)

For more det.ailed discussion of st.ationary st.ring configurat.ions see Frolov cI al.
(1989). It. should be emphasized that. ml't.ric (7.4.8) becomes singular on t.he stat.ic
limit. surface. For this reason the above dcseribed approach is direct.ly applicahle
only in t.he regions lying ontside the ergosphNe. In t.he next section we d('lTIonst.rat.e
t.hat there is a. special class of t.hese solutions which describe a st.ring crossin/-'; t.he
ergosphere and entering t.he black hole.

7.4.4 Uniqueness theorem

We descrihe now a. specia.l class of stationary string configurations which play an
important. role in the Kerr-Newma.n spacetime. For t.his purpose considN it pl'illripal
null ,qrodcsic 'Y± (see Appendix 0.6). We use signs ± to dist.inguish outgoing (+) and
incoming (-) rays. Denote by [II a tangent YCct.or. t.o "y a.nd by ~± a t.imdikc surface
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which is fOri ned by the trajectories of the Killillg vector field ~V) passing tln'Uugh 1±'
We call I:± a pri'llciplll Killing sUI/ace. Denot.e bYll~ (H == 2,3) two unit vect.ors
BOrIllal t.o ~±: t.hell it. is easy to show th,tt t.he trace URi 4 of t.he second fuudameut.al
form I2/{MJ is

( ,All 11.1'1""7 "
!J,,,. I IIJ/J.·,•. l "1:(',8

I' [ :2 l' '1""7" F l' 1"]
!J""II/I (Cl) \1~ + (ClF "1 .

(7.4.21)

All import.aut property of the Kerr-Newman geometry is that the principal Ilull
vector /I' is au eigenvector of the antisymmetric tensor ~(t)I';'" This property and
the geodesic equatioll for II' imply that Q RA

A == 0, and hence the principal Killing
surface is a minimal surface [Frolov and Larsen (1995); Frolov, Hendy, and Larsen
(1996)]. These minillml surfaces E± are solutiolls of the Nambu-Goto equations which
correspond to the spt'Cial case when the paranwters Land Q obey the relation

Ql == ± 2aL, 1L 1 ::::; a.

Such a string lies on the surface 9 == 00 == const, where 00 == arcsin( 1Llu 11/ 2 ) and its
equatioll is

(7.4.23)

The following uniqueness theorem for stationary cosmic strings was proved by
Frolov, Hendy, and Larsen (1996):

The only stationary time/ike minimal two-surface which crosses the static limit sm/ace
S.t and is regular in its vicinity is a principal Killing sm/ace.

This result implies in particular that a stationary string can cross the static limit
surface only along very special directions. For a non-rotating black hole the static
limit coincides with the event horizon, and a stationary string enters the horizon
orthogonally. This result resembles the no hair theorems discussed in Chapter 6. It
has a similar physical origin. Namely, in order for the string to be stationary as
a whole, the resulting force acting on a string element must be directed along the
string. Near the static limit surface where the gravitational force grows infinitely this
conditioll leaves little freedom for the orientation of the string elements. It is also
worth mentioning that the forces acting along the string can "stretch" it, but due to
the relativistically invariant nature of the string equation of state its tension remains
the same.
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7.5 Black Hole in an External Field

7.5.1 Black hole in an external field

A hlack hole subjected to all extel'llal force behaves to a certaill ext.t'ut like a l'llllipart.
e1ast.ic body. SOllie specilics of the "response" of a black hole to thi:-; force are mosUl'
caused by the uuambiguous depeudeuce of the black hole size on it.s lIIa.o;S while t.11('
gravitational self-action of this lIIass is extremely high.

BeloIT' pa.o;siug on to a detailed description of black Iiole behavior in au ext,('rnal
lield, let us dwell ou an aspect that often leads to misunderstaudiug. huagine a
situation of an isolated (e.g., Schwarzschild) black hole at rest aud a distant. observer
wllo at sOl1le Ulon1Cnt of time switches on an external field in order to find the effect
on the black hole..1"01' instance, it can be a plane light wave directed at the hole. Iu
geueral, the pressure of such a wave on an ordinary body results in motion of the body
(via the effects of light absorption and scattering). On the other haud, if we IIlollitor
the propagatiou of the light wavefront in the Schwarzschild metric, we dis('()ver that
an ililinitely long time (by the clock of the distant observer) is required for the
wavefwut to reach the gravitatioual radius. A detailed calculatiou shows [('.g., set'
Han,ni (1977) J that the wavefront bends around the black hole after which the wavt'

propagates further. After some time, an outgoing component appears, indicating
scattering, and a new wavefront forms around the black hole; it corresponds to the
radiation falliug into it. The question is: How can a black hole "feel" the pressure of
radiation and start moviug in a finite time (by the clock of distaut. observer) if for
t.his observer the radiation never reaches the event horizon?1l

To answer this question, it is iustructive to analyze a similar situatiou that arises
when a light wave is scattered by a body of radius ro, composed of matter whose
refractive index n increases coutilluously inward from 1 at the boundary (at l' == ro)
to infinity on some surface inside this body (at r == rd. As in the case of a black hole,
the process of light propagation to the surface r == rl may take an infinitely loug time.
However, the body starts moving before this process is completed. It can be shown
that once the wave front has reached the surface r == ro, the energy-momentum flux
across this surface becomes nonzero iu the general case, and the force due to this flux
causes the motion of the body as a whole.

Likewise, if a black hole is enclosed in an imaginary sphere of radius 1'0 2: I'g ,

a light wave produces a nonzero energy-momentum flux across this surface and the
entire region within ro (the black hole and "part of the space" surroundiug it) starts
moving with respect to the external observer. The energy of an ordinary light wave
in a volume of order r: is much smaller than rgc4/G so that this wave produces a
negligible effect on the bla(~k hole metric. As a result, in the immediate vicinity of
the black hole all phenomena unfold as if there were no radiation (in the reference

11 Obviously, an observer falling into the hole will find that it takes the light wavefront a finite
time (by his clock) to cross the event horizon.
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frame fixed to the black hole). On the other hand, a distant observer will be ahle to
detect. t.he motion of this reference frame with respect. to the observer's.

7.5.2 Perturbation theory

Alt.hough t.he general problem of the motion of a black hole in an external field does
not. admit an analytical solution, a detailed description of the motion is possible
in terms of a sort of perturbation theory in the particular case of a black hoI!' 1I0t
interacting; too strongly wit.h its surroundings. For example, t,his description ran be
given for the motion in an external gravitational field if the characterist.ic size of the
black hole, determined by its ma.'iS M, is much less than the characteristic scale L of
inhomogeneities of t.he gravitational field in which t.he black hole moves. 12 In t.his rase
the external gravitational field slight.ly changes the met.ric in the neighborhood of t.he
black hole. Hence, the metric 91'v in the region outside the black hole, determined by
the characteristic scale M, can be written in the form

(7.5.1 )

when' gJ?! is the metric of the unperturbed black hole (the Kerr metric), and £ = AI/ L.
Likewise, t.he effect of the black hole on the external metric on the scale of order L
can be considered small; it can be described as corrections, with the external metric
writ.ten in the form

_ (0) (I) 2 (2)
91lV - 9/tv + C:9/tv + c: 91lv + .... (7.5.2)

The a.'i.'iumption of the absence in the black hole neighborhood of mattf'f whose
fall can result in a sufficiently fast modification of its paramet.ers, and the condition of
weakness of a deformation of an external field by a black hole imply that expansions
(7.5.1) and (7.5.2) have a common domain of applicability. In other words, both
expansions hold simultaneously in an interval of distances from the black hole that,
is determined by a characteristic scale I '" c: Q M (0 < Q' < 1, M « I « 10). The
expansions themselves are found unambiguously by comparing (matching) them in
this common region.

TIl(' method of matching the asymptotic expansions for analyzing t.he motion
of black holes in external fields and the interact.ion between the black holes was
developed by D'Eath (1975a,b, 1978, 1979). The following results were obtained
by this met. hod in the problem of interest here [Demianski and Grishchuk (1974),
D'Eath(197.')a,b, 1979), Kates (1980, 1981), Damour (1983), Thorne and llart.le

(1985)J. The term 9):J in expansion (7.5.1) vanishes. The mass M, momentulll P,
and angular momentum J of a black hole can be determined from the paramet.ers

121n general, t.he inhomogeneities of t.he gravitational field are characterized both by the C11rvat.11re
radius 1,1 of spacetime and by the scales of the space (L2 ) and t.ime (L3 /c) over which this curvat.Hre
changes appreciably. The smallest of t.hese quantities is denoted by 1,: 1, = mint 1,1,1,2.1,3).
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of the unperturbed metric g~J even though the spacetime as a whole need not be
asymptotically flat. In order of magnitude, the uncert.ainties in these parameters due
to the terms E: 2 g);J are

(7.5.3)

The external space metric gi,oJ is everywhere regular, but the corrections to it, formally
extf'IHIf'd 1.0 tI)(' entire spacf', reveal singula.rities corresponding t.o 1.1)(' motion of the
black holf' 011 t.he t.imelike world lines 1'. Coordinates (t, ;r' ) can he introduced in the
neighhorhood of l' such that the metric ta·kf's the form

(~ . .
900 = - I - Eij x' .l·) + ... ,

Here

(0) _ 2 Bj k I
90i - 3E:ijk 1 X ;/: + ... , (7.5.4)

(7.!;.5)l~,} = Rio.io and B ij = ~ Cik[ Rk1
jo

are the "electric" and "magnetic" components of the curvature tensor. A change of
t.he part. of Iwrturbation 9/w - giOJ which is regular on the trajectory of the black hole
If'ads to a smallllncertainty in the determination of E,j and Bij •

The traject.ory of the black hole in the lowest approximation in E is a geodesic, with
the spin of thf' black hole parallelly transported along this line [D'Eath (1975a)]. The
corrections describing the deviations in the motion of the black hole from a geodesic
and from t.he Fermi-transport of spin are given by the following equations [see Thorne
and Ilart.le (1985)]

dP' = _Bi . P
dl }. , (7.5.6)

dJ i

dl
~, E k -.!.. Jj JI
C jk -' 1 /1;[ . (7.5.7)

'I'll(' changes in thf' momentum and the spin of the black hole t.hat follow from t1wsf'
f'qllations grmt.ly f'xceed the uncertainties 6.pi and t;,.J' of (7.5.:3) causf'd hy cha.nges
in E i

j and R'j' In principle, therefore,' these effects of nOIl-gf'oucsic mot.ion of a
rotating black hole and of the precession of its angular momentllln are observable.

It. should be emphasized t,hat equations (7.5,6) and (7.5.7) coincide in form with
t.he eqnations of motion of rotating test part,icles in an external gravit.ational field. It
is important that when the cxt,remely strong gravitational self-acbon of black holes is
taken into aCl.Ount, the form of the equations is not changed, To a <Iist,ant obscl'vf'r,
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a black hole cont inues to move in the ext,emal fielu in the same IlIiUIIICr as a slllall
test. pilrticle uiu.

Likewise, it can be shown that when an external electric lidd E acts on a black
ho1P 01' charge q and nla:>s M, the hole acquires an arcelerat ion (l = () HI AI. An
('xarl s(lintiou of the Einstein-IVlaxwdl equatious desrribiug the motioll of a charged
h1<lC(( luM in a lluilorlll d('ctric liPId was obtaiued by Emst (1976b) (lle(' also [Bi('uk
(19HOJ]). The C01T('spouding metric is given in Section 14.4.4 wlH're we shall disCllllS
prop<'rtles of the Erust solntiou in detail.

7.5.3 Deformed black holes

An ext.emal lield caUlles a deformation of a black hole. We will brielly outline t.he
changes inuuced in the properties of a black hole when it is "iuserted" into a gravi
tational field produced by a distribution of lIIatter. If the black field ill nou-rotating,
aud the gravitationallielu is axially sylllmetric, this problem admits a: fairly complete
solutioll [Israel and Khan (1964), Doroshkevich et al. (1965), Mysak and Szekeres
(1966), Israel (1973), Geroch and Hartle (1982)]. A generalization t.o the case of a
rotating hlack hole can be found in Tomimatsu (1984).

Recall, first of all, that a static axially symmetric vacuulII gravitational lidu ill
described by the Weyl metric

ds2 = _ e2U dt 2+ e-2U [ e2V (dp2+ dz2) + p2 d¢J2] ,

where U and V are functions of p and z and satisfy the equations

1
U,pp+ - U,p + U,zz = 0,

p

v,p = p (U,~ - U,~) , v'z = 2p U,p U,z

(7.5.8)

(7.5.9)

(7.5.10)

[see, e.g., Kramer et al. (1980)J. It is quickly verified that system (7.5.10) is integrahle
if condition (7.5.9) is satisfied. The vacuum metric (7.5.8) is uniquely detenuined by
choosing a solution of equation (7.5.9) because a solution of systelll (7.5.10) for a
given function U(p, z) is easily founu by quadrature. Thus, the Schwar~childmetric
in these coordinates corresponds to the following solution

1 (A - 1)
U = Us == '2 In A+ 1 '

where

(7.5.11)

(7.5.12)

the event horizon H is now defined by the condition

p::= 0, -M ~ z ~ M. (7.5.13)
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In view of the uniqueness theorem (see Section 6.4), this solution is unique for a static
black hole in vacuum in an a"ym ptotically flat spacetime. Any other static vaCU11II1

solution having a regular horizon cannot be asymptotically flat.
Strictly speaking, therefore, a perturbed black hole is necessarily desl'Iilwd by a

nonv<lcunlll solution of Einstein's equations. In the simplest case, we can aSSUllle that
the Illat1l'r nl'atillg the external gravitational field is located at 50111(' distallcP "rom
the black holl'. Then the gravitational field in the vicinity of its hori2011 is dl'l>l'Iilll'd
by the vacunm Weyl metric (7.5.8). The exact solntion of snch compldr' probl<'Il1s
can be found only in some very particular cases of matter distribution. Nl'V('lthl'1l'ss,
all allalysis of the properties of vacuum Weyl solntion close to a regular horizoll
yields detailed information on the possible effect of external influence on the black
hole snrface. 13

The solntion describing a perturbed black hole call be written in the following
form [Geroch and Hartle (1982)J:

U=Us+U, V=Vs+II, (7.5.1-1)

wlH're Us and Vs are given by (7.5.11), and U is the solution of the hOl1logenl'ons
equation (7.5.9) which satisfies the regularity condition on the segment p = 0, -M ~

z s: AI and in a certain neighborhood of this segment; U takes on identical values at
the two ends of the segment:

cJ(p = 0, z = -M) = U(p = 0, z = M) == 'U. (7,5.15)

The value of II is uniquely determined from equations (7.5.10) provideu V = 0 on
the parts of the axis p = 0 that lie outside the matter-occupied region. Conuition
(7.5.15), reflecting the absence of nodal singularities, guarantees that the net force
applieu by the external field to the black hole as a whole vanishes; hence, a regular
static solution is possible. Using the second equation ill (7.5.10), one can prove that
the followillg relation holds at the event horizon:

II = 2U - 2u.

Using the cooruinate transformation

p =eU
l' VI - 2~0 sin 00 , z = eU (1' - 2Mo) cosO,

A10 = Ai e- u
,

it is possible to recast metric (7.5.8) to the form

ds 2 = _ e- 2U (1 _2~o) dt2 + e2V-2U+2u

(7.5.16)

(7.5.17)

(7.5.18)

131t is of Interest to note that even though the Weyl metric describing a distorted axially syl1lmetric
black hole belongs to the Petrov type I, its Petrov type on the event horizon is D (Papadopoulos
and Xanthopoulos (1984)].
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[( 2M)-1 .]x 1-~ dr2+r2(d02+e-2vsin20d¢J2). (7.5,19)

In these coordinates the event horizon is described by the equation r == 2Mo, and t.he
two-dimensional metric on its surface becomes, after (7.5.16) is taken into account,

ds2 == 4M; (e2U
-

2U d02 + e-2U+2u sin2 £I d¢J2) . (7.5.20)

It is easily found t.hat the horizon surface is a sphere deformed in an axially symmetric
manner l4 whose area is

(7.5.21 )

To a certain extent, the action of the external gravitational field on a black hole, wit.h
exp {; playing t.he role of potential, is analogous to the effect produced on an elastic
massive body. In order to verify this statement, consider the case where the values
of {; are higher at t.he poles that at the equator. In this situation any test body at
rest near a pole is subject to a force that tends to move the body toward the equator,
Correspondingly, the horizon surface is found to be flat.tened at the poles, as follows
from (7.5.20), .

The surface gravity K is const.ant over the horizon smface:

K == etJ /4Mo , (7.5.22)

The difference between the value of mass M observed at infinity and the value Mo
det.ermining the area of the event horizon and playing the role of irreducible mass (see
Section 7.1) is explained in the following manner. Consider the process of "insert.ing"
a Schwarzschild black hole (obviously, with M == Mo) into a given external gravit.a
tional field. If t.his process is carried out slowly enough, the area A of t.he black hole
surface remains constant; hence, Mo is preserved in this process. On the other hand,
the quant.ity M :::: eU Mo undergoes a change when the gravitational potent.ial e" of
the external field changes at the point where the black hole is located. The difference
M - Mo == Mo(e" - 1) is the work done by the external gravitational field when t.he
black hole is "insf'ft.ed" into it. It can be shown [Geroch and Hart.le (1982)) t.hat. if
t.he strong energy condition is satisfied, the potent.ial n assumes only nOll-positivI'
values.

As an example illustrating t.hese general arguments, consider the explicit. ex
pression for t.he met.ric that describes a black hole in an external quadrupole field
[Doroshkevich et al. (1965)):

. 1 2
U == 4" q(3A - 1)(31(2 - 1), (7.5.23)

141L should be mentioned that vacuum axisymmetric static melrics are possible, describing the
spacetime dose to a horizon which has the topology of torus (see, e.g., Geroch and Hartle (1982),
Xanthopoulos (1983), and references cited in these papers]. However, the Hawking's theorem implies
(see Section 5.2) that if the energy dominance condition is satisfied, the external space cannot then
be regular and at t.he same time asymptotically flat.
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(7.5.24)

(7.5.25)

(7.6.1)

where q is a parameter characterizing the quadrupole moment of the system which
produces the external gravitational field. At the horizon we have A = 1, u. = z/M so
that we immediately obtain that in the case under consideration u. = q. The Gaussian
cllfvature of the event horizon is

eq

J( = --2 (1 +3q - 12q/!2 - 9q2p2 + 9q2/I.4) .
4Mo

A constant external quadrupole field described by the solution (7.5.23)-(7.5.24) can
he neatI'd hy distant masses at rest. This solution also describes approximately the
effect produced on a black hole by distant free masses whose velocities due to their
mut.ual aUraction are initially small and whose field is nearly static.

We have already indicated that. the main difficulty in deriving exact complete
axially symmetric stationary solutions, describing the behavior of a black hole in a
gravitational field, lies in finding the solution in the region with matter. The cases
of a black hole in a uniform electric field [Ernst (1976b)) and in a uniform magnetic
field [Erust (1976a), Ernst and Wild (1976), Gal'tsov and Petukhov (1978), Gal'tsov
(W80), Wild and Kerns (1980), Aliev et al. (1980), Wild et oL (1981), Krori et
oL (1983, 1984), Dadlich (1983), Dhuraudhar and Dadlich (1984a,b)) are important
exceptions.

7.6 Interaction Between Black Holes

7.6.1 Interaction of two non-relativistic black holes

The method of matching of asymptotic expansions (see above) also serves to analyze
thl' interaction between two black holes. If the distance between the black holes
greatly excl'l'ds their gravitational radii and the holes move with respect to each
otlH'r at. a vl'locity much lower than the speed of light, the corresponding eqnations
of motion of snch interacting black holes were obtained by D'Eat,h (1975b, 1979)
[see also Thornl' and Hartle (1985)). The gravitational field in t.he ueighborhood of
pach black hole is described by a perturbed Kerr metric. The metric far from t.he
black holl's is found using the post-Newtonian approximation to till' required order
of accuracy, Matching these expansions yields the following syst.em of rquat.ions of
mot.ion for one of the black holes and of the precession of it.s a.ngular momentum ill
t.he field of the other black hole:

d2
x) (1) (2) 4

m(-d2 =F1 +F( +O(c),
t

dJ( _ [(0(1) + 0(2) + 0(31) x J ]dt - 1 ( ( . (7.6.2)
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Here we denote by Xj the position and by Vi the velocity of the ith black hole having
a mass A.1; alld an angular momentum J j ; r21 = X2 ~ XIl V21 = V2 - VI are the
position and velocity of the second black hole with respect to the first; r :::: Ir211, and
n = r2I/1'. Qnantities

(7.ll.3)

are 1.1)(· magnitude and the unit vector in the direction of angular 1ll0ntentUln of the
ith black hole. The smallness parameter E is eqnal to t.he ratio of the larger of the
two gravitational radii to the characteristic distance between black holes. The valne
of the force F\I) corresponding to the geodesic law of motion of one body in the
gravitational field created by the second body [it was found by Einstein, lnfeld, and
Hoffman (1938)) is

fl) M I M2 {. ( 4M2 + 5Ml 2 2 3 2)F I =-1'-2- 11 1- r +v1+2v2 -4vI V2-2"(V2 n )

(7.0.4)

The term F\2) in (Hi. 1),

F\2) = A.~.~J2 {Gn ([j2 X n) V12) + 4 [j2 x Vl2)- 6 [j2 X n )(Vl211)}

+ A.~~/l {6n WI x n)vl2) + 3[jl x Vl2)- 3[jl x n)(vI2 n)}, (7.6.5)

describes the additional force due to spin-orbital interaction. The term O(E4
) in the

same equation corresponds to the spin-spin interaction and to the interaction of the
quadrupole moment of the black hole with the curvature: Both are of order E

4
.

Equation (7.6.2) describes the precession of the angular momentum of a black
hole with respect to a comoving orthogonal reference frame that does not rotate with
respect to an infinitely distant observer. The gravimagnetic, 0\1), and the geodesic,

0\2), components of the angular velocity of this precession and the component 0\3)
due to the coupling of the quadrupole moment of the black hole to curvature are,
respectively,

(7.6.6)



278 CHAPTER 7. PHYSICAL EFFECTS

In the limiting case of M 1 « M2 , these formulas coincide with the equations of
motion of a rotating test particle in the field of a massive rotating body. A detailed
description of the solution of this last problem can be found in the monograph of
l\li:;uer, Thorne, and Wheeler (1973) which also gives references t.o IlIlll1erous original
publications.

For more details on the problem of motion of black holes in a given field and on
iut.('met.ion between them, see Thome, Price, and Macdonald (1986).

7.6.2 Interaction of relativistically moving black holes

In the opposite case of the relative velocity v of two black holes being close to the
speed of light, an expansion in the small parameter ,,-1 can be used b = (1 - V2)-1/2).
This method was employed by D'Eath (1975b, 1979) to solve Ill<' problem of the
scattering of two ultra-relativistic black holes moving on parallel, oppositely directed
conrses. The calculation started with the expression for the metric of an isolated
non-rotating black hole moving at a constant velocity, in the limit v -+ c. This
metric can be obtained by transformations from the Schwarzschild metric written in
isotl'Opic coordinates:

(7.6.7)

where r2 = x2 + y2 + Z2, and M is the black hole mass. Applying the Lorentz boost
transformation

we rewrite (7.6.7) in the form

[(
1 - A)2 _( A)4] (dl- VdX)2

+ 1 + A 1 + (1 - v2 ) ,

where

M Jl(l - v2
)

A = 2r = 2[(x _ vt )2 + (1 - v 2)(fP + z2))l/2 '

Jl ="M = M/V1- v2
.

(7.6.8)

(7.6.9)

(7.6.10)
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Taking the limit v ~ 1 in (7.6.9) at a constant value of energy It and denoting
[ - x = ii, l + x = u, we find [Aichelburg and Sexl (1971)J

ds2 = - dii du + dil + dz2 + 4/L [I ~ 1- 8(ii) In(li + i 2
)] dii2

• (7.6.11)

Using the coordinate transformation du = du-4/Ldiill ii I, v = ii, the above expression
is converted to the form

(7.6.12)

We see from this form of the metric that the corresponding gravitational field is a
special case of an axially symmetrical plane gravitational wave concentrated on the
surface v = 0 separating two flat half-spaces, v > 0 and v < O. The limiting procedure
carried out above changes the algebraic type of the Weyl tensor; metric (7.6.12) is
of type N, instead of the type D characterizing the original metric (7.6.7).15 The
corresponding curvature tensor vanishes everywhere except the surface v = 0 where
its nonzero components have singularities of type 8(V)!6

If there are two ultra-relativistic black holes moving toward each other on parallel
courses, their gravitational field being concentrated in two plane waves described
by metrics (7.6.12), the interaction between them disturbs these gravitational waves
which are scattered in the transmission through each other. D'Eath (1978) was able to
show that if the impact parameter is comparable with the quantity M -y2, where M is
the characteristic mass of black holes, and 'Y is the typical Lorentz factor in the center
of-mass reference frame, narrow beams of gravitational radiation of solid angles ~ 'Y2

and charact.eristic power"'" 1 (in units of e5IG) appear along the directions of motion
of the black holes. The radiation is caused by the rapidly changing acceleration of a
black hole at the moment of passage at the shortest distance from its counterpart.

If the impact parameter is comparable with the quantity /L = M-y, gravitational
radiation along the direction of motion remains weak up to angles (J $ 'Y- 1. At larger

ISThis property of the Schwarzschild metric was discovered by Pirani (1959). Later Penrose (1976)
proved that a general-type spacetime has this property. Namely, the geometry of the surrounding
spacetime tends to that of a flat gravitational wave for an observer whose velocity tends to the speed
of light, and who uses the time parameter "YT, where "Y == (1 _112)-1/2, and T is the proper time. In
the limit "Y -+ 00, the world line of this observer is a null geodesic, and "YT is the affine parameter
along this geodesic.

16 A similar procedure can be used to obtain the ultra-relativistic limit for the Kerr metric [Lousto
and Sanchez (1992), Hayashi and Samura (1994), Balasin and Nachbagauer (1995, 1996)J. It. should
be stressed that if one studies the limit 0: -+ 0 for a metric depending on a parameter 0:, one can
always make a coordinate transformation depending on 0: before taking the limit. As a result, there
may exist. different limiting metrics. (For a general discussion of this point, see Geroch (1969).J
Such an ambiguity is also present in (7.6.11). Since Iv I-I is a singular function, the limit requires
more accurate definition. The singular coordinate transformation used above serves to provide such
a definition. A general discussion of this point as well as the discussion of the structure of stress
energy tensor distributions generating the ultrarelativistic Kerr and Schwarzschild geometry can be
found in [Balasin and Nachbagauer (1995)J.
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angles (in the interval -y-1 « (J « 1), the total energy of gravitational radiation per
unit solid angle is about dE/dfl ~ O.248M-y/21l'. D'Eath (1978) assumed that the
radiation of two black holes of equal mass in head-on collision is fairly isotropic and
concluded that the efficiency of the transformation of the energy of black holes, 2/1.,
into the radiation energy, D..E, is close to 25%: D..E/2JL::::: 0.248 [Smarr et al. (1976);
see also Smarr (1977, 1979), Bovyn (1983)].

A general restriction on the maximal efficiency of conversion of the energy of black
holes in head-on collision into gravitational radiation energy D..E can be found on the
basis of Hawking's theorem [Penrose (1974), Smarr et al. (1976)). If the two black
holes have identical mass M and their center-of-mass velocity towards each other at
infinity equals v, the maximal efficiency e = D..E/2JL is

R-v2

<:<1- --- 2' (7.6.13)

The estimates given above show that the actual efficiency for ultra-relativistic black
holes is about 25 % of the maximal value e(v = 1) = 1. If non-relativistic black holes
collide, the efficiency is reduced by nearly two orders of magnitude (see Section 7.7).

7.6.3 Momentarily static black holes configurations

An interesting possibility for studying the interaction between black holes is found
in analyzing so-called momentarily static configurations that describe a system of
interacting black holes at the moment when all of them are at rest [Misner and
Wheeler (1957), Misner (1960, 1963), Lindquist (1963), Brill and Lindquist (1963),
Gibbons (1972), Bowen and York (1980), Kulkarni et al. (1983), Bowen et al. (1984),
Kulkarni (1984)]. This possibility arises because the spacetime metric 9,.., at the
moment of temporal symmetry can be so chosen that the conditions 90i = 0, 00900 =
009ij = 0 are satisfied. The extrinsic curvature on this slice K ij = 0 and the three
dimensional geometry of space can be found by solving the constraint equations
(A.78)-(A.79) which in the vacuum spacetime imply that

(3)R = O. (7.6.14)

Here (3)R is the scalar of the three-dimensional curvature of metric hij . In the presence
of an electromagnetic field, only the components Ei = F;o are nonzero at the moment
of temporal symmetry. The initial conditions at this moment of time for the Einstein
Maxwell system of equations are

(7.6.15)

Equations (7.6.15) have the following solution describing a system of N interacting
charged black holes [Lindquist (1963), Brill and Lindquist (1963)]:

d12 == hij dxi dxj = (x.1/J)2(dx2+dy2+dz2) ,
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Figure 1.3: Momentarily static configuration of three interacting black holes (two
dimensional spatial section of spacetime).
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Ei = [In(X/¢)],i,

where

(7.6.16)

N

X = 1+ L 1 O'i I'
i=1 r- ri

N {3i
¢=l+LI I'

i=1 r- ri

O'i>O, (3i>O, r=(x,y,z). (7.6.17)

(The two-dimensional section of the corresponding metric is schematically shown in
Figure 7.3 for the case of N = 3.)

The mass M i and charge Qi of the ith black hole, determined by the asymptotic
behavior of the solution at infinity on the sheet Ei (as r -+ ri), are

N

M . - . fJ'L O'i {3j + O'j {3i
.-0'.+.+ 1 I'r· - r·id=l I J

i~j

N

Q. _ fl. _ . + "" {3;O'j - O'i{3j
• -. 0'. L..,; 1 I'

i,j=l ri - rj
i¢j

(7.6.18)

(7.6.19)

The mass M and charge Q of a system of interacting black holes, determined by the
asymptotic behavior of the solution at infinity on the sheet E (as r -+ 00), are

N

M= L(O'i+{3j),
;=1

N

Q=})(3j - O'i) .
i=1

(7.6.20)
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Figure 1.4: Topology of the Brill
Liudquist space.
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Figure 1.5: Topology of the Misner
space.

It is easily shown that

N .f-. ~ 0 {3 + 0 -fJ
Q= LQ;, Mint==M-~Mi=- ~ ',J }I ' <0.

1=1 i=l i,i=1 ri - rj
i'/:i

(7.6.21)

(7.6.22)

(7.6.23)

These relations show that the charges of the black holes sum up additively while
the gravitational mass defect due to the interaction between black holes reduces the
total mass of the system below the sum of the masses of the component holes. For
a discussion of the properties of the two-dimensional surfaces corresponding to the
position of the apparent horizons at the moment of time symmetry for a system
of interacting black holes, see Brill and Lindquist (1963), Gibbons (1972), Bishop
(1984).

If {3i = Oi, solution (7.6.16) describes a system of uncharged black holes [see
Misner and Wheeler (1957), Misner (1960, 1963), Gibbons (1972)]. A special solution
of the initial value problem describing two non-rotating uncharged black holes of equal
masses momentarily at rest plays an important role in the numerical simulations of
black hole collisions (see next section) [Brill and Lindquist (1963)]. The corresponding
Brill-Lindquist metric written in the cylindrical coordinates (p, lfJ, z) (p = Jx2+ y2,
tant/> = y/x) is

dl2= 1/J4 (dp2+p2dt/>2 +dz2) ,

M [1 1]1/J = 1/JBL == 1+ - + .
4 Jp2+ (z - ZO)2 Jr + (z + ZO)2

The parameter M is the total mass of the system measured at spatial infinity (ADM
mass), while Zo determines the initial separation of black holes. The Brill-Lindquist
geometry represents two throats. Each of the throats connects the upper sheet to a
separate lower sheet (see Figure 7.4).

Another frequently used solution of the initial value problem was obtained by
Misner (1960, 1963). The Misner metric is also of the form (7.6.22) with

moo 1 [·1 1]= 1/JM = 1 + - +, (7.6.24)
1/J - 4 ~ sinh(nJL) Jp2 + (z - zn)2 Jp2 + (z + zn)2
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where Zn = (m/4) coth(nJL). This solution is topologically two Euclidean sheets with
isometric geometries joined by two throats representing non-rotating equal-mass black
holes resting on the z-axis (see Figure 7.5).

The two throats are defined by (Ztbroat ± Zo)2 + P;broat = (m/4)2 sinh-2JL, where
z = ± Zo = ±(m/4) coth JL are the black hole centers. The parameters m and JL are
related to the ADM mass M

00 1
M = m '" . h( ).8 sm nJL

(7.6.25)

(7.6.26)

The proper distance L along the spacelike geodesic connecting the throats is

L = ; [1 + 2JL~ Sinl~nJL)] .

For fixed In, increasing JL decreases the total mass of the black holes and increases
the separation between them. If the throats are close enough together (for JL < 1.36)
[Smarr et al. (1976)], a common apparent horizon surrounds them both. In this case,
the system represents one highly excited black hole.

Misner (1960, 1963) and Lindquist (1963) generalized solution (7.6.16) to the case
of a system of black holes replaced by a set of "wormholes" (a two-dimensional section
of such a space is schematically shown in Figure 7.6 in the case of a single "worm
hole"). The metric of the space at the time-symmetry moment for the uncharged
wormhole is [Misner (1960)]

dl2 = q,4 [dX2+ de2+ sin2ed¢2], -1r < X < 1r, (7.6.27)

(
m)1/2 ~ 1/2q, = 4" LJ [cosh( X + 2nJL) - cos er .

n=-oo

The total ADM mass M for the system is

00

M = m L[sinh(nJLW 1
,

n=!

and the length L of the shortest closed geodesic through the wormhole is

L = m K(k') E(k), k' = (1 _ k2)1/2,
1r

(7.6.28)

(7.6.29)

(7.6.30)

where J( and E are elliptic integrals of the first and second kind, respectively, and
the modulus k is fixed by the condition

JL = 1rK(k)/K(k').

The charged version of this solution was found by Lindquist (1963).

(7.6.31)
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Figure 1.6: Time-symmetric initial data of "wormhole" type. As before, one of the coor
dinates is suppressed.

It should be emphasized again that, in general, a system of black holes described
by solution (7.6.16) cannot be at rest at all times. The situation when ai = 0 and
the condition M i =Qi holds for all black holes is an exception [Hartle and Hawking
(1972)].

The above-described method of constructing the spacetime geometry for a system
of black holes at the moment of time symmetry can be extended to the case of rotating
black holes [Bowen and York (1980), Bowen et al. (1984), Kulkarni (1984)]. On the
possibility of equilibrium stationary axially symmetric configurations composed of
rotating black holes, see Oohara and Sato (1981), Kihara and Tomimatsu (1982),
Tomimatsu and Kihara (1982), Sato (1983), Tomimatsu (1983), Yamazaki (1983a,b),
Bit<ik and Hoenselaers (1985), and the bibliography therein.

7.7 Black Hole Collisions

7.7.1 Head-on collision. Numerical Results

The collision of two black holes is a problem of great importance both for the theory
and for astrophysical applications. Coalescence of black holes produces gravitational
waves. These sources of gravitational radiation are considered among the most im
portant ones likely to be observed by the Laser Interferometric Gravitational Wave
Observatory (LIGO) [see e.g., Abramovici et al. (1992), Thorne (1997a,b)]. LIGO is a
system of large Michelson interferometer detectors of gravitational radiation presently
under construction in the United States. LIGO is a part of a global network that
includes the French-Italian VIRGO detector (under construction near Pisa) and other
detectors in various stages of planning. The information obtained by detecting grav
itational waves from coalescing black hole binaries should allow one to reconstruct
the astrophysical parameters of the system, and might provide the first direct in
formation on the properties of spacetime nea.r black holes. Moreover, details of the
gravitational wave profiles can be used as a potential test of the Einstein equations
in the domain of strong gravitational fields.

In order to extract the required information from the observations and to make
comparison with the theory, it is necessary to perform accurate calculations of the
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gravitational waveform from coalescing black holes. The latter problem inevitably
includes the study of the self-consistent dynamics of coalescing black holes.

The two-body problem in general relativity is unsolved. In order to illuminate
its difficulties, it is instructive to compare it with the two-body problem ill electro
dynamics. The equations of 1Il0tion of two massive point-like charges can be solved
analytically only if we neglect their radiation and retardation effects in their interac
tion. Uuder these conditions dynamical properties of the electromagnetic field are not
important, and one can determine the field at a given moment of time by solving an
eliptic constraint equation. In the presence of the effects of retardation and radiation
the dynamical nature of the electromagnetic field becomes important. This means
that we can determine the motion of the particles only if we include the electromag
netic field as an important part of the system. For this reason (especially in the case
of the relativistic motion of charges), even this electrodynamical problem becomes
quite complicated and requires special approximations. The two-body problem for
two colliding or coalescing black holes is essentially more complicated. The main
reasons are the nonlinearity of the Einstein equations and their gauge invariance. An
additional complication is that black holes are extended nonlocal objects. The ap
proximation methods described in the Section 7.6 for interacting black holes, which
were based on the existence of a small parameter, do not work when the colliding
black holes come close to one another. Unfortunately, no general analytic techniques
are available for obtaining strong-field, highly dynamical solutions in the absence of
spatial symmetries. In such situations, the only recourse is numerical solution of the
Einstein equations.

The numerical simulations performed until now are mainly restricted to the case
of head-on collisions of two black holes. Because of the additional axial symmetry this
problem is essentially two-dimensional. The head-on black hole collision was the ear
liest testbed for numerical relativity, the solution of the Einstein differential equations
with numerical codes. The first numerical attack on this problem was made by Hahn
and Lindquist (1964). Smarr and Eppley [Smarr (1979)] obtained the first numerical
solution for the head-on collision of two black holes of equal mass. The starting point
of their calculations was Misner's initial data (7.6.22) and (7.6.24) representing two
non-rotating equal mass black holes colliding head on along the z axis. This choice
of the initial data allows one to avoid problems connected with unimportant details
of the dynamics of the collapsing matter forming the black holes. Smarr and Eppley
showed that the black holes do coalesce and radiate gravitational waves with energy
of order 10-3M, where M is the total mass of the system. Moreover, they demon
strated that the gravitational wave has a form similar to the ringing radiation (see
Section 4.4). However, these numerical calculations proved to be very difficult due
to inherent coordinate singularities and numerical instabilities.

Recently, these calculations were extended and refined by the NCSA group [An
ninos, Hobill et al. (1993, 1995), Anninos, Bernstein et al. (1994, 1995), Anninos,
Camarda et al. (1995), Anninos, Daues et ai. (1995)]. In the works of these authors
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Figure 1.1: The total gravitation wave energy output for head-on collision of two non
rotating black holes. Each of black holes has mass M.

many of the numerical problems associated with colliding two black holes were over
come. In particular, they used a hybrid set of coordinates to resolve the axis anel
saddle point problems encounted by Smarr and Eppley. They developed a numeri
cal code that can evolve black holes of equal mass with initial separation distances
between 4M and 20M, where M is a mass of the black hole. More modern analytic
techniques were applied to the numerical data to extract waveforms and to compute
the total energies emitted. The numerical simulations demonstrate that waveforms
show similar behavior for all cases studied: The normal modes of the final black hole
are excited and account for most of the emitted signal. The total energy radiated
is of order 2 x 10-3M. This radiated energy is far below the limit estimated by the
area theorem. The results of the calculations for the radiated total energy and com
parison with different approximations are presented in Figure 7.7 [Anninos, Robill
et al. (I995)]. In this figure solid bars show the result of the calculations with their
errors. The crosses show earlier results by Smarr and Eppley with their approximate
error bars. 17 The dashed line is the semianalytic estimate by Anninos, Robill et al.
(1995). The connected circles show an upper limit based on the area theorem.

Recall (see Section 4.6) that the amount of radiated energy in the case of radial
fall of a test particle of mass m at the parabolic velocity into a black hole of mass M
is given by the formula

b>E = 0.01 m 2
/ M . (7.7.1)

Note that the same formula reproduces the numerical result given above quite well
if the reduced mass of two black holes, MH /2, is substituted for m, and if we take
into account that the total mass of the system is M = 2MH • The solid line 1 is
the result of this naive application of the point particle result after the reduced mass
corrections are taken into account.

We already mentioned in the previous section that for J-L < 1.36 the apparent
horizon surrounds both of the throats so that the initial data represent a single

17 On another semi-analytic estimate of the total gravitational radiation in the head-on black hole
collision see [Moreschi and Dain (1996)J.
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highly excited black hole. In fact, the event horizon is located outside the apparent
horizon. It was shown that the initial data contain one black hole for J-L < 1.8.

The Misner initial data are special only in their mathematical convenience. For
this reason, it is important to study how the obtained results depend on the partic
ular choice of the initial conditions. This problem was analyzed by Abrahams and
Price (I996b) who compared the results of the calculations for the Misner and Brill
Lindquist initial data. They concluded that the single difference between radiation
from these two initial data lies in the relative strengths of multipoles. The head
on collision of non-rotating black holes of equal mass formed from the collapse of
spherical balls of non-colliding particles was investigated by Shapiro a>: reukolsky
(1992).

In spite of the fact that supercomputers have advanced in speed by over 50,000
times since the first numerical calculations by Hahn and Lindquist (1964), the general
problem of study of coalescence of two black holes in the absence of axial symme
try is still open. Full three-dimensional simulations of two coalescing black holes,
which requires the power of the teraflop supercomputers, is the subject of a National
Science Foundation High-Performance Computing and Communications Grand chal
lenge project, termed the Binary Black Hole Alliance. Besides the study of head-on
collisions nf black holes which is a natural first step, a lot of work has already been
done to overcome various difficulties of the numerical calculations in three dimensions.

One of these problems is connected with the singularities inside a black hole. The
presence of extreme curvature near singularities does not allow one to use numerical
schemes. To avoid this difficulty it was proposed to use so-called singularity-avoiding
slicing conditions so that "equal time" slices wrap up around the singular regions
[Smarr and York (I978); Eardley and Smarr (1979); Bardeen and Piran (I983)].
However, these conditions by themselves do not solve the problem, but simply serve
to delay the breakdown of the numerical evolution. The slowdown of the evolution
of the slices near the singularity results in their abrupt change near the horizon.
Numerical simulations finally crash due to this pathological behavior of the slices.

In principle, the solution of this problem is evident. The black hole interior does
not influence the exterior regions. That is why it is sufficient to use only those partial
slices which lie outside the event horizon. The problem is that the event horizon itself
can be determined only after the solution is obtained. For this reason, it was proposed
to use an apparent horizon for this purpose. The main problem is to formulate some
form of outgoing (i.e., into the black hole) boundary conditions for general relativity,
where the waves are nonlinear, dispersive, and possess tails. It was demonstrated
only recently that such horizon boundary conditions can be realized in numerical
calculations [Seidel and Suen (1992); Anninos, Camarda et al. (1995)].
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Figure 1.8: The event horizon formed by the merger of two non· rotating black holes.

7.7.2 Event horizon structure for colliding black holes

A quite unexpected application of numerical relativity is the study of the structure of
the event horizon for colliding black holes [Matzner et al. (l995)]. This study demon
strated that earlier naive pictures of the horizon for colliding black holes, similar to
Figure 5.9, give only a rough description and can be considerably refined.

The event horizon in a spacetime of a black hole can be found by numerically
propagating null rays back in time [Hughes et at. (l994)]. A useful method of event
horizon reconstruction in the numerical simulations was proposed by Anninos, Bern
stein et al. (1995). If at late times the solution for a black hole is almost static,
one can use the apparent horizon to approximate it and to define the approximate
position of the event horizon in the earlier moments of time by integrating the null
surface equation backward in time. A null surface defined by f(t, xi) = 0 obeys the
equation

gILV f'IL f,v = 0 . (7.7.2)

This is a first-order partial differential equation. It was shown that numerically
int.egrating an entire surface has several advantages with respect to the method of
backward tracing of null geodesics.

The ability to determine accurately the apparent and event horizons for evolving
black holes opens up the possibility of using the numerical methods as a tool to study
the structure of the horizons. By combining numerical results with analytical meth
ods, it is possible to arrive at the following qualitative picture (shown in Figure 7.8)
of the event horizon structure for the head-on collision of two black holes [Matzner
et al. (1995)].

This figure shows the formation of two black holes of equal mass. The horizon
begins where its generating rays meet, either at caustics or at crossover points. In the
presence of rotational symmetry the only stable (i.e., generic with respect to small
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perturbations preserving symmetry) caustics consist of cusps and folds. IS The two
points C are cusp-like vertices connected by the spacelike line X of crossover points
which form a "seam" on the "trousers". The "seam" joins smoothly to the two null
rays emanating from the cusps. A null ray which, on being propagated backward
in time, crosses the crossover line X meets there another null ray. Earlier in time
both of the intersecting rays are in the region visible from infinity. In the exactly
axisymmetric case the crossover line is in fact a caustic because it is a focal line of a
circle ill the (x,y)-plane. However, under a perturbation away from axial symmetry
this line is broadened into a two-dimensional spacelike crossover surface.

1BThe classification and study of caustics is one· of the important applications of catastrophe
theory [see e.g., Arnold (1990)). Many details of the spacetime geometry of the elementary stable
caustics are discussed in [Friedricli and Stewart (1983)).



Chapter 8

Black Hole Electrodynamics

8.1 Introduction

Black hole electrodynamics is defined as the theory of electrodynamic processes that
can occur outside the event horizon, in the external space accessible to observation by
distant observers. At first glance, black hole electrodynamics is quite trivial. Indeed,
the electromagnetic field of a stationary black hole (of a given mass 111) is determined
unambiguously by its electric charge Q and rotation parameter a. If the charged black
hole does not rotate, its electromagnetic field reduces to the radial electric field of
the charge Q and is static. Any multipoles higher than the monopole are absent.

If the black hole rotates, the electromagnetic field has the form (3.6.3). The field
is stationary, but now the rotation of the black hole, first, induces a magnetic field
and, second, distorts the geometry of space and generates the higher-order electric
(and magnetic) moments of the fields. However, these higher-order moments are
determined unambiguously by the quantities 111, a, and Q, not being in any way
independent, as one would find in the case of ordinary bodies.

In astrophysics, the electric charge of a black hole (as of any other celestial body)
cannot be high (see Section 3.6). The magnetic field must also be very weak: The
dipole magnetic moment of a black hole is p,* = Qa. There can be no other stationary
electromagnetic field inherent in a black hole. In this sense, the electrodynamics
of, say, radio pulsars is definitely much richer than that of the intrinsic fields of
black holes. A radio pulsar is a rapidly rotating neutron star of approximately solar
mass possessing a gigantic "frozen-in" magnetic field of about 1012 Gauss. Rotation
induces high electric fields that "rip" charges off the surface of the star and accelerate
them to high energies. Energetic particles moving along curved magnetic field lines
radiate hard curvature photons, which generate secondary electron-positron pairs in
a strong magnetic field [Goldreich and Julian (1969), Sturrock (1971), Ruderman
and Sutherland (1975), Arons (1983), Kardashev et al. (1984), Gurevich and Istomin
(1985)]. As a result, a complicated magnetosphere of the pulsar is created, and a
host of other related phenomena are generated [Michel (1991), Beskin, Gurevich, and

290
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Istomin (1993)].
Black holes have neither strong magnetic nor electric fields (see Ginzburg (1964),

Ginzburg and Ozernoi (1964), and Chapter 3), nor a surface from which charges
could be ejected. Complex electrodynamic processes are thus impossible. However,
if a black hole is placed in an external electromagnetic field, and if charges can
be produced in its surroundings, the situation changes dramatically, and complex
electrodynamics does appear. It is this aspect that we mean when black hole elec
trodynamics is discussed.

The case important for astrophysical applications is that of external magnetic (not
electric) fields and rarefied plasma in which a black hole is embedded. In this system a
regular magnetic field arises, for example, as it gets cleansed of magnetic loops which
fall into a black hole [Thorne, Price, and Macdonald (1986)]. A regular magnetic field
can also be generated in an accretion disk by the dynamo-action [Pudritz (1981a,b),
Camenzind (1990)].

8.2 Maxwell's Equations

8.2.1 Black hole electrodynamics and membrane paradigm

We will consider electromagnetic fields against the background of a given metric; tha.t
is, we assume that these fields are not sufficiently strong to affect the metric. As a
rule, this condition is met in astrophysics. l

Electrodynamic equations in four-dimensional form, using the tensor Fo.{3, can
hardly suggest anything to our intuition. They are difficult enough to apply to even
modestly difficult concrete problems of physics. Thorne and Macdonald (1982) [see
also IVlacdonald and Thorne (1982), Thorne, Price, and Macdonald (1986)] have
rewritten these equations using the (3+I)-split for the exterior spacetime of a rotat
ing black hole (see Section 3.2). Their formalism operates with familiar concepts:
field strength, charge density, electric current density, and so forth, "absolute" space
and unified "time". The equations of electrodynamics are written in a form similar
to their form in a flat spacetime in a Lorentz reference frame. As a result, one can use
not only well-developed methods of electrodynamics but also "rely" on conventional
notions a.nd the intuition stemming from experience of solving such problems. Fur
thermore, the work of Thorne and Macdonald cited above makes use of the so-called
"membrane" interpretation of a black hole (see Section 3.7). The main point of this
approach is that for a distant observer (who does not fall into the black hole), the
boundary of a black hole can often be thought of as a thin physical membrane charac
terized by special electromagnetic, thermodynamic, and mechanical properties. This
interpretation will be described in more detail in Section 8.3 [see also Thorne (1986),

IThe slow change in the parameters of the black hole as a result of electromagnetic processes is
analyzed later (Section 8.4).
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(8.2.1)

Price and Thorne (1986), Thorne, Price, and Macdonald (1986)]. Of course, in real
ity there is no membrane. This concept needs very careful handling, and one must
constantly bear in mind that it is only conditional and convenient for solving certain
problems. The methods outlined above make it relatively simple to apply black hole
electrodynamics to astrophysics even when the astrophysicist is not a specialist in
relativity. For a review of this field, see Thorne et al. (1986).

This section presents the results of the papers [Thorne and Macdonald (1982),
Macdonald and Thorne (1982)] for axially symmetric black holes cited above and
subsequent development of these ideas. All physical quantities introduced below are
three-dimensional vectors (or tensors) which -are characterized by a position occupied
in the "absolute" three-dimensional space (outside the black hole) and by the absolute
unified "time" t (see Section 3.2). These are quantities that a locally no-rotating
observer measures by conventional instruments.2

8.2.2 Maxwell's equations in (3+1)-form

We introduce the following notation for electrodynamic physical quantities measured
by locally non-rotating observers: E is the electric field strength, B is the magnetic
field strength, Pe is the electric charge density, and j is the electric current den
sity. Denote by w the norm of a Killing vector ~(<p) reflecting the axial symmetry of
spacetime (3.2.1)

tv == .;g;; =~ sin () .

Here A and L; are defined by (3.2.2). We denote by e~ a three-dimensional unit
vector in the direction of the Killing vector ~(<p). By using these notations, Maxwell's
equations can be written in the following form: 3

V E =:: 4 7r Pe ,

VB=O,

47raj 1 .
V x (aB) = -- + -[E+£I3E],

c c

1 .
V X (a E) = - - [B + L 13B].

c

(8.2.2)

(8.2.3)

(8.2.4)

(8.2.5)

2We recall that locally non-rotating observers are observers which possess zero angular momen
tum (see Sections 3.3 and 3.7). They are also known as ZAMO's [Thorne, Price, and Macdonald
(1986)].

3In view of the applications where the electrodynamic formulas of this chapter are used in astro
physics, we write them in a conventional system of units, retaining c_
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Here
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(8.2.6)

a = (Etl/A)1/2 is the lapse function given by (3.3.12), and w is the angular velocity
of rotation (in time t) of locally non-rotating observers [see (3.3.13)]. The notation
LI3E is used for the Lie derivative of a vector E along f3

L13E == (f3 '\7) E - (E '\7) f3. (8.2.7)

(8.2.8)

This Lie derivative describes how the vector E varies with respect to the field f3 (see
Appendix A.7). L13E vanishes when the origin and end of the vector E are "glued"
in a displacement by f3 d</J. A dot denotes differentiation with respect to t and '\7 is
the three-dimensional (covariant) gradient operator in the curved "absolute" space.

Equations (8.2.2)-(8.2.3) have a familiar form, while that of equations (8.2.4)
(8.2.5) is slightly unusual. The following differences are evident. A function a has
appeared because the physical time flows differently at different points of space while
the equations are written in terms of the global "time" t (recall that the acceleration
of free fall, a, is related to a in the reference frame of locally non-rotating observers
by the formula a = - c2 '\7 Ina). Furthermore, the expressions in brackets in (8.2.4)
and (8.2.5) are "Lie-type" derivatives (with respect to time) for the set of locally
non-rotating observers who move in the absolute space and for whom dx/dt = f3.
These expressions thus correspond to total derivatives with respect to the times of
E and B, respectively, with the motion of locally non-rotating observers taken into
account.

Electrodynamic equations become especially lucid and convenient for the analysis
of specific problems if written in integral form [see, e.g., Pikel'ner (1961)]. Here we
give only one of such integral expression (we will need it later) for the external space
of the black hole; namely, Faraday's law:

r a (E + ! v x B) dl = - ! dd r BdE .
lEw(!) c c t lA'(!)

Here dE is the vector of a surface element, with the vector length equal.to the surface
area of the element; A*(t) is a two-dimensional surface that does not intersect the
horizon and is bounded by the curve 8A'(t); dl is an element of 8A*(t), and v is the
physical velocity of N(t) or 8N(t) relative to local non-rotating observers.

8.3 Stationary Axisymmetric Electrodynamics

8.3.1 Invariant variables

A rotating black hole and the space outside are stationary and axially symmetric.
The motion of matter around a black hole can very often be regarded, with high
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accuracy, as stationary and axisymmetric as well. It is then natural to assume that
the electromagnetic field too has these properties.

In this section we assume that these conditions are satisfied.4 Then the derivatives
with respect to time t vanish, and the Lie derivatives of vectors E and B take the
form

L 13B = - (B Vw) r;ve~. (8.3.1)

It is found that under stationarity and axial symmetry, the directly measured
values of E, B, Pel and j are expressible in terms of three scalar functions that can
be chosen in the following manner.

Let 8A· be a closed coordinate line for constant rand 0 in the absolute three
space, and A· be a two-dimensional surface, bounded by 8A·, that does not intersect
the black hole. This surface necessarily intersects the axis of symmetry. We denote
by dE the surface element on A· and choose its orientation so that at the axis of
symmetry it is directed along z-axis (i.e., from the black hole in the northern hemi
sphere, and to the black hole in the southern one). Then the three scalar functions
mentioned above are:

1. Total magnetic flux Wacross A·

W== r BdE
lA'

2. Total current I inside the loop 8A· (taken with reversed sign)

1==- r ajdE
lA'

3. Electric potential

Uo == -aeI> - Af3

(8.3.2)

(8.3.3)

(8.3.4)

In the latter relation cI> is the scalar potential, and A is the vector potential. The
quantities I and W depend on the choice of the position of the loop 8A· but are
independent of the shape of A· (we assume the black hole to have zero magnetic
charge). In other words, W, I, and Uo are functions of the {r,O)-coordinates. We
demonstrate noW that the electric and magnetic fields can be expressed in terms of
these new invariant field variables.

Before expressing E and B in terms of W, I, and Uo, we decompose the fields into
poloidal (superscript P) and toroidal (superscript T) components that are perpen
dicular and parallel to the vector e~, respectively:

ET == (Ee~) e~, EP = E - ET
, (8.3.5)

4The case of a non-stationary field is discussed, e.g., by Macdonald and Suen (1985), Thorne
(1986), Park and Vishniak (1989, 1990).



8.3. Stationary Axisymmetric Electrodynamics 295

(8.3.6)

The current density j is also decomposed into poloidal (jP) and toroidal (jT) com
ponents.

Faraday's law (8.2.8) and the stationarity condition imply ET = O. Equation
(8.2.3) and the condition of axial symmetry of B imply

(8.3.7)

that is, the poloidal and toroidal magnetic lines of force can be treated independently
(as not terminating anywhere).

Now we can give expressions for all electromagnetic quantities in terms of W, I,
and Uo:

T 21
B =---e·,

ncw </>

.p e~ x VI
J = ,

27rn w

.T.T W { [nVW] 1 ( WVW)}J =J e' = - -cV -- +-Vw VUo+-- ,
</> 47ro . 27r w 2 0 27rc

(8.3.8)

(8.3.9)

(8.3.1O)

(8.3.11)

(8.3.12)

(8.3.13)

(8.3.14)

Note that the last three equations can be treated as differential equations for deter
mining W, I, Uo (and hence E and B as well) provided the field sources Y, jT, and
Pe are assumed to be given as stationary and axisymmetric but otherwise arbitrary
functions. Note also that in the stationary and axisymmetric case the current j must
be prescribed in such a way that the condition V{nj) = 0 (the charge conservation
law) is satisfied; that is, nY must be divergence-free.
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8.3.2 Fields in the plasma surrounding a black hole

Consider now the physical conditions in the plasma surrounding the black hole. In
the case of most importance for astrophysics, the conductivity of the plasma is so
high that the electric field in the reference frame comoving with the plasma vanishes,
and the magnetic lines of force are "frozen" into the plasma. In this case, the electric
and magnetic fields in an arbitrary reference frame are perpendicular to each other
(degenerate fields):

EB=O. (8.3.15)

Note that this condition is only some approximation and generally a smalliongitudi
nal electric field is present. To solve problems concerning the configuration of fields,
currents, and charge distributions, it is only necessary that the inequality

IEBI«IE2 -B2
1 (8.3.16)

is satisfied instead of (8.3.15). Small deviations from the exact equation (8.3.15)
in the neighborhood of a black hole may prove to be important for a number of
astrophysical processes [e.g., see Kardashev et al. (1983), Beskin, Istomin, and Pariev
(1993), Horiuchi, Mestel, and Okamoto (1995)].

The equation (8.3.9) shows that the field E is purely poloidal. The condition
(8.3.15) implies that E can be expressed as the vector product of B P by a vector
_yF Ic which is a function of only rand () and is parallel to e~:

yF
E == E P == - - x B P (8.3.17)

c

Recall that E and B are fields measured by locally non-rotating observers. It is clear
that for IyFI < c the equation (8.3.17) impliesthat an observer moving at a velocity
yF with respect to locally non-rotating observers measures only a magnetic field. The
electric field is zero for this observer owing to the Lorentz transformation. Therefore,
yF can be interpreted as the linear velocity of the points of a magnetic line of force
with respect to locally non-rotating observers. Field E is completely induced by this
motion. If the vector yF is written in the form

yF == (nF
Q- W) tv e~, (8.3.18)

then nF is angular velocity of the points on the lines of force of the poloidal magnetic
field in the "absolute" space. The relations (8.3.17) and (8.3.18) remain also formally
valid for IyF I > c.

The surface obtained when a magnetic line of force rotates around the symmetry
axis is called the magnetic surface. The quantity I{! is obviously constant on this
surface. By substituting (8.3.17)-(8.3.18) into the Maxwell's equations (8.2.5), we
find that nF depends only on I{!

n F == nF(I{!) . (8.3.19)
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This means that each line of force revolves around the black hole as a whole at the
angular velocity 0.F which is constant in t in "absolute" space. Finally, by comparing
relations (8.3.17), (8.3.18), and (8.3.8), we obtain

dUo
dlJl

(8.3.20)

Thus, Uo is also a function of IJI and the equation (8.3.20) allows one to define it if
0.F(IJI) is known. In what follows we use 0.F(IJI) as the basic quantity instead of Uo.
Equations (8.3.13) for F and (8.3.14) for Pe get somewhat simplified

.r rv [ (O'VIJI) 1 F ]J =--- cV -- +-(0. -w)VIJIVw ,
87T20' rv 2 O'C

1 [(0. F -w) ]Pe =- 87T2C V --0'- VIJI .

(8.3.21 )

(8.3.22)

We first consider the simplest case in which inertial (and gravitational) forces
acting Oil the plasma are small in comparison with electromagnetic forces. The COll
figuration of fields and currents is then such that currents in the reference frame
comoving with the plasma are parallel to magnetic lines of force, and 110 Lorentz
force acts on moving charges. Such fields are known as force-free fields. In an arbi
trary referellce frame the condition of existence of a force-free field is

(8.3.23)

This equation implies that I = I(IJI). To prevent possible misunderstanding, we
stress that usually more than one magnetic surface correspond to a given value of
the flux IJI. That is why the current I as well as the other integrals of motion which
will be introduced later and which are constant on the magnetic surfaces generally
are not single-valued functions of IJI. However, locally relations like I = I(IJI) have a
well-defined meaning.

Note that the condition (8.3.23) is definitely violated somewhere in the exterior
space of the black hole. Indeed, the outer magnetic field in normal conditions survives
in the space around the black hole because the ends of magnetic lines of force are
"frozen" into the sufficiently dense massive plasma which exists somewhat further
away and which has "transported" the magnetic field to the black hole. Condition
(8.3.15) is met in this plasma but condition (8.3.23) is not. Gravitation (and inertia)
holds this plasma in the vicinity of the black hole, together with the magnetic field
"frozen" into it. The lines of force of the field pass from the dense plasma into the
region of much more rarefied plasma where condition (8.3.23) is satisfied. Some of
these lines of force go around the black hole, and some go through it. For example, this
is the case in the widely discussed model of disk accretion on a black hole (Figure 8.1).
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Figure 8.1: Schematic representation of disk accretion to a black hole: l--rotating black
hole, 2-region of force-free field (8.3.23), 3-"acceleration region" where conditions (8.3.15)
and (8.3.23) are violated. The dashed curve is the boundary between the regions 2 and 3.
The dotted curve is an example of electric current line.

If condition (8.3.23) were not violated somewhere and if the dense plasma did not
counteract the outward pressure of the magnetic field, this pressure would drive an
outward motion of the lines of force together with the rarefied plasma.

Condition (8.3.15) is likely to be violated far from the black hole (region 3 in
Figure 8.1), where the magnetic field is sufficiently weak, while the inertial forces
become relatively large (see the next section).

The most important and salient fact is that in the force-free approximation I{! , I,
and Uo are no longer arbitrary and independent; hence, Pe> F, and the divergenceless
part of 0' jP are likewise not arbitrary and independent as they would be if stationary
and axial symmetry were the only constraints. All arbitrariness in choosing them has
now been eliminated. The necessary (and sufficient) condition for a force-free field
to exist is that I{! satisfies an equation called the stream equation:

(n
F

- w) dn
F

(V)2 167T
2

I dI - 0+ - I{! +-- -- .
O'c2 dl{! O'C2W 2 dl{!

(8.3.24)
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The equation (8.3.24) follows directly from the force-free condition (8.3.23). In
deed, the force-free condition after substitution into it the expressions for the charge
density Pe [(8.3.22)] and the electric currentj [(8.3.12) and (8.3.21)] coincides (up to
the common factor VI{!) with (8.3.24).

The stream equation (8.3.24) is a nonlinear elliptic equation for the potential
I{! in which the current I(I{!) and the angular velocity nF(I{!) are to be specified
independently. If I{! , nF(I{!), and I(I{!) are chosen so as to satisfy (8.3.24), then E for
a region with a force-free field is found from (8.3.17) after substituting into it (8.3.18)
and (8.3.10); B is found from (8.3.10) and (8.3.11); Y from (8.3.12), and jT and Pe
from (8.3.21) and (8.3.22), respectively.

8.3.3 Magneto-hydrodynamic approximation

In the more general case when the mass of the particles cannot be neglected and
the force-free condition (8.3.23) is not satisfied, a more general approach based on
the one-fluid magneto-hydrodynamical (MHD) approximation can be applied. The
applications of this approach to the strong gravitational field of black holes were
considered by Phinney (1983a,b), Camenzind (1986a,b,c, 1987), Punsly and Coronity
(1990a,b), Takahashi et al. (1990), Punsly (1991), Nitta, Takahashi, and Tomimatsu
(1991), Hirotani et al. (1992), Beskin and Pariev5 (1993). In this case, Maxwell's
equations are to be supplemented by the continuity equation and the equation of
state.

We assume that the number of particles is conserved and the continuity equation
reads

V(O'nu)=O, (8.3.25)

where u = ,vic; , = (1 - v2/c2)-1/2; v is the three-velocity of matter, and n is
the matter density in the comoving reference frame. In the MHD-approximation the
"frozen-in condition" (8.3.15) takes the form

E+(v/c)xB=O. (8.3.26)

This equation and (8.2.3) allow one to write the general solution of the continuity
equation (8.3.25)

1] ,(nF-w)w
u = - B + - e;, . (8.3.27)

O'n 0' c '"

The parameter 1] is the "integration constant" depending on I{!, 1] =1)(I{!). In other
words, the value of 1] is constant on the magnetic surface. The relation (8.3.27) in
particular shows that the poloidal component uP of u is

uP = ...!!- B P
. (8.3.28)

O'n

5The consideration below in this section is based on the results presented in this last paper.
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To specify the equation of state, it is convenient to use the pressure P and the
entropy per particle s as thermodynamical variables. The corresponding thermody
namic potential is the specific entalpy Jl

j.L = j.L(P,s) = (Pm + P)!n, (8.3.29)

(8.3.30)

where Pm is the energy density of matter. The first law of thermodynamics implies
[see e.g., Landau and Lifshitz (1959)]

1
dj.L = - dP + T ds .

n

The matter density n and the temperature T are defined as

[(
8tt) ]-1

n=n(P,s)= 8P. '

T = T( P, s) = + (~)p .

(8.3.31 )

(8.3.32)

The above relations allow one to express j.L, T, and P as functions of nand s

j.L=j.L(n,s), T =T(n,s) , P = P(n, s). (8.3.33)

We also make an additional assumption that the mat-ter flow is isentropic

(uV) s = O.

In the axisymmetric case, equations (8.3.28) and (8.3.34) yield

s = s(1]i) .

(8.3.34)

(8.3.35)

In the MHD-approximation, the current I fails to be constant on the magnetic
surface. Nevertheless, the following two combinations E(1]i) and L(1]i) containing I
are constant on the magnetic surface

I
L(1]i) = 27T + j.LcTJ'CVuJ,'

(8.3.36)

(8.3.37)

Here UJ, = u eJ, . These relations reflect the conservation of the total energy and
qrcomponent of the momentum in the system. The first term on the right-hand
side of (8.3.36) and (8.3.37) corresponds to the contribution of the electromagnetic
field, while the others are connected with the contribution of particles. Thus, in
the one-fluid MHD approximation there exist five quantities which are constant on



8.3. Stationary Axisymmetric Electrodynamics 301

the magnetic surface: nF(I{I), E(I{I), L(I{I), 1](I{I), and s(I{I). We call these quantities
integrals of motion.

The next step is to show that for known poloidal field B P (i.e., for known potential
I{I) and for given integrals of motion one can reconstruct the toroidal magnetic field
B T , the matter density n, and velocity v. For this purpose, we use the conservation
laws (8.3.36) and (8.3,37) which together with the ¢I-component of (8.3.27) allow one
to express the electric CUlTent. I, the Lorentz factor "'i, and u¢, as follows

I Q
2L - (nF - w)(E -wL) (r;:;2/C2)

27T Q2_ (nF -W)2(r;:;2/C2) -M2 '

1 Q2(E - nF L) - M 2(E - wL)
'"};:: Q/lC2 1] Q2 - (n F - w)2 (r;:;2/C2) - M2 '

Here we denote

M 2 == 47Tlt1]2 .

n

(8.3.38)

(8.3.39)

(8.3.40)

(8.3.41)

We emphasize that M remains finite at the horizon provided the field and matter
fluxes are regular there. 6 According to the equation (8.3.33), J1 = J1(n, s), and hence
the relation (8,3.41) allows one to express n (and hence J1) as a function of 1], s, and
M. This means that besides the integrals of motion only one additional quantity
(M) enters the expressions for I, "'i, and uti>.

We now show that if I{I ;:: l{I(r,O) is known, then one can define M in terms of
integrals of motion. For this purpose, one can use the relation "'i2

- u2 = 1. After
substitution of expressions (8.3.39) for "'i, (8.3.40) for uJ' and (8.3.28), (8.3.10) for
uP into this relation, one gets

J(

where

(8.3.42)

and

(8.3.43)

6By introducing the Alfven velocity UA -= B P(4trnp)-1/2, we can also write M in the form
M = auP /UA. Thus, M is (up to the factor 0) the Mach number calculated for the poloidal
velocity uP with respect to the Alfven velocity UA.
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The equation (8.3.42) defines M as the function of (VW)2 and integrals of motion

(8.3.45)

We recall that

(8.3.46)

Thus, for a known poloidal field B P the relations (8.3.33), (8.3.38)-(8.3.41), and
(8.3.45) define the toroidal magnetic field B T , the matter density n, and velocity v.

The stream equation (8.3.24) defining the magnetic flux Wcan be also generalized
to the MHD-approximation. In this approximation, the force-free equation (8.3.23),
defining the structure of the poloidal magnetic field, is to be replaced by the following
equation, which is the poloidal component of the covariant conservation law

n [rv u . ]n[(uV)(JLu)jP+~JL'Y 7Vw+'YVO'

= -VP+PeE+[(j/c) x BjP, (8.3.47)

where P is the pressure; n is the density, and u = 'Y v. As a result, the stream
equation takes the form

A[V(0'~2 Vw) + DO'rv}(VW)2 t;iw'Vjw'Vi'Vjw]

+ _1_ V~Vw _ A V'F VW + (n
F

- w) dn
F

(VW)2 (8.3.48)
0' rv2 2DO'rv2(VW)2 0' c2 dw

32 7T
4 a (G) 3 1 dTJ 3 ds

+O'rv2c2M2aW A -157TO'JLn-rydW-167TO'nTdW=0.

Here

G = 0'2(E - nFL)2 (rv 2/C2)+ 0'2M 2L2 - M 2(E - WL)2 (rv2/C2),

(uP 2 = M 4
(VW)2

) 54 7T4 ( 0' Jl TJ rv)2 ,

and as is the sound velocity

a~ = c2.!. (ap) .
JL an s

(8.3.49)

(8.3.50)

(8.3.51 )

(8.3.52)

(8.3.53)
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In the equation (8.3.48) the quantities J.t, n, T, and as are to be expressed in terms
of M and integrals of motions. The gradient V' denotes the action of V under the
condition that M is fixed. The derivative 8/8\fJ in the expression 8/8\fJ(G/A) acts
only on the integrals of motion nF(\fJ), E(\fJ), L(\fJ), 1](\fJ), while other variables in a
G/A are considered as constants. Finally, in the obtained relation the quantity M
must be expressed by means of (8.3.45). (For more details, see [Nitta, Takahashi,
and Tomimatsu (1991), Beskin and Pariev (1993)]).

The stream equation (8.3.48) is the desired equation for the poloidal field, which
contains only the magnetic flux \fJ and the five integrals of motion depending on it.
When the mass of particle can be neglected (J.t == 0), this equation reduces to the
force-free stream equation (8.3.24).

8.3.4 Singular surfaces

MHD-flow, described by the equation (8.3.48), is characterized by the following sin
gular surfaces, in which the matter velocity becomes equal to the velocity of the
electromagnetic waves. These surfaces are:

1. Alfven surfaces defined by the condition A == O. On these surfaces the total
velocity of matter u is equal to the Alfven velocity UA == B(47rJ.tn)-I/2.

2. Fast and slow magneto-sonic surfaces defined by the condition D = O. On
these surfaces the matter velocity is equal to the velocity of the fast or slow
MHD-wave.

3. Slow magnetosonic cusp surfaces defined by condition D = -1.

Unlike the force-free equation (8.3.24), the equation (8.3.48) is of mixed type: It
is elliptic for D > 0, D < -1 and is hyperbolic for -1 < D < O. In the case when
the density of matter n remains finite at the horizon of a black hole, one has

(8.3.54)

If in the region where plasma is generated its velocity is less than the fast magneto
sonic velocity (and hence D > 0), then it is evident that between this region and
the horizon there exist.s a fast magneto-sonic singular point. It should be stressed
that the above-described singular surfaces are well known in solar physics [Weber
and Davis (1967), Mestel (1968), Michel (1969), and Sakurai (1985)] and in pulsar
physics [Okamoto (1978), Kennel, Fujimura, and Okamoto (1983), Bogovalov (1989),
Takahashi (1991), Mestel and Shibata (1994)]. In the case of black holes, besides
similar singular surfaces connected with ejection of matter, there is a new additional
family of singular surfaces related to the accretion of matter in a strong gravitational
field.

To conclude this section, we emphasize that the above consideration does not
t.ake into account a number of processes which might be important for real systems.
Plasma interaction with the radiation field, the radiation of the plasma it.self, and
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electron-positron pair creation in the magnetic field of a black hole are among them
[Novikov and Thorne (l973), Shapiro and Teukolsky (l983), Begelman, Blandford,
and Rees (1984), Blandford (1990)].

8.4 Membrane Interpretation and "Stretched"
Horizon

8.4.1 Boundary conditions at the event horizon.

Black hole electrodynamics treats only processes outside the event horizon. Gener
ally speaking, the solution of the electrodynamic equations requires that boundary
conditions far from the black hole are to be supplemented with boundary conditions
on its surface. Formally, this resembles the situation in pulsar electrodynamics where
boundary conditions on the surface of the neutron star must also be specified.

Nevertheless, the two situations are in principal different. In contrast to a neutron
star, a black hole has no material surface differing from the surrounding space. For
black holes the role of the boundary conditions is played by the obvious physical
requirement that the region of spacetime lying inside the black hole cannot affect the
processes outside it, and all physical observables measured at the horizon in a freely
falling reference frame are to be finite.

The event horizon is generated by null geodesics which are bicharacteristics of
Maxwell's equations. For this reason, the regularity conditions allow an attractive
mathematical formulation [Znajek (1978) and Damour (1978)]. Namely, it has been
found that. the corresponding boundary conditions can be writtell in a very dear form.
This happens if one assumes that the surface of the black hole has a fictitious surface
electric charge density (7H which compensates for the flux of electric field across the
surface and a fictitious surface electric current iH which closes tangent components
of the magnetic fields at the horizon. This interpretation is used in the membrane
formalism [Thorne (1986), Thorne et al. (1986)]. A pedagogical introduction to this
formalism was given in Section 3.7. Now we discuss its application to black hole
electrodynamics.

We recall that in the (3+1)-formalism the horizon of a stationary black hole is a
two-dimensional surface of infinite gravitational redshift, 0' = 0 (see Chapter 3). The
redshifted gravitational acceleration 0' a == - c2

0' Vln 0' remains finite at t.he horizon

(O'a)H = -liD, (8.4.1)

where D is a unit vector pointing orthogonally out of the horizon, and Ii is the surface
gravity. In calculations near the horizon it is convenient to introduce a coordinate
system (0', oX, ¢), where oX is a proper distance along the horizon from the north pole
toward the equator. In these coordinates the metric of the absolute three-space near
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the horizon takes the form

305

(8.4.2)

and the unit vectors along the "toroidal" (¢), "poloidal" (..\), and "normal" (a)
directions are

a 8 8 8 8 K, 8
, e'~ - = tv-I - , e': - = - , nil - = - - . (8.4.3)

t/> ax" a¢ A axil a..\ axil c2 aO'
Macdonald and Thorne (1982) formulated the conditions at the horizon as follows:

1. Gauss'law En::=El.-t47T(TH (8.4.4)

2. Charge conservation law O'jn -t - a;; -(2l'ViH (8.4.5)

3. Ampere's law a BII -t B H ::= (4;) iH x n (8.4.6)

4. Ohm's law a Ell -+ E H ::= RH iH (8.4.7)

In these relations the symbol -+ indicates approach to the black hole horizon along
the trajectory of a freely falling observer; (2)V is the two-dimensional divergence at
the horizon, and BII and Ell are the magnetic and electric field components tangent to
the horizon. flfJ == 47T/C is the effective surface resistance a/the event horizon (R Il =
377 Ohm). The lapse function a in conditions (8.4.5)-(8.4.7) reflects the slowdown
iu the flow of physical time for locally non-J'Otating observers in the neighborhood of
the black hole.

The values of E H and B H at the horizon are finite, and a -+ O. Helice, taking
into account the couditions given above, we arrive at the following properties of fields
at the horizon:

1. El. and Bl. are finite at the horizon.

2. IEll I and IBill geuerally diverge at the horizon as

3. IEll - n x Bill ex a -+ 0 at the horizou.

-1a .

(8.4.8)

(8.4.9)

(8.4.10)

Condition (8.4.10) signifies that for locally non-rotating observers, the electro
magnet'ic field at the horizon acquires (in the general case) the characteristics of an
electromagnetic wave sinking into the black hole at infinite blue shift.

In the presence of matter, one needs also to require that the matter density n
in a freely-falling reference frame remains finite at the horizon. It is interesting to
note that in the MHD-approximation the latter condition automatically implies the
condition (8.4.10).

The cOliditions listed above make it possible to imagine quite clearly how elec
tromagnetic processes will affect the properties of the black hole, slowly varying its
parameters (the change is slow because we have assumed from the beginning that
the electromagnetic field is relatively weak and the plasma is rare enough; see Sec
tion 8.1).
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8.4.2 Slow change of black hole parameters

The change in the energy M c2 and angular momentum J of a black hole are equal to
the total flux of energy and angular momentum across the horizon, respectively. All
quantities are considered in the global time t.

The electromagnetic field contribution to the change of the black hole parameters
can be written as

(8.4.11 )

(8.4.12)

(8.4.13)

Here dEH is an element of the horizon area. The first term in the braces in (8.4.11)
describes the change in the rotational energy of the black hole, and the second term
gives the change due to the "heating" of the black hole by the surface current.

We thus find that the boundary conditions at the event horizon, described in this
section, make it possible to model a black hole for electrodynamic problems in the
exterior space as an imaginary surface with specific electromagnetic properties. The
surface can carry surface charge and electric currents. This visually clear picture
helps greatly in solving specific problems. As we already mentioned, this approach
is called the membrane formalism (see Section 3.7).

We wish to emphasize again that there is no real (material) surface, no charges,
and no current at the black hole boundary. Note also that the fields E and B that
a locally non-rotating observer measures at the event horizon, differ drastically from
E H and B H that appear in the boundary conditions: The reason is the factor a in
the definition of E H and B H [see (8.4.6) and (8.4.7)]. This factor appears (recall the
formulation of Maxwell's equations) as a result of using the "global" time t.

In the membrane paradigm the boundary conditions are fixed on the stretched
horizon that lies in the immediate vicinity and outside the event horizon (see Fig
ure 3.8). The stretched horizon is defined by the equation a = const, where a « 1.
The exact value of a, and hence the position of the stretched horizon, is not specified.
It is important to emphasize that the quantities EH and BH are defined in such a
way that in the limit a -t 0 they do lIOt depend on the real position of the stretched
horizon.

Let us return to the true event horizon. As in the preceding section, we introduce
"special" physical conditions. First, we assume that the problem is stationary and
axisymmetric. The fictitious surface current iH and electric field E H at the horizon
are then completely poloidal, while the magnetic field B H is toroidal. The values of
these quantities at the horizon are

.H [H
1 =--e

27T 'CV H A'
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(8.4.14)

(8.4.15)

(8.4.16)

where [H and 'CiJH are the values of [and 'CiJ at the horizon. Furthermore, the poloidal
magnetic field measured by non-rotating observers intersects the event horizon at
right angles. Recall that the toroidal component diverges at the horizon.

In the particular case of the MHD-approximation, the conditions (8.4.14) and
(8.4.15) imply

(E - 0.H L) c
2 (8\11)

M1-+(0.F _0.H)2('CiJ1-/C2) = - 87T2E~2'CVH 8B H'

For regular flow (M(r+) :f. 0), this condition follows directly from the a -t 0
limit of the algebraic constraint (8.3.42). Moreover, the solutions of the equation
(8.3.48) without any unphysical singularity automatically satisfy the boundary con
dition (8.4.16) at the event horizon. According to the definitions (8.3.8) and (8.3.10),
the electric field E H at the horizon is directly expressible in terms of B.l:

H 1 F HE = - - (0. - 0. ) 'CiJ e~ x B.l .
C

(8.4.17)

(8.4.18)

In the MHD-approximation, the change of the energy and angular momentum of a
black hole can be simply expressed in terms of the integrals of motion E and L taken
at the surface of a black hole:

d(Mc
2
) = _ ~ r EIH (d\l1) dB,

dt c 10 dB H

dJ 111< (d\l1)- = - - LIH - dB.
dt c 0 dB H

(8.4.19)

On the black hole surface the quantities EIH and LIH are well-defined (single-valued)
functions of B, and hence the integrals have a well-defined meaning.

In t.he force-free approximation, the following "principle of least action" is found
to hold [Macdonald and Thorne (1982)]. The lines of the poloidal magnetic field that
intersect the horizon have a distribution that ensures extremal total surface energy
[ of the tangential electromagnetic field at the horizon. The expression for [ has the
form

[ == -.!- { [(B H)2 + (EH)2] dEH,
87T 1H

where t.he integration is carried out over the horizon.

(8.4.20)
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Now the boundary condition (8.4.16) can be rewritten in the form

47T I(1J1) = [nH _ nF(1J1)] 'CiJH (01J1)
",1/2 of} .
~H H

(8.4.21)

Then equations (8.4.18) and (8.4.19) take the form

(8.4.22)

(8.4.23)

The angular momentum and energy lost by the black hole are transferred along
the lines of force of the poloidal field in the force-free region to those "regions" where
condition (8.3.23) is violated.

Note that if nF = 0 (i.e., if the magnetic lines of force are, say, frozen into plasma
far from the black hole and this plasma does not participate in the rotation around
the hole), then dM = O. This means that the total mass ofthe black hole is conserved
and dJ < O. In other words, the rotation of the black hole slows down. The entire
energy ofrotation transforms into the mass ofthe black hole (the so-called irreducible
mass; see Section 7.1) so that nothing escapes.

If the parameters of the black hole are fixed, its angular velocity nF is determined
by the boundary condition far from the black hole in the external plasma. The
situation in realistic astrophysical conditions will be discussed in Section 8.6.

8.5 Electromagnetic Fields in Vacuum Near a Black
Hole

Before beginning the description of the magnetosphere of a rotating black hole (it
is formed via accretion of magnetized gas; see the next section), we illustrate the
above analysis by the solutions of the following problems on electromagnetic fields in
vacuum:

1. Electric charge in the vacuum in the Schwarzschild metric [Copson (1928), Linet
(1976), Hanni and Ruffini (1973)]

2. Magnetic field in the vacuum in the Kerr metric, uniform at infinity [Wald
(1974b), Bicak and Dvorak (1976), King and Lasota (1977), Damour (1978),
Thorne and Macdonald (1982)]
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8.5.1 Electric field of a point-like charge

We begin with problem 1. Let a point-like charge q be at rest in the Schwarzschild
coordinates at l' = b, B = O. We already discussed this problem in Section 7.2, where
the explicit expressions for vector potential AI' and field strength F;", were given.
Now we demonstrate how the same problem can be solved in the (3+1)-approach.

The problem reduces to solving system (8.3.12)-(8.3.14) with a o-function for Pe
and jP = jT = O. Conditions (8.3.12) and (8.3.13) are satisfied when \11 = 0 and
1=0. Expressions (8.3.10) and (8.3.11) then imply that the external magnetic field
is absent. External CUlTents also vanish. Expressions (8.4.5) and (8.4.6) show that
the surface current at the horizon vanishes as well, iH = O. As follows from condition
(8.4.10), at the horiion Ell -t 0 so that electric lines of force intersect the horizon
at right angles. The total flux of E across the horizon is zero (the black hole is
uncharged). With these boundary conditions, Uo is found from the solution (8.3.14)
which for w = 0 to be of the form

V(Q-l VUo) = 47T Pe' (8.5.1)

(8.5.2)

(8.5.4)

By solving this equation for a point-like charge q located 011 the symmetry axis at a
point l' = b and using the equation (8.3;8), one finds the following expression for EP :

EP = -.:L {M (1 _ b - M + M COSB)
br2 R

+ 1'[(1' - M)(b - R~) - M
2

cosB][r _ M _ (b - M)COSB]} ef

q(b- 2M)(I- 2M/r)I/2 sinB
+ W ~,

where ef and eo are unit vectors along the directions of 1', and B, respectively, and

R == [(1' - M)2 + (b - M)2 - M 2sin2B - 2(1' - M)(b - M) cosBf/2. (8.5.3)

(Throughout this section, with the exception of the final formulas, we set G = 1,
c = 1)

The pattern of electric lines of force is shown in Figure 8.2. The charge surface
density at the boundary of the black hole follows from (8.4.4):

H q [M(1 + cos2B) - 2(b - M) cosB]
a = .

87Tb [b - M(1 + cos B) J2
Let us bring the charge closer to the horizon (b -t 2M). At a distance l' » b - 2M
from the horizon, the lines of force become practically radial, and the field strength
tends to q/r2• With the exception of a narrow region close to the horizon, the general
picture is almost the same as for a charge placed at the center of the black hole.
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a b

Figure 8.2: The electric-field lines of force of a test charge q at rest in the Schwarzschild
metric, in a</> = const section: (a) lines of force on a curved surface whose geometry coincides
with the section </> = const of the Schwarzschild metric; (b) the same lines projected 011 a
plane ("bird's-eye view"). The distribution of the fictitious surface charge uH is showlI 011

the horizon. The charge q is assumed to be positive.

8.5.2 Black hole in a homogeneous magnetic field

Now we will give, without detailed justification, the solution of problem 2. A rotating
black hole is placed in a magnetic field Bo, uniform at infinity. In the Kerr metric,
the magnetic field is given by the expression

Bo [ax 1/2 aX ]
B = 2AJ/2 sinl/ fiBer - ~ thee' (8.5.5)

where X == (A - 4a2Mr)(sin2 l/)jE, and A is given by (3.2.2).
The electric field induced by the rotation of the black hole is proportional to a:

E= _ BoaA
l
/
2

{[a(0'2) + Msin
2

l/ (A -4a2Mr)~(!:...)] er
E ar E arA

(8.5.6)

As in problem 1, EH , B H , and iH are absent. 7 Formulas (8.4.12), (8.4.11) imply
that the angular momentum J of a black hole and its mass M remain invariant. But

7 If we calculate the components of the field E J. and B J. at the event horizon (see Section 8.4),
we find that both are proportional to r+ - M, where r+ = M + (M 2

- 0 2 )1/2. Hence, we obtain
for a black hole rotating at maximum angular velocity, with Omax = M, that E J. =0 and B.J. =0
at the horizon; that is, the lines of force of the axisymmetric field do not pass through the black
hole (the case of an asymmetric field is treated later). Problems in black hole electrodynamics were
also treated by Leaute and Linet (1976, 1982), Misra (1977), Gal'tsov and Petukhov (1978), Linet
(1976, 1977a,b, 1979), Demianski and Novikov (1982), Bicak and Dvorak (1980)
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the angular momentum changes if the magnetic field is tilted at an angle to the black
hole axis. The result is as follows.

Let a magnetic field B, uniform at infinity, be tilted at an angle to the direction
of the angular momentum J. Decompose J into a component JII parallel to the field
and a component J.l perpendicular to it. The following formulas give J as a function
of time:

JII =const,

J.l = h(t =0) exp(- tiT),

where

(8.5.7)

(8.5.8)

(8.5.9)3c
5 (M)-l( B )-2

T = = 1036 yr -
2GMB2 M0 10-5 Gauss

The component J.l of the black hole angular momentum is thus completely lost with
time. (But the time of disintegration is fantastically long!) The rotational energy
connected with J.l thus is transformed in a static magnetic field into the "irreducible"
mass of the black hole, while the component J II remains unaltered.

The final state of the black hole is subject to Hawking's theorem which states that
the stationary state must be axially symmetric. Press (1972) points out that if the
external magnetic field (or any other field) is not axisymmetric, the black hole finally
loses its angular momentum (by Hawking's theorem). If the field B varies smoothly
on a scale much greater than the black hole size, J can again be decomposed into J II
and J.l with respect to the field direction in the black hole neighborhood. In order
of magnitude, the decrease of J.l is again determined by formula (8.5.8), while J II
decreases according to the formula

dJ Il ::::: _ JII O(Tg )
dt T R'

(8.5.10)

where R is the scale of non-uniformity of the field.
We have mentioned in the note 7 to page 310 that if a = amax , an axisymmetric

magnetic field does not intersect the black hole horizon. It is possible to show that
if a magnetic field Bo, uniform at infinity, is tilted with respect to the rotation axis,
then the flux through one half of the horizon8 for the field component Bo.l is maximal
when a = amax [Bibik (1983) and Bicak and Janis (1985)]. This flux equals

(8.5.11)

Finally, consider a non-rotating black hole placed in a strong magnetic field Bo,
uniform at infinity [Bicak (1983)]. Let the field be so strong that its self-gravitation

SOf course, the total flux of magnetic field across any closed surface, including the horizon, equals
zero. In speaking about the flux through a black hole, one considers the incoming (or the outgoing)
lines of force.
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has to be taken into account, It is then found that for a black hole of fixed mass
M, there is a critical field BO,er at which the flux \liB through one half of the event
horizon is maximal:

Bo,cr = C
4 C-3

/
2 111- 1 = 2,5 X 1013 Gauss x (1O~0) , (8,5,12)

(8,5,13)

The flux across the horizon cannot be greater than \II~ax,l'

Concerning a rotating electrically charged black hole in an external magnetic field,
see Dokuchayev (1987),

8.6 Magnetosphere of a Black Hole

8.6.1 Magnetospheric models

The problems discussed in the preceding section illustrate some important properties
of electric and magnetic fields in the neighborhood of a black hole, However, these
problems can hardly be used for the description of the actual electrodynamic processes
expected to take place in astrophysical conditions, We have already mentioned that
the reason for this is the no-vacuum nature of the fields in the vicinity of black holes,
The space is always filled with rarefied plasma (so that the fields become force-free)
or even more complicated situations could arise,

Recall that the fields in the neighborhood of rotating magnetized neutron stars
(pulsars) cannot be considered as vacuum fields either, A complicated pulsar mag
netosphere is formed. For more details, see e,g" the books [Michel (1991), Beskin,
Gurevich, and Istomin (1993)],

By analogy to pulsars, the region of magnetized plasma around a black hole is
called the black hole magnetosphere. The complexity and diversity of processes in
this region stand in the way of developing a complete magnetospheric theory, In fact,
we still lack an acceptably complete theory of a pulsar's magnetosphere, despite the
great expenditure of effort and time that has been put into it.

We shall not discuss all aspects of the theory of the black hole magnetosphere here.
We shall only look at the important aspects of the electrodynamic processes that
occur in the black hole neighborhood and are black-hole-specific. Correspondingly,
we restrict the presentation to the simplest model. Only the processes caused by the
black hole itself are covered. (For discussion of other problems, such as the motion
of plasma in the accreted gas disk formed around the black hole and the problem of
jet formation, which are not discussed in the book, see e.g., [Shapiro and Teukolsky
(1983), Blandford and Payne (1982), Heyvaerts and Norman (1989), Li, Chiuen, and
Begelman (1992), Pelletier and Pudritz (1992)].)
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Figure 8.3: The model of a black hole magnetosphere considered by Blandford and Znajek
(1977). Arrows indicate the longitudinal electric current jP. Dashed lines separate regions
with positive and negative charge density Pe.

We choose the stationary axisymmetric model of the force-free magnetosphere of
a black hole inducing disc accretion of magnetized gas (the magnetosphere schemat
ically shown in Figure 8.1). This model was analyzed by Blandford (1976), Bland
ford and Znajek (1977), Macdonald and Thorne (1982), and Phinney (1983a,b); see
also Lovelace (1976), Lovelace et at. (1979), Thorne and Blandford (1982), Rees et
at. (1982), Macdonald (1984), Okamoto (1992), Beskin, Istomin, and Pariev (1983,
1992).

For the condition of force-free field existence, (8.3.23), to be satisfied in the neigh
borhood of a black hole, it is necessary to have rarefied plasma with electric currents
flowing. along magnetic lines of force. Charges for these currents crossing the black
hole must be constantly replenished because they sink into the hole ,and obviously,
charges cannot flow back out.9 Mechanisms of free charge generation thus have to
exist in the neighborhood of the biack hole. Such mechanisms were analyzed by
Blandford and Znajek (1977), Kardashev et at. (1983), and Beskin, Istomin, and
Pariev (1993). We remark, without going into the details, that these mechanisms
require a small component of the electric field, parallel to the magnetic field. This
component is so small that inequality (8.3.16) is not violated.

Two examples of a magnetosphere of a black hole are shown in Figures 8.3 and
8.4.' They correspond to the solutions of the force-free equation (8.3.24) for a slowly
rotating black hole (nH r+/c « 1). Arrows indicate the longitudinal electric current
y. Dashed lines separate regions with positive and negative charge density Pe'

The solution presented in Figure 8.3 corresponds to the following choice of inte-

9The total charge of the black hole in the stationary solution cannot be changed by this process
because the total numbers of charges of opposite signs, sinking into the black hole, are equal to each
other.
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Figure 8.4: The model of a black hole magnetosphere in which the magnetic field near
the black hole is close to homogeneous [Beskin, Istomin, and Pariev (1992)]. In this case
the closure of electric current takes place where the magnetic field lines cross the horizon at
fJ ~ 1[/2.

grals of motion [Blandford and Znajek (1977)]

DF(\II) = ~DH,

1(\11) = ± ~: (2\11 - \112/\11 0 ) ,

(8.6.1)

(8.6.2)

where the sign + (- ) is to be taken for the upper (lower) hemisphere. It can be shown
that for a slowly rotating black hole, up to terms which remain small everywhere
outside the horizon, the solution to the equation (8.3.24) is of the form

\II = \110 (1 - Icos II I). (8.6.3)

Thus, \110 = \II;{,ax is the maximal magnetic flux through the horizon. Such a split
monopole magnetic field can be generated by toroidal currents flowing in the accre
tion disk provided that the latter (formally) extends up to the horizon. For this
solution the influence of the rotating charged plasma is totally compensated by the
longitudinal current I. The charge density Pe (8.3.22) changes sign at r = 21/ 3 r +.
The magnetic field is always (even at the distances lying outside the light cylinder
RL = c/DF

) larger than the electric field. The validity of the solution (8.6.3) (under
the condition (8.6.2)) at large distances (r » RL ) was shown by Michel (1973) for
the case of a pulsar magnetosphere. It is interesting to emphasize that the expression
(8.6.3) is the exact vacuum solution of Maxwell's equations (8.2.4) and (8.3.10) for a
non-rotating black hole.

The solution presented in Figure 8.4 corresponds to the case when the magnetic
field near the black hole is close to homogeneous, while it is monopole-like at large
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distances [Beskin, Istomin, and Pariev (1992)]. Such a magnetic field can be generated
in the disc with finite inner radius. The longitudinal current closure takes place not
inside the disk (as in the Blandford-Znajek solution) but near the points where the
magnetic field lines cross the horizon at () "" 1r/2. It can be shown that the electric
current obeys the following condition at the horizon

(8.6.4)

and hence the electric charge of the black hole is not changed (see also Okamoto
(1992)). The surface separating the regions with positive and negative charge densi
ties (shown by dashed lines) has a more complicated form. One can argue that the
domain where plasma is generated inside the magnetosphere lies near this surface
[Beskin, Istomin, and Pariev (1992)].

8.6.2 Efficiency of the power-generation process near a ro
tating, magnetized black hole

We discuss now the efficiency of the power-generation process near a rotating, mag
netized black hole. Consider a thin tube of lines of force that pass through the black
hole. This tube rotates around the black hole at a constant angular velocity nF

(see Section 8.3). In the force-free approximation, formula (8.4.22) shows that the
rotational energy of the black hole is extracted at the rate

(8.6.5)

This energy is transferred along magnetic lines of force into region 3 (see Figure 8.1)
where the force-free condition is violated; energy is pumped into accelerated particles,
and so forth.

In this region, the particles exert a backreaction on the line of force, owing to
their inertia, and thus determine nF • If the inertia is large, the angular velocity nF

is small (nF « nH ); in the limit, nF ~ O. The power P of the above "engine" is
quite low, as follows from (8.6.5). Otherwise (i.e., when the inertia of the particles
in the region 3 is low), nF ~ nH , and (8.6.5) again gives low power. The power is
maximal when nF = nH /2.

Macdonald and Thorne (1982) demonstrated that this condition is very likely to
be implemented in the described model. Their arguments run as follows. The angular
velocity of non-rotating observers far from the black hole can be assumed zero. That
is why the velocity v F of the points of the lines of force far from the symmetry axis
(with respect to non-rotating observers) is much greater than the speed of light:

(8.6.6)
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Line of force
at time ra

t
ut-lile )%,jt m.

Rotating~ Motion of a
black particle along the
hole line of force

Figure 8.5: (a) Schematics of motion of a charged particle along a magnetic field line of
force rotating around a black hole. (b) The position of a segment of a magnetic line of force
in the plane of the vectors B P and B T at the moments t and t + dt. If the velocity vector
of a particle that slides outward in the absolute space along a line of force is perpendicular
to this line, the velocity of the particle is minimal.

(8.6.7)

Charged particles cannot move at a velocity greater than c. However, staying on a
line of force and sliding along it outward (see Figure 8.5a), they can have velocities
less than v F •

Figure 8.5b shows a segment of a line of force in the plane defined by the vectors
B P and BT. There is an optimal velocity of sliding along the line of force (which,
in turn, moves at a velocity v F ) such that the total velocity of the particle in the
absolute space is minimal (this is clear from Figure 8.5b). The angle (3 is the angle
between the direction of the line of force and the direction of the r/J coordinate; hence,
(3 is found from the relation

sin(3 = IBPI
J( BP)2 + (BT)2

(8.6.8)

Using (8.6.7), we find IVmin I:
IvFI

IVmin I = Jl + (BT)2 /( BP)2

It is found that the condition IVmin I~ c is equivalent to the maximal energy condition
nF~ nH /2. To show this, we need expressions for IvFI, IBTl, and IBPI far from
both the black hole and the symmetry axis. For IvFI we find

(8.6.10)

IvFI = nF'UJ . (8.6.9)

Making use of formulas (8.3.11), (8.4.14), (8.4.17), and definition (8.3.2), we obtain

IBTl ~ (nH
- nF

)1JI •
7rCW

Finally, formula (8.3.10) and relation IV1JI I~ 21J1 /'UJ yield

P 1JIIB 1~--2'
7rC 'UJ

(8.6.11 )
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Substituting (8.6.9)-(8.6.11) into (8.6.8), we find
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(8.6.12)

The last formula implies that IVmin I~ c when nF = nH /2. If nF « nH /2 and
IVlllill I « c, then the inertia of particles in the region 3 is small, and nF increases
until the velocity IVilli" I grows close to c. If IVilli" I » c, then particles cannot stay
long on the lines of force, and their backreaction on the field reduces nF until we
obtain IVlllin I~ c. lO

These are the reasons why it is likely that nF ~ nH /2 and the rate of extraction
of rotational energy from the black hole (8.6.5) is almost optimal.

In order of magnitude, the power of the "electric engine" outlined above is

p~(103gerg)( M )2( a )2( B )2
~ ~ 106 M0 amax 104 Gauss

(8.6.13)

Here B is the magnetic field strength in the neighborhood of the black hole. Some
times this electric engine is described in terms of electrical engineering [Blandford
(1979), Znajek (1978), Damour (1978), Macdonald and Thome (1972), Thorne and
Blandford (1982), Phinney (1983a)]. We will give the expressions for quantities at
the black hole horizon using this notation.

8.6.3 Black hole as a unipolar inductor

Equipotential curves at the horizon are the lines of constant () since the field EH is
meridional [see (8.4.14)]. Hence, the potential difference between two equipotential
lines (marked by I and 2) are [see also (8.4.17)]

/lUH = r2
EHdl = (nII _ nF) ~1JI

JI 2~c

(8.6.14)

where dl is an element of distance along a meridian on the black hole surface, and
/l1Jl is the difference between the values of 1JI on the equipotential 1 and 2. The
approximate equality in (8.6.14) is written for the condition nF ~ nH /2, maximal
nH , and the equipotentials 2 and 1 corresponding to the equatorial and polar regions,
respectively.

10A similar analysis of the slipping of particles along the magnetic lines of force at the black hole
horizon shows that the condition IVrnin I ~ c corresponds to the boundary conditions (8.4.14) and
(8.4.17).
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On the other hand, .6.UH can be written in terms of the surface current ill and
resistance:

(8.6.15)

where .6.1 is the distance along the meridian between the equipotentials 2 and 1.
Substituting expression (8.4.13) for iff,we obtain

(8.6.16)

(8.6.17)

(8.6.18)

where

.6.ZH == R
ll

1.6.11
21f 'UJH

is the total resista.nce between the equipotential lines 2 and 1. (If the equipotentials
2 and 1 correspond to the equator and to () ~ 1f/4, the integration of (8.6.17) yields
.6.ZH ~ 300hm.)

Formulas (8.6.14) and (8.6.17) permit the conclusion that in this model the ro
tating black hole acts as a battery with e.m.f. of order

(10
l7

V) CO~MJ (104~auss)
and internal resistance of about 30 Ohm.

This mechanism (and a number of its variants) has been employed in numer
ous papers for the explanation of the activity of the nuclei of galaxies and quasars
[for example, see Ruffini and Wilson (1975), Blandford(1976), Blandford and Znajek
(1977), Blandford and Rees(1978), Blandford (1979), Lovelace et al. (1979), Karda
shev et al. (1983), Rees (1982), Phinney (1983a,b), Begelman, Blandford, and Rees
(1984), Novikov and Stern (1986), Camenzind (1986a,b, 1987), Punsly and Coronity
(199030, b), Takahashi et al. (1990), Punsly (1991), Nitta, Takahashi, and Tomimatsu
(1991), Hirotani et al. (1992), Okamoto (1992), Beskin, Istomin, and Pariev (1993),
Beskill and Pariev (1993), Horiuchi, Mestel, and Okamoto (1995), Beskill (1997)].



Chapter 9

Astrophysics of Black Holes

9.1 Introduction

The black hole phenomenon is undoubtedly one of the most striking and intriguing
of those predicted by theorists. However, a paramount question is: "Do black holes
exist in the Universe, or are they only an abstract concept of the human mind?" In
principle, a black hole could be built artificially. However, this meets such grandiose
technical difficulties that it looks impossible, at least in the immediate future. In
fact, the artificial construction of a black hole looks even more problematic than an
artificial creation of a star. Thus, we have to conclude that the physics of black holes,
as well as the physics of stars, is the physics of celestial bodies. Stars definitely exist,
but what may one say about the existence of astrophysical black holes?

Modern astrophysics considers three possible types of black holes in the Universe:

• Stellar black holes; that is, black holes of stellar masses which were born when
massive stars died

• Supermassive black holes with masses up to 109 M(:J and greater at centers of
galaxies (M(:J = 2 x 1033g is the solar mass)

• Primordial black holes that might appear from inhomogeneities at the very
beginning of the expansion of the Universe. Their masses can be arbitrary, but
primordial black holes with M S 5 X 1014g would have radiated away their
mass by the Hawking quantum process in a time t S 1010 years (the age of the
Universe)l. Only primordial black holes with mass M > 5 X 10l4g could exist
in the contemporary Universe.

1 We shall discuss the Hawking process in Chapter 10. Here we just mention that because of the
quantum instability of vacuum in a st,rong gravitational field, a black hole is a source of quantum
radiation. It radiates all species of physical particles in the same manner as a heated body of size
Tg = 2GM[f /c2 with temperature TH ~ 10-26 K(Me/MH)' As a result of this process, the mass MH
of a black hole decreases. For rough estimation of the time of the black-hole complete evaporation
one can use the relation t ~ (MH /5 x 1014g)3 x 1OlOyr.

319
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There is enough material for a separate book on each of the types of astrophysical
black holes. In this chapter we are only able to summarize briefly the main ideas of
these branches of astrophysics and give some references to material where further de
tails can be found. The history of the idea of black holes and the related astrophysics
has been described by Israel (1987). General problems of the astrophysics of black
holes are discussed by: Zel'dovich and Novikov (1971b), Novikov and Thorne (1973),
Shapiro and Teukolsky (1983), Blandford (1987), Lamb (1991), Begelman and Rees
(1996).

We would like to note also that the style of this chapter differs from the style
of other parts of the book. It is closer to the style adopted in astrophysics. We
give only order of magnitude estimates (as is typical for astrophysics), and discuss
available observational data. In this chapter we do not assume that G = c = 1 and
write explicitly G and c in formulas. Our main attention is focused on the possible
observational manifestations of black holes.

9.2 The Origin of Stellar Black Holes

"When all the thermo-nuclear sources of energy are exhausted a sufficiently heavy
star will collapse" - this is the first sentence of the abstract of a remarkable paper by
Oppenheimer and Snyder (1939). Every statement of this paper accords with ideas
that remain valid today. The authors conclude the abstract by the following sentence:
"... an external observer sees the star shrinking to its gravitational radius." This is
the modern prediction of the formation of black holes when massive stars die.

How heavy should a star be to turn into a black hole? The answer is not simple.
A star which is not massive enough ends up either as a white dwarf or a neutron
star. There are upper limits on the masses of both these types of celestial bodies.
For white dwarfs it is the Chandrasekhar limit, which is about (1.2 - 1.4) x Mf) [see
'Shapiro and Teukolsky (1983), Kippenhahn and Weigert (1990), Kawaler (1997)]. For
neutron stars it is the QppenheiTT!!lr:~Volkofflimit [Oppenheimer and Volkoff (1939)].
Tiieexact value of this limit depends on the equation of state at matter densities
higher than the density of nuclear matter Po =2.8 X 1Q14g cm-3 . The modern theory
gives for the maximal mass of a non-rotating neutron star the esti"ina.te-CZ-":': 3) x Mf)
[see-I'ra)~mancl Pethick (1979), Lamb (1991), Srininsan (1997)].2

Rotation can increase the maximal mass of a non-rotating neutron star only
slightly [up to 25%; Friedman and lpser (1987), Haswell et al. (1993)]. Thus, one
call-I:Jelieve'Tha(tlle upper mass limit for neutr()I!stars_shoul<Lno.Lbe.greate.rJJmn
Mo ~ 3Mf) [Lamb (1991), Cowley (i992); McClintock (1992), Glendenning (1997)].
rrasiaratthe very end of its evolution has a mass greater than Mo, it must turn into

2Some authors have discussed the possible existence of so-called "quark stars", "hadronic stars" ,
and "strange stars" [see Alcock, Farhi, and OIinto (1986), Bahcall, Lynn, and Selipsky (1990),
Madsen (1994), Glendenning (1997)]. At present, there is no evidence for such stars.
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a black hole. However, this does not mean that all normal stars (on the "main se
quence" of the Hertzsprung-Russell diagram, [Bisnovatyi-Kogan (1989), Kippenhahn
and Weigert (1990)]) with masses M > Mo are black hole progenitors. The point
is that the final stages of evolution of massive stars are poorly understoocLSteady
niass loss, catastrophic.lliass" ejection, and ev~n dis~~ptiOl; in s~pen~ovae explosions
are possible [see Kippenhahn, Weigert (1990)]. These processes can considerably re
duce the "IiIass of a star at the end of its evolutw.:n:"ifhus, 'the initial mass of black
hole prog;n'itors couidbe'sitbstaiitlally g;~~ter tilan Mo.

There are different estimates for the minimal mass M. of a progenitor star that
still forms a black hole. For example, M. ~ lOM0 [Shapiro and Teukolsky (1983)],
M. ~ 30M0 [Lipunov (1987)], or even M. ~ 40M0 [van den Heuvel and Habets
(1984), Schild and Maeder (1985)]. Note that the evolution of stars in close binary
systems differs from the evolution of single stars because of mass transfer from one
star to another [see Novikov (1974), Masevich and Tutukov (1988), Lipunov, Postnov,
and Prokhorov (1996)]. The conclusions about masses of black hole progenitors in
this case could be essentially different (see discussion at the end of Section 9.5). In
the remaining part of this section we shall focus our attention on the fate of single
stars.

One can try to estimate how many black holes have been created by stellar col
lapse in our Galaxy during its existence. For stars on the "main sequence" in the
solar neighborhood, the spectrum of stellar masses at present is roughly known from
observational data together with the theory of stellar structure. The lifetime of mas
sive stars is less than 1010 years (the age of the Galaxy). We assume a constant
birthratealld the same constant deathrate for massive stars during the lifetime of
the Galaxy. Now if we suppose that all stars with M > M. on the "main sequence"
(progenitors) must turn into black holes, we can calculate the birthrate of black holes
in the solar neighborhood. If this rate is the same everywhere we can estimate the
total number of black holes in the Galaxy and the total maSs of all stellar black holes
in it.

Much work has been devoted to such estimates. However, because of great un
certainties progress since the pioneering works [Zwicky (1958), Schwarzschild (1958),
Hoyle and Fowler (1963), Novikov and Ozernoy (1964), and Hoyle et al. (1964)) has
been very slow. A review of more recent estimates is given by Shapiro and Teukolsky
(1983). For rough estimation of the rate of black hole formation in the Galaxy one
can use the following relation [see, for example, Novikov (1974))

dN (M )-1.4-.- ~ 0.1 --' yr- I .
dt 3M0

(9.2.1)

At present, we can probably repeat the conclusion of Novikov and Thorne (1973):
"For stars with masses greater than ~ 12 to 30M€> the (supernova) explosion may
produce a black hole. If this tentative conclusion is correct, then no more than ~ 1
per cent of the (visible) mass of the Galaxy should be in the form of black holes today;
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and new black holes should be created at a rate not greater than ~. 0.01 per year."
Thus, the total number of stellar black holes in the Galii~y-~aY·beN -;:::, 108 or less.
The estimates of Brown and Bethe (1994) give N -;:::, 109 • It is thus plausible that a
large uumber of black holes exist. If so, what is their observational appearauce?

9.3 Stellar Black Holes in the Interstellar Medium

The most important physical process which leads to observable manifestations of a
black hole presence is gas accretion [Zel'dovich (1964), Salpeter (1964)J. If a black
hole is in a gaseous nebula, the gas will be falling in the gravitational field of the
black hole.

Assume that a Schwarzschild black hole is at rest with respect to the gas. We
discuss adiabatic accretion first. In the stationary accretion pattern the amount of
matter falling upon the black hole per unit time, 11.1, and other basic parameters
are determined by the gas properties and the gravitational field at large distances
(greatly exceeding the gravitational radius r g). At such distances the gravitational
field may be treated as a Newtonian one. Properties of the flux close to the black
hole will be considered later.

In Newtonian theory the problem was solved by Bondi (1952). Pioneeriug studies
of radial accretion by astrophysical black holes were performed by Shvartsmau (1971)
and Shapiro (1973a,b). The general scenario is described by Novikov and Thorne
(1973) and Shapiro and Teukolsky (1983).

The gas flow is governed by two equations:

• Conservation of mass

2 .
47rr p u ::= M ::= const.

This equation implies that the left-hand side does not depend on r.

• The Euler equation

du 1 dP GMHu-::=------.
dr p dr r 2

(9.3.1)

(9.3.2)

, In the above relations MH is the mass of the black hole; P and p are the pressure
and mass density of the gas; u is its radial velocity, and 11.1 is the rate at which the
black hole accretes mass. We assume that p and P are related by the adiabatic law:

p::=Kl, (9.3.3)

K and r are constants. The adiabatic sound velocity is given by a::= (rplpp/2. For
the conditions in the accretion flux r -;:::, 1.4. A solution of the system (9.3.1 )-(9.3.3)



9.3. Stellar Black Holes in the Interstellar Medium 323

(9.3.4)

determines the parameters of the flow. The general picture of accretion is as follows.
A crucial role is played by the sonic mdius:

GMH
r s ~ -2-'

aoo

where aoo is the sound velocity at infinity. At r > r. the gravitation of the black hole
practically does not change the parameters of the gas and the velocity of the gas is
much smaller than aoo • At a distance of the order of r. the velocity u of the gas flow
increases and becomes equal to the local sound velocity a. The local value of a, at this
r is greater than aoo , but still of the same order of magnitude as aoo . At distances
r « r., the velocity u » a, and the gas is nearly in free fall. In this region

p ~ 0.66poo (r./r)3/2,

T ~ 0.76 Too (r./r)(3/2)(r-l).

(9.3.5)

(9.3.6)

(9.3.7)

The numerical coefficients in these relations correspond to r ~ 1.4 near the sonic
radius. Here Poo and Too are the mass density and the temperature at infinity. The
rate of accretion is

AI ~ 47r1'; pooaoo ~ (1011 g/s) (MMH)2 ( Poo 3) ( OT,;}.)-3/2
8 1O-24g/cm 1 \

So far we have discussed simplified adiabatic hydrodynamic accretion, Now we
consider various processes that can complicate the picture. For accretion on a stel
lar black hole, thermal bremsstrahlung is many orders of magnitude smaller than
the luminosity of ordinary stars, and hence is negligible. However, the influence of
interstellar magnetic fields on accretion and the radiation from infalling gas can be
siguificant. Estimates [see Bisnovatyi-Kogan (1989)] show that the total luminosity
of the accreting black hole due to synchrotron radiation of electrons in magnetic field
which is frozen into the falling gas is

where

(
30erg)L.ynch ~ 3 x 10 ~ x

~ < 1,

(
M ) 2 ( ) (T. )-3/2

10 M: 1O-2~;/cm3 lO';K ' ~»1,

(9.3.8)~ ~ (~:r/2 C~';K) -3/4 CO-2~~cm3)
Most of the radiation comes from the high-temperature, strong-field region near the
black hole. For typical conditions the radiation spectrum has a broad maximum at
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(9.3.9)

the frequency 1/ '" 7 X 1014 Hz. The full spectrum of the radiation is depicted in the
book by Bisnovatyi-Kogan (1989).

An important measure of the accretion rate into a black hole is provided by
Eddington critical luminosity

GMHJ.Lmpc. 38 (MH)LE == 47r == (1.3 x 10 erg/s) J.L -M .
aT 0

Here J.L is the molecular weight per electron, mp is the rest mass of the proton, and
aT is the Thomson cross section. This is the luminosity at which the radiation
pressure exactly balances the gravitational force of mass M H (for a fully ionized
plasma). Eddington (1926) derived this value in a discussion of stellar equilibrium.
Zel'dovich and Novikov (1964b) introduced it in the context of black holes in quasars
and accretion.

If L « LE , gravity dominates, and photon pressure is not important. Com
paring expressions Lsynch and (9.3.9) demonstrates that L « Le for the case under
consideration.

Some aspects of spherically symmetric accretion were recently reanalyzed by Park
(1990a,b). The influence of radiation from the inner regions on the flux far away is
discussed by Ostriker et al. (1976), Cowie, Ostriker and Stark (1978), Wandel, Yahil
and Milgrom (1984), Park (1990a,b).

Near the boundary of the black hole, the gas is practically in a state of free fall.
The moment of crossing the horizon is in no way peculiar, as seen by an observer
falling together with the gas. For typical conditions, p ~ (6 x 1O-12g/cm3) (rg/r)3/2
and T ~ (10 12K) (rg/r). The radiation which reaches infinity from an infalling gas
element will, of course, be sharply cut off as the gas element crosses the horizon.

A review of works on possible pair creation and solutions with shocks close to
the event horizon was presented by Lamb (1991). Some important details of radial
accretion are discussed in the papers by Krolik and London (1983), Colpi, Marachi
and Treves (1984), Schultz and Price (1985). In the case of a rotating black hole,
the dragging of inertial frames in its vicinity is essential. This dragging swings the
accreting gas into orbital rotation around the black hole. This effect is known as
Bameen-Petterson effect [Bardeen and Petersen (1975)]. For its discussion, see also
Thorne et al. (1986). Stationary accretion of gas with zero angular momentum onto
a Kerr black hole was considered by Beskin and Pidoprigora (1995), and Beskin and
Malishkin (1996).

Spherically symmetric accretion onto a Schwarzschild black hole i_~_prl?_~~~l'y'-onl)'

of academic lllterest as a testbed for theoretIcal ideas. It is of little relevance for
inte-;:p~et~ti~-;;-;;ftheobseivationaTdata:---Morerealistic is the situation where a
black hole moves with respect to the interstellar gas. Once again, the main processes
that are responsible for the rate of accretion take place far aw~}' [rain tile boundary
oCthe black hole, in the regions where one can use the Newtonian approximation.
The corresponding problem was analyzed by Hoyle and Litt.leton (1939), Bondi and
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Hoyle (1944), Bondi (1952), Salpeter (1964). For a review see Novikov and Thorne
(1973) and Bisnovatyi-Kogan (1989).

When a black hole moves through the interstellar medium with a speed v much
greater than the sound speed aoo , a shock front must develop around the black hole.
If the remaining kinetic energy of a gas element behind the shock front exceeds the
potential energy in the gravitational field of the black hole, this element will escape the
pull of the hole. Otherwise, it will be captured by the black hole. The correspondillg
accretion rate is

if::::: 47rG2M~poo ::::: (1011g/S) (MH)2 ( Poo 3) (_v_)-3 (9.3.10)
u3 M0 1O-24g/ Clll lOkm

s

Note that this expression for the accretion rate for supersollic motion, up to a constant
of order of 1, coincides with the expression (9.3.7) for the accretion rate on a black
hole at rest provided one replaces the speed of the hole v in the former formula by
the sound speed aoo at infinity and takes into accoullt that Too ~ a~.

To conclude the discussion of accretion onto isolated stellar black holes, we note
that the luminosity of these objects is low, and it i's rather difficult to distinguish their
observational appearance from some other astrophysical objects at great distances.
For this reason, no sllch black holes have yet been identified. On the possible strategy
for searching for isolated black holes of stellar mass in the solar neighborhood see
Heckler and Kolb (1996).

9.4 Disk Accretion onto Black Holes

For the purpose of finding and iny~stigatiIlK~tackholes, two specific cases of accretion
are of particular Importance: accretion in bina,ry systeIIls. and accretion onto super
massive black holes that probably reside, at the centers,ofgalaxie~. In both cases, the
accreting gas has specific angular momentum L »rgc. As a result, the gas elements
circle around the black hole in Keplerian orbits, forming a disk or a torus around
it. The inner edge of the disk is in the region of the last stable circular orbit. Close
to a rotating black hole the Lense-Thirring precession drags the gas around in the
equatorial plane [see Bardeen and Petterson (1975)]. Viscosity plays a crucial role in
the accretion. It removes'angular momentum from each gas element, permitting it to
gradually spiral inward toward the black hole. When the gas reaches the inner edge
of the disk, it spirals down into the black hole, practically, in a state of free fall. At
the same time, t)Ie.yj!'~QsLtyJ!~~t.s_t.!!.e_g~,C;~\l§.i!1gJj;j;<:Jr.(l.<li.at.e..Probable sources of
viscosity are turbulence in the gas disk and random magnetic fields. Unfortunately,
we are nowhere near a good physical understanding of the effective viscosity (for the
discussion of the numerical approach to the problem, see Brandenburg et al. (1995,
1996)). Large-scale magnetic fields can also play an important role ill the physics of
accretion.
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The properties of the accreting disk are determined by the rate of gas accretion.
It is worth noting the following. In the problem of spherical accretion, which was
discussed in Section 9.3, the rate of accretion is determined by solving the equations
governing the gas flow. In the case of disk accretion, the accretion rate is an iude
pendent (external) parameter. It is determined by the evolution of a binary system
or by the conditions in a galactic nucleus. As a result, the rate of accretion can
be much higher than in the spherical case, and observational manifestations of such
black holes are much more prominent.

In what follows, we use the dimensionless parameter 1n == MIME, where ME is
the so-called critical accretion rate:

(9.4.1 )

determined by the Eddington critical luminosity L E given by (9.3.9). As long as we
do not consider the innermost parts of the disk, relativistic effects are not important
for the physical processes involved in accretion.

Lynden-Bell (1969) was the first to propose the model of gaseous disk accretion
onto a black hole. Shakura (1972), Pringle and Rees (1972), Shakura and Sunyaev
(1973) built Newtonian models of accretion disks. Novikov and Thorne (1973) and
Page and Thorne (1974) formulated the theory of disk accretion in the framework
of general relativity. The first mOdels were rather simple. They focused on the case
of moderate rate of accretion Tn < 1. Subsequently, theories for 1T1 ~ 1 and 1n » 1
were developed. They take into account complex processes in radiative plasmas and
various types of instabilities. A review is given by Lamb (1991), Abramowicz et al
(1996), and Narayan (1997). However, these processes have no direct relation (or
at least almost no relation) to the specific properties of spacetime in the vicinity of
a black hole.3 Thus, we will not describe them in detail here. We only give some
theoretical estimates of observational characteristics of accreting disks around black
holes in binary systems and galactic nuclei.

The main source of luminosityJor disk accretion is the gravitational energy that
is released_YY'lieD_giJS_eieIIl~nts I;; the disk~piraido~ll..In the simplest modeis, most
ofthe gravitational energy is reieased, generating most of the luminosity, from the
inner parts of the disk. The total energy radiated by the gas element must be equal
to the gravitational binding energy of the element when it is at the last stable circular
orbit. For a mass m. this energy is (see Chapters 2 and 3)

for a non-rotating hole,
(9.4.2)

for a maximally rotating hole.

The total luminosity L of the disk can be obtained if we substitute the accretion rate

3See a note at the end of this section.
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NI instead of m. into this formula. As a result, we have
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for a non-rotating hole,

for a maximally rotating hole.

(9.4.3)

The accretion rate M is an arbitrary external parameter, which is determined by
the source of gas (for example, by the flux of gas from the upper atmosphere of the
companion star in a binary system). We normalized M by the value Mo = 10-9M0 /yr
because this is probably the typical rate at which a normal star is dumping gas onto
a companion black hole. In this model, the accreting gas is assumed to be relatively
cool, with its temperature much less than the virial temperature corresponding to the
potential energy in the gravitational field. As estimates show [see Lamb (1991)], a
geometrica.lly thin disk (with heights h « r) might be formed under these conditions.
This is the so-called standard disk model [Shakura and Sunyaev (1973), Novikov and
Thorne (1973)]. In this model, the electron and ion temperatures are equal, and the
disk is effectively optically thick. The temperature of the gas in the inner parts of
the disk reaches T ~ 107

- 108 K. In this region, electron scattering opacity modifies
the emitted spectrum so that it is no longer the black body spectrum. Instead, the
total spectrum of the disk radiation is a power law F ~ W

I
/
3 with an exponential

cut off at high frequencies [Shakura and Sunyaev (1973)]. The innermost regions of
such "standard" disks are probably unstable. The thin accretion disk model is unable
to explain the hard spectra observed in accretion flows around black holes in many
observable cases [see Narayan (1997)].

A few types of hot accretion flow models have been proposed. One of them is
a model with a hot corona above a standard thin accreting disk (see Haardt and
Maraschi (1993), Fabian (1994), and references therein). In a model proposed by
Thorne and Price (1975), the ions in the inner region are hot 1j ~ 101IK, but the
electrons are considerably cooler Te ~ 109 K. This .inner disk is thicker than in the
"standard" model and produces most of the X-ray emission. Shapiro, Lightman
and Eardley (1976) showed that the models with hot ions and cooler electrons are
optically thin.

Further development of the theory of disk accretion led to more sophisticated
models. Abramowicz et al. (1988, 1989) have demonstrated that when the luminosity
reaches the critical one(corresponding to m== M/ME of the order of unity), radiation
pressure in the inner parts of the disk dominates the gas pressure, and the disk is
thermally and viscously unstable. For especially big m, the essential part of the
energy of the plasma is lost by advection into the black hole horizon because the
radiation is trapped in the accreting gas and is unable to escape [Begelman and
Maier (1982), Abramowicz et al. (1988)]. This process stabilizes the gas flow against
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perturbations. Advection can also be important for smaller m. For high mass
accretion rates, the height of the accretion disk becomes comparable to its radius. In
modern models, the radial pressure gradients and the motion of gas elements along
radi us are taken into account. In the innermost parts of the disk and down to the
black hole, the flow of gas is supersonic.

Recently, a new class of optically thin hot disk solutions has been discovered
[Narayan and Yi (1994)]. In this model, most of the viscously dissipated energy
is advected with the accreting gas, with only a small fraction of the energy being
radiated. This occurs because the gas density is so low that the radiative efficiency is
very poor. These models were named advection-dominated. They have been applied
successfully to a few concrete celestial objects [see Narayan (1997)]. Probably, the
future development of the models allows one to use them as "proof' that the accreting
objects are indeed black holes [see Narayan, McClintock and Yi (1996)].

In conclusion, we note that in some models of disk accretion electron-positron pair
production can be important. A review of these aspects is given by Lamb (1991).

For new developments in the theory of disk accretion, see also Bj6rnsson and
Svensson (1991, 1992), Narayan and Yi (1994), Abramowicz et a.l. (1995), and Arte
mova et at. (1996). Many aspects of the physics of accretion disks, including the
development of instabilities, were discussed in the works by Mineshige and Wheeler
(1989), Wheeler, Soon-Wook Kim and Moscoso (1993), and Moscoso and Wheeler
(1994). We believe that new models involving recent developments in plasma physics
will playa key role in the modern astrophysics of black holes.

9.5 Evidence for Black Holes in Stellar Binary Sys
tems

Probably the best evidence that black holes exist comes from studies of X -ray bina
ries. Galactic X-ray sources were discovered by Giacconi .et al. (1962). Hayakawa
and Matsuoko (1964) pointed out that X-rays might be produced by accretion of
gas in close binary systems. However, they discussed accretion into the atmosphere
of a normal companion star, rather than onto a compact companion. Novikov and
Zel'dovich (1966) were the first to point out that a~cretion onto compact relativistic
ObjeclsTneutrollsfarsand blackholes·TinDi'!i~yy=s:isI~ms-slioiiId-produce-X:r-ays.
They aIsolnferredt"hat"S'co X=1~ which -hadbeen just discoverea;-inighCoe-acol
lapsed star in a state of accretion. After that the observational data were analyzed
by Shklovsky (1967a,b). Models for X-ray sources have been discussed in some de
tail by Prendergast and Burbidge (1968-). They' argue that the gas flow forms a disk
around the compact object, with an approximately Keplerian velocity distribution.

A new era started in December 1970 when the X-ray satellite "UHURU" was
launched. This satellite has provided much new data about the sources [see Giacconi
et al. (1972)]. For a description of the early observational evidence for black holes
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in stellar binary systems, see Novikov (1974). In this section we summarize the best
documented observational evidence for black holes in stellar binary systems [for an
overview see McClintock (1992), Cowley (1992), Bender et al. (1995), Cherepashchuk
(1996), and Wlweler(1997)].

The arguments that are used to prove that an X -ray binary contains a black hole
are as follows:

) 1. The X-ray emitting object in a binary system is very compact, and therefore
I canIlot be an ordinary star. Thus, it is either a neutron star or a black hole.
I This argument comes mainly from analysis of the features of emitted X -rays.

I
i.... 2. Analysis of the observational data allows one to determine the orbital Illotion

iII the binary system and makes it possible to obtain the mass of the compact
object. The data on the observed velocity of the optical companion star is of
the most importance. Note that Newtonian theory is always sufficient for the

I, analysis. The technique of weighing stars in binaries is well known in astronomy.
\" If the mass of the compact component is greater than the maximal possible mass
. of neutron stars Mo ~ 3MG (see Section 9,2), then it is a black hole.

It is worth noting that this evidence is somewhat indirect because it does not
confront us with the specific relativistic effects that occur near black holes and which
are peculiar to black holes alone. However, it is the best that modern astronomy
has proposed so far, In spite of these circumstances, we believe that the logic of the
arguments is reliable enough,

According to the generally accepted interpretation, we have the necessary obser
vational confirmation only for a few systems at the present time. For thesesystems we
have strong reasons to believe that the compact X-ray emitting companions are black
holes. Historically, for a long time three objects (Cyg X-I, LMC X-3, and A0620-00)
have been considered as the most probable candidates for black holes. Now (in 1997)
there are probably ten such objects. Some characteristics of these lead~kh~le
canoidiiiesaresummarlze;f'in:-'f;;:ble'9.1 [according to Cherepashchuk (1996)].

The most plausible masses of the compact objects in these systems are consider
ably larger than Mo ~ 3M0 . Table 9.2 provides estimates of the minimum masses of
three historically first candidates. These estimates were obtained by varyiIlg meth
ods and have various degrees of reliability. In most cases, even the minimum mass is
greater than Mo. Thus, these three objects are strong black hole candidates.

The strongest candidates are those which have a dynamical lower limit of the mass
of the compact object (or so-called mass function f(M)) greater than 3M0 - From
this point of view, the strongest candidates are GS 2023+338 (f(M) = 6.5M0 ), GS
2000+25 (f(M) = 5MG ), and XN Oph 1977 (f(M) = 4M0 )·

For the discussion of black hole candidates in binary systems, see McClintock
(1992), Cowley (1992), Tutukov and Cherepashchuk (1993), Bender et al. (1995),
Cherepashchuk (1996), and references therein.
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Spectral type Orbital Mass of the Mass of the X - ray
System of the optical period compact optical luminosity

companion (days) companion companion (erg/sec)
(in MGJ) (in MGJ)

Cyg X-I 09.71ab 5.6 7-18 20-30 ~ 8 x 1037

(V 1357 Cyg)
-1

LMC X-3 B(3-6)II-III 1.7 7-11 3-6 ~ 4 x 1038

LMC X-I O(7-9)III 4.2 4-10 18-25 ~ 2 x 1038

A0620-00 K(5-7)V 0.3 5-17 ~ 0.7 ~ 1038

(V616 Man)

GS 2023+338 KOIV 6.5 10-15 0.5-1.0 ~ 6 x 1038

(V 404 Cyg)

GRS 1121-68 K(3-5)V 0.4 9-16 0.7-0.8 ~ 1038

(XN Mus 1991)

as 2000+25 K(3-7)V 0.3 5.3-8.2 ~ 0.7 ~ 1038

(QZ Vul)

GRO J0422+32 M(0-4)V 0.2 2.5-5.0 ~ 0.4 ~ 10.38

(XN Per 1992=
=V518 Per)

GRO Jl655-40 F5IV 2.6 4-6 ~ 2.3 ~ 1038

(XN Sea 1994)

XN Oph 1977 K3 0.7 5-7 ~ 0.8 ~ 1038

Table 9.1: Black hole candidates in binary systems [Cherepashchuk (1996)J.
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eyg X-I Ref LMC X-3 Ref. A0620-00 Ref.

3 (1,2) 6 (5) 3.2 (11)

7 (3) 2.5 (6) 2.90 ± 0.8 (12)

3.4 (2I~pcr (4) 2.3 (7) 4.5 (12)

6 (7) 3.30 ± 0.95 (13)

3 (8,9) 6.6 (13)

4 (10) 3.1 ± 0.2 (14)

3.82 ± 0.24 (15)

6 (16)

4.16 ± 0.1 (17)

Table 9.2: Estimates of the minimum mass (in M 0 ) for the compact objects. (In estimate
(4) d is the distance from the Solar system). Numbers in Ref. refer to the following
publications:
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1. Webster and
Murdin (1972)

2. Bolton (1972a,b; 1975)
3. Gies and Bolton (1986)
4. Paczynski (1974)
5. Paczynski (1983)
6. Mazeh et at. (1986)

7. Cowley et al. (1983)
8. Kuiper et al. (1988)
9. Bochkarev et al. (1988)
10. Treves et al. (1990)
11. McClintock (1988)
12. McClintock and

Remillard (1990)

13. Johnston et al. (1989)
14. Johnston and

Kulkarni (1990)
15. Haswell and

Shafter (1990)
16. Cowley et al. (1990)
17. Haswell et al. (1993)
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The total number of systems that are frequently mentioned~ossj!>Je candidates
for black holes of stenai' mass1saoout2fJ."AlrseiiouslydlS~sedcandidateS-are-"X
-§:yso~~~ii-;;'-bTIiarisystellis-:-S-;;-me;;rthem are persistent, other are transienCFOr
example, Cyg X-I and LMC X-I are persistent, and A062Q..00 is transient. Begelman
and Rees (1996) summarized the present status as follows: "There is also overwhelm
ing evidence for black holes in our own galaxy, formed when ordinary massive stars
die, each weighting a few times as much as the Sun". Most of experts now agree with
this unambiguous conclusion.

During the more than 25 years since the discovery of the first black hole candidate
Cygx=1only afewilewcanciidates-ha~eh;~;~ded.thisis"in c;ntrast to the;~id
incre~e ~f-th~-~~~be~~fidentTfi~dne~tronSf;;U:;- At'present, many hund~~ds of
neutronstars-ilave'heen laenf.lfiea~[ii-the GalaxY:-About 100 of them are in binary
systems [Lamb (1991)]. One might conclude that black holes in binarY_~.Yl't&ITI§~re

exceedingly rare objects. This is noCne'cessariIyfrue;-1iowe~er~-Th-; small numb~r
of identifiedbiack-hoiecandidates may as well be related to the specific conditions
which are necessary for their observable manifestation [for a summary, see Cowley
(1992)]. According to estimations of van den Heuvel (1983), the evolutionary stage
when a black hole binary continuously radiates X-rays may last only 104 years. We
can thus detect it only during this short period. In effect, the population of black hole
binaries may be much larger than what we can presently observe. Such systems may
be as common as neutron star binaries. An estimate of the formation rate for black
hole .binaries has been given by van den Heuvel and Habets (1984), and Lipunov et
al. (1994).

9.6 Supermassive Black Holes in Galactic Centers

Since the middle of this century astronomers have come across many violent or even
catastrophic processes associated with galaxies. These processes are accompanied by
powerful releases of ene,-:gLandarefast r:lOtonly by astronomical but also by earthly
standards... They may last only a few days or~~p.minutes. Most of such processes
occur in the centralpartsorgafaxies, thegaIa<::tic nuclei.

About one per cent" of an galactic nuclei eject radio-emitting plasma and gas
clouds, and are themselves powerful sources of radiation in the radio, infrared, and
especially, the "hard" (short wavelength) ultraviolet, X-ray and gamma regions of
the spectrum. In some cases, the full luminosity of the nucleus is L ~ 1047erg/s, and
it is millions of times the luminosity of the nuclei of quieter galaxies, such as ours.
These objects were c,alled,a.ctive galactic nuclei (AGN). Practically all the energy of
their activity all(C~f'the giant jets released by galaxies originates from the centers of
their nuclei.

Quasars form a special subclass of AGN. Their characteristic property is that
their total energy release is hundreds of times greater than the combined radiation
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of all the stars in a large galaxy. At the same time, the average linear dimensions of
the radiating regions are small: amere one-hundred-miliionth of the linear size of a
galaxy. Quasars are the most powerful energy sources registered in the Universe to
date [Blandford (1987), Wallinder (1993), Begelman and Rees (1996), and Peterson
(1997)]. What processes are responsible for the extraordinary outbursts of energy
from AGN and quasars?

Learning about the nature of these objects involves measuring their sizes and
masses. This is not at all easy. The central emitting regions of AGN and quasars are
so small that a. telescope views them just as point sources of light. Fortunately, quite
soon after the discovery of the quasar 3C 273 it was shown that its brightness changes.
Sometimes it changes very rapidly, in less than a week. After this discovery, even
faster variability (on timescales of a few hours or less) was detected in other galactic
nuclei. From these variations one could estimate the dimensions of the central parts
of the nuclei that are responsible for the radiation. The conclusion was that these
regions are not more than a few light-hours in diameter. That is, they are comparable
to the solar system in size. .

In spite of the rather small linear dimensions of quasars and. many galacticJ1llclei,
thelr~~ses turned out to"be enor~ou-s. They were first ~;tim:~ted by Z~l'd~vich and
Novikov (1964b), who used formula (9.3.9). For quasi-static objects, the luminosity
cannot be essentially greater than L E . A comparison of the observed luminosity with
the expression (9.3.9) gives an estimate of the lower limit of the central mass. In some
quasars this limit is M ~ (1 - 100) x 107 M0 .4 These estimates are supported by
data on the velocities within the galactic nuclei of stars, and gas clouds accelerated
in the gravitational fields of the center of the nuclei. We will discuss this in the next
section.

Great Illass butsmal1lineardimensionsprolllPt the guess that there could be
ablacIChciie.· Zei'dovich an-ci Novikov(1964b) and Salpeter (1964) suggested that
the centers of quasars and AGN could harbor supermassive black holes. This would
account for all the extraordinary properties of these objects. A further crucial step
was made by Lynden-Bell (1969). He developed and applied a theory of thin accretion
disks orbiting around massive black holes. Now it is generally accepted that in AGN
there are supermassive black holes with accretion gas (and maybe also dust) disks.
One of the .most important facts implied by the observations, especially by means
of radio telescopes, is the existence of directed jets from the nuclei of some active
galaxies. For some of the objects there is evidence that the radio components move
away from the nucleus at ultrarelativistic velocities. The existence of an axis of
ejection strongly suggests the presence of some stable compact gyroscope, probably

4It is interesting to note that the estimates of masses of black holes in AGN: M ~ 107 M 0 and
more, are close to the estimates of masses of supermassive invisible "stars" in the Universe (black
holes in our terminology) which were made at the end of the 18th century by Michell and Laplace.
They speculated on supermassive stars, which would generate a gravitational field strong enough to
trap light rays, and thus make them invisible.
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a rotating black hole. In some cases, one can observe evidence that there is also
a precession of this gyroscope. An essential role in the physics of processes in the
centers of AGN is probably played by black hole electrodynamics. We discussed this
in Chapter 8. Reviews of the physics of AGN are given by Lamb (1991), Svensson
(1994), Rees (1996), and Pet.erson (1997).

In the model of a supermassive black hole with an accretion disk for AGN, one
requires sources of fuel - gas or dust. The following sources have been discllssed:
gas from a nearby galactic companion {therestilCOflnteraction between the host
galaxy and the companion), intersteliar gas of the host gal~xy, disrllPtion of stars by
high velocity collisions in the vicinity of a black hole, disruptionofstars by the tidal
field of the black hole and some others [see Shlosman, Begelman, and Franc (1990)].
Excellent revlews ot ali problems of supermassive black holes in galactic centers,
including the problem of their origin and evolution, are given by Rees (1990a,b) and
Haehnelt and Rees (1993). See also discussions in Fukugita and Turner (1996).

Clearly, the processes taking place in quasars and other galactic nuclei are still a
mystery in many respects. But the suggest.ion that we are witnessing the activity of
a supermassive black hole with an accretion disk seems rather plausible.

9.7 Dynamical Evidence for Black Holes In Galac
tic Nuclei

So fa!:.F.e. !lave considered supermassive black holes as the most probable explanation
fo~;the phenomena associated with the activity of nuclei of some galaxies. Are there
more conclusive lines of evidence for the presence of such black holes?

First of all, one can expect that massive black holes should exist, not only in active
galactic nuclei but, also in the centers of "normal" galaxies (including nearby galaxies
and our own Milky Way) [Rees (1990a)]. They are quiescent because they are now
starved of fuel (gas). Observations show that galactic nuclei were more active in the
past. Thus, "dead quasars" (massive black holes without fuel) should be common at
the present epoch.

How can these black holes be detected? It has been pointed out that black holes
produce cusp-like gravitational potentials, and hence they should produce cusp-like
density distributions of the stars in the central regions of galaxies. Some authors
have argued that the brightness profiles of the central regions of particular galaxies
imply that they contain black holes. Kormendy (1993) emphasized that arguments
based only on surface brightness profiles are inconclusive. The point is that a high
central number density of stars in a core with small radius can be a consequence
of dissipation, and a cusp-like profile can be the result of anisotropy of the velocity
dispersion of stars. Thus, these properties taken alone are not sufficient evidence for
the presence of a black hole.

The reliable way to detect black holes in the galactic nuclei is analogous to the
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case of black holes in binaries. Namely, one must prove that there is a large dark
mass in a small volume, and that it can be nothingother but a black hole. In order
to ootain -such ap·~ooCwe-~us{;-~r~~e~tsbased6n both stellar kinematics and
surface photometry of the galactic nuclei. The mass M inside radius r can be inferred
from observed data through the formula [Kormendy (1993)J:

M(r) = v
2

r + O";r [_ dlnI _ dlnO"; _ (1- O"~) _ (1- O"~)],
G G dlnr dlnr 0"; 0"; (9.7.1)

where I is the brightness, v is the rotation velocity, O"r, O"e, O"if> are the radial and
the two tangential components of the velocity dispersion. These values must all be
obtained from observations. More complex formulas are used for more sophisticated
models.

Now we can consider the mass-to-light ratio MIL (in solar units) as a function of
radius. This ratio is well known for different types of stellar populations. As a rule,
this ratio is between 1 and 10 for elliptical galaxies and globular clusters (old stellar
population dominates there). If for some galaxy the ratio MIL is almost constant
at rather large radii (and has a "normal" value between 1 and 10) but rises rapidly
(toward values much larger than 10) as one approaches the galactic centre, then there
is evidence for a central dark object (probably a black hole).

As an example, consider galaxy NGC 3115 which is at a distance of 9.2Mpc from
us [Kormendy and Richstone (1992)]. For this galaxy MIL ~ 4 and almost constant
over a large range of radii r > 4" (in angular units). This value is normal for a bulge
of this type of galaxy. At radii r < 2" the ratio MIL rises rapidly up to !vII L ~ 40.
If this is due to a central dark mass added to a stellar distribution with constant
MI L, then MH = 109.2±o.5M0 .

Is it possible to give another explanation of the large mass-to-light ratio in the
central region of a galaxy? We cannot exclude the possibility that a galaxy contains
a central compact cluster of dim stars. But it is unlikely. The central density of stars
in the galaxy NGC 3115 is not peculiar. It is the same as in the centers of globular
clusters. The direct observational data (spectra and colors) of this galaxy do not
give any evidence of a dramatic population gradient near the center. Thus, the most
plausible conclusion is that there is a central massive black hole.

Unfortunately, it is difficult to detect massive black holes in giant elliptical galax
ies with active nuclei, where we are almost sure black holes must exist because we
observe their active manifestation [Kormendy (1993)]. The reason for this is a fun
damental difference between giant elliptical galaxies (the nuclei of some of them are
among the most extreme examples of AGN), dwarf elliptical galaxies, and spiral
galaxies. Dwarf elliptical galaxies rotate rapidly, and star velocity dispersions are
nearly isotropic. Giant elliptical galaxies do not rotate significantly and they have
anisotropic velocities. It is not so easy to model these dispersions. This leads to un
certainties in equation (9.7.1). Furthermore, giant elliptical galaxies have large cores
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and shallow brightness profiles. Consequently, the projected spectra are dominated
by light from large radii, where a black hole has no effect.

The technique described above has been used to search for black holes in galactic
nuclei. Another possibility is to observe rotational velocities of gas in the vicinity
of the galactic center. So far (the middle of 1997) black hole detections have been
reported for the following galaxies: M32, M31, NGC 3377, NGC 4594, The Milky
Way, NGC311.5, M87, and NGC 4258 [for review, see Kormendy (1993), Miyoshi
et ai. (199.5), Kormendy and Richstone (1995)]. Some evidence for a supermassive
black hole in NGC 4486B was reported by Kormendy et ai. (1997). This galaxy
is a low-luminosity companion of M87. NGC 4486B as well as M31 has a double
nucleus. A possible explanation of this based on the hypothesis about the black holes
in the centers of these galaxies is proposed in [Tremaine (1995) and Kormendy et at.
(1997)].

Special investigations were performed in the case of the galaxy M87 [see Dresler
(1989) for a review of earlier works and Lauer et ai. (1992). This is a giant elliptical
galaxy with an active nucleus and a jet from the center. At present, there is secure
stellar-dynamical evidence for a black hole with mass M ~ 3 X 109M0 in this galaxy.
The Hubble Space Telescope has revealed a rotating disk of gas orbiting the central
object in the galaxy [Ford et ai. (1994), Harms et at. (1994)]. The estimated mass
of the central object is M = 2.4 X 109 M0 . The presence of a black hole in M87
is especiaIly important for our understanding of the nature of the central regions of
galaxies because in this case we observe also the activity of the "central engine" .

Radioastronomical observations of the nucleus of the galaxy NGC 4258 are of
special interest [Miyoshi et ai. (1995)]. Using radio interferometric techniques of ob
serving of maser lines of molecules of water in gas clouds orbiting in the close vicinity
of the nucleus, the observers obtained an angular resolution 100 times better that
in the case of observations by the Hubble Space Telescope. The spectral resolution
is 100 times better as well. According to the interpretation of the observations, the
center of NGC 4258 harbors a thin disk which was measured on scales of less than
one light-year. The mass of the central object is 3.6 x 107 M0 . In the opinion of
Begelman and Rees (1996): "It represents truly overwhelming evidence for a black
hole... NGC 4258 is the system for which it is hardest to envisage that the mass
comprises anything but a single black hole".

In conclusion, we list in Table 9.3 estimates of masses of black holes in the nuclei
of some galaxies [Kormendy (1993), van der Marel (199.5), Miyoshi et ai. (1995)].

Progress in this field is very rapid and in the near future our knowledge about
evidence for supermassive black holes in galactic nuclei will become more profound.
Finally, we want to mention the possibility of the formatiDn of binary supermas
sive black hole systems through merging of galaxies [for example, see Rees (1990b),
Polnarev and Rees (1994), and Valtonen (1996)]. The radiation of gravitational waves
from such a system leads to decay of the orbits of the black holes. Eventually they
coalesce. The final asymmetric blast of gravitational radiation may eject the merged
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Galaxy Mass of black hole (in M0 )

M31 2 x 107

M32 (2-5)x106

Milky Way 3 x 106

NGe 4594 109

NGC 3115 109

NGC 3377 108

M87 2.4 x 109

NGC 4258(M106) 3.6 x 107

Table 9.3: Estimated masses of black holes in some galactic nuclei.
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hole from the galaxy. (We will discuss gravitational waves from binary systems in
more detail in Section 9.9.)

9.8 Primordial Black Holes

Let us now consider the possible existence of primordial black holes. The smaller
the mass, the greater is the density to which matter must be compressed in order
to create a black hole. Powerful pressure develops at high densities, counteracting
the compression. As a result, black holes of mass M « M0 cannot form in the con
temporary Universe. However, the density of matter at the beginning of expansion
in the Universe was enormously high. Zel'dovich and Novikov (1967a,b), and then
Hawking (1971) hypothesized that black holes could have been produced at the early
stages of the cosmological expansion of the Universe. Such black holes are known
as primordial. Very special conditions are needed for primordial black holes to be
formed. Lifshitz (1946) proved that small perturbations in a homogeneous isotropic
hot Universe (with an equation of state p = E/3) cannot produce appreciable inhomo
geneities. A hot Universe is stable under small perturbations [see Bisnovatyi-Kogan
et al. (1980)]. The large deviations from homogeneity that are required for the for-
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mation of primordial black holes must exist from the very beginning in the metric
describing the Universe (Le., the gravitational field had to be strongly inhomoge
neous) even though the spatial distribution of matter density close to the beginning
of the cosmological expansion was very uniform. When the quantity I = c t, where t
is the time elapsed since the Big Bang, grows in the course of expansion to a value of
the order of the linear size of an iilhomogeneity of the metric, the formation of a black
hole (of the mass contained in the volume 13 at time t) becomes possible. Formation
of black holes with masses substantially smaller than stellar masses is thus possible
provided that such holes were created at a sufficiently early stage (see below).

Primordial black holes are of special interest because Hawking quantum evapo
ration (see Chapter 10) is important for small-mass black holes, and only primordial
black holes can have such masses. (Note that quantum evaporation of massive and
even supermassive black holes may be of essential importance only for the very distant
future of the Universe.)

First of all, the followingtwo questions arise:
1. How large must the deviations from the metric of a homogeneous isotropic

model of the Universe be for black holes to be born?

2. What is the behavior of the accretion of the surrounding hot matter onto the
created hole and how does the accretion change the mass of the hole?

The second question arises because of a remark made in the pioneering paper of
Zel'dovich and Novikov (1967a,b): If a stationary flux of gas onto the black hole
builds up, the black hole mass grows at a catastrophically fast rate. But if such
stationary accretion does not build up immediately after the black hole is formed,
accretion is quite negligible at later stages because the density of the surrounding gas
in the expanding Universe falls off very rapidly.

Both questions can be answered via numerical modeling. For the case of spherical
symmetry, the required computation was carried out by Nadejin et al. (1977, 1978)
and Novikov and Polnarev (1979, 1980). The main results of these computations are
as follows. The dimensionless amplitude of metric perturbations, 8g3, necessary for
the formation of a black hole, is about 0.75-0.9. The uncertainty of the result reflects
the dependence on the perturbation profile. Recall that the amplitude of a metric
perturbation is independent of time as long as I = c t remains much smaller than the
linear size of the perturbed region. If 8g3 is less than 0.75-0.9, the created density
perturbations transform into acoustic waves when I = c t has increased to about the
size of the perturbation. This answers the first of the questions formulated above.

As for the second question, the computations show that the black hole incorpo
rates 10 % to 15 % of the mass within the scale I = c t at the moment of formation.
This means that the accretion of gas onto the newborn black hole cannot become
catastrophic. Computations confirm that the gas falling into the black hole from the
surrounding space only slightly increases the mass.

If in the early history of the Universe there were periods when pressure was
reduced for a while, then presSure effects were not important. Formation of primordial
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black holes (PBHs) under these conditions was discussed by Khlopov and Polnarev
(1980) and Polnarev and Khlopov (1981). Other mechanisms of primordial black
hole formation include cosmic phase transitions [Sato et at. (1981), Maeda et al.
(1982), Koclama et at. (1982), Hawking et at. (1982), Kardashev and Novikov (1983),
Naselsky and Polnarev (1985), Hsu (1990)J and collapse of loops of cosmic strings
[Hawking (1989), Polnarev and Zembowicz (1991), Polnarev (1994)J. A review of the
problem is given by Carr (1992).

Hawking's discovery (1974) that black holes can evaporate by thermal emission
(see Chapter 10) made the study of PBH formation and evaporation of considerable
astrophysical interest. The evaporation effects of small black holes are potentially
observable. Their absence from observational searches therefore enables powerful
limits to be placed upon the structure of the very early Universe [Zel'dovich and
Novikov (1967a,b), Carr and Hawking (1974), Novikov et at. (1979), Carr (1983),
Carr et at. (1994)J.

For stellar and supermassive black holes, Hawking radiation is negligible, but for
sufficiently small PBHs, it becomes a dominant factor in the black hole evolution and
very important for their possible observational manifestations. Using the formulas of
Chapter 10,5 it is easy to conclude that PBHs of M ~ 5 X 10 14g or less would have
evaporated entirely in the 10 10 years or so of the Universe's history. PBHs initially
a little more massive than this will still be evaporating in the present-day Universe.
The rate of their evaporation is large enough so that the stream of energetic particles
and radiation they would emit can be turned into a strong observational limit on
their presence.

Searches for PBHs attempt to detect either a diffuse photon (or some other parti
cle) background from a distribution of PBHs, or the final emission stage of individual
black holes. Using the theoretical spectra of particles and radiation emitted by evap
orating black holes of different masses (see Chapter 10), one can calculate the theoret
ical backgrounds of photons and other particles produced by a distribution of PBlIs
emitting over the lifetime of the Universe. The level of this background depends on
the integrated density of PBHs with initial masses in the considered range.

A comparison of the theoretical estimates with the observational cosmic ray and
,-ray backgrounds places an upper limit on the integrated density of PBHs with
initial masses in this range. According to estimates of MacGibbon and Carr (1991),
this limit corresponds to ~ 10-6 of the integrated mass density of visible matter in
the Universe (matter in the visible galaxies). The comparison of the theory with
other observational data gives weaker limits [for reviews see Halzen et at. (1991),
Carr (1992), Coyne (1993)J.

The search for high energy gamma-ray bursts as direct. manifestations of the final
emission of evaporating (exploding) individual PBHs has continued for more than 20
years. (No posi tive evidence__~~.tJ}.~.~e2'ist~c:~~~_~~Hs ..~~.?e.~~Eep<?-!:!l':~J~eeCline
and Hong (1992, 1994)J. For future searches see Heckler (1997).

5See a footnote on page 319.
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A population of PBHs whose influence is small today may have been more im
portant in the earlier epochs of the evolution of the Universe. Radiation from PBHs
could perturb the usual picture of cosmological nucleosynthesis, distort the microwave
background, and produce too much entropy in relation to the matter density of the
Universe. As we mentioned above, limits on the density of PBHs, now or at earlier
times, can be used to provide information on the homogeneity and isotropy of the
very early Universe, when the black holes were formed. For reviews see Novikov et
at. (1979) and Carr et at. (1994).

The final state of the black hole evaporation is still unclear (see Chapter 15).
There is a possibility that the endpoint of the black hole evaporation is a stable
relic [Markov (1965, 1966)]. The possible role of such relics in cosmology was first
discussed by MacGibbon (1987). For a recent review see Barrow et at. (1992).

In this chapter we have reviewed the current search for evidence for black holes
in the Universe. The conclusion is the following. Now, in 1997, we are almost 100
percent certain that black holes of stellar masses exist in binary systems. We can
probably say the same about supermassive black holes in the centers of many galaxies.
So far there is no evidence for the existence of PBHs in the Universe, however.

9.9 Black Holes and Gravitational Wave Astron
omy6

As should be clear from the previous sections of this chapter, we have good reasons
to believe that black holes exist in the Universe. But some caution is perhaps still
in order since all the evidence discussed above is indirect. The main reason for this
is simple: In most situations, a i:>G.ck l-;le wilrbeobscured by gas clouds, and the
region close to the event horizonvv1ll noTIeliansparent to electromagnetic waves.
ffil)/pliotoll-th"at reaches us- ~ilrhave been scattered many tillles as it escapes from
the strong-field regime. Only when the black hole is surrounded by a thin accretion
disk, can we hope to get a clear view of the horizon region. Does this mean that
we typically face a hopeless situation, and that we will rarely be able to observe
black holes directly? The answer to this question is no, but the main hope (or§uch
observations rests on the future id~ntificationofgravitationalwaves.

That gravitational waves exist is an unambiguous prediction of general relativity.
In contrast to electromagnetic waves that are mainly generated in processes involving
individual atoms, gravitational waves are created by bulk motion. The stl'Ongest
gravitational waves will come from processes involving massive and compact objects.
Hence~bi-ack-~;ifib~-tl~~trong~~t-s?urces-(jfgravltatlonaI-;aves-i~the-O;;i~erne.

~ost dynamical processes'involvingaJjlackii~le-sho~ld gi;~~;~-;--t~very characteristic
gravitational waves(~~Ln_~~a_~~~~L Furthermore, the gravitational

6This section. is written jointly with N.Andersson.
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waves interact weakly with matter so they can escape the region close to a black hole
almost-ul1affected bya possible accretion disk. Thus, the gravitational waves provide
~n ideal probe of the strong field regime of general relativity.

Decades of efforts t.o detect the gra.vitational waves that should (theoretically)
bathe t.he Earth have been crowned with very little success, however. Most likely,
this is because the gravitational waves that reach us are incredibly weak. Typical
waves are expected to induce a relative displacement h rv !1LjL rv 10-21 in ma.t
tel'. But there is great hope that observations will soon become possible, and that
new large-scale interferometric detectors will make gravitational-wave astronomy a
reality. Such large-scale detectors are presently under construction in both the USA
(the LlGO project) and Europe (the French-Italian VIROQcoliaboration and the
penllan-British GEO effort) [for a review, see Thorne (1994a, 1995, 1997c)]. At the
same time, theie are advanced plans for a similar, but much larger, detector in space.
This project - which has been given the acronym LISA - could lead to observations
of the supermassive black holes that seem to reside in galactic nuclei.

Billary systems consisting of compact objects (black holes or neutron stars) pro
vide the most promising sources for detectable gravitational waves. In fact, 'Y~__~Jr~a.cly
know that the behaviour of one such system - the binary pulsar PSR_191;3-+:16 ::: isill
impressive agreement with the predi.<:tiollS ofEinstein's theory [TaYlor (1994)]. This
coilvinces us that gravitationaiwaves exist. As a binary system l~ses ellergy due to
the emission of gravitational waves, the orbital separation shrinks. Finally, when the
separation is of the order of a few times the total mass of the system (in relativistic
units), the two bodies will merge. In the case of PSR 1913+16, this will happen
some 108 years into the future. At some stage of the evolution the frequency of the
gravitational waves produced by the system will become larger than 10 Hz. Then
the waves enter the frequency bandwidth where the large-scale interferometers will
be sensitive and should, in principle, become detectable. For a binary system which
consists of two black holes with masses of ten solar mass each, this comprises the last
~ew seconds of the binary evolution. .

There are several reasons why inspiraling binaries are considered as promising
sources for gravitational-wave detectioll. It is estimated that the new detectors will
be able to see black hole binaries out to the edge of the Universe, to distances with
the redshift Z rv 1. In that volume of space there should be several events per year.
Furthermore, compact binaries are expected to be very clean systems, and spend
many revolutions at a given orbital separation. This makes them "easily" modeled.
For example, it has been estimated that tidal effects are negligible up to the point
where the bodies are about to merge. It is also believed that radiation reaction will
circularize the system before it enters the detector bandwidth. This means that,
for the purpose of wave-detection, the system can be accurately modeled as two
point masses with a number of internal properties (mass, spin, quadl'Upole moment
etcetera) in adiabatically shrinking circular orbits.

For the main part of the binary inspiral, one need not specify the cOllstituents of
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the binary. The signal from a binary containing at least one black hole will initially
be indistinguishable from the radiation from a pair of neutron stars. The difference
between neutron stars and black holes becomes important only in the final stages.
For a direct identification of a black hole one must cGnsequently be able to model the
last few cycles (when the distance between the bodies becomes comparable to the
size of a black hole) of the inspiral very accurately. But from the observational data
for the earlier part of the inspiral one should be able to infer the individual masses
(as one has been able to do in the case of PSR 1913+16). If one of the masses (or
both) is larger than the maximum allowed mass for a neutron star, it seems likely
that it is a black hole. The gravitat.ional waves from the late stages of evolution of a
black hole binary will probe the strong gravitational field close to the event horizon.
Such observations will put our understanding of black hole physics to the test.

A simple estimate for the amplitude of gravitational waves from a binary system
can be written as

(9.9.1)

where 109; are the Schwarzschild radii of the two bodies; d is the distance between
them, and D represents the distance to the observer. For a system of two black
holes of ten solar mass each in the Virgo cluster, typical values would be rgl == l'g2 ~

30 km, d ~ 200 km and D ~ 3 X 1020 km, leading to a gravitational-wave strain
h ~ 1.5 X 10-20 on Earth.

It is clear that the problem of observing gravitational waves provides a tremen
dous challenge. In part this is a challenge for theoretical astrophysics. To detect a
gravitational-wave signal, and extract astrophysical data from it, one must integrate
the detector output against a theoretical template. Although one will not require
very accurate theoretical predictions to detect the signal in the first place, more de
tailed information can be extmeted through this process by using better theoretical
waveforms. It is thus imperative that we have a detailed understanding of inspiraling
binary systems.

For a system of two neutron stars one can estimate that the gravitational-wave
signal undergoes some 104 cycles as it sweeps through the frequency bandwidth of
an interferometric detector. At the same time, the orbital velocity vic ranges from
approximately 0.1 to 0.4 of the velocity of light. For a binary of black holes of ten
solar mass, the number of cycles is a few hundred, and the final velocities of black
holes are relativistic. Thus, it is clear that satisfactory accuracy cannot be achieved
unless relativistic effects are incorporated in the calculations. But how accurate
must a theoretical waveform be if the overlap integral is not to be seriously depleted?
Unfortunately, there is a significant reduction as soon as the theoretical template goes
a single cycle out of phase. Thus, we need an accuracy in the phase of order 10-4•

This translates into a need for relativistic corrections to at least of order (vlc)4.
How can such corrections be calculated? Much effort has gone into slow-motion

approximations of the equations of general relativity. The basic idea is that if vic
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is a typical velocity inside the matter source, then vic « 1. The approximat.ion
t.hat follows is usually referred to as "post-Newtonian" theory [Will (1994)J. To dat.e,
post-Newtonian waveform calculations have been carried out through second post
Newtonian order O((V/C)4) beyond the standard quadrupole formula [Blanchet et at.
(1995)J. Since a discussion of these calculations is beyond the scope of this book, we
refer the intere<;ted reader to Will (1994) for further details.

An alternative to full post-Newt.onian studies is provided by black hole perturba
tion theory (see Chapter 4 for further discussion). At. present, such calculations have
been carried out t.o order (V/C)8 [Tagoshi and Nakamura (1994), Tagoshi and Sasaki
(1994)]. The main conclusions are as follows: The convergence of the post-Newtol1ian
expansion is very poor [Cutler, Finn, Poisson and Sussman (1993), Poissol1 (1995)].
The existence of the black hole event horizon will not affect the outgoing radiation
until very high order; O((V/C)18) [Sasaki (1994)], and black hole absorption will be
an effect of order (V/C)8 [Poisson and Sasaki (1995)]. Consequently, effects associated
with the horizon are expect.ed to be irrelevant for gravitational-wave observations of
inspiraling binaries.

011 the other hand, the presence of the horizon will be important. at. the late
stages, especially when the two bodies merge. The burst of gravitational waves
emitt.ed when t.he two bodies collide should be detectable, but these waves are much
harder to model theoretically than those from the inspiral phase. For studies of the
merger one must resort to numerical simulations. So far, only the head-on collision of
two, initially static black holes has been considered in detail, but considerable effort
is directed towards the general problem of inspiraling binaries (see Section 7.7). In
a general scheme a "post-Newtonian" approximation will provide initial data for a
fully relativistic simulation of the fil1al stage of a binary systems evolution.
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Chapter 10

Quantum Particle Creation by
Black Holes

10.1 Quantum Effects in Black Holes

10.1.1 Introduction

So far, our description has completely ignored the quantum aspects of the interaction
of matter and physical fields with black holes. Quantum effects are, indeed, insignif
icant for black holes of about a solar mass (and greater). However, for a small-mass
(primordial) black hole these effects cannot be ignored; in fact, they qualitatively
change the black hole's evolution. They are also likely to become important for those
regions inside a black hole where the classical theory predicts a spacetime singularity.

From a general point of view the application of quantum ideas to gravity is the
subject of quantum gravity, a branch of physics whose development is far from com
plete. Strictly speaking, we have at present no self-consistent theory that allows us
to describe all quantum aspects of black holes. Nevertheless, fortunately as often
happens in physics, there exist special regimes and approximations where the theory
provides us with reliable predictions.

When discussing quantum effects in black holes, it is convenient to split these into
the following three categories:

• Particle creation

• Vacuum polarization

• Quantum fluctuations of the metric

Considering particle creation, one can assume that the gravitational field of a
black hole is fixed and is classical so that this type of effects is described by the
quantum theory of fields propagating in a given external background. The vacuum
polarization effects imply that the Einstein equations are modified due to quantum
corrections, which can be taken into account by a perturbation expansion in a series
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of powers of the Planck constant h. For a black hole of mass much greater than the
Planck mass

~ -5
ffiPl = Va ~ 2.177 x 10 g, (10.1.1)

the curvature outside the black hole is much smaller than the Planck curvature

c
3

65 -2
Rpi = hG ~ 3.829 x 10 'cm . (10.1.2)

(10.1.3)

Under these conditions, it is often sufficient to consider only the lowest order quan
tum corrections and to use t.he so-called semi-classical approximation. The effects
of quantum fluctuations oJ the metric are important when the curvature of space
time becomes comparable with Rph or when one considers spatial regions of size
comparable with the Planck length

JhG 33lpi = ~ ~ 1.616 x 10- cm

and time intervals comparable with the Planck time

JhG -44tPI = 7 ~ 5.591 x 10 s. (10.1.4)

These effects will be important for studying the structure of singularities inside
the black hole or final states of quantum black hole evaporation.

For quantum particle creation by an external classical field the required theory
is sufficiently well developed. The semi-classical approximation that takes into ac
count the backreaction of quantum effects on the gravitational field of a black hole
is also a basically well posed problem. But technically it is quite complicated so un
til now we have only partial results concerning the self-consistent description of the
quantum evolution of a black hole. The physics of very strong gravitational fields at
Planck curvatures and quantum fluctuations of the metric at the Planck scales are
still open problems. Both of these problems require knowledge of physics at Planck
scales,which is now one of the greatest challenges in theoretical physics. For this rea
son, our knowledge of the final states of an evaporating black hole and the strncture
of spacetime in the black hole interior is only fragmentary, and is based on a number
of additional assumptions and hypotheses.

In this and subsequent chapters, we shall discuss t.he role of quantum effects
in black hole physics. Particle creation by black holes is the subject of the present
chapter, while vacuum polarization and quantum fluctuations of the metric, as well as
the application of quantum mechanics to black holes as total objects, are considered
in the next chapter. But before developing the formalism, we shall make a few
general remarks and order-of-magnitude estimates. One can regard this section as
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an introduction for pedestrians into the "quantum physics of black holes".1 For
convenience, we preserve and explicitly display the fundamental constants c, ii, and
G in all expressions throughout this section.

10.1.2 Particle creation

Current quantum concepts lead to the view that the physical vacuum (i.e., the state
without real particles) is a quite complex entity [see, e.g., Aitchison (1985)]. Virtual
("short-lived") particles are constantly created, interact with one another, and are
then annihilated in this vacuum. Usually the vacuum is stable in the absence of
external fields; that is, the processes considered here never produce real ("long-lived")
particles. However, in an external field, some virtual particles may acquire sufficient
energy to become real. The result is in effect the quantum creation of particles from
the vacuum by an external field.

Let us estimate the probability of particle creation in a static external (not neces
sarily gravitational) field. Let f be the field strength and 9 be the charge of the parti
cles that are created. For particles of a virtual pair the probability to find one particle
at the distance 1 from another is proportional to exp( -1/Am), where Am = ii/me is
the Compton length for a particle of mass m. In other words, the probability is ex
ponentially small at distances greater than Am .2 The same exponential factor enters
the expression for the probability of creating a pair of real particles. The probability
amplitude of a pair creation by a static field contains a b'-function reflecting the con
servation of energy. The amplitude is non-vanishing only if the separation 1 is such
that the work gfl done over this distance by the field equals 2mc2• This implies for
the probability of pair creation the following estimate: w ~ exp( - 2m2c3 /iigf). This
estimate can be made more accurate jf we realize that the process we are consider
ing is a tunneling process, and the quantity that stands in the exponent is nothing
but the Euclidean action calculated fot this tunneling "motion" of a particle. For
electrically charged particles this results in an additional factor 11"/2 in the exponent.
Thus, we have for the probability w of particle creation in a field of strength f the
expression

(10.1.5)

where the constant f3 (a dimensionless constant of order unity) and the pre-exponential
factor A depend 011 subtler characteristics of the field.

A well-known example of the creation of particles in an external field is the pro
duction of electron-positron pairs by a strong electric field. The following expression

lSee also Frolov(1976b, 1978b, 1983b).
2This conclusion follows directly from the behavior of the propagators for massive particles for

spacelike point separation.
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derived by Schwinger (1951) holds for the rate of particle production by a nniform
electric field in unit volume per unit time:

dN e2 E 2 ~ 1 2 3
dtdV = 1r2li2c L n2 exp(-1rm c n/eEli) ,

n=!

where E is the electric field strength. It is readily seen that if the field strength is
much less than the critical electric field Ecr = 1rm2c3/ eli, this formula agrees with
(10.1.5), the numerical coefficient. 13 being equal to 1.

If we naively apply the relation (10.1.5) to particle creation by a static gravita
tional field, we can make an important observation. Namely, in the gravitational
interaction the role of the charge is played by the mass of the particle. This means
that the probability of creation of a particle by a static gravitational field can be
represented in the form

w = Aexp(-mc2/0), with 0 = f3lir. (10.1.7)
1rC

In other words, the probability of creating particles of mass m has a Boltzmann-type
behavior with an effective temperature (written in energy units) equal to O.

Consider now the possibility of particle creation by a static gravitational field.
We know that the energy of a particle in such a field is E = -PI' ~I', where pi' is the
four-momentum of the particle, and ~I' is the Killing vector. For massive (massless)
particles the momentum pi' is a future-directed timelike (null) vector. For this reason,
the energy E of a particle is always positive in the regions where the Killing vector is
future directed and timelike. If both of the created particles were created in such a
region, their total energy would not vanish so that this process is forbidden by energy
conservation. This means that a static gravitational field can create particles only if
there exists a region where the Killing vector (which is future-directed and timelike
at asymptotic infinity) becomes spacelike. This region lies inside the surface where
e = 0, i.e., inside the Killillg horizon. But we know that a Killing horizon in a static
spacetime is necessarily the event horizon (see Section 6.3). These simple arguments
show that one can expect particle creation in a static spacetime only if it contains a
black hole. Similar arguments apply with the same conclusion in the more general
case when the spacetime is stationary.

Hawking (1974, 1975) proved that a vacuum is unstable in the presence of a black
hole. Moreover, he showed that a black hole creates and emits particles as if it were
a black body heated to the temperature

(10.1.8)

where'" is the surface gravity that characterizes the "strength" of the gravitational
field in the vicinity of the black hole surface.3 The Boltzmann constant k is introduced

3Strictly speaking, the radiation spectrum of a black hole deviates from the black body spedrum
owing to the effects of scattering on the gravitational field. We discuss this in detail later (see
Section lOA).
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in order to have the usual units for temperature.
For a Scltwarzschild black hole, K = c4/4GM ,and the expression for the Hawking

temperature is

(10.1.9)

This is one of the most beautiful relations in theoretical physics since it contains
all the fundamental constants. The Hawking result implies that if one neglects the
scattering of created particles by the gravitational field of the black hole, then the
probability of creation of a particle with energy E measured at infinity is

(10.1.10)

The previous estimate (10.1.7) is consistent with this result provided one takes the
strengt.h of the field r to coincide with the surface gravity of the black hole, and
choose (3 = 2.

The Hawking effect, although similar to effects of particle creation in an electric
fields, nevertheless has a very important difference. Namely, since the states of neg
ative energy are located inside the black hole, only one of the created particles can
appear outside the hole and reach a distant observer. This means that as a result
of such a processes, an observer outside the black hole at late times has access to
only a part of the total quant.um system. As a consequence, the state of particles
outside the black hole is always described by a density matrix even if initially (before
the format.ion of the black hole) the state of the quantum system was pure. This
conclusion has far-reaching consequences, which we shall discuss in Chapter 15.

The particles of Hawking radiation are created uniformly in time, so that some
time after the black hole formation the flux of these particles is constant.. At this
late t.ime the gravitational field of the black hole is static or stationary.4 That is why
estimates based on the stationary field approach gave correct results.

There exists another approach to the problem of particle creation by a black
hole. Of course, it gives the same result, but in this approach the role of zero-point
fluctuations becomes more transparent [see, e.g., Gerlach (1976)].

Let. us consider the process of formation of a spherically-symmetric black hole
which is schematically shown in Figure 10.1. Before the formation of the black hole
the spacetime is practically flat. Let us assume that the initial state of the quantum
field is the vacuum in the standard Minkowski spacetime. In order to quantize the field
(sayan electromagnetic one), it is convenient to decompose it into modes, i.e., freely
propagating (normalized) waves. One can characterize a mode i by its frequency

4ln our consideration we neglect the change of the parameters of the black hole due to its quant.um
radiation. We discuss these effects later. Now note only that the corresponding time-scale for an
appreciable change of the black hole parameters is large when the mass of the black hole is much
greater than the Planck mass. For such black holes the parameters change so slowly that we can
neglect these effects in our considerations.



352 CHAPTER 10. QUANTUM PARTICLE CREATION BY BLACK HOLES

"0 ~N
'C ]0
J: :l
1;; eo

" .~
~ ~>

<>

~ ~

Figure 10.1: Propagation of zero-point fluctuations in a black hole spacetime.

Wi SO that the time-dependent amplitudes a;(t) of the mode decomposition obey the
oscillator-like equation

(10.1.11)

In the process of quantization the mode amplitudes a; become operators. One may
say t.hat each of the field modes behaves like a quantum oscillator. In the vacuum
state the average expectation value of the quantized field vanishes, but because of
the uncertainty relations, the averages of quantities quadratic in amplit.udes do not
vanish. In other words, there exist fluctuations of the quantized field near its zero
averaged value. These fluctuations are known as zero-point fluctuations. As a result
of these fluctuations, the vacuum energy is

1
E = ~ -nw,

L...t 2 "
i

(10.1.12)

where the summation is taken over all modes enumerated by index i, and Wi is the
frequency of the mode i. In the presence of real quanta this expression is modified to

(10.1.13)

where ni is the number of quanta in the state i. Since the number of different modes
is infinite, both of the expressions (10.1.12) and (10.1.13) are divergent. In order to
obtain a finite (observable) quantity, the cOlTesponding relations are renormalized by
subtracting the vacuum energy (10.1.12), i.e., imposing the condition that the energy
of the ground (vacuum) state in Minkowski spacetime vanishes.
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In the presence of a time-dependent external fields the frequencies Wi become
time-dependent, and an analogue of the effect of parametric excitation is possible.
This effect occurs if the Fourier transform of the time-dependent part of Wi( t) contains
frequencies close to the frequency Wi itself. Under this condition, the initial amplitude
of the oscillator can be substantially magnified. In quantum theory, this is interpreted
as particle creation. The particle creation is exponentially suppressed if the condition
of resonance is not satisfied.

Now we return to Figure 10.1 and apply these arguments to the problem of particle
creation by a black hole. Consider a wavepacket which originally has frequency wand
which propagates in the gravitational field of a collapsing body. We assume that it
passes through the collapsing body and crosses its boundary at the moment when the
boundary is close to the horizon (we denote this packet as an "up"-mode). Because
of the interaction with the gravitational field, the frequency of this mode after it
passes through the collapsing body is redshifted and becomes w' "" W exp( -K ulc),
where K is the surface gravity of the black hole, and u is the instant of retarded time
when the packet reaches a distant observer located in the black hole exterior. (For
simplicity, we assume that the quantum field is massless and its quanta propagate
with the velocity of light).

The gravitational field of the collapsing matter which forms the black hole is time
dependent. The characteristic time scale for the change of the field is cln.. It can
be shown that the modes with w' "" Klc obey the condition of parametric resonance,
and hence are amplified. Even if there were no real particles in this mode initially,
real particles would be present in the final state. For the particular mode chosen
the created particles appear at the instant of retarded time u = (cIK) In(wcIK). But
since in the initial Minkowski space there exist zero-point fluctuations of arbitrarily
high frequencies, the created particles are emitted by the black hole at arbitrarily late
moments of the retarded time u, so that a black hole is a permanent source of quan
tum radiation. The created particles have characteristic frequency Klc. For modes
with outgoing frequencies w' »Klc the resonance condition is not satisfied, and the
parametric excitation of these modes is exponentially suppressed. In particular, this
holds for all the modes of massive particles with m» ItKlc3

•

It is also possible to show that the flux of created particles is constant in time.
In fact, the number dN of zero-point modes with the initial frequency w falling in
during the interval dv of advanced time is of order dN "" w dv. The frequency and
the value of the retarded time u for the outgoing mode can be found from relations

w' ""wexp(-KujC), v"" (cjK)exp(-''i.ulc). (10.1.14)

Ifwe take into account that creation takes place when w' "" KjC, we can conclude that
the number of created particles during interval du of retarded time u is dN "" (KIc) duo
This means that the rate of creation of particles dNjdu "" KjC is constant in time.
The above consideration was for massless particles, but a similar conclusion remains
valid for massive particles also.
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The above arguments might be helpful but certainly they are not rigorous. In
the next section we describe rigorous calculations of particle production by black
holes and make precise the conclusions drawn above. We shall see that the general
picture presented here is qualitatively true, but it requires additional specifications.
In particular, we shall show that the single-oscillator picture considered here is over
simplified. In reality mode decomposition of the field equations in the spacetime of a
black hole allows one to reduce the problem to a system of three coupled oscillators.
If one neglects the scattering of modes by the gravitational field, this system reduces
to a system for two coupled oscillators. Basically, the main conclusion concerning
particle creation remains the same, with the only difference being that particles are
created in pairs so that the "up" -mode particle created in the black hole exterior is al
ways accompanied by the "dn"-mode particle, propagating inside the black hole (see
Figure 10.1). This is exactly the same picture as considered before, when we used the
static field approach. The remarkable fact is that both (static and time-dependent)
approaches for the black hole problem result in the same conclusions, while for other
physical systems these regimes possess quite different properties. This happens be
cause particle creation in black holes takes place in a region that is located close to
the event horizon, which is a null surface.

Although the discovery by Hawking (1974, 1975) of the effect of quantum evapora
tion of black holes was quite unexpected for specialists working in black hole physics,
at the time of the discovery there were already publications where the potential im
portance of quantum effects had been discussed.

In 1970 Markov and Frolov considered charged-particle creation by electrically
charged black holes. It was the first paper where the importance of quantum effects
in black hole physics was emphasized. It was demonstrated that quantum creation of
pairs of charged particles in the field of a charged black hole reduces its electric charge
practically to zero. If the potential on the black hole surface, Q/r.j-, is sufficiently
high for pair production (eQ/r+ > mc2 , where m is the electron mass, and e is its
charge), and the charge of the black hole exceeds Itc/e, the conditions under which
the uniform field approximation is valid are met; hence, Schwinger's relation (10.1.6)
can be used to estimate the rate of production of charged particles by the field of a
charged black hole.

A similar phenomenon of quantum production of particles [see Zel'dovich (1971,
1972, 1973), Starobinsky (1973), Misner (1972), Unruh (1974)J takes place in the
gravitational field of a rotating black hole. Recall that superradiance, discussed in
Section 7.1, is a purely classical phenomenon. This is evident from the fact that
the enhancement coefficient does not depend on Planck constant. Like any other
classical process, superradiance can be described in quantum terms. In these terms,
the phenomenon consists of an increase in the number of quanta in the reflected wave
as compared with that in the incident wave. Indeed, in classical terms, the energy of
a wave of a fixed frequency is proportional to the square of its amplitude; in quantum
terms, it is proportional to the number of quanta. Correspondingly, the enhanced
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amplitude of the wave of constant frequency signifies an increased number of quanta
of the field.

A quantum analogue can be found for the classical phenomenon of superradiance:
spontaneous creation of particles from the vacuum in t,he gravitational field of a
rotating black hole. The amplitude of those modes of zero-point fluctuations that
meet the enhancement (superradiance) condition grows continuously; this growth
manifests itself in the creation of real quanta of the field.

The effect of the production of quanta in the field of a rotating black hole can
be described in a somewhat different manner which brings out more clearly the role
of the ergosphere. For the creation of a real particle which is ejected from a black
hole without violating the law of energy conservation, it is necessary for the second
particle of the virtual pair to gain negative energy. This becomes possible if this
particle is in the ergosphere and possesses a certain value of angular momentum.

The work necessary for the transformation of a virtual particle into a real one is
done by the gravitational field of the black hole. The real particles in superradiant
modes leaving the black hole necessarily possess an angular momentum whose direc
tion coincides with that of the black hole. The result is a flux of particles outside
the rotating black hole which carries away its energy and angular momentum. The
characteristic frequency of this radiation is of order of the angular velocity o.R of the
black hole rotation, and the total energy and momentum fluxes are

_ dE ,...., Ii (o.H)2
dt '

(10.1.15)

(10.1.16)

The maximum angular velocity for a given mass M, o.R = c3 /2GM, is achieved
for J = GM 2

/ c, when the black hole is extremal. The rates of energy and angu
lar moment.um dissipation by a rotating black hole of mass M due to spontaneous
production of particles in its field do not exceed the following values:5

_ dE ,...., Ii~ ,...., 10-17 erg (M0)2
dt G2M2 s M '

dJ c
3

22 (M0 )- - ,...., Ii-- ,...., 10- erg - .
dt GM M

(10.1.17)

These estimates show that the effect is appreciable only for black holes of small mass
(much smaller than the solar mass). Note that the above formulas are valid for the
production of massless particles (photons, neutrinos, gravitons); massive particles are
born at much lower rates.

5Not.e t.hat. t.he relat.ions (l0.1.15)~(l0.1.1 i), based on dimensional analysis, give a rough est.imat.e
only. The propert.ies of t.he radiat.ion from rot.at.ing black holes are discussed in Sect.ions 10.4 and
10.5. Suffice it. t.o remark here t.hat. t.he int.ensit.y of t.his radiat.ion essentially depends on t.he particle
spin. The values of dE / dt and dJ/ dt for gravit.ons, for J = GM 2 / c, are less t.han those given by
(10.1.16)-(10.1.17) by an order of magnit.ude, and t.hose for neut.rinos, by t.hree orders of magnit.ude.
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If a black hole simultaneously possesses an electric charge Q and angular mo
mentum J, particle production results in a reduction of both angular momentum
and charge. If the energy of the new-born particle is E, angular momentum j, and
charge e, these parameters satisfy the inequality implied by condition (7.1.24) for
superradiant modes:

(10.1.18)

where o.H is the angular velocity and ~H is the electric potential of the black hole.
Because the energy, angular momentum, and charge carried away by the created

particles satis(y the same restriction (10.1.18) valid for the radiation parameters in
superradiance, it is readily verified that the black hole area does not decrease in
this process (see Section 7.1). This result shows that the irreducible mass of the
black hole does not decrease in such processes either. Particles are created at the
expense of the electrostatic energy or rotational energy stored in the black hole. This
distinguishes these processes from the Hawking effect in which the energy required
for the creation of particles reduces the (classical) "irreducible" mass. In the process
of Hawking radiation the surface area decreases. In reality these processes take
place simultaneously, and for a black hole having charge and angular momentum, the
processes that remove angular momentum and electric charge are accompanied by
the process that reduces the surface area of the black hole.

10.1.3 Black hole evaporation

In the Hawking effect one of the created particles (namely, the particle that has
negative energy) is created beneath the event horizon, while the other, with positive
energy is created outside the horizon. Hawking radiation carries away the energy,
and as a result the mass of the black hole decreases. This observation, based on
energy conservation, implies that there must be a flux of negative energy through
the horizon into the black hole. This can happen only if the quantum average of
the stress-energy tensor (Til-v) violates the weak energy condition. In our discussion
of the main results of classical black hole physics in the first part of the book, we
often assumed that the weak energy condition is satisfied. There were reasons to
believe in this while we were dealing with classical systems and classical processes.
Now, when we begin the consideration of the quantum aspects of black hole physics,
we might expect that some of the results proved earlier are not directly applicable.
The most important consequence is the violation of the Hawking area theorem in the
qnantum domain [Markov (1974)]. In the process of quantum particle creation the
mass (and hence the surface area) of a black hole decreases. This process is known
as the evaporation of a black hole.

A black hole radiates as a black body with temperature TH and surface area
A H = 41rr~. Hence, the rate of mass loss can be estimated as it ,...., a 1't All. Here
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(10.1.20)

a = 1r
2k4 /(60!i3

C
2

) is the Stefan-Boltzmann constant. This estimate gives

_ dM ,...., b (mPI )2 (mPI ) N, (10.1.19)
dt M tpi

where b = (30 X 83 x 1r)-1 ;:::: 2.59 X 10-6, and N is the number of states and species
of particles that are radiated. This expression reproduces qualitatively the result of
the exact calculations (10.5.32). By using this estimate, one can conclude that. the
"lifetime" of a black hole with respect to the process of quantum evaporation is6

1 ( M )3 -24 (M)3 -ItH ,...., 3b tpi mpi ,...., 2.37 x 10 sIgN .

As the mass of t.he black hole decreases in the process of evaporation, its temperature
as well as the number of species of particles that can be emitted grow. As a result
of both effects, the last stage of the evaporation looks like an explosion. At this
stage the mutual interaction of the created particles may become important. The
spectrum of the radiated particles and other details at this stage depend on the
concrete model used for the high energy physics. Whether a black hole evaporates
completely, or there remains a remnant of Planck mass is an open question which
requires knowledge of physics at Planck scales for its solution (for a more detailed
discussion of these questions, see Chapter 15).

10.1.4 Vacuum polarization

The result of the action of an external field on the vacuum goes beyond the effect of
particle production. In fact, even those virtual particles that do not gain sufficient
energy to become real, and hence again disappear, are nevertheless subject to the
action of the external field during their short lifetime, and thus move differently than
if there were no external field. As a result, the contribution of such virtual particles to
various local physical observables (e.g., to the mean value of the energy-momentum
tensor (TjJ.v)) depends on the strength and other characteristics of the external field.
In other words, the change in the vacuum expectation values of local observables in
an external field in comparison with the original values in the absence of the field
(this difference is what can be measured) is a function of the external field. This effect
of the dependence of quantum averages of local observables on the external field is
called vacuum polarization7 . This effect may also occur even in the case where for
some reason the external field does not create particles.

6Using (10.5.32), it is easy to show that it takes a time comparable with the time since the
Big Bang for a black hole of mass 5 x lOJ4 g to evaporate completely. We used this estimate in
Section 9.8.

7The expression vacuum polarization was first proposed in the quantum electrodynamics. An
electric field has different action on electrons and positrons. For this reason, the vacuum where
virtual electron-positron pairs are present behaves up to some extend as a usual polarizable medium.
It should be emphasized that, according to the equivalence principle, the gravitational field acts
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The distinction between real and virtual particles has a precise meaning in the
absence of an external field. However, it ceases to be unambiguous in a region of
spacetime where the external field is strong. This ambiguity leads to a difficulty in
defining a particle in strong gravitational fields [for a discussion of this problem, see,
e.g., Birrell and Davies (1982)]. As a result, it is not always possible to separate t.he
contributions of real and virtual particles to the mean values of local observables, or
to give a precise answer to the question about the exact place or exact moment of
time of creation of a particle. Uncertainties arising here are manifestatiolls of the
general ullcertainty relations inherent in quantum mechanics.

One of the manifestations of the vacuum polarization effect is a change in the
equations describing the mean expectation value (~) of a physical (not necessarily
gravitational) field ~ produced by an external source J. The field ~ of the source
J changes the state of virtual vacuum particles interacting with this field. The
resulting additional quantum polarization corrections in the equation for (~) take
into account the backreaction of the state of the virtual particles on the original field
~. The quantum process of creation and annihilation of virtual pairs being randonl,
the "instantaneous" value of the field ~ does not coincide with the mean expectation
value (~); the field undergoes quantum fluctuations. Hence, the description of the
field in terms of its mean expectation values has a limited range of applicability.
This (k.~(Tiption is acceptable in situatiOlis in which quantum fluctuations are small
in comparison with the mean expectation value of the field.

These general remarks on the possible manifestations of the quantum nature of
physical fields and particles are entirely relevant when quantum effects in black holes
are considered. In this case, the role of the external source producing the field is
played by the massive body whose collapse results in the formation of the black hole.

Let us make some order of magnitude estimates which should clarify the possible
role of vacuum polarization effects in black holes. It can be shown [DeWitt (1965)]
that after quantum effects have been taken into account, the average gravitational
field (g) is described by an equation arising from variation of the quantity

(10.1.21)

called the effective action. In the absence of quantum effects (for Ii = 0), the effective
action coincides with Einstein's action. An expansion of the type

£eff = R+ liLY) + ... (10.1.22)

identically on both particles of a virtual pair. For this reason, literally speaking, the effect of the
polarization is absent. Nevertheless, we follow the tradition and use the term "vacuum polarization"
to describe the change of the physical characteristics of the vacuum under the action of any (including
gravitational) field. It should be emphasized that the difference in the motion of particles of vacuum
pairs induced by the gravitational fields is connected with tidal forces which are determined by the
curvature of spacetime.
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can be used in the general case to analyze Ceff . Using arguments based on dimensional
analysis, one can expect that to the lowest approximation in n (in the so-called one
loop approximation) the quantum corrections to Ceff are of order l~11L\ where L is
the characteristic radius of curvature of spacetime. The first term in the expansion
beiug of order R ,...., 1IU, the qualltum polarization effects may substantially change
Einstein's equations when the curvature is comparable with the Pla.nck curvature
R pl .

In the case of the Schwarzschild metric, this condition is met for r ,...., rl =
lPI(rgllpdl/3, which is deep inside the event horizon provided the black hole mass
M is greater than the Planck mass. Hence, for M » mpl quantum effects appre
ciably change the mean field (g) in comparison with the classical solution only when
1" < rl. These effects are negligibly small outside the black hole.

If all terms ill the equations for the mean field (g), except the Einstein term
(corresponding to n= 0), are carried to the right-hand side, the resulting expression
on the right-hand side (whicb is nonzero only if n f. 0) can be interpreted as the
vacuum expectation value (T:) of the energy-momentum tensor of those physical
fields whose contributions are included in the effective action. This set of fields must
include the gravitational field itself. The characteristic values of the components
(T:) at the event horizon of a Schwarzschild black hole are of order nclr:. Note
that if M »mph (T:) affects the external geometry of the black hole only slightly.
Nevertheless, this small change can result in substantial qualitative challges in the
global properties of the solutions describing the black hole over sufficiently long times.
Thus, the negative energy density flux across the event horizon of an evaporating
black hole, which accompany the Hawking radiation, ultimately results in reducing
the event horizon to a Planck size (perhaps even to its complete disappearance). It is
readily verified that the expectation value (T:) for the energy flux across the event
horizon, accompanying the Hawking effect, is again of order nclr:.

These arguments show that as long as the mass of a black hole is much greater
than the Planck mass, and we are dealing with time intervals much shorter than the
characteristic time of black hole evaporation, the backreaction of the created matter
and vacuum polarization are negligible. The effects of quantum fluctuations are also
negligible under these conditions. In order to describe the black hole geometry, one
can use a solution of classical Einstein's equations as a zeroth-order approximation in
n. Tbe quantum corrections of first order in n can be obtained by making one-loop
calculations on a given classical background and solving the Einstein equation witb
(T1lV) as its right-hand side. One can use iterations to get a self-consistent solution
with quantum corrections.

10.1.5 Quantum fluctuations of the metric

The following simple arguments give a qualitative estimate of the contribution of
quantum fluctuation effects in black holes. Assume that a fluctuation of the metric
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occurs in a spacetime region of characteristic size [ so that the value of 9 deviates
from the expectation value (g) by og. The curvature in this region changes by a
quantity of order ogIW(g)), and the value of the action 8 for the gravitational field
correspondingly changes by

rs '" ifL [2 ~
() (g) G· (10.1.23)

The probability of such a quantum fluctuation is appreciable only if oS", h. There
fore, the following estimate is obtained for the value of the metric fluctuation bgl (g)
in a spacetime region of size l:

(10.1.24)

where [PI is the Planck length [Wheeler (1962), Harrison (1970)]. The metric fluctua
tions are thus generally insignificant on a large scale although their amplitude reaches
unity on the Planck scale. The mean-field approximation is definitely justified for the
description of black holes with a mass much greater than the Planck mass inrI. It
can be expected [York (1983)] that the quantum gravitational fluctuations outliued
above lead to an effect resembling quantum "trembling" of the event horizon. The
amplitude of "trembling" org of the gravitation radius has the following form for a
spherically symmetric black hole, as we find from (10.1.24):

(10.1.2.5 )

(10.1.26)

It is interesting to note that although this quantity is small for the black holes
we discuss here (those with M » mpl ), the very existence of this effect changes
qualitatively (as viewed by a distant observer) the idealized classical description of
the collapse and fall of a body into a black hole. The formally infinite expression

6..[ '" i R

dr
rg 1 - rg/r

for the duration of this process by the clock of a distant observer must now be replaced
with a finite quantity 6..t '" rgIn(rgllPI), as a result of the replacement 1"g ---+ I"g + org
in the lower limit of integration.

A similar estimate can be obtained if we take into account the quantum nature
of the motion of a particle falling into the black hole or if we try to evaluate the
accuracy with which the position of a falling body can be localized in the vicinity of
the event horizon using the method of scattering of the waves of a physical field on
this body. In the latter case, the restriction (10.1.25) arises because the size 81" of the
wavepacket, whose energy is less thau the black hole mass M, must be greater than
the quantity Or '" hiMc.
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10.2 Particle Creation by Black Holes

10.2.1 General theory

361

To prove the results mentioned in the preceding section in connection with the quan
tum production of particles in black holes, and to extract more detailed informatioll
about these quantum phenomena, we will need a sufficiently developed mathematical
apparatus of quantum field theory in curved spacetime.

Forlllally, the problem of particle creation in black holes is a particular case of the
more general problem of particle creation in an external field. The standard scheme
of constructing the theory is as follows. One chooses an external field in such a way
that the field in the distant past and in the distant future vanishes. The concepts
of particle and vacuum admit ullambiguous definitions in these in- and out-regions.
Thus, the lowest-energy state of the system is usually chosen as the vacuum. The
system undergoes evolution in the external field. If under the action of the external
field the state obtained as a result of the time evolution of the in-vacuum is not
identical to the out-vacuum state, then particles are created.. The operator relating
the in- and out-states is known as the S -matrix. This operator contains complete
information on the processes of particle creation, their scattering, and annihilation
in the external field.

The problem of particle creation in black holes has two very important aspects
which necessitate a modification of the standard scheme. First, it is impossible to
"switch off" in a natural manner the gravitational field of the new-born black hole
in the future, although the gravitational field in the past (before the collapse began)
can be considered weak in a physically realistic formulation of the problem of collapse
and all the states in the in-region can be determined. A decrease in the black hole
mass enhances the surface gravity, instead of reducing it, and hence enhances the
intensity of radiation. This is why the "switching off" of the gravitational field of a
black hole by formally reducing its mass does not yield the desired result.

The second point is more important. Namely, a distant observer can record the
state of only those particles that escape from the hole. The created particles that sink
into the black hole are "invisible" to this observer. When the results of observations
outside a black hole are described, one has to average over "invisible" particle states.
In other words, the observer outside the black hole invariably deals with only a part
of the total quantum system. In accordance with the general prillciples of quantum
mechanics,black hole radiation is described by a density matrix even if the initial state
(before the formation of the black hole) was quantum"mechanically pure. Note that
the necessary averaging involves just those states that correspond to the "particles"
not leaving the region of the strong field. It is for these particles that the very concept
of "particle" is poorly defined since the field of the black hole cannot be "switched
off". Fortunately, the result of averaging, describing the state of radiation of the
black hole, is independent of the arbitrariness in the definition of these "invisible"
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states.
To summarize, we remark that the problem of interest in this section, the calcu

lation of the characteristics of quantum radiation of a black hole, is naturally broken
into two stages: (i) calculation of the S-matrix operator, and (ii) averaging it over
the part of the out-states that correspond to "invisible" particles. III this sectioll we
calculate the S-matrix. The problem of density-matrix calculation for the black hole
radiatioll is left for the next section.

The general formalism of constructing the S-matrix for problems in an arbitrary
(not necessarily gravitational) external field is given ill Appendices 1-1.1-1-1.3. The
main steps are:

• Define in- and out-bases. To construct these bases one considers complex solu
tions of the field equations and splits them into parts that are of positive and
negative frequencies with respect to the chosen time parameter either in the
past (for the in-basis) or in the future (for the out-basis).

• Find the Bogoliubov coefficients, relating the in- and out-basis solutions. These
coefficients are defined by equation (H.26).

• Calculate the S-matrix. The explicit expression for the S-matrix in terms of
the Bogoliubov coefficients is given by equations (R34)-(H.35).

Now that the general formal scheme has been outlined, we turn to its adaptation
to the description of quantum effects in black holes. Special attention is focused on
massless fields. The case of massless fields is the most important because, on the
one hand, massless fields give the main contribution to the quantum radiation of
black holes, and on the other hand, this analysis serves as a good approximation in
describing the creation of massive particles in the case when the Hawking temperature
of the black hole is much higher than the mass of these particles so that the ultra
relativistic approximation is valid for their description. The effect of the mass of the
field will be discussed later.

10.2.2 Modes and bases

Model

For the sake of simplicity, we begin the analysis with the theory of a massless neutral
scalar field <p in the spacetime of an uncharged non-rotating black hole. We will later
return to discussing the effects of black hole charge and rotation as well as the effects
of spin, mass, and charge of the particles on the process of their creation.

To make our considerations more concrete and simple, we first consider a model
in which the collapsing body is represented by a massive thin shell collapsing with
the velocity of light. The metric of such a spacetime can be written in the form

ds 2 = _ (1 _2~(V)) dv2 +2dvdr +r 2 dw 2
,
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"=0

Figure 10.2: Penrose-Carter conformal diagram for the spacetime of an uncharged non
rotating black hole created by the spherically-symmetric collapse of a massive thin null
shell.

where dw 2 is the metric on the unit sphere, and M(v) = MiJ(v - vo). Inside the
collapsing shell (for v < vo) the spacetime is flat, while outside (for v > vo) the
spacet.iine geometry is described by the Schwarzschild metric, M being the mass of
the resulting black hole (see Figure 10.2).

Consider now a radial null ray that reaches .:J+ at a moment u of retarded time
(ray 1 in Figure 10.2). Let us trace this ray back in time and denote by v = U(u) the
moment of advanced time when the ray began its propagation from .:J-. We choose
the origin of the v coordinate so that the radial null ray sent from .:J- at v = 0
reaches l' = 0 at the moment of event horizon formation. A simple consideration
shows that for this choice the parameter Vo = 4M.

The equation of the outgoing null ray in the region outside the collapsing shell
(in the Schwarzschild region) is

u = v - 21'. = const , (10.2.2)

where r. = r - 2M +2M In[(r - 2M)/2M] is the tortoise coordinate. The ray crosses
the collapsing shell v = 4M at the radius r = R, where R is defined by the equation

11 = 8M - 2R - 4M In[(R - 2M)/2M]. (10.2 ..3)



364 CHAPTER 10. QUANTUM PARTICLE CREATION BY BLACK HOLES

Null rays that reach .:J+ at late time (u -+ 00) cross the collapsing shell at a radius
close to 2M, so that for these late-time rays we have

u ~ -4M In[(R - 2M)/2M]. (10.2.4)

Let us consider now an incoming radial null ray that was emitted from J- at a
moment v < O. It propagates in a flat spacetime until it crosses the collapsing shell
from inside. For this ray v = t + T = const so that it reaches T = 0 at the moment of
time t = v. After passing through the origin T = 0, it continues its propagation as an
outgoing ray, and its equation (until it reaches the shell) is u:o:: t - T = V = canst.
The ray crosses the shell at a radius R given by the relation

v=-2(R-2M).

Comparing (10.2.4) and (10.2.5), we get the following expression

U~-K-lln(-I\;v)

(10.2.5)

(10.2.6)

relating the moment v when a late-time ray left .:J- and the moment u when it
reaches .:J+. Here I\; = (4Mt 1 is the surface gravity of the black hole.

Modes

A massless scalar field <p obeys the wave equation

O<p = o. (10.2.7)

In a spherically symmetric spacetime we can write its solutions, using a decomposition
into modes

_ Ui(t, T) y. (0 A..)
<Pim - im ,'I',

T
(10.2.8)

where Ylm(O, 4» are standard spherical harmonics obeying the normalization condi
tions

(10.2.9)

If we write the metric of a spherically symmetric spacetime in the form (A, B =

0,1)

then Uim obeys the equation

eo -Hit) Ui = 0,

(10.2.10)

(10.2.11)
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where 20 =(-1 )-1/2 8A [( -1 )1/2,),AB 8B ] is the two-dimensional liD" operator for the
metric 1.4B, and

f(f + 1) 201"
Wi =--2-+-'

l' r

For the metric (10.2.1)

201' 2M
- = - iJ(v - vo) .

r 1'3

(10.2.12)

(10.2.13)

In the Schwarzschild region (i.e., for v > vo) equation (10.2.11) is identical to
equation (4.2.4). In this region we can write Ui in the formuiw = exp( -iwt) ui(r,w),
where ue(r, w) is a solution to equation (4.2.7)

(
2M)Vt(r)= 1-~ Wi'

(10.2.14)

(10.2.15)

Our aim now is to define useful sets of solut.ions (modes) that will allow us to
introduce convenient in- and out-bases for a quantum field <p. Let us consider, at first,
special solutions, which we denote <p~::.tw(x) = u~;t(t, r) Ytm((J, 4». These solutions are
singled out by the property that they vanish on H+ and have the following asymptotic
behavior near .:J+

out 1 out+ 1 e-iwu

<Pimw"" -<Pimw = J4 --Ytm((},4».
r 1rW l'

(10.2.16)

(10.2.17)

We call <P~;;:':; the image on .:J+ of the field <P~::.tw'

Denote by

< <pI, <p2 > = i hciaI' (01 <P~I' - Il0,11')

the inner product for a pair <pI, <p2 of solutions to equation (10.2.7). Here dal' is a
future-directed vector of the surface element of E. The inner product (10.2.17) does
not depend on the particular choice of the Cauchy surface E. For massless fields in a
spacetime of a black hole, this surface can be moved to the future so that it coincides
with .:J+ U H+

< , > = < , >H+ + < , >.:r+ .

If <1>1+ and <p2+ are images of <pI and <p2 on .:J+, then

< <pl, <p2 >.:r+ = i r (~1+ 8u<P2+ - <p2+ 8u~l+) du df2,
J.:r+

(10.2.18)

(10.2.19)
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where drl = sin ede d</>.
Using relations (10.2.16), (10.2.18), and (10.2.19), one can show that the following

normalization conditions are valid for <pout

(10.2.20)

Here, and hereafter, we use the notation J= {e,m,w}, J' = {£',m',w'}, and

bJJI == b(w - w') btl, omm' • (10.2.21)

(10.2.22)

In what follows, it is convenient to consider as the basis functions not <Pwlm but
wavepacket-type solutions constructed of <Pwlm [Hawking (1975)]. To achieve this, we
fix a real number b (0 < b « 1), define f =b/'i. (/'i. is tile surface gravity of the black
hole), and introduce the notation

j
U+!lf

<Pjnlm = f- I / 2 e21finw/f <Pwlm dw.
;f

In this relation j is a non-negative integer and n is an integer. Hereafter we denote
the collective index {jnem} by a single letter a.8 The wavepackets <p~ut have fre
quencies in the interval from jf to (j + lk Their images on .J+ reach a maximum
close to the moment u = 27rn/ f of retarded time; the packet width is .6.u '" 27r / f.

The wavepackets constructed from <p~ut solutions obey the following normalization
conditions

(10.2.23)

where

(10.2.24)

We introduce aliother set of solutions <p1 that are specified by their initial values
(images) on .:J-

lim
r-+oo

v,fJ,q,=COflllt

(10.2.25)

(10.2.26)

(The image ~J of the solution on .:J- is defined in a similar way to the image on .:J+
with the obvious change of u to v.) Namely, we put

~1-(v,e,</»= e~Ytm(e,</».
v41rw

We denote by <p~ the wavepackets constructed from <p~ according to (10.2.22).

8 When there is a summation over the collective indices such as Q or J, we always indicate
it explicitly. Hence, the Einstein rule of an implicit summation over the repeated indices is not
extended to this case.
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(10.2.27)

Let us focus our attention on late-time wavepackets <p~; that is, wavepackets with
n ?: N » 1. Such a wavepacket originated from .:J- at v > °and at all times is
propagating in a static Schwarzschild geometry. It reaches the peak of the potential
barrier, located at r ~ 3M. Part Ro. of this wavepacket is scattered to .:J+, and the
other part To. penetrates through the barrier and crosses the horizon. The part that
is scattered has the image Ro.<I>~ut+ on .:J+. When the other part that passes through
the potential barrier reaches the horizon, it is of the form To. <p~ownIH+' Here <p~own

are wavepackets constructed from so-called DOWN-modes <p1own , which are specified
by the conditions that they vanish on .:J+ and have the following form at the horizon
H+:

1 -iwt'

<p1o
wn (v, 0, 4» = ~ _e- Ytm(O, 4».

y41l"w r+

The inner product for two solutions <pI and <p2 that vanish on .:J+ can be expressed
in terms of integrals over the event horizon H+. The three-surface element d'L), of the
future event horizon H+, with normal vector in the inward radial direction written
in Eddington-Finkelstein coordinates (v, r, 0, 4» reads

da/1 = l'1£ r~ dv dn, (10.2.28)

(10.2.29)

where v is an advanced time; l'1£ = (1,0,0,0), and dn = sin OdOd4>. Thus, we have

< <pI, <p2 >H+ = ir~ r (<pk+ ov<P't-+ - <p~{+ ov<pk+) dv dn .
111+

It can be verified that the functions {<p~own, <p~own} satisfy the following normaliza
tion conditions:

(10.2.30)

The thus defined late-time IN-, OUT-, and DOWN-modes are related by9

This is a direct analogue of the relations

<p1 =RJ <p0./ + TJ <p~own

(10.2.31)

(10.2.32)

which are valid in the spacetime of an eternal black hole (cf. Section 4.2.2). Equation
(10.2.32) yields (10.2.31) if the parameter E in the wavepacket definition (10.2.22) is
chosen sufficiently small, so that the reflection a.mplitude R J and a.bsorption amplitude
T J remain practically constant in the frequency intervals of width E. Under this
condition, we also have [cf. (4.2.13)1

(10.2.33)

9Note that there is no summation over repeated index Q (see a footnote at page 366.)
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We would like to stress that globally the geometry of an eternal black hole differs
from the geometry of a black hole that is formed as the result of a collapse. That is
why the global behavior of modes <PJ in these spaces is also different. Nevertheless,
for late-time wavepackets the relation (10.2.31) is valid for both spaces.

We define now a new set of modes <p~P by requiring that they are orthogonal to
I.,in
-"-0'

< I.,UP I.,in, > = 0
Yo '''''''0 '

admit the decomposition

and are normalized by the condition
up up _ s:

< <Po, <P0' > - u00' •

These conditions imply that the following relations hold:

1r o 1
2 + 1 to 1

2 = 1, to flo +r o t;. = O.

As the consequence of the relations (10.2 ..33) and (10.2.37), one has

(10.2.34)

(10.2.3.5)

(10.2.36)

(10.2.37)

(10.2.38)

Let us trace back in time a wavepacket <p~P until it crosses the massive null shell
and reaches .:J-. The relation (10.2.6) shows that the late-time wavepacket that began
from .:J- is blueshifted by the factor ~ exp(Ku) with respect to the wavepacket which
arrives at .:J+ at the moment u. Under these conditions, one can use the geometrica.l
optics a.pp1'Oxima.tion [Hawking (1975)] to describe the evolution into the past of <p~P

in the region inside the null shell. This allows one to show that the image q,~p- at
.:J- is a wavepacket (10.2.22) constructed from the following expression

,l>up- = _1_ eiw1n(-Itv)/It v (() A.) fJ(-v) (10239)
'¥wlm V41l"W I lm , 'I' . . .

We include the Heaviside step function fJ( -v) to stress that q,up- vanishes for v >
O. The wavepacket <p~P emitted from .:J- crosses the shell and passes through the
potential barrier from inside. The relation (10.2.35) shows that it is partly scattered
by the barrier, so that a portion r0 <p~own of it enters the horizon. The other part
to <p~ut penetrates the barrier and reaches .:J+ (see Figure 10.2).

The final set of modes that we need is denoted by <p~n. Thei r images on .:J-,
q,~n-, are constructed by means of the transformation (10.2.22) from the following
functions:

q.dn-( () A.) = ~UP-(_v () A.) __1_e-iwln(ltv)/It'F ((}A.)fJ(v)
w(m V, ,VJ wfm "tj/ - V41l"w ' em ,VJ • ( 10.2.40)

We shall use the introduced set of modes <p~, <p~ut, <p~own, <p~P, and <p~u for the
construction of simple and convenient in- and out-bases.
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Late-time in- and out-bases

Let us denote by <p~ and <p~ the linear combinations of <p~P and <p~n modes,

369

(10.2.41)

(10.2.42)

where Wo = exp[-1rwjIK]. The modes <p~ and <p~ have images on J- that are of
positive frequency with respect to the advanced time v. To prove this statement, it
is sufficient to note that the functions <p~ and <p~ are obtained by applying transfor
mation (10.2.22) to solutions that manifest the following dependence on von J-:

(10.2.43)

In this formula q =wlK for D-modes and q = -wiK for P-modes. The fact that
Fwlm(v) for -00 < w < 00 contains only positive frequencies with respect to the
advanced time v follows fi'om the Lemma proved in Appendix H.4.2

We choose as in-basis the following positive-frequency solutions

(10.2.44)

with Q = {j, n, f, m} and n ? N, and augment them to a complete orthonormalized
basis with an arbitrary set of positive-frequency functions defined on J-. Likewise,
we form the out-basis by augmenting the set of functions

(10.2.45)

to a complete orthonormalized system. Similar bases were introduced by Wald (1975).
In what follows we refer to (10.2.44) and (10.2.45) as Wald's bases.

We would like to emphasize that the modes CP~ are of positive frequency with
respect to advanced time v on J-. As we shall see, in the corresponding vacuum
state there are no particles incoming onto a black hole from infinity (from J-). As
for the definition of cp~ut, the modes <p~ut are of positive frequency with respect to
the retarded time u on J+. In the corresponding out-vacuum there are no particles
outgoing to infinity. Both types of particles (incoming from J- and outgoing to J+)
are well-defined since the gravitational field in the asymptotic regions is weak. A
particle interpretation for the modes <p~own and <p~n (which vanish on J+) is not so
straightforward.

In the general case, the matrices of Bogoliubov coefficients relating in- and out
bases are infinite-dimensional. For Wald's bases, the matrices of Bogoliubov coeffi
cients factorize, so that the problem basically becomes three-dimensional. The price
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Figure 10.3: Penrose-Carter conformal diagram for the spacetime of the eternal version of
a black hole shown in Figure 10.2.

for this is that there is no clear physical interpretation of the vacuum and particle
states on H+ which correspond to the modes <p~own and <p~n. But, fortunatply, for the
problem under consideration, where we are interested in the description of observ
abies only in the black hole exterior, the specific choice of these modes is irrelevant.
We shall demonstrate this later (see Section 10.3).

Modes and bases in the eternal version of a black hole

We are now ready to discuss the Bogoliubov transformations, but before this we
shall make some remarks concerning the possibility of further simplification of the
problem. In the problem we are considering, where a black holetts formed as a result
of gravitational collapse, the gravitational field is time-dependent. Moreover, there
exist two physically different regions: one inside the collapsing matter, and the other
outside it. At late times the geometry is static and is described by the Schwarzschild
metric. We may consider a new spacetime; that is, the eternal Schwarzschild black
hole, which has the same mass Mas the original black hole. We call this geometry
the eternal version of a black hole. Figure 10.3 shows the Penrose-Carter conformal
diagram of the eternal version of the black hole presented in Figure 10.2. Since the
late-time regions of both spaces are isometric, one can identify IN-, UP-, OUT-, and
DOWN-modes, propagating in these regions. These modes can be continued in the
spacetime of the eternal version of the black hole beyond the late-time region, as
solutions of the field equations.

The so-defined solutions tp~, <p~P, <p~ut, and <p~own in the spacetime of the eternal
version of a black hole are precisely the wavepackets constructed for IN-, UP-, OUT-,
and DOWN-modes, that we discussed in Section 4.2. We know that any two of these
set of modes are sufficient to construct a complete basis in the black hole exterior. For
the construction ofWald's bases for the eternal black hole we need an additional set of
modes, which we denoted by tp~n. For this purpose, consider a discrete isometry that
maps the black hole exterior I onto the region 1'. In Kruskal coordinates (U, V,(},<!»
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this transformation is given by relations U ~ -U, V ~ - V. The solutions <p1n are
defined as lO

(10.2.46)

The coordinates V and U are the affine parameter coordinates on the future H+
and past H- horizons, respectively. The Kruskal coordinates V and U are related to
the ingoing (v) and outgoing (u) Eddington-Finkelstein coordinates by

v = _1\;-1 In I\;V, u = -I\;-Iln(-I\; U). (10.2.47)

The relation between u and U is identical to (10.2.6). This is why the modes <pd and
<pP constructed from <pup and <pdn in the spacetime of the eternal version of the black
hole by rules (10.2.41)-(10.2.42) are of positive frequency with respect to the affine
parameter U on H-.

One can introduce in- and out-bases in the eternal version of the black hole by
defining them in accordance with Eqs.(10.2.44) and (10.2.45). It is evident that
the relations between in- and out-bases at late times in both of the spaces (the
original black hole and its eternal version) are identical. In other words, all the
results concerning quantum particle creation by a black hole at late times can be
obtained by making calculations for the eternal version of the black hole. In the latter
case, the spacetime metric is much simpler analytically, so that the calculations are
simplified. It should also be noted that the standard positive frequency definition for
incoming waves in the original spacetime with black hole formation corresponds to
a special prescription in the spacetime of the eternal version. Namely, the solutions
corresponding to the in-basis are of positive frequency with respect to the advanced
time v on J-' and of positive frequency with respect to the affine parameter U on H-.
The vacuum state in the spacetime of the eternal version of the black hole defined by
using such a definition of positive frequencies is known as the Unruh vacuum. The
above consideration implies that for calculations in the late-time regime the Unruh
vacuum in the eternal version of the black hole is equivalent to the choice of the
standard Minkowski vacuum as the initial state in the past in the spacetime with
black hole formation.

To define in- and out-bases we used a simple model of black hole formation. But
more detailed analysis shows that the results obtained are model independent pro
vided we are interested only in the late-time observables. The basic formula (10.2.6)

10 In order to construct a complete basis in the spacetime of the eternal black hole besides the
modes defined in the black hole exterior (in the right wedge of the diagram 10.3), one must also
introduce modes defined in the left wedge. It is covenient to do it by doubling the external modes
by using relations similar to (10.2.46), that is, by the mirror-like reflection of external modes with
respect to the origin (U = V = 0). The notation "dn" which is the mirror-like image of "up" serves
to remind of this procedure. We use the same convention for other set of modes. For example, modes
which are dual to "down"-, "out"-, "in"-, "n"-, and <lp"_modes are denoted as "umop" I ('fno", ('ui",
"u" , and "d", respectively.



372 CHAPTER 10. QUANTUM PARTICLE CREATION BY BLACK HOLES

for late-time radial null rays evidently remains valid if one considers instead of the
shell an arbitrary spherically symmetric distribution of collapsing matter. Moreover,
olle can generalize the above consideration to the case of a rotating charged black
hole [Hawking (1975)]. In particular, one has again identical expressions for quantum
observables at late-time both in the physical spacetime and in the spacetime of the
eternal versioll of a black hole.

10.2.3 Bogoliubov transformations and S-matrix

BogoIiubov transformations

One can use the modes (10.2.44) and (10.2.45) to decompose the quantum field
operator <p (see Appendix H.3)

<p = L' [ain,a cp~ + a:n,a~:] + ...
a

,",,' [, .T,.out ,t .i..out]L aout,a "'l"a + aout,a "'l"a +.. , .
a

(10.2.48)

W d t b ' - (' , , ) d' t - (' t ' t ' t ) th t fe eno e Y ain,a - ain,a, ad,a, ap,a an ain,a - ain,a' ad,a' ap,a e se s 0 opera-
tors corresponding to annihilation and creation of in-particles in modes IN, D, and
P, respectively. We use matrix notation so that, e.g.,

Because of the imposed normalization conditions the operators of annihilation
and creation {aA,a, ata} obey the standard commutation relations (H.15)

(10.2.49)

Similar notations are used for out-particles. The symbol L' in (10.2.48) indicates
that the summation is performed over the late-time modes, while the remaining terms,
which depend on the details of the black hole formation, are denoted by dots. The
states of in- and out-vacua are defined as

ain,aIO;in) = 0, aaul"aIO;out) = o. (10.2.50)

We do not specify early-time modes. Strictly speaking, in- and out-vacua depend on
their choice, but in what follows we consider only those physical quantities (slIch as
the flux of created particles at late times) which do not depend on the specification
of early-time modes.

The important property of Wald's bases is that the Bogoliubov transformation
matrices for late times factorize. The transformation (3 x 3)-matrices Aa and B a
which relate the sets of in-basis modes CP: and out-basis modes cP~ut

cpin = A+ cpout. _ B' ~out
0' () () () () , (10.2.51)
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are easily determined from relations (10.2.32), (10.2.35), and (10.2.41); they are
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(
ROd)

A = t 0 c1' ,
o c 0

(10.2.52)

(10.2.53)

(We use notations (...)+ and (... )' for hermitian conjugation and transposition of
matrices, respectively. In relations (10.2.52) we omit the indices Q for simplicity.)

Using Wald's bases thus yields an explicit expression for the Bogoliubov transfor
mation coefficients which determine the relation between in- and out-basis functions
at large values of n 2: N.

S-matrix

The following expression for the S-matrix operator can be obtained using the general
formulas (H.34) and (H.35)

5= (IJ'5a ) x 5., 50 = eiIV2Nont [exP(Fu )],

where

Fa = ~ aont c' Aaa' t + a t
nt (M a - I) a' t + ~ at t v., a+ t (10.2.54)'2 1 .. OU ,() 0 1() ou ~a 2 ou ,() ..... ou l() ,

A -I'M a = a ,

/8/ = 1. (10.2.55)

In these relations t is a hermitian conjugation of operators, 0 is complex conjugation,
and 0' is transposition of matrices (see Appendix H). We use compressed matrix
notations. For example, in these notations

(

vont,out

_ At· t • t :fown,ont
- (aont,a, adown,a' adn,a) Va

vdn,ont
. a

Vout,down

'"Vdown,down
a
Vdn,down

a

vont,dn ) (at )0. out,Q
Vdown,dn at.

0: down,o.
vdn,dn At

() , adn,et

The expression (10.2.53) implies that the S-matrix for late-time states is also
factorized. We denoted by S. the part of the S-matrix which depends on details of
the black hole formation, and is unimportant for us. We recall the reader that the
S-matrix in (10.2.53) is expressed in terms of out-operators, and Nont [...J stands for
the operation of normal ordering with respect to out-operators. This means that after
expansion of the exponent into a series one must move all the creation operators to
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the left of the annihilation operators. In the process of reordering, the operators a1ut,0
and ciaut,o inside Nout [...Jare to be considered as commuting with one another. 11

For completeness we present here also the explicit expressions for the matrices V,
M, and A:

( ° ° st/e)
V 0::: ° ° sr/e ,

st/e sr/e ° (
R °

Mo::: T °° l/e

t/e)
r/e ,

°
~ -~o/e ) .-s/e

(10.2.56)

In these relations So and Co are defined by (10.2.42), and to (To) and 1'0 (Ra) are
absorption and reflection coefficients, respectively.

Tire S-matrix contains complete information concerning the quantum creation,
annihilation, and scattering of particles by the black hole. The factorization property
allows one to deal with each of the set 0' of late-time modes independently. From a
mathematical point of view, this corresponds to the situation where the total Hilbert
space of states of the system is the direct product of Fock spaces enumerated by 0'.

In each of these Fock spaces we call define the a-vacuum /00) as the state without
a-particles; that is, the state which is annihilated by ao. In order to distinguish the
quantities and objects corresponding to in- and out-bases, we include (as before) the
corresponding indices in the notations.

The factorization property of the S-matrix implies

/0 .' ) - S' /0' t) - iw2 [1
,t V· + J/0' t)0, III - 0 o,ou - e exp "2 aout,o 0 aout,o 0, ou . (10.2.57)

This result directly follows from Eqs.(1O.2.53)-(lO.2.54). The terms containing A and
M do not enter the expression in the right-hand side of (10.2.57). This happens be
cause such terms necessarily contain at least one annihilation operator which (due to
normal ordering) acts directly on the vacuum /00;out) . Relation (10.2.57) explicitly
demonstrates that out-particles are created from the initial vacuum state. Moreover,
the particles are always created in pairs, the creation of a particle in an OUT-mode
being always accompanied by the creation of a particle in a D N-mode. The latter
always propagates inside the black hole. For the chosen Wald's bases, the effect of
particle creation can be described as the quantum analogue of parametric excitation
for a system of three coupled oscillators. A similar formula which expresses /00; out)
in terms of a superposition of in-particles can also be easily obtained.

11 Quite often the normal ordering operation is denoted as: :. We use the notation Nout [...] to
make explicit that the normal ordering is performed with respect to out-operators of creation and
annihilation. Later we shall use also normal ordering with respect to in-operators, which we denote
Nin[.. ·].
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In quantum optics the state of a system of coupled oscillators which is connected
to the vacuum by a relation similar to (10.2.57) is known as a squeezed state, So
being the squeezing operator [see, e.g., Perina, Hradil, and Jurco (1994)]. By using
this terminology, one can say that as a result of particle production the black hole
squeezes the initial vacuum state [Grishchuk and Sidorov (1990)].

Rate of particle creation by black holes

In the following sections we shall describe powerful tools which allow one to obtain
explicit expressions for different characteristics of black hole radiation. Now, in order
to give a simple example, we derive the rate of particle creation.

Substituting (10.2.51) into the first line of (10.2.48) and comparing the obtained
result with the second line of (10.2.48), one gets

aont,o

at
ont.,o

(10.2.58)

(10.2.59)

The average number n~ut of particles created in the mode <p~ut is

(10.2.60)

(10.2.61)

In the latter expression, it is assumed that one first multiplies the matrices Band
B+ and then takes the (out, outl-component of the product. Simple calculations show
that n~ut can be written in the form [Hawking (1975)]

nOu!' = 1to 1
2

" exp(21f wo / t;;) - 1

Here K is the surface gravity of the black hole. It is easy to see that n~ut has a
form similar to the expression for the thermal emission of photons by a black body
of temperature () = K/(27r). The additional factor in the numerator reflects the fact
that only a fraction of the emitted particles equal to 1to 1

2 reaches infinity, while the
other particles are reflected back by the gravitational and centrifugal potential.

10.2.4 Rotating black holes and higher spins

So far we have considered a quantum scalar massless field in the gravitational field of
a non-rotating black hole. The quantization scheme can be easily generalized to the
case of a rotating black hole and massless fields of higher spins. The most important
cases are electromagnetic waves (s = 1) and gravitational perturbations (s = 2). The
mode expansion of the solutions for waves of these fields propagating in the Kerr
metric can be found in Appendix G, while the formal scheme of quantization is given
in Appendix H.4. We shall not reproduce here the details which can be found in
these appendices, but only describe the main steps.
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The quantization scheme for higher spins in many aspects repeats the scheme
for the scalar field. The easiest way to construct the bases for the electromagnetic
field and for gravitational perturbations is to begin directly with the spacetime of
the eternal version of the Kerr black hole. The complete set of modes in the black
hole exterior is {a~, a~ }lmwP for the electromagnetic field and {h~v, h~v}(mwP for
gravitational perturbations. Here A is either {in, up} or {out, down}, and P = ±1
is an additional parameter corresponding to the two linearly independent physical
polarization states of electromagnetic and gravitational waves.

When the concrete choice of the field is not important, we use the notation 'P A =
'PA(X) for the field, and 'P~ = 'P1(J; x) for its modes, assuming that the collective
index J is {C,m,w,P}. The modes 'P~ contain the factor exp(-iwt). The explicit
form of these solutions is given in Appendix G.

Modes 'PT as before are solutions that vanish on H- and have image12 ~ e-iwv+imJ
on J-, where (v, r, 0, ¢) are the Kerr ingoing coordinates (see Appendix D.7). The
IN-modes are normalized as < 'P1', 'P1', > = oJJ' provided w > O. The OUT-modes
are defined similarly with the obvious change of past null infinity and horizon to the
future ones.

One defines 'P~P as solutions that vanish on J- and have the following behavior on
H-: 'P~PIH- '" e-i","+imJH. Here (11,0, ¢H) are coordinates on the past horizon H
chosen so that 0, ¢H = const on the generator, and u is the Killing time parameter
along the generator. We also define w = w - m QH, where QH is the angular velocity
of the black hole. The UP-modes are normalized as < 'P~P, 'P~f > = oJJ' provided
w > O. The DOWN-modes are defined similarly with the obvious change of past
null infinity and horizon to the future ones. The so-introduced IN-, UP-, OUT-, and
DOIVN-modes are identical to the modes we discussed in Section 4.2.

The main problem in the case of a rotating black hole is connected with super
radiant modes for which w w < O. For example, consider equation (10.2.32) with
0< w < m QH' Both of the modes IN and OUT with w > 0 considered on H+ have
negative frequency w, while DOWN-modes are defined only for positive w. One can
not simply change 'P~own to 0~own since the latter function has a wrong dependence on
v and ¢H' The trick that does work is to use for the superradiant modes in (10.2.32)
not 'P~own but 0~own. Here and later j denotes the collective index {C, -m, -w, Pl.
To make our formulas valid for both superradiant and non-superradiant cases simul
taneously, we intrbduce the notation

{
~j.<P~ == _
"Pj

if ww > 0 ,

if ww < 0
(10.2.62)

Here the symbol. stands for any index specifying the type of modes. Using this

12 We focus our attention on the dependence of solutions on time t and angular r/J cooroinates since
only this dependence is important for us at the moment.
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notation, the relations (10.2.32) and (10.2.35) for the Kerr geometry take the form

(1O.2.63)

(10.2.64)

To define DN-modes, one writes the Kerr metric in the Kruskal-like coordinates
(U, F, 0, <P+) [see (D.73)]. The Kerr metric in these coordinates, (D.74), is invariant
under the isometry transformation: U -t -U, V -t -v. This transformation maps
the region [ onto [' (see Figure 6.4). We define ip1n by means of relation (H.54).
Finally, we define

ip~ :=: CJ ip~n + SJ 43? ,

ipj :=: CJ ip~p + SJ 43~n ,

where

(10.2.65)

(10.2.66)

(10.2.67)

Each of the modes UP, DN, D, and P that enter relations (10.2.65) and (10.2.66) are
defined for !V > O. By using the Lemma proved in Appendix H.4.2, one can show that
the D- and P-modes are of positive frequency with respect to the affine parameter U
on H-.

Equations (10.2.64)-(10.2.66) allow one to write

-d t- -out + - ':odown + -dn
ipJ:=: SJ JipJ sJrJipJ CJipJ '

-p tout + -down + ':odn
ipJ:=: CJ JipJ cJrJipJ SJipJ .

(10.2.68)

(10.2.69)

(10.2.70)

All the above relations can be rewritten in the "wavepacket-like" form. One can
simply substitute J -t Q provided the parameter ( that enters definition (10.2.22) of
thesewavepackets is chosen small enough so that the coefficients RJ , TJ , CJ, and SJ

are practically constant in the frequency interval (w, w + f).
For non-superradiant modes we use the sets (10.2.44) and (10.2.45) as in- and out

bases. For superradiant modes the definition is slightly different. Namely, for D-, P-,
DOWN-, and DN-modes instead of ipo one uses ipii; that is, wavepackets constructed
from ip j. For this definition of in- and out-bases we again' have factorization. The
field operator if; can be written as

tj> :=: L [ain,J cI>1 + atn,J cI>)n] :=: L [aout,J cI>~ut + a!ut,J cI>/ut] .
J J

where {ain,J, atn,J} ({8.aut,J, a!ut,J}) are operators of annihilation and creation of in
(out-) particles. The in-vacuum defined by relations

ain,J 10; in) :=: 0 (10.2.71)
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is called the Unruh vacuum state.
The Bogoliubov matrices A and B for non-superradiant modes coincide with

(10.2.52), while for superradiant modes (0- == sign(ww) < 0) they have a slightly
different form (see Frolov (1986) and Appendix H.5)

(

0 0 -et)
BU<o = -T -SI' 0 .

o 0 -s
(10.2.72)

The S-matrix is given by expressions (10.2.53)-( 10.2.55), where for non-superradial
modes matrices V, M, and A are given by (10.2.56), while for superradiant Illodes
they are [ef. (H.9!), Frolov (1986)]

(0 0 t/(er))AU<o = o 0 -sic ,
tl(cr) -sic 0

(':'
tlr +) ),Vu<o = 0 (10.2.73)

sl(cr)

( IIII 0 +)),MU<o= o 0
-stl(cR) 11c

To summarize, we have an expression for the S-matrix that is valid for the Kerr
geometry and massless fields of spin s=O, 1,2. The generalization to the charged case is
straightforward. Similar expressions can be obtained for massless fermions [neutrino
(s = 1/2), gravitino (s = 3/2)] [Bolashenko and Frolov (1989)].

10.3 Density Matrix and Generating Functional

10.3.1 Density matrix

The next step is the calculation of the density matrix that describes black hole radia
tion. Suppose we are interested in expectation values of the type (F) = (0; iniFIO; in) ,

where F = F (a~ut,O< ,aout,o<) is an operator depending only on the operators of cre

ation and annihilation of the OUT-particles in late-time modes Cl'. These quantities
describe observables registered by a distant observer some time after black hole for
mation. In order to calculate (F), it is convenient to express 10; in) in terms of
out-operators of creation and annihilation acting on the out-vacuum

10; in) = 510; out) , (0; inl = (0; outl5+ , (10.3.1)
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(10.3.3)

where S is the S-matrix operator (10.2.53). Expressed in this form, 10; in) is evi
dently a superposition of many-particle states of out-particles. In our problem these
particles are naturally divided into two categories. Particles of the first category
(called "visible") are those that are created by a~ut 0 operators. Particles of the other

category (called "invisible") are those that are cre~ted by a~own,o and a~n,o operat.ors.

Only "visible" particles reach J+ and contribute to (F). This means that we are
effectively dealing with a subsystem of the total system, and in accordance with the
general rules of quantum mechanics, the state of the subsystem is described by a
density matrix. In the applicat.ion to our particular problem this means that. (see
Appendix H.6)

(F) == (0; inlF 10; in) = Trout (pF) . (10.3.2)

Here p is t.he density matrix that depends only on the operators of creation and
annihilation of OUT-particles. The symbol Trout indicates that tracing is over only
OUT-particle states. It is possible t.o show that the density matrix pdoes not depend
on the choice of the basis for "invisible" states. Namely, it is invariant under the 80
goliubov transformations in the subspace of "invisible" particles (see Appendix H.6).

In the general case, the density matrix p that describes observables on J+ depends
on the finer details of black hole formation. However, if we are interested only in the
values of observables on J+ at sufficiently late retarded time, these details are found
to be unimportant, so that the values assumed by these observables depend only on
the parameters of the resulting stationary black hole. The densit.y matrix p can be
written in the form

p= (IJ I po) x P• .

As before, the prime indicates that the product must be taken only over late-time
modes a with n ;::: N» 1, while p. stands for the part. of the density-matrix depend
ing on the details of the black hole formation. The factorizability of the lat.e-time part
of the density matrix is a consequence of the factorization property of the S-matrix.
The calculations show [Frolov (1983a, 1986)] that the operators Po have the same
form for both superradiant and non-superradiant modes:

(10.3.4 )

. 1- w 2

Qo = 1- w~ 117.
0

12' Wo = exp(-1fWo /K). (10.3.5)

In the expression (10.3.4) Nout [.,.] denotes the operation of normal ordering with
respect to the operators aout,o and a~ut.o' The last equality in (10.3.4) takes into
account. the well-known relation

(10.3.6)
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[see, e.g., Klauder and Sudarshan (1968)]. Note that for both superradiant and non
superradiant modes Qo > 0.

Another useful representation of the density matrix p, which directly follows from
(10.3.4), is

(10.3.7)

where Ino) = (n!)-1/2 (a~ut,o)na 100) is a state with no particles in the OUT-mode 0',

and

(W;;2 - 1)(fo)na

Pna = (W;;2 _ 1 + fo)na +! (10.3.8)

Here f 0 = 0'0 ITo 12 =: 1 - IRo 12, and W o = exp( -1rWo!II;). The expression (10.3.8)
for non-rotating black holes was derived by Hawking (1976b). A similar expression
(10.3.7) with

(10.3.9)

is valid for Po in the case of fermions as well, but f (which for bosons is 1) then equals
-1, and no can assume only the values °and 1 [Wald (1975)].

If one neglects the scattering of modes by the gravitational field and puts Ro = 0,
expression (10.3.4) becomes

(10.3.10)

where ilo is the free Hamiltonian describing OUT-particles escaping to J+:

(10.3.11)

and

(10.3.12)

is the IlawJ.:ing temperature of the black hole.

10.3.2 Generating functional

Method of generating functional

Expression (10.3.4) for the density matrix p makes it possible to calculate the expec
tation values of the observables on J+. The calculations are usually straightforward
but may be quite long. Moreover, for each new observable the main part of these
calculations must be redone. There exists a method, known in quantum field theory
and quantum statistics as the method of the generating functional, which permits
substantial simplification of the calculations for an important class of observables.
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We first illustrate this method by simple examples and afterwards describe its
applications to studying quantum effects in black holes. Suppose we need to calculate
the average number of particles ina state described by some density matrix p

(ii) = Tr (ata P) . (10.3.13)

Instead of this let us calculate the following quantity (a generating junction)

Z(if;,;P) = Tr [k(1/I,;P) p] , (10.3.14)

where k(if;,~) = exp(1/Ia.t ) exp(~a). Note now that a differentiation with respect to
the parameter 1/1 in (10.3.13) moves the operators at down from the exponent, while
a differentiation with respect to the parameter ;p moves down the operators a. Then
we have

(10.3.15)

Similarly, if the operator F is represented in the normal form

(10.3.16)
n,m

then

(10.3.17)

where

(10.3.18)

This means that it is sufficient to calculate just once the quantum average of a special
operator k depeuding on parameters. All other averages for various observables can
be obtained by partial differeutiation of the generating fUJlction with respect to its
parameters.

This method can be generalized. For example, one can consider the function

(10.3.19)

with ft = at a. Then a subsequent differentiation of the generating function Z(p,)
with respect to p, gives the averages (ft), (ft2), and so on. A similar procedure can
be used for the calculation of averages

(m; inlF 1m; in) . (10.3.20)
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One begins with the generating function

- - - - tZ(-y, 'Y) = (0; inle,ain F e,ain 10; in). (10.3.21)

(10.3.22)

The average (10.3.20) can be easily obtained by partial differentiation of Z(1, 'Y) with
respect to I and 1'.

To summarize, if one knows the generating function, then the calculation, of a
wide class of matrix elements is reduced to simple differentiation with respect to
parameters which are the arguments of the generating function. In the application
to a system with an infinite number of degrees of freedom the generating function
depends on an infinite number of parameters, and it is usually called a generating
functional.

Generating functional for quantum effects in black holes

We return now to our problem: the construction of the generating functioual for
quantum effects ill black holes. Let us consider the following function

Zo Z[1f!o, JLo; 10]

(00; inl exp('Yo ain,o) Nout (exp ( -JLo a!ut,o aout,o

+ 1f!0 aLt,o + 1,bo aout,o)] exp(r atn,o) 100; in) .

We define the generating functional for quantum effects in a black hole

Z[l/J,Jl; I] = II'Zo.
o

(10.3.23)

Here, as before, the prime indicates that the product is taken over the late-time
modes. The functional Z depends on the three infinite sets of parameters: Ilo,
{1f!0, 1,bo} ,and {,O' 'Yo}, enumerated by the collective index a. The explicit expression
for Zo can be calculated and has the following form [Frolov (1983a, 1986)]:

Z Qo (Po)
0= Co exp Co .

where,

Po = (Co-JLoQoIRo 1
2

) "YOlO + Qo Rolo 1,bo

+Qo Ro "Yo 1f!0 + (1- Qo)1,bo 1f!0.

Here Ro is the reflection amplitude, and Wo is defined in (10.3.5).

(10.3.24)

(10.3.25)

(10.3.26)

(10.3.27)
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How to use the generating functional

We describe now some general rules which establish the relation of the generating
functional Z[l/!, p,; ,] to the main quantities of physical interest, which characterize
quantum effects in black holes.

We use the following notations:

(1O.3.28)

and

1,131, ... ,,13m; in) = o':n.13J ... o':n.I1JO; in) .

Let F = F[o'~UI ,o'outl be an operator given in the normal form

(10.3.29)

then we define

=2: 8m' 8m
F mm' ., , --

O},....Om.O },....o m' 8l/!01 ... 8l/!om 8l/!0' ... 8l/!0'
1 m'

(10.3.31 )

Theorem 1: Let A= A(nOI , ... , no.) be a function of the operators fia == o'~UI.O 110u t.0

Then

= {D~I ... D~m A (8~ ,... ,8~ )Z[l/! = 0, p. = 1 - e'\ I]} . (10.3.32)
01 Ok A=~=O

Theorem 2: Let F[I1~ut, 110ud be an operator given in the normal form (10.3.30).
Then one has

(,131, ... ,,13m; inlF(l1~ul,O ,110ut.0) 1,131, ... ,,13m; in)

(lO.3.33)
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where F [01/1 ,o,p] is given by {lO.3.31).

Theorem 3: Let P(ko 1l"'" konlloll ... ,10J be the probability that kOI quanta are
emitted by the black hole to the infinity .1+ in the mode rp~~t, ... , and kon quanta
in the mode rp~~t, assuming there were initially 101 quanta incoming from.1- in the

mode rp:I"'" and Ion quanta in the mode rp~n (ko, ~ 0, lo, ~ 0, ko, + lo, > 0).
The following equalities then hold:

(10.3.34)

(10.3.35)

The proof of these theorems can be found in [Frolov (1986)]. The theorems al
low one to calculate the expectation values of observables, correlation functions, and
probability distributions for processes in the field of a black hole by means of differ
entiation of the generating functional Z defined by (10.3.23)-(10.3.27) with respect
to its parameters. Note that the generating functional is completely determined if in
addition to the surface gravity Ii and angular velocity OH of the black hole, one also
knows the coefficients of reflection, Ro, of wavepackets by the black hole. A similar
generating functional for fermions can be found in [Bolashenko and Frolov (1988,
1989)].

10.4 Particular Cases

10.4.1 Hawking effect

In this and the following sections we consider different characteristics of the quantum
radiation of black holes and demonstrate how these characteristics can be obtained
by using the theorems of the previous section.

Consider first the rate of particle production. Let a quantum field occupy the
vacuum state before the black hole was formed. After the formation, the black hole
becomes a source of radiation. The mean number of particles radiated in the OUT
mode a and recorded by a distant observer is given by the following expression:

(iio)o == (0; inliio10; in)

={o~ Zo[O,l-eAa ;O]}
a Ao=O exp(roo/8) - 1 '

(1004.1)

h . -'t· r - IT 12 - nH d 8 - k/2 .were no - aout.oaout.o, 0 - 0"0 0 , roo - Wo - moH , an - 7r IS

the black hole temperature. For a non-rotating black hole (1004.1) reproduces the
earlier obtained expression (10.2.61). Note that if the black hole is rotating, then
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even though the denominator of (10.4.1) vanishes at tva: = 0, the mean number of
particles created in such modes remains finite because of the simultaneously vanishing
of 1Ta: 12 . It is also clear that reversal of the sign of the denominator at tva: < 0 is
accompanied by reversal of sign of O'a: so that, on the whole, expression (10.4.1) is
always positive.

As the absorption coefficient of the packet IPin,a: of a stationary black hole is
independent of the moment of time v = 27rnlf at which this packet was emitted,
the number of particles reaching .1+ is independent of retarded time u. In other
words, the new-born black hole becomes a source of a stationary flux of radiation.13

We have already mentioned above that the appearance of a stationary flux can be
interpreted as a corollary of a spontaneous process of particle pair creation in a
stationary gravitational field close to the event horizon. One of the particles of each
created pair sinks into the black hole, while the other escapes to infinity.

One can obtain more detailed information about this process by calculating the
matrix elements (lAl a: 1A,a:; outlO; in). Here A E {out, down, dn} is the type of the
out-particle. These matrix elements are amplitudes of probability of creation of a
pair of out-particles from the in-vacuum state. Because of the factorization property
of the S-matrix the both of the created particles must be in the same mode o. Simple
calculations using (10.2.57) give

(lAllA,; outlO; in) = eiW
O yAIA, .

Here the phase factor exp(iWO) is given by (10.2.55), and yAIA, are the elements of
the matrix V. (For simplicity, we omit the mode index 0). Using expression (10.2.56)
for V, we obtain that for non-superradiant modes (a < 0) the only non-vanishing
matrix elements are

yont, dn = ~ t and
c

ydown, dn = ~ r .
c

In the absence of scattering (r = 0) particles are created as the correlated pairs.
The creation of an OUT-particle is accompanied by the creation of a DN-particle.
The latter has negative energy and always propagates inside the black hole. In
the presence of scattering (r =I- 0) besides this process there is also the creation of
(DOWN-DN)-pairs.

For superradiant modes the process of particle creation is slightly different. Namely,
the only non-vanishing matrix elements of V are

yont, down = !
r

and ydown, dn = ~ ~ .,
c r

l3Unruh (1981) pointed out that the phenomenon of quantum creation of particles in black holes
permits a hydrodynamic analogy. If the flow of the fluid is such that a closed two-dimensional
surface separates the region of subsonic and supersonic flow (Laval nozzle), the system (a dumb
hole) must radiate thermal-spectrum phonons.
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see (10.2.73). Thus, the creation of an OUT-particle is always accompanied by the
creation of a DO WN-particle. Both of these particles can propagate in the black hole
exterior. This process is possible because DOWN-particles are created inside the er
gosphere and have negative energy. The creation of a DOWN-particle is accompanied
by the creation of a DN-particle inside the black hole.

10.4.2 Stimulated radiation

Let m particles in the mode 0 fall on a black hole from .1-. Then we make use of
(10.3.32) and obtain the following expression for the mean number of particles in the
state 0 at .1+:

(mo; inl71olmo; in)

{D;:n[(-1 + Q;I + 1Ro 1
210 'Yo)ein 1'n]}1'~O

( 710 )0 + mo 1Ro 1
2. (10.4.2)

The term (710 )0 describes the spontaneous creation of particles from the vacuum;
it is given by expression (10.4.1). Bekenstein and Meisels (1977) noticed that the
resulting expression can be rewritten in the equivalent form

(71o)m = A~ + B~ mo + (1 - B!) mo ,

and the quantities

A~ - B~ _ (A ) _ f '"
o - 0 - no 0 - ( /B) l'exp 'Wo -

Bt = f o

o 1 - exp( -'Wo/B)

(10.4.3)

(10.4.4)

(10.4.5)

can be interpreted as analogues of Einstein's coefficients for processes in black holes.
The term A~ describes the spontaneous creation of particles from the vacuum, B!
acts as the absorption coefficient, and B± mo describes the stimulated emission of
particles in the mode 0.14

14Expression (10.4.2) for the number of particles emitted by a black hole can be easily generalized
to the case where besides incoming particles in an IN-mode there exist also initial particles in the
D- and P-modes. For a non-rotating black hole the corresponding expression is

(nn) =(nn)O + mn 1Rn 1
2 + (2 1in j) 1 [exP(271"Wn/I\;) n~ +n~] ,exp 71"Wn I\; -

where n~ and ng are the number of incoming particles in D- and P-modes, respectively. This
expression implies that the number of outgoing particles depends also on n~ and ng. This effect is
sometimes also called stimulated emission [see e.g., Miiller and Lousto (1994)). Note however, that
in order to change the number of outgoing particles at frequency w, one must send in a wavepacket
in either a D- or a P-mode with the frequency ~ wexpl\;u, where u is the moment when the OUT
particle reacltes :1+. This exponentially large blueshift makes sum stimulated emission processes
virtually impossible.
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The quantity 1 - B! can be interpreted as the probability of scattering of the
mode a by the black hole. Using (10.4.2) and (10.4.3), we rewrite the expression for
I Ro 12 in the form

(10.4.6)

This formula shows that the quantity I Ro 12 , characterizing the scattering of a particle
in mode a by the black hole, is the sum of the probability of scattering of the incoming
particle, 1-B!, and the probability of stimulated emission of radiation in this mode,
B);. The coefficients B! and Bi are related as

(10.4.7)

(10.4.8)

The coefficient of stimulated emission for superradiant modes, Bi, exceeds the ab
sorption coefficient B!, so that I Ro 12 takes on values greater than unity.

Formulas (10.4.3)-(10.4.5) show that black hole radiation obeys the same laws as
the radiation emitted by a hot body. However, an essential difference exists. The
temperature of a black hole is determined by the same parameters (mass and angular
momentum) that determine its geometrical size, while the temperature of an ordinary
body and its size are independent parameters.

10.4.3 Scattering of coherent waves

We have already mentioned that there is a close relationship between the processes
of propagation of a classical wave and individual quanta in an external field. Let
us consider this relationship in the case of scattering by a black hole in more detail.
Consider a classical wave incident on a black hole. From the quantum point of view,
this wave can be described as a coherent ensemble of quanta, and characterized by
the following coherent state:

1,/1; in) = exp ( - ~ 11/1 12) exp(1/1 atn./1) 10; in) .

The normalization condition for this state,

(,/1; inl
'

/1; in) = 1, (10.4.9)

is implied by the following relation [see, e.g., Klauder and Sudarshan (1968)]:

(1004.10)

which holds for arbitrary operators X and Y, such that [X, Y] commutes with X and
Y. Simple checking confirms that

exp (,/1 atn./1) (a;n./1 + ,/1),

= (atn'/1 + 1'/1) exp (1'/1 a;n./1).

(10.4.11)

(10.4.12)
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Using these relations and (10.2.48), it can be shown that the mean value of the
field ejJ in the coherent state l'Yp; in) is

(10.4.13)

The image 1>; of 'P'YfJ on .1- is

(10.4.14)

Relation (10.2.63) shows that the image 1>~fJ of 'P'YfJ on .1+ is

(10.4.15)

In other words, the ratio of the squared amplitude of the scattered wave to the
squared amplitude of the incident wave is IRfJ 1

2 • This quantity is greater than
unity (that is, amplification occurs) for those modes that satisfy the superradiance
condition w - m OH < O.

10.4.4 Probability distribution

The probability P(ko Ilo) of finding ko scalar massless particles in the state 'Pout,o in
the black hole radiation, assuming the flux incident on the hole contains lo particles
in the state 'Pin,o, is given by the general expression (10.3.35). It can be shown
that this expression can be transformed as follows [Bekenstein and Meisels (1977),
Panangaden and Wald (1977)]:

Analogous expressions for fermions can be found in [Bolashenko and Frolov (1989)].
It is easy to show that

(10.4.17)

We will prove below that this condition ensures detailed equilibrium of the black hole
with a cavity rotating at an angular velocity OH and filled with black body radiation
at temperature e.
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10.4.5 Black hole in a "thermal bath"

389

If there is no matter outside the black hole, Hawking radiation is the only process that
changes the state of a stationary black hole. If there is matter or radiation outside
the black hole, Hawking evaporation is accompanied by the process of accretion of
this matter and radiation onto the black hole. It emerges that a particular matching
of the parameters of the matter distribution to the black hole parameters produces
an equilibrium situation in which the loss of particles through accretion in each mode
is exactly compensated by the black hole radiation in this mode. In the simplest
case of negligible interaction between different species of particles, these equilibrium
conditions must obviously hold for each species of particles individually. We will now
discuss the conditions of equilibrium of a black hole with a gas of massless quanta.

Assume that the density matrix {rm that describes the state of such particles
outside a stationary black hole (on .1-) is of the form

. II"Pin = Pin,a,
a

(10.4.18)

Here N in [...]is the normal ordering operator with respect to the operators atn a and
ain,a' It can be verified [Frolov (1986)] that under the given choice of initial con'dition
(10.4.18) the density matrix Pout that describes the black hole radiation on .1+ is
given by the following expression:

. II"Pout = Pout, a ,

a

_ l-w~

Ba - ( 2)IRI2'1+ /La - /La + W a a

(10.4.19)

(10.4.20)

The equilibrium condition, signifying that the distribution of outgoing particles
is identical to that of incoming ones, is equivalent to the condition Ba = 1 which is
satisfied if and only if

/La =: - w~ = - exp(- wale) . (10.4.21 )

Assume that the black hole we consider is enclosed in a stationary axially symmet
ric, perfectly reflecting ("mirror") surface. Particles reflected by this surface conserve
their angular momentum and energy. The action of this surface on wavepackets trans
forms the mode f;?out,a into the mode -f;?in.a' If condition (10.4.21) is satisfied, the
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radiation in the cavity is in equilibrium with the black hole, and the density matrix
corresponding to this equilibrium state is

Po = II Po ,
o

" _ 0 (tvo"t " )Po - Po exp - e aout,o aout,o , (10.4.22)

where p~ is a normalization constant, and a~ut,o and aout,o are the operators of creation
and annihilation for the OUT-mode a.

This result can be described somewhat differently. Since Tr Po = 1 , the proba
bility of finding ko quanta in the mode a for the distribution (10.4.21) is

e-(wa/O)ka

P(ko) = /0 . (10.4.23)1- e-Wa

If we take into account the equality (10.4.17) for the conditional probability
P(lo Iko), then the probability P(lo Iko) P(ko) of finding lo outgoing quanta and
ko incoming quanta in the mode a is equal to the probability P(ko Ilo) P(lo) of
finding ko outgoing and lo incoming quanta. This means that the detailed balance
condition is satisfied, ensuring thermodynamic equilibrium between the cavity and
the black hole in the given mode.

We must emphasize that the density matrix (10.4.19) is normalizable and actually
describes the real physical state only if /Lo > -1. The equilibrium condition (10.4.21)
for superradiant modes tvo ~ 0 contradicts the condition of normalizability of the
density matrix An. This result admits the following interpretation. Consider a ro
tating black hole enclosed in a mirror-walled cavity. Let an arbitrary (normalizable)
distribution of particles exist in the chosen superradiant mode a at some moment of
time. Then the scattering of this mode by the black hole increases the number of
quanta in it. After reflection by the enclosing mirror, these quanta are again scat
tered on the black hole and their number is again increased. In other words, the
system consisting of a black hole and a mirror-like boundary surrounding it acts as
a generator for superradiant modes so that no stationary equilibrium distribution is
possible for such modes.

The conclusion obtained above does not imply that in the general case a rotating
black hole cannot be in equilibrium with the radiation gas inside the cavity. We need
only to require that the size of this cavity is not too large [r :$ (OHt l

] so that the
system has no superradiant modes.

The following arguments support this conclusion. Note that the wave modes
'{JJ rv exp( -iwt + im¢) are eigenmodes for the operator 1]1' aI" where

1] = ~t + OH ~4>' (10.4.24)

and they satisfy the relation

(10.4.25)



lOA. Particular Cases 391

Assume that a surface enclosing the black hole coincides with the surface of 11 . 11 =
const and that the angular velocity of this surface is OH. An observer at rest on this
surface has the velocity

u/L == r//U, (10.4.26)

In this reference frame, the mode 'Pwlm has the frequency ro' = ro/U. Note that now
the equilibrium density matrix (10.4.22) can be written in the form

A _ ( ro~ A t A )

Po - PO,o exp - Bloc aout,o aout,o ,

where

(10.4.27)

(10.4.29)

"-
Bloc = 27rU' (10.4.28)

This means that a rotating absorbing shell enclosing the black hole does not violate
the equilibrium condition if and only if its temperature is Bloc' If the shell surface
does not coincide with the U == const surface, the temperature Bloc on the shell at
equilibrium is not constant. It is given by (10.4.28) in which

{
2 2}1/2U='E- I

/
2 6(I-aOHsin2B) -sin2B[a-OH(r2+a2)]

Let us refer to the surface 'En outside the hole on which the condition

(10.4.30)

is satisfied as the null cylinder. The equation of 'En for the Kerr metric in the Boyer
Lindquist coordinates is of the form (r > r+)

. ";X2 + 4aOH - X 2 _ [OH(r2+ a2) - a]2
IsmB 1= 2aOH ,X - 6 . (10.4.31)

The temperature Bloc, given by relations (10.4.28)-(10.4.29) is defined, real, and
bounded in the domain between the event horizon H+ and the "null cylinder" 'En.
Correspondingly, the equilibrium state described by density matrix (10.4.22) is pos
sible only if the shell enclosing the black hole also lies in this domain.

For a non-rotating black hole, equilibrium with the gas of radiation is possible
regardless of the size of cavity.15 The equilibrium requires that the temperature of
radiation far from the black hole is equal to its Hawking temperature.

This conclusion on the possibility of thermal equilibrium between a black hole
and a radiation gas, provided they have equal temperatures and angular velocities,16
is of a general nature. Gibbons and Perry (1978) demonstrated that this conclusion
can be extended to the case of interacting particles.

15Note that if the size of the radiation-filled cavity is sufficiently large, this equilibrium is generally
unstable (for details, see Chapter 12).

16Provided the conditions that guarantee the absence of superradiant modes are met.
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10.5 Energy, Angular Momentum, and Entropy
Emission

10.5.1 Loss of energy and angular momentum

The energy and angular momentum flux of the field 'P through a two-dimensional
surface S in a stationary axisymmetric spacetime can be written in the form

E:= ~~ = l dST"v['P,'P]~lt) n",

j == ~~ = l dST""['P,'P]~(,,,)n".

(10.5.1)

(10.5.2)

Here T",,['P,'P] is the stress-energy tensor whichis bilinear in the field 'Pj ~lt)o" = at
and ~("') a" = a", are Killing vectors; dS is the surface element on S, and nIt is a unit
vector lying on the surface t = const and normal to S.

Let us first calculate the average values of (E) and (j) for the quantum field rjJ
in the state !lout,oj out) in which there exists only one out-particle in the mode 'P~ut.

As usual for this type of calculation we are interested in the change of the quantities
with respect to their vacuum values. Only this difference is observable. Define

t):,J = (lout,oj out! T",,[rjJ, rjJJl1out.o j out) - (OJ out! T",,[rjJ, rjJJlOj out) . (10.5.3)

Using the expansion (10.2.48) of the field operator ¢ in terms of out-modes, and the
commutation relations (10.2.49), one gets

t(o) = T [Inout Inout] +T [Inout Inout]
ttl.' ttl.' Yo 'Yo ,ttl.' Yo 'Yo . (10.5.4)

Since we are interested in the calculation of the outgoing fluxes of energy and
angular momentum, we can move the surface S close to .1+. Near.1+ the late
time wavepacket 'P~ut is nonvanishing only in the retarded time interval u E (27r(n
1/2)/t, 27r(n+ 1/2)/t), and hence t):,J for this wavepacket also possesses this property.
The integral of ttv ~"n" over the surface S and the retarded time u gives the total
energy or angular momentum flux on .1+. For the chosen normalization of the modes
the total energy and angular momentum fluxes are W o and rna, respectively. This
result is not surprising since at infinity the particles propagate in a practically flat
spacetime, where the energy wand angular momentum m are the standard quantum
numbers "enumerating" the states of a quantum.

After these remarks let us calculate the energy and angular momentum fluxes
from a black hole. We assume that initially (before the formation of the black hole)
there were no particles. Let us consider the quantity

(10.5.5)
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(10.5.6)

Using the second line of (10.2.48), we can write

(1'1'1') L I{ tl:'J (0; inla~ut,o aout,oIO; in)
o

+ T,w[rp~ut, IP~ut] (0; inlaout,o aout,oIO; in)

+ Tl'v[<p~ut, rp~UI] (0; inla~ut,o a~ut,oIO; in) }.

Here we used relation (10.5.4) and the fact the averages of quantities that contain
only one operator of creation or annihilation in a given mode must vanish.

We use now a special case of the Theorem 2 of Section 10.3; namely, the relation

(0; inIF(a~ut,o, o'out,o) 10; in) = {F[o¢, o,p] Zo [1Po , /L = 0; 'Y = OJ} ¢a~O •

According to (10.3.24)

[
fo - ]Zo[1Po, /L = 0; 'Y = 0] = exp W;;2 _ 1 1Po1Po

Here f 0 = 1 - IRo 12 = 0"01 To 12 • Relations (10.5.7) and (10.5.8) imply

(0; inlaout,o o'out,oIO; in) = (0; inlo'~ut,o a~ut,oIO; in) = 0,

(0" IA t A 10") _ f 0
,In aout,o aout,o ,In - w-2 _ 1 .

o

By using these results, we obtain for (1'1'1') the following expression

(1' ) - """"tlo) f o
I'll - L.-i 1'1' w-2 _ 1 .

o 0

(10.5.7)

(10.5.8)

(10.5.9)

(10.5.10)

We can now substitute this expression for (1'1'11) into (10.5.1) and (10.5.2) and
find (E) and (i) for the quantum radiation from the black hole. In order to obtain
the answer in a simpler form, let us note that a wavepacket IPjnlm with a given value
of n reaches .1+ in the interval of retarded time from 27r(n - ~)/f to 27r(n + ~)/f.

Hence, .

(10.5.11)

where nl and n2 the values of the index n corresponding to UI and U2, respectively.
In the late-time regime f 0 does not depend on the moment of time u, and hence on
n. Thus, we have (a = {j, n, f, m, P})

(10.5.12)



394 CHAPTER 10. QUANTUM PARTICLE CREATION BY BLACK HOLES

Now we note that the quantities in this expression are smooth functions of frequency
wand vary little when w changes in the interval from jE to (j + 1)f. Hence, the
summation over j can be replaced by integration with respect to frequency w:

, 100

EL("')= dw(... ).
i 0

As a result, we get

dE =~ roo dw L O'wm W 1TwlmP 1
2

•

du 27rJo exp(r;:;/8)-f.
l,m,P

Similarly, we get for the flux of angular momentum

(10.5.13)

(10.5.14)

(10.5.15)

We include in the above relations the parameter E, assuming that for bosons it takes
the value E = 1. Relations (10.5.14) and (10.5.15) are also valid for fermions with
E = -1. A similar expression holds for massive fields. The summation then extends
to all quantum numbers that enumerate the state, and the lower limit of integration
is the mass of the field /L.

For a non-rotating black hole the transmission coefficient T does not depend
on m, and hence the average flux of angular momentum vanishes. For estimation
of the energy flux from a non-rotating black hole one can use expression (2.9.2)
for the capture cross-section for ultra-relativistic particles. This expression implies
that particles with impact parameter b less than the critical impact parameter ber =
3.13 M are captured by the black hole. Using the relation f = wb, one can rewrite
the capture condition as

f<3V3Mw. (1O.5.16)

Assuming that all the modes obeying (1O.5.16) are absorbed by the black hole, we
can approximate 1Twl l2 as [DeWitt (1975)]

In this De Witt approximation one gets

00

L 1Twl l2 ~ L{2P + 1) 19 (3.13 Mw - f) ~ 27M 2w2
.

l.m l=O

(1O.5.17)

(1O.5.18)

In order to obtain this relation, one changes the summation over f by integration.
Strictly speaking, this procedure is not justified when Mw is small, so that only a
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few first terms in the sum are important. Nevertheless, the direct calculations show
that the approximation (10.5.18) is quite goodP

Substituting (10.5.18) into (10.5.14) givesl8

dE 27M 2 100 dw w
3

-=--h(s) -----
du 271" 0 exp(871"Mw)-f

27
2 x 84 X 71"5 X M2 h(s) If' (lO.5.19)

We include in this relation a factor h(s) which is equal to the number of different
states (polarizations) of the spin-s field. We also define

-100

dxx
3

I f - --.

o eX - f

Calculation gives II = 71"4/15 and L 1 = 771"4/120. Finally, we get the following
expression for the rate of energy emission in the DeWitt approximation

(10.5.20)

(10.5.21)

Here hb is the total number of polarization states of massless bosons, and hf is the
total number of polarization states of massless fermions.

A more accurate approximation for the rate of the energy loss can be obtained
by using numerical calculations for ITwl l2 . These calculations, performed by Page
(1976a,b), give

dE. ~ 4 x 10-5f (mPI )2 mpi = 7.4 x 1024 (M)-2 f ~.
du M tpi 1g s

Here

f == 1.023 h(I/2) + 0.420 h(l) + 0.048 h(2),

where h(s) is the number of distinct polarizations of spin-s particles.

(10.5.22)

1?Sanchez (1978a, 1997) gives the following approximate expression for the total absorption cross
section u(w) as the function of frequency w:

" sin (2v'2771"wM)
u(w) =71"w-2 L." 1Twt 1

2
RJ 2771"M2

- 2Y'2 M w '
t,m

wM 2 0.07,

18In a simplified model when the spacetime has only two dimensions, the Hawking radiation of
massless particles can be calculated exactly [Christensen and Fuliing (1977)]. The derivation based
on the Polyakov effective action was first given by Frolov and Vilkovisky (1983). Mukhanov, Wipf,
and Zelnikov (1994) used the effective action approach for the calculation of the Hawking radiation
in the four-dimensional spacetime.
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Consider now a rotating black hole. If the black hole mass is large so that the
temperature is very low, then for bosons

<IJ 1
exp(r;:;!(}) - 1 ~ "2 (1 - <IJ).

(10.5.23)

In this limit, only the modes satisfying the superradiance condition contribute to the
radiation, and we have

dE 1 rmnH

d = 2 L Jo dww 1TwlmP 12 ,
U 11" l,m,P 0

dJ 1 rmnH

du = 211" L Jo dwm 1TwlmP 1
2

.
l,m,P

(10.5.24)

(10.5.25)

The emission of energy and angular momentum by a black hole changes its pa
rameters. In accordance with the conservation laws, one has

. H dE
M =-

du'
'H dJ

J =--.
du

(10.5.26)

These relations can be proved by comparison of the mode expansions for fluxes of
energy and angular momentum on :1+ with similar mode expansions on H+ [see
Frolov and Thorne (1989)].

10.5.2 Entropy of black hole radiation

The entropy S of a system described by a density matrix p is defined by the relation

S = - Tr(p In p) .

It is readily shown that p is expressible in the form

'(II") ,P = 0 Po x P.,

(10.5.27)

(10.5.28)

where Po is an operator depending only on the creation operators a~ut,o and annihi
lation operators aout,o in a late-time OUT-mode 0:. Using (10.5.28), entropy Scan
be represented as a sum,

S= L'So+S.,
o

where

So = - Tro(po Inpo).

(10.5.29)

(10.5.30)



10.5. Energy, Angular Momentum, and Entropy Emission 397

Here Tro denotes the operation of calculating the trace in the space generated by the
action of ii~ut,o on the vacuum; So is the contribution of the late-time a-modes to the
emission of entropy, and S. is the entropy emitted before the late-time regime.

Using expression (10.3.4) for Po after transforming the summation over the wave
packets into integration over the frequency, we obtain

dS 11
00

'"'" [fo (zo-e) ( efo )] )-d = - dw L... -_-In -- +e +eln 1+~ ,(10.5.31
u 27f 0 P Zo e f 0 Zo e

I,m,

where

e = 1. (10.5.32)

(10.5.34)

This expression is also valid for Fermi fields if we set e = -1. A similar expression
holds for massive fields. The summation then extends to all quantum numbers that
enumerate the state, and the integration begins from the mass of the field p... The
contribution of the neutrino (8 = !), photon (8 = 1), and gravitational (8 = 2) fields
to the entropy of the radiation of non-rotating black hole can be written in the form
[Page (1983)]

~~ = 10-3M-1 [1.685 h(I/2) + 0.634 h(l) + 0.065 h(2)] , (10.5.33)

where h(8) is the number of polarizations of the spin-8 field.

10.5.3 Radiation of a charged rotating black hole

Evolution of black hole parameters in the process of its quantum evapo
ration

In the general case of a black hole also having, in addition to mass M and angular
momentum J, an electric chargeQ, the expression for the mean number of particles
of mass p.., electric charge ql e I (q = ±1), and spin 8 that the black hole creates, can
be written as follows [Hawking (1975)]:

f J

(nJ) = exp[(27fwJ)/II:] _ (_1)28'

Here the collective subscript J denotes the complete set of quantum numbers that
must be specified to describe a mode. The set includes the subscript enumerating the
particle species and also carrying information on particle spin 8, frequency or energy
w, spheroidal quantum number f.., azimuthal quantum number m, polarization or
helicity P, and the sign of the particle charge q. The quantity WJ in (10.5.34) is

(10.5.35)
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where nH and If>H are the angular velocity and electric potential of the black hole,
and r J = 1-1 RJ 12

, where RJ is the reflection amplitude of the incident wave J. The
coefficient r J becomes negative for superradiant modes of boson fields. Nevertheless,
the expression on the right-hand side of (10.5.34) is always positive. For fermion fields,
the Pauli principle implies' that the mean number of particles scattered in a given
mode cannot exceed unity, so that IRJ 12 :S 1 always. Superradiance is not possible
for fermions [Martellini and Treves (1977), Iyer and Kumar (1979), Chandrasekhar
(1979a,b)].

We denote by ~J the summation over all discrete quantum numbers and the
integration over continuous ones in J,

(10.5.36)

and then obtain the following formulas for the rate of change, due to quantum radi
ation, of mass, angular momentum, and charge of the black hole:

- dd
M

= L WJ (71 J ), - dd
J

= L mJ (71 J ), - dd
Q

= IelL qJ (71J).(1O.5.37)
t J t J t J

The calculation of the contributions of individual particle species to the quantum
radiation from a black hole reduces to the determination of the respective reflection
coefficients for wave functions describing these particles. Relations (10.5.37) allow one
to study how the parameters of the black hole change in the process of its quantum
evaporation. We mention only some results that are of special physical interest.

Loss of electric charge

The loss of electric charge by a black hole was analyzed by Markov and Frolov
(1970), Zaumen (1974), Carter (1974), Gibbons (1975), Nakamura and Sato (1976),
Damour and Ruffini (1975), Page (1977), Ruffini (1979), Novikov and Starobinsky
(1980c). The main result of this analysis is as follows. Isolated black holes of mass
M :S Ge2 /me ::::J 1015 g (me is the electron mass) shed their electric charge almost
completely and very rapidly. The time necessary for radiating away the electric
charge of black holes with mass M < .,;cem~dm~ ::::J 105 M 0 is much shorter than
the characteristic time of evaporation of a black hole. Therefore, a black hole can be
treated as electrically neutral during nearly the entire period of its evaporation.

Loss of angular momentum

Dimensional arguments show that, in the general case, a black hole can dissipate
angular momentum over a time comparable with the black hole evaporation time.
Carter (1974) hypothesized that in the course of evaporation, the ratio of angular
momentum to squared mass of the black hole tends to a nonzero limiting value.
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Figure 10.4: The evolution of the rotation parameter J / M 2 of a black hole in the course
of evaporation (Mi is the initial and M is the current mass of the black hole). The figure
shows the behavior of J / M 2 as a function of M / M i in the case of only a single neutrino field
(l), only the photon field (2), or only the graviton field (3), and in the real situation (4)
(two species of neutrinos and anti-neutrinos, one photon, and one graviton species) [data
from Page (1976b)].

However, Page's numerical results (1976b) refuted this conjecture. If the contribution
of known massless particles (neutrinos, photons, and gravitons) is taken into account,
the angular momentum is found to be dissipated several times faster than the black
hole mass (Figure 10.4).

It is also found that the smaller the spin of massless particles, the greater their
contribution to the radiation of mass and angular momentum from slowly rotating
black holes (JIM 2 :'S 0.6, and the number of polarization states is assumed to equal
2 for all particles). The situation is the opposite for rapidly rotating black holes
(JIM2 > 0.6), the contribution being the greater, the higher the particle spin (Fig
ure 10.5). This effect is in agreement with that of Starobinsky and Churilov (1973)
on the spin dependence of superradiance.

Note also that a rotating black hole emits neutrinos asymmetrically. Neutrinos are
more abundant in the radiation along the direction of rotation, while antineutrinos are
more abundant in the opposite direction [Unruh (1973), Vilenkin (1979b), Leahy and
Unruh (1979)J. This effect has an analogue in the radiation of photons and gravitons
by a rotating black hole. Namely, there is an asymmetry in the emission of left- and
right-hand-polarized quanta in a given direction. As a result, the electromagnetic and
gravitational radiation of a rotating black hole are polarized [Dolgov et ai. (19ggb),
Bolashenko and Frolov (19g7, 1999)J. Dolgov et ai. (19gga) pointed out that these
effects are directly related to chiral anomalies in the gravitational field. On other
effects in black holes due to chiral anomalies, see Gal'tsov (19g6), Gal'tsov et al.
(19gg).
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Figure 10.5: Energy (a) and angular momentum (b) radiative power of a black hole as a
function of rotation parameter J/M2 • The contributions of a single neutrino species (l),
photons (2), and gravitons (3) are plotted separately, as well as the total radiative power
for massless particles in a real situation (4) (two species of neutrinos and anti-neutrinos,
one photon, and one graviton) [data from Page (1976b)].

Black hole evaporation

A black hole emits radiation like a body heated to the temperature

(}= Ii", .
27r C

This expression is written in the usual units, with c, G, and Ii restored. In this
relation the temperature has the same dimension as energy, (} = kTH, where TH is
the black hole temperature in the standard units. For a non-rotating black hole one
has

(10.5.38)

The deviation from a thermal spectrum occurs because the coefficient r J is
frequency-dependent. At high frequencies, the effective cross-section of the black
hole is 277r G2M 2 / c4 for all particles. The cross-section decreases at low frequencies,
and is found to be strongly spin-dependent (cf. (4.2.29)). As spin increases, the con
tribution of particles to the total radiation of a non-rotating black hole diminishes
[Page (1976a)] (Figure 10.6).

Black holes of mass M > 1017 g can emit only massless particles: neutrinos (1/),
photons (,), and gravitons (g). Black holes of mass 5 x 1014 g ::; M ::; 1017 g can also
emit electrons and positrons. Black holes of smaller mass can emit heavier elementary
particles as well. The distribution of black hole products in different mass intervals
is shown in Figure 10.7.
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Figure 10.6: Power spectra from a non-rotating black hole. The curves plot the contribu
tions offour neutrino species (I), photons (2), and gravitons (3), and the aggregate spectrum
(4). For the sake of comparison, the black body radiation spectrum of these particles with
cross-section 277rM2 is given (curve 5) [data from Page (1976a)].
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Figure 10.7: Quantum decay of a non-rotating black hole. The fractions of gravitons (g),
photons (-r), neutrinos (v) and other elementary particles are given iIi percent of the total
number of particles emitted by black holes of different masses.
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As a result of the quantum evaporation, the mass of the black hole decreases.
Simple model calculations shows that for slow quasistatic change of the mass the
temperature of the black hole also changes as M-1 [Volovich et ai. (1976)]. Integrat
ing equation (10.5.21) for the mass loss, one can get the lifetime of a black hole with
respect to its quantum evaporation

tSH ~ 4.5 X 10-26 r l (~) 3

Since the rate of emission grows rapidly as the mass of the black hole decreases, the
most of the time t is occupied by the stage where the mass is close to the initial mass
M. The factor f which enters (10.5.39) is the effective number of species of particles
(10.5.22) that can be emitted by a black hole of mass M.

The lifetime of a black hole will not exceed the age of the Universe tu '" 5 X 1017s if
its mass M S Mu, where Mu ~ jl/3 X 2.23 X 1014 g. Using (10.5.22), one gets f ~ 9.12
(for 2 types of neutrino, electron, muon, their antiparticles, photon, and graviton).
Hence, Mu ~ 5 X 1014 g. Such black holes could be born only as primordial holes
at early stages in the evolution of the Universe. As for the possibility of observing
quantum explosions of such small black holes and the products of their decay, see the
discussion in section 9.8 and the references therein.

"External control" over the Hawking radiation

The radiative power and other characteristics of black hole radiation change when
an external field is switched on. Thus, external factors could be used to affect the
radiation of a black hole and, to some extent, control it. For example, when a black
hole is "inserted" into an external gravitational potential, the intensity of its radiation
at infinity diminishes in complete accordance with the reduction in temperature as
measured by a distant observer [ Zhuk and Frolov (1981), Geroch and Hartle (1982)].
On the effect of magnetic fields on particle creation in black holes, see Gibbons
(1976), Gal'tsov (1980). An interesting example of the effect of external factors is
the process of mining a black hole, which was analyzed by Unruh and Wald (1982)
(see Section 12.3.2).



Chapter 11

Quantum Physics of Black Holes

11.1 Vacuum Polarization near Black Holes

11.1.1 Semi-classical approximation

Quantum radiation from an isolated black hole reduces its mass, and hence its sur
face area. This "violation" of Hawking's area theorem is explained by drawing the
inevitable conclusion that the particle flux to infinity which carries away positive
energy is accompanied by a flux of negative energy across the horizon into the black
hole. This would be impossible in classical theory, with ordinary physical assump
tions satisfied (energy dominance conditions). In quantum theory, negative energy
density may arise in a region of space because an external field applied to the vacuum
may either increase or reduce the local energy density of zero point fluctuations. It
is this phenomenon, known as vacuum polarization, that is to be expected to play an
important role in the neighborhood of black holes.

The process of evaporation of a black hole of a mass much greater than the
Planck mass can be described using the semi-classical approximation. Assuming the
fluctuations of the gravitational field to be small, we describe it in terms of the
classical metric

satisfying the modified Einstein equations

G/lV =81r(T/lv ),

(11.1.1)

(11.1.2)

where the right-hand side contains the expectation value of the energy-momentum
tensor of the relevant quantized fields in the chosen state. If the characteristic radius
of curvature in a region of spacetime, L, is much greater than the Planck length
Ip ! = V1iG/c3, the calculation of (T/lv ) can make use of an expansion in a small
parameter c = (lpdL)2 retaining only terms up to first order in c. The first term of
order cO is just the expression for the energy-momentum tensor of the classical field,

403
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while the term of order c1, containing a factor n, represents the main contribution of
quantum effects (in the chosen approximation of c « 1). This contribution describes
the change in energy-momentum density due to the effect of the gravitational field on
the state of virtual vacuum pairs. Other terms of higher order in c describe additional
contributions due to the interaction between the particles of a virtual pair as a result
of emission and subsequent absorption of field quanta by these particles. l In the
approximation linear in c ("one-loop" approximation), virtual pairs of various fields
can be treated as noneinteracting. Therefore, the contributions of all fields to (T/lv)
are additive in this approximation, and thus can be studied independently.

The main problem in analyzing (T/lv) stems from its divergence. Specifically, any
calculation of the expectation value of a quantity containing a product of two or more
field operators at the same point (T/lv has precisely this form) results in infinities.
Such divergences, arising even in flat spacetime, are generated by vacuum zero-point
fluctuations. The methods of extracting a finite, physically meaningful part of (T/lv),
known as renormalization procedures, were widely discussed in the literature in con
nection with the development of general field theory in curved spacetime and with
its specific applications to cosmology and black hole physics. A detailed discussion of
these problems can be found in DeWitt (1965, 1975), Grib et al. (1980), Christensen
(1976, 1978), Birrell and Davies (1982), and Wald (1994). For this reason, we only
briefly outline the renormalization procedure for (T/lv) and go into some detail about
those aspects of the vacuum polarization effects that are related to black hole specifics
(e.g., the choice of the vacuum state). We also give the main results of calculating
(T/lv)ren in the spacetime of a black hole.

11.1.2 Wald's axioms

In order to extract a physically meaningful part of (T/lv), one needs at first to reg
ularize this expression, that is, to make it finite by introducing some regularization
parameter. There exist a considerable number of regularization methods, such as
dimensional regularization, (-function method, Pauli-Villars regularization, n-wave
regularization, adiabatic regularization, and the point-splitting approach. In each
of the chosen regularization schemes there exists a procedure of extraction of those
parts of (T/lv) that are responsible for infinities in the process of removing the reg
ularization. By subtracting these terms, one obtains an expression which remains
finite. This quantity is called the renormalized stress-energy tensor and is denoted as
(T/lv)ren. The concrete procedure of renormalization differs from one method to an
other, but it is important, however, that the final results are essentially independent
of the choice of renormalization method.

I When the Feynman diagram technique in quantum theory is used to calculate the indicated
expectation values, the expansion in Ii coincides with an expansion in closed loops found in the
corresponding diagrams. Terms of order lio are described by diagrams without loops (the "tree"
approximation), and those of order iiI, by diagrams with a single loop ("one-loop" approximation).
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In fact, Wald (1977, 1978a,b) proved the following result:

All renormalization methods for (T/lv) that:

1. Preserve general covariance (V/l( T/lv)ren = 0)

2. Satisfy natural causality requirements

3. Preserve the value of (Il'l T/lvl<I» for those states Ill') and 1<1» «Il'I<I» = 0) for
which this quantity is finite

4- Agree with the standard procedure of normal ordering in fiat spacetime

result in expressions for (T/lv)ren that can differ from one another only by a local con
served tensor constructed from the curvature tensor at a given point and its covariant
derivatives.

We shall use later the following important consequence of this result. Consider
a massless field contribution to (T/lv)ren. The theory does not contain the mass
parameters. For this reason, the expression which has the correct dimensionality and
describes the possible ambiguity in (T/lv)ren in the one-loop approximation is a sum of
terms quadratic in curvature and terms linear in the second derivatives of curvature.
The analysis shows that such a symmetric conserved secondcrank tensor necessarily
contains the Ricci tensor and vanishes when the latter is equal to zero. Hence, the
above-mentioned ambiguity in the determination of (T/lV)ren is absent in the one-loop
approximation for massless fields for a metric satisfying Einstein's vacuum equations
(R/lv = 0).

11.1.3 Point-splitting method

To illustrate a procedure of the renormalization of (T/lv) we consider the point
splitting method which is quite often used for practical calculations of (T/lv)ren in
the gravitational field of black holes. The method is as follows. The stress-energy
tensor T/lv is a bilinear function of the fields so that it is formally possible to generalize
T/lv to the case where the arguments are different for each of the fields (to "split the
points"). In the classical theory, T/W(x) appears as a limit of the corresponding ex
pression T/lv'(x, x') as x' -t x. When the expectation value of the operator T/lv'(x, x')
in a given state, T/lv'(x, x') = (T/l"'(x, x')), is calculated in the quantum theory, a
simple transition to the limit x' -t x is impossible because divergences appear. For
this reason, the quantity T/l"'(x,x') is "corrected" (renormalized), before taking the
limit, by subtracting from it the standard expression T;:;(x,x' ). It is sufficient to
calculate T::; once for each of the fields. Christensen (1978) derived the expressions
for T:~r in the cases of massless scalar and spinor fields and for the electromagnetic
field.
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Consider the field epA. The index A enumerates the components of the field. When
matrix elements (Il'l T/lv(x)!<I»ren of the energy-momentum tensor of the field epA are
calculated for the specified states 1<1» and 11l'), it is convenient to use Green's function

G (
') _ . (wIT(epA(x)epB,(x'))I<I»

AB' x, x - Z (1l'I<I»

The symbol T in (11.1.3) denotes the operation of T-product,

T(epA(X) epB'(X' )) = fJ(x, x') epA(X) epB'(X' ) + fJ(x' ,x) epB'(X' ) epA(X) ,

(11.1.3)

(11.1.4)

where fJ(x, x') is the step function equal to 1 if x lies in the future relative to x', and
equal to 0 otherwise. Using the commutation relations (H.9), it is easy to show that
Green's function (11.1.3) for the field epA, described by equation (H.2), satisfies the
following equation:

(11.1.5)

where I §4(x-x' )d4x = 1. This Green's function is related to the so-called Wightman

junction G1B'(x, x') and Hadamard junction G~1,(x, x');

G+ ( ') _ (<I>I epA (x) epB'(X' )Ill')
AB' x, x - (<I> IIl') ,

G~1,(X,X') = G1B'(x,x' ) + G~'A(X',X).

(11.1.6)

(11.1.7)

If the points x and x' are separated by a spacelike distance, then epA(X) and epB'(X' )
commute and G~1,(X,X') = -2iGAB,(X,X'). The values assumed by the energy
momentum tensor at the split points are

T. ( ') 1 TAB'( ') GIl) ( ')/lV' X,X = 2" /lv' X,X AB' X,X , (11.1.8)

where T:J' (x, x') is the differential operator with respect to variables x and x', such
that the quantity T:J'(x,x') epA(x) epB'(X' ) coincides with T/lV'(x,x' ). The explicit
form of the operators T:'fr for fields of different spin is given in Christensen's paper
(1978).

In addition to (T/lv)ren, one often considers quantities of type (ep~)ren that de
scribe the fluctuations of the field epA. In the case of a scalar field ep, the quantity
(ep2) was analyzed in the field of a black hole in connection with the possibility of
phase transition in its neighborhood. These transitions consist of the appearance of
(ep(x)) #- 0 [Hawking (1981), Fawcett and Whiting (1982), Moss (1985)]. The follow
ing simple expression for the renormalized quantity (ep2)ren holds in a gravitational
field described by Einstein's vacuum equations:

(ep2(X))ren = lim [- i G(x, x') - 8 2 ~ )] ,
x'-tx 1f U X, X'

(11.1.9)
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(11.1.10)

where u(x, x') = ~S2(X, x'), and s(x, x') is the interval of geodesic distance between
x and x'. The limit is taken so that :If tends to x along a spacelike direction.

The problem of calculating (Tl'v)ren and (ep2)ren, which carry the information on
energy-momentum density related to vacuum polarization and on vacuum fluctua
tions, thus reduces to performing a set of standard operations on the Green's function
(11.1.3). As a result, the solution of the problem of vacuum polarization in black holes
reduces to solving equation (11.1.5) in a given metric describing the spacetime of a
black hole. The ambiguity in the choice of state used to carry out the averaging
in (11.1.3) corresponds to the arbitrariness in the choice of the boundary conditions
that unambiguously specify a particular Green's function.

11.1.4 Conformal trace anomaly

The renormalization of (Tl'v) preserves the covariance of the theory but can violate
other symmetries. This phenomenon is known as the anomaly. An important example
is the conformal trace anomaly.

Consider a classical theory with the action W. The theory is conformal invari
ant if the action is invariant under the conformal rescaling of the metric: 91'v(X)-t
n(x) 9I'v(X). For the infinitesimal conformal transformation n = 1+w(x), the change
of the action is proportional to w 9I'v8W/89I'v. Because 8W/891'v '" TI'V, the confor
mal invariance of the theory implies that the trace T:: of the classical stress-energy
tensor Tl'v vanishes.

An important distinctive feature of the quantum theory is that the trace of
(Tl'v)ren does not vanish any more for a conformally invariant field (conformal trace

anomaly). It is possible to show that the quantity (T::)ren is independent of the

choice of the state over which Tl'v is averaged, and has the form

(T:),en = a (1l + ~ OR) +,8K + l' OR,

where

1l - C CI'VPT = R RI'VPT - 2R Rl'v + ~ R2
- I'VpT I'VpT I'V 3' (11.1.11)

(11.1.12)

Here·RI'VPT = e/J,VOIfj ROIfjpT . The coefficients a, ,8, and l' depend on the number of
helicity states of each spin and on the renormalization scheme used. Point-separation,
(-function, and dimensional renormalization all agree that2

a = (29 X 45 X 11"2)-1 [12 h(O) + 18h(1/2) + 72 h(I)] , (11.1.13)

2The conformal trace anomaly was first noticed by Capper and Duff (1974) using a dimensional
regularization scheme [see also Duff (1977)J. For the calculations in other regularization procedures
see, e.g., Birrell and Davies (1982) and Fulling (1989).
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13 = (29
X 45 X 11"2)-1 [-4 h(O) - 11 h(I/2) - 124 h(I)] , (11.1.14)

where h(s) is the number of helicity states for fields of spin s. On the other hand,
there is disagreement on the value of""y- Dimensional renormalization gives ""y = 0,
while point-separation and (-function renormalization give

(11.1.15)

Note that an additional term of type DR that may appear in the case of the
electromagnetic field vanishes in metrics satisfying the vacuum Einstein's equations
(Rp.v = 0), and in these spaces there is no ambiguity in the form of the conformal
anomaly

(11.1.16)

11.2 Choice of State and Boundary Conditions for
Green's Functions

11.2.1 Unruh vacuum

Now we will describe the states and corresponding boundary conditions for Green's
functions that are most frequently used in considering quantum effects in black holes.3

For the sake of simplification, we limit the analysis to the case of massless fields. It
is these fields that give the main contribution to the vacuum polarization.

The situation of obvious interest is that of a black hole arising as a result of
collapse and the quantum field being originally in the ground, vacuum state. The
corresponding Green's function,

(11.2.1)

being symmetric as are all other Green's functions (11.1.3), is determined unambigu
ously by the following property: It coincides in the distant past (in the in-region) with
the free causal Green's function in Minkowski space. Obviously, the behavior of Gin

generally depends on details of the collapse forming the black hole. As a result, the
determination of Gin is a complicated problem, difficult to solve. Recall, however,
that after some time, the black hole becomes stationary. 4 The arguments used to
prove the universality of the properties of the Hawking radiation at late times lead

3 A general analysis of the problem of defining the vacuum in a spacetime with horizons can be
found in the papers of Fulling (1977a,b), Sciama et al. (1981), Fulling and Ruijsenaars (1987), and
the book by Wald (1994).

4 Rather, it is nearly stationary because its parameters change to some extent as a result of
quantum evaporation. But we have already mentioned that the rate of this change is negligibly
small as long as the mass of the black hole is much greater than the Planck mass.
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Figure 11.1: Penrose-Carter conformal diagram for eternal version of a rotating black
hole. The straight lines point to surfaces bounding the external region I, where boundary
conditions are fixed for Green's functions corresponding to the Hartle-Hawking ( IH)), Unruh
(IU)), and Boulware (IE)) vacuum states.

to the conclusion that a sufficiently long time after the formation of the black hole,
Gin is determined exclusively by the black hole parameters.

The following method is convenient for describing the properties of this "uni
versal" Green's function. Consider the spacetime of an eternal black hole having
the same parameters as the stationary black hole which forms in the collapse. In
this spacetime, define a Green's function GfB'(x, x') as the solution of the equation
(11.1.5) that at late times coincides with the asymptotic form of G~nB'(x, x') and is
obtained as its analytic continuation in the remaining part of the spacetime. Using
the same line of arguments as in Section 10.2.2, one can prove that the following
boundary conditions define the Green's function GfB'(X,x' ) unambiguously in the
spacetime of an eternal black hole for values of the arguments x and x' that lie in the
exterior region or at the event horizon: This function for a fixed value of x' in region
I (Figure 11.1) is of negative frequency with respect to the affine parameter U On H
for x on H-, and of negative frequency in advanced time von .]- for x on .]-. The
corresponding state IU) for which

(11.2.2)

is called the Unruh vacuum.
In order to make this definition more accurate, let us consider the spacetime of an

eternal version of the original black hole (see Figure 11.1). In the previous chapter
we used modes cpin, cpout, cpuP, and cpdown for the description of quantum effects in
the black hole exterior. These modes can be defined as solutions in the spacetime
of the eternal black hole by assuming that they vanish in the region 1'. We shall
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(11.2.3)

need another set of modes that vanish in the external region I and playa similar
role in the black hole interior (region I'). In order to construct these modes, one
can apply the discrete symmetry transformation J given by (H.53) to the IN-, OUT-,
UP-, and DOWN-modes and accompany it by complex conjugation. We denote these
new modes by cpui, cpfno, cpdn, and cpumop • We already used modes cpdn related to cpuP

by (H.54). Similar relations connect cpin with cpui, cpout with cpfno, and cpdown with
cpumoP.5 For example, cpui is a solution which vanishes in the external region I and is
determined in l' by the conditions that it vanishes on H- and is of positive-frequency
with respect to u' on J'+.

Solutions of massless field equations in the spacetime of the eternal black hole can
be characterized by giving their values on J'+ U H- U J-, and hence one can use a
set of IN-, UP-, DN-, and U/-modes as the basis in the region I U l' U I I U I I'. For
our purpose, instead of UP- and DN-modes it is more convenient to use their linear
combinations (10.2.65) and (10.2.66) that are of positive frequency with the respect
to the affine parameter U on H-. We called them D- and P-modes. Using this basis,
one can write

ep = L [CPTain,J + cp~ ap,J + cp~ ad,J + cp~i iiui,J + Herm. Conj.] .
J

Here "Herm. Conj." denotes the Hermitian conjugated expression. The operators of
annihilation aA,J and creation atJ obey the standard canonical commutation rela
tions (H.42). The Unruh vacuum is defined as a state IU) obeying the relations

ain,J IU) = ap,J IU) = ad,J IU) :::: aUi,J IU) = o.
The Wightman function GU+

G~~,(x, x') = L [cp~(Jj xh3~,(J; x') + cp~(J; x) 0~,(Jj x')
J

+ cp~(Jjx)0~,(JjX') +cp~(Jjx)0~,(JjX')]

(11.2.4)

(11.2.5)

can be used to construct the Green's function (11.2.2). If one of the points is located
in the black hole exterior (region /), the last term in the square brackets vanishes. It
is easy to show that the so-constructed Green's function meets the required boundary
conditions.

11.2.2 Hartle-Hawking vacuum

Another case of interest is that of a black hole placed in a cavity in equilibrium with
black-body radiation filling the cavity. Since this state is described by the density
matrix Po (10.4.22), the Green's function GH (x, x') corresponding to it is

(11.2.6)

5See a footnote on page 371.
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This Green's function can also be related to the spacetime of the eternal bla,k hole.
For a non-rotating black hole (when superradiant modes do not exist), one can

introduce a globally well-defined state IH) so that

(11.2.7)

coincides with (11.2.6) provided x and x' are located in region I. As shown by
Hartle and Hawking (1976), the corresponding Green's function satisfies the following
boundary conditions: For a fixed value of x' it is a negative-frequency function with
respect to the affine parameter U for x on H- and a positive-frequency function with
respect to the affine parameter V for x on H+ (see Figure 11.1). The state IH) is
called the Hartle-Hawking vacuum.

In order to provide the correct boundary conditions for G~B'(X, x'), we use sets
of modes UP, DOWN, DN, and UMOP that form a basis. The only problem is that
this basis is not orthogonal. Namely, one has

(11.2.8)

One can easily verify that the following linear transformation produces an orthonor
mal basis

'{JuP' - a '{Jup + b '{Jdown
J-JJ JJ'

dn' dn + -b umop'{JJ = aJ '{JJ J '{JJ ,

where

umop' b dn + umop'{JJ = J '{JJ aJ '{JJ

(11.2.9)

(11.2.10)

(11.2.11)

We now define modes '{J~', '{J~, '{J~', and '{J~' by relations similar to (10.2.65) and
(10.2.66)

d' do' -up' p' up' -do'
'{JJ = CJ'{JJ + SJ '{JJ' '{JJ = cJ '{JJ + SJ '{JJ ,

u' umop' -down' n' down' -umop'
'{JJ=CJ'{JJ +SJ'{JJ ,'{JJ=CJ'{JJ +SJ'{JJ ,

(11.2.12)

(11.2.13)

with coefficients CJ and SJ given by (10.2.67). One can easily verify that the so
defined modes D' , pI, U' , and N' are of positive frequency with respect to the affine
parameters on H+ and H- and form an orthonormal basis. The decomposition of
the field operator in this basis is

• ~ [ d'· p' • n' • u' • He']'{J = L...J '{JJ ad',J + '{JJ ap',J + '{JJ an',J + '{JJ au',J + erm. onJ..
J

(11.2.14)
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The operators of annihilation aA,J and creation atJ obey the standard canonical
commutation relations (H.42). The Hartle-Hawking vacuum is defined as the state
IH) obeying the relations

The Wightman function GH +,

G~it/(X, Xl) = L ['I'~ (J; x) 0~/(Jj Xl) + 'I'~ (J; x) 0~/(Jj Xl)
J

+ 'I'~(J;x)0~/(JjXI) + 'I'~(J;x)0~/(J;XI)] ,

(11.2.15)

(11.2.16)

can be used to construct the Green's function GH . This Green's function evidently
meets the required boundary conditions.

If the black hole is rotating, the situation is more complicated. As before, we
can formally define GH by imposing the same boundary conditions on H+ and H-,
but due to the presence of superradiant modes we shall have problems. In order to
suppress superradiant modes, we can assume that the black hole is surrounded by a
mirror-like boundary. As we have mentioned in the preceding chapter, equilibrium of
a rotating black hole in a cavity is possible only if the size of this cavity is sufficiently
small. One can accordingly expect that if there is no cavity or if its boundary lies
outside the "null cylinder", the Green's function GH(x, Xl) is, in a certain sense,
pathological. Kay and Wald (1991) have shown that this is indeed so [see also Frolov
and Thorne (1989)]. This is why we assume, when considering below the state IH) for
a rotating black hole, that the black hole in question is placed in a cavity contained
within the "null cylinder". For a slowly rotating black hole, the boundary of the
cavity may lie very far from the black hole, so that its influence is negligible.6 If the
cavity size is small and the boundary effects are important, one needs to specify the
boundary conditions at its surface E. Usually we assume that

(11.2.17)

The Green's function must also satisfy the appropriate boundary condition:

(11.2.18)

If the role of the boundary surface E is important, we replace the symbol III) with
IH, E) and GH with GH,'E.

In the presence of a boundary the sets of basis solutions must be modified. Namely,
since we are interested in the field characteristics inside the cavity, we no longer
need to consider IN- and OUT-modes. UP-modes are completely reflected by the
boundary, and hence coincide on H+ with DOWN-modes. For these reasons, it is
sufficient to consider only one set of modes (we denote them by 'I'?,'E) that coincide

6We recall that for the large size of the cavity the equilibrium could be unstable.
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with UP-modes on H- and obey the boundary condition (11.2.17) on E. In order to
define IH, E), we assume that besides the boundary E in the spacetime of the eternal
black hole there exists another boundary E' located in region I' obtained from E by
the action of the discrete symmetry J (H.53). We denote by cp~n,E a solution that
coincides with the DN-mode on H- and obeys the boundary condition ~11.2.17) on
E'. We use relations similar to (10.2.65) and (10.2.66) to define modes cp;,E and cp~,E

that are of positive frequency with respect to the affine parameters on the horizon.
The field operator rp inside the cavity admits the following decomposition

• ~ [ d,E. p,E • He' ]cp = L...J cpJ ad,J + cpJ ap,J + erm. onJ. ,
J

and the state IH, E) is defined by the relations

lip,J IH, E) = lid,J IH, E) = O.

(11.2.19)

(11.2.20)

The.Wightman function GH,E+,

G~;'+(X,X') = L [cp~t(J;x)ep~~(J;XI) +cp~E(J;x)ep~~(J;XI)], (11.2.21)
J

can be used to construct the Green's function (11.2.7). The so-constructed Green's
function evidently meets all the required boundary conditions.

Hartle and Hawking (1976) demonstrated that the Green's function GH (as well
as GH,E) has special analytical properties. In order to describe these properties, note
that if a change of variables,

t = - iT, a = ib, (11.2.22)

is carried out in the expression for the line element in the Kerr geometry (3.2.1),
the resulting metric has signature + + + +. Moreover, one can show [Hartle and
Hawking (1976), Hawking (1981)] that this metric is everywhere regular (including
the surface r = rE = M + VM2 + b2 corresponding to the analytic continuation
of the event horizon surface) provided the coordinate T is cyclic, with the period
21f/ KE (KE = Kla=ib)' A regular manifold with this metric is known as the Euclidean
black hole. On can also analytically continue the field equations and define the Eu
clidean Green's function GE for these equations. The result obtained by Hartle and
Hawking (1976) states that the Green's function GH (x, x') can be obtained by the
analytic continuation (11.2.22) of the function GE(x,x' )

GH(x, x') = [i GE(x, Xl)] ~=". .
6o::=-Ul

(11.2.23)

In particular, for a massless scalar field, GE is a symmetric solution of the equation

DE GE(x, x') = - o(x, Xl), "( ') _ o(x - Xl)
U X,X -

ViE
(11.2.24)
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in the space of the Euclidean black hole, falling off at infinity and regular at the
surface of the Euclidean horizon. Here

(11.2.25)

The Euclidean Green's function CE,'E is defined in a similar manner, but instead of the
fall off at infinity one imposes boundary conditions on E. The analytical continuation
of CE,'E gives CH,'E.

Thus, it is possible to employ the following method for constructing CH (x, x'):
First find a Euclidean Green's function CE and then obtain CH using analytic contin
uation (11.2.23). This procedure is very similar to that of Wick rotation and transition
to the Euclidean formulation that is frequently used in quantum field theory in flat
spacetime. Quite often, this procedure considerably facilitates the calculation of CH .

In the absence of walls the Hartle-Hawking state for a rotating black hole is badly
defined. Because of the presence of superradiant modes the density matrix Po in
(11.2.6) does not exist (see discussion in Section 1004.5). One can still define CH as a
solution of (11.1.5) which is of positive frequency with respect to the affine parameter
on H+ and of negative frequency with respect to that on H-. But Kay and Wald
(1991) proved that this Green's function necessarily loses its Hadamard-type behavior
in the black hole exterior. Moreover, there does not exist any Hadamard state which
is invariant under the symmetries which generate the event horizon. In particular,
there does not exist a pure state IH) in the spacetime of the eternal black hole for
which relation (11.2.7) is valid. The problems that arise when one tries to introduce
the notion of a particle connected with the positive frequency modes with respect
to the affine parameters on both horizons for superradiant modes are discussed in
[Frolov and Thorne (1989)]. All these problems are connected with superradiant
modes.

11.2.3 Boulware vacuum

Let us briefly discuss one more choice of state which is useful for describing quantum
effects in black holes and which was first suggested by Boulware (1975a,b, 1976). This
state, denoted by IB), is known as the Boulware vacuum. For a non-rotating black
hole the corresponding Green's function C~B'(X,X') satisfies the following boundary
conditions: at a fixed value of x' E I, it is a negative-frequency function of v for x on
J- and a positive-frequency function of u for x on J+.

To construct this Green's function we shall use the basis {rp"J, rp~ut, rp~i , rp~;o}. This
basis is not orthogonal because

< rp"J,rp~~t > = RjoJJ' , < rpji,rpT,0 > = RjojJ" (11.2.26)

To make it orthogonal, we perform linear transformations similar to (11.2.9) and
(11.2.10)

(11.2.27)
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rp ui' _ A rpui + B- rpfno rpfoo' - B rpui + A rpfnoJ-JJ JJ' J-JJ JJ,

where
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(11.2.28)

(11.2.29)

One can decompose the field operator 0 as

• "" [ in'. out' •rp = L....J rpJ aio',J + rpJ aout',J
J

ui' • foo' • + H C' ]+ rpJ aui',J + rpJ afno' ,J erm. onJ.,

and define IB) by the relations

/lin',JIB) =/lout',JIB) = /lui',JIB) = /lfno',JIB) = O.

The Wightman function GB +,

G~~,(x,x') = L [rp~'(J;X)ep~:(J;x')+rp~ut'(J;x)ep~~t'(J;x')
J

+ rp~' (J; x) ep~;(J; x') + rp~o' (J; x) ep~?' (J; Xl)] ,

can be used to construct the Green's function

(11.2.30)

(11.2.31 )

(11.2.32)

(11.2.33)

This Green's function evidently meets the required boundary conditions.
Consider a non-rotating spherical body of mass M and radius Ro which is slightly

larger t.han the gravitational radius r+ = 2M of this body. Since the corresponding
Killing vector field ~t;) ap, ::: at in such a static spacetime is everywhere timelike, every
particle has positive energy, and particle creation is impossible. The corresponding
vacuum IB; Ro) defined as the lowest energy state is stable. The Green's function GB

for a non-rotating black hole can be treated, in a certain sense, as the limit of GB;Ro as
Ro -t r+. Obviously, no physical realization is possible of astatic system whose size is
arbitrarily close to the gravitational radius. In this limit, the particles on the surface
of the body would move at infinitely large acceleration, and bringing them to rest
requires infinitely large forces. As a result, the Green's function GB which has simple,
regular behavior far from the black hole and corresponds to the absence of quantum
radiation both on J+ and J- reveals "poor" analytical behavior close to the event
horizon. The renormalized quantities (BI 1'p,,,IB) and (BI02IB) corresponding to GB

diverge both on H+ and H-.
Because of the presence of superradiant modes, GB is not well defined for a ro

tating black hole.
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11.2.4 Mode expansion for Hadamard's functions in the black
hole exterior

(11.2.35)

(11.2.36)cp~B,(J;x,X') ~ O.

To calculate the renormalized value of the energy-momentum tensor, one needs to
know the values which the Green's function G(x, x') assumes for neighbouring values
of x and x'. However, this does not mean that the boundary conditions, imposed on
the Green's function far from the point of interest for us, do not affect the behavior of
G(x, x') in the limit of coincident points. This is readily verified if one recalls that the
wave equation determines the Green's function up to a solution of the homogeneous
equation which is fixed unambiguously by the boundary conditions.

If the characteristic radius of curvature L of spacetime in the theory of a massive
field (with mass m) is much greater than the Compton length ..\ = hlmc, one can
use the expansion in a small parameter c = (..\1 L)2 and obtain a uniform approxi
mation for the Green's function. 7 No such parameter exists if the field is massless.
In the spacetime of a black hole the natural method of analyzing such fields is to
expand them in their eigenmodes [Candelas (1980), Candelas et al. (1981)] because
the wave equations for massless fields on a black hole background permit separation
of variables.

We restrict ourselves by considering vacuum polarization effects in the exterior of a
black hole. [For the calculation of these quantities inside the black hole, see Candelas
and Jensen (1986)]. To calculate (t::(x))ren and (cP(x))ren for points x lying outside
the horizon, one needs to know Hadamard's fu~ction G~1,(x, x') with both points
x and x' located in the black hole exterior. Using (11.1.7) and expressions (11.2.5),
(11.2.16), (11.2.21), and (11.2.32) for the Wightman functions for different quantum
states, one can obtain the required mode expansion for Hadamard's functions. We
define

cp1B,(J; x, x') = ep1(J; x) cp~,(J; x') + cp1(J; x) ep~,(J; x'). (11.2.34)

Here the index A takes values "in", "out", and so on, specifying the type of the
modes.

Let us consider at first G%~)(X,X'). One has

cp~B,(J; x, x') + cp~BI(J; x, x') ~ coth(7rwJlTJIK) cp~~, (J; x, x') ,

Here symbol ~ indicates that the relation is valid if both points x and x' are located
in the black hole exterior. Using these relations, we get

[1
00

U,(l) I ext in I
GAB' (x,x) = L 0 dw cpAB,(J; X, x)

l,m,P

7Note that in the Riemannian space with the Euclidean signature of the metric, the Green's
function of a massive field signature falls off exponentially as the distance between the points x and
x' increases. If these points are far from the boundaries, the effect of boundary conditions is indeed
negligible for these fields.
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In order to get G~;,,(1) (x, Xf), we note that

p,E (J. .') + d,E (J. ') ext th( / ) up,E(J ')'PAB' ,X,X 'PAB' ,X,X = co 1fWj(7j K 'PAB' ;X,X.

Using this relation and (11.2.21), one gets

H,E,(I) '_ "'" 100

1fW up,E. ,GAB' (X,X)- L....J dwcoth-'PAB,(J,x,x).
l,m,P !1m K
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(11.2.37)

(11.2.38)

(11.2.39)

The representation for G~~~)(x,x') for a non-rotating black hole can be obtained
in a similar manner. Note that

p' ( ') d' ( ') ext'PAB' J;x,x +'PAB' J;x,x (11.2.40)

u' (J ') n' ( ') ext ( /) dn '( ')'PAB' ;X,X +'PAB' J;x,x = coth 1fWj K 'PAWn J;x,x ,

up' (J. f) + down' (J. f) up (J. ') + in (J. f)'PAB' ,X,X 'PAB' ,X,X = 'PAB' ,X,X 'PAB' ,X,X .

Using these relations and (11.2.16), we have

(11.2.41)

(11.2.42)

Finally, to construct G~~~)(x,x') for a non-rotating black hole, we note that

in' (J. f) + out' (J. f) in (J f) + up (J f)'PAB' ,X,X 'PAB' ,X,X = 'PAB' ;X,X 'PAB' ;X,X ,

so that

G~~~)(X,Xf)= L 100

dW['P~B,(J;x,x')+'PiB,(J;x,Xf)J.
l,m,P 0

(11.2.44)

(11.2.45)

For generalization of expressions (11.2.43) and (11.2.45) to the case of a rotating
black hole, see Candelas (1980), Candelas et al. (1981), and Frolov (1986).
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11.3 (Tt)ren and (<jJ2)ren in the Spacetime of a Black
Hole

11.3.1 Christensen-Fulling representation

The mode expansion of Hadamard's functions constructed in the previous section
can be used for the analysis of the behavior of (i/:)'en and (cp2)'en in the spacetime
of a black hole. Before presenting these results, we discuss some general proper
ties of (i/:)'en in the Schwarzschild spacetime. The symmetry of (i/:) due to the
symmetries of the background Schwarzschild gravitational field and the conservation
law (i/:);p, = 0 drastically reduce the number of its independent components.
Namely, Christensen and Fulling (1977) demonstrated that any conserved (i/:) in
the spacetime of a non-rotating black hole admits the following representation:

4

(i/:) = L t(i):'
i=1

where t(i): in the coordinates (t, r., B, ¢) have the forms

p, _. ( FH 1 FH 1 1)
t(l)" - dlag - -;:2 + "2 T, -;:2' 4" T, 4" T ,

p, - d' (FG 8 FG ee)t(2)" - lag -~-2 '~" ,

(11.3.1)

(11.3.2)

Here

p, FW P,

t(3)" = 47rr2 T",
p, _ NF d' ( )

t(4)" - 47rr2 lag - 1, 1, 0, 0 .

and

F = (1- 2M/rt l
, T(r) = (i:(r)) ,

(11.3.3)

'0 1e(r) = (To (r)) - 4" T(r) , (11.3.4)

H(r) =! r (r' - M) T(r') dr',
212M

G(r) = 2 r (r' - 3M) 8(r') dr'.
12M

(11.3.5)

8The upper index of t(i): enumerates columns, while the lower one enumerates rows of the
matrices. Here and later diag(a, b, c, d) denotes a diagonal matrix with entries equal to a, b, C, don
the diagonal.
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Each of the tensors t(i):: satisfies the conservation law (t(i)::);P, = O. Only t(l)t has
nonzero trace, only t(2)t has trace-free component t(2)t - ~ t(2) <5~ whose BB-component
is nonzero, only t(3)t has non-diagonal components describing fluxes, and only t(4)t

is not regular on H+.
In other words, an arbitrary energy-momentum tensor satisfying the conservation

law and symmetry conditions imposed by the Schwarzschild metric is characterized
unambiguously by fixing two functions T(r) and 8(r) (one of them, T, coincides
with the trace of the tensor) and two constants Wand N: W gives the intensit,y of
radiation of the black hole at infinity (W = - dM/dt) , and N vanishes if the energy
momentum tensor is regular on H+. The radiation intensity W is not zero only in the
Unruh vacuum. The coefficient N vanishes for the Unruh and the Hartle-Hawking
vacuums.

11.3.2 Asymptotic values of (Tt)ren and (tjJ2)ren at the horizon
and at infinity

The simplest case is the calculation of (ep2(X)) for a massless scalar field in the
Schwarzschild metric. Note that for a general location of x the difference between any
two of the above-described Hadamard's functions remains finite in the limit of coin
cident points because the divergences removed by renormalization have a universal
form. Thus, for these finite differences we have

(Ulep2(X)IU) - (Hlep2(X)IH) = - 2L L)O ew/~W_ 1 Icpin(J; xW,
I,m

(11.3.6)

(11.3.7)

where B= K/21f is the black hole temperature.
Mode representations for Hadamard's functions make it possible to analyze the

behavior of (ep2)ren and (T;:)ren close to H± and J±. We recall that the IN- and UP
modes for a massless scalar field in the Schwarzschild geometry have the following
behavior (see Appendix G)

A( n . ) __1_ _iwtxNr,w)v (B-1.) (1138)cp wt:.m, x - r;-:::-: e L lm ,'I', . .
y41fw r

where

as r-too,
(11.3.9)
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{

r e-iwr• + e+iwr• as r -t r~ +,
x?(r,w) '"

tlwe+iwr. as r -t 00.

(11.3.10)

(11.3.11)

Using the asymptotic form of the solutions near the horizon and near infinity, one
gets [Candelas (1980))

00 { A(w) as r -t r + ,L 1X~n(r,wW '"
l=O 4w2r2 as r -t 00,

as r-too,

where

00

A(w) = ~)2f + 1)1 tlw l
2

.

l=O

Using these results, Candelas (1980) obtained9

(11.3.12)

(11.3.13)

as r-too,

(11.3.14)

(11.3.15)

as r-too.
(11.3.16)

Here () =(87rM)-1 is the temperature of the black hole, and

100 dw A(w)
BM = .
() 0 w(exp(87rMw) -1)

(11.3.17)

9In these formulas (and those that follow) the superscript "ren" is dropped in (.p2)ren and (i'eyen
because we will operate only with renormalized values of these quantities. The superscript after the
angle brackets indicates the vacuum state for which the averaging is done. Thus, (<1/) B denotes
(BI.p21B)ren.
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(11.3.18)

In a similar manner, one can obtain the asymptotics of (Tt(r)) for different
vacuum states [Candelas (1980)). In particular, for the leading terms of (Tt(r))U at
the horizon and at infinity one has

{
W(I-r+/r)-1(47rr~tlTt as r-H+,

(Tt(r))u rv

W(47rr~)-1Tt as r -t 00,

where Tt in (t, r., B, <p)-coordinates is the matrix given by (11.3.3), and

W _ 1 roo dww A(w)
-27r}o exp(87rMw)-I'

(11.3.19)

(Tt(r)) has a similar behavior for other massless fields. The coefficients W for the
massless scalar field (8 =0), two-component neutrino field (8 = 1/2), electromagnetic
field (8 = 1), and gravitational field (8 = 2) are [Page (1982), Elster (1983b))

Wo = 7.4 X 10-5M- 2
, W1/ 2 = 8.2 X 10-5M- 2

,

(11.3.20)

For the Boulware vacuum, one has in the neighborhood of a Schwarzschild black
hole [Calldelas (1980), Candelas et al. (1981), Sciama et al. (1981)):

- B h.. (OOdwW(W 2+821\;2) . 111
(Tt(r)) rv- 27r2(I-r+/r)2}o ew / o _(_1)2. dlag(-1'3'3'3),(11.3.21)

where h. is the number of polarization states of the spin-8 field. Quantities charac
terizing vacuum polarization in this state display this singular behavior because the
state itself corresponds, as pointed out above, to a physically non-realizable situation.
At large distances the components of (it(r))B are expected to be of the order of the
square of the Riemann tensor and to fall off like O(r-6 ) [Candelas (1980)).

The renormalized stress-energy tensor in the Hartle-Hawking state remains finite
at both horizons H±, as well as at the bifurcation of horizons where the Killing vector
~(t) vanishes. The symmetry condition L{(,) (Tt)H = 0 implies that at the bifurcation
sphere one has

(Tt)H :::: diag(A, A, B, B). (11.3.22)

The sum (A + B) is determined by the trace anomaly

A B - _1_ ea/h0c. _ 1 (11 )+ - 576011"2 a/ho - 76801l"2M4 . .3.23

Define A = (76807r2M 4)-la and B = (76807r2M 4)-I,8. Using the mode expansions
and the asymptotic form of the modes near the horizon, Candelas (1980) obtained
by numerical calculations the following values for the coefficients a and ,8:

a = 0.786, ,8 = 0.214. (11.3.24)
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Figure 11.2: The values of (81rM)2(.p2) as functions of e= riM - 1: curve I _ (.p2)H,
curve II - (.p2)U.

At large distances one can neglect the effect of the gravitational field on the thermal
bath surrounding the black hole. In accordance with this, (t!:)H at large distances
has the following asymptotic form

A· 7r 2(}4 1
(T!:)H ~ 90 diagC-3, 1, 1, 1) = 84 x 90 X 7r2M4 diag(-3, 1, 1, 1). (11.3.25)

Here () = (87rM)-1 is the temperature of the black hole.

11.3.3 Numerical results

Unfortunately, it is not possible to sum the series for (ep2),en and (tp.lI)'en and to find
an explicit final expression for these quantities for arbitrary radius r in the general
case. Consequently, either numerical methods or methods of approximate summation
of series are used to obtain a result. The work completed up to now has been limited
mainly to the case of non-rotating black holes.

Numerical calculations published to date cover mainly the cases of the scalar and
electromagnetic fields in the spacetime of a Schwarzschild black hole. First numerical
calculations of (ep2)H and (ep2)U were performed by Fawcett and Whiting (1982).
Their results are plotted in Figure 11.2. Howard and Candelas (1984) and Howard
(1984) calculated the components (t!:)H for a conformal massless scalar field and
found (and corrected) an error in the earlier calculations of this quantity by Fawcett
(1983). Since there is no net flux of energy in the Hartle-Hawking state one can
use the Christensen-Fulling representation to show that the tensor (t!:)H in the
Schwarzschild geometry is diagonal in (t - r )-coordinates, and its value is completely
determined by only one component (e.g., by (tt)H). To obtain (tt)H, one can use
the mode expansion of the propagator GH

• It is convenient to make calculations in
the Euclidean space obtained by Wick rotation t = -iT [see (11.2.22)). In particular,
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one has [Candelas (1980), Howard and Candelas (1984), Howard (1984))

• 00

CH(-iT, r, (}, ¢; -iT', r', (}', ¢')= 327r:M2 L cos[nK(T - T'))
n=!

423

where ~ = riM -1, K = 114M,

cos 'Y = cos (} cos (}' + sin (} sin (}' cos (¢ - ¢') , (11.3.27)

and ~< and ~> denote the smaller and greater of ~ and f. Pf and Qf are Legendre
functions, and p~ and q~ are solutions of the radial equation

[
d 2 d n2 (1 + 0 4

]
d~(~ -1)d~-f(f+l)-16(e_l) R(O=O, (11.3.28)

specified by the requirements that, for n > 0, pi(O is the solution that remains
bounded as ~ -t 1, and q~(O is the solution that tends to zero as ~ -t 00. First one
applies the differential operator (11.1.8) to obtain (tS)H for the split points. After
this one puts T = T' = t, r = r', (} = (}', and ¢ = ¢'.

By using the general expression obtained by Christensen (1976) for the subtracted
term that is needed for the renormalization procedure, one can identically rewrite it
in the form of a sum over n. After the subtraction one can take the limit t -t O.
In order to improve the convergence of the series in f, Howard (1984) added to and
subtracted from each term of the series a similar term in which the solutions p~ and
ql' are replaced by similar solutions of (11.3.28) in the WKB approximation. As a
result, one gets

(11.3.29)

The first term (tSVfnalytic, which requires for its calculation the solutions in the
WKB approximation, can be obtained in explicit analytical form. The second term
(tS);;"meric requires numerical calculations. The above-described procedure guaran
tees that the series for (tS);;"meric converges rapidly enough. Moreover, the calcula
tions show that this term is a small correction to (tSVfnalytic' Representation similar
to (11.3.29) can be written for all the components of (tt)H;

( tl')H - (tp-)H + (tP-)H
II - II analytic II numeric'

The calculations give [Howard and Candelas (1984), Howard (1984)]

2(}4

( tp-)H _ 7r p-
" analytic - "90 t" ,

(11.3.30)

(11.3.31)
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Figure 11.3: The values of the components [90(81rM)4j1r2 ](Tt') for a massless scalar field
in the Schwarzschild geometry as functions of ~ = r / M -1. The figures show the behavior of
the (T,') (a), (T;) (b), and (Tt) = (Tt) (c) components of the energy-momentum tensor.

Curves I - components (Tt')H, curves II - components (Tt')~alytic' curves III - components

(Tt')u.

(11.3.32)It 1 - z6(4 - 3Z)2 d· (3 1) 24 6 d· (3 1 0 0)tv = (1 _ z)2 lag - ,1,1, + Z lag , " ,

where Z = 2M/r.
The renormalized expectation value of quantum stress-energy tensor for a confor

mal massless scalar field in the Unruh vacuum state in the Schwarzschild geometry
was calculated by Elster (1983b). This tensor has a non-vanishing non-diagonal com
ponent (1'[)U = -W/(411T2

), where W is the black hole luminosity (11.3.19).
Figure 11.3 plots the nonzero components (1';:)H calculated by Howard and Can

delas (1984) and Howard (1984), and the diagonal components of (1';:)U calculated
by Elster (1983b). 10

The renormalized expectation value of the stress-energy tensor in the Boulware
vacuum state (1';:)B for a massless, conformally coupled scalar field in the Schwarzschil

JOlt is interesting to note that the components of (Tt')U describing the energy and angular mo
mentum fluxes across the horizon of a rotating black hole can be calculated using a simple approach
based on the equivalence principle [Frolov and Thorne (1989)J. For a general discussion of the
equivalence principle in the quantum domain, see, e.g., Ginzburg and Frolov (1987).
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(11.3.33)

spacetime was calculated by Jensen, McLaughlin, and Ottewill (1992). Numerical
calculations of (1';:)H and (02)H in the Schwarzschild metric in the presence of
boundaries were done by Elster (1982a,b, 1983a).

Jensen and Ottewill (1989) performed numerical calculations of the renormalized
quantum stress-energy tensor for an electromagnetic field in the Hartle-Hawking state
in the Schwarzschild geometry. They applied a similar procedure of extracting the
semi-classical "analytic" part of (i;:)~alytiC and numerically summing the series for

(i;:):!umeric that has an improved convergence. Jensen and Ottewill (1989) obtained
for the non-vanishing components of (1';:)~alytic:

284

( t!J.)H _ 1r !J.v analytic - 45 tv ,

t~ = 1 +2z +3z2
- 76z3 + 295z4

- 54z5 +285z6
, (11.3.34)

(11.3.35)

At large distances the renormalized quantum stress-energy tensor for the electro
magnetic field has the same expected thermal behavior as for the massless scalar
field .

1r
284

(itY ~ 9O h(s)diag(-3,1,1,1).

The only difference· is connected with the different number. of polarization states
(h(O) = 1, h(l) = 2). Jensen, McLaughlin, and Ottewill (1995) made similar cal
culations for gravitational perturbations in the Schwarzschild spacetime. The renor
malized quantum stress-energy tensor for the electromagnetic field in the state of the
Unruh vacuum was calculated by Jensen, McLaughlin, and Ottewill (1991).

Recently, Anderson, Hiscock, and Samuel (1995) generalized the results of Howard
and Candelas (1984) and Howard (1984) and developed a method for computing (02

)

and the stress-energy tensor (i;:) of quantized scalar fields for the Boulware and
Hartle-Hawking states in an arbitrary static spherically symmetric spacetime. The
fields can be massless or massive with an arbitrary coupling eto the scalar curvature.
By using the WKB approximation for the radial solutions, the authors developed a
general scheme that allows one to represent (1';:) in the form (11.3.29). A similar
representation is valid for (02

):

(11.3.36)

For the metric

(11.3.37)
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one has [Anderson (1990), Anderson, Hiscock, and Samuel (1995)]

B
2

m
2 1 [ ( 1)] (J-L

2I)(0
2

)analytic = 121 + 161r2 - 161r2 m
2

+ e- 6" R In 4,\2

I'h' I" I'
1921r21h2 + 961r21h + 481r2r1h

(11.3.38)

(11.3.40)

Here the prime denotes the derivative with respect to r, ,\ = 21rBexp(-C), and C is
Euler constant. The parameter J-L reflects the ambiguity in the renormalization pro
cedure. For a conformal massless scalar field in the Schwarzschild spacetime relation
(11.3.38) reproduces the expression obtained earlier by Fawcett and Whiting (1982)

(
"2)H 1 l-z4

t.p = 7681r2M2 l-z (11.3.39)

The explicit expression for (Tt)analytic can be found in [Anderson, Hiscock, and
Samuel (1995)]. This paper also contains the results of numerical calculations of the
stress-energy tensor of massive and massless fields in Schwarzschild and Reissner
Nordstrom spacetimes.

11.3.4 Thermal atmosphere of black holes

The main feature of the tensor (Tt)H is that its components are finite on the event
horizon. An observer at rest at a point r close to the event horizon records the local
energy density E = - (Tl)H. This quantity remains finite as r -t r+. On the other
hand, the temperature measured by the observer,

K ( r+)-1/2
Bloc =- 1-- 1

21r r

grows infinitely near the horizon. This local temperature can be measured by using
a two-level system as a thermometer: Transitions between levels are caused by the
absorption and emission of quanta of the field (photons). After a sufficiently long
exposure, the probability for a system to occupy the upper level will be less than that
for the lower level by a factor exp(!:i.E/Bloc ) (!:i.E is the energy difference between the
levels). Other small-size detectors can be used in a similar manner [Unruh (1976b)].
It is not difficult to show that the temperature in the vicinity of r+ is Bloc;:::: Bo = a/21r,
where a is the observer's acceleration; as r -t r +, Bloc -t 00.11

11 Likewise, an observer moving at an acceleration a in a flat spacetime will also record a temper
ature (Ja =a/21r using the thermometers described above. This is so-called Unruh effect. From the
standpoint of the accelerated observer, the standard Minkowski vacuum behaves, in a sense, just
like thermal radiation at a temperature (Ja- Note that while recording the energy of these thermal
energy particles, the observer cannot measure their momentum with sufficient accuracy because the
c1Iaraeteristic wavelength of this "radiation" is of the order of distance to the horizon. The same
remark holds for the "particle" of thermal radiation recorded by an observer close to the black hole.
For details, see Unruh (1976b), Unruh and Wald (1984).
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(11.3.41)

The results plotted in Figure 11.3 imply that the radiation energy density E in
the neighborhood of such a point is E - a(K./21r)4 «aB~. The law of aB4 is evidently
violated. The reason of this violation is that close to the horizon the gravitational
field changes greatly over distances of the order of the characteristic wavelength of
thermal radiation. The fact that, in contrast to aB~, the quantity E = -( TD H is finite
at the horizon, can be interpreted as follows: The contribution of vacuum polarization
caused by a strong gravitational field close to the horizon compensates exactly for
the divergence that would take place in the radiation energy density if the law aB~

were not violated.
To confirm this conclusion, let us consider a spacetime region close to the horizon.

Denote by p the proper distance from the horizon

p = ! dr = y'r(r _ 2M) + Min r - M + y'r(r - 2M) .
y'1- 2m/r M

For small p one has r ~ 2M + p2/8M. Introduce new coordinates X, and Y

(11.3.42)

If mass parameter M now tends to infinity with the values of the coordinates (t, p, X, Y
fixed, the Schwarzschild metric transforms into the metric

(11.3.43)

This is a so-called Rindler metric describing a homogeneous gravitational field (see
Appendix C.2).

Consider a thermal gas of massless scalar particles in a homogeneous gravitational
field. Since the local temperature depends on the distance p from the horizon, we
choose the normalization point at p = K.- 1 and denote by B the value of the local
temperature at this point. The local temperature at other points is B1oc(p) = B/(K.p).
The corresponding propagator G(x, x') for the scalar field in this state can be obtained
by analytical continuation of the Euclidean Green's function GE(x,x' ) which is a
solution of the equation

DEGE(X,X' ) = - «5(x, x') ,

in the space with the Euclidean metric

ds~ = K.2l dT2+ dl + dX 2+ dy2.

(11.3.44)

(11.3.45)

(11.3.46)

It is assumed that T is periodic, and its period is B-1
. For a value of the period

different from 21r/K. there is a cone-like singularity at p = O. The Euclidean Green's
function GE(x,x' ) for such a space was obtained by Dowker (1978) and is of the form

E( ') B sinh(21rB >'/K.)
G X,X = 41r K. pp' sinh >. cosh(21rB>'/K.)-cos[21rB(T-T')J'
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where x = (7, p, X, V), x' = (7' ,ri, X', V'), and

p2 + p'2 + (X _ X ' )2 + (Y _ y ')2cosh..\ = '-----'---'-----'---'----"-
2pp'

(11.3.47)

For renormalization it is sufficient to subtract the flat space Green's function, which
in Rindler coordinates is

G~(X,X') = _1_ \() ]"
81r2p p' cosh..\ - cos 7 - 7 ' K

The expression for (02
) can be obtained by taking the coincidence limit

(02
) = lim [GE(x,x' ) - G~(X,X')].

x-.+x'

(11.3.48)

The components of ('Ft) can be found applying the differential operator (11.1.8) to
the difference GE - Gg and after that taking the coincidence limit. Straightforward
calculations give

(11.3.49)

(11.3.50)

Now note that Bloc = B/(Kp) is a local temperature of thermal radiation, and Bu =
w/21r = 1/(21rp) is the Unruh temperature, which is determined by the acceleration
w = 1/p of an observer who is at rest in the gravitational field. This allows one to
rewrite (11.3.49) and (11.3.50) as follows

(02
) =

1
1
2

[Bfoc - B~] , (11.3.51)

2

(Tn = ~O [B~c - Btr] diag(-3, 1, 1, 1). (11.3.52)

In the more general case where beside massless scalar particles there are massless
fermions (neutrinos) and photons, one has l2

(Tn = :~ (Bloc - B~) x [[ h(O) + ~ h(I/2) + h(I)] Bloc

12This result follows from the expression for (1'1:) in a spacetime of a cosmic string obtained by
Frolov and Serebriany (1987) [see also Dowker (1987)J. The metric of a cosmic string can be obtained
from the Euclidean metric of the conical space (11.3.45) by making the analytical continuation
Y -t iT. Since both metrics (for a gravitational field of a cosmic string and for the homogeneous
gravitational field) can be obtained from the same Euclidean metric (11.3.45) by means of different
analytical continuations, there exists a simple relation between (1'1:) in these two spacetimes.
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- [h(O)+ 1
8
7 h(I/2) + 11h(I)] B~] diag(-3,1,1,1).
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(11.3.53)

In the absence of the gravitational field (when Bu = 0), these expressions repro
duce the standard results in flat spacetime. Terms modifying the standard relations
are connected with the presence of a force acting on virtual particles which changes
their state of motion. Hence, the terms containing the Unruh temperature describe
the vacuum polarization effect. In a homogeneous gravitational field both of these
terms (those connected with thermal effects and with the vacuum polarization) have
the same structure and cancel one another when B = K/21r. In the presence of
curvature the cancellation is not exact but the corresponding curvature dependent
corrections are finite. This explains why (02 )H and (Tt)H remain finite at the hori
zon.

11.3.5 Analytical approximations

Page's approximation

Page (1982) suggested a method of approximate computation of (0 2)H and (Tt)H
for a conJormal invariant massless scalar field. The value of (02)H in Page's ap
proximation, (0 2W, coincides with (11.3.39). Candelas and Howard (1984), Howard
and Candelas (1984), and Howard (1984) have demonstrated that for the conformal
massless scalar field the values of (02)~ and (TtW in Page's approximation fit very
well the behavior of (02)H and (Tt)H (the deviations of (02)~ from the true value of
(02)H do not exceed 1 %, and those of the components (Tt)~ do not exceed 20 %).

Two propositions are basic for constructing Page's approximation:

(1) Let there be two conformal spaces, and let the calculation of renorma/ized expec
tation values (02

) and (Tt) for a conformal massless scalar field be carried out in
each of these spaces in the states obtained from each other by the same conformal
transformation. Then the following combinations containing (02)

(11.3.54)

and (Tt)

JIt = gl/2{( Tit) + 0: [(calt In g) ;,8 + ~ R,8 calt In g]v v ,8v;a 2 a ,8v

(11.3.55)

are invariant and do not depend on which conformal space they are calculated in.
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(11.3.56)

(11.3.57)

The conformal trace-anomaly coefficients 0:, (3, and 'Yare given by expressions (11.1.13)
(11.1.15).

(2) Let the metric

(11.3.58)

be a static solution of Einstein's vacuum equations (V2 = - e(t)1t e~), e~) being the
Killing vector field). Then the conformal trace anomaly vanishes in the space with
the metric ds2 = V-2 ds2.

The metric ds2 has the form

ds2 = - dt2+ h;j dx i dx i

and is often called an ultrastatic metric. Page suggested to calculate (02
) and (Tt)

first in the space with the ultrastatic metric ds2, using the solution obtained by WKB
approximation for a Green's function in it, and then return to the original physical
space taking into account the invariance of the quantities (11.3.54) and (11.3.55).
This approach gives for (cj;2)H of the scalar massless field in the Schwarzschild metric
the expression (11.3.39), and for (T/:)H it gives the following approximate formula

( -It)H _ 11"2 84 [1- (4 - 3Z)2Z6( It .It .0) 6(.1t ctJ .It >1)] (1 3 )
Tv P-90 H (l-z)2 ~v-4uQuv +24z 3uQ ov+ uJuv , 1. .59

where 8H = (811"M)-J is the black hole temperature. The behavior of the nonzero
components (Tf)1j, is shown in Figure 11.3 by dashed lines. This approximate expres
sion was used by York (1985) for analyzing the back-reaction of vacuum polarization
on the gravitational field of a black hole.

Page's method can also be used for determining the approximate values of (cj;2)
and (T/:) in the Boulware vacuum. Calculations give [Frolov and Zel'nikov (1985a)]

(11.3.60)

(T/:)~ = M22 [( ~_3Z))2(-~~+4~~~~)+6(3~~~~+~r~~)].(I1.3.61)
1440 11" r 6 2 1 - z



11.3. (Tt)'en and (0 2)'en in the Spacetime ofa Black Hole 431

Expressions (11.3.60)-(11.3.61) agree with asymptoticformulas (11.3.16) and (11.3.21)
near the event horizon and manifest the correct asymptotic behavior at infinity. It
seems that the accuracy with which (11.3.60) and (11.3.61) reproduce the exact val
ues of (02)B and (Tt)B is of the same order as in the case of the Hartle-Hawking
vacuum. Later it was shown that the analytic part which arise in the numerical
calculations coincides with the result of Page's approximation [see Anderson (1990),
Anderson, Hiscock, and Samuel (1995)]

Brown-Ottewill-Page approximation

Brown and Ottewill (1985) suggested a different method of determining (02
) and

(Tt) for conformally invariant fields. In the case of a conformal massless scalar field,
the method again yields the expressions (11.3.39) and (11.3.59) found by Page's
approximation. Brown and Ottewill noticed that conformal anomalies vanish not
only in the spaces with the ultrastatic metric ds2 = V- 2 ds2 , but also in a wider class
of spaces whose metrics are of the form ds2 = exp(at) V- 2 ds2• If we demand that the
choice of state be such that not only the trace but all other components of (Tt) in the
space ds2 vanish as well, then a quite definite value of (Tt) is obtained after we return
to the original space. Brown and Ottewill showed that for the Schwarzschild geometry
the thus obtained expression for a = 0 coincides with (Tt)~, and that for a = -2/1: =
-(2M)-I, it correctly reproduces (Tt)~. Similar approximate expressions can be
obtained in the framework of this approach for the contributions of the neutrino and
electromagnetic fields to (Tt).

A refined version that unites this approach with Page's results was proposed by
Brown, Ottewill, and Page (1986). The starting point of this work is an observation
that (Tt)ren can be obtained by the variation of the effective action

(T,wyen = ~ «5W . (11.3.62)
y-g «5g/LV

Under a conformal transformation the renormalized one-loop effective action W[g/Lv]
for a massless conformal invariant field transforms according to the equation [Brown
(1984), Brown and Ottewill (1985), Dowker (1986)]

W[e- 2wg/Lv] = W[g/Lv] - 0: A[w; g] - ,8B[w; g] - ,C[w; g], (11.3.63)

(11.3.64)A[w; g] = ! d4xyCg {Wll + ~ [R + 3(Ow - w2 )](Ow - w2
) } ,

B[w; g] =! d4xyCg [wK + 4R/Lvw;/Lw;V - 2Rw 2 + 2(w2? - 4w20w],(Il..3.65)

where

(11.3.66)
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Here 1£ ::::: C/LVPT C/LVPT, 1(. ::::: • R/LvpT •R/LVPT, W2 ::::: W;/L w;/L, and the coefficients a, {3, and
, are the coefficients of the conformal trace anomaly given by (11.1.13)-(11.1.15).

Using the relation

one gets

(T:yen ::::: a ( 1£ + ~ DR) + (31(. +, DR.

(11.3.67)

(11.3.68)

This relation reproduces the conformal trace anomaly (11.1.10).
Consider a static spacetime with a Killing vector eand choose W ::::: (1/2) In Iel

in (11.3.63). Then we have

(11.3.69)

Here T/LV is the renormalized stress-energy tensor in the ultrastatic spacetime with
metric Iel- I g/LV, and T~v, T~v, and T/!/ are stress-energy tensors obtained by the
variation of A(w;g), B(w;g), and C(Wjg), respectively. In this variation procedure
one keeps e' fixed, i.e., one puts ~e'/~g/LV ::::: O.

In the ultrastatic spacetime obtained by a conformal transformation from an Ein
stein spacetime (R/Lv ::::: Ag/Lv) the conformal trace anomaly vanishesY The Gaussian
approximation used by Page (1982) for vanishing temperature B ::::: 0 is equivalent to
the the choice Tt ::::: O. In the more general case when T:: i- 0, Brown, Ottewill, and
Page (1986) use the approximation ansatz [Zannias (1984)]

(11.3.70)

For this ansatz one has

(11.3.71)

It was demonstrated by Brown and Ottewill (1985) that the choice of conformal
factor

(11.3.72)

yields, under the assumptions, = 0 and T/LV ::::: 0, an approximation to the renor
malized stress-energy tensor for a thermal state with temperature B ::::: K/21r. Al
ternatively, one can fix the temperature-dependent terms by demanding agreement
with the values in the open Einstein universe, where one knows that the Gaussian

13This is not so for (-function or point-splitting renormalization in the case of spin 1.
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approximation is exact. The latter procedure gives the following expression for the
effective action in the BOP-approximation

WBOP = 0: A[w; g] + ,8B[w; g] + 'Y C[w; g]

(11.3.73)

where

q(4) = 20: + 2,8 - 'Y •

(11.3.74)

(11.3.75)

A comparison of (i'/:H~op with the results of numerical study for the electromag
netic field [Jensen and Ottewill (1989)] shows that the difference becomes large in
the vicinity of the horizon.

Frolov-Zel'nikov approximation

Frolov and Zel'nikov (1987, 1988) suggested a different approach which allows one to
obtain an approximation for (02) and (i'/:) in an arbitrary static spacetime. The basic
idea of this approach is to use for the approximation scalars and tensors constructed
from the curvature tensor, the Killing vector, and their covariant derivatives up to
some given order. This requirement was called a Killing ansatz. By requiring that
the so-constructed quantities possess known properties of (02) and ('i'/:), one gets
expressions that can be used to approximate these quantities.

Consider a scalar (02)K constructed in the framework of the Killing ansatz that:

1. Has the same dimensionality as (02), i.e., (length)-2

2. Is static, Le(02
) K = 0, and invariant under time reflection t -+ -t

3. Is a polynomial in temperature () and has high-temperature behavior (02)K ,...,
()2/12

4. Correctly reproduces the transformation law of (02) under conformal transfor
mations, i.e.,

(11.3.76)

is a conformal invariant.
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(11.3.77)

(11.3.78)

Analysis shows [Frolov and Zel'nikov (1987, 1988)] that under these conditions
(0 2

) K necessarily has the form

1 8
2

[ ~oe 1] 1
(0

2
)K = 12 R2T + q w

2
+~ R0{3 - 6R - 2887[2 R.

Here w2 = w/L w/L, and w/L = (1/2)'\7 /L In 1el is the acceleration of the Killing observer.
An arbitrary coefficient q in this expression can be fixed if one requires that in the ho
mogeneous gravitational field (02) K reproduces the exact expression (11.3.51). This
condition gives q = -1/487[2. Substituting this value into (11.3.77), one gets

,2 1[82 w
2

] 1 ~o ~{3
(t.p )FZ = 12 R2T - 47[2 - 481T2 -rRO{3.

Similarly, one can consider a tensor (T/Lv) K constructed ill the framework of the
Killing ansatz that:

1. Has the same dimensionality as (T/Lv), i.e., (length)-4

2. Is static, Le( T/Lv) K = 0, and invariant under the time reflection t -+ -t
3. Is a polynomial in 8 and has high-temperature behavior (11.3.35)

4. Is conserved (Tt);/L = 0

5. Correctly reproduces the transformation law of (T/Lv) under the conformal
transformations (11.3.55)

Frolovand Zel'nikov (1987, 1988) showed that such a tensor can be obtained by
variation of the following effective action

W FZ =WBOP +! dx
4

1 9 1
1

/
2 [qI1l + q2 (w2

- w:;:, - ~Rr] . (11.3.79)

Here WBOP is the effective action in the Brown-Ottewill-Page approximation, 11. =
Co{3"(b co{3"(b, and ql and q2 are two arbitrary constants.

In Einstein spacetimes the term 11. in the action does not contribute to the stress
energy tensor. On the other hand, there exist two more new traceless conserved
tensors that can also be obtained by the variation procedure. In Einstein space
time the most general stress-energy tensor in the Killing ansatz obeying the above
conditions can be obtained from the following effective action:

W FZ = WBOP +! dx4
1 9 1

1
/

2 [q2 (w2 _ w:;:, _~ R) 2

(11.3.80)
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Here Q2, Q3, and Q4 are arbitrary constants. In the general case two new tensors
which arise asa result of the variation of the last two terms in the effective action
give incorrect values for traces of the stress-energy tensor. However, in Einstein
spacetimes this does not happen and their contribution to the trace vanishes.

One can show that if one applies the additional restriction that the corresponding
stress-energy remains finite at the horizon, then the most general stress-energy tensor
in the Frolov-Zel'nikov approximation in the spacetime of the Schwarzschild black
hole is [Frolov and Zel'nikov (1987, 1988)]

• 123
(T/Lv)FZ = (o:+,8)r/Lv+br/Lv+cr/LV, (11.3.81)

r 2::= (2:r[168z6 diag(-I,I,0,0)

+ (1 + 2z + 3z2 + 4z3 + 5z4 + 6z5
- 105z6

) diag( -3,1,1,1)] ,

r 3
:: = 1I:

4
Z

3 [-12(1 + z + Z2 + 2z3 )diag(-I, 1,0,0

+ (4 + 5z + 6z2 + 15z3
) diag(-3, 1, 1, 1)].

(11.3.82)

(11.3.83)

(11.3.84)

(11.3.85)

Here 0: and (3 are coefficients of the conformal trace anomaly (11.1.13)-(11.1.14),

b= ~~ [h(0)+~h(I/2)+h(I)],

and c is an arbitrary constant. For c = 0 the stress-energy tensor (T/Lv)FZ for a scalar
massless field coincides with the result obtained in Page approximation. The freedom
in the choice of constant c can be used to improve the approximation. In particular
one can choose this constant so that (T/Lv)FZ at the event horizon coincides with the
exact value of (T/Lv)H. For this choice one has

1
c= 28807r2 [-4h(I)] . (11.3.86)

The first value applies for the massless scalar field, and the second one, for the
electromagnetic field. As far as we know, the exact value of the stress-energy tensor
at the horizon for a neutrino field is not known.

We now briefly discuss the application of the Killing ansatz in a case when R/Lv f
A9/Lv.The most important example is the Reissner-Nordstrom metric

ds2= -F de + F- 1 dr2+ r 2 dw2.

The quantity (rp2)FZ given by (11.3.78) takes the form

1 ( II: )2 r
4- r

4
(rp2)FZ=1227r r2(r-r+)(:-r_)'

(11.3.87)

(11.3.88)
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It is interesting that at the horizon this gives the exact value for (rjJ2)H obtained
earlier by Frolov (1982). The stress-energy tensor calculated in the framework of the
Killing ansatz contains a term proportional to ZJl.V In Iel, where

In the general case, this term (which vanishes in Einstein spaces) is singular at the
horizon. For the Reissner-Nordstrom metric one has

zt = 16 Q: F(r) diag(3, 1, -2, -2) .
r

(11.3.89)

The components of this tensor in (t, r)-coordinates vanish on the horizon, but the
regularity condition which requires that quantity (Tl - TnjF remains finite is not
satisfied. For this reason, (1'::)FZ is singular at the horizon of a charged black
hole, while (1'::)H is finite. According to the results of Anderson, Hiscock, and
Samuel (1995) similar singularities are present also in (rjJ2)analytic (when R i= 0) and
(1'::)analytic (when RJl.v i= 0).

The results obtained up to now seem to indicate that the main contribution to
the vacuum energy-momentum tensor of conformally invariant fields in the black hole
background is connected with conformal anomalies. If these anomalies are properly
taken into account, the resulting energy-momentum tensor reproduces sufficiently
well the exact value of (1'::) in the Ricci-flat spacetimes. It should be emphasized
that in the general case both (rjJ2) and (1'::) for a massless field are highly nonlocal
functionals of the background geometry. The presented results indicate that when
RJl.v i- 0 this nonlocality is really important.

It is interesting to note that in two-dimensional spacetime the conformal anomaly
allows one to reconstruct the stress-energy tensor. The conformal anomaly in two
dimensions is of the form

(1'Jl.) = Cs R
Jl. 247f'

where R is the scalar curvature, and Cs is a coefficient dependent on the spin s of
the field (Co = 1). The total energy-momentum tensor (1'::) is determined by its
trace and conservation laws up to two functions of one variable, which correspond to
the arbitrariness in the choice of the boundary conditions [Christensen and Fulling
(1977)]. As a result, it is possible to calculate (1'::) exactly in a number of two
dimensional models imitating the black hole [see Davies (1976), Davies, Fulling, and
Unruh (1976), Unruh (1977), Fulling (1977b), Hiscock (1977), Frolov and Vilkovisky
(1983), Balbinot and Brown (1984), Balbinot (1984), Kuroda (1984a), Birrell and
Davies (1982)].
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11.3.6 Exact results

We have already mentioned that exact values of (<7'2) and (Tt) were successfully
calculated in a number of cases where the point of interest lies on the event horizon.
This remarkable fact follows from the very special properties of spacetime near the
event horizon. We will now discuss these properties in some detail.

The Kerr metric is symmetric under translation in time t and under rotations in
¢. Let e(t) and e(,p) be the corresponding Killing vector fields, and 11 = e(t) + QH e(,p)
be their linear combination which is tangent to the generators of the horizon. It
is readily shown that e(,p) vanishes on the symmetry axis (0 = 0, 0 = 7r), while 11
vanishes on the two-dimensional surface S of intersection of the horizons H- and H+
(the surface of horizon bifurcation). The antisymmetric tensors (~(,p)JL;v) ~(~)=o and

("1JL;v),,=o are non-degenerate. 14 Obviously, the polar (0 = 0 and 0 = 7r) points Xo of
the surface S remain fixed under shifts both in t and ¢.

If we stipulate that (Tt) in the chosen state has the same symmetry properties
as the background physical spacetime, this quantity must satisfy the equation

(11.3.90)

where eis the Killing vector field and L~ is the Lie derivative along it. At points
where f" = 0, these equations turn into constraints on the algebraic structure of
(TJLv). It can be shown, when solving these equations, that such a regular energy
momentum tensor has the following form at the pole Xo of the bifurcation surface S
[Frolov and Zel'nikov (1985b)]:

(TJLv) = A(kJL Iv + IJL kv) + B(mJL mv + mJL mv) .

Here (k, I, m, m) are the vectors of the complex null tetrad:

k", dx'" = - dt + ~ dr + a sin2 0 d¢ ,

I", dx'" = ~ ( - dt - ~ dr + a sin2 0 d¢) ,

m",dx'" = V2 1. [-iasinOdt + EdO + i(r2 + a2 )sinOd¢].
2 (r + za cosO)

(11.3.91)

(11.3.92)

Here A = r2- 2Mr + a2 and E = r2+ a2 cos2O.
The difference between two constants A and B which enter (11.3.91) is fixed by

the value of the conformal anomaly

(11.3.93)

14A discussion of the general properties of surfaces formed by stable points under the action of a
symmetry group can be found in Boyer (1969); see also MiI1er (1979).
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In the case of a spherically symmetric black hole, any point of the surface S can be
chosen for Xo' The nonzero components of the energy-momentum tensor then take
the form

Tt
t = T; = -A, T: = T; = B. (11.3.94)

Another factor also leads to substantial simplification of the problem of calculating
(iJ2) and (TJW) at the event horizon. We first demonstrate this for (iJ2). In order to
calculate this quantity, one needs to solve the equation

o GH(x, xo) = - o(x, xo) ,

which governs the Green's function GH(x,xo). By making Wick rotation (11.2.13)
(11.2.14), one can reduce the problem to solving the equation for the Euclidean
Green's function GE

OEGE(X,Xo) = -o(x,xo). (11.3.95)

Let ll(x,x' ) be an arbitrary biscalar (e.g., Green's function GE(X,X' ) ofa scalar field)
with the symmetry properties of the background spacetime. Then

Lell(X, x') + Le,ll(x, x') = (~o o~o + ~o' 0:'0' ) ll(x, x') = O. (11.3.96)

Here Le and Le' are the Lie derivatives along the Killing vector field ewith respect
to the first and second argument, respectively. If the points x and x' do not coincide
with the rotation axis and do not lie on the Euclidean horizon S, equation (11.3.96)
shows that the biscalar ll( x, x') is a function of the differences T - T ' and ¢ - ¢'. If
the point x' lies on the pole of the surface S, the function ll(x, xo) depends of neither
T nor ¢.

This results, among other things, in a substantial simplification of the equation
(11.3.95). In the coordinates R = A I /2 sin 0, z = (r - M) cos 0 this equation in the
Kerr metric becomes

(11.3.97)

where Zo = VM2 - a2 • Note that the solution of this equation coincides with the
potential of the field of a point-like charge q = K/87[2 placed at a point z = Zo of the
axis x = y = 0 (R2= x2+ y2) in a fiat space. Using this solution, we obtain

H iK
G (x,xo) = (11.3.98)

87[2(r - M - yM2 - a2 cosO)

Subtracting the divergent part from this expression [see (11.1.9)] and tending x
to xo, we obtain for (iJ2(XO))H at the pole of the horizon the following value [Frolov
(1982, 1983c)]:

-2 H 1 rt - 3a
2

( )
(t.p (xo)) = 487[2 (r~+a2)2' 11.3.99
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(11.3.100)

(Candelas (1980) derived this expression for a = 0 by summing up the series repre
sentation of Green's function.)

This approach can be used to calculate (ep2)H for a black hole placed in external
axially symmetric static gravitationalfield [Frolov and Garcia (1983)] or enclosed in
a mirror-walled cavity described by the equation r = TO (<plro = 0) [Frolov (1986)].
In the latter case, the problem reduces to calculating the field produced inside a
conducting grounded ellipsoid of revolution,

R 2 Z2
--+ -1A(TO) (TO - M)2 - ,

by a point-like charge placed at its focus. The corresponding value of (ep2)H;ro is

(11.3.101)

(11.3.102)

where

( ~2) 1 ~ Q,(b)
oro 'P = 87r2(T~ + a2 ) ~ (21 + 1) Pl(b) .

Here b = (TO - M)j(M2 - a2)1/2, and Pz and Ql are Legendre functions.
Frolov and Zel'nikov (1985b) used a similar method for calculating (Tt(xO))H

for the electromagnetic field. (For calculations in the Schwarzschild spacetime see
Elster (1984)). After correction of a technicalmistake found by Jensen, McLaughlin,
and Ottewill (1988), this method gives for the coefficients A and B in (11.3.91) the
expressions

Let us look at one interesting property of expression (11.3.99). It is easily verified
that

(11.3.105)

where K is the Gaussian curvature of the two-dimensional surface of the black hole
at its pole xo. The explicit expression for K in the Kerr metric is given by (3.5.5).
Expression (11.3.105) is also valid in the case of a black hole placed in an external
static axially symmetric gravitational field.

It is easily proved that in Page's approximation, the quantity (ep2)}t at the event
horizon of any static black hole (including black holes distorted by an external field)
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can always be written in the form (11.3.105). The quantity f = -(TDIJ, character
izing the energy density on the black hole surface, is given in this approximation by
the expression [Frolov and Sanchez (1986)]

f = - (7a + 12,8) K 2+ a (2)AK, (11.3.106)

where (2)A is the two-dimensional Laplacian on the black hole surface, and a and (J
are coefficients (11.1.13)-(11.1.14) in expression (11.1.10) for conformal anomalies.

11.3.7 Vacuum polarization of massive fields

Let L ,..., M be the characteristic curvature radius near a black hole. Then the contri
bution of massive fields to vacuum polarization near black holes is smaller by a factor
f = P..IL)2, ). = lilmc, than that of massless fields. An analysis of the contribution
of massive fields is instructive for a number of reasons. Note, first of all, that if f « 1,
it is possible to separate the contributions of real and virtual particles to (Tt). Thus,
the contribution of real particles of the heat bath to (Tt)H in the Hartle-Hawking
vacuum state contains a small factor exp(-(JGMmllic), while the contribution of
virtual particles is a power function of M- 1• The values of (Tt) in different "vacua"
differ by the contribution of real thermal radiation particles; hence, in the vicinity of
a black hole, (Tt)B and (Tt)U for the massive field practically coincide with (Tt)H
everywhere, except the exponentially narrow strip [,..., r+exp( -(JGMmllic)] near the
event horizon. The behavior of these quantities inside the strip is not identical: (Tt)B
diverges on H- and H+, while (Tt)U diverges on H- but remains finite on H+.

A much more detailed study of the effect of vacuum polarization of massive fields is
possible because one can make use of the expansion in a small dimensional parameter
f. If the background gravitational field satisfies Einstein's vacuum equations, the
quantity (Tt)H for the massive scalar, spinor, and vector fields can be obtained to
first non-vanishing order in f by varying the following effective action [Frolov and
Zel'nikov (1984)]:

" H 2 oW
(TILv(x)) = - A ogILV(X) , (11.3.107)

where

(11.3.108)

Here m is the mass of the field, and the coefficients As and Bs for the spin-s field are

Ao = 1,

Bo = 18 - 84C

A 1/ 2 = -4,

B 1/ 2 = 12,
(11.3.109)
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(11.3.110)

respectively (~ is the coefficient of the term R 02 in the action for the scalar field; the
field is conformally invariant if ~ = 1/6 and m = 0). In this approximation, (T;:)H
for a Schwarzschild black hole is of the form [Frolov and Zel'nikov (1982)]

(Tt)H = 10080~:m 2 rB [As p~ + 3(2Bs + As) q~],

where the nonzero components ~ and q~ (for z = 2M/r) are

pl=-15+16z,

q: = -10 + 11 z ,

p~ = -3+4z,

q~ = 4 - 3z, qg=q:=-12+14z.

(11.3.111 )

More recent numerical calculations by Anderson, Hiscock, and Samuel (1995) con
firmed the accuracy of (11.3.110).

Note the qualitative similarity in the behavior of (T;:)H for massless and massive
fields. The energy density c = -( T/)H of a massive scalar (~ = 1/6) field is positive
far from the black hole but reverses sign and becomes negative at the horizon. A
similar effect occurs for a conformal scalar massless field. In the case of a massive
vector field, the energy density e is positive at the event horizon.

Rotation of the black hole produces a circular energy density flux in the sur
rounding space, due to vacuum polarization. This flux is described by the component
(TJ) 1= O. The expression for (T;:) of massive fields in the Kerr metric was derived
and analyzed by Frolov and Zel'nikov (1983, 1984).

In conclusion, it should be noted that not only has a qualitative understanding of
the specifics of vacuum polarization effects in black holes been achieved, but so has
a good quantitative description as well.

11.4 Quantum Mechanics of Black Holes

11.4.1 Introduction

We have described in detail the quantum effects of particle creation and vacuum
polarization by black holes. These are important and best understood problems of
quantum black hole physics. But certainly they do not exhaust the subject. Classical
black holes are soliton-like solutions of gravitational equations. They are character
ized by their position in space as well as by possible different "internal" states. One
can expect that when quantum mechanics is applied to black holes, and a black hole is
considered as a quantum object, its state is described by a wavefunction. This wave
function contains information about a motion of the black hole in the surrounding
spacetime and states of black hole excitations. The construction of a wavefunction of
a black hole, derivation of dynamical equations which govern its time evolution, and
development of the interpretation scheme and rules for the calculation of observables
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are subjects of quantum mechanics of black holes, a theory which has not been de
veloped yet. There exist only some ideas and fragmentary results. We discuss them
in this section.

We begin with remarks concerning general properties of a wavefunction describing
a black hole. For a free motion of the black hole in an asymptotically flat spacetime
one can expect that the wavefunction can be written as

(11.4.1)

Here pit is the four-momentum of the black hole, and XIt are its "center-of-mass"
coordinates. Both quantities, pit and XIt, can be expressed in terms of data at null
infinity. The part 1IJ BB (_) of the wavefunction describes black hole excitations, and
_ denotes the possible internal degrees of freedom of the black hole.

If a black hole is influenced by an external field, its motion is modified. As a
result of this modification, the factor exp (-iPIt XIt) is changed by a wavefunction
1jJ(X) corresponding to this motion. In the WKB-approximation 1jJ(X) ,..., exp(iS),
where S is the action for the motion of a black hole in the given field. An external
field can also modify the part of the wavefunction describing internal states of the
black hole.

If an external field is strong enough one can also expect a quantum creation of
pairs of black holes, the process which is similar to charged particles creation by an
electric field. The final stateis a state with two black holes and its wavefunction can
be written as a superposition of wavefunctions 1IJ(X1 , -I) 1IJ(X2 , -2)' The probability
of the pair creation in the WKB-approximation is determined by the sub-barrier
exponents exp( -WE), where WE is the effective action for a black hole calculated for
its sub-barrier motion.

We consider examples of calculations of probability for a pair of black produc
tion by an external field in Section llAA. But before this we shall make a few
comments on the possible nature of the internal degrees of freedom of a black hole
(Sections 11.4.2 and 11.4.3) and describe a no-boundary proposal for a wavefunction
of a black hole 1IJBB (Section 11.4.3).

11.4.2 Euclidean approach

The no-boundary wavefunction of a black hole was proposed by Barvinsky, Frolov, and
Zel'nikov (1995). This construction, which is similar to the no-boundary wavefullction
in quantum cosmology introduced by Hartle and Hawking (1983), essentially uses
Euclidean methods. In this section we derive some of useful formulas and results
connected with the Euclidean approach to quantum theory in the static black hole
background.
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Wavefunction of Hartle-Hawking vacuum in the "coordinate" representa
tion

We begin by deriving a "coordinate" representation for the Hartle-Hawking state of a
quantum field in the background of an eternal black hole. For the sake of simplicity,
we restrict ourselves by considering a massless scalar field in the spacetime of a non
rotating black hole. The generalization to higher spins is straightforward.

Consider solutions of the field equation

Olp = O.

For definition (11.2.15) of the Hartle-Hawking state in Section 11.2 we used modes
D' , pI, N ' , and U' given by relations (11.2.12)-(11.2.13). In what follows we shall
need a modification of these basic solutions. Namely, we consider solutions of the
field equation in the black hole exterior (region R+) which are of the form

e-iw,t

«);--;- <l>A(X), (11.4.2)
y2wA

where

<l>A(X) = .~ u~(r;w) Y(8,</J).
y27r r

Here>. = {k,w,t',m}, k = 1,2, and

{

I

- 1 ~
Y (8, </J) = ,;:;r pr(cos 8) sin(m</J)

cos(m</J)

if m=O,

if -t' ~ m < 0,

if O<m~t',

(11.4.3)

(11.4.4)

are real spherical harmonics. The radial functions u~ (r; w)

u1 = _1_ (uuP' + udown') u 2 = _1_ (uuP' _ udown')
l V2 l l , l iV2 l l ,

are real solutions of equation (10.2.14)

[::~ + w
2

- Vt(1')] u~(r;w) = 0,

Vt(r) = (1 _2M) (t'(t' + 1) + 2M)
r r 2 r 3

(11.4.5)

(11.4.6)

The so-defined modes <l>A(X) are real and form a complete set in the three-space
(t = const) in the black hole exterior. They are normalized by conditions

(11.4.7)
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(11.4.8)

Since the "internal" region R_ of the eternal black hole is isometric to R+, a
similar set of functions can be defined there. We add an extra index ± to distinguish
these two different sets of modes. Thus, <l>A+(x) and <l>A_(X) denote functions in R+
and R_, respectively. 15

Define lpA+(X) as a solution of the field equation which vanishes in the left wedge
R_ of the eternal black hole spacetime, and coincides with (11.4.2) in the right wedge
R+, and lpA-(X) as a solution which vanishes in R+ and coincides with (11.4.2) in
R_. The so-defined solutions lpH(X) == lp~±(x) (J = {w,f,m}) are related to the
modes introduced in Section 11.2.2 as followS l6

lp~+(x) =~ [lp~p' (x) + lp~own' (x)] ,

lp~+ (x) = i~ [lp~p' (x) - lp~own' (x)] ,

I-() 1 [ dn' () urnop'()]lpJ x = V2 lpJ x + lpJ X,

(11.4.9)

We also introduce another set of modes

(11.4.10)

related to D'-, P'-, U'-, and N'-modes defined by (11.2.12) and (11.2.13) by the
relations similar to (11.4.8) and (11.4.9). The field operator ep(x) decomposition in
modes lpH(X) and modes 1/JH(X) is

ep(x) =L [bH lpH(X) + bl± <PH (X) ]
A±

=L [UH1/JH(x)+ul±~H(x)],
A±

t' 'tOperators UH, UH , bH , and bH are related as follows

(11.4.11)

(11.4.12)

15We denote here by R+ and R_ external and internal regions of the eternal black hole, which
earlier were denoted as I and I', respectively. This helps us to simplify relations since the same
index ± can be used to distinguish the quantities related to R±.

16It is assumed that in the definition of these modes we also use "real angular harmonics" Ylm'
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These relations coincide with the special type of canonical transformation (1.43) for
a pair of coupled oscillators considered in Appendix 1.4. Hence, the Hartle-Hawking
vacuum state IH) defined by relations

can be presented in the form

IH) = exp [~ [-In CA + ;~ hL hl+] ] 10) ,

where bH 10) = O.
The first of relations (11.4.11) can be rewritten as

rp(x) = L rpH(t) <l>H(X),
A±

(11.4.13)

(11.4.14)

(11.4.15)

where

rpH(t) = k (e-iw't bH + eiw,t bl±).

In other words, the quantum field rp(x) can be decomposed into an infinite set of
quantum oscillators, rpH(t) being position operators of these oscillators. Using this
fact and relation (1.52), we can write the following expression for the Hartle-Hawking
state IH) in the "coordinate"-representation [Barvinsky, Frolov, and Zel'nikov (1995)]

{
"[WA (COSh(~) 22 2t.pA-'-PA+ )]}=lIToexp -L 2" (3, (t.pA-+t.pA+)- ,... (./_ ,(11.4.16)

A sinh(WA2 0) sinh(~)

where (30 = 871" M is the inverse Hawking temperature of the black hole, and lITo is a
normalization constant.

This wavefunction has a quite simple interpretation. Consider the section t = 0
of the eternal black hole. This section is the Einstein-Rosen bridge, which consists of
two sheets E_ and E+ connected at the bifurcation two-sphere of the horizons r = r+
(see Figure 11.4). The field t.p(x) at t = 0 can be written as

t.p(t = O,x) = t.p+(x) + t.p_(x),

where

(11.4.17)

(11.4.18)t.p±(X) = L t.pH <l>H(X) .
A

The wavefunction 11TH[t.p~, t.p+] is the probability amplitude to have in a chosen state
IH) the field configurations t.p,±(x) on E±.
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Figure 11.4: The embedding diagram of the global Cauchy surface I;; t = o. This is
an Einstein-Rosen bridge connecting two asymptotically fiat three-spaces. The bifurcation
sphere of the future and past horizons separates the interior I;_ of a black hole from its
exterior E+.

Wavefunction of Hartle-Hawking vacuum and an Euclidean action

By comparing (11.4.16) with expression (1.7), one can make the important obser
vation that the wavefunction for the Hartle-Hawking vacuum in the "coordinate"
representation can be written in the form

(11.4.19)

where SE is the Euclidean action of a quantiIm oscillator; 'P>.- is the "initial" position
of the oscillator; 'P>.+ is its "final" position, and /30/2 is the interval of the Euclidean
time. We shall use this form of the wavefunction to establish its relation with the
Euclidean action for the field 'P(x).

For this purpose, we note that the Kruskal-Schwarzschild metric (2.7.17)-(2.7.18)
is a real Lorentzian-signature section of the complex manifold parameterized by the
real radial r, 2M :s r < 00, and complex time z = T + it coordinates:

( r )1/2 { 1(r ) z - 21rM }
U = - 2M - 1 exp 2" 2M - 1 + i 4M '

( r )1/2 { 1(r ) z - 21rM }
V = 2M - 1 exp 2" 2M - 1 - i 4M .

(11.4.20)

(11.4.21)

The sectors R+ and R_ of the Kruskal spacetime with asymptotically flat infinities
are generated by the following segments in the complex plane of z

R±: z = ± 21rM + it for - 00 < t < 00, (11.4.22)
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and analytically joined by the real Euclidean section RE

RE : z = T for - 21rM :::; T :::; 21rM .
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(11.4.23)

Here t is the usual Killing time coordinate in the Schwarzschild metric, while T is
its Euclidean analogue. The Euclidean black hole metric, i.e., the metric on the
Euclidean section RE , is

d 2 ( 2M) 2 ( 2M) -I 2 2 2
SE = 1 - -:;:- dT + 1 - -:;:- dr + r dw .

In the vicinity of r = r+ = 2M this metric is

ds~ ::::: ",,2 12dT2+ dl2+ r~ dw2 ,

(11.4.24)

(11.4.25)

(11.4.26)

where I is the proper distance from the Euclidean horizon r+, and "" = 1/ 4M is the
surface gravity. This form of the metric implies that in the general case there exists
a cone-like singularity at r = r+_ This singularity is absent only if the coordinate T
plays the role of an angular coordinate and is periodic with the period /3 = 81rM. The
corresponding regular Euclidean space is known as the Gibbons-Hawking instantonl7

[Gibbons and Hawking (1977)] (see Figure 11.5).
The Euclidean section (11.4.23) represents a half-period part of this instanton (see

Figure 11.6). The boundary E+UE_ of this part at T± = ±21rM is the Einstein-Rosen
bridge shown in Figure 11.4. At this boundary the Euclidean section analytically
matches to the Lorentzian sectors R+ and R_ on the Penrose diagram of the Kruskal
metric.

Consider now a scalar field tp(T,X) on the Euclidean manifold RE described by
the actionl8

WE[tp] = ~I d4x /j2 g'; 'V /Ltp 'Vvtp .

In what follows we denote the boundary fields on the two asymptotically flat compo
nents of the Einstein-Rosen bridge E± by tp±(x):

With this notation the solution to the Euclidean field equation

{gl/2 g-r-r ::2 + Oa(gl/2 gab Ob)} tp (T, X) = 0

(11.4.27)

(11.4.28)

17The gravitational action calculated on this Euclidean solution is finite, as it is required for an
instanton.

18We do not include a term {Rcp2 in the action since for the Schwarzschild metric R = 0, and this
term contributes neither to the field equation nor to the action.
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Figure 11.5: The embedding dia
gram of the (T - r )-section of the
Gibbons-Hawking instanton.

can be written as a decomposition

IP(r,x) =L IP>.(r) <1>>.(x) ,
>.

where IP>.(r) is a solution of the equation

d2IP >. 2
dr 2 - w>. IP>. = 0,

with the boundary conditions

IP>.(-J3o/4) = IP>.-, IP>.(+J3o/4) = IP>.+·

lforl1.00'\

Figure 11.6: Here one half of
the Gibbons-Hawking gravitational
instanton is depicted. The global
Cauchy surface E := E+ U E_ is one
boundary of this Euclidean manifold,
and spatial infinity 8M"" is another.
The arguments of the wavefunction
1Ji H [ 'P-, 'P+ l are the boundary values
of quantum fields on the two asymp
totically flat parts of the Einstein
Rosen bridge E±, respectively.

(11.4.29)

(11.4.30)

(11.4.31)

Relations (11.4.29)-(11.4.30) show that after the decomposition into spatial modes
the field is represented as a set of Euclidean oscillators enumerated by the collective
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index A. Moreover, using the normalization condition (11.4.7) and the field equation
(11.4.28), one can rewrite the action (11.4.26) in the form

(11.4.32)

That is, the Euclidean action wlo/2)[IP_(x), IP+(x)] calculated for the field on a half
of the Gibbons-Hawking instanton is represented as a "sum" of the Euclidean actions
for oscillators. Using (L7), one has

'" [w>. (cOSh(w>.,Bo/2) 2 2 2IP>.- IPM )]
= L.: "2 sinh(w>. .80/2) (IP>.- + IPM) - sinh(w>. .80/2) , (11.4.33)

where IPH are defined by (11.4.18).
To summarize, we showed that the wavefunction of the Hartle-Hawking vacuum

state in the "coordinate" -representation can be written as

(11.4.34)

where wlo/2
) is the value of the Euclidean action for a scalar field solution calculated

on half of the Gibbons-Hawking instanton. 19

19Similarly, the Euclidean action for particles is used in the path-integral derivation of black hole
radiance by Hartle and Hawking (1976). Note that the Euclidean Green's function for a field <p(x)
can be written as follows

where the integration is performed over functions <p on the Gibbons-Hawking instanton. On the
other hand, one can represent the same quantity in terms of the Feynman path integral over the
particle trajectories connecting points x and x' [Hartle and Hawking (1976)]

where m is the mass of the particle, and

1 fT dx" dx"
SE[X] = 4" Jo dTg",,~~,

is the Euclidean action for a particle which starts at a spacetime point x' at T = 0 and arrives at
x at T =T. The equivalence of the two representations for the Green's function is connected with
the particle-field duality.
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(11.4.35)

This result implies in particular that the wavefunction WH[tp-, tp+] allows the
following functional integral representation

WH[ tp-, tp+] =c f V[tp] e-WE['P).

I'PII:± ='P±)

Here WE[tp] is the Euclidean action, and C is a constant which can be found from
the normalization condition. The integration is performed over functions tp(x) on
half of the black hole instanton which satisfy given boundary conditions tp±(x) on
the boundary of the region. In order to prove (11.4.35), we represent tp(x) as tp(x) =
tpo(x) + <i5(x) , where tpo(x) is a solution of the field equation Dtpo = 0 with boundaJy
conditions tpOIE± = 1p±(x). One has

and hence

I V[tp] e-wE!<P) =6 e-WE['Po) ,

I'PII:± ='P±)

where

(11.4.36)

(11.4.37)

(11.4.38)6 = I V[<i5] e-WE[<j;)

I<j;hJ± =0)

is an unimportant normalization constant independent of the boundary conditions.
Relations (11.4.33)-(11.4.35) were derived for the massless scalar field, but it is evi
dent that similar relations are valid for massive fields and for the fields of higher spin
as well. They also allow a generalization to the case of Fermi fields. The representa
tion (11.4.35) will be our starting point in the discussion of the no-boundary ansatz
for the wavefunction of a black hole in the next section. But before coming to this
discussion we make a few more comments on other properties of the Hartle-Hawking
state.

Density matrix in the "coordinate" representation and thermofield dy
namics

A state of the quantum field in the black hole exterior is described by the density
matrix obtained by tracing IH)(HI over the "internal variables"

(11.4.39)

The factorization of the wavefunction implies that the problem of finding p[tp+, tp~]
can be reduced to the calculation for a single oscillator. The measure V[tp_] of
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integration in the integral over states tp_(x) on E_ is to be understood as fIx dtp>._.
Simple calculations give

(11.4.40)

That is, p[tp~, tp+] has a form similar to (11.4.34), with two important differences:
(i) The Euclidean action is taken for the interval /30 (not /30/2) of the Euclidean time
T, and (ii) The normalization factor Po differs from '110 .

Comparing (11.4.40) with the thermal density matrix for an oscillator at the
temperature /301in the "coordinate" representation, (1.40), we may conclude that this
density matrix describes thermal excitation of the field tp in the black hole exterior, the
temperature of the excitations (as measured at infinity) being equal to the Hawking
temperature of the black hole. We already obtained this result earlier in Section 10.4.5
using the representation of the density matrix in terms of operators of creation and
annihilation of particles propagating in the black hole exterior.

Israel (1976) noticed that there is a close similarity between the origin of the
thermal density matrix for a black hole and the approach of Umezawa and Takahashi
[Umezawa and Takahashi (1975), Umezawa, Matsumoto, and Takahashi (1981)].
Umezawa and Takahashi proposed a formulation of a quantum field theory at finite
temperature called thermo-field dynamics. Their aim was to use the wavefunctions of
quantum field theory instead of the mixed states of the usual finite-temperature theo
ries. They succeeded in doing this by doubling the number of degrees of freedom and
introducing a new additional "fictitious" system, identical to the original one. They
assume a special choice of the "vacuum" state for the combined system and derive
the thermal density matrix for the physical observables by averaging over "fictitious"
states. Their result agrees with the usual one obtained by calculating the trace of
the statistical operator and the operator of an observable. Laflamme (1989a,b) de
veloped this analogy and demonstrated that the introduction of a fictitious field and
the vacuum in thermo field dynamics can be derived from Euclidean path integrals.
In particular, in the case of a black hole one obtains expression (11.4.34) for the
wavefunction of the enlarged system with a doubled set of variables.

11.4.3 The no-boundary wavefunction of a black hole

The no-boundary ansatz

As we already mentioned, a study of the propagation of perturbations in a real black
hole can be reduced to the analogous problem in its "eternal version". For the latter,
one can specify the initial data on the section t = 0 which has the topology of the
Einstein-Rosen bridge. We denote it by E, and denote by E+ and E_ its external
and internal parts, respectively. It is evident that the data on E_ do not influence
the black hole exterior. In the spacetime of an "eternal version" of a black hole,
such perturbations propagate to the future entirely inside the horizon. It is evident
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that the corresponding perturbations in a "physical" black hole also always remain
beneath the horizon. That is why these data should be identified with the internal
degrees of freedom of a black hole [Frolov and Novikov (1993b), Barvinsky, Frolov,
and Zel'nikov (1995)]. Such an approach can be generalized to the case when the
perturbations are not small.

Among all perturbations describing the propagation of physical fields, a special
role is played by gravitational perturbations. The corresponding initial data on the
Einstein-Rosen bridge can be considered either as a tensor field, or, equivalently, as
small deformations of the initially spherical geometry of the Einstein-Rosen bridge.
In this sense one can relate different configurations of the gravitational fields in the
system with deformations of the Einstein-Rosen bridge, obeying the necessary con
straints, existing in the theory. For physical excitations with finite energy the condi
tion of asymptotic flatness at both infinities of the Einstein-Rosen bridge should be
preserved. To summarize, in classical physics the space of initial physical configura
tions of a system including a black hole can be related to the space of "deformations"
of the Einstein-Rosen bridge of the eternal black hole and possible configurations
of other fields on it (besides the gravitational one), which obey the constraints and
preserve asymptotic flatness. One can use now this configuration space to define the
wavefunction of a black hole.

The main idea can be described as follows. Fix a three-dimensional manifold
with a wormhole topology R x 8 2 and consider all three-dimensional metrics on it
which possess two asymptotically flat regions. Consider also all configurations of
matter fields on this manifold. The space of 3-geometries and matter fields will be
considered as the configuration space for our problem. The wavefunction of a black
hole is defined as a functional on this configuration space. It should be stressed that
the metric and fields on the "internal" part ~_ of space are to be considered as
defining the internal state of a black hole.

Certainly, there exists a wide ambiguity in the choice of the wavefunction. As
in standard quantum mechanics, this ambiguity reflects different possibilities for the
"preparation" of the system. Moreover, after the choice of the initial state is made,
one must apply the dynamical equations in order to obtain the future evolution of
the state in time. In our case such an evolution equation is known as Wheeler-De Witt
equation. We shall not discuss this subject here, but confine ourselves to describing
the (in some sense) simplest possible quantum state of a black hole. This state is
the so-called no-boundary wave/unction proposed by Barvinsky, Fralov, and Zel'nikov
(1995).

The no-boundary wavefunction of a black hole is defined as a functional of the
3-geometry and matter fields on a surface ~ = R X 8 2. It is given by the Euclidean
path integral over 4-geometries and spacetime matter fields

W [3g(X),rp(x)] = I Vg Vrp e-W[9,'P) (11.4.41)

Here, W[ g, rp] is the Euclidean action. The integration is performed over Euclidean
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4-geometries 9 and matter-field configurations 'P on a spacetime M with a boundary
8M. The integration variables are subject to the conditions Cy(x), 'P(x)), x E 8M
- the collection of 3-geometry and boundary matter fields on

(11.4.42)

where E = R X 8 2 is the hypersurface with the topology of the Einstein-Rosen bridge
connecting two asymptotically flat three-dimensional spaces. These boundary values
are just the argument of the wavefunction (11.4.41). This proposal for the wave
function is similar to the famous no-boundary wavefunction in quantum cosmology,
suggested by Hartle and Hawking (1983).

The no-boundary wavefunction in the semi-classical approximation

Let us calculate the no-boundary wavefunction in the semi-classical approximation.
If (90, ¢o) is a point of the extremum of the action WE, then we can write

9 = 90 + g, 'P = 'Po + rp, (11.4.43)

(11.4.44)

In accordance with this decomposition, the no-boundary wavefunction (11.4.41) in
the semi-classical approximation is

(11.4.45)

where

(11.4.46)

is a classical (tree-level) contribution, and

(11.4.47)

is a one-loop part.
We consider a theory for which ¢o = 0 so that 90 is a solution of the vacuum Ein

stein equations. The corresponding Euclidean solution is a part Mp of the Gibbons
Hawking instanton (see Figure 11.7), i.e., the Euclidean Schwarzschild solution

ds2 = F dr2 + F- 1 dr2 + r 2 dui, F = 1 - r +/r, (11.4.48)

with r E (-i {Joo, i (Joo)· (For the special choice (Joo = 81rM this part is half of the
instanton. )

The Euclidean Einstein-Hilbert action is

Wo[90] = -16
1 r R E ..j9Ed4x+ 8

1 r K Vhd3x
1r lMp 1r laMp
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Figure 11.7: Part Mf3 of the Gibbons-Hawking instant on, which gives the main contribu
tion into the no-boundary wavefunction '11(3 in the semi-classical approximation.

(11.4.49)

The first two terms on the right-hand side are just the Euclidean version of (A.96).
The last term is included because of the presence of corners S+, SB' and S13. In the
last integral yad2x is the surface area element on S, and k =arccos(nl . n2) is the
intersection angle between normals nl and n2 to the three-hypersurfaces E 1 and E2

intersecting at S. The corner term is necessary in order to ensure that the variational
procedure is self-consistent [Hayward (1993), Hawking and Hunter (1996)].

Since R = 0 for solution (11.4.48), only the surface and corner terms contribute to
Wo[go] . We first assume that the boundary EB is located at a finite radius r = rB'

In the absence of perturbations the intrinsic metrics of the boundaries EB and E±
are

(11.4.50)

The external boundary EB is a part of the cylinder R x S2 with the proper length
of the generator equal to {3/2 = .;F;;{3oo/2. Hence, the wavefunction we are looking
for is parameterized by two parameters rB (radius of the external boundary) and {3
(the inverse temperature on it).
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The extrinsic curvature vanishes identically on E±. The calculation of the trace
of the extrinsic curvature K for EB is straightforward and gives

(11.4.51)

(11.4.52)

By using this expression, one gets

--8
1

( J(.Jhd3x=~f3rBVF(rB)+ ~.
1r lEB 2 8 F(rB)

For corners S~ the intersection angle is ks~ = 1r/2, while the intersection angle for

S+ is ks+ = 1r - ~/(2r+ F~/2)]. Hence,

1 1 r-; 2 1r 2 ( (3) u1-- kyadx=-r+ 1- +--.
81r S 2 4r+vF (rB) 2

By combining these results, one gets

[ ] 1 ( ~) 1r 2 1 1rr1Wo 90 =2f3rB l-yF(rB) -"2r+-2f3rB--2-'

Hence, we have 1If~[390(X),rpo(x)] = 1If,B(M)

(11.4.53)

(11.4.54)

(11.4.55)

The last two terms of (11.4.54) do not depend on the mass M and are included in
the normalization factor No.

Now we calculate the one-loop contribution to the no-boundary wavefunction of
a black hole. First of all, we note that each of the fields (including the gravitational
perturbations) gives an independent contribution to W2• As a result, IIfb is a product
of wavefunctions lIfb[rp] depending on only one particular type of field '1'. (We recall
that ¢o = 0, and hence the value 'I' on the boundary coincides with its perturbation
¢Y.) Note that Gaussian integrals (11.4.47) in the definition of IIfb coincide with
(11.4.35), and hence wb = w,B[rp-, '1'+]

(11.4.56)

where

{

h(w>J3oo) }w>. cos 2 2 2 W>.
=L ~ ('1'>.,+ + '1'>.,-) - ':!:21lss. '1'>.,+ '1'>.,- . (11.4.57)

>. 2 sinh( \ 00) sinh(W 2 )
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This action is a sum of Euclidean actions for quantum oscillators of frequency w>. for
the interval (3oo/2 of the Euclidean time with the initial "position" of the oscillator
'P- and the its final "position" 'P+. It is also assumed that an additional summation
over all physical fields must be done.

To summarize, we obtain the following expression for the no-boundary wave
function of a black hole in the semi-classical approximation [Barvinsky, Frolov, and
Zel'nikov (1995), Frolov (1996)]

(11.4.58)

where IJI,B(M) and IJI,B['P-,'P+] are defined by (11.4.55) and (11.4.56), respectively.20
The no-boundary wavefunction depends on the parameter (3. The form of (11.4.58)

suggests the following interpretation. IJI,B(M) is the probability amplitude to find a
black hole of mass M in a state IJI,B, while IJI,B['P-, 'P+] gives the probability amplitude
for different excitations {'P-,'P+} of the black hole.

11.4.4 Creation of black hole pairs by an external field

Quantum creation of black holes

We already discussed the particular process of black hole formation by the spherical
collapse of a scalar field. One can also expect formation of black holes when there
are two colliding waves of scalar or other (e.g., gravitational) fields provided that
at the moment of collision, the energy E is concentrated in a region of dimension
less than GE/c4

• For example, consider the head-on collision of two almost plane
gravitational waves. Denote their transverse size by L, their thicknesses by a, their
typical amplitudes by h, and their frequency by w. At the moment of collision, in
a volume L2 a there is a concentration of energy density of order h2w 2 • Hence, the
total mass in this region is M tv h2w2L2a. One can expect formation of a black
hole of mass M provided M » Land M » a [for the discussion of this process see
Yurtsever (1988)]. The quantum analogue ofthis effect is quantum black hole creation
in the scattering of gravitons of super-high energy [Veneziano (1993), Fabbrichesi et
al. (1994), Aref'eva, Viswanathan, and Volovich (1995)].

Recently, another type of quantum effect involving black holes attracted interest.
This effect is analogous to the effects of charged particles creation by an external
field. The creation of a pair of black holes from vacuum implies that there exists an
external source providing the necessary energy to make this process possible. The var
ious concrete mechanisms which have been discussed include black hole pair produc
tion by a constant electromagnetic field [Gibbons (1986), Garfinkle and Strominger

20Kuchar (1994) developed the scheme of canonical quantization of spherically symmetric vacuum
spacetimes and demonstrated that 'II(M) is a wavefunction describing an unchanging superposition
of black holes of different masses. The quantization of a collapsing thin dust shell was performed in
papers [Berezin (1990, 1997), Hajfcek, Kay, and Kuchar (1992), Dolgov and Khriplovich (1997)].
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Figure 11.8: Charged particles creation by an external electric field.
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(1991), Dowkeret ai. (1994), Garfinkle, Giddings, and Strominger (1994), Hawking,
Horowitz, and Ross (1995), Yi (1995)], by snapping of cosmic strings [Hawking and
Ross (1995), Emparan (1995), Eardley et ai. (1995)], by domain walls [Caldwell,
Chamblin, and Gibbons (1996)], and by a cosmological constant [Mann and Ross
(1995), Bousso and Hawking (1996)].

Instantons and the probability of pairs creation in a static field

Let us consider first the creation of charged black hole pairs by a constant electro
magnetic field. This process is similar to the effect of electron-positron pair creation
by a constant electric field discussed in Section 10.1.2. Particles of mass m and with
charge e are created at a separation 1 = m/(eE), where E is the strength of the
electric field. After creation they are moving with a constant acceleration and their
world lines in the Minkowski spacetime are given by the equations

T = 1sinh(r/l), X = ±lcosh(r/l). (11.4.59)

We choose the axis X to coincide with the direction of E, and put Y = Z = O.
Allow the time t to take complex values t = T + i.". Then trajectory (11.4.59) can
be analytically continued to imaginary values of time t = i ."

." = 1sin(TIL), X = 1cos(TIL) , (11.4.60)

where i = i r. The semi-circle 0 < i < 1r connects the points T = 0, X = ±l (initial
points of real particle trajectories) (see Figure 11.8).

This solution of the Euclidean equations of motion is an instanton connecting a
spacetime without charged particles at t =T + ioo and a spacetime with a couple of
created particles at t = T + i O. The Euclidean action for the semi-circle

r r dXP.
SE == m 10 di - e 10 Ap. di di, (11.4.61)

is SE = 1rm 1/2. (The second integral is equal to half of the value 1rm 1 of the first
one.) The probability of charged pair production is proportional to exp(-2SE ) =
exp( -1rm2/eE). This result we already cited in Section 10.1.2.
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A similar expression can be easily obtained for the semi-classical probability rate
of monopole pair production by a magnetic field

exp( -2SE ) = exp( -1rm2/qB) , (11.4.62)

(11.4.63)

where q is the magnetic charge of the monopole and B is the strength of the magnetic
field. To leading order in qB this expression reproduces the result of calculations in
grand unified theories (GUTs). The monopole in GUTs is a nonlocal object and the
rate for the creation of oppositely charged monopoles was calculated by estimating the
action for the corresponding field instanton (see Affleck and Manton (1982), Affleck,
Alvarez, and Manton (1982) where also the derivation of the semi-classical expression
(11.4.62) can be found).

Ernst's metric

The probability of production of a pair of charged black holes can be calculated in
a similar way. One needs to find a solution to the Euclidean gravity equations (a
gravitational instanton) that can be sewed onto a solution describing the motion of
a pair of black holes in the physical spacetime. The semi-classical probability rate is
exp(-WE), where WE is the Euclidean action for the instanton.

For this purpose, let us consider the following solution of the Einstein-Maxwell
equations obtained by Ernst (1976b)

2_ Q2 [ 2 dy2 dx2 G(x) 2]
ds - (x-y)2A2 G(y)dt - G(y) + G(x) +7:j4d¢ ,

A.p=- B
2
Q (1+~Bqx) +k,

where the functions Q = Q(x,y) and G(z) are

( 1)2 B 2

Q = 1 + "2 Bqx + 4A2(X _ y)2 G(x).

(11.4.64)

(11.4.65)

(11.4.66)

Here q2 = r _r+ and k is an arbitrary constant. We define also m = (r_ + r+)/2.
We show now that this solution describes the uniformly accelerated motion of a

pair of magnetically charged black holes.21 The parameters m and q are connected
with the mass and magnetic charge of the black holes; B determines the strength of
the magnetic field, and A defines the acceleration of the black holes.

21 Relations for electrically charged black holes moving in an electric field have a similar form.
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(11.4.67)

In order to provide a physical interpretation of the Ernst metric, we consider its
various limits. If we set the black hole parameters m and q (or equivalently r _ and
r+) to zero in (11.4.63) and (11.4.64), we get

d 2 _ Q2 [( 2) 2 dy2 dx
2

1 - x
2

2]
S -(x-y)2A2 l-y dt -1_y2+1_x2+~d¢ l

(11.4.68)

Let us introduce new coordinates

Since

Jf=X2
p=~-..,.--,.

(x-y)A'
JY2=1.,,-- (x - y)A . (11.4.69)

d 2 d 2 1 (dX
2

d
y2

)P + ." = --+--A2(X - y)2 1 - x2 y2 - 1 '

one can rewrite (11.4.67) as

By making the further coordinate transformation

T = ." sinh t , X = ." cosh t ,

we get

2

ds2= Q2 [_ dT2+ dX2+ dp2] + ~2 d¢2 ,

where

(11.4.70)

(11.4.71)

(11.4.72)

(11.4.73)

(11.4.74)

(11.4.75)

This is the metric of Melvin magnetic universe [Bonnor (1953), Melvin (1964, 1965)].
The magnetic field is directed along the z-axis, and its field strength ...j(Fp.v F/LV /2) ==
B /Q2 has a maximum B on the axis p = 0 and decreases to zero at infinity.

In the absence of a magnetic field the Ernst metric (11.4.63) takes the form

2 1 [ 2 dy2 dx
2

2]
ds == (x _ y)2A2 G(y) dt - G(y) + G(x) + G(x) d¢ ,
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with G(z) given by (11.4.65). This is the so-called C-metric. Its physical meaning is
discussed in detail by Kinnersley and Walker (1970). By introducing new coordinates

1
r = A(x _ y) , (11.4.76)

the C-metric can be presented in the form

ds2
=: -Hdu2-2dudr-2Ar2dudx+r2 [~~;) +G(X)d¢2], (11.4.77)

where H = -A2r2G(X - 1/(Ar)). For m = q == 0, G(z) == 1 - Z2, and one has

ds2= - (1 - 2A r cosB + A2r2sin2 B) du2 - 2 dudr

(11.4.78)

This is a flat-space metric written in Newman-Unti (1963) coordinates. The trans
formation required to cast (11.4.78) into a Minkowski coordinate system is

T = (A- I - r cos B) sinh(Au) + r cosh(Au) ,

X = (A- I - r cos 0) cosh(Au) + r sinh(Au),

Y == rsin Bcos¢, Z == rsinBsin ¢.

(11.4.79)

Provided A > 0 and r > 0, the (u, r, B, ¢)-coordinates cover only the half-space
T + X > O. The locus r = 0 is one branch of a hyperbola with constant acceleration
A, parameterized in terms of its proper time u:

T == A-I sinh(Au) , X = A-I cosh(Au).

In the zero-acceleration limit, metric (11.4.77) takes the form

(11.4.80)

(11.4.81)

This is the Reissner-Nordstrom metric in the retarded Eddington-Finkelstein coor
dinates. The vector potential A.p = -q cos B describes the magnetic field created by
the monopole magnetic charge q.

Combining the information from these various limiting cases, one can conclude
that the C-metric describes the combined gravitational and electromagnetic field of
a pair of uniformly accelerating charged black holes [Kinnersley and Walker (1970)]
(see Figure 11.9).

We consider now the geometry

2 2[ dx
2

() 2]dl = r G(x) + G x d¢ , (11.4.82)
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Figure 11.9: Qualitative picture of the charged C-metric. The geometry is extended to
include both magnetically charged black holes. In the absence of the "left" black hole the
solution is singular on the horizon H-. The electromagnetic field has a 6-like singularity on
H- similar to the one discussed in Section 7.2.3. The outer horizons Hi have the topology
of two intersecting planes. The horizons HJ•2 have the topology RJ x 8 2 . They are the
event horizon, HJ , and the Cauchy horizons, H2 , for each of the black holes.

of two-dimensional sections u = const, r = const of C-metric (11.4.77). The poly
nomial of fourth order G(z), (11.4.65), has four roots. It is convenient to set ZJ =
-1/(Ar_) and let Z2 ::; Za < Z4, where Z2, Za and Z4 are the roots of the polynomial
f(z) = 1 - Z2 - r+Aza. At z =±oo f(±oo) = =foo. The function f(z) has a local
maximum f(O) = 1 at z = 0 and a local minimum at z = -2/(3r+A). Hence, Za < 0
and Z4 > 0, and f(z) ;::: 0 in the interval Za ::; z ::; Z4' Since r ::; r+, one also has
ZJ < Za. Thus, G(z) ;::: 0 in the interval Za ::; z ::; Z4, and metric (11.4.82) has the
Euclidean signature there and is conformal to the metric of a two-sphere 8 2

• We call
Za the south pole and Z4 the north pole of the sphere. For this choice the south pole
points towards spatial infinity, and the north pole points towards the other black
hole. Metric (11.4.82) is regular at its pole Zi if ¢ is an angular coordinate and has
period I:!..¢i = 41f /G'(Zi). The metric is free from a conical singularity if and only if
G'(Za) = -G'(Z4). Simple analysis shows that, save for the two exceptions rnA =0
and eA = rnA > (12t1/2, the spacetime of the C-metric always contains a nodal
timelike two-surface [Kinnersley and Walker (1970)]. If these singularities are chosen
to run from the north poles of black holes to infinity, each of the two correspond
ing conical singularities can be related with a cosmic string which provides the force
required for the acceleration of the black holes.

After these remarks we return to the discussion of the general Ernst solution. We
restrict Za ::; x S Z4 in order for the metric to have Lorentz signature. The range of y
is -00 < y < x. The surface y = Zl is the inner (Cauchy) horizon of the black hole;
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y = Z2 is the black hole event horizon, and y = Za is the acceleration horizon. For
Zl < Z2 the black holes are nonextremal, and for Zl = Z2 they are extremal.

The function G(z) for the Ernst solution has the same form as for the C-metric.
That is why one can directly apply the above analysis to the case of the motion of
black holes in a magnetic field. The form of the metric (11.4.63) implies that the
condition for the absence of node singularities at both (north and south) poles is

(11.4.83)

We recall that

(11.4.84)

(11.4.85)

in general depends on both coordinates, rand x. However, the value of Q for x = Zi,

where G(x) vanishes is independent of r. We define £ = Q(x = za); then when
(11.4.83) is satisfied, the spheres are regular as long as ¢ has the period

41T£2
~¢ = G'(za) .

In what follows we assume that the acceleration A is small and expand Zi in terms
ofr±A

(11.4.86)

Using these relations, one gets

G'(Za)
- G'(Z4) = 1 - 2(r- + r +)A + ... ,

(11.4.87)

Hence, in the presence of the external field, condition (11.4.83) takes the form

qB=mA+ .... (11.4.88)

This relation has an obvious interpretation: Node singularities are absent if the
acceleration of the black holes is provided entirely by the action of the external
magnetic field.
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Ernst's instanton and the probability of creation of pairs of charged black
holes

We now consider the Euclidean section T = it of the Ernst solution. In the non
extremal case, the corresponding metric has the Euclidean signature for Z2 ::; Y ::; Za.

In the general case, the Euclidean metric possesses conical singularities at y = Z2 (the
black hole horizon) and y = Za (the acceleration horizon). The solution is regular if

(11.4.89)

(11.4.90)

(11.4.92)

and if the Euclidean time 7 is periodic with period

41f
(3 = t!..7 = G'(za) .

For small acceleration Ar+ « 1 condition (11.4.89) can be written in the form

r+-r_ A
41fr~ = 21f + ." . (11.4.91)

The two relations, (11.4.88) and (11.4.91), restrict the possible parameters q, m, B,
and A, specifying a solution, so that only two of them can be fixed independently. In
particular, since A is small, r+ - r _ must also be small, so that the black holes are
almost extremal.

Consider now the section t = 0 of the Ernst solution (11.4.63). This section rep
resent a space with two charged black holes which are at rest at this moment of time.
The Ernst solution is time-symmetric with respect to the moment of closest approach
of the two black holes. We identify the surfaces of their horizons at this moment, so
that topologically the configuration is similar to the one presented in Figure 7.5. The
topology of this configuration is 8 2 X 8 1 - {p}, where the missing point is x = y (which
can occur only at Z2) and corresponds to infinity. The Euclidean section T = it of the
Ernst solution with 0 ::; T ::; t!..T12 interpolates between the Melvin magnetic universe
and a similar universe with a pair of black holes. Technically, it is much simpler to
describe the "double" instanton obtained by gluing this instanton to a copy of itself
along the 8 2 x 8 1 - {p} boundary [Garfinkle and Strominger (1991)]. The "double"
instanton has topology 8 2 x 8 2

- {p}, (x, ¢) and (y, T) being angular coordinates on
the spheres and p being the missing point of Euclidean infinity. The Euclidean time
T for the "double" instanton varies from 0 to t!..7. The Euclidean action calculated
for the "double" instanton is [Dowker et ai. (1994), Hawking, Horowitz, and Ross
(1995)]

21f £2

WE = A2G'(za)(za - zd

In the limit of small acceleration this expression takes the form WE ::::: 1fr_IA ::::: 1fqlB.
Hence, for black holes close to extremal m ::::: q, the expression exp(- WE) in the limit
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A -+ 0 correctly reproduces (11.4.62) [Garfinkle and Strominger (1991)]. Hawking,
Horowitz, and Ross (1995) proved that WE allows another representation:

1
WE==-4(~A+ABH)' (11.4.93)

Here ~A is the change of the area of the acceleration horizon due to the presence of
a black hole, and ABH is the black hole area. The presence of the additional factor
ABH can be interpreted as the increase in the probability of black hole pair creation
because of the presence of the internal degrees of freedom of the black holes. We
return to this interpretation later in Chapter 12, when we shall be discussing the
statistical mechanical aspects of black hole physics.

Black hole pair creation by snapping of cosmic strings

A small modification of the above described formalism allows one to find the semi
classical probability of another possible under-barrier process: the creation of black
hole pairs by the breaking of a cosmic string [Hawking and Ross (1995), Emparan
(1995), Eardley et ai. (1995)]. Let us consider the C-metric (11.4.75) but assume now
that condition (11.4.83) is violated. Then the Lorentzian charged C-metric describes
a pair of charged black holes accelerating away from one another. The acceleration
is caused by the conical singularities along the X-axis. To avoid a conical singularity
between the two black holes the following periodicity condition must be satisfied

41l"
~¢> = IG'(Z4)1' (11.4.94)

We recall that Z4 corresponds to the north poles of the black holes that point towards
each other. Conical singularities directed along the X-axis from the south poles of
the black holes to infinity can be interpreted as the presence of cosmic strings that
provide the acceleration of the black holes. The conical deficit angle

(11.4.95)

is related to the mass per unit length Il == 0j81l" of the cosmic string. This inter
pretation is supported by more accurate considerations. In particular, it was shown
that a wide class of cosmic strings can really end in a black hole [Hawking and Ross
(1995), Eardley et ai. (1995)]. A cosmic string with a black hole at its end is in
many aspects similar to a cosmic string with a monopole at one end. The Euclidean
section of the C-metric thus gives an instanton describing the breaking of the cosmic
string and creation of the pair of black holes at the ends of the broken cosmic string.
As before, the condition (11.4.90) removes additional unphysical conical singularities
of the Euclidean solution. Calculations give for the Euclidean action [Hawking and
Ross (1995), Emparan (1995), Eardley et ai. (1995)]

1 21l"
WE = - 4(~A + A BH ) = A2IG'(Z4)I(Z3 _ zd . (11.4.96)
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In the limit of small acceleration r+ A « 1, the black holes are close to extremal;
the mass per unit length of the string is

ll::::: r+ A ,

and the Euclidean action takes the form

1rm2

WE :::::--,
Il

(11.4.97)

(11.4.98)

(11.4.99)

where Tn is the black hole mass. This expression is in .agreement with the expres
sion for the action describing breaking of a cosmic string and creation of a pair of
monopoles at the end [Vilenkin (1982)J

1rM2

WE =--,
Il

where M is the mass of the monopole.
In a similar way, by finding the corresponding instantons and calculating the

Euclidean action, one can describe other effects of black hole pair creation. For
example, black hole pairs can be created by domain walls [Caldwell, Chamblin, and
Gibbons (1996)], and by the cosmological constant[Mann and Ross (1995) and Bousso
and Hawking (1996)J. It should be emphasized that the probability of these tunneling
processes is negligible. For example, for realistic strings Il '" 1O-6mpI/lpl, so that for
black holes of mass greater than the Planck mass the rate of black hole pair formation
is less than exp(_106 ). So far the main importance of these results is connected with
a demonstration of the possibility of the quantum effects that result in changes of the
spatial topology. Another important aspect is the demonstration that the probability
is usually greater than theexpected quantity by the factor expABH/4, which might
be connected with an existence of different internal degrees of freedom of the created
black holes.



Chapter 12

Thermodynamics and Statistical
Mechanics of Black Holes

12.1 Black Holes and Thermodynamics

Hawking's discovery of thermal radiation from black holes was a complete surprise to
most specialists, even though quite a few indications of a close relationship between
black hole physics and thermodynamics had emerged before this discovery.

Wheeler seems to have been the first to notice that the very existence of a blaok
hole in the classical theory of gravitation contradicts the law of non-decreasing en
tropy. Indeed, imagine that a black hole swallows a hot body possessing a certain
amount of entropy. Then the observer outside it finds that the total entropy in the
part of the world accessible to his observation has decreased. This disappearance of
entropy could be avoided in a purely formal way if we simply assigned the entropy
of the ingested body to the inner region of the black hole. In fact, this "solution" is
patently unsatisfactory because any attempt by an "outside" observer to determine
the amount of entropy "absorbed" by the black hole is doomed to failure. Quite soon
after the absorption, the black hole becomes stationary and completely "forgets", as
a result of "balding", such "details" as the structure of the ingested body and its
entropy.

If we are not inclined to forgo the law of non-decreasing entropy because a black
hole has formed somewhere in the Universe, we have to conclude that any black hole
by itself possesses a certain amount of entropy and that a hot body falling into it not
only transfers its mass, angular momentum and electric charge to the black hole, but
also its entropy S as well. As a result, the entropy of the black hole increases by at
least S. Bekenstein (1972, 1973a) noticed that the properties of one of the black hole
characteristics - its area A - resemble those of entropy. Indeed, the Hawking's area
theorem implies that the area A does not decrease in any classical processes; that
is, it behaves as entropy does. It was found, in fact, that the analogy of black hole
physics to thermodynamics is quite far-reaching. It covers both gedanken experiments

466
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with specific thermodynamic devices (like the heat engine) and the general laws of
thermodynamics, each of which has an analogue in black hole physics.

An arbitrary black hole, like a thermodynamic system, reaches an equilibrium
(stationary) state after the relaxation processes are completed. In this state, it is
completely described by fixing a small number of parameters: M, J, Q. The area A
of a stationary black hole is a function of these parameters:

(12.1.1)

(12.1.2)

This relation can be inverted, yielding a formula for the internal energy of a black
hole:

M == M(A, J, Q) = [1r[ (Q2 + A~1r)2 + 4)2 J] 1/2

The internal energies of two stationary black holes with slightly differing values of
area (by dA), angular momentum (by dJ), and electric charge (by dQ), differ by an
amount

(12.1.3)

where K, =41rJM2 - Q2 - J2 / M2 / A is the surface gravity; nH = 41r J/ MA is the
angular velocity, and if>H = 41rQ r+/A is the electric potential of the black hole. The
second and third terms of this formula describe the changes in rotational energy and
electric energy, respectively.

This relation is similar to the first law of thermodynamics. An analogue of tem
perature (the variable conjugate to entropy) is a quantity proportional to surface
gravity K,. Hawking's result on the thermal nature of the radiation of stationary
black holes not only supports this analogy, but also supplies the coefficient relating
temperature TH to surface gravity K,:

TH = nK,/21rc k.

Note that relation (12.1.3) is identical to the first law of thermodynamics l

dE = () dSH +nH dJ + if>H dQ ,

if one assumes the following expression for the entropy of the black hole

(12.1.4)

(12.1.5)

(12.1.6)

This quantity is known as the Bekenstein-Hawking entropy.
These arguments give sufficient ground for taking the the analogy between black

hole physics and thermodynamics quite seriously. In this chapter we discuss the

1/J = kTH is the temperature TH measured in energy units, and it differs from the latter by the
factor k: The entropy in these units is dimensionless.
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thermodynamics and statistical mechanics of systems containing black holes. We shall
demonstrate the fruitfulness of thermodynamical ideas in the application to black hole
physics. However, as we shall see, black holes considered as thermodynamical systems
possess a number of peculiar properties. We shall discuss these properties in detail
later. Now we just make a few comments.

1. Since gravity is a long-range force, self-gravitating systems in a state of thermal
equilibrium are usually macroscopically inhomogeneous. This inhomogeneity is
extremely important in the presence of a black hole.

2. The decrease of the size (the gravitational radius) of a black hole results in
a decrease of its internal energy (mass). This property (characteristic for self
gravitating systems) results in a negative heat capacity for a non-rotating black
hole and possible instability of a system containing such a black hole.

3. Though relation (12.1.5) can be used to the study of a black hole transition
from one stationary configuration to another, it cannot by itself guarantee that
similar relations are valid for the total system including the black hole and
surrounding matter. The mechanism which makes possible the equilibrium of
the black hole with surrounding thermal radiation is based on the existence of
the Hawking radiation, i.e., a quantum gravity effect.

4. For fixed angular momentum and charge of the black hole its temperature (sur
face gravity) and size (surface area) are defined by one parameter (mass), and
hence are not independent. For the standard thermodynamical systems the
temperature (intensive parameter) and size (extensive parameter) are indepen
dent.

5. Usually thermodynamics gives us a description of systems which consist of a
large number of particles (constituents) and can be derived from the micr<r
scopic theory of the constituents by means of statistical mechanical methods.
A black hole (at least as a classical object) is nothing but an empty space with
a very strong gravitational field. It is a highly non-trivial question whether the
similarity between black holes and the ordinary thermodynamical system goes
so far as to include also the possibility of a microscopical statistical-mechanical
foundation of black hole thermodynamics.

We return to these problems later, but first we describe the thermodynamical
analogy in black hole physics in more detail.

12.2 Mass Formulas

12.2.1 Integral mass formula

We begin by deriving a useful representation for the mass of a stationary system
containing a black hole. We recall that the angular velocity Off, surface gravity
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Figure 12.1: Spacetime of a stationary black hole (illustration to the derivation of the
mass formula).
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(12.2.1 )

K" and electric potential if>H of a stationary black hole are constant on the event
horizon (see Section 6.3). This property is essential for the derivation of the so
called mass formula. This formula establishes a relationship between the black hole
mass observed at infinity and the geometric characteristics of the event horizon.
Specifically, Bardeen, Carter, and Hawking (1973) proved that the black hole mass
observed at infinity, Moo, in a stationary axisymmetric asymptotically flat spacetime
can be written in the form

MOO = - {(2 Tt - T ot) ~(t) dUIJ + 2nH JH + .!:.... A.JE 4~

Here, nH is the angular velocity; JH the angular momentum; K, the surface gravity;
A is the area of the black hole, and Tt the total energy-momentum tensor of the
stationary axisymmetric distribution of matter and fields outside the black hole. The
integration is carried out on a spacelike asymptotically flat surface E that intersects
the event horizon along a two-dimensional surface as. The· surface E is chosen in
such a manner that ~("') is tangent to as and E is orthogonal to ~It) at asymptotic
infinity.

Formula (12.2.1) is proved as follows. For an arbitrary Killing vector field ~IJ

(12.2.2)

This relation can be obtained by contracting (A.3D) in a and (J Choosing ~It) for ~IJ,

integrating (12.2.2) over the surface E, and using Stokes' theorem [see (A.87)], we
find

(12.2.3)
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(12.2.5)

(12.2.4)

(12.2.7)

(12.2.6)

where dalJv and dalJ are elements of the surface E and its boundary 8E. If the surface
E is chosen as described above, its boundary 8E consists of the black hole boundary
813 and a two-dimensional surface 8Eoo at spatial infinity (Figure 12.1).

We now show that the black hole mass Moo, measured by a distant observer in
the asymptotically flat region, is given by the expression

00 - 1 1 IJ;VM - -4 ~(I) dalJv.
11" OE""

To do this, we consider the effect which the black hole exerts on test particles. We
assume that a test body is at rest far from the black hole. The four-acceleration of
this body is then

alJ = _ ~{t) ~~);v .

~~)~(I)a

Let E be a spacelike surface orthogonal to the four-velocity of the body, u lJ =
~IJ /1 ~a ~a 11/

2
, in the asymptotic region. The gravitational field in this region isweak

so that the relation of its invariant four-dimensional characteristics to the Newtonian
description is easily established. Thus, the vector aV ~ uV ~~);v' which lies in E,
has only three nonzero components. In the Newtonian theory, this three-dimensional
vector characterizes the strength of the gravitational field and is related to the grav
itational potential V by the formula ai = V,i' By Gauss' theorem, the flux of this
vector across any closed two-dimensional surface 8Eoo (that lies in E) enclosing the
gravitating body equals 411" Moo, where Moo is the mass of the body. Let iilJ be the
unit vector of the outward normal to 8Eoo that lies in E. Then

M oo 1 1 tlJ;V -d2= -4 <"(1) nlJ Uv a,
11" OE""

where d2a is an element of the area 8Eoo . Since ~IJ;V is an antisymmetric tensor, we
can replace the expression iilJ Uv d2a with dalJV = iillJ Uv)d2a. Expression (12.2.6) then
transforms to (12.2.4).

Likewise, it can be shown that the total angular momentum Joo of the system,
measured by a distant observer (e.g., by recording the Lense-Thirring drag), is given
by the following formula: 2

J oo - 1 1 tlJ;V d- - - <''(4)) alJv·
811" 8Eoo

2Direct checking will demonstrate that formulas (12.2.4) and (12.2.7) hold for the mass M and
angular momentum J if one takes into account that the metric far from the rotating body can be
written in the following form:

ds2 =_ [1 _ 2~ + O(r-2
)] dt2

_ [4: sin2 8 + o(r-2
)] dtdl/>+

+ (1 + O(r- I
)) [dr2 +r2 (d82 +sin28d¢>2)].
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(12.2.8)

Using the relation (12.2.3) and a similar relation for ~(t/», we can obtain, taking into
account (12.2.4) and (12.2.7), that

Moo = - i (2 T:: - T;: o~) ~{t) dalJ + M H
,

(12.2.9)

where the integrals on the right-hand sides describe the contributions of matter and
fields outside the black hole to the total mass Moo and angular momentum Joo of the
system, while

(12.2.10)

and

(12.2.11)

(12.2.12)

are the contributions of the mass and angular momentum of the black hole itself to
Moo and Joo.3

The expression for M H can be transformed as follows. We recall that tlJ = ~~) +
nH~(t/» is a null generator of the event horizon of the rotating black hole. Expressing

~~) in terms of ilJ and ~(t/»' we find

( ~~) dalJv = 81f JH nH + ( ilJW dalJv,JaB JaB
We choose a complex null tetrad [mlJ mlJ = -ilJ nV = 1] so that the vectors mlJ and mlJ
lie in the plane tangent to aB. Then dalJv = i[1J nv)dA, where dA is an area element of
the two-dimensional surface aB. Using the definition (6.3.20) of the surface gravity
K, and also its constancy, we can write the integral on the right-hand side of (12.2.12)
in the form

(12.2.13)

31t must be emphasized that the expression (A.82) which we use for the surface element dUlJv
agrees with that employed by Bardeen, Carter, and Hawking (1973) and Carter (1973a), but is twice
as small as that in Carter (1979) and Damour (1982). Note also that the orientation of dUlJv on the
surfaces m:::oo and vB was chosen so as to have
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where

A= { dA
lOB
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(12.2.14)

(12.2.15)

is the total area of the black hole surface. Using this equality and substituting
(12.2.12) into (12.2.8), we arrive at the mass formula (12.2.1).

Recall that T/: in this formula is the total energy-momentum tensor of matter
and fields outside the black hole. If an electromagnetic field is present, the tensor T/:
is composed of two parts: The energy-momentum tensor of matter, T(:)I', and the
energy-momentum tensor of the electromagnetic field, T(~m)l'. Using the expression
(F.16) for T(~m)I', we can transform formula (12.2.1) into the following form [Carter
1973a, 1979)J:

MOO = -1 (2 T(m)1' - T(m)n 81') tV da + M H + M(em)v n v <,,(t) I' ext ,
E

where M~:~) is the contribution to the total mass due to the presence of electric
current jl' outside the black hole,

M (em) - ( [ 2 tV A'I' 'vA tl'] d
ext - lE - <"(t) vJ +J v<"(t) all' (12.2.16)

and M H is the black hole mass including the energy of its electromagnetic field:

Here

(12.2.17)

and

J(em)H -..!... { ~n A Fltv da
- 41r lOB (4)) n I'V' (12.2.18)

(12.2.19)

is the electric charge of the black hole. In the above formulas, AI' denotes the vector
potential of the electromagnetic field, vanishing at infinity and satisfying the relations
Le(t)AI' = Le(4))AI' = 0.4 If there is no matter or current outside the black hole, its

mass MOO measured at infinity coincides with M H • Relation (12.2.17) for an isolated
black hole was derived by Smarr (1973a).

4The existence of a gauge in which these relations are satisfied can be verified if one uses the
conditions £e("F,.v = £e(~lF,.v =0 of stationarity and axial symmetry of the field Fl'v'
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12.2.2 Differential mass formula
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The integral mass formula (12.2.1) makes it possible to calculate the mass difference
dMoo for two static or stationary axisymmetric configurations containing a black
hole. We denote the appropriate metric variation by 091lv and specify the gauge
arbitrariness 091lv -t 091lv + O'\(Il;V) (inherent in the choice of this quantity) in such a
way that o~~) == o~(t/» == 0, with unchanged position of the event horizon. Then the
general expression for the mass variation is written in the following form [Bardeen,
Carter, and Hawking (1973)J:

In the case when an ideal fluid, described by the energy-momentum tensor TSrn)ll,
revolves around the black hole at a local angular velocity 0, and the system is sta
tionary and axially symmetric both before and after its parameters undergo a change,
this general relation takes the following form [Carter (1973a), Damour (1982)J:

(12.2.21 )

where

(12.2.22)

Here, d3J(rn) == T(:)1l ~(t/» dUll is an element of local angular momentum of matter;

d3Q == jll dUll is the local charge distribution; jll is the electric current; 0 == [- (E'(t) +
o e(t/»)2j1/2(J; (J is the local temperature; d3s(rn) is the local distribution of the matter

entropy; ji == flO /(J, fl is the local chemical potential, and d3N is the local distribution
of the number of particles.

The integral and differential expressions for the mass formula given in this section
are convenient for analyzing a numerous aspects of the processes that change the
parameters of black holes. These expressions are among the main relations employed
in the description of the analogues of the laws of thermodynamics in black hole
physics. If matter and fields are absent outside the black hole, the last term in
formula (12.2.21) vanish, and it becomes identical to formula (12.1.3) for the Kerr
Newman black hole.
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12.3 Four Laws of Black Hole Physics

12.3.1 Four laws of black hole thermodynamics

According to the thermodynamic analogy in black hole physics, the quantities

()=~
21rk c '

H A
S =4[2'

PI

(12.3.1 )

(It is the surface gravity, A is the area and M is the mass of the black hole) play
the role of temperature, entropy, and internal energy of the black hole, respectively.
Bardeen, Carter, and Hawking (1973) formulated the four laws of black hole physics,
which are similar to the four laws of thermodynamics.

Zeroth law. The surface gravity It of a stationary black hole is constant everywhere
on the surface of the event horizon.

Thermodynamics does not permit equilibrium when different parts of a system
are at different temperatures. The existence of a state of thermodynamic equilibrium
and temperature is postulated by the zeroth law of thermodynamics. The zeroth law
of black hole physics plays a similar role. This proposition was proved in Section 6.3.3
under the assumption that the energy dominance condition is satisfied.

First law. When the system incorporating a black hole switches from one stationary
state to another, its mass changes by

(12.3.2)

where dJH and dQ are the changes in the total angular momentum and electric charge
of the black hole, respectively, and oq is the contribution to the change in the total
mass due to the change in the stationary matter distribution outside the black hole.

This is nothing more but the differential mass formula (12.2.21), and oq for an
ideal fluid has the form (12.2.22).

Second law. In any classical process, the area of a black hole, A, and hence its
entropy SH, do not decrease:

(12.3.3)

This analogue of the second law of thermodynamics is a consequence of Hawk
ing's area theorem, which is valid provided the weak energy condition is satisfied
(Section 5.4). In both cases (thermodynamics and black hole physics), the second
law signals the irreversibility inherent in the system as a whole, and thus singles
out the direction of the time arrow. In thermodynamics, the law of non-decreasing
entropy signifies that the part of the internal energy that cannot be transformed into
work grows with time. Quite similarly, the law of non-decreasing area of a black hole
signifies that the fraction of a black hole's internal energy that cannot be extracted
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grows with time, As in thermodynamics, the quantity SH stems from the impossi
bility of extracting any information about the structure of the system (in this case,
the structure of the black hole).

Third law. In thermodynamics, the third law has been formulated in a variety
of ways5, Two (essentially equivalent) formulations, due to Nernst, state that: (1)
Isothermal reversible processes become isentropic in the limit of zero temperature,
and (2) It is impossible to reduce the temperature of any system to the absolute zero
in a finite number of operations. A stronger version, proposed by Planck, states that:
The entropy of any system tends, as (J -+ 0, to an absolute constant, which may be
taken as zero,

Bardeen, Carter, and Hawking (1973) formulated the analogue of the third law
for black holes in the following form: It is impossible by any procedure, no matter
how idealized, to reduce the black hole temperature to zero by a finite sequence of
operations.

Since the black hole temperature (J vanishes simultaneously with "', this is only
possible if an isolated stationary black hole is extremal: M 2 = a2 + Q2. The im
possibility of transforming a black hole into an extremal one is closely related to
the impossibility of realizing a state with M 2 < a2 + Q2 in which a naked singular
ity would appear and the "cosmic censor" principle would be violated. An analysis
of specific examples [see, e.g" Wald (1974a)] show that the closer the state of the
black hole comes to the extremal one, the more restrictive are the conditions on the
possibility of making the next step.

Israel (1986b) emphasized that it is difficult to define the meaning of "finite se
quence of operations" considering only quasi-static processes which were analyzed by
Bardeen, Carter, and Hawking (1973). He proposed and proved the following version
of the third law: A non-extremal black hole cannot become extremal at a finite ad
vanced time in any continuous process in which the stress-energy tensor of accreated
ma,tter stays bounded and satisfies the weak energy condition in the a neighborhood
of the outer apparent horizon.

The proof of this law is based on the earlier result of Israel (1986a) according to
which: A trapped surface can be extended, in a locally-preserving fashion, to a three
cylinder that is everywhere spacelike provided it encounters no singularities in its
development and weak energy condition is satisfied. This result implies that initially
trapped surface is permanently sealed off inside the black hole. This makes impossible
a process of transition of a black hole to its extremal state during a finite time interval
because in such a process the trapped surface would disappear.

5The third law of thermodynamics was discovered by Nernst (1906). It was extended and refor
mulated by Planck (1911). The precise conditions under which this law is valid are quite subtle,
and there were many attempts to clarify them (see Wilson (1957), Callen (1960), Lewis and Randal
(1961), Kestin (1968)). For a discussion of the third law in connection with black hole physics, see
Israel (1986b)
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It must be specially emphasized that another formulation of the third law of
thermodynamics, stating that the entropy of a system vanishes at zero absolute tem
perature, is not valid for black holes because the area A remains finite as K, -+ 0.6

Wald (1997) discussed the possibility of violation of the third law in this formulation
for a class of simple thermodynamical systems.

12.3.2 Generalized second law

Formulation of the generalized second law

Quantum effects violate the condition for the applicability of Hawking's area theorem.
Thus, quantum evaporation reduces the area of black holes, and inequality (12.3.3) is
violated. On the other hand, black hole radiation is thermal in nature and the black
hole evaporation is accompanied by a rise in entropy in the surrounding space. One
may expect that the so-called generalized entropy S, defined as the sum of the black
hole entropy SH and the entropy of the radiation and matter outside the black hole,
sm,

(12.3.4)

does not decrease. In fact, we note that the rate of increase (by the clock of a
distant observer) of mass and entropy of matter in the black hole exterior, because
of Hawking radiation of a massless spin-s field, can be written in the form

dMm dMH 1 dSm 1
--;It = - --;It = "4 a. hs 'Es (}4, & = "3 as B. h. 'E. (}3, (12.3.5)

where h. is the number of polarizations ofthe field; a. = 11"2/30 for bosons and 711"2/240
for fermions; 'E. is the effective cross section of the black hole; (} is its temperature,
and B. is a dimensionless coefficient of order unity. On the other hand, the change
in the entropy SH of a non-rotating black hole is related to the change in its mass M
by the formula

(12.3.6)

Comparing (12.3.5) and (12.3.6), we find [Zurek (1982)]

dSm 4
R=.--=-B.. (12.3.7)

dSH 3

Numerical results obtained using formulas (10.5.14) and (10.5.31) [Zurek (1982), Page
(1983)] demonstrate that the coefficient B. is always greater than 3/4; hence, the
generalized entropy S increases when an isolated black hole emits radiation. It can
be shown [Zurek (1982)] that if there is black body radiation at a temperature 9

6Gibbons and Kanosh (1995) and Hawking, Horowitz, and Ross (1995) drew attention to the
fact that under special conditions the entropy of an extremal black hole might vanish.
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outside the black hole, the generalized entropy again increases, except in the case
when jj = 9. In this special case,· the increase in entropy in the space around the
black hole due to its evaporation is exactly compensated for by a decrease in the
entropy in this space, due to the accretion of thermal radiation onto the black hole.

These arguments give sufficient grounds for assuming that the following law
holds:7

Generalized second law. In any physical process involving black holes, the gener
alized entropy S does not decrease.

(12.3.8)

The fact that the generalized second law includes, on an equal footing, the seem
ingly very different quantities, 8 m (which characterizes the "degree of chaos" in the
structure of the physical matter) and 8H (which is a geometric characteristic of the
black hole), is a new indication of their profound similarity. In fact, the very pos
sibility of this relation is rooted in Einstein's equations, which relate the physical
characteristics of matter with the geometric characteristics of spacetime.

Proof of the generalized second law

A simple direct proof of the generalized second law for a quasi-stationary black holes
was given by Frolov and Page (1993). The idea of the proof is following. A quasi
stationary black hole may be considered to emit thermal radiation in UP-modes
described by a density matrix Po.s Suppose there is also radiation with density matrix
PI incident on the hole from far away (e.g., past null infinity, .:1-) in the corresponding
IN-modes (Le., incoming modes which are of positive frequency at .:1-). We use the
semiclassical approximation and assume that the radiation in these two sets of modes
will be quantum mechanically uncorrelated, giving an initial product state

(12.3.9)

After the initial state POI interacts with the potential barrier separating the hori·
zon from infinity, and possibly interacts with itself as well, it will have evolved uni
tarily into a (generally) correlated final state

(12.3.10)

7The generalized second law in this formulation was first suggested by Bekenstein (1972, 1973b,
1974) before the quantum radiation of black- holes was discovered.

sFor the definition of UP-, IN., DOWN., and OUT-modes, see Section 10.2. Note that, according
to the standard definition, these modes are defined for the eternal black hole. In the case in which
the black hole arises from gravitational collapse and becomes quasi-stationary, the UP-modes are
defined to be the same in the future stationary region as the UP-modes of the eternal black hole
with the same future stationary region. As before, even when speaking about a black hole that
was formed as a result of collapse, we use terminology developed for the eternal black hole. The
possibility and convenience of using the eternal version of a black hole was discussed in Section 10.2.
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where fh = tr3 P23 is the density matrix of the radiation in the OUT-modes escaping
to future null infinity .:J+, and P3 = tr2 P23 is that in the DOWN-modes that are
swallowed by the future horizon H+.

The entropy of each of these states is Si = - tr(Pi In Pi)' Because the evolution
from POI to P23 is unitary, S23 = SOl. Furthermore, since POI is uncorrelated, but P23
is generically partially correlated, the entropies of these states obey the inequality
[Araki and Lieb (1970)]

S2 + S3 2: S23 = SOl = So + SI.

The first law of black hole physics implies that

dSH = (J-1 (dM - nHdJ - <J:>HdQ) = 0-1 dE,

(12.3.11)

(12.3.12)

where 0 and E are the local temperature and energy as measured by an observer
corotating with the hole near the horizon. If Eo and E3 are the expectation values
of the local energies of the emitted state Po and the absorbed state P3, respectively,
then the semiclassical approximation, combined with the first law, says that

(12.3.13)

(12.3.14)

assuming that the changes to the hole are sufficiently small so that 0 stays nearly
constant throughout the process (the quasi-stationary approximation).

Equation (12.3.11) and inequality (12.3.12) imply that the change in the general
ized entropy is

flS = flSBH + flSrad = 0-I(E3 - Eo) + S2 - SI

~ (SO - 0- 1Eo) - (S3 - 0-1E3) .

Now for fixed 0and for equivalent quantum systems (as the UP-modes of Po and the
corresponding DOWN-modes of P3 are by CPT reversal, for a quasi-stationary black
hole), S - 0-1E is a Massieu function [Massieu (1869), Callen (1960)] (essentially the
negative of the local free energy divided by the temperature) which is maximized for
the thermal state Po. Therefore,

(12.3.15)

which is the generalized second law. This is an explicit mathematical demonstration
of what Zurek and Thorne (1985) argued verbally, that the generalized second law
is a special case of the ordinary second law, with the black hole as a hot, rotating,
charged body that emits thermal radiation uncorrelated with what is incident upon
it.

This proof applies to any emission, scattering, or absorption process, even for
interacting fields, so long as the semiclassical approximation applies, and so long as
the changes take place in a quasi-stationary manner.
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Role of quantum effects

It is instructive to discuss a gedanken experiment that has been proposed to show
the validity of the generalized second law [Bekenstein (1973b, 1974)]. Imagine that
radiation (or matter) possessing energy Em and entropy 8 m is placed in a box with
impenetrable (mirror) walls, and let this box be slowly lowered toward a non-rotating
black hole. When the bottom of the box is in the immediate vicinity of the black
hole surface, the bottom lid is opened and the contents of the box fall into the black
hole. The box is then hoisted up.

Let us evaluate the change in generalized entropy in this process. Let all dimen
sions of the box, including its height I, be small in comparison with the black hole
radius T g' When the lower face of the box reaches the black hole, the upper face is
at T == Tg + AT, where AT ~ 12/4Tg. The energy transferred to the black hole (taking
into account the redshift) does not exceed the amount

c:::: (1- Tg )I/2 Em ~ _1_ Em,
T 2Tg

and its entropy increases by

J8H ~ (J-I C ~ 211" I Em.

(12.3.16)

(12.3.17)

These arguments imply that the generalized entropy is indeed non-decreasing in this
process provided the inequality 8 m S 211"1 Em is satisfied.9

For example, consider a massless particle in the box. Its energy can be estimated
by using the uncertainty relation as Em ,..., hi-I == 211"1- 1 (for Ii == 1), and hence for
this particle 211"lEm ~ 1. On the other hand, the decrease 8 m of the entropy because
of the absorption of one particle is 8 m S 1. Thus, one can expect that relation
8 m S 211" I Em is satisfied for such a process.

But if we slightly modify this gedanken experiment and choose I to be sufficiently
small and much smaller than the other two dimensions of the box, L, we may conclude,
at first glance, that the generalized second law can be violated since the energy
Em ~ hiL of a quantum can be made arbitrary small. Unruh and Wald (1982,
1983a) proved that this conclusion is too hasty and wrong. Indeed, the analysis
ignores effects due to vacuum polarization. When these effects are taken into account,
the situation is changed drastically.

Let us assume that the box has mirror walls. As the box slowly approaches the
black hole, the walls undergo progressively higher acceleration, and the accelerated
motion of the mirror boundaries generates energy fluxes (due to quantum effects).
This behavior is well known in flat spacetime [see DeWitt (1975), Birrell and Davies
(1982)]. Its physical cause is the following. When a mirror boundary reflects radia
tion, charges and currents are induced on it. A similar phenomenon takes place in the

90n the validity of this constraint for real physical systems, see Bekenstein (1982, 1983), Unruh
and Wald (1983a).
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vacuum. The charges and currents "induced" by zero-point oscillations fluctuate and
their expectation values are zero. In the presence of the boundary the renormalized
expectation value of the stress-energy tensor is modified (the Casimir effect). For a
stationary boundary the net flux of quantum radiation vanishes. If such a bound
ary begins to move with an acceleration, the "induced" charges and currents emit
radiation. When a flat mirror moves at an increasing acceleration in flat spacetime,
energy fluxes in the direction of the acceleration vector are generated on both sides
of the mirror. 10

Unruh and Wald (1982, 1983a) noticed that a similar effect takes place when a
box with mirror walls is lowered into a black hole. Slow lowering of the box produces
an additional positive energy flux into the black hole due to vacuum polarization by
the walls. As a result, the energy c transferred to the black hole and the related
amount of the change of the entropy SH are increased, and the generalized entropy
does not decrease.

If the box is rigid, then the acceleration of the bottom is always greater than that
of the upper wall. The net radiation of the mirror walls into the box reduces the
energy inside. If an empty box is lowered, the energy inside it may become negative.
At a point where the acceleration is a (a » K), the energy density in the box is of
order -a (J~, where (Ja = a/21r is the local temperature measured by an observer at
rest in this point (see Section 11.3.4). If we now open this box, a flux of negative
energy into the black hole will be formed. This will stop when the energy-momentum
density of radiation in the box becomes comparable to the energy-momentum density
(it) in the neighborhood of the point. If the lid of the box is then closed and the
box is pulled out, the observer finds that it is filled with thermal radiation at a
temperature (Ja = a/21r [for more details, see e.g., Anderson (1994»). As a result of
this cyclic process, the mass of the black hole slightly decreases and the energy equal
to the difference between the energy of extracted radiation and the work done in the
cycle can be utilized for doing work [Unruh and Wald (1982, 1983a)]. This additional
energy properly taken into account allows one to demonstrate the validity of the
generalized second law for this process without using the inequality sm < 21rlEm
[Unruh and Wald (1982, 1983a»).

By repeating the cycle, it is possible to continuously extract energy, lwen from cold
(massive) black holes. Unruh and Wald (1983b) obtained a theoretical restriction on
the admissible power produced in such a process: IdE/dt Is c5/G ~ 3.6 x 1059 erg/so
This process also obeys the generalized second law of black hole physics.

IOFor a scalar massless field in a two-dimensional spacetime this flux, T!-'v vI-' (aV la) (v" is the four
velocity, and al-' is the four-acceleration), equals (1211")-1 daldr (r is the proper time of the observer
on the surface of the mirror) [DeWitt (1975), Birrell and Davies (1982)]. For the generalization to
four dimensions, see Anderson and Israel (1997).
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12.3.3 Entropy as the Noether charge

The differential mass formula which plays the key role in establishing the four laws of
black hole physics requires the Einstein equations for its derivation. One may suspect
that the established relations between properties of black holes and thermodynamical
systems have a deeper origin and remain valid for a more general class of theories of
gravity which still allow black holes. We shall discuss some of these generalizations
in Chapter 13. But even if we preserve the Einstein equations at the classical level,
quantum corrections inevitably modify them. In particular, as we discussed earlier,
higher-order curvature corrections are present in the effective action of quantum
gravity. Though these corrections are small for black hole masses M » mpb their
very existence requires generalization of the black hole laws. This generalization was
recently proposed by Wald (1993). Namely, Wald demonstrated that the first law
of thermodynamics can be formulated in any diffeomorphism-invariant theory in any
spacetime that contains a stationary black hole with bifurcate Killing horizon, and
the black hole entropy is related to the Noether charge [Wald (1993), Iyer and Wald
(1994)].

The key role in this construction is played by the Noether current connected with
the general covariance of the theory. To define it, let us consider a theory with the
action

w = In dx A(x, 'PA, 'PA,a, 'PA,a/3"")' (12.3.18)

where 'PAis the complete set of dynamical variables (including the spacetime metric)
enumerated by the collective index A. Dots indicate that the Lagrangian density A
may depend also on higher derivatives of 'PA. The integration is performed over the
part 0 of the spacetime, and dx is the element of coordinate volume. Consider the
infinitesimal transformations

(12.3.19)

The functional W remains invariant under transformations (12.3.19) for an arbitrary
volume n if and only if the following relation is valid

where

JA 8A 8 ( 8A ) 8
2

(8A)
J'PA = 8'PA - 8xa 8'PA,a + 8xa8x/3 8'PA,a/3 + ... ,

(12.3.20)

(12.3.21)

a a 8A 8A 8J'PA 8 ( 8A ) ).:J =A~ +-{j-J'PA+-{j-- 8x/3 - 8x/3 -8-- J'PA+ .... (12.3.22
'P A,a 'PA,a/3 'PA,a/3
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Here (...) denotes additional terms that are present in the case when the Lagrangian
density A depends on higher than second derivatives of 'PA. If the equations of motion
JA/J'PA = 0 are satisfied, the Noether current density JO is conserved: J"a = O.

Consider a covariant action, i.e., an action invariant under coordinate'transfor
mations xl' --t xl' + eCx). In this case, the transformation of the field induced
by coordinate transformations is J'PA = Le'PA, where Le is the Lie derivative in the
direction of ~o. We define the Noether current density corresponding to this trans
formation as JO('P,~). The conservation of JO('P,~) implies that (at least locally)

(12.3.23)

Since JO depends linearly on ~o and is conserved for an arbitrary ~o, it is possible
to uniquely and globally define No/3( 'P, ~), which depends on no more than (k - 1)
derivatives of ~o, where k denotes the highest derivative of any dynamical field oc
curring in the Lagrangian density A [Wald (1990)).

If the metric go/3 is among the dynamical variables (it is just this case which is
interesting for our discussion), it is convenient to work not with densities A, JO, and
No/3 but with ordinary scalars and tensors

L = (_g)-1/2 A, JO = (_g)-1/2 JO , N o/3 = (_g)-1/2 No/3 .

In this notation equation (12.3.23) takes the form

J o =N o /3
;13'

(12.3.24)

(12.3.25)

By integrating this relation over a surface ~ and using Stokes' theorem (A.87), one
gets

{ JO d~o = { Na/3 dao/3 •
JE JaE

The integral of No/3 over a closed two-dimensional surface a

(12.3.26)

(12.3.27)

is called the Noether charge of (J relative to ~o.

Consider a stationary, axisymmetric, asymptotically flat spacetime. Define by
XO = ~~) +nH ~(t/» the Killing vector which is the generator of the Killing horizon.
Let us apply (12.3.26) for ~o = XO and choose for ~ a three-hypersurface extending
from asymptotic infinity to the bifurcation surface. Upon considering a variation of
the fields away from the background solution, Wald (1993) found an identity relating
surface term at infinity to another on the horizon, in the form expected for the first
law

(12.3.28)
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(12.3.30)

(12.3.31 )

(12.3.32)

Here JM and /jJ are the variations of the mass and angular momentum of the system
measured at infinity, and IN(aH, X) is the variation of the Noether charge of the
horizon. In the process of variation the contravariant components of XO are chosen
to be fixed.

It is easy to show that for vacuum black holes in the Einstein theory relation
(12.3.28) coincides with (12.2.21) (with /jq = 0). In fact, for the Einstein theory one
has [Iyer and Wald (1994))

L = 8~ R, (12.3.29)

JO = ~ [x[o;~ + GO x/3]
811" ./3 /3

Here Go/3 = Ro/3 - ~ 90/3 R is the Einstein tensor, which vanishes for vacuum spaces.
Thus, we have

N o/3 =~ X[0;/31
811"

Relation (12.2.13) shows that

N(aH,X) = ~ rdUo/3X[0;/31 = ~/'\;A.
811" iu 811"

Since JXo = 0 everywhere, and XO = 0 on the two-surface of bifurcation of horizons,
one has J(X~/3) = 0 and JK = O. Hence, (12.3.28) takes the form

.!:...c. dS = dM - nH dJ , (12.3.33)
211"

where S = A/4.
The remarkable fact is that relation (12.3.28) is valid for an arbitrary covariant

theory, and hence it allows a natural generalization of the definition of the black
hole entropy. If a theory does not contain higher than second derivatives of the
dynamical variables, the Noether charge N(a, X) is a linear function of XO and its
first derivative. On the bifurcation sphere XO = 0, and hence No/3 ~ Xo ;/3. The value
of N(a, X) depends on the normalization of X. One can remove this dependence by
dividing N(a, X) by the surface gravity K. The following quantity, which depends
only on the geometry and physical fields near the horizon was proposed by Wald
(1993) as the natural generalization of the black hole entropy:

- 211" _ 211" 1 0/3S--N(a,x)-- N dao/3'
K K u

(12.3.34)

In the Einstein theory this expression evidently reproduces the Bekenstein-Hawking
entropy of the black hole. Relation (12.3.33) (the first law) remains valid in a more
general theory with the entropy of a black hole defined by (12.3.34). If a theory
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contains higher than the second derivatives, then N(a, X) formally contains higher
than first order derivatives of X. Using (A.3D), these higher derivatives can always
be eliminated. Expression (12.3.34) defines the entropy of a black hole in this case
provided the corresponding procedure has been performed before the substitution of
N Q

j3 into the relation.
The advantages of Wald's definition of black hole entropy are:

1. One works directly with an arbitrary Lagrangian, and there is no need to con
struct the corresponding Hamiltonian, as in [Sudarsky and Wald (1992), Brown
and York (1993a,b), Brown (1995)).

2. Possible ambiguities in the definition of the Lagrangian (adding a total diver
gence) and Noether charge do not affect the value of the entropy.

3. The method does not require "Euclideanization" of the black hole metric, the
procedure which is often used in other approaches. The comparison of the
Noether charge and Euclidean methods can be found in [Iyer and Wald (1995)).

4. Though in the original definition of the black hole entropy the integration is
performed over the bifurcation surface, the entropy in fact can be calculated
by (12.3.34) with the integral taken over an arbitrary slice of the horizon of a
stationary black hole [Jacobson, Kang, and Myers (1994)).

5. Though the expression (12.3.34) was derived for a stationary black hole it allows
natural generalizations to the time-dependent case.

Explicit expressions for the black hole entropy in some of the non-Einsteinian
theories can be found in [Iyer and Wald (1994), Jacobson, Gungwon, and Myers
(1994)).

12.4 Black Hole as a Thermodynamic System

12.4.1 Equilibrium of a black hole and thermal radiation in
a box

Let us look more closely at the case of a non-rotating uncharged black hole surrounded
by black body radiation at a temperature BradY We have already mentioned that if
this temperature coincides with that of the black hole, B, we deal with equilibrium in
which the accretion of radiation onto the black hole is balanced for by the Hawking
radiation of the hole. 12

II Moss (1985) pointed out that when a black hole undergoes quantum evaporation, a "bubble"
of the new phase may form around it as a result of the phase transition in the surrounding space.
Under certain conditions, the particles emitted by the black hole are reflected at the bubble walls,
accumulate inside it, and produce a high-temperature medium outside the black hole [see also
Hiscock (1987)].

12Gibbons and Perry (1976, 1978) demonstrated that this conclusion remains unaltered when the
interaction among thermal quanta is taken into account.
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(12.4.1)

It is not difficult to verify that if the size of the thermal bath is infinitely large,
then the equilibrium is unstable. Indeed, let a black hole absorb, in response to a
random fluctuation, less energy during some time interval than it has radiated away.
In this case, its mass slightly diminishes, but its temperature () increases, which
results in a further increase of the radiation rate and a further reduction of the black
hole mass. On the other hand, a fluctuation increasing the mass of the black hole
reduces its temperature and also the rate of the Hawking radiation. In this case, the
accretion of radiation onto the black hole becomes the dominating process. In other
words, two situations are possible if there is a sufficient amount of radiation around
the black hole: either complete evaporation of the black hole or unlimited growth of
its size.

This characteristic of the behavior of non-rotating, uncharged black holes is di
rectly traced to their heat capacity,

c = () (a%()H) J=Q=O '
being negative (C = -811"M2). The negative heat capacity signifies that a reduction
in the system's energy increases its temperature (dE = C dO). This property is
characteristic for systems with long-range attractive forces, and thus fOf systems
with gravitational self-action. It is readily shown (using, e.g., the virial theorem)
that a reduction in the dimensions of such a system, resulting in a reduction of its
potential and total energies, produces a simultaneous increase in the kinetic energy
of its particles (the temperature of the body).

The situation is quite different if a black hole is part of a thermodynamical system
which has a finite size. For example, if a black hole is placed in a reservoir of radiation
and the total energy of the system is fixed, a stable equilibrium configuration can
exist [Davies (1977), Gibbons and Perry (1978)). Let the temperature of radiation
be Orad; then its energy Em and entropy sm are

Em = (j V O;ad' sm = ~ (j V O~ad' (12.4.2)

11"2 ( 7)
(j = - hb + - hI'30 8

(12.4.3)

Here V is the volume of the reservoir, and hb and hI are the number of polarization
of massless bosons and fermions, respectively. For simplicity, we treat only massless
fields. The condition of stable equilibrium in a system consisting of a reservoir of
radiation with a black hole inside it is that the generalized entropy,

S = SH + sm = 411"M2+ ~(j V ~ad' (12.4.4)

is maximal for a fixed value of total energy,

E = M + (j V O;ad' (12.4.5)
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Using the relation dM/d(Jrad = - 4 (j V O:ad' implied by (12.4.5), we can show that
the extremum of S is achieved if (Jrad = (J = 1/(811"M) which means that the radiation
and black hole temperatures coincide. This equilibrium is stable if d2S/d(J2 < OJ this
is equivalent to the inequality

m 1
E <4M. (12.4.6)

This equilibrium is stabilized by the following mechanism. Assume, as before,
that a black hole absorbs more energy in a fluctuation than it has radiated away.
Its temperature, and hence its rate of radiation, are then reduced. However, the
rate of accretion onto the black hole has also decreased because of the diminished
amount of radiation outside it. If condition (12.4.6) is satisfied, the second of these
effects is more important so that the black hole returns to the original state after its
mass diminishes owing to the excess of radiation over accretion. The situation with
fluctuations due to the reduction of black hole mass is analogous.

Condition (12.4.6) can be reformulated as a restriction on the volume V. We
define

220 11"4
Vo = 55 (j Eg. (12.4.7)

If V > Vo, then for the given energy Eo the most probable state is thermal radiation
without a black hole. In the case of the reversed inequality (V < Vo), the system
contains· a black hole surrounded by thermal radiation at a temperature (Jrad = (J
[Hawking (1976a)). The process of black hole formation at V = Vo when V decreases
resembles a first-order phase transition and is similar to the process of nucleation of
a liquid droplet in the course of vapor cooling.

We can also consider a system with a fixed volume \10. Then for E > Eo the
most probable state is a black hole in thermal equilibrium with the radiation. For
E < Eo the black hole is absent. For this problem the energy E plays the role of
the control parameter and the total entropy is the corresponding thermodynamical
potential. Different states of a system in the volume V with fixed energy E form a
microcanonical ensemble.

The system (a black hole in the box) possesses asimple scaling property. Namely,
if we make the transformation M --t )';M, we can maintain consistency by requiring
V --t ).;5V and (Jrad --t ).;-I(Jrad' The transformation of the temperature (Jrad of the
radiation is consistent with the transformation of the black hole temperature (J ~
M-l . Under these scaling transformations, both energy (12.4.5) and generalized
entropy (12.4.4) transform homogeneously: E --t ).;E and 8 --t ).;28. Qualitative
properties of the system (such as the stability of the equilibrium) can depend only
on the scale invariant combination of the external parameters V E-5 [Schumacher,
Miller,and Zurek (1992)). Condition (12.4.7) is in agreement with this observation.
One of the important consequences of the scaling is that the size of the system
L ~ V l / 3 containing in the equilibrium a black hole can be made much larger than
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the gravitational radius Tg = 2M. Indeed, scaling L/Tg --t )..2/3L/Tg allows one to
make this ratio arbitrarily large.

Another possible type of gedanken experiment with a black hole is the case when
the external control parameter is the temperature at the boundary (the canonical
ensemble). The corresponding thermodynamical potential is the free energy F =
F((J, V) = E - (J S. In Section 12.5 we shall show that a stable thermal equilibrium
is possible only if the size of the cavity is comparable with the size of the black hole.
For example, for a non-rotating black hole the stability condition is L < 3M, where
L is the cavity radius. One can also arrive at this conclusion by using the following
simple argument. Consider a cavity of small size so that it is possible to neglect
the contribution of the radiation to the energy and entropy. If Tn is the radius of
the cavity, then the black hole mass M and the temperature on the boundary (J are
related by

(J-1 = 81rM (1 _2
T

:) 1/2

It follows from this relation that

(12.4.8)

(12.4.9)

(12.4.10)

---:::-:c1=-- _d_(J _ 1 _ _3M_
61r2(J3 M dM - Tn '

and d(J/dM changes sign at Tn = 3M. Since the entropy of the black hole is a
monotonically increasing function of its mass, relation (12.4.1) shows that its heat
capacity is positive, and the equilibrium of the black hole in the cavity is stable if
Tn < 3MP A simple scaling law is not valid in this case since the action of the
gravitational field on the radiation cannot be neglected.

Different aspects of the thermodynamics of black holes in a cavity, and in partic
ular problems connected with rotation of the black hole are discussed by Kaburaki
and Okamoto (1991), Schumacher, Miller, and Zurek (1992), Kaburaki, Okamoto,
and Katz (1993), Parentani, Katz, and Okamoto (1995).

12.4.2 Heat capacity. Thermal fluctuations

The heat capacity of an isolated charged rotating black hole, calculated with a formula
similar to (12.4.1), is

8S1 MTS
3

CJ,Q=(J 8(J = 1rJ2+(1r/4)Q4_T2S3'J,Q

13The question whether it is possible to contruct a "real" physical system which can play the role
of such a thermostat is not trivial. In the usual thermodynamics, a system which is considered as
the thermostat has arbitrarily large heat capacity, and the emission and absorption of energy does
not change its temperature. Page (1993b) argued that in systems containing a black hole, a finite
size of the cavity may create problems.
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(12.4.12)

(12.4.13)

If we write J2 = oM4 and Q2 = {3M2, it is readily shown that C undergoes a sign
reversal for values of the parameters 0 and {3 that satisfy the relation [Davies (1977))

0 2 + 60 + 4{3 - 3 = O. (12.4.11)

At this point CJ,Q becomes infinite. This property of heat capacity is typical, to a
certain extent, of the properties of heat capacity of ordinary matter in second-order
phase transitions. For an uncharged ({3 = 0) black hole 0 = 2V3 - 3, while for a
non-rotating (0=0) black hole {3 = 3/4. The transition from negative to positive
values in these (and other) heat capacities can be characterized by critical exponents
obeying the scaling laws [Lousto (1993, 1996)). It should be noted that the creation
of charged particles and the quantum analogue of superradiance make it difficult to
treat rigorously the physical peculiarities caused by the above-described behavior of
heat capacity CJ,Q [Davies (1977), Hut (1977), Sokolowski and Mazur (1980)).

Local deviations of macroscopic observables from their average equilibrium value
are known as fluctuations. For instance, in a canonical ensemble of total volume V,
the mean quadratic fluctuation (t1E)2 of the energy is

(t1E)2 = T 2 aE I = T 2 Cv·
aT v

Similarly, for a fixed energy of the system (in the microcanonical ensemble) the local
temperature fluctuates in accordence with

(t1T)2 =T-2 aT I = (T2CV)-1 .
aE v

However, gravitation is a long-range force. That is why for gravitating systems, where
one cannot treat the remaining part of the system as a passive reservoir, the relations
(12.4.12) and (12.4.13) should be modified. The discussion of thermal fluctuations
for a black hole in a cavity can be found in [Parentani, Katz, and Okamoto (1995)).

The thermodynamic analogy in black hole physics, which we have discussed in this
chapter, has so far been confined to equilibrium thermodynamics (i .e., to considering
equilibrium states and various relations between the characteristics of these states).
Actuelly, this analogy is broader. It can also be traced in nonequilibrium thermo
dynamics which describes irreversible transitions of a system between its states and
the processes taking place when the system passes to the state of thermodynamic
equilibrium [Damour (1979)). A general analysis of the problems of nonequilibrium
thermodynamics of black holes can be found in Sciama (1981). On the change of
a black hole entropy in nonequilibrium processes, see Hawking and Hartle (1972),
Bekenstein (1974), Carter (1979).

Candelas and Sciama (1997) showed that black hole radiation obeys the principles
of irreversible thermodynamics in the form of a fluctuation-dissipation theorem. The
dissipation is connected with the absorption of the "ordered" energy by a black hole
and its subsequent re-radiation in the Hawking process.
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(12.5.1)

12.5 Euclidean Approach to Black Hole Thermo
dynamics

12.5.1 Euclidean formulation

In quantum statistical mechanics the temperature is naturally connected with the
property of periodicity of thermal Green's functions (and other quantities decribing
the system) in imaginary time, the period being the inverse temperature of the sys
tem. This makes it useful to consider an Euclidean space approach. By making Wick
rotation of the time t --t -iT in a static spacetime, one gets a metric with a Euclidean
signature. The usual quantum field theory at zero temperature and also quantum
field statistical theory can be obtained by analytic continuation from the Euclidean
version of the theory. Nonzero temperature arises if the topology of the Euclidean
time is not R I but 8 1• This idea can be easily realised in the Feynmann path-integral
approach by specifying that the integration is to be taken over configurations which
are periodic (for bosons) and antiperiodic (for fermions) in Euclidean time.

This approach, which relates thermal properties to the geometry and topology
of a spacetime, is very attractive for quantum gravity and especially for considering
thermodynamical systems including black holes. Gibbons and Hawking (1977) and
Hawking (1979) were the first to describe the thermodynamics of black holes by
exploiting the properties of the Euclidean action and its relation to the partition
function of a canonical ensemble [Feynman and Hibbs (1965)). For this purpose,
they used the path integral approach.

In the path integral approach, the amplitude of the propagation of a quantized
field <I> from some initial configuration 1<1>1> t l } to some final configuration 1<1>2, t2 ) is
given by the path integral

(<1>2, t2/<I>I, t l ) = / V[<I» exp(iW[<I>]) ,

where W is a classical action and the integration is taken over all the configurations
of the field <I> with the initial value <1>1 at t l and the final value <1>2 at t2 • On the other
hand, one has

(12.5.2)

(12.5.3)

where H is the Hamiltonian. If one puts t2 - t l = -i (3 and <1>2 = <1>1 and sums over
<1>1, then one gets

Z == Trexp( -(3H) = / V[<I» exp(iW[<I>)).

The path integral is taken over all the configurations of the field <I> which are periodic
(or antiperiodic) in the imagine time with the period {3. The quantity Z isthe
partition function for the canonical emsemble for the field <I> at temperature () = {3-I.
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The generalization to the case of the gravitational field is straightforward. One
needs only to include in the path integral the integration over metrics and to take
into account in (12.5.3) the Faddeev-Popov ghost contribution. The dominant con
tribution to the path integral will come from the metric 9 and matter fields cP which
are near to the extremum (flo = {go, CPo} of the classical action. In this semi-classical
approximation, one has

In Z :::::: iW[ 90, CPo] . (12.5.4)

For a Euclidean black hole which is an extremum of the (Euclidean) gravitational
action the inverse themperature {3 is related to the mass M as {3 = 81rM, and iW =
- WE = 41rM 2

• The Euclidean action is related to the free energy F as WE = {3F,
and the corresponding entropy is [Gibbons and Hawking (1977)]

S = _ vF = {32 VF == 4 M2
vB - v{3 1r .

That is, it coincides with the Bekenstein-Hawking entropy (12.1.6) of the black hole.
The Euclidean approach gives the correct answer. Nevertheless, the general va

lidity of this method of calculation of the thermodynamical characteristics of a black
hole remains unclear. The following two obstacles apparently limit the success of the
idea:

1. The heat capacity of an isolated non-rotating black hole is negative and such
a black hole cannot be in a stable equilibrium with the heat bath. This makes
the canonical ensemble of an infinitely large system including a black hole ill
defined.

2. If one assumes the usual interpretation of the entropy, then the density of states
of a system containing a black hole must grow as exp SH = exp (41rM 2) so that
the sum defining the partition function Trexp( -(3H) would not converge.

12.5.2 Boundary conditions

Both difficulties were overcome by York and collaborators [York (1986), Whiting and
York (1988), Braden, Whiting, and York (1987), Braden et aL (1990), Brown et at.
(1990), Brown, Martinez, and York (1991)]. They stressed the importance of the
finite size of the system and propose to consider a black hole located in a cavity with
the boundary data fixed on the boundary of the cavity. The boundary conditions are
to be chosen ina proper way in order:

1. To guarantee the existence and stability of the equilibrium state

2. To be essentially the same canonical data which are needed for the thermo
dynamical description as well as for the dynamical Euclidean field theory de
scription. Different boundary conditions single out different thermodynamic
ensembles.
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For simplicity, we restrict ourselves to consideration of spherically symmetric black
holes in thermal equilibrium with thermal radiation. (Delicacies which arise in the
case of a rotating black hole are discussed in [Brown, Martinez, and York (1991)].) In
the case of a canonical ensemble, the thermodynamic data that define the ensemble
are the size and temperature. The static gravitating systems are homogeneous in time
but not in space. As a result of the redshift effect, the local temperature measured
by static observers at different points is different. That is why, when speaking about
the temperature, we need to specify where it is measured. In our case, that is the
temperature at the boundary. We assume that the boundary is also spherically
symmetric, and the temperature over it is constant. We denote the inverse value
of the temperature at the boundary by {3. In order to fix the size of the system,
we fix the area AB = 41rr1 of the boundary. The topology of the Euclidean black
hole is R2 x 8 2

, and the topology of the boundary is 8 1 x 8 2 • The above boundary
data have a well-defined geometric meaning. The inverse temperature {3 is the proper
length of 8 1, and AB is the area of 8 2• This means that the boundary data appear
as the boundary values of dynamical variables; namely, components of the metric
tensor. The quantities E (energy) and PB (pressure), thermodynamically conjugate
to {3 and A B , are at the same time canonically conjugate to the 3-metric with respect
to the radial foliation. The partition functions for the canonical ({3, AB ) and the
microcanonical (E, AB) ensembles (as well as to their conjugates with AB --t PB) can
be directly described as path integrals [Braden et al. (1990)). The grand canonical
ensemble differs from the canonical one only by the way in which the matter variables
are described.

12.5.3 Calculation of the Euclidean action

We describe now the main steps of the derivation of the thermodynamical properties
of charged non-rotating black holes in the framework of the grand canonical ensemble
approach following the paper by Braden et al. (1990). The Euclidean metric which
is the result of the Wick rotation of a static spherically symmetric metric can be
written in the form

(12.5.5)

Here the radial coordinate x E [0,1), the Euclidean time T has period 21r. The metric
coefficients V, Nand r are functions of x, and dw2 is the line element on the unit
sphere. We write

VB = V(I), rB = r(l) , A B = 41rr~, rH = r(O) . (12.5.6)

The inverse temperature {3 == B-1 (rB) is related to the proper length of the round 8 1

of the boundary, and it is of the form

(12.5.7)



492 CHAPTER 12. THERMODYNAMICS OF BLACK HOLES

The regularity conditions at the Euclidean horizon (x = 0) give

V(O) = 0, [ ~] = 1,
x=o

[ ~] = O.
x=o

(12.5.8)

Here and later ( )' = d( )/dx.
By suitable gauge transformations, the vector-potential of the electromagnetic

field can be reduced to the form

(12.5.9)

The latter condition guarantees the regularity of the potential one-form at the Eu
clidean horizon. The Wick rotation t = -i T generates the transformation AT(x) =

-iAt(x) of the zero~componentof the potential one-form. It means that for a charged
black hole solution AT is pure imaginary. We write

(12.5.10)

(12.5.11)

We fix the boundary condition for the electromagnetic field by putting

{3~B
~(1) == VB ~B =~.

The factor VB which appears in the above formula allows the more direct interpreta
tion of ~B as the electric potential measured by an observer located at the boundary.
(~B coincides with the value of AI' in the proper orthonormal frame.) We fix the
boundary value for the electromagnetic field by fixing ~B' The set {{3, AB , ~B} forms
the necessary data for the grand canonical ensemble.

Denote by WE = -iW the Euclidean action corresponding to the Lorentzian
action W. The Euclidean action for the gravitational and electromagnetic fields is

(12.5.12)

where the subscript E indicates that the corresponding quantity is to be calculated for
the Euclidean metric. Here hij is the metric induced on 8M; K is the mean extrinsic
curvature on 8M, and K o is chosen to make the action with the given boundary 8M
vanish in flat space.

The partition function for the grand canonical ensemble under consideration can
be approximated as

z ~ exp(-I.), (12.5.13)
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where I. is the Euclidean action (12.5.12) for the interior of the cavity evaluated
for metric (12.5.5) and the electromagnetic field (12.5.10) with fixed values of the
boundary data {/1, AB,<l>B}' Direct substitution gives

t [2rrIVI+vrI2+r2<1>12V-l ]
I. = - 1r Jo dx N + NV

+ 21r V(I) r(l) - 1r r 2 (0). (12.5.14)

It is easy to verify that the variation of I. with respect to N, V, r, and <I> gives
the complete set of equations equivalent to the Einstein equations for spherically
symmetric static spacetimes.

An important characteristic property of general relativity is that the energy on
a spacelike hypersurface can be evaluated as a surface integral. Hence, in a static
geometry the action can be expressed by a boundary term provided the Hamiltonian
constraints (G; = 0 and F~~ = 0) are satisfied. The constraints can be integrated
explicitly. The electromagnetic field constraint has the solution

(12.5.15)

(12.5.16)

where Q is a constant (charge of the black hole). The gravitational constraint has
the solution

V2 r/2 =1 _ Q+ Q2 .
r r 2

The constant C can be obtained by using the regularity conditions (12.5.8), and it is
of the form

(12.5.17)

The reduced action after substitution of the constraints solution into it takes the
form [Whiting and York (1988), Braden et al. (1990))

I. = 1.(/1, <l>B' rB; Q, rH)

(12.5.18)

This action is exact for smooth, static, spherically symmetric Euclidean geometries.
The imposed constraints (12.5.15) and (12.5.16) can be used to specify two of the
four arbitrary functions. The remarkable fact is that the reduced action I. does not
depend explicitly on the remaining two functions. It depends only on the charge Q
and the radius rn of the horizon (which is related to the mass M of the black hole
by rH = M + (M 2 - Q2)1/2) as parameters, and hence I. is not a functional but a
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function. The stationary points of I. with respect to these parameters are defined by
the equations

(12.5.19)

These equations allows one to relate the charge Q and the radius of the horizon 1'H

with <l>B, rB and {3

_ Q ( r H)I/2 ( Q2 )-1/2
<l>b - - 1 - - 1 - -- ,

rH rB rHrB
(12.5.20)

(12.5.21)

Denote by I the reduced action I. evaluated at the extremum point. Then the
approximate value of In Z (the Massieu function) is

InZ ~ -I.

12.5.4 Thermodynamical parameters

(12.5.22)

By using the obtained Massieu function I, one can easily get the mean values of
different physical observables. For the mean value of the charge one has

(Q)={3-1 [8~] =Q.
B (J,rs

The average energy (E) is

(E) = [~I] -<I>B{3-1 [8~ ]
{3 'Ps,rs B {J,rs

And finally, the entropy SH is

H [81] 2S ={3 8{3 -I=1rrH •
4's,rB

(12.5.23)

(12.5.24)

(12.5.25)

This expression reproduces the Bekenstein-Hawking entropy (12.1.6)
It should be stressed that the parameters {{3, rB, <l>B} which enter the reduced

action I are independent variables. A quite remarkable fact is that the same action I
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evaluated for the Euclidean Schwarzschild metric (i.e., for (3 = 41rrH(I- rHlrB)1/2)

coincides in the limit rB --t 00 with the Bekenstein-Hawking entropy.
The thermal stability of a system is determined by its heat capacity. For an

uncharged black hole in a cavity the heat capacity is

OB = -{3 [aSH]
a{3 rs

2 ( 2M)81rM 1 - -;:;;

3M -1
rB

(12.5.26)

The heat capacity is negative, and the system is unstable for rB > 3M. For 2M <
rB < 3M the heat capacity is positive and the system is stable. This result shows
that a properly chosen finite size of the system containing a black hole does really
guarantee the thermal stability of the system. [For the stability conditions for the
other ensembles and for ensembles containing a charged black hole see, Braden et aL
(1990), Brown et aL (1990)).

The other problem mentioned above and connected with divergence of the density
of states can be also solved by considering systems with a finite size [Braden, Whiting,
and York (1987)). The number of energy levels between E and E + dE for the
gravitational field in the black hole topological sector can be estimated as follows:

(12.5.27)

By using (12.5.24), we get for an uncharged black hole

(12.5.28)

and

(12.5.29)

The density of states

(12.5.30)

grows with energy E and after reaching a maximum value drops steeply to zero at
E = rB. For this maximal value of the energy, the size of the black hole coincides with
the size of the cavity rB' For E > rB the density of states vanishes (dNIdE = 0).
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12.5.5 Conical singularity method

In the conclusion of this section, we describe a modification of the Euclidean approach
to the black hole thermodynamics known as the conical singularity method.

To describe the method, let us again consider the static spherically symmetric
Euclidean metric (12.5.5):

(12.5.31 )

As before, we impose conditions (12.5.6) and (12.5.8), but we do not require the
period of T to be 21r. Instead of this we impose the periodicity 0 ~ T ~ a, where a
is an arbitrary positive parameter. Expression (12.5.7) for the inverse temperature
(3 = O-I(rB) (defined as the proper length of the circumference SI of the boundary)
is also modified to

(12.5.32)

(12.5.33)

Near the horizon x = 0 the metric (12.5.31) has the following asymptotic form:

ds~ = (2:r1
2
df

2 + dl
2 + r~ dw

2
•

Here f == 21fT / a , 0 ~ f ~ 21f, r H = 2M, and l == J; dx'N (x') is the proper distance
from the horizon. This metric is a direct sum of two two-dimensional metrics, one
being locally flat, and the other being a metric on a sphere of radius rHo If a differs
from 21f, the locally flat two-dimensional metric is not globally flat and has a cone-like
singularity. Thus, metric (12.5.33) describes a space M o which near the horizon has
a structure Co x S2, where Co is a cone with the deficit of the polar angle 21f - a.
Therefore, if a i= 21f, the space M o is regular everywhere except at the surface
x = 0, where it has a non-differentiable singularity. As a result, the scalar curvature
and components of the Riemann tensor at the surface x == 0 can be defined only as
distributions [Sokolov and Starobinsky (1977), Geroch and Traschen (1987), Hayward
and Louko (1990), Baiiados, Teitelboim, and Zanelli (1994), Fursaev and Solodukhin
(1995)].

It is possible to calculate integral geometric characteristics on manifolds with
conical singularities by smearing the singularity. For instance, for the space (12.5.31)
the function V(x) can be replaced by a function V(x, a) where a is a "regularization"
parameter. The regularized function V(x,a) coincides with V(x) for x» a and obeys
the condition

(12.5.34)

Because of the last condition, the regularized space has the structure R2 x S2, and
its Riemann tensor is well defined at x = O. By using this smearing, the integral of
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the scalar curvature R over the space with a conical singularity can be defined as the
limit

(12.5.35)

(12.5.36)

(12.5.37)

where the quantities Rand 9:/2 are calculated for the regularized space. In this way
one obtains (for details, see Fursaev and Solodukhin (1995))

1 Rg:/
2

d4x=2(21r-a)A+ ( Rg:/2 d4x.
M" lM,,-s2

Here A = 41r r1 and integration in the last term is performed over the regular domain
ofM".

Using equation (12.5.36), one gets for the Euclidean action (12.5.12) on the sin
gular space M" the following expression

es 1 2
WE [M,,) = - 81r(21r -a)A+ WE[M" -S).

The volume part of the action WE [M,,-S2) calculated for metric (12.5.31) is al./21r,
where I. is defined by equation (12.5.14). After imposing the constraints (12.5.15)
and (12.5.16), the conical singularity action (12.5.37) takes the form

es ( a ) 2 a (21r )I. = 21r - 1 rn + 21r I. -;;{3, <l>B' rBi Q, rH . (12.5.38)

The remarkable fact is that when expressed in terms of the boundary parameters
({3, <l>B' rB), the action I~s has a form identical to (12.5.18) :

l~s({3, <I>B, rBi Q, rH)

(12.5.39)

(12.5.40)

In other words, the form of the functional I. calculated for a regular manifold with
a smeared singularity remains invariant in the limit when the smearing is removed.
Besides the boundary conditions, the function I~s depends also on two additional
parameters rH and Q. In particular, if I~s is calculated for a static solution of
Einstein-Maxwell equations, rH is the radius of the event horizon, and Q is the
charge of the black hole. It should be emphasized that the parameters rH and Q
which specify the solution and enter the arguments of I~s can be chosen arbitrarily.
The black hole entropy is defined as

SH = {3 8/~s _ les = Jrr2

8{3 • H'



498 CHAPTER 12. THERMODYNAMICS OF BLACK HOLES

To derive the entropy in the conical-singularity method, one first makes off-shell
calculations and only afterward takes the on-shell limit (a = 21l) The latter means
that rH and Q in (12.5.40) must be expressed as functions of the boundary parameters
({3, 4>B, rB) by solving equations (12.5.20) and (12.5.21).

The conical-singularity approach allows one to consider a wider class of metrics.
This gives more flexibility and sometimes simplifies calculations of thermodynamical
parameters of black holes.

12.6 Statistical-Mechanical Foundation of Black
Hole Thermodynamics

12.6.1 Introduction

The relationship of the thermal properties of black holes to the loss of information
about the spacetime region inside the hole is in accordance with the general informa
tional approach to thermodynamics that was formulated by Szillard (1929) and later
elaborated on by a number of physicists and mathematicians [see, e.g., the mono
graphs of Brillouin (1956) and Poplavsky (1981)). This approach essentially consists
of postulating a direct relationship between the lack of information about the physical
system and its entropy.

The information on the state of the collapsed matter is "cut off" by a strong grav
itational force. The black hole "forgets" its history, remembering only the "macro
scopic" characteristics: mass, charge, and angular momentum. Correspondingly, the
entropy SH of a black hole is a measure of the amount of information lost as a result
of collapse. The expected number of distinct ("microscopic") states of a black hole
with prescribed parameters M, J, Q is proportional to exp[S(M, J, Q,)) [Bekenstein
(1973b, 1980), Hawking (1976a), Wald (1979b)). The direct calculation from first
principles of this number of states is a very complicated problem.

In order to explain the problem, let us compare two identical gedanken exper
iments. One of them is made with a black body, and the other with a black hole.
Consider a spherical box filled with radiation. We assume that it has the same tem
perature as the heated boundary. In the first box we place a black body, and in the
second one we place a black hole. We assume that the temperature of the black body
and the black hole coincide with the temperature of the radiation so that we have
thermal equilibrium. Now let us change the temperature of the boundaries in both
systems in the same manner. In response to this change the free energies also change.

We know well what happens with the black body. Being formed of atoms, it has
an internal structure and internal degrees of freedom. In the process of heating the
system, a part of the added energy is absorbed by the black body, and this portion of
energy increases the internal energy of the body. This results in an additional excita
tion of the internal degrees of freedom. Statistical mechanics relates the observable
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thermodynamical parameters of the black body with its structure. In particular, it
relates the entropy of the black body to the number of its internal degrees of freedom.

Qualitatively, the behavior of a black hole in the thermal bath is similar. During
heating a part of the energy is absorbed by the black hole. However, in the case of
the black hole we are dealing with an empty spacetime. So if we wish to develop
the statistical-mechanical foundations of black hole thermodynamics, we must be
prepared to relate the black hole's degrees of freedom to properties of an empty
space.

The problem seems to be even more intriguing if the entropy of a black hole is
compared with the entropy of other forms of the matter in the Universe. The entropy
of a supermassive black hole of mass 109M0 is 1095 , while the entropy of all other
matter in the visible part of the Universe is of order 1088 . In other words, there is
simply not enough matter in the Universe to explain the huge value of the entropy
of a single black hole.

To solve this puzzle, two different ideas have been proposed:

1. To relate black hole entropy to the information lost in the process of black hole
formation

2. To relate black hole entropy to properties of the vacuum in a strong gravitational
field

12.6.2 Black hole entropy

Information-theoretical approach

In the case of a black body, one can define its entropy by counting different possibil
ities of preparing the system in a final state with given macroscopic parameters from
microscopically different initial states:

81 = - LPnlnPn,
n

(12.6.1 )

with Pn being the probabilities of different initial states. This definition directly
relates the entropy of the body to the information lost in the process of its formation.
For this reason, one can call the so-defined entropy the informational entropy.

Historically, the first attempts at a statistical-mechanical foundation of the en
tropy of a black hole were connected with the informational approach [Bekenstein
(1973), Zurek and Thorne (1985)). According to this approach, the black hole en
tropy is interpreted as "the logarithm of the number of quantum-mechanically distinct
ways that the hole could have been made" [Zurek and Thorne (1985), see also Chap
ter VIII by Thorne, Zurek, and Price in the book by Thorne, Price, and Macdonald
(1986)).

In order to estimate this number, one assumes that the black hole is made in a
total time not longer than the time of black hole evaporation tH '" M 3 [see relation
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(10.1.20)). The vast majority of the ways to prepare a black hole with given mass
M involves sending in one quantum after another with their energy t: kept as small
as possible, i.e., € '" M- 1. The total number of quanta required for the formation of
a black hole of mass M is N B '" M / € '" M 2. Using the expression 277r M2 for the
effective cross-section of the hole, one can estimate the total phase-space volume that
the particles occupied before their injection into the black hole as '" 277rM2tH €3.

The density of single-particle states in the phase space is '" (27Tt 3
• Thus, N '"

M 2
'" NB is the total number of single-particle states in which NB quanta can

be injected into the black hole. The number of ways to make the black hole is
N '" (N - 1 + NB)l/[(N - l)lNB1] and its logarithm agrees with the Bekenstein
Hawking entropy

(12.6.2)

One might expect that if initially there were not one but several species of particles,
the number of possibilities to create the black hole would increase. This does not
happen since tH then becomes smaller so that N remains the same. The accreting
particle configurations which provide the vast majority of the ways to prepare the
black hole are simply an approximate "time reversal" of the products of the black hole
evaporation. Zurek and Thorne (1985) showed that the so-defined informational en
tropy of a black hole is simply related to the amount of information lost by stretching
the horizon.

Quite interesting results were obtained for a special model proposed by Bekenstein
and Mukhanov [Mukhanov (1986), Bekenstein and Mukhanov (1995)]. In this model,
the mass of a black hole is assumed to be quantized. The mass spectrum follows from
the assumption that the horizon area A should be quantized in integers A = a 1i n.
The black hole of mass M is identified with a system at the level n '" M 1/ 2 , so that an
absorption or emission of a particle by a black hole is accompanied by the transition
from one energy level n to another n ± 1. The entropy is related to the degeneracy
g(n) of the level n: S == lng(n). The degeneracy is identified with the number of
different ways to reach the level n by injecting individual quanta into the black hole.
It is easy to show that the number of ways in which the black hole at level n can be
formed from n = 0 by going up the staircase of levels is 2n - 1• So that for the value
a = 4ln 2, one gets the correct value of the Bekenstein-Hawking entropy SBH.

It should be emphasized that in this consideration one focuses on the behavior
black hole alone. The number of species of particles that exist in nature and partici
pate formation of the black hole does not enter at all. In other words, Bekenstein and
Mukhanov (1995) count different trajectories in the space of the black hole parame
ters, while Zurek and Thorne (1985) count different initial states of the matter that
form a black hole. Since one can specify a theory describing the matter, the method
of Thorne and Zurek allows (at least in principle) an exact formulation based on
first principles. In the model of Bekenstein and Mukhanov, the existence of internal
discrete levels of a black hole and their degeneracy are postulated and not derived.
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General relations connecting the black hole entropy with the possible number of
black hole "preparations" are very important, but they do not give the complete
solution of the problem. First of all, it is important to bear in mind the following
difference between a black hole and an ordinary physical body. The particles that
were used to build the body are always there and can in principle be re-extracted.
The particles that enter a black hole have fallen into the singularity and cannot be
recovered. We cannot say that a black hole at some late moment of time "consists" of
all the particles that had fallen into it earlier. Gedanken experiments with the black
hole "performed" at late times do not change the state of these particles. For this
reason, in order to have a closer similarity to standard physical thermodynamics, one
would like to define the dynamical degrees existing at the moment of the experiment.

There exists another problem with the explanation of black hole entropy by count
ing the different ways in which the black hole can formed. The time of evaporation
of a black hole of mass M is of order

10 (. M )tH ,,-, 10 years 10159 . (12.6.3)

It is this time that is required for processes of black hole formation that give the vast
majority of the ways in the Thorne-Zurek argument. On the other hand, we know
that the stellar and massive black holes which exist in nature were certainly formed
after the Big Bang, not earlier than say 1O~20 billion years ago. This additional
information drastically reduces the number of possibilities and the logarithm of this
number is much smaller than the expected entropy 41rM 2•

Bekenstein and Mukhanov (1995) do not consider the time required for black hole
formation in this process and assume that "quantum transitions do not take time".
However, one can expect that in order to be able to distinguish the different ways,
one should send the next quantum with a delay At "-' 1/.!lE after the previous one
generated a "jump" by the absorption of the energy.!lE. In this case, the time
required to prepare the black hole by "trying" the vast majority of the ways is again
tHo So for black holes for which the known time of formation is much smaller than
the evaporation time tH , there exists the same potential problem.

York (1983) proposed an approach which is another version of the "sum over pos
sibilities". York noticed that quantum evaporation of a black hole thermally excites
its gravitational quasinormal modes. He tried to connect the black hole entropy with
these modes. Since the logarithm of the number of thermally excited quasinormal
modes at given moment of time is much less than M 2 , in order to obtain the correct
answer for the entropy, York proposed to define it as the logarithm of the number of
distinct excitation states of these modes in the process of black hole evaporation.

Black hole entropy and the properties of the vacuum

Another important class of attempts to explain black hole entropy is to relate the
Bekenstein-Hawking entropy to the properties of the vacuum in the gravitational
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field of a black hole. We recall that a vacuum is a physical medium which possesses
a number of non-trivial properties. Even in empty space, in the absence of a long
lived particles, there exist zero-point fluctuations of physical fields. An observer
at rest near the black hole can register these zero-point fluctuations in the form of
thermal atmosphere of the black hole (see Section 11.3.4). Zurek and Thorne (1985)
argued that the informational entropy Sf they obtained by counting the ways of the
black hole formation can be related to "the logarithm of the number of configurations
that the hole 'atmosphere', as measured by stationary observers, could assume in the
presence of its background noise of acceleration radiation".

Earlier, Gerlach (1976) tried to relate the black hole entropy to the logarithm of
"total number of vacuum fluctuation modes responsible for the emission of black body
radiation" by the black hole.

't Hooft (1985) proposed that "the particle wavefunctions extremely close to the
horizon must be modified in a complicated way by gravitational interactions between
ingoing and outgoing particles". He considered a so-called brick wall model in which
it is assumed that field modes simply vanish within some fixed distance from the
horizon. This boundary condition corresponds to the situation where there exists a
mirror-like boundary outside the horizon, and one restricts oneself to considering a
region in the exterior to the boundary. 't Hooft proposed to relate the black hole
entropy to the entropy of thermal radiation at the Hawking temperature located
outside the mirror-like boundary. Simple calculations give

A
S '" a [2' (12.6.4)

where A is the surface area of the black hole; 1 is the proper distance of the mirror
from the horizon, and a is a numerical coefficient depending on the field parameters.
For I '" [PI one gets the same order of magnitude as the Bekenstein-Hawking entropy
SBH = A/(41~1)' This model does not explain how the thermal properties of fields
outside the black hole are connected with the loss of information concerning the states
in the black hole interior. The author himself stressed that "this model should be
seen as an elementary exercise, rather than an attempt to describe physical black
holes accurately".

Bombelli et al. (1986) demonstrated that a non-trivial entropy arises already in
a flat spacetime for a system in the vacuum state provided one restricts oneself by
considering a subsystem located in a spatially restricted part of the space. Let Q be
such a region and aQ be its boundary. A free field cp can be decomposed into modes
CPJ(x), so that the amplitude of a single mode can be identified with a quantum
oscillator. The wavefunction CPJ(x) defines the amplitude of probability to find a
quantum near point x. Among all the modes there always exists a subset of modes
that do not vanish both inside and outside aQ. If the information on the states of
the oscillators inside Q is unavailable, one can obtain a reduced density matrix jJ for
the oscillators outside Q by integrating out over the states in the region Q. Bombelli
et al. (1986) showed that the entropy S = -Tr(jJlnjJ) for this density matrix is
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divergent, and the leading divergence is of the same form as (12.6.4) with A being
the surface area of 8n, I being the proper distance cutoff parameter, and a being
the numerical coefficient depending on the field parameters. Bombelli et aL (1986)
proposed to use this so-called entanglement entropy in order to explain the origin of
black hole entropy. A similar idea was also proposed later by Srednicki (1993).

Model of a black hole with dynamical interior

A refined version of this approach which makes clear the thermal origin of S for a
black hole was proposed by Frolov and Novikov (1993b). Their model is based on the
fact that the black hole interior is a dynamical system with non-trivial properties.

At first sight, this looks like a paradox. We know that (at least in the classical
theory of general relativity) the state of a black hole at late times is completely
specified by a finite number of parameters. For a non-rotating uncharged black hole
one needs to know only one parameter (the mass M) to describe all its properties.
This is true not only for the exterior where this property is a consequence of the no
hair theorems, but also for the black hole interior [we shall discuss this in more detail
in Chapter 14].

The reason why it is impossible for an isolated black hole at late times to have
non-trivial excitations in its interior in the vicinity of the horizon is basically the
same as for the exterior regions. These states could be excited only if a collapsing
body emits a pulse of fields or particles immediately after it crosses the event horizon.
Due to the redshift effect the energy of the emitted pulse must be exponentially large
in order to reach the late time region with any reasonable energy. A short time after
the formation of a black hole (say D.t '" 100M) this is virtually impossible because
it requires an energy of emission much greater than the black hole mass M.

In quantum physics the situation is quite different due to the presence of zero
point fluctuations. To analyze the states of a quantum field, it is convenient to
use its decomposition into modes. Besides the positive-frequency modes which have
positive energy, there exist also positive-frequency modes with negative energy (we
called then DN-modes, see Section 10.1.2). In a non-rotating uncharged black holes
such modes can propagate only inside the horizon where the Killing vector used to
define the energy is spacelike. It is possible to show that at late times these states
are thermally excited for any regular initial state of the field and the corresponding
temperature coincides with the black hole temperature BH == (871"M)-l. It is natural
to identify the dynamical degrees of freedom of a black hole with the states of all
physical fields inside the black hole [Frolov and Novikov (1993b)]. The set of the
fields must include the gravitational field.

Figure 12.2 gives a schematic picture of a black hole at some "instant of time".
Quanta of different fields are created by the Hawking process. The quanta are created
in pairs. Energy conservation does not allow for both components of the pair to
be created outside the black hole. Different possibilities are shown in Figure 12.2.
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Figure 12.2: lllustration of the Hawking process.

The particle 1 has enough energy to penetrate the potential barrier and to escape
to infinity. Such particles form the flux of Hawking radiation from the black hole.
Particle 2 has not enough energy to escape to infinity and will fall back into the black
hole later, but at the moment of consideration it is located outside the black hole.
Particle 3 was created earlier outside the horizon, but after reflection by the potential
barrier it has fallen into the black hole. Particle 4 as well as its companion 4' are
created inside the black hole.

After averaging of the given initial state over the states of the particles located
outside the black hole at the given moment of time, one obtains the density matrix
describing the state of the black hole interior. It can be identified with the density
matrix of the black hole itself. In accordance with this definition the density matrix
of a black hole is

PH = ~ (Ptotal)'
uvisible"

(12.6.5)

where Ptotal is the total density matrix for quantum fields, and the trace operation
is performed over the modes located outside the horizon (which are "visible" to a
distant observer).

The corresponding statistical-mechanical entropy is

SSM = - :[::.., (PH In PH ),
uinvisible"

(12.6.6)

where the trace operation is performed over the modes located inside the horizon
(which are "invisible" to a distant observer). In fact, pairs 3-3' and 4-4' do not
contribute to the entropy because both of the components are located inside the
black hole, and their state is pure. This means that only pairs I-I' and 2-2' are
responsible for the entropy of the black hole. A particle belongs to the type 1 if
its momentum eis small: e~ V27 ME. Since particles with energies greater than
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BH = (871"M)-l are practically not created, one can conclude that particles of type
2 (trapped by the potential barrier) give the main contribution to the statistical
mechanical entropy of the black hole. (For more details, see [Frolov and Novikov
(1993b)].)

By using the mode decomposition and the fact that the internal modes are ther
mally populated with respect to the Killing energy, one gets

SSM = ~ SJ. (12.6.7)
~lvisi hIe" J

Here
j3w

SJ = (j3) 1 -In [1- exp(-j3w)]
exp w -

(12.6.8)

is the entropy of a quantum' oscillator of frequency w at the temperature B = j3-1
(see Appendix I). It is important to stress that in this model the dynamical degrees
of freedom of a black hole are connected with "invisible" modes; nevertheless, the
summation in (12.6.7) is performed over the "visible" states. The reason is simple:
Only those pairs for which one of the components is "visible" actually contribute to
the entropy.

The fact that the summation in (12.6.7) is performed over the "visible" states is in
an agreement with 't Hooft's (1985) brick wall proposal. It should also be emphasized
that the entropy SSM can be considered as a special case of the entanglement entropy
[Bombelli et al. (1986), Srednicki (1993)]. The remarkable feature of the statistical
mechanical entropy (12.6.7) for a black hole is that it is related to the entropy of
"thermal excitations". This property is connected with the fact that the boundary
of the black hole coincides with the Killing horizon. There is an elegant possibility
[Barvinsky, Frolov, and Zel'nikov (1995)] of describing the internal degrees of freedom
above introduced in the framework of the no-boundary wave/unction 0/ the black hole
described in Section 11.4.3.

It can be shown that for any chosen field number of modes grows without bound
as one considers regions located closer and closer to the horizon. For this reason, the
contribution of a field to the statistical-mechanical entropy of a black hole calculated
by counting the internal modes of a black hole is formally divergent. In order to
make it finite, one could restrict oneself by considering only those modes which are
located at a proper distance from the horizon greater than some chosen value t. For
this choice of cutoff the contribution of a field to the statistical-mechanical entropy
of a black hole is

~ A ( )S = a [2' 12.6.9

where A is the surface area of the black hole, and a dimensionless parameter a
depends on the type of field.

The statistical-mechanical entropy SSM in this as well as other "dynamical" ap
proaches possesses the following main properties:
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1. SSM '" A, where A is the surface area of a black hole.

2. SSM is divergent and requires regularization SSM", AI[2, where [ is the cutoff
parameter.

3. SSM depends on the number of fields which exist in nature.

4. For [ '" [PI one has SSM", SBH.

One-loop contribution to the black hole entropy

It might be suggestive to use a special choice of the cutoff parameter [ and to identify
SSM with SBH. Unfortunately, the situation is not so simple. There are at least
the following three problems which must be taken into account in a discussion of the
relation between SSM and SBH;

1. SSM is generated by quantum fields, but the same fields in the general case
contribute to the ultraviolet divergences which modify the gravitational action.

2. A black hole really is a thermodynamical system, but it also possesses a very
special property which singles it out; namely, its size and temperature are not
independent parameters. Under these conditions the standard proof of the
equality SSM and SBH does not work [Frolov (1995)].

3. York's derivation of SBH uses only a tree-level gravitational action, while the
derivation of SSM requires one-loop calculations.

These problems are closely related to one another. In order to discuss them in
more detail, we need to develop further the formalism presented in Section 12.5.1.

Complete information concerning the canonical ensemble of black holes with a
given inverse temperature {3 at the boundary is contained in the partition function
Z({3) given by the Euclidean path integral [Hawking (1979)]

Z({3) = / V[cI>]exp(-WE[cI>])· (12.6.10)

Here the integration is taken over all fields (including the gravitational field) that
are real on the Euclidean section and are periodic in the imaginary time coordinate
T with period {3. The quantity cI> is understood as a collective variable describing
the fields. In particular, it contains the gravitational field. Here V[cI>] is the measure
on the space of fields cI>, and WE is the Euclidean action of the field configuration.
The action WE includes the Euclidean Einstein action. The state of the system is
determined by the choice of boundary conditions on the metrics that one integrates
over. For the canonical ensemble and for the gravitational fields inside a spherical
box of radius TB at temperature f), one must integrate over all metrics inside TB which
are periodically identified in the imaginary time direction with period {3 = f)-I. Such
a partition function must describe in particular a thermal ensemble of black holes.
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The partition function Z is related to the effective action r = -In Z and to the free
energy F = tJ-1r = -tJ-1lnZ.

By using the stationary-phase approximation, one gets

tJF == -lnZ = WE[cI>o] -lnZI + .... (12.6.11)

(12.6.12)

Here cI>o is the (generally speaking, complex) solution of the classical field equations
for the action WE[cI>] obeying the required periodicity and boundary conditions. Be
sides the tree-level contribution WElcI>o], the expression (12.6.11) includes also one
loop corrections In ZI, connected with the contributions of the field perturbations on
the background cI>o, as well as higher-order teI.;ms in the loop expansion, denoted by
(...). The one-loop contributions can be written as follows: lnZI = - 4Trln(-D),
where D is the field operator for the field perturbations inside the box TB.

The one-loop contribution contains divergences and requires renormalization. In
order to be able to absorb these divergences into the renormalization of the coefficients
of the initial classical action, we choose the latter in the form

Wei =Jd4xvgL,

L - [_ Abare _ R 1 R2 2 R2 3 R2 ]
- 8 G 16 G + cbare + cbare /LV + cbare a{J/LV •

7f bare 1r bare
(12.6.13)

The subscript ubare" indicates that corresponding coupling constant is used in the
initial action, and later it will be renormalized by quantum corrections.

The divergent part of the one-loop effective action has the same structure as the
initial classical action (12.6.12), and hence one can write

(12.6.14)

(12.6.15)

(12.6.16)

Here r~rn is identical to the initial classical action with the sole change that all the
bare coefficients Abare, Gbare , and c~are are replaced by their renormalized versions
A ren , Gren , and c~en

A ren Abare-- = -- + Q(4) ,
Gren Gbare

1 1
-- = -- + Q(2) ,
Gren Gbare

(12.6.17)

(12.6.18)

The concrete form of the divergent coefficients Q(n) depends on the chosen regular
ization scheme.
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We shall refer to (12.6.14) as the loop expansion of the renormalized effective ac
tion. After multiplying the renormalized effective action by f3- I , we get the expansion
for the renormalized free energy.

The effective action r contains complete information about the system under
consideration. In particular, the variation of r with respect to the metric provides
the equations for the quantum average metric 9 = (g);

or = 0
og . (12.6.19)

One usually assumes that quantum corrections are small and solves this equation
perturbatively:

9 =gel + og, (12.6.20)

where gel is a solution of the classical equations.
One also usually assumes that the renormalized values of Aren and c;en vanish:

Aren = c;en = O. The "classical" field gel is a solution of the classical Einstein
equations. In our case gel is the Euclidean black hole metric, while the metric 9
describes the Gibbons-Hawking instanton, deformed due to the presence of quantum
corrections to the metric. The quantity r[ g], expressed as a function of the boundary
conditions (f3 and ro), specifies the thermodynamical properties of the black hole.

By a simple repetition of the calculations of Section 12.5 starting from the action
r~rn, one can show that the Bekenstein-Hawking entropy S~:; == A/4Gren coincides
with f32d(f3r~n/df3. The quantum correction qen, calculated on the regular Eu
clidean space of the Gibbons-Hawking instanton, is finite. It contains an additional
factor Ii, so that for dimensional reasons the corresponding contribution Slen to the
entropy is smaller than SBH by the factor m~l/M 2 .14 Slen can be related to the
contribution to the entropy of the thermal radiation outside the black hole. To sum
marize, the thermodynamical entropy (that is, the entropy which enters the laws of
thermodynamics) of the black hole is

(12.6.21)

(12.6.22)

Let us now discuss the relation between S;en and SSM. First we note that the
derivation of the thermodynamical entropy of a black hole requires on-shell calcula
tions. This means that in order to get EfTD, one compares two different Euclidean
black hole equilibrium configurations with slightly different temperatures. For each
of them M = M(f3). STD is given by

STD = f32 dF
df3 '

I4Due to the presence of the conformal anomalies one might expect that the leading corrections
to Bren are of order In M (see, e.g., [Fursaev (1995)]).
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where d/df3 is the total derivative of the free energy with respect to the inverse
temperature 13.

On the other hand, the statistical-mechanical entropy of a black hole SSM requires
off-shell calculations [Frolov, Fursaev, and Zel'nikov (1996a,b)]. The words off-shell
mean that in the calculations one must consider the inverse temperature {3 and the
black hole mass M as independent parameters. Strictly speaking, for 1300 == 13(1 
2M/7"B)-1/2 I' f3H == 8nM there is no regular vacuum Euclidean solution with the
Euclidean black hole topology R2 x S2. Such a solution can be obtained only if one
excludes a horizon sphere S2. If we denote the off-shell free energy by F({3, M), then

S SM = °o'Ff3-IM (12.6.23)

For 1300 = f3H the singularity disappears and F(f3) = F(f3, M). Hence, we have

dF OFI of I dM
df3 = 013 M + aM {3 dif' (12.6.24)

As a result of this relation, we have [Frolov (1995)]

STD = S~:: + SSM - tJ.S .

The term

(12.6.25)

(12.6.26)

cancels the divergence of SSM so that S:en == SSM - tJ.S is always finite. 15

The relation (12.6.25) can be used to explain of the entropy subtraction procedure
proposed earlier by Zurek and Thorne (1985).

15The above general formulas can be illustrated by explicit calculations in a simplified two-
dimensional model [Frolov, Fursaev, and Zel'nikov (1996b)]. In this model one considers a special
version of two-dimensional dilaton gravity, which can be obtained from the Einstein action by its
reduction to spherical spacetimes, and uses a massless quantum field to describe the corresponding
quantum degrees of freedom. The main result is that the entropy of a black hole can be written in
the form

STD = SBH + SSM - Sfu~dler'

The quantities which enter this relation have the following meaning. SBH is the Bekenstein-Hawking
entropy with the only change that for its calculation one must use instead of the classical gravita
tional radius r+ its quantum-corrected version. SSM is the statistical-mechanical entropy calculated
either by the volume cutoff or by the brick wall method. Sfu~dler is the analogous quantity calculated
by the same method in the Rindler space (that is, in flat spacetime) provided that in both calcula
tions (for the black hole and in the Rindler space) one uses identical values of the proper-distance
cutoff parameter l.
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To summarize, quantum excitations of a black hole are responsible for SSM. There
are two effects which are important when one establishes the relation of SSM to the
thermodynamical properties of black hole: One-loop divergences which renormalize
the gravitational coupling constant in the definition of SBH and the renormalization
of SSM due to subtraction tJ.S in accordance with (12.6.25). We analyze now a
relation between these two renormalizations.

Black hole entropy and renormalization

The origin of the divergence of SSM is connected with the fact that in the close vicinity
of the horizon there exist an infinite number of modes which contribute to SSM.

In expression (12.6.9) this infinity is suppressed by assuming that the summation
over modes is performed only over the modes located at a proper distance larger
than 1 from the horizon. This procedure is known as the volume cutoff method. A
similar result can be obtained by using other schemes of regularization. For the
discussion of the relation between SBH and SSM it is more convenient to use a
covariant regularization.

Pauli-Villars regularization is an exampie of such a covariant regularization which
is often used for calculations [see e.g., Demers, Lafrance, and Myers (1995)J. In this
method, besides the given field of mass m, one introduces additional fields. In the
simplest case, the number of these fields is five. Two of them, with masses Mk have
the same statistics as the field m, and the other three have masses M~ have the
"wrong" statistics (i.e., they are fermions for scalars and bosons for spinors). The
masses are restricted by the relations

2 3

m 2 +L Mi - L M'~ = 0,
k=l r=l

2 3

m
4 +L M: -L M': = O.

k=l r=l

(12.6.27)

To be concrete, we choose a special one-parameter solution of these equations

(12.6.28)

The statistical-mechanical entropy calculated in the Pauli-Villars regularization
is

SSM = 4:71" 4: h(Bi) B(m~, Ii),
•

where h(Bi) is the number of polarizations of the field i of spin Bi' and

B(m2,p,2) = m21nm2+ L Mi In Mi - L M'~lnM;2.
k r

(12.6.29)

(12.6.30)
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In the limit f-t -t 00, the quantity B diverges as f-t2. This quadratic divergence f-t2
corresponds to the quadratic divergence l-2 in the volume cutoff method of regu
larization (cf. (12.6.9)). One can interpret this by saying that the covariant cutoff
which removes divergences at high energies E '" f-t at the same time gives a cutoff at
the proper distance 1 '" f-t-l.

It was suggested by Susskind and Uglum (1994) and Callan and Wilczek (1995)
that the ultraviolet divergence of the Newton coupling constant might be related t-o
the divergence of SSM. In order to analyze this possibility, we establish the rela
tion between SSM and SBH. To compare these quantities, we first need to take into
account that Gren , which enters S~:; = A/Gren , is the observable value of the Newto
nian coupling constant. It differs from the bare coupling Ghare by contributions due
to the quantum fields

1 1 1
--=--+--,
Gren Ghare Gdiv

where for the same Pauli-Villars regularization used above one has

1 1 ~ () 2 2 1 ~ (2 2)-G. = -12 L...Jh Si B(mi,/-t) - -2 L...J~.B m.,f-t .
~ n. n• •

(12.6.31)

(12.6.32)

Here ~. is the parameter of non-minimal coupling of the scalar field 1>. with the scalar
curvature R. By comparing A/4Gren with (12.6.29), one can conclude that SBH can
be equal to SSM only if Gb~e = 0 and ~ = O. The first relation indicates that there
is no initial (or bare) gravity, so that the entire gravitational action is induced as a
result of quantum (one-loop) effect of a system of quantized fields. But as soon as
the initial bare parameter Gb~e does not vanish, there would always be an inevitable
non-statistical (geometrical) contribution to the entropy.

The second relation, ~ = 0, implies that the scalar fields which might be present
among the quantum fields must necessarily be minimally coupled with ~ = O. Under
this assumption and in the absence of an initially infinite (and negative) coupling
constant Gb!re' it is impossible to have a finite value of G;;'~ because the contribution
of all (boson and fermion) fields to Gdi~ is positive and divergent. In other words,
one cannot have SBH = SSM in a theory where G;;'~ is one-loop finite.

One can say that the attempts to explain the Bekenstein-Hawking entropy SBH

by counting quantum excitations of a black hole meet an evident difficulty because
SBH arises at the tree level, while the entropy of quantum excitations is a one-loop
quantity.

Does this mean that it is impossible to explain the Bekenstein-Hawking entropy
by counting quantum excitations of a black hole in the scheme described above? This
conclusion is too hasty. There exist a class of theories where SBH is directly related to
the statistical-mechanical entropy. They are the so-called theories of induced gravity.
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12.6.3 Sakharov's induced gravity and black hole entropy

A theory of induced gravity was proposed by Sakharov in 1968 [see also Sakharov
(1976) and the review by Adler (1982)]. According to Sakharov's idea, general rela
tivity can be considered as a low-energy effective theory where the metric gp.v becomes
a dynamical variable as a result of quantum effects in a system of heavy constituents
propagating in the external gravitational background. Gravitons in this picture are
to some extent analogous to the phonon field describing collective excitations of a
lattice in the low-temperature limit of the theory.

According to Sakharov's idea, the background fundamental theory is described by
an action J[rpi, gp.v] of fields rpi propagating in an external geometry with the metric
gp.v' The metric originally is not dynamical so that the original gravitational action
is simply put equal to zero. By averaging over the constituent fields rpi, one gets a
dynamical effective action for the metric gp.v

(12.6.33)

(12.6.34)

An observable gravitational field is an extremum of the effective action W[gp.v]. The
idea is to relate the Bekenstein-Hawking entropy to the statistical mechanics of the
ultra-heavy constituents which induce gravity in the low energy limit of the theory
[Jacobson (1994)].

This idea was recently developed by Frolov, Fursaev, and Zel'nikov (1996c). The
model proposed in this paper consists of Dirac fermion and scalar boson field con
stituents. It was demonstrated that one can obtain a vanishing induced cosmological
constant and a finite induced Newton coupling constant G for a special choice of
spectrum of the masses of the constituents provided at least some of the scalar fields
are non-minimally coupled. The Newton constant G is a function of the parameters
of the constituents

1 1 (~ 2 2 ~ 2 2)G = 1271" ~(1- 6~.) m. lnm. + 2 L.:md lnmd ,

where ~ is the parameter of the non-minimal coupling ~R rp2 in the action. The
non-minimality of the scalar fields plays an important role since it allows one to
make finite both G and the entropy of constituents [Frolov, Fursaev, and Zel'nikov
(1996c), Frolov and Fursaev (1997a,b)]. The value of the induced Newton constant
is dominated by the masses of the heaviest constituents and at least some of the
constituents must have Planck mass m rv mp/.

Relation (12.6.33) allows one to express the black hole entropy as a functional
integral over the configurations of the consti tuent fields in a given gravitational back
ground. Considering the states of constituents near the horizon one basically returns
to the original model discussed by Frolov and Novikov (1993b). Pairs of constituents
are created in the vicinity of the horizon, at least one component of the pair being
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created inside the black hole. The only (but very important) difference is that in
stead of counting the degrees of freedom of the light (physically observable) particles
one repeats similar calculations for the heavy (unobservable at low energies) con
stituents. The heavy constituents can effectively be excited only in a narrow region
of Planckian size close to the horizon. The remarkable fact is that, since the entropy
of the black hole is generated by the same fields that generate the low energy gravity
itself, the statistical-mechanical entropy of the constituents in such models always
coincides with the Bekenstein-Hawking entropy. This model allows one also to relate
the number of states of a black hole of fixed mass M to the number ofphysical states
of the constituents with fixed total energy [Frolov and Fursaev (1997a,b)].

The proposed class of induced-gravity models certainly cannot be considered as a
fundamental theory of quantum gravity. They are simply phenomenological models
which reproduce correctly the low energy behavior of the gravitational field. But
since the results do not depend on the particular choice of the model from this class,
one might hope that the same property, independence of the entropy of macroscopic
black holes from the particular realization of the fundamental theory at high energies,
is of more general significance. Frolov, Fursaev, and Zel'nikov (1996c) proposed to
consider this consistency of the statistical mechanics of constituents in fundamental
theory with the standard low energy gravitational calculations as a general principle
which was called the low-energy censorship conjecture.

12.6.4 Black hole entropy in superstring theory

Superstring theory is a promising candidate for quantum gravity. One of the most
interesting developments of superstring theory are recent results relating the entropy
of a special class of black holes to the counting of string quantum excitation states.
This subject goes far beyond the scope of the book, so we restrict ourselves to brief
comments. More details can be found e.g., in the reviews by Horowitz (1996, 1997),
Maldacena (1996), and Akhmedov (1997), and references therein.

According to superstring theory, all particles are excitations of a one-dimensional
object (string). String theory is characterized by two fundamental parameters: the
string scale, I., and the string coupling constant g. The string tension is T '" 1;2.
Besides a finite number of massless fields, which include spin 2 gravitons, scalar
dilatons, and some gauge fields, there exist an infinite number of massive string
excitations, enumerated by art integer N, with masses m2 = Nil;. These massive
states have a large degeneracy'" exp N 1/ 2•

When strings are quantized in a curved spacetime, there are a number of con
sistency conditions which impose constraints on the possible gravitational and other
massless fields configurations and on the number of spacetime dimensions. The con
straints on the massless fields can be rewritten in the form of dynamical equations for
a specially chosen effective action. In the low-energy limit, when the curvature R is
much less than l;2, the consistency equations take the form of the Einstein equations
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with matter consisting of the other massless fields (see Section 13.1.2). The gravita
tional coupling constant is defined as G", g2l;. In the simplest case, the number of
spacetime dimensions required by the consistency conditions is 10. So initially one has
a gravity theory in ten dimensions. In order to describe a physical four-dimensional
world, one assumes that the extra dimensions are compactified. As a result of com
pactification, besides the gravitational field, the theory in four dimensions has an
extra number of gauge and scalar fields. For example, N = 8 supergravity in four
dimensions is the low energy limit of type I I string theory compactified on a six-torus
T6. The difference from Einstein gravity is that N = 8supergravity contains many
extra massless fields: U(I) gauge fields, scalar fields and various fermionic fields.
Because of the presence of these extra fields, supergravity possesses an additional
symmetry relating bosons and fermions, called supersymmetry. Despite this differ
ence the theory has the same solutions describing a charged black hole. Extremally
charged black holes with v1J M = Q are of the most interest. For such a black hole
the Bekenstein-Hawking entropy SBH = AI(4G) = (1r14)Q2 does not depend on the
gravitational constant and is defined by the charge only.

Counting of the number of string excitations corresponding to a black hole is
based on the following observation. Let us fix the string scale ls and consider the
coupling constant 9 as a quantity that (at least formally) can be changed. The entropy
AI(4G) is independent of g. At weak coupling constant the horizon size"'" glsQ is
much smaller than the string size, so that one can use the flat spacetime description.
As one increases the coupling constant, the horizon size becomes comparable with the
string scale ls and a black hole forms. In supersymmetric theory there exists a general
inequality on the mass and charge: M ~ kQ, where k is a constant depending on the
theory. States that saturate this bound are called Bogomol'nyi-Prasad-Sommerfield
states, or BPS-states. They have the property that their mass cannot receive quantum
corrections. The number of these states is a topological invariant. In string theory
an extremal black hole can be considered as formed by specially chosen BPS-states,
and the number of ways in which it can be formed is an invariant, independent of the
string coupling constant g. That is why instead of making calculations for the black
hole entropy in the regime of strong coupling, one can perform the calculations for
weak coupling, that is, in flat spacetime. Technically this problem is much simpler.

In string theory there exist different charges. There are two types of gauge fields
called NS (for Neveu-Schwarz) and R (for Ramond), and they can carry either electric
or magnetic charge. A black hole with a single charge has an extremal limit with a
singular horizon. In order to form an extremal black hole with a regular horizon, one
needs to combine several different types of charges. The Reissner-Nordstrom metric
is a solution to string theory, but several gauge fields must be nonzero, and the charge
Q is a function of these charge parameters.

Besides simple string fluctuations, there are also soliton-like states called D-branes.
An extremal black hole with nonzero surface area is considered as being built from
elementary constituents; that is, solitons with a single charge. For weak coupling
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constant one must calculate the number of string soliton states in flat spacetime that
have the same total charge Q as the black hole. For large values of Q the answer is
exp(1TQ2/4), and hence the result reproduces the expected value of the Bekenstein
Hawking entropy SBH = A/(4G). This result was first obtained for five dimensional
extremal black holes [Strominger and Vafa (1996)]. Later it was confirmed for five
dimensional extremal rotating black holes [Breckenridge et al. (1997)] and slightly
non-extremal black holes [Callan and Maldacena (1996), Horowitz and Strominger
(1996), Breckenridge et al. (1996)]. It is also valid for four-dimensional extremal
[Maldacena and Strominger (1996), Johnson, Khuri, and Myers (1996)] and slightly
non-extremal [Horowitz, Lowe, and Maldacena (1996)] black holes. It is important
that the surface area is a function of several parameters, which include different string
charges, so that the proved equality of the entropy of a black hole to the logarithm
of the number of different string configurations is a statement about a function, not
a number.

In spite of the impressive results obtained in this approach, it should be empha
sized that the mechanism of the universality of the low energy expression for the
black hole entropy is still unclear in string theory. Each type of black hole solu
tion requires separate calculations. Moreover, supersymmetry plays a key role in the
string calculations of the entropy, and it is not clear how far these calculations can be
generalized, so that they would be able to include the case of a neutral Schwarzschild
or Kerr black hole, which are certainly of most interest.



Chapter 13

Black Holes in Unified Theories

13.1 Non-Einsteinian Black Holes

13.1.1 Introduction

The black holes we have considered up to now are solutions of the Einstein or Einstein
Maxwell equations. Only these black holes are important for astrophysical applica
tions. Recently, there has been an enormous increase of interest in black hole physics
on the part of scientists traditionally working in high energy physics. This is largely
connected with attempts to construct a unified theory of all interactions, including
gravity.

The idea that the various forces of nature might be unifiable has a long history.
The unification of electric and magnetic fields by Faraday and the development of
a theory of the electromagnetic field by Maxwell was the beginning of this history.
Einstein made many attempts to unify gravity and electromagnetism. Recently, this
idea was revived and has become one of the most promising in theoretical physics
after the success in the unification of the electromagnetic and weak interactions and
the construction of various models of Grand Unified Theories in which the strong
interaction (quantum chromodynamics) is unified with the electroweak one. Finding
a theory which unifies gravity with the other forces in nature is presently considered
as one of the most elusive goals of theoretical physics. It is strongly believed that
without such a unification it will be impossible to develop a theory which reconciles
quantum mechanics and gravity, and to build a quantum theory of gravity, this Holy
Grail of theoretical physics.

In the attempts to unify different interactions several ideas and principles were
proposed, which have proved to be very deep and powerful.

One such principle is gauge invariance. Coordinate transformations in general
relativity are a well-known example of gauge transformations. The first Noether
theorem relates a global symmetry with conservation laws. Local symmetries differ
greatly from global ones. They reduce the number of independent degrees of freedom

516
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of the system. Only invariants with respect to the local symmetry transformations
(gauge invariants) enter the description of physical observables. On the other hand,
in the general case one cannot solve the constraints imposed by the gauge invariance
and work purely in terms of the "internal" gauge independent quantities. The reason
is that dynamical equations in such variables are nonlocal and cannot be obtained by
variation of an action. Both gravity and electromagnetism are gauge fields, the fields
that exhibit the symmetry of the theory with respect to the corresponding gauge
group of transformations. The gravitational field in general relativity is described
by a massless field of spin two. Its nonlinear interactions are determined by a non
Abelian local group of coordinate transformations. The Yang-Mills field is a massless
field of spin one. For a non-Abelian gauge group its equations are also nonlinear.
The Maxwell field is an Abelian Yang-Mills fields with a U(I) gauge group.

Another important idea proposed in the seventies is supersymmetry, that is, the
symmetry between bosons and fermions. Within a few years the global supersym
metry of the early work was extended to local supersymmetry or supergravity, a
remarkably rich extension of the Einstein and Einstein-Maxwell theory.

Most recent efforts have been directed at studying theories (e.g., supergravity) in
which the number of spacetime dimensions is greater than four of the world which we
observe. This idea goes back to the work of Kaluza (1921) and Klein (1926). The ba
sic idea of this approach is that the extra dimensions are compactified and due to the
small value of the compactification radius, excitation of the modes connected with the
internal space requires very high energy. That is why under normal conditions these
dimensions are not observable. On the other hand, the metric tensor in higher dimen
sions has more components. After projecting it into the physical four-dimensional
spacetime, these extra components may be used to describe electromagnetic and/or
other physical fields.

A refined version of the theory which naturally incorporates these ideas is a su
perstring theory. In string theory world lines representing trajectories of particles
are replaced by two-dimensional world sheets, strings orbits. Such strings can be of
any size, but under ordinary conditions they are tiny, about 10-32 cm. This size is
deduced by comparing the predictions of string theory for Newton constant and the
fine structure constant. Since strings are· nonlocal objects, string theory does not
contain quantum ultraviolet divergences, which are characteristic of standard local
quantum field theories. The condition for the self-consistency of quantum string the
ory appears to be very restrictive. That such theories do exist was established in the
early 1980's as a result of almost fifteen years of investigation. Moreover, there are
only a few such consistent theories. The very latest study suggests that, in fact, all
of them are equivalent. String theory produces Einstein gravity in the low-energy
limit, that is, for energies much smaller than the Planck energy 1028eV. The (boson)
string theory makes sense only in 26 dimensions, while its supersymmetric version
is viable in 10 dimensions. The Kaluza-Klein reduction of these extra dimensiOli.s to
the four physical dimensions unifies gravity with matter and makes important pre-
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dictions concerning the nature of the "matter". For this reason, string theory is now
considered by many physicists as the most promising unified theory of everything. It
is also very often used as the modern version of quantum gravity.

One may expect that black holes, which allow one to relate gravity, quantum
theory and thermodynamics in the four-dimensional case and which play an important
role in understanding non-perturbative effects in a quantum theory of gravity may
be important in the unified theories. The low energy limit of these theories contains
gravity and some other massless or low-mass fields. How far can the results of classical
black hole physics be extended? What happens to black holes when additional fields
and extra-dimensions are allowed? These are the questions that have been analyzed
in numerous recent works. It should be emphasized that the expected unification of
the Einstein gravity occurs at Planck energies. l For this reason, the corresponding
modification of Einstein gravity is practically unimportant for astrophysical black
holes. The only expected situations when such effects can playa significant role
are final states of evaporation of primordial black holes (Chapter 15) and spacetime
regions near singularities inside black holes (Chapter 14).

Since there already exist more than a hundred publications on different aspects of
black holes in unified theories, this topic itself could be a subject of a separate book.
In this chapter we collect only some of the main results and certainly do not pretend
to completeness. Before beginning the discussion of black holes in unified theories, we
make a few additional remarks on string theory and the low-energy effective action
for gravity in it.

13.1.2 Low-energy effective action in string theory

Consider a closed bosonic string X/L(O propagating in a non-trivial background in
the target space, and write its action as

(13.1.1)

Here hAB and R(2) are a metric and a curvature of a two-dimensional manifold; X/L are
coordinates in the target space, and g/LV, B/Lv, and cp are a metric, an antisymmetric
tensor, and a scalar function on it. The dimensional coupling constant Of is the inverse
string tension. The action has the form of the nonlinear a-model. For consistency of
the quantization, the model should be conformally invariant, so that the longitudinal

1We already mentioned in Chapter 11 that quantum corrections to the Einstein equations become
important in this regime. Even if one starts with the Einstein theory, these corrections modify it.
The corrections include, in particular, higher in curvature terms. On black hole solutions in theories
of gravitation with higher-order curvature corrections, see e.g., Wiltshire (1986, 1988), Myers (1987),
Whitt (1988), and references cited therein.
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modes of the string decouple from physical amplitudes. The first two terms of the
classical action are explicitly conformally invariant. The third term, which violates
the classical conformal invariance, contains the same additional factor a' as the one
loop quantities, and it is required to improve the quantum properties of the model.

The local conformal invariance implies that the trace of the two-dimensional
world-sheet stress-energy tensor of the theory vanishes. In the model (13.1.1) this
invariance is broken by the term containing the dilaton field cp and by quantum
conformal anomalies. The general structure of the trace is

211'" T: = .Jh [f3Zv hAB 8A XP. 8B X II + f3:v eAB 8A XP. 8B X II + f3'" R(2)]. (13.1.2)

The quantities f3~v, f3:v, and 13'1' are local functionals of the coupling functions gp.v,
Bp.v, and cpo The self-consistency of the quantum theory requires that

f3~v = f3:v = 13'1' = O. (13.1.3)

It can be shown that in the one-loop approximation these conditions follow from the
following action [Callan et ai. (1985)]

W =! dDx..;=g e-2
<p [A + R + 4(Vcp)2 - 11

2
HP.VA HP.VA] . (13.1.4)

Here HP.VA = 3V[p. BVA ), and A is a constant which is related to the spacetime di
mension D. For a bosonic string it vanishes when D = 26. For supersymmetric
strings with fermions the critical number of dimensions is D = 10. For these critical
dimensions D = 10 or 26 the theory is free from divergences and anomalies. One can
also consider other number of dimensions by introducing additional conformal fields.
A also depends on the central charge of possible "internal" conformal fields if they
are present. The low-energy effective action (13.1.4) can also contain an additional
term (-F2) for a gauge field A and some massless fermions.

It is clear from the form of action (13.1.4) that e'l' plays the role of a coupling
constant which reflects the strength of quantum corrections. The complete string
action includes higher-curvature corrections. In the application to the black hole
problem one usually discusses solutions of the low-energy effective theory (13.1.4)
where the fermions are omitted. One also include the Maxwell field associated with
a U(I) subgroup of the gauge group.

13.2 Four-Dimensional Black Holes

13.2.1 Dilaton black holes

The simplest generalization of Einstein-Maxwell theory including the dilaton field is
described by the action

W = _1_ / d4x..;=g e-2
<p [R + 4(Vcp)2 - Fp.vFP.V]. (13.2.1)

1611'"
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(13.2.2)

It can be obtained from the low energy action ofthe string theory (13.1.4) by dropping
all the fields except for the metric gp.v, a dilaton cp, and a Maxwell field Fp.v. As before,
we put the Newtonian coupling constant G = 1. Restoring G in (13.2.1), one can
see that the quantity Gexp(2cp) plays the role of an effective gravitational coupling
constant which might depend on x. Before discussing black hole solutions for the
action (13.2.1) we note that by making a conformal transformation g:v = e-2cp gp.v
the action can be rewritten in a more familiar form

w = _1_ / d4x J-gE [RE - 2(V'cp)2 - e-2cp Fp.v FP.V] .
161T

In the absence of the Maxwell field the action reduces to the standard Einstein theory
with a scalar massless field as the matter. According to the no hair theorem (see
Section 6.7), the only spherically symmetric black hole solution is the Schwarzschild
one, with cp = o. For this solution gp.v = g:v. In a general case when cp i- 0, this
equality is violated. In string theory gp.v plays a more important role since strings
are propagated in this metric. On the other hand, in terms of g:v the action has
the Einsteinian form. In should be emphasized that global geometrical properties of
spacetimes with these two metrics may differ. In order to distinguish between the
metrics, one usually refer to the quantities calculated for g:v and for gp.v as quantities
in the Einstein frame and in the string frame, respectively.

There exists a remarkable symmetry property that allows one to obtain a one
parameter family of solutions starting with any static solution of (13.2.1) [Sen (1991,
1992a), Hassan and Sen (1992)]. If one starts with the Schwarzschild solution (gp.v, cp =

0, Ap. = 0), one gets Uip.v, rjJ, Ap.), where g,j is unchanged, Ap. = At c5~, and

_ gtt

gtt = [1 + (1 + gtt) sinh2aJ2 '

A _ _ (1 + gtd sinh2a
t- 2V2[I+(I+gtt )sinh2a] ,

exp( -2rjJ) = [1 + (1 + gtt) sinh2a] exp(-2cp) .

(13.2.3)

The solution in the string frame obtained from the Schwarzschild metric is

ds2 = _ (1 _ 2~) (1 + 2~ sinh2 a) -2 dt2+ (1 _ 2~) -1 di'2+i'2 dw2,(13.2.4)

A _ _ msinh2a
t - V2[i'+2msinh2a] ,

exp( -2cp) = 1 + 2~ sinh2a.
r

(13.2.5)

The metric has a horizon at i' = 2m and a curvature singularity at i' = 0, where
~tv Fp.v is also divergent. Since expcp -t 0 near r = 0, the effective string coupling
becomes weak. At large distances cp -t O.
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Rescaling the metric and introducing a new radial coordinate r = r + 2m sinh2 Q,
one obtains the solution in the Einstein frame

2 ( 2M) 2 ( 2M).-1 2 ( Q2) 2dsE = - 1 - -;:- dt + 1 - -;:- dr + r r - M dw, (13.2.6)

Q2
exp(2rp)= 1 - Mr' (13.2.7)

where the physical mass M and charge Q are

Q = ~Sinh2Q. (13.2.8)

The metric (13.2.6) in the (r, t)-plane coincides with the Schwarzschild metric, while
the area of the sphere of radius r is smaller, and vanishes for r = Q2/M.

The magnetically charged black holes can be obtained from the electrically charged
solution by means of the duality transformation

E E
gp.v -+ gp.v' rp -+ -rp, (13.2.9)

(13.2.10)

The metric in the Einstein frame remains unchanged, but because the dilaton fields
is transformed, one has the following form of the metric for a magnetically charged
black hole in the string frame:

ds2 = _ (
1

- ~) dt2 dr2

(1 - ~:) + (1 - 2~) (1 _ ~:)
As one approaches the singularity r = Q2/M, the surface area of a sphere r = const
remains finite.

The solutions for dilaton black holes were obtained by Gibbons (1982) [see also
Gibbons and Maeda (1988), Garfinkle, Horowitz, and Strominger (1991)].

There exists also an exact solution for a black hole with both electric (QE) and
magnetic (QM) charges [Gibbons and Maeda (1988), Kallosh et af. (1992)]. In the
Einstein frame it takes the form

ds2 =_(r-r_)(r-r+)dt2 + r
2
-r5 dr2+(r2-r2)dw2, (13.2.11)

E r2-r5 (r-r_)(r-r+) 0

Here

r +ro
exp(2rp) = --.

r - ro

r - Q'it - Q~
0- 2M '

(13.2.12)

(13.2.13)
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(13.2.14)

(13.2.15)

An uncharged rotating black hole in the dilaton gravity has the Kerr metric. Its
charged version can be obtained by applying a generalization of the transformation
(13.2.3) to the Kerr metric [Sen (1992b)]. For more detailed discussion of dilaton black
holes and their properties, see the review by Horowitz (1992). On the uniqueness
theorem for dilaton black holes see Masood-ul-Alam (1993).

13.2.2 Black holes with non-Abelian hair

Colored black holes

It is quite easy to obtain solutions of the Einstein-Yang-Mills equations with Abelian
hair (see e.g., Frolov (1973)). Yasskin (1975) proved that for every solution of the
Einstein-Maxwell equations outside the sources, an (N - I)-parameter family of ex
act solutions of the Einstein-Yang-Mills equations can be constructed for the N
parameter gauge group. This family with Abelian hair has the same metric as the
original solution.

After Bartnik and Mckinnon (1988) discovered a non-trivial self-consistent so
lution of the Einstein-Yang-Mills equations, a variety of black hole solutions with
non-Abelian hair have been found. In this section we describe some of these solu
tions.

We begin with the simplest case of Einstein-Yang-Mills equations with the SU(2)
gauge group described by the action

W= 1~1T!d4xH [R - :2 Tr(F
2)].

Here F is the Yang-Mills curvature (field strength), F = dA + A 1\ A, and 9 is
a self-coupling constant of the Yang-Mills field. Consider a spherically symmetric
metric

ds2 = _ (1- 2r:(r)) B2(r)dt2+ (1- 2r:(r)) -1 dr2+r2dw2,

and choose the following ansatz for the spherically symmetric Yang-Mills field

Here

A = (1 + w(r))[-T.pdB + Te sin Bd¢> ].

T r = ;i [0'1 sin Bcos ¢> + 0'2 sin Bsin ¢> + 0'3 cos B],

Te = ;i [0'1 cos Bcos ¢> + 0'2 cos Bsin ¢> - 0'3 sin B],

(13.2.16)

(13.2.17)
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and Ui are the Pauli spin matrices. The field strength F for this ansatz is

523

(13.2.19)

F = - w' T~dr 1\ d8 + w' Tedr I\sin8d¢J - (1- w2
) T r d8 I\sin8d¢J. (13.2.18)

One chooses the boundary condition w -+ ±1 at infinity which guarantees bound
edness of the energy of the system. Besides this, one imposes the conditions of
asymptotic flatness: m(r) -+ M = finite, B(r) -+ 1 as r -+ 00, and the condition for
existence of a horizon 2m(rH) = rH and B(rH) < 00.

There exist trivial solutions of the system of Einstein-Yang-Mills equations such
as the Schwarzschild black hole (w = ±1) or the magnetic Reissner-Nordstrom black
hole (w = 0). For the latter solution the structure of the Yang-Mills hair is effectively
Abelian.

Besides these solutions, there exists a discrete family of non-trivial (definitely non
Abelian) solutions (colored black holes) [Volkov and Gal'tsov (1989, 1990), Kiinzle
and Masood-ul-Alam (1990), Bizon (1990)]. For these solutions w(r) is a non-trivial
function that has an asymptotic behavior Iwi...., 1- clr, c > O. The solutions of this
family are parametrized by an integer number n: the number of nodes of the Yang
Mills potential. The mass of the solution increases with increasing n. All so!!!~!?ns

are unsta.~!e_with r~spectt() Jadia.IJinear_ perturbati()lls. The number of unstable
modes increases as the node number increases [Sudarsky and Wald (1992)]. Einstein
Yang-Mills black holes with the gauge group SU(N) were discussed by Kiinzle (1991,
1994) and Kleihaus, Kunz, and Sood (1997) (see also references therein). Solutions for
slowly rotating colored black holes were obtained by Volkov and Straumann (1997).

There are known dilatonic modifications of colored black holes [Donetz and Gal'tsov
(1993), Torii and Maeda (1993)]. They are solutions for the action

W= _1_ ! d4x..;=g [R _(Va)2 - ~ e-ou Tr(F2)] .
16n 9

This type of action arises from different types of unified theories, including a super
string theory (a = 1), and 5-dimensional Kaluza-Klein theory (a = V3).

The spacetime metric and the Yang-Mills potential ansatz are the same as earlier.
In addition to the above described boundary conditions it is required that a -+ 0 as
r -+ 00, and a(rH) is finite. The properties of dilatonic colored black holes are similar
to the properties of the ordinary colored black holes [see Kleihaus, Kunz and Sood
(1996) and references therein]. A paper by Lavrelashvili (1997) contains review of
black hole solutions with non-Abelian hair.

Skyrme black holes

Another interesting class of solutions for black holes with non-Abelian hair was ob
tained by considering the nonlinear sigma model interacting with the gravitational
field. The simplest form of the nonlinear sigma model which has stable solitonic solu
tions was given by Skyrme (1961), who used this model to study low energy behavior
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of pions. The basic field variable of the nonlinear sigma model of Skyrme is an SU(2)
valued function U(x). The corresponding Einstein-Skyrme action is

· /4 r-:[1 1 2
1 2 (2]W= dXy-g -R--2 Tr(F)+-4!sTrA) ,

161T 32gs
(13.2.20)

where F = A 1\ A, and A = ut \lU. The metric for the Skyrme black hole is of the
form (13.2.15), while for U one uses the so-called hedgehog ansatz

U =exp[u' fx(r)] , (13.2.21 )

where u are the Pauli matrices, and f is a unit radial vector. Skyrme black hole
solutions were obtained by Luckock and Moss (1986), Droz, Heusler, and Straumann
(1991), and Bizon and Chmaj (1992). There exist two particle-like solutions of the
Skyrme model. One can exist in the absence of gravity, and the other is a soliton-like
solution stabilized by gravity. The two branches of black hole solutions, which start
from these particles, merge at some critical radius of the horizon. Beyond this critical
point where the mass and the horizon radius reach their maximal value, there are no
non-trivial black holes. Below the critical point, for each value of the mass their exist
two different Skyrme black holes. Theone that possesses the smaller value of rH
is unstable with respect to radial pe~turbatio~s·[L~ck~ck and Moss (1986), Heusler,
Droz and Straumann (1991)].

Proca black holes

The action for the massive Yang-Mills field (Proca field) interacting with gravity is

W = /d4x H [_1 R- _1_ (!Tr(F2) _ p,2 Tr(A2))].
161T 41Tg2 4 2

(13.2.22)

Here p, is the mass of the Yang-Mills field, and F = dA + A 1\ A. Proca black
hole is a solution with metric (13.2.15), vector potential (13.2.16), and boundary
conditions the same as for a colored black hole. There exist two branches of Proca
black hole solutions. One gives a particle-like solution in the limit when rH -t 0
which can exist even in the absence of gravity, while the other gives a self-gravitating
particle-like solution. The two branches of black hole solutions that start from these
particles, merge at some critical gravitational radius rH, where a Proca black hole
has a maximal mass M and maximal size of the horizon rHo Beyond this point there
are no non-trivial solutions [Greene, Mathur, and O'Neill (1993), Torii, Maeda, and
Tachizawa (1995)]. On the stability properties of Proca blackholes see [Torii, Maeda,
and Tachizawa (1995)]. . .
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Sphaleron black holes

A sphaleron black hole is a black-hole-like solution of the theory

/

4 r--:[1 1 2W = d Xy-g -R- --Tr(F)
167f 167fg2

where

Dp. = ap' + T . Ap. l F = dA + A t\ A l

V(C)) =,\ (c)t c) _ c)~)2 .
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(13.2.23)

(13.2.24)

(13.2.25)

(13.2.26)

A is the 8U(2) Yang-Mills potential; F is the field strength, and c) is the Higgs
field. For the metric and the Yang-Mills field one uses the same ansatz and boundary
conditions as for the colored black hole solutions. For the complex doublet of Higgs
fields one uses the ansatz

c)(x) = ~e-2"t'T ( r-1 ~(r) ) .

The boundary condition at infinity for the Higgs field is c)(oo) = C)O. Sphaleron black
holes are always unstable.. '--'--,--~ ...~.

Black holes in monopoles

Magnetic monopoles were first discussed by Dirac (1931) in the framework of Maxwell
electrodynamics. 't Hooft (1974) and Polyakov (1974) discovered a monopole as
a solution of the 80(3) Yang-Mills-Higgs theory. Solutions describing gravitating
monopoles were obtained by Cho and Freund (1975) and van Nieuwenhuizen et al.
(1976). Later, Breitenlohner, Forgacs, and Maison (1992), Lee, Nair, and Weinberg
(1992a-c), and Ortiz (1992) found solutions describing a monopole black hole.

The 80(3) Einstein-Yang-Mills-Higgs theory is described by the action

W = /d4x H [_1_ R _ ! Fa Fap.v
167f 4 p.v

(13.2.27)

(13.2.28)

(13.2.29)
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Here A~ and F;v (a = 1,2,3) are the 80(3) Yang-Mills field potential and field
strength, respectively. ~"is a triplet of real Higgs fields. For monopole black hole
solutions one uses the metric (13.2.15) and the hedgehog ansatz for the Yang-Mills
and Higgs fields

~" = vi" h(r) , A" c c"b·b 1 - w(r)
i = Wi E r er ' A~ = O. (13.2.30)

Here f" is a unit radial vector in the internal space, and wf is a triad in this space.
The boundary conditions imposed at infinity r -t 00 are

m(oo) = finite, B(oo) = 1, h(oo) = 1, w(oo) =0. (13.2.31)

These boundary conditions are the same as for a regular gravitating monopole so
lution. The black hole monopole is singled out as the solution that has a regular
horizon 2m(rH) = rH at r1f.

For arbitrary values of v and A there always exists a trivial Reissner-Nordstrom
solution

21T
m(r)=M--

2
-, B=I, w(r)=O,· h(r)=l.

e r
(13.2.32)

Non-Abelian black holes can exist when the gravitational radius r g ...., M is less than
the monopole size 1/(ev). For given parameters v and A, there may be one or more
(up to three) non-Abelian black hole solutions in addition to the Reissner-Nordstrom
one. On the stability of the monopole black hole solutions, see Tachizawa, Maeda,
and Torii (1995). It is quite interesting that for some range of the parameters a trivial
Reissner-Nordstrom solution is unstable with respect to linear radial perturbations.
As a result of this instability, a non-Abelian monopole black hole is formed [Lee,
Nair, and Weinberg (1992a-c)].

For a general review of black holes with non-Abelian hair and the analysis of their
stability, see [Torii, Maeda, and Tachizawa (1995) and Tachizawa, Maeda, and Torii
(1995)].

13.2.3 Quantum hair

Axionic black holes

The simplest action for the axionic black hole is

(13.2.33)

where H is the three-form strength of the Kalb-Ramond axion field, and two-form B
is its potential.
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In general, axions have axial fermionic couplings that induce anomalous coupling
to gauge bosons which are of the Chern-Simons form. It means that the axion field
strength H is of the form

H = dB + WL - Wy , (13.2.34)

where WL and Wy are the Chern-Simons forms for the Lorentz spin connection and
Yang-Mills gauge connection, respectively,

2 2
WL = Tr(w A dw + "3 w A w A w) , Wy = Tr(A A dA + "3 A A A A A), (13.2.35)

with wab" = -el: eao;" the spin connection and e~ the orthonormal tetrad. The
following Bianchi identity for H follows from (13.2.34) and (13.2.35)

dH = Tr(R A R ) - Tr(F A F) .

Let us define a one-form 'H dual to H as

(13.2.36)

(*H)" = e"o{3,/ H°{3,/ . (13.2.37)

Then the equation of motion Ho{3;,/ = 0 implies that ('H)" = a;", while the Bianchi
identity (13.2.36) gives

Oa = J, (13.2.38)

where the source term J is proportional to e°{3"v (RpAO{3 R,,/A- F0{3 F"v).
Campbell et al. (1990) attracted attention to the fact that for a rotating black

hole the Hirzebruch signature density Tr(RA R) == e0{3"v RpA0{3 R,,/A does not vanish,
so that in the theory with a non-minimally coupled Kalb-Ramond axion field there
exists axion hair. Thiswas the first known example of stable, dynamical, non-gauge
hair exhibited by ablack hole. Campoell ei al.(1990) calculated the axion field for a
slowly rotating black hole and showed that it has the following asymptotic behavior

( 0) ~ 5a cos 0 ( 2 39)
a r, 12Mr2 ' 13..

which exhibits the r- 2 long-range fall off one would expect of a dipole.
In a similar way, if a black hole is non-rotating, but it posesses both electric and

magnetic charges (a so-called dyon black hole), then the non-vanishing anomalous
term FO {3 •F°{3 == e°{3"v Fo {3 F"v plays the role of a source for the axion field, so that
the black hole again has axion hair [Campbell, Kaloper, and Olive (1991)]. On the
generalization of these results to the case of black holes in string theory, see [Campbell,
Kaloper, and Olive (1992)].

The axion hair connected with the rotation and charges of a black hole can be
generated by other mechanisms. For example, this happens in the theory with the
action

(13.2.40)
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If a static black hole has both electric and magnetic charges, so that Fo{3 'F°{3 i= 0,
then the last term in the action generates a source for the axion field a. As a
result, the black hole has axion hair [Lee and Weinberg (1991)]. Quite interesting
that a rotating black hole without charges can also have axion hair in the theory
(13.2.40) [Reuter (1992)]. This result follows from the existence of the bosonic chiral
anomaly discovered by Dolgov, Khriplovich, and Zakharov (1987) [see also Dolgov
et ai. (1989)]. Namely, when an Abelian gauge field is quantized in the background
with a non-vanishing Hirzebruch signature density, then the vacuum expectation of
the chiral current

(13.2.41)

is not conserved, and the pseudoscalar Fo{3 'F°{3 acquires a vacuum expectation value:

(Kit). = !(F~" 'F°(3) = _1_ e°{3ltv R ' {3 R p>.
,It 2 UfJ 1921T2 PAO ltV'

(13.2.42)

(13.2.43)

One can describe the axion field generation as the two-step process. The black hole
rotation generates (Fo{3'Fo(3) by means of the bosonic chiral anomaly, while the latter
plays the role of the source for the axion field [Reuter (1992)].

Quantum axion hair

Axion black holes as well as dilaton black holes and black holes with non-Abelian
fields can be considered as examples of black holes with non-trivial hair. Matter
fields associated with hair have a non-vanishing stress-energy tensor which modifies
the vacuum metric. Besides this type of hair, a black hole might have additional
charges that do not modify the metric, and hence cannot be discovered by studying
the gravitational interaction of the black hole. An axion quantum hair is an example
first considered by Bowick et ai. (1988).

The starting point is again the action for the axionic black hole

W = 1~1T / d4x F9 [R + Hltv>. Hltv>,] .

But now we assume that the axions are minimally coupled so that H =dB, where the
two-form B is a potential. A black hole of mass M and axion charge q is a solution

(13.2.44)

(13.2.45)

It is easy to verify that for this axion potential B the field H vanishes, and hence
the axion field equations are trivially satisfied. Moreover, the stress-energy tensor
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(13.2.46)

of the axion field vanishes so that the Schwarzschild metric (13.2.44) is evidently a
solution of the Einstein equations with the ansatz (13.2.45) for the axion field. It is
possible to show that this solution is the only static solution to the Einstein-axion
field equations which has a regular event horizon, is asymptotically flat, and has finite
charge q [Bowick et al. (1988)].

The axion charge

q = { B ILII da lLII
lS2

can be measured neither by gravitational experiments nor by any local measurements
of the axion field. Nevertheless, this new additional black hole characteristic which
is of pure topological origin can be determined by nonlocal Aharonov-Bohm type
experiments. For example, a string interacting with the axion field would "feel" the
axion charge if its world sheet encircles the black hole. In particular, one can measure
the charge, by creating a pair of strings at some point, allowing one of them to lasso
the hole and the other to avoid the hole, and then interfering with one another. Since
this Aharonov-Bohm effect is quantum in nature, one can call the axion field quantum
hair.

Black holes with discrete gauge charges

A black hole can carry quantum hair associated with discrete gauge charges. It may
happen when the local continuous gauge symmetry breakdown leaves unbroken a
residual discrete subgroup of the gauge group. Charges connected with the unbro
ken discrete symmetry can reside on a black hole providing it with new physical
characteristics [Krauss and Wilczek (1989), Coleman, Preskill, and Wilczek (1991,
1992)].

Consider a U (1) gauge theory that contains two scalar fields 1] and ~ carrying
charge pe and e, respectively, and described by the action

W = - ! d4xH [~FILII FILII + 1(81L + ipeAIL ) 1] 12 + 1(81L + ieAIL)~ 12

+ ~ ( 11] 12 - v2)2 + \/in! (11] I, 1~ 1)], (13.2.47)

Field 1] undergoes a condensation

(1](X)) =v. (13.2.49)

Before the condensation the theory is invariant under the local gauge transformations

(13.2.50)
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(13.2.51 )

After the condensation this continuous symmetry is broken since the homogeneous
ground state is invariant only when ,\ is an integer multiple of 21T /p e. Nevertheless,
residual transformations still act non-trivially on ~, and their actions generate the
discrete group 'l.p. Since the Higgs field TJ can only screen charges which are a multiple
of p e, there exists a conserved charge mod(p e) associated with the observable [Krauss
and Wilczek (1989)]

exp C:i
e
Q) = exp (:1T

e
iIE. dS) .

If a two-dimensional integral is taken over the black hole surface, one obtains the
discrete gauge charge of the black hole. This charge can be measured (at least in
principle) in the following gedanken experiment. The broken symmetry theory of
field TJ contains topologically stable strings with magnetic flux 21T/Pe. A particle ~

with a charge e can test this magnetic flux by means of the Aharonov-Bohm type
scattering. Similarly, the gauge discrete charge of a black hole can be detected by the
Aharonov-Bohm interaction of a cosmic string if its world sheet encircles the black
hole.

Even in the absence of actual strings, this effect changes the phases in the ampli
tudes for virtual processes in which a string world sheet envelops the charge. Suppose
a virtual string is nucleated at a point of the event horizon, sweeps around it, and
shrinks and annihilates after this. The motion of a string carrying the magnetic
flux generates an electric field in the radial direction. Averaging over all possible
points of nucleation cancels the magnetic field, but the electric field survives. As a
result of such virtual processes, there is a non-vanishing electric field in the vicin
ity of the horizon [Coleman, Preskill, and Wilczek (1991, 1992)]. Its amplitude is
proportional to sin(21TQ/p e n) exp( -Svortex/n), where Svortex is the Euclidean action
for a string sweeping around the horizon. The field strength falls off exponentially
as exp(-r /l)/r, where 1 is the thickness of the string. Likewise, in the theories that
allow magnetic monopoles a black hole might have a discrete magnetic charge and a
short-range magnetic field [Coleman, Preskill, and Wilczek (1991, 1992)].

Primary and secondary hair

All black hole solutions discussed above can be considered as different counter
examples to the original no hair conjecture. A strong interpretation of this conjecture
would say that black holes settle down to the Kerr-Newman one, characterized com
pletely by mass, angular momentum, and electric charge.

The conjecture in this form is certainly not correct. By modifying the theory
and adding extra fields,one can obtain black holes which possess additional physical
characteristics besides gravitational and electromagnetic fields. As we have seen, in
the presence of continuous gauge fields a black hole can have fields generated by
the corresponding conserved charges. This observation implies the following natural
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generalization of the strong no hair conjecture: There ~<:Ln be no non-trivial fields
outside the black hole aside from the gravitational, -electromagnetic, and more general
continuousg~u~e~~I~S.

It is easy to see that even this modified form of the no hair conjecture cannot be
correct. The dilaton black hole (Section 13.2.1) is an evident counter-example. The
dilaton scalar field (which is not a gauge field) is present outside the horizon and
the metric is modified by the presence of this field. The mechanism of generation
of dilaton hair is quite simple. Because of the term exp <pF2 in the action, in the
presence of an electric field F 2 plays the role of the source for the dilaton. As a
result, the dilaton field is uniquely specified by giving the mass M and the electric
charge Q of the black holes. Such hair can be called induced or secondary hair
[Coleman, Preskill, and Wilczek (1991, 1992)]. Secondary hair of black holes is easily
generated e.g., by perturbative quantum corrections to the matter effective action.
These corrections contain a direct interaction of the curvature with matter fields.
The spacetime curvature plays the role of source for matter fields even in the absence
of real charges.

Another, weaker interpretation of the no hair conjecture is the statement that
the propertiel'; of black holes are-completely determined, within any given theory,
by the values of its mass,angular momentum, and continuous gauge charges. The
weaker form of the no hair conjecture is also violated. Black holes with quantum
hair, considered in the present section, give counter-examples. Axionic charge or
discrete gauge charge are additional parameters which expand the space of states
of black holes. The electric or magnetic short-range quantum hair associated with
discrete gauge charges are so-called primary hair [Coleman, Preskill, and Wilczek
(1991, 1992), Krauss and Liu (1997)].

13.3 Lower-Dimensional Black Holes

Till now we have considered a gravitational theory and black holes in a four-dimen
sional spacetime since it is what can be (at least in principle) directly related to
observations. Nevertheless, it is instructive to study what might be physical prop
erties of the world in the case if the number of spacetime dimensions were different
from four. There are quite a lot of papers where black hole solutions were obtained
and studied in the spacetimes with the number of dimensions either lower or higher
than four. We briefly describe obtained results for two and three dimensional black
holes in this section. Properties of higher dimensional black holes are considered in
the next section.
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13.3.1 Three-dimensional black holes

The Einstein-Hilbert action in (2 + I)-dimensional spacetime is

W[g] = 16~G! d
3
x F9 (R - 2A + L m ). (13.3.1)

A is a cosmological constant, and Lm is the matter Lagrangian. We omit the surface
term which is not important for our considerations and put as before c = 1. The
gravitational constant G has the dimension of length. In this section we use units in
which 8G = 1. The gravitational equations have the form (a, b =0, 1,2)

1
R ab - 2" gab (R - 2A) = 1r Tab' (13.3.2)

In a (2 + 1)-dimensional spacetime the number of independent components of the
Riemann tensor (six) is the same as for the Ricci tensor Rab , so that the Riemann
tensor is completely determined by Rab :

1
R abcd = Racgbd - Radgbc + Rbdgac - ~cgad - 2"R (gac gbd - gadgbc)' (13.3.3)

This means that by specifying the matter distribution Tab' one specifies also the
complete curvature of spacetime, and there are no propagating degrees of freedom
in (2 + I)-gravity. In particular, outside the matter where Rab = 0, the spacetime is
locally fiat, or has constant curvature A if there is a cosmological constant.

These properties of three-dimensional general relativity imply many simplifica
tions, and for this reason it is often used as a toy model for study the problems of
classical and quantum gravity [Deser, Jackiw, and 't Hooft (1984), Deser and Jackiw
(1988), 't Hooft (1988), Witten (1988,1989)]. It might be surprising that this toy
model is of any interest, especially because 3-gravity has no Newtonian limit [Bar
row, Burd, and Lancaster (1986)]. Nevertheless, study of three-dimensional gravity
has brought a number of interesting results. One of them is the unexpected existence
of black hole solutions [Baiiados, Teitelboim, and Zanelli (1992, 1993)].

The BTZ black hole is a solution with Tab = 0 and A = -1/12 , and it is described
by the metric

dr2

ds2= -if>dt2+~ + r2(d¢ - wdt)2, (13.3.4)

where

r 2 j2 J
if>=-M+ p + 4r2 ' w=-2r2 ' IJI~Ml. (13.3.5)

M > 0 plays the role of the black hole mass, and J is the angular momentum. The
spacetime has two horizons at r =r ±, where

(13.3.6)
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Metric (13.3.4) allows two Killing vectors ~&) 8a == 8t and ~("') 8a == 8",. The vector
~&) becomes null at the static-limit surface

rstat == M 1
/

2
[ (13.3.7)

located outside the event horizon r+. The surface gravity of the event horizon is
K == (r~ -1·~..)/([2r+).

It is remarkable that a BTZ black hole, being a solution of the field equations with
negative cosmological constant, is locally isometric to anti-de Sitter space. One im
portant difference between the BTZ solution and anti-de Sitter space is the topology.
Anti-de Sitter spacetime can be embedded in a fiat space of one higher dimension
with the metric

ds2 == - dT2 - dU2+ dX2+ dy2 .

The induced metric on the hypersurface

_ T 2 _ U2 + X2 + y2 == _ [2

(13.3.8)

(13.3.9)

(13.3.11 )

has constant negative curvature, and hence it is a solution of the vacuum Einstein
equations with negative cosmological constant A == -1/[2. The embedded spacetime
is periodic in the time direction. To obtain anti-de Sitter space, one uses its universal
cover, obtained by "unwinding" about the XY-axis.

The embedded surface (13.3.9) can be locally parametrized as

T == / ~ - [2 sinh~ t , U ==~ cosh ( v'M¢) ,

X == /~ _[2 cosh~ t, Y ==~ sinh (v'M¢) . (13.3.10)

In these coordinates the induced metric is

(
r2) dr

2
ds2 == - -M + [2 dt 2+ r 2 + r 2 d¢2 .

-M+-[2
This is the metric of a non-rotating BTZ black hole provided one makes the iden
tification ¢ == ¢ + 21T. In fact, this identification, which makes the topology of the
spacetime different from the topology of the anti-de Sitter space, distinguishes the
BTZ metric globallY. Though the mass parameter M can be excluded from the met
ric (13.3.11) by rescaling the coordinates t and r, this rescaling changes the period of
¢ and makes it dependent on M. In other words, appropriate identification not only
changes the topology but also introduces a scale parameter. The metric of a rotating
BTZ black hole can be obtained in a similar way by choosing a proper identification
in anti-de Sitter space [Bafiados, Teitelboim, and Zanelli (1992,1993), Carlip (1995)].
One can also generate multi-black-hole solutions by using more general types of iden
tifications [Brill (1996)]. For a review of (2 + 1)-dimensional black holes and their
properties, see [Carlip (1995)]. .
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13.3.2 Two-dimensional black holes

In two dimensions the Einstein action is a topological invariant, and hence it has
no dynamical content. The simplest way to obtain dynamics is to include a dilatoll
field. An example of such a theory naturally arises in the framework of the usual
four-dimensional Einstein gravity if we restrict ourselves by considering spherically
symmetric spacetimes. The reduced action for the spherically symmetric ansatz is
(see Appendix 8.2)

(13.3.12)

(13.3.13)

Here gAB and R are two-dimensional metric and curvature, respectively, A, B = 0, 1.
We restored c and G in the formula and omit the surface term. Let us choose some
length scale parameter 1and define r =1exp( -cp). Then the action takes the form

W[g, cp] = 4~' ! d2x F9 e-2
'1' [R + 2(Vcp)2 + 1-2V(cp)],

where V(cp) = 2 exp(2cp). G' =G/Wc3) plays the role of the two-dimensional Newton
constant.

Since the curvature interacts directly with the dilaton field cp, its variation with
respect to the metric gAB does not vanish identically. The corresponding equations
are of the form CPIAB ~ gAB. According to the generalized Birkhoff's theorem (see
Appendix B.3), these equations guarantee the existence of a Killing vector e =
eAB CPIB' It is evident that the only solution to the "dilaton gravity" (13.3.13) is the
two-dimensional sector of the Schwarzschild metric

2 ( r +) 2 dr
2

ds =- 1 - - dt +-r+ 'r 1--
r

cp = -In(r/1) . (13.3.14)

The most general action for two-dimensional dilaton gravity is

(13.3.15)

The ambiguity in the dilaton field reparametrization cp -+ <'P( cp) and conformal trans
formation gAB -+ Q2(cp)gAB can be used to eliminate two of the three arbitrary
functions W, U, V. In particular, one can present the action (13.3.13) in the form

The equations of motion take the simple form

(13.3.16)

1
~IAB = 2[2 VgAB' (13.3.17)
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(13.3.18)

(13.3.20)

(13.3.21)

The latter equation implies that e = eAB ~IB is a Killing vector. For the coordinate
choice x = ~, gtx = 0, the most general solution is

dx2

ds2 = -Adt2+
A'

where dA(~)/d~ = V(~). The solution contains an arbitrary integration constant.
If the function A(x) vanishes at some point xo, then the solution possesses a Killing
horizon at xo.

The following special choice of the two-dimensional dilaton action is motivated
by string theory [Witten (1991), Mandal, Sengupta, and Wadia (1991)]

Wig, cp] = 4~' ! d2x...;=ge-2
<p [R + 4(Vcp)2 + 4,\2] . (13.3.19)

A general solution is parametrized by one constant and is of the form

ds2 = -A dt2 + dr
2

A'

M
A = 1- _e-2>.r cp = -'\r.,\ ,

The metric is static, asymptotically fiat and describes a two-dimensional black hole.
The horizon is at r = r+ == fx In(M/,\).

One can easily obtain a charged black hole solution by adding an FAB FAB term
into action (13.3.19). In two dimensions FAB = FeAB. The solution contains two
arbitrary constants "mass" M and "charge" Q [Frolov (1992)]. The metric has the
form of (13.3.21) and

M Q2
A = 1 - T e- 2>.r + 4,\2 e-4>.r , cp =-,\ r, F = Qe-2>.r • (13.3.22)

The global spacetime structure for this solution is similar to the structure of the
Reissner-Nordstrom metric. It has two horizons at

r = r ± == ;,\ In [(M ± / ..;M2 - Q2 ) /2,\] . (13.3.23)

On the properties of two-dimensional black holes in string-motivated dilaton grav
ity see [Frolov (1992), Strominger (1995)]. On black hole solutions in a more general
class oftwo-dimensional dilaton gravity theories2, see [Louis-fvlartinez and Kunstatter
(1994), Chan and Mann (1995), Gegenberg, Kunstatter, and Louis-Martinez (1995)].

2It is interesting to note that the internal geometry of an infinitely long stationary cosmic string
trapped by a stationary black hole coincides with a geometry of a two-dimensional black hole [Frolov,
Hendy, and Larsen (1996)]. The "event horizon" of such a "string hole" is at the line of intersection
of the string with an infinite-redshift surface. Perturbations ("stringons") propagating along the
string are "living" in the spacetime of this two-dimensional "string hole". In particular, the "string
hole" emits "stringons" with thermal spectrum in the process similar to the Hawking radiation.
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13.4 Multi-dimensional Black Holes

13.4.1 Einsteinian multi-dimensional black holes

D-dimensional gravity

We begin by considering the gravitational theory in D-dimensional spacetime [Myers
and Perry (1986)]. The signature of the metric gAB (A, B = 0,1, ... D - 1) is
(-, +, +, ... +). The natural generalization of the Einstein action is

(13.4.1)

We omit the surface term which is not important for our considerations and put
c = G = 1 (G has dimensions (length)D-2). The above Lm is the Lagrangian
density for any other fields one may wish to consider.

We assume that the spacetime is asymptotically fiat, Le., its spatial infinity has
the topology of SD-2, and that suitable coordinates can be chosen in which the metric
has the asymptotic form

gAB = l1AB + 0 (l/rD- 3) .

The mass and angular momentum of an isolated system can be defined by comparing
the asymptotic behavior of the gravitational field with the gravitational field in the
Newtonian limit (Le., when the field is weak and it is created by a non-relativistic
distribution of matter). The linearization

gAB = l1AB + hAB

of the Einstein equations

1
RAB - "2gABR = 81TTAB

with the gauge fixing condition

(hAB _ ! l1AB hg) = 0
2 ;B

gives

(13.4.2)

(13.4.3)

(13.4.4)

(13.4.5)DhAB = 161T (TAB - D ~ 211ABTg).

A solution of these equations for a non-relativistic matter (when 1Too 1 » I TOI I »
1TlJ I, I, J = 1,2, ... D - 1) has the following asymptotic form:

hoo ~ 161T ~ , (13.4.6)
- (D - 2)AD _ 2 r D - 3
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161T M
h/J ~ (D _ 2)(D _ 3)A

D
-

2
r D - 3 6/J,
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(13.4.7)

(13.4.8)

Here x K are Cartesian coordinates with origin at the center of mass of the system in
which the matter is at rest as a whole and

21T(D-I)/2

A D - 2 == f( D;I)

is the area of a unit (D - 2)-sphere SD-2. The constants M and J/J, which are
defined as

(13.4.9)

(13.4.10)

can be identified with the mass and angular momentum of an isolated gravitating
system. In (3 +1)-dimensional spacetime the three-dimensional antisymmetric tensor
Jij has only one component. In higher dimensions by suitable rotations of spatial
coordinates it can be transformed into the following standard form

(-i'
J1 0 0

)
0 0 0

J= 0 0 J2 ... . (13.4.11)
0 -J2 0 ...

For even D the last row and column of the matrix vanish. Thus, in higher dimensions
there are [(D - 1)/2] independent components of the angular momentum. (The
expression [(D -1)/2] denotes the integer part of (D -1)/2). This number is related
to the existence of [(D -1)/2] Casimirs of the group SO(D - 1) of spatial rotations.
The parameters Jk (k == 1,2, ... [(D-l)/2]) correspond to the rotations in the planes
x 2k

-
1

_ x 2k , i.e., the planes in which the system is spinning. The angular rotations
in these planes commute with one another and the generators of the corresponding
rotations form the Cartan subalgebra.

A natural higher-dimensional generalization of a stationary axially symmetric
spacetime is a spacetime in which besides a Killing vector ~(O) which is timelike at
spatial infinity possesses [(D - 1)/2] spacelike Killing vectors ~k which correspond to
the mutually commutative rotations in two-dimensional planes. The subscript k ==
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(13.4.12)

1,2, ... [(D - 1)/2] enumerates these two-planes. In a stationary axially symmetric
spacetime the parameters M and Jk can be written in the following covariant form:

D-2 I! A B
M = - D _ 3 81T V ~(t) daAB,

(13.4.13)

(13.4.]4)

(13.4.15)

where the integration is taken over the (D - 2)-sphere at spatial infinity. In four
dimensions these expressions coincide with relations (12.2.4) and (12.2.7).

D-dimensional non-rotating black holes

Particular vacuum spherically-symmetric solutions of the Einstein equations in higher
dimensions were obtained by Tangherlini (1963). They have the form

dr2
ds2 = - B dt2 + - + r 2 dw2

B D-2'

where

B =1- 161TM _1_,
(D - 2)AD _ 2 r D - 3

and dWb_2 is a line element on the unit sphere SD-2. For D = 4 this solution
evidently reproduces the Schwarzschild metric.

The solution (13.4.14) can be easily extended to the solution of the Einstein
Maxwell equations. The analog of the Reissner-Nordstrom solution reads [Myers and
Perry (1986)]

161TM 1 2Q2 1
B = 1 - (D _ 2)AD- 2 rD-3 + (D _ 2)(D - 3) r2(D-3) ,

B Q 1
AB dx = D _ 3 r D- 3 dt,

where

1 ! ABQ=-A F daAB
D-2

(13.4.16)

(13.4.17)

(13.4.18)

is the electric charge of a black hole, and AB is the electromagnetic potential.
The global structure of the spacetime is the same as for the Reissner-Nordstrom

metric. A black hole exists when Q ::::: M, and there is naked singularity in the case
when M < Q. Unlike the electrically charged case, there is no higher dimensional
generalization of magnetically charged black hole for the simple reason that there is
no magnetic charge in higher dimensions.
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D-dimensional rotating black holes

The higher dimensional generalization of the Kerr solution was obtained by Myers
and Perry (1986). It contains 1+[(D-l)/2] parameters. Define D = 2d+ 1+£, where
£ = 0 for odd D and £ = 1 for even D. The metric in Boyer-Lindquist coordinates
can be written in the following form which is valid for both odd and even D

d

di = - dt
2 + L [(r

2 + a~)(dll~ + Il~ d<p~)]
k=1

For these solutions

(13.4.19)

m = 167r M
(D - 2)AD - 2 '

d

.~::~>~ + £0'2 = 1.
k=1

(13.4.20)

<Pk are angles with the period 21r in each plane x 2k - 1 - x 2k , and Ilk are direction
cosines with respect to these planes having the range 0 ::::: Ilk ::::: 1. The functions II
and F which enter the formulas are

d 2 2
F = 1 _ ""' ak Ilk ,

LJ r2 + a2
k=1 k

(13.4.21)

This metric admits the following Killing vectors

(13.4.22)

The outer boundary of the ergosphere is the surface of infinite redshift (the static
limit) where ~ft) = O. The equation of this surface is

llF - m r 2
-< = O.

Denote by

d

1]A = ~~) + LOk~~)'
k=1

(13.4.23)

(13.4.24)

Outside the event horizon one can always choose the coefficients Ok in such a way that
1] is a timelike Killing vector. It means that a stationary reference frame is possible
in this region. At the event horizon the linear combination (13.4.24) is a spacelike
or null vector, 1] being null for Ok = of:, where Of: are the angular velocities of the
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black hole. The value of nf: as well as the position of the horizon are defined by the
following system of equations

[
a'T/

2
] _ 0

ank H,flk=flf: - ,

By solving these equations, one gets

[n - m r 2-< ] == 0 nH _ _ a_k-
r=rH ' k - r'h + a% .

(13.4.25)

(13.4.26)

(13.4.27)

Both the event horizon and the infinite red-shift surface have the topology SD-2 x R.
The external component of the infinite red-shift surface is outside the event horizon.
They coincide when 11k == 0 for each ak "# O.

For an arbitrary D the position of the horizon rH cannot be found analytically.
Myers and Perry (1986) showed that for a broad range of the parameters the gen
eral solution for a spinning black hole in higher dimensions contains horizons which
surround the singularities. They also showed that the properties of rotating multi
dimensional black holes are similar to the properties of the Kerr solution in (3+1)
dimensions. There are only two essential differences which occur in higher dimen
sions: For D :::: 6, black holes exist with arbitrary large angular momentum for a
fixed mass, and for odd D, black holes are possible for the negative values of the
mass parameter M.

The four laws of black hole thermodynamics (see Chapter 12) can be easily ex
tended to higher dimensions [Myers and Perry (1986)].

13.4.2 D-dimensional black holes in string theory

There is a straightforward generalization of the Einstein D-dimensional black hole
solutions to the solutions for the stringy action [Gibbons and Maeda (1988)]

W == ! dDx He- 2
<P [R + 4(Vcp)2 - FAR FAR] .

One simply starts with the D-dimensional Schwarzschild solution (13.4.4) and make
the transformation similar to (13.2.3). The corresponding solution is

( Cm) ( Cm. 2)-2ds2 == - 1 - ---;:;- 1 + ---;:;- SInh 0 de

( Cm) 2 2 2+ 1 - ---;:;- dr + r dwn+l' (13.4.28)

A _ Cmsinh20
t - - 2V2[rn + Cmsinh2 0] ,

(13.4.29)
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(13.4.30)

(13.4.31 )

Here n == D - 3, and C is a dimension-dependent constant. The mass and the charge
are given by

M=m(l+n~lsillh2a), Q= ~rrinCOSha sinha.

In order to obtain the metric in the Einstein frame, one must multiply (13.4.28) by
exp[-4cpj(n + 1)].

13.4.3 Kaluza-Klein black holes

In the Kaluza-Klein theory one makes an assumption that the spacetime has the
number of dimensions D greater than four. The physical spacetime appears as a
result of compactification of the "superfluous" D - 4 dimensions. The metric of
D-dimensional spacetime manifests itself as a set of physical fields in the physical
spacetime. One of these fields is a four-dimensional metric. For example, the simplest
version of such a theory (for D = 5) contains, in addition to the gravitational field,
the electromagnetic and massless scalar fields. Black hole solutions in the Kaluza
Klein theory were studied by Dobiasch and Maison (1982), Chodos and Detweiler
(1982), Gibbons (1982, 1984, 1986), Pollard (1983), Gibbons and Wiltshire (1986),
and Gibbons and Maeda (1988).

As an example of the Kaluza-Klein black hole, we consider the original Kaluza
Klein theory. This is simply 5-dimensional general relativity

(13.4.32)

(13.4.33)

(13.4.34)

with an additional requirement that the fifth dimension is a Killing one; that is, the
fields are independent of the 5th coordinate, x5• In accordance with this ansatz,
we write the 5-dimensional metric in the following parametric form [Gibbons and
Wiltshire (1986)]

dS(5) = e4<P/../3 (dx5+ Ao dXO )2 + e-2<p/../3 90p dxo dxP.

The 5-dimensional action (13.4.32) reduces to

W = 1~1r ! d4x.;=g [R - 2(Vcp)2 - e2 /3<P F0(3 FOP] .

This is the Einstein action modified by the presence of a scalar massless field cp and
a Maxwell field Fop = Ap,o - Ao,p.

Let us consider a 5-metric of the form

(13.4.35)
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where ga(3 is a solution of the vacuum four-dimensional Einstein equations. It is
evident that the 5-metric is a solution to (13.4.32). In the particular case where the
4-metric is the metric of a black hole, the 5-dimensional solution is called a black
string.3

Static solutions of the form (13.4.35) have two commuting Killing vectors ~s and
~t. Given a static four-dimensional vacuum metric one can take its product with a
real line. If one boosts this 5-dimensional solution in the 5th direction

t -t cosh a t + sinh a xS
, xS -t sinh a t + cosh a xS

, (13.4.36)

(13.4.37)

it still obeys the 5-dimensional equations. However, when it is rewritten in the form
(13.4.33), one gets non-trivial electric and scalar fields. In particular, starting from
the four-dimensional Schwarzschild metric after boosting the black string (13.4.35),
we have a solution [Dobiasch and Maison (1982), Chodos and Detweiler (1982), Gib
bons (1982)]

dsrS) = B2(dxS+ Atdt? + B- 1
[_ ;dt2+ ~dr2 + r2Bdw2],

where

2m
~=1--

r '
(13.4.38)

For this solution tp = (v'3 /2) In B. The mass M, electric charge Q, and scalar charge
E are

M=m(I+~sinh2a), Q=msinhacosha, E= V;msinh2a. (13.4.39)

This solution can be easily generalized to the case of a rotating black hole [Frolov,
Zel'nikov, and Bleyer (1987)].

30ne can extend a black hole solution in D dimensions by taking its product with p-dimensional
flat space RP. The corresponding (D +p)-dimensional solution is called black p-brane. A black
string in this terminology is simply a black I-brane.



Chapter 14

The Interior of a Black Hole

14.1 Introduction

The collapse of a realistic star and formation of a black hole are initially highly dy
namical processes. However, the external gravitational field settles down very quickly
to the unique stationary state - a Kerr-Newman black hole. Dynamical deviations
from this state produce the emission of gravitational radiation. This radiation inter
acts with the spacetime curvature. While part of it escapes to infinity, another part
is backscattered and absorbed by the resulting black hole. In the end all deviations
from the Kerr-Newman field decay to zero.

An analogous process occurs in the case of any subsequent perturbations of the
Kerr-Newman black hole. The gravitational radiation which is backscattered by
the curvature of spacetime and falls through the horizon decays very fast, typically
according to an inverse power of advanced time.

What can one say about the interior of a black hole? Does the internal geometry
also approach the Kerr-Newman form soon after the collapse?

This problem was the subject of very active investigation in recent decades. There
has been great progress in these researches. We know some important properties of
the realistic black hole interior, but some details and crucial problems are still the
subject of much debate.

A very important point for understanding the problem of the black hole interior
is the fact that the path into the gravitational abyss of the interior of a black hole is a
progression in time. We recall that inside a spherical black hole the radial coordinate
is timelike. This means that the problem of the black hole interior is an evolutionary
problem. In this sense it is completely different from the problem of the internal
structure of other celestial bodies; for example, stars.

In principle, if we know the conditions at the surface of a black hole, we can inte
grate the Einstein equations in time and learn the structure of progressively deeper
layers inside the black hole. Conceptually it looks simple, but there are two difficulties
of principle which prevent consistent realization of this idea.

543
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The first difficulty is the following. As we shall see in the subsequent discussion,
the internal structure of a general black hole even soon after its creation depends
crucially on the conditions on the event horizon in the remote future of an external
observer (formally in the infinite future). It is because a lightlikesignal can propagate
inside a black hole from the remote future to these regions if they are deep enough
in the hole.

This means that the structure of these regions depends crucially on the fate of the
black hole in the infinite future of an external observer. For example, it depends on
the final state of the black hole evaporation, on possible collisions of the black hole
with another black hole, and it depends on the fate of the Universe itself. It is clear
that theorists feel uncomfortable under such circumstances.

The second serious problem is related to the existence of a singularity inside a
black hole. Close to the singularity, where the curvature of spacetime approaches
Plank scales, the classical theory of general relativity is not applicable. We do not
yet have the final version of a quantum theory of gravity; thus, any extension of
the discussion to physics in this region would be highly speculative. Fortunately, as
we shall see, these singular regions are deep in the black hole interior and they are
in the future with respect to overlying and preceding layers of the black hole where
curvatures are not so high and which can be described by well-established theory.

The first attempts to extend the no hair theorem to the interior of a Schwarzschild
black hole were made by Doroshkevich and Novikov (1978) and Poisson and Israel
(1988). They demonstrated that the interior regions of a black hole located long after
its formation are virtually free of perturbations because the gravitational radiation
from aspherical initial perturbations becomes infinitely diluted as it reaches these
regions (see Section 14.2). But this result breaks down in the general case where the
angular momentum or the electric charge is not equal to zero. The reason for this
is related to the fact that the causal structure of the interior of the Kerr-Newman
solution differs drastically from Schwarzschild. The key point is that the interior of
the Kerr-Newman black hole possesses a Cauchy horizon. This is a surface of infinite
blueshift. Infalling gravitational radiation propagates inside the black hole along
paths approaching the null generators of the Cauchy horizon, and the energy density
of this radiation will suffer an infinite blueshift as it approaches the Cauchy horizon.
As we will demonstrate in following sections, this infinitely blueshifted radiation
together with the radiation scattered on the curvature of spacetime inside the black
hole leads to the formation of a curvature singularity instead of the Cauchy horizon.

The discussion in this chapter is organized as follows. In Section 14.2 we discuss
the no hair theorem for the interior of the Schwarzschild black hole. Section 14.3 is de
voted to the analysis of the instability of the Cauchy horizon in a Reissner-Nordstrom
black hole to small perturbations in the linear approximation. In Section 14.4 we dis
cuss the problem of the internal structure of realistic black holes taking nonlinear
effects into account. In Section 14.5 we analyze the effect of the process of electron
positron pair creation inside a charge black hole on its internal structure. Section 14.6
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discusses the black hole interior allowing for quantum evaporation. And in the final
Section 14.7 of this chapter we speculate what might happen beyond the singularity
in the black hole abyss.

14.2 Physical Fields Inside a Schwarzschild Black
Hole

The structure of spacetime inside a non-rotating spherically symmetric black hole has
been discussed in Chapter 2. Here we will discuss the behavior of physical fields and
the problem of the stability of the interior part of a Schwarzschild black hole with
r < rg , by analogy with what has been performed for the space outside a black hole
in Chapter 4.

This problem was solved by Doroshkevich and Novikov (1978), and Poisson and
Israel (1988). The properties of spacetime inside a black hole are essential for the
problem of gravitational collapse and the nature of the singularity even though this
region is inaccessible to an observer who stays outside the black hole. The general
theorems about the properties of black holes, discussed in Chapter 5, do not give a
specific expression for the structure of spacetime inside a black hole. It has sometimes
been conjectured that all radiation fields and all perturbations grow beneath the black
hole horizon and become nonlinear, and that the structure of the metric must be most
peculiar. Furthermore, we have seen in Section 6.6 that the structure of the analytic
continuation of the solution for the spacetime metric inside a charged and rotating
black hole is very complicated, even fantastic. Is this structure indeed realized to
some extent when a black hole is actually formed?

This question will be answered in this and the following sections. First we analyze
the propagation of physical fields inside a Schwarzschild black hole and the stability
of its internal structure.

Consider a perturbation created by a test object falling into the black hole; this
object is the source of the 'various fields of interest (scalar, electromagnetic, gravita
tional, etc.). We wish to clarify the properties of wave fields long after the object has
fallen into the black hole, that is, when the observation point tends to 1+ (see, e.g.,
Figure 5.4c) in the L-region (also designated as region II).

This choice of asymptotic procedure signifies that if the coordinates (2.2.1) are
employed, then t --+ 00. An analysis of "tails" of radiation (see Chapter 4) shows
that in the external region R the radiative modes fall off, for a fixed r, according
to a power law as t -t 00. As for the horizon itself, r = rg, this means that if
one introduces an affine parameter V along all geodesics forming the horizon, the
perturbations will also fall off according to a power law as V -t 00. The evolution
of the wave field in the T_-region (for r < rg ) is determined by equations similar to
equation (4.2.4).

The required mathematical analysis was carried out in the already-cited paper of
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Doroshkevich and Novikov (1978). The following results were obtained. For scalar
perturbations,

(14.2.1)

where D 1 and D 2 are constants. For perturbations of massless fields of spin s =f. 0
(including metric perturbations), the main term of the r-dependent component has
the following form for radiative multipoles I ~ s:

(14.2.2)

(D3 and n are constants).
Hence, if r is fixed and t -t 00, radiative modes of perturbations due to external

sources are damped out and the spacetime tends to a "stationary" state described by
the Schwarzschild solution. The situation is similar to that discussed in Chapter 4
for the exterior region of the black hole. However, important differences manifest
themselves when r < rg •

First, the coordinate r for r < rg plays the role of a time coordinate, and t acts
as a spatial coordinate. It would be more correct, therefore, to refer to the tendency
toa state that depends only on r, not to a tendency to a stationary state.

The second and more important difference is that perturbations grow infinitely
as the point approaches the singularity at a fixed t. The general solution close to
the singularity, ignoring quantum effects, was constructed by Belinsky, Lifshitz, and
Khalatnikov (1970). The method of small perturbations does not work near the
singularity. The boundary of the region where perturbations cease to be small is
given by the expression (for s =f. 0):

(14.2.3)

As t increases, this region contracts to the singularity. The Schwarzschild solution is
stable with respect to small perturbations everywhere inside the black hole, with the
exception of this region, which continuously contracts as t -t 00, and all radiative
modes are damped out by a power law as t increases.

Radiation from elementary perturbations produced in the region of r < rg propa
gates only to a finite (small) region inside the black hole because the emitted signals
"ram" into the singularity. These perturbations do not affect in any way the prop
erties of the black hole interior at t -t 00. The most important conclusion that can
be drawn from this discussion is that the Schwarzschild solution is as stable in the
T_-region as it is in the R-region.

Several words are necessary on non-radiative perturbation multipoles connected
with the particles falling into the black hole or with the collapsing body that produces
the black hole. These multipoles are: (i) l = 0 for electromagnetic perturbations
(the Coulomb field of a falling charge), and (ii) I = 0 (the field of accreted mass)
and I = 1 (the field of accreted angular momentum) for gravitational perturbations.
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(14.2.4)

These multipoles do not damp out as t --+ 00. They increase in the familiar manner as
r --+ 0, and drastically alter the metric near r =0 because this situation corresponds
to the transition to the Reissner-Nordstrom metric if electric charge is added and to
the Kerr metric if angular momentum is added. We will later discuss these metrics in
relation to the internal structure of black holes. Here, we only emphasize that if the
corrections to the metric and the perturbation fields become significant sufficiently
close to the singularity r = 0, they have no immediate physical meaning. The point
is that quantum processes become important in the vicinity of the singularity where
the spacetime curvature exceeds the Planck value (i.e., becomes greater than 1/1~1);

for instance, for the quadratic invariant of curvature, we have

0(3 v 12 r: 1
Ro(3/1v R /1 = -6- > -14 .

r PI

The entire region defined by (14.2.4) may be regarded as a "singularity" from the
standpoint of the classical theory.

The last point is the case of non-radiative multi poles of physical fields, connected
with external sources. If the sources are stationary, that is, the characteristic time of
field variation t »rg/c, then, as shown in Section 4.3, the fields of these sources with
k = 0 penetrate unobstructedly into the black hole through the potential barrier. We
assume these fields to be weak at the event horizon rg' The fields are independent of
the coordinate t both inside and outside the black hole.

Typical examples to be discussed here are the effect of an external stationary
quadrupole gravitational field and that of a stationary magnetic field, homogeneous
far from the black hole, on the internal structure of this black hole. The exact solution
describing a black hole in an external quadrupole field [Doroshkevich et al. (1965)]
was given in Section 7.5.4. Expressions (7.5.25)-(7.5.27) show that if the parameter
q of the quadrupole moment is sufficiently small so that the corrections to the metric
at r = rg are small, then the corrections remain small everywhere for r < rg up to
the singularity at r = O. No instability is produced thereby inside the black hole.

Now we will consider a magnetic field that is homogeneous at spatial infinity. Let
us assume this field to be weak. Then we find that the nonzero components of the
electromagnetic field tensor are [Ginzburg and Ozernoi (1964)]

(14.2.5)

where Bo is the magnetic field strength at infinity. The component F</!r describes the
electric field inside the black hole. As r --+ 0, the components of the electromagnetic
field tensor grow infinitely. However, this does not restructure the metric because the
components of the energy-momentum tensor constructed of components (14.2.5) grow
at a slower rate than the corresponding expressions describing spacetime curvature.
The electromagnetic field of a charge at rest outside the black hole has a similar
behavior in the black hole interior [see equation (7.2.2)]. A massive vector field in
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the black hole interior generated by a static external charge has new features: it is
oscillating, and generically the corresponding stress-energy tensor grows near r = 0
as r- 4 [Frolov (1978a, 1986)V

Let us again point out that a physical "singularity" for which consideration of
quantum gravity processes is essential is created in the vicinity of the true mathe
matical singularity r = O. Moreover, quantum phenomena in the presence of the fields
other than the gravitational (e.g., in a charged black hole) can also be important far
away from the singularity (where the curvature is not large). In some cases, these
phenomena greatly influence the metric. They are to be considered in the subsequent
sections. Finally, the Hawking evaporation of black holes affects the metric on very
long time scales. Since inside the black hole the "time" coordinate t is spacelike,
the effects connected with the Hawking evaporation are important at large distances
from the collapsing body (but inside the event horizon!).

14.3 Instability of Cauchy Horizons Inside a Black
Hole

14.3.1 Interior of a charged spherical black hole

Consider the behavior of small perturbations of the gravitational and electromagnetic
fields inside a charged spherically symmetric black hole. A qualitatively new factor
appears here in comparison with the case of the Schwarzschild black hole: the presence
of the Cauchy horizon (see Section 6.6). Figure 14.1 shows a fragment of the Penrose
diagram with the internal part (region II) of the charged black hole and the external
space. If the charged black hole is a result of the collapse of a charged body from
space I, then the other external space (I' in Figure 6.4) is absent, as it is in the case
of the collapse of an uncharged spherical body which becomes a Schwarzschild black
hole (see Section 2.7). This is why region I' is not shown in Figure 14.1.

There are serious reasons for expecting that small perturbations can grow in
finitely in the neighborhood of r -,il [Penrose (1968)]. Indeed, let us consider a small
perturbation of the gravitational and (or) electromagnetic field outside the black hole
in region I. We have already shown in Section 4.5 and 4.8 that the "tails" of radi
ation induced by perturbations damp out following a power-law dependence v-P at
r = const, as a result of scattering on the spacetime curvature (v is the advanced
time). This decreasing radiation flux crosses the event horizon r+ and concentrates
along the horizon r -,1 (see Figure 14.1). An observer traveling along a timelike world
line and crossing the horizon r -,1 will receive this radiation close to r -,1 in a finite
proper time (this radiation sinks into the black hole after an infinite time of the ex
ternal observer). When the observer approaches r -,il the radiation he receives has an

1A similar oscillatory behavior was recently foood in the exact solutions of the Einstein-Yang
Mills equations for the black hole interior [Gal'tsov, Donets, and Zotov (1997)].



14.3. Instability of Cauchy Horizons Inside a Black Hole 549

Figure 14.1: Part of the conformal Penrose-Carter diagram for a charged black hole. The
propagation ofradial rays is shown immediately after the Bash (0) and after the scattering
on the spacetime curvature. The scattering perturbations occurs in the black hole exterior
along the line BH. The Cauchy horizon defined by the equation r = r_ consists of two
parts, which we denote by r -,I and r -,2, respectively.

infinite blueshift. The blueshift factor grows as el<_V, where /"- is the surface gravity
of the inner (Cauchy) horizon. It is natural to expect that such a concentration of
energy restructures the spacetime and produces a true spacetime singularity in place
of r -,1. At the same time, no concentration of energy appears along the horizon r -,2

(except at the point D), so that we cannot expect that perturbations appearing in
region I "create" a singularity at r -,2'

A mathematical analysis of the evolution of small perturbations confirms these
intuitive arguments: perturbations are unstable near r -,1' It should be emphasized
that the method of small perturbations does not take into account the back action of
the perturbations onto the gravitational field. For this reason, it cannot answer the
question what kind of singularity is formed as a result of instability, of the Cauchy
horizon. We return to this problem later.

14.3.2 Linear instability of a Cauchy horizon of a charged
spherical black hole

The evolution of small perturbations was analyzed by McNamara (1978a,b), Gursel
et at. (1979a,b), Matzner et at. (1979), and Chandrasekhar and Hartle (1982). Here,
we follow the last of these papers.

The metric of a charged black hole is

(14.3.1 )
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We are interested in the spacetime region r _ < r < r +. The system of equa
tions describing the perturbations of the gravitational and electromagnetic fields of
a charged Reissner-Nordstrom black hole in this region allows separation of variables
and can be decoupled in the same way as it was done for the black hole exterior (see
Section 4.4.3). Thus, the problem is reduced to solving radial equations similar to
(4.2.7). Perturbations are subsumed under two classes: axial [superscript (+)] and
polar [superscript (-)]. A perturbations of each class can be expressed in terms of
a pair of gauge-invariant scalar functions Z;±(r) (i = 1,2) that satisfy the equation
[Chandrasekhar (1979b,1983), Chandrasekhar and Xanthopoulos (1979)]

d2Z(±)
--;2- +w2z1±) = v;(±)zl±)· (14.3.2)

dr.

Here

1 1
r. = r + -In Ir + - r I- -In Ir _ - r I

2K+ 2K_

is a "tortoise" radial coordinate, similar to (7.2.6), and

(14.3.3)

(14.3.4)

are the surface gravity factors for the outer (+) and inner (-) horizons. The effective
potentials V;(±) are defined as

vH = Ll [(JL2 + 2)r _ q. + 4
Q2

] ,
'r5 1 r

(+) _ H d Ll
V; - V; + 2qj -d 2( -2 ) ,

r. r JL r + qj

(14.3.5)

(14.3.6)

(14.3.7)

(14.3.8)

In formulas (14.3.5), (14.3.6), i,j = 1,2; i =i' j. It is found that zl+) is related to
ZjH by a simple transformation.

We have already encountered equations of type (14.3.2) in the problem of the
behavior of physical fields outside a black hole (see Chapter 4). We are interested
in that solution of these equations which describes the transmission and reflection of
the wave incident on V;(±). In the present case, V;(±) represents a potential well, not
a barrier as was the case for the exterior space of the black hole, but the situation
remains qualitatively unchanged. It is found that the reflection and transmission
coefficients for Z?) can be expressed simply in terms of the corresponding coefficients
for zl-).
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U = +00; T", = +00
r=r_; t=+OO

v = -00; r", =-00
r =r+; t = +00

v = +00; r", = +00
r = r_; t =-00

U = -00; T", =-00
r = T+; t =-00

Figure 14.2: The definition of the coordinates u and v used in the domain between the
two horizons of the Reissner-Nordstrom black hole. Note that a coordinate t is chosen so
that t increases from -00 to +00 as one moves from right to left along lines r =const.

Let us analyze the behavior of wave perturbations that arrive at region II across
the horizon T+ from region I (see Figure 14.1). To do this, we consider the dispersion
of a wave which has unit amplitude on r = r+ (r. -t -00). The solution of equations
(14.3.2) must satisfy the following boundary conditions (the upper and lower indices
are dropped because the analysis holds for all their values):

{

A(w) e-iwr• + B(w) e+iwr., (r. -t +00,
Z(r.,w) -t

e- iwr• , (r", 4- -00,

r-tr_)'
(14.3.9)

The coefficients A(w) and B(w) describing the transmission and the reflection of the
wave at V(r.L can be found, in principle, by standard techniques provided the form
of V(r.) is known [see (14.3.5) and (14.3.6)].

The analysis is facilitated by introducing the null coordinates [see Figure 14.2]

u=r.+t, v=r.-t. (14.3.10)

The lines of constant u and v are represented by dashed straight lines. The event
horizon corresponds to u = -00; the horizon r -,1, to v = 00, and the horizon r -,2, to
u = +00. The boundary conditions (14.3.9) are rewritten in the form

{

A(w) e-iwv + B(w) e+iwu ,

Z(r., t) -t
e-iwv

(14.3.11)
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(14.3.12)

Consider a perturbation Zpert(v) which intersects the horizon 1'+, that is, which is
given for u -+ -00. Its Fourier transform is

Z(w) = J...l°O Zpert(V) eiwv dv.
211" -00

Having undergone dispersion in region II, the perturbation reaches the horizon 1'_.

Its amplitude there can be written in the form 2

Zscat(r" t) -+ X(v) + Y(u)

where

(1',-+00), (14.3.13)

X(v) =1:Z(w)[A(w) - 1] e-iwv dw,

Y(u) =1: Z(w) B(w)e+iWUdw.

(14.3.14)

(14.3.15)

We are interested in finding the radiative flux received by an observer crossing the
horizon 1'_. This flux is proportional to the square of the amplitude

F = uOt
Z,Ot Ir-+r_ , (14.3.16)

where uOt is the four-dimensional velocity of the observer. The horizon 1'_ is either
stable or unstable (in the linear approximation) with respect to small perturbations
depending on whether this flux is finite or infinite.

Matzner et at. (1979) and Chandrasekhar (1983) have shown that the quantity F
at the Cauchy horizon is of the form:

21'2
Fr_ 1 = ----I EI lim elt

_
v X,_v on 1'-,1, (14.3.17)

, l'+ - 1'_ V-+oo

21'2
Fr _ 2 = -'- ---- E lim elt

_
uY:u on 1'_,2,

, l'+ - 1'_ U-+oo
(14.3.18)

where E is the constant time-component of the covariant four-velocity U Ot of the
observer. Expressions (14.3.17) and (14.3.18) are divergent or finite, depending on
the behavior of the functions

(14.3.19)

We assume that the form taken by the perturbing radiation Zpert (v) crossing the
horizon l'+ satisfies the following conditions:

Zpert(V)=O for v<vo, (14.3.20)

2In the absence of scattering the amplitude on r -,2 is equal to one. The scattering amplitude
here is defined as the difference A(w) - 1.
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Zpert (v) for v -t 00 tends to zero at least as V-I.
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(14.3.21)

It is these conditions that any real radiation must satisfy, for example, the radiation
from an object falling into the black hole or from an elementary perturbation that
has occurred in region I. Indeed, the second condition must hold for v -t 00 at the
horizon of an uncharged black hole, in accordance with the asymptotic behavior of
perturbing radiation analyzed in the preceding section. A charge Q < M does not
change anything in this respect [see, e.g., Bicak (1972)]. The power-law decay of
radiation "tails" from perturbations is typical for practically any perturbation.

The first condition is definitely met if Vo is interpreted as an affine parameter
corresponding to the moment when the horizon is intersected by the first ray reaching
it from the perturbation.3

Chandrasekhar and Hartle (1982) proved that the quantity Fr _,2 of (14.3.18) re
mains finite for both (axial and polar) perturbations; that is, the horizon r -,2 is stable
with respect to small perturbations in region I. In the contrast, the quantity Fr _. 1

diverges as v -t 00 at least as exp(,c - K+)V or even faster (the rate of divergence
depends on the type of perturbation). This means that as r -,1 is approached, the
observer receives a radiation flux of infinite density.

The mathematical analysis presented above has totally confirmed Penrose's intu
itive arguments given at the beginning of the section. Perturbation analysis demon
strates an infinite concentration of energy density close to r -,1' The method of small
perturbations is thus invalid close to r -.1. In the next section we shall discuss possible
results of this instability.

Another remark needs to be made here. Let the sources of a constant external
(electromagnetic, gravitational, or some other) field be present outside a black hole.
If the black hole is charged, these fields penetrate through r+ into the interior region,
as happens in the case of an uncharged Schwarzschild black hole (see Section 14.2).
If such stationary fields outside the black hole are weak and hardly affect the metric,
they remain weak inside the black hole as well. Thus, they are weak on r _ and do
not produce any instability [for a justification of this statement, see Oursel et al.
(1979b)].

14.3.3 Instability of the Cauchy horizon of a rotating black
hole

In the previous section we demonstrated the linear instability of the Cauchy horizon
of a spherical charged black hole. The key factor producing the instability is the
infinite concentration of energy density close to r -,1 as seen by a free falling observer.
This infinite energy density is produced by the ingoing radiative "tail". The analytic
continuation of the metric of a rotating black hole inside the event horizon has a

3Sufliciently small v are of no interest to us when a "non-eternal" black hole is considered, that
is, a black hole created by collapse.
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similar structure. In particular, there also exists a Cauchy horizon, which is similar
to the one in the Reissner-Nordstrom geometry. The properties of the "tails" of the
ingoing radiation on the event horizon of the rotating black hole are the same as in
the spherical charged black hole (see Section 4.8). These facts give serious reasons
to expect that the Cauchy horizon of a rotating black hole is linearly unstable in
the same way as the Cauchy horizon of a spherical charged black hole [Novikov and
Starobinsky (1980a,b), see also Ori(1997)]. Possible results of this instability wiil be
discussed in Section 14.4.5.

14.4 Structure of a Classical Black Hole Interior

14.4.1 Formulation of the problem and overview

The preceding section discussed the instability of the Cauchy horizon under small
external perturbations. However, the method of small perturbations employed cannot
answer the question about how the metric is changed by the growth of initially small
perturbations, and whether a true spacetime singularity will thereby be produced.

This section discusses the nonlinear effects which trigger the formation of a sin
gularity at the Cauchy horizon inside a black hole. In the Introduction 14.1 we
emphasized that the problem of the black hole interior is an evolutionary problem,
and it depends on the initial conditions at the surface of the black hole for all mo
ments of time up to infinity. To specify the problem, we will consider an isolated
black hole (in an asymptotically flat spacetime) which was created as a result of a
realistic collapse of a star without assumptions about special symmetries. At the
beginning we will neglect the influence of the quantum evaporation on the internal
structure of a black hole and leave this topic for discussion at the end of the chapter.

The initial data at the event horizon of an isolated black hole, which determine
the internal evolution at fairly late periods of time, are known with precision because
of the no hair property. Near the event horizon we have a Kerr-Newman geometry
perturbed by a dying tail of gravitational waves (see Chapter 4). The fallout from
this tail produces an inward energy flux decaying as an inverse power v-P of advanced
time v, where p = 4l +4 for a multipole of order l [Price (1972b), Gundlach, Price,
and Pullin (1994a,b), Ori (1997)].

Now we should integrate the Einstein equations with the known boundary con
ditions to obtain the internal structure of the black hole. In general, the evolution
with time into the black hole depths looks as follows. The gravitational radiation
penetrating the black hole and partly backscattered by the spacetime curvature can
be considered, roughly speaking, as two intersecting radial streams of infalling and
outgoing gravitational radiation fluxes, the nonlinear interaction of which leads to
the formation a non-trivial structure of the black hole interior. However, in such a
formulation it is a very difficult and still unsolved mathematical problem, and it is
necessary to make a few simplifying assumptions. In subsequent subsections we will
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investigate the problem step by step starting from very simple models and little by
little will reveal the main properties of this evolutionary process of the formation of
the internal structure of a black hole.

A detail discussion of different steps in the analysis of the problem can be found
in the following works: Poisson and Israel (1990), Ori (1992, 1997), Bonanno et al.
(1995), Israel (1997) and references therein.

14.4.2 Spherical symmetric charged black hole. Vaidya so
lution

Our first simplification is that we will consider a spherical charged black hole initially
described by the Reissner-Nordstrom metric (see Section 6.6). A motive for this
simplification is that the global structures of the rotating and the charged black holes
are similar, and as we shall see, the essential physics is the same in both models. Of
course, the assumption of spherical symmetry greatly simplifies the mathematical
analysis.

The second simplification is that we imitate the ingoing and outgoing gravitational
radiation (see section 14.4.1) by two intersecting radial streams of ingoing and out
going lightlike particles following radial null geodesics. We assume that the streams
do not interact with each other and do not scatter on the background curvature. We
will see that this approximation also works very well. The main reason is that the
ingoing flux is subject to infinite blueshift near the Cauchy horizon (which is a crucial
aspect of the whole analysis), and any further scattering should not be important.
On the other hand, it turns out that the nature of the outgoing flux is not important
at all for the formation of the essential properties of the black hole interior. Under
these simplifications, the problem was analyzed by Poisson and Israel (1990).

We start by considering an even simpler model. Namely, we will not consider the
outgoing flux inside the black hole, and will consider the structure of the interior of a
black hole model where there is only an ingoing lightlike flux inside the event horizon.
This allow us to understand the manifestation of the blueshifting of the ingoing flux
near r _,lin its purest form. After that we will come to more complicated models.

The model for ingoing lightlike radial flux in a charged black hole can be written
in the form of the charged Vaidya metric [Bonnor and Vaidya (1970), Sullivan and
Israel (1980)]:

ds2 = dv(2 dr - fin dv) + r 2dw2
, (14.4.1)

where v is a radial null coordinate (advanced time), running forward inside the black
hole event horizon; dw2 is the line element on the unit two-sphere; min(V) is an
arbitrary function of v and must be specified by the boundary conditions; e is the
electric charge, assumed fixed. Metric (14.4.1) is a solution of the Einstein equations
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with the stress-energy tensor (omitting the electrostatic contribution)

Ta13 == Pin la ll3 , (14.4.2)

where la == -v,a is a radial null vector pointing inwards, and 47rr2tJin == dmjdv. If
Pin == 0, we have the Reissner-Nordstrom solution.

We should specify the mass function in such a way that it describes the ingoing
"tail" of radiation at late advanced time (see Section 14.4.1). We can write down it
in the form

(14.4.3)

where JL(v)""" V-(P-l), and mo is a constant. We want to find an asymptotic behavior
of the energy density Pobs measured by a free falling observer with the four-velocity
Ua when he comes to the Cauchy horizon v == 00. Simple calculations [see Appendix
B of the paper by Poisson and Israel (1990)] give

(14.4.4)

(14.4.5)

where "'0 == (m~ - e2)1/2/rbR is the surface gravity of the Cauchy horizon r == rCR ==
mo- Jm~ - e2 • Expression (14.4.4) is infinite at the Cauchy horizon. Note that near
the Cauchy horizon m(v) tends to rna when v -t 00, and the function f is regular.
From this it is almost obvious that the metric is regular at the Cauchy horizon. This
is not clear from (14.4.1) since the coordinates (v, r) themselves become singular.
Poisson and Israel demonstrated explicitly using appropriate regular coordinates that
the metric is perfectly regular at and near the Cauchy horizon. Some of the second
derivatives of the metric tensor are divergent, however, the curvature invariant

R Ral3"16 _ 48m2
_ 96me2 56e4

al3"16 - 6 7 + 8r r r

is finite. In other words, though a free falling observer will register an infinite increase
of the energy density, tidal forces in his reference frame remain finite as he crosses the
Cauchy horizon. The reason is that infinite Pobs is situated along a null surface which
is an apparent horizon. This is a so-called weak nonscalar, whimper singularity [see
Ellis and King (1974), King (1975)].

14.4.3 Mass inflation

Our next step will be consideration of a model of a charged black hole with two
intersecting radial streams of ingoing and outgoing lightlike particles, as mentioned
in section 14.4.2. We will see that this simple model incorporates all the essential
physics of the formation of a black hole interior for the general case of collapse of
an asymmetric rotating body. The crucial point here is a tremendous growth of the
black hole internal mass parameter, which was dubbed mass inflation [Poisson and
Israel (1990)].
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Figure 14.3: The world lines of two crossing ("out" and "in") shells moving with the speed
of light between the horizons r+ and r_. A, B, C, and D denote four different spacetime
regions bounded by shells.

We start by explaining the mechanism responsible for the mass inflation [see
Dray and t'Hooft (1985), Barrabes et al. (1990), Bonanno et al. (1995)]. Consider
a concentric pair of thin spherical shells in an empty spacetime without a black hole
[Droz, Israel, and Morsink (1996)]. One shell of mass meon contracts, while the other
one of mass m exp expands. We assume that both shells are moving with the speed
of light (for example, "are made of photons"). The contracting shell, which initially
has a radius greater than the expanding one, does not create any gravitational effects
inside it, so that the expanding shell does not feel the existence of the external
shell. On the other hand, the contracting shell moves in the gravitational field of the
expanding one. The mutual potential of the gravitational energy of the shells acts as
a debit (binding energy) on the gravitational mass energy of the external contracting
shell. Before the crossing of the shells, the total mass of hoth of them, measured by
an observer outside both shells, is equal to m eon + m exp and is constant because the
debit of the num.erical increase of the negative potential energy is exactly balanced
by the increase of the positive energies of photons blueshifted in the gravitational
field of the internal sphere.

When the shells cross one another, at radius TO, the debit is transferred from
the contracting shell to the expanding one, but the blueshift of the photons in the
contracting shell survives. As a result, the masses of both spheres change. The
increase of m eOD is called mass inflation. The exact calculation shows that the new
masses m~on and m~xp are

I 2meoD m exp
m eOD = m eon +--'---"

E

I 2meoD m exp
m exp = m exp - E (14.4.6)
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(14.4,7)

where t == (ro -2mexp ). The total mass-energy is, of course, conserved m~on +m~xp =
m eon + m exp. If t is small (the encounter is just outside the horizon of m exp ), the
inflation of mass of m eon can become arbitrarily large. In this case m~xp becomes
negative, This means that the corresponding shell is trapped inside a black hole with
a mass equal to menn + m exp '

It is not difficult to extend this result to the shells crossing inside a charged black
hole, Imagine the spacetime inside a Reissner-Nordstrom black hole which is split
into four regions (A, B, C, D) by the two crossing shells (see Fig.14,3). Such regions
are described by the solutions with metric functions

2m; e2

/;=1--+2"'
r r

The index i (i = A, B, C, D) enumerates the four different regions, and m; is the
value of mass in these regions.

The exact solution shows that the mass of the A region (the region after crossing
of the shells, which is of interest to us) can be written in the form4

(14.4.8)

where we have denoted

(14.4.9)

mOul and min are the masses of the outgoing and ingoing shells, correspondingly.
Note that the outgoing shell moves inside the black hole froma collapsing star to
the Cauchy horizon and is trapped inside the black hole. That is why the value moul

should be negative, moul < O. When the ingoing shell is very close to the Cauchy

4For spherically symmetric intersecting null shells in any spherical metric with grr = f(r), one
has:

For the Reissner-Nordstrom metric (14.4.7) these relations can be written in a number of equivalent
ways, including the following:

mA-mD fD
me-mB = fB'

me -mA Ie
mB -mD = fB;

that is, m" n = (fD/ fB)min, and m'oul = (fe/ fB)moul. To obtain relation (14.4.8), it is sufficient
to multiply the first of these equations by moul, the second, by min, and to subtract the obtained
expressions from one another.

The above relations imply also conservation of total energy

m/in +m'Oul =min + moul '

If the intersection occurs at a radius ro close to an inner horizon of the outgoing shell: I B = -f,

FD < 0, so that m'in ~ min/f,
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horizon,IB is numerically very small (and negative), and the last term in (14.4.8) is
positive and very large. It describes the mass inflation.

Now we can make the next step and improve the model, schematically describing
the evolutionary formation of the black hole interior. Ori (1991) considered a contin
uous influx (imitating the "tail" of ingoing gravitational radiation) and the outflux as
a thin shell (a very rough imitation of the outgoing gravitational radiation scattered
by the spacetime curvature inside a black hole). He specified the mass min(v) to
imitate the Price power-law tail (see section 14.4.2) and found that the mass func
tion diverges exponentially near the Cauchy horizon as a result of the crossing of the
ingoing flux with the outgoing shell:

(14.4.10)

where v_ is the advanced time in the region lying to the past of the shelL Expression
(14.4.10) describes mass inflation. In this model, we have a scalar curvature singular
ity since the Weyl curvature invariant q,2 (Coulomb component, see Appendix E.2)
diverges at the Cauchy horizon. Ori (1991) emphasizes that in spite of this singular
ity, there are coordinates in which the metric is finite at the Cauchy horizon. He also
demonstrated that though the tidal force in the reference frame of a freely falling
observer grows infinitely, its integral along the world line of the observer remains
finite. This singularity, though much stronger than the whimper singularity in the
case of the Vaidya model (see section 14.4.2), is still quite weak (mild singularity).

There is one more effect caused by the outgoing flux. This is the contraction of
the Cauchy horizon (which is singular now) with retarded time due to the focusing
effect of the outgoing shell-like flux. This contraction continuous until the Cauchy
horizon shrinks to r == 0, and a stronger singularity occurs. Ori (1991) has estimated
the rate of approach to this strong singularity r == O.

14.4.4 More realistic models of the classical black hole inte
rior

The next step in our discussion is the following. We replace the outgoing thin shell in
the previous model by a continuous arbitrary outflux which starts a finite time after
the event horizon (see Figure 14.4). In this model, the continuous outflux represents
the gravitational radiation scattered by the curvature of spacetime inside a black hole.
This model incorporate many properties of the realistic situation. In particular, the
switch on of the outgoing flux a finite time after the event horizon partly reflects the
fact that the potential barrier at which radiation is scattered is peaked around the
radius Tb == e2/m. This region where the scattering mainly occurs is well inside the
event horizon (see section 14.3). Even this model still does not describe some of the
properties of the radiation scattered by the internal potential barrier. We will come
back to this in the subsequent discussion in this section.
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Figure 14.4: A spacetime similar to the one presented in Fig. 14.3 with two shell replaced
by continuous influx and outflux which starts at some moment of v and u time, respectively.

The corresponding model with two continuous fluxes was analyzed in the pioneer
paper by Poisson and Israel (1990)[see also Bonanno et al. (1995)]. It turns out that
the main properties of mass inflation do not depend on the concrete nature of the
outgoing flux, only the fact of its existence is essential. Because of this all the main
properties of the Ori's model survive in this more general one. In particular, mass
inflation leads to a divergence of the mass as

V -t 00. (14.4.11)

The singularity which forms along the Cauchy Horizon is the same type of mild
singularity as in Ori's model.

All previous mass inflation analysis suffers some limitations. In the picture pre
sented it is always assumed that the outflux is turned on abruptly after some limit
time behind the event horizon (see Figure 14.4). It is clear that in this model the
null portion of the Cauchy horizon before meeting with the beginning of the outflux,
is the Vaidya type null-like whimper singularity (see Section 14.4.2). This fact - the
existence of the initial null portion of the Cauchy horizon - was important for the
analysis. But what happens if we dispense with the assumption of an abrupt turn-on
the outflux and consider a realistic outflux in the interior of a black hole? What is
its influence on the early parts of the Cauchy horizon (in the vicinity of point H in
Figure 14.4)?

This problem was analyzed by Bonanno et al. (1995). A star collapsing through
its event horizon provides two types of outflux inside the black hole. First, there
exists a direct outflux from the star after the event horizon is passed. For gravita
tional radiation its source could be deviations from sphericity in the distribution and
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Figure 14.5: The outflux inside the black hole arising as the result of scattering of the
influx off the internal potential barrier.
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motion of the stellar matter, and perturbations in the gravitational field near the
star. Second, there is the outgoing flux generated by scattering of the ingoing flux by
the spacetime curvature inside a black hole. We recall that this ingoing flux is itself
a part of radiation from outside which has been scattered by the black-hole external
potential barrier and has falien into the black hole.

The first type of outflux has a negligible effect on the vicinity of the point H
because of the great dilution of the radiation. Practically all the radiation of this
type falls down into the singularity not far from the collapsing star and does not
reach the vicinity of the point H.

The second type of the outflux was analyzed by Bonanno et al. (1995). This
outflux arises as a result of the scattering of the influx on an internal potential
barrier which is peaked around the radius rb = e2/m (see Figure 14.5). The outflux
irradiates the Cauchy horizon during entire period of its existence. If the outflux in
the vicinity of H is too strong, a spacelike singularity forms, and the Cauchy horizon
does not survive. General stability arguments [Yurtsever (1993)] and early numerical
studies [Gnedin and Gnedin (1993)] suggested that the Cauchy horizon is preceded by
a spacelike r = 0 singularity; thus, the Cauchy horizon does not survive. Subsequent
investigations both analytical [Bonanno et al. (1995), Flanagan and Ori (1996)], and
numerical [Brady and Smith (1995)] did not confirm this conclusion. So, probably,
the mass-inflation scenario is valid, and a part of the Cauchy horizon does exist.s

5As we mentioned above in the description of Ori's model, and as we will discuss later (see this
and next sections), the generators of the Cauchy horizon are focused by the gravity of the outflux and
eventually focus to a zero-radius spacelike singularity. But the mass inflation singularity precedes
the r = 0 singularity deep inside a black hole.



562 CHAPTER 14. THE INTERIOR OF A BLACK HOLE

From this discussion it is clear how important is the analysis of the spacetime near
the point H.

In the region between the event horizon r+ and internal barrier rh there exists
mainly an ingoing flux which produces only small perturbations (see Section 14.3).
That is why this part of the black hole interior can be approximated as a Reissner
Nordstrom solution (with small perturbations). The task is to investigate deeper
layers of the black hole. The method of Bonanno et al. (1995) is to solve the
Einstein equations in the interior region after the scattering potential with the initial
conditions imposed just after the potential barrier at rh. These initial conditions
must describe both the influx from outside and outflux just produced by scattering
off the potential barrier around rh = e2/m.

Both these fluxes are weak in the vicinity of rb and can be treated as perturbations
(see Section 14.3). Bonanno et al. (1995) found an approximate solution which
satisfies the initial conditions given by scattering from the potential barrier, and
gives an accurate approximation close to the Cauchy horizon (where perturbations
are not small). In Section 14.1 we formulated the problem of the black hole interior as
an evolutionary problem with the boundary conditions imposed on the event horizon.
Now we made a step forward and put the initial conditions inside the black hole at
the potential barrier rb = r 2/m, assuming that they are known from the previous
analysis (as they definitely are). The great advantage of it is that on rb we can
specify not only the ingoing flux (as it originated from r+) but also the outgoing
flux. It is this outgoing flux that determines the structure of the Cauchy horizon in
the vicinity of H. Bonanno et al. (1995) found the corresponding solutions which
describe the interior of a black hole near the Cauchy horizon and satisfy the realistic
initial conditions on the potential barrier rh. Their conclusion is that the Cauchy
horizon with the mild singularity (described above) really survives.

14.4.5 General structure of a classical black hole interior

We have demonstrated that a scalar curvature singularity forms along the Cauchy
horizon of a spherical charged black hole in simplified models. This singularity is
a result of mass inflation - the exponential divergence of the mass function with
advanced time. The key ingredients producing the inflation are the blueshifted ra
diative flux along the Cauchy horizon and some transverse energy flux. In the case
of a generic collapse of a rotating body without symmetry, the external gravitational
field relaxes to a Kerr-Newman field. The analytic continuation of the Kerr-Newman
solution inside the black hole also has a Cauchy horizon and the "tails" of the inga
ing radiation on the event horizon are the same as in the case of a spherical charged
black hole. In the pioneer paper by Poisson and Israel (1990) it was argued that the
key physics underlying the analysis of a spherical charged black hole was sufficiently
general and that a similar result should hold for generic collapse of a rotating body
without spherical symmetry. Further analyses have supported this conjecture fOri
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(14.4.15)

(14.4.13)

(14.4.14)

(1992, 1997), Bonanno et at. (1994), Brady and Chambers (1995), Israel (1997)].
In the case of relaxation of the assumption of spherical symmetry, the essential

new factor is shear. What are the effects of shear? Detailed analysis can be found in
the papers referenced above.6 Here we will illustrate the main effects (see Bonanno
et at. (1995)] without getting entangled in all details of the full analysis.

For a region very close to the Cauchy horizon, the unperturbed Cauchy horizon
is indistinguishable from a plane. It therefore suffices to consider the effect of shear
on a crossflow of two lightlike streams with plane symmetry. For this problem the
metric can be written in the following form:

ds2
:::: _2r- I e-2A dudv +r2 (e213 dx2 +e-213 dy2) , (14.4.12)

where r, A and f3 depend on u and v only so the shear f3 is homogeneous. Note that
any (x, y)-dependence would get damped away exponentially during inflation.

The analysis of the solution of the corresponding field equations in a neighborhood
of the Cauchy horizon shows that f3 remains bounded for r t 0 even when the influx
diverges at the Cauchy horizon. Comparison with the spherical case shows that A
inflates like (1/2) In(m(u, v)] near the Cauchy horizon. Introducing the complex null
tetrad (l, n, m, m) defined by

modxO = 2-1
/
2 r(e13 dx + ie-13 dy) ,

we obtain for the tetrad components of Weyl curvature (see (E.IO)]

Wo :::: r 2 e4A [2 f3,v A,v - r-3(r3 f3,v) ,v] ,

W2 = ~ re4A
[ (A + ~ In r) ,uv + 2 f3,u f3,v] ,

W4 :::: 2 f3,u A,u - r-3(r3 f3,u),u, WI = W3 = O.

If the outflux is sheared (f3,v to), a divergence of Wo is superposed on the mass
inflationary divergence of W2 as anticipated earlier. Thus, the singularity remains
lightlike and locally mild. Now, however, the mass inflation is overlaid by a gravita
tional shock wave imploding along the Cauchy horizon.

Let us summarize and give the general picture of the interior of the classical (with
out quantum effects) black hole (see Figure 14.6). The Cauchy horizon is a slowly
contracting (with retarded time) lightlike three-cylinder which is mildly singular. It
shrinks down and forms a strong spacelike singularity at late retarded time inside the
black hole.

This is the picture according to classical general relativity. We shall see in subse
quent sections that quantum effects probably add very essential traits to this picture.

6We should emphasize that the work on this question is still in progress (Autumn of 1997).
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Figure 14.6: The diagram illustrating a structure of the interior of a generic classical black
hole. Possible quantum effects are not taken into account.

14.5 Quantum-Electrodynamical Instability of
Cauchy Horizons

The present section is devoted to quantum electrodynamic processes generated inside
a charged non-rotating black hole; they were ignored in our previous analysis of
the internal structure. It will be shown that quantum creation of electron-positron
pairs lead to the instability of the Cauchy horizon and restructure the spacetime. A
self-consistent solution is successfully constructed thereby, taking into account the
backreaction of the created particles on the electromagnetic field and the metric.
Besides, it is shown in the framework of this solution how the metric is modified, and
it is proved that a true spacetime singularity is indeed created instead of the Cauchy
horizon. This problem was solved by Novikov and Starobinsky (1980c) whose paper
we follow here [see also Berezin (1980)].

Consider the restrictions imposed on the physical conditions inside black holes
with different values of mass M and electric charge Q (Figure 14.7). First, a black
hole is formed only if Q :::; ..;aM [or Q/ e :::; 5 x 105 M (grams) where e is the electron
charge], that is, if the parameters lie below line 1 in Figure 14.7. If the charge of the
black hole is sufficiently large, electron-positron pairs are created near it [Markov and
Frolov (1970), Gibbons (1975), Damour and Ruffini (1975)]. One particle escapes to
infinity, the other (its charge sign is apposite to that of the black hole) is absorbed
by the black hole and diminishes its charge. It can be shown that in a very short
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Figure 14.7: Various ranges of values of the black hole charge Q and mass M (on the
boundaries of these ranges, Bee text).

time of order r+Ic the initial charge of the black hole is reduced to the value7
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(14.5.1)

(14.5.2)

where A = e2(21£ lic)-l(r+1>.)2; e is the electron charge, and m is its mass. Subse
quently, the black hole charge remains practically constant. Numeral 2 in Figure 14.7
marks the line corresponding to equation (14.5.1). The region of allowed values of
black hole parameters lies below lines 1 and 2.

Note that if the black hole charge is sufficiently small, the Cauchy horizon lies so
close to the true singularity that the spacetime curvature here exceeds the critical
value at which quantum gravity effects are appreciable. This entire region must be
regarded as singular from a physical standpoint. We will call it the "Planck region of
the Reissner-Nordstrom metric" , or simply the "Planck region". A Cauchy horizon in
the classical or semiclassical theory can be considered to have a real physical existence
only if it lies outside the "Planck region". The curvature invariant R o(3")6 R°(3")6 is
of dimension (length)-4. The boundary of the "Planck region" is found from the
condition R 0(3"(6 R°(3"(6 = 1lltl' For the Reissner-Nordstrom metric, the condition of
r _ belonging to the boundary of the "Planck region" is the expression (for r _ « r +)

R Ro(3")61 ~ 12r~ _..!..
0(3"(6 r=r_ ~ 6 - l4r _ PI

or

(14.5.3)

7Here we consider black holes with r+ > Awhere A=nlmc is the Compton length of the electron
[for the analysis of the opposite case, see Page (1977)]. The pairs are effectiveiy created if the electric
field Qlr~ near the black hole is of the order of the critical field Ecr . The latter is defined by the
condition eEcrA ~ mr? and is equal to Ecr = 1I"m2 2 len (see Section 10.1).
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(line 3 in Figure 14.7). On this boundary, r _ »lpl' If the parameters of the black
hole lie to the right of and below line 3, the Cauchy horizon lies inside the "Planck
region". In actual astrophysical conditions, the relations given at the beginning of
Section 3.6 are satisfied; hence, black holes with mass M < 1060 g definitely have
Q < Q3, and thus the Cauchy horizon is always inside the "Planck region".

The last step is an analysis of the region hatched in Figure 14.7. Quantum-elec
trodynamic processes inside a black hole are important if the parameters fall intothis
region. Let us introduce the following reference frame, similar to (2.4.8), in region II
of the Reissner-Nordstrom metric:

(14.5.4)

where a = a(r) and r = r(7) are defined by relations

(14.5.5)

(14.5.6)

The former coordinate t (for r > r+) is now spacelike. We denote it by x (x == t). The
functions a = a(7) and r = r(7) are defined by formulas (14.5.5) and (14.5.6). The
reference frame associated with metric (14.5.4) has a homogeneous (but anisotropic)
three-dimensional space, which makes it especially convenient for calculations. The
topology of this space is R1 x 8 2• For an eternal black hole the three-dimensional
space is infinite in the coordinate x (-00 < x < +00). This reference frame lives
for a finite proper time. Its evolution begins at the moment corresponding to the
value r = r+ when the expansion, described by a(7), begins in the direction x. At
the start of the expansion, a = O. Here (at r = r+), we find a false (coordinate)
singularity. Cross-sections of our reference frame in transverse directions are spheres
of radius r(7). As 7 increases, the spheres monotonically contract from the initial
values r = r+. At later 7, the expansion in the x coordinate is replaced by contraction,
so that at r = r_ the quantity a again vanishes; that is, we again corne to a coordinate
singularity. The radius of the spheres at this moment is r = r_.

The electromagnetic field in the outlined reference frame is purely electric (the
nonzero component of the electromagnetic tensor is FT:lJ; it is directed along x, and
is independent of x. As 7 increases, the strength of this field increases in inverse
proportion to r 2• If this field is sufficiently strong, it creates electron-positron pairs.
Particles created in region II cannot escape from the black hole because its boundary
r+ lies in the absolute past. As a result, they cannot affect the properties of the
external space I but may greatly modify the situation inside the black hole. We will
show that the gravitation of the created particles changes the metric in region II,
whereby producing a true singularity instead of the Cauchy horizon.
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(14.5.7)

Let us look into the details of this process. In Figure 14.7, we single out the values
of the parameters so that the electric field in region II (r_ < r < r +) reaches the
value Eer = 1rm2c3len at which electron-positron pairs are intensively produced. The
condition under which the electric field E = Qlr2 assumes the critical value at the
inner horizon r _ is Qlr: = Eer . This relation can be rewritten in the form (assuming
Q < ..;aM, c= 1)

~ = (~~~:) 1/3 ~ 6 X 1018 (~) 2/3

(line 4 in Figure 14.7). The condition E > Eer in region II is satisfied for parameters
lying between lines 2,3, and 4. In the region that we consider now, Q « ..;aM, that
is, r _ « r +. In this case (r_ « r « r +), the classical evolution of system (14.5.4)
obeys the law

(
r+)1/2 (2)1/31 r+ 11/3a(7)~ - = - - .
r 3 7

(14.5.8)

At this stage, the electric field cannot yet influence the evolution of the metric (it
is the same as for Q = 0, r _ = 0). If solution (14.5.8) were continued to 7 = a
(as in the case of Q == 0, E == 0), it would result in a true singularity 7 = O.
In the course of contraction of the system, the electric field varies as E = QIr 2

and, in our case, reaches the level Eer at the stage (14.5.8), after which electron
positron pairs are intensively created and accelerated by the electric field, so that
an electric current is produced. This current induces an important backreaction on
the electric field. Without this reaction the field would become higher than Eer and
would finally change the form of (14.5.8) at r comparable with r _ and produce a
coordinate singularity at the Cauchy horizon.

Novikov and Starobinsky (1980c) showed that the field E in region II cannot be
appreciably greater than Eer ; otherwise, the current due to the pair production would
bring the field down to Eer in a short time 70 ~ 10-18_10-20 s. It is of interest to
note that the field is reduced, not in a monotone manner, but through oscillations in
which the sign of the field and the current direction are reversed. The relaxation of
oscillations proceeds via radiative loss by particles and plasma instabilities.

The electric field thus cannot be substantially greater than Eer as long as the
characteristic time of field enhancement during the contraction of the system (we
ignore the effect of particles being created) is greater than the relaxation time (\ 7 \ >
70)' In view of this, the metric is not affected by the electric field. Neither is it
influenced by the gravitation of the particles created. Indeed, the energy density of
the new particles transported by the field along the x axis increases in proportion
to a-2 r2 ~ \7\-2/3, and after relaxation, in proportion to (ar 2 )-4/3 ~ \7\-4/3. At
the same time, the spacetime curvature increases faster (~ 1/\ 7 \2) than the energy
density.
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When the stage 171 < 70 is reached in the course of evolution, the creation of
particles and their motion cease to significantly affect the electric field. As a result,
the electric field at 171 < 70 grows in proportion to r- 2 :

E ~ Eer (70/17 \)4/3. (14.5.9)

The field begins influencing the metric when the quantity 8rrG T3 (T3 being a com
ponent of the energy-momentum tensor of the electric field) becomes equal, in order
of magnitude, to the leading terms in Einstein's equation describing the spacetime
curvature. These are terms of order 1/72. Having equated

8rrGT3 ~ G E2 ~ G E~r(70/1 7 1)8/3 to 1/72,

we find

171 ~ G3f2 E~ 7et . (14.5.10)

Using the numerical value Eer and 70 ~ 10-18_10-20 s, we obtain 171 ~ 10-46_10- 54 s,
i.e., 171 « Tpl· Recall that a true physical singularity occurs at 171 ~ 7Pl. Hence, the
quantum effects change the electric field and, consequently, the metric, restructuring
it in such a way that it is now described by expressions (14.5.4) and (14.5.8) up to
171 ~ 7Pl· Furthermore, a true singularity appears instead of the Cauchy horizon.

The point to be emphasized is that we have constructed a self-consistent solution
without resorting to the method of small perturbations as we did in Sections 14.2
and 14.3. The solution obtained gives an exact description (of course, as long as the
theory is valid) of the formation of the true singularity; what is left is the region of
parameters between lines 4 and 1 in Figure 14.7. Here, the electric field in region II
is less than Eer so that E is not appreciably affected by pair creation. Nevertheless,
pairs get produced, and even a small number of them result in the formation of a
true singularity.

Qualitatively, this is easy to understand. The electric field accelerates the particles
created (carrying e+ and e- in opposite directions), and thus produces an electric
current. The net three-dimensional momentum ofthe beams is zero. Macroscopically,
one can assume that the plasma as a whole is at rest in reference frame (14.5.4),
although its pressure is extremely anisotropic (unless the relaxation of the fluxes has
taken place). The world lines of elementary volumes of plasma coincide with the
world lines of reference frame (14.5.4) until we take into account the backreaction of
the new particles on the metric. We find that, in this case, the world lines concentrate
along the Cauchy horizons like the radiation due to perturbations that concentrated
in region I in Figure 14.l.

Novikov and Starobinsky (1980c) constructed a self-consistent solution describ
ing this situation. The gravitation due to the newborn plasma starts affecting the
solution when r approaches r _. Solution (14.5.8) ceases to hold when r ~ r _. The
reconstructed solution is of the form

1
E:. ~ T2ln IT I » E:(em) , (14.5.11)
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where te is the energy density of pairs created, and E:(em) is the energy density of the
electric field. Solution (14.5.11) continues until the true singularity is produced. No
Cauchy horizon is thus formed in this case. What is formed is a true singularity. This
is the property of self-consistent solution describing the process. This result cannot
be obtained by the method of small perturbations.

In conclusion, we compare the instabilities of Cauchy horizon due to quantum
effects with the classical instabilities due to external perturbations that we treated
in the preceding section. Which instabilities are stronger? Obviously, a quantum
instability is stronger when pairs are created intensively (for E ::::: Ecr ) far from r_
because it restructures the solution also far from r _. If E « Ecr> both instabilities
manifest themselves only very close to r _, and the classical instability may prove
stronger.

Novikov and Starobinsky (1980a,b) argued that quantum effects might be also
important near the Cauchy horizon of a rotating black hole. These effects may
replace the Cauchy horizon by a true singularity.

14.6 Complete picture?

In previous sections we discussed many aspects of the internal structure of black
holes. We emphasized a few times that this is a problem of the evolution in time
starting from boundary conditions on the event horizon for all moments of time up
to the infinite future of the external observer.

It is very essential to know the boundary conditions up to infinity because we
observed that the essential events (mass inflation and singularity formation) happened
along the Cauchy horizon which brought information from the infinite future of the
external spacetime. However, even an isolated black hole in the asymptotically flat
spacetime cannot exist forever. Itwill evaporate by Hawking quantum radiation. So
far we discussed the problem without taking into account this ultimate fate of black
holes. Even without going into details, it is clear that quantum evaporation of the
black holes is crucial for the whole problem. In Chapter 15 we will discuss some
very idealized models of the internal structure of the black holes which account for
quantum evaporation. These models have been constructed specially to discuss the
possible issue of quantum evaporation or for the possible extension of the discussion
of the evolution beyond a Planck singularity (see next section).

But what can one say about general picture of the black hole interior accounting
quantum evaporation? We have to restrict ourselves to general remarks only because
work on the problem is still in progress. To account for quantum evaporation, we have
to change the boundary conditions on the event horizon as compared to the boundary
conditions discussed in Section 14.4.4. Now they should include the flux of negative
energy across the horizon (see Section 15.3 and references therein). If the black hole
is charged or/and rotates, then the process of decrease of the charge and angular
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momentum is faster than decay of the mass (see Section 10.5.3). The last stage
of the quantum evaporation when the mass of the black hole becomes comparable
to the Planck mass is unknown. At this stage the spacetime curvature near the
l~orizon reaches lpr This means that from the point of view of semi-classical physics
a singularity arises here. Probably, at this stage the black hole has the characteristics
of an extremal black hole (see Section 15.3.2), and its external r+ and internal r_
horizons coincide.

This means that the structure of the singularity inside an isolated black hole,
which we discussed in Section 14.4.4 probably is more complicated. It depends on
the initial parameters of the black hole as well as on properties of the process of the
quantum evaporation, the final stage of which is not known. We should emphasize
that in any case the solution cannot be continued beyond the true singularity. As a
result, anything similar to the analytic continuation of the solution, shown in Fig
ure 6.4, would be impossible. As for the processes inside a true singularity, they can
be treated only in the framework of a unified quantum theory incorporating grav
itation. Some speculation about this will be entered into the next section and in
Chapter 15.

14.7 New Worlds Inside a Black Hole?

How the effects of quantum gravity could modify the structure of the spacetime
singularity inside the black hole. To analyze this, let us consider a black hole which
arises as a result of a spherically symmetric gravitational collapse. We know that the
spacetime inside the black hole outside the collapsing matter can be described as an
evolution of anisotropic homogeneous three-dimensional space. The Schwarzschild
metric in the region r « 2M

ds2 = _ 2~r2 + (2M _ 1) de +r 2 dw2
r-- 1 r

can be approximated as

( 3)-2/3 (3) 4/3
ds2 ::::: - dr2+ - 4~ de + - 4~ (2M? dw2.

(14.7.1)

(14.7.2)

As proper time r(< 0) grows, the radius r ::::: (_r)-1/3 decreases. This metric has
the Kasner-type asymptotic behavior near the singularity: the contraction of space
in two directions is accompanied by expansion in the third direction. The curvature
invariant R2= R0/316R°(316 grows as R2 = 48M2/r6

•

Such behavior is a consequence of the classical equations which are valid until the
spacetime curvature becomes comparable to the Planck one. Particle creation and
vacuum polarization may change this regime. Quite general arguments allow one to
suggest that the quantum effects may result in a decrease of the spacetime anisotropy
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[Zel'dovich and Novikov (1983), Hu and Parker (1978), Hartle and Hu (1978, 1980)].
Poisson and Israel (1988) have shown that the anisotropy may be damped during
this phase of contraction, while at the same time the curvature tensor remains of
the order of the Planck value. Unfortunately, one cannot prove this result rigorously
without knowing the physics at Planck scales.

Under these circumstances it is natural to use the following approach. One might
assume that the notion of quantum average of a metric 9 = (fJ) is still valid in the
regions under consideration, and the average metric 9 obeys some effective equations.
We do not know these equations at the moment, but we might assume that these
equations and their solutions obey some general properties and restrictions. For
example, it is natural to require that the effective equations for 9 in the low curvature
limit reduce to the Einstein equations with possible higher-curvature corrections. It
is also possible to assume that the future theory of quantum gravity would solve
the problem of singularities of classical general relativity. One of the possibilities
is that the equations of the complete theory would simply not allow dynamically
infinite growth of the curvature, so that the effective curvature R of 9 is bounded by
the value of order I/F.8 This limiting curvature principle was proposed by Markov
(1982, 1984). This principle excludes curvature singularity formation, so that the
global properties of the solutions must change.

A special form of the gravitational action for cosmological models providing the
limiting curvature principle was considered by Markov and Mukhanov (1985). It
was shown that a collapsing homogeneous isotropic universe must stop its contrac
tion and begin expansion, while during the transition phase its evolution is described
by a metric close to the de Sitter one. Mukhanov and Brandenberger (1992) pro
posed a general nonlinear gravitational action which allows only regular homogeneous
isotropic solutions. Polchinski (1989) proposed a simple realization of the limiting
curvature principle by modifying the action and inserting inequality constraints into
it, restricting the growth of curvature. In the case of the collapse of an inhomogeneous
universe, formation of a few baby universes can be expected [Markov (1984)].

In the application to the problem of black hole interiors the limiting curvature
principle means that the singularity which, according to the classical theory exists
inside a black hole, must be removed in the complete quantum theory. We cannot
hope to derive this result without knowledge of the theory, but we may at least
diseuss and classify possibilities. Such approach is a natural first step, and it was
used in a number of publications. We discuss here9 a singularity-free model of a black
hole interior proposed by Frolov, Markov, and Mukhanov (1989, 1990). According
to this FMM-model, inside a black hole there exists a closed Universe instead of a

BThe limiting curvature does not necessarily coincide with the Planck curvature and might differ
from it by some dimensional factor. For example it can be several orders of magnitude smaller. The
difference between limiting curvature and Planck scales is not important here because the discussion
in this section is mainly qualitative.

90ther models will be discussed in Chapter 15.
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r=O

Figure 14.8: Spacetime inside a spherically symmetric eternal black hole. r g is the surface
of the gravitational radius (event horizon). Inside the horizon r is a timelike coordinate.
The direction of time coincides with the direction of decrease of r. A spacelike surface E
of constant r has the topology 8 2 x R. The curvature invariant at this surface is n2 =
Ra/3.,6R",/3.,6 = 48M2/r6. n2 reaches its limiting value /-4 at the surface r = rD. The
limiting curvature principle implies that in the region lying to the future of this surface
(that is inside TO in the figure) the solution is modified.

singularity.
First consider an eternal black hole. Its interior in the collapsing T_-region is

schematically presented in Figure 14.8. The curvature reaches its maximal limiting
value on the surface ~o where T = To = 481/ 6(MIl)I/31. For macroscopic black holes
To is much larger than i. For example, for a black hole of stellar mass Toll..., 1013 .

The surface T = To is spacelike, and its topology is 8 2 x R; that is, it is an infinite (in
direction t) "tube" of a radius To. In the FMM-model it is assumed that inside this
surface there exists a transition region after which the metric takes the de Sitter-like
form

(14.7.3)

It is assumed that the transition between Schwarzschild and de Sitter regimes is so fast
that the transition region can be approximated by a thin spacelike shell. The global
structure of spacetime in the FMM-model is shown in Figure 14.9. The spacetime
passes through a deflation stage and instead of the singularity a new inflating universe
is created. The parameter l determines the size of the spatial section at maximum
contraction.

The equations for the gravitational evolution during the transition from the
Schwarzschild regime to the de Sitter one can be written in the Einstein-type form

(14.7.4)
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Figure 14.9: Penrose-Carter conformal diagram for an eternal black hole with a de Sitter
type world in its interior. Spacelike surface Eo represents a rapid transition from the
Schwarzschild regime (below Eo) to the de Sitter one (above Eo).

where T; is a specially chosen effective stress-energy tensor. The rapid transition
regime is characterized by layer parameters

s:;. = f drT::" m,n, ... = 1,2,3.

transition
layer

For r « 2M one has

s: = 1- (12)-1/4, s: = s: = 1- ~(12rl/4.

(14.7.5)

(14.7.6)

(14.7.7)

The concrete form of the layer parameters is not important; what is really important
is that for r « 2M they do not contain the "large parameter" 2M/l. In other words,
if T;:' reaches the limiting value, it is sufficient that the transition continues for the
time l/c. This condition makes the model self-consistent.

In the presence of the collapsing matter which produces the black hole the global
structure of spacetime is modified. Figure 14.10 illustrates this change. The main
difference of this model from the model for an eternal black hole shown in Figure 14.9
is that the surface ~o bf limiting curvature is restricted from the left. It is also
restricted from the right as a result of the black hole evaporation. The proper length
of this surface in the t direction is L...., (M/l)1O/3l. For a stellar mass L...., 1094cm.

The presented model can be considered as "the creation of a universe in the
laboratory". The effective stress-energy tensor (14.7.5) violates the weak energy
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Figure 14.10: Penrose-Carter conformal diagram for the spacetime of a black hole with
a de Sitter-type world in its interior. The black hole is formed by a collapsing spherically
symmetric dust cloud. The spacelike surface Eo represents a rapid transition from the
Schwarzschild regime (below Eo) to the de Sitter one (above Eo).

condition. lO It is also evident that the FMM-model possesses a Cauchy horizonY
That is why the spacetime has no singularity even though the other conditions of
the Penrose theorem on singularities are satisfied. The conclusion by Farhi and Guth
(1987) that the creation of a new baby universe in asymptotically flat spacetime is
possible only if there exists an initial singularity is not applicable to the FMM-model
because it violates the energy dominance condition.

Other (e.g., smooth) regimes of transition to the de Sitter-like phase were also
considered in [Frolov, Markov, and Mukhanov (1989, 1990)]. Balbinot and Poisson
(1990) proved the stability of the FMM-model with respect to small perturbations of
the transition layer. Later Morgan (1991) showed that a similar result (formation of a
contracting closed de Sitter-like universe with its further inflation), can be obtained in
the framework of the Polchinski (1989) approach to the limiting curvature principle.

One of the assumptions of FMM and other similar models is that a "phase tran
sition" to the de Sitter-like phase takes place at a homogeneous spacelike surface

IOThe violation of energy conditions is a characteristic property of a theory obeying the limiting
curvature conjecture. One can relate this violation to quantum effects that are important in a strong
gravitational field. It should be emphasized that we are not discussing here another quantum option,
the quantum tunneling effect. Possibility of the creation of a universe in the laboratory by quantum
tunneling was considered by Berezin, Kuzmin, and Tkachev (1988) and by Farhi, Guth, and Guven
(1990).

II The results on the instability of Cauchy horizons discussed earlier in this chapter are not directly
applicable in a theory obeying the limiting curvature conjecture. In the FMM-model the curvature
near the Cauchy horizon already has the limiting value, so that it cannot be increased by focusing
of blueshifted perturbations.
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Figure 14.11: Formation of a single de Sitter bubble.

r = roo The presence of perturbations and quantum fluctuations, growing as r -t 0,
could spoil the homogeneity. The bubbles of the new de Sitter-like phase could be
formed independently at points separated by spacelike distances. For these reasons,
one could expect that different parts of a black hole interior, can create spatially
disconnected worlds.

A model of multiverse creation inside a black hole was proposed by Barrabes
and Frolov (1996). In this model, it was suggested that spherical bubbles of the
new de Sitter-like phase which are formed independently are separated from the old
(Schwarzschild) phase by relativistically moving boundaries. Under this assumption
the problem is reduced to the study of the evolution of lightlike shells representing
the boundaries, and their intersection. The general theory of lightlike shells was
developed by Barrabes and Israel (1991). This approach is purely kinematic in the
following sense. It allows one to take into account the conservation of energy and
momenta during the process of nucleation and the further evolution of the boundaries,
including possible intersection of the boundaries of two different bubbles. But it does
not answer questions concerning the probability of bubble formation or the structure
of the transition regions between phases. If bubbles of the new de Sitter phase do
not intersect one another, one can expect creation of No ...., L/l ...., (M/l)1O/3 new
baby universes. The analysis shows that disconnected de Sitter baby universes can
be effectively generated even if their boundaries intersect one another, so that the
total number of new-born universes can reach N1 ...., (M/l)2/3No ...., (M/l)4. Multiple
baby universe creation in the black hole interior might have an interesting application
to the information-loss puzzle (Section 15.4).



Chapter 15

Ultimate Fate of Black and White
Holes

15.1 Role of Planck Scales in Black Hole Physics

On several occasions when discussing black hole properties, we mentioned Planck
scales. The theory of general relativity we have used in the most of the book cer
tainly is not a complete theory and requires modifications because of quantum effects.
Quantum effects become dominant at Planck scales, and quantum gravity is required
there. In this section we comment on some of the problems of black hole physics that
require quantum gravity for their solutions.

First of all, it should be mentioned that besides these problems there are also
situations when one formally appeals to the theory at super-Planckian energies but
the final results basically are independent of the details of the physics in this region
and are completely determined by low energy physics. The derivation of the Hawking
radiation (Chapter 10) gives us an important example. The Hawking effect can be
described as an effect of parametric excitation of zero-point fluctuations. In this
process a black hole works like a boost machine. It processes high frequency input
and transforms it into low frequency output. The redshift boost grows exponentially
as exp(t/4M), where t is the time elapsed after the black hole formation. Particles
of energy w ...., M- l emitted by the black hole at time t originate from initial zero
point fluctuations of frequency n ...., M-l exp(t/4M). Very soon after the black hole
formation n becomes much larger than the Planck energy. Sometimes black holes are
compared with a microscope that allows one to resolve tiny details and see something
of the nature of these short distance fluctuations. l One might expect that details of
the Hawking radiation might depend on the properties of the theory at super-Planck
energies. In particular, if we assume that the spectrum of zero-point fluctuations is
bounded by the Planck energy, there will be no Hawking flux of radiation after time

I There is a close similarity of this effect with the effect of the amplification of zero-point fluctu
ations in the inflating universe.

576
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t,..., 4Mln(M/rnPl). This conclusion might be too hasty. One cannot simply truncate
the frequency of the zero-point spectrum without breaking the Lorentz invariance
of the theory. Nevertheless, the problem is still with us: Does Hawking radiation
require for its derivation and explanation the knowledge of Planck-scale physics?
This question was analyzed recently by Jacobson (1993, 1995, 1996), Unruh (1995),
Brout et al. (1995), Hambli and Burgess (1996), Corley and Jacobson (1996).

In 1981 Unruh showed that thermal emission is not only characteristic of black
holes, but it is also characteristic of dumb holes, the sonic analogue of black holes
[Unruh (1981), Jacobson (1991)j. A dumb hole forms when the velocity of the fluid
exceeds the sound velocity. The surface where it occurs, forms a sonic horizon, which
is similar to the event horizon. The propagation of sound in such a hypersonic fluid
is similar to scalar field propagation in the spacetime of a black hole. A dumb hole
emits phonons with thermal spectrum. To derive this spectrum, one makes basically
the same calculations as in the black hole case. So the question of the origin of the
thermal phonon radiation and of the role of ultra-high frequencies can be also referred
to this model. Since one is dealing with conventional hydrodynamics, one can expect
that all the divergences characteristic of quantum gravity simply do not arise. The
cutoff (even if it is required) is given by the finite distance between atoms that form
the liquid.

For calculations a simplified two-dimensional model was used. The dumb hole
line element is

ds2= -de + (dx - v(X)dt)2, (15.1.1)

(15.1.2)

where v(x) is the fluid velocity. We have assumed a constant velocity of sound (c = 1),
and constant background density of matter. The model equation of motion of the
scalar field cp describing the propagation of sound follows from the action

W = ~f dtdx [[(at +v a",)cpj2 - [iF( _W",)cpj2] .

The function F is an odd function of aal in order to make it explicit that the operator
iF(-i a",) is real. This function determines the dispersion relation in a frame co
moving with the liquid:

(15.1.3)

Because of the higher spatial derivatives in the action, the dispersion relation w =
w(k) differs at high wave numbers from the ordinary wave equation. In particular,
one can exclude very high frequencies by assuming that F reaches a constant value
for k -too, or even decreases there. Unruh (1995) used the special form F(k) =
kotanhl/n[(k/ko)nj. By numerical integration of the wave equation he studied the
propagation of wavepackets and established that, to within the numerical accuracy
of his computations, Hawking radiation still occurs and is unaffected by the change
of the dispersion relation. A wavepacket sent backwards in time towards the horizon



578 CHAPTER 15. ULTIMATE FATE OF BLACK AND WHITE HOLES

reaches a minimal distance of approach, then reverses direction and propagates away
from the horizon. The blueshift at the closest approach is independent of the time
when the wavepacket was sent. Corley and Jacobson (1996) repeated these numerical
calculations with higher accuracy for the dispersion function F2(k) = k2 - k4 / k~ and
demonstrated that the thermal Hawking flux, generated by "mode conversion" at the
sonic horizon, is extremely close to being perfectly thermal. The difference between
the two is of order (TH /ko)3, where TH is the temperature of the dumb hole. Brout
et al. (1995) made an analytical study of the Unruh model, and arrived at similar
conclusions.

These results indicate that Hawking radiation is a robust feature of the low-energy
theory, which does not depend on the details of the theory at ultra-high energies. This
point of view is supported by the following observation. Fredenhagen and Haag (1990)
calculated the outgoing Hawking flux starting with the short-distance form of Green's
function G(x, x'), when x and x' approach one another and the event horizon. Hambli
and Burgess (1996) demonstrated that, by using a Pauli- Villars regularization, one
can change the asymptotic short-distance form of the Green's function, and make it
singularity-free. On the other hand, if the masses of the Pauli-Villars regulators are
high, the Hawking radiation calculated for the regularized Green's function remains
practically the same. A simple explanation of this fact is the following. In the
Pauli-Villars regularization scheme G(x, x') is changed to

Greg(x, x') = G(x,x' ) +L f; G;(x,x' ) , (15.1.4)

where G; are Green's functions of the regulators, and f; = ± keep track of the sign
of the corresponding fields' kinetic energy. This representation for the regularized
Green's fUllction implies that the Hawking radiation is a sum (with extra signs f;) of
fluxes for each of the fields. Since the regulators are heavy, their thermal radiation
is suppressed by the factor exp(-mdTH ). That is why the regulators practically do
not affect the Hawking flux.

In the discussion of black hole entropy we also appealed to Planck scale physics.
The statistical-mechanical explanation of the Bekenstein-Hawking entropy required
assumptions on the material content of the underlying theory, so that the entropy is
obtained by counting the states of constituents (e.g., strings). On the other hand,
concrete calculations in string theory and in Sakharov's induced gravity indicate
that there exists a universality; namely, the same answer for the entropy is given by
different models provided they induce the same low-energy effective theory of gravity.
It should be emphasized that only these universal thermodynamical characteristics
can be measured in (gedanken) experiments.

One can expect that this is a generic situation. Namely, consider a massive black
hole with mass M much larger than the Planck mass mp\. In order to describe the
results of (gedanken) experiments on such a black hole made by an external observer,
it is sufficient to know the low-energy theory. Effects that depend on the underlying
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theory are controlled by the parameter mpI!M and are usually negligibly small. One
can call this a low-energy censorship conjecture.

Certainly, there are problems of black hole physics that for their solution require
knowledge of the theory at Planck scales. One of them is the problem of the final
stage of evaporation when the black hole mass shrinks to mpl. Planck scale physics
is also important inside the black hole in the region where, according to the classical
theory, there exists a singularity. Another example is a white hole, where a system
starts its classical evolution from the curvature singularity. In all these cases quantum
gravity is really important. Since there is no complete theory of quantum gravity,2 the
discussion of these problems is often qualitative, and is based on simplified models.
In this chapter we collect some of the fragmentary results and models. The variety of
possibilities greatly increases in modern unified theories (e.g., in the string theory),
which open a door to extra spacetime dimensions, a wider class of fundamental fields,
and new symmetries.

15.2 White Hole Instability

15.2.1 Classical instability

We start by discussing the instabilities of white holes. Formally, the solutions of
Einstein's equations that describe black and white holes have a number of similar
properties. Thus, the relationship between the solutions describing the formation of
a black hole and the explosion of the white hole can be found by using the symmetry of
Einstein's equations under time reversal. In fact, the physical properties of black and
white holes, including the observational manifestations and the type of interaction
with the surrounding matter, are very different. This is not surprising because the
identical behavior of black and white holes would merely signify that the behavior
of the surrounding matter and the characteristics of the external observer remain
unchanged under the time reversal that transforms white and black holes into each
other. However, this is wrong. An observer invariably moves forward in time and
receives information on the processes in the field of a hole using retarded signals.

A spectacular manifestation of the asymmetry of properties inherent in white and
black holes is the instability of the former. The instability of white holes may result
both from classical processes due to the interaction with the surrounding matter
[Eardley (1974), Frolov (1974), Eardley and Press (1975), Redmount (1984)] and
from the processes due to the quantum creation of particles in the gravitational field
of the holes [Zel'dovich et at. (1974)]. This section will be devoted to describing
possible mechanisms of the instability of white holes.

Let us begin with the instability of white holes with respect to ordinary matter
falling into them. What is this instability? It is the non-explosion of the white hole,

20n the status of quantum gravity see e.g., Isham (1995).
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Figure 15.1: A scheme clarifying the reason for the instability of the white hole with
respect to the accretion of matter from the surrounding space (see text).

however strange it may seem (recall the definition of the white hole). The spacetime
of an exploding white hole is shown in Figures 2.9 and 2.10. Consider an external
(i.e., at r > r g ) observer long before the white hole explodes. We wish to show that
if a small mass of matter, 6M, starts to fall into the white hole at a moment of time
to (for the sake of simplification, we consider the infall of a thin spherical shell), an
explosion of the white hole very soon becomes impossible (by the clock of the external
observer). Without accretion, the matter of the white hole would expand from the
singularity and after some time would emerge from under the gravitational radius (as
shown in Figure 2.9). Now accretion compels the matter to stay inside (the white
hole does not explode).

The reason for the instability is as follows. Let us trace the motion of the boundary
A of the exploding white hole on a Penrose diagram (Figure 15.1). For the sake of
simplification, we assume that the boundary expands at an ultra-relativistic velocity;
that is, it is represented by a null geodesic (this assumption does not affect the result).
The longer the delay of the explosion, the closer the boundary A lies to the horizon
H+.

Let the mass 6M start falling into the hole at a point b (the world line of this
mass is shown by the curve B). Let us take into account the backreaction of the mass
6M on the metric. Now the gravitational radius r~ is

r~ = rg+UM, (15.2.1)

where rg = 2M is the former gravitational radius. In view of the change in the metric,
the world line of the horizon is Hi. (The shifting of /+ and other lines due to the
change in the metric are not shown in order to avoid crowding the figure.) Now it is
quite clear if the world line A is to the left of Hi, the matter of the white hole can
never emerge from under the horizon into region I where the observer is. In other
words, the white hole will never explode.

Let us make several order-of-magnitude estimates. If the mass oM, moving
through an unperturbed spacetime (i.e., spacetime described by unperturbed rand
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(15.2.2)

(15.2.3)

t), gets closer to rg than the perturbed horizon r~, the explosion of the white hole
becomes impossible. Formula (2.3.4) implies that if the mas; 6M falls from a distance
r equal to several r~, the fall lasts for

!:!..t = t - to ~ rg In~ .
c r - rg

Replacing r with r~ from formula (15.2.1), we obtain an estimate for the interval!:!..t
after which the explosion of a white hole becomes impossible:

r g M
At~ -In-
Ll c 6M'

Obviously, a white hole retains the possibility of exploding for a short time even if
6M is extremely small.

Accretion of matter onto white holes causes their instability and ultimately trans
forms them into a sort of black hole. The fate of such a white hole must, therefore,
be discussed together with that of black holes. We will return to this situation in
the next section. Frolov (1974) analyzed the changes in the motion of the expanding
matter of a white hole when it collides with matter in the T+-region (region II' in
Figure 15.1).

15.2.2 Quantum instability

We will now consider the quantum instability of white holes [Zel'dovich et at. (1974)].
This instability arises because the particles that are created with high intensity near
the Schwarzschild singularity of the white hole move outward in the T+-region and,
therefore, can strongly influence the metric far from the singularity. They can also
emerge from under the gravitational radius, and thus reduce the mass of the white
hole. It is found that any change due to particles created in the white hole ob
structs the explosion of the retarded core. Finally, another aspect of the problem
arises because a white hole must have existed not in empty space but in the earliest
expanding Universe. This means that the surrounding matter interacted strongly
with the white hole and the particles created therein at the earliest stages of the
cosmological expansion.

Let us begin by analyzing the creation of particles in the neighborhood of the
Schwarzschild singularity in the T+-region. Consider an "eternal" white hole (see
Section 2.7). The singularity in it is spacelike and homogeneous. Hence, the centroids
of each volume element of the created particles must be at rest in a reference frame
with homogeneous space. The general form of such a reference frame (taking into
account the effect of the created particles on the metric) in the spherically symmetric
case is [Novikov (1964b)]

(15.2.4)
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where A and r are functions only of t.
We choose t so that the singularity is at t = O. As t -t 0,

r <X t2/
3

, (15.2.5)

(15.2.6)

In such a metric, particles are created close to the singularity, perhaps at t ::::: tPI

[Zel'dovich and Starobinsky (1971)]. The energy density of these particles is

1
ePI :::::-

G
2 •

tpi

At t > tp!, the rate of particle creation drops sharply and can be neglected. Later
on, the density decreases because of volume expansion. If the equation of the state
of the new-born matter is known, then the evolution of the system can be calculated.
Zel'dovich et al. (1974) constructed models for a number of equations of state. Not
all of these models are realistic, but they possess a number of common properties
that reflect the specifics of the respective problems and sometimes make it possible
to completely solve the problem.

The simplest (unrealistic) assumption is that the pressure of the created particles
is zero (p = 0). The solution is written in parametric form

e>.j2 == cot~ +0 (1- ~ cot %), 81rGe = or-
2

e->.j2,

where

(15.2.7)

r
0:::::~»1,

rpi
-oo<R<oo. (15.2.8)

This solution describes the uniform expansion of the mass of new-born particles
from the moment t ::::: tPI to the moment t l at which r = rg and energy density is
e == (81rG r~) -I, followed by a subsequent compression of the matter to the singularity.

In order to clarify the physical meaning of the solution, we demand that the
following condition be satisfied: Particles are created near t ::::: tp!, on the interval of
R from -00 to some Rll with no particles created at R > R I . (Later we will show
how to make this assumption realistic.) The structure of the spacetime then has the
form shown in Figure 15.2. The entire mass of the created particles lies under the
gravitational radius and does not leave the white hole.

Now we analyze not an "eternal" white hole but a hole with a retarded expan
sion of the core. It is not difficult to show that the particles created close to the
Schwarzschild singularity do not allow this core to escape from under the gravita
tional radius. Indeed, a prolonged retardation of the expansion indicates that the
boundary of the core must lie at R = R2 at the moment t ::::: tpi (close to r == 0),
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Figure 15.2: Schematic presentation of the expansion and compression of maHer at p =0
inside a black hole. The matter is created via quantum processes close to r = 0 to the left
of RI .

far to the left of the point RI (R2 ~ RI ). A signal leaving R2 at a moment tp1 and
traveling to the right from RI covers only a finite distance f::,.R during the entire time
of expansion t l • Estimates show that

(15.2.9)

If RI - R2 > f::,.R, the signal does not reach RI by the time t l when expansion is
terminated. Not only will the matter of the retarded core be unable to escape to a
distant observer, but no signals emitted by the explosion will escape from the white
hole and reach RI . The retarded core will be buried under the mass of particles
created.

Let us discuss the assumption of no particle creation near r = 0 to the right
of the coordinate RI . One has to remember that the white hole evolves not in an
empty space but in the expanding Universe [Novikov (1964b), Ne'eman (1965)J. If
the matter of homogeneous cosmological model surrounding the white hole is located
to the right of R I close to r = 0, there is almost no particles production in this region
(under standard assumptions; see Zel'dovich and Starobinsky (1971)J. If we also
assume that the pressure in the surrounding matter is zero (which is not realistic),
the matter produces no effect on the region to the left of R I . The structure of
spacetime in this model is shown in Figure 15.3.

Consider more realistic models. Assume that the new-born particles do not in
teract with one another, and thus form two colliding beams that travel along the
radial coordinate with the speed of light. In this case, -Tg =Tl =t, the remaining
Tt: = O. Another assumption is that the interaction of the created particles produces
Pascal pressure p =e/3. The solutions of these cases are similar to (15.2.7) for p = 0;
see Zel'dovich et ai. (1974). They also describe the expansion of the system to some
r max and the subsequent contraction to a singularity. Here again the signal traveling
at a speed of light covers only a finite small distance along R over the system's entire
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Figure 15.3: A white hole with created matter (p = 0) in the cold Universe model (with
matter also at p = 0).

expansion time. This is why the created particles do not allow a retarded-expansion
core (as in the case of p =: 0) to explode and expand until it reaches the external
observer. An essential difference in comparison with the case of p=:O is that a matter
flux to the right across the boundary R) arises if Tl i= O. This flux may escape from
under r g and thereby reduce the mass of the white hole.

If the white hole is in a cold Universe with matter at zero pressure (p =: 0), then
the reduction in the white hole mass due to the spontaneous leaking of the new-born
matter from the hole can be quite high, as was shown in the already-cited paper by
Zel'dovich et al. (1974).

However, if the white hole is considered in a real hot Universe with matter, and its
equation of state is p =: e/3, the situation is changed. The pressure of the surrounding
hot matter constrains the leaking of the new matter from the white hole. In this case
it is very likely that the loss of mass due to leaking is considerably lowered. We will
not go into the details of this phenomenon since it is more a problem of cosmology
(on the accretion of matter onto compact cores in the hot Universe, see Section 9.8).

15.3 What is Left after the Quantum Decay of a
Black Hole?

15.3.1 Possible outcomes of black hole evaporation

Unfortunately, it is not possible to date to give an unambiguous answer to this ques
tion. The point is that any attempt to solve this problem brings one face to face with
other problems that belong in the realm of quantum gravity. Theoretically, quan
tum gravity appears to be quite far from completion, while the difficulties inherent
in it (divergences, non-renormalizability, ambiguity of going off the mass shell, the
possibility of changes of spacetime topology) are fundamental. As a result, there
is no complete self-consistent quantum theory of evaporating black holes. A natu
ral approach to this situation is to analyze models that reflect specific facets of the
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complete problem.
In principle, there are several possible outcomes of the black hole evaporation.

The semi-classical approximation should be good until the black hole has shrunk
nearly to the Planck mass. After this:

1. The black hole can completely disappear, and the information captured in the
black hole interior would disappear from our world.

2. The black hole can disappear, but the information is released back.

3. There remains a stable black hole remnant.

Spacetime structure for an evaporating black hole

In order to illustrate the possible spacetime structure for each of these outcomes, let
us consider the following model. We limit the analysis to the spherically symmetric
case.3 The corresponding average metric 91''' = (Oil") is conveniently written in the
form [Bardeen (1981)]

(15.3.1)

Here v is the null coordinate of the advanced time, and 'I/J and F are functions of r
and v with the following invariant meaning:

F(r, v) =91''' r,jJ r,,,, (15.3.2)

Assume that the spacetime is asymptotically flat and demand that

limF(r,v)=I,
r ....oo

lim 'I/J(r, v) = O.
r--+oo

(15.3.3)

Of course, the range of applicability of geometrical description in terms of the aver
aged metric 9jJv = (BjJ") is limited. Thus, it is not valid on scales less than ipI owing
to the strong quantum fluctuations of the gravitational field.

Essential information on the properties of spacetime can be obtained by analyzing
the behavior of the surfaces F == coilst of the function F. Thus, the exterior part of
the surface F ::: 0 coincides with the apparent horizon. If the created black hole were
static, the apparent horizon would coincide with the event horizon, and the surface
F ::: 0 would be described by the equation r = 2M, where M is the mass of the
created black hole. The quantum evaporation of the black hole makes the horizon

3The theorem on the "falling of hair" inside the black hole (see Section 14.1) states that the
farther we are from a collapsing non-rotating body, the less the deviation of the spacetime in the
T_-region is from spherical symmetry. Hence, this theorem gives grOlmds for assuming that the
conclusions drawn for spherically symmetric black holes may prove to be valid for more general
situations.
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Figure 15.4: Versions of the possible behavior of the apparent horizon in the quantum
evaporation of a black hole.

nonstatic, with the size decreasing with time (curve BC in Figure 15.4). If r = p(v)
is the equation of the outgoing radial null rays, we find that on the F = 0 surface,

dp
- =e'" F=O
dv '

(15.3.4)

(15.3.5)

Since F < 0 in T_-region and F changes its sign on the line BC, one has d2p/dv2 > 0
on the segment BC.

Using expression (15:3.1) for the metric, we can calculate the corresponding Ricci
tensor and verify that in this general case the metric satisfies Einstein's equations

1
RIAI' - '2 91''' R = 81rTIJ"

with a nonzeto right-hand side. In particular,

Tvv = 8~r {e'" F [e: 8r(r(l- F)) +1/I'v] - (e'" F)••}.

This relation simplifies for the surface F = 0 (the apparent horizon):

1 I 1 d
2

pITvv/F==o = - -8 [(e'" F),v] = - -8 -d2 •
1rr F=O 1fr v F=O

(15.3.6)

(15.3.7)

It shows that there is a flux of negative energy density across the segment BC of the
apparent horizon,in complete agreement with the results presented in Chapter 11.

For describing the processes over the entire time interval v during which the black
hole mass m(v) [e.g., we can choose m(v) = r/2/F =ol is much greater than the Planck
mass mph and hence the rate of change of the apparent horizon size, d(rIF=O)/dv, is
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small in comparison with the speed of light, one can use the quasi-static approximation
[Hajicek and Israel (1980), Bardeen (1981), Frolov (1981), Nityananda and Narayan
(1981)].4

The last stage of evaporation at which the mass of the black hole becomes com
parable t,o the Planck mass is the most difficult one to describe. The spacetime
curvature near the apparent horizon may reach 1/[~1 at this stage so that in the
general case the mean metric can be found only if the effective action, including all
quantum corrections, is known. We can conclude only that if the surface F = 0
intersects r = 0, according to our semi-classical picture, a singularity arises in which
curvature invariants tend to infinity [Frolov and Vilkovisky (1979, 1981), Kodama
(1979, 1980)]. It is more reasonable to expect that the semi-classical picture is not
valid in this region and quantum fluctuations become important. It is more prob
able that instead of creating a singularity the system makes a quantum jump with
a change of spatial topology. As a result of this quantum-gravity process, the black
hole disappears completely. This point of view was advocated by Hawking (1976b).

F'rolov-Vilkovisky model

In order to illustrate the second possible outcome of black hole evaporation listed on
page 585, let us consider the following model proposed by Frolov and Vilkovisky (1979,
1981, 1982) [see also Tomboulis (1980), and Hasslacher and Mottola (1981)). In this
model the F = 0 surface is closed and never intersects the line r = 0 (line BCDEFG
in Figure 15.4). In this case, the singularity inside the black hole disappears.s

The spacetime near r = 0 is locally flat for this solution, and we may expect that
its curvature at r ~ [PI is of order [PI2

, with the internal part of the line F =0 (FED)
being separated from r = 0 by some distance. It can be shown, using the general
relation (15.3.7), that TIIII < 0 on the segment EDB and TIIII ~ 0 on the segment
EFGB, where E and B are the points at which F = 0 is tangent to the lines r =
const [Roman and Bergman (1983)].

A spacetime with closed horizon F = 0 does not have an event horizon. Rigorously
speaking, a black hole does not exist iii this situation. However, a region that does not
let any signals out exists throughout the time of quantum evaporation. If the initial
mass of such an object is much greater than the Planck mass, its manifestations are
indistinguishable from those of a black hole for a very long time (time of its complete
evaporation).

A number of fundamental questions arise when this model of a singularity-free

4For detailed study of the geometry of evaporating black holes, see also Volovich et al. (1976),
Hiscock (1981), Balbinot and Bergamini (1982), Balbinot et al. (1982), Balbinot (1984), Kuroda
(1984a,b).

5Recall that owing to quantum effects, the total effective energy-momentum tensor in Einstein's
equations does not satisfy, in the general case, the conditions of positive energy density and positive
pressure. As a result, quantum effects may violate the conditions of existence of a singularity inside
a black hole (see Section 5.6), 50 that the singularity may be absent.
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"black hole" is analyzed. One of them concerns the conservation of the baryon charge
in this system. Assume that a collapsing system has a considerable baryon charge.
This charge cannot change substantially in the process of quantum evaporation, owing
to the symmetry of baryon and antibaryon creation.6 Then again if this "black hole"
completely evaporates, the original baryon charge disappears. We thus come to an
obvious violation of baryon charge conservation.

This situation could be regarded as a difficulty inherent in the model if processes
that do not conserve baryon charge were impossible. In fact, such non·conserving
processes have been widely discussed in connection with Grand Unification Theories;
they involve supermassive (with masses of 1014-1015 GeV) vector X and Y bosons.
When the collapsing matter is compressed to a density p '" 1074_1078 g/cm3, cor
responding to the mass of these particles, the system almost immediately becomes
neutral with respect to baryon charge, regardless of its initial value. 7 As a result,
the matter can get rid off its original baryon charge, even before the Planck density
PPI '" 1094 g/cm3 is reached [Bolashenko and Frolov (1984, 1986)]. There exist other
mechanisms. For example, Hawking (1984) suggested purely quantum-gravity mech·
anism of baryon charge non·conservation that may prove to be important at Planck
densities. Coleman and Hugh (1993) showed that, in general, all global charges are ex·
tinguished before the infalling matter crosses the singularity by the wormhole-induced
global-charge violation mechanism.

The motion of particles and light beams in a spacetime with a closed horizon
F = 0 is characterized by a number of unusual features. Particles falling along radii,
cross the T_-region in a short proper time of order rg/c, reach the line r = 0, and
start moving away from the center. However, they cannot cross the line ED again
and enter the T_-region. Therefore, all such particles accumulate close to ED (in
the classical description) and escape to the external space after the "black hole"
has evaporated (in a proper time of order rg/c). The particles have a "blueshift"
ex exp(K._ VBH ) where

~- = ! I8(e'" F) I )~ (15.3.8
2 ar F=O

is an analogue of the surface gravity for the interior horizon (on the line ED), and

6Zel'dovich (1976) pointed out t.hat if t.he Hawking radiation creates heavy particles whose decay
violates the CP parity, an excess of the baryon or antibaryon charge may arise. These processes
were analyzed in detail by Dolgov (1980a,b, 1981). These processes are essential only at a relatively
late stage of evaporation, when the black hole temperature reaches a value (J == 1/81fM N 1014 _1015

GeV; hence, t.he baryon asymmetry of the decay cannot substantially change the baryon charge of
the black hole of mass M » 1g, consisting of baryons [see the review of Dolgov and Zel'dovich
(1980, 1981)).

7These processes were analyzed in detail in connection with the origin of the baryon asymmetry
of the Universe [see, e.g., Dolgov and Zel'dovich (1980, 1981), Barrow (1982), Kolb and Turner
(1983)]. Estimates of the rate of neutralization of the baryon charge in the superdense matt.er in
Grand Unification Theories can be found in Fry, Olive, Turner (1980a,b,c) and Kolb and Turner
(1983).
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VBH is the lifetime of the "black holen
• A similar "blueshiftn effect must take place

for waves trapped in such a "black hole". In quantum analysis, this effect results
in the extremely intensive creation of particles in the decay of the "black hole". As
this energy release cannot be higher than a quantity of the order of the Planck mass
(otherwise, the energy conservation law in the external space would be violated), one
can conclude that the surface gravity ,"- must be less than, or of order, Vii~ provided
the estimate of radiation based on using quantum theory in a given averaged metric
is correct [Bolashenko and Frolov (1984, 1986}].8

The absence of an event horizon in a model with a closed horizon could lead
to another extremely interesting corollary. The creation of an outgoing particle in a
black hole is accompanied by a particle emerging inside it. A distant observer records
only some of the particles; hence, the radiation of the black hole possesses entropy
and is described by a density matrix (Section 1O.3). There is no event horizon in the
model witha. closed horizon, so that the particles created inside the "black hole" can
leave it after evaporation is completed. As a result, the quantum state could again
be pure from the standpoint of the distant observer. In other words, the growth of
entropy in the external space due to the thermal radiation of the black hole at a
stage when its mass is still much greater than the Planck mass is predicted as being
replaced by a sharp drop to zero at the last stage of decay. (We shall discuss this
possibility in section 15.3.4.)

The analysis above operated in terms of the approximation in which the created
particles are assumed non-interacting and the fluctuations of the gravitational field
are neglected. Both these assumptions seems to fail for the description of the prop
agation of particles in the region close to the internal horizon ED. The interactions
between particles inside a black hole and the scattering of particles on gravitational
field fluctuations are such that particles may "forget" their phases9 and no entropy
decrease occurs when the black hole decays.

15.3.2 Elementary black holes: maximon, friedmon, and so
on

In addition to the scenarios discussed above (the formation of a naked singularity and
a model with a closed horizon in which a black hole burns out completely), another
version is possible in which a residue is left after the black hole has evaporated. An
elementary black hole of a mass of the order of one Planck mass is a possible form of
this residue. to In Figure 15.4, this case would correspond to the following behavior

aWe emphasize that this conclusion is obtained without taking into account the gravitational
field fluctuations. On the p088ible relationship between the fluctuations of the apparent horizon and
quantum radiation of black holes, see Kodama (1980).

90n the mechanism of coherence 1088 in the scattering by quantum-gravity fluctuations, see
Hawking (1984, 1988a,b), Lavrelashvili et aL (1988).

IONote that the existence of heavy magnetic monopoles in nature, as predicted by Grand Unifi
cation Theories, could have a curious consequence for small black holes [Gibbons (1977), Hiscock
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of the F == 0 line: Its outer part being infinitely extended into future never ends
and never crosses the r = 0 line, (In the model without singularity it occurs if the
inner and outer parts of the line F = 0 continue infinitely along the coordinate v,
getting very close to each other or even merging.) An analysis of the spherically
symmetric collapse of a system of less than the Planck mass shows that quantum
effects make the "averaged metric" 91'11 = (gjJlI) everywhere regular. There is no
apparent horizon, and hence no event horizon [Frolov and Vilkovisky (1979, 1981,
1982)]. This result indicates that black holes of less than the Planck mass cannot
exist; that is, if elementary black holes exist at all, their masses must be of the order
of the Planck mass.

Stable elementary black holes of Planck mass [Hawking (1970] may play the role
of the heaviest possible fundamental particles [Markov (1966, 1976, 1981c)). If we
relate the size of a particle with a Compton wavelength· oX = fI./mc, this size is found
to be smaller than the gravitational radius for particles of masses m > mpl. 1I For
this reason, Markov (1965, 1966) proposed the name maximon for such an elementary
black hole.

The problem of stability with respect to quantum decay is one of the basic prob
lems for the hypothesis of elementary black hole existence. A black hole does not
emit Hawking radiation when its temperature vanishes. This occurs if the black hole
is extremal. In Einstein gravity this happens when its parameters-the electric (Q)
and magnetic (P) charges and the angular momentum (J)-are related to the mass
M of the black hole by the formula

2 Q2 + p 2 J2 C2

M == G + G2 M2 . (15.3.9)

Owing to the quantum effect of vacuum polarization, the modification of the Einstein
Maxwell equations may change conditions (15.3.9) for the vanishing of the black hole
temperature. If an extremal black hole is charged or rotating, it still can emit particles
because of the superradiance effect.

Extremally charged elementary black holes12 were considered by Markov and
Frolov (1970, 1972), who showed that because of creation of charged particles they

(1983)). The extremal (with a magnetic charge) black holes of mass M > 150 X (1017 GeV/1')2 g
(I' is the monopole mass in GeV) would have a lifetime greater than that of the Universe because
the Hawking temperature of such a hole is zero and the process of monopole creation is suppressed
owing to their higb mass.

II Note that in this situation the Planck length acts as a sort of fundamental length, It can be
shown [Ginzburg and Frolov (1976)) that, in the most general case, tbe introduction of a fundamental
length yields a restriction from below on the spectrum of possible black holes.

12Note that extremally charged black holes are of great interest for analyzing the problem of
self-energy of charged particles. In the framework of classical theory, the gravitational mass defect
creates a difference between the mass M observed at infinity and the internal mass Moof the system.
If the system is neutral, configurations are possible at a fixed value of Mo at which M is arbitrarily
small [Zel'dovich (1962a)) or identically vanishes (e.g., the case of Mo forming a closed world). In
charged systems (with ch~e q), the value of M is bounded from below by the value q/-IG (for the
magnetic charge, by P/./G) [Amowitt et aL (1963), Markov and Frolov (1970, 1972), Gibbons and
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are unstable unless their charge is less than 137e, where e is the charge of the electron.
The smallest possible elementary black hole with the charge e was called a friedmon
[Markov and Frolov (1970, 1972)]. The mass e/..[G is 1.86 x 10-6 g, less by an order
of magnitude [by a factor (hc/e2)l/2:::: 11.7] than the Planck mass.

More recently interest in the possible remnants of black holes was stimulated
by discussion of the information loss puzzle (see Section 15.3.5). Modifying the low
energy gravity action by introducing dilaton and other fields opens new dimensions of
the problem. For example, the extremal version of the magnetically charged dilation
black hole (13.2.10) (called cornucopin or horned particles) was proposed as a possible
candidate for a black hole remnant [see, e.g., Banks (1995) and references therein].

The elementary black holes (maximons, friedmons, and so on) would have the
smallest admissible mass. A loss of arbitrarily small mass results in their complete
decay. It is logical that this process should yield quanta with a characteristic energy
e '" mpl c2, whose wavelength .x '" h c/e is comparable to their gravitational radius.
Presumably, the approximation based on assuming that new-born particles exert a
negligible effect on the metric is unacceptable under these conditions. When we
are speaking about elementary black holes as possible final state of an evaporating
black hole, we assume that they are stable. Decaying elementary black holes are just
another version of the case 1 (complete evaporation) where the last phase takes a
long enough time.

If nature admits elementary black holes, they possess a number of fascinating
properties [Markov (1966)]. They are characterized by an extremely small interac
tion cross-section of order 10-66 cm2• When a maximon falls in the gravitational field
of the Earth, it gains energy of order 1020 eV. However, it seems to be impossible
to observe maximons, using their ionizing ability, even if they are charged and the
interaction with matter is sufficiently strong because of their low velocities. Maxi
mons are difficult to retain and accumulate in ordinary matter on the surface of the
Earth because the terrestrial gravitational field imparts energy of order 103eVon the
length scale of the intermolecular spacing, which is much more than the energy of
the intermolecular interaction.

As a result of the weakness of interaction between matter and neutral maximons,
a considerable (and even predominant) part of matter in the Universe could consist of
maximons. Thus, maximons could act as the the dark matter which is now recognized
as a reality in cosmology [Markov (1981b}].t3

It appears that the most promising method of searching for maximons is based

Hull (1982), Ludvigsen and Vickers (1983)). A system with large internal mass Mo and small charge
Q « .,fG Mo in its lowest energy state forms a semi-closed world. For example, such a solution can
be obtained by "inserting" the charge into the initially closed Friedmann-Robertson-Walker world
[Markov and Frolov (1970, 1972)J. In this picture the entire internal universe looks like a black hole
remnant to an external observer.

13Strong restrictions on the admissible mean density of maximons in the Universe can be obtained
using arguments similar to those employed in the derivation of the restrictions on the number of
monopoles and other massive particles [see, e.g., Polnarev and Khlopov (1985)J.
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on detecting their decay products. If one assumes the existence of a bound state
of many maximons [Markov and Frolov (1979)] or of a small number of them, for
instance, of a maximon pair [Aman (1983)], a merger of a pair of maximons into one
can be expected in the evolution of such systems, with energy release of order 1028 eV.
Processes of this type could presumably by recorded in DUMAND-type experiments
[for details, see Markov (1981a) and Markov and Zheleznykh (198l)].

15.3.3 Virtual black holes

Elementary black holes, even if they are unstable, are important for particle theory
for at least one more reason. Indeed, when calculations are carried out in modern
quantum theory (for example, calculations of the self-energy of particles), it is usu
ally necessary to take into account the contribution of intermediate states with an
arbitrarily high energy; the result is the familiar divergences. If the gravitational in
teraction of the appropriate virtual particles is included in the calculations, and the
possibility of the appearance of virtual (short-lived) black holes in the intermediate
states is taken into account, these divergences may be removed [Markov (1971)].

Virtual black holes may also appear in the vacuum as a result of quantum fluctua
tions. Quantum fluctuations of the gravitational field are the greater, the shorter the
length scale. The fluctuations of the metric are comparable to the metric itself over
distances of the order of the Planck length. Such fluctuations signal the possibility
of strong deviations from the flat geometry and Euclidean topology. In other words,
continuous creation and annihilation of virtual black holes makes the spacetime on
small scales resemble a soapy foam.

The concept of a foam-like (cell) structure of spacetime, formulated by Wheeler
in the 1950's, was developed by Hawking and his coworkers [Hawking (1978, 1984,
1996), Hawking et al. (1979, 1980), Warner (1982)].

Some interesting applications of these ideas deserve special mention: (l) possible
violation of quantum coherence and the transformation of a pure state into a mixed
one as a result of the interaction of the quantum field with the fluctuations of the
gravitational field [Hawking (1984, 1988a,b, 1996) and Lavrelashvili et al. (1988)], and
(2) non-conservation of the baryon and lepton numbers in the process of interaction
between elementary particles and virtual black holes (the space "foam") [Hawking
(1984)]. Even though the proton lifetime with respect to this process is many orders
of magnitude greater than that predicted in Grand Unification Theories, the very
possibility of such processes may be of fundamental importance, especially in the
discussion of the origin of the Universe.

15.4 Information loss puzzle

The Hawking radiation from a black hole is generated by uncorrelated thermal emis
sion in each mode (Chapter 10). This result is obtained in the semi-classical ap-
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proximation, which is supposed to be good until the black hole has shrunk to nearly
the Planck mass. If the black hole disappears completely in this process, what is
left is just thermal radiation. This occurs even in the case where the initial state
that underwent gravitational collapse into a black hole was a pure quantum state.
This process would correspond to a loss of information. Namely, even if the initial
quantum state were precisely known, we cannot predict with certainty what the fi
nal quantum state will be. The best we can do is to assign probabilities to various
alternatives.

In order to describe this type of process, Hawking (1976b, 1982) pmposed to
generalize quantum mechanics to allow for information loss. He proposed to replace
the unitary S matrix, describing a unitary evolution of the quantum system and
mapping an initial pure state to a pure final state, by a superscattering operator $
which acts on density matrices rather than state vectors. If the initial state of the
system is given by the density matrix jioil and the final density matrix is pfioal, then

(15.4.1 )

Here indices a, b, c and d refer to the states in the Hilbert space of the quantum
system. In the standard quantum mechanics, one has $~t =:: S~ st, where S is a
S-matrix. In the case when information is lost, the superscattering operator $ does
not allow such factorization. The in/ormation loss proposed by Hawking would be a
new feature of quantum gravity, not seen in other quantum field theories.

If Hawking's conclusion is correct, then we cannot simply combine quantum me
chanics and general relativity. Since this is quite a radical step requiring a change of
the fundamental principles of modern theoretical physics, this issue has been much
debated, but it has not been definitely resolved. Here we briefly discuss only some
of the problems and proposals connected with the information loss puzzle. For more
detailed discussion, see the reviews by Preskill (1992), Page (1994), Banks (1995),
Giddings and Thorlacius (1995), and Strominger (1995).

First of all, it must be stressed that Hawking's derivation of the thermal radiation
uses the semi-classical approximation and can be directly applied only to a macro
scopic black hole. This prediction is derived by applying the ordinary dynamical
evolution laws to the quantum field, so that no violation of any principles of local
quantum field theory occurs. The loss of quantum coherence is directly related to the
failure of the final time surface in the external space (after the black hole evaporates)
to be a Cauchy surface.

Zel'dovich (1977b) argued that the indeterminacy connected with the loss of the
information can arise as a result of the semi-classical treatment of the problem. Page
(1980) indicates that the semi-classical approximation would be expected to break
down from fluctuations of the black hole momentum, long before the black hole has
shrunk to the Planck size. Although this particular fluctuation effect would not
help restore the information, it illustrates the importance of going beyond the semi
classical approximation. Nevertheless, for a massive black hole the semi-classical
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approximation does work well for a time long enough to allow the black hole to emit
a considerable part of its entropy. In order to escape the Hawking conclusion, one
must indicate the mechanism by which the lost information is restored.

Since the Hawking suggestion is quite radical, there were a lot of attempts to
escape it by finding a mechanism which preserves the validity of quantum mechanics.
Let us examine some of the alternatives [for more detailed discussion, see Preskill
(1992), Page (1994), and Giddings and Thorlacius (1995)].

1. Information comes out with the Hawking radiation. At first sight, this
possibility looks the most natural. Indeed, we know from our ordinary experience
that burning a book would destroy its information. But this information is lost in
practice because we are not able to keep track of all the correlations for the radiation
emitted in this process. Unfortunately, the case of a black hole is even worse. If a
book is thrown into the black hole and the latter burns completely, the information is
lost in principle, unless the black hole manages to record the information concerning
the book in the Hawking radiation. The main problem here is that the collapse
resulting in the black hole formation precedes in time the beginning of the Hawking
radiation. If in the process of collapse bleaching of the information at the horizon
does not occur, then only macroscopic violation of causality can help to transport
the information from the collapsing body to the outgoing quantum radiation.

2. Information comes out "at the end". The Frolov-Vilkovisky model
discussed above can be used to illustrate this possibility. The collapsing matter
producing the "black hole" as well as the particles created inside the "black hole"
in the Hawking process are accumula.ted inside the inner part of the surface F = 0
(in the region restrided by the line ED at Figure 15.4). After the apparent horizon
disappears, all the matter returns to our space and quantum coherence would be
restored. The stage of the final decay of the "black hole" can require a very long
time [Aharonov, Casher, and Nussinov (1987)]. Garlitz and Willey (1987), and later
Preskill (1992) by a more general argument, showed that the lower bound for the
lifetime of a Planck mass remnant, which contained all the information originally in
a black hole of massM, would be of order

(15.4.2)

This time can be estimated as follows [Preskill (1992)]. The remnant must emit
about N '" S '" (M/mpl)2 quanta to reinstate the information. Since the mass of
the remnant is mpl, a typical quantum has energy m~dM2. To carry the required
information, the quanta cannot be strongly correlated and must be emitted one after
another without overlapping. Since the time of emission of a single quantum is
tPI(M/mp.)2, and the number of emitted quanta N '" M2, the total time is given by
equation (15.4.2). For this scenario, the black hole evaporates to the Planck size in
a time tpl(M/mpl)3, but the black hole remnant disappears only after a much longer
time tPI(M/mPJ)4. For M > lOJOg the latter time is greater than the lifetime of the
Universe. In other words, the remnants of black holes with initial mass M > lOlOg
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are practically stable.
3. The information is retained by stable black hole remnants. In this

scenario, the final state of an evaporating black hole might be some version of the
elementary black hole. Since the initial black hole could have been arbitrarily massive,
the remnant must be able to carry an arbitrary large amount of information. One can
consider it as a particle with an extremely large ('" (M/mpd2 ) number of internal
states. If there exist an interaction of these degrees of freedom with an external world,
one would have the following problem. Consider a thermal ensemble at temperature
T. The probability to have in this ensemble a specific black hole remnant is suppressed
by the factor exp( -mp';T). But if there are an infinite number of species of remnants,
the ensemble would be dominated by these remnants. This objection might not be
so flagrant if the interaction with the internal degrees of freedom is so weak that the
relaxation time in the system exceeds the lifetime of the Universe.

4. The information escapes to "baby universes". In this scenario offered
by Dyson (1976), Zel'dovich (1977a), and Hawking (1988a,b, 1990a,b), the collapsing
body does not produce a true singularity inside the black hole, but rather induces the
nucleation of a closed baby universe. A concrete model for a single [Frolov, Markov,
and Mukhanov (1988)] and multiple [Barrabes and Frolov (1996)] baby universe cre
ation inside the black hole was discussed in Section 14.7. The baby universe is causally
disconnected from our own universe. Yet the information is not lost in the enlarged
system (our universe plus baby universes), and the standard quantum mechanics can
be used in such a "multiverse" picture. The density matrix in our universe arises
for the same reasoR as in the usual quantum mechanics since we dealing only with a
subsystem. Nevertheless, there is still a question how to describe physics in our own
universe. One of the possibilities is when a pure state collapses to form a black hole,
and then evaporates, it evolves to a pure state [Hawking (1990a,b)]. If we repeat this
experiment for the same initial state, we obtain the same final result, so that in this
sense the result is predictable. But we are not able to predict the result from first
principles until we also fix some additional parameters by observations. The number
of these parameters conceivably is of order of exp(S(M), where S(M) is the entropy
of the black hole of mass M. But we still have no mechanism that allows a black
hole to remember the initial state.

5. Quantum hair. Black hole hair provides partial information about the
matter that has formed a black hole. One may say that black hole hair encodes
this information. An interesting example is the quantum hair that we discussed in
Section 13.6. Its energy vanishes so that quantum hair does not affect the black hole
geometry. For this reason, in those theories that have many varieties of quantum hair,
a black hole can store an accurate record of a number of properties of the collapsing
matter. Still it is hard to believe that this solves the information puzzle. The theory
must possess an infinite number of new conservation laws that are still present in the
low-energy limit. The problem is to find such a theory.

Besides these there are a number of other different proposals [see e.g., the review
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by Page (1994)], but it seems that at the moment there is no resolution of the infor
mation loss puzzle that satisfies most of the specialists. If the information is really
lost in black holes as Hawking suggested what might be the consequences of this?
The most extreme point of view is: "The information loss paradox may be a genuine
failing of 20th century physics, and a signal that we must recast the foundations
of our discipline". [Preskill (1992)]. Because we have no idea now how to do this,
it is instructive to begin by analyzing possible consequences of the information loss
assumption.

Beyond the semi-classical approximation one can expect that for almost any ini
tial quantum state there is a non-vanishing amplitude for black hole creation and
evaporation to occur. These processes give rise to a non-vanishing probability for the
evolution of a pure state into a mixed one [Ellis et al. (1984), Ellis, Mavromatos, and
Nanopoulos (1992), Huet and Peskin (1995)]. One would expect deviations from the
ordinary evolution laws in experiments where the energies involved are high enough
for there to be a substantial probability of producing black holes of the Planck mass.
For ordinary systems the interactions producing the decoherence normally provide an
exchange of both entropy and energy with the environment. For this reason, one can
expect that processes involving virtual black holes would violate energy-momentum
conservation. Loss of coherence can be modeled by coupling a quantum system to a
source of random noise. Banks, Susskind, and Peskin (1984) argued that this inter
action results in a failure of energy conservation that would be unacceptably large
at the scales of laboratory physics. These arguments were reanalyzed by Unruh and
Wald (1995) who found a gap in their proof and showed that the rapid evolution from
pure states to mixed states can occur with energy-momentum non-conservation that
is unobservably small for all states which one could expect to produce in a laboratory.

To summarize, at the moment we have no proof that information loss if it occurs
necessarily implies a violation of the physical laws that we should be able to verify in
the laboratory. Nevertheless, one could expect that the attempts to solve this puzzle
would help us to understand better the most fundamental problems of theoretical
physics.



Chapter 16

Black Holes, Wormholes, and Time
Machines

16.1 Topological and Causal Structure of Space
time

One of the most intriguing features of the theory of general relativity is the possible
existence of spacetimes with non-trivial topological structure. The wormhole solu
tions of the Einstein equations described by Wheeler [Misner and Wheeler (1957),
Wheeler (1962)] are well-known examples of spaces with non-trivial topology. The
simplest example of such a spacetime is the Einstein-Rosen bridge described in Chap
ter 2. The spacetimeof an eternal black hole can be considered as the evolution of
the Einstein-Rosen bridge. To the future of the moment of time symmetry the throat
shrinks to zero size and the singularity arises. No causal signal can propagate through
the throat from one asymptotically flat region (R+) to the other one (R+). This prop
erty is directly connected with the non-trivial causal structure of spacetime in the
presence of a black hole.

Three-dimensional geometries containing a wormhole which connect different asy
mptotically flat regions were considered in Section 7.6.3 where the initial value prob
lem for vacuum solutions of the Einstein equations was discussed. By identifying the
asymptotic infinities of different regions, one gets a wormhole connecting separate
regions in the same spacetime. Such a wormhole is shown in Figure 7.5. In the same
manner as in the case of the eternal black hole, in the absence of matter the throat
of the wormhole pinches off so quickly that it cannot be traversed even by light. This
is a generic property of spacetimes with a nonsimply connected Cauchy surface. Ac
cording to the theorem proved by Gannon (1975) [see also Lee (1976) and Galloway
(1983)]:
Any asymptotically flat spacetime with a nonsimply connected Cauchy surface has
singular time evolution if it satisfies the weak energy condition.

597



598 CHAPTER 16. BLACK HOLES, WORMHOLES, AND TIME MACHINES

Moreover, such singularities arise so quickly that no information carrying signal
can propagate through a wormhole to the asymptotic region before creation of the
singularity. One can formulate topological censorship as the statement that no ob
server remaining outside a region with strong gravitational field has time to probe the
topology of spacetime [Friedman, Schleich, and Witt (1993), see also Section 5.2.3].

In order to prevent shrinking of a wormhole and to make it traversable, one needs
to fill its throat with matter violating the averaged null energy condition. This follows
from the above theorem. On the possibility of the existence of matter violating the
weak energy condition, see e.g., Thorne (1993), Visser (1995), and Flanagan and
Wald (1996).

A spacetime with a traversable wormhole (if it exists) can be transformed into a
spacetime with closed timelike curves. Namely, it was shown by Morris, Thorne, and
Yurtsever (1988) and Novikov (1989) that closed timelike curves may arise as a result
of the relative motion of the wormhole's mouths. This possibility in principle to create
closed timelike curves in a spacetime where they were absent initially attracted new
interest to the wormhole-like solutions. From a more general point of view, this result
hints at deep relations between the topological and causal structure of spacetime.

The main features of such spacetimes can be illustrated by considering a simple
model proposed by Morris, Thorne, and Yurtsever (1988). The simplest wormhole is
obtained by removing two balls of equal radius from Euclidean space and identifying
their surfaces. The surfaces then become the wormhole's mouths. In this process
of identification of surfaces their extrinsic curvature jumps. It implies that if such a
spacetime is a solution of the Einstein equations, there must be a delta-like distri
bution of stress-energy at the junction between the two mouths, which violates the
null energy condition. In this particular model, this is obvious because any bundle of
radially traveling null geodesics that passes through the wormhole is converging as it
enters and diverging as it leaves, and therefore gets defocused by the wormhole. One
can make the matter distribution smooth by connecting the mouths by a handle of
finite length instead of gluing them together. In what follows we always assume that
the length of the handle is small enough.

One can construct wormhole spacetimes such that the wormhole's mouths are
moving along arbitrarily chosen world lines by removing world tubes enclosing these
lines and identifying their surfaces with each other. The junction conditions re
quires that the intrinsic geometries of the tube surfaces must be the same. This
may require a distortion of the spacetime geometry near the mouths if they are ac
celerated. But the distortion can be made arbitrarily small by taking the value of
(acceleration)x(mouth radius) to be small enough [Morris, Thorne, and Yurtsever
(1988), Friedman et al. (1990)]. Since the mouths' intrinsic geometries are the same,
the proper time interval between two identified events on the mouths must be the
same as seen through either mouth. Thus, if we specify the identification of events
on two mouths at some initial moment of their proper time, the identification for all
subsequent moments would be fixed.
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Figure 16.1: The chronological structure oC spacetime with a moving wormhole. The
wormhole is Cormed by removing two balls from Euclidean space and identifying their sur
Caces. One oC the wormhole's mouths is at rest, while the other makes a "twins paradox
trip".

Figure 16.': The chronological structure of spacetime with a moving wormhole. One of
the wormhole's mouths is revolving around the other.

In order to accelerate a mouth, one must apply a force to it. This can be done if
the mouths are charged (i.e., if there exists a flux of electric field through the mouth).
In this case, it is sufficient to apply an electric field to one of the mouths. The mouth
is set in motion in the external space. We assume that during this motion the position
of the other mouth in the external space remains unchanged.

Figure 16.1 shows the chronological structure of a wormhole spacetime for the case
where one mouth remains at rest in a chosen inertial frame, while the other (which
initially also was at rest) makes a "twin-paradox-type trip" and returns to its initial
position [Morris, Thorne, and Yurtsever (1988)]. One can choose the clocks located
near both mouths to be synchronized in the external space before the beginning of
the motion. As a result of the motion, the synchronization in the external space is
lost. The moving clock (measuring proper time near one mouth) shows less time than
the clock which remains at rest ("twin paradox"). Denote by ~r this time difference.
If ~T > Lie, where L is the distance between the final positions of the mouths, a
closed timelike curve becomes possible. Denote by C the region formed by events
through which a closed timelike curve passes. The region formed by C and by events
which can be connected with events in C by causal past directed lines is restricted
from the past by the future chronology horizon.
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Figure 16.3: The chronological structure of spacetime with a moving wormhole. The
wormhole's mouths are moving with constant velocities.

Figure 16.2 shows a spacetime with a wormhole in the case where one of the
mouths is revolving around another in the external space [Novikov (1989)]. Closed
timelike curves in this model arise for the same reason as in the above model with an
accelerated mouth. As seen in the external space, there is a dilation of proper time
on the moving mouth relative to the static one, but, as seen through the wormhole,
there is no such time dilation.

Figure 16.3 shows an even simpler model where the mouths are moving with con
stant velocity with respect to each other and closed timelike curves also arise [Morris,
Thorne, and Yurtsever (1988)]. In this case, closed timelike curves are confined to a
bounded achronal region of spacetime: the region that begins at the future chronol
ogy horizon and ends at the past chronology horizon. (The latter is defined similarly
to the future chronology horizon with the obvious change of the direction in time of
the causal curves which enter the definition.)

The formation of achronal regions containing closed timelike curves is a generic
property of spacetimes with wormholes. Generic relative motions of a wormhole's
mouths will always produce closed timelike curves [Morris, Thorne, and Yurtsever
(1988)], as will the gravitational redshifts when the wormhole's mouths are placed in
a generic gravitational field [Frolov and Novikov (1990)].

16.2 Locally Static Multiply Connected Spacetimes

16.2.1 Non-potential gravitational fields

In this section we describe generic properties of wormholes in an external gravitational
field and relate the conditions of closed timelike curves formation with topological
invariants of the multiply connected spacetime [Frolov and Novikov (1990)].

We begin by showing at first that the gravitational field in a locally static multiply
connected spacetime is generically non-potential. A spacetime is called locally static if
in any simply connected region there exists a uniquely defined (up to normalization)
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timelike Killing vector { obeying the relations
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{(,,;v6] =0, (16.2.1)

The first equation is the definition of a Killing vector, while the second equation
means that { is locally "surface orthogonal". In the general case in a multiply con
nected spacetime (e.g., when a wormhole is present), it is impossible to define such
a Killing vector globally. The existence of non-contractible closed paths (i.e., paths
which pass through a wormhole and cannot be contracted to a point by continuous
transformations) may create au obstacle for the existence of a global Killing vec
tor field. In the general case, after continuous propagation of a Killing vector field
along a closed non-contractible path, it will return to the initial 'point having the
same direction as the initial vector but with a different norm. In order to be able to
deal with this kind of situation, it is convenient to introduce a unit timelike vector
u" == {"II eP/2 instead of {. This four-velocity of a Killing observer as well as his
four-acceleration wIt == U

V u";v do not depend on the norm of {, and hence they are
well defined globally. It is easy to verify that the following equations

(16.2.2)

are locally equivalent to (16.2.1). Hence, a locally static spacetime can be equivalently
defined as a spacetime which admits two globally defined vector fields u" and wIt
obeying the relations (16.2.2).

It is convenient to consider a locally static spacetime M as the collection S
of Killing trajectories [Geroch (1971)], i.e., the set of integral lines x"(r) of u"
(dx" Idr = u"). We assume that a unique Killing trajectory passes through each
point of the spacetime M and that M = T x S, where T topologically is RI. One
may refer to S as to the three-dimensional space under consideration. In the pres
ence of a wormhole this space has a non-trivial topology. A non-contractible loop
passing through a wormhole n-times in the chosen direction can be characterized by
its winding number n. Two loops with the same winding number n are connected
by a continuous transformation (are homotopic). These loops are also homological,
i.e., they are boundaries of some two-dimensional surface. In other words, the first
fundamental group 11"1 and the first homology group HI calculated for S (as well as
for the spacetime M itself) coincide with the group of integer numbers Z.

The last equation in (16.2.2) shows that the acceleration form w == wIt dx" is
closed (dw =0). According to the Stokes' theorem, the integral of this form over any
closed path en

(16.2.3)

depends only on the winding number n of the path. One has In = nI. We choose
the direction of the path with n =1 in such a way that I[w] == II[w] $ O.
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Figure 16.4: The clock synchronization in the multiply connected spacetime.

If the period I[w] vanishes, then the form w is exact, i.e., there exists a globally
defined scalar function tp (gravitational potential) such that w = dip. For such a
potential gravitational field the vector field e" = ell' u" is a global Killing vector field.

In the general case (when I[w] =F 0), the gravitational potential Ip cannot be
defined as a single-valued function. Such a gravitational field is called non-potential.
The period I[w] may be considered as the measure of non-potentiality of the field.
The important physical property of a non-potential gravitational field is that the work
done by such a field on a particle moving along a closed contour en passing through
a wormhole does not vanish. This work is proportional to e-1n(wl.

16.2.2 Clo~k synchronization

Before considering the properties of a spacetime with a non-potential gravitational
field, we discuss the quite general problem of clock synchronization in a multiply
connected spacetime. The presence of non-contractible paths makes this problem
non-trivial already in a potential gravitational field. The reason is very simple. In
a static gravitational field, it is possible to synchronize the clocks along any path
lying in a simply connected region. But for the process of clock synchronization
along the closed path passing through a wormhole, one cannot guarantee that the
"synchronized clocks" show the same time as the initial ones. In the general case,
there will be a non-vanishing time gap for the clocks' synchronization along a non
contractible path. The clock synchronization in a multiply-connected spacetime is
illustrated in Figure 16.4

For a potential gravitational field, the value of the time gap for clock synchro
nization in a multiply connected spacetime is a topological invariant. In order to
show this, we introduce the I-form

(16.2.4)
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(16.2.5)

One can verify that this globally defined I-form is closed (dT/ = 0). In fact, using
equations (16.2.2) and the definition of the acceleration, wp =!p,p, we have

T/(P;v} = e-<P [U(p;v1 - !P(,vuPJl =e-<P [W(vUpl - !P(,vuPJl = O.

The integral of the closed I-form T/ over a closed path Cn

J.. [T/] = 1 T/lOn
is a topological invariant depending only on the winding number. We now show that
the value of I n[T/ ] coincides with the time gap for clock synchronization along a closed
path with a chosen winding number n.

For this purpose, we choose a point Po and denote by 1'0 a Killing trajectory passing
through this point (see Figure 16.4). Consider now a curve urlPo], which begins at Po,
passes once through the wormhole, and ends at the point rio lying on the same Killing
trajectory as Po. We assume that urlPo] is everywhere orthogonal to the four-velocity
of a Killing observer. The latter condition means that the curve urlPoJ is formed by
the events which are simultaneous (in the reference frame of Killing observers) with
the initial event Po. The projection r of this line into the space S is closed, but in
the general case the line itself is not closed (see Figure 16.4). We add the part of
a Killing trajectory lying between Po and rio to this curve to make it closed. The
evaluation of the integral (16.2.3) for this closed path with a winding number n = 1
is quite simple. Only that part of the path lying along the Killing trajectory gives
a non-vanishing contribution. As a result, the value of the integral Jd T/ ] calculated
for the chosen path coincides with the time gap for the clock synchronization along
this path. It is now evident that Jd T/] does not depend on the particular choice of
path with the given winding number n =1 and that I n[T/] =nJd T/ J.

In a non-potential gravitational field, the time gap ~1 (TO) == TO - Tl for clock
synchronization is no longer time independent (see Figure 16.5). It can be shown
[Frolov and Novikov (1990)] that it satisfies the equation

d~l(TO) = 1 _ eI(wl. (16.2.6)
dTo

This relation shows that the time gap for clock synchronization along any closed path
with a winding number n =1 grows with time, and the value I[w] may be considered
as the measure of this growth. As soon as the gap becomes greater than the minimal
time needed for a light signal to propagate along a closed path passing through the
wormhole and return, a closed timelike curve can arise.

Frolov and Novikov (1990) demonstrated that the interaction of a wormhole with
classical matter generically generates a non-potential component of the gravitational
field. That is why a locally static wormhole is generically unstable with respect to the
processes which transform it into a "time machine". Relative motion of the worm
hole's mouths also generates a time gap for clock synchronization [Morris, Thorne,
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Figure 16.5: Clock synchronization in a multiply-connected spacetime with a non-potential
gravitational field. Points Po and I/o are located on the same Killing trajectory. The lines
lTr[Pol and lTr[ qD] represent sequences of events, along the closed spatial path r, which
are simultaneous with the initial events Po and I/o. These lines intersect the initial Killing
trajectory at points p'0 and q'o' If the gravitational field is non-potential, the difference of
proper time between p'0 and q'D is not equal to the difference of proper time between Po
and I/o.

and Yurtsever (1988)]. One can interpret the above results in the following way. There
exist inner relations between the topological and causal properties of a spacetime. The
existence of closed timelike curve is a generic property of multiply connected locally
static spacetimes [see also Visser (1995)].

16.3 Spacetimes with Closed Timelike Curves

16.3.1 Chronology horizon

In this section we discuss some general properties of spacetimes with closed timelike
curves (for more details see [Friedman et al. (1990), Hawking (1992), Thorne (1993),
and Visser (1995)J.

Solutions of Einstein's equations which allow closed timelike curves have been
known for a long time. The earliest example of such a spacetime is a solution ob
tained by Van Stockum (1937), which describes an infinitely long cylinder of rigidly
and rapidly rotating dust. Another well-known example is Godel's (1949) solution
representing a stationary homogeneous universe with nonzero cosmological constant,
filled with rotating dust. Closed timelike curves are also present in the interior of
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the eternal Kerr black hole in the vicinity of its ring singularity. Other examples of
spacetimes with closed timelike curves were discussed by de Felice (1981).

In the general case, a spacetime can be divided into chronal regions, without
closed timelike curves, and achronal regions that contain closed timelike curves. The
boundaries between the chronal and achronal regions are formed by chronology hori
zons. Chronal regions end and achronal region begins at a future chronology horizon.
Achronal regions end and chronal region begins at past chronology horizon. Thus,
achronal regions are intersections of the regions bounded by both of these horizons.
A future chronology horizon is a special type of future Cauchy horizon, and as such
it is subject to all the properties of such horizons. In particular, it is generated by
null geodesics that have no past endpoints but can leave the horizon when followed
into the future. If the generators, monitored into the past, enter one or more com
pact regions of spacetime and never thereafter leave them, the future chronology
horizon is said to be compactly generated. In a wormhole model with closed timelike
curves, .the future chronology horizon is compactly generated. The inner horizon of
a Kerr-Newman solution is an example of a Cauchy horizon that is not compactly
generated. A compactly generated chronology horizon cannot form in a spacetime
developed from a spacelike non-compact surface without boundary if the null energy
condition holds [Hawking (1992)].

The past-directed generators of the compactly generated future chronology hori
zon have no past end points. They will enter and remain in a compact region C.
Hawking (1992) showed that there exists a nonempty set E of generators, each of
which remains in the compact set C in the future direction, as well as in the past
direction.· The sets E generically contain at least one closed null geodesic. More
exactly, Hawking (1992) proved that:

1. If E contains such a closed null geodesic, small variations of the metric preserve
this property.

2. If E does not contain a closed null geodesic, then in geometries obtained by
small variation of the metric such curves do exist.

The generators traced into the past either wander ergodically around C or they
asymptote to one or more smoothly closed geodesics. In the latter case, followed
forward in time they are seen to originate in fountains and spew out of them. That is
why Thorne (1993) proposed to name such closed null geodesics fountains. Hawking's
result indicates that in the generic case, C will contain such fountains, and it is likely
that generically almost all the horizon generators will emerge from them [Thorne
(1993)].

16.3.2 Possible obstacles to creation of a time machine

In order to create a time machine (region with closed timelike curves) by using a
wormhole, one needs to assume that there exists the principle possibility to make
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them long living and traversable. This is impossible without violation of the averaged
null energy condition. Moreover, the averaged null energy condition must be violated
near the fountain of any compactly generated future chronology horizon [Hawking
(1992)]. This means that it is impossible to create a time machine in a finite region
of space time without violating the averaged null energy condition.

It is unclear whether it is possible to provide such a violation in physically ac
ceptable conditions. It has been shown that the averaged null energy condition is
satisfied for lion-interacting quantized scalar and electromagnetic fields in flat space
time [Klinkhammer (1992), Folacci (1992)], and in generic, curved (l+I)-dimcnsiollal
spacetimes [Wald and Yurtsever (1991)J. On the other hand, in (3+1)-dimensional
spacetime, both non-trivial topology [Klinkhammer (1992)J and curvature [Wald and
Yurtsever (1991)J can induce violations of the averaged null energy condition. More
over, in the latter paper it was shown that there are generic classes of spacetimes
where quantum effects may violate the averaged null energy condition. Under these
conditions, it is impossible at least for now to exclude the possibility of such a vi
olation of the averaged null energy condition required for time machine creation.
Later, Flanagan and Wald (1996) investigated whether the averaged null energy
condition holds for self-consistent solutions of the semi-classical Einstein equations
RaP - ~ RaP = 8'1r(T..p) where (T"p) is the expectation value of the renormalized
stress-energy tensor of quantum fields. They studied a free, linear, massless scalar
field with arbitrary curvature coupling in the context of perturbation theory about
the vacuum solution. They argued that probably if traversable wormholes do exist as
self-consistent solutions of the semi-classical equations, they cannot be macroscopic
but must be Planck scale.lsee also Ford and Roman (1990, 1992, 1993, 1995, 1996)].
Still the question is open for the case of general -conditions. Precise conditions under
which quantum field theory permits the required violation of the averaged null en
ergy condition are less than pellucid. This remains an area of active research [Visser
(1995)].

If there are no eternal traversable wormholes in the Universe, then in order to
create a time machine by the proposed mechanism, one needs first to create a worm
hole. In the absence of wormholes, the space initially (on some spacelike surface 8)
was simply connected. If a wormhole is created, then a later spacelike surface 8 ' has
different spatial topology. If the processes connected with time machine formation
are restricted to a spatially bounded region, then it is natural to assume that one can
surround this region by a timelike cylinder T which intersect the spacelike surfaces 8
and 8' in compact regions 8T and 810 of different topology. In other words, the topol
ogy change occurs in a spacetime region MT bounded by 8,8', and T. In the absence
of singularities and the impossibility for MT to extend to infinity, MT is compact.
Hawking (1992) proved "that the change of spatial topology inside MT is impossible
until it contains closed timelike curves. This is a generalization of a well-known the
orem by Geroch (1967). This result means that even creation of a wormhole cannot
be possible without creation of a time machine. Whether it is forbidden by some
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fundamental physical laws remains unclear.
There is another danger: quantum instability of the compactly generated future

chronology horizon. We postpone the discussion of this problem to Section 16.5, and
we now discuss the problem whether it is possible to have any reasonable physics in
a spacetime with closed timelike curves.

16.4 Classical Physics in the Presence of Closed
Timelike Curves

In this section we discuss whether and how the laws of physics can deal with closed
timelike curves. Usually one worries that the laws of physics cannot deal reasonably
with a time machine. The crucial problem here is the problem of causality. The
existence of closed timelike curves allows one to travel into the past. At first sight, it
inevitably leads to the possibility of changing the past, thereby producing causality
violations. But it is not so.

In order to escape possible contradictions, it is necessary to impose the principle of
self-consistency. This principle was proposed and discussed in the works by Novikov
(1983), Zel'dovich and Novikov (1975), Novikov and Frolov (1989), Friedman et at.
(1990), and Novikov (1992).1 The meaning of this principle is the following.

In the case of an open timelike curve, any event x divides the other events on this
curve into two sets: future events and past events with respect to x. All past events
can influence x, but future events cannot. On a closed timelike curve the choice of
the event x divides other events on the curve into future events and past ones only
locally. In this case, events which locally are in the future with respect to x can
influence the event x circularly around the closed timelike curve. There is no global
division of events on the closed timelike curves into future and past. The future
influences the present around the closed timelike line, with a locally future-directed
half of a light cone at each event of the closed curve. Not only the future is a result
of evolution of the past, but the past is a result of the future also. All events in
a spacetime with closed timelike curves must be self-consistent. According to the
principle of self-consistency, all events on closed timelike curves influence each other
around the closed timelike line in a self-adjusted way.

A more precise formulation of this principle is: the only solution to the laws
of physics that can occur locally in the real Universe a.re those which are globa.lly
self-consistent.

The principle of self-consistency by fiat forbids changing the past. All events
happen only once, and cannot be changed.

In order to demonstrate how this principle works, we shall consider the so-called
billiard ball problem [Friedman et al. (1990), Echeverria, Klinkhammer, and Thorne

IFor discussion of other approaches to the problem of consistency, see Visser (1995).
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Figure 16.6: The self-inconsistent
evolution in the billiard ball problem.

Figure 16.7: The self-consistent evo
lution in the same billiard ball prob
lem as in Figure 16.6.

(1991), Mikheeva and Novikov (1993)1, which is the following: A solid perfectly elastic
ball moves relative to the mouths of the wormhole. Its speed is assumed to be small
compared with the speed of light so it can be treated non-relativistically. The ball
enters the wormhole through mouth B, emerges from A in the past and, continuing
its motion, it can encounter and collide with itself.

At first glance, there is a "paradox" in this problem [Polchinski (unpublished)l.
The initial position and velocity of the ball are chosen so that the ball moves along
the trajectory 01 (see Figure 16.6), enters mouth B, and exits from mouth A earlier
in time than it entered into B. The ball continues its motion along the trajectory
02.2 The timing is just right for the ball to hit itself at the point Z, knocking its
"younger" self along trajectory 03 and thereby preventing itself from ever reaching
mouth B. Such an evolution is not self-consistent, and hence it is impossible. It is
not a solution of the evolution equations.

The mistake (the reason for the "paradox") is obvious: When at the beginning
of our discussion we continued the trajectory 01 after point Z, we did not take into
account the influence of the impact and considered the motion of this ball after the
passage of the mouths B and A along the trajectory 02 without taking into account
this impact. This means that we did not take into account the influence of the future
on the past.

Echeverria, Klinkhammer, and Thorne (1991) demonstrated that for the same
initial data which give a self-inconsistent "solutions" there exist also self-consistent
solutions. The self-consistent solution is shown in Figure 16.7. The initial data
(initial position and velocity of the ball) are the same as in Figure 16.6. The part of
trajectory 01 before the collision with the "older" self coming from the future is the
same. This "older" ball moves along trajectory /32 which differs only slightly from the
path 02 in Figure 16.6. The "older" ball on /32 strikes itself on 01 gently, deflecting
itself into the slightly altered trajectory /31, This altered trajectory f31 takes the ball
into the mouth B at a slightly altered point compared to the point in the Figure 16.6.
The ball exits from the mouth A before it went into mouth B, and moves along the

2The trajectory a2 is well defined if the trajectory a\ is given (see Echeverria, Klinkhammer,
and Thorne (1991)).
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trajectory /32 to the collision event. This solution is self-consistent.
The general method of construction of the self-consistent solutions is the following.

Let us forget for a moment that the "older" ball is from the future and, during
its motion after appearance from the mouth A we will treat it as a normal ball
independent of the "younger" one. Let us suppose that we know the moment t2 and
place X2 of its emergence from the mouth A and its velocity V2 at t2 . We can treat
them as "initial conditions" for the "older" ball. Now using the standard physical
laws we can calculate the collision between the "younger" and "older" balls. This
allows us to get the change of the trajectory of the "younger" one, as well as the place
Xl> velocity Vl> and the moment tl of its arrival to the mouth B. Of course Xl> Vl>

and tl are function of X2, V2, and t2 (as well as of the initial data for the "younger"
ball). Now we must take into account that the "older" ball is the "younger" one
returned from the future and that X2, V2, and t2 are not arbitrary but are determined
by the motion of the "younger" ball. Thus, because we know the laws of passage
through the time machine, we can express X2, V2, and t2 in terms of Xl> Vl> and tl •

Thus, we have a system of equations allowing us to calculate all motions if the initial
data are specified.

The natural questions are: 1) Does a solution to this system exist for any initial
conditions? and 2) Is this solution unique?

A positive answer to the first question was obtained by Echeverria, Klinkhammer,
and Thorne (1991) for an ideal elastic billiard ball and by Mikheeva and Novikov
(1993) for an inelastic one. The answer to the second question is not trivial. Namely,
Echeverria, Klinkhammer, and Thorne (1991) demonstrated that in the general case
for the same initial conditions there could. be an infinite number of self-consistent
solutions. These solutions include a number of wormhole traversals. Figure 16.8
illustrates some possibles examples. On the other hand, there exist initial data for
which there is only one solution. For example, a ball initially at rest far from the
wormhole has only one solution to its equations of motion; namely, it remains forever
at rest. One can argue that there is a single solution for any ball with an initial speed
small enough and an initial path of motion that, if extended forever, remains far from
the wormhole. Echeverria, Klinkhammer, and Thorne (1991) tried to find initial data
which do not allow any self-consistent solutions at all, but none were found.

What does the multiplicity of self-consistent solutions mean? Does it have any
physical meaning or does it simply indicate that the laws of physics cannot deal with
time machines in a reasonable way?

There is no definite answer. But we know that physics is quantum mechanical
(not classical) by nature. If one considers the classical problem as a limiting case
of the quantum one, then the Cauchy problem turns out to be well posed in the
formalism of quantum mechanics [Klinkhammer and Thorne (unpublished)].

So far we discussed plane motions of billiard balls. A three-dimensional bil~

liard problem with a time machine was discussed by Mensky and Novikov (1996a).
Slightly noncoplanar initial trajectories were discussed by Echeverria, Klinkhammer,
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Figure 16.8: A specific example of an initial trajectory with infinite number of self
consistent solutions. (a) A trivial solution. (b) A solution with one collision and one
wormhole traversal. (c) Another solution with one collision and one wormhole traversal.
(d) A solution with one collision and two wormhole traversals. (e) A solution with one
collision and three wormhole traversals. (Greek letters indicate the order of a ball motion
in its proper time.) This set can be continued to infinity.

and Thorne (1991). In Classical physics more complicated interacting systems than
the billiard ball have been investigated [for example, see Novikov (1992), Lossev and
Novikov(l992), Novikov (1993)1. Originally it was believed that at least for some
initial data self-consistent evolution does not exist at all. But so far no clean exam
ple of such a thing have been exhibited. In the work by Carlini et al. (1995) it was
demonstrated that for a billiard-ball problem the principle of self-consistency directly
follows from the principle of least action, in which the initial and final positions of
balls are fixed. This result motivates the authors to formulate the conjecture that
the "principle of self-consistency" is a consequence of the "principle of least action"
in the general case for all physical phenomena, not only for the simple mechanical
problem considered there. Carlini and Novikov (1996) extended the analysis to the
case of point-like "billiard balls" moving with relativistic velocity. It was shown that
for the case under consideration the only possible trajectories for which the action is
extremal are those which are globally self-consistent. This gives additional support
for the conjecture.
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16.5 Chronology Protection Conjecture

The chronology horizon seems to be stable against classical perturbations [Morris et
al. (1988), Friedman et al. (1990)]. For quantum fields, because of the existence of
zero-point fluctuations, which cannot be isolated or suppressed, the situation is quite
different: The renormalized vacuum stress-energy tensor diverges near the future
chronology horizon. This result follows from works of Kim and Thorne (1991), Frolov
(1991), and Hawking (1992) [see also Thorne (1993), Lyutikov (1994), Visser (1995)].
Here, following the paper [Frolov (1991)], we demonstrate this result for a locally
static spacetime with a wormhole, where a time machine is formed because of the
non-potentiality of the gravitational field. The consideration in this case is somewhat
simpler, but it allows us to demonstrate the main line of argument used in other cases.

Consider the amplitude G(x, x') of a quantum particle propagating from a point
x to a point x'. This amplitude G(x, x') can be presented as a Feynman integral over
all trajectories connecting these points. For nearby points in a multiply-connected
spacetime, besides trivial paths, there exist homotopically non-equivalent classes of
paths enumerated by an integer winding number n. In the geometrical optics ap
proximation, the main contribution to the Feynman propagator is given by narrow
tubes of paths located near geodesics connecting x and x'. In the limit x' ~ x, the
trivial direct path contribution diverges. This results in a divergence of the vacuum
expectation value of the stress-energy tensor (Tl'v). This divergence exists already
in a topologically trivial flat spacetime. According to the standard renormalization
scheme, this divergence is to be subtracted. Besides the regular part remaining after
subtraction of the n = 0 contribution, the renormalized stress-energy tensor ( Tp,v)'en
in a multiply connected spacetime in the geometric optics approximation contains
also contributions from closed geodesics with non-vanishing winding numbers. In the
region lying to the past of the future chronology horizon these additional geodesics
(with n =f:. 0) are spacelike and their contribution generally remains finite. But slightly
above the future chronology horizon these additional geodesics become null. Namely,
consider a locally-static multiple-connected spacetime. For a chosen number nand
for a chosen Killing trajectory, there exists a point Pn lying on it and a null geodesic
which begins at Pn, passes through the wormhole exactly n times in a chosen direc
tion, and returns to the initial point Pn. The directions of initial and final tangent
vectors of these null geodesics are not necessarily the same. The points Pn for a given
n form a so-called nth polarized hypersurface Hn . The hypersurfaces Hn lie above
the chronology horizon, and for n ~ 00 the set of Hn is concentrated near it [Kim
and Thorne (1991)].

We now demonstrate that the existence of closed null geodesics with n =f:. 0 near
the chronology horizon results in the divergence of (Tl'v)'en near the chronology
horizon [Kim and Thorne (1991), Frolov (1991)].

For simplicity, we restrict ourselves to consideration of the quantum theory of a
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scalar massless field <P obeying the equation

(16.5.1)

where R is the scalar curvature, and the parameter { takes the value 1/6 for a con
formal invariant field. There are two equivalent ways of quantizing the field <P in a
multiply-connected spacetime. The first is to work directly with solutions of equa
tion (16.5.1) in the spacetime M. The second approach uses the universal covering
space if [Schulman (1968), Dowker (1972), Dowker and Banach (1978), Banach and
Dowker (1979a,b)]. The discrete /iroup of isometries r which is isometric_to the fun
damental group 7r1 (M) acts on M from the left, and the quotient r \ M coincides
with the original spacetime M. The universal covering space if is simply connected
by definition. That is why if admits a global Killing vector field even though the
Killing vector is not globally defined on the multiply-connected locally static space
time M. The existence of a global Killing vector field in if makes it possible to
separate naturally the positive and negative frequencies and to develop the standard
scheme of quantization. The physically interesting results in the spacetime M can
be obtained by projecting the field theory in if onto the field theory on M.

The basic idea of this projection is to identify M with a fundamental domain r \ if
and regard a field theory on M as a field theory on if obeying certain conditions.
Because the change of the fundamental domain is a symmetry transformation and
the metric ds2 on if is invariant under these transformations, E r, invariance of
the field action implies

<P(rx) = a(1') <P(x). (16.5.2)

The group property of r gives ab} '2) = a(-Yd a(1'2)' A field <Jl on if obeying
condition (16.5.2) is known as an automorphic field.

The Hadamard function G1(x, x') in the physical spacetime M is connected with
the Hadamard function ijI (x, x') in the universal covering space if by the relation
[Banach and Dowker (1979a,b)]

G1(x, x') = L o(-y-I) Cd (x, l' x') .
'"fEr

(16.5.3)

(16.5.4)

If one applies the operator

_ 1 IIp' 1
DI'II - "2 ("2 - {)(\71" V'II +V'I'V'11') + (e - 4") gl'lIV' pV' -"2 e(V'I' V' II +V' 1" V'II')

+~egl'lI (V'PV'P + V' p' V'P') +ie[RI'II - i(1 - 30gl'II R]

to GI (x, x'), subtracts the divergences, and takes the coincidence limit x' = x, then
one obtains the renormalized stress-energy tensor (T,lIIyen in a physical spacetime
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(see Christensen (1976,1978), Birrell and Davies (1982) and Section 11.1). It should
be emphasized that the divergences, which are to be subtracted are uniquely specified
by the local geometry, so that they are the same for M and if. That is why the
reBormalized stress-energy tensor in the physical spacetime M can be written as

where

TI'''(x) == 2:' T;II(x),
n

(16.5.5)

(16.5.6)

The prime in the sum indicates that the term with n == 0 is omitted from the sum
mation. The universal covering space if is a regular static spacetime, and generally
(TI',,)~n is regular and finite.

We now demonstrate that additional contributions r;lI(x) to the stress-energy
tensor connected with the non-trivial topology of M are divergent near the nth
polarized hypersurface. To show this we choose a point Xo on Hn and deBote by
Cn a Bull geodesic in if connecting Xo and Xo n == -ynxo. We assume that Cn lies in
some causal domain 11[Cn], so that the Hada~ard function ijI allows the following
expansion [ Hadamard (1923), DeWitt and Brehme (1960), Friedlander (1975)J

G1(x,x') == A
4

1

/
2

2

[-(1 ) + v(x,x') In IO'(x,x')1 + w(X,X')] , (16.5.7)
7r 0' X,X'

where .O'(x, x') == i S2(X, x'); s(x, x') is a geodesic interval, and A = A(x, x') is a Van
Vleck-Morette determinant. The functions v and ware finite in the coincidence limit.

Consider now points xl' =x~ - lSt{l'(xo) and x~ == ')'nxl' = x~,n - lStAn{l'(xo,n)
located on the Killing trajectories passing through Xo and XO,n' For these points
O'(x, xn) ~ lSt. The leading (divergent as lSt ~ 0) part of r;1I is of the form3

AJ~ 1
T:" ~ 12 7r2 O'=(x, x

n
) [0'1" 0'" + 0'1' 0'11' - ~ gl''' 0'P O'P' - 2 (0'1' 0'" + 0'1"0'",) J.( 16.5.8)

This relation shows that T;" is divergent near the nth polarized surface and this
divergence is of order (lSt)-3. Near the chronology horizon (for large n) the renor
malized stress-energy tensor describes null fluid propagation with a energy density
diverging to infinity at the horizon. [For more detailed discussion of the divergence
structure, see Frolov (1991).]

To summarize, we have shown that in a non-potential gravitational field of a lo
cally static spacetime with a wormhole the renormalized stresscenergy tensor (Tp"yen
is divergent near each of the polarized hypersurfaces Hn . This result is in complete
agreement with the result of calculations of Kim and Thorne (1991) who obtained the

3For simplicity, we write the result for a non-twisting (o(-y) =1) conformal U=1/6) massless
field.
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renormalized stress-energy tensor near a chronology horizon for the model of moving
wormhole's mouths in a flat spacetime.

The divergence of the renormalized stress-energy tensor near a chronology horizon
means that the backreaction of the quantum effects on the background geometry is
to be taken into account and one needs to consider a self-consistent problem which
includes quantum effects. It is possible to make quite general remarks conceruillg
the possible properties of such solutions. First of all, if we really believe ill the
one-loop result and assume that there exist only one massless scalar field, thell we
may conclude that time-machine formation is forbidden by quantum effects. In our
concrete model, according to classical theory, a time machine is formed due to the
non-potentiality of the gravitational field of a wormhole. The negative energy flux due
to the vacuum polarization is directed in such a way that it automatically reduces
the non-potentiality of the field. As long as no singularity arises, then this effect
acts until the gravitational field becomes potential. In other words, the backreaction
either prevents the formation of the chronology horizon or destroys it by creating a
singularity.

In reality there exist many physical fields of different spins. The general cOllclusion
about the divergence of the renormalized stress-energy tensor near the chronology
horizon evidently remains valid also for massive fields because the leading (divergent
at small geodesic distances) part of the massive propagator has the same singularity
as for massless case. The sign of the vacuum energy density depends on the spin of
the field and has the opposite sign for fermions. Nevertheless, the mutual cancellation
of divergences for bosons and fermions is impossible [Klinkhammer (1992)]. If the
contribution of fermions is dominant, the resulting flux of positive mass increases the
non-potentiality of the gravitational field until a singularity is created.

One may expect a cutoff of the divergence due to quantum gravity effects, but
no calculations have been done to prove it. Different estimations for this cutoff were
proposed by Kim and Thorne (1991) and by Hawking (1992). For the more invariant
cutoff proposed by Hawking, the curvature of the spacetime due to quantum effects
must reach the Planckian value which effectively is to be considered as a singularity in
the framework of the classical theory. Summarizing these results, Hawking proposed
the chronology protection conjecture: The laws of physics do not allow the appearance
of closed timelike curves.

This conjecture is unproved. There are examples in two and four dimensions,
where for a special choice of state of a quantum field, (TJW )nlQ remains finite at
the chronology horizon [Sushkov (1995), Krasnikov (1996)J. Recently, Visser (1997)
demonstrated that even for a general choice of the state, the singularity of (Tp"yen
can be made weaker if instead of one wormhole a number of wormholes are used.
For special relative positions of the wormhole's mouths, and a large number N of
wormholes, there is an additional factor (6/L)2(N-I) in the expression for the stress
energy tensor (6 is the radius of the mouths, and L is the distance between them).
This factor is connected with the defocusing effect, and formally arises from the



Conclusion

Why are the problems of black holes so important for modern physics and astro
physics? The answer is obvious: black holes are absolutely unusual objects. They
are neither material bodies nor radiation fields. Black holes are clots of gravity. One
may say that black holes open for us a door to a new very wide field of study of the
physical world.

Some 30 years ago, very few scientists thought that black holes may really exist.
Attention focussed on the black hole hypothesis after neutron stars had been dis
covered. It was rather surprising that astrophysicists immediately 'welcomed' them.
Black holes found their place not only in the remnants of supernova explosions but
also in the nuclei of galaxies and quasars.

The question about the cosmological role of small black holes became especially
important afterHawking's discovery of the quantum evaporation of black holes. The
hypothesis of elementary black holes (maximons) is interesting not only in its cos
mological consequences but also in the aspects concerning particle physics. In all
likelihood, virtual black holes will be an important element of the future quantum
theory of gravitation. The investigation of the properties of black holes revealed
profound relationships between gravitation, quantum theory, and thermodynamics.
This progress (and especially the fact that the theory of black holes participating
in physical processes requires qualitatively new ideas) has brought about the growth
of an essentially novel branch of physics during the past 15 to 20 years; black-hole
physics with its own object of study and its inherent problems. These problems are
often of a very fundamental nature, while the object is so astonishing that this new
field attracted quite a few researchers.

We wanted this book to explain the main phenomena in black hole physics. We
fully understand that some aspects of this field deserve a more detailed presentation
than we were able to provide. We feel slightly justified because incompleteness fre
quently reflects the current situation in the theory. Black-hole physics is a young
and rapidly progressing science. We hope that this development will not only clarify
the puzzling aspects but also make physicists happy with new, even less predictable
results.

617
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Van Vleck-Morette determinant An in (16.5.8). Kay, Radzikowski, and Wald (1997)
proved that even if the singularity of the averaged stress-energy tensor near the
chronology horizon could be smoothed or be absent for a special choice of state of
a quantum field, (Tl'v)ren is always ill defined at least at some points of the horizon
since the point-splitting prescription cannot exist, and in fact must diverge in some
directions. This result can be viewed as supportive of the chronology protection
conjecture (see also Cassidy and Hawking (1997)).

16.6 Quantum Theory and Time Machines

We have discussed the role of quantum effects (vacuum polarization) in the process
of time machine formation. But there is another more general aspect of the prob
lem. Namely, we may assume that a time machine exists. Is it possible to formulate
quantum mechanics in such a world? Though this problem appears to be very com
plicated, the study in this direction has proved to be fruitful. This interesting subject
goes far beyond the scope of the book, so that we confine ourselves to brief remarks
and to giving the corresponding references.

First of all, in the presence of a time machine there is no well-defined global
time. As a result, it is impossible to determine a quantum state at given moment of
time and to write the Schrodinger equation describing evolution of a quantum state in
time. Nevertheless, the Feynman's sum over histories approach can be used to obtain
the amplitude of transitions (for example, from one spacetime point to another). It
turns out that for non-relativistic particles [Politzer (1992)] and also for relativistic
fields [Friedman et al. (1992a,b)], this approach enables one to compute unique
probabilities for the outcomes of all measurements that one might reasonably try to
make, even in the achronal regions of spacetime. However, if the particles or fields are
self-interacting, quantum theory in the presence of time machine is peculiar. If a time
machine was "operating" only during finite period, and there exist initial and final
regions with the usual causal properties, nevertheless, the transition matrix from the
initial region to the final region is non-unitary for an interacting field theory, order
by order in perturbation theory [Politzer (1992), Boulware (1992), Friedman et al.
(1992a,b)J. One might have standard Hamiltonian quantum mechanics in the chronal
future domain, but only under the condition that the future influences probabilities
in the chronal initial region [Friedman et al. (1992a,b)J. In this kind of situations
the approach based on the generalized quantum theories developed by Hartle (1994,
1995) might be appropriate. For other aspects of quantum theory in the presence of
a time machine, see also Hawking (1992), Deutsch (1992),Thorne (1993), Goldwirth
et al. (1994), Mensky and Novikov (1996b).

These remarks might be important for the discussion of the role of quantum
effects for time-machine formation. In the above discussion of quantum effects, it
was implicitly assumed that before formation of the chronology horizon formation
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the standard local causal quantum field theory is valid. The situation would be
completely different if it turns out that a non-contradictory quantum mechanics in
a spacetime with closed timelike curves is possible only if there exist some global
acausal restrictions on the choice of states and their evolution which modify the
standard equations not only in regions with closed timelike curves, but also in the
regions lying to the past of the chronology horizon. In this case, the above conclusions
concerning the behavior of the renormalized stress-energy tensor near the chronology
horizon might fail. In any case, a proof of the chronology protection conjecture (if it
is valid) might require further development of the theory.



Appendix A

Mathematical Formulas

In this appendix, we have collected the most important formulas of Riemannian
geometry and general relativity that are used throughout the book. We only list
the main relations and give very brief comments because the derivations of these
formulas and all necessary clarifications can be found in the available textbooks and
monographs [see, e.g., Landau and Lifshitz (1975), Misner, Thorne, and Wheeler
(1973), Hawking and Ellis (1973), Kramer et al. (1980), Vladimirov (1982), Wald
(1984)J.

A.I Differential Manifold. Tensors

An n-dimensional, em, real manifold M is a set of points together with a collection
of subsets {On} satisfying the following properties:

1. Each point p EM lies in at least one On, Le., the {On} cover M.

2. For each cr, there is a one-to-one, onto, map .,pn : On ~ Un, where Un is an
open subset of RR (Euclidean n-dimensional space).

3. If any two sets On and Op overlap, we can consider the map .,pp 0.,p;;1 (0
denotes composition) which takes points in .,pn[On n Op] C Un C Rn t.o points
in .,pp[On n OpJ C Up eRR. We require this map to be em, i.e., m-times
continuously differentiable.

EaclI map .,pn is generally called a chart by mathematicians and a coordinate
system by physicists. The collection of all charts is called an atlas. The map .,pp 0.,p;;1
describes the transition from one ("old") coordinate system to another ("new") one.
If xl-' are n numbers labeling points in Un, and x',,' are n numbers labeling points in
Up, then the transition from one coordinate system (chart) to another one is given
by functions x',,' = x',,' (x"). The requirement that this transition is given by smooth

619
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functions allows one to use differential equations to describe the physical laws. For
simplicity, we assume that m = 00.

A k-times covariant and i-times contravariant tensor T at point p of M in each
coordinat.e system x/l which covers p is described by nk+l numbers Tt.~::~' (its com
ponents), and for any two such coordinate systems the components of T are related
as

Symmetrization 1(/lI.../l,) and antisymmetrization 1(/lI ... /l.) of a tensor T/lI ... /l,:

T(/ll ... /l,) = ~ L T/lI .../l, ,
p. oYer.1I

permutatIons
(PI.···.P,)

1(/lI .../l,) = pl L (_I)J T/lI .../l, ,
over all

permutations
(PI.···,P,)

where J =°if the permutation is even, and J = 1 otherwise.

(A.l)

(A.2)

(A.3)

A.2 Metric. Space and Time Intervals

A spacetime in general relativity is described as a four-dimensional differential man
ifold with a metric 9 on it. Points of this manifold correspond to different physical
events. A spacetime metric 9/lv is a non-degenerate symmetric covariant tensor field
which has signature (- + + +) . We use the following notations for indices:

• Greek indices Q, {3, run through the values 0,1,2,3.

• Roman indices i,j, run through the values 1,2,3.

A smooth curve X/l(A) is said to be spacelike, timelike, or lightlike at a point
A= Ao if the vector u/l = dx/l / dA tangent to it at this point satisfies the condition
u/l u/l > 0, u/l u/l < 0, or u/l u/l = 0, respectively. The quantity ds2 = 9/lV dx/l dxv gives
the interval between two close events x/l and x/l + dx/l. For a line X/l(A) the proper
interval between the points AI and A2 is

(A.4)

For a timelike curve S is proper time, for a spacelike curve S is a proper distance.
Let x/l be a coordinate system in the vicinity of an event p such that the coordinate

lines Xi = fixed are timelike lines. Then one can relate a reference frame to such a
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coordinate system by considering an ensemble of test particles moving along the
above-specified xO-coordinate lines. The coordinate xO plays the role of coordinate
time, aud it is related to proper time T (registered by ideal clocks attached to the
test particles) by

(A.5)

(A.6)

Let a test particle at a point p have the four-velocity u". Then the set of events
in its vicinity which are simultaneous with p in the reference frame of the particle is
given by a local surface E passing through p and orthogonal to u". The space interval
between two neighboring test particles is defined as the proper distance between their
trajectories along the surface E. Let u" be a tangent vector to the xO-coordinate lines.
(For a chosen reference frame and coordinate system u" ,,;, be j a symbol";' indicates
that equality takes holds only in a chosen coordinate system.) The tensor

~ = 15" _ u"uv

v v u2 '

is a projector onto the plane orthogonal to u" and it possesses the property

~p:=~. (A.7)

If dx" is the coordinate distance between two events on neighboring trajectories,
then ~ dxv is the coordinate distance between the trajectories along E. The proper
distance between the trajectories is

where

goO gpo
hop = gop - --goo .

It is easy to show that hop";' hi; 15~ 15~, and hi; gil< = 15~ .

A.3 Causal Structure

(A.8)

(A.9)

A spacetime M is said to be time-orientable if there exists a globally defined and
nowhere vanishing continuous timelike vector field.

The chronological future [+(Q) (chronological past [-(Q)) of a set Q is the set of
points for each of which there is a past-directed (future-directed) timelike curve that
intersects Q. The boundary P of a set P is defined as P = Pn (M - P), where M
is the complete spacetime, and P is the closure of P. The boundary of the future
j+(Q) and the boundary of the Pll;'lt j-(Q) of a set Q is lightlike except at Q itself.
More precisely, if p is a point in /+(Q) (I-(Q)) but not in the closure of Q, then
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there exists a past-directed (future-directed) null geodesic segment passing through
p and lying in the boundary i+(Q) (i-(Q)).

The curve xl'(A) is said to be causal (or non-spacelike) if its tangent vector ul' =
d:rl'ldA obeys the condition ul' ul' :::; 0 at each of its points. A non-spacelike (causal)
curve between two points which is not a null geodesic curve can be deformed into a
timelike curve connecting these points.

The causal future }+(Q) (causal past J-(Q)) of a set Q is the set of points for each
of which there is a past-directed (future-directed) causal curve that intersects Q.

The future Cauchy domain D+(Q) (past Cauchy domain D-(Q)) of a set Q is the set
of points such that any past-directed (future-directed) causal curve passing through
it intersects Q.

A surface E is called spacelike, timelike, or null if its normal vector is timelike,
spacelike, or null, respectively. A global Cauchy surface in a spacetime M is a non
timelike hypersurface that is intersected by each causal curve exactly once.

The strong causality condition is said to hold at p if every neighborhood of p contains
a neighborhood of p which no non-spacelike curve intersects more than once. A set U
is said to be a globally hyperbolic region if: (1) the strong causality holds on U, and
(2) for every pair of points p and q in U the intersection J+(p) n J-(q) is compact
and contained in U.

Let p and q be two points in a globally hyperbolic region U that can be connected
by a timelikeor null curve. Then there exists a timelike or null geodesic between p
and q which maximizes the length of timelike or null curves from p to q. The point q
is conjugate to p along the (null) geodesic 7 connecting these points if there exist an
infinitesimally neighbouring (null) geodesic from p (different from 7) that intersects
7 at q. For points on a null geodesic beyond the point q conjugate to p there is a
variation of the geodesic 7 that gives a timelike curve from p. Thus, 7 cannot lie in
the boundary of the future of p beyond the conjugate point q.

A.4 Covariant Derivative

The Christoffel symbols are defined as

1
r voP = '2 (gvn,/J + g"/J,n - gn/J,") .

Covariant derivative:

(A.IO)

(A.ll)
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Another notation for the covariant derivative: Vn ( ) == ( );n. Covariant derivatives
with respect to the three-dimensional metric are denoted by Vi ( ) == (),;. The
notation for two-dimensional derivatives is ()," (a = 1,2).

The covariant derivative possesses the following properties:

1. Linearity: For constants aand bV,,(aA::: + bB:::) := aVIlA::: + bV"B::: .

2. Leibnitz rule: V,,(A:::B:.J = V,,(A:::)B::: + A::: V,,(B:.J.

3. Commutativity with contraction: V,,(A:::~::J = (V"A):::t: .

4. For a scalar field: V"Y' = 8"Y' .

5. Torsion free: V"VvY' = VvV"rP .

6. V" 9np = 0 .

A tensor field An...p... undergoes parallel transport along a vector field ~" if

~"V An... = o.
" p...

A.5 Geodesic Lines

A geodesic Xn(A) is defined as a solution of the equation

(A.12)

where f(A) is an arbitrary function. The function f can be set to zero by a repa
rametrization X = X(A). The parameter for which f = 0 is said to be affine. The
affine parameter is defined up to a linear transformation. The affine parameter for
timelike (9"v X" XV < 0) and spacelike (9"v X" XV > 0) geodesics is proportional to the
proper length f Ids2 p/2 along the curve.

A.6 Curvature

Riemann curvature tensor:

R"vnp = 8nr"vp - 8pr"vn + r"an ravp - r"aP r a
vn .

The Riemann curvature tensor possesses the symmetries:

(A.13)

(A.14)
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and obeys the Bianchi identities

R orPh6;/l1 = 0 .

APPENDIX A. MATHEMATICAL FORMULAS

(A.15)

The Riemann curvature tensor in four dimensions has 20 independent components.
(In an N-dimensional space there are precisely N2(N2 - 1)/12 independent compo
nents of the Riemann tensor.) The following relation is valid for the commutator 01
covariant derivatives:

(A.16)

(A.17)

Theorem. A simply connected spacetime region V is flat (i. e., there exist "flat
coordinates" in which g/lV = TJ/lV = diag( -1,1,1,1) and r:v = 0) if and only if the
Riemann tensor vanishes in V.

Theorem. Let 'Y be a curve connecting two points p and p in a simply connected
region V. The result of the parallel transport of any chosen vector uor from p to pi does
not depend on the particular choice of'Y if and only if the Riemann tensor vanishes
in V.

Theorem. Any tensor constructed from metric g/lV and its partial derivatives up to
the order N can be presented as a tensor function of the metric g/lV, the Riemann
curvature tensor, and its covariant derivatives up to the order N - 2.

The Ricci tensor R/lv and the Einstein tensor G/lV connected with the Riemann
curvature tensor are defined as

1
GorP =Rorp - 2" gorfj R,

The Einstein tensor G/lV obeys the relation

G/lv;/l =0.

This relation directly follows from the Bianchi identities.

The Weyl tensor C/lvorP is defined as

C/lvorP = R/lvorp +gv(or Sp)/l - g/l(or SPIv ,

where S/lV = R/lv - ~ g/lV R . In four dimensions the Weyl tensor has 10 independent
components. (In N-dimensional space the number of independent components of the
Weyl tensor is N2(N2 -1)/12 - N(N +1)/2 for N ~ 3, and 0 for N ~ 3.)

Theorem. A simply connected spacetime region V is conformally flat (i.e., there exist
"conformally flat coordinates" in which g/lV = !1(x) TJ/lV, where TJ/lV = diag (-1, I, 1, 1) )
if and only if the Weyl tensor vanishes in V.
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Ao7 Lie- and Fermi-Transport
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(A.18)

Diffeomorphism. Let M and N be differential manifolds. A map f : M -t N is said
to be a diffeomorphism if it is one-to-one, onto, and it as well as its inverse is Coo.

Ifl{;a is a chart in the vicinity of a point P EM, then 1/Ja 0 f- I is a corresponding
("dragged along") chart in the vicinity of a point p' = f(p) E N. A tensor TO at
p' is said to be "dragged along" by the map f (TO == fO T) if its components in the
corresponding "dragged along" chart are the same as the coordinates of the original
tensor T at the initial point p in the original chart. If f : M -t M is a diffeomorphism,
and T is a tensor field on M , one can compare T with T* == f* T. If T = TO, then
the tensor field is said to be invariant with respect to f.

Lie derivative. Let M be a differential manifold, al~d let f), be a one-parameter group
of diffeomorphisms. Denote p), = f),(p). For a chosen chart we define a function
XI'(AiP) == xl'(p),). Denote by

{I'(p) = dXI'(A;P)/
dA ),=0

a vector field generating a one-parameter group of diffeomorphisms. The Lie deriva
tive .c{Aa.. 'p... of a tensor field Aa...p... along {I' is defined by the relation

[
ro Aa... - Aa... ].c Aa... = lim . -), p... . p... .

{ p... ),....0 A

The following explicit expressions are valid for the Lie derivative

.cAa... ={1'8Aa... -8 {aAI' ..· - ... +8 {I'Aa... + ...{P... I' p... I' p... '(J 1'...

The Lie derivative obeys the following relations

.c(r,a == fe,1I1a == {I' 81'r,a - 1/1' 81'{a,

.c{ .c" - .c".c{ = .c({,,,) .

(A.19)

(A.20)

(A.21)

(A.22)

The Fenni derivative .1(Aa..'p.;. of a tensor field Aa...p... along a vector field e ({I' {I' =I
0) is defined as:

.1(Aa..'p ... = {I' V'I'Aa ...p... +.1'':, A....·p... + ... - P pAa..." ... + ... ,

where

(A.23)

(A.24)
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A tensor field Aa..'p... is said to be Lie-transported along eif

£ Aa.. = 0{ p... ,

and Fermi-transported if

.hAa ... ,=0.( p...

A.8 Symmetries and Conservation Laws

(A.25)

(A.26)

(A.27)

Let gap be a metric on a differential manifold M and f : M -t M be a diffeomorphism
under which the metric is invariant: 9 =g. == f'g. Such a diffeomorphism is called
an isometry. It is evident that the Riemann curvature 'R.... and all its covariant
derivatives V' ... V''R.... are also invariant under the isometry

CR.... = 'R.... , f·V' ... V''R.... = V' ... V''R..... (A.28)

Let f), be a one-parameter group of isometries. A vector field egenerating the
isometries is called a Killing vector field. A Killing vector field {" in the space with
metric g"v obeys the equation

(A.29)

This equation implies £(Ra{116 =0 and £(V'". ... V'vnRaP16 = O. The Killing vector
field e" obeys the equation

(A.30)

If e" and TJ" are two Killing vector fields, then [e, 11]" == {a 8aTJ II - TJa 8a{" is also a
Killing vector field.

A Killing tensor field is a symmetric tensor field {al ...am = {(al...Om) satisfying the
condition t(ol ...am;{J) = O. A second order symmetric Killing tensor field {"V can be
expressed in terms of an antisymmetric YaRo-Killing tensor I"v obeying the relation
I"v;), +I,,),;v = 0 as follows: {IIV = I,,), P v. For a freely moving particle in an external
gravitational field which possesses a Killing tensor {QI ...Om the following quantity is
conserved (Le., is constant along the trajectory):

(A.3l)

In particular, for a Killing vector {a a conserved quantity is p( ={a ua.
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A.9 Geometry of Congruence of Lines

A congruence of curves is a three-parameter family of curves X"(A; Vi) (A is a param
eter along the curve, and yi is a set of parameters that "labels" the curves) such that
one and only one curve of the family passes through each point. If specific parameters
A and yi are chosen on the congruence, we obtain a coordinate system. A congruence
of timelike curves is sometimes known as a reference frame.

Let A be a proper time parameter and ua = dxa/ dA be a vector field (ua Ua = -1)
connected with a congruence Xa(A; Vi). Then ua;p admits an unambiguous represen
tation of the form

Ua;p =wap +Dap - W a up ,

where W a = uP ua;p is the acceleration; wa/1 is the vorticity tensor,

(A.32)

1
wap = WIaPI = 2' (ua;" P"p - up;" pi'a) I

and the rate of deformation tensor D"v is

_1 ... _1( "
Dap - 2' '-uPaP - 2' ua;"P p + up;"P"a)'

(A.33)

(A.34)

Here PaP = gaP+ua up is the projection tensor (A.6) that projects vectors and tensors
onto the three-dimensional space orthogonal to ua . The shear U"v is defined as the
traceless part of the rate of deformation tensor D"v, while the expansion

(A.35)

is its trace, so that

(A.36)

Raychattdhuri equation:

d(} _ a (2 2) 1 (}2 D a P
dA - W ;a + 2 W - u - '3 - Hap U U ,

where

(A.37)

2 I ap
W = 2'waPW ,

2 I ap
u = 2'UapU • (A.38)

(A.39)
1

u" = r-;:-- go" .v-goo

For the special choice of coordinates in which the lines of the congruence are
described by the equations Xi = const the differential invariants take simpler forms.
In these coordinates

1
tt" = --- 1St:

V-goo '
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(A.40)

The projection tensor PaIJ has only spatial non-vanishing components, which we de.
note by hi;; hi; = Pi;' The three-dimensional metric hi; is of the form

h ik = gik _ !Joi gOk .
goo

The components of the three-dimensional tensor hi; inverse to hi; coincide with the
spatial components of g/lV

(A.41)

(A.42)

The acceleration vector w/l is orthogonal to u/l, and hence has only spatial compo
nents Wi. Define Wi = hi; Wi' Wi coincides with the spatial components of the vector
Wi' and can be written in the form

i r&o
W =--

goo

Sometimes it is convenient to use the vector a i of free fall acceleration of a test particle
with respect to the chosen frame. ai is the field-vector of the gravitational-inertial
forces which act in the chosen frame of reference. It is evident that ai = -Wi. The
scalar

(A.43)

(A.44)

is the magnitude of the free fall acceleration of a body initially at rest in the chosen
reference frame.

The deformation rate tensor D/lv and the vorticity tensor W/lV have only spatial
components, which determine the angular velocity of rotation of the reference frame
(Wik ) and its rate of shear (D ik ). Equation (A.34) implies

D
k

_ ! _1_ 8hik

I - 2 -/-goo 8xo '

while for Wi; one has

ik 1 ali fkl
W = ~g aO'

V-Yoo
(A.45)

(AAfi)

The vector of the angular velocity of rotation of the reference frame, ni , is calcu
lated, using Wi; ;

1 k/ni = 2" {ik/ W ,

where {ik/ is the totally antisymmetric object, {123 = (g/gOO)I/2. The scalar

(A.47)
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is the angular velocity of rotation per unit of proper time dr ~ (_gOO)1/2 dt.

629

(A.48)

A geodesic congruence is a special type of a congruence in which the lines forming
it are geodesics so thatw" = O. Let n"('\) be a vector that connects two nearby
geodesics for identical values of the affine parameters ,\ along them. Then the follow
ing geodesic deviation equation

D2n
Q RQ IJ l' 6 - 0

d,\2 + 1J1'6 u n u -

is valid. Here

dx lJ
ulJ =d,\ , (A.49)

A.10 Stationary Congruences in a Stationary
Spacetime

A.IO.I Killing congruence

Let {" be a timelike Killing vector and consider a congruence of timelike lines gener
ated by a vector field u" (u2 == -1). The congruence is stationary if .c(U = O. Au
important example of a stationary congruence is the Killing congruence generated by
the vector field

(A.50)

For this congruence

(A.51)

(A.52)

By comparing the latter expression with (A.32) and (A.37), we get

The 3-metric hi; defined by (A.40) takes the form

{i{;
hi; :;::: gi; - {2 .

(A.53)

(A.54)

(A.55)
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The parameter t is called a Killing time if dx" / dt == {". The origin t == 0 of the
Killing time on each line of the congruence is arbitrary, that is why there exists an
arbitrariness in the choice of t:

(A.56)

One can choose the Killing time t and the parameters Xi labeling the Killing trajec
tories as new coordinates (t, Xi). In these coordinates

(A.57)

where gi = glilgu is the three-dimensional part of the vector g,. = (1, g;) == {,./e. The
Killing equation implies that the metric coefficients in (A.57) are time-independent.
Under the coordinate transformation (A.56), eand hii are invariant, while gi trans
forms as

9i -t 9i = g; - I.; .
The vorticity tensor WolJ can be written as

WolJ = -( _e)1 /2g(o;lJ) .

It is evident that Wi; has only spatial non-vanishing components

Wi; = - (-e) 1/2 g(i,i) ,

and they are invariant under the transformation (A.56).

A.I0.2 Congruence of locally non-rotating observers

(A.58)

(A.59)

(A.60)

We discuss now the properties of another important stationary congruence in a space
time (A.57). Namely, we consider a congruence of lines orthogonal to the sections
t = const. For this purpose, we rewrite the metric (A.57) in the form

ds 2
=: - a 2 dt 2 + gii (dxi + a i dt) (dxi + ai dt) .

By comparing (A.61) with (A.57), we get

where iii is the three-dimensional matrix inverse to gij: gij 9ile =15~ .
The matrix g/IV has the following components

(A.6l)

(A.62)

(A.63)

II 1
9 ---- a 2 '

i j
ij -ij a a

9 =g -7' , (A.64)
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A future-directed unit vector u" orthogonal to t == const is u" == -a t,/l' It has
components

u" == -a8~, (A.65)

For the stationary congruence generated by u", the vorticity tensor w"v vanishes
(w"v == 0). That is why this congruence is sometimes called the congruence of locally
non-rotating observers. The acceleration vector w" for this reference frame and t.he
deformation rate tensor are

w" == (In a):" + a2(t:va;v) (",

D"V == - [a ('';v + 20(:" t;v) + 0
2(t;), a;),) (" (v] .

Their spatial components are

(A.66)

(A.67)

Wi == (lna),i' (A.68)

A.II Local Reference Frames

Consider a world line'Y of a (generally speaking, accelerated) observer and denote by
T proper time measured by the ideal observer's clock (Le., the proper time distance
along his trajectory). Let u" == dx"jdT be the four-velocity of the observer, and
denote by w" == UV u".v his acceleration. Choose an orthonormal tetrad en at some
initial point on 'Y and use the Fermi transport to define the tetrad along 'Y. In
particular, one has eO = uQ

•

A local reference frame of the observer is constructed as follows. Choose an event
p(T) at the line 'Y at moment T of proper time and consider spatial geodesics emitted
from this point which are orthogonal to u". A point on the geodesic is uniquely
defined by the value s of the proper distance along the geodesic, while the geodesic
itself can be specified by a unit vector D tangent to it at s == O. Each event in the
vicinity of the observer's world line is intersected by precisely one of the geodesics.
That is why xii =T, and Xi == SD' el can be used as coordinates in the vicinity of 'Y.
These coordinates are known as Fermi coordinates. In Fermi coordinates

(A.69)

The so-constructed local reference frame is non-rotating. In particular, this means
that if an observer is at rest with respect to this frame and carries gyroscopes with
him, he observes that they do not precess with respect to the frame.

More general local reference frames can be obtained if we adjoin to eo == uQ three
other unit vectors e~ which together with eo form an orthonormal frame. One has
e~ == AmIi e~, where AmIi is an orthogonal matrix depending on time. If ep coincides
with ep at an initial moment of time, then Wmii == dAmii / dx ii is the vorticity tensor.
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(A.7I)

The vorticity tensor Wmii is antisymmetric. wi = (I/2) i mii Wmii is the angular velocity
vector. The line element in such a rotating local reference frame takes the form

ds2 = - (1 + 2Wi Xi) dx
02

- 2 (€;mii xmw ii ) dxOdxi + 8ii dxi dxi + ... , (A.70)

where ... indicate omitted terms of order 0 (I x i I2 ).

In the absence of local rotation for the special case of zero acceleration (Le., when
an observer is moving along a geodesic line), one has 9ail = TJa{J, and rs"r =0 along
this line in Fermi coordinates. The following expression for the metric, accurate
to second order in Ixii is valid in the vicinity of the geodesic world line in Fermi
coordinates:

2 ( • • ) 02 4 • i 0 kds -1 - ROiOi x· xJ dx - 3R Oiki x· x dx dx

+ (8ii - ~ RiikiXi xi) dxi dxk +0 (I xil3) dxa dxP.

Consider now. local reference frames associated with a stationary congruence in
a stationary spacetime. Let UP be a unit timelike vector tangent to the Killing
congruence (see (A.50)). Denote by z;h time-independent three-vectors normalized
by hmn z;h z~ = 8mn , then e:;' = (- 9i z:n, z;h) are three unit vectors that together with
efi = uP form a local reference frame. The local frames along the Killing trajectory
are connected by the Lie-transport along e": [(em = O. Thus, we have

(A.72)

where tv" = ~ (In(-e)).".
One can also introduce another local reference frame along the Killing trajectories

that are propagated in the Fermi sense. The reference frame ejl is rotating with
respect to the Fermi fra.me. The vorticity tensor is

Wmn = e:;' e~ u,,;v. (A.73)

For a Killing congruence the deformation rate tensor vanishes Dpv = 0 so that
Wmn = e:;' e~w"v.

A.12 Geometry of Subspaces

Consider a spacelike or timelike hypersurface 1:, and denote by nIt a unit normal to
it. Let xP= XP(yi) be the equation of 1:. Then

oxP oxv

hij = oyi oyj 9"v

is the induced metric on E, and

ox" oxv

Kij = - ~~ '\7v n"
uy' uyJ

(1\.74)

(A.75)
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is the extrinsic curvature of 1:. Both hi; and K i ; are invariant under transformations
of the external coordinates xl', and are symmetric tensors with respect to transfor
mations of the internal coordinates yi.

Consider a set of geodesics orthogonal to E. Each of these geodesics can be labeled
by the coordinates yi of the point where it intersects E. Denote by n the proper time
or proper distance parameter along the geodesics. We assume that n = 0 on E.
Four parameters (7t, yl, y2, y3) can be used as coordinates in the vicinity of E. These
coordinates are known as Gaussian normal coordinates, The metric in Gaussian
normal coordinates takes the form (£(n) = nil nl')

and the extrinsic curvature K ij is

1
K ij =- '2 hij,n '

Gauss-Codazzi equations:

R~jlo = - c(n)(Kij:lo - Kilo:j),

(A.76)

(A.77)

where £( n) = nil nil = ±l; nil is a unit vector normal to the hypersurface E; ( ):i is
the covariant derivative in the induced metric h ij , and (3)Rij lo is the curvature tensor
of the three-dimensional space with this metric. A component of the curvature tensor
constructed for basis vector n has index n.

(3+1) -split 0/ the Einstein tensor:

eni = - £(n) [Ki m:m - K,;],

where

(3)R = hij (3)R"!, K = hij K,',' .1m, ,

(A.78)

(A.79)

(A.80)
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A.13 Integration in Curved Space
Element 0/ volume: d4v = ,;=gd4x.

Element daa 0/ a hypersur/ace E defined by equations x/l = X/l(yi):

1 (8XlJi
)dao = 3! eO {J.1J21J. det 8

y
i dy I dy2 dy3,

where ealMh!J3 is the antisymmetric tensor:

ealJ.1J21J. = F9 f alJ.1J21J•.

[ f ap.1J21J3 is the completely aJitisymmetric symbol (f0123 = 1)].

Element daalJ 0/ a two-dimensional sur/ace S defined by equations x/l = x/l(za)
(a = 1,2): .

daa!J = i ea!J!J.1J2 det (8;;-)dz1 dz2
• (A.82)

Integration in the Riemannian space. Let I{) be a scalar, I{)a be a vector, and l{)alJ be
an antisymmetric tensor field. The following integrals are then defined:

TV[I{)] = [l{)d4
V, (A.83)

Tdl{)°] = hI{)0 dao ' (A.84)

TS[l{)alJj = hl{)a!J daaIJ· (A.85)

The generalized Stokes' theorem:

[dW= lvw,
where W is p-form; dw is its exterior derivative, and V is a domain of a p-dimensional
manifold. The following two relations are the consequences of the generalized Stokes'
theorem

r I{)°;o d4v = r I{)a dao ' (A.86)
Jv Jov
r I{)°~IJ dao = r ljJaIJ daaIJ. (A.87)JE Jo,;

Here 8V and 8E are the boundaries of the four-volume V and three-dimensional
hypersurface E. We refer to them as to the "Stokes' theorems". Relation (A.86) is
usually known as the Gauss divergence theorem.
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A.14 Conformal Transformations

Conformal tmnsformations are defined as metric transformations of the type

635

(A.88)

A tensor field AOI ...O·PI ...Pm is a field of conformal weight s if it transforms according
to the formula

(A.89)

If V1' is the covariant derivative for a metric 90P, then

(A.90)

+ COl A""'O' + _ C" AO, ...o. -1''' p, ...pm· . . 1'P, " ...P..· .. ,

where

(A.91)

The Weyl tensor C0111''' is invariant under conformal transformations, while the cur
vatures Rop1'''' Rop, and R are transformed as follows:

(A.92)

(A.93)

(A.94)

Generalization to n dimensions:

(A.9S)

For n = 2:

where Ola is a two-dimensional covariant derivative.



(A.96)
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A.15 Einstein Equations

Einstein action:

W[g] = c
3

G
( ( RFYd4x - 2€(n) ( K..fhd3y).

16 Jr Jv Jav
Here €(n) = nil nil' and nl' is the (outward) unit vector normal to the boundary avo

Variations:

(A.97)

(A.98)

(A.99)

(A.lOO)

1
81 9 1

1
/

2 = 2" 8gllv 19 1
1

/
2 g"V ,

8r~8 = ~ l' [(og<o);p + (8g,p);0 - (8g08 );,] ,

8R'p.,6 = - ~ g<O [(8goP);.,6 - (8gop );6-,

+ (8go.,);P6 - (8g06 );p., + (8gP6);0., - (8gp.,);06] ,

I d:r4 19 11/2 (8Wp.,6) Sj1-,6 = I dx4 19 11/ 2 89llv [SIlVloPJ - 2S"PlvoJ ];op, (A.lOl)

Einstein equations:

8JrG
Gop = -4 Top,

c

(A.102)

(A.103)

(A.104)

where G is t.he Newtonian coupling constant, Top is the energy-momentum tensor,

-2c 8Wm
Top = R 8g0P'

and Wm is the action of matter. For a covariant action Wm, TOP;p = O.

Energy conditions. Let u" and i" be an arbitrary timelike and null vector field,
respecti vely.

Strong energy dominance condition:

rp op>lTIlO
1 oP u u _ 2" Il U U O ' (A.105)



A.15. Einstein Equations

Energy dominance condition: To/JuP is a non-spacelike vector.

Weak energy condition:

Top uouP ~ O.

Null energy condit!on :

637

(A.106)

(A.107)

Averaged null energy condition: For every inextendable null geodesic with affine
parameter A and tangent vector lO:

(A. lOB)

(A.109)

Each later energy condition is weaker than the previous one.

Conservation laws. Let {/l be a Killing vector field and {/lV be a Killing tensor field.
If T/lV is a symmetric tensor satisfying the condition T/l':v = 0 (the energy-momentum
tensor), the quantity ,

p( =hT/lV {/ldUv

is independent of the choice of the complete Cauchy surface E.

If pP is the momentum of a freely moving particle (]7" TJ':/l =0), then the quantities

(A.lIO)

are constant along the trajectory of the particle.
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Spherically Symmetric Spacetimes

B.l Spherically Symmetric Geometry

A two-dimensional sphere 8 2 is a space of constant curvature, and it possesses a three
parameter group 0(3) of isometries. The metric on 8 2 can be written in the form 1

(B.1)

The most general Killing vector is a linear combination of the following three Killing
vectors

(B.2)

(B.3)

(B.4)

These are the usual angular momentum operators L.. L~ and LII which are the
generators of the rotation group. Besides the continuous isometries generated by the
Killing vectors, the metric (B.1) possesses discrete symmetries:

tjJ -+ -tjJ, (J-+1r-(J. (B.5)

Let a, aX, and a: be a scalar, vector, and tensor functions on 82 which are invariant
under all the isometries of a two-sphere. Then

a = const, aX = 0, a: = const 8:. (B.6)

Spacetime is said to be spherically symmetric if it can be represented as a two
dimensionalset of two-spheres and the 4-metric is invariant under the complete group

llndices X, Y, .. . take wlues 2 and 3, while indices A, B, ... take wlues 0 and 1

638
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of isometries of two-dimensional spheres. The metric for a spherically symmetric
spacetime can be written in the form

ds2 == g"" dx'" dxv = d"(2 + r 2 dw2. (8.7)

Here dw2is the metric (B.t) on a unit sphere, and d"(2 is a metric on a two-dimensional
manifold M 2

• If we denote by x A (A =0,1) coordinates on M 2
, then this metric

reads

(8.8)

(8.9)

The "radius" r = r(x) which enters metric (B.7) is a scalar function on M 2
•

In coordinates (xA,(X) a tensor G~ in a spherically symmetric spacetime which
obeys spherical symmetry

£~p~ = 0, i = 1,2,3

has the following non-vanishing components

(

G8ay 00)
G'" = G7 G~ 0 0

v OOG~O'

o 0 0 G~

where aG~/a(X = O. If tensor G~ satisfy the conservation law G~;", = 0, then its
components obey the relation

GA + 2rlA GA 2rlB G2 - 0BIA -r- B - -r- 2 - •

B.2 Reduced Action

(8.10)

(8.11)

The variation of the Einstein-Hilbert action is

8W[g] = - I~Jr [crx.;=gG",V89",v,

where G"'v is the Einstein tensor. The variation of the surface term vanishes for
variations preserving the 3-geometry of the boundary av. If we assume the spherical
symmetry ansatz for metric (8.7) and for the Einstein tensor (B.9), then

8W[g] = -1~Jr I d
2(.jWI d

2
xHr

2
[G

AB
8gAB + 2G88 8g88] .

The components of G~ which enter this relation do not depend on (x. That is why in
order to obtain the non-vanishing components of the Einstein tensor in a spherically
symmetric spacetime, it is sufficient to consider variations of the metric 8g",v which
do not depend on (x.
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(8.14)

(8.17)

Denote by W.phbAB, r] a reduced action, Le., the action W[y] calculated for a
spherically symmetric metric (8.7). Using the relations

v'9 R = y'="1vw [(2)R[w] + r 2(2)Rb] - 4r(2)O.... r - 2"YAB riA riB]' (8.12)

I d2( vw = 411", (8.13)

we get

Wsphb,r] =i£2 d2x y'="1 [(2)Rb ]r2+ 2"YAB rIA riB + 2]

_! { r 2 kdl.
218M 2

Here (2)Rb] is the scalar curvature of the two-dimensional space with metric d"Y2;
( )IA is a covariant derivative, and (2)0 .... is the D'Alembert operator for this metric.
We denote by k the extrinsic curvature of 8M2 , and by dl a proper distance along
8M2. We also note that (2)R[w] =2. Using (8.11), we get

8Wsph bAB,r] = - iI d2x y'="1 r 2 [GAB 8"YAB(X) + 2 r GXY
Wxy 8r(x)] . (8.15)

The variation of the reduced action (8.14) gives the complete set of Einstein equations
for spherically symmetric spacetimes:

r 2GAB =-2rr1AB + "YAB (-1 + Vr' Vr + 2r(2)Or) = 87fr2TAB, (8.16)

1
G: = G: = r- I (2)Or - '2 (2)Rb] = 87f r: .

Here all the operations are defined with respect t.o the metric d"Y2, and T",II are the
components of the stress-energy tensor which obeys the spherical symmetry condition.

B.3 Generalized Birkhoff's Theorem

We denote by eAB and eAB the two-dimensional antisymmetric tensors

1eAB = y'="1fAB, eAB = fAB ,
A

where fAB and fAB are antisymmetric symbols (fOI = 1, fO I = 1).

(8.18)

Lemma 1. Let f be a function on a two-dimensional manifold with a metric "YAB
which obeys the relation

flAB = F"YAB (8.19)
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for some function F. Then e =: eAB fiB is a Killing vector.

641

Lemma 2.Let { be a Killing vector on a two-dimensional manifold with a metric
'YAB. Then the equation

has a solution f which obeys the relation

1 10
F= 2.!'0.

(8.20)

(8.21)

Generalized Birkhoff's theorem: If the stress-energy tensor genemting a spheri
cally symmetric gmvitational field obeys the condition

1 0
TAB = iTo 'YAS, (8.22)

then the corresponding solution of the Einstein equations possesses an additional
Killing vector field.

Proof: If (8.22) is satisfied, then equation (B.16) implies that rlAB ,.." lAB, and hence
e = eAB riB is a Killing vector field for the two-dimensional metric 'YAB. Moreover,e {jAr = O. Thus, {/l =8~e is a Killing vector field for the four-dimensional metric
(8.7), which is evidently linearly independent of the Killing vectors (8.2)-(8.4).

B.4 Spherically Symmetric Vacuum Solutions

B.4.1 Schwarzschild metric

Frobenius theorem: If a vector field { obeys the relation

{[Q {P;"Y1 = 0 , (8.23)

then it is "hypersurface-orthogonal", i.e., there exists such a pair of functions t and
/3 that

(8.24)

Theorem: A spherically symmetric vacuum solution of Einstein equations is deter
mined by one essential constant (mass M), and in the regions where (Vr)2 i 0 it
can be written in the fonn

2M
9=1--.

r
(8.25)
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This solution is known as the SchwarZ8chiid metric.

(8.32)

(8.29)

(8.26)

(8.28)

Proof: According to the Birkhotr's theorem,
(A AB
<, =e riB

is a Killing vector. Its norm is

e{A = eAB eAC riB riC = - riA riA.

(We used the relation eAB eAC = - 8~.) An antisymmetric tensor with three indices
vauishes identically in two dimensions. Hence, (8.23) is valid for {A, aud according
to the Frobenius theorem, vector {A can be represented in the form

{A =/3t,A. (8.27)

In a region where (Vr)2 i 0, one can use t and r as coordinates. Using (8.26) and
(8.27), one gets

"(,r == "(AB tlA riB = /3-1 "(AB eAC riC riB =/3-1 eBC riB riC = O.

Equation (8.27) implies

e {A =/32 "(" .

Hence, in (t, r)-coordinates metric "(AB is of the form
,q2 dr2

d"(2 = _ t::- dt2+ _ ,
9 9

where 9 == grr. The Killing equation {(Oil) == 0 for the metric (B.28) is

_ A' (g-1/32),
2{(Oil) = 2{("r) - 2 f'r {A = /3 - /3 (g-1/32) =O.

Here ( )' = d( )/dr. Solving this equation, one gets /3 = cg, where c is an inte
gration constant. Using rescaling freedom t -+ C t, we put c = -1. (A minus sign is
chosen since e is a future directed vector.) The other Killing equations are satisfied
identically. Finally, we have

dr2

ds2 =- 9 dt2+_ +r 2 dw2.
9

Integration of the equation G1 = 0,

r (2)Or + (Vr)2 - 1 = 0 , (8.30)

allows one to find the function g. Written in (t, r)-coordinates this equation reads

rg'+g-I=O. (8.31)

The general solution of this equation is
2M

g=I--,
r

where M is an integration constant. It is easy to verify that the other Einstein
equations are satisfied identically.
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B.4.2 Scaling properties

Consider a scaling transformation, i.e., a conformal transformation ds2=n2 ds2with
a constant conformal factor n. The gravitational action W[ 9] transforms as W[ 9 ] =
n2 W[ g]. This means that if 9 is a solution of the vacuum Einstein equations, then
ng is also a solution. We show now that a spherically symmetric vacuum solution
of the Einstein equations is unique up to a scaling transformation. For this purpose,
we rewrite the Schwarzschild metric in the form

(8.33)

(8.34)

where 9 = 1 - l/x, TJ = t/rg , and x = r/rg are dimensionless coordinates, and
rg = 2M(= 2GM/c2) is the gravitational radius.

B.5 Kruskal Metric

B.5.1 Derivation of Kruskal metric

In order to obtain a solution which covers the complete vacuum spherically symmetric
spacetime, we use coordinate-fixing conditions 900 = 911 = 0 and write the metric as

ds2 =2 B dU dV +r 2 dw2.

It is convenient to use the dimensionless form of this metric:

ds2 = r;2 ds2 = 2 bdU dV + x2dw2.

The non-vanishing Christoffel symbols calculated for the metric (8.36) are

(8.35)

(8.36)

rU _ b,u
uu--,;'

v bv
r vv =b' (8.37)

and the vacuum Einstein equations (8.16) written in dimensionless form are

XIUU = xlvV =0,

Equations (8.38), written in the explicit form

(8.38)

(8.39)

2 bu
8uX - b8ux =0, {}

2 bv
vx- b8vx=O, (8.40)
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8ux=o(V)b, 8v x = (3(U)b. (8.41)

Using the coordinate freedom U -t fj = F(U) and V -t V = G(V), one can always
put 0 == ~ V and (3 =4U. Then equations (B.41) imply

x= i b, x = x(z), b = b(z), (8.42)

where z = UV, and a dot means a derivative with respect to z. Equation (8.39) now
reads

( xx)x 1+-;- +zx-l==O.

Define Y = (z/z') - 1, where ( )' = d( )Idx, then (8.43) implies

xY' + Y = O.

(8.43)

(8.44)

We have Y = clx. For c = 0, the metric (8.36) is flat. If c =I 0, one can use a scaling
transformation x -t C x to put c = -1. This gives

z' x
-=--
z x-I

(8.45)

The sign of z is affected by the U -t -U transformation. We choose the sign of z so
that the solut.ion of the above equation is

z = -(x - 1) exp(x - 1).

Finally, we get

2
- UV = (x - 1) exp(x - 1), b = - - exp[-(x - 1)].

x

This solution written for rand B gives

- UV = (~ - 1) exp (~ - 1)
2M 2M'

16M3 [( r )]B = - -r- exp - 2M -1 .

(8.46)

(8.47)

(8.48)

(8.49)
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B.5.2 Relation between Kruskal and Schwarzschild metrics

The Killing vector {(I) in Kruskal coordinates is

~~~J 8/1 = (1/4M)(V 8v - U 8u). (8.50)

In different regions of the spacetime, Kr,uskal coordinates (U, V) are related to Scbwarz
schild coordinates (t, r) as follows:
In R+: U > 0, V < 0

{

U ~ - (,~ - ~)I '''P [l (,;, - 1) - ,k] ,

V = (2~ -IP exp [H2~ - 1) + 4~] .

In R_: U > 0, V < 0

{

U = (2~ - I)! e:p [~ (2~ - 1) - 4~] ,

V = - {2~ -IP exp [~(2~ -1) + 4~]·

In T+: U> 0, V < 0

{

U=(2~-I)!exP[~(2~-I)~4~]'

V = (2~-1)! exp [~(2~ -1) + 4~]·

In L: U > 0, V < 0

{

I
U = - (...L.. - 1) 2 exp [1 (...L.. - 1) - -1-]

2M 2 2M 4M '

V = - (2~ - I)! exp [H2~ - 1) + 4~] .

(8.51)

(8.52)

(8.53)

(8.54)

The spherically symmetric vacuum spacetime is invariant under the following
discrete symmetries

I: U -t -U, V -t -V.

T: U-t-v, V-t-U.

P: U-tV, V-tU.

(8.55)

(8.56)

(8.57)



646 APPENDIX B. SPHERICALLY SYMMETRIC SPACETIMES

B.5.3 Kruskal spacetime as maximal analytical continuation
of the Schwarzschild metric

Define r. == r - 2M + 2M In I(r - 2M)/2MI (called the tortoise coordinate), and
define a retarded null coordinate u and an advanced null coordinate v by the relations
u = t - r. and v = t + r•. The Schwarzschild metric can be rewritten as

ds2 = - 9 du2- 2 du dr + r 2 dw2

= - 9 dv2+ 2 dv dr + ,.2 dw2 = - 9 du dv + r 2 dw2,

(B.58)

(B.59)

9 = 1 - 2MIr. In the last expression it is assumed that 7' is a function of u and v
defined implicitly by the relation r. = 4(v - u). By introducing new coordinates

(B.60)

(8.61)

(8.62)

one can rewrite the Schwarzschild metric in R+ in the Kruskal form and use it for
the construction of the maximal analytical continuation.

B.5.4 Einstein-Rosen bridge

The internal geometry of the T-invariant surface 1:: U = -V is

dr2

dl2= + r 2 dw2 = n4 dl2
I-2Mlr 0'

Mn = 1 + -, dl~ = dl + p2(d92+ sin2 9drjJ2) ,
2p

where p is defined by r = p(1 + M/2p)2. The geometry of a two-dimensional section
9 = 1r12 can be realized as a surface imbedded in a flat three-dimensional space:

dL2= dz2+ dr2+ r2drjJ2 = dr2(1 + z'2) + r 2 d¢>2 , (8.63)

where z = ±2-!2M(r - 2M).

B.6 Tolman Solution

A spherically symmetric solution of the Einstein equations for a spherical distribution
of dust matter (Le., matter without pressure p = 0) was obtained by Tolman (1934).
To derive this solution, we use comoving coordinates (T = c T, R) in which TAB =
pc2b~ b~ (p is the mass density), and the two-dimensional part d12 of the spherically
symmetric metric takes the form

(8.64)
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Here B = B(T, R) and r =r(T, R). Non-vanishing Christoffel symbols r~c calculated
for this metric are

rl l = B'/2B, o' I'rJl = B/2, rOI = 8/28. (8.65)

Here ( )' = an and ( ). = aT' The integration of the equation (8.16) for the value
of indices A =0, B = 1 gives

r,2
B=--

1 + f'
(8.66)

where f = f(R) is an "integration constant" obeying the condition 1+ f > O. The
integration of the same equation for A = I, B = 1 allows one to get

'2 f Fr = +-,
r

(B.67)

(8.68)

where F = F(R) is another "integration constant". 8y using these relations and
equation (8.16) for A =0 and B == 0, one gets

F'
12=811"(,
r r

where ( = Gp/c2
• Equation (8.67) can be integrated in parametric form.

For f > 0 :

r == ~(cOSh TJ -1), T - To(R) = 2;/2 (sinh TJ -TJ)·

For f < 0 :

l' = _~/1- COSTJ) , T - To(R) = 2(-~)3/2(TJ - sin TJ)·

(8.69)

(8.70)

An ambiguity R -t R = R(R) in the choice of a comoving coordinate reduces
three arbitrary functions f(R), F(R), and To(R) to two invariant ones which describe
the initial density distribution of dust and its radial velocity. Now we consider special
cases.

Homogeneous Dust Ball (( = const)

f == - sin2 R , F = a sin3 R, TO = 0, 0 s: R :s RI ,

r = ~ sin R (1 - COSTJ)' T = ~(TJ - sin TJ)'

(8.7I)

(8.72)

(8.73)
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Here a is a constant.
This solution describes part of the Robertson-Walker universe filled with the dust.

At the moment of maximal expansion TJ = 1r and r = asin R. For R) = 1r, we get a
complete closed world. For R) < 1r, we have part of this world. The evolution of the
boundary sphere is described by the equation r = ~asinR) (1- COSTJ)·

Empty Spacetime (£ = 0)

F = rg = const , TO =o. (8.74)

For this choice we get

r
r = ; (R2+ 1) (1 - COSTJ)'

T = ; (R2+ 1)3/2 (TJ - sin TJ).

(8.75)

(8.76)

This is a freely falling coordinate frame for the Schwarzschild geometry [Novikov
(1962)]. It covers the complete spacetime, and a constant rg coincides with the
gravitational radius.

Note that the coordinate R in the above solutions allows a transformation R -t
R + b, with b =const, which does not change the form of the metric. In order to sew
the solution for the homogeneous dust ball to the empty space solution, we first use
this ambiguity to rewrite f in equation (8.74) in the form f = -[(R + W+ 1]-).
The requirement that the functions feR) and F(R) in both solutions (for dust and
vacuum) takes the same value at the boundary R = R) gives

(8.77)

One can verify that the other jump conditions on the boundary are identically satis
fied. The proper mass M. of the dust matter is M. = (3a/4)(R) - ~ sin(2R))).



Appendix C

Rindler Frame in Minkowski
Spacetime

C.l Uniformly Accelerated Motion
Many aspects of the definition and properties of black holes can be clarified and easily
understood if we consider physical processes in a flat Minkowski spacetime (that is,
without a gravitational field), but from the point of view of a uniformly accelerated
observer. The deep reason for the possibility of clarifying physics of black holes in
this way is the validity of the equivalence principle. According to this principle,
the physical laws in a local reference frame in a gravitational field are equivalent to
the physical laws in a uniformly accelerated frame. Consider a small region in the
vicinity of the event horizon and use a frame which is at rest in this region. Then the
equivalence principle implies that this frame has the same properties as a uniformly
accelerated frame in the Minkowski spacetime. This furnishes a powerful tool for an
investigation of local effects in the close vicinity of the event horizon.

In this appendix, we describe a rigid non-rotating uniformly accelerated reference
frame in the Minkowski flat spacetime. In order to construct this frame, we first
consider a test particle moving along a straight line. Denote by (XO == cT, Xl, X 2

, X 3
)

the standard Cartesian coordinates in the Minkowski spacetime. We assume that the
particle is moving along the Xl-axis and has constant acceleration measured by a
comoving observer. I This means that the four-acceleration a/l is directed along Xl
and its value a == .;o:;;tiJi remains constant:

a = const. (C.l)

The trajectory of the particle can be written in the following parametric form, with

J An assumption that a test particle moves with constant acceleration for an inJinitely long time
is physically unrealistic. For such a motion one needs to provide a particle with an infinite amount
of energy. Nevertheless, the consideration of such motion is useful, and it helps one to understand
better general features of a static gravitational field

649
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/ 0 X'
//

/
/

/
/

Figure C.l: A uniformly accelerated particle in Minkowski spacetime.

r being a parameter,

XO=lasinh(cr/la), X1=Lacosh(cr/la}, X2=X~, X 3 =xg. (C.2)

Here La = c2/a, and a = (all all )l j 2 is the value of the acceleration. The four-velocity
ull and four-acceleration all for world line (C.2) are of the form

ull = (ccosh(cr/la),csinh(cr/la),O,O) ,

all == (asinh(cr/l..),acosh(cr/La),O,O).

These formulas show that

(C.3)

(C.4)

(C.5)

Hence, r is the proper time along the world line of the accelerated particle.
Curve (C.2) is a hyperbola in the (XO-XI)-plane (see Figure C.l). For simplicity,

we choose X~ = xg = 0. A well-known example of a uniformly accelerated motion is a
motion of an electrically charged (with charge e) particle in an external homogeneous
electric field directed along Xl. If the particle is initially at rest, its equation of
motion coincides with (C.2). The acceleration of such a particle is a =eE/m, where
E is the field strength, and m is its rest mass.

The null lines X O= ± Xl are asymptotes of the hyperbola. One of them (XO =
XI) coincides with the world line of a photon moving along the XI-axis in the same
direction as the accelerated particle. Quite remarkably, it never reaches the particle.
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A particle moving along the XI-axis with another (larger) value of the acceleration
a and crossing XI == c2la at T = 0 can be represented on the same picture as a
hyperbola with the same asymptotes but with a vertex lying closer to the origin
Xo == XI == O. In the limit of an infinite acceleration, the vertex tends to the origin.

C.2 Rindler Frame

(C.6)

We describe now a special rigid reference frame known as a Rindler frame,2 con
structed from world lines of particles moving with uniform acceleration along XI
axis. Consider a family of trajectories which have the same values of coordinates
X 2 and X 3 • If the frame is rigid, then two trajectories of the family with different
values of Xl must have different accelerations at a given moment of time Xu. Indeed,
if their accelerations are equal, then the distance between the trajectories measured
in the inertial Cartesian frame is constant. Because of the Lorentz contraction, the
distance measured in the moving frame will depend on the velocity of the accelerated
frame at the corresponding moment of time. This time dependence of the velocity of
uniformly accelerated observers results in a time dependence of the proper distance
between the world lines with the same value of acceleration. In order for the frame
to be rigid, the acceleration of its world lines crossing Xo at different values XI must
be different. Namely, the lager is the value Xl, the smaller is the acceleration.

To describe the Rindler frame, we introduce new coordinates XII == (t,p,X2 ,X3
)

La XO
t == -;; arctan XI '

Here La ='= c2Ia is fixed. For fixed values of p, x 2
, and x 3 , a coordinate line of t coincides

with the world line of a uniformly accelerated observer. The Rindler reference frame
is formed by the world lines of these observers. The Minkowski line element

(C.7)

in these new (Rindler) coordinates XII takes the form

(C.8)
2

ds2 == - ~~ c2 dt2+ d/ + (dX2)2 + (dx3r
It is evident that the geometry of the comoving space in this Rindler frame is time
independent. For a world line p, x2

, x3 == const, the acceleration is a(p) == c2I p,
and T == ptlla is a proper time. Some of these lines are shown in Figure C.2. The
parameter t coincides with the proper time for the observer with p == lao We refer to
the world line with coordinates (La, 0, 0) as to the origin of the reference frame.

2Points which form a reference frame are moving along tlmelike curves. One may assume that
these curves are world lines of observers. A frame is called rigid If the distance between any two
lines of this congruence measured In this frame Is constant.
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Figure C.2: A Rindler frame. World lines of Rindler observers (p=const) are shown by
solid lines. Dashed and dotted lines represent H, planes (t :const).

All the world lines of Rindler observers are hyperbolas with the same asymptotes
XO = ±XI. A three-dimensional surface t = const describes the events which are
simultaneous from the point of view of the comoving (Rindler) observers. This surface
is a hyperplane HI, and it obeys the equation

XO

Xl == tanh(ct/la ) = const. (0.9)

Note that all hyperplanes H t cross one another at the same two-dimensional plane
X O == Xl = O. The hyperplanes Ht are shown in Figure 0.2 (where X2 and X3
dimensions are suppressed). It is evident that the proper distance between world
lines of Rindler observes is time independent, so that the Rindler frame is rigid.

An important property of the Rindler frame is that it cannot be extended in the
comoving space beyond p = 0 to negative values of p. Formally, this follows from
the expression for Rindler metric (0.8) in which the metric coefficient goo = -p2 /l~

vanishes at p = O. This means that the rate of proper time r

(C.lO)dr = ..j-goodt =tdt

is infinitely slowed down as p -t O. This indicates that there is physical peculiarity
of the Rindler reference frame at p = O. The physical reason for this peculiarity is
the following. The condition of rigidity requires that the acceleration of the Rindler
observer a == c2/ p grows infinitely as p -t 0, and the reference frame fails to be rigid
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beyond this limit. This property of the Rindler frame resembles a similar property
of a static reference frame in the spacetime of a non-rotating black hole, where the
rigid frame is restricted to the region r > r g • This analogy goes much deeper. As
it is seen from Figure C.2, the null surface XO = Xl which corresponds to p = 0 in
Rindler coordinates is the boundary of events which can be seen by Rindler observers.
The events located beyond this surface will never be seen by a uniformly accelerated
observer. Thus, the plane XO = Xl plays the role of the event horizon in the Rindler
spacetime.

C.3 Light and Particle Propagation

The coefficients of metric (C.8) do not depend on time t. The corresponding symme
try transformations are generated by the Killing vector field

~/I~ = _8_.
8x/l 8(ct)

(C.H)

The world lines of Rindler observers (the coordinate lines of t) coincide with the
trajectories of~. The four·velocity u/l of a Rindler observer is

(C.12)

while his acceleration is

(C.13)

For our case

(C.14)

(C.15)

A Rindler observer "feels" the inertial force of acceleration. It can be interpreted
as the presence of a static gravitational field. In a static gravitational field the quan
tity a == Iep/2 is a redshift factor. To demonstrate this, consider a monochromatic
wave. Its time dependence is of the form exp( -iwt). The proper frequency of the
wave measured by an observer at a point P is

d(phase) dt w
Wl= =w-=--

- d(proper time) dr a(p) .

This means that the frequency We of the radiation emitted at a point Pe and the
frequency Wo observed at a point Po are related as follows

We a o-=- (C.16)
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Any radiation emitted near the horizon has the redshift proportional to a. The
redshift factor a vanishes at the horizon. Hence, the horizon is a surface of infinite
redshift. This is a generic property of static spacetimes in which the event horizon
always coincides with the Killing horizon (where e = 0) (see Section 6.3).

Metric (C.8) was obtained by rewriting the flat spacetime metric in the Rindler
coordinates. This metric is evidently a solution of the vacuum Einstein equations;
Suppose that one has actually found it by solving the Einstein equations and that he
is not clever enough to identify the solution with a part of the Minkowski spacetime.
How can one find out that the horizon p = 0 of the solution is a regular surface
and the singularity of the metric is a pure coordinate effect? First of all, it is quite
easy to discover that the region (p > 0, x2 , x3 ) covered by the coordinates (map) is
geodesically incomplete. For example, consider a test particle freely moving in the
p-direction. The equation of its motion3 is (tJ < 1)

p=- Po
cosh(ctll,,) + tJsinh(ctll,,)

(C.17)

In the Rindler frame the motion of the particle begins at p = 0 in the infinite
past t = -00. The particle propagates from the horizon until it reaches the point
p =- PolviI - tJ2. After this the particle falls again to the horizon. It takes an
infinite coordinate time t to reach the horiZOn. On the other hand, the proper time
of this evolution remains finite. The proper time TJ2 between any two points along
the trajectory is

(C.18)

The proper time for the complete motion as described in Rindler coordinates is

C Ttot;:;;: r;--7.ii'
v 1-tJ2

(C.19)

In other words, it takes a finite proper time for a freely moving particle to reach
the horizon. Hence, the spacetime region I covered by the Rindler coordinates and
restricted by the horizon is geodesically incomplete. Since all curvature invariants
vanish identically, the spacetime at p = 0 is regular. This means that the Rindler
map covers only a part of the complete spacetime and one needs to extend it beyond
p=- O.

3Certainly, this and subsequent relations can be obtained by working directly in the coordinates
xl-'. But it is much simpler to derive them by first writing these relations in Cartesian coordinates
and then making coordinate transformation (C.S).
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C.4 Maximal Analytical Extension of Rindler
Spacetime

655

(C.20)

(C.21)

How to do this? The answer is evident: Minkowski coordinates cover the complete
spacetime. It might be instructive to restore these coordinates by using the same
method of analytical continuation which has been used for the construction of the
Kruskal metric in Appendix B.5. For this purpose, we first introduce null coordinates

u = ~: -In (t), v = ~: + In (t) ,
in which metric (C.8) takes the form

ds2 = -l~ eV
-

u du dv + (dX2
)2 + (dX3

)2.

The further coordinates transformation

(C.22)

ensures that the horizons (v = -00, u finite) and (u = 00, v finite) are located at
finite values of U and V. In these new coordinates the metric is

(C.23)

The metric in (U, V)-coordinates evidently remains regular at U= 0 and V = 0 and
it can be extended beyond the horizons lying at these surfaces. It can be rewritten
in the form (C.7) by introducing Cartesian coordinates

X O = ~ (V + U), Xl = ~ (V - U), X 2 = x2
, X 3 = x 3

•

The Killing vector field ~,. is globally defined as follows:

1
~I' = t: (-U Ou + V 8v),

(C.24)

(C.25)

and e = _1;;2 UV. The Killing horizons are formed by two null planes U = 0
and V = 0 where e = O. These null planes divide the spacetime into four regions
I, I I, I I I, and IV (see Figure C.2). In the region I the null coordinates U and V are
related to the Rindler coordinates t and p as follows

U = -p exp(-r), V = p exp(r). (C.26)

Similar Rindler coordinates can be introduced in other regions.
Note that the null plane V = X O + Xl = 0 is a boundary of the set of points

where no information can be received from the region I covered by the Rindler frame.
Thus, this surface is analogous to the past horizon in the spacetime of an eternal black
hole (see Appendix B.6). The value of e is negative in I, I I I and positive in I I, IV.
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Equations (C.20) and (C.22) allow one to show that for a particle or null ray crossing
the horizon XO = Xl at a finite value of V the equation of motion in (t, p).coordinates
has the following universal form

(C.27)

The redshift factor has the same universal behavior 0 "" plla '" exp(-tlla). The
quantity lila which enters these universal laws coincides with the limit of the red
shifted acceleration a at the horizon:

K = lim [a(p) o(p)].
p-40

(C.28)

This quantity K, is known as the surface gravity. Note that the origin of the Rindler
frame where e = -1 can be chosen arbitrarily. The value of the surface gravity
depends on this choice and it changes when the origin of the frame is moved. For
black holes, there exists an asymptotically flat spacetime region where e = const
and the choice ~~ = -1 provides a natural normalization of the surface gravity (see
Section 6.3).

To conclude this appendix, we summarize the main points. The domain of a rigid
Rindler reference frame in a Minkowski spacetime is restricted. The region covered
by this frame (map) is incomplete. A Rindler observer cannot receive information
from the regions lying beyond the event horizon. The complete spacetime manifold
may be covered by another map or system of such maps. The equations of motion of
particles and null rays in a Rindler reference frame have a universal asymptotic form
near the horizon which is determined solely by the surface gravity of the horizon.

Note that although in this appendix we focused our attention on the analogy
between the Rindler frame in a Minkowski spacetime and a local static reference
frame near the horizon in the Schwarzschild spacetime, this analogy can easily be
ext.ended to local regions near a rotating (Kerr-Newman) black hole.



Appendix D

Kerr-Newman Geometry

D.l Kerr-Newman Metric

indexKerr-Newman metric
The Kerr-Newman metric in Boyer-Lindquist coordinates x,. = (t, r, (J, ifJ) is

ds2 = _ (1 _2Mr
E
- Q2) dt2 _ (2Mr - ~)2asin2 (J dtdifJ

E d 2 r. d(J2 A sin
2

(J dA.2
+~ r + + E 'P'

Here we use notations

(0.1)

The vector potential of the electromagnetic field is

A,.dx" = - ~ (dt - asin2OdifJ). (0.3)

It is easy to verify that the metric coefficients of (D.l) obey the following relations

. 2 (J (2 2)' 2 (J933 + a Sill 903 = r +a Sill ,

a 903 + (r2 +a2
) 900 = -~,

(903)2 - 900 933 =~ sin2 (J,
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(0.4)

(0.5)

(0.6)

(0.7)

(0.8)
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(0.9)

The static limit sur/ace is defined by the equation goo = 0, which implies

l' = rst = M + "fM2 - Q2 - a2cos2 9.

The event horizon is defined by the equation ~ = 0 and is located at

r = r + =M + "fM2 - Q2 - a2.

(0.10)

(0.11)

The surface gravity K, the angular velocity flH, and the electric potential ~H for the
Kerr"Newman black hole are

QH =__a_
r~ +a2 '

~H_~
- r~ +a2 '

(0.12)

The non-vanishing contravariant components g"" of the metric are

D.2 Christoffel Symbol

(0.]3)

The non-vanishing components of the Christoffel symbol I'o/J., for the Kerr-Newman
metric in Boyer-Lindquist coordinates are

a2qsin 29
1'010 = -1'100 = p, 1'020 = -1'200 = - E '

I'
_ a2 sin 29 . 2 9

222 - - 2 ' 1'031 = 1'310 = -1'130 = -apslll ,

1
1')1) = ~2 [(M - r)E +r~],

a2 sin29
1'121 = -1'211 = - 2~ • (0.14)

Here

sin 29 [( a
2

sin
2
9) 4]

1'233 = -1'332 = -'2E A 2+ E - b .
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q = (Q2 _ 2Mr)(2E)-1 .
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(0.15)

The corresponding non-vanishing components of the Christoffel symbol rp'Y are

r O __ pb2

01 - ~'

o asin29 2
rI3=-~-(pb +2qr),

o qa3
• 2 •

r 32 = - E sm 9 sm 29,
o 2 qa2

•
r 20 = Er00 = E sm 29 ,

rooI = - ~p.
E'

r l - r2 __ Ar2 __ a2 sin 29
12 - 22 - u 11 - 2E'

I r M-r
rll=E+~'

I r~ 2 r
r 22 =-E' r)2=E'

I ~ sin29 2 . 2 3 apr 33 = ---E-(r+pa sm 9), rOl = - ~'

r 2 __ qab2 sin 29
03 - E2' (0.16)

r 2 = _ sin 29 [62 -2 2 . 29 (2 a
2

sin
2
9)]

33 2E a sm q + E '

3 2qa
r 02 = E cot9,

D.3 Symmetries

The Kerr-Newman metric has two Killing vectors ~ltl = 8i and ~(~l = 8~

t-2. _ _ (1 2Mr - Q2) _ ~ - a2sin
2

9
"'(II - gtt - - - E - - E '

(0.17)

It also has a Killing tensor of the second order ~'W obeying the relation

~"V;A + ~VA;,. + 6,.;1.' = 0 . (0.18)
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In Boyer-Lindquist coordinates its non-vanishing components are

~ _ 2 [1 (2Mr - Q2) cos2 9]
<,00 - a - -'----:::E:.....:...-- ,

(0.19)

The corresponding symmetry of the electromagnetic field (0.3) can be expressed as

(0.20)

DA Motion of Test Particles

D.4.1 Integrals of motion

The equation of motion of a charged (with charge e) particle in external gravitational
and electromagnetic fields is

(0.21)

where m is the mass of the particle; u" its four-velocity, and F"v is the electromag
netic field tensor. Denote by 7r" = m u" + eA" the generalized momentum of the
particle. Let~" be a Killing vector. Since the electromagnetic field potential A"
obeys the symmetry condition C{A" = 0 in an appropriate gauge, the quantity 7rI'~"
is conserved. This follows directly from the relations

(0.22)

The electromagnetic field (0.3) in the Kerr-Newman geometry obeys the sym
metry relations C{(I)A" = C{(~)AI' = 0, and there exist two integrals of motion: the
energy

E = -7r,,~lt) = -(muo + eAo)

and the axial component of angular momentum

(0.23)

(0.24)
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In the presence of a Killing tensor ~'W there exists another independent conserved
quantity

K = ~,."P" p" , (D.25)

where p" = mu" provided the electromagnetic field tensor obeys the symmetry con
dition (D.20). This follows from the relations

dK
ds m

2
(~,.";A u" u" uA + 2~,." U";A U" uA

)

= m2~("";A)U"u"uA+2em~,.,,F"AU"uA =0. (D.26)

For the Kerr-Newman metric the conserved quantity K is

Using the relations

(D.27)

one can verify that

o (2 2) 3 1ap - r +a p = -aPo - -'-2- P3 '
sm (J

Using this formula and expressions (D.23) and(D.24) for E and L*, one gets

Quite often instead of K another integral of motion Q related to it is used:

(D.28)

To summarize, the equation of motion of a charged particle in the Kerr-Newman
spacetime allows four integrals of motions: E, Lz , K (or Q), and a trivial one,
u"u" = -1. One can express the four components u" of the velocity as explicit
functions of these integrals of motion and the coordinates rand (J. As a result, one
gets the system of equations (3.6.8)-(3.6.11). For an uncharged rotating black hole
these equations reduce to the system (3.4.1)-(3.4.4).
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D.4.2 Hamilton-Jacobi method

To study the motion of charged particles in the Kerr-Newman spacetime one can also
use the Hamilton-Jacobi method. Equation (0.21) is equivalent to equations

dx" a1£ d1f" a1£
d)" a1f,,' d>: = ax"

for the Hamiltonian

1£ = ~ 9""(1f" - eA,,)(1f., - eA.,).

The corresponding Hamilton-Jacobi equation is

_as =! g"" (as _ eA ) (as _ eA ) .
a).. 2 ax" " ax" .,

It has the following explicit form:

(0.30)

(0.31)

(0.32)

as
a)..

1 (2 2as as ) 2- -- (r + a ) - + a - - eQ r
2E~ at a¢J
1 (as as) 2 ~ (as) 2 1 (as) 2+ 2E sin2 0 a¢J + asin

2
0at + 2E ar + 2E ao . (U.33)

The Hamilton-Jacobi equation allows separation of variables

1
S ='2 m2

).. - Et + L*¢J +Sr(r) +S,(O).

The substitution of (0.34) into (0.33) gives

Sr =f b,.-IJ1idr, S, =f vadO,

where

(0.34)

(0.35)

(0.36)

(0.37)

By successively putting as/aK, as/8m2, as/aE, and as/aLz to zero, one gets the
following set of equations

(0.38)

(0.39)
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(0.41)

By differentiating these equations it is possible to show that they are equivalent to
the system of first-order differential equations (3.6.8)-(3.6.11).

D.5 Stationary Congruences in the Kerr-Newman
Geometry

D.5.1 Killing congruence

The Kerr-Newman metric (0.1) can be rewritten as follows:

ds2 = -F(dt + 93 d,p)2 + hi; dxi dxi ,

where

(0.42)

F
_ t-2 _ 1 2Mr - Q2
- -"'(I) - - E ' (0.43)

(0.44)

The four-velocity ill' = F- 1
/
2 ~(,) of a Killing observer associated with the Killing

vector ~(,) has the following components:

(0.45)

For the Killing congruence ill' the rate of deformation tensor vanishes, D,w = 0, while
the acceleration wI' and the vorticity tensor wI''' have the following non-vanishing
components:

(0.46)

asin2 (J (ME - r(2Mr _ Q2))
W13 = El/2(~ _ a2 sin2 (J)3/2 '

. a(2Mr - Q2)~sin2(J

W23 = 2El/2(~ _ a2 sin2 (J)3/2' (0.47)
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D.5.2 Congruence of locally non-rotating observers

Another useful form of the Kerr-Newman metric is

ds2 = _02 dt2+ gij(dx i + oi dt)(dx j + oj dt),

where

(0.48)

(0.49)

i j _ E 2 2 A sin2 0 2
gij dx dx - ~ dr + E dO + -E- d,p . (0.50)

Consider a stationary congruence formed by observers moving with the four-velocity

(0.51)

One has ((,I»,. u,. = 0, so that the observers of the congruence have zero angular
momentum. For this congruence, the vorticity tensor vanishes, woP = O. That is why
the reference frame of such observers is called locally non-rotating. The non-vanishing
components of the acceleration w,. are

[M(r2 - a2cos2 0) - Q2rJ (r2+ a2)2 - (2Mr - Q2)2ra2sin2 0
WI = E~A '

a2 sin 20(r2+ a2)(2Mr _ Q2)
W2 = - 2EA .

(0.52)

(0.53)

(0.54)

The non-vanishing spatial components of the deformation rate tensor Dij = 0 r?j are

(E) 1/2
D l3 =asin2 0 ~A (pb2 +2qr),

(0.55)

The quantities b, p, and q which enter these relations are defined by (0.15).
One can adjoin to e:l = u,. three spatial unit vectors

ei=~8r, e~=~8~, e~=JAs~208r. (0.56)

The orthonormal tetrad en forms a local reference frame. The antisymmetric 3-tensor
Omn = cno:Fu'c:;' is the angular velocity tensor of rotation of this frame with respect
to a locally non-rotating frame, while

Ok = _! i mn Omn (0.57)
2
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is the angular velocity of gyroscope precession in the frame em' For the Kerr~Newman
metric the angular velocity o(pr~ces.l of gyroscope precession with respect to the frame
em is

A . (J ( A 1/2 )(prec~••l _ sm W,9 u
(} - E~I/2 EI/2 ef - EI/2 w,reo . (0.58)

The derivation of this formula is explained in [Misner, Thome, and Wheeler (1973)].

D.6 Algebraic Properties

The Kerr-Newman metric belongs to the Petrov type D metrics, and according to
the Goldberg-Sachs theorem [Goldberg and Sachs (1962)], the principal null congru
ences are geodesic and shear-free. In Boyer-Lindquist coordinates these geodesics are
defined by the equations

dr
d)" = ±I,

d,p _ !!...
d)" -~' (0.59)

where).. is an affine parameter. By choosing the null vectors I and n of a complex
null tetrad Zm = (I, n, m, m) to be tangent to the principal null geodesics, one gets
the following null tetrad proposed by Kinnersley (1969):

l" - .!.. ( 2 2 ~ 0 )- ~ r +a, , ,a ,

,. __1 (2 2_ A O)
n - 2E r +a, U, ,a ,

mil =.j2 I. (iasin 0, 0,1, .i (J) •
2 (r + la cos (J) sm

The vectors of the Kinnersley tetrad obey the normalization conditions

I·n=-I, m·m=l;

(0.60)

(0.61)

the other scalar products vanish.
The following useful representation of the covariant derivatives ~(Il,.;v of the Killing

vector {(,l

OF 2ia cos (J (I - F) _
~(Il,.;v = - Or III' n"l + E mil' m"l ' (0.62)

can be used to show that the principal null vectors I and n are eigenvectors of {(Il,.;v
with eigenvalues ± ~ 8F/8r

" 1 8F "I 8F
{(II,.;" I = 2 8r I,., {(Il,.;v n = - 2 8r n,.. (0.63)
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The function F which enters these relations is defined by (0.43).
The spin coefficients (E.5) calculated in the Kerr-Newman metric for the Kinner

sley tetrad are

C:=K=..\=v=a=O,

1
P= - -r---i-a-co-s"""(J'

ia sin (J
r=---

V2E '

ia sin (J
11" = --:;:,------V2 (r - ia cos (J)2 '

fJ = _ Ii cot (J
2V2

(0.64)

D.7 Analytic Extension
Let us introduce new coordinates (v,r,(J,J) related to the Boyer-Lindquist .coordi
nates (t, r, (J, ¢J) as follows

dv = dt + dr.,

- dr
d¢J = d¢J + a ~ .

2 2 dr
dr. = (r + a ) ~ , (0.65)

(0.66)

The coordinate r. is an obvious generalization of the Schwarzschild "tortoise" coor
dinate. For the Kerr-Newman metric, r. is

1 1
r. = r + -2 In Ir - r+ I+ -2 In Ir - r - I ,

K K_
(0.67)

(0.68)

Here r± = M ± ..jM2 -a2 - Q2 and K is the surface gravity of the Kerr-Newman
black hole.

The coordinates (v, r, (J,~) are known as the Kerr ingoing coordinates [Kerr (1963)].
The Kerr-Newman metric (0.1) in these coordinates takes the form

~ ( -) 2 sin
2

() [2 2 - ] 2ds2 =- E dv-asin2(Jd¢J +~ (r +a )d¢J-adv

+ Ed()2 + 2dr (dv - asin2()dJ). (0.69)
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The Kerr ingoing coordinates are regular on the future event horizon and cover the
region I U I I shown in Figure 6.4. The three-surface element of the horizon r = r+,
with normal vector in the inward radial direction, is [Teukolsky and Press (1974)]

du = dt - dr.,

dE" = l'tI (r~ + a2) sin (J dv d(J d~,

where

l'tI = (l,a,a,nH
).

The Kerr outgoing coordinates (tt, r, (J, ifi), defined by

- dr
d¢J = d¢J - a ~

(0.70)

(0.71)

(0.72)

are regular on the past horizon and cover the region I U I I' shown in Figure 6.4.
The Kerr-Newman metric in these coordinates can be obtained from (0.69) by the
transformation v = -u, ~ == -ifi.

One can also introduce coordinates (U, V, (J, ¢J+) which are similar to Kruskal co
ordinates and cover the region I U I' U I I U I I' (see Figure 6.4). These coordinates
arc defined as

lUI = exp[K(r. - t)], IVI = exp[K(r. + t)], ¢J+ = ¢J - nHt. (0.73)

Here nH = a/(r~ + a2
) is the angular velocity of the Kerr-Newman black hole.

In these coordinates the Kerr-Newman metric takes the form

(0.74)

ea sin
2

(J [ 2 2 )]+ '<"'( 2 2) E+(r - r-) + (r + a )(r + r+ (U dV - V dU) dcp+
K+LJ r+ + a

'<"'d(J2 Asin
2

(Jd 2+ LJ + E cp+,

where E+ and K+ are the values of E and Kat r = r+, and

(0.75)
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In the black hole exterior where U < 0, V > 0 the coordinates (U, V) are connected
with Kerr coordinates (tt, v) as follows

U = -exp(-Ku), V = exp(Kv). (0.76)

(0.77)

If -00 < U, V < 00, these coordinates cover the regions I U I I U I' U II'. A
detailed derivation of the analytical continuation (0.74) and the construction of the
maximal analytical continuation for the Kerr metric can be found in the book by
O'Neill (1994).

Setting U = V = 0 reduces metric (0.74) to

(r2 + a2 )2 sin2 /1
ds2 = 2CdU dV + E2 d/12+ + dA.2+ E+ 'f'+,

where 2C = G+ E+ (r+ - r_)/ [K~(r~ + a2 )2], and G+ = G(r+) is a finite constant.
By simple rescaling U -+ cU, V -+ d V, one can always put C = 1. Metric (0.77) is
evidently regular on both horizons, H+ and H-, V and U being the affine parameters
along H+ and H-, respectively. It is easy to verify that

(0.78)

In the absence of rotation the Kerr-Newman metric reduces to the Reissner
Nordstrom metric (7.2.1). The analytic continuation (similar to (0.74)) of the
Reissner-Nordstrom metric then takes the form

(0.79)

where

(0.80)

and r = r(U, V) is determined as a solution of the equation

(0.81)



Appendix E

Newman-Penrose Formalism

E.l Complex Null Tetrad. Spin Coefficients

In this appendix some useful formulas of the Newman-Penrose formalism are col
lected. The null-tetrad approach developed by Newman and Penrose (1962) is a very
useful and powerful method for the construction of solutions of the Einstein equa
tions and for studying physical fields propagating in the curved background. It is
especially useful for studying algebraically special spaces and massless fields.

Denote by zl:, = (l",n",m",m") a complex null tetrad obeying the normalization
conditions .

l·n=~I, m·m=I; (E.I)

the other scalar products vanish. The index m = 0,1,2,3 labels the tetrad vectors.
We denote by zm the dual basis of I-forms z;:' = (-n", -i", m", m,,). The metric 9"v
can be written as

9"v = 1/mn z;:' z: = -2(1(" nv) - m(" mv)).

The matrix 1/mn which enters this formula, and its inverse 1/mn, are of the form

(

0 -1 0 0)
mn -1 0 0 0

1/mn = 1/ = 0 O· 0 1 .

o 0 1 0

These matrices are used for operations on the tetrad indices.
The connection coefficients r kmn are defined as

Vn Zm =r k
mn Zk ,

(E.2)

(E.3)

(EA)

where Vn =z~ Vv. The following 12 independent complex linear combinations of
the connection coefficients are known as spin coefficients

669
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(E.5)

-£ == ~ (f lOO - f 320) = ~ (LI';v nl' LV - ml';v ml' LV),

-13 == ~ (f102 - f 322) = ~ (LI';v nl' mV - ml';vm;' mV),

-7 =~ (f231 - fOll) = ~ (LI';v nl' nV - ml';v ml' n
V
),

E.2 Covariant Derivatives. Ricci and Weyl Tensor

The following standard notations are used for the covariant derivatives in the direc
tions of the null tetrad vectors:

D = LI' VI' , 6. == nl' VI' ' 15 =ml' v/! , J =ml' VI' •

The commutators

in this notation have the explicit form

6.D - D6. == (1 + 7)D + (£ + £) 6. -(r + 1f)J - (f + 11")15,

dD - Dd == (a + 13 - 1f)D + ~ 6. -uS - (p + e - t)d,

15 6. - 6. 8 = -iiD + (r - a - 13) 6. +XJ + (It -7 + 7)8,

J15 - 15 J == (ji - It)D + (p - p) D. -(0 - j3)J - (P - a)d.

(E.6)

(E.7)

(E.8)

The following notations are used for the null-tetrad components of the traceless
part of the Ricci tensor (QI'V = Rl'v - 91'v RJ4) and for the Weyl tensor Co/3I'V

1 V 1 .i. 1 Q LI' v 1 D
~oo = 2QI'V LI' L == 2Roo, ~Ol = ~10 == 2 I'V m = 2JL()2,

. - 1 1
CIl12 = ~21 = 2Q,.v nl' m

V == 2R12 ,
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(E.g)

.T. - C [a 13[1' v'i'o - a131'V m m, .T. _ C [a 13[1' v'i'l - afJ,.v n m I

(E.lO)

.T. _ C a [13 I' - v'i'3 - a131'V n n m , .T. C a - 13 I' - v'i' 4 = al3l'v n m n m .

The null-tetrad components of the curvature tensor can be obtained as follows:

Rk - k B I' v Ra
lmn = Za Zl Zm Zn I3l'v

E.3 Newman-Penrose Equations

The following explicit form of relations (E.9)-(E.1l) in terms of spin coefficients is
known as the Newman-Penrose equations

Dp - 8K = (i + aa) + (£+t)p- KT - K(30 +,8 -11") + ~oo,

Da - 15K = (p + p)a + (3£ - t)a - (T - 1t + 0 + 3.B)K + Wo,

DT - 6.K = (T + 1t)p + (f + 1I")a + (£ - t)T - (3.,. + 1)K + WI + ~Ol,

Do - 8£ = (p + t - 2£)0 +,8a - ,8£ - K).. - K.,. + (c + p)1I" + ~1O I

D,8 - 8£ = (0 + 1I")a + (p -£),8 - (JL+ .,.)K - (0 - 1f)c + WI,

D.,. - 6.c = (T + 1t)0 + (f + 11"),8 - (£+ th - (.,. + 1)c + T1I"

- VK + W2 + ~11 - A,

D).. - 811" = (p).. + aJL) + 11"2 + (0 - ,8)11" - VK - (3£ - t) .. + ~20,

DJL - 811" = (pJL + a)..) + 11"1t - (c + t)JL - 11"(0 - .B) - VK + W2+ 2A,

Dv - 6.11" = (11" + f)JL + (1t + T) .. + h -1)11" - (3c + t)v + W3 + ~21,

6.)" - 8v = -(JL + jl) .. - (3.,. -1).. + (30 +,8 + 11" - f)V - W4, (E.12)

8p - 8a = p(o +.B) - a(30 -,8) + (p- p)T + (JL - jl)K - WI + ~Oll
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80 - 8{3 = (ltP - '\a) + 00 + (3fJ - 20{3 + .,.(p - p) + e(1t - ji)

8,\ - 81t = (p - p)v + (It - jl)1r + It(o + fJ) + '\(0 - 3(3) - 111 3 + ~21 ,

8v - 6.1t = (lt2 + ,\~) + (".,+ i)1t - D1r + (T - 3{3 - o)v + ~22'

8.,. - 6.{3 = (T - 0 - {3h + itT - av - eD - (3(". - i-It) + o~ + ~12'

8T - 6.a = (Ita + ~p) + (T + {3 - O)T - (3.,. - i)a - KD + ~02,

6.p - 8T = -(pji + a'\) + (fJ - a - f)T + (.,. + i)p + VK - 111 2 - 2A,

6.0 - h = (p+ e)v - (T+ (3),\ + (i - ji)o+ (fJ - fh - 111 3 .

E.4 Bianchi Identities

The Bianchi identities

(E.l3)

form the last set of equations of the Newman-Penrose formalism. The tetrad form of
this equation is

V [k Rmnlpq = - 2Rpq.(m r'nkl +r'plm R"kl.q - r'q(m Rnkj.p . (E.14)

For completeness we reproduce below an explicit form of these equations written in
terms of spin coefficients

6.1110 - 8111 1+ D~02 - 8~01 = (4.,. - 1t)1II0 - 2(2T + (3)1II1+ 3a1ll 2

+ (2c - 2t + ji)~02 + 2(1f - (3)~01 + 2a~11 - 2K~12 - >.~OO,

8111 3 - D1II4 + 8~21 - 6.~20 = (4c - p)1II4 - 2(21r + 0)1113 + 3,\1112

6.111 3 - 8111 4 + 8~22 - 6.~21 = (4{3 - T)1II 4 - 2(21t + .,.)1113 + 3v1II2

+ (f - 2fJ - 20)~22 + 2(.,. + jl)~21 + 2'\~12 - 2V~11 - D~20 ,
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DW2 - 8wI + b.~oo - 8~01 + 2DA = -,\Wo+ 2(11" - O)WI + 3pW2

- 2KW3 + (2'"Y + 21 - ji)~oo - 2(f + 0)~01 - 2T~1O + 2p~1l + a~02,

b.W2 - 8w3 + D~22 - 8~21 + 2 b. A = aW. + 2(f3 - T)W3 - 3JLW2 + 2vWI

+ (p - 2c - 2[)~22 + 2(if + (3)~21 + 211"~12 - 2JL~1l - >'~20' (E.15)

DW3 - 8W2 - D~21 + 8~20 - 28A = -KW4 + 2(p - C)W3 + 311"W2

- 2'\WI + (20 - 2f3 - if)~20 - 2(p - C)~21 - 211"~1l + 2JL~1O + K~22,

b.WI - 8w2 - b.~ol + 8~02 - 2M = vWo +2(.,. - JL)WI - 3TW2 + 2aW3

+ (f - 2!J + 20)~02 + 2(jl- '"Y)~01 + 2T~1l,

D~ll - 8~1O - 8~01 + b.~oo + 3DA = (2'"Y - JL + 21 - ji)~oo

+ (11" - 20 - 2f)~01 + (if - 20 - 2T)~10 + 2(p+ p)~ll

+ a~02 + a~20 - K~12 - K~21 ,

D~12 - 8~1l - 8~02 + b.~ol + 3M = (-20 + 2!J + 11" - T)~02

+(P + 2p - 2[)~12 +2(if - T)~l1 + (2'"Y - 2jl- J.l)~01

+D~oo - >'~1O + a~21 - K~22 ,

D~22 - 8~21 - 8~12 + b.~11 +3 b. A = (p + P- 2c - 2f)~22

+ (2!J + 211" - f)~12 + (2f3 +2* - T)~21 - 2(JL + ji)~11

+v~01 + D~lO - >'~20 - '\~02 .



Appendix F

Wave Fields in a Curved Spacetime

F.1 Scalar Field

The action describing a free massive scalar field ~ is

(F.l)

where m is the field mass, and ~ is an arbitrary parameter. If m = 0, J = 0, and
~ = 1/6, the theory is conformally invariant, Le., invariant under transformations

(F.2)

The field equation takes the form

(F.3)

where

(FA)

The energy-momentum tensor is

+~ ((R,.., - ~ 9IJv R) ~2 + 9,.., (~2ra;Q - (~2);lJv]} + J~glJv. (F.5)
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Often (especially in quantum field theory) it is convenient to get rid of a multiplier
1/411" which enters the formulas. For this purpose, instead of Gaussian units one uses
Heaviside units, which in our case is equivalent to the following transformations

1 .
J=-J.y'4;

(F.6)

In these units one has

W[cp] = - ~ [ (gl'V Cp,1' Cp,v +m 2 cp2 +~R cp2) ..;=gd4x

+ { jcp..;=g d4x + -4
1 ~ { K cp2 v'h d3y ,Jv 11" Jav

Ocp - (m2 +~R) cp = - j ,

where

T [ 1 2] _ 1 2 1 (1 2;0 2 1 2)I'v cp , cp = cp;(1' cp;v) - 2" gl'v Cp;o cp +m cp cp

(F.7)

(F.B)

(F.9)

The D'Alembert operator 0 written in terms of Newman-Penrose variables reads

- (6 + J.t + P, - 'Y - i')D + (8 + 2,8 - T)8 + (8 + 2,8 - f)8.

F.2 Electromagnetic Field
The action describing the electromagnetic field AI' is

(F.Il)

(F.12)

(F.13)

This action for J = 0 is conformally invariant, Le., invariant under transformations

(F.14)
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The Maxwell equations are

(F.15)

The energy-momentum tensor is

In Heaviside units

(F.16)

D r;-"4 I )1' _ 1 .1'
r"v=Y'l1r "VI - .r.c: J ,
~ .. V 411"

(F.17)

the above relations take the form

T T [I I] T [II 12 ] - II 0/2 1 ,I 120/3I'V = I'v , , I'v , - (I' v)a - 491'v J 0/3 .

(F.18)

(F.19)

(F.20)

Denote the components of the field strength Fl'v in the complex null tetrad Zm by

~o = Fl'v II' m V
,

1 _
~I = - F (11'n

V + ml'mV
)2 I'V , (F.21 )

then the source-free Maxwell equations take the form

(F.22)
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F.3 Gravitational Perturbations

677

o
Let us consider perturbations h/'v of the background gravitational filed 9/'v. The
corresponding metric 9/,v of the perturbed field is

(F.23)

By retaining terms up to the second order in h/,v, one gets

( 0) 1/2 (1 )n= -9 1+ 2h+ ... ,

o 1 2
R/'v = R/'v + R/'v + R/'v +... ,

1 1 (h h'o h '0 h '0)
R/'v = 2 - ;/'V - /,v;'; + 0/';'; + oV;~ ,

(F.24)

(F.25)

(F.26)

(F.27)

(F.28)

(F.29)

o 0
The background metric 9/'v and its inverse 9 /,V are used for operations with indices
and the definition of the covariant derivatives.

The equations describing the gravitational perturbations can be obtained by vari
ation of the exact Einstein equations. By introducing new variables

- 1
ho{J = ho{J - 29o{J h ,

one can write the equations for the gravitational perturbations in the form

-.>. - >. - >. 1 -.>.
ho{J' ;>. - h 0:13;>' - h 13;0;>' - 290/3 h' ;>. = o.

(F.30)

(F.31)



Appendix G

Wave Fields in the Kerr Metric

G.l Teukolsky Equation

The homogeneous equations describing a wave field l/'A propagating in an external
gravitational field are of the form

£AB l/'B =0, (G.1)

where £AB is a covariant differential operator, and A and B represent collective
tensorial indices. For example, for the electromagnetic field

£,.vAv =VVVv A" - VVV,. Av ,

and for gravitational per~urbations

£"v,o{J hop = - V',.V'vh: - voVoh"v

+ V'°Vvh~ + V°V'''h~ +gI'V (voVoh~ - voVPho{J) .

For massless fields in the Kerr metric these equations can be decoupled [Teukolsky
(1973)]. This means that there exist three operators (we denote them by ,TA, ,nB ,

and ,0 ) such that the following relation is valid

(G.2)

Here s = 0, ±1/2, ±I, ±3/2, ±2, and lsi is the spin of the field l/'A. This relation
shows that the scalar ,t/! = ,nB l/'B constructed for any solution of equation (G.I)
obeys a scalar decoupled equation

,O,t/!=O.

Usually the covariant operator ,0 is represented in the form

,0 =E-1,O.

678

(G.3)

(GA)
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(We recall that in the Kerr metric A = :EsinO.) The scalar second order differen
tialoperator ,0 was introduced by Teukolsky (1973). Its explicit form depends on the
choice of coordinates and complex null tetrads. Using Boyer-Lindquist coordinates
(D.I) and the Kinnersley tetrad (D.60), the operator ,0 is such that

o .1. _ [(r
2+a

2
)2 2· 211] 8~t/J 4aMr 8~t/J

• .'1' - Ll - a sm u 8t2 + ---z;:- 8t 8</J

__1_~ (. 0 8.t/J) _ 2 [a(r - M) i COSO] 8,t/J
sin 0 80 sm 80 8 Ll + sin2 0 8</J

(G.5)

This is the so-called Teukolsky equation [Teukolsky (1973)]. (We recall that Ll =
r 2

- 2Mr + a2
.)

A solution of the tensor field equation (G.I) can be constructed from the solu
tions of the related Teukolsky equation. It was demonstrated by Cohen and Kegeles
(1974) for the electromagnetic field, and by Chrzanowski (1975) for gravitational
perturbations. Wald (1978c) gave a simple proof of a general result which shows
how to construct a solution to (G.I) once one has succeeded in deriving a decoupled
equation. In order to describe the idea of this proof, let us denote by

(G.6)

the scalar product of two (generally complex) tensor fields t/JA and cpA. Here d4v =
..;=gd4x is the invariant volume element. The action W[cp] for a real tensor field cp
obeying equation (G.I) can then be written in the compact form

I
W[cp] == "i( cp, £cp) . (G.7)

Further, denote by Q* the operator which is conjugate to an operator Q with respect
to the scalar product (G.6):

(t/J,Qcp) = (Q*t/J,CP)' (G.8)

The operator £ in (0.7) is self-conjugate: £* = £. By using this property, we can
rewrite the equation obtained by conjugation of (G.2) in the form

C'AB * _ n*B o~*
Co .TA - , • . (G.9)
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It can be shown that

APPENDIX G. WAVE FIELDS IN THE KERR METRIC

(G.I0)

This relation shows that for any solution .8 of the scalar equation
~.

.0 .2 =0,

the tensor function

(G.ll)

(G.12)

is a solution to the field equation (G.l). It can be shown that all solutions of equa
tion (G.l) (up to possible gauge transformations) can be represented in this form.
Thus, solutions of the scalar equation (G.ll) provide complete information about
the perturbing field. In the remainder of this appendix we collect the basic facts
concerning the solutions of the Teukolsky equation and the procedure of reconstruc
tion of the fields from these solutions. [For more details, see Press and Teukolsky
(1973), Teukolsky and Press (1974), Chrzanowski (1975), Chrzanowski, Matzner and
Sandberg (1976), Wald (1978), Candelas, Chrzanowski, and Howard (1981), Gal'tsov
(1982, 1986), Futterman, Handler, and Matzner (1988).]

G.2 Separation of Variables. Spin-Weighted Sphe
roidal Harmonics

The coefficients of the Teukolsky equation (G.5)

.o.t/J =0 (G.13)

do not depend on t and </>. Furthermore, the existence of a Killing tensor in the
Kerr spacetimes results in the existence of an additional symmetry of the Teukolsky
equation, which makes it possible to solve it by separation of variables. That is, one
can use a mode decomposition

.t/J(t,r,O,</J) =! dw L .Rlm(r,w).Ztm(O,</»e-iwt,
t,m

where .Zt'm(O, </» are the spin-weighted spheroidal harmonics

.Ztm(O, </» = 211"t 1
/

2 .S'tm(O) eim
¢.

The angular problem reduces to solving the equation

1 d(. dS) [2 22m2-- - smO- + a w cos 0 - -- - 2awscosO
sin 0 dO dO sin2 0

(G.l4)

(G.l5)
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2m5 cos 0 ]
- • 2 - 52 cot2 0+E - 52 S =0 ,

Sill 0
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(G.l6)

where the function .Sl"'(O) is regular on the interval [0,11"]. The spin-weighted
spheroidal harmonics are normalized by the condition

1
2

'1f drjJ l'1f dO sin 0.Z;:"" (0, </J) .Z't", (0, </J) =8u,8",,,,,

which means that

Moreover, because of the symmetries of equation (G.16), one has

.Z't",(1I"-0,</J)~ -.Z't",(O,</J),

.Z't",(O,</J) ~ _.Z~",(O,</J).

(G.17)

(G.18)

(G.19)

(G.20)

Here and later in this appendix, we use the symbol ~ to indicate that a relation is
valid up to some arbitrary multiplicative constant. For the chosen fixed normalization
(G.17) this constant is just a phase factor.

The required functions .Sl"'(O) thus essentially follow from a Sturm-Liouville
eigenvalue problem for the separation constant E. Boundary conditions of regularity
should be imposed at both 0 = 0 and 0 = 11". According to Sturm-Liouville theory,
the eigenfunctions form a complete, orthogonal set on the interval 0 ~ 0 ~ 11" for each
combination of 8, aw, and m. This infinite set of eigenfunctions is labeled by t.

For scalar fields (8 = 0) the desired functions are the spheroidal wave functions
that were studied in detail by Flammer (1957). For Schwarzschild black holes (where
a = 0), the required solutions are the spin-weighted spherical harmonics .ti",. They
can be expressed in terms of standard spherical harmonics [Goldberg et al. (1967)].
As we have already mentioned, the general functions are referred to as "spin-weighted
spheroidal harmonics". For these, the problem was first considered by Press and
Teukolsky (1973). They derived an expression for the eigenvalue E in the case when
a w is sufficiently small to be considered a perturbation. This expression was inde
pendently derived by Starobinsky and Churilov (1973). For rapidly rotating black
holes, or higher frequencies, Press and Teukolsky resorted to numerical integration
of (G.16).

A general study of the analytic properties of spin-weighted spheroidal harmonics
was presented by Fackerell and Crossman (1977). They expressed the eigenfunctions
as a series involving Jacobi polynomials. This series only converges for certain eigen
values, and these lead directly to the desired separation constant for the black-hole
problem. In practice, one obtains a continued fraction relation that determines the
eigenvalue. A great advantage of this approach is that it can be used also for complex
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(G.21)

(G.22)

frequencies. Thus, it is applicable also when one considers quasinormal modes of a
Kerr black hole (see section 4.4). Moreover, Fackerell and Crossman (1977) derived
an expansion for the eigenvalue up to and including terms of order (aw)6. A similar
expansion, together with an alternative expansion for high frequencies, was obtained
by Breuer, Ryan, and Waller (1977). Their high-frequency formula includes terms
of order (aw)-3. Unfortunately, there are discrepancies between the various results.
This means that all these equations must be used with some care. In order to im
prove the situation, Seidel (1989) used the Fackerell-Crossman approach to rederive
the small-aw expansion. Having done this, he points out various misprints in the
previous studies and presents a formula that should be reliable. The first two terms
of this expansion are (for s =1= 0)

2maws2

E ~ f(f + 1) - l(l + 1) + terms of order (aw)2.

In most studies of rotating black holes, the angular functions have been obtained
by numerical solution of (GJ6), however. Examples of this include the quasinormal
mode calculations of Leaver (1985) and the study of wave scattering by Handler and
Matzner (1980).

G.3 Radial Equation

The radial functions ,Rim also obey a second order differential equation. The exact
form of this equation depends both on the choice of tetrad and the choice of coordi
nate system. For the Kinnersley tetrad and Boyer-Lindquist coordinates the radial
equation is [Teukolsky (1973»)

/1-' ; (/1a+l ~~) + [K2 - 2iSr - M)K +4irws - A] R = 0,

where

A= E-2amw+a2w2 -s(s+1). (G.23)

By using the symmetries of the radial differential equation, we get the following
relations (valid only for real frequencies)

(G.24)

(G.25)

An important property of the radial Teukolsky equation is that the two solu
tions ,Rim and -,Rim are related. The exact form of these relations, known as
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the Teukolsky-Starobinsky identities, depends on the value of 1s I. For gravitational
perturbations one has

Here

(G.26)

(G.27)

v = (} _ if{ and
r Ll'

t_ iK
V -Or+-x-. (G.28)

Similar relations for other values of s are given by Chandrasekhar (1983). As before,
the symbol 9'! indicates that the constants of proportionality in these relations are not
fixed. But if we require that subsequent use of both transformations (for example,
first transforming 2R into -2R, and then the resultant -2R into 2R) should lead to
an identity, then the product of the two corresponding constants (C and C, say) will
be fixed. In the case of gravitational perturbations this leads to

where

2 2 am
Q =a-

w
(G.30)

Solutions to the equations describing a free massless field in the exterior of a
Kerr black hole can be specified by giving their asymptotic forms at null infinity and
the horizon. It is convenient to introduce four sets of modes which are called IN-,
UP-, OUT-, and DOWN-modes, correspondingly. Each of the modes is a solution
characterized by the set {fmw P} of quantum numbers, where the parity P = ±1 .
These modes are singled out by the following requirements: IN-modes vanish at H
and have non-vanishing asymptotic values on .:J-. UP-modes vanish at .:J- and are
non-vanishing on the past horizon H-. OUT-modes vanish at H+ but not at J+,
and finally DOWN-modes vanish at .:J+ and are non-vanishing on the past horizon
H+. Any two of these four solutions can be used as a complete set in the space of
solutions. They are uniquely specified by the choice of boundary conditions for the
corresponding radial equation (G.22). Let us discuss these conditions in more detail.

Introducing a new dependent variable

the radial equation (G.8) can be written in the form

dsXf.rn
-d2 + sVern sXf.rn = O.

r.

(G.31)

(G.32)
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Here the complex effective potential sVim is

VI ( ) = K 2 - 2is(r - M)K + 1i(4iwsr - A) _ C2 _ dG
• lm r,w (r2 + a2)2 dr, '

and r. is the "tortoise" coordinate defined by

r 2 + a2

dr. = -li-- dr.

In the asymptotic regions (r. ~ ±oo) the potential .Vlm has the form

(G.33)

(G.34)

(G.35)

{

w(w + 2is/r),

tv; ,
(G.36)

Here

tv, = tv - isK" tv = W - mOH
, (G.37)

and K, = (r+ - M)/(r~ + a2) is the surface gravity of the Kerr black hole. Linearly
independent solutions to (G.32) have the asymptotic behavior ~ r'f,' exp(±iwr.) at
r ~ 00 and ~ li±s/2 exp(±itvr.) at r ~ r+ .

We define two sets of solutions ,X~':" and ,X~::. by the boundary conditions

and

asr~r+,

(G.38)
asr~oo,

{

Pup Ii-I. 1/2 e- iwr• + Ii+1'1/2 e+iwr•
+1'1 lmw

+1.lx~~(r,w) '"
r UP r-I. Ie+ iwr•

+1'1 lmw

a.'31" ~ 7'+,

asr~oo.

(G.39)

The choice s = -I s 1for IN-modes and s = 1s 1for UP-modes is dictated by the
necessity to exclude the slowest decreasing (or fastest growing) asympt.otic' behavior
at r ~ r + (IN-modes) or at r ~ 00 (UP-modes).

The qnantities -1'IR}':,,(r,w) and +lsIR~::'(r,w) defined by equation (G ..31) are
thus particular solutions of the radial equation (G.22) that sat.isfy the boundary
conditions

as1"~oo,

(GAO)
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and

{

I RUP D. -I s 1e-iror• + e+iror•+ sl imw
+lsIR~:':C1",w) ~ .

1 I
T-up r-2Isl-1 e+iwr•

+ s imw asr-+oo.
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(GAl)

The solutions are uniquely specified by these conditions. We can interpret the solution
_lsIR~~.(r,w)e-iwl as a (unit-amplitude) spherical wave propagating inwards from
infinity and being partially reflected back out to infinity and partially transmitted
across the horizon, whereas +lsIR~~ (1', w) e-iwl represents a (unit-amplitude) spherical
wave propagating up from the past horizon, and being partially reflected back and
partially transmitted out to infinity. The situation is depicted in Figure 4.2.

One can show that the potential sVern for ..\ defined by (G.33) with E fixed
possesses the symmetry

(G.42)

That is, if s:tem is a solution of equation (G.32), then -sX~~t is a solution to the same
equation. This means that one can define the remaining two solutions (OUT-modes
and DOIYN-modes) in terms of the known ones:

vout(r w) - -ill ( w)
Isl,~em' - -lslXem 1', ,

.down (. ) _ - up ( )-lslXem 1,W - IslXim r,w .

(G.43)

(G.44)

The corresponding radial functions sR't:;t and sRt::.wn are given by (G.31), while
sJ/Jout and sJ/Jdown are defined by (G.14).

G.4 Massless Scalar Field

The case of a massless scalar field is technically the simplest one. Consider a scalar
field V' obeying the equation

Drp = o.

It is easy to verify that

(GA.5)

(G.46)

so that the solutions to equation (G.45) simply coincide with the solutions of the
Teukolsky equation for s = O.

To make the consideration more concrete, we fix from now'on the phase factors
that enter (G.20) and (G.24) as follows [Chrzanowski (1975)]:

sZtm(B, ¢) = (_l)m _sZi-wm(B, ¢), sRim(r, w) = (_l)m sRe-m(r, -w). (G.47)
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We define

into .) _ N in Z'" (8 -I.) RiD ( ) -i",1ep £, m, w, x - ° ° em , 'I' ° em r, we,

UP( 0 .) _ NUP Z'" (8 -I.) RUP ( ) -iwlep r,m,w,x - 00 em ,'1'0 lmr,w e .

Relations (GA7) imply

epin(f, m,w; x) =epin( f, -m, -Wi x) ,

epUP(f,m,w;x) = epuP(l, -m, -w;x),

provided

iVin(m,w) = Nin(_m, -w), NUP(m,w) = NUP( -m, -w).

(GA8)

(G.49)

(G.50)

(G.51)

(0.52)

We define the inner product for a pair 1/J and ¢ of complex solutions of (GA5) as

(G.53)

~ is a complete spacelike hypersurface in the exterior Kerr spacetime which passes
through the intersection of the horizons H- U H+ and spatial infinity 1°, and d(71' is
a future-directed normal to B. One can choose t=const as the equation of B. In the
limit t ~ -00 this surface coincides with H- U.:J- u t, where t is the space-region
of the infinite past. For massless fields wavepacket-like solutions vanish on t, so that
one can write

The integrals over H- and .:J- can be evaluated explicitly since one knows the form of
the radial functions oR}r;,., oR~::' at both the horizon and spatial infinity (ef. (GAO)
and (GAl)). In a similar way one can move the surface B to the future and rewrite
the integral in terms of integration over H+ U .:J+.

It is easy to verify that the coefficients N~n and N~P in (GA8) and (GA9) can be
chosen so that

< epA(f,m,w; x),epA'(l', m',w'ix) > = 1f
A 8AA, 8w 8mm, 8(w - w'),

where A E {in, up}, and 1rA is the sign-function

(G.54)

. {+1 if w> 0,
1f'"(w,m) ==

-1 ifw<O, {

+l
1fuP(w, m) ==

-1

if w > 0,

if w < O.
(G.55)

Solutions (GA8) and (GA9) for (-00 < w < 00) form the complete set of modes.
This set can be used to decompose any solution of the scalar field equation (G.45) in
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the exterior of the Kerr black hole. Instead of this set, it is more convenient to use
another one that is defined as

(G.56)

where A E {in, up}, w > 0 for IN-modes, and w > 0 for UP-modes. The equivalence
of the two sets of modes follows from (G.50) and (G.51). For the basis (G.56)

< epA( e, m,w; x), epA' (fl, m' ,w'; x) > = 8M , 8u' 8mm, 8(w - w'); (G.57)

the other inner products vanish. A solution ep of the field equation (G.45) can be
written as

ep(x) L [cJ ep(J; x) + cJ rp(J; x)]
J

00 { {'x>L L 10 dw [Cin,{mw epin(bnw; x) + Cin,{mw rpin(t'mw; x)]
{=o m=-{ 0

(G.58)

00 ( roo
+ L L 1n dw [Cup,{mw epUP(fmw; x) + Cup,{mw rpUP(fmw; x)]. (G.59)

{=o m=-{ mn
H

Here J is a shorthand for {A, f, m,w}, and A takes values "in" and "up".
Another useful complete set of modes (out-basis) can be constructed by using the

solutions

These solutions obey relations similar to (G.50)-(G ..51). The set

{epA (x), rpA (x) } {mw

(G.60)

(G.6I)

(G.62)

where A E {out, down}, w > 0 for OUT-modes, and w > 0 for DOWN-modes obey
the normalization conditions (G.57) and can be used to obtain a decomposition of
the solution ep similar to (G.58).

G.5 Electromagnetic Field

The procedure of construction of the bases for higher spins is similar to the one used
for the scalar massless field. Once solutions to the Teukolsky equation are known,
one can use them to obtain solutions of the field equations. The basic relations for
the electromagnetic field are collected in this section. The gravitational perturba
tions are considered in the next section. [For more details, see Chrzanowski (1975),
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Wald (1978), Candelas, Chrzanowski, and Howard (1981), Gal'tsov (1982, 1986),
Futterman, Handler, and Matzner (1988).]

For the electromagnetic field propagating in the exterior of the eternal Kerr black
hole we define a complete set of complex modes as

{a~(x),ii~(x)}emwP' (G.63)

where A E {in, up} and P = ±l. The explicit form of the modes was obtained by
Chrzanowski (1975).

When A =in, one has (w > 0)

a;(£,m,w,P;x) =

(G.64)

(in the ingoing radiation gauge av IV =0).
When A = up, one has (w > 0)

(G.65)

(in the outgoing radiation gauge av n V = 0). Here, Nt are constants that will be fixed
later, and 81" T I' are the first-order differential operators:

8/L = -11'(8 + 2iJ + r) +1nl'(D + p) ,

TIL = P -2 [nl'(8 + 1f - 2Ci) - ml'(L:. + ji - 2'"()].

The fact that the "in"- and "up"-modes (G.64) and (G.65) are expressed in differ
ent gauges does not cause any difficulty because only gauge-independent quantities
constructed from them are actually used.

Using relations (G.47), one can verify that

a;(f,m,w;x) = Pa;~(e,-m,-w;x),

ii~P(£, m, w; x) :::: Pa~P( e, -m, -Wi x) ,

(G.66)

(G.67)

provided Njn and N~P obey (G.52).
Having constructed mode solutions for the vector potential al" (JIlP can derive the

corresponding expansions for the scalar field-strengths. The operators ±lnllV relating
±1'I/J to the potential aI" i.e.,

(G.68)
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have the following form

jlll' = (8 - (3 - Q - 27 + 1f) [I' - (D - 2p - p) ml',

_Ill/' = p-2 [(6 +1' - i + 211+ p) ln l' - (8 +a +i3+21T - f)nl'].
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The spin coefficients for the Kerr metric are given by (D.64). The mode solutions for
DOWN- and OUT-modes are defined similarly.

In the application of the mode decomposition to the quantum theory it is conve
nient to fix the constants Nt appearing in (G.64) and (G.65) by demanding that the
Illode set satisfies the orthonormality condition

< aA(f, m, w, P; x), aA' (f', m',w', pI; x) > = 8M , 8et' 8mm, 8(w - w') 8pp,; (G.69)

the other inner products vanish. Here, the inner product < '!/J, rP > for complex vector
fields '!/Jet and rPetis defined as follows:

(G.70)

By using Stokes' formula (A.87), it is easy to verify that for solutions that decrease
at infinity rapidly enough this definition of the inner product is identical to equation
(2.40) of [Candelas, Chrzanowski, and Howard (1981)]. B is a complete spacelike
hypersurface in the exterior Kerr spacetime, and d(71' is the future·directed normal
to B. As in the case of the electromagnetic field, the surface of integration B can be
moved either to the infinite future or to the infinite past, so that the integration is
performed either over H- U.:J- or over H+ U.:J+, where the asymptotics of the fields
are known.

An arbitrary electromagnetic wave propagating in the exterior of the Kerr metric
can be expanded in terms of the modes (G.64) and (G.65)

al'(x) = L {CJal'(J;x) +cJiil'(J;x)}.
J

(G.71)

Here J is a shorthand for {A, f, m, w, P}, and A takes values "in" and "up". A similar
decomposition is valid if one use the set of OUT- and DOWN-mode$.

G.6 Gravitational Perturbations

For gravitational perturbations propagating in the exterior of the eternal Kerr black
hole we define a complete set of complex modes as

{h~(x), ii~v(x)} ImwP

where A E {in, up} and P = ±1.

(G.72)
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The explicit form of the modes for A = in is (w > 0)

(G.73)

(in the ingoing mdiation gauge hl'v IV = 0, hvv = 0).
When A = up, we have (riJ > 0)

h~~(f,m,w,P;x) =

(G.74)

(in the outgoing radiation gauge hl'v nV = 0, hv
v = 0).

Here, Nt are constants which will be fixed later, and 8pv, T I'V are the second
order differential operators [Chrzanowski (1975)]:

81'v = -ll'lv(8+a+3t3-1')(8+4t3+3f)
-inl' mAD - p)(D + 3p)

+ 1(1' mv)[(D + p - p)(8 + 413 + 31')
+ (8 + 313 - a - 7f - 1')(D + 3p)],

YI'V P-4{ -n
"
nA8 - 3Ci - (3 +5*)(8 - 4Ci +1i")

- ml' mv(L:' + 5jl- 37 + "'()(6 + jl- 47)

+n(1' mv)[(8 + 51f + (3 - 3Ci + 7)(6 + Ji - 47)

+(6 +5Ji - J1. - 37 - "'()(8 - 4Ci +*)]).

The fact that the IN- and UP-modes (G.73) and (G.74) are expressed in different
gauges does not cause any difficulty because only gauge independent quantities con
structed from them are actually used. Chrzanowski's mode set comprises a complete
set of solutions to the perturbed field equations for the Kerr spacetime.

Using relations (G.47), one can verify that

a;(f, m,w; x) = Pa;U, -m, -w; x), (G.75)

(G.76)

provided Nl" and N1
uP obey (G.52).

Having constructed mode solutions for the metric perturbations, one can derive
the corresponding expansions for the Weyl scalars. The operators ±2n1'V relating
±2'I/J to the metric perturbations hl'v, i.e.,

(G.77)
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nl'V
-2

1
- - {(D - p)(D - p)ml'mV

2
+ (8 + 7f - 3{3 - Ci)(8 + 1i' - 2{3 - 2Ci) II' IV

- [(D - p)(8 + 21i' - 2(3)

+ (8 + 7f - 3{3 - Ci)(D - 2.0)] 1(l'mv
)},

1
- - p-4{(6 + ji + 3')' -7)(6 + ji + 2""( - 27)iiil'iiiV

2
+ (8 - f + 3a + 8)(8 - f + 2a + 28) nl' n V

- [(6 + ji + 3')' - "j)(8 - 21' + 2a)
+ (8 - f + 3a + 8)(6 + 2ji + 2')')] n(1' iiiv)} .

In the application of the mode decomposition to the quantum theory it is conve
nient to fix the constants NA appearing in (G.73) and (G.74) by demanding that the
mode set satisfies the orthoncirmality condition

< hA(f, m,w, P; x), hA'(e', m' ,w', PI;x) > = 8AA, 8ft' 8mm, 8(w - w') 8pp'; (G.78)

the other inner products vanish. Here < 1/J, ¢ > is the inner product defined for
complex symmetric tensor fields 1/Ja{3 and ¢a{3 as [Candelas, Chrzanowski, and Howard
(1981)]:

< 1/J, ¢ > = -ihd(71' (1f;a{3 ¢a{3;1' - ¢a{3 ~a{3;1' + 2¢al' ~a~{3 - 2~al' ¢a~(3) .(G.79)

Here 1f;a{3 = 1/Ja{3 - ~ 9a{31/J: and ¢a{3 = ¢a{3 - ~ 9a{3 ¢:. B is a complete spacelike
hypersurface in the exterior Kerr spacetime, and d(71' is the future-directed normal
to B. As in the case of the electromagnetic field, the surface of integration B can be
moved either to the infinite future or to the infinite past, so that the integration is
performed either over H- U.:J- or H+ U.:J+, where the asymptotics of the fields are
known.

An arbitrary gravitational perturbation in the exterior of the Kerr black hole can
be expanded in terms of the modes (G.73) and (G.74). Thus, we can write

h,w(x) = L {aJhJlAJ;x) + iiJltl'v(J;x)} ,
J

(G.80)

where J is a shorthand for {A,f,m,w,P}, and A takes values "in" and "up". A
similar decomposition is valid if one use OUT- and DOWN-modes.



Appendix H

Quantum Fields in Kerr Spacetime

H.I Quantum Theory in an External Field

In this section we briefly describe the general scheme of quantization of a free Bose
field in a given (not necessarily gravitational) external field. I

The general expression for the action describing a system of real Bose fields
rpA(X) (A = 1, ... , M) interacting with an arbitrary, given external field gy(x) (Y =
1, ... , Q) is written in the form

W[rp] = - ~ / [rpA,I' pAB!,v rpB,v + rpA NAB!, rpB,!' + rpA TAB rpB] d4
x, (H.l)

where pAB!'v = p(AB)(!'v) , NAB!' = N[AB),,, TAB = T(AB) are real functions of the
external field gy and its derivatives. Recall that summation is carried out over
repeated indices (including the indices A and B). The variation of this action with
respect to the dynamic variables rp A results in the following field equations:

DAB 1.0 = [pAB!,va a _ (NAB!, _ pAB!,v ) a _ (TAB +! NAB!, )] 1.0 = 0 (H 2)
r B-1' v ,v !' 2'!' r B .,

An arbitrary pair of functions rp1 and rp~ obeys the relation

rp~ DAB rp1 - rp~ DAB rp1 = [B!'( rpl, rp2) L.. ,

where

B!'(I.o l 1.0 2 ) = 1.02 pAB!,v l.ol _ l.ol pAB!,V ln2 + l.ol NAB!' 1.02
r 'r rA rB,v rA rB,v rA rB'

Hence, it can be shown, using Gauss' theorem (A.86), that the expression

(H.3)

(HA)

(1f.5)

I A more detailed presentation of this theory, and also of the theory of Fermi fields in curved
spacetime, can be found in DeWitt (1965, 1975), Birrell and Davies (1982), and Wald (1994).
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calculated for an arbitrary pair of solutions rpl and rp2 of equation (H.2) is independent
of the choice of the complete Cauchy surface.2 The antisymmetric bilinear form B,
defined on the space of solutions of equations (H.2), will be called the canonical form
corresponding to this equation. Quite often, instead of the canonical form B, a scalar
product

< rp,4) > = iB(ep,1/J) (H.6)

connected with it is used.
Inquantulll theory, the field rr?A(X) is treated as the operator solution of equation

(H.2). The canonical commutation relations imposed on this operator are formulated
in a standard manner. Let

£lTV 1
1fA(:r) = = - pABov rpB v +- N ABO rpB

OrpA,O(X) . 2

be the momentum of the field rpA; then

[rr?A(X, XU), rr?B(X', xo)] = 0, [iA(x, XU), iB(x', XU)] = 0,

[rr?A(X, XU), iB(x', XO)] = i o~ P(x, x') .

(H.7)

(H.8)

A simple check shows that the canonical commutation relations (H.8) are equivalent
to the relations

(H.9)

provided the equality is satisfied for an arbitrary pair rpl and rp2 of classical solutions
of system (H.2).

The commutation relations written in the form (H.9) have a larger range of
applicability than (H.8). Thus, they are valid for a degenerate theory [i.e., when
det(pABOO) = 0]. The presence of constraints in the degenerate theory dictates a
change in the rules (H.8) of standard canonical quantization. In a theory with gauge
invariance a solution is defined up to a gauge transformation

(H.lD)

where Rk are differential operators and ..\; are arbitrary functions. In other words,
for arbitrary functions ..\; the following identity is valid

-AB iD RBA; = O. (H.ll)

It can be shown that the scalar product < rp,1/J > for any two solutions rp' and 1/J of
the equation (H.2) is gauge invariant.

21£ the space is non-compact, the solutions 'PI and 'P2 are assumed to fall off sufficiently rapidly
at infinity.
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H.2
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Vacuum. Many-Particle States

To define a "particle", consider a set of complex solutions of equation (H.2) and choose
in this space a basis; that is, a complete system of linearly independent solutions. It
is convenient to use a basis {'PJ, <PJ} which consists of complex-coujugat.e solut.ions
{'P A (J; :r), <PA(J j x)} and satisfies the normalization conditions:

< <PJ,'PJ' > = < <PJ,'PJ' > = 0, < 'PJ,'PJ' > = 0JJ" (H.12)

Here the iudices J, J', ... label the basic solutions. Each solution of equat.ions (B.2),
satisfying the imposed boundary conditions, admits a decomposition with respect to
this basis. Thus, for the field operator cP, we can write

CPA(X) =L [aJ'PA(J;x) + 0.1 <PA(J;X) ],
J

where

(H.13)

aJ=<'Pj,CP>, 0.1=- < <PJ,CP > (H.14)

If the field cP is Hermitian (cp~ = cp), then 0.1 "" (aJ) t. The time-independent operators
a1and aJ are called the operators of creation and annihilation of a particle ill the
mode 'PA(JjX). These operators satisfy the following commutation relations:

[aJ,aJ'] = [0.1,0.1,] "" 0, [aJ,a1,] "" OJJ'. (H.15)

This is readily verified if the relation (H.9) and normalization conditions (H.12) are
used.

The vacuum state 10) corresponding to a given choice of basis {'PJ, <PJ} is defined
by the condition

(H.16)

The n-particle state IJI , ... ,],,) with one particle in each of the modes 'PA(JliX),
... , 'P A (J"i x) is obtained from the vacuum by applying to it the appropriate set of
creation operators:

(H.17)

(IUS)

These multiparticle basis states constitute the eigenstates of the operator fi J = 0.1 D.J
of the number of particles in the Jth mode,

"
fiJIJI , ... , J,,) = nJIJIl ···, J,,), nJ =L oJJ. ,

k=1

and satisfying the following orthonormalization and completeness conditious: .

(JI, ... ,J"IJ;, ... ,J:") =0 if nim,
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oVl!r all pl!tmutation
(JI,···,Jn )
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(H.19)

(H.20)

(B.21)

Here j is the identity operator, and summation is carried out over all sets {Jb .. . , I n }.

Obviously, the choice of basis {'PJ, epJ} and of the related definition ora "particle"
is far from unambiguous. The formal construction given above becomes physically
meaningful only if we succeed in describing clearly a set of attributes sufficient for dis
tinguishing between the vacuurn (or one-particle) state and all other allowed quantum
states of the system. In the long run, this problem reduces to describing a detector
capable of recording the particles. According to the quantum theory of measure
ment, this instrument is described by an Hermitian operator whose eigenvectors are
the states corresponding to a certain number of particles recorded by this instrument.

All necessary concepts can be defined in the asymptotic in- and out-regions in
the standard scheme of the theory, where the external field is "switched off" in the
distant past and distant future. In each of these regions, one has to operate with
the free Bose field theory in flat spacetime. Because of t.he time-invariance of the
Minkowski space, the energy if is conserved in this regions. One also has

[if,0] = ~eaI'0.

Here e = otT) is the Killing vector field generating the time translations. The
vacuum state in each of the asymptotic regions is defined as the lowest eigenstate of
t.he energy operator fl. This choice unambiguously corresponds to choosing functions
with positive frequency with respect to the time coordinate T as basis modes:

(H.22)

H.3 S-Matrix

In order to distinguish between two bases consisting of the solutions {'PJ, epJ}, for
which relations (H.22) act as the asymptotic boundary conditions in the future (out
basis) and in the past (in-basis), we equip the basis functions with a superscript "out"
and "iiI", respectively. Likewise, we make use of these additional indices in order to
distinguish between the quantities defined via these bases. For instance,

• "" ( • in' t -in) "" ( • out + . t -out)'P= L-. ain,J'PJ +ain,J'PJ = L-. aout,J'PJ aout,J'PJ ,
J J

ain,JIO;in) = 0, aout,JIO;out) = O.

(H.23)

(H.24)
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In general, the in- and out-bases do not coincide because the in- and out-basis func
tions satisfy different boundary conditions. The coefficients of the mat.rices AJJ, and
BJJ" which relate the in- and out-bases,

oot """' (A in + B -in)'PJ = L... JJ''PJ' JJ''PJ''
J'

(H.25)

are known as Bogoliltbov transformation coefficients. Using the normalization condi
tions (H.12), we find

(H.26)

In order to simplify the expressions, it is convenient to use matrix notation. We
denote by a and at rows constructed from ilJ and ilj, the index J enumerating the
elements in the row. (In the general case J takes infinitely many values.) We use
notations <I> and <f> for column, constructed from 'PJ and ch, respectively. We also
denote by A and B the matrices with matrix elements given by (H.26), and by ( the
following block-matrix:

Using this matrix notation, we have

A _ -. ",in + -t J.-in _ - ",oot + -t J.- 0ot
'P - am ,.,. a in ,.,. - aoot ,.,. a oot ,.,. ,

(H.27)

(
epoo!. ) ( epin )
<l>0ot = ( <l>in , (

epin ) ( epout )
<l>in = (-1 <l>0ot , (H.28)

R.elations (H.26) yield the following expression for the coefficients of matrix (-1

inverse to ( :

( A+ -B')(-1 = -Rt A' . (11.29)

Primes in the above formulas denote transposition, and + stands for Hermitian con
jugation of matrices: ( )+ =n'. The conditions ((-1 = (-1 ( = I illl ply that the
following equalities are true:

(11.30)

(here I is the identity matrix).
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(H.32)

(H.33)

(H.35)

The SO -matrix operator relating the in- and out-states is defined by the relations

aiu S == Sa.,ut alus=saL. (H.31)

It can be verified that this operator is unitary (S S+ = j), has the property

SIJb . .. , Ju ; out) = IJ1, ... , Ju ; in),

and admits the following representation:

. " 1S == L IJl, .. · , Ju ; in),(Jh ... , Ju ; outl·
n.

n

If we substitute the last of the relations (H.28) into (H.31) and solve the resulting
equation, the operator S can be expressed in terms of {aout, a~ut}. The corresponding
solution admits the following representation [Berezin (1965), DeWitt (1965)]:

S• - iWoN [ (1_ A" ,t (M I)" l,t V-+ )] (H34)- e out exp 2aout aout + aout - aout + 2" aout aout , .

where Nout [...] denotes the operation of normal ordering3 with respect to the out
operators, {aout,J, a~ut,J}' and

A==A-1B, V=-BA-1, M=A-1',

eiwo=O[det(A+A)rl/4,101=1.

Here aout A a~ut == I:.J,J' aout,) AJJI aout,J' , etc. Equalities (H.30) imply that the ma
trices A and V are symmetric:

A' =A, V' =V. (H.36)

(H.37)

The result (H.34) is fundamental for the quantum theory in an, external field that
we are discussing here. Namely, it states that it is possible to calculate explicitly the
S-matrix operator containing exhaustive information on quantum effects of creation,
scattering, and absorption of particles in the external.field provided we know the
Bogoliubov transformation coefficients determined by solving the classical equations
(H.2). It can be shown that the matrices V, M, and A in (H.35) are directly related
to probability amplitudes of the elementary processes of creation, scattering, and
annihilation in the external field:

(J, J'; outlO; in) = eiWo VJJ, ,

(J; outlJ'; in) == eiWo Mu ,

(0; outlJ, J'; in) = eiWo Au .

3 As a result of this operation, all creation operators are placed to the left of annihilation operators
in the expansion of the appropriate expression into a series in creation and annihilation operators.
The same expression (H.34) describes the S-matrix in the case of Fermi fields as well. The matrices A
alid V are then antisymmetric. The general expression for them in terms of Bogoliubov coefficients
is given in the monographs of Berezin (1965) and DeWitt (1965).
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H.4 Massless Fields Quantization in Kerr Space
time

H.4.1 IN-, UP-, OUT-, and DOWN-modes

In this section we construct convenient in- and out-bases for quantum massless fields
in the spacetime of an eternal Kerr black hole. For this purpose, we use mode de
compositions for the scalar massless, electromagnetic and gravitational perturbatiolls
discussed in Appendix G.

The field operator solution rpA (x) for these fields in the black hole exterior can be
written in the form

rpA(X) = LL [aAJrp1(J;x) +aLrp1(J;x)]. (IU8)
A J

Here rp1 = rp1(J;x) are basic solutions, J denoting the complete set of quantum
numbers {f, m, w, P} enumerating the modes. A takes values either "in" and "up",
or "out" and "down". We recall also that, according to our agreement, modes rp1
and rp~ut are defined for w > 0, while the modes rp~P and rpjOWD are defined for 'UJ > O.

The basic solutions are normalized as follows

< rp1:, rp1 > = OAN OJ)' , < rp1:, rp1 > = -OAN OJ)' ;

the other inner products vanish. Here

0JJ' == OPP' Ott' Omm' o(w - w') .

(H.39)

(HAO)

(H.43)

(H.42)

The normalization conditions and canonical commutation relations (H.15) imply
that the operators of creation and annihilation

aAJ = < rp1,rp >, aL = - < ep1,rp > (HAl)

obey the standard commutation relations

[aAj, aL,] = 0AN oJ)';
the other commutators vanish.

Any of the four mode solutions, IN, UP, OUT, and DOWN, with the same quan
tum numbers J can be represented as a linear combination of any two of them. We
shall need the expressions for rpT and rp~P in terms of the rp~ut and rpjowu modes. The
only problem in deriving these relations is connected with superradiant modes. For
these modes w 'UJ < 0, and hence the decomposition of the positive frequency in-mode
(say rpT) must contain a negative frequency out-mode (say rp1oWU). In order to be
able to deal with this type of situation, we introduce the following notation:

{

rp10WU(f, m,w, Pj x) if 'UJ > 0,
ep~oWU(f,m,w, Pj x)

rp10WU (f, -m, -w, P; x) if 'UJ < 0,
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{

cp~P(f,m,w, Pjx)

ep'2'(f, -m, -w, Pi x)

if ro > 0,

if ro < O.
(H.44)

The functions ep~P and 010wn obey the normalization relations

which are valid for all (positive and negative) values of ro.
By using these notations, we can write the sought decomposition as

cp~(J; x) = RJ cp'Aut(J; x) + TJ 0~own(J; x) ,

ep~P(J; x) = tJ cp':r(J; x) + r J 0~own(J; x).

(H.45)

(H.46)

(H.47)

(H.48)

The quantities on both sides of these relations are defined for w > O. Substituting
(H.47) and (H.48) into the normalization conditions (H.39) for the IN- and UP-modes,
one gets

IRJ I
2 + a) ITJ I

2 = 1,

IrJI
2
+o)ltJI

2 =1,

Here a) = sign(roJ)' These relations imply

H.4.2 DN-modes

Definition

(H.49)

(H.50)

(H.5l)

(H.52)

For the construction of the sought bases we need another set of solutions. Let us in
troduce in the spacetime of the eternal Kerr black hole coordinates (U, V, 0, <p+) given
by (0.73). The metric (D.74) in these coordinates is invariant under the following
discrete symmetry transformation

J: U -t -U, V -t - V. (H.53)

The operator J is an isometry that maps the region I onto the region I' (see e.g.,
Figure 11.1). Denote by CPA = J+CPA a tensor that is obtained from 4-'A by means of
the operation of "dragging" by the map J (see Appendix A.7). If CPA is a solution
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of the covariant equations with coefficients determined by the metric 9, then rp:4 is
again a solution of the same equations. We define4

(H.54)

These new modes obey the normalization conditions (tv > 0)

(H.55)

the other inner products vanish.

Scalar massless field

Consider the behavior of UP-modes of a massless scalar field near the past horizon
H-. Equation (GA8) implies

1 1 -)rpuP(f,m,w;x) IN- '"~~ oZ'!m (O,¢! exp( -iwu).
r+ + a2 y41rtv

Using the relation

wu-m~=tvu-mJH

which is valid on the horizon H-, one can rewrite (H.56) in the form

rpuP(f, m, w; x) IN- '" eYt,m,w (0, ~H) exp( -iwu).

Using relation (D.76), we can rewrite (H.58) as

rpup IN- '" eYt,m,w (0, JH) exp [itvK-1ln(-U)] '19 (-U) ,

(H.56)

(H.57)

(H.58)

(H.59)

where U is an affine parameter along H-. We include the Heaviside step function
'19 (-U) to make explicit the fact that rpup is defined and non-vanishing only for U < O.
The map J restricted to H- is equivalent to the transformation U -t -U. Hence,
we have

(H.60)

The modes rp1nare defined for w > O. It is convenient to use solutions rp~n defined
as

if tv> 0,
(I1.51)

if w < O.

4lndex "dn" used for the new modes is chosen to recall that these modes are obtained from "up"
modes by means of the inversion transformation (see footnote on page 371).
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Define

701

(I1.63)

(tI.64)

cJ = [1 - exp( -21TWO)/K)t
l
/
2

, SJ = [exp(21TwO-J/K) - It l
/

2
. (H.62)

Note that {jJW = Iwl, so that one has CJ = Cj and SJ = Sj, where J = {C,m,w,P}
and j = {C, -m, -w, Pl.

The following two functious on l/-

rp~ = CJ rp~" + SJ rp~P ,

rpj = CJ rp? + SJ rp1n
,

for W > 0 are of positive frequency with respect to the affine parameter U aloug l/-.
This follows from the following lemma.

Lemma: For positive real p and arbitrary real q one hasI: dU e-ipU [e-iqIIlU iJ(U) + e-7fq e-iq1n(-U) iJ(-U)] == O. (II.65)

Proof: Defines

F(p,q) = L'" dUeipu e-iqlnU. (H.66)

Suppose p > 0, and compare F(p, q) with F( -p, q). In order to do this, we exteud
In U to the complex plane. We assume that the branch cut lies on the negative real
axis. This permits us· to make all the necessary contour rotations we shall use. Put
U = -ix and rotate the contour of integration so as to make x real and positive.
Using the relation In(ix) == iJr/2 + lnx, we get

F(p,q) = ie7fq/ 21OO

dxe-p"'e-iqln",. (H.67)

A similar representation for F( -p, q) can be obtained if we substitute iu the cor
responding integral U = -ix and rotate the contour so that x becomes real and
positive. As a result, we have

F(-p, q) =_ie- 7fq/
2 1°O dx e-P'" e-iq1n

",. (H.68)

Comparing (H.67) and (H.68), we get

F(p, q) = - e7fq F( -p, q) . (H.69)

Equality (H.65) follows immediately since the quantity standing on the left-hand side
of (H.65) is identical to F( -p, q) + e-7fq F(p, q).

One can introduce modes epj and rpJ by relations similar to (H.43), (H.44), and
(H.61). These modes are defined for w > 0 and are of positive frequency with respect
to U.

5Note that this integral does not converge absolutely. Nevertheless, in all the applications
where we consider wavepackets, an additional integration over q which is required to construct
the wavepacket makes the integral convergent.



702 APPENDIX H. QUANTUM FIELDS IN KERR SP.4.CETIME

Electromagnetic field

The UP-modes (G.65) for the electromagnetic field in the outgoing gauge

a'l n" = 0 (H.70)

uear the past horizon have the following form [Candelas, Chrzanowski, aud Howard
(1981)]

+ (njL terms). (H.71)

One can use the allowed freedom in gauge transformations to exclude 011 H- the
terms proportional to nw In fact, on the past horizon H- which in the (U, V, 0, I/J)
coordinates is described by the equation V = 0, one has n" '" V:w Let us make the
gauge transformation ajL ~ ajL + "\'1" wi th ,\ = V f (U, 0, I/J). This transformatiou,
restricted to H-, affects only those terms of a~P which are proportional n w Siuce
f( U, 0, I/J) is an arbitrary function these terms can be put equal to zero. As a result,
we can write a~P IH- in the form

DN-modes for the electromagnetic fields are defined by the requirements that the
corresponding solutions vanish on :1- in the space J', and in a specially chosen gauge
have the following form on H-

The dependence on the affine parameter U for fixed values of 0 and ~H (i.e., along
the generator of the horizon) for a~P and a~n is the same as for the corresponding
scalar modes (H.59) and (H.60). That is why one can use the arguments given above
to show that the electromagnetic modes rpj and CPJ defined by (H.63) and (H.M) are
(for 'UJ > 0) of positive frequency with respect to U.
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Gravitational perturbations

The UP-modes (G.74) for the gravitational perturbations in the outgoing gauge
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(H.74)

near the past horizon have the following form [Candelas, Chrzanowski, and Howard
(1981)]:

(H.75)

One can use the allowed freedom in gauge transformations to exclude on I-J- the
terms containing njL [for details, see e.g., Frolov (1978c)]. As a result, we can write
h~~ IH- in the form

DN-modes for the gravitational perturbations are defined by the requirements
that the corresponding solutions vanish at :1- in the space J' and in a specially
chosen gauge have the following form on H-;

h~~(e,m,w;x)IH-

The dependence 011 the affine parameter U for fixed values of () and JH (i.e., along
the generator of the horizon) for h~~ and h~~ is the same as for the corresponding
scalar modes (H.59) and (H.60). That is why one can use the arguments given above
to show that the modes rpj and rpJ for the gravitational perturbations defined by
(H.63) and (H.64) are (for 'UJ > 0) of positive frequency with respect to U.
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H.5 Wald's Bases, Bogoliubov Transformation, and
S-matrix

In the spacetime of the eternal Kerr black hole we choose for the in-basis the following
sets of positive-frequency solutions

(H.78)

Here J = {C,m,w,P}, j = {€,-m,-w,P}, and aJ = sign(wJ)' The modes are
defined for w > O. Note that the basis functions are different for non-superradiant
(aJ > 0) and superradiant (aJ < 0) modes.

Likewise, we form the out-basis by sets of functions

(H.79)

Similar bases (for a non-rotating black hole) were introduced by Wald (1975). In
what follows we refer to them as to Wald's bases.

We write t.he equations relating <1>1 to <I>~ut in the following matrix form:

J"iu _ A+ J"out B' .i.,0ut
"¥J - J "¥J - J"¥J . (H.80)

Transformation matrices A and B which relate the sets of in-basis and out-basis
modes are easily determined from the relations

-d (J) t- -out(J) - -:odowu(J) -du(J)<P A ; X = sJ J <P A ; X + sJ r J <P A ; X + CJ <P A ; X ,

-p (J ) out(J) -dowu(J) -:odu(J)<P A ; X = CJ tJ <P A ; X + CJ r J <P A ; X + SJ <P A ; X .

(H.81 )

(H.82)

(H.83)

The first of these relations is just equation (H.47), while the last two relations follow
from (HAS), (H.63), and (H.64). Note that both sides of these equalities are defined
for w > O. By comparing (H.80) and (H.81)-(H.83), we obtain the Bogoliubov
transformation matrices A and B [Frolov (1986)J

(
R 0 ct)

Al1>o = T 0 cf ,

o C 0
(11.84)
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(

0 0 -et)
Bl1<o= -T -S1' 0 .

o 0 -s
(H.85)

In these relations we omit the index J. It is understood that they are valid for
arbitrary J.

The field operator ep can be decomposed in terms of in- and out-bases

ep = L [ain,J <1>1 + atll,J <I>)"] = L [3.uut'J <I>~ut + alut,J <I> /ut] ,
J J

where we define

(H.S6)

(H.S7)

(H.SS)

Using relations (H.34) and (H.35), we obtain the S-matrix

SA, _ iWoN [ (1 A A AI At (M I) AI 1 At V A+)] (I-I S9)J - e out exp "2 aout a out + a out - a out + "2 a out a ollt . .

We omitted indices J on the right-hand side of (H.S9) and denoted

(

Q,out )
a' = adownout ,

adn

(H.90)

The matrices A = A-I B, V = - B A-I, and M = A -I' for non-superradiant
(a > 0) and superradiant (a < 0) modes are [Frolov (19S6))

OtiC)o ric ,
llc 0

tl1'
o

s/(C1')

o tl (C1'))
o -sic ,

-sic 0

4~r) ) ,(11.91)

(
l~R ~ 1/(~1'))'

-sf/(cR) llc 0

(

0
A l1<o = 0

tl(c1')

stlC)
s~c ,

o
o

sr/c

(
0 0 0)o 0 -sic ,
o -sic 0

A l1 >O =

V l1 >O = ( ~
stlc



706 APPENDIX H. QUANTUM FIELDS IN KERR SPACETIME

Sometimes it is more convenient to redefine the operators of creation and annihi
lation for superradiant N- and P-modes as

- -t _ -t
bp,lmwP = a'p,l-m-wP , bp,lmwP - ap,l-m-wP .

(11.92)

(H.93)

If we also assume that the operators band bt coincide with aand at for all IN-l1lodes
and for non-snperradiant N- and P-modes, then the first of the relations (li.86)
written in in terms of these operators takes the form

(11.94)

One can also define new out-operators of creation and annihilation {bout, b~ut},
and write the decomposition of ep in terms of these operators similarly to (H.94).

H.6 Averaging over "Non-observable" States

For the black hole problem, out-particles can be naturally divided into two categories.
Particles in OUT-modes can reach a distant observer. We call them "visible". Parti
cles in DOWN- and DN-modes fall into the black hole and cannot be registered by a
distance observer. We call them "invisible". Averaging a quantum state of the com
plete system over states of the "invisible" particles gives a density matrix describing
the state of the "visible" particles.

To simplify formulas, we use the following notations. Denote by {J3o, J3!} operators
of annihilation and creation of the "visible" particles and by {ba , bD operators of
annihilation and creation of the "invisible" particles. Indices a and a enumerate
modes of the "visible" and "invisible" particles, respectively. Corresponding vacuum
states 10; (3) and /0; b), that is, the states without "visible" and "invisible" particles,
are defined as

(H.9S)

For the black hole problem,

(11.96)
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10; 13)10; b) = 10; out) . (H.97)

A vector lIlT) in the space of out-states admits the following decomposition:

(H.9S)

where

(H.99)

For the expectation value (IITIF lIlT) of an operator F that depends only on the
"visible" states F = F(/3~ ,/30)' we find

(H.IOO)
k, rn O'l""'O'k

Ie', rn' 0"1.""0" k'
lll,···,(lrn

c'I .. ··'a.' rn'

Since t.he operator F is independent of ba and bl and the states 10.1," ., am; b) satisfy
the normalization conditions

(0.'1," .,a'm'; bla1," . ,am; b) = 8mm, 8a 'lal ••• 80.' rn,o'm I (H.IOI)
over 11.11 permutation

(l'-t ,... ,am)

we can rewrite (H.IOO) in the form

k, k' 0'1""'0'1c:
r::/l,···,a'k'

(H.I02)

where

Rol , .. ,O'k;O'l, ... ,o'k' =L 1n! L WO'1,... ,O'k1ial,... ,arn W01"",Okial, ... ,arn 1

m 0.1,... ,0."1

(H.I03)

(H.I04)
k, k' O'lt···,O'Ic

0' 1 ,... ,a' Ie'

and Tr/3 denotes the operator of trace over "visible" particle states. It is readily
verified, using relation (H.I02) for the identity operator F = i, that the density
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matrix pfor the normalized state 1111)( (1111111) = 1) satisfies the normalization condition
Tr/3(p) = 1.

The density matrix p is independent of the definition of the concept of particle
for the "invisible" states. Let us make a Bogoliubov transformation in the subspace
of solutions corresponding to the "invisible" particles and denote by (; a unitary
operator generating this transformation, then one has

L Ua\, ...,a~;a'I, ...,a'~' Inl,' .. ,nk; (3) 10.\,· .. ,atm'; b) ,
~,

0.'1,···,11' rn'

(H.lD5)

(H.I06)

The coefficients lI1o\, ... ,ok;a\, ... ,a~ of expansion (H.98) are transformed as follows:

(H.107)

lll····,arn

while the coefficients of the matrix R "remain unaltered as a result of
Ql, ... ,Ok;oll""c,\,

the unitarity condition (H.106).



Appendix I

Quantum Oscillator

1.1 Action

The action for an oscillator of unit mass and frequency w is

s = ! dtL, (1.1)

The equation of motion

d2x
dt 2 + w

2
x = 0

has a solution

x(t) = xocoswt + Po sinwt,
w

where Xo = x(O) and Po = X(O).
The Euclidean version of action (1.1) is

The equation of motion for the Euclidean "oscillator"

d2x
- -w2 x=0
dT 2

has a solution

X(T) = Xo coshwT + Po sinhwT.
W

(1.2)

(1.3)

(1.4)

(1.5 )

(1.6)

The value of the Euclidean action calculated for a solution connecting an "initial"
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point Xl at T = 0 and a "final" point X2 at T = (3 is

w [COShW{3 2 2 2XlX2 ]
SE(J:I,0;X2,{3) = -2 ~h{3 (Xl +X2) - --;----h{3

sm W ffin W

(1.7)

1.2 Quantization and Representations

The standard canonical quantization requires that

[p,i:] = -i,

where p is the momentum p = 8L/8±. The eigenvalues E

of the Hamiltonian

(1.8)

(1.9)

(1.10)

are discrete En = (n + 1/2)w, and the corresponding eigenvectors IlITn ) in the :1:

representation IITn(x) = (xllITn) are

(1.11 )

Here Hermite polynomials Hn(x) can be obtained by using the following generating
function

00 n
2z,,-z2 =~~ H ( )

e L..J n! n X •
n=O

(1.12)

The operator of creation at and the operator of annihilation aare defined as

1at = ~ (wi: - ifJ),
y2w

" 1 (" .")a = .~ wx+zp .
y2w

(1.13)

They obey the commutation relations

(1.14)

Hamiltonian (1.10) written in terms of the operators of creation and annihilation is

(1.15)
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The representation
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at = z, (1.16)

when we do not specify the nature of the variable z, clearly satisfies the commutation
relations. The problem is to find the inner product for the functions j(z) which the
operators at and ii act on such that those operators are mutually adjoint. In the
representation proposed by Segal and Bargmann one considers polynomials j(z) =
(zll) in the complex variable z and defines the scalar product as

where

(1.17)

z = x + iy. (1.18)

In this representation a vector

is represented by a function'

111(20') = (zlll1) =L ~ zn .
n vnT

The following relation (the "resolution of unity") is valid

Here the integration extends over the entire complex plane. One also has

(zl2O") = eZ z' .

In the Segal-Bargmann representation an operator

A= Lin) Anm (ml
n,m

is represented by a kernel

_ zn (m
A(z,() = LAnm qq'

n,1n yn! vm~

(1.19)

(1.20)

(1.21 )

(1.22)

(1.23)

(1.24)

'This representation is similar to the coherent state representation, and differs from the latter
by normalization factor exp(-I z 12 /2).
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An entire function of two complex variables z and z' is uniquely defined by its value
on the submanifold z = z'. For this reason, one can also use A(z, z) as a function
representing the operator A.

The action of A on an arbitrary function 1(z) is given by

(AJ)(z) =! d/l(A (z,() 1(()e-1(1
2

,

and the product of two operators is

(A I A2)(z, z) =! d/l( Al (z, () A2((, z) e- I(\2 .

(I. 25)

(1.26)

Another useful representation of the operator A is the normal form representation

(1.27)
n,m

One can associate the following function

n,m

The two functions A and J( connected with operator A are related as

A(z, z) = elzl2 I«z, z).

For this representation one has

zn
(zln) = Ii·

vn!

One can also write

(zlx) = ~)zln)(nlx) .
n

Using this relation and relations (1.11), (1.12), and (1.30), one gets

(W) 1/4 [w 1 ](zlx) = -; exp - 2" x2 +~ X Z - "2 Z2 •

The following Gaussian integrals are often useful for calculations

! d{tzexp [- ~(z,z) (~, ~) ( ~ ) + (h,h) ( ~ )]

_[ (B' C)] -1/2 [1 (A B) -I ( !J )]
- det A H exp "2 (fJ, 12) H' C 12·

Since the bilinear form in the exponent is symmetric, one has B' = B.

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)
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1.3 Quantum Oscillator at Finite Temperature

The density matrix jJ for a quantum oscillator at the temperature T is
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(1.34)

where (j = T- l is the inverse temperature. Function Z(P) can be found from the
normalization condition TrjJ = 1

Z({3) = 1 .
exp({3w/2) - exp( -(3w/2)

The density matrix jJ can be identically rewritten as

where if is the Hamiltonian of the oscillator and

_ 1
F({3) = (3 Iln[l - exp(-{3w)] +-w

2

(1.35)

(1.36)

(1.37)

is the free energy. The entropy S defined by the response of the free energy on the
change of the temperature

dF = -SdT

is of the form

2dF {3w
S={3 d{3= ((3) -In[l-exp(-{3w)].exp w - 1

(1.38)

(1.39)

Simple calculations give the following expression for the density matrix in x
representation

Here SE( Xl, 0; X2, (3) is the Euclidean action for the oscillator (1.7) and

(1.41)
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1.4 Two Mode Coupled Oscillators

The above"described formalism can be easily generalized to the case of a finite number
of oscillators. Let i be an index enumerating oscillators, so that

(1.42)

Here a! and a; are operators of creation and annihilation for ith oscillator. All
the relations of Section 1.2 are easily generalized to the multi-dimensional case. In
particular, in the Segal-Bargmann representation states are described by polynomials
of n-complex variables Z = (ZI' Z2, . .. zn). Relation (1.33) remains also valid if one
understands z, z, Jr, 12 as n-dimensional objects, and A, B, and C as n x n-matrices.

Consider a special type of canonical transformations for two oscillators which is
of special interest for our purposes.

b- h - . h -tI = cos a a I + Sill a a2 ,

b- . h -I + h -2 = Sill a a I cos a a2 . (1.43)

Operators b; and b! obey the same canonical commutation relations (1.14) as operators
- d -Ia; an a i .

The inverse transformation is of the form

0. 1 = cosh a bl - sinh a b~,

(1.44)

Denote by IDa) a vacuum state annihilated by the operators ai

(1.45)

Denote by IIT(zl> Z2) = (ZI' z2111T) a function that corresponds to this vector in the
Segal-Bargmann representation based on b; operators. Using relations (1.44), one has
the following system of equations which determines IIT(zl> Z2)

{jIlT
-{j - tanh a Z2 lIT =°,

ZI

{jIlT
-{j - tanh a ZI lIT = O.

Z2

The solution is

IIT(Z z) = _l_etanhuzl Z2

I> 2 cosh a .

(1.46)

(1.47)
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An integration constant is found from the normalization condition (1111111) = 1.
We shall also need an expression for state 1111) in the x-representation

Using resolution of unity (1.21), one gets

II1(Xl,X2) =I d/l zi I d/lz2e-lzJl2-lz212(xI!zl)(x2Iz2)II1(zl,z2).
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(1.48)

(1.49)

Using relation (1.31) and calculating Gaussian integrals with the help of (1.33), one
gets

II1(XI,X2) = C;f/2 exp [-w (~+sinh2a) (xi +xD +wsinh2a X1X2]. (1.50)

In the book we use the following special choice of the parametrization of canonical
transformations (1.43)

1
cosh a = ,V1 - exp(-j3w)

1
sinh a = -r=~==:==:=

vexp(j3w) - 1
(1.51 )

The function II1(X1>X2) in this parametrization takes the form

(1.52)
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absorption
amplitude, 367
cross-section, 124

accretion, 322
critical rate, 326

accretion disk
geometrically thin, 327
standard model, 327

active galactic nuclei, 332
ADM mass, 190,282
advanced time, 26
anomalous Doppler effect, 248
anti trapped surface, 180
apparent horizon, 179, 190
automorphic field, 612

baby universe, 571, 595
Bardeen-Petterson effect, 324
Bianchi identities, 624
bicharacteristic, 166
billiard ball problem, 607
binding energy, 43
Birkhoff's theorem, 14
black hole

angular momentum, 58, 208, 471
angular velocity, 67, 221, 658
as a thermodynamic system, 484
as a unipolar inductor, 317
as an amplifier, 246
colored, 523
cross-section, 121
definition, 3, 30, 150, 159
dilatonic colored, 523
distorted, 273
dyOll,527
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electric charge, 82, 668
electric potential, 225, 246, 658
electrodynamics, 290
elementary, 589
entropy, see entropy of a black hole
eternal, 32, 572
eternal version of, 91, 370
Euclidean, 413, 447
evaporation, 356
exterior region of, 210
extremal, 237, 590
general properties, 150
in external field, 270
Kerr, 128
Kerr-Newman, 83, 658
lifetime of, 402
magnetosphere, 312
mass, 14, 58, 471

irreducible, 245, 356
merger of the two, 144
monopole, 525
pair creation

by electromagnetic field, 463
by snapping of cosmic string, 464

perturbations, 128
primordial, see primordial black hole
Proca, 524
quantum mechanics of, 442
scattering, 123
Skyrme, 524
sphaleron, 525
stellar, 319
supermassive, 319
surface area, 80, 83
surface electric charge, 304
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surface electric current, 304
surface gravity, 658
surface topology, 164, 165
temperature, 351, 467, 474
thermodynamics, 466
with magnetic charge, 235

black hole hair
axion, 527
axion quantum, 528
primary, 242, 531
quantum, 529
secondary, 242, 531

black p-brane, 542
black string, 542
blueshift, 18
Bogoliubov transformation, 369, 696
Bondi-Metzner-Sachs group, 157
BOP-approximation, 431
Boulware vacuum, 414
Boyer-Lindquist coordinates, 57, 128,

236, 679
BPS-states, 514
brick wall model, 502
Brill-Lindquist metric, 282

C-metric, 460
Casimir effect, 480
catastrophe theory, 289
Cauchy domain, 622
Cauchy horizon, 187, 239, 460, 544

instability of, 553, 559, 562
Cauchy surface, 160
causal future, 622
causal past, 160, 622
caustics, 163
censorship

cosmic, see cosmic censorship con
jecture

low-energy, 579
topological, 164, 598

Chandrasekhar limit, 320
characteristic, 166

INDEX

Cherenkov cone, 248
choptuon, 192
Christoffel symbol, 658

for Kerr-Newman metric, 658
chronological future, 621
chronological past, 621
chronology horizon, 605

compactly generated, 605
future, 605
past, 605

chronology protection conjecture, 614
circular orbit, 144
circularity condition, 229
clock synchronization, 602
closed timelike curve, 598
closed timelike curves, 237
colored black hole, 523
commutator of covariant derivatives, 624
complex null tetrad, 669
conformal Penrose space, 153, 158
conformal trace anomaly, 407, 432
conformal transformation, 151, 241, 407,

520, 635
congruence, 627

geodesic, 629
Killing, 60, 629, 663
of null rays, 103, 167, 169, 263
of timelike curves, 184
stationary, 631, 664

conical singularity method, 496
conjugate point, 622
convergence, 169
coordinates

Boyer-Lindquist, 57, 128, 236, 679
curvature, 13
Eddington-Finkelstein, 25
Fermi,631
Gaussian normal, 633
Kerr ingoing, 78, 376, 666
Kerr outgoing, 80, 667
Kruskal,38
Lemaitre, 21, 22



INDEX

Schwarzschild, 14
tortoise, 26, 89, 130, 363

cornucopin, 591
cosmic censorship conjecture, 172, 189

strong form, 185
weak form, 186

cosmic string, 264, 461, 464
gravitational capture, 265

critical electric field, 350
crossover line, 289
crossover surface, 289
curvature coordinates, 13

D-branes, 514
deflation, 572
deflection function, 122, 124
deformation tensor, 627
density matrix, 351, 361, 379
DeWitt approximation, 394
diffeomorphism, 625
dumb hole, 385, 577
dyon black hole, 527

Eddington critical luminosity, 324
Eddington-Finkelstein coordinates, 25
effective action, 358, 395, 431,.440, 507,

518, 587
effective potential, 41, 71, 90
Ehlers-Sachs theorem, 166
Einstein frame, 520
Einstein tensor, 624
Einstein's equations, 4, 14, 636

in (3+1) form, 633
Einstein-Rosen bridge, 38, 445, 597, 646
elementary black hole, 589
energy condition

averaged null, 598
dominance, 220
weak, 171, 356, 598

energy-momentum tensor, see stress-energy
tensor

entropy of a black hole, 467, 474
Bekenstein-Hawking, 467, 474, 500
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entanglement, 503
generalized, 476
informational, 499
statistical-mechanical,504

equivalence principle, 649
ergosphere, 60, 83, 143, 212
Ernst metric, 459
Ernst potentials, 231
escape velocity, 44
eternal black hole, 32, 572
Euclidean black hole, 413, 447
Euclidean horizon, 447
event horizon, 3, 40, 64, 83, 160, 350

conjecture, 191
surface resistance, 305
teleological nature of, 174
temporarily toroidal, 165

expansion, 627
extrinsic curvature, 633

Fermi derivative, 625
Fermi transport, 626
floating orbit, 248
fluctuation-dissipation theorem, 488
focusing theorem, 170
friedmon, 591
Frobenius theorem, 210
Frolov-ZeI'nikov approximation, 433

gauge invariance, 516
gauge transformations, 516
Gauss-Codazzi equations, 633
Gaussian curvature, 439
general relativity, 3
generating functional, 380-382
generators

of event horizon, 163
of null surface, 166

geodesic
deviation equation, 629
principal null, 268

geometrical optics approximation, 121,
123, 260, 368



766

Gibbons-Hawking instantoll, 447
globally hyperbolic region, 622
glory effect, 122
gravitational capture, 42, 47, 76

cross-section, 48, 77
gravitational collapse, 30

critical behavior in, 192
gravitational field

axially symmetric, 221, 246, 273,
284, 311, 439, 537

non-potential, 602, 603
potential, 602
spherically symmetric, 12

gravitational perturbations, 96
complex angular momentum, 126
of a Kerr black hole, 128

gravitational radiation, 50
for colliding black holes, 284
from test particle, 113, 134
power-law 'tail', 98
quasinormal-mode contribution, 109
'ringing', 98

gravitational radius, 16
gravitational wave, 143

astronomy, 340
interferometric detector, 143
scattering, 125

Green's function, 406, 408, 410, 415

Hadamard function, 406, 612
Hamilton-Jacobi equations, 267
Hamilton-Jacobi method, 662
Hartle-Hawking vacuum, 411
Hawking temperature, 351, 380
Hawking's area theorem, 172
Hawking's theorem, 210
hedgehog ansatz, 524
Hirzebruch signature density, 527
hoop conjecture, 189
horizon

apparent, 179, 190
Cauchy, see Cauchy horizon

INDEX

chronology, see chronology horizon
Euclidean, 447
event, see event horizon
Killing, 215, 350
past, 40, 93, 655
sonic, 577
stretched, 84, 306

induced metric, 632
infinity

future null, 152
future timelike, 151
past null, 152
past timelike, 151
spatial, 151

information loss, 591, 593
inspiraling phase, 144
instanton, 457

Gibbons-Hawking, 447
gravitational, 458

intermediate at tractor, 192
isometry, 626
isoperimetric inequality, 190
Israel's theorem, 227

Keplerian velocity, 46
Kerr

black hole, 128
ingoing coordinates, 78, 376
metric, 57
outgoing coordinates, 80

Kerr-Newman metric, 82
Killing

ansatz, 433
congruence, 629
horizon, 215, 350
principal surface, 269
tensor field, 626
trajectory, 215
vector, 16
vector field, 626

Kinnersley tetrad, 665, 679
Klein-Gordon equation, 89
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Kruskal
coordinates, 38
metric, 38

Laue theorem, 257
laws of black hole physics, 474
Lemaitre coordinates, 21, 22
Lense-Thirring effect, 65, 325, 470
Lie derivative, 625
Lie transport, 626
LIGO, 8, 284, 341
limiting curvature principle, 571
locally non-rotating observers, 65

magnetic field
frozen into plasma, 296
near black hole, 310

mass formula, 469
differential, 473

mass inflation, 556, 559
Massieu function, 494
maximal analytical continuation, 237,
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maximon, 590
Melvin magnetic universe, 459
metric

Brill-Lindquist, 282
C-metric, 460
Ernst, 459
induced, 632
Kerr, 57
Kerr-Newman, 82, 657
Kruskal,38
Misner, 282
Petrov type D, 128
quantum fluctuations of, 348
Reissner-Nordstrom, 106, 460
Rindler, 427, 651
Schwarzschild, 14
ultrastatic, 430
Vaidya, 187

charged, 555
Weyl,273
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minimal surface, 265
Misner metric, 282
modes

DOWN, 92, 367, 683
IN, 92, 367,683
OUT, 92, 367, 683
UP, 92, 367,683

momentarily static configurations, 280
motion of test particles and photons

in Kerr geometry, 69
in Kerr-Newman geometry, 83, 660
in Schwarzschild geometry, 17

naked singularity, 187
Nambu-Goto action, 265
neutron star, 290
Newman-Penrose

equations, 671
formalism, 88, 128, 669

Newtonian gravitational potential, 14
no hair conjecture, 208, 242
no hair theorem for the interior, 544
no-boundary wavefunction

in quantum cosmology, 453
of black hole, 442, 452

Noether charge, 481, 482
Noether current, 481
nonlinear sigma model, 241
null cylinder, 391
numerical relativity, 98, 119, 285

observers
locally non-rotating, 65
zero angular momentum, 65

Oppenheimer-Volkoff limit, 320
optical scalars, 170
orbiting resonance, 123

Page's approximation, 429
parallel transport, 623
parametric excitation, 353
particle creation

by black hole, 347, 361
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by electric field, 349, 457
past horizon, 40, 93, 655
Pauli principle of exclusion, 134
Pauli-Villars regularization, 578
peeling off property, 153
peeling theorem, 131
Penrose theorem, 163

on singularities, 183
Penrose-Carter conformal diagram, 94,

151
Petrov type, 128
Planck

curvature, 348
length,348
mass, 348
time, 348

point-splitting method, 405
polarized hypersurface, 611
post-Newtonian expansion, 145
power-law tail, 111, 112
primordial black hole, 319, 337, 402,

518
pulsar, 290

quantum gravity, 347
quantum oscillator, 352
quantum radiation of black hole, 351

density matrix, 378
generating functional for, 382
probability distribution, 388
rate of angular momentum loss, 394
rate of charge loss, 398
rate of energy loss, 394
rate of entropy loss, 397

quasar, 6, 318, 324, 332, 333
quasi-static approximation, 587
quasinormal mode, 101--108

eigenfunctions, 110
frequencies, 107

R-region, 24
Raychaudhuri equation, 627
redshift, 18, 653
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reference frame, 627
chronometric, 61
comoving, 53
Eddington-Finkelstein, 25
Fermi,632
Lemaitre, 21, 22
local,631
of locally non-rotating observers, 65
Rindler, 651
Schwarzschild, 14

reflection amplitude, 92, 98, 133, 367
Regge poles, 126
Regge-Wheeler approach, 128
Regge-Wheeler equatiou, 88, 90, 97, 126
Reissner-Nordstrom metric, 106, 460
relativistic effects

precession, 54
shift of the periastron radius, 54
time delay, 54

retarded time, 26
reversible process, 244
Ricci tensor, 624
Riemann tensor, 53,623
Rindler metric, 427, 651

S-matrix, 361, 697
Sakharov's induced gravity, 512, 578
scattering, 119, 125

forward, 121
of low-frequency waves, 121

Schwarzschild
coordinates, 14
geometry, 89
metric, 14
radius, 15
sphere, 16

self-consistency principle, 607
semi-classical approximation, 348
semi-closed world, 36, 591
shear, 169,627
singularity

avoiding slicing conditions, 287
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cone-like, 447
mild,559
naked, 187
Penrose theorem, 18:3
scalar curvature, 559
shdl-crossing, 189
shell-focusing, 189
weak nOllscalar, 556
whimper, 556

Skyrme black hole, 524
sonic horizon, 577
sonic radius, 323
spacetime

asymptotically flat, 150, 154
asymptotically simple, 153
locally static, 600
regularly predictable, 176
static, 210
stationary, 209
ultrastatic, 432

sphaleron black hole, 525
spherical harmonics, 89

spin-weighted, 129,680
spin coefficients, 669
squeezed state, 375
squeezing operator, 375
static limit surface, 63, 83, 658
stimulated emission, 386
Stokes' theorem, 240, 258, 634
stress-energy tensor, 636

of electromagnetic field, 676
of scalar field, 674
renormalized, 404

stretched horizon, 84, 306
string frame, 520
strong causality condition, 622
supergravity, 514, 517
superradiance, 133, 134, 247
superscattering operator, 593
superstring theory, 517
supersymmetry, 514, 517
surface gravity, 216, 656

769

T-regiol1, 24
Tenkolsky equation, 128, 129, 144,679

separation of variables, 129,680
radial function, 130, 682

Teukolsky-Starobinsky identities, 132
thermo-field dynamics, 451
thermodynamical ensemble

canonical, 487
microcanonical, 486

Thomson cross section, 324
tidal forces

friction, 50
tensorial structure of, 55

time machine, 603, 607, 609, 615
Tolman solution, 28, 188
tortoise coordinate, 89, 130, 363
transmission amplitude, 92, 133
trapped surface, 176

marginally, 181
outer, 177

uniqueness theorem, 214
for static black holes, 227
for stationary black holes, 229
for stationary cosmic strings, 269

Unruh effect, 426
Unruh temperature, 428
Unruh vacuum, 371, 378, 409
unstable circular photon orbit, 90

vacuum, 351
Boulware, 414
energy, 352
Hartle-Hawking, 411
polarization, 347, 357, 403
Unruh, 371, 378, 409

Vaidya metric, 187
charged, 555

vorticity tensor, 627

Wald's axioms, 404
Wald's bases, 369, 704
Watson-Sommerfeld transformation, 126
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wave fields
in Kerr spacetime, 127
in Schwarzschild spacetime, 98
inside black hole, 545

weak field approximation, 14
Weyl metric, 273
Weyl tensor, 624
Wheeler-DeWitt equation, 452
white hole, 32, 180, 238, 579

classical instability, 579, 580
quantum instability, 581

Wick rotation, 414, 422, 438
Wightman function, 406
wormhole, 196, 283, 452, 588, 597

X-ray binary, 329

Yano-Killing tensor, 626

zero angular momentum observers, 65
zero-point fluctuations, 351, 352
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