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other textbooks.
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general relativity.
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The scope of this text

General relativity is the currently accepted theory of gravitation. Under this heading
one could include a huge amount of material. For the needs of this theory an elaborate
mathematical apparatus was created. It has partly become a self-standing sub-discipline
of mathematics and physics, and it keeps developing, providing input or inspiration
to physical theories that are being newly created (such as gauge field theories, super-
gravitation, and, more recently, the brane-world theories). From the gravitation theory,
descriptions of astronomical phenomena taking place in strong gravitational fields and
in large-scale sub-volumes of the Universe are derived. This part of gravitation theory
develops in connection with results of astronomical observations. For the needs of this
area, another sophisticated formalism was created (the Parametrised Post-Newtonian
formalism). Finally, some tests of the gravitational theory can be carried out in labora-
tories, either terrestrial or orbital. These tests, their improvements and projects of further
tests have led to developments in mathematical methods and in technology that are by
now an almost separate branch of science – as an example, one can mention here the
(monumentally expensive) search for gravitational waves and the calculations of proper-
ties of the wave signals to be expected.

In this situation, no single textbook can attempt to present the whole of gravitation
theory, and the present text is no exception. We made the working assumption that
relativity is part of physics (this view is not universally accepted!). The purpose of this
course is to present those results that are most interesting from the point of view of
a physicist, and were historically the most important. We are going to lead the reader
through the mathematical part of the theory by a rather short route, but in such a way that
the reader does not have to take anything on our word, is able to verify every detail, and,
after reading the whole text, will be prepared to solve several problems by him/herself.
Further help in this should be provided by the exercises in the text and the literature
recommended for further reading.

The introductory part (Chapters 1–7), although assembled by J. Plebański long ago, has
never been published in book form.1 It differs from other courses on relativity in that it
introduces differential geometry by a top-down method. We begin with general manifolds,

1 A part of that material had been semi-published as copies of typewritten notes (Plebański, 1964).
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xviii The scope of this text

on which no structures except tensors are defined, and discuss their basic properties. Then
we add the notion of the covariant derivative and affine connection, without introducing
the metric yet, and again proceed as far as possible. At that level we define geodesics via
parallel displacement and we present the properties of curvature. Only at this point do
we introduce the metric tensor and the (pseudo-)Riemannian geometry and specialise the
results derived earlier to this case. Then we proceed to the presentation of more detailed
topics, such as symmetries, the Bianchi classification and the Petrov classification.

Some of the chapters on classical relativistic topics contain material that, to the best
of our knowledge, has never been published in any textbook. In particular, this applies
to Chapter 8 (on symmetries) and to Chapter 16 (on cosmology with general geometry).
Chapters 18 and 19 (on inhomogeneous cosmologies) are entirely based on original
papers. Parts of Chapters 18 and 19 cover the material introduced in A. K.’s monograph
on inhomogeneous cosmological models (Krasiński, 1997). However, the presentation
here was thoroughly rearranged, extended, and brought up to date. We no longer briefly
mention all contributions to the subject; rather, we have placed the emphasis on complete
and clear derivations of the most important results. That material has so far existed
only in scattered journal papers and has been assembled into a textbook for the first
time (A. K.’s monograph (Krasiński, 1997) was only a concise review). Taken together,
this collection of knowledge constitutes an important and interesting part of relativistic
cosmology whose meaning has, unfortunately, not yet been appreciated properly by the
astronomical community.

Most figures for this text, even when they look the same as the corresponding figures
in the papers cited, were newly generated by A. K. using the program Gnuplot, sometimes
on the basis of numerical calculations programmed in Fortran 90. The only figures taken
verbatim from other sources are those that illustrated the joint papers by C. Hellaby and
A. K.

J. Plebański kindly agreed to be included as a co-author of this text – having done
his part of the job more than 30 years ago. Unfortunately, he was not able to participate
actively in the writing up and proofreading. He died while the book was being edited.
Therefore, the second author (A. K.) is exclusively responsible for any errors that may
be found in this book.

Note for the reader. Some parts of this book may be skipped on first reading, since
they are not necessary for understanding the material that follows. They are marked by
asterisks. Chapters 18 and 19 are expected to be the highlights of this book. However,
they go far beyond standard courses of relativity and may be skipped by those readers
who wish to remain on the well-beaten track. Hesitating readers may read on, but can
skip the sections marked by asterisks.

Andrzej Krasiński
Warsaw, September 2005
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1

How the theory of relativity came into being
(a brief historical sketch)

1.1 Special versus general relativity

The name ‘relativity’ covers two physical theories. The older one, called special relativity,
published in 1905, is a theory of electromagnetic and mechanical phenomena taking place
in reference systems that move with large velocities relative to an observer, but are not
influenced by gravitation. It is considered to be a closed theory. Its parts had entered the
basic courses of classical mechanics, quantum mechanics and electrodynamics. Students
of physics study these subjects before they begin to learn general relativity. Therefore,
we shall not deal with special relativity here. Familiarity with it is, however, necessary
for understanding the general theory. The latter was published in 1915. It describes the
properties of time and space, and mechanical and electromagnetic phenomena in the
presence of a gravitational field.

1.2 Space and inertia in Newtonian physics

In the Newtonian mechanics and gravitation theory the space was just a background – a
room to be filled with matter. It was considered obvious that the space is Euclidean. The
masses of matter particles were considered their internal properties independent of any
interactions with the remaining matter. However, from time to time it was suggested that
not all of the phenomena in the Universe can be explained using such an approach. The
best known among those concepts was the so-called Mach’s principle. This approach was
made known by Ernst Mach in the second half of the nineteenth century, but had been
originated by the English philosopher Bishop George Berkeley, in 1710, while Newton
was still alive. Mach started with the following observation: in the Newtonian mechanics
a seemingly obvious assumption is tacitly made, namely that all the space points can be
labelled, for example by assigning Cartesian coordinates to them. One can then observe
the motion of matter by finding in which point of space a given particle is located
at a given instant. However, this is not actually possible. If we accept another basic
assumption of Newton, namely that the space is Euclidean, then its points do not differ
from one another in any way. They can be labelled only by matter being present in the
space. In truth, we thus can observe only the motion of one portion of matter relative to
another portion of matter. Hence, a correctly formulated theory should speak only about

1



2 A brief history

relative motion (of matter relative to matter), not about absolute motion (of matter relative
to space). If this is so, then the motion of a single particle in a totally empty Universe
would not be detectable. Without any other matter we could not establish whether the lone
particle is at rest, or is moving or experiencing acceleration. But the reaction of matter to
acceleration is the only way to measure its inertia. Hence, that lone particle would have
zero inertia. It follows then that inertia is, likewise, not an absolute property of matter,
but is relative, and is induced by the remaining matter in the Universe, supposedly via
the gravitational interaction.

One can question this principle in several ways. No-one will ever be able to find
him/herself in an empty Universe, so any theorems on such an example cannot be verified.
It is possible that the inertia of matter is a ‘stronger’ property than the homogeneity of
space, and would still exist in an empty Universe, thus making it possible to measure
absolute acceleration. Criticism of Mach’s principle is made easier by the fact that it
has never been formulated as a precise physical theory. It is just a collection of critical
remarks and suggestions, partly based on calculations. It happens sometimes, though, that
a new way of looking at an old theory, even if not sufficiently well justified, becomes a
starting point for meaningful discoveries. This was the case with Mach’s principle that
inspired Einstein at the starting point of his work.

1.3 Newton’s theory and the orbits of planets

In addition to the above-mentioned theoretical problem, Newton’s theory had a serious
empirical problem. It was known already in the first half of the nineteenth century that
the planets revolve around the Sun in orbits that are not exactly elliptic. The real orbits
are rosettes – curves that can be imagined as follows: let a point go around an ellipse, but
at the same time let the ellipse rotate slowly around its focus in the same direction (see
Fig. 1.1). Newton’s theory explained this as follows: an orbit of a planet is an exact ellipse
only if we assume that the Sun has just one planet.1 Since the Sun has several planets,
they interact gravitationally and mutually perturb their orbits. When these perturbations
are taken into account, the effect is qualitatively the same as observed.

However, in 1859, Urbain J. LeVerrier (the same person who, a few years earlier,
had predicted the existence of Neptune on the basis of similar calculations) verified
whether the calculated and observed motions of Mercury’s perihelion agree. It turned
out that they do not – and that the discrepancy is much larger than the observational
error. The calculated velocity of rotation of the perihelion was smaller than the one
observed by 43′′ (arc seconds) per century (the modern result is 43�11±0�45′′ per century
(Will, 1981)). Astronomers and physicists tried to explain this effect in various simple
ways, e.g. by assuming that yet another planet, called Vulcan, revolves around the Sun

1 More assumptions were actually made, but the other ones seemed so obvious at that time that they were not even mentioned:
that the Sun is exactly spherical, and that the space around the Sun is exactly empty. None of these is strictly correct, but
the departures of observations from theory caused by the non-sphericity of the Sun and by the interplanetary matter are
insignificant.
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Fig. 1.1. Real planetary orbits, in consequence of various perturbations, are not ellipses, but non-
closed curves. The angle of revolution of the perihelion shown in this figure is greatly exaggerated.
In reality, the greatest angle of perihelion motion observed in the Solar System, for Mercury, equals
approximately 1�5� per 100 years.

inside Mercury’s orbit and perturbs it; by allowing for gravitational interaction of Mercury
with the interplanetary dust; or by assuming that the Sun is flattened in consequence of
its rotation. In the last case, the gravitational field of the Sun would not be spherically
symmetric, and a sufficiently large flattening would explain the additional rotation of
Mercury’s perihelion. All these hypotheses did not pass the observational tests. The
hypothetical planet Vulcan would have to be so massive that it would be visible in
telescopes, but wasn’t. There was not enough interplanetary dust to cause the observed
effect. The Sun, if it were sufficiently flattened to explain Mercury’s motion, would cause
yet another effect: the planes of the planetary orbits would swing periodically around
their mean positions with an amplitude of about 43′′ per century, and that motion would
have been observed, but wasn’t (Dicke, 1964).

In spite of these difficulties, nobody doubted the correctness of Newton’s theory. The
general opinion was that Mach’s critique would be answered by formal corrections in
the theory, and the anomalous perihelion motion of Mercury would be explained by
new observational discoveries. Nobody expected that any other gravitation theory could
replace Newton’s that had been going from one success to another for over 200 years.
General relativity was not created in response to experimental or observational needs. It
resulted from speculation, it preceded all but one of the experiments and observations
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that confirmed it, and it became broadly testable only about 50 years after it had been
created, in the 1960s. So much time did technology need to catch up and go beyond the
opportunities provided by astronomical phenomena.

1.4 The basic assumptions of general relativity

It is interesting to follow the development of relativistic ideas in the same order as that
in which they actually appeared in the literature. However, this was not a straight and
smooth road. Einstein made a few mistakes and put forward a few hypotheses that he had
to revoke later. He had been constructing the theory gradually, while at the same time
learning the Riemannian geometry – the mathematical basis of relativity. If we followed
that gradual progress, we would have to take into account not only some blind paths,
but also competitors of Einstein, some of whom questioned the need for the (then) new
theory, while some others tried to get ahead of Einstein, but without success (Mehra,
1974). Learning relativity in this way would not be efficient, so we will take a shortcut.
We shall begin by justifying the need for relativity theory, then we shall present the
basic elements of Riemann’s geometry, and then we will present Einstein’s theory in
its final shape. The history of relativity’s taking shape is presented in Mehra’s book
(Mehra, 1974), and its original presentation is to be found in the collection of classic
papers (Einstein et al., 1923).

Einstein’s starting point was a critique of Newton’s theory based on Mach’s ideas.
Newtonian physics said that, in a space free of any interactions, material bodies would
either remain at rest or would move by uniform rectilinear motion. Since, however, the
real Universe is permeated by gravitational fields that cannot be shielded, all bodies in
the Universe move on curved trajectories in consequence of gravitational interactions.

There is a problem here. When we say that a trajectory is curved, we assume that we
can define a straight line. But how can we do this when no actual body follows a straight
line? The terrestrial standards of straight lines are useful only because no distances on
the Earth are truly great, and at short distances the deformation of ‘rigid’ bodies due to
gravitation is unmeasurably small. Maybe then the trajectory of a light ray would be a
good model of a straight line?

To see whether this could be the case, consider two Cartesian reference systems K
and K′, whose axes �x� y� z� and �x′� y′� z′� are, respectively, parallel. Let K be inertial,
and let K′ move with respect to K along the z-axis with acceleration g�t� x� y� z�. Let the
origins of both systems coincide at t = 0. Then

x′ = x� y′ = y� z′ = z−
∫ t

0
d�
∫ �

0
ds g�s� x� y� z��

Hence, the equations of motion of a free particle, that in K are

d2x

dt2
= d2y

dt2
= d2z

dt2
= 0�
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in K′ assume the form

d2x′

dt2
= d2y′

dt2
= 0�

d2z′

dt2
= −g�t� x� y� z��

The quantity that we interpreted in K as acceleration would be interpreted in K′ as the
intensity of a gravitational field (with opposite sign). The gravitational field can thus be
simulated by accelerated motion, or, more exactly, the gravitational force is simulated by
the force of inertia. If so, then light in a gravitational field should behave similarly to
when it is observed from an accelerated reference system.

How would we see a light ray in such a system? Imagine a space vehicle that flies
across a light ray. Let the light ray enter through the window W and fall on a screen on
the other side of the vehicle (see Fig. 1.2). If the vehicle were at rest, the light ray entering
at W would hit the screen at the point A. Since the vehicle keeps flying, it will move
a bit before the ray hits the screen, and the bright spot will appear at the point B. Now
assume that the light ray indeed moves in a straight line when observed by an observer
who is at rest. Then it is easy to see that the path WB will be straight when the vehicle
moves with a constant velocity, whereas it will be curved when the vehicle moves with
acceleration. Hence, if the gravitational field behaves analogously to the field of inertial
forces, then the light ray should be deflected also by gravitation. Consequently, it cannot
be the standard of a straight line.

If we are unable to provide a physical model of a fundamental notion of Newtonian
physics, let us try to do without it. Let us assume that no such thing exists as ‘gravitational
forces’ that curve the trajectories of celestial bodies, but that the geometry of space is

A

B

W

v

Fig. 1.2. A space vehicle flying across a light ray. See the explanation in the text.
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modified by gravitation in such a way that the observed trajectories are paths of free
motion. Such a theory might be more complicated than the Newtonian one in practical
instances, but it will use only such notions as are related to actual observations, without
an unobservable background of the Euclidean space.

A modified geometry means non-Euclidean geometry. A theory created in order to
deal with broad classes of non-Euclidean geometries is differential geometry. It is the
mathematical basis of general relativity, and we will begin by studying it.



Part I

Elements of differential geometry





2

A short sketch of 2-dimensional differential geometry

2.1 Constructing parallel straight lines in a flat space

The classical Greek geometric constructions, with the help of rulers and compasses, fail
over large distances. For example, if we wish to construct a straight line parallel to
the momentary velocity of the Earth that passes through a given point on the Moon,
compasses and rulers do not help. What method might work in such a situation? For the
beginning, let us assume that great distance is our only problem – that we live in a space
without gravitation, so we can use a light ray or the trajectory of a stone shot from a sling
as a model of a straight line.

Assume that an observer is at the point A (see Fig. 2.1) on the straight line p, and
wants to construct a straight line through the point B that would be parallel to p. The

α

α

B

A

p

p 1

p 2

p 3

q

Fig. 2.1. Constructing parallel straight lines at a distance in a flat space. See the explanation in
the text.

9
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following programme is ‘technically realistic’: we first determine the straight line passing
through both A and B (for example, by directing a telescope towards B), then we measure
the angle � between the lines p and AB, then, from B, we construct a straight line q
that is inclined to AB at the same angle � and lies in the same plane as p and AB.
The second condition requires that we can control points of q other than B, and it can
pose some problems. However, if our observer is able to construct parallel straight lines
that are not too distant from the given one, he/she can carry out the following operation:
the observer moves from A to A1, constructs a straight line p1 � p, then moves on to
A2, constructs a straight line p2 � p1, etc., until, in the nth step, he/she reaches B and
constructs q = pn � pn−1 there.

This construction can be generalised. The observer does not have to move from A to
B on a straight line. He/she can start from A in an arbitrary direction and, at a point A1,
construct a straight line parallel to p; it has to lie in the plane pAA1 and be inclined to
AA1 at the same angle as p. Then, from A1 the observer can continue in still another
arbitrary direction and at a point A2 repeat the construction: a straight line p2 has to lie in
the plane p1A1A2 and be inclined to A1A2 at the same angle as p1 was. When the broken
line he/she is following reaches B, the last straight line will be the one we wanted to
construct.

We can imagine broken lines whose straight segments are becoming still shorter. In the
limit, we conclude that we would be able to carry out this construction along an arbitrary
differentiable curve. The plane needed in the construction will be in each step determined
by the tangent vector of the curve and the last straight line we had constructed.

In this way, we arrived at the idea of constructing parallel straight lines by parallely
transporting directions. Note that a straight line is privileged in this construction: this
is the only line to which the parallely transported direction is inclined always at the
same angle. In particular, a vector tangent to a straight line, when transported parallely
along this line, remains tangent to it at every point. A straight line can be defined by
this property, provided we are able to define what it means to be parallel without first
invoking the notion of a straight line. One possible definition is this: a vector field v�x�

defined along a curve C ⊂ R
n consists of parallel vectors (or, in other words, is parallely

transported along C) when there exists a coordinate system such that �vi/�xj ≡ 0.

2.2 Generalisation of the notion of parallelism to curved surfaces

On a curved surface, the analogue of a straight line is a geodesic line. This is a curve
whose arc PQ (see Fig. 2.2) is the shortest among all curved arcs connecting P and Q.
Note that, unlike on a plane or in a flat space, the vector tangent to a curve on a curved
surface S is not a subset of this surface. The collection of all vectors tangent to the surface
S at a point p ∈ S spans a plane tangent to S at P.

On a curved surface S, parallel transport is defined as follows. Suppose that we are
given the pair of points P and Q, an arc of a curve C connecting P and Q and a vector
tangent to S at P that we plan to parallely transport to Q. If C is a geodesic, then we
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P v

Q

C

Fig. 2.2. Parallel transport of vectors on a curved surface. See the explanation in the text.

transport the vector v along it in such a way that it is everywhere inclined to the tangent
vector of C at the same angle. If C is not a geodesic, then we proceed as follows:

1. We divide the arc PQ into n segments.
2. We connect the ends of each arc by a geodesic.
3. We transport v parallely along each geodesic arc.
4. We calculate the result of this operation as n → �.

It is easy to note that the parallel transport thus defined depends on the curve along
which the transport was carried out. For example, consider a sphere, its pole C and two
points A and B lying on the equator, 90� away from each other (Fig. 2.3). Let v be the
vector tangent to the equator at A. Transport v parallely to C along the arc AC, and
then again along the arcs AB and BC. All three arcs are parts of great circles, which are
geodesics, so v makes always the same angle with the tangent vectors of the arcs. The
first transport will yield a vector at C that is tangent to BC, while the second one will
yield a vector at C perpendicular to BC. In consequence, if we transport (in differential

A

B

C

Fig. 2.3. Parallel transport of vectors on a sphere. See the explanation in the text.
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geometry one says ‘drag’) a vector along a closed loop, we will not obtain the same vector
that we started with. The curvature of the surface is responsible for this. The connection
between the initial vector, the final vector and the curvature is rather complicated; we
will come to it further on.

We have discussed 2-dimensional surfaces in this chapter in order to visualise things
more easily. However, this gave us an unfair advantage: on a 2-dimensional surface,
the direction inclined to a given tangent vector at a given angle is uniquely determined.
In spaces of higher dimension we will need a definition of ‘parallelism at a distance’ that
will be analogous to �vi/�xj = 0 that we used in a flat space.



3

Tensors, tensor densities

3.1 What are tensors good for?

In Newtonian physics, a preferred class of reference systems is used. They are the inertial
systems – those in which the three Newtonian principles of dynamics hold true. However,
it may be difficult in practice to identify the inertial systems. As we have seen in Chapter 1,
the inertial force imitates the gravitational force, so it may not be easy to make sure
whether a given object moves with acceleration or remains at rest in a gravitational field.
Hence, the laws of physics should be formulated in such a way that no reference system
is privileged. The choice of a reference system, even when it is evidently convenient (e.g.
the centre of mass system), is an act of human will, while the laws of physics should not
depend on our decisions.

Tensors are objects defined so that no reference system is privileged. For the beginning,
we will settle for a vague definition that we will make precise later. Suppose we change
the coordinate system in an n-dimensional space from �x��, � = 1� 2� � � �� n to �x�′

�,
�′ = 1� 2� � � �� n. A tensor is a collection of functions on that space that changes in a
specific way under such a coordinate transformation. The appropriate class of spaces and
the ‘specific way’ in which the functions change will be defined in subsequent sections.

3.2 Differentiable manifolds

As already stated, in relativity we will be using non-Euclidean spaces. The most general
class of spaces that we will consider are differentiable manifolds. This is a generalisation
of the notion of a curved surface for which a tangent plane exists at every point of it. An
n-dimensional differentiable manifold of class p is a space Mn in which every point x

has a neighbourhood �x such that the following conditions hold:

1. There exists a one-to-one mapping �x of the neighbourhood �x onto a subset of R
n,

called a map of �x. The coordinates of the image �x�x	 are called the coordinates
of x ∈ Mn.

2. If the neighbourhoods �x and �y of x� y ∈ Mn have a non-empty intersection ��x ∩
�y �= ∅	, �x is a map of �x and �y is a map of �y, then the mappings ��y ��x

−1	

and ��y ��x
−1	−1 are mappings of class p of R

n into itself.

13
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A tangent space to the manifold Mn at the point x is a vector space spanned by vectors
tangent at x to curves in Mn that pass through x.

If �x�x	 = �x1� � � �� xn� are the coordinates of the point x, then the equation xi =
constant, where i ∈ �1� � � �� n� is a fixed index, defines a hypersurface in R

n and thus also
a hypersurface H in Mn. A coordinate system is thus a set of n one-parameter families of
hypersurfaces, xi being the parameter in the ith family.

Now let the manifold be R
n. Each hypersurface H defines then a family of vectors: if


�x	 = C (where C is an arbitrary constant) is the equation of H, then �
/�x�, where
�x�� are the coordinates of the point x, is an equation of a family of vectors attached
to H and orthogonal to it. Taking all the hypersurfaces of the 
 = C family, we obtain
a family of curves tangent to the vectors �
/�x�. Thus, each coordinate system in R

n

defines a family of curves.
The converse is not true: an n-parameter family of curves Cx in R

n defines a family
of hypersurfaces orthogonal to Cx only when the vectors tangent to Cx have zero rotation
(to be defined later).

The reason why, for this example, we had to take the special case of Mn = R
n is that, as

we shall see later, in a general vector space vectors like the gradient of a function (called
covariant vectors) and vectors like a tangent vector to a curve (called contravariant
vectors) are unrelated objects of different kinds. A relation between them exists only in
spaces tangent to such manifolds in which a metric is defined, see Chapter 7. R

n is one
of them. Without a metric, a covariant vector cannot be converted into a contravariant
one, and a curve tangent to a field of covariant vectors cannot be constructed.

Let U ⊂ Mn be an open subset. Suppose we are given a collection of n families of
curves, each of (n − 1) parameters such that n curves pass through each point x ∈ U.
Suppose that the tangent vectors to these curves are linearly independent at every x ∈ U.
Then the tangent vectors to these curves at the point x, ea�x		a=1�����n are a basis of the
space tangent to Mn at x. Let v�x	 be an arbitrary vector tangent to Mn at x. Then

v =
n
∑

a=1

va�x	ea�x	�

The coefficients �va� are called the components of the vector v in the basis ea�x	. The
mapping x → v�x	 assigns to each point x ∈ U ⊂ Mn a vector tangent to Mn at x and is
called a vector field on U.

Note that the vectors of a vector field are defined on tangent spaces to the manifold,
while the components of vector fields are functions on the manifold. In particular, the
vectors ea�x	 can be identified with directional derivatives, and can be defined by a
coordinate system as ea�x	
�x	= ��/�xa	
�x	 (that is, the ath vector in the basis is the
directional derivative down the ath family of hypersurfaces in the coordinate system.)
Then the va are components of the vector v in the coordinate system �x�. Again, they are
functions on the manifold.

We adopt three conventions.
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1. If any index in a formula appears twice, a sum over all of its values is implied.
Hence, if � changes from 1 to n, while �V�� and �U��, � = 1� � � �� n are collections
of functions labelled by �, then

U�V� ≡
n
∑

�=1

U�V��

2. The collection of all coordinates �x��, � = 1� � � �� n will be denoted �x�, and a
function f��x�	 will be denoted f�x	.

3. The derivative with respect to x� will be denoted by a comma followed by a
subscript: thus

f�� ≡ �f

�x�
�

3.3 Scalars

The simplest tensor is a scalar. It is a function on a manifold whose value, when the
coordinate system is transformed, changes simply by substituting the transformation in
its argument:

�′�x′�x		 = ��x	� (3.1)

Examples of scalars are physical constants, rest masses of elementary particles, their
electric charges, a density distribution in a continuous medium. The coordinates of a point
in a manifold are scalars, too, since their values transform by the simple law (3.1) when
coordinates are changed from �x′� to �x′′�: x��x′′�x′		 = x��x′	.

3.4 Contravariant vectors

The functions v��x	, � = 1� � � �� n are said to be coordinates of a contravariant vector
field when, by a change of coordinates on Mn, they transform by the law

v�′
�x′�x		 = x�′

��v��x	� (3.2)

Examples are vectors tangent to curves. Suppose that a curve C is given by the
parametric equations t → x��t	, � = 1� � � �� n, t ∈ a� b� ⊂ R

1, where x� is the value of
a coordinate of a point on the curve. An arbitrary field of vectors tangent to C is then
given by

t → v��t	 = f�x	g�t	
dx�

dt
�

where f�x	 is an arbitrary function of the coordinates and g�t	 is an arbitrary function of
the parameter. When the coordinate system is changed from �x	 to �x′	, we have

v�′
�t	 = f�x′�x		g�t	

dx�′

dt
= f�x	g�t	x�′

��

dx�

dt
�

in agreement with (3.2).
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3.5 Covariant vectors

The functions u��x	, � = 1� � � �� n are said to be coordinates of a covariant vector field
when, by a change of coordinates on Mn, they transform by the law

u�′�x′�x		 = x���′ u��x	� (3.3)

By convention, the indices of contravariant vectors are placed as superscripts, whereas
those of covariant vectors are placed as subscripts.

An example of a covariant vector is the gradient of a scalar function ��x	. For such a
function we have

���′ �x′�x		 = x���′ ��� �x	�

in agreement with (3.3).
Note that the quantity v�u� is a scalar, since we have

v�′
u�′ = x�′

�� v�x���′ u� = (

x���′ x�′
��

)

v�u�

= x��� v�u� = ��
�v�u� = v�u��

Another example of a scalar field is the directional derivative of a scalar field along a

contravariant vector field, v��	
def= v����.

3.6 Tensors of second rank

Scalars are sometimes called tensors of rank zero, to emphasise that they have no indices.
The contravariant and covariant vectors are collectively called tensors of rank 1. The
tensors of rank 2 are objects whose components are labelled by two indices. There are
three kinds of them:

1. Doubly contravariant tensors. Their components T���x	 transform under a coordinate
transformation x → x′ on Mn as follows:

T�′�′
�x′�x		 = x�′

�� x�′
�� T���x	� (3.4)

2. Doubly covariant tensors. These are quantities whose components T���x	 transform
by the rule

T�′�′�x′�x		 = x���′ x���′ T���x	� (3.5)

3. Mixed tensors. Their components transform by the rule

T�′ �
′
�x′�x		 = x���′ x�′

�� T�
��x	� (3.6)

The collection of components of a second-rank tensor is a square matrix that transforms
in a prescribed way when coordinates are changed.
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An example of a doubly covariant tensor is a matrix of a quadratic form,


�A	 = 
��A�A��

where A� are components of a contravariant vector, and the value of 
�A	 is a scalar.
An example of a mixed tensor of rank 2 is a matrix of a mapping of one vector space

into another,

V � = B�
�W ��

where V � and W � are contravariant vectors in different vector spaces.
We will meet examples of doubly contravariant vectors later in this book. The simplest

example is the inverse matrix to a matrix of a quadratic form, but in order to be able to
prove this we have to learn about some other objects.

The quantity T�
� for a mixed tensor (the sum of its diagonal components) is called the

trace of T and is a scalar. Quantities like
∑

� T�� for a contravariant second-rank tensor
and

∑

� T�� for a covariant second-rank tensor are not tensorial objects. Summations over
indices standing on the same level occur only exceptionally in differential geometry – for
example, when a calculation is done in a chosen coordinate system.

3.7 Tensor densities

A tensor density differs from the corresponding tensor in that, when transformed from
one coordinate system to another, it gets multiplied by a certain power of the Jacobian
of the transformation. The exponent of the Jacobian is called the weight of the density.
For example, a scalar density of weight w transforms as follows:


′�x′	 =
[

��x′	
��x	

]w


�x	� (3.7)

a contravariant vector density of weight w transforms by the rule

v�′
�x′	 =

[
��x′	
��x	

]w

x�′
�� v��x	� (3.8)

and so on.
An example of a scalar density is the element of volume in a multidimensional integral.

It transforms by the law

dnx = ��x	

��x′	
dnx

′� (3.9)

so it is a scalar density of weight +1.
An arbitrary tensor is by definition a tensor density of weight zero.
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3.8 Tensor densities of arbitrary rank

The components of a tensor density of weight w�k times contravariant and l times
covariant, transform by the law

T
�′

1�′
2����′

k

�′
1�′

2����′
l
�x′�x		 =

[
��x′	
��x	

]w

x�′
1��1

x�′
2��2

� � � x�′
k ��k

×x�1��′
1
x�2��′

2
� � � x�l ��′

l
T

�1�2����k

�1�2����l
�x	� (3.10)

Such an object is called a tensor density of type w�k� l�.
For general tensor densities one can carry out an operation that is analogous to finding

the trace of a mixed tensor of rank 2. This operation is called contraction. It consists in
making an upper index equal to a lower index, and summing over all its allowed values.
The resulting density is of type w�k−1� l−1�, thus

contracted T�
�1����i−1�i+1����k

�1����j−1�j+1����l
�x	 = T

�1����i−1��i+1����k

�1����j−1��j+1����l
�x	 (3.11)

(note that a sum over all values of � is implied above). The indices over which the
summing is carried out are called ‘dummy indices’ since they do not show up in the
transformation law of the contracted density.

The contraction may be done over several pairs of indices at the same time. Then,
one must take care to give different names to each pair of dummy indices, to avoid
confusion.

3.9 Algebraic properties of tensor densities

Here is a list of the most basic properties of tensor densities.

1. If T ���������
��������� ≡ 0 in one coordinate system, then T ���������

��������� ≡ 0 in all coordinate systems
(this follows easily from the transformation law).

2. A linear combination of two tensor densities of type w�k� l� is a tensor density of
the same type. (Adding tensor densities of different types makes no sense.)

3. The collection of quantities obtained when each component of one tensor density
(of type w�k� l�) is multiplied by each component of another tensor density (of type
w′� k′� l′�) is called a tensor product of the two densities, and is a tensor density of
type w+w′� k+k′� l+ l′�. For example, out of u� and v� one can form such tensor
products as v�v�, v�u�, u�u�, v�v�v� , v�u�v� , v�u�v�u�v�. The tensor product is
denoted by ⊗, thus for example v�u� = �v⊗u	�

�.
4. If a tensor density does not change its value when two indices (either both upper or

both lower) are interchanged, then it is called symmetric with respect to this pair
of indices. If it only changes sign, then it is called antisymmetric in this pair of
indices. The property of being symmetric or antisymmetric with respect to a given
pair of indices is preserved under transformations of coordinates.
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5. This last property allows us to define the symmetrisation and the antisymmetrisa-
tion. The symmetric part of a tensor density with respect to the indices ��1� � � ���k�

is the quantity

T��1����k	

def= 1
k!

∑

over all permutations
i1�����ik

T�i1
����ik

� (3.12)

The antisymmetric part of a tensor density with respect to the indices ��1� � � ���k�

is the quantity

T�1����k�

def= 1
k!

∑

over all permutations
i1�����ik

�sign of the permutation	T�i1
����ik

� (3.13)

One can carry out the symmetrisation or antisymmetrisation (i.e., respectively,
symmetrise or antisymmetrise) also with respect to the upper indices, and, in each
case, over only a subset of all the indices that a tensor density has. For example, a
tensor of rank 4 T���� can be symmetrised over only two of its indices

T���	�� = 1
2

(

T���� +T����

)

�

or over three indices

T����	� = 1
6

(

T���� +T���� +T���� +T���� +T���� +T����

)

�

If we want to emphasise that a certain index is excluded from symmetrisation or
antisymmetrisation, then we put it between vertical strokes. For example, the antisym-
metrisation of T���� with respect to � and � only would be denoted T�	�	���.

The symmetrisation and the antisymmetrisation with respect to just two indices are
complementary operations, as can easily be verified, thus

T���	����� +T�������� ≡ T��������

However, this is no longer true for symmetrisations/antisymmetrisations over larger
numbers of indices. The other parts of T������� that enter neither T����	���� nor T�������� are
obtained when different rules of assigning signs to the different terms in (3.12) and (3.13)
are chosen. We will not encounter those operations in this book.

If the antisymmetrisation is done with respect to a larger number of indices than the
dimension of the manifold, then the result is a tensor density that identically equals zero.
This is because, with n possible different values of each index, there must be at least
one value that is repeated in a set of m > n indices. Then, each term in (3.13) has its
counterpart that is identical, but enters the sum with an opposite sign.

3.10 Mappings between manifolds

The following notation will be used.
Mn and Pm are two arbitrary differentiable manifolds, dim Mn = n� dim Pm = m�

�x���� = 1� � � �� n and �ya��a = 1� � � ��m are the coordinate systems on Mn and Pm,
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respectively. (Recall that several coordinate neighbourhoods may be needed to cover
each manifold, but here we consider a single coordinate patch on each one.)

F � Mn → Pm is an arbitrary mapping of class C1, represented by the set of functions
ya = Fa��x�	.

Now consider a function f � Pm → R
1 defined on Pm. For those points of Pm that are

images of some points of Mn, the mapping F and the function f automatically define a
function acting on Mn. Let Pm  q = F�p	, where p ∈ Mn, and let f�q	 = r ∈ R

1. Then
�f �F	�p	 = r, and so f �F � Mn → R

1. We can thus say that the mapping F that takes
points of Mn to points of Pm defines an associated mapping of functions on Pm to functions
on Mn. This associated mapping will be denoted F ∗

0 . (The zero denotes that this is a
mapping of functions, i.e. tensors with zero indices, and the asterisk placed as a superscript
denotes that the functions are sent in the opposite direction to points of the manifold Mn.
An associated mapping that sends objects backwards with respect to the main mapping
is called a pullback.) The function associated to f will thus be denoted F ∗

0 f , so

F ∗
0 f � Mn → R

1� �F ∗
0 f	�p	

def= f�F�p		� (3.14)

Now consider a contravariant continuous vector field v� on Mn. This field defines a
family of curves tangent to the vectors of this field by

v� = dx�

d�
� (3.15)

Suppose that an arc of the curve x���	 is in the domain of the mapping F . Then points of
this curve have their images in Pm�F �x���		, or, in terms of coordinates, ya��	 =
Fa �x���		. Hence, the arc of the image-curve in Pm is automatically parametrised by the
same parameter �. Since the functions x���	 are of class C1 (as integrals of continuous
functions), and F is of the same class by assumption, we can differentiate the functions
ya��	 by �. The derivatives are components of the field of vectors wa tangent to the curve
ya��	. The mapping F thus defines an associated mapping of vector fields on Mn to vector
fields on Pm:

wa�F�x		 = d
d�

�Fa�x		 = �Fa

�x�

dx�

d�
= �Fa

�x�
v�� (3.16)

If dim Pm < dim Mn, then some curves in Mn will be mapped onto single points of
Pm, and then, according to (3.16), the image of the vector field v� tangent to such a curve
will be a zero vector on Pm (because the image of such a curve ya��	, will in fact be
independent of �).

Note the similarity of (3.16) to the transformation law of contravariant vectors; we will
come back to it at the end of this section.

We have thus found that the mapping of manifolds F � Mn → Pm defines an associated
mapping of vector fields on Mn to vector fields on Pm. We will denote this associated
mapping F1∗. (This time it is a mapping of tensors with one index, and it takes objects in the
same direction as the main mapping. Such a mapping is sometimes called a pushforward.)
If v is a vector field on Mn, then F1∗�v	 is a vector field on Pm. The mapping F1∗ is a linear
mapping between vector spaces, determined via (3.16) by the matrix of derivatives �Fa�� �.
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Vector fields v� on Mn and wa on Pm can be uniquely represented by directional
derivatives of functions. Let g � Mn → R

1 and f � Pm → R
1, then

v��x	 ←→ v�g	
def= v� �g

�x�
�

wa�y	 ←→ w�f	
def= wa �f

�ya
�

(3.17)

Then the mapping F1∗ can be defined in another, equivalent way,

v �F ∗
0 f	 = �F1∗v	�f	� (3.18)

where v is a vector field defined on Mn.
A field of covariant vectors �a on Pm can be understood as a linear form � that maps

vector fields on Pm to R
1:

��w	
def= �aw

a� (3.19)

If a field of forms � is defined on Pm, then, for those points of Pm that are images of
points of Mn, we can define a field of forms on Mn by

�F ∗
1 �	�v	 = ��F1∗v	� (3.20)

where v is a vector field on Mn. (This is an associated mapping of tensors with one index
that is again a pullback.) In terms of coordinates, this can be written as follows:

�F ∗
1 �	� v� = �aF

a�� v�� (3.21)

or equivalently

�F ∗
1 �	� = �aF

a�� � (3.22)

Note the similarity of (3.22) to the transformation law of covariant vectors.
To sum up: a mapping F � Mn → Pm between manifolds defines the mapping F1∗ of

vector fields on Mn to vector fields on Pm and the mappings F ∗
0 and F ∗

1 of, respectively,
functions and forms on Pm to functions and forms on Mn. These definitions can be
extended further, in a rather obvious way, to mappings of contravariant tensor fields of
arbitrary rank from Mn to Pm and of covariant tensor fields from Pm to Mn. Note that tensor
densities can be defined only for nonsingular transformations, while F can be singular.
Therefore, no general definition of an associated mapping of tensor densities can be given.

If n = m and F is a diffeomorphism of class C1, then F−1 exists and is also of class
C1. In this case, tensors of arbitrary rank, including mixed tensors, can be transported in
both directions between Mn and Pm. If F � Mn → Pm is not reversible, then mixed tensors
cannot be transported in any direction.

Now observe the following. Coordinate transformations are in fact nothing else than
mappings of R

n into itself – because coordinate patches are subsets of R
n by definition.

Hence, if such a mapping occurs within the image of a single map, a mapping of the
manifold into itself is associated with it. Consequently, coordinate transformations can
be interpreted as mappings of the underlying manifold into itself.
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Let us now specialise the considerations of this section to the case when n = m, and
Mn and Pm are subsets of the same manifold, Mn ⊂ Qn and Pm ⊂ Qn. Then it follows
from (3.14), (3.16), (3.22), and from their extensions to tensor fields of higher ranks, that
the transformation laws of tensors are consistent with the interpretation of a coordinate
transformation as a mapping of the manifold into itself. We shall make use of this analogy
in Chapter 8.

3.11 The Levi-Civita symbol

Let ��1����n
be a tensor density (whose weight is as yet unknown) defined on a differentiable

manifold Mn, which is antisymmetric with respect to any pair of its indices. Because
of the antisymmetry, each component that has at least a pair of identical indices will
be equal to zero. Only those components can be different from zero for which the set
��1� � � ���n� is a permutation of the set �1� � � �� n�. For even permutations ��1����n

= �1���n;
for odd permutations ��1����n

= −�1���n. Hence, defining the component �1���n suffices to
determine the whole tensor density ��1����n

. We thus define

�1���n = +1� (3.23)

The quantity ��1����n
is called the Levi-Civita symbol.

Let A�
� be an arbitrary matrix. Let us investigate the quantity

D�A	��1����n

def= ��1����n
A�1

�1
� � �A�n

�n
� (3.24)

Let �i label the columns and �j the rows of the matrix. The expression above is a sum of
n-tuple products of elements of the matrix A�

�. In each product, each factor comes from
a different column (because, if two indices �i and �j are equal, then ��1����n

= 0). The ith
factor in each product is always from the same (ith) row, but each time from a different
column, and, in the whole sum, runs over all columns. For even permutations �1 � � � �n,
the product enters the sum with a plus sign, for odd permutations – with a minus sign.
The quantity (3.24) is also antisymmetric in all the �i indices (see Exercise 1). Hence,
D�A	��1����n

vanishes if any two indices �i, �j are equal (i.e. if the same row of the
matrix A appears in the positions �i� j	).

Thus D�A	��1����n
has all the properties of the determinant of A. It will equal +det�A	

when the permutation �1� � � �� n� → ��1� � � ���n� is even, and −det�A	 when the permu-
tation is odd. Hence

��1����n
A�1

�1
� � �A�n

�n
= ��1����n

det�A	� (3.25)

Now let us apply this formula to the matrix of derivatives (the Jacobi matrix) x���′ of
the coordinate transformation �x� → �x′�. We have

��′
1����′

n
= ��x′	

��x	
x�1��′

1
� � � x�n��′

n
��1����n

� (3.26)

This shows that ��1����n
is a tensor density of type 1� 0� n�.

By a similar method one can verify that ��1����n is a tensor density of type −1� n� 0�.
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3.12 Multidimensional Kronecker deltas

Let us recall the definition of the ordinary Kronecker delta symbol:

��
� =

{

1 when � = �

0 when � �= �
(3.27)

(this is the unit matrix). This is a tensor, since, on the one hand

�′�
� = ��

� (3.28)

by definition, and on the other hand

�′�′
�′ = x�′

��′ = x�′
�� x���′ = x�′

�� x���′ ��
�� (3.29)

which is the transformation law of a mixed tensor of rank 2.
A multidimensional Kronecker delta is defined as follows:

�
�1����k

�1����k
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

��1
�1

� � � � � � ��1
�k

���
���

���
���

��k
�1

� � � � � � ��k
�k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

� (3.30)

From the definition we have at once

�
�1����k

�1����k
= �

�1����k�
�1����k

= �
�1����k

�1����k�� (3.31)

and it follows that k must not be greater than the dimension of the manifold, n, or else
�

�1����k

�1����k
≡ 0. Other than this, k is unrelated to n.

Now let us consider the special case k = n. Since an object that is antisymmetric in all
n indices has just one independent component, it must be proportional to the Levi-Civita
symbol with the same indices. For the upper indices of the multidimensional delta we
thus have �

�1����n

�1����n
= T�1����n

��1����n . But T�1����n
is antisymmetric in ��1� � � ���n�, so it must

be proportional to ��1����n
, thus �

�1����n

�1����n
= ���1����n

��1����n . To calculate � it now suffices to
substitute in the last formula any sets of indices for which both sides are nonzero. We
substitute ��1� � � ���n� = ��1� � � ���n� = �1� � � �� n�, and we see that � = 1. Hence, finally

�
�1����n

�1����n
= ��1����n

��1����n � (3.32)

This, in consequence of the properties of the Levi-Civita symbol, is a tensor (i.e. has the
weight zero).

From (3.30) it follows that �
�1����k

�1����k
�= 0 only when ��1� � � ���k� are all different and are

a permutation of ��1 � � � �k�. If any pair of upper indices has equal values, or if any pair
of lower indices has equal values, then the determinant in (3.30) has two identical rows
or two identical columns and is zero. If any index �i of the set ��1 � � � �k� is different
from all the �s in ��1� � � ���k�, the determinant in (3.30) has only zeros in the ith column
and is zero again. If �

�1����k

�1����k
�= 0, then �

�1����k

�1����k
= +1 when the lower indices are an even

permutation of the upper ones, and �
�1����k

�1����k
= −1 when they are an odd permutation.
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Using these properties one can verify that

�
�1����k�
�1����k� = �n−k	�

�1����k

�1����k
� (3.33)

This is seen as follows. If ��1� � � ���k� are not a permutation of ��1� � � ���k�, or if
any index in either of the two sets is repeated, then both sides of (3.33) are zero and
the equation holds. When all ��1� � � ���k� are different, while ��1� � � ���k� are their
permutation, each term in the sum on the left-hand side is equal to �

�1����k

�1����k
when � �∈

��1� � � ���k�, and is zero when � ∈ ��1� � � ���k�. Consequently, there are n−k values of
� with which there are nonzero contributions on the left-hand side, and each contribution
is equal to the delta on the right. �

The following equations are simple consequences of (3.33):

�
�1����n−1�
�1����n−1� = �

�1����n−1
�1����n−1

� (3.34)

��1����s
�1����s

= �n− s +1	�n− s +2	 � � � n = n!
�n− s	! � (3.35)

��1����n
�1����n

= n!� (3.36)

�
�1����k�k+1����n

�1����k�k+1����n
= �n−k	!��1����k

�1����k
� (3.37)

3.13 Examples of applications of the Levi-Civita symbol and of the
multidimensional Kronecker delta

The Levi-Civita symbols and the multidimensional deltas are useful in calculations with
determinants or antisymmetrisations: they allow us to replace tricky reasonings with
simple computational rules.

With the help of (3.25), (3.32) and (3.36) we can verify that

det�A·
·	 = 1

n!�
�1����n
�1����n

A�1
�1

� � �A�n
�n

� (3.38)

so the determinant of a mixed tensor is a scalar;

det�B··	 = 1
n!�

�1����n��1����nB�1�1
� � � B�n�n

� (3.39)

so the determinant of a doubly covariant tensor is a scalar density of weight −2;

det�C ··	 = 1
n!��1����n

��1����n
C�1�1 � � �C�n�n� (3.40)

so the determinant of a doubly contravariant tensor is a scalar density of weight �+2	.
One can also verify that the antisymmetrisation with respect to any set of indices can

be written as follows:

T�1����k� = 1
k!�

�1����k
�1����k

T�1����k
� (3.41)

and similarly for upper indices.
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3.14 Exercises

1. Verify that the quantity D�A	 defined in (3.24) is antisymmetric with respect to the �-indices.
Hint. Interchange the names of any two �s in the sum and then move the new �s to their old
positions by transposing the indices of � and interchanging the As in the product.

2. Prove that the cofactor of the element A�
� in a mixed tensor �A�

�� is given by the equation

M�
� = 1

�n−1	!�
��1 ����n−1
��1 ����n−1

A�1
�1

� � �A�n−1
�n−1

� (3.42)

3. Find the formulae for the cofactors of the elements B�� and C�� in a doubly covariant and
a doubly contravariant tensor, respectively. Note that the cofactor has in each case its indices
positioned opposite to its corresponding element.

4. Find the formula for the coefficient of �i in the characteristic equation for a matrix M�
�:

det �M�
� −���

�	 = 0�

Prove that all the coefficients of this polynomial are scalars. Note the coefficients of �0 and of
�n−1 – what functions of the matrix are they?
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Covariant derivatives

4.1 Differentiation of tensors

Calculate the derivative of a contravariant vector field v� after it has been transformed
from the �x�-coordinates to the �x′�-coordinates:

v�′
��′ = (

x�′
�� v�

)

��′ = x�′
���x���′v� +x�′

��x���′v���� (4.1)

This is not a tensor field, in consequence of the term x�′
���x���′v�. The same is true for

most other tensor fields. There are only a few cases in which the derivatives of tensor
fields are themselves tensor fields. One example is the derivative of a scalar field, which
is a covariant vector field. Other examples are the following.

1. The derivatives of the Levi-Civita symbols and of all the Kronecker deltas are
identically equal to zero, and hence are tensors.

2. If T�1����k
is a tensor field (of weight 0), then T��1����k��k+1	 (a generalisation of rotation)

is a tensor field, too.
3. If T�1����k is a tensor density field of weight −1, and is antisymmetric in all the

indices, then T�1����k ��k
(a generalisation of the divergence of a vector field) is also

a tensor density field of weight −1.

We will verify the third example.
By assumption, when the coordinates are transformed from �x� to �x′�, T�1����k trans-

forms as follows:

T�′
1����′

k =
(


�x′�

�x�

)−1

x�′
1��1

� � � x�′
k ��k

T�1����k � (4.2)

Let us differentiate this by x�′
k and contract the result by �′

k. In that term, in which the
differentiation acts on the determinant �
�x′�/
�x��−1 = 
�x�/
�x′�, we will develop the
determinant according to (3.38). We have

T�′
1����′

k ��′
k
= 1

n!
n
∑

i=1


�′

1����′
n

�1����n
x�1��′

1
� � � x�i ��′

i�
′
k
� � � x�n��′

n

×x�′
1��1

� � � x�′
k ��k

T�1����k

26
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+ 
�x�


�x′�

k−1
∑

i=1

x�′
1��1

� � � x�′
i ��i�

′
k
� � � x�′

k ��k
T�1����k

+ 
�x�


�x′�
x�′

1��1
� � � x�′

k−1��k−1
x�′

k ��k�′
k
T�1����k

+ 
�x�


�x′�
x�′

1��1
� � � x�′

k ��k
T�1����k ��x

���′
k
� (4.3)

In the first term we recall that  is antisymmetric with respect to both upper and
lower indices, so interchanging simultaneously a pair of upper indices and a pair of lower
indices does not change it. Hence, the products in the first term can be ordered so that
the factor with the second derivative is contracted with the last indices of . After such
an ordering we see that all the n components of the sum are identical, so

first term = 1

�n−1�!
�′

1����′
n

�1����n
x�1��′

1
� � � x�n−1��′

n−1
x�n��′

n�′
k

×x�′
1��1

� � � x�′
k ��k

T�1����k � (4.4)

In the second term of (4.3), each component of the sum contains x�′
i ��i�

′
k
x�′

k ��k
=

x�′
i ��i�k

, which is symmetric in ��i��k�. However, it is then contracted with respect
to both ��i��k� with the T�1����k , which is antisymmetric in these two indices. Such a
contraction is always identically equal to zero, hence the second term is zero.

In the third term, we note that x�′
k ��k

is an element of the inverse matrix to �x���′ 	.

Thus, x�′
k ��k

is equal to the cofactor of the element transposed to
(

�′
k

�k

)

in the matrix

�x���′ 	, divided by the determinant of �x���′ 	. The element transposed to
(

�′
k

�k

)

in �x���′ 	

is x�k��′
k
, while det �x���′ 	 = 
�x�/
�x′�. Hence, using (3.42), we have

x�′
k ��k�′

k
=
[(


�x�


�x′�

)−1 1
�n−1�!

�′
k�′

1����′
n−1

�k�1����n−1 x�1��′
1
� � � x�n−1��′

n−1

]

��′
k
� (4.5)

We see at once that the differentiation of the factors x�i ��′
i

by x�′
k will give zero contribu-

tions because the results of these differentiations, x�i ��′
i�

′
k
, are symmetric in ��′

i� �′
k� and

will be contracted with the delta which is antisymmetric in the same indices. The only
nonzero contribution will thus be from the derivative of the determinant, so

(

x�′
k ��k

)

��′
k
= −

(

�x�


�x′�

)−2

· 1
�n−1�! ·�′

1����′
n

�1����n
x�1��′

1
� � � x�n−1��′

n−1
x�n��′

n�′
k

× 1
�n−1�!

�′
k�′

1����′
n−1

�k�1����n−1 x�1��′
1
� � � x�n−1��′

n−1
� (4.6)

Note that the last line above is just
(


�x�


�x′�
x�′

k ��k

)

�
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Using this we see that the third term in (4.3) has the same absolute value as the first one,
but is of opposite sign. Hence, the first and third terms cancel each other, and the final
result in (4.3) is the last term, which equals

T�′
1����′

k ��′
k
= 
�x�


�x′�
x�′

1��1
� � � x�′

k−1��k−1
T�1����k ��k

� (4.7)

where we have used x�′
k ��k

x���′
k
= x���k

= �
�k

. Hence, T�1����k ��k
is indeed a tensor

density field of weight −1.
The statement proved above also holds for the case when T� has just one index and is

a contravariant vector density field. Then, the first and third terms still cancel each other
while the second term in (4.3) simply does not exist.

The fact that partial derivatives of tensor fields are not tensor fields themselves is
unfortunate because the laws of physics are usually formulated as differential equations.
We would like these equations to have the form (a tensor) = 0, since this would hold
in all coordinate systems. This suggests the following idea: let us define a ‘generalised
differentiation’, which will yield tensor fields when acting on tensor fields, and will
coincide with ordinary differentiation when acting on scalars and the Kronecker deltas,
for which partial derivatives are tensors. Then, we will replace the partial derivatives
with the generalised derivatives in the basic equations. We guess that this generalised
differentiation, called covariant differentiation, will reduce to ordinary differentiation
in certain privileged coordinate systems.

4.2 Axioms of the covariant derivative

We want the covariant differentiation to have all the algebraic properties of an ordinary
differentiation, and in addition to yield tensor densities when acting on tensor densities.
We will denote the covariant derivative by �� or �� or D/
x�. The symbols Ti�w�k� l	

will denote tensor densities whose explicit indices are irrelevant.
Specifically, we want �� to have the following properties:

1. To be distributive with respect to addition:

���T1�w�k� l	+T2�w�k� l	� = ���T1�w�k� l	�+���T2�w�k� l	�� (4.8)

2. To obey the Leibniz rule when acting on a tensor product:

���T1�w1� k1� l1	⊗T2�w2� k2� l2	� = ���T1�w1� k1� l1	�⊗T2�w2� k2� l2	

+ �T1�w1� k1� l1	�⊗ ���T2�w2� k2� l2	�� (4.9)

3. To reduce to the partial derivative when acting on a scalar field:

��� = ���� (4.10)

4. To yield zero when acting on the Levi-Civita symbols and Kronecker deltas:

����1����n = 0� ����1����n
= 0� ���

� = 0� (4.11)
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The last equation implies at once that

��
�1����k

�1����k
= 0 (4.12)

for any k. It also implies that �� commutes with contraction.
5. When acting on a tensor density field of type �w�k� l	, it should produce a tensor

density field of type �w�k� l+1	, thus

���T1�w�k� l	� = T2�w�k� l+1	�

Only the last property does not hold for partial derivatives.
From these postulated properties we will now derive an operational formula for the

covariant derivative.

4.3 A field of bases on a manifold and scalar components of tensors

In every tangent space to an n-dimensional manifold Mn we can choose a set of n linearly
independent contravariant vectors, �e1

�� � � �� en
��. The indices a�b� c� � � � = 1� � � �� n will

label vectors (while Greek indices label coordinate components of tensors). After such a
basis is chosen at every x ∈ Mn, we consider the set of n vector fields:

x → ea
��x�� a = 1� � � �� n�

The collection of quantities �ea
��x�� �� = 1� � � �� n�a = 1� � � �� n forms a matrix whose

elements are functions on the manifold. Since all the vectors are linearly independent at
every x, the matrix is non-singular, so there exists an inverse matrix ea

� that obeys

ea
�ea

� = �
�� (4.13)

A subset of the matrix �ea
�� defined by a fixed a is then a covariant vector field. The

set of fields corresponding to all values of a forms a dual basis to �ea
��x��, a = 1� � � �� n.

By virtue of the �ea
��x�� being linearly independent, Eq. (4.13) implies the following:

ea
�eb

� = a
b� (4.14)

For any tensor field (of weight 0) T
�1����k

�1����l
, the collection of quantities

T
a1���ak

b1���bl
�= ea1

�1
� � � eak

�k
eb1

�1 � � � ebl

�lT
�1����k

�1����l
� (4.15)

labelled by the indices a1� � � �� ak� b1� � � �� bl = 1� � � �� n, is a set of nk+l scalar fields that
uniquely represents the set of nk+l coordinate components of the tensor field T

�1����k

�1����l
. This

is so because, in consequence of (4.13) and (4.14), an inverse formula to (4.15) exists
that allows one to calculate T

�1����k

�1����l
when T

a1���ak

b1���bl
are given:

T
�1����k

�1����l
= ea1

�1 � � � eak

�keb1
�1

� � � ebl
�l

T
a1���ak

b1���bl
� (4.16)

Let us denote

e �= det�ea
�� = 1

n!�
a1�����an��1����n

ea1

�1 � � � ean

�n� (4.17)
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Now, ��1����n
is a tensor density of weight +1, whereas �a1���an is a set of scalars because it

depends only on the basis in the vector space, and not on the coordinate system. Hence,
e is a scalar density of weight +1.

The quantity e, together with �ea
�� and �ea

��, can be used to represent tensor density
fields by sets of scalar fields. Let T

�1����k

�1����l
now be a tensor density field of type �w�k� l	;

then each element of the set

T
a1���ak

b1���bl
�= e−wea1

�1
� � � eak

�k
eb1

�1 � � � ebl

�lT
�1����k

�1����l
(4.18)

is a scalar field. The set T
a1���ak

b1���bl
then uniquely defines T

�1����k

�1����l
via a formula analogous

to (4.16), with the factor e+w added. The weight w has to be given as an extra bit of
information.

4.4 The affine connection

We now define the set of quantities

��
�� = −es

�
(

�� − 
�

)

es
�� (4.19)

The elements of this set are called the coefficients of affine connection. When specified
explicitly, they tell us how the covariant derivative acts on the basis vector fields. Later
we will consider manifolds in which these coefficients can be calculated from more basic
objects (see Chapter 7). For now, we consider manifolds in which the ��

�� are just given.
The ��

�� do not depend on the choice of basis. Let us assume that �ea
�� and �ea′ ��

are two different bases. The vector fields of the second basis can then be decomposed in
the first basis

ea′ � = Ab
a′eb

�� (4.20)

and then the elements of the transformation matrix

Ab
a′ = eb

�ea′ � (4.21)

are scalar fields. Hence, Ab
a′ �� = Ab

a′�� and
(

A−1
)c′

d�� = (

A−1
)c′

d��
. Then, calculating the

��
�� in the basis �ea′ ��, we have

(

��
��

)

e′ = −Ar
s′er

�
(

�� − 
�

)[(

A−1
)s′

s
es

�

]

=−r
ser

�
(

�� − 
�

)

es
� = (

��
��

)

e
� (4.22)

Now let us note that the ��
�� are not tensor fields. When coordinates are transformed,

these coefficients change as follows:

��′
�′�′ = x�′

��x���′x���′��
�� +x�′

��x
���′�′ � (4.23)

However, the antisymmetric part

��
��

def= ��
���	 (4.24)

is a tensor, since x����′�′	 = 0. It is called the torsion tensor.
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4.5 The explicit formula for the covariant derivative of tensor density fields

In order to obtain an explicit formula for the covariant derivative, we need to know two
other properties of the connection coefficients:

�I� ��
�� = es

�

(

�� − 
�

)

es
�� (4.25)

�II� ���ew� = wew−1 ��e� (4.26)

The verification of (I) is easy. To verify (II), consider the quantity

F��w�
def= e−w ���ew�� (4.27)

Using the postulated properties of the covariant derivative, we obtain

F��w1 +w2� = F��w1�+F��w2�� (4.28)

Every continuous function that has the property f�w1 +w2� = f�w1�+f�w2� for all real
w1 and w2 also has the property f�w� = f�1�w. Hence e−w ���ew� = we−1 ��e, which is
equivalent to (4.26).

Equation (4.26) holds also for partial derivatives, so

e−w
(

�� − 
�

)(

ew
)= we−1

(

�� − 
�

)

e� (4.29)

Now, using Eqs. (3.38) and (3.42), we obtain

(

�� − 
�

)

e = eean
�n

(

�� − 
�

)

ean

�n = e��
��� (4.30)

At this point, we can derive the formula for the covariant derivative of an arbitrary
tensor density field. Let us convert the tensor density field to the set of scalar fields given
by (4.18). Axiom 3 implies then

(

�� − 
�

)

T
a1���ak

b1���bl
= 0� (4.31)

On the other hand, using (4.18) and axiom 2, we obtain

(

�� − 
�

)

T
a1���ak

b1���bl
= −we−w��

��ea1
�1

� � � eak
�k

eb1

�1 � � � ebl

�lT
�1����k

�1����l

+ e−w
k
∑

i=1

ea1
�1

� � �
(

�� − 
�

)

eai
�i

� � � eak
�k

eb1

�1 � � � ebl

�lT
�1����k

�1����l

+ e−w
l
∑

j=1

ea1
�1

� � � eak
�k

eb1

�1 � � �
(

�� − 
�

)

ebj �j

� � � ebl

�lT
�1����k

�1����l

+ e−wea1
�1

� � � eak
�k

eb1

�1 � � � ebl

�l
(

�� − 
�

)

T
�1����k

�1����l
� (4.32)
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Now we convert this back to coordinate components, by contracting it with
ewea1

�1 � � � eak

�keb1
�1

� � � ebl
�l

and using Eqs. (4.19) and (4.25):

0 = w��
��T

�1����k

�1����l
−

k
∑

i=1

��i
�i�

T
�1����i����k

�1����l
+

l
∑

j=1

��j
�j�

T
�1����k

�1����j ����l

+ (�� − 
�

)

T
�1����k

�1����l
� (4.33)

From this, finally

��T
�1����k

�1����l
= 
�T

�1����k

�1����l
+w��

��T
�1����k

�1����l
+

k
∑

i=1

��i
�i�

T
�1����i����k

�1����l

−
l
∑

j=1

��j
�j�

T
�1����k

�1����j ����l
� (4.34)

The following special cases of (4.34) occur frequently:

A�
�� = A��� +��

��A�� (4.35)

a��� = a��� −��
��a�� (4.36)

T��
�� = T���� +��

��T�� +��
��T��� (4.37)

T���� = T���� −��
��T�� −��

��T��� (4.38)

T�
��� = T�

��� +��
��T�

� −��
��T�

�� (4.39)

Note that, unlike the partial derivative, the covariant derivative does not act on single
components of tensor densities. It is an operator that acts on the whole tensor density and
produces another tensor density.

4.6 Exercises

1. What is the condition for the ‘covariant rotation’ T����	 of a covariant vector field T� to coincide
with the ordinary rotation T����	?

2. Let g�� = g���� be a doubly covariant tensor that is nonsingular, i.e. det
∥
∥g��

∥
∥ �= 0. Let g�� be

its inverse matrix, i.e.

g��g�� = �
��

Show that the object defined as
{

�

��

}

= 1
2

g��
(

g���� +g���� −g����

)

transforms under coordinate transformations by the same law as the coefficients of affine
connection. What is the torsion in this case?

3. Verify that (4.28) implies F��w� = wF��1�.
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Parallel transport and geodesic lines

5.1 Parallel transport

Let a curve C be given in a manifold with affine connection, and let v be a field of
vectors along the curve, C � x → v��x�. In a Euclidean space, in Cartesian coordinates,
the vectors v�x� are parallel when

dv�

d�
= �v�

�x�

dx�

d�
= 0� (5.1)

where � is a parameter along C, while x���� are coordinates of a point on C. Then, for
two points on C corresponding to �1 and �2,

v���1�=∗ v���2� (5.2)

(the asterisk means that the equation holds only in some coordinate systems; for example,
(5.2) does not hold in polar coordinates on a plane). We will generalise the definition
of parallelism so that it does not depend on the coordinates. The following definition
suggests itself:

Dv�

d�

def= (

	
v
�
) dx


d�
= 0� (5.3)

which is at the same time the definition of a covariant derivative along a curve. Using
(4.35), we obtain from this

v��


dx


d�
+��

�
v
� dx


d�
= 0 (5.4)

This can be written equivalently as

dv�

d�
= −��

�
v
� dx


d�
 (5.5)

Thus, the vector v� ��1�, while being parallely transported from the point x���1� to the
point x���2�, changes in the following way:

v�
� ��2� = v� ��1�−

∫ x��2�

x��1�
��

�
�x�v��x�dx
 (5.6)
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The expression under the integral may not be a perfect differential. Then, the result of
integration will depend on the curve C. Thus, in general, for the parallel transport so
defined the result depends on the path of transport, and for parallel transport along a
closed curve

v�
� ��1�

def= v� ��1�−
∮

C

��
�
���v����

dx


d�
d� �= v� ��1�  (5.7)

The conditions under which parallel transport is independent of the path, i.e. under which
(5.7) does not occur, will be given in Section 6.3.

The parallel transport of an arbitrary tensor density field T
�1�k

�1�l
is defined analogously

to (5.3):

D
D�

T
�1�k

�1�l
= T

�1�k

�1�l�

dx


d�
= 0 (5.8)

5.2 Geodesic lines

A geodesic line is a curve G whose tangent vector v� = dx�/d�, after being parallely
transported along it from x� ∈ G to x���� ∈ G, is collinear with the tangent vector that is
defined at x���. Hence

v�
� ���

∣
∣
�0→�

= ����v����� (5.9)

or, according to (5.6),

v�
� ���

∣
∣
�0→�

= v� ��0�−
∫ �

G
�0�

�
�
�t���t�v��t�v
�t�dt = ����v���� (5.10)

An example is a straight line in a Euclidean space. In that case, the integral in (5.10) is
zero and, if the length of arc is chosen as the parameter �, ���� = 1. A geodesic line is
a generalisation of the notion of a straight line to any manifold with affine connection.

Let us differentiate (5.10) by �. Since v� = dx�/d�, the result is

�

(
d2x�

d�2
+��

�
���
dx�

d�

dx


d�

)

= −d�

d�

dx�

d�
 (5.11)

Now let us change the parameter as follows:

� → s���
def=
∫ �

�0

c

��t�
dt� (5.12)

where c and �0 are arbitrary constants. Then, Eq. (5.11) becomes

d2x�

ds2
+��

�
�s�
dx�

ds

dx


ds
= 0� (5.13)

or, equivalently,

D
Ds

(
dx�

ds

)

= 0 (5.14)



5.3 Exercises 35

The form (5.13) of the geodesic equation is privileged in that, in the parametrisation
(5.12), the tangent vector transported parallely along the geodesic is not only collinear
with the locally defined tangent vector, but coincides with it. The parameter s that has
this property exists for any ���� such that ���� �= 0 for every �, and it is called the affine
parameter. It is defined up to the linear transformations

s′ = as +b� a� b = constant (5.15)

Equation (5.13) allows us to prove the following theorem:

Theorem 5.1 In a manifold Mn with an affine connection, for every point x and for
every vector v tangent to Mn at x, there exists a geodesic line passing through x that is
tangent to v.

This is so because a solution of a second-order differential equation is uniquely deter-
mined by its value at one point and its first derivative at that point.

However, two points of a manifold with affine connection cannot always be connected
by one and only one geodesic. A geodesic joining two points may not exist in a non-
connected manifold, like a two-sheeted hyperboloid. On the other hand, any two points
on the surface of a cylinder (where the geodesic lines are straight lines, circles and screw-
lines) can be connected by an infinite number of geodesics. (Just imagine a screw-line
that connects two points p and q by the shortest arc, then another one that runs one extra
time around the cylinder between p and q, then another one that runs two times around
the cylinder, and so on.)

Note that only the symmetric part of the connection gives a nonzero contribution to
the geodesic equation.

5.3 Exercises

1. Consider a vector on a Euclidean plane being transported parallely along a straight line. Find
how its components change when they are given in polar coordinates.

2. Do the same for a vector in a 3-dimensional Euclidean space when its components are given
in spherical coordinates. From the result, read out the connection coefficients of the Euclidean
space in spherical coordinates.



6

The curvature of a manifold; flat manifolds

6.1 The commutator of second covariant derivatives

The covariant derivative was introduced in order that derivatives of tensor densities are
still tensor densities. This advantage has a few inconvenient consequences. One of these
we already know: parallel transport defined via covariant differentiation depends on the
path. Another one will appear now: the second covariant derivatives do not commute.

For a proper scalar field (with weight w = 0) we have
(

���� −����

)

T = ��

(

T��

)−�� �T�� � = −2�	
��T�	 
 (6.1)

Hence, the second covariant derivatives of a scalar field commute only in torsion-free
manifolds.

For a scalar density field of weight w we have

(

���� −����

)

Ť =
(

��Ť
)

�� +w�	
	���Ť −�	

���	Ť

−
(

��Ť
)

�� −w�	
	���Ť +�	

���	Ť

= w
(

�	
	��� −�	

	���

)

Ť −2�	
���	Ť 
 (6.2)

Let us leave this formula without comment for a while and let us note the analogous
result for a covariant vector field:

(

���� −����

)

T� = − (�	
���� −�	

����

)

T	

+ (�	
��

�� −�	
��


��

)

T	 −2�
��T�� 
 (6.3)

Now let us define

B�
���

def= −��
���� +��

���� +��
��

�� −��
��


��

≡ −2��
������ +2��

���
�����
 (6.4)

The quantity B�
��� is called the curvature tensor. In order to see that it is indeed a

tensor, note that the left-hand side of (6.3) is a tensor by definition. The quantities �
��

and T�� are tensors, too, hence the last term on the right-hand side is a tensor. It follows
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that B	
���T	 is a tensor. Now, since T	 is an arbitrary covariant vector, B	

��� must be a
tensor itself. (This can also be verified using (6.4) and (4.23).)

Now let us observe that

B
	
	�� = −�	

	��� +�	
	���
 (6.5)

Hence, Eq. (6.2) can be rewritten as follows

(

���� −����

)

Ť = −wB	
	��Ť −2�	

��Ť�	
 (6.6)

Thus, the same curvature tensor determines also the commutator of the covariant deriva-
tives of a scalar density field.

Finally, for the commutator acting on a contravariant vector field

(

���� −����

)

T� = −B�
	��T

	 −2�
��T

�
� 
 (6.7)

It can be verified that the commutator of covariant derivatives acts on the tensor product
of two tensor density fields in the following way:

(

���� −����

)

�T1 ⊗T2�

= [(

���� −����

)

T1

]⊗T2 +T1 ⊗ [(���� −����

)

T2

]

(6.8)

(the weights and indices of T1 and T2 are irrelevant here). Thus, the operator (���� −����)
has the property of an ordinary differentiation. Then, an arbitrary tensor density field of
type �w�k� l� behaves under covariant differentiation like a tensor product of a single
scalar density of weight w�k contravariant vectors and l covariant vectors – see (4.34).
Hence, we can guess the formula for the commutator of second covariant derivatives
acting on an arbitrary tensor density field:

(

���� −����

)

T
�1


�k

�1


�l
= −wB	

	��T
�1


�k

�1


�l
−

k
∑

i=1

B�i
	i��T

�1


	i


�k

�1


�l

+
l
∑

j=1

B	j
�j��T

�1


�k

�1


	j 


�l
−2�	

��T
�1


�k

�1


�l�	
 (6.9)

(This can be formally derived by projecting T
�1


�k

�1


�l
on the basis fields and calculating the

commutator for the projection in two ways.) Equation (6.9) is called the Ricci formula.
Let us note, from (6.4), that

B�
��� = B�

�����
 (6.10)

We will see in Section 7.9 that the name ‘curvature tensor’ evokes the right associations.
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6.2 The commutator of directional covariant derivatives

Let k� and l� be two linearly independent contravariant vector fields determined on a
manifold with affine connection, Mn. Let us calculate, for an arbitrary tensor density
field, the commutator of second directional covariant derivatives along k and l, thus

��k��l� T
�1


�k

�1


�l

def= k���

(

l	�	T
�1


�k

�1


�l

)

− l���

(

k	�	T
�1


�k

�1


�l

)

= (

k�l	�� −l�k	��

)

T
�1


�k

�1


�l�	 −2k�l��	
��T

�1


�k

�1


�l�	

+k�l	
(

���	 −�	��

)

T
�1


�k

�1


�l

 (6.11)

The quantity

�k� l�	 def= k�l	�� −l�k	�� (6.12)

is called the commutator of k and l. It is a tensor field, since

�k� l�	 ≡ k�l	
�� − l�k	

�� −2�	
��k

�l�
 (6.13)

The second term in the last part of Eq. (6.11) cancels the term with torsion that will
appear from (6.9). In the end, we obtain

��k��l� T
�1


�k

�1


�l
= �k� l�	T

�1


�k

�1


�l�	 −wB	
	��k�l�T

�1


�k

�1


�l

−
k
∑

i=1

B�i
	i��k�l�T

�1


	i


�k

�1


�l
+

l
∑

j=1

B	j
�j��k�l�T

�1


�k

�1


	j 


�l

 (6.14)

Suppose in addition that �k� l�� = 0. This is a necessary and sufficient condition for the
existence of coordinates adapted simultaneously to both k and l, call them �a and �b:

k� = �x�

��a
� l� = �x�

��b
� (6.15)

so that, if �a and �b are chosen as two of the coordinates, then, with x′1 = �a and
x′2 = �b, we have k′� = ��

1 � l′� = ��
2 . (For the proof see Exercise 2.) For such fields,

(6.14) simplifies further to

[

��a
���b

]

T
�1


�k

�1


�l
= −wB	

	��

�x�

��b

�x�

��a
T

�1


�k

�1


�l

+ �x�

��b

�x�

��a

(

−
k
∑

i=1

B�i
	i��T

�1


	i


�k

�1


�l
+

l
∑

j=1

B	j
�j��T

�1


�k

�1


	j 


�l

)


 (6.16)
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6.3 The relation between curvature and parallel transport

By definition, a tensor density field T
�1


�k

�1


�l
is parallely transported along a curve x����

when (5.8) holds. This is a linear homogeneous set of first-order differential equations
with respect to the functions T

�1


�k

�1


�l
���. As is well known, the solutions of such equations

are linear functions of the initial conditions. Let the initial values of T
�1


�k

�1


�l
��� be given

at � = 0. Then the solution of (5.8) can be represented as

T
�1


�k

�1


�l
��� = P

�1


�k �1


�l

�1


�k �1


�l
���T

�1


�k

�1


�l
�0�� (6.17)

where P
�1


�k �1


�l

�1


�k �1


�l
��� is a linear operator that maps the initial value T

�1


�k

�1


�l
�0� into the

running value T
�1


�k

�1


�l
���. It has two sets of indices, those with a bar correspond to the

initial point x��0�, those without a bar correspond to the running point x����. We will
call it the propagator of parallel transport. It depends on the two points and, apart
from exceptional cases, on the curve along which the transport occurs. It transforms like
a tensor density at the point x����, with the indices �1


�k

�1


�l
, multiplied in the sense of a

tensor product by a tensor density at the point x��0�, with the indices �1


�k

�1


�l
. Such an

object is called a bi-tensor. In consequence of (5.8), the parallel propagator must obey

D
d�

P
�1


�k �1


�l

�1


�k �1


�l
��� = 0� (6.18)

and, in consequence of (6.17), it must obey the initial condition

P
�1


�k �1


�l

�1


�k �1


�l
�0� = �

�1
�1


 
 
 �
�k

�k
�

�1
�1


 
 
 �
�l

�l

 (6.19)

In Eq. (6.18), the covariant differentiation applies only to the indices without a bar because
the initial point does not depend on �.

We will give a special name to the propagator of parallel transport along a closed
curve. Let 0 ≤ � ≤ 1 be a parameter on a closed curve and let x��0� = x��1� be its
beginning–end point. We denote

P
�1


�k �1


�l

�1


�k �1


�l
�1� = S

�1


�k �1


�l

�1


�k �1


�l

 (6.20)

In the symbol S












 all the indices refer to the point x��0� = x��1�, hence S













 is an
ordinary tensor density field of type �w�k+ l� k+ l�.

Now let us define elementary propagators: Pw, to transport scalar densities, P�
� , to

transport contravariant vectors, and P
�
� , to transport covariant vectors. All of them obey

(6.18) and the initial conditions

Pw�0� = 1� P�
��0� = ��

�� P
�
��0� = �

�
�
 (6.21)

The following equation holds:

P
�1


�k �1


�l

�1


�k �1


�l
= PwP

�1
�1


 
 
 P
�k

�k
P

�1
�1


 
 
 P
�l

�l
(6.22)

(because both its sides obey the same set of differential equations (6.18) and the same
set of initial conditions (6.19)).



40 The curvature of a manifold; flat manifolds

Similarly, the general propagator of transport along a closed curve, S












 , is just the

tensor product of elementary propagators

S
�1


�k �1


�l

�1


�k �1


�l
= SwS

�1
�1


 
 
 S
�k

�k
S

�1
�1


 
 
 S
�l

�l

 (6.23)

Hence, in order to investigate the properties of general propagators, it suffices to deal
with the elementary propagators.

Let us consider parallel transport along a curve x���� from the point x��0� to an
arbitrary point x����, of the following scalar field:

V����W ���� ≡ P�
����P�

�
���V��0�W ��0�
 (6.24)

Let us take, for the beginning, the special case when the above scalar is constant along
the whole curve. Then

V����W ���� = V��0�W ��0� = ��
�
V��0�W ��0�
 (6.25)

Comparing this with the previous equation, we see that

(

P�
����P�

�
���−��

�

)

V��0�W ��0� = 0
 (6.26)

However, the vectors V��0� and W ��0� are arbitrary, so

P�
	 ���P

	

�
��� = ��

�

 (6.27)

Now let us contract this equation with P�
� ���V��0�. The result is

(

P
	

�
P�

� −�	
�

)

P�
	 ���V��0� =

(

P
	

�
P�

� −�	
�

)

V	��� = 0
 (6.28)

Since V	��� is an arbitrary vector, we have as a consequence

P�
�
P�

� = ��
�
 (6.29)

Equations (6.27) and (6.29) show that the operators P�
� and P

�

�
are inverse to each other:

P
�

�
is not only the propagator of parallel transport of a contravariant vector from x��0� to

x����, but at the same time also the propagator of parallel transport of a covariant vector
from x���� to x��0� along the same curve. A similar duality exists for P�

� .
In consequence of (6.27) and (6.29), the following also hold:

S�
	 S

	
� = ��

�� S�
S

�
= �

�

�

 (6.30)

Therefore we shall consider only the propagators Pw�Sw�P�
� and S�

� , because P�
�

and S�
�

are algebraically determined by the first four.
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Equation (6.18) for Pw��� becomes

dPw

d�
+w�	

	

dx

d�
Pw = 0
 (6.31)

With the initial condition Pw�0� = 1, this has the following solution:

Pw��� = exp
(

−w
∫ �

0
C

�	
	�t�

dx

dt
�t�dt

)


 (6.32)

Hence

Sw = exp
(

−w
∮

C
�	

	�x�dx

)


 (6.33)

Now let us assume that the loop C can be contracted to a point (this assumption will be
made in all that follows). Then we can use the Stokes theorem and express the integral
along C through the integral over an arbitrary 2-surface leaf SC spanned on C:

∮

C
�	

	�x�dx = −
∫

SC

�
	
	�����dx� ∧dx� = 1

2

∫

SC

B
	
	�� dx� ∧dx�
 (6.34)

Hence, in (6.33)

Sw = exp
(

−1
2

w
∫

SC

B
	
	�� d2x

��

)

� (6.35)

where d2x
�� denotes the surface element dx� ∧dx�.

To solve (6.18) for P
�
� , we span a 2-surface leaf SC on the loop C, and then we embed

C in a one-parameter family of loops C��� so that C�0� = x��0� = x��1� is the single
initial/final point of C, and C�1� ≡ C (see Fig. 6.1). Points on SC will be labelled by �

and �, in such a way that x��0� �� = x��1� �� and x���1� 0� = x���2� 0� for all �1 and �2.

ε = 1ε = 0

Fig. 6.1. Embedding a loop in a one-parameter family of loops. The thicker line is the loop along
which we consider the parallel transport. It corresponds to the parameter value � = 1. As � goes
down to 0 through all the values in [0, 1], the loop becomes shorter and, in the limit � → 0,
degenerates to the single point where all the loops are tangent. The loops in this figure are ellipses
given by the parametric equations x = �a�1− cos�2�t��� y = �b sin�2�t�.
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Then, the surface element under the integral is

dx� ∧dx� =
(

�x�

��

�x�

��
− �x�

��

�x�

��

)

d� d�� (6.36)

so, for an arbitrary function F��� ��,

∫

SC

F��� ��dx� ∧dx� =
∫ 1

0
d�
∫ 1

0
d� F��� ��

(
�x�

��

�x�

��
− �x�

��

�x�

��

)


 (6.37)

Along each loop C��� the propagator P
�
���� �� is defined by the equation

D
��

P
�
���� ��≡

�
0� (6.38)

with the initial condition

P
�
��0� ��≡

�
�

�
�
 (6.39)

We also have

S
�
���� = P

�
��1� �� (6.40)

(note that S
�
� in general depends on the curve, i.e. is a function of �).

On the leaf SC we can consider also the covariant derivatives by the parameter � (i.e.
along the curves given by � = constant). We have

D
��

S
�
���� = d

d�
S

�
���� (6.41)

because under a transformation of the parameter � the propagator S
�
���� transforms like

a scalar (by substitution only).
Now let us use (6.16) to calculate the commutator of the second covariant derivatives

by � and � acting on the propagator P
�
���� ��:

(
D
��

D
��

− D
��

D
��

)

P
�
���� �� = �x�

��

�x�

��
B	

���P
�
	 ��� ��
 (6.42)

But the second term on the left-hand side is zero by virtue of (6.38). Knowing this, we
contract (6.42) with P

�
� . Using (6.38) again, we obtain

D
��

(

P
�
���� ��

D
��

P
�
���� ��

)

= �x�

��

�x�

��
B	

���P
�
	 ��� ��P

�
���� ��
 (6.43)

The expression in parentheses on the left-hand side is a scalar with respect to the non-
barred indices. For covariant differentiation with respect to � those quantities that carry
only barred indices are scalars (the barred indices refer to the initial points of curves,
where � ≡ 0). Hence, the covariant derivative by � on the left-hand side of (6.43) reduces
to the partial derivative by �. Then, we integrate the resulting equation by � from 0 to 1,
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we make use of (6.39), of the covariant constancy of �
�
� (axiom 4 of the covariant

derivative) and of (6.40). The result is

S
�
����

D
��

S
�
���� =

∮ 1

0
d�

�x�

��

�x�

��
B	

���P
�
	 ��� ��P

�
���� ��
 (6.44)

Now we contract both sides of the above equation with S�
� , we make use of (6.41) and

integrate the result by � from 0 to 1, obtaining

S�
� −��

� =
∫ 1

0
d�
∮ 1

0
d�

�x�

��

�x�

��
B	

���P
�
	 ��� ��P

�
���� ��S�

����

= 1
2

∫

SC

B	
���P

�
	 ��� ��P

�
���� ��S�

����d2x
��
 (6.45)

Now it is seen that, if B�
��� = 0, then S�

� = ��
� – the parallel transport of an arbitrary

covariant vector along an arbitrary loop that can be contracted to a point reproduces the
initial vector. In consequence of (6.30), the same is true for an arbitrary contravariant
vector and, in consequence of (6.35), for any scalar density. Then, in consequence of
(6.23), with B�

��� = 0, any tensor density will return to its initial value when transported
around any loop that can be contracted to a point.

The converse theorem also holds: if the parallel transport reproduces the initial tensor
density for every closed loop that can be contracted to a point, then B�

��� = 0. This is
because the integral in (6.45) is then zero for any arbitrary surface leaf SC. We have thus

Theorem 6.1 Parallel transport along any closed loop that can be contracted to a point
reproduces the initial value of every tensor density if and only if the curvature tensor is
zero.

This is at the same time a necessary and sufficient condition for the parallel transport
to be independent of the path.

The manifolds for which B�
��� = 0 are called flat.

6.4 Covariantly constant fields of vector bases

Suppose that a set of n vector fields exists on a manifold Mn such that at every point of
Mn the vectors defined by these fields are linearly independent, and, moreover, all the
fields are covariantly constant: e�

a�� ≡
a

0, a = 1� 
 
 
� n. Then we have

0 = e�
a��� − e�

a��� = B�
	��e

	
a
 (6.46)

Contracting both sides of this with ea
� we obtain B�

��� = 0 – the necessary condition
for the existence of such a field of bases. We will show that this is a sufficient condition,
too. Assume that B�

��� = 0. Then the result of parallel transport does not depend on
the path. Hence, with a fixed initial point and fixed initial data at that point, this is a
well-defined operation with a unique result at any other point of the manifold. Choose
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then an arbitrary point x0 ∈ Mn, and in the tangent space to Mn at x0 choose an arbitrary
basis of vectors e�

a�x0�. Then define bases in spaces tangent to Mn at other points as sets
of vectors obtained from e�

a�x0� by parallel transport. Such a set of vector fields will be
covariantly constant on Mn.

The field of bases ea
�, dual to e�

a, is then also covariantly constant. Choosing such
bases to calculate the connection coefficients we obtain

��
�� = es

�es
��� = −es

�e �
s ��
 (6.47)

6.5 A torsion-free flat manifold

If a manifold is not only flat, but also torsion-free, then, for a covariantly constant field
of bases, we obtain from (6.47):

0 = −es
�
(

es
��� − es

���

)


 (6.48)

Contracting this with ea
� we obtain ea

��� −ea
��� ≡

a
0. This equation implies that, in a neigh-

bourhood of every point of the manifold, a set of scalar functions �a�x� exists such that
ea

� = �a��, a = 1� 
 
 
� n. Since we assumed that the vectors ea
� are linearly indepen-

dent at every point, i.e. det ��ea
��� 
= 0, this now implies �

(

�1� 
 
 
��n
)

/�
(

x1� 
 
 
� xn
) 
= 0.

This means that the connection between the functions ��a�a=1�


�n and the coordinates
�x�� is unique and thus reversible, so the functions ��a� can be chosen as new coordi-
nates. Then, let x�′

�x� = ��′
�x�. In these coordinates, ea

�′ = �a��′ = ��a/���′ = �a
�′ and

ea
�′ = ���′

/��a = ��′
a. Hence, in (6.47) we have ��′

�′�′ = 0.
In a flat torsion-free manifold one can thus choose such coordinates in which the

connection coefficients are zero. In these coordinates, the covariant derivatives reduce to
ordinary partial derivatives; we shall call these coordinates Cartesian. A special case (but
not the only one) of a flat torsion-free manifold is a Euclidean space (of any dimension).

6.6 Parallel transport in a flat manifold

Since the parallel transport in a flat manifold does not depend on the path, the propagators
of parallel transport are functions that depend only on the initial point x and on the final
point x, but not on the curve that is chosen to join x to x. For covariantly constant fields
of bases �eA

�� and
{

eA
�

}

we then have

Pw =
[

e�x�

e�x�

]w

� P�
� = eS

��x�eS
��x�� P�

� = eS
��x�eS

��x�
 (6.49)

These equations follow because their right-hand sides obey the differential equations for
propagators and the corresponding initial conditions.

If the manifold is torsion-free in addition, then eA
� are gradients of scalar functions.

Choosing these functions as new coordinates we obtain

Pw�x�x� = 1� P�
� = ��

�� P�
� = ��

�
 (6.50)
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Thus, in a flat torsion-free manifold, in Cartesian coordinates, a vector that is transported
parallely has the same components at every point and the point to which the vector is
attached becomes irrelevant.

6.7 Geodesic deviation

As we will see in Section 12.3, the inertial forces that act on a body moving along a
geodesic exactly cancel the gravitational forces. On the other hand, the geodesic lines are
the only curves privileged by the geometry of a manifold with connection, hence only
they can be used as a privileged reference system. Since a gravitational field cannot be
detected on a geodesic, one can only observe neighbouring geodesics from the given one
and draw conclusions about the gravitational field on the basis of those observations.
The vector field of geodesic deviation is a measure of the position of a particle on a
neighbouring geodesic with respect to a particle on a given geodesic.

Let U ⊂ Mn be an open subset of the manifold Mn with connection. Choose in U a
one-parameter family of geodesics labelled by the parameter �. Let � = 0 correspond to
that geodesic from which we will be observing the neighbourhood. Every point on any
of the geodesics of the family may be identified by the values of the parameter � (whose
value identifies the geodesic) and the affine parameter s on that geodesic, x��U = x��s� ��.
The geodesic deviation is the vector field

�x��s�
def= �x�

��

∣
∣
∣
∣
�=0

(6.51)

defined along our geodesic � = 0. We shall find how the deviation changes as we move
down this geodesic. Since the set �x��s� ��� with fixed � and changing s is a geodesic,
the following is true:

D

ds

�x�

�s

∣
∣
∣
∣
�=const

= 0
 (6.52)

Then, from (5.8),
(

D

ds

D
d�

− D
d�

D
ds

)
�x�

�s
= B�

	��

�x	

�s

�x�

�s

�x�

��

 (6.53)

But, by virtue of (6.52), the second term on the left-hand side is zero. Now note that

D
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��
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 (6.54)
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Making use of (6.54) in (6.52) we obtain

D2

ds2

�x�

��
+2

�x	

�s

D
ds

(

��
	

�x

��

)

= B�
	��

�x	

�s

�x�

�s

�x�

��

 (6.55)

Denoting k� = �x�/�s (the vector field tangent to the geodesic) and �x� as in (6.51), then
substituting � = 0 in the above, we finally obtain

D2

ds2
�x� +2k	 D

ds

(

��
	�x

)−B�
	��k

	k��x� = 0
 (6.56)

This is the geodesic deviation equation. It is useful in experimental tests of general
relativity, since it allows one (in principle – in practice this is difficult) to calculate
the curvature by measuring relative displacements of bodies moving along neighbouring
geodesics.

In a flat torsion-free manifold and in the Cartesian coordinates, Eq. (6.56) simplifies
to d2 ��x�� /ds2 = 0, so its solution is �x� = A�s + B�, where A� and B� are constant
vectors. From (6.51) then, the position of the point under observation, x��s� �0�, relative
to the corresponding point x��s� 0� of the geodesic � = 0 is given by

x��s� �0� = x��s� 0�+ �0�x�
 (6.57)

Hence, in a flat torsion-free manifold two neighbouring geodesics either diverge or
converge with a constant velocity, or remain parallel (when A� = 0). In curved mani-
folds and in manifolds with torsion, solutions of the geodesic deviation equation are
more complicated. (Actually, it is rarely possible to find the solution explicitly. Usually,
solutions are found numerically or by perturbations.)

Note that the form of (6.54) does not change when the parameter � is transformed
by � = ���′�. The derivatives d�′/d� are constant along geodesics (because � itself is
constant), hence the factor d�′/d� will cancel in (6.56). Changing the parametrisation
means merely choosing a different basis in the space of solutions of Eq. (6.56).

6.8 Algebraic and differential identities obeyed by the curvature tensor

The curvature tensor obeys two other important sets of identities, in addition to (6.10).
Let us calculate

B�
����� = 1

3!�
	�
��� B�

	� = 1
3!�

	�
���

(−2��
	���� +2��

�� ��
�	���

)

= 1
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�
	�
���

(−��
	�� +��

���
	�

)= 1
3

�
	�
���

(−��
	�� +��

���
	�

)

= 1
3

�
	�
���

(−��
	�� +��

����
	 −��

	���
� −��

���
	� + ��

���
	�

)




(6.58)

(We used the fact that in the contraction over three indices with the antisymmetric �
	�
���

the antisymmetrisation with respect to ��� occurs automatically, and we expressed the
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partial derivative of ��
	 through the corresponding covariant derivative.) Now let us

note that the last term is equal to the second with an opposite sign. Thus

B�
����� = 1

3
�

	�
���

(−��
	�� −2��

���
	�

)

= −2��
������ −4��

�����
���
 (6.59)

The curvature tensor obeys also the following set of differential identities:

B�
������� = −2��

���B
�

������� (6.60)

called the Bianchi identities. For their derivation see Exercise 3.
Recall that the curvature tensor arose by calculating the commutator of covariant

derivatives. Commutators of linear operators obey the well-known Jacobi identity. The
Bianchi identities arise from the commutators of covariant derivatives in the same way
as the Jacobi identity arises from commutators of linear operators.

The Bianchi identities are important for the physical interpretation of relativity. They
ensure that equations of motion of material media follow from the field equations and
need not be postulated separately.

6.9 Exercises

1. Observe that coordinates can always be adapted to one vector field k� so that, in the new
coordinates, k� = ��

1.
2. Using the result of the previous exercise show that coordinates can be simultaneously adapted

to two vector fields k� and l� so that k′� = ��
1 and l′� = ��

2 if and only if the two vector fields
commute, �k� l�� = 0. It follows that, if i vector fields all commute, then coordinates can be
adapted simultaneously to all of them.
Hint. To show that this is sufficient, adapt the coordinates to k�, then find the transformations
of coordinates that preserve the property k′� = ��

1 , and, using only these transformations, try to
adapt the coordinates to l�.

3. Derive the Bianchi identities (6.60).
Hint. Use Kronecker 3-deltas to calculate antisymmetrisations, in the same way in which they
were used in deriving (6.59).



7

Riemannian geometry

The most detailed sources for the subject of this chapter are Eisenhart (1940),
a thorough presentation of differential geometry of curves and 2-dimensional surfaces
in a Euclidean space, and Eisenhart (1964), a textbook on Riemannian geometry in n

dimensions.

7.1 The metric tensor

Up to here, we have dealt with manifolds on which the only additional object were the
affine connection coefficients. That structure allowed us to define the parallel transport
and thereby to compare directions of vectors attached to different points. However, we
could not calculate distances between points or angles between vectors.

Now we will add a new object that will allow for that – a symmetric second-rank
covariant tensor, g�� = g����, called the metric tensor. Using it, we can define the metric
form, also called the metric:

ds2 = g�� dx�dx�� (7.1)

This expression (a scalar) in fact makes sense only under an integral. The length of arc
of a curve x���� between the points x���0� and x���1� is

l�0�1
=
∫ �1

�0

ds =
∫ �1

�0

∣
∣
∣
∣
g�����

dx�

d�
dx�

d�

∣
∣
∣
∣

1/2

d�� (7.2)

However, (7.1) is a convenient shorthand notation. (We take the absolute value above
because the form need not be positive-definite. We will explain later the meaning of
g�� dx�dx� ≤ 0.)

An example of a manifold with a metric tensor is a Euclidean space (of arbitrary
dimension). Its metric tensor in rectangular Cartesian coordinates is the unit matrix, and
its metric form is

ds2 = (

dx1
)2 + (dx2

)2 +· · ·+ �dxn�2 � (7.3)

48



7.3 The signature of a metric, degenerate metrics 49

7.2 Riemann spaces

It is logical to require that a vector k���0� (attached to the point on the curve x���� given
by � = �0), when parallely transported along that curve in the affine parametrisation,
preserve its length. What condition does such a requirement impose on the metric tensor?

Let �= s be an affine parameter. The length of the vector k��s�, parallely transported
along the curve x����, will not change when

0 = d
ds

(

g��k
�k�
)= D

ds

(

g��k
�k�
)= Dg��

ds
k�k� (7.4)

(see (5.3)). If this equation is to hold for every vector field k�, then

0 = Dg��
ds

= dx�

ds
g����� (7.5)

Now, this should hold for every curve, which implies in the end

g���� = 0	 (7.6)

or, explicitly,

g��	� −
���g�� −
���g�� = 0� (7.7)

Those manifolds, on which a metric tensor obeying (7.6) is defined, and on which in
addition

��
� = 0 =⇒ 
�� = 
���� (7.8)

are called Riemann spaces. For brevity, we shall use the same name also for those
manifolds on which the metric tensor is not positive-definite, although this does not agree
with the habit of mathematicians. In mathematics, those manifolds for which g�� is not
positive-definite are called pseudo-Riemannian in general, and sometimes have special
names, e.g. the metric used in relativity (both special and general) is called Lorentzian.
We prefer the name ‘Riemann’ or ‘Riemannian’ because the statements we will make
apply to the proper Riemannian as well as to pseudo-Riemannian geometries. In order to
be perfectly precise, we would thus have to say ‘Riemannian and pseudo-Riemannian’
every time.

The Riemann spaces are the mathematical basis of relativity. Manifolds with a metric
tensor and with torsion are sometimes considered. However, torsion could not so far
be connected with any observable effects. Since this exposition is concentrated on the
physical aspects of relativity, we shall always keep the assumption (7.8).

7.3 The signature of a metric, degenerate metrics

The expressions g�� dx�dx� and g��k
�k� are quadratic forms. A coordinate transformation

�x� → �x′� changes the form g��k
�k� to g�′�′k�

′
k�

′
, where k�

′ = x�
′
	�k

� and g�′�′ =
x�	�′x�	�′g��. Let X denote the matrix

∣
∣
∣
∣x�

′
	�
∣
∣
∣
∣, let g denote the matrix

∣
∣
∣
∣g��

∣
∣
∣
∣ and let k

denote the vector k�. In the terminology of quadratic forms, the transition k→ k′ = Xk,
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g → g′ = (

X−1
)T
gX−1, corresponding to the coordinate transformation k� → k�

′
, g�� →

g�′�′ is called a transformation of the basis. For matrices of quadratic forms, the Sylvester
theorem on the inertia of forms holds. It says that, whatever method is used to diagonalise
a real symmetric matrix, the numbers of diagonal elements that are positive, zero and
negative are always the same. This set of positive, negative and zero values is denoted
by the symbol

�+	 · · ·	+
︸ ︷︷ ︸

n1 times

	−	 · · ·	−
︸ ︷︷ ︸

n2 times

	0	 · · ·	0
︸ ︷︷ ︸

n3 times

�	 (7.9)

where n1 is the number of positive elements, n2 is the number of negative elements and
n3 is the number of zero elements, n1 +n2 +n3 = n= dim Vn. The symbol (7.9), called
the signature of the metric tensor, is a basis-independent characteristic property of every
matrix, and so is a coordinate-independent characteristic of a point of a Riemann space Vn.

When n3 > 0, the metric is called degenerate. When n2 = n3 = 0, the metric is positive-
definite.

In relativity, a 4-dimensional Riemann space is used, with the signature �+−−−� or
�−+++� or �+++−�, depending on the convention (in this text, the signature will
always be �+−−−�). Since such a metric is not positive-definite, the Riemann spaces
of relativity are not metric spaces. If the distance d�x	 y� between the points x ∈ Vn and
y ∈ Vn is defined by the integral (7.2) along any curve (e.g. a geodesic), then d�x	 y�= 0
does not imply x = y; the integral can vanish also for such pairs of points that do not
coincide. The geometrical and physical meaning of its being zero will be explained later.

Coordinate transformations preserve the signature of the metric tensor at each single
point. No theorem guarantees that the signature must be the same at different points
of the manifold. However, a region with a signature different from �+ − −−� would
have no physical interpretation. Usually, the subset on which the signature changes to an
unphysical one is, in one sense or another, an ‘edge’ of the manifold or of the allowed
coordinate patch. However, transitions of the type �+−−−�→ �−+−−� do occur, in
which two coordinates interchange their roles and another becomes the privileged one.
This happens, for example, at the horizon of a black hole (see Section 14.11).

For a degenerate metric, its determinant is zero and the inverse matrix to g�� does not
exist. With such a metric, the mapping k� → g��k

� is analogous to projecting a vector on
a subspace of lower dimension, so no inverse mapping exists. For nondegenerate metrics,
the matrix inverse to g�� does exist, and is denoted g��. It obeys the equation g��g�� = ���.
Thus, in a Riemann space with a nondegenerate metric, for every contravariant vector k�

there exists the corresponding covariant vector g��k
� which is denoted k�, and for every

covariant vector m� there exists the corresponding contravariant vector g��m� which is
denoted m�. The mapping k� → k� = g��k

� is called lowering the index, the inverse
mapping m� → m� = g��m� is called raising the index. In such a Riemann space,
we can thus consider contravariant and covariant components of the same vector. In a
general manifold, with no metric defined on it, there is no relation between covariant and
contravariant vectors.
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7.4 Christoffel symbols

Now we shall solve Eq. (7.7) for 
�� assuming that the metric tensor is nondegenerate.
Let us rewrite (7.7) three times, each time with a different permutation of the indices:

g��	� −
���g�� −
���g�� = 0	 (7.10)

g��	� −
���g�� −
���g�� = 0	 (7.11)

g��	� −
���g�� −
���g�� = 0� (7.12)

Let us add the last two equations, and subtract the first one from the result. Using (7.8)
and contracting with g� we obtain


�� = 1
2
g�
(

g��	� +g��	� −g��	�
)

� (7.13)

The affine connection coefficients that are built of the metric tensor in this way are called
the Christoffel symbols and are denoted

{ 
��

}

.

7.5 The curvature of a Riemann space

The curvature tensor of a Riemann space, built of the Christoffel symbols standing in
place of the connection coefficients, is called the Riemann tensor and denoted R�

��.
Since the Riemann spaces are torsion-free, the identities (6.59) and (6.60) for the Riemann
tensor reduce to

R�
���� = 0 (7.14)

and

R�
������ = 0 (7.15)

(note that the covariant derivative in a Riemann space is denoted by a semicolon). The
Riemann tensor obeys one more set of identities. Applying (6.9) and recalling that a
metric is covariantly constant, we obtain

0 = g���� −g���� = R�
��g�� +R�

��g��� (7.16)

This can be written as

R��� +R��� = 0 ⇐⇒ R��� = R������ (7.17)

From the above, one more identity can be derived. Equation (7.14), in consequence of
R��� = R�����, can be rewritten in the form

R��� +R��� +R��� = 0� (7.18)
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Let us rewrite this equation three more times, each time taking a cyclic permutation of
all four indices

R��� +R��� +R��� = 0	 (7.19)

R��� +R��� +R��� = 0	 (7.20)

R��� +R��� +R��� = 0� (7.21)

Now add the first and fourth equation, and subtract the second and third from the result.
Taking into account the antisymmetry in the first pair of indices and in the last pair of
indices, we obtain

R��� = R���	 (7.22)

which means that the Riemann tensor is symmetric with respect to the interchange of the
first pair of indices with the second.

Since R��� is a tensor of rank 4, it has n4 components, i.e. 256 in a 4-dimensional
space. However, in consequence of the symmetries, only some of the components
are algebraically independent. Antisymmetry in ��	�� provides n�n+ 1�/2 equations
R����� = 0 for each set �	��, which leaves us with at most n4 − n2 · n�n+ 1�/2 =
n2 ·n�n−1�/2 independent components. However, because of the antisymmetry in �	��,
we obtain �n�n+ 1�/2� · �n�n− 1�/2� additional equations R����� = 0, which leaves us
with at most �n�n−1�/2�2 independent components. From this, we have to subtract n� n3 �
equations (7.14). This gives finally

�n�n−1�/2�2 −n

(

n

3

)

= 1
12
n2
(

n2 −1
)

(7.23)

independent components, i.e. only 20 when n= 4.

7.6 Flat Riemann spaces

If R�
�� = 0 in a Riemann space, then the results of Section 6.5 apply – one can choose

coordinates so that � �
� �=∗ 0. This equation is preserved by all linear coordinate trans-

formations. In such coordinates, as seen from (7.7), the metric has constant components.
Then, linear coordinate transformations can be used so that the metric tensor becomes
diagonal and all its diagonal elements are either +1, −1 or 0, thus

ds2 =
n
∑

i=1

�i
(

dxi
)2
	

where �i = +1	0 or −1.



7.8 Flat Riemann spaces that are globally non-Euclidean 53

7.7 Subspaces of a Riemann space

Let a subspace Sm of a Riemann space Vn be given by the parametric equations x� =
f�
(

�1	 �2	 � � �	 �m
)

	�= 1	 � � �	 n. The metric of the space Vn for the pair of points ��a0 � ∈
Sm and ��a0 +d�a� ∈ Sm is

g�� dx� dx� = g��
�x�

��a
�x�

��b
d�a d�b� (7.24)

Hence, g����x
�/��a���x�/��b� plays the role of a metric tensor in Sm. We say that the

metric of Vn induces the metric in Sm by the formula

hab = g��
�x�

��a
�x�

��b
� (7.25)

In the 3-dimensional Euclidean space, in rectangular Cartesian coordinates, the length of
a curve is

l�0	�1
=
∫ �1

�0

[(
dx
d�

)2

+
(

dy
d�

)2

+
(

dz
d�

)2
]1/2

d�� (7.26)

Hence, the metric form here is ds2 = dx2 + dy2 + dz2, and the metric tensor is the
unit matrix. Knowing this, we can use (7.25) to find the metric tensor of an arbitrary
2-dimensional surface in the Euclidean space. For example, for the spherical surface of
radius a, with the centre at x= y= z= 0, the parametric equations in spherical coordinates
are:

x = a sin� cos�	 y = a sin� sin�	 z= a cos�� (7.27)

Hence

ds2 = dx2 +dy2 +dz2 = a2
(

d�2 + sin2� d�2
)

	 (7.28)

and the metric tensor of the sphere is the matrix


hab
 =
(

a2 0

0 a2 sin2�

)

� (7.29)

7.8 Flat Riemann spaces that are globally non-Euclidean

A flat space is not necessarily Euclidean. As an example, take a cylinder of radius a. It
has parametric equations

x= a cos�	 y = a sin�	 z= z	 (7.30)

i.e. z will be used as the second parameter. Hence

dx2 +dy2 +dz2 = a2 d�2 +dz2� (7.31)
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Thus, the metric tensor of a cylinder has constant coefficients in these coordinates, so the
Christoffel symbols will all be zero in the same coordinates, hence, the Riemann tensor
will be zero – in these coordinates, and so, being a tensor, also in all other coordinate
systems. It follows that the surface of a cylinder is flat in the sense of Riemann geometry.
However, it is not Euclidean – because one can travel along a geodesic (one of the circles
that are perpendicular to generators) still in the same direction and yet arrive back at
the starting point in the end. The path of this journey will be a closed curve that is
not continuously contractible to a point. In a Euclidean plane such curves do not exist.
Hence, the metric tensor determines the local geometry, but does not determine the global
topology. Every 2-dimensional subset of a cylinder that is continuously contractible to a
point is isometric to a certain subset of a Euclidean plane.

The surface of an ordinary torus in a Euclidean 3-space has nonzero curvature (see
Exercise 1). But a torus can be flat – provided it is embedded in a 4-dimensional space.
To see this, let us introduce polar coordinates in the plane R

2:

x= r cos�	 y = r sin��

In these coordinates, the metric form of the plane becomes:

ds2
2 = dx2 +dy2 = dr2 + r2 d�2	

where, consequently, � ∈ �0	2��, the point �r	�� is identical to the point �r	�+2�� and
the curves r = constant are circles.

Now take the 4-dimensional Euclidean space with the metric

ds4
2 = dx2 +dy2 +dz2 +du2

and introduce the polar coordinates in the planes �z = constant	 u = constant� and in
the planes �x= constant	 y = constant� � x= r cos�	y = r sin�	z= � cos�, u= � sin�,
where � ∈ �0	2��	� ∈ �0	2�� and the following points are identical: �r	�	�	�� ≡
�r	�	�	�+2��≡ �r	�+2�	�	��. The curves on which �r	�	�� are constant and the
curves on which �r	�	�� are constant are all circles. Now choose the 2-surface given by
r = r0 = constant	 �= �0 = constant. The metric form of this surface is

ds2
2 = r0

2 d�2 +�0
2 d�2�

This is a flat surface (because the metric tensor has constant coefficients), but it has all
the topological properties of a torus.

7.9 The Riemann curvature versus the normal curvature of a surface

In an n-dimensional Riemann space, the curvature tensor has n2�n2 −1�/12 algebraically
independent components, which makes 1 when n = 2. Hence, the curvature of a
2-dimensional surface is determined by just one function, for example R = g��R�

���.
This quantity turns out to be equal to the Gauss curvature, whose description is given
below. For the full reasoning see Eisenhart (1940).
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We assume that the reader knows the definition of the curvature of a curve. Now
consider a 2-dimensional surface S and a point p ∈ S, at which we want to calculate the
curvature of S. Draw the straight line L through p that is perpendicular to S, and then
consider an arbitrary plane F containing L. The plane intersects the surface along a curve
C called the normal section of S. Now imagine F being rotated around L, and consider
the curvatures at p of the resulting normal sections. It can happen that all these curvatures
will be equal – this is the case at every point of a sphere, or when L is a symmetry axis
of S. But in general the curvature of C changes when F is rotated, and in the collection of
all curvatures there will be a maximal and a minimal value. (If the point p is nonsingular,
then all the curvatures will be finite.) The Gauss curvature of the surface S at p is the
product of the greatest curvature of C by the smallest curvature. When all curvatures
are equal, the curvature of the surface is the square of the curvature of normal sections.
Knowing this, one can verify that the Gauss curvature is equal to g��R�

���. This shows
that the name ‘curvature tensor’ evokes the right association.

Now it is seen why the curvature of a cylinder is equal to zero: at any point of the
cylinder one of the normal sections is a straight line whose curvature is zero, while all the
other normal sections have positive curvatures. Hence, the smallest curvature of a normal
section is zero. The curvature of a one-sheeted hyperboloid is negative (see Exercise 1).
Hence, even though a straight line is among the normal sections of such a hyperboloid,
the other normal sections have positive and negative curvatures. Then, the zero curvature
is neither maximal nor minimal and does not enter the product contained in the Gauss
curvature.

7.10 The geodesic line as the line of extremal distance

If the length of a curve arc is defined on a manifold, then in the collection of all arcs
joining two given points we can look for the arc of extremal (i.e. greatest or smallest)
length. Thus, we look for a curve on which, with fixed �0 and �1, the quantity

∫ �1

�0

∣
∣
∣
∣
g���x�

dx�

d�
dx�

d�

∣
∣
∣
∣

1/2

d� (7.32)

takes the extremal value. It must obey the Euler–Lagrange equations

d
d�

(
�f

�ẋ

)

− �f

�x
= 0	 (7.33)

where f is the integrand in (7.32), and ẋ
def= dx/d�.

For convenience, let us write
∣
∣g��ẋ

�ẋ�
∣
∣= �g��ẋ

�ẋ�	 (7.34)

where �= +1 or �= −1, as appropriate. Then, from (7.33),

d
d�

(

g�ẋ
�

√

�g��ẋ
�ẋ�

)

− 1
2

g��	ẋ
�ẋ�

√

�g��ẋ
�ẋ�

= 0� (7.35)
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The case g��ẋ
�ẋ� = 0 requires separate treatment. We shall do this further on, but for

now we assume that g��ẋ
�ẋ� �= 0. Let us introduce the new parameter s��� defined by

ds
d�

=
√

�g��ẋ
�ẋ�� (7.36)

Then we have in (7.35):

ds
d�

d
ds

(

g�
dx�

ds

)

− 1
2
g��	

ds
d�

dx�

ds
dx�

ds
= 0� (7.37)

Hence

g�	�
dx�

ds
dx�

ds
+g�

d2x�

ds2
− 1

2
g��	

dx�

ds
dx�

ds
= 0 (7.38)

and, after contracting this with g� ,

d2x�

ds2
+
{

�

��

}

dx�

ds
dx�

ds
= 0� (7.39)

This is the geodesic equation, (5.13). Thus, in Riemann spaces, a geodesic has another
characteristic property: it extremises the distance.

Note that the geodesic extremises not only (7.32) but also the functional
∫ �1

�0
g��ẋ

�ẋ�d�.
In this case, the assumption g��ẋ

�ẋ� �= 0 is not necessary, and a curve of zero length can
also be the extremal.

7.11 Mappings between Riemann spaces

Now let us apply the considerations of Section 3.10 to the Riemann spaces.
If a Riemann space Pm is an image of another manifold Mn (or of a subset thereof)

under the mapping F � Mn → Pm, then the metric tensor of Pm can be pulled back to Mn

by the mapping F2
∗. However, Mn can itself be a Riemann space and have its own metric

tensor, in general different from the one pulled back. Hence, more than one metric may
be defined on the same manifold.

An example of such a situation is a geographic map. It is a projection of a subset of the
surface of the Earth into the plane of the sheet of paper. Within the domain of the map,
the projection is invertible, i.e. the inverse mapping is defined. This inverse mapping can
then be used to pull back the metric of the Earth surface into the plane of the map. Thus,
the surface of the page in the atlas has its own Euclidean metric, and also the metric of
the surface of the Earth, pulled back by the inverse projection. Navigators who travel
over large areas are in fact reading out the metric of a sphere from their maps.

7.12 Conformally related Riemann spaces

Let Vn and Un be Riemann spaces of the same dimension, and let �x�� and �ya� be
the coordinates in Vn and Un, respectively, where �	a= 1	 � � �	 n. Let F � Vn → Un be a
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diffeomorphism of class C1, and let g�� and hab be the metric tensors on Vn and Un. On
each of the spaces we then have two metric tensors. For example on Un there will be its
own metric tensor hab, and the metric pulled back from Vn by

{[

�F2�
−1
]∗
g
}

ab
�y�= �x�

�ya
�y�

�x�

�yb
�y�g���x�y��� (7.40)

If there exists a scalar function �F � Un → R
1 such that for any y ∈ Un

{[

�F2�
−1
]∗
g
}

ab
�y�= ��F�y��

−2 hab�y�	 (7.41)

or, equivalently,

�x�

�ya
�y�

�x�

�yb
�y� g���x�y��= ��F�y��

−2 hab�y�	 (7.42)

then we call F a conformal mapping.1 The inverse mapping F−1 is then conformal, too,
and �F−1 = 1/�F . Riemann spaces that can be related by a conformal mapping are called
conformally related. A Riemann space that is conformally related to a flat Riemann
space is called conformally flat.

A conformal mapping does not change the angles between vectors. Take two vectors
k��x0� and l��x0� of nonzero length at x0 ∈ Vn, then the angle between them is

cos��V� = g��k
�l�

√∣
∣g��k

�k�
∣
∣

√∣
∣g��l

�l�
∣
∣

� (7.43)

Now, using (3.16), the analogue of (3.22) for covariant tensors of rank 2 and (7.42), we
obtain for the images of the vectors k and l in the tangent space to Un at y0 = F�x0�:

hrs �F1∗k�
r �F1∗k�

s = �F
2 �x

�

�yr
�x�

�ys
�yr

�x�
�ys

�x�
g��k

�k�

= �F
2����

�
�g��k

�k� = �F
2g��k

�k� (7.44)

and similarly for the remaining scalar products in (7.43). Hence, the angle ��U� between
the images of k and l is determined by

cos��U� = hab�F
∗
1 k�

a�F ∗
1 l�

b

√�hrs�F ∗
1 k�

r�F ∗
1 k�

s� √�hmn�F ∗
1 l�

m�F ∗
1 l�

n�

= g��k
�l�

√∣
∣g��k

�k�
∣
∣

√∣
∣g��l

�l�
∣
∣

= cos��V�� (7.45)

1 The �F
−2 is just a convention that simplifies some of the further formulae; the important point is that the two metrics differ

only by a scalar factor.
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Equation (7.42) also shows that a conformal mapping maps vectors of zero length on
Vn onto vectors of zero length on Un.

7.13 Conformal curvature

A second-rank tensor can be constructed from the Riemann tensor

R��

def=R�
���	 (7.46)

called the Ricci tensor. It is symmetric in ����. In addition, we calculate its trace

R
def= g��R�� ≡ R�

�	 (7.47)

and its trace-free part

R
�

�

def=R�
� − 1

n
���R� (7.48)

Using these quantities we can now define a new tensor of rank 4 called the conformal
curvature tensor or the Weyl tensor:

C��
�

def=R��
� + 1

n−2
�
���
��R

�

� − 1
n�n−1�

�
��
�R� (7.49)

Note: this definition makes sense only for n > 2. We shall deal with the case n = 2
separately.

The Weyl tensor has all the same symmetries as the Riemann tensor, and in addition all
of its traces are zero. In relativity, the Weyl tensor describes that part of the gravitational
field that propagates into vacuum and is detectable outside the sources, gravitational waves
among other things. It is the same for conformally related manifolds: if g̃�� = �−2g��,

then C̃�
�� = C�

�� (note the positions of indices; with other positions the two tensors
are proportional, but not equal). This fact will be verified in the course of proving the
following theorem.

Theorem 7.1 If in a Riemann space Vn the Weyl tensor is zero, then the metric of
Vn is conformally flat, i.e. there exists a function � such that g�� = �−2 ��, where
R��

�� �= 0. When n= 3	C��
� ≡ 0, but not every 3-dimensional metric is conformally

related to a flat one. The necessary and sufficient condition for a 3-dimensional Riemann
space to be conformally flat is the vanishing of the Cotton–York tensor

C�� def= 2���
(

R
�
�� − 1

4
��R	�

)

	 (7.50)

where ��� is the Levi-Civita symbol. In two dimensions, the Weyl tensor is undetermined,
but every 2-dimensional metric is conformally flat.

Proof: (adapted from Raszewski (1958, pp. 516–521))
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Part I: n > 3�

We shall show that if C��
� = 0, then the equations determining the function � such that

�2g�� =  �� do have a solution. The quantities without a tilde will be those determined

by g��; those with a tilde are determined by g̃��
def=�−2g��. We introduce the following

conventions: all covariant derivatives will be with respect to g��, indices of objects
without a tilde will be manipulated by g�� and indices of objects with a tilde will be
manipulated by g̃��.

We first find that

˜
{

�

�

}

=
{

�

�

}

−�−1
(

����	 +���	� −g����
)

� (7.51)

(The last term is in fact a new symbol: the derivative of �, which is a covariant vector, has
its index raised.) Then we find the corresponding relations between the other quantities:

R̃��
� = �2

(

R��
� −�−1�

��
��

��
�����

�� −�−2�
��
� ���

��
)

	 (7.52)

R̃�� = R�� + �n−2��−1���� +g���−1���
�� − �n−1�g���

−2�	� �
��	 (7.53)

R̃ = �2R+ �n−1�
(

2����
�� −n�	� �

��
)

� (7.54)

Using these equations one can now verify that C̃�
�� =C�

��. Then we require R̃�
�� = 0

(which automatically implies C̃�
�� = C�

�� = 0). By virtue of (7.52) this means

R��
� = �−1�

��
��

��
�����

�� +�−2�
��
� ���

��� (7.55)

This implies that also R̃�� = 0 and R̃= 0, so, from (7.54),

���
�� = − 1

2�n−1�
�R+ 1

2
n�−1�	� �

��	 (7.56)

and, from (7.53) with use of (7.56):

���� = − 1
n−2

�R�� + 1
2�n−1��n−2�

g���R+ 1
2
g���

−1�	� �
��� (7.57)

This equation can be rewritten in the form �	�� = [the appropriate expression]. Hence, if
such a � exists, then the integrability conditions �	�� −�	�� = 0 should be fulfilled by
the right-hand sides. They are equivalent to ���� −���� = R

�
���	�. In this, we must

substitute for R�
�� from (7.55) and for all second covariant derivatives of � from (7.57).

After a long calculation, the following result emerges:

−R��� +R��� + 1
2�n−1�

(

g��R	 −g�R	�
)= 0� (7.58)
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The Bianchi identities R�
������ = 0, with (7.49) and C��

� = 0 substituted into them,
when contracted over ��	�, become

�n−3��−R��� + R����+g��R
�
�� −g�R

�
���

+ 1
n−1

(

g�R	� −g��R	
)= 0� (7.59)

This, when contracted over ��	��, becomes:

0 = 3g��R�
������ = R�

�� − 1
2
R	 � (7.60)

With n > 3, Eq. (7.58) follows from (7.59) and (7.60), and so is fulfilled in consequence
of the Bianchi identities. This means that (7.57) is then integrable, so a function � exists
such that g�� = �2 ��, where R�

��� �= 0.

Part II: n= 3�

When n = 3, Eq. (7.59) follows from (7.60) and does not determine (−R��� +R���),
so it cannot be equivalent to (7.58). In this case, (7.58) is an additional condition that
must be obeyed by the curvature in order that the metric can be conformally flat. This
is equivalent to C�� = 0, where C�� is the Cotton–York tensor of (7.50). However, with
n= 3, the Weyl tensor is identically zero, as can be verified by substituting consecutively
all the values of all indices in (7.49).

Part III: n= 2�

With n = 2, Eq. (7.49) does not apply since the second term becomes undetermined.
However, then

R��
� = 1

2
����R	 (7.61)

because any tensor antisymmetric in ���� in two dimensions must be proportional to
���, and similarly for the lower indices. Equations (7.52)–(7.54) still apply, but (7.53)
and (7.54) follow from (7.52). Consequently, the only limitation on � is in this case the
equation R̃= 0, i.e.

�� �
�� = −1

2
�R+�−1�	� �

���

This can be equivalently rewritten as

�ln��� �
�� = 1

2
R	

which is a linear inhomogeneous equation of the type of the Poisson equation (for
positive-definite signature) or of the wave equation (for indefinite signature). Hence, in
every case it will have a solution, so every 2-dimensional metric is conformally flat.
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7.14 Timelike, null and spacelike intervals in a 4-dimensional spacetime

The physically important 4-dimensional Riemann spaces are those with the signature
�+−−−�, as already mentioned. They are called spacetimes. Consider the following
equation in a spacetime:

ds2 = g�� dx�dx� = 0� (7.62)

Let us choose a point p0 ∈ V4. We can choose coordinates so that at p0

g�� �p0�=

⎡

⎢
⎢
⎢
⎣

+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎤

⎥
⎥
⎥
⎦
	

i.e. the metric becomes identical with the Minkowski metric of special relativity. (Note: it
becomes Minkowskian only at p0, and it remains approximately Minkowskian in a small
neighbourhood of p0.) In these coordinates, called locally Cartesian, Eq. (7.62) taken at
p0 becomes

ds2 = (

dx0
)2 − (dx1

)2 − (dx2
)2 − (dx3

)2 = 0� (7.63)

In a 3-dimensional Euclidean space, the equation �z− z0�
2 − �x−x0�

2 − �y−y0�
2 = 0

describes a cone with the vertex at �x0	 y0	 z0� and the axis parallel to the z-axis. By
analogy, the hypersurface in spacetime determined by (7.62) is called a light cone
(see Fig. 7.1). The coordinate x0 is called the time coordinate, the remaining ones are

p 0

F

P

E

Fig. 7.1. Equation (7.62) determines the light cone that divides the neighbourhood of p0 into the
future F of p0, the past P of p0 and ‘elsewhere’ E. A light cone looks so simple only in the flat
spacetime in which the coordinates with the property (7.63) can be introduced globally.
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space coordinates. The light cone divides the neighbourhood of p0 into three disjoint
regions. Each point lying on the light cone can be connected to p0 by a geodesic arc of zero
length. All curves of zero length, geodesic or not, are called null curves, so the points on
the cone are said to be in a null relation to p0. The tangent vector to a null curve at any
point has zero length; such vectors are called null vectors. Each point in the regions F and
P inside the cone can be connected to p0 by a curve x���� on which g��

dx�

d�
dx�

d� > 0 every-
where. These points are said to be in a timelike relation with p0, and the vectors of positive
length are called timelike vectors. Finally, each point in the region E outside the light
cone can be connected to p0 by a curve on which g��

dx�

d�
dx�

d� < 0 everywhere. These points
are said to be in a spacelike relation to p0, and vectors with negative length are called
spacelike vectors. Justifications of these names come from special relativity. The region
F inside the cone, in which the x0-coordinates of all the points are greater than the x0-
coordinate of p0, is called the future of p0. The region P is called the past of p0. Finally, the
region E does not have a name and is colloquially called ‘elsewhere’ with respect to p0.1

Note that not every curve lying on the light cone (7.62) has zero length. Only the
generators of the cone, which are geodesics, or, more precisely, null geodesics, have this
property. Other curves on the cone, for example spirals winding on its surface towards p0,
are spacelike curves whose tangent vectors have negative g��

dx�

d�
dx�

d� . Curves that are null
but not geodesic are at each point q tangent to the light cone of q, but veer from one cone
to another. Figure 7.2 shows a broken null line whose straight segments are null geodesic

Fig. 7.2. Future light cones along a nongeodesic null line with geodesic segments (the thicker
line). The line is tangent to each light cone at its vertex, but passes from one cone to another as it
proceeds.

1 The whole of Minkowski spacetime can be divided into F, P, E and the light cone relative to every p0. In curved spacetimes,
the light cones can be complicated hypersurfaces that neither are axially symmetric nor have straight generators, and can have
self-intersections. The latter necessarily happens in a sufficiently large neighbourhood of a black hole (see Section 14.11).
This is why the division of spacetime by a light cone is well defined only in a finite neighbourhood of each p0.
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arcs, but at the corners it goes from one cone to another. A general nongeodesic null line
can be imagined as a limit of a sequence of such broken null lines as the extent of each
geodesic segment (as measured, for example, by the range of the affine parameter) goes
to zero. Such null lines through p0 enter the region F, or reach p0 from within P.

Similarly, not every curve arc in the regions F and P will be timelike. These regions
contain also null nongeodesic curves, as described above, and spacelike curves. The char-
acteristic property of the region F∪P is that for each of its points a timelike curve joining
it to p0 exists. Such curves do not exist on the light cone and in E. Curves on the light
cone that reach p0 are either null or spacelike, and every curve arc in E that reaches p0

will have at least a segment that is spacelike.
It should now be clear that a light cone exists at every point of a spacetime, and the

analysis above applies to every point. Since ds2 is a scalar, Eq. (7.62) is covariant, so the
light cone is a geometric object; it does not depend on the choice of coordinates.

Finally, let us emphasise again that the equation of a light cone can be reduced to the
form (7.63) only at each point separately. Light cones in curved spacetimes do not look
as simple as in the Minkowski space – in general they are not axially symmetric, and
their spacelike diameters do not uniformly increase with the growth of x0. They can have
self-intersections (caustics) and the structure of a multi-sheeted surface.

7.15 Embeddings of Riemann spaces in Riemann spaces of higher dimension

Let Wm be a subspace of the Riemann space Vn, and let the metric tensor of Vn be
g��. Let Wm be defined by the parametric equations x� = f�

(

�1	 � � �	 �m
)

. Then, as we
observed in Section 7.7, Wm is itself a Riemann space of m dimensions, with the metric
tensor (7.25).

Now we ask a question reciprocal to the one answered in Section 7.7. When can a
given Riemann space Vn be a subspace of another Riemann space? We do not consider
null subspaces (i.e. subspaces whose normal vectors have zero length) because in them
the determinant of the metric is zero, and they require a separate treatment. Also, we will
investigate only the question of local embeddings, i.e. whether an open subset of Vn can
be embedded in another Riemann space. Global embeddings pose additional problems
that we will not discuss. If Vn is a subspace of UN of dimension N > n, then a set of
functions

YA = fA
(

x1	 � � �	 xn
)

	 A= 1	 � � �	N	 (7.64)

should exist such that

g�� =GABY
A	�Y

B	� 	 (7.65)

where GAB is the metric tensor of UN . Equations (7.64) are parametric equations of our
Vn as a subspace of UN . Note that YA and GAB are scalars with respect to coordinate
transformations in Vn.

The question of whether a given Vn can be embedded in a UN can be answered with
the help of the reasoning presented below (see Eisenhart (1964) for a more detailed
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exposition). Let XÂ
A be a set of vector fields on UN (where Â= n+1	 � � �	N labels vectors

and A = 1	 � � �	N labels their components) that are orthogonal to Vn and orthogonal to
each other, with each field being of unit length:

GABXÂ
AXÂ

B = �Â = ±1 �no sum over Â�	 (7.66)

GABXÂ
AXB̂

B = 0 forÂ �= B̂� (7.67)

Since YA	� are tangent to Vn and XÂ
A are orthogonal to Vn, we have

GABY
A	� XÂ

B = 0 (7.68)

for all � and Â. We differentiate (7.65) covariantly by x . Since YA and GAB are scalars
in Vn, we obtain

�GAB

�Y C
Y A	� Y

B	� Y
C	 +GAB

(

YA�� Y
B	� +YA	� Y

B��
)= 0� (7.69)

Rewriting this equation with indices and signs permuted as −����+ ����+ ����

and adding all three equations we obtain

GABY
B	

(

YA��� +
{

A

MN

}

G

YM	�Y
N 	�

)

= 0� (7.70)

For a fixed 	Y B	 is the collection of components of a vector in UN tangent to Vn

and, since  runs through all n values, the collection
{

Y B	
}

=1	���	n
is a basis of the

tangent space to Vn at a fixed point �x�� ∈ Vn. Equation (7.70) means that the object in
parentheses is orthogonal to all the n tangent vectors to Vn, and so must be spanned on
the �N −n� vectors XÂ

A that are orthogonal to Vn:

YA��� +
{

A

MN

}

G

YM	�Y
N 	� =

N
∑

Ŝ=n+1

�Ŝ��̂S���XŜ
A	 (7.71)

where ��̂S��� are the coefficients to be determined below. For a fixed Ŝ	��̂S��� is a tensor

in Vn, symmetric in ����, and a scalar in UN ; the index Ŝ labels different �s. Using
(7.65)–(7.68), we find:

��B̂��� =GABY
A��� XB̂

B +GAB

{

A

MN

}

G

YM	� Y
N 	� XB̂

B� (7.72)

In the case N = n+ 1, the single quantity ��� defined by (7.72) is called the second
fundamental form of the subspace Vn. Note that

YA��� +
{

A

MN

}

G

YM	� Y
N 	� ≡ (

YA	�
)

�N Y
N 	�

is the directional covariant derivative of YA	� along YN 	� (the subscript �N denotes a
covariant derivative in UN ). Consequently, this quantity measures the rate of change of
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the �th tangent vector YA	� as we move along the �th tangent vector field YN 	�. Then,

��B̂��� is the projection of this rate of change on the B̂th normal vector field to Vn. For
this reason, the ��B̂��� are sometimes called the extrinsic curvatures of the subspace Vn

embedded in UN . They allow us to ‘view’ the geometry of Vn from an enveloping space
and to see a difference between Riemann spaces that have the same intrinsic Riemann
geometry. For example, a plane and a cylinder in a Euclidean 3-space that have identical
intrinsic geometries have different second fundamental forms.

In order to know whether a given Vn can be embedded in a given UN , we have to
find out whether the functions YA obeying (7.65) exist. They must obey (7.71), which
determine the second covariant derivatives of YA	� in Vn. These equations will be solvable
if the integrability condition – the Ricci formula (6.9) – is fulfilled:

YA��� −YA��� = R�
���g�Y

A	� 	 (7.73)

where R�
���g� is the Riemann tensor of Vn. In calculating the third covariant derivatives

of YA from (7.71), we will encounter the first derivatives of XŜ
A, so we need to know

more about them.
Differentiating (7.68) covariantly by x�, eliminating GABY

A��� XB̂
B with use of (7.72)

and making use of covariant constancy of GAB:

GAB	� ≡GAB	CY
C	� =

({

R

AC

}

G

GRB +
{

R

BC

}

G

GAR

)

YC	� (7.74)

we obtain another expression for ��B̂���, which is equivalent to (7.72):

��Â��� = −GABY
A	� XÂ

B	� −GAR

{

R

BC

}

G

YA	� Y
C	� XÂ

B� (7.75)

This can be equivalently written as

−��Â��� =GABY
A	�

(

XÂ
B

�C
)

YC	� 	 (7.76)

which is a covariant derivative of XÂ
B in UN projected onto vectors tangent to Vn. This

provides another interpretation of the second fundamental forms:
(

XÂ
B

�C
)

YC	� is the

rate of change of the Âth normal vector to Vn as we move along the �th tangent field
YC	�, and ��Â��� is the projection of that rate of change on the �th tangent vector field
YA	�. Equation (7.76) clearly shows that ��Â��� are scalars in UN .

Now we define the following set of vector fields on Vn:

��R̂Ŝ��

def=GABXR̂
A
(

XŜ
B

�C
)

YC	� 	 (7.77)

where R̂	 Ŝ = n+1	 � � �	N . Applying the identity

GABXR̂
AXŜ

B	� = (

GABXR̂
AXŜ

B
)

	� − (GABXR̂
A
)

	� XŜ
B	
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then making use of (7.66), (7.67) and (7.74) we note that the ��R̂Ŝ�� are antisymmetric

in �R̂Ŝ�:

��R̂Ŝ�� = −��̂SR̂��	 (7.78)

so they vanish identically when N = n+1.
The derivativesXŜ

B	� are not tensors in UN . Still, they are objects with one contravariant
index in UN , and so in every fixed coordinate system they can be decomposed in the
vector basis �Y B	� 	XŜ

B�; only the coefficients of the decomposition will not be scalars:

XŜ
B	� = A�̂S��

Y B	 +
N
∑

P̂=n+1

B�P̂Ŝ��XP̂
B	 (7.79)

where the coefficients A�̂S��
 and B�P̂Ŝ�� are determined when (7.79) is substituted in

(7.75) and (7.77). Making use of (7.65)–(7.68) and contracting the result of substitution
in (7.75) with g� , we obtain

A�Â��
 = −g���Â��� −g�GAR

{

R

BC

}

G

YA	� Y
C	� XÂ

B	 (7.80)

B�R̂Ŝ�� = �R̂��R̂Ŝ�� −�R̂GBR

{

R

MN

}

G

YM	� XŜ
NXR̂

B� (7.81)

Note now that the set �Y A	�	XB̂
A�	�= 1	 � � �	 n� B̂ = n+1	 � � �	N is a field of vector

bases on UN , of exactly the kind we used in Section 4.3. In agreement with our considera-
tions there, the metric tensor GAB in UN can be represented through its scalar components
in these bases:

Ĝ�� = YA	� Y
B	� GAB = g��	 ĜÂ� = XÂ

AY B	� GAB	

ĜÂB̂ = XÂ
AXB̂

BGAB	 Â	 B̂ = n+1	 � � �	N� (7.82)

Since XÂ
A are orthogonal to all YA	� and to other XB̂

A, we have:

ĜÂ� = 0	 ĜÂB̂ = �Â�ÂB̂� (7.83)

Therefore, the inverse metric ĜAB has the same block-diagonal form

Ĝ�� = g��	 ĜÂ� = 0	 ĜÂB̂ = �Â�
ÂB̂� (7.84)

The same coefficients �Y A	� 	XB̂
A� can then be used to represent the inverse metric GAB

via the Ĝ��	 ĜÂ� and ĜÂB̂. Adapting Eq. (4.16) to our present notation, we have

GAB = YA	� Y
B	� g

�� +
N
∑

P̂=n+1

�P̂XP̂
AXP̂

B� (7.85)
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Using this to eliminate YA	� Y
B	 g

� , we find from (7.80):

A�̂S��
Y B	 = −g���Â���Y

B	 −
{

B

SC

}

G

YC	� XÂ
S

+GAR

{

R

SC

}

G

YC	� XÂ
S

N
∑

P̂=n+1

�P̂XP̂
AXP̂

B� (7.86)

Using this and (7.81) in (7.79), we see that two of the sums over P̂ cancel out and the
result is

XŜ
B	� = −g���̂S���Y

B	 −
{

B

SC

}

G

YC	� XŜ
S +

N
∑

P̂=n+1

�P̂��P̂Ŝ��XP̂
B� (7.87)

Now we can employ the integrability condition (7.73). Substituting for YA��� from (7.71),
then using (7.71) and (7.87) to eliminate the second derivatives of YA and the derivatives
of XŜ

A, we obtain

RA
MNP�G�Y

M	� Y
N 	� Y

P	

+
N
∑

Ŝ=n+1

�ŜXŜ
A
(

��̂S���� −��̂S����

)

+
N
∑

Ŝ=n+1

�ŜY
A	� g

��
(

��̂S����̂S��� −��̂S�����̂S��

)

+
N
∑

Ŝ=n+1

N
∑

P̂=n+1

�Ŝ�P̂XP̂
A
(

��̂S�����P̂Ŝ� −��̂S����P̂Ŝ��

)

−R�
���g�Y

A	� = 0	 (7.88)

where RA
MNP�G� is the Riemann tensor of UN calculated at points of Vn. Since

�Y A	� 	XB̂
A� are a basis of the tangent space, Eqs. (7.88) are equivalent to the collection

of projections of (7.88) on �Y A	� � and �XB̂
A�. Contracting (7.88) with GAQY

Q	� and
with GAQXT̂

Q and using (7.65)–(7.68), we obtain, respectively

R����g� = RQMNP�G�Y
Q	� Y

M	� Y
N 	� Y

P	

+
N
∑

Ŝ=n+1

�Ŝ

(

��̂S����̂S��� −��̂S�����̂S��

)

	 (7.89)

��T̂���� −��T̂���� = −RQMNP�G�XT̂
QYM	� Y

N 	� Y
P	

−
N
∑

Ŝ=n+1

�Ŝ

(

��̂S�����T̂ Ŝ� −��̂S����T̂ Ŝ��

)

� (7.90)
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Equations (7.89)–(7.90) are called the Gauss–Codazzi equations. When N = n+1, this
is the full set of necessary and sufficient conditions for Vn to be embeddable in UN . If
N > n+1, then (7.89)–(7.90) must be supplemented with the integrability conditions of
(7.87), XŜ

B�� −XŜ
B�� = 0. Using (7.87), (7.90) and eliminating second derivatives of

YA by (7.71), we find these conditions to be

N
∑

P̂=n+1

�P̂XP̂
B
(

��P̂Ŝ��� −��P̂Ŝ���

)

+
N
∑

P̂=n+1

N
∑

R̂=n+1

�P̂�R̂XR̂
B
(

��P̂Ŝ����R̂P̂� −��P̂Ŝ���R̂P̂��

)

+g��
N
∑

P̂=n+1

�P̂XP̂
B
(

��̂S����̂S��� −��̂S�����̂S��

)

+RB
ACD�G�Y

C	� Y
D	 XŜ

A

+g��Y B	� RQMNP�G�XŜ
QYM	� Y

N 	� Y
P	 = 0� (7.91)

As before, this is equivalent to the set of projections on �Y A	� � and �XB̂
A�. However, the

projection on �Y A	� � is zero, so the other one fully represents (7.91). Contracting (7.91)
with GBQXT̂

Q we obtain

��T̂ Ŝ��� −��T̂ Ŝ��� +
N
∑

P̂=n+1

�P̂

(

��P̂Ŝ����T̂ P̂� −��P̂Ŝ���T̂ P̂��

)

+g��
(

��T̂����T̂��� −��T̂�����T̂��

)

+RQACD�G�XT̂
QY C	� Y

D	 XŜ
A = 0� (7.92)

In relativity, Eqs. (7.89), (7.90) and (7.92) appear almost always in the special case
N = n+1 (actually, most often with N = 4 and n= 3, i.e. for hypersurfaces in spacetime).
In that case, they simplify. Equations (7.92) are fulfilled identically (because, as already
stated, ��R̂Ŝ�� = 0 in this case, and the indices with a hat run through just one value

N = n+ 1, while all terms in (7.92) are antisymmetric in �T̂ Ŝ�). The Gauss–Codazzi
equations then become

R����g� = RQMNP�G�Y
Q	� Y

M	� Y
N 	� Y

P	

+� (����� −�����

)

	 (7.93)

���� −���� = −RQMNP�G�X
QYM	� Y

N 	� Y
P	 	 (7.94)

where XQ is the single normal vector to Vn and �=GABX
AXB.

The expression (7.76) may be simplified further when the coordinates in Un+1 are
adapted to Vn as follows. Through every point of Vn we run a curve C(p) in Un+1

orthogonal to Vn and choose the arc length s on the curves as the Y n+1 coordinate in Un+1

in such a way that Y n+1 = A= constant on Vn. The equations A �= Y n+1 = constant then
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define other hypersurfaces in Un+1. The �Y 1	 � � �	 Y n� coordinates in Un+1 are chosen so
that in Vn they coincide with the intrinsic coordinates of Vn, Y

� = x�, � = 1	 � � �	 n on
Vn. In such coordinates G�n+1���Vn�= 0 and G���Vn�= g��. In these coordinates, (7.76)
may be written as

��� = −X���� (7.95)

In some textbooks, Eq. (7.95) is used as the definition of the second fundamental form
of a hypersurface. Although correct in principle, it is rather misleading, since it has the
appearance of a fully covariant definition, which it is not. It holds only in the adapted
coordinates, and the semicolon in (7.95) denotes not the covariant derivative in Vn, but
the Vn components of the covariant derivative in UN .

Another context in which the Gauss–Codazzi equations sometimes appear in relativity
is the problem of embedding a given spacetime Vn in a flat Riemann space of higher
dimension. Then, Eqs. (7.89), (7.90) and (7.92) should be fulfilled with RABCD = 0.
With flat GAB, Eqs. (7.65) are a set of n�n+1�/2 differential equations for N unknown
functions YA. In fact, we do not know what signature GAB should have, so the signs
in the canonical form of GAB are additional, discrete unknowns. A simple accounting
suggests that N = n�n+ 1�/2, then the set should have a solution (for n = 4	N = 10).
However, this does not take into account various subtle possibilities. For example, if GAB

is positive-definite while g�� is not, the set (7.65) will be unsolvable with any N .
This problem of embedding in flat Riemann spaces has not been solved in general,

and N ≤ n�n+ 1�/2 is only a plausible hint. However, for various special cases the
embeddings were demonstrated by explicit calculations and often the dimension of UN

is considerably smaller than n�n+ 1�/2. For the smallest N for which an embedding of
a given Riemann space in a flat Riemann space is possible, the number �N −n� is called
the class of the Riemann space. For example, all conformally flat Riemann spaces can be
embedded in flat spaces of dimension �n+2� (Plebański, 1967) and thus are of class 2; the
4-dimensional manifold corresponding to a spherically symmetric gravitational field in
vacuum can be embedded in a 6-dimensional flat space (see Section 14.10), i.e. is also of
class 2. Several other 4-dimensional Riemann spaces can be embedded in a 5-dimensional
flat space (Stephani, 1967b).

In the adapted coordinates, Eq. (7.75) reduces to another useful, although non-covariant,
form. In these coordinates, XB has only the �n+1�st component, thus X� = 0. Since Y � =
x� on Vn, the first term in (7.75) becomes −G��n+1�X

n+1	� = 0 (because G��n+1� = 0).

The second term becomes g��
{ �
�n+1��

}

G
Xn+1� It is easy to verify that

{ �
�n+1��

}

G
=

−1
2
g��g��	�n+1�	 thus

��� = −1
2
g��	�n+1�X

n+1� (7.96)
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Thus, in the adapted coordinates, ��� is proportional to the directional derivative of the
metric in Vn along the normal vector.

7.16 The Petrov classification

One unsolved problem of general relativity is that of detecting invariant differences
between metrics. Two metrics that seem to be different might be representations of the
same metric in two coordinate systems. Finding a transformation between them or proving
that no such transformation exists requires solving a complicated set of partial differential
equations, for which no general methods of investigation are known. Therefore, each
invariant criterion that allows us to detect coordinate-independent differences between
metrics is very useful.

One of such criteria is the Petrov classification of algebraic types of the Weyl tensor. It
was first introduced by Petrov (1954). Later, a few other methods of introducing the same
classification were presented by Pirani (1957) and Debever (1959), and the simplest one,
based on spinorial techniques, was proposed by Penrose (1960) (see descriptions of all
methods by Stephani et al. (2003); the Penrose method is presented in our Chapter 11).
We shall use here the method that can be introduced in the briefest way (Ehlers and
Kundt, 1962; Barnes, 1984), but it has the disadvantage that it is not simple in practical
application. Note: this classification applies only in four dimensions and for the Lorentzian
signature �+−−−�. Analogous classifications may exist for higher dimensions and for
other signatures, but they have not been considered in the literature.

Let u� be an arbitrary timelike vector field of unit length, g��u
�u� = 1. We define the

following two tensors:

E�
def=C���u

�u�	 (7.97)

H�

def= 1
2
√−g�����C��

�u
�u�	 (7.98)

called, respectively, the electric part and the magnetic part of the Weyl tensor; g is the
determinant of the metric tensor, necessarily negative because of the signature. (These
colloquial names have nothing to do with physical interpretation; they refer to the algebraic
analogy between (7.97)–(7.98) and the decomposition of the tensor of electromagnetic
field into the electric field and the magnetic field – see Chapter 12.) Both these tensors
are symmetric, although the symmetry of H� is not self-evident (it follows from the
traces of C��

� being zero and from the properties of �����). Also, both these tensors
represent the Weyl tensor uniquely, since inverse formulae exist (see Exercise 9). We use
these tensors to form a new complex tensor,

Q�

def=E� + iH� =Q�� (7.99)

Since E�u
 =H�u

 ≡ 0, we haveQ�u
 ≡ 0, soQ� is in fact a tensor in a 3-dimensional

space. Let us investigate the minimal equation for the matrix Q= ∥
∥Q�

∥
∥. Since

g�Q� ≡ 0	 (7.100)
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the sum of eigenvalues of Q must be zero. The following possibilities then arise (I denotes
the unit matrix):

The minimal equation Petrov type

�Q−�1I� �Q−�2I� �Q−�3I�= 0 I
�Q−�I�2 �Q+2�I�= 0 II
�Q−�I� �Q+2�I�= 0 D
Q3 = 0 III
Q2 = 0 N
Q= 0 0

The relations between different Petrov types are shown in Fig. 7.3.
The Petrov classification is important because it is coordinate-independent. Two metrics

whose Weyl tensors are of different Petrov types cannot be different coordinate repre-
sentations of the same metric (but one metric can be a limiting case of the other). If
the Petrov type is the same for two metrics, then the question is still undecided, and
other criteria must be used. In general, this equivalence problem is not algorithmic, but
attempts to solve it ‘in practice’ are under way, with some success already (Stephani
et al., 2003, Chapter 9; Lake, www.grdb.org).

I

D

0

II

NIII

3

2

1

number of 
eigenvalues

3

2

1

degree of the 
minimal equation

Fig. 7.3. The Petrov classification. Arrows show possible specialisations.
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As seen from the formulae above, in order to determine the Petrov type by this particular
method, one must choose a timelike vector field u�. But it can be verified that the Petrov
type thus established does not depend on u� (see Exercise 10).

7.17 Exercises

1. Find the metric tensors of the following surfaces: (i) a cone; (ii) a paraboloid of revolution;
(iii) one- and two-sheeted hyperboloids of revolution; (iv) a torus; (v) a cylinder. Calculate the
curvature of a cone, a cylinder, a one-sheeted hyperboloid and a torus.

2. Show that the geodesics on a 2-dimensional sphere are great circles.
Hint. First derive the equation of a great circle in spherical coordinates, then solve the geodesic
equation in the same coordinates.

3. Solve the geodesic equation on the surface of a cylinder. What curves are the geodesics?
4. Show that the Mercator mapping used in cartography is a conformal mapping of a sphere onto

a cylinder. This mapping is obtained when a cylinder is wrapped around the globe so that it
is tangent to the globe all along the equator. The images of the points on Earth’s surface are
obtained by drawing straight lines through the centre of the globe. The image of the point where
the straight line intersects the globe’s surface is the point where the same line intersects the
cylinder.

5. Show that a conformal image of a geodesic line of zero length in Vn is also a geodesic line of
zero length in Un.

6. Verify that the Weyl tensor indeed has the properties mentioned after Eq. (7.49), i.e. C��� =
C����� = C����� = C���	C����� = 0 and C��

� = 0. The other traces are zero in consequence
of this one and of the antisymmetries.

7. Verify Eqs. (7.51)–(7.54) and then verify that the Weyl tensors corresponding to conformally
related Riemann spaces are indeed equal or proportional, depending on the positions of indices.
Namely, if g̃�� is the metric tensor in Ṽn and g�� is the metric tensor in Vn, and g̃�� = �−2g��,

then C̃�
�� = C�

��.
8. Find the second fundamental form for a plane and for a cylinder embedded in a Euclidean E3.
9. Verify that the tensors E� and H� and the vector field u� uniquely determine the Weyl tensor

C��
� by

C��
� = 1√−g �

����u�
(

H�u� −H��u
)

+√−g����u�
(

H��u� −H��u�
)

−uu�E�
� +u�u

�E�
 +uu

�E�
� −u�u

�E�
� (7.101)

Hint. Calculate the quantity ���
� defined below in two ways. First introduce the auxiliary

operator

h�� = ��� −u�u�� h��u
� = 0� h��h

�
� = h��� (7.102)

It projects vectors onto a hypersurface element orthogonal to u�. The quantity ���
� is defined

as follows:

���
�

def= 1√−g �
��1�2�3���1�2�3H����1�2�2�3

u�1
u�1

h�1
h

�2
�h

�
�2
h��3

� (7.103)
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The two ways to calculate it are these:

(i) Substitute ���1�2�3��1�2�2�3
= 2���1

�1�2
, and write out all h-operators as in (7.102). You

will find that ���
� = 0.

(ii) Substitute for H�� from (7.101), and use the following identity:

C�2�3
�4

= 1
2
��1�2
�4

C�2�3
�1�2

= 1
4
��1�2�3�4��4�3�4

C�2�3
�1�2

� (7.104)

Then, using ��������1�2�3
= �����1�2�3

, express ���
� through C��

� and the (single and
double) projections of C��

� on u�. Equation (7.101) results with the help of the
following two auxiliary formulae:

C��
�u

� = 1√−g �
����u�H� −u�E�

 +u�E�
	 (7.105)

���� = g−1g��g��g�g���
���� � (7.106)

10. Show that the Petrov type determined by the method of Section 7.16 does not depend on the
choice of the vector field u�.
Hint. Consider a Lorentz transformation that changes u� into another timelike vector w� and
verify what happens to Q and its minimal equation in consequence of this. The matrix of a
Lorentz transformation, u� = L��w

�, has the property g��L
�
L

�
� = g�.
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Symmetries of Riemann spaces, invariance of tensors

8.1 Symmetry transformations

We noted in Section 3.10 that a coordinate transformation on a manifold may be
interpreted as a mapping of the manifold into itself. Now we shall interpret the associated
transformations of the tensor fields.

Let F �Mn → Mn be an isomorphism between two subsets of the manifold Mn, p ∈ Mn

and F�p� = p′ ∈ Mn. Then, the mappings associated with F carry tensors from p to p′.
Thereby, a tensor T that was attached to p before the transformation becomes T ′ attached
to p′. Now consider a subset U ⊂ Mn and its image F�U� ⊂ Mn. Suppose that F is an
element of a continuous group of mappings �Ft�, with �Ft0� being the identity map. If
F = Ft1 and �t1 − t0� is sufficiently small, then F�U�∩ U �= ∅. So let p�p′ ∈ F�U�∩ U.
Then p is an image of another point q�p = F�q�, and the tensors that were attached to
q before the transformation were sent into p (see Fig. 8.1). Hence, we have two tensors
attached to each point p: T�p� that was there before the transformation and T ′�p� that was
sent to p from q by the transformation. The latter can be calculated from the old T�q� by
(3.10). Consequently, we can compare T ′�p� with T�p�.

F

(q, T (q))
(p, T (p))

(p, T ′(p))
(p ′, T ′(p ′))

BEFORE AFTER

Fig. 8.1. A mapping F of the manifold Mn into itself takes the point q to p, and the associated
mapping transforms the tensors T�p� and T�q� into T ′�p′� and T ′�p�, respectively. Thus, after the
transformation we have two tensors at the same point: T�p� that was there before, and T ′�p� that
was brought to p by the mapping. If T ′�p�= T�p� for all p ∈ Mn, then the tensor field T is invariant
under F .

74
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If it so happens that, under the mapping F , T ′�p�= T�p� for all points of the manifold,
then we call the tensor field T invariant under the action of F , and we call F an
invariance transformation of T . If Mn is a Riemann space, and the metric tensor of Mn

is invariant under F , then the mapping F is called a symmetry or an isometry of Mn.
There is no general theory of all kinds of invariances; for example, no theory covers

discrete invariances (like reflections or the groups known in crystallography). However,
there exists a theory of those mappings that constitute continuous groups, and it will be
the subject of this chapter.

8.2 The Killing equations

Let � be a one-parameter family of mappings of a manifold Mn into itself such that

to every value of the parameter t from the range 	t1� t2

def= B ⊂ R

1 there corresponds a
mapping ft �Mn → Mn:

R
1 ⊃ B

def= 	t1� t2
 � t→ x′� = f��t� �x��� (8.1)

where ft is the collection of all the functions f� at a given t and � is the collection of
all the mappings ft for every value of t ∈ B. Let us also assume that for t = t0 where
t1 ≤ t0 ≤ t2 the mapping ft0 is an identity:

f��t0� �x��= x�� (8.2)

Example: let B = 	0�2
, Mn = R
3, and let ft be the rotation of R

3 around a fixed axis
A by the angle t. � is then the collection of rotations of R

3 around A by all angles in the
range 0 ≤ t < 2 and t0 = 0.

Now let p ∈ Mn, and apply to p the mappings ft corresponding to all t ∈ B. The
collection of all images of p will then be an arc of a curve in Mn passing through
p = ft0�p�, and each p ∈ Mn may be used to generate such an arc. The arc is called the
orbit of p under the action of � , and p is called the initial point of the orbit (although
in ‘practical’ instances the orbits are closed or infinite curves with no endpoints).

We assume that (1) the functions f��t� �x�� are of class C2 with respect to t; (2) each ft
is invertible; and (3) its inverse (denoted f−1

t ) is also of class C2. Assumption (1) implies
that along each orbit a field of tangent vectors exists and is continuously differentiable.
Assumption (2) implies that the mappings of the family � and their inverses form a group
G. The group multiplication is the superposition of the mappings:

(

ft2 ft1
)

�x�= ft2
(

ft1�x�
)

� (8.3)

where ft1 is represented by f��t1� x� and ft2 is represented by f�
(

t2� ft1�x�
)

. Assumption
(3) guarantees that the orbits generated by G will have a continuously differentiable field
of tangent vectors. For each mapping ft we may then write (from Taylor’s formula):

x′� = x�+ �f�

�t

∣
∣
∣
∣
t=t0
�t− t0�+O

(

�2
)

� (8.4)
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where x′� = f��t� �x��, x� = f� �t0� �x��, � def= t− t0 and O��2� has the property

lim
�→0

O��2�

�
= 0� (8.5)

Note that we are not making any approximation here; Eq. (8.4) is exact, but the form of
O��2� will in the end turn out to be irrelevant. All such irrelevant terms will be denoted
by the same symbol O��2� even though they may not be identical to each other.

The quantities

k�
def= �f�

�t

∣
∣
∣
∣
t=t0

(8.6)

are components of the vector field tangent to the orbits at their initial points and are
called the generators of the group G.

Suppose that a tensor T�� is invariant under all the transformations in � :

T ′
���p�= T���p� for all p ∈ Mn and t ∈ B� (8.7)

What analytic condition must T�� fulfil? Again from Taylor’s formula:

T ′
���p

′�= T ′
���p�+ �T ′

�����p�k
�+O��2�� (8.8)

where p′ has the coordinates x′� = f��t� �x�� and p has the coordinates x� = f� �t0� �x��.
From (8.4) and (8.6) we have

�x�

�x′� = �

�x′�
[

x′�− �k�−O(�2
)]= ���− �k���

�x�

�x′� −O (�2
)

= ���− �k���
(

���− �k���
�x�

�x′� −O��2�

)

−O��2�

= ���− �k���+O��2�� (8.9)

(We do not differentiate � because we have advanced along the orbits by the fixed
parameter distance � = t− t0 which is coordinate-independent.) Hence, from (8.9) and
the transformation law for T��

T ′
���p

′� = �x�

�x′�
�x�

�x′� T���p�

= T���p�− �k��� T���p�− �k��� T���p�+O��2�� (8.10)

Comparing (8.8) with (8.10) and using (8.7), we have

�
(

k�T����+k��� T��+k��� T��
)+O��2�= 0� (8.11)

We now divide (8.11) by �, let �→ 0 and recall (8.5). The result is

k�T����+k��� T��+k��� T�� = 0� (8.12)
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These are the Killing equations, and their solutions k���x�� are called Killing vector
fields. Every field of tangent vectors to orbits of invariance transformations of T�� must
fulfil (8.12), and every solution of (8.12) generates an invariance group of T��. How to
find the invariance transformations given k� and vice versa will be shown in the next
section.

Equations (8.12) can be rewritten in an equivalent form that shows explicitly their
covariance:

k�T����+k��� T��+k��� T�� = 0� (8.13)

If T�� = g�� (the metric tensor), then, in view of g���� = 0, Eq. (8.13) may be rewritten as

k���+k��� ≡ 2k����� = 0� (8.14)

In this form, the Killing equations are most easy to remember, but less convenient to
work with (and apply only to the metric tensor).

Note that Eq. (8.12) applies only to a doubly covariant tensor field, and only in this
case are the generators of invariances called Killing vector fields. We shall deal with
invariances of other tensor fields in Section 8.5 and thereafter.

8.3 The connection between generators and the invariance transformations

If x′� = f��t� �x�� is a family of invariance transformations of a certain tensor field, then
the corresponding generator is given by (8.6), where t = t0 corresponds to the identity
transformation.

Finding the family of invariances given k� is less straightforward. Any orbit B � t→
x′��t�= f��t� �x�� is at its every point tangent to k��p′� (where �x′� are the coordinates
of p′). Hence the orbits must obey

dy�

dt
= k���y�� (8.15)

with the initial conditions

y��t=t0 = x�� (8.16)

Equations (8.15)–(8.16) are to be understood as follows. A solution to (8.15) will be
a family of curves y� = f� �t�C1� � � ��Cn�, labelled by n parameters �C1� � � ��Cn�. The
condition (8.16) allows one to express the constants C� in terms of the coordinates x� of
the initial points of the curves. In this way, we obtain the set of functions

y� = f� �t� �x�� (8.17)

that satisfies Eqs. (8.15) and the initial conditions (8.16).



78 Symmetries of Riemann spaces

8.4 Finding the Killing vector fields

The Killing equations are applied to two kinds of problems:

1. Finding the metric tensor of a Riemann space whose symmetries are assumed – then
they are equations determining g��, with k� given.

2. Finding the symmetries of a Riemann space whose metric tensor is given – then
they are equations determining k� with g�� given.

An example of the first application will be shown in Section 8.9. The second application
requires additional explanation. The Killing equations are linear and homogeneous in k�,
which means that if k� and l� are Killing fields, then so is �Ak�+Bl��, where A and B
are arbitrary constants. A general solution of the Killing equations should thus be a linear
combination of basis solutions.

Does there exist a finite basis in the space of solutions of the Killing equations?
The answer is: yes, but only for the proper Killing equations, i.e. for the generators of
invariances of the metric tensor. The proof given below (borrowed from Stephani (1990))
does not work if K� generates an invariance group of a tensor field other than the metric
tensor (and examples of infinite bases are known (Krasiński, 1983)).

For a field K� generating symmetries of Mn we have from (8.14)

K��� = −K���� (8.18)

and from the Ricci identity

K���� −K���� = R����K�� (8.19)

Because R�	���
 ≡ 0, we have from the above
(

K���−K���
)

�� + (K���−K���
)

��+ (K��� −K���
)

��= 0� (8.20)

Using now (8.18), the above reduces to

K���� +K����+K���� = 0� (8.21)

and, again from (8.18), this yields

K���� = K���� −K���� = R����K�� (8.22)

Thus, in a given Riemannian manifold (where g�� and, consequently, R���� are given as
functions of �x� on open neighbourhoods of any nonsingular point), Eq. (8.22) allows us
to calculate K�����p0� algebraically if K��p0� is given. If K����p0� is given as well, then
from the derivative of (8.22) we can algebraically calculate K������p0�. By differentiating
(8.22) consecutively, we can then calculate all covariant derivatives of K� at p0. Further,
having all these derivatives (and hence, equivalently, all partial derivatives ofK� at p0), we
can calculate K��p� where p ∈ Mn lies in such a neighbourhood of p0 in which the Taylor
series for K��p� is convergent. However, after each differentiation a new derivative of the
Riemann tensor appears, so, in order that the series is convergent, R���� must be analytic
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in that neighbourhood.1 From this argument we see thatK��p0� and K����p0� at any chosen
p0 ∈ M are the data which are needed to determine K��p� uniquely (if R�����p0� are not
sufficiently differentiable, then simply another initial point is needed, not more data). But
K��� obey (8.18), so K����p0� are 1

2n�n−1� constants, and K��p0� are n constants in an
n-dimensional manifold. Thus, the Taylor series for K��p� will contain at most 1

2n�n+1�
arbitrary constants multiplying various functions of �x�. The multipliers of those constants
will be the basis solutions, and hence their number cannot exceed 1

2n�n+1�.

The prescription for finding the basis of the Killing vector fields for the metric tensor
is therefore the following:

1. Solve the Killing equations. The general solution will then depend on N ≤ 1
2n�n+1�

arbitrary constants, k� = K��A1� � � ��AN � �x��.
2. Calculate

k�
�i�

def= �K�

�Ai
� i= 1� � � ��N (8.23)

– the basis. Each k�
�i�

generates a one-parameter subgroup of symmetries discussed

in Section 8.2.

A possible confusion has to be explained here. For brevity, we say ‘Killing vectors’,
but in truth these are vector fields, whose components are functions. Hence, the number of
linearly independent Killing vector fields can be larger than the dimension of the manifold.
For example, in a flat Riemann space the number of linearly independent Killing vector
fields is equal to the maximal one, 1

2n�n+1�.
For tensor fields other than the metric tensor a finite basis may not exist, i.e. the general

solution of the invariance equations will contain arbitrary functions rather than arbitrary
constants. This is the case e.g. for the invariance group of R���� (note the positions of
indices!) in a space of constant curvature: any arbitrary vector field l has the property that
R′��

����x�� = R������x�� for transformations generated by l (see Krasiński (1983) for
less trivial examples). Thus, any coordinate transformation x′� = f���x�� is an invariance
transformation of that Riemann tensor.

8.5 Invariance of other tensor fields

We investigated the conditions of invariance of the metric tensor in more detail because
they are the most important and are most frequently met. Sometimes, though, we need
to know the invariance transformations of other tensor fields. Repeating the reasoning
(8.7)–(8.12) for the field of contravariant vectors, that is, assuming the condition V ′��x�=
V��x�, we would obtain the following equation:

k�V���−V�k���= 0� (8.24)

where k� is the generator of the transformation group.
Invariance conditions for other tensor fields are given in the exercises.

1 For more on the existence of symmetries see Section 8.11. In truth, the curvature tensor does not have to be analytic.
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8.6 The Lie derivative

If we trace the procedure that led to the Killing equations (8.12), and also the procedures
leading to the other equations listed in Section 8.5 and in the exercises, then we will
notice that the invariance equations are obtained in the following steps:

1. Take the tensor field T (arbitrary indices) to be T�t0�, where t0 is the value of the
orbit parameter corresponding to the identity transformation.

2. Using the transformation law for T under coordinate changes, calculate T�t� – the
value of T transported to another point along the group orbit. The calculation is
done up to terms linear in �t− t0� (the remaining terms are not neglected, but left
in implicit form).

3. Calculate the quantity

− lim
t→t0

T�t�−T�t0�
t− t0

def= £
k
T� (8.25)

where k� = dx′�/dt�t=t0 , and equate the result to zero.

The quantity
(

− £
k
T
)

defined in (8.25) is thus the derivative of the tensor field T by

the parameter of the transformation. As seen from (8.25), that derivative measures the
speed of changes of the field T transported along the orbits tangent to k� with respect to
the values of T defined at the consecutive points. If £

k
T = 0, then the field transported

along the orbit everywhere coincides with the tensor T defined before the transformation.
The quantity £

k
T is called the Lie derivative of the tensor field T along the vector field

k and can be calculated also if T is not invariant under the action of � .1 We have thus:
(

£
k
T = 0

)

⇐⇒ �T ′�P�≡ T�P�� � (8.26)

The Lie derivative has all the algebraic properties of ordinary differentiation: it is linear
with respect to addition, gives zero when acting on a constant, and when acting on a
tensor product it obeys:

£
k
�T1 ⊗T2�=

(

£
k
T1

)

⊗T2 +T1 ⊗
(

£
k
T2

)

� (8.27)

These properties allow us to derive the formula for the components of the Lie derivative
of any tensor field T�1����k

�1����l
along any vector field k� using the results of Section 8.5 and

of Exercises 7 and 8:

£
k
T
�1����k
�1����l

= k�T�1����k
�1����l��

−
k
∑

i=1

k�i ��i T
�1����i����k
�1����l

+
k
∑

j=1

k�j ��j T
�1����k
�1����j ����l

� (8.28)

1 The notion of the Lie derivative was introduced by Ślebodziński (1931), but the name was proposed by van Dantzig and
made popular by Schouten (Schouten and van Kampen, 1934; Schouten and Struik, 1935).
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where sums over i and j extend over all positions of �i and �j , respectively, in the series
of indices. Thus, the Lie derivative acts similarly to a directional covariant derivative
along k, the factors �−k��� � playing the role of the Christoffel symbols projected onto k,

−k��� ←→
{�
��

}

k�� With the help of (8.28) one can now verify that for any tensor field

T and any vector fields k and l we have

£
	k�l

T ≡ 	£

k
�£
l

T� (8.29)

so 	k� l
 always generates an invariance of T if k and l do.

8.7 The algebra of Killing vector fields

Since for the Killing fields generating symmetries of Mn a finite basis exists, we conclude
from the last statement of the previous section that there exist such constants Clij that,
for the basis fields,

	k
�i�
� k�
�j�

= Clijk�

�l�
�sum over l�� (8.30)

The constants Clij are called structure constants of the symmetry group. We see thus
that the set of Killing fields for a given manifold Mn is a Lie algebra. For generators of
invariances of other tensor fields, the coefficients Clij will not necessarily be constant.

8.8 Surface-forming vector fields

Let us consider two linearly independent vector fields, k and l, defined on Mn. They
define two families of curves that are everywhere tangent to these fields, by the equations
k� = dx�/d� and l� = dx�/d�, where � is a parameter on each curve. Take a single
curve C of the family defined by the field l, and then consider all the curves defined by
the field k that intersect C (see Fig. 8.2). They form a surface S out of a single curve
tangent to l and of curves tangent to k. It is clear that other vectors of the field l attached
to points of this surface need not be tangent to it. However, if they are tangent to every
such S, then the vector fields k and l are called surface-forming.

What is the condition for two vector fields to be surface-forming? Consider the family
of curves x���� tangent to the vectors of the field k, lying in the surface S. They define
a family F of mappings of the surface S into itself (the image of a point S � p = x���0�

is the point p′ = x���0 +���, where �� is the same for all p ∈ S). The mapping F1∗
associated to F maps then vectors tangent to S onto other vectors tangent to S. Hence,
starting with the vectors l that are tangent to our initial curve C, we can construct the
field �F1∗l� of vectors tangent to S. The vectors of the field k attached to points of S are
tangent to S, too – because S was constructed in this way. Hence, the vectors of the field
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C
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Fig. 8.2. We take a single curve C of the curves tangent to the field l and consider all curves
tangent to the field k that intersect C. In this way, we form a surface S, to which other vectors of
the field l may or may need not be tangent. If they are, then the vector fields k and l are called
surface-forming.

l that are attached to points of S will be everywhere tangent to S if they are everywhere
spanned on the vectors k and �F1∗l�, thus

l� = ãk�+ b̃ �F1∗l�
� � (8.31)

where ã�x� and b̃�x� are arbitrary scalar functions and b̃�x� �= 0 (with b̃�x�= 0, the fields
k and l would be linearly dependent, contrary to our assumption). This condition may be
rewritten as follows:

l�− �F1∗l�
� = ã

b̃
k�+ b̃−1

b̃
l�

def= ak�+bl�� (8.32)

But the rate of change of 	l�− �F1∗l�
�
 along the curves tangent to k is, by definition, the

Lie derivative
(

£
k
l
)�

. Finally then, the necessary and sufficient condition for the vector

fields k and l to be surface-forming is

	k� l
� ≡
(

£
k
l
)� = ak�+bl�� (8.33)

8.9 Spherically symmetric 4-dimensional Riemann spaces

We call a Riemann space spherically symmetric when the group of rotations around a
point, O�3�, is its isometry group. Its metric tensor must thus obey the Killing equations
for each of the three generators of the group O�3�. We shall first derive the formulae for
these generators.

The orbits of O�3� are 2-dimensional spheres. Each sphere can be embedded in a
3-dimensional Euclidean space E3. Its equation is then

x2 +y2 + z2 = R2� (8.34)

where R is the radius of the sphere, and x� y� z are Cartesian coordinates in E3. The
rotation around the centre of the sphere by the angle � in the plane �xi� xj� is then
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described by the transformation

x′i = xi cos�+xj sin�� x′i = −xi sin�+xj cos��

x′k = xk for i �= k �= j� (8.35)

The angle � is here the group parameter. By using Eq. (8.6) we then find that the
corresponding Killing vector is

k�
	i�j


= xj��i−xi��j� (8.36)

An arbitrary transformation of the sphere into itself can be described as a composition of
three consecutive rotations around different axes. Hence, a basis of the space of Killing
vectors will be three generators corresponding to rotations around three different axes.

It is often convenient to represent the Killing vectors by the corresponding operators
of directional derivatives, also called generators:

J
�i�

def= k�
�i�

�

�x�
� (8.37)

We will choose as our basis of Killing fields the generators of rotations around the
three axes of the rectangular Cartesian coordinate system:

J
	xy


= x
�

�y
−y �
�x
� J

	yz

= y �

�z
− z �
�y
� J

	xz

= x �

�z
− z �
�x
� (8.38)

Now let us transform the generators to the spherical coordinates

x = r sin� cos�� y = r sin� sin�� z= r cos�� (8.39)

In these coordinates the generators become, up to sign,

J
	xy


= �

��
� J

	yz

= sin�

�

��
+ cos� cot�

�

��
�

J
	xz


= cos�
�

��
− sin� cot�

�

��
�

(8.40)

Since the coordinates � and � are defined inside the spheres, we can use them as
coordinates in the whole Riemann space. Let us denote the two remaining coordinates
t and r. We shall now solve the Killing equations for the metric tensor g���t� r�����,
where x0 = t, x1 = r, x2 = �, x3 = �, with the Killing vectors given by (8.40), thus

k�
�1�

= ��3� k�
�2�

= sin���2 + cos� cot� ��3�

k�
�3�

= cos���2 − sin� cot���3�
(8.41)

Note that in assuming the form (8.41) of the Killing vectors for the whole Riemann space we have tacitly made one more
assumption. Namely, we assumed that the ����� coordinates on different spheres are correlated in such a way that the rotation
of the whole space is described by the same formula as the rotation of a single sphere. One can easily find examples of
coordinate systems that do not obey this condition. For example, suppose that we choose the �r��� coordinates in the E2 plane
so that the curves r = constant are non-concentric circles, and the azimuthal angle is measured on each circle independently,
beginning from a certain reference direction chosen to be �= 0. In such coordinates, the rotation of the plane by the angle �
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will not be described by �′ = �+�; the �′ will in general be a nonlinear function of r and �, which will reduce to ��+��
only on that circle whose centre coincides with the centre of rotation of the plane (and such a circle will not necessarily exist).

As another example of an untypical coordinate system, we may choose the ‘generalised spherical coordinates’ in the
Euclidean space E3, in which the surfaces r = constant will be concentric spheres, but the poles of the spherical coordinates
on different spheres will not lie on a straight line. A rotation by the angle � around an axis will be described by �′ = �+�
only on that sphere whose pole lies on the axis. On other spheres the rotation will be given by a complicated function of r, �
and �, and the generators will not have the form (8.40).

We should thus expect that the Killing equations for (8.41) will give us not only a
limitation on the geometrical properties of the space, but also a limitation on the coordinate
systems resulting from the assumed form of generators (8.40). We shall come back to
this question – see the paragraph containing (8.53).

The Killing equations for the vector k�
�1�

reduce to g���3 = 0, that is, the whole metric

tensor is independent of x3 = �. For k�
�2�

and k�
�3�

the Killing equations reduce to

sin�
�

��
g�� + �sin���� g2�+ �sin���� g�2

+ �cos� cot���� g3�+ �cos� cot���� g�3 = 0� (8.42)

cos�
�

��
g�� + �cos���� g2�+ �cos���� g�2

− �sin� cot���� g3�− �sin� cot���� g�3 = 0� (8.43)

In order to simplify further calculations, we will replace these equations by two combi-
nations thereof. Multiply (8.42) by cos�, (8.43) by sin� and subtract one result from the
other. Using the two identities

sin��sin����+ cos��cos���� ≡ 0�

cos��sin����− sin��cos���� ≡ ���
(8.44)

we obtain

��� g2�+��� g�2 + �cot���� g3�+ �cot���� g�3 = 0� (8.45)

Now multiply (8.42) by sin�, multiply (8.43) by cos�, and add the results. Using (8.44)
again, we obtain

�

��
g��−��� cot�g3�−��� cot�g�3 = 0� (8.46)

Equation (8.45) is algebraic. Taking consecutively the various values of the indices �
and �, we obtain from it the following results:

• For 2 �= � �= 3, 2 �= � �= 3 the equation is fulfilled identically.
• For 2 �= � �= 3, �= 2:

g�3 = 0� �= 0�1� (8.47)

• For 2 �= � �= 3��= 3:

g�2 = 0� �= 0�1� (8.48)
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• For �= 2��= 2:

g23 +g32 ≡ 2g23 = 0� (8.49)

• For �= 2��= 3:

g33 = g22 sin2�� (8.50)

• For �= �= 3 Eq. (8.50) follows once more.

Now we take the same cases for Eq. (8.46) and obtain the following:

• For 2 �= � �= 3�2 �= � �= 3 � ��/���g�� = 0����= 0�1.
• For 2 �= � �= 3��= 2 an identity as a consequence of (8.48).
• For 2 �= � �= 3��= 3 an identity as a consequence of (8.47).
• For �= 2��= 2 � ��/���g22 = 0.
• For �= 2, �= 3 an identity as a consequence of (8.49).
• For �= �= 3 an identity as a consequence of (8.50).

Hence, finally, the solution of (8.45)–(8.46) is

ds2 = ��t� r�dt2 +2��t� r�dt dr+��t� r�dr2 +��t� r�(d�2 + sin2� d�2
)

� (8.51)

This is the general 4-dimensional spherically symmetric metric form. Note that, in conse-
quence of the 2-spheres being subspaces of the Riemann space (they are the orbits of the
symmetry group), we have obtained a limitation on the signature: the signs of d�2 and
of d�2 must be the same. This is an illustration of the remark made in Section 7.15 on
embedding the Riemann spaces in spaces of higher dimension: an inconsistency between
the signatures may render the embedding impossible.

Note that we have not assumed anything about the subspaces of the variables �t� r�.
Hence, arbitrary nonsingular coordinate transformations can be carried out within those
subspaces:

t = f�t′� r ′�� r = g�t′� r ′�� (8.52)

where f and g are arbitrary functions subject to the condition that ��t� r�/��t′� r ′� �= 0.
After such a transformation the function ��t� r� will preserve its value, while ��� and �
will change to combinations of ��� and �, but the combinations will still depend only
on t′ and r ′.

Now we can illustrate the remarks made after (8.41). We can carry out a coordinate transformation on (8.51) that does not
obey (8.52), for example

r = r ′ +h������ (8.53)

where h����� is an arbitrary function. The result will be

ds2 = ��t� r�dt2 +2��t� r�dt dr ′ +2��t� r�h�� dt d�+2��t� r�h�� dt d�

+��t� r�dr ′2 +2��t� r�h�� dr ′ d�+2��t� r�h�� dr ′d�

+ (��t� r�+��t� r�h�� 2)d�2 +2��t� r�h�� h�� d� d�

+ (��t� r� sin2�+��t� r�h��2)d�2 (8.54)
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(note that both r and r ′ are present here; r ′ is one of the coordinates, while r is the function defined by (8.53)). The metric (8.54)
is still spherically symmetric because it resulted from (8.51) by a coordinate transformation, and the existence of symmetries
does not depend on the coordinates. Nevertheless, Eq. (8.54) is not of the form (8.51) because after the transformation (8.53) the
spherical coordinates on different spheres �t = constant� r = constant� are not correlated in the simple way implicit in (8.41).

The orbits of the group O�3� are the subspaces �t = constant� r = constant� whose
metric form, in the coordinates of (8.51), is ds2

2 = �(d�2 + sin2� d�2
)

(in these subspaces
� is constant). The centre of symmetry is where ��t� r�= 0. However, there is no guarantee
that such a point exists within the manifold. For example, if � is constant throughout the
Riemann space (which is a property invariant under (8.52)), then the centre of symmetry
does not exist. This is an analogy to a cylinder or a one-sheeted hyperboloid: these
surfaces are rotationally symmetric, but no point on the surface is the centre of rotation.

If the functions ����� and � in (8.51) are independent of r, then there exists a fourth
Killing field k�

�4�
= ��1. The symmetry group of such spacetimes is called the Kantowski–

Sachs symmetry (Kantowski and Sachs, 1966). In these spacetimes those hypersurfaces
t = constant for which ��t� �= 0 have no centre of symmetry. We will come back to them
in Chapter 10.

8.10 * Conformal Killing fields and their finite basis

If, after a coordinate transformation, the new expression for the metric tensor is confor-
mally equivalent to the old one, then such a transformation is called a conformal symme-
try of the Riemann space (and of the metric). The generators of these transformations
are called conformal Killing vectors and obey the equations

k�g����+k��� g��+k��� g�� ≡ k���+k��� = �g��� (8.55)

where � is a scalar function.
By a similar method to that in Section 8.4 one can show that for the Riemann spaces of

dimension n > 2 a finite basis of generators of conformal symmetries always exists; i.e.
that the dimension of the group of conformal symmetries is finite if n > 2. (We shall
deal with the case n= 2 at the end of this section – then, no finite basis exists since all
2-dimensional Riemann spaces are conformally equivalent.)

Contracting both sides of (8.55) with g�� we obtain

�= 2

n
k��� � (8.56)

From the Ricci identities we obtain (8.19) and (8.20) again, but this time instead of (8.18)
we have

−k��� = k���−�g��� (8.57)

Hence, using (8.55) and g���� = 0 in (8.20), we obtain

k���� +k����+k���� = 1
2

(

��� g��+��� g�� +��� g��
)

� (8.58)
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From (8.57) and (8.58):

k���� = k���� −k����+ 1
2

(−��� g��+��� g�� +��� g��
)

� (8.59)

To the first two terms we now apply the Ricci formula, and we obtain

k���� = R����k�+ 1
2

(−��� g��+��� g�� +��� g��
)

� (8.60)

The second derivatives of the conformal Killing fields are thus determined by the fields
k� themselves and by the gradient of �.

The first derivatives of the generators are connected by Eqs. (8.55) that determine the
symmetric part of the matrix k���. Hence, in order to know the first derivatives of k�,
we have to know the antisymmetric part of k���, i.e. 1

2n�n−1� function values, plus the
value of �. Together with k� and ��� this makes

1

2
n�n−1�+n+n+1 = 1

2
�n+1��n+2� (8.61)

constants that must be known in order to calculate k����.
Now take the covariant derivative of (8.60) with the index �:

k����� = R������k�+R����k���+
1
2

(−���� g��+���� g�� +���� g��
)

� (8.62)

From this, we subtract the corresponding expression with the indices ���� interchanged,
and we apply the Ricci formula on the left-hand side:

R
�
���k���+R����k��� =R������k�−R������k�+R����k���−R����k���

+ 1
2

(−���� g��+���� g��+���� g�� −���� g��
)

�
(8.63)

If (8.63) is solvable with respect to ����, then the second derivatives of � will be
determined by k� and k���. In that case, to calculate the third derivatives of k� from
(8.62) we need to know only those constants that were counted in (8.61).

In order to find ���� from (8.63), we contract it with g��:

R��
�

�
k���−R��k��� = −R����k�−R������k�−R��k���−R����k���

+1
2

[−�n−2�����−g�������
]

� (8.64)

The first term on the left and the last term containing curvature on the right can be
combined as follows:

R��
�

�
k���+R����k��� = R����

(

k���+k���
)= R�����g�� = �R��� (8.65)

Now using (8.65), we rewrite (8.64) as follows:

�n−2�����+g������� = −2�R��+R��k���−2R����k�

−2R��
�
���k�−2R��k���� (8.66)
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We contract this with g�� and obtain

�n−1������= −�R−2R���� k� = −�R−R�� k� (8.67)

(in the second step we used the contracted Bianchi identities
(

R�� − 1
2g
��R

)

�� ≡ 0). From
here we substitute for ����� in (8.66) and obtain

�n−2����� = 1
n−1

g��
(

�R+R�� k�
)−2�R��+2R��k���

−2R����k�−2R��
�
���k�−2R��k���� (8.68)

(It can be verified, with use of (7.15) and (8.55), that the right-hand side of (8.68) is
symmetric in � and �.) Hence, for n > 2, the second derivatives of � are determined by
k�� k��� and � itself. Thus, ����� � k� and k����� determine k����� k����� and ����, and,
consequently, determine all higher derivatives of k� and �. Then, the functions k��x� and
��x� are determined in that neighbourhood of the point investigated within which these
functions are analytic.1 Consequently, with n> 2, the conformal symmetry transformation
can have at most 1

2 �n+1��n+2� parameters, i.e. a finite basis of generators exists. Note
that 1

2 �n+1��n+2� is at the same time the maximal dimension of the isometry group of
an �n+1�-dimensional manifold.

It remains to verify the subcase n= 2. Then, from (7.61) we obtain:

R���� = 1
2
R�

��
�� � R�� = 1

2
R����

R��
�
� = g��g��R���� = 1

2
R
(

g��g
��−������

)

�

(8.69)

After substituting these in (8.68) we obtain the identity 0 ≡ 0. Hence, for 2-dimensional
surfaces, the only limitation that follows from (8.66) is (8.67). But (8.66) is just one
consequence of (8.63), which was the full integrability condition of (8.62). Hence, we
must now reconsider (8.63).

In two dimensions, every object that is antisymmetric in two indices must be propor-
tional to the Levi-Civita symbol. Since the last parenthesis in (8.63) is antisymmetric in
both 	��
 and 	��
, the following must hold:

−���� g��+���� g��+���� g�� −���� g�� = �������� (8.70)

Contracting this with ������ and using ��� = gg��g����� we obtain

� = −g������ (8.71)

Now substituting (8.70), (8.71) and (8.69) in (8.63) gives:

g��R�
��
��k���+g��R�����k���−g��R�� k������ +g��R�� k������

−g��R�����k���+g��R�����k��� = −g����������� (8.72)

1 The argument presented in the next section applies to conformal symmetries as well, so this limitation on the number of
conformal symmetries applies also for non-analytic functions.
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The left-hand side above is antisymmetric in 	��
. Using (8.55) one can verify that it is
also antisymmetric in 	��
. Hence, (8.72) will hold if the contractions of both sides of it
with ������ are equal. Doing this contraction and using again ��� = gg��g����� we obtain

R�� k
�+Rk���= −������ (8.73)

Comparing this with (8.56) in the case n= 2 we see that (8.73) is equivalent to (8.67).
Consequently, the only integrability condition of (8.62) is (8.67). This equation is of

the type of d’Alembert equation that puts a limit only on ���1�1 +��2�2 �, leaving ��11

and ��12 undetermined. Hence, when differentiated, Eq. (8.62) will produce still higher
derivatives of �. Let us also note the form of (8.62) in the case n= 2:

(

k����
)

��=
1
2
g���

��
��

(

Rk�
)

��+
1
2

(−��� g��+��� g�� +��� g��
)

�� � (8.74)

Both sides of this are covariant derivatives of some expressions, and subsequent differ-
entiations of them will have their integrability conditions identically fulfilled. In order to
determine � and k� we will thus need an infinite number of constants, i.e. no finite basis
of the conformal Killing fields exists in two dimensions. This is a consequence of the
fact that every 2-dimensional metric is conformally flat, so there exists an infinite family
of transformations preserving the explicitly conformally flat representation of the metric.

8.11 * The maximal dimension of an invariance group

In Section 8.4 we proved that the dimension of the symmetry group of an n-dimensional
Riemann space cannot be larger than 1

2n�n+1�. However, in the proof we assumed that
the Riemann tensor was analytic in the neighbourhood considered. We will argue now
that the result applies generally. It will follow from the sequence of theorems presented
below.

Theorem 8.1
Assumptions:

(1) The metric tensor g�� of the Riemann space Vn depends on a number of constant

parameters u
def= �u1� � � �� uk�.

(2) The metric h�� results from g�� when some of the parameters go to certain limits,
thus

u0
def= �u10� � � �� ui0� ui+1� � � �� uk�� h�� = lim

u→u0

g��� (8.75)

where i ≤ k.
(3) The limit is non-singular, i.e. no vector field defined on Vn becomes identically zero

in the limit.

Thesis:
The dimension of the symmetry group of h�� is larger than or equal to the dimension of
the symmetry group of g��.
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Proof:
Let k

�1�
� � � �� k

�p�
be the generators of symmetries of g��, and consider the equations £

k�m�
g�� =

0�m= 1� � � �� p. Since they are fulfilled at all values of the parameters �u1� � � �� uk�, they
must still hold in the limit. Since the limit is nonsingular, none of the generators will
become zero in the limit. Hence, h�� must inherit all the symmetries of g��.

Comments:

(a) Limits of metric tensors are coordinate-dependent, but the theorem holds for every
nonsingular limit.

(b) New symmetries may appear in the limit if there exists a vector field w� on Vn such
that £

w
g�� �= 0 but limu→u0

£
w
g�� = 0.

(c) The structure of the symmetry group H of h�� may be different from the structure
of the symmetry group G of g��, even if dim H = dim G. This may happen because
some of the structure constants of G may become zero or take other privileged values
in the limit.

(d) The theorem holds for invariance groups of any tensor fields, not just for isometries.
Thus, for example, the group of invariance transformations of the Riemann tensor
(called collineations) may only increase or preserve its dimension in a limit.

(e) The theorem holds for conformal symmetries, too.

Theorem 8.2 The flat Riemann space is contained as a limit in every nonsingular region
of every curved Riemann space.

Proof:
For any Riemann space, the flat space of the corresponding signature is its tangent
space. Thus, since in a nonsingular region the tangent space exists at every point, we
may imagine the flat limit as follows: we decrease the curvature to zero (this may
require introducing some free parameters by a coordinate transformation), and in the
process open subsets of the tangent spaces become isometric with open subsets of the
manifold itself.

Comments:

(a) This theorem is in fact one of the fundamental postulates of relativity. In the physical
language it reads as follows: special relativity is the zero-curvature limit of general
relativity, i.e. every curved spacetime has the Minkowski spacetime as a limit.

(b) The construction will fail at singular points, where the curvature is infinite (such as
the vertex of a cone). At those points, no tangent space exists.

(c) In general, we do not expect the tangent spaces at different points to coincide in the
limit. For example, a cylinder is flat, but its tangent planes do not coincide.

Theorem 8.3 No Riemann space can have a symmetry group of higher dimension than
the flat Riemann space, i.e. of more dimensions than 1

2n�n+1�.
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Proof:
The proof follows from Theorems 8.1 and 8.2 and from the result of Exercise 10.

Comment:
There exist Riemann spaces whose symmetry groups have exactly 1

2n�n+1� parameters,
and which are not locally isometric to the flat space. They are the spaces of constant
curvature, with the Riemann tensor R���� = R����� . Their symmetry groups are different
(not isomorphic) in each of the three cases R> 0�R= 0 and R< 0. In relativity, they are
the de Sitter spacetimes, see Exercise 12 and Section 14.4.

8.12 Exercises

1. Find the coordinate transformation corresponding to the field of generators k� = ���0
, where

�0 is the label of one of the coordinates.
2. Find the coordinate transformation corresponding to the field of generators k� = xi��j−xj��i,

where i and j are the labels of fixed coordinates. Show that, when �xi� xj� are Cartesian
coordinates, the transformation found here is the rotation in the plane of �xi� xj�.

3. Solve the Killing equations for k� = ���0
.

4. Show that if the parameter � of the integral lines of a generator k� = dx�/d� is chosen as a
coordinate in the Riemann space, then a tensor invariant under the transformations generated
by k� is simply independent of �.

5. Show that if there exist at least two linearly independent fields k� and l� generating invariances
of a tensor field T��, then the corresponding orbit parameters � and � can be chosen as coordi-
nates on Mn, if and only if 	k� l
� = k�l���−l�k���= 0. In that case �T��/��= �T��/�� = 0.
Note: This is just a different wording of Exercise 2 in Chapter 6.

6. Prove that if k� and l� are Killing fields in a certain Riemann space, then so is their
commutator 	k� l
�.

7. Show that the condition of invariance of a scalar field � with respect to the transformation
group generated by the vector field k� is

k����= 0� (8.76)

8. Show that the condition of invariance of a covariant vector field �� with respect to the
transformation group generated by k� is

k�����+k��� �� = 0� (8.77)

9. Prove that the conformal Killing vectors obey (8.55) and that � is related to the conformal
factor  in g′

���x
′�= �x′�g���x′� by �= k� ��.

Hint. Take first the conformal condition g′
���x

′� =  �x′�g���x′� and note that x′� are
functions of the group parameters ti. Then take the limit of this equation as ti → t0i, where
x′��t0i� x�= x�, i.e. is an identity transformation. It follows that  must obey  �x′��x′=x = 1.

10. Find and interpret all the Killing fields for the Minkowski spacetime in the Cartesian coordi-
nates, in which ds2 = dt2 − dx2 − dy2 − dz2. Find the corresponding isometries. Identify the
isometries that should be known to you from a course on special relativity: the special Lorentz
transformations along the x-, y- and z-directions, and the rotations in the planes �x� y�, �y� z�
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and �x� z�. Verify that they are indeed isometries (i.e. substitute these transformations into the
metric form and see what happens). Calculate all the structure constants of the full group.

11. Find all the conformal Killing fields for the Minkowski spacetime in the Cartesian coordinates,
in which ds2 = dt2 − dx2 − dy2 − dz2. Show that those generators that do not correspond to
isometries generate the following mappings of the Minkowski spacetime into itself:

(a) Dilatation:

x′� = x�/C� (8.78)

where C is the group parameter.
(b) The so-called acceleration transformations (for which Plebański proposed the name

‘Haantjes transformations’ (Haantjes, 1937, 1940))1:

x′� = x�+C�x�x�
1+2C�x� +C�C�x�x�

� (8.79)

where C���= 0�1�2�3, are group parameters, and the indices are raised and lowered
by the Minkowski metric. Verify that this is an Abelian group, that the composition of
two Haantjes transformations, with parameters C� and D�, is a Haantjes transformation
with parameters �C�+D��, and that the transformation inverse to (8.79) is a Haantjes
transformation with parameters C̃� = −C�. Verify that (8.79) is a composition of the
following three transformations:

• the inversion in the pseudosphere of radius L with its centre at x� = 0:

x′� = L2

x�x
�
x�� (8.80)

• translation by the vector C�:

x′′� = x′�+C�� (8.81)

• the inversion in the pseudosphere of radius L with its centre at x′′� = 0:

x′′′� = L2

x′′
�x

′′� x
′′�� (8.82)

The transformations (8.80) and (8.82) are discrete conformal symmetries of the Minkowski
spacetime in Cartesian coordinates, and (8.81) is a conformal symmetry of the Minkowski
spacetime in the coordinates x′�.

Verify that the Haantjes transformations are conformal symmetries also for a flat space of
any dimension and with any signature. Equations (8.79)–(8.82) apply then with the indices
running through n values.
Hint. Verify first that (8.79) has the following properties:

x�x
� = x′

�x
′�/T� dx�dx� = dx′

�dx′�/T 2� (8.83)

1 The papers by Haantjes (1937) contain only special cases of (8.79), corresponding to �i�C�C
� = 0 (the 1937 paper) and �ii�

only one of the parameters C� being nonzero (the 1940 paper). The oldest source known to us in which (8.79) is given in
full generality is the text by Plebański (1967).
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where

T
def= 1+2C�x

� +C�C�x�x� � (8.84)

12. One of the coordinate representations of 4-dimensional spaces of constant curvature with the
signature �+−−−� (the de Sitter (1917) spacetimes) is

ds2 = (

1−!r2
)

dt2 − 1
1−!r2

dr2 − r2
(

d�2 + sin2� d�2
)

� (8.85)

where ! is an arbitrary constant. Find all the Killing fields for this metric, in each of the
cases ! > 0, ! < 0 and ! = 0 (the last case is just the Minkowski spacetime in spherical
coordinates). Find the structure constants of these groups. Take the limit !→ 0 of the first
and second cases and see what happens with the structure constants.
Hint. You may prefer to find the Killing fields for the case != 0 by transforming the results
of Exercise 10 to spherical coordinates.
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Methods to calculate the curvature quickly – Cartan
forms and algebraic computer programs

9.1 The basis of differential forms

Let us recall the conclusion of Section 4.3: if a field of bases of contravariant (covariant)
vectors is given on a manifold, then this field determines the dual field of bases of
covariant (contravariant) vectors via (4.13) or (4.14), and then both bases can be used to
uniquely represent arbitrary tensor densities by sets of scalars.

In Chapter 4 we assumed the bases to be given, but they could be arbitrary. We are
thus allowed to choose such a basis that the set of scalars representing a given tensor
field is particularly simple. For example, the scalars representing the metric tensor

�ij = ei
�ej

�g�� (9.1)

(where i and j label different vectors) can all be constant. This is possible for any
g��: the transition from g�� to �ij is equivalent, in the language of linear algebra, to a
transformation of the matrix of a quadratic form induced by a change of basis of the
underlying vector space. Equation (9.1) does not determine the basis uniquely, but up
to the transformations that preserve �ij . For example, when dim Vn = 3 and ��ij� =
diag�1� 1� 1�, the ei

� are determined up to the orthogonal transformations O(3), and when
dim Vn = 4 and ��ij� = diag�+1�−1�−1�−1�, the ei

� are determined up to the Lorentz
transformations L(1,3).

A given basis ei
� and a given scalar image of the metric �ij uniquely determine the

metric tensor by a formula inverse to (9.1):

g�� = ei
�ej

��ij� (9.2)

In a 4-dimensional manifold, the basis ei
� is called a tetrad of vector fields, and the

scalar image of the metric �ij is called a tetrad metric.
As already shown in Section 3.2, every coordinate system naturally defines a field of

vector bases; they are the vectors orthogonal to the hypersurfaces f i = constant, defined by

e�i�
�f �i��� = 1� ei

�f j�� = 0� for j �= i (9.3)

(with no summation over i in the first equation), where 	f j
� j = 1� � � �� n are the coordi-
nates. However, not every field of bases defines a coordinate system because vector fields
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are in general not orthogonal to families of hypersurfaces. For general fields, Eqs. (9.3)
will not be integrable.

Covariant fields ei
� can be uniquely represented by differential forms

ei = ei
� dx�� (9.4)

Multiplying both sides of this equation by ei
� and using (4.13), we obtain

dx� = ei
�ei� (9.5)

From (9.2) and (9.4) we see that the metric can be represented in the basis 	ei
 in the
following way:

ds2 = g�� dx� dx� = �ije
iej� (9.6)

9.2 The connection forms

The quantities

�i
jk

def= − ei
��ej

�ek
� (9.7)

are called the Ricci rotation coefficients. Comparing this with Eq. (4.19) for the Christoffel
symbols we find

�i
jk = ei

�ej
�ek

�

{

�

��

}

− ei
���ej

�ek
�� (9.8)

{

�

��

}

= ei
�ej

�ek
�� i

jk + ei
�ei

���� (9.9)

The basis vectors and the Ricci rotation coefficients are thus a unique representation of
the Christoffel symbols.

Now let us calculate the exterior derivative of the forms ei:

dei = −ei
����� dx� ∧dx� = −ei

����ej
�ek

�ej ∧ ek = �i
�jk�e

j ∧ ek (9.10)

(along the way, we have used the antisymmetry of the exterior products and the symmetry
of the Christoffel symbols in their subscripts that allowed us to replace ei

����� with ei
����).

Hence, calculating all dei and then decomposing the result in the basis ej ∧ek we find the

�i
�jk�. Now we will show that �ijk

def= �is�
s
jk are antisymmetric in �ij� by virtue of their

definition. Note that �i
jk can be equivalently written as

�i
jk = ei

�ej
�� ek

� � (9.11)

Note also that the following is true:

ei
� = �isg��es

�� ei
� = �isg

��es
�� (9.12)
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To see this, multiply both sides of the first equation by ej
�, to obtain ei

�ej
� = �i

j , which
means that the ei

� defined by (9.12) are identical with the inverse matrices to ei
�, i.e. with

the ei
� as originally defined by (4.13) and (4.14). Our notation is thus self-consistent: the

ei
� result from the ei

� by raising the scalar index with �ij and lowering the tensor index
with g�� (where �ij is the inverse matrix to �ij). The second equation in (9.12) is verified
in a similar way.

Now let us calculate the directional derivatives of (9.1) along ek
�:

0 = (

�ij

)

�� ek
� = (

ei
�ej

�g��

)

� ek
�

= ei
�� ej

�g��ek
� + ei

�ej
�� g��ek

�

= ei
�� g���jse

s
�g��ek

� +g���ise
s
�ej

�� g��ek
�

= �jsei
�� es

�ek
� +�isej

�� es
�ek

� = �jik +�ijk� (9.13)

(Along the way we used: �ij being constant, the ei
�ej

�g�� being scalars, g�� being
covariantly constant, Eqs. (9.12), the equation g��g�� = ��

� and (9.11).) The final result
is as announced:

�ijk = −�jik� (9.14)

Using this property, one may easily verify that

�ijk = �i�jk� −�j�ik� −�k�ij�� (9.15)

Thus, having found �i
�jk� from (9.10), we can find the full �i

jk = �is�sjk from the above.
We now use the Ricci rotation coefficients to form differential 1-forms called connection
forms:

�i
j = �i

jke
k� (9.16)

The tetrad image of the covariant derivative of any tensor field can be expressed fully in
terms of the Ricci rotation coefficients in place of the Christoffel symbols and directional
derivatives in place of partial derivatives. Thus, for example, for the Riemann tensor

ea
�eb

�ec
�ed

�ee
�R�

���� ≡ ee
�Ra

bcd��

+�a
seR

s
bcd −�s

beR
a

scd −�s
ceR

a
bsd −�s

deR
a

bcs� (9.17)

9.3 The Riemann tensor

The expression d�i
j +�i

s ∧�s
j is a 2-form that can be decomposed in the basis ek ∧ el:

d�i
j +�i

s ∧�s
j = 1

2
Ri

jkle
k ∧ el� (9.18)

This is a definition of the coefficients Ri
jkl, but they turn out to be the scalar image of

the Riemann tensor

Ri
jkl = ei

�ej
�ek

�el
�R�

���� (9.19)
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This is verified as follows:

d�i
j +�i

s ∧�s
j = d

(

�i
jke

k
)+�i

sk�
s
jle

k ∧ el

= (−�i
j�k����el�

� +�i
js�

s
�kl� +�i

s�k�
s
�j�l�
)

ek ∧ el� (9.20)

where we have used (9.16), (9.10), the antisymmetry of the exterior product and (9.5).
Hence, from (9.18) and (9.20) we obtain:

1
2

Ri
jkl = −�i

j�k����el�
� +�i

js�
s
�kl� +�i

s�k�
s
�j�l�� (9.21)

Now, using (9.8) and (6.4), we obtain (9.19).
It is now easy to verify that

Rjl

def= Ri
jil ≡ ej

�el
�R��� (9.22)

i.e. that the Rjl defined above is the scalar image of the Ricci tensor R�� given by (7.46).
It is also easy to see that the scalar curvature is

R = �ijRij ≡ g��R��� (9.23)

The differential forms allow us to carry out many calculations faster and easier than
the traditional tensor calculus. Indeed, some modern courses of relativity avoid tensor
calculus altogether, using the Cartan forms as a primary device. However, that approach,
although more efficient from the point of view of calculations, makes it more difficult to
explain the historical roots of relativity.

As examples of the great simplifications to which the Cartan forms lead, let us note
that the identity R�

����� ≡ 0 is an immediate consequence of (9.10). Since the antisym-
metrisation in (9.10) is carried out automatically (it was written out explicitly only for
better clarity), we can make use of (9.16) and write (9.10) in the form

dei = −�i
j ∧ ej� (9.24)

Substituting (9.24) and (9.18) in the identity d2ei ≡ 0 we obtain 1
2 Ri

jkle
j ∧ ek ∧ el ≡ 0,

which is equivalent to Ri
�jkl� ≡ 0. This identity is thus the integrability condition for

(9.24). Similarly, the Bianchi identities (7.15) are obtained as the integrability condition
of (9.18).

In relativity, with its 4-dimensional Riemann spaces of signature �+ − −−�,
the most frequently used tetrads are: the orthonormal one (in which ��ij� =
diag�+1�−1�−1�−1�), the null tetrad (in which �01 = �10 = 1��22 = �33 = −1, all
other components of � are zero) and the double-null tetrad (in which �01 = �10 =
−�23 = −�32 = 1, all other components of � are zero). See Sections 16.5 and 16.6 for an
application of the double-null tetrad; in it the forms e3 and e4 are complex and conjugate
to each other.
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9.4 Using computers to calculate the curvature

Calculating the curvature tensor from a given metric tensor is tedious and time-consuming,
and seemingly innocent errors made along the way cause great chaos in the final results.
In order to obtain a reliable result, every step of the calculation must be carefully verified.
A relatively simple calculation typically takes several hours; in complicated cases it can
extend to months. At the same time, this is routine work that does not really require
intelligence, but just careful application of a set of rules. (Intelligence is required only to
understand the rules.) Consequently, it has all the typical features of a task for a computer.

This fact was noticed and made use of long ago. Over the last 40 years, several
computer systems have been created that can calculate the Riemann tensor and the
associated quantities from a given metric. (We mean here symbolic calculations, in which
the computer just transforms mathematical expressions, without expecting them to have
numerical values.) Some of those systems are parts of big general-purpose algebraic
systems (like Maple or Mathematica), some are specialised programs written in generally
accessible programming languages. The language of choice for computer algebra is Lisp.
Among the specialised programs that are still available are Sheep, created in Stockholm,
and Ortocartan, written by one of the authors of this text (Krasiński, 2001b). Information
on them is best obtained from the Internet (the expression to look for is ‘computer
algebra’).

The modern computer algebra programs are fairly easy to use, and the reduction in time
and effort required to do the calculation is dramatic. Instead of doing routine calculations
for weeks, one can have the result in less than a minute. Of course, this does not include
the time required to write the data, and usually several runs are needed before the result
becomes acceptable (for example, additional simplifications might be needed). Still, the
gain is obvious, and these calculations are done ‘by hand’ essentially only by students
for educational purposes. In research work, the computers have taken over the field
completely.

9.5 Exercises

1. Verify Eq. (9.17).
2. Calculate the exterior derivative of (9.18) and show that it is equivalent to the Bianchi

identities (7.15).
3. Take a simple metric, for example the de Sitter metric of Eq. (8.85), and calculate the Riemann

tensor first by tensor calculus, then by using the Cartan forms in the orthonormal tetrad. Compare
the time and effort required in the two cases. Verify Eq. (9.19).
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The spatially homogeneous Bianchi type spacetimes

10.1 The Bianchi classification of 3-dimensional Lie algebras

As already mentioned, generators of symmetries of a manifold form a Lie algebra. For
reasons to be explained further, the case when this algebra is 3-dimensional is important
for relativity. The aim of the Bianchi classification is to sort out those 3-dimensional
algebras which are inequivalent in the following sense.

A basis of generators is not defined uniquely. If k�i� is a basis, then

k̃�

�i′�

def= Ai′
j

�

k
�j�

�sum over j� (10.1)

is also a basis, provided that the matrix Ai′
j (of constant elements) is non-singular. Such

a change of basis induces the following change of the structure constants:

C̃l′
i′j′ = (

A−1
)l′

l
Ai′

iAj′ jCl
ij � (10.2)

Thus, two sets of structure constants that are related by (10.2) correspond to two bases that
span isomorphic algebras. How can one recognise whether any matrix A obeying (10.2)
exists for two given sets of Cl

ij? The answer is provided by the Bianchi classification.
Note that no reference will be made in this section to the way in which the corresponding
group acts on the manifold.

The method of presentation used here was invented by Schücking in the 1950s, but
introduced only during a seminar talk. It diffused into public knowledge via notes taken
by Kundt that were published only recently (Kundt, 2003); see Krasiński et al. (2003) for
a description of the story. The earliest papers that used this approach and that introduced
it into the literature were by Estabrook, Wahlquist and Behr (1968), Ellis and MacCallum
(1969) and by MacCallum and Ellis (1970). The classification was originally introduced
by Bianchi (1898), but his method requires a long presentation and is no longer in use.1

Bianchi sorted out the different types by the properties of the derived algebras.

1 Bianchi’s classification was considered from the point of view of the theory of Lie algebras. Its importance for relativity was
recognised much later. The first paper that explicitly introduced the Bianchi types into relativity was that by Taub (1951),
but the inspiration is said to have come from Gödel (1949). See Jantzen (2001) for more on this story.
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From (8.30) it follows that Cl
ij = −Cl

ji, so for an N -dimensional group the number of
structure constants cannot exceed N · 1

2 N�N −1�. Through the Jacobi identity

��k
�i�

� k
�j�

�� k
�l�

�+ �� k
�j�

� k
�l�

�� k
�i�

�+ ��k
�l�

� k
�i�

�� k
�j�

� = 0� (10.3)

the definition (8.30) implies a further limitation on Cl
ij:

Cm
ijC

n
ml +Cm

jlC
n

mi +Cm
liC

n
mj = 0� (10.4)

We shall take (10.4) into account later.
For N = 3� 1

2 N 2�N − 1� = 9 and equals the number of elements of a general 3 × 3
matrix. Thus for a 3-dimensional algebra all structure constants can be put into a single
3 × 3 matrix, let us call it Hab. The one-to-one correspondence between Cl

ij and the
elements of Hab is

Hab = 1
2

	aklCb
kl ⇐⇒ Ci

jk = 	sjkH
si� (10.5)

where 	akl and 	sjk are the Levi-Civita symbols. The matrix Hab can now be split into its
symmetric part

nab def= H�ab� = 1
2

(

Hab +Hba
)

(10.6)

and its antisymmetric part H�ab�. But in a 3-dimensional space there is a one-to-one
correspondence between antisymmetric matrices and vectors, so H�ab� can be represented
by the vector a defined by

ai = −1
2

	ijkH
�jk� ⇐⇒ H�ij� = −	ijmam� (10.7)

From (10.5)–(10.7) we have

Cl
jk = 	sjkn

sl −
lm
jk am� (10.8)

The identity (10.4) for N = 3 may be written as Cm
ijC

n
ml	

ijl = 0, and with use of (10.8)
this implies that

nisas = 0� (10.9)

i.e. either ai = 0 or else nis has at least one zero eigenvalue.
From (10.1) and (10.2) it is seen that nab will transform, under the change of basis

(10.1), like a twice contravariant tensor density

ñi′j′ = �det A�−1
(

A−1
)i′

i

(

A−1
)j′

j
nij� (10.10)

while ai will transform like a covariant vector, ãi′ = Ai′
iai. The transformations (10.10) can

be used to diagonalise nij . Let us then assume that the basis k
�i�

was chosen appropriately

and that nij is of the form

nij =
⎛

⎜
⎝

n1 0 0

0 n2 0

0 0 n3

⎞

⎟
⎠ � (10.11)
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This does not yet fix the basis uniquely; transformations that permute �n1� n2� n3� are still
allowed. Therefore, if any of the ni is zero, it can always be moved by transformations
of the basis to the upper left corner in (10.11), i.e. we can always assume that

n1 = 0 if ai �= 0� (10.12)

If n1 = 0 is the single zero eigenvalue, then in view of (10.9) the vector a will assume,
after such a choice of basis, the form

ai = �a� 0� 0�� (10.13)

If n1 = 0 is a multiple eigenvalue, then (10.12) still allows us to rotate a within the
eigenspace of the n1 = 0 eigenvalue. We can then rotate a so that it will assume the form
(10.13). Equation (10.13) covers the subcase ai = 0. In such a basis, (10.9) becomes

an1 = 0� (10.14)

Using all the information about Cl
ij , the commutators become:

� k
�1�

� k
�2�

� = a k
�2�

+n3 k
�3�

� � k
�2�

� k
�3�

� = n1 k
�1�

� (10.15)

� k
�3�

� k
�1�

� = n2 k
�2�

−a k
�3�

� (10.16)

This form of the commutation relations was obtained using rotations of the basis vector
fields k

�i�
. From now on, no further rotations are allowed, but we may still scale k

�i�

without changing their directions, k
�i�

= Cik
′

�i�
(no sum). After such a scaling, (10.15)–(10.16)

change to

� k
�1�

� k
�2�

� = a

C1
k
�2�

+ C3

C1C2

n3 k
�3�

� � k
�2�

� k
�3�

� = C1

C2C3

n1 k
�1�

� (10.17)

� k
�3�

� k
�1�

� = C2

C1C3

n2 k
�2�

− a

C1
k
�3�

(10.18)

(primes were dropped for clarity). We now want to use these scalings to simplify a, n1,
n2 and n3. Using C1, C2 and C3 we can scale those of the parameters �a�n1� n2� n3� that
are nonzero. A nonzero value can never be made zero by scaling. Hence, the preliminary
classification is as shown in Table 10.1, where S stands for ‘something’ (different from
zero). However, not all the entries in Table 10.1 are inequivalent. Permutations of the
basis vectors that do not violate (10.14) are still allowed. Clearly, any permutation of
�n1� n2� n3� is allowed when a = 0, and with a �= 0 we are still allowed to permute n2

and n3. Hence, only the cases indicated in the last line of the table have a chance to be
inequivalent.

We will see that the classification of the algebras into inequivalent types does not
match the columns of Table 10.1 – the table will serve merely to make the presentation
orderly. The labels for the types were introduced by Bianchi (1898), who, as already
mentioned, used a different method. By tradition, his numbering is still in use, although
it does not seem natural in the derivation presented below.
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Table 10.1 A preliminary Bianchi classification

a 0 0 0 0 0 0 0 0 S S S S
n1 0 0 0 0 S S S S 0 0 0 0
n2 0 0 S S 0 0 S S 0 0 S S
n3 0 S 0 S 0 S 0 S 0 S 0 S
Case number 1 / / / 2 / 3 4 5 6 / 7

Let us consider the consecutive columns of Table 10.1.

(1) a = n1 = n2 = n3 = 0.
This is Bianchi type I where all commutators are zero.

(2) a = n2 = n3 = 0, n1 �= 0.
Taking C1 = C2C3/n1 we obtain n′

1 = 1. This is Bianchi type II.

(3) a = n3 = 0, n1 �= 0 �= n2.
Taking C1 = C2C3/n1 we obtain n′

1 = 1. However, as seen from (10.17)–(10.18),
we have then n′

2 = n1n2/C3
2 and we will not be able to change the sign of n′

2 by
choice of C3. Therefore we must consider two cases:

(3a) n1n2 > 0.
Then we take C3 = �n1n2�

1/2 and obtain n′
2 = 1. This is a subcase of Bianchi’s

type VII. Bianchi himself called it type VII1; today it is called type VII0.

(3b) n1n2 < 0.
Then we take C3 = �−n1n2�

1/2 and obtain n′
2 = −1. This is a subcase of Bianchi’s

type VI, called today VI0. Bianchi noted that this case requires a separate treat-
ment, but the final result fits well within the general type VI, so he did not give
it any special name.

(4) a = 0, n1n2n3 �= 0.
We take C1 = C2C3/n1 and obtain n′

1 = 1. But then, as before, n′
2 = n1n2/C3

2,
and the two signs of n1n2 have to be considered separately.

(4a) n1n2 > 0.
We take C3 = �n1n2�

1/2 and obtain n′
2 = 1. However, n′

3 = n1n3/C2
2, and two

further subcases arise:

(4a1) n1n3 > 0.
Then we take C2 = �n1n3�

1/2 and obtain n′
3 = 1. Thus finally n′

1 = n′
2 = n′

3 = 1,
a = 0. This is Bianchi type IX.

�4a2) n1n3 < 0.
Then we take C2 = �−n1n3�

1/2 and obtain n′
3 = −1. Hence finally n′

1 = n′
2 = 1 =

−n′
3. This is Bianchi type VIII.

(4b) n1n2 < 0.
We then take C3 = �−n1n2�

1/2 and obtain n′
2 = −1. But then we must again

consider the same two subcases as before for C2:
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(4b1) n1n3 > 0.
Then we take C2 = �n1n3�

1/2 and obtain n′
3 = 1. Through the basis change (still

allowed!)

(

k
�3�

� k
�2�

)

=
(

k̃
�2�

�− k̃
�3�

)

we then obtain the same parameter values as in case (4a2).

(4b2) n1n3 < 0.
Then we take C2 = �−n1n3�

1/2 and obtain n′
3 = −1. Again, through the basis

change

(

k
�1�

� k
�3�

� k
�2�

)

=
(

− k̃
�3�

�− k̃
�2�

�− k̃
�1�

)

�

we arrive back at case (4a2).

(5) a �= 0, n1 = n2 = n3 = 0.
Taking C1 = a we obtain a′ = 1. This is Bianchi type V.

(6) a �= 0 �= n3, n1 = n2 = 0.
We take a = C1, C3 = aC2/n3 and obtain a′ = 1 = n′

3. This is Bianchi type IV.

(7) an2n3 �= 0, n1 = 0.
Taking C2 = C1C3/n2 we obtain n′

2 = 1. We lose again the possibility of changing
the sign of n′

3 = n2n3/C1
2 and must consider two cases:

(7a) n2n3 > 0.
Then we take C1 = �n2n3�

1/2 and obtain n′
3 = 1. Since, however, we fix C1 in

this way, we have no possibility left to scale a. Hence, with n′
3 = 1, the value of

a remains arbitrary. Then the algebras corresponding to n2 = n3 = 1 but different
values of a are not equivalent. Bianchi called this case VII2, but, as opposed to
previous types, this is a one-parameter family of inequivalent types. With a = 0,
an algebra equivalent to the one obtained in (3a) results. This is seen if, with
a = 0, we carry out the basis change

(

k
�1�

� k
�3�

)

=
(

k̃
�3�

�− k̃
�1�

)

�

The general type VII, with a �= 0, is today denoted VIIh.

(7b) n2n3 < 0.
Then we take C1 = �−n2n3�

1/2 and obtain n′
31 = −1. Just as before, we are left

then with no possibility of changing a. Again, this is a one-parameter family
of inequivalent types. Bianchi denoted it type VI; today it is denoted VIh. With
a = 0, the algebra obtained in (3b) results, i.e. type VI0. To see this, the same
basis change as in (7a) is necessary.
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Table 10.2 The Bianchi classification

a 0 0 0 0 0 0 1 1 a a 1
n1 0 1 1 1 1 1 0 0 0 0 0
n2 0 0 1 −1 1 1 0 0 1 1 1
n3 0 0 0 0 1 −1 0 1 1 −1 −1
Bianchi type I II VII0 VI0 IX VIII V IV VIIh VIh III

In Bianchi’s scheme the subcase of type VI corresponding to a = 1 emerged as a
separate type which he called type III. In it, a = n2 = 1 = −n3, n1 = 0.

The final classification is shown in Table 10.2.

10.2 The dimension of the group versus the dimension of the orbit

In Section 8.2 we defined the orbits of one-parameter families of mappings. At this point
it should be clear that the notion of an orbit can be defined also for a family (or group) of
mappings that has several parameters; such orbits can be multidimensional curved spaces.

Let us recall that the Bianchi classification was done without any reference to the way
in which the generators act on the manifold Mn. Two situations are possible:

1. The three generators (which are by definition linearly independent as vector fields)
may also be linearly independent as vectors at each single point of Mn. This happens
e.g. for generators of translations in R

3.
2. The three generators may be linearly dependent at each single point of Mn. This

happens e.g. for the generators of the group O(3), which is a 3-dimensional group,
but has 2-dimensional orbits.

A 3-dimensional isometry group cannot have 1-dimensional orbits (from the Killing
equations, if the orbits are 1-dimensional, then any two generators will be proportional
to each other with a constant factor).

If the orbits are 2-dimensional, then their curvature is characterised by one scalar that
must be invariant under the action of the group, i.e. constant. The constant curvature
may be positive (the orbits are then 2-dimensional spheres), zero (the orbits are then
2-planes) or negative (such a surface has, in polar coordinates, the metric ds2 = �1 +
a2r2�−1 dr2 +r2 d�2, but cannot be embedded in the R

3 with a positive-definite Euclidean
metric). Then, the three algebras of generators are of Bianchi types IX, VII0 and VIII,
respectively.

If a 3-dimensional group has 3-dimensional orbits, then the scalar curvature of the
orbits must also be constant. However, in three dimensions the scalar curvature does not
fully characterise the curvature of space; there exists also the Ricci tensor. Therefore
more geometries are possible; they will be briefly discussed in Section 10.6.
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10.3 Action of a group on a manifold

If a 3-dimensional group of mappings of Mn into itself has 3-dimensional orbits, then
several situations are possible, e.g. the following:

1. The mappings may or may not be symmetries of Mn (they could be, for example,
conformal symmetries of Mn).

2. The orbits may be timelike, spacelike or null hypersurfaces in Mn.

In each situation one can consider the various Bianchi types. Examples of solutions of
Einstein’s equations are known for which the orbits are timelike (e.g. Krasiński (1974)
for Bianchi type I and Krasiński (1998 and 2001a) for more general types; in the 1998
and 2001a papers there are examples of null orbits). A systematic investigation of all the
spacetimes with 3-dimensional timelike orbits of the Bianchi groups was done by Harness
(1982). Examples are also known in which 3-dimensional groups act as groups of symme-
tries on certain preferred 3-dimensional submanifolds of Mn, but are not symmetries of the
whole Mn (these are the so-called spacetimes with intrinsic symmetries (Collins, 1979); for
examples see Krasiński (1981) and Wolf (1985)). A brief discussion of general properties
of spacetimes for which a 3-dimensional symmetry group has 3-dimensional null orbits is
given in Stephani et al. (2003, Section 24.2). A systematic investigation was done of the
case when the group has 3-dimensional spacelike orbits and the group transformations
are conformal symmetries of the manifold with the conformal factor � in £

k
g�� = �g��

being constant (these are the so-called self-similar spacetimes (Eardley 1974a)).
Most effort went into investigating the case when the 3-dimensional orbits are spacelike

and the group in question is a group of symmetries of Mn (but examples are known
where the orbits are spacelike in one part of Mn and timelike elsewhere; see Collins and
Wainwright (1983) and Collins and Ellis (1979)). Before we consider this case in more
detail, a few definitions must be given.

10.4 Groups acting transitively, homogeneous spaces

Let Orb(p, G) denote the orbit of the point p ∈ Mn under the action of the group G.
We say that G acts transitively on a manifold S when, for every q ∈ S, Orb�q� G� = S
(in further considerations S will be a submanifold of Mn). Examples: The group O(3)
acts transitively on the surface of a sphere, the group of arbitrary translations in R

n acts
transitively on R

n. The space S on which G acts transitively is called homogeneous with
respect to G.

If, for every q ∈ S (assumed homogeneous with respect to G) there exists a subgroup
H ⊂ G such that Hq = q, then G is said to act multiply transitively on S. A group acting
transitively, but not multiply, acts simply transitively. Examples: The group of arbitrary
translations in R

n acts simply transitively on R
n, the group O(3) acts multiply transitively

on a 2-sphere since each point p of the sphere remains unchanged by rotations around
the axis which passes through p.
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A 4-dimensional manifold Mn with the metric tensor g of signature �+−−−� is called
a spatially homogeneous spacetime of Bianchi type if it has the following properties:

1. It has a 3-dimensional symmetry group G.
2. The orbits of the group are spacelike hypersurfaces in Mn on which G acts simply

transitively.

A Bianchi-type spacetime may have a larger symmetry group; the definition requires
then that the full symmetry group has a 3-dimensional subgroup that acts simply transi-
tively on spacelike hypersurfaces.

10.5 Invariant vector fields

As noted in Section 8.5, the vector field X is invariant under the group of transformations
generated by the vector field k if

£
k
X ≡ �k�X� = 0� (10.19)

Now let X be a vector field on S, let k
�i�

� i = 1� � � ��m be a set of generators of invariances

of X such that, at every point p ∈ S�

{

k
�i�

�p�

}m

i=1

is a basis in the tangent space to S at

p (i.e. the orbits of the group generated by k
�i�

are m-dimensional and so is S). In that

case the matrix K where Ki
� = k

�i�

��p� is non-singular at every p ∈ S, and so defines the

inverse matrix . Let us write (10.19) for all the fields k
�i�

:

k�

�i�
X��� −X�k�

�i�
�� = 0 (10.20)

and multiply this set of equations by the matrix . The result will be

X��� −i
�k�

�i�
�� X� = 0 �sum over i�� (10.21)

This formula is similar to the condition of covariant constancy of a vector field, where
the quantity

G�
��

def= −i
�k�

�i�
�� �sum over i� (10.22)

plays the role of the affine connection. Let us follow this analogy and calculate the
curvature tensor defined by G�

�� . It turns out to be equal to zero. Therefore Eq. (10.21)
defines a transport of the vector field X along the vector fields k

�i�
that is formally analogous

to the parallel transport on S and has vanishing curvature. Consequently, the transport is
path-independent. Thus, if X�p� is defined at any single point p ∈ S, then (10.21) will
uniquely define X at any other point of S.
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We can then define a vector basis X
�i�

�p� at p ∈ S� i = 1� � � ��m, and use Eq. (10.21)

(called the Lie transport) to transplant the basis to all other point of S. The vector fields
X
�i�

on S thus obtained will be automatically invariant with respect to the transformations

generated by the fields k
�i�

. We have thus proven:

Theorem 10.1 If a set of vector fields k
�i�

on S exists such that k
�i�

�p� form a basis of the

tangent space to S at each p ∈ S, then there exists a set of vector fields X
�i�

on S that are

invariant under the group of transformations generated by k
�i�

and also form a basis at

each p ∈ S.

Now let us assume in addition that all the fields k�i� are Killing fields, and let us
calculate the Lie derivatives along k�i� of the quantities

g�j��k�

def= X�

�j�
X�

�k�
g��� (10.23)

where g�� is the metric tensor on S. Since X
�i�

are invariant, we have £
k
�i�

X
�j�

= 0, and since

k
�i�

are now Killing fields, we have £
k
�i�

g�� = 0, and so £
k
�i�

g�j��k� = 0. But g�j��k� are scalars,

so from (8.76) it follows that

0 = £
k
�i�

g�j��k� = k�

�i�
g�j��k��� (10.24)

and, since k
�i�

form a basis, this means that g�j��k� are constants.

If X
�i�

and X
�j�

are invariant, then so is �X
�i�

� X
�j�

�. Since X
�i�

�p� form a basis at every p ∈ S, it

follows that �X
�i�

� X
�j�

� can be decomposed in this basis,

�X
�i�

� X
�j�

� = Dl
ijX

�l�
� (10.25)

where the scalar coefficients Dl
ij could be expected to depend on the point p. However,

calculating the Lie derivative of (10.25) along k
�i�

, using the invariance of �X
�i�

� X
�j�

� and of X
�l�

,

and using the fact that X
�l�

form a basis at each p ∈ S, we conclude that Dl
ij are constants.

The basis X
�i�

was defined by choosing X
�i�

�p0� arbitrarily at a p0 ∈ S and transporting it

off p0 by (10.21). Let us assume then that at p0 we have X�

�i�
�p0� = k�

�i�
�p0�. In this case it

can be proven that

Dl
ij = −Cl

ij� (10.26)

where Cl
ij are the structure constants defined by the commutators of k

�i�
. A hint for the

proof: since both k
�i�

and X
�i�

are bases at every p ∈ S and k
�i�

= X
�i�

at p0, there exists a
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matrix M��x�� (point-dependent!) such that X�

�i�
= Mi

jk�

�j�
(sum over j) and Mi

j�p0� = 
i
j .

Knowing this, play with the commutators at p0. (Without the condition Mi
j�p0� = 


j
i the

constants Dl
ij would be linear combinations of the Cl

ij .)

10.6 The metrics of the Bianchi-type spacetimes

Let k
�i�

be the three Killing fields required by the definition, and let xI be the coordinates

in the homogeneous hypersurfaces �i� I = 1� 2� 3�.
The homogeneous hypersurfaces are tangent to k

�i�
(by definition) and uniquely define

the vector field m orthogonal to them,

m� = 	g	−1/2	���
k�
�1�

k�
�2�

k

�3�

� (10.27)

where g = det
∣
∣
∣
∣g��

∣
∣
∣
∣. Let us choose the parameter on the integral lines of m as the

t-coordinate in Mn: m� = �x�/�t. Since m is orthogonal to all k
�i�

, in such coordinates we

have

g0I = 0� (10.28)

From the �00� component of the Killing equations, using (10.28) and k0

�i�
= 0, we further

obtain kI

�i�
g00�I = 0, i.e. g00 = g00�t�. By the next transformation, t′ = ∫ √

g00�t�dt, we

obtain (dropping the prime)

ds2 = dt2 −gIJ dxI dxJ � (10.29)

From the �0� i�, i = 1� 2� 3, components of the Killing equations we then conclude that
kI

�i�
�0 = 0 and that k

�i�
are Killing fields also for the 3-metric gIJ . Since for the homogeneous

hypersurfaces with the 3-metric gIJ the fields k
�i�

form a basis at each point, we can

apply the results of Section 10.5 to each single hypersurface. Here, Eq. (10.24) will
read kR

�i�
g�j��k��R = 0, but ��/�t�g�j��k� is not determined. Consequently, the g�j��k� will be

functions of t. Let us denote by ��i�
I the matrix inverse to XI

�i�
(where X

�i�
are the vector

fields invariant with respect to the transformations generated by k
�i�

); then, from (10.23):

gIJ = g�j��k��t��
�j�

I�
�k�

J (10.30)

and

ds2 = dt2 −g�j��k��t��
�j�

I�
�k�

J dxI dxJ � (10.31)

In order to find ��i�
I one has to construct the Killing fields and their invariant fields for

each Bianchi type separately. The resulting formulae can be found e.g. in Stephani et al.
(2003, Chapters 13 and 14, in particular Table 13.4 and p. 209).
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10.7 The isotropic Bianchi-type (Robertson–Walker) spacetimes

In astrophysics, such Bianchi-type spacetimes are important that are not only spatially
homogeneous but also spherically symmetric (isotropic). We shall deal with their
(astro)physical implications in Chapter 17. Here, we will only derive the appropriate
metric form.

The form (8.51) of the metric is preserved by the transformations t = f�t′� r ′�� r =
g�t′� r ′� which can be used to simplify (8.51) further. In order to transform (8.51) into
the form (10.31), we can choose f and g so that the new � = 0. In the new form, only
those transformations will be permissible which preserve the hypersurfaces t = constant.
They are t = f�t′�� r = g�r ′�. In agreement with (10.29), � should then depend only on
t and be transformable to 1. So, finally, a spherically symmetric metric can possibly be
homogeneous in the Bianchi sense only if it can be put in the form

ds2 = dt2 +��t� r�dr2 +
�t� r�
(

d�2 + sin2 � d�2
)

� (10.32)

With such a metric one should now solve the Killing equations. We will present the
solution and give hints on how to derive it later in this section.

Some properties of the solution can be guessed in advance. The spacetime with the
metric (10.32) has O(3) as a symmetry group. Since O(3) has 2-dimensional orbits, it
cannot be the homogeneity group H existing in the Bianchi-type spacetimes. Hence,
the full symmetry group must contain O(3) and H as two subgroups. O(3) cannot be
a subgroup of H because it acts multiply transitively. O(3) and H cannot have any
common 2-dimensional subgroup because O(3) has no 2-dimensional subgroups at all.
All 1-dimensional subgroups of O(3) are rotations around an axis, which act multiply
transitively and so cannot be subgroups of H. Thus, O(3) and H cannot have any common
subgroup apart from the identity transformation. Hence, the full symmetry group will have
at least six parameters, three of them connected with O(3) and three with H. On the other
hand, we showed in Section 8.4 that an n-dimensional manifold can have a symmetry
group of at most 1

2 n�n+ 1� parameters, i.e. at most six when n = 3. Consequently, the
spatially homogeneous and isotropic spacetimes have symmetry groups with exactly six
parameters.

We shall now indicate how to solve the Killing equations for the metric (10.32). The
calculation is laborious, but uses only routine mathematics. We recall (see Section 10.6)
that in a general Bianchi-type spacetime the Killing fields have no time-component
�k0 = 0�, while the components (00) and �0� i�� i = 1� 2� 3, of the Killing equations have
already been solved with the result kI�t = 0� I = 1� 2� 3. (We could proceed without using
this information, but then among the solutions there would be those with 4-dimensional
orbits of the symmetry group – the Minkowski and de Sitter metrics – that are just
subcases of the Bianchi spacetimes.)

The remaining Killing equations are

k1��r +2k1�r � = 0� (10.33)

k2�r 
+k1�� � = 0� (10.34)



110 The spatially homogeneous Bianchi type spacetimes

k3�r 
 sin2 � +k1�� � = 0� (10.35)

k1
�r +2k2�� 
 = 0� (10.36)

k3�� sin2 � +k2�� = 0� (10.37)

k1
�r +2k2 cot � 
+2k3�� 
 = 0� (10.38)

We seek solutions with the physical signature �+−−−�, so � < 0 and 
 < 0. We also
demand that k1 �= 0, for otherwise the orbits of the symmetry group would come out
2-dimensional, contrary to a basic property of the Bianchi-type spacetimes. The set
(10.33)–(10.38) is overdetermined, so, whichever equation we solve first, the solution
will be further limited by the remaining equations. Limitations are thereby imposed not
only on the Killing fields, but also on the metric components � and 
. Along the way,
some of the equations lead to alternatives of the type �ab = 0 =⇒ a = 0 or b = 0�, and
this is where the special cases appear.

One of the special solutions that emerge is the metric1

ds2 = dt2 −R2�t� dr2 −S2�t�
(

d�2 + sin2 � d�2
)

� (10.39)

whose generators of symmetries are

J
�1�

= �

�r
� J

�2�
= cos �

�

��
− sin � cot �

�

��
�

J
�3�

= sin �
�

��
+ cos � cot �

�

��
� J

�4�
= �

��
� (10.40)

The generators J
�2�

� J
�3�

and J
�4�

generate the O(3) group that was assumed from the beginning.

The four-parameter group generated by all of (10.40) has 3-dimensional orbits, and has no
three-parameter simply transitive subgroup. This is because O(3) alone has 2-dimensional
orbits and so cannot be simply transitive, and has no 2-dimensional subgroups that could
be combined with the transformations generated by J

�1�
into a three-parameter group.

Hence, (10.39) does not belong among the Bianchi-type spacetimes. It is a metric of the
Kantowski–Sachs (1966) class.2

The generic solution of (10.33)–(10.38) is

J
�1�

= −V cos �
�

�r
+W sin �

�

��
�

J
�2�

= V sin � cos �
�

�r
+W cos � cos �

�

��
−W

sin �

sin �

�

��
�

1 A transformation of the r-coordinate is required to achieve the form (10.39).
2 Metrics with the Kantowski–Sachs symmetry have a longer history than most people suspect. A generalisation of such a

metric first appeared in a paper by Datt (1938), but the author instantly dismissed it as unphysical. Some physical properties
of the metrics (10.39) were investigated by Kompaneets and Chernov (1964). The symmetry was noted and investigated by
Kantowski (1965), and became a classical piece of knowledge after the paper by Kantowski and Sachs (1966). The geometric
properties of the Datt metric were first investigated by Ruban (1968, 1969). See the reprints of the Datt (1938), Kantowski
(1965) and Ruban papers for more on this story.
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J
�3�

= V sin � sin �
�

�r
+W cos � sin �

�

��
+W

cos �

sin �

�

��
�

J
�4�

= cos �
�

��
− cot � sin �

�

��
�

J
�5�

= sin �
�

��
+ cot � cos �

�

��
� J

�6�
= − �

��
� (10.41)

where

W�r�
def= 1

r
− 1

4
kr� V�r�

def= 1+ 1
4

kr2� (10.42)

The metric with these symmetries is

ds2 = dt2 − R2�t�
(

1+ 1
4 kr2

)2

[

dr2 + r2
(

d�2 + sin2 � d�2
)]

� (10.43)

where R�t� is an arbitrary function and k is an arbitrary constant.
Special cases of this metric form, corresponding to k > 0 and k < 0, were first derived,

by a rather loose argument, by Friedmann (1922), who thus became, unknowingly,
the father of modern cosmology. (He died long before he could witness his success.)
A mathematically rigorous derivation, by methods different from ours, and with all signs
of k included, was given independently by Robertson (1929, 1933) and Walker (1935).
The metric form (10.43) is thus frequently called the Robertson–Walker metric. Other
names attached to it in various combinations are Friedmann and Lemaître, but those refer
to various special cases of (10.43); we shall come back to this point in Chapter 17.

The last three generators in (10.41) are easily recognised as those of O(3). We shall

use the abbreviation �i� j�
def= �J

�i�
� J

�j�
�. The commutators are

�1� 2� = kJ
�4�

�1� 3� = kJ
�5�

�2� 3� = kJ
�6�

�1� 4� = −J
�2�

�2� 4� = J
�1�

�3� 4� = 0

�1� 5� = −J
�3�

�2� 5� = 0 �3� 5� = J
�1�

�1� 6� = 0 �2� 6� = −J
�3�

�3� 6� = J
�2�

�4� 5� = J
�6�

�4� 6� = −J
�5�

�5� 6� = J
�4�

�

(10.44)

The last three commutators are those of the algebra of O(3). In (10.44) such relations
should be found that correspond to the Bianchi algebras. However, the Bianchi classifica-
tion introduced standard bases, and (10.41) may contain transformed generators. Indeed,
some of the Bianchi bases are linear combinations of (10.41).
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In the standard Bianchi bases, the nonzero structure constants were scaled to +1 or −1
whenever possible. Thus, for comparing (10.44) with (10.15)–(10.16) and Table 10.2, we
have to scale out k in (10.44); the scaling is

(

J
�1�

� J
�2�

� J
�3�

)

=√	k	
(

J̃
�1�

� J̃
�2�

� J̃
�3�

)

�

with other generators unchanged. The result is as if k = −1 when k < 0 and k = +1 when
k > 0. The formulae below show the scaled generators, with tildes omitted.

For k > 0, the Bianchi sub-basis is of type IX:

L
�1�

= 1
2

(

J
�1�

+ J
�6�

)

� L
�2�

= 1
2

(

J
�2�

− J
�5�

)

� L
�3�

= 1
2

(

J
�3�

+ J
�4�

)

� (10.45)

The new generators are determined up to arbitrary orthogonal transformations because
the matrix nij has a triple eigenvalue.

For k < 0, two Bianchi algebras are found in (10.41), one of type V:

L
�1�

= −J
�1�

� L
�2�

= J
�2�

+ J
�4�

� L
�3�

= J
�3�

+ J
�5�

� (10.46)

and one of type VIIh:

l
�1�

= −aJ
�1�

+ J
�6�

� l
�2�

= J
�2�

+ J
�4�

� l
�3�

= J
�3�

+ J
�5�

� (10.47)

For k = 0, two standard Bianchi bases are contained in (10.41):
{

J
�1�

� J
�2�

� J
�3�

}

of Bianchi

type I and
{

J
�1�

� J
�2�

� J
�4�

}

of Bianchi type VII0.

It is easy to verify that the examples of bases shown are indeed the standard Bianchi
bases of the types indicated. It is, however, more difficult to prove that only these Bianchi
algebras are contained in (10.41). This fact was apparently first discovered by Grishchuk
(1967). The relation between the symmetries of (10.33) and the possible Bianchi groups
is discussed in more detail in Ellis and MacCallum (1969).

10.8 Exercises

1. Verify that the curvature defined by (10.22) is indeed zero.
2. Verify Eq. (10.26).
3. Since the invariant fields are defined by �k

�i�
�X� = 0 and the k

�i�
do not depend on t, we can

solve this set assuming that X are independent of t. However, a general solution does depend
on time. Show that the time-dependent fields are XI

�j�
�t� = Bj

k�t�XI

�k�
�t0�, where t0 is an initial

value and Bj
k�t� is a nonsingular 3 × 3 matrix. Hence, the time dependence can be hidden in

g̃�j��k��t� = g�r��s��t�B
−1r

jB
−1s

k, and we can use XI�t0� as the new invariant fields.
Hint. Show first that if X is an invariant field, then so is dX/dt, and thus can be decomposed
in the basis of the invariant fields.
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* The Petrov classification by the spinor method

11.1 What is a spinor?

Spinors are tensor densities in a 2-dimensional vector space over the body of complex
numbers. A covariant 1-spinor �A is a covariant vector that has two complex components.
When the basis in the vector space is transformed by eA′ = LA′

AeA�A�A′ = 1� 2, the �A

transforms by

�A′ = (

L−1
)

A′
A
�A� (11.1)

In the body of complex numbers, we have to consider the complex conjugation, which
reduces to identity when applied to real numbers. Consequently, a new classification
of objects, in addition to that into covariant and contravariant, has to be introduced:
some spinors transform linearly, some transform antilinearly under a change of basis.

Antilinearly means that �L−1�A′
A appears in the transformation law instead of

(

L−1
)

A′
A
;

the overbar denotes complex conjugation. Indices of objects that transform antilinearly
are marked by an overdot, thus

�A = �Ȧ� (11.2)

The same spinor may have all four kinds of indices, for example �ȦB
ĊD.

The spinor methods are used here as an auxiliary tool for just one task. However,
spinors are a powerful tool that often makes complicated problems miraculously simple.
A useful brief introduction to spinors in relativity is the paper by Penrose (1960); extended
treatments can be found in Penrose and Rindler (1984) and Plebański (1974).

There is no metric in the space of spinors; indices are raised and lowered by the
Levi-Civita symbols �ȦḂ� �ȦḂ� �AB and �AB. Since �AB is antisymmetric, a convention on
manipulating indices has to be fixed. We adopt the convention that subscripts go before
superscripts, and the dummy indices must be made adjacent (Plebański, 1974), so

�A = �S�
SA� �A = �AS�

S� (11.3)

and similarly for dotted indices. Because of the antisymmetry and of the convention, the
following are true:

�A	A = −�A	A� �A�A ≡ 0� ∀ �A� (11.4)

113



114 * The Petrov classification by the spinor method

11.2 Translating spinors to tensors and vice versa

Spinors will be used here to represent tensors in a 4-dimensional spacetime of signature
�+−−−�. We introduce four Hermitean 2 × 2 Pauli matrices g
ȦB that are a basis of
the space of 2 × 2 complex matrices. With respect to the index 
 they transform like
components of a contravariant vector; with respect to the other two indices they transform
as spinors with one contravariant antilinear index and one contravariant linear index. We
will find below that we must in fact require that the Pauli matrices are spinor densities.
The fact that they are Hermitean means that

g
ȦB ≡ g
AḂ = g
ḂA� (11.5)

The dotted indices label rows, the non-dotted ones label columns of the matrix. The
spinor image of a covariant vector v
 is defined as follows:

vȦB = v
g
ȦB� (11.6)

The vȦB is a Hermitean spinor (density! – see below), and a scalar with respect to
coordinate transformations on the manifold. Since the g
ȦB are a basis in the space of
complex 2×2 matrices, the coefficients of decomposition of vȦB in that basis are uniquely
determined, so there must be an inverse linear mapping from vȦB to v
; we denote it

v
 = 1
2

g
ȦBvȦB� (11.7)

Since this must hold for arbitrary vectors v
 and spinors vȦB, the Pauli matrices and their
reciprocal matrices g
ȦB must obey

1
2

g
ȦBg�ȦB = ��

�

1
2

g
ĊDg
ȦB = �Ȧ
Ċ�B

D� (11.8)

This notation is consistent: the reciprocal Pauli matrices are obtained from the proper
Pauli matrices by lowering the tensor index with a metric and by lowering the spinor
indices with the Levi-Civita symbols.

The following objects may be formed out of the Pauli matrices:


� = 1
2

�AB�ṘṠg

ṘAg�ṠB� (11.9)

S
�AB = 1
2

�ṘṠ

(

g
ṘAg�ṠB −g�ṘAg
ṠB
)

� (11.10)

The first object coincides with the metric tensor. We would like the metric to be a scalar
with respect to spinor transformations. Because the Levi-Civita symbols are not spinors,
but densities of weight w = 1 and ẇ = 1, the Pauli matrices must be taken to be spinor
densities of weights w = ẇ = −1/2. This is a convention that defines how the Pauli
matrices will be transformed under a change of basis.

The object S
�AB is called a spin-tensor. It is a proper spinor (not a density), and it
has the following properties:

S
�AB = S�
��AB = S
��AB�� (11.11)
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It can be used to transform tensors antisymmetric in two indices into spinors (symmetric
in two indices). Two other properties are:

S
�AB = i
2
√−g

�
�··
��S

��AB�

S
�ȦḂ = − i
2
√−g

�
�··
��S

��ȦḂ�

(11.12)

where g = det
∥
∥g
�

∥
∥. (The dots in ���� denote the places from which the indices were

lowered. Since ���� and �··· are tensor densities of different weights, the covariant one
is not equal to the contravariant one with lowered indices.) The first property means
that the spin tensor is self-dual, the second property means that the complex-conjugate
spin-tensor is anti-self-dual. A further property follows:

S
�ABS
�ĊḊ = 0� (11.13)

The spinor image of a null vector has a special property. Let k
 be a null vector,
k
k
 = 0. From (11.8) this implies that the spinor image has then the property kȦBkȦB = 0.

But because of the Levi-Civita symbols used to manipulate indices, kȦBkȦB = 2 det
∥
∥
∥kȦB

∥
∥
∥.

A Hermitean matrix whose determinant is zero has the property kȦB = kȦkB, i.e.
there exists a spinor with one index kA that obeys this. Hence, the spinor image of
a null vector is a spinor with one index. (Note: the kA is determined only up to the
phase, i.e. kA and ei	kA, where 	 is a real function, determine the same null vector
field k
.)

The Pauli matrices could be defined as just any basis of Hermitean 2×2 matrices. By
tradition, for the flat Minkowski manifold, the Pauli matrices are defined as follows:

giȦB =
[(

1 0

0 1

)

�

(

0 1

1 0

)

�

(

0 −i

i 0

)

�

(

1 0

0 −1

)]

� (11.14)

The Minkowski metric �ij is contained as the background in every curved spacetime;
one can always find a set of vectors ei


, i�
 = 0� 1� 2� 3, such that g
�ei

ej

� = �ij (see
Chapter 9). Thus, vectors from the Minkowski space can always be transformed into
the corresponding vector fields in a curved spacetime by the mapping defined by the
matrices ei


. The image of the vector vi of the Minkowski spacetime in the curved
spacetime with metric g
� is v
 = ei


vi. Consequently, the Pauli matrices for a curved
spacetime with the metric g
� are defined by

g
ȦB = ei

giȦB� (11.15)

Example. For the metric (the Schwarzschild metric)

ds2 =
(

1− 2m

r

)

dt2 − 1
1−2m/r

dr2 − r2
(

d�2 + sin2 � d�2
)
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the basis of orthonormal contravariant vectors that maps this metric onto the Minkowski
metric is (indices number vectors, not their components)

e0 =
(

1
/√

1− 2m
r

� 0� 0� 0
)

� e1 =
(

0�
√

1− 2m
r

� 0� 0
)

�

e2 = �0� 0� 1/r� 0� � e3 = �0� 0� 0� 1/�r sin ��� �

11.3 The spinor image of the Weyl tensor

The spinor image of the Weyl tensor is defined as follows:

CABCD = 1
64

S
�
ABS��

CDC
���� (11.16)

Because of the properties of S
�
AB and C
���, the following is true:

S
�
ABS��

ĊḊC
��� ≡ 0� (11.17)

Now one of the miraculous properties of spinors shows up: all the complicated symmetries
and antisymmetries of the Weyl tensor C
��� translate into one simple property of CABCD:
it is symmetric in all its indices,

CABCD = C�ABCD�� (11.18)

Because of (11.17), the inverse mapping to (11.16) is quite simple:

C
��� = S
�
ABS��

CDCABCD +S
�
ȦḂS��

ĊḊCȦḂĊḊ� (11.19)

11.4 The Petrov classification in the spinor representation

Consider the following 4-linear form:

���� = CABCD�A�B�C�D� (11.20)

where �A = (

�1� �2
)

is an arbitrary spinor. Assume that �1 �= 0 and let z = �2/�1. Then

���� = (

�1
)4

P4�z�, where P4�z� is a polynomial of 4th degree. It has four complex roots,
and so can be factorised:

���� = (

�1
)4

a�z1 − z� �z2 − z� �z3 − z� �z4 − z�

= (


A�A
) (

�A�A
) (

�A�A
) (

�A�A
)

� (11.21)

where �z1� z2� z3� z4� are the roots of P4, and the spinors �
A��A��A��A� are defined
by the above equation, for example 
A = �az1�1�−a�2�, �A = �z2�1�−�2�, etc. Hence,
finally:

CABCD�A�B�C�D = 
A�B�C�D�A�B�C�D = 
�A�B�C�D��
A�B�C�D� (11.22)

Since the spinor �A was arbitrary, this means that

CABCD = 
�A�B�C�D� (11.23)
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Fig. 11.1. The Petrov classification by the spinor method. Arrows show possible specialisations.

(thanks to the total symmetry of CABCD, no bit of information was lost in considering the
form (11.20)).

The quantities �
A��B��C��D� are called the principal spinors of the Weyl tensor,
also Debever spinors. In a 2-dimensional space, only two of these spinors can be linearly
independent, but we can ask how many pairs of linearly independent spinors can be chosen
from this set. There are six different cases: (I) no two Debever spinors are collinear;
(II) exactly two Debever spinors are collinear; (III) three Debever spinors are collinear;
(D) two Debever spinors are collinear, the two others are collinear, too, but these pairs are
distinct; (N) all four Debever spinors are collinear; (0) the Weyl tensor is identically zero.
We have denoted the different cases by the same symbols as the Petrov types because
these are exactly the Petrov types. This approach was first introduced by Penrose (1960).
The resulting diagram can be drawn in a more illustrative way than in Section 7.16; see
Fig. 11.1. It remains to prove that this is indeed the same classification. First, however,
we shall determine some other algebraic properties of the Weyl spinor.

11.5 The Weyl spinor represented as a 3×3 complex matrix

Now let us interpret the Weyl spinor CABCD as a 3×3 complex matrix:

C
def= ∣
∣
∣
∣CAB

CD

∣
∣
∣
∣ � (11.24)

whose elements will be labelled by the ‘superindices’ �AB� and �CD�. Each ‘superindex’
takes three values: �AB� = ��11�� �12�� �22��. In the set of such matrices, the unit matrix
has components

I = ∣
∣
∣
∣��A

C�B�
D

∣
∣
∣
∣ � (11.25)
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Since CABCD is symmetric in all indices, and indices are raised by �AB, the matrix C is
trace-free. Consider the characteristic equation for the matrix C, det ��C −�I�� = 0. As
can be verified using (3.38), for a 3×3 matrix, the characteristic equation is

�3 + �Tr C��2 + 1
2

[

�Tr C�2 −Tr
(

C2
)]

�−det�C� I = 0� (11.26)

Since for the Weyl ‘supermatrix’ Tr C = 0, this simplifies to

�3 − 1
2

[

Tr
(

C2
)]

�−det�C� I = 0� (11.27)

The Hamilton–Cayley equation for C is thus

C3 − 1
2

[

Tr
(

C2
)]

C −det�C� I = 0� (11.28)

The property Tr C = 0 has one more consequence: Again using (3.38) in three dimensions,
we obtain for C

det�C� = 1
3

Tr
(

C3
)

� (11.29)

In the equations below we will use the following shorthand notation:

����
def= �A�A ≡ −�A�A = −����� (11.30)

Using Eq. (11.23) and the above notation, we find for Tr
(

C2
)

:

Tr
(

C2
) = 1

24

{

��
������+ �
������+ �
�������2

− 4�
�����������
��� � (11.31)

The general formula for the determinant is too unwieldy, but we will not need it in the
most general case. When two Debever spinors, say 
A and �A, are collinear, 
A = ��A,
the determinant is

det�C� = 1
3

Tr
(

C3
)≡ 1

3
CAB

CDCCD
EF CEF

AB = − 1
108

�3����3����3� (11.32)

In the same special case, the formula for Tr
(

C2
)

simplifies to

Tr
(

C2
)= 1

6
�2����2����2� (11.33)

Knowing all this, we can now verify that the following is true.

• In general, Eq. (11.27) has three different roots, so Eq. (11.28) is the minimal
equation, of degree 3.

• When two of the Debever spinors are collinear, say 
A = ��A, Eqs. (11.32) and
(11.33) apply, and (11.28) becomes

(

C − a

6
I

)2 (

C + a

3
I

)

= 0� a
def= ���������� (11.34)
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With no further limitations on the Debever spinors, this is still the minimal equation,
but there are only two distinct eigenvalues here.

• When 
A = ��A and �A = ��A (three Debever spinors are collinear), we have
Tr
(

C2
)= det�C� = 0, and (11.28) becomes

C3 = 0� (11.35)

With no further limitations on the Debever spinors, this is the minimal equation, and
the only eigenvalue is 0, triply degenerate.

• When 
A = ��A and �A = ��A (i.e. the Debever spinors �
A��A� are collinear and
��A��A� are collinear, but these two pairs are distinct), Eqs. (11.32) and (11.33)
simplify further to

det�C� = − 1
108

�3�3����6� Tr
(

C2
)= 1

6
�2�2����4� (11.36)

Now Eq. (11.28) becomes

(

C − b

6
I

)2(

C + b

3
I

)

= 0� b
def= ������2� (11.37)

but the minimal equation here is of degree 2:
(

C − b

6
I

)(

C + b

3
I

)

= 0� (11.38)

In verifying this, Eq. (11.25) is helpful and so is the following observation: in two
dimensions, every spinor with two indices that is antisymmetric must be proportional
to the corresponding Levi-Civita symbol, e.g. �A�B − �B�A = x�AB. Contracting
this with �AB we find x = −����. In consequence, we also have �A�B − �B�A =
−�����A

B.
• When all four Debever spinors are collinear, thus 
A = ��A, �A = ��A and �A = ��A,

Eq. (11.35) still holds, but the minimal equation is obtained from (11.38) and it is
C2 = 0.

• When C = 0, this is the minimal equation.

In this way, we have verified all the information in Figs. 7.3 and 11.1.

11.6 The equivalence of the Penrose classes to the Petrov classes

It remains to verify that the algebraic types found by the Penrose (1960) method in
this chapter coincide with those found by the Ehlers–Kundt (1962) method used in
Section 7.16. For this purpose, recall the formula

�
��� = g−1g
�g��g��g���
���� � (11.39)
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Using this, together with (11.19), (11.12) and (7.97)–(7.99), we find

Q
� = E
� + iH
�

= S
�
ABu�S��

CDu�CABCD +S
�
ȦḂu�S��

ĊḊu�CȦḂĊḊ

− i
2
√−g

�
· · ��

� S��AB

S��
CDu�u�CABCD

− i
2
√−g

�
· · ��

� S��ȦḂ

S��
ĊḊu�u�CȦḂĊḊ

= 2
(

u�S
�
ȦḂ
)(

u�S��
ĊḊ
)

CȦḂĊḊ� (11.40)

The quantity
(

u�S
�
ȦḂ
)

is in effect a 3 × 3 matrix. It has one symmetric ‘superindex’

�ȦḂ� that takes three values, and it obeys (because of antisymmetry in �
��) the identity

u

(

u�S
�
ȦḂ
)

≡ 0; hence it operates in the 3-dimensional hypersurface element orthog-

onal to u
 in the space of tensors. Consequently, the tensor index 
 takes values in a

3-dimensional space. Thus,
(

u�S
�
ȦḂ
)

provides an invertible linear mapping from the

complex vector space V1 of vectors labelled by �AB� to the complex vector space V2 of
vectors labelled by the index 
. Equation (11.40) is the corresponding bilinear mapping
of matrices over V1 to matrices over V2. Such mappings preserve the eigenvalues and
other invariants of matrices. Hence, the classification by the Penrose method is equivalent
to that by the Ehlers–Kundt method.

11.7 The Petrov classification by the Debever method

The spinor image of the Weyl tensor has the following properties:

• In the completely general case, each of the Debever spinors obeys


A
B
C
DCABCD ≡ 0� (11.41)


�ACB�CD�E
F�

C
D ≡ 0� (11.42)

Both equations are easy to verify using (11.23).
• For type II, the nondegenerate Debever spinors obey (11.41)–(11.42), while the

preferred (double) Debever spinor 
A obeys


A
B
CCABCD ≡ 0� (11.43)


�ACB�CDE
C
D ≡ 0� (11.44)

• For type D, each of the (double) Debever spinors 
A and �A obeys (11.43) and (11.44).
• For type III, the nondegenerate Debever spinor obeys (11.41)–(11.42), while the

preferred (triple) Debever spinor 
A obeys


A
BCABCD ≡ 0� (11.45)
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• For type N, the only existing (quadruple) Debever spinor 
A obeys


ACABCD ≡ 0� (11.46)

In order to express these properties in the tensor language, we must observe that the
spin-tensor has the following property:

S
�ABS��AB +S
�ȦḂS��ȦḂ = 4�
��

�� (11.47)

This can be verified using the Hermitean property of the Pauli matrices. Thus, using the
spin-tensor, we may uniquely represent any antisymmetric second-rank tensor T
� by its
(symmetric) spinor image

TAB = S
�ABT
�� T
� = 1
8

(

S
�ABTAB +S
�ȦḂTȦḂ

)

� (11.48)

In particular, T
� ≡ 0 if and only if TAB ≡ 0.
Knowing this, let

k�

def= 1
2

g�ȦB
Ȧ
B (11.49)

be the null vector defined by the Debever spinor and calculate

k�
C������k��k
�k�� (11.50)

The calculation is long and tedious, and the result is that this quantity is always zero. The
null vector k� defined by (11.49) is called a Debever vector. In verifying that (11.50) is
zero, one must calculate

S
�ABS��CDk
C����k�k
�k�� (11.51)

express the Weyl tensor C���� through its spinor image by (11.19), use the complete
symmetry of CABCD, and use the following:

S��EF k� = −1
2

g�ṖE
Ṗ
F − 1
2

g�ṖF 
Ṗ
E� (11.52)

S
�ABg�ṖE = −�ṖṠ

(

�B
Eg
ṠA +�A

Eg
ṠB
)

� (11.53)

In the end, the first part of (11.19) will give zero contribution because it will create
factors like 
Ṗ
Ṗ ≡ 0, while the second part will be proportional to CĖḞĠḢ
Ė
Ḟ 
Ġ
Ḣ ,
which is zero by virtue of (11.41).

The quantity (11.50) vanishes even in the most general case (Petrov type I). With more
special Petrov types, the vanishing quantity becomes progressively simpler. Specifically:

• For Petrov type II, each of the three nondegenerate Debever vectors obeys

k�
C������k��k
�k� = 0� (11.54)
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but the Debever vector that is the tensor image of the double Debever spinor obeys

k�
C�����k�k� = 0� (11.55)

by virtue of (11.43) and its complex conjugate.
• For Petrov type D, both Debever vectors obey (11.55).
• For Petrov type III, the tensor image of the nondegenerate Debever spinor obeys

(11.54), while the tensor image of the triple Debever spinor obeys

C����k�k� = 0� (11.56)

by virtue of (11.45) and its complex conjugate.
• For Petrov type N, the only existing Debever vector obeys

C����k� = 0� (11.57)

by virtue of (11.45) and its complex conjugate.

The method of verification is similar in each case. For (11.55), we calculate
S
�ABk
C����k�k� = 0, whereas for (11.56) and (11.57) we only express C���� , k� and
k� through their spinor images.

This approach to the Petrov classification was introduced by Debever (1959, 1964).

11.8 Exercises

1. Show that the reciprocal Pauli matrices g
ȦB result from the proper Pauli matrices g
ȦB by
lowering the tensor index with the metric and lowering the spinor indices with �ȦḂ and �AB.

2. Prove that the 
� defined by (11.9) is equal to the metric tensor.
3. Verify that the spin-tensor is symmetric in its spinorial indices.
4. Verify Eqs. (11.12) and (11.13).
5. Prove that a Hermitean 2-spinor kȦB whose determinant is zero does indeed define a spinor

with one index by kȦB = kȦkB.
6. Verify Eq. (11.17).
7. Verify Eq. (11.18).
8. Verify that (11.19) is the inverse transformation to (11.16).
9. Prove that (11.22) implies (11.23).

Hint. Since the spinor �A in (11.22) is arbitrary, assume that �A = �1� z� and consider the
polynomial in z defined by (11.22).

10. Verify Eq. (11.29).
11. Verify Eq. (11.31).
12. Verify Eq. (11.38).
13. Verify Eqs. (11.41) and (11.42).
14. Verify Eqs. (11.47) and (11.48).
15. Verify Eqs. (11.52)–(11.54).
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The Einstein equations and the sources of a
gravitational field

12.1 Why Riemannian geometry?

As argued in Section 1.4, gravitational forces can be simulated by inertial forces in
accelerated motion. Special relativity describes relations between objects in uniform
motion with respect to inertial frames, while gravitational interactions are neglected. The
metric of the Minkowski spacetime in an inertial reference frame has constant coefficients.
If we transform that metric to an accelerated frame, its components will become functions.
Hence, a gravitational field should have the same effect: in a gravitational field the metric
should also have non-constant components. Unlike in the Minkowski spacetime, in a
gravitational field it should not be possible to make the metric components constant by a
coordinate transformation. This was, in great abbreviation, the basic observation that led
Einstein (1916) to general relativity.

This idea had to be supplemented with equations that would generalise the Newtonian
laws of gravitation, and would relate the metric form to the gravitational field. The
derivation of these equations, together with several related matters, will be presented in
this chapter.

12.2 Local inertial frames

Let us recall the conclusion of Chapter 1: the Universe is permeated by gravitational
fields that cannot be screened. Their intensity can be decreased by going away from the
sources, but one can never decrease that intensity below the minimum determined by the
local mean density of matter in the Universe. For this reason, no body in the Universe
moves freely in the sense of Newton’s mechanics, and consequently inertial frames can
be realised only approximately, with a limited precision. Moreover, there exists no natural
standard of a straight line, so the departures of real motions from rectilinearity cannot be
measured.

However, let us recall that for a body falling freely in a gravitational field the inertial
force caused by the acceleration balances the gravitational force. Assume for the beginning
that the gravitational field is homogeneous. Then, two bodies falling freely in it will
have the same acceleration all the time, so their relative acceleration will be zero and,
relative to each other, they will either be at rest or move with a constant velocity. It is
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known from very precise experiments that the gravitational mass is for all material bodies
proportional to the inertial mass, and the factor of proportionality is a universal constant
(taken to be just 1). Hence, all bodies will experience the same acceleration in a given
gravitational field. Consequently, the frame of reference connected with a body falling
freely in a homogeneous gravitational field is inertial.

Homogeneous gravitational fields do not exist in Nature. However, along the trajectory
of a body falling freely in any real gravitational field, the gravitational force and the inertial
force cancel each other at every point. Hence, if the gravitational field is continuous
(which is the case in all practical instances), then, in a sufficiently small neighbourhood
of the falling body, the inertial forces will be arbitrarily small. Given the precision
� attainable in measurements, a falling body B will, at every point of its trajectory,
determine a sphere of radius � inside which the inertial force will be smaller than �, i.e.
unmeasurable. Inside that sphere the reference system defined by the body B will thus
be ‘practically’ inertial. It is called the local inertial frame of the body B. (In fact, local
inertial frames are defined not by individual bodies, but by their trajectories that do not
depend on mass.) It is called ‘local’ because it differs from the universal inertial frame
postulated in Newton’s theory: there is an infinity of local inertial frames. It is easy to see
that two different local inertial frames will in general move with acceleration relative to
each other. For example, consider two local inertial frames connected with bodies falling
freely towards the Earth from opposite directions. Thus, at a large distance from a freely
falling body its local inertial frame ceases to be inertial.

12.3 Trajectories of free motion in Einstein’s theory

Let us recall one more conclusion of Chapter 1: since no standard for a straight line exists
in Nature, it will be simpler to assume that the geometry of our space is non-Euclidean,
and in that geometry the trajectories of material bodies are free-motion trajectories. What
was called ‘gravitational field’ in Newton’s theory will be a consequence of the non-
Euclidean geometry in which the free motions take place. By the argument of Section 12.1,
the Riemann geometries should be appropriate. They do contain the Euclidean geometry
as a special case and, because of the coordinate-independent formalism they use, are
consistent with the postulate of equivalence of all reference systems.

The generalisation of the notion of a straight line that exists in a Riemann space is the
geodesic line. If in a Riemann space the curvature goes to zero, the geometry goes over
into the Euclidean geometry and the geodesic lines go over into straight lines. Hence, the
geodesic line is a natural candidate for the trajectory of a free motion. In addition, the
geodesic lines have the following property:

Theorem 12.1 For a timelike geodesic G, the coordinates in a Riemann space can be
chosen so that the Christoffel symbols vanish along G.

This is an additional argument that the geodesics should be taken as the trajectories
of free fall. The vanishing of the Christoffel symbols means that along G the local
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gravitational field will be approximately zero. (It is not exactly zero because the deriva-
tives of the Christoffel symbols will not vanish, and so the curvature will be nonzero.)

Proof: (Latin indices will label vectors; the lower case ones will run through the values
0, 1, 2, 3, whereas the upper case ones will run through the values 1, 2, 3. Tensor
indices running through the values 1, 2, 3 will also be denoted by latin letters. Wherever
confusion might arise, vector indices will have a hat over them.)

At a point p0 ∈ G, we choose such a basis in the tangent space that ê0
��p0� is

tangent to G, and the other vectors, eA
��p0��A = 1�2�3 are orthogonal to ê0

��p0�, i.e.
g��ê0

�eA
�
∣
∣
p0

= 0. Then we define the bases ei
��p� in a neighbourhood of G as follows:

1. For p ∈ G, we transport ei
��p0� parallely from p0 to p along G.

2. For p �∈ G we draw through p a geodesic G′
p that intersects G orthogonally (see

Fig. 12.1). Let p′ ∈ G be the point of intersection of G′
p and G. Then we transport

the basis ei
��p′� (already defined in point 1) to p along G′

p.

This procedure works provided that there are no singular points on G′
p. It gives a unique

result provided that p is not too distant from G, otherwise the geodesics orthogonal to G
might intersect each other.

The following equations hold on G:

ei
�	�

∣
∣
G

= 0� ei�	�
∣
∣
G

= 0
 (12.1)

G

p 0

p ′

p
s

σw

Fig. 12.1. Construction of the Fermi coordinates in which the Christoffel symbols vanish along a
given timelike geodesic G. More explanation in the text.
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The first equation follows because (i) ei
�	� ê0

�
∣
∣
G

= 0 in consequence of the basis ei
�

being transported parallely along G and ê0
� being tangent to G and (ii) ei

�	�eS
�
∣
∣
G

=
0�S = 1�2�3� in consequence of eS

� at G being tangent to one of the geodesics used
to transplant the bases parallely to other points. The second of (12.1) follows from
ei
�ei� = ���.
Now, using (12.1) in (4.19), we obtain

{

�

��

}∣
∣
∣
∣
∣

G

= es
�es���

∣
∣
G

 (12.2)

Since the Christoffel symbols are symmetric, this implies at once that

ei���
∣
∣
G

= ei���
∣
∣
G

 (12.3)

We have defined the basis (up to rotations of eA
��p0��A= 1�2�3), but we have not so far

defined the coordinates. Let w� be the tangent vector to G′
p of unit length (see Fig. 12.1),

and let  be the length of the segment of G′
p between p and G ( = 0 for points on G).

Let s be the length of the segment of G between p0 and p′. For the point p we define the
time coordinate x0 = s and the space coordinates

xA = w��p′�eÂ��p
′�� A= 1�2�3
 (12.4)

In the coordinates �s� xA� thus defined, called Fermi coordinates,

ê0
��p′�= �x�

�s

∣
∣
∣
∣

G

=∗ �
�

0� (12.5)

since ê0
� is tangent to G, and

eA
0�p′�=∗ 0� A= 1�2�3� w0 =∗ 0 (12.6)

because eA
��p′� and w� lie in the subspace of the tangent space in which x0 = constant.

Equations (12.5) and (12.6) imply that the matrix ei
��p′� has a block form. Consequently,

the inverse matrix ei��p
′� must have the same block form:

e0̂
��p

′�=∗ �
0
�� eÂ0 �p

′�=∗ 0
 (12.7)

Now let us differentiate (12.4) by  . Since w��p′� and eÂ��p
′� do not depend on  , we

have

wA��
def= dxA

d
= w��p′�eÂ��p

′�=∗ w
A�p′�� (12.8)

which means that wA does not depend on  . In consequence of (12.6) and (12.7) this
implies that wA�p′�=∗ w

K�p′�eÂK�p′��K = 1�2�3, so

eÂK�p
′�=∗ �

Â
K� (12.9)

since wK�p′� is an arbitrary 3-vector at p′. From (12.7) and (12.9) we then obtain

ei��p
′�=∗ �

i
�� ei

��p′�=∗ �
�
i
 (12.10)
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This implies that ei
��p′� is constant along G, so

ei���ê0
�
∣
∣
G

= �

�s
ei��p

′�=∗ ei��0
∣
∣
G

= 0� ei0��
∣
∣
G

= 0
 (12.11)

(The last equation follows from the previous one by virtue of (12.3).)
Now note that

d
d

(

w�ei�
)≡ D

d

(

w�ei�
)= 0� (12.12)

because w� is tangent to a geodesic on which  is the affine parameter, while ei� is
by definition parallely transported along that geodesic. Moreover, (12.8) implies that
dw�/d = 0, hence

0 = d
d

(

w�ei�
)= w� dei�

d
= w�w�ei��� = wAwBeiA�B� (12.13)

which means that ei�A�B�
∣
∣
G

= 0, because along G wA is an arbitrary vector orthogonal to
G. Then, from (12.3),

eiA�B
∣
∣
G

= 0
 (12.14)

Equations (12.11) and (12.14) imply that ei���
∣
∣
G

= 0, so, from (12.2),
{

�

��

}∣
∣
∣
∣
∣
G

=∗ 0
 � (12.15)

The physical meaning of (12.15) is that, in a sufficiently small neighbourhood of each
p′ ∈ G, other geodesics emanating from p′ are, up to first-order terms, approximated
by straight lines. This neighbourhood is thus a local inertial frame. This is one more
suggestion that geodesics should be the trajectories of free motion in relativity.

12.4 Special relativity versus gravitation theory

We have so far been dealing with the postulate that general relativity should reduce to
the Newtonian kinematics of free motion in the limit of vanishing gravitational field.
However, in between these extremes there is special relativity that describes the kinematics
of free particles in the absence of gravitation, but takes into account velocities comparable
to the velocity of light. In the previous sections we have thus been discussing a two-stage
limiting transition: with the gravitational field to zero and with the velocity of light to
infinity. When we switch off the gravitational field, but put no limits on the velocities,
the geometric theory of gravitation should reproduce special relativity.

The spacetime of special relativity is a 4-dimensional flat Riemann space of signature
�+−−−�. The Riemann space of general relativity should thus be of the same signature.
This is because a change of signature means either a discontinuity in some metric
components or at least one component of the metric passing through zero value, while
we expect that the ‘switching off’ of the gravitational field can be done in a continuous
way and does not lead through any singularities.
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12.5 The Newtonian limit of relativity

We assumed that with the gravitational field switched off, general relativity should
reproduce special relativity and, in addition, with the velocity of light becoming infinite it
should reproduce the Newtonian kinematics of free motion. A logical consequence of these
two postulates is the requirement that when the velocity of light is made infinite while
the gravitational field is still there, general relativity should reproduce the Newtonian
theory of gravitation. Hence, the field equations of relativity should, in the limit c → �,
reproduce the Poisson equation

��= 4�G�� (12.16)

where � is the gravitational potential and � is the density distribution of the matter
generating the gravitational field.

12.6 Sources of the gravitational field

In the theory of gravitation that we are now constructing, the gravitational field should
manifest its presence as non-flatness of the metric. Consequently, the metric tensor should
be the device to describe gravitation. The metric tensor in four dimensions has in the
most general case 10 components. Hence, we will need 10 equations to determine it.

The description of the sources in the equations should thus be correspondingly elab-
orate. The source in the equations generalising (12.16) should be a quantity that is a
generalisation of mass-density. According to special relativity, the mass of a body depends
on its energy. Hence, the energy of motion of a continuous medium should contribute
to the gravitational field and so should the internal energy, e.g. pressure in a fluid and
stresses in a solid.

In special relativity, the physical state of a continuous medium is described by the
energy-momentum tensor T��. In any chosen coordinate system, its component T00 is
equal to the energy-density �c2, the components T0I � I = 1�2�3, form the 3-dimensional
vector of energy stream through a unit area of surface orthogonal to the direction of flow,
and the components Tij form the stress tensor. The tensor T�� is symmetric, and so has
in general 10 independent components. Consequently, it is a natural candidate for the
source in the field equations of gravitation.

The description of motion of matter, i.e. the distribution of velocities inside matter, is
part of the energy-momentum tensor. Consequently, the equations of motion are differ-
ential relations between various components of the energy-momentum tensor. In the
Cartesian coordinates, the equations of motion are T���� =∗ 0. In any other coordinates
then, these equations take the form

T��	� = 0
 (12.17)

The field equations determining the metric tensor in which the energy-momentum tensor
should be the source must be consistent with (12.17).
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12.7 The Einstein equations

Since the gravitational field should be a consequence of the geometry being non-flat, it
should be connected with the curvature tensor which contains second derivatives of the
metric. If the curvature is contained in the left-hand side of the field equations, then these
equations will be of second order in the metric. This suggests that the components of
the metric should be analogues of the Newtonian gravitational potential. In that case, the
trajectories of motion (the geodesics) would be determined by the first derivatives of the
potential, just like in Newton’s theory.

The Riemann tensor is of rank 4, while the energy-momentum tensor is of rank 2. Hence,
if the Riemann tensor were equal to some quantity constructed from the energy-momentum
tensor, then the source of the gravitational field would be a quadratic function of the matter
density, and this would make the transition to Newton’s theory complicated. We should
thus rather equate a certain quantity constructed from the Riemann tensor to the energy-
momentum tensor. We already know one good candidate, the Ricci tensor (7.46). It is
symmetric and linear in the second derivatives of the metric. The field equations might thus
readR�� = �T��, where � is a constant coefficient. However, such equations are not consis-
tent with (12.17) because in generalR��	� �= 0. But the Ricci tensor obeys an identity similar
to (12.17), which is a consequence of the Bianchi identities (7.15). They may be written as

R�
���	� +R�

���	� +R�
���	� = 0
 (12.18)

Contracting this equation with ���g
�� we obtain

G��	� = 0� (12.19)

where

G�� def=R�� − 1
2
g��R (12.20)

is called the Einstein tensor. It is symmetric, linear in second derivatives of the metric
and obeys (12.19), which is identical in form to (12.17). Hence, G�� is a better candidate
for the left-hand side of the field equations, which should thus read

R�� − 1
2
g��R= �T��
 (12.21)

These equations are called the Einstein equations. The coefficient � will be deter-
mined in Section 12.11 from the condition of correspondence of (12.21) to the Poisson
equation (12.16).

In vacuum, the Einstein equations take the form G�� = 0, which is equivalent to
R�� = 0. This equation, together with (7.48)–(7.49), shows that outside the sources the
Riemann tensor coincides with the Weyl tensor. Thus, the Weyl tensor represents that
part of the gravitational field that propagates into vacuum. The Ricci tensor represents
that part of curvature that is algebraically determined by matter and vanishes in vacuum.

It may seem unbelievable that such important and nontrivial equations should be derived
almost without calculations and without experimental hints, by a speculation that was in
places non-unique. However, this is how it was; Einstein actually guessed his equations
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by a reasoning described above in great abbreviation (it had taken him about 10 years to
arrive at them). Therefore, it is not easy to present a convincing, brief and logical derivation
of the Einstein equations. The most convincing route to them is Einstein’s own. It was
described in more detail by Mehra (1974) and also in Einstein’s papers (Einstein et al., 1923).

Because of the non-uniqueness of the reasoning leading to the Einstein equations, the
Einstein theory is not the only geometric theory of gravitation that can be built upon the
Newton theory and special relativity. Almost every one of the intuitive assumptions made
on the way can be modified so that another set of equations will result. Some of those
alternative theories will be briefly presented in Section 12.16. However, Einstein’s theory
has successfully passed all experimental tests, whereas the other theories were either
proved wrong or else found to require such small modifications of Einstein’s relativity
that it does not really make sense to use them.

12.8 Hilbert’s derivation of the Einstein equations

The derivation of Einstein’s equations given in the previous section was based on the
original reasoning of Einstein himself. However, David Hilbert had been working on
deriving these equations simultaneously with Einstein by a different method. There was
some exchange of information between them, but, taking things formally, Hilbert was the
first to publish the correct result (see more details in Mehra (1974)).1

Hilbert proposed that all theories in mathematics and physics should be derived by
deduction from sets of axioms. This programme contributed greatly to clarifying the
logical structure of physical theories. However, the physical justification of some of the
postulates is still lacking.

For the gravitation theory, Hilbert postulated to use a variational principle. The reason-
ing leading to the postulated integrand, just like Einstein’s own reasoning, contains a
few questionable and mysterious assumptions, which are justified only intuitively. Most
of the other geometric theories of gravitation were derived from variational principles,
which confirms that this method is not unique, either.

Hilbert proposed the following axioms:

I. The field equations of gravitation should follow from a variational principle. The
independent variables in the action integral should be the components of the metric
tensor.

II. The action functional should be a scalar.
III. The Euler–Lagrange equations (i.e. the field equations) that will follow should be

differential equations of second order in g��.

1 Hilbert presented a general subclass of Eq. (12.21), corresponding to T�� = 0 and to T�� being the energy-momentum tensor
of the electromagnetic field, at the meeting of the Royal Academy of Sciences at Göttingen on 20 November 1915. Einstein
presented the final correct form of Eq. (12.21) at the meeting of the Prussian Academy of Sciences in Berlin on 25 November
1915. This game with dates is only a historical curiosity. Einstein was the unquestionable spiritual father of relativity, and
Hilbert himself made that point repeatedly. Einstein had worked on relativity since about 1907 and had published several
papers explaining the basic ideas and preliminary results. Hilbert joined in about 1913 and was influenced by Einstein’s ideas
from the beginning.
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From this point on, further reasoning leads to Einstein’s equations almost uniquely, but
the postulates themselves leave several questions open. For example, some unanswered
questions regarding axiom I are the following:

1. What is the geometrical and physical interpretation of the action functional?
2. What is the geometrical and physical meaning of the extremum found from the

Euler–Lagrange equations?
3. Why should the field equations of gravitation be equivalent to an extremum of some

abstract quantity?

Axiom II is justified by the observation that if an integral should be a tensorial
object, then the integrand must be a scalar. Integrals of other tensorial objects are not
tensors. Deriving covariant equations from a non-covariant action integral would thus be
inconsistent with the underlying philosophy of the theory.

Axiom III makes use of the correspondence principle in the simplest way. Since the
Poisson equation, which should follow from the geometric equations as a limit, is of
second order, and most other physical theories are based on second-order equations, the
field equations of gravitation should be of second order, too. However, this is not a unique
argument either: theories of gravitation with field equations of fourth order do exist. In
the limiting transition to Newton’s theory, the terms with derivatives of order higher than
2 disappear.

The conclusions of Hilbert’s axioms are the following:
I. In a 4-dimensional spacetime, the action integral should be

∫

�4
� d4x, where �4 is

a certain 4-volume in the spacetime, on whose boundary ��4 the variations �g�� vanish.
The function � depends on the metric tensor g�� and its derivatives g����� g���� , etc.

II. If
∫

�4
� d4x should be a scalar, then � should be a scalar density of weight −1

because the volume element d4x is a scalar density of weight +1. The simplest scalar
density of weight −1 is

√−g. Thus � = √−gH , where H is a proper scalar.
III. The order of the Euler–Lagrange equations is twice the order of the highest

derivative in the action integral. It would thus be best if H were a function only of g��
and g����. However, one cannot form a non-trivial scalar by combining algebraically g��

and g���� =
{

�

��

}

g�� +
{

�

��

}

g��� since the Christoffel symbols are not tensors.

The second derivatives of g��, if present in H , will not give a contribution to the
Euler–Lagrange equations if they can be collected into a divergence of an expression that
vanishes on the boundary of the integration volume. This will be possible if g���� enter
H linearly, i.e. are contracted only with terms that do not contain g���� . Expressions
linear in the Riemann tensor are of this form.

The only expressions that can be built from the Riemann tensor and are linear in g����
are R�

��� = R�� = −R�
��� and g��R�� = R. Hence H = g��R�� = R and

Wg =
∫

�4

√−gRd4x
 (12.22)
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More exactly, this should be the action integral for the left-hand side of the field equations.
The full action integral should be

W =Wg +
∫

�4

Ld4x� (12.23)

where L= 0 in vacuum.
Before we calculate �Wg/�g��, let us note two auxiliary equations:

�g = 1
3!�

�1


�4��1


�4g�1�1
g�2�2

g�3�3
�g�4�4

= 1
3!g�

�1


�4g�1�1 
 
 
 g�4�4��1


�4
g�1�1

g�2�2
g�3�3

�g�4�4

= 1
3!g�

�1


�4
�1


�4

��1
�1
��2

�2
��3

�3
g�4�4�g�4�4

= gg���g��� (12.24)

�g�� = −g��g��g�
 (12.25)

In (12.24) we used (3.39), its derivative, (7.106), (3.32) and (3.37). Equation (12.25)
follows by differentiating the equation g��g�� = ���.

Note that the variations of the Christoffel symbols are differences between Christoffel
symbols calculated from different metric tensors,

�

{

�

��

}

=
{

�

��

}

�g

 +�g

�−
{

�

��

}

�g�
 (12.26)

Hence, �

{

�

��

}

is a tensor because the non-tensorial terms in (4.23) will cancel out in the

combination (12.26). Consequently, it makes sense to calculate the covariant derivative

of �

{

�

��

}

. Writing it out and comparing it with �R��, which is calculated from the

definition of R��, we find that

�R�� = −
(

�

{

�

��

})

	� +
(

�

{

�

��

})

	� 
 (12.27)

Hence

�Wg =
∫

�4

d4x

{

− 1
2
√−g gg

���g��R−√−gg��g�R�� �g�

+√−gg��
[

−
(

�

{

�

��

})

	� +
(

�

{

�

��

})

	�

]}


 (12.28)
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The term in square brackets can be written as

−
(

√−gg���
{

�

��

})

	� +
(

√−gg�� �
{

�

��

})

	� (12.29)

because
√−g and g�� are covariantly constant. The expressions in parentheses are vector

densities of weight −1. Thus, as shown in Section 4.1, their covariant divergences equal
their ordinary divergences:

√−gg��
[

−
(

�

{

�

��

})

	� +
(

�

{

�

��

})

	�

]

=
(

−√−gg�� �
{

�

��

}

+√−gg�� �
{

�

��

})

�� (12.30)

(in the second term we interchanged � and �). Now we see that (12.30) is an ordinary
divergence. Hence, from the Stokes theorem,

∫

�4

(

−√−gg�� �
{

�

��

}

+√−gg�� �
{

�

��

})

�� d4x

=
∫

��4

(

−√−gg�� �
{

�

��

}

+√−gg�� �
{

�

��

})

n� d3x� (12.31)

where n� is the normal vector to the boundary ��4 of the region �4, while d3x is the
volume element in ��4. From the assumption �g�� ���4� = 0 it now follows that the
integral of (12.29) is zero. Hence, in (12.28):

�Wg =
∫

�4

d4x

(
1
2
√−gg��R−√−gR��

)

�g�� = 0
 (12.32)

Thus, if we denote �L/�g�� = −�√−gT��, then the equation �W = 0 implies (12.21)
by virtue of (12.23) and (12.32).

Hilbert’s method does not say what T�� should be; he managed to specify it only for
the electromagnetic field in vacuum.

The Hilbert variational principle works safely only in deriving the Einstein equations
in full generality. With a less-than-general metric, for example with symmetries, the
variational principle can lead to a false result. This is known to happen for a large subset
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of the Bianchi-type models, because of their spatial homogeneity. When all fiduciary
metrics are spatially homogeneous, the variations are spatially homogeneous, too. Hence,
they cannot be assumed to vanish on the boundary – they vanish either everywhere
or nowhere. In consequence, the boundary terms cannot be neglected. See MacCallum
(1979) for more details.

12.9 The Palatini variational principle

Einstein’s equations can be derived from a still more general variational principle, called
the Palatini principle.1 In this approach, the metric tensor and the connection coefficients
are treated as two independent sets of variables. The connection is assumed only to be
symmetric, ��

�� = ��
����. The vanishing of coefficients of variations of ��

�� implies
then Eq. (12.21), while the vanishing of coefficients of variations of the metric implies

��
�� =

{

�

��

}

� i.e. the covariant constancy of g��.

12.10 The asymptotically Cartesian coordinates and the asymptotically
flat spacetime

In the next section we will investigate the limiting transitions from Einstein’s theory to
Newton’s theory and to special relativity. This section is a comment on the interpretation
of those operations.

A flat space (spacetime) exists as a background in both of the limiting theories.
When we go away from the sources of the gravitational field, the field becomes ever
weaker and disappears in the limit of infinite distance. In that limit, the metric tensor
of general relativity should tend to the flat metric of special relativity. This is only a
‘thought experiment’ because, as mentioned earlier, in the real Universe the intensity of
the gravitational field can never be smaller than the value determined by the average
matter density in the Universe.

The spacetime whose geometry becomes flat in the limit of large distances from the
sources of the gravitational field is called asymptotically flat. Only in such spacetimes
can we consider the Newtonian limit of general relativity. The coordinates that, in the same
limit, go over into the Cartesian coordinates of special relativity are called asymptotically
Cartesian.

12.11 The Newtonian limit of Einstein’s equations

From the considerations of Section 12.5 it follows that in the limit c → � general
relativity should reduce to Newton’s theory of gravitation. Hence, in the same limit, the

1 This is how this approach is commonly called, but Ferraris, Francaviglia and Reina (1982) argued that it was not Palatini
(1919) who invented it, but Einstein (1925).
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equation of a geodesic should reduce to the Newtonian equation of motion of a particle
in a gravitational field,

m
dvI
dt

= −m��I � (12.33)

where vI is the velocity of the particle and � is the gravitational potential. We will deal
with the field equations later in this section.

Newton’s equations of motion follow from the variational principle

�
∫ t2

t1

Ldt = 0� L
def= 1

2
m�IJv

IvJ −m�� (12.34)

while the equations of a geodesic follow from

�
∫ t2

t1

�dt = 0� �
def= ds

dt

 (12.35)

Investigating the limit on the equations of motion themselves would be difficult. It will
be simpler to do it on the Lagrangians.

The Euler–Lagrange equations do not change when the Lagrange function is multiplied
by a constant or when a constant is added to it. Hence, the condition of correspondence
for the Lagrangians is

lim
c→� �C1�+C2�= L� (12.36)

where C1 and C2 are constants, as yet unknown. The Newtonian Lagrangian has the
dimension of energy. The relativistic Lagrangian is

� = ds

dt
= c

√

g00 +2g0I

vI

c
+gIJ

vIvJ

c2
� (12.37)

where I� J = 1�2�3 and vI = dxI/dt is the Newtonian velocity of the particle. Since the
expression under the square root is dimensionless, the dimension of � is c. Hence, in
order that the dimensions of both sides in (12.36) are the same, we must have C1 = �mc,
where � is a dimensionless coefficient.

The Newtonian Lagrangian contains the kinetic energy of the particle. In special
relativity, the kinetic energy is a part of the total energy mc2/

√

1− �v/c�2. Hence, the
constant C2 in (12.36) must compensate for the rest energy contained in C1� so that
�C1�+C2� contains only the kinetic energy. We do not know yet with what sign the rest
energy will be contained in C1�, so we look for C2 in the form C2 = �mc2, �= ±1, and
the sign of � will follow later. Finally, (12.36) becomes

lim
c→�mc

2

(

�

√

g00 +2g0I

vI

c
+gIJ

vIvJ

c2
+�

)

= 1
2
�IJmv

IvJ −m�
 (12.38)
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Developing the square root by the Taylor formula up to terms of second degree in the
velocity we obtain

√

g00 +2g0I

vI

t
+gIJ

vIvJ

c2
= √

g00 + g0I√
g00

vI

c

+1
2

(
gIJ√
g00

− g0Ig0J

g00
3/2

)
vIvJ

c2
+O

(
v3

c3

)


 (12.39)

Since there are no terms linear in vI/c on the right-hand side in (12.38), cg0I/
√
g00 →

c→�0

must hold, i.e.

g0I√
g00

= O

(
1
c2

)


 (12.40)

Then �−g0Ig0J /g00
3/2� in (12.39) becomes a correction of order 1/c4 to gIJ/

√
g00. Hence,

using (12.39) and (12.40), we obtain in (12.38)

lim
c→�

[

c2
(

�
√
g00 +�

)+�
g̃IJv

IvJ

2
√
g00

+O

(
1
c

)]

= 1
2
�IJv

IvJ −�� (12.41)

where g̃IJ = gIJ −O
(

1/c4
)

. The equation above should be an identity in vI . Equating the
terms of the same order in vI we obtain

c2
(

�
√
g00 + �

) = −�+O

(
1
c

)

� (12.42)

�√
g00

g̃IJ = �IJ +O

(
1
c

)


 (12.43)

From (12.42) we have

√
g00 = 1

�

[

−�− �

c2
+O

(
1
c3

)]


 (12.44)

We have not yet made use of the condition that, in the limit of vanishing gravitation,
the general relativistic Lagrangian (12.35) should go over into the special relativistic
Lagrangian for geodesic motion. The term O

(

1/c3
)

is of higher order than �/c2, so, if
�/c2 →

c→�0, then O
(

1/c3
) →
c→�0 all the more, so

1

�

[

−�

c2
+O

(
1
c3

)]

→
�→0

0
 (12.45)

Moreover, for � = 0 we should obtain the Minkowski metric, hence −�/�→
�→0

1. But

� and � are constants, so the above means that −�/� = 1. In the signature �+−−−�
it is seen from (12.43) that � < 0, while � = ±1 by definition, so the above implies
�= −1��= +1. The final result is thus, from (12.44), (12.40) and (12.43):

g00 = 1+ 2�
c2

+O

(
1
c3

)

� g0I = O

(
1
c2

)

� gIJ = −�IJ +O

(
1
c

)


 (12.46)
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Equations (12.46) follow from the conditions that the general relativistic equations of
motion go over into the Newtonian equations of motion when c→ � and into the special
relativistic equations of motion when �→ 0. Now we shall investigate the limit c → �
for the field equations.

From the equation g��g
�� = ���, taking the cases ��= 0��= I �= 0�� ��= �= 0� and

��= I �= 0��= J �= 0�, we conclude that

g00 = 1− 2�
c2

+O

(
1
c3

)

� g0I = O

(
1
c2

)

� gIJ = −�IJ +O

(
1
c

)


 (12.47)

Using these in the formulae for the Christoffel symbols we obtain
{

0

00

}

= O

(
1
c3

)

� (12.48)

{

0

0I

}

= ��I

c2
+O

(
1
c3

)

=
{

I

00

}

� (12.49)

{

0

IJ

}

= O

(
1
c2

)

=
{

I

0J

}

� (12.50)

{

I

JK

}

= O

(
1
c

)


 (12.51)

Hence, further

R00 = ��II
c2

+O

(
1
c3

)

�sum over I�� (12.52)

R0I = O

(
1
c2

)

� RIJ = O

(
1
c

)


 (12.53)

The Einstein equations (12.21) can be written in the equivalent form

R�� = �

(

T�� − 1
2
g��T

)

� T
def=g��T��
 (12.54)

How should the right-hand side of (12.54) behave in the Newtonian limit? Since T00 is the
energy-density, it contains a contribution from the rest energy. All other contributions to
T00 must be by at least one order in c smaller than that, so we expect that T00 = �c2 +O�c�,
where � is the mass-density. The components T0I form the vector of energy stream. In
the limit c → �, motion of matter should have no influence on the gravitational field
it generates.1 Consequently, T0I should be by at least one order in c smaller than T00 in
order that they become negligible in the limit c → �, thus T0I = O�c�. The components

1 If the mass distribution does not change with time, then the motion of matter is not detectable via its gravitational field. For
example, the exterior gravitational field of a mass in axisymmetric rotation in Newtonian theory is not distinguishable from
the field generated by a static mass with the same mass distribution.
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TIJ describe the stress energy-density. Compared to the rest energy, any other kind of
energy is by two orders in c smaller, so TIJ = O�1�. Hence, finally,

T = g��T�� = �c2 +O�c�
 (12.55)

From this

R00 = �

(
1
2
�c2 +O�c�

)

� (12.56)

R0I = �O �c� � RIJ = �O
(

c2
)


 (12.57)

From (12.56) and (12.52) we have

��II
c2

+O

(
1
c3

)

= �

(
1
2
�c2 +O�c�

)


 (12.58)

In the limit c → � this should be equivalent to the Poisson equation (12.16), so

�= 8�G
c4


 (12.59)

The remaining equations in the set, (12.57), impose limitations on the terms O�1/c2� in
g0I and O�1/c� in gIJ . These can be read out if we want to consider the Einstein theory
as a small perturbation imposed on the Newton theory in a weak gravitational field.
There are various approaches to this application of general relativity, the most elabo-
rate of them is the Parametrised Post-Newtonian (PPN) formalism (Misner, Thorne and
Wheeler, 1973, Will, 1981). We will briefly describe one such approach (the weak-field
approximation) in Section 12.18. Formally, in the limit c → �, Eqs. (12.57) are fulfilled
identically.

In the equation R00 = �
(

T00 − 1
2g00T

)

we had to include terms of order 1/c2 because
the coordinate was x0 = ct, so every differentiation by x0 introduced the factor 1/c. In
order to liberate R00 from the factor 1/c2 thus introduced, we had to multiply (12.56) by
c2. To achieve the same in the first equation of (12.57) we would have to multiply it by
c, and then we would obtain the identity 0 = 0 in the limit c → �.

12.12 Examples of sources in the Einstein equations: perfect fluid and dust

A fluid whose pressure obeys the Pascal law, while the transport of energy occurs only
by means of mass flow is called a perfect fluid. It does not conduct heat or electric
current, and its viscosity is zero. From this definition, we will now deduce the form of
its energy-momentum tensor.

If u� is the velocity field of an arbitrary continuous medium, while s is the proper time
on the lines of flow of that medium, then

ds2 = g�� dx� dx�� u� = dx�

ds

 (12.60)
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These imply

g��u
�u� = 1
 (12.61)

This holds for every continuous velocity field and for any medium.
Now let us choose, for a while, the coordinates adapted to u�, in which u� =∗ �

�
0, i.e.

in which the time-coordinate x0 is the affine parameter on the flow lines of matter, and
dxI�s�/ds=∗ 0� I = 1�2�3, where xI�s� are spatial coordinates of the particles of the fluid.

In these coordinates, xI = constant, which means that the particles of the fluid do not move
with respect to the timelike hypersurfaces of the coordinate system. Such coordinates
are called comoving, and they are frequently used in relativistic hydrodynamics. Their
construction can be visualised as follows. We choose an arbitrary hypersurface S that
intersects all flow lines of the fluid, and an arbitrary coordinate system within S. To each
particle of the fluid we then assign the spatial coordinate xI of the point where it crossed
S. To assign the time-coordinate to a point p in spacetime we take the flow line Cp that
passes through p. The time-coordinate of p is the proper time that elapsed between the
event of Cp intersecting S and the event of Cp passing through p.

By definition, T00�p� is, in any coordinate system, the energy density measured at a
given point p. In the comoving coordinates, the only energy that a particle can have is its
inner energy �= (rest energy) + (energy of thermal motion of its particles) + (chemical
energy). Hence, T00 =∗ � and, at the same time, T00 =∗ T��u

�u�, so

T��u
�u� = �
 (12.62)

This is now an equality of two scalars, so it holds in any coordinates.
By definition, TI

0� I = 1�2�3, is the vector of the energy stream. But in the comoving
coordinates, by the definition of a perfect fluid, there are no energy flows, so consequently
TI

0 =∗ T
I
�u

� =∗ 0. This implies that T�
�u

� =∗ �u
�, where � is an unknown coefficient.

From (12.61) and (12.62) we find that �= �, so

T�
�u

� = �u�� (12.63)

which is again a tensor equation.
Now choose a point q in the spacetime and an arbitrary vector v��q� at q that is

orthogonal to u��q�:

u��q�v��q�= 0
 (12.64)

The vector v��q� points from q towards a neighbouring particle. Since Eq. (12.64) says
that the projection of the velocity on v��q� is zero, it follows that the particle to which
v��q� points does not move relative to q. The collection of all vectors having the property
(12.64) thus determines a 3-dimensional volume element comoving with the particle
that was at q. Consequently, the Pascal law must apply in this volume element: the
pressure p exerted on the surface element  in the fluid creates the force f = p in the
direction nI� I = 1�2�3, orthogonal to  . The pressure p and the force f do not depend
on the direction of nI , i.e. on the orientation of  within the fluid. Let −TI

J denote
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the Newtonian (3-dimensional) stress tensor. (The minus sign is a consequence of the
signature �+−−−�; in this signature the spatial part of the energy-momentum tensor
T�

� is not the stress tensor �I J itself, but −�I J .) By the definition of the stress tensor,
the following must hold:

−TI
Jn

J = fnI ≡ pnI� (12.65)

which implies

TI
Jn

J = −pnI 
 (12.66)

The vector nI was an arbitrary vector within the volume element of the fluid comoving
with q, i.e. an arbitrary vector in the 3-dimensional subspace orthogonal to u��q�. Equa-
tion (12.66) shows that every such vector is an eigenvector of the matrix TI

J connected
with the eigenvalue �−p�, which implies

TI
J = −p�IJ 
 (12.67)

An arbitrary timelike vector field u� in general is not orthogonal to a family of hypersur-
faces, so the vectors nI in (12.65)–(12.67) are in general neither tangent nor orthogonal
to hypersurfaces, and so cannot define a coordinate system. However, at every point q
of the manifold, in the tangent space we can choose a subspace orthogonal to u�, and
choose in that subspace the orthonormal basis êI

�, I = 1�2�3. In that basis, Eq. (12.67)
will be fulfilled, where

T̂IĴ = êI
�eĴ

�T��
 (12.68)

(In other words, we choose coordinates that are adapted to the basis vectors êI
� at one

point q only, which is always possible.) Now, from (12.62)–(12.63), (12.67) and (12.68)
we can deduce the general formula for the energy-momentum tensor of a perfect fluid.
Let us choose an orthonormal tetrad ei

�, i = 0�1�2�3, in spacetime such that ê0
� = u�,

while each êI
�, I = 1�2�3, obeys (12.66). Then

g��ei
�ej

� = �ij = diag�+1�−1�−1�−1� (12.69)

and from (12.62)–(12.63), (12.68) and (12.69) we have

T0̂̂0 = T��u
�u� = �� (12.70)

T0̂Â = T��u
�eÂ

� = �u�eÂ
� = 0� A= 1�2�3� (12.71)

TÂB̂ = −T Â
B̂ = p�ÂB̂ = −p�ÂB̂
 (12.72)

These are the components of the scalar image of T��. Applying the inverse projection,
(4.16), we obtain

T�� = ei�e
j
�Tij = u�u�T0̂̂0 + eÂ�e

B̂
�TÂB̂

= �u�u� −p�ÂB̂e
Â
�e

B̂
� −pu�u� +pu�u�

= ��+p�u�u� −pg��
 (12.73)
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A perfect fluid whose pressure is identically zero is called dust. It follows that for dust

T�� = ��+p�u�u�
 (12.74)

12.13 Equations of motion of a perfect fluid

The equations of motion of the sources of a gravitational field, T��	� = 0, for a general
perfect fluid are equivalent to

��+p��� u
�u� + ��+p�u�	� u

� + ��+p�u�u�	� −p�� g�� = 0
 (12.75)

The identity (12.61) implies

u�u�	� = 0
 (12.76)

Contracting (12.75) with u� and using (12.61) and (12.76) we obtain

��� u
� + ��+p�u�	� = 0
 (12.77)

This is the energy conservation equation which says that the volume work −pu�	�
generates the energy stream �u�. Now using (12.77) in (12.75), we obtain

��+p�u�	� u
� −p�� g

�� +p�� u
�u� = 0
 (12.78)

These are the general relativistic equations of motion of a perfect fluid. In the Newtonian
limit (c → �) and in asymptotically Cartesian coordinates, they go over into the Euler
equations of motion � dv/dt = −gradp.

Equations (12.77) and (12.78) simplify for dust, when p = 0. Equation (12.77) then
becomes

(

�u�
)

	� = 0� (12.79)

which is the relativistic equation of continuity (mass conservation) that in the Newtonian
limit goes over into ��/�t+ div��v� = 0. Equation (12.78) becomes u�	� u

� = 0. This
means that the covariant derivative of the vector field tangent to the flow lines along
these lines is zero. This fulfils the requirements of the definition of a geodesic in affine
parametrisation, see Section 5.2. Consequently, dust moves along geodesics, and the
proper time of the particles of dust is an affine parameter on these geodesics.

In fact, the necessary and sufficient condition for a geodesic motion of a perfect fluid
is somewhat weaker than p = 0. As seen from (12.78), it is p��

(

g�� −u�u�
) = 0. We

have already met the operator h�� = g�� −u�u� once; see Eq. (7.102). It projects tensors
on the hypersurface elements orthogonal to the vector field u�. The equation h��p�� = 0
means that the gradient of pressure is collinear with the velocity field, i.e. there are no
spatial gradients of pressure in the comoving coordinates.
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12.14 The cosmological constant

When general relativity was created, it was clear that its predictions would significantly
differ from those of Newton’s theory in two situations:

(1) in strong gravitational fields, when the extent of the regions where local inertial
frames exist becomes small; and

(2) in large sub-volumes of the Universe, where even small departures of the real
geometry from the Euclidean geometry cumulate over large distances and become
visible during observations of distant objects.

Consequently, when Einstein thought about physical applications of his theory, one
of the first things he tried was to construct a model of the Universe. At that time
everybody was sure that the geometry and matter distribution in the Universe were
time- and space-independent. Calculations showed, however, that these assumptions are
self-contradictory – such a model of the Universe did not exist in relativity.

At that moment, Einstein was on the verge of making another great discovery. The
year was 1916, and the first observations proving the expansion of the Universe were
published only in 1927. Yet this time Einstein’s belief in prejudice turned out to be
stronger than his tendency to think boldly. While searching for a reason of the failure of
his first attempt, Einstein did not question the assumption that the Universe is static, but
turned his suspicion against his equations (12.21). He soon found a gap in his reasoning:
the left-hand side of the field equations that has all the required properties need not
necessarily be the Einstein tensor R�� − 1

2g��R. One can add to it any symmetric tensor
H�� whose covariant divergence vanishes and that does not depend on the derivatives of
the metric. Such a correction will not increase the order of the field equations, while the
equation

(

R�� − 1
2g

��R+H��
)

	� = 0 will still hold. The simplest tensor of this property
is �g��, where � should be a universal constant. The modified Einstein equations

R�� − 1
2
g��R+�g�� = �T�� (12.80)

in the limit c → � go over into the modified Poisson equation

��−�c2 = 4�G�
 (12.81)

Hence, the constant �, called the cosmological constant, describes an effect that is absent
from the ordinary Newton theory: a universal attraction (for � > 0) or repulsion (for
�< 0) of matter particles.

The modified equations (12.80) allowed for the existence of a static, homogeneous and
isotropic solution of the form

ds2 = c2 dt2 −R2 d 2 −R2 sin2  
(

d!2 + sin2 ! d"2
)

� (12.82)

where

R= 1√−� = c

2
√
�G�

� (12.83)
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� being the average mass density in the Universe, constant by assumption. The spacetime
corresponding to the metric (12.82) is, by tradition, still called the Einstein Universe,
although it is no longer considered a model of the real Universe. Since � < 0 here, the
‘cosmological repulsion’ balances the gravitational attraction, which allows the system to
be static (but unstable, as we will see in Section 17.6).

This brief history of the introduction of the cosmological constant shows that in fact
it appeared in consequence of an error. Had Einstein not insisted on obtaining a static
model of the Universe, he would have had a chance to predict that the Universe should
expand or collapse, 11 years before the expansion was observed. When he realised later
how close he was to making that prediction, he said that the introduction of the constant
was ‘the biggest blunder of his life’ (Misner, Thorne and Wheeler, 1973, pp. 410–411).1

Today, the cosmological constant is more popular among particle physicists than among
specialists in relativity, and the observations of brightness of distant supernovae are even
said to indicate that � is strictly negative; see Section 17.9. Its absolute value must be
very small (less than 10−50 cm−2 (Misner, Thorne and Wheeler, 1973, pp. 410–411)),
so it can play a role only in the evolution of the Universe. In the Solar System, it
has no observable influence on the motion of planets. A great number of solutions of
the modified Einstein equations (12.80) is known (Stephani et al., 2003, section 24.2),
both inside matter distributions and in vacuum. Examples will be given later in this text
(see Section 14.4).

12.15 An example of an exact solution of Einstein’s equations: a Bianchi type I
spacetime with dust source

The Einstein equations had for many years been rumoured to be very difficult, almost too
difficult to find any exact solution. This opinion lingers until today and is even repeated
in some publications, although it ceased to have any basis decades ago. No formula for
a general solution of Einstein’s equations has been found that would generalise ��x� =
− ∫ d3x

′G��x′�/ 
x −x′
, which is the formal solution of the Poisson equation. The reason
of the difficulty is the nonlinearity of the Einstein equations. In general relativity, the
superposition of two solutions is not their sum and the law of composition of solutions is
not known. Consequently, finding a solution for a simple situation does not really help
in looking for more general solutions, except that it increases the basis of experience
and knowledge. Nevertheless, for special cases (like high symmetry, special properties
of the source or special properties of the Weyl tensor), hundreds if not thousands of
solutions are known, and any attempt to list and compare them is a major undertaking

1 That story has a complicated continuation. Hubble, who is credited with the discovery of the expansion of the Universe
(Hubble, 1929), had not believed, until the end of his life, that the Universe is actually expanding. He insisted, even in his
last paper that appeared in print after his death (Hubble, 1953), that expressing the observed redshifts in spectra of galaxies
through their equivalent velocities of recession is merely a convenient mathematical device (Krasiński and Ellis, 1999). Then,
Milne and McCrea (1934) (see Section 17.5) showed that expansion of the Universe could and should have been predicted
on the basis of Newton’s theory of gravitation in the eighteenth century since all the mathematical knowledge necessary for
that purpose had existed already at that time. The prediction was not made because nobody tried – just because everybody
was sure that the Universe was static.
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(Stephani et al., 2003; Krasiński, 1997). In order to prove to the reader that the task of
finding a solution is not at all hopeless and to demonstrate a few characteristic methods
of calculation, we shall present a derivation of a certain exact solution.

We will assume that the spacetime is spatially homogeneous, with the symmetry group
of Bianchi type I, and that the source in the equations is dust. The cosmological constant
will be assumed zero. We thus begin with the metric form (10.29). For a Bianchi type I
algebra all generators commute to zero. Hence (see Exercise 5 in Chapter 8) we can
choose the spatial coordinates �x� y� z� so that the generators become

k�
�I �

= ��I� x1 = x� x2 = y� x3 = z (12.84)

(which means that xI is a parameter on the curve tangent to k��I� and obeys k��I� =
�x�/�xI ). For the generators (12.84), the Killing equations are

gIJ�K = 0� I� J�K = 1�2�3� (12.85)

i.e. the components gIJ depend only on t. Knowing this, we find the following formulae
for the Christoffel symbols, the Riemann tensor and the Ricci tensor (the components not
listed are zero):

{

0

IJ

}

= 1

2
gIJ�t�

{

I

0J

}

= 1
2
gISgJS�t	 (12.86)

R0
I0J = 1

2
gIJ�tt −

1
4
gRSgIR�tgJS�t� (12.87)

RI
JKL = 1

4
gIRgKR�tgJL�t −

1
4
gIRgLR�tgJK�t	 (12.88)

R00 = −1
2
gRSgRS�tt +

1
4
gLMgRSgLR�tgMS�t� (12.89)

RJL = 1
2
gJL�tt −

1
4
gRSgJR�tgLS�t +

1
4
gKRgKR�tgJL�t
 (12.90)

The identity R0I ≡ 0 implies u0uI = 0. Since u0 cannot vanish (then u� would be a
spacelike vector, i.e. the dust would move with a superluminal velocity), we must have

uI = 0 = uI =⇒ u0 = u0 = 1�

T00 = ��T�I = 0� I = 1�2�3� �= 0�1�2�3�
(12.91)

where � is the energy-density of the dust.
In the following, we will use the auxiliary formulae that follow immediately from

(12.24) and (12.25):

gRSgRS�t = g�t /g� (12.92)

gMS�t = −gLMgRSgLR�t� (12.93)

where g = det
∥
∥g��

∥
∥= −det �gKL�.
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From (12.79) we have
(√−g�u�) �� = 0, which in our coordinates becomes

(√−g�) �t = 0. Since the components of the metric tensor depend only on t, also g and
� depend only on t, so

��
√−g =M = constant (12.94)

From (12.90) and (12.91), using (12.92) and (12.93), we obtain

R= R00 −gJLRJL = −gRSgRS�tt −
3
4
gRS�t gRS�t −

1
4
�g�t /g�

2 
 (12.95)

From R00 − 1
2g00R= ��, using (12.90) and (12.93)–(12.95), we now obtain

1
8
gRS�t gRS�t +

1
8
�g�t /g�

2 =M/
√−g
 (12.96)

This equation will be later used to eliminate gRS�t gRS�t.
The Einstein equations imply that for dust

R= g��R�� = −��
 (12.97)

We substitute (12.95) and (12.94) in the above and obtain

gRSgRS�tt +
3
4
gRS�t gRS�t +

1
4
�g�t /g�

2

≡ (

gRSgRS�t
)

�t −
1
4
gRS�t gRS�t +

1
4
�g�t /g�

2 =M/
√−g
 (12.98)

Now we use (12.96) to eliminate gRS�t gRS�t, and we obtain

(

gRSgRS�t
)

�t +
1
2
�g�t /g�

2 = 3M/
√−g
 (12.99)

Using (12.92) we obtain
(√−g) �tt = 3M/2, which is integrated to give

√−g = 3
4
Mt2 +At+B� (12.100)

where A and B are arbitrary constants. We still have to integrate the equations GJL = 0.
Using (12.97), (12.94), (12.92) and (12.93) they are reduced to

0 = −GK
L = gKJRJL − 1

2
�KLM/

√−g

= 1
2
gKSgLS�tt +

1
2
gKS�t gLS�t +

1
4
g�t
g
gKSgLS�t −

1
2
�KLM/

√−g
 (12.101)

Hence
√−g (gKSgLS�t

)

�t −
1
2
�g�t /

√−g� gKSgLS�t −M�KL = 0� (12.102)

which is integrated with the result
√−ggKSgLS�t =Mt�KL +AK

L = 0� (12.103)
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where AK
L is a matrix of constant elements. From this, contracting with gKM , we obtain

gLM�t =
Mt√−g gLM + AK

LgKM√−g 
 (12.104)

This shows at once that AML = ALM . Furthermore, note that for any fixed instant t = t0
the matrix gKM�t0� can be transformed into the unit matrix by transformations of the form
x′I = bI Jx

J , where the matrix bI J has constant coefficients. Since AKL is symmetric, we
can then use the orthogonal transformations preserving the simple form of g′

KM�t0� to
diagonalise AKL, too. Assume that we have done so and have chosen the coordinates in
which gKM�t0� and AKL have these simple forms. Then, with use of (12.100), (12.104)
becomes

gLM�t =
Mt+AL

L

3
4Mt2 +At+B

gLM �no sum over L�� (12.105)

and the solution of this is

gLM�t�= gLM�t0� exp

(
∫ t

t0

M�+AL
L

3
4M�2 +A�+B

d�

)


 (12.106)

Thus, if gLM�t0� is diagonal, then so is gLM�t� at all times.
(But it is not always possible to diagonalise the metric tensor in a Bianchi-type space-

time. In our case the diagonal form followed from the field equations.)
Equation (12.106) is not the final result yet because the components gLM still have to

obey (12.100) and (12.96). The constants AL
L are by tradition parametrised as follows:

AL
L = 2pLA �no sum over L� (12.107)

and then, by virtue of (12.100) and (12.96), the new parameters pL must obey

p1 +p2 +p3 = 1�

1
2
A2
[

1− (p1
2 +p2

2 +p3
2
)]=MB


(12.108)

In the case M = 0 the metric obtained above becomes a vacuum solution:

ds2 = dt2 − t2p1 dx2 − t2p2 dy2 − t2p3 dz2� (12.109)

in which the constants p1, p2 and p3 obey

p1 +p2 +p3 = p1
2 +p2

2 +p3
2 = 1
 (12.110)

This solution was found by Kasner (1921). It was one of the earliest exact solutions of
Einstein’s equations to be published in the literature.
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12.16 * Other gravitation theories

As mentioned at the end of Section 12.7, there are several gravitation theories that are
alternatives to Einstein’s. In this section we will present a brief overview of a few
of them. They are not necessarily those that ever had the greatest chance to replace
general relativity as the theory of gravitation – the examples are meant to illustrate
the various possibilities used by different authors. Except for Rosen’s theory, all of
them are generalisations of general relativity and contain it as a limit. A much more
extended overview of alternative gravitation theories, and a comparison of them with
experimental tests, can be found in the book by Will (1981). The Kaluza–Klein theory
is one of the generalisations, but its presentation must be preceded by a descrip-
tion of the Maxwell theory in curved spacetime, therefore we postpone it to the next
chapter.

12.16.1 The Brans–Dicke theory

The theory was first published in 1961 (Brans and Dicke, 1961), and the best source for
studying it is the book by Dicke (1964). The field equations of the Brans–Dicke (BD)
theory are

R�� − 1
2
g��R = 8�

�
T�� + #

�2

(

��� ��� −1
2
g���� �

�

)

+ 1
�

(

�	�� −g��g���	��
)

� (12.111)

g���	�� − 1
2�

��� �
�� + �

2#
R= 0� #= constant
 (12.112)

This is a generalisation of Einstein’s theory in which the gravitational constant is replaced
by the scalar field �. In this theory, the gravitational ‘constant’ c4/� thus varies in time
and space, and its changes are induced by the scalar curvature R via Eq. (12.112). The
scalar curvature in turn depends on the distribution of matter via (12.111). In this way, the
distribution of matter influences the intensity of gravitation, which is a partial realisation
of the Mach principle.

General relativity (GR) follows from the BD theory as the limit �= c4/G= constant,
#→ �. Observable modifications of GR would be predicted if #≤ 6; in particular, part
of the anomalous orbital motion of Mercury would then be caused by the oblateness
of the Sun. However, detailed observations imply that # ≥ 23. With that value, the
predictions of the BD theory are observationally indistinguishable from the predictions
of Einstein’s theory. For this reason, the BD theory is currently out of favour with
theoreticians. However, this may be a temporary situation. This theory is conceptually
the most developed of all competing theories of gravitation, with its logical structure and
interpretation well clarified, and may still have a role to play in the future.
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12.16.2 The Bergmann–Wagoner theory

Original references for this theory are Bergmann (1968) and Wagoner (1970). Its field
equations are

R�� − 1
2
g��R−����g�� = 8�

�
T�� + #���

�2

(

��� ��� −1
2
g���� �

�

)

+ 1
�

(

�	�� −g��g��	�
)

� (12.113)

g���	�� +1
2
��� �

�� d
d�

ln�#���/��+ �

2#���

(

R+2
d

d�
�������

)

= 0� (12.114)

where ���� and #��� are arbitrary functions. This is a generalisation of the Brans–Dicke
theory, which results as the limit #= constant��= 0. It is presented here just as a formal
curiosity because it is far from being well understood. Its main weakness is the existence
of two arbitrary functions that are not determined by any field equations. The function
���� becomes the cosmological constant when �= constant.

12.16.3 The conformally invariant Canuto theory

The original reference for this theory is Canuto et al. (1977). Its field equations are

R�� − 1
2
g��R+ 2�	��

�
− 4��� ���

�2
−g��

(
2�	�	�
�

− ������
�2

)

= 8�
c4

G���T�����+�g��
 (12.115)

This theory was designed to be such a generalisation of general relativity that is invariant
under arbitrary conformal transformations g�� → �2g��. The left-hand side of (12.115)
is indeed invariant under such a transformation; the invariance of the right-hand side is
a postulate of the theory. The Einstein theory follows as the limit � = 1. The changes
in the energy-momentum tensor induced by the transformation g�� → �2g�� should be
compensated by G���, which should be determined for every case. It is assumed that
G���T�����=G�1�T���1�, the latter being the right-hand side of the Einstein equations.
The arbitrary function � is interpreted as the local change of scale.

The physical interpretation of this theory is not quite clear, and the arbitrary function
� makes it difficult, just as in the Bergmann–Wagoner theory, to calculate observable
effects. The Canuto theory has never really caught on with the physics community and
is not currently considered a viable alternative to Einstein’s theory.

12.16.4 The Einstein–Cartan theory

In this theory (Trautman, 1972) the connection coefficients are not symmetric. The Ricci
tensor is built of the full, nonsymmetric connection coefficients and obeys equations
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formally identical to the Einstein equations (12.21), but R�� and T�� are not necessarily
symmetric. The torsion tensor Q�

�� obeys a separate set of equations:

Q�
�� +���Q


� −���Q


� = �s���� (12.116)

where s��� is the tensor describing the stream of energy connected with the spin of
matter, and it vanishes in vacuum. When s��� = 0, also Q�

�� = 0. Thus, in this theory
torsion does not propagate out into vacuum; it may be nonzero only inside matter. With
s��� = 0, the Einstein–Cartan (EC) theory reduces to the Einstein theory. In vacuum, it
is not distinguishable from the Einstein theory.

The advantage of the EC theory is that it allows a singularity-free Universe model.
(General relativity predicts that every model of the Universe must have a singularity
in the past or in the future – see Section 15.3.) However, it has not been accepted
as a replacement of relativity, mainly because of the impossibility of distinguishing it
experimentally from GR – since all experiments testing GR are carried out in vacuum.

12.16.5 The bi-metric Rosen theory

It is not a generalisation, but an alternative to Einstein’s theory (Rosen, 1973). There are
two metric tensors in it: g��, of the same interpretation as in general relativity, and the
flat tensor ���, for which the curvature tensor B�

������≡ 0. Its field equations are

N�� − 1
2
g��N = �T��� (12.117)

where

N�� = 1
2
��g��
� − 1

2
��g��g��
�g��
� (12.118)

and the vertical stroke denotes a covariant derivative with respect to ���. The author’s
argument in favour of this theory was its greater simplicity compared to Einstein’s theory.
Its experimental predictions are not much different from those of general relativity. When
the gravitational field vanishes, g�� = ���. However, a majority of relativists consider
the flat background metric ��� to be an artificial and unnatural element that spoils the
elegance of the relativistic approach (the opinion of the author himself was exactly the
opposite). Many papers had been published on this theory, but in the end it has not
established itself as a viable alternative to general relativity.

12.17 Matching solutions of Einstein’s equations

Just as in electrodynamics, in gravitation theory we sometimes have to match solutions
of Einstein’s equations obtained separately for different spacetime regions. Most often,
we want to determine whether a given vacuum solution can be interpreted as the exterior
gravitational field to a material body for whose interior we have found another solution.
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Matching results in the arbitrary constants in the vacuum region being determined in
terms of the parameters of the interior metric.

Sometimes we are interested in describing a surface matter distribution on the boundary
between two regions, but we shall exclude this case here. Generally, we assume that there
are no singularities of the type of Dirac � function in components of the curvature tensor
and that the hypersurface across which we match the two metrics is non-null. (Together
with surface matter distributions we thus exclude shock waves in which the discontinuity
in the Riemann tensor is matched to vacuum solutions on both sides. Null matching
hypersurfaces pose additional problems.)

With these assumptions, the components of the Riemann tensor can at worst be discon-
tinuous across the matching hypersurface $. We have to allow discontinuities because,
for example, the mass-density on the surface of a perfect fluid body, which equals the
component T 0

0 of the energy-momentum tensor in comoving coordinates, is nonzero at
the surface, but zero at adjacent vacuum points.

In order to discuss these conditions in detail, it is most convenient to use the coordinates
adapted to $, the same that were introduced at the end of Section 7.15. This time, N = 4,
n= 3, Vn = $, and the spacetime metric in the adapted coordinates is

ds2 = gIJ dxI dxJ +�N 2
(

dx4
)2
� (12.119)

where the x4 coordinate may be timelike (then �= +1) or spacelike (�= −1). The normal
vector to the boundary x4 =A= constant is X� = �0�0�0�1/N�. For x4 >A we have one
metric g+

�� (e.g. vacuum); for x4 < A we have another g−
�� (e.g. the interior of a material

body). Since $ has to be the same, whichever of the two 4-metrics is used to describe
it, the components gIJ have to be continuous across $. Since on $ they are functions of
the xI -coordinates, the same functions no matter which 4-metric is used to calculate the
gIJ , the continuity of all the derivatives of gIJ along $, i.e. of the derivatives by xK , is
automatically guaranteed, and we need only take extra care about gIJ�4.

So far, we have made sure that the boundary hypersurface $ has the same intrinsic
geometry in both metrics. However, if the spacetime regions on the opposite sides of
$ are to be parts of the same manifold, then $ must have the same extrinsic geometry
with respect to both metrics, i.e. be embeddable in both in the same way. Without that,
we might end up trying to identify a cylinder with a plane, for example. Hence, the
second fundamental form of $ must be the same, whichever of the two metrics is used
to calculate it.

Thus, finally, the conditions that two metrics, g+
�� and g−

��, can be considered to describe
two parts of the same manifold are as follows:

A hypersurface $ must exist such that, in coordinates adapted to $ as in (12.119), the
metrics induced on $ are the same �g+

���$�= g−
���$��, and the second fundamental form

of $ must be the same, whichever metric, g+
�� or g−

��, is used to calculate it.
Now we will investigate the consequences of these conditions for the Riemann and

Einstein tensors of the spacetime and for the Riemann tensor of $. We will use the
Gauss–Codazzi equations (7.93)–(7.94), but we will have to adapt the notation. Now Un+1
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is the spacetime (here denoted V4) and the Vn of Section 7.15 is the boundary hypersurface
$. Thus, the capital Latin indices of Section 7.15 now become the Greek spacetime
indices, and the Greek indices of Section 7.15 now become the capital Latin indices for $.
The covariant derivative in the Vn of Section 7.15, denoted by a semicolon, now becomes
the covariant derivative in $, denoted by the vertical stroke 
. With X� = �0�0�0�1/N�
and Y � coinciding with xI in $ for �� I = 1�2�3, Eqs. (7.93)–(7.94) become

RDABC�$� = RDABC�V4�+� �%AC%DB −%AB%DC� � (12.120)

%IJ 
K −%IK
J = −R4IJK�V4�/N
 (12.121)

Since RDABC�$� and %AB are continuous across $, RDABC�V4�, i.e. the $-components
of the 4-dimensional Riemann tensor, will be continuous across $, too. The covariant
derivatives of %AB in (12.121) are taken within $, so they are also continuous. This
means that R4IJK�V4�/N has to be continuous across $, but N and R4IJK�V4� individually
need not be – they may have a discontinuity that cancels out in the quotient.

For completeness, we have now to consider the components R4I4J �V4� that are not
determined by the Gauss–Codazzi equations. They are

R4I4J = �N 2R4
I4J

= �N 2

[

−1
4
g44�J g44�I −

1
2
g44g44�IJ − 1

4
g44�4 gIJ�4 − 1

2
g44gIJ�44

+ 1
2
g44g44�R

{

r

IJ

}

�$�

+ 1
4
g44gRSgRJ�4gIS�4

⎤

⎦

= �N
(−N
IJ +�NgRS%RJ%IS +�N%IJ�SX

S
)


 (12.122)

These components contain second derivatives of gIJ by x4, so they can be discontinuous
across $.

Now we find for the components of the Einstein tensor:

G4
4 = −1

2
gIJRS

ISJ � G4I = RS
4SI �

GIJ = RS
ISJ +R4

I4J − 1
2
gIJg

KLRS
KSL −gIJg

KLR4
K4L
 (12.123)

This shows that G4
4 is continuous across $, while G4I and GIJ can be discontinuous.

Note what this means for matching a perfect fluid solution to vacuum across a spacelike
hypersurface such that the velocity has no component in the x4 direction. Then G4

4 = �p,
and since G4

4 = 0 in vacuum and has to be continuous across $, this means that p = 0
must hold on $, which agrees with the expectation based on physics.
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12.18 The weak-field approximation to general relativity

Although considerable progress has been made in the search for exact solutions of
Einstein’s equations (Stephani et al., 2003), real physical or astrophysical situations are
often too complicated to be captured by an exact solution. In those cases, one must
resort to approximate calculations, for which several methods have been developed. We
shall introduce one such method here; it is useful also for interpreting exact solutions
because it allows one to recognise the physical meaning of parameters in the metric. The
presentation is based on Stephani (1990), where more details can be found.

Suppose that the metric includes the Minkowski limit ���, write it as

g�� = ��� +h��� (12.124)

and choose coordinates in which the ��� has the Lorentzian form ��� = diag�+1�−1�
−1�−1�. Then assume that h�� is a small correction to ���, thus

∣
∣h��

∣
∣� 1 for all indices

and
∣
∣h��h�

∣
∣� ∣

∣h��
∣
∣ for all �������� and all h�� �= 0. Assume that also the first and

second derivatives of h�� are small, i.e.
∣
∣h����

∣
∣� 1,

∣
∣h�����

∣
∣� 1. Under these assump-

tions, all terms in the Christoffel symbols and in the curvature tensor that are nonlinear
in h�� can be neglected.

This set of assumptions is called the weak-field approximation to the Einstein theory,
and the resulting scheme is sometimes called the ‘linearised theory of gravitation’. Within
this scheme, it is assumed that the energy-momentum tensor T�� has its special-relativistic
form and obeys the equations of motion in flat space

T���� = 0
 (12.125)

Since the metric h�� does not appear in (12.125) (there are no covariant derivatives in it),
the gravitational field has no influence on the motion of the sources in this approximation.
This is a strong qualitative difference between the exact and the approximate theory. If,
however, this assumption of no back-reaction holds to a satisfactory degree of precision
in a given situation, then the gravitational field generated by a given source can be
calculated (approximately) in a much simpler way than in the full Einstein theory.

We adopt the convention that all indices are raised and lowered by means of the
flat metric ���. Since the determinant of g�� has a form similar to (12.124) (g = −1 +
�small perturbation�), it follows that also g�� has the property g�� = ��� +f��, 
f��
 � 1,
and that

g�� = ��� −h�� ≡ ��� −�����h��
{

�

��

}

= 1
2
���

(

h���� +h���� −h����
)

� (12.126)

R�
��� = 1

2
���

(

h����� −h����� +h����� −h�����
)
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The linearised Riemann tensor is seen to have all the required symmetries in the indices.
The linearised Einstein equations are

−1

2

(

h��
���� +h����� −h�

���� −h�
����

) + 1
2
���

(

h��
�� −h���

)= �T��


(12.127)

The field equations become simpler when we transform the functions in them by analogy
with electrodynamics. We define h̃�� by

h̃��
def= h�� − 1

2
���h

�
�

=⇒ h̃�� = −h��� h�� = h̃�� − 1
2
���h̃

�
�� (12.128)

g�� = ��� −�����h̃� + 1
2
���h̃��� (12.129)

and we obtain in (12.127)

h̃��
���� + h̃�

���� + h̃�
���� −���h̃

��� = 2�T��
 (12.130)

We have not yet specified the coordinates. We carry out the transformation

x̃� = x� +b��x�� (12.131)

where, to preserve the property
∣
∣h��

∣
∣ � 1, the functions b� are assumed to be of the

same order as h��. This means that
∣
∣b�b�

∣
∣� 
b�
, ∣∣b�h��

∣
∣� 
h��
,

∣
∣b�b�

∣
∣� ∣

∣h��
∣
∣, and

similarly for the derivatives. We will later impose a condition on b� that will further
simplify the equations. In deriving the formulae below, it must be remembered that it is
the full metric g�� which undergoes a linearised tensor transformation, not h̃�� itself. The

transformation law for h̃�� follows by linearising the equations g�′�′ = x���′ x��′ g� .
The flat background metric preserves its Lorentzian form in consequence of the assumed
approximations.

Assuming that after the transformation ˜g̃�� is represented in terms of ˜h̃�� still by the
rule (12.129), we obtain

h̃�� =˜h̃�� −2b��� � h̃�� =˜h̃�� +b��� +b��� −���b��� 
 (12.132)

Calculating �/�x� of the second equation in (12.132) we find

h̃���� =˜h̃���� +b����� 
 (12.133)

This simplifies if we impose the following condition on b�:

b����� = h̃���� � (12.134)

whereupon
˜
h̃���� = 0
 (12.135)
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However, since (12.129) held with h̃�� replaced by ˜h̃��, so does (12.130), and conse-
quently (12.135) implies that

−2�T�� = ���˜h̃����� ≡ �˜
h̃��
 (12.136)

This is the inhomogeneous wave equation, for which a general formal solution is known.
For brevity, we omitted several instructive analogies of the linearised Einstein equations

to Maxwell’s equations in electrodynamics. In fact, the whole reasoning leading to
(12.136) was inspired by those analogies; they are pointed out in more detail in Stephani
(1990).

The interesting property of (12.136) is that for each pair of indices ���� the equation
is independent of the others. Thus, a given component of the metric is influenced by
just one component of the energy-momentum tensor. This simplifies the interpretation of
parameters in the metric when the weak-field approximation can be applied.

We shall now decompose the energy-momentum tensor into its physical components.
We will be omitting the second tilde over symbols from now on. A formal solution of
(12.136) in terms of retarded potentials is the same as in electrodynamics,

h̃���t� r�= − �

2�

∫

V

1

r − r′
T���r

′� t−
r − r′
/c�d3r
′� (12.137)

where r are the spatial coordinates of the observer’s location, r′ are the spatial coordinates
of a field point and the volume of integration is the set on which T�� �= 0.

Assume now that the volume V is finite and that the observer, located at r, is far from
V , thus 
r
 � 
r′
 for all points inside V . Then 
r − r′
 and 1/
r − r′
 can be expanded in
power series with respect to r′:


r − r′
 =
√

r2 −2r · r′ + r′2

= r− xIx′I

r
− xIxJ

2r3

(

x′Ix′J − r ′2�IJ
)

+· · ·� (12.138)

1/
r − r′
 = 1
r

+ xIx′I

r3
+ xIxJ

2r5

(

3x′Ix′J − r ′2�IJ
)

+· · ·� (12.139)

where I� J�K = 1�2�3. The higher-order terms will not appear explicitly.
Then, expand T�� with respect to �t− 
r − r′
/c� around �t− 
r
/c�. It is justifiable

to truncate the expansion because t−
r − r′
/c− �t−
r
/c� ≡ �
r
− 
r − r′
�/c is small
compared with 
r
/c, see Fig. 12.2. Thus

T���r
′� t−
r − r′
/c�

= T���r
′� t−
r
/c�+ 1

c
Ṫ���r

′� t−
r
/c��r−
r − r′
�

+ 1
2c2

T̈���r
′� t−
r
/c��r−
r − r′
�2 +· · ·
 (12.140)

Now we substitute (12.138)–(12.140) in (12.137) and truncate the series at terms of order
r−5, remembering that 
r′
 � 
r
. We also assume that there are no fast motions inside
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r

|r – r′|

r – r′ – r ′

r′

Fig. 12.2. Vectors and distances involved in calculating the linearised metric of a finite body in
the weak-field approximation.

the body, so �dT��/dt�/c is of order no larger than 1/r, so the truncation will be done at
the combined order r−3 (i.e. at r−3 at T��, r−2 at Ṫ�� and r−1 at T̈��). The result is

1
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T���r

′� t−
r − r′
/c�

= T��

(
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r

+ xIx′I

r3
+ xIxJ
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xIx′I
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3x′Ix′J − r ′2�IJ
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)

+ 1
2c2

T̈��
xIxJ

r3
x′Ix′J (12.141)

(the arguments of T�� on the right-hand side are r′ and �t− r/c�).
Now, in calculating the integral in (12.137) it must be remembered that the coordinate

x0 is ct and so, if there are no fast motions in the source (which we assume), then TIJ is
smaller by one order in v/c than T 0J , and this in turn is smaller by one order than T 00. We
are working within the first-order post-Newtonian approximation (i.e. in the linearised
Einstein theory), and the lowest non-special-relativistic correction to TIJ is of the order
v/c ≈ r ′/r. Accordingly, we have to calculate T 0I and T 00 to orders �v/c�2 ≈ �r ′/r�2 and
�v/c�3 ≈ �r ′/r�3, respectively. The following quantities will appear in the calculations
(the arguments of T�� are everywhere the same as in (12.141)):

M
def=
∫

V
T00 d3x

′� dI
def=
∫

V
T00x

′I d3x
′�

dIJ
def=
∫

V
T00x

′Ix′J d3x
′� pI

def=
∫

V
T 0I d3x

′�

bIJ
def= −

∫

V
T 0Ix′J d3x

′� aIJ
def=
∫

V
TIJ d3x

′ (12.142)

(all integrals are over the volume V of the body). From the physical interpretation of the
components of T�� we recognise (up to the choice of units, i.e. up to a constant factor)
M as the mass of the source, dI as the mass dipole moment, dIJ as the mass quadrupole
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moment, pI as the momentum, bIJ as the matrix whose antisymmetric part is the angular
momentum and aIJ as the energy-density of stress.

The equations of motion can be written as

T�0�0 = −T�S�S 
 (12.143)

Integrating these over a volume W containing V , applying the Gauss law
∫

W
vI�I d3x

′ =
∫

�W
vI d2x

′I and taking into account that the surface �W lies in vacuum, where T�� = 0,
we obtain the conservation laws

M = constant for �= 0�

pI = constant for �= I

(12.144)

Applying the same rule to the integral defining dI we obtain

1
c

ddI

dt
=
∫

W
T 00�0 x

′I d3x
′ = −

∫

W
T 0S�S x

′I d3x
′

= −
∫

W

(

T 0Sx′I
)

�S d3x
′ +
∫

W
T 0I d3x

′

= −
∫

�W
T 0Sx′I d2x

′S +pI ≡ pI 
 (12.145)

The quantity BIJ def=T 0Ix′J −T 0Jx′I is the density of angular momentum. Applying again
the same rule to it we obtain

BIJ def=T 0Ix′J −T 0Jx′I = constant
 (12.146)

The momentum pI can be set to zero by transforming the coordinates to the rest frame
of the body. This is a Lorentz transformation that does not change the property (12.124)
and will change only the numerical values of the other quantities in (12.142), keeping
constant those that were constant. With pI = 0, dI becomes constant and can be set to
zero by moving the origin of coordinates to the centre of mass of the body.

The equation T 00�0 +T 0S�S = 0 implies that
(

T 00x′Ix′J
)

�0 +
(

T 0Sx′Ix′J
)

�S = T 0Ix′J +T 0Jx′I 
 (12.147)

Differentiating this by x0 and applying (12.143) again, we obtain
(

T 00x′Ix′J
)

�00 =
(

TRSx′Ix′J
)

�RS −2
(

TISx′J +TJSx′I
)

�S +2TIJ 
 (12.148)

By integrating (12.147) and (12.148) over the volume W and applying the Gauss law to
eliminate the divergence terms we obtain, respectively,

−1

c
ḋIJ = bIJ +bJI �

1
2c2

d̈IJ = aIJ 
 (12.149)

Thus, bIJ are determined by the angular momentum and the time-derivative of the
quadrupole moment, while the stresses are determined by the second time-derivative of
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the quadrupole moment. Thus, finally, the quantities M , BIJ and dIJ fully characterise
the body, to the desired order of approximation.

Substituting (12.141) in (12.137), employing the definitions (12.142) and the relations
(12.149), we obtain for the metric

−2�
�
h̃00 = M

r
+ xIxJ

2r5

(

3dIJ −dSS�IJ
)

+ xIxJ

2cr4

(

3ḋIJ − ḋSS�IJ
)

+ xIxJ

2c2r3
d̈IJ �

−2�
�
h̃0I =BIJx

J

2r3
− ḋIJx

J

2cr3
− d̈IJx

J

2c2r2
�

−2�
�
h̃IJ = d̈IJ

2c2r



(12.150)

Finally, we wish to find the h�� defined in (12.124). They are calculated from (12.128),
and then simplified by a coordinate transformation of the form (12.131), with b� given
as follows (note that now we do not require these b� to obey (12.134) and that they are
expressed in the coordinates of (12.150), i.e. in the xs before the transformation):

−2�
�
b0 =xIxJ

8r4
�3dIJ −�IJdSS�+

xIxJ

8cr3

(

ḋIJ +�IJ ḋSS

)

�

−2�
�
bI =− 3dIJx

J

4r3
− ḋIJx

J

2cr2
+ 3dJKx

JxKxI

4r5

+
(

ḋKL +�KLḋSS

)

xKxLxI

8cr4



(12.151)

These were designed so as to cancel the time-derivatives in h00 and h0I to the desired
order. The transformed h�� are

h′
�� = h�� −b��� −b���� (12.152)

and the final result for the linearised metric, up to the desired order (combined order in
v/c and r ′/r ≈ v/c), is1

g00 = 1− 2m
r

− xIxJ

2r5

(

3DIJ −DSS�IJ
)+O�1/r4�� (12.153)

g0I = −2�IJKx
JPK

r3
+O�1/r3�� (12.154)

gIJ = �IJ

(

1+ 2m
r

+O�1/r2�

)

� (12.155)

1 Stephani’s formula for gIJ in Stephani (1990) seems to be incorrect.
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where �IJK is the Levi-Civita symbol and the new constants are defined in terms of the
old ones as follows:

m
def= �M

8�
� PI def= �

8�
�IJKBJK� DIJ def= �

8�
dIJ 
 (12.156)

For m and DIJ these are just new units, while PI is the vector of angular momentum.
The presence of PI in the metric marks an important difference between general

relativity and the Newtonian theory of gravitation. Let us take the Minkowski metric
in the Lorentzian coordinates, ds2 = −�IJ dxI dxJ + dt2, and let us transform it to the
rotating coordinates, in which xI = x′I + �IKL#Kx′Lt. Assuming that the angular velocity
of rotation #K is small and neglecting the terms proportional to #2, we see1 that g0I is
of the same form as in (12.154) (except that the contribution from rotation in (12.154)
decreases quickly with distance, because of the r3 in the denominator). The coordinates of
(12.153)–(12.155) become inertial at infinity (r → �), which means that the local inertial
coordinate system is rotating with respect to the inertial system of a distant observer. Thus,
a rotating body in relativity is dragging the inertial frames with it; this phenomenon is
also known as the Lense–Thirring (1918) effect. An experiment to measure this effect
in the gravitational field of the rotating Earth, known under the working name ‘Gravity
Probe B’, was launched recently (Gravity Probe B mission update, 2004). In contrast, in
the Newtonian gravitation there is no direct influence of rotation of the source on the
exterior field. There is only indirect influence because the centrifugal force caused by
rotation flattens the source, and the changed distribution of mass causes changes in the
exterior field (by producing a quadrupole moment).

12.19 Exercises

1. Verify that the Newtonian limit of Eqs. (12.78) are the Euler equations of motion of a perfect
fluid �dv/dt = −gradp.
Hint. Use the asymptotically Cartesian coordinates in which the metric has the form (12.46)–
(12.47), and observe that in these coordinates the 4-velocity u� has the form u0 = 1, uI = vI/c,
I = 1�2�3.

2. Verify that Eq. (12.79) becomes the continuity equation ��/�t+div��v�= 0 in the Newtonian
limit.

3. Verify that Eqs. (12.82)–(12.83) do indeed represent a solution of the modified Einstein equa-
tions (12.80). The energy-momentum tensor is that of a perfect fluid, the velocity field is
u�=∗ �

�
0/c. Do the calculation both by the tensor method and by using the Cartan forms. Find

the pressure.

1 Strictly speaking, this approximation is incorrect because the square term in # is multiplied by time, so the error of
approximation is cumulative.
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The Maxwell and Einstein–Maxwell equations and the
Kaluza–Klein theory

13.1 The Lorentz-covariant description of electromagnetic field

The separation of the electromagnetic field into electric and magnetic fields is not
covariant with the Lorentz transformation; it depends on the motion of the observer. In
relativity electromagnetic field is described by the antisymmetric tensor of electromag-
netic field F��. In any fixed coordinate system, the electric field is

F 0I = EI� I = 1� 2� 3 (13.1)

and the magnetic field is

HI = 1
2

�IJKFJK� I� J�K = 1� 2� 3� (13.2)

The formula inverse to (13.2) is FIJ = �IJKHK . If EI and HI are transformed by the
Lorentz transformation, then F�� transforms like a tensor. The change in F�� implied by a
coordinate transformation is interpreted as the relation between the electric and magnetic
fields measured by two observers.

13.2 The covariant form of the Maxwell equations

In special relativity, the Maxwell equations in vacuum are written as

F���� = 4�

c
j�� (13.3)

F����	
 = 0� (13.4)

where j� is the 4-vector of current. Equation (13.3) is equivalent to the set �div E =
4��� rot H = 4�/c�j + 1/c��E/�t� and Eq. (13.4) to the set �div H = 0� rot E +
1/c��H/�t = 0�, where � is the density of electric charge and j is the ordinary current
vector. The covariance of the Maxwell equations with the Lorentz transformation is
automatically guaranteed by F�� being a tensor. We also have

j0 = c��
{

jI
}= j� (13.5)
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In general relativity, the partial derivatives in (13.3)–(13.4) are replaced with covariant
derivatives, thus (13.3) becomes

F���� = 4�

c
j�� (13.6)

Equation (13.4) need not be changed because the Christoffel symbols cancel out in the
combination F����	
.

One can define the differential form F = F�� dx� ∧ dx�, and then (13.4) becomes
dF = 0. This is the condition of existence of a 1-form A such that F = dA, where
A = A� dx�. The consequence (and solution) of (13.4) is thus the existence of the
4-potential A�. The continuity equation j��� = 0 is an identical consequence of (13.6).

13.3 The energy-momentum tensor of an electromagnetic field

The electromagnetic field E� H� has the energy-density

u = 1

8�

(

E2 +H2
)

� (13.7)

its energy stream is

s = 1
4�

E×H� (13.8)

and its stress tensor is

TIJ = 1
4�

(

EIEJ +HIHJ − 1
2

(

E2 +H2
)

�IJ

)

� (13.9)

Just as we have done with the perfect fluid in Section 12.12, we can now compose these
quantities into a 4-dimensional tensor of energy-momentum of electromagnetic field:

T�� = 1
4�

(

F��F�
� + 1

4
g��F��F

��

)

� (13.10)

It has the property T�
� ≡ 0. This can be written in the equivalent form

T�� = 1
8�

(

F��F�
� + ∗F��∗F�

�
)

� (13.11)

where

∗F��

def= 1
2
√−g�����F�� (13.12)

is called the dual tensor to F��. In this form, it is easy to verify that the energy-momentum
tensor does not change when the electromagnetic field is transformed by the following
operation:

F̃�� = F�� cos �+ ∗F�� sin �� (13.13)
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where � is an arbitrary constant. This operation is called the duality rotation. Equa-
tion (13.13) implies that

∗F̃ �� = −F�� sin �+ ∗F�� cos �� (13.14)

Consequently, although a given electromagnetic tensor uniquely defines the electromag-
netic energy-momentum tensor (13.10), the converse is not true. Given T��, the F�� is
defined only up to duality rotations.

From (13.12) it is seen that the duality operation interchanges the electric and magnetic
fields: the electric field of F�� becomes the magnetic field of ∗F�� and vice versa. The

new electric and magnetic fields defined by F̃�� are linear combinations of the old fields
defined by F��.

The second set of Maxwell’s equations, (13.4), is equivalent to

∗F���� = 0� (13.15)

This means that no magnetic monopoles (and currents) exist. The ‘duality-rotated’ ∗F̃ ��

will not always have this property. But if ∗F̃
��

�� = m� �= 0, then the inverse duality
rotation (Eq. (13.13) with � replaced by −�) may sometimes be used to define such an
F�� for which (13.15) holds. The condition for this to be possible is that the ‘magnetic
current’ ∗F̃

��
�� and the electric current F���� are linearly dependent.

13.4 The Einstein–Maxwell equations

The energy-momentum tensor of electromagnetic field is a source of a gravitational
field on equal footing with the energy-momentum tensor of matter. In the presence of
electromagnetic field, the field equations of gravitation are

R�� − 1
2

g��R = mat
�T�� + em

T��� (13.16)

where
mat
T�� and

em
T�� are the energy-momentum tensors of matter and of electromag-

netic field, (13.10), respectively. The electromagnetic field must obey the Maxwell
equations (13.4) and (13.6). The set �(13.4), (13.6), (13.10), (13.16)� is called the
Einstein–Maxwell equations.

The contracted Bianchi identities
(

R�� − 1
2 g��R

)

�� = 0 imply the equations of motion

T���� = 0 for the whole energy-momentum tensor T��. In the absence of matter (
mat
T�� = 0)

and currents (j� = 0), the Maxwell equations �(13.4), (13.6)� do imply
em

T���� = 0. But the
converse is not true: the Maxwell equations do not follow from the equations of motion
and have to be postulated independently.
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13.5 * The variational principle for the Einstein–Maxwell equations

The Maxwell equations follow from the variational principle �
em
W = 0, where

em
W

def=
∫

�
d4x

√−g

(
1

8�
F��F�� + 2

c
j�A�

)

� F��

def= A��� −A���� (13.17)

i.e. the sourceless Maxwell equations (13.4) are pre-assumed and built into the Lagrangian.
The independent variables are the components of the 4-potential A� that obey the boundary
condition A���� = 0.

Then, the full set of Einstein–Maxwell equations follows from the variational principle
with the action integral

Wg + mat
W + em

W =
∫

�
d4x

√−g

(

R+ 1
8�

F��F�� + 2
c

j�A�

)

+ mat
W � (13.18)

The independent variables are g��, A� and matter variables. In vacuum,
mat
W = 0 and j� = 0.

13.6 * The Kaluza–Klein theory

In the 1920s, the only interactions known were electromagnetism and gravitation. Finding
a geometric theory that would unite them was thus an attractive goal. The first such
attempt was undertaken by Kaluza (1921). Several improvements on this theory were
made in later years, but complete success has still not been achieved, as will be seen
below. The other basic reference is Klein (1926). The exposition given in this section is
based on Appelquist and Chodos (1983).

The basic idea of Kaluza was the assumption that our world has five dimensions,
that the electromagnetic 4-potential forms the components of the metric tensor along the
fifth dimension and that the Einstein–Maxwell equations follow from vacuum Einstein
equations in five dimensions.

In the formulae below, the capital Latin indices A�B�C� � � � will run through the values
0, 1, 2, 3, 4, and the Greek indices will run through the values 0, 1, 2, 3. We make the
following assumptions (Appelquist and Chodos, 1983).

1. The 5-dimensional metric tensor is

��GAB�� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

g�� +�A�A� �A�

�A� �

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

� (13.19)

where � is a scalar field, A� is the electromagnetic 4-potential and g�� are compo-
nents of the 4-dimensional metric tensor.
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2. The vector field k� = ��
4 tangent to the 5-dimensional manifold along the fifth

dimension is a Killing field of the 5-dimensional metric tensor, i.e. all components
of GAB are independent of x4.

3. The fifth dimension is not observable since the 5-space is closed in the x4-direction,
and the circumference along it is very small.

One of the disadvantages of the theory is visible already here: its formulation is not
covariant with respect to 5-dimensional coordinate transformations. The metric (13.19)
has the determinant

G = det ��GAB�� = �g� (13.20)

where g = det
∣
∣
∣
∣g��

∣
∣
∣
∣. Hence

∣
∣
∣
∣GAB

∣
∣
∣
∣=

⎛

⎜
⎜
⎝

g�� −A�

−A� �−1 +A�A�

⎞

⎟
⎟
⎠

� (13.21)

For the Christoffel symbols and all subsequent quantities we will indicate the dimen-
sion of the space to which they refer by a subscript in parentheses. The 5-dimensional
Christoffel symbols are

{

�

��

}

5�

=
{

�

��

}

4�

+ 1
2

�
(

A�F�
� +A�F�

�

)− 1
2

g����� A�A��

{

�

�4

}

5�

= �F�
� − 1

2
g����� A��

{

�

44

}

5�

= −1
2

g����� �

{

4

��

}

5�

= −1
2

�A�A�F�� − 1
2

�A�A�F�� + 1
2

��� A�A�A�

+ 1
2�

(

��� A� +��� A�

)+ 1
2

(

A��� +A���

)

�

{

4

�4

}

5�

= −1
2

�A�F�� + 1
2

A���� A� + 1
2�

��� �

{

4

44

}

5�

= 1
2

A���� �

(13.22)
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The components of the Ricci tensor are now found to be

R5��� =R4��� − 1
2

�F�
�F�� + 3

4
A���� F�

� + 3
4

A���� F�
�

+ 1
2

�A�F�
��� + 1

2
�A�F

�
��� − 1

2
����� A�A�

+ 1
4

�2A�A�F
��F�� + 1

4�
A�A�g

����� ���

+ 1
4�2

��� ��� − 1
2�

���� �

R5�4� = 1
2

�F�
��� − 1

2
����� A� + 3

4
��� F�

� + 1
4

�2A�F
��F��

+ 1
4�

A�g
����� ��� �

R5�44 = − 1
2

����� +1
4

�2F��F�� + 1
4�

g����� ��� �

(13.23)

and the 5-dimensional scalar curvature is

R5� = R4� −�−1����� +1
4

�F��F�� + 1
2�2

g����� ��� � (13.24)

The scalar field � is an element of unknown interpretation; no object has been observed
in Nature that would be described by it. This was initially seen as a weakness of the
Kaluza–Klein theory, before the scalar field became one of the favourite subjects in
particle physics.

With � = −1/2�� = constant, the 5-dimensional vacuum Einstein equations R5�AB = 0
reproduce the 4-dimensional Einstein equations with electromagnetic field as a source and
the Maxwell equations F�

��� = 0, but impose the additional condition F��F�� = 0, which
means that E2 = H2. Thus R5�AB = 0 do not reproduce the Einstein–Maxwell equations in
their full generality, and this is another weakness of the Kaluza–Klein theory that remains
uncorrected to this day.

However, the full Einstein–Maxwell equations may be recovered by the following
trick. Take the variational principle for the 5-dimensional vacuum Einstein equations,
�W5� = 0, where

W5� =
∫

�5�

d5x
√−GR5�� (13.25)
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Since the circumference of the 5-dimensional space along the fifth dimension, �, is finite
and GAB does not depend on x4, one can integrate with respect to x4 in (13.25). Using
(13.20) and (13.24), we obtain

W5� = �
∫

�4�
d4x

√−g�

(

R4� −�−1����� +1
4

�F��F��

+ 1
2�2

g����� ���

)

� (13.26)

With � = −1/2�� = constant� j� = 0 and
mat
W = 0, Eq. (13.26) reduces to (13.15). In

this crooked sense, the Kaluza–Klein theory is the unified theory of gravitation and
electromagnetism.1

The Kaluza–Klein theory became a prototype for other attempts to unify physical theo-
ries. The common idea is to take a multidimensional metric and interpret its components
in higher dimensions as physical fields in spacetime. Although none of these theories
passed experimental verification, the idea still remains popular and inspires new attempts.

13.7 Exercises

1. Deduce (13.10) from (13.7)–(13.9) by the method of Section 12.12.
2. Show that the duality operation (13.13) has the property

∗ (∗F��

)= −F��� (13.27)

Derive (13.14) from (13.13). Verify that the duality rotation does not change T��.

3. Verify that in the absence of matter 
mat
T�� = 0� the Maxwell equations �(13.4), (13.6)� and the

equations of motion
em

T���� = 0 imply F��j� = 0. Use the Maxwell equations to prove that if
j� �= 0, then this is possible only with rotating currents for which j����
 �= 0.

1 As we showed in Section 12.8, a variational principle with the Lagrangian (13.25) leads to the full Einstein equations (12.21)
with T�� = 0. This result is independent of the dimension of the manifold. The fact that taking the symmetry gAB�4 = 0 into
account and transforming (13.25) to (13.26) leads to a different set of field equations is an illustration of the remark made at
the end of Section 12.8.
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Spherically symmetric gravitational fields of isolated
objects

In this chapter we will be dealing with spherically symmetric gravitational fields generated
by isolated objects, such as stars and black holes.1 Just as in Newton’s theory, the
spherically symmetric case is a foundation for the description of many phenomena taking
place in real, more complicated objects.

14.1 The curvature coordinates

In Section 8.9 we showed that the metric form of a spherically symmetric spacetime,
in a suitably limited class of coordinate systems, has the form (8.51). The coordinates
� and � are spherical coordinates whose values fix a point on a 2-sphere; t and r are
arbitrary coordinates whose values are constant on the spheres which are the orbits of
the symmetry group. The general form of (8.51) and the formulae for the Killing fields
of the O(3) group (8.41) do not change under transformations that are composites of the
following two classes:

1. The isometries generated by the Killing fields via Eqs. (8.15)–(8.16). These trans-
formations preserve not just the form (8.51) but also the values of the individual
components of the metric – the functions �, �, � and � among them. An example of
such a transformation is a rotation by the angle �0 around the axis �� =	/2
�= 0�
(this axis passes through the centre of the sphere and through a point on the equator).
In the ��
�-coordinates, such a rotation is given by

� = arctan

( √
N

cos�0 cos� ′ − sin�0 sin� ′ sin�′

)




N
def= sin2� ′ cos2�′ + �cos�0 sin� ′ sin�′ + sin�0 cos� ′2


� = arctan
(

cos�0 tan�′ + sin�0

cot� ′

cos�′

)

� (14.1)

1 Spherically symmetric solutions of Einstein’s equations are also applied in cosmology, and these applications will be discussed
separately in Chapter 18.
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2. The transformations (8.52) that preserve just the general form (8.51), but mix the
functions �, �, � and �, and are of the form

t = F�t′
 r ′
 r =G�t′
 r ′
 (14.2)

where F and G are arbitrary functions of two variables subject to ��F
G/��t′
 r ′ �=
0. After such a transformation, �, � and � change as follows:

�̃ = �F 2
t′ +2�F
t′G
t′ +�G2
t′ 
 (14.3)

�̃ = �F
t′F
r ′ +��F
t′ G
r ′ +F
r ′ G
t′ +�G
t′G
r ′ 
 (14.4)

�̃ = �F 2
r ′ +2�F
r ′G
r ′ +�G2
r ′ 
 (14.5)

while � transforms like a scalar, �̃�t′
 r ′= ��F
G.

Thus, choosing the functions F and G appropriately, one can manipulate �, � and �,
but not �. Because of the signature �+−−− assumed throughout, the determinant of
the metric must be negative,

��−�2 < 0� (14.6)

Thanks to this inequality, the equation �̃ = 0 can always be solved for F
t′ , and the
solution is

F
t′ =
1
�

(

−�±√�2 −��
)

G
t′ � (14.7)

We can thus take an arbitrary G and choose F to obey (14.7). Consequently, we lose no
generality when we begin with coordinates in which �= 0 already. Beginning with such
coordinates, we see from (14.4) that we can carry out such a transformation, after which
�̃= 0 (but after this transformation, the new �̃ will be nonzero). Achieving �̃= 0 while
�= 0 amounts to solving the equation

�G
r ′F
t′ +�G
t′F
r ′ +�G
t′G
r ′ = 0� (14.8)

Thus, G can be chosen arbitrarily, and then (14.8) becomes a linear inhomogeneous
partial differential equation for F , for which standard methods of solving exist.

We achieved � = 0 in two steps, and in both G was arbitrary. Hence, we can now
choose G so as to achieve some further simplification.

This is where most textbooks make a mistake – they choose G so that �̃ = −r ′2.
But � is a scalar under the allowed transformations. Hence, if � = constant before the
transformation, then �̃= �= constant and no condition can be imposed on it. Thus, the
further simplification of the form (8.51) must be considered more carefully.

Suppose that we wish to transform the coordinates of (8.51) so that

�̃= 0
 �̃= −r ′2� (14.9)
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When is this possible? From the second of (14.9) we have

r ′ =√−��F�t′
 r ′
G�t′
 r ′� (14.10)

Differentiating this by t′ and by r ′ we obtain

�
F F
t′ +�
GG
t′ = 0
 (14.11)

�
F F
r ′ +�
GG
r ′ =−2
√−�= −2r ′� (14.12)

While solving this set for �G
t′ 
G
r ′ , two cases must be considered:

• Ia. �
G �= 0. Then, substituting for G
t′ from (14.11) in (14.3), we obtain

�̃= F
t′
2

�
G
2

(

��
G
2 −2��
F �
G+��
F 2) � (14.13)

We want t′ to be the time coordinate, so �̃ > 0, which means that

��
G
2 −2��
F �
G+��
F 2 > 0� (14.14)

This is easily verified to be equivalent to

g���
� �
� < 0� (14.15)

Hence, if �
G �= 0, then the condition �̃ = −r ′2 can be fulfilled only if the gradient
of � is a spacelike vector.

• Ib. �
G= 0. Then, from (14.11), either �
F = 0, which means that �= constant (this
case will be discussed separately below), or �
F �= 0 and F
t′ = 0. In this second case,
(14.3) implies that

�̃= �G
t′
2� (14.16)

Hence, �̃ > 0 only if � > 0. With �
G= 0, � > 0 implies (14.15). (Equation (14.16)
shows that in this case it is r that is the time coordinate before the transformation.)

Hence, in either case the following lemma applies:

Lemma 14.1 (Case I) The condition �̃= −r ′2 can be fulfilled only if the gradient of �
is a spacelike vector.

However, there are three other cases in which the set (14.11)–(14.12) cannot be solved
at all. We leave it as an exercise for the reader to prove the remaining lemmas.

Lemma 14.2 (Case II) If the gradient of � is a timelike vector, then one can choose the
coordinates of (8.51) so that

�̃= 0
 �̃= −t′2� (14.17)

Lemma 14.3 (Case III) If the gradient of � is a nontrivial null vector, so that g���
� �
�=
0 but �
� �= 0, then one can choose the coordinates of (8.51) so that �̃ = −r ′2, but this
automatically implies �̃ = 0. Hence, it is not possible to simultaneously achieve �̃ = 0
because of Eq. (14.6), but it is possible to have in addition �̃ = 0.
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(Case IV) When � is constant, no condition at all can be imposed on it. The spacetime
is then a Cartesian product of a sphere of radius l = √−� and a 2-dimensional surface
with the metric ��t
 rdt2 +2��t
 rdt dr+��t
 rdr2.

The existence of regions of spacetimes with �
� being either spacelike or timelike was
first noted by Novikov (1962b), who called them R-regions and T-regions, respectively.

Case II is ignored by most textbooks, even by those that subsequently describe the
extension of the Schwarzschild manifold (see Section 14.9). Cases III and IV are ignored
almost universally, with the notable exception of Stephani et al. (2003). The situation of
these cases versus the Einstein equations is this:

For the vacuum equations with zero cosmological constant, the cases g���
��
� < 0
and g���
��
� > 0 are complementary to each other; they cover different parts of the
same manifold, as we will see in Section 14.9.

However, cases III and IV require separate treatment. Case III has been investigated by
Foyster and McIntosh (1972). It leads to a contradictory set of equations in pure vacuum,
and the solution of the vacuum Einstein–Maxwell equations with this geometry is given
in Stephani et al. (2003, Eq. (15.18)). Case IV leads to a contradiction when T�� = 0 =�,
but a few solutions of Einstein’s equations for more general sources can be found in the
literature. The vacuum solution with � �= 0 was found by Nariai (1950), and discussed at
some length by Krasiński and Plebański (1980). The solutions of the Einstein–Maxwell
equations with this geometry and with the source being the vacuum electrostatic field
were found by Bertotti (1959) and Robinson (1959); they are compared with the Nariai
solution in Krasiński (1999).

In this chapter, we will deal only with the case g���
��
� < 0. We then choose the
coordinates so as to achieve (14.9). In order to make subsequent calculations easier, we
denote �̃= e2��t
r, �̃ = −e2��t
r, and then

ds2 = e2��t
r dt2 − e2��t
r dr2 − r2
(

d�2 + sin2� d�2
)

� (14.18)

This form of the metric still allows a subgroup of the transformations (14.2). Namely, we
have � = −r2 before the transformation and �̃ = −r ′2 after the transformation. Since �
transforms like a scalar, this means that r = r ′ and, consequently, G
t′ = 0 and G
r ′ = 1
in Eqs. (14.3)–(14.5). We also require that � = 0 before the transformation and �̃ = 0
after the transformation, so from (14.4)

�F
t′F
r ′ = 0� (14.19)

But � �= 0 necessarily, or else the metric would be singular. Also F
t′ �= 0 because, with
G
t′ = 0 already required, the Jacobian of the transformation would be zero. Hence, the
consequence of (14.19) is F
r ′ = 0, i.e. the transformations still allowed are t = F�t′,
where F is an arbitrary function of one variable.

The coordinates of (14.18) are called curvature coordinates because in them the radial
coordinate r is connected with the curvature � of the symmetry orbits in the same way
as in the flat space, � = 1/r2.
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14.2 Symmetry inheritance

Solutions of nonvacuum Einstein equations give rise to the so-called symmetry inher-
itance problem, which is the following: to what extent do the sources in the Einstein
equations, coded in the energy-momentum tensor, inherit the symmetries of the metric of
the spacetime?

For a perfect fluid, the matter-density, pressure and velocity field are uniquely deter-
mined by the metric tensor. The energy-momentum tensor T�� is simply a function of the
metric, the matter-density and pressure are the eigenvalues of T�� and the velocity field
is the unique timelike eigenvector of T��. Hence, if the metric tensor does not change
under some transformation, then neither does T��, so also the matter-density, pressure
and velocity field remain unchanged.

However, if the source in the Einstein equations is an electromagnetic field, then,
even though the electromagnetic energy-momentum tensor (13.10) does inherit all the
symmetries of the metric, the tensor of electromagnetic field F�� does not necessarily
do the same. The equation £

k
T�� = 0 puts some limitation on F��, but does not imply

£
k
F�� = 0, and examples of F�� not being invariant under the isometries of the metric

are known (Wainwright and Yaremovicz, 1976; Li and Liang, 1985). However, if T��
is invariant under the whole group O(3), then so is F��, as proven by Wainwright and
Yaremovicz (1976). We will accept this result without re-deriving it, and will make use
of it in Section 14.4.

14.3 Spherically symmetric electromagnetic field in vacuum

In Section 8.9 we solved the equations £
k
�i

g�� = 0 for the generators of the group O(3),

given by (8.41). This result can be used in solving the equations £
k
�i

F�� = 0 for the same

generators. There is one point to be observed: since the metric tensor is symmetric,
Eq. (8.49) that had the form g23 +g32 = 0 implied g23 = 0. However, the electromagnetic
field tensor is antisymmetric, so (8.49) is identically fulfilled for it, i.e. the component
F23 does not have to be zero. Also, because of antisymmetry we have immediately
F00 = F11 = F22 = F33 = 0. Knowing this, and proceeding exactly like in Section 8.9, we
conclude that only the components F01 and F23 of a spherically symmetric electromagnetic
field can be nonzero, and then they must be of the form

F01 = f01�t
 r
 F23 = f23�t
 r sin�
 (14.20)

where f01 and f23 are arbitrary functions of two variables.
Substituting Eqs. (14.20) in the Maxwell equations in Minkowski spacetime we find that

the component F23 plays the role of the exterior field of a magnetic monopole. In agreement
with one of the postulates of classical electrodynamics (‘no magnetic monopoles exist’) we
would thus tend to assume F23 = 0. However, this is an additional assumption that does not
follow from spherical symmetry, but from experiments – Maxwell’s equations do allow such
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a solution. We will keep F23 nonzero for a while, and then we will find out that in vacuum
the magnetic monopole may be eliminated by the duality rotation (13.13).

The second set of Maxwell equations, F���
�� = 0, does not impose any limitation on
F01, but for F23 it implies

f23 = √
8	q = constant (14.21)

(the coefficient
√

8	 was introduced in order to simplify later calculations). The first set of
Maxwell’s equations in vacuum, F���� = 0, may be written in the form

(√−gF��) 
� = 0;
then they become

(

r2e�+�F 01
)


t = 0 = (

r2e�+�F 01
)


r 
 (14.22)

while F 23 = √
8	q/

(

r4 sin�
)

obeys
(√−gF��) 
� = 0 identically. The solution of

(14.22) is

F 01 = √
8	ee−�−�/r2
 (14.23)

where e is another arbitrary constant (and the coefficient
√

8	 was again introduced
for later convenience). Now it may be verified that the duality rotation (13.13) with the
parameter � = − arctan�q/e leads to the new field F̃ �� in which F̃23 = 0, thus q̃ = 0
and ẽ=√e2 +q2, while the electromagnetic energy-momentum tensor does not change.1

Hence, with no loss of generality we may now assume q = 0 = F23.

14.4 The Schwarzschild and Reissner–Nordström solutions

For calculating the energy-momentum tensor of the electromagnetic field given by (14.23),
the following formulae are useful:

F0�F
�

0 =8	e2e2�/r4
 F1�F
�

1 = −8	e2e2�/r4


F��F
�� = −16	e2/r4�

(14.24)

the components of F��F
�
� that are not listed are identically zero. For the metric (14.18),

the most convenient tetrad of differential forms is the orthonormal one

e0 = e� dt
 e1 = e� dr
 e2 = r d�
 e3 = r sin� d�� (14.25)

By whatever method (preferably, by using an algebraic computer program) we find now
that the tetrad components of the Ricci tensor are

R0̂̂0 = e−2��′′ − e−2��′�′ + e−2��′2 +2e−2��′/r

−e−2��̈+ e−2��̇�̇− e−2��̇2
 (14.26)

R0̂̂1 = 2e−�−��̇/r
 (14.27)

1 Many solutions of the Einstein–Maxwell equations include the electric charge and magnetic charge on equal footing, through
the combination e2 + q2. The generalisation with respect to pure electric charge is thus rather illusory, since the magnetic
charge may then be generated/removed/changed by duality rotations and does not influence the geometry of spacetime in an
independent way.
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R1̂̂1 = −e−2��′′ + e−2��′�′ − e−2��′2 +2e−2��′/r

+ e−2��̈− e−2��̇�̇+ e−2��̇2
 (14.28)

R2̂̂2 = R3̂̂3 = e−2���′ −�′/r+ (1− e−2�
)

/r2
 (14.29)

where �̇ = ��/�t and �′ = ��/�r. The nonzero tetrad components of F��F
�
� are now

found from (14.24) and (14.25):

F0̂̂sF
ŝ
0̂ = −F1̂̂sF

ŝ
1̂ = 8	e2/r4� (14.30)

We will find the solutions of the Einstein–Maxwell equations with the cosmological
constant and with the energy-momentum tensor (13.10), so

R��− 1
2
g��R+�g�� = 1

4	

(

F��F
�
�+ 1

4
g��F��F

��

)


 (14.31)

but first we will transform them to a more convenient form. The trace of (14.31) implies
R= 4�. Substituting this in (14.31) and transforming the result to tetrad components we
obtain

Rij =�gij +
1

4	

(

FisF
s
j +

1
4
gijF��F

��

)

� (14.32)

Since �gij� = diag�+1
−1
−1
−1, Eqs. (14.30) and (14.32) imply

R0̂̂0 +R1̂̂1 = 0� (14.33)

Substituting (14.26) and (14.28) in this we obtain 2e−2���′ + �′/r = 0, which
solves as

� = −�+f�t
 (14.34)

where f�t is an arbitrary function. Then, from R0̂̂1 = 0 we obtain � = ��r (so far an
arbitrary function). Now recall that the metric (14.18) does not change its form under the
transformations t′ = g�t, where g�t is an arbitrary function. Consequently, we transform t

in (14.18) by

t′ =
∫

ef�t dt
 (14.35)

where f�t is the function that appeared in (14.34). The result of (14.35) is as if f�t≡ 0.
Hence, with no loss of generality, � = −�, and the whole metric tensor becomes inde-
pendent of the time coordinate.1 Moreover, in (14.23) we obtain F 01 = √

8	e/r2, which
means that the electromagnetic tensor is also independent of time.

1 The statement thus obtained is sometimes called the Birkhoff theorem: the spherically symmetric gravitational field in
vacuum is static. (Here we have in fact derived a generalisation – our source is a vacuum electromagnetic field.) However,
calling it a theorem is rather inappropriate. It follows from straightforward calculations and finds no other application.
Moreover, it is, in this formulation, false: it holds only for those spacetime regions where the gradient of � is spacelike.
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From the equation R2̂̂2 = −�− �1/�16	�F��F
�� we now obtain, with the help of

(14.29) and (14.33):

1− e−2�+2re−2��′ = −�r2 + e2/r2
 (14.36)

which is easily integrated with the result

e−2� = 1+ C

r
+ 1

3
�r2 + e2

r2
= e2�
 (14.37)

where C is an arbitrary constant. The components i= j = 0 and i= j = 1 of (14.32) now
turn out to be fulfilled identically.

For the strictly vacuum field (�= 0 = e) we obtain from here

g00 = e2� = 1+C/r
 (14.38)

while the consideration of the Newtonian limit indicated that for weak gravitational fields
(12.46) should hold. In Newton’s theory, for a spherically symmetric gravitational field
in vacuum we have

�= −GM/r
 (14.39)

where G is the gravitational constant and M is the mass of the source of the field.

Equations (12.46) and (14.39) are consistent with (14.38) when C = −2GM/�c2
def= −2m.

Finally then, we found the following solution:

ds2 = e2� dt2 − e−2� dr2 − r2
(

d�2 + sin2� d�2
)


 (14.40)

where

e2� = 1− 2m
r

+ 1
3
�r2 + e2

r2
� (14.41)

Special cases of this solution were derived by different authors during the first few years
after the theory of general relativity had been published in 1915 and today they are known
under different names. The case �= e= 0 was found by Schwarzschild (1916a) and was
historically the first exact solution of the Einstein equations ever found.1 A large part of
relativistic astrophysics and several experimental tests of general relativity are based on
it. The subcase �= 0 was found by Reissner (1916) and Nordström (1918). The subcase
m= e= 0 was found by de Sitter (1916). The subcase e= 0 was found by Kottler (1918).
In full generality, the metric (14.40)–(14.41) appeared as a subcase of still more general
solutions found by Cahen and Defrise (1968) and by Kinnersley (1969).

We will mostly deal with the Schwarzschild solution for which

e2� = 1− 2m
r
� (14.42)

1 A year later, Droste (1917) presented another, mathematically more elegant, derivation of the same solution and discussed
its geometrical properties. His paper was surprisingly insightful and ahead of its time. Consequently, it would be quite
appropriate to refer to this metric as the Schwarzschild–Droste solution (Rothman, 2002). An English translation of the
Schwarzschild paper was published in Gen. Rel. Grav. 35, 951 (2003), but the editorial note to it makes incorrect claims
about its interpretation.
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Note that for r → 2m this metric apparently has a singularity, since g00 → 0 and
g11 → −�. However, if we substitute in (14.40) and (14.42) a value r < 2m, then the
metric is still nonsingular, but g00 < 0 and g11 > 0, i.e. the r-coordinate becomes time
and the t-coordinate becomes a measure of the radial distance. The region r < 2m is
the complementary part to r > 2m that was mentioned after Lemma 14.3. In that region
g���
� �
� > 0, and the ‘Birkhoff theorem’ does not hold.1 We will discuss the geometrical
and physical interpretation of the spurious singularity at r = 2m in Section 14.11.

14.5 Orbits of planets in the gravitational field of the Sun

In general relativity, just as in Newton’s theory, it is assumed that the planets in their
motion on the orbits behave like point masses, while their own gravitational fields are
weak and can be neglected in comparison with the gravitational field of the Sun. These
two assumptions in fact contradict each other. The gravitational field of a point mass is
singular at the mass’ position, and so stronger than any exterior field. In Newton’s theory
this difficulty is solved by the observation that the centre of mass of any extended body
follows the same trajectory as a point body with no self-gravitation would follow. At the
centre of mass, the body’s own gravitational field vanishes.

In relativity, so far there is not even a generally accepted definition of the centre of
mass, although work on this problem is being done. Thus, when we consider the orbits
of point bodies in relativity, we are in fact extending the theory into the domain in which
it has not been worked out yet. Nevertheless, these results agree with observational tests.

We assume that the gravitational field of the Sun is spherically symmetric, that the
space around the Sun does not contain electromagnetic fields and that the cosmological
constant is zero. This means that the spacetime will be described by the metric form
(14.40)–(14.42). The orbits of planets should be timelike geodesics in this spacetime, and
hence should be solutions of (5.14), where the derivative D/ds is calculated along dx�/ds
and x��s is the equation of the geodesic. Contracting (5.14) with g�� dx�/ds and using
(5.14) in the result, we obtain

0 = D
ds

(

g��
dx�

ds
dx�

ds

)

= d
ds

(

g��
dx�

ds
dx�

ds

)

� (14.43)

Hence, the quantity g�� �dx
�/ds �dx�/ds is constant along every geodesic. This means

in particular that its sign cannot change during motion; a geodesic is thus timelike, null
or spacelike along its whole length.

An orbit of a planet is timelike, so g�� �dx
�/ds �dx�/ds > 0� The affine parameter s

is determined up to inhomogeneous linear transformations, so for timelike geodesics it
can be scaled so that

g��
dx�

ds
dx�

ds
= 1� (14.44)

1 This region is an example of a spacetime with the Kantowski–Sachs symmetry; see the footnote after (10.40). In fact, it is
the unique vacuum solution of Einstein’s equations with this symmetry.
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The affine parameter is then s = c�, where c is the velocity of light and � is the proper
time of the particle that follows the geodesic. In the calculation of the orbit we wish to
use the physical units, so in calculating the Christoffel symbols our time coordinate will
be ct. With this, the Christoffel symbols for the metric (14.40)–(14.42) are:

{

0

01

}

= m

r2

1
1−2m/r

= −
{

1

11

}




{

1

00

}

= mc2

r2
− 2m2c2

r3



{

1

22

}

= 2m− r =
{

1

33

}/

sin2�


{

2

12

}

= 1
r

=
{

3

13

}




{

2

33

}

= − cos� sin�


{

3

23

}

= cot��

(14.45)

Hence, the equations of a geodesic are these:

c
d2t

ds2
+ 2m

r2

1
1−2m/r

c
dt
ds

dr
ds

= 0
 (14.46)

d2r

ds2
+
(
mc2

r2
− 2m2c2

r3

)(
dt
ds

)

2 − m

r2

1
1−2m/r

(
dr
ds

)2

+ �2m− r
(

d�
ds

)2

+ �2m− r sin2�

(
d�
ds

)2

= 0
 (14.47)

d2�

ds2
+ 2
r

d�
ds

dr
ds

− cos� sin�
(

d�
ds

)2

= 0
 (14.48)

d2�

ds2
+ 2
r

dr
ds

d�
ds

+2 cot�
d�
ds

d�
ds

= 0� (14.49)

The last equation may be written as �d/ds
(

r2 sin2� �d�/ds
)= 0
 which is easily inte-

grated with the result

d�
ds

= J0

r2 sin2�

 (14.50)

where J0 is an arbitrary constant. Substituting this in (14.48) we obtain

d2�

ds2
+ 2
r

dr
ds

d�
ds

− J0
2 cos�

r4 sin3�
= 0� (14.51)
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A first integral of this equation is

r4

(
d�
ds

)2

+ J0
2 cot2� = A= constant� (14.52)

We still have the freedom to rotate the axes of the spherical coordinates – the metric is
invariant under such rotations, and we have not applied any of them so far. Suppose that
at the initial instant on the orbit ��s0= �0. Rotate the axis of the spherical coordinates
so that at s0 the planet is on the equator, i.e. �0 = 	/2. Then we still have the freedom
to rotate the spherical coordinates around the single axis passing through x��s0. Apply
this rotation by such an angle that the initial velocity of the planet will lie in the plane
of the equator, i.e. d�/ds	s=s0 = 0. Substituting the initial conditions �0 = 	/2 and
d�/ds	s=s0 = 0 in (14.52) we obtain A = 0. But A is a sum of two non-negative terms,
hence both of them must be zero at all times, which means that

�=∗ 	/2 (14.53)

on the whole orbit. Substituting (14.53) in (14.50) we obtain

d�
ds

= J0

r2
� (14.54)

A first integral of (14.46) is
(

1− 2m
r

)

c
dt
ds

= E
 (14.55)

where E is an arbitrary constant. In this way we have made use of (14.48), (14.46) and
(14.49). Only (14.47) still remains, but we can replace it by the first integral (14.44).
Using (14.53)–(14.55) it becomes

E2

1−2m/r
− 1

1−2m/r

(
dr
ds

)2

− J0
2

r2
= 1
 (14.56)

which can be written as1

dr
ds

=
[

E2 −
(

1+ J0
2

r2

)(

1− 2m
r

)]1/2

� (14.57)

Now we have three first-order equations to solve, (14.54), (14.55) and (14.57). In most
situations we are interested only in the shape of the orbit, which is given by (14.54) and
(14.57). The third equation gives information on the dependence of coordinates of the
planet on time.

1 We omit the minus sign in front of the right-hand side in (14.57) because the resulting solutions describe motions along the
same orbits in the opposite direction. In a spherically symmetric spacetime, the reversal of the sense of orbital motion is
equivalent to a coordinate transformation (reflection). This is not so when the source of the gravitational field is rotating,
where orbital motion can be direct, i.e. with angular velocity parallel to that of the source, or retrograde, i.e. with the two
angular velocities antiparallel. We shall meet this problem in the Kerr spacetime; see Section 20.7.
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If J0 = 0, then, from (14.54), � = �0 = constant, which means that the ‘planet’ falls
directly towards the centre of the Sun. We will omit this uninteresting case, and assume
J0 �= 0. Then (14.54) and (14.57) can be replaced by just one equation:

(
J0

r2

dr
d�

)2

= E2 −
(

1+ J0
2

r2

)(

1− 2m
r

)

� (14.58)

Now we introduce the new variable � = 1/r and obtain in (14.58)
(

J0

d�
d�

)2

= E2 − (1+ J0
2�2
)

�1−2m� � (14.59)

An exact solution of this equation would lead to elliptic integrals. We prefer to solve it
approximately, up to first order in the small parameter defined below. For the perturbative
calculation, it is more convenient to go one step back and replace (14.59) by a second-
order equation. We differentiate (14.59) by � and obtain

d�
d�

·2J0
2 d2�

d�2
= d�

d�

[−2J0
2�+2m

(

1+3J0
2�2
)]

� (14.60)

One special solution of this is d�/d�= 0, i.e. motion on a circular orbit with r = constant.
When d�/d� �= 0, (14.60) becomes

d2�

d�2
+� = m

J0
2 +3m�2� (14.61)

This equation differs from the corresponding Newtonian equation by the last term that
vanishes in the Newtonian limit c→ �. In order that the first term on the right assumes
the Newtonian form GM�2/J 2 in this limit (where M is the mass of the source, � is the
mass of the planet on the orbit and J is the orbital angular momentum of the planet), we
must assume J0 = J/�mc. To simplify the notation, we denote

mc2�2

J 2
≡ GM�2

J 2

def= 1
p

 3m≡ 3GM

c2

def=�� (14.62)

In the Newtonian limit, � becomes zero, while p is the parameter of the orbit: the
distance from the Sun to the planet at that instant at which the Sun–planet direction is
perpendicular to the Sun–perihelion direction. In this notation, Eq. (14.61) becomes

d2�

d�2
+� = 1

p
+��2� (14.63)

We will solve this equation approximately, up to terms linear in �, taking � as the small
parameter. More precisely, since � has the dimension of distance, the small parameter
will be the dimensionless number �� . For the Sun, � ≈ 4�5 km, while the radius of the
Sun is approximately 7 × 105 km, so the planetary orbits of necessity have still larger
radii, and ��< 0�64×10−5. Since � and 1/p are comparable, ��2 � � and ��2 � 1/p,
and the last term in (14.63) is small compared to all other terms. However, for strongly
concentrated objects such as neutron stars or black holes, the orbits may come much
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closer to r = 0, and the approximation used here becomes invalid. In those cases, one has
to resort either to numerical calculations or to calculations with elliptic functions.1

In the zeroth order of approximation, the solution of (14.63) is the Newtonian orbit

�0 = 1
p

+ �

p
cos ��−�0 
 (14.64)

where � is the eccentricity of the elliptic orbit, which is also a small quantity for all
solar planets (for Pluto, � = 0�2444, for Mercury � = 0�205 628; for other planets it is
still smaller). In the first approximation, we assume � to be of the form ��1� = �0 +�1,
where �1 is of the order of �, i.e. �1 = 0 when � = 0. We substitute this � in (14.63),
neglect terms of order �2, and obtain

d2�1

d�2
+�1 = �

p2

[

1+2� cos ��−�0+�2 cos2 ��−�0
]

� (14.65)

Since we assumed �1 = 0 when � = 0, we must take �1j = 0 as the solution of the
homogeneous part of (14.65). The problem is thus to find a special solution of the full
inhomogeneous equation. This can be done by textbook methods; the solution is

�1 = �

p2

(

1+ �2

3

)

+ ��

p2
��−�0 sin ��−�0+

��2

3p2
sin2 ��−�0 � (14.66)

However, the solution �0 +�1 implied by this �1 is seen to be in violent disagree-
ment both with Newton’s theory and with observations. At � = n	, n = 1
2
3
 � � �,
the curve given by (14.66) passes through always the same two points, but in the
sectors where sin ��−�0 > 0 �1 increases systematically with every revolution, with no
upper limit, i.e. r → 0 as � → �. In the sectors where sin ��−�0 < 0 �1 decreases
systematically with every revolution, with no lower limit, and will at a certain instant
cause that ��1� = 0, i.e. r → �. The term responsible for this unusual behaviour is
���/p2��−�0sin��−�0, which becomes arbitrarily large as � increases. On the other
hand, analysing the function on the right-hand side of (14.59) by the methods of classi-
cal mechanics one can prove that with E < 1, J0 > 2

√
3GM/c2 and the initial � being

sufficiently small the solution ��� must be bounded (see Exercise 4). We conclude that
the trouble-causing term must be the first term of a power series representing a bounded
function and that in the first order solution to (14.63) we must include that function
in full. Going to higher orders of approximation to identify the unknown function is a
laborious way of solving the problem, since, with every added order, many new terms
appear. We want the solution to reduce to (14.66) only to first order, and any bounded
function with this property will do. After some guesswork, the function

�

p
cos

[(

1− �

p

)

��−�0

]

(14.67)

1 In real astrophysical situations, orbits are perturbed in so many ways that numerical treatment becomes necessary anyway.
Examples: gravitation of other planets, rotation of the star or black hole, lack of spherical symmetry caused by rotation, loss
of orbital angular momentum because of friction with interplanetary matter.
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is found to be the right one. This function is bounded for all values of �, but replacing
it by the ‘approximation’ linear in � caused the nonsensical behaviour of (14.66). This
approximation holds only for a limited range of values of � and becomes divergent when
� is allowed to increase without bounds. We will come back to this at the end of this
section.

Hence, the correct approximation to the solution of (14.63) up to terms linear in � is:

� = 1

p
+ �

p2

(

1+ �2

3

)

+ �

p
cos

[(

1− �

p

)

��−�0

]

+ ��2

3p2
sin2 ��−�0 � (14.68)

Since ��/p� 1, the third term on the right dominates over the last one, which can thus
be neglected. After the planet has made one full revolution, � → �+ 2	, � does not
return to its initial value. Instead, it returns (approximately) to its initial value after the
planet has revolved by 2	/�1−�/p> 2	. Consequently, the aphelion and the perihelion
move while the planet goes around its orbit, in the same direction in which the planet
revolves. Two consecutive perihelia are separated by the angle �� = 2	/�1 −�/p−
2	 = 2	�/p+O���/p2, and the formula for this perihelion shift can be written in
three equivalent ways:

��≈ 2	�

p
= 6	GM

c2p
= 6	GM
c2b�1+� = 6	GM

c2a�1−�2

 (14.69)

where b is the minimal distance of the planet from the Sun and a is the semimajor axis
of the orbit. The shape of the orbit is shown in Fig. 1.1 (where the value of �� is greatly
exaggerated).

Note that �� is larger the smaller b is. Hence, Mercury offers the best conditions for
measuring this effect. Since �� is very small for a single revolution, but cumulates with
time, the most convenient unit to measure �� in astronomical practice is not radians per
revolution, as in (14.69), but arc seconds per century. In these units, we have

�� = C

T
· 360 ·60 ·60

2	
· 6	GM
c2a�1−�2


 (14.70)

where C = 100 years, T is the orbital period of Mercury and the second factor converts
radians to arc seconds. From the tables (Allen, 1973) we findG= 6�670×10−8 cm3 g−1 s−2

for the gravitational constant,M = 1�989×1033 g for the mass of the Sun, c2 = 8�987 554×
1020 cm2 s−2 for the square of the velocity of light, a= 57�9×1011 cm for the semimajor
axis of Mercury’s orbit, � = 0�205 628 for the eccentricity of Mercury’s orbit and T =
0�240 85 terrestrial years for Mercury’s orbital period. Substituting all these values in
(14.70) we obtain1 �� = 43�03 arc seconds per century.

Equation (14.69) is the famous result (the relativistic perihelion shift) that predicted
the orbital motion of Mercury in agreement with astronomical observations. As described

1 Most pocket calculators will probably show a slightly different result, because of inconsistent roundoff errors. The value
quoted here as the official result has been obtained by carefully tuning the precision of all factors.
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in Chapter 1, when this correction is added to the perturbations of Mercury’s orbit by
other planets, the sum is in good agreement with the observed value.

The observational tests of this effect are done by registering the positions of planets
at different instants, reconstructing their orbits in space and determining the positions of
perihelia. As mentioned in Chapter 1, the perihelion shift of Mercury had been observed
already in the first half of the nineteenth century, and its Newtonian origins were
identified by LeVerrier in 1859 (Dicke, 1964). He was also the person who noted the
discrepancy between observational results and the prediction of Newton’s theory. It has to
be mentioned that in addition to perturbations of Mercury’s orbit by other planets there is
one more component in the observed effect: the astronomical observations are carried out
from the Earth, so their raw results are expressed in the geocentric reference system. This
gives the largest component of the perihelion shift. According to modern observations
(Will, 1981; Lang, 1974), the full observed perihelion shift of Mercury is 5599�74±0�41′′

per century, of which approximately 5000′′ per century is caused by the geocentric
reference system, approximately 280′′ is caused by the gravitational perturbations from
Venus, approximately 150′′ by perturbations from Jupiter and approximately 100′′ by
perturbations from the remaining planets (Will, 1981). The residue is 43�11±0�45′′

per century (Lang, 1974), which agrees very well with the value calculated from
relativity.

For other planets, the relativistic perihelion shift is no larger than a few arc seconds
per century (Will, 1981). Moreover, their orbits have small eccentricities, so the positions
of their perihelia are known with smaller precision and they are less suitable for testing
relativity.

Now a few comments on the procedure we used to obtain the approximate orbit
equation:

1. We were able to recognise that (14.66) is an incorrect solution because we knew
from elsewhere what properties the orbit should have. However, perturbative meth-
ods are often applied in relativistic astrophysics in situations where nothing is
known about the expected result. The experience with Mercury’s orbit should be
a warning that one must be careful about drawing conclusions from approximate
results.

2. While going to higher orders of approximation, an avalanche of new terms appears.
This is typical of all perturbative schemes. Thus, the hope that something useful
can be inferred about the exact result by considering consecutive approxima-
tions may be illusory in most instances. There are some results, for example,
in the third post-Newtonian order of the relativistic two-body problem, but the
formulae are so unwieldy that they can be handled only by algebraic computer
programs.

3. We emphasise again that the results (14.69)–(14.70) were obtained under the assump-
tion that the radius of the orbit, at every point, is much larger than the gravitational
radius of the central body, GM/c2. They do not apply to those orbits around neutron
stars and black holes that come close to the central body.



14.6 Deflection of light rays in the Schwarzschild field 183

14.6 Deflection of light rays in the Schwarzschild field

We will now investigate the orbit of a light ray in the spherically symmetric gravita-
tional field. Hence, this time we have to solve the equations of null geodesics in the
Schwarzschild geometry.

The consideration in the previous section that led to the conclusion that coordinates
may be chosen so that � = 	/2 on the whole orbit remains valid also for null orbits. The
only thing that changes is the value of the first integral (14.44); this time

g��
dx�

ds
dx�

ds
= 0� (14.71)

Moreover, now s is not time, but just a parameter on the curve.
The partly integrated equations of a geodesic are (14.54), (14.56) and

E2 −
(

dr
ds

)2

− J0
2

r2

(

1− 2m
r

)

= 0� (14.72)

It can be seen that, with J0 = 0, radial motion is possible here also. With J0 �= 0, we
obtain from (14.55) and (14.72):

dr
d�

= r2

J0

√

E2 − J0
2

r2

(

1− 2m
r

)

� (14.73)

(We take only the + sign for the square root for the same reason as before.) We will handle
this equation by a method similar to the one used in the previous section. Introducing
� = 1/r, we obtain

(

J0

d�
d�

)2

= E2 − J0
2�2 �1−2m� � (14.74)

From here, differentiating by �,

d�
d�

· d2�

d�2
= d�

d�

(−�+3m�2
)

� (14.75)

It is seen that again we have two cases here: either d�/d�= 0, which means motion on
a circular orbit, or d�/d� �= 0, in which case

d2�

d�2
+� = ��2
 (14.76)

where �= 3m, as before. We solve this equation by the same method as (14.63). In the
zeroth (Newtonian) approximation, the solution is

1
r

= �0 = 1
R

cos ��−�0 
 (14.77)

where R= constant. In the Newtonian limit, �r
�
� are the spherical coordinates in the
Euclidean space. Then (14.77) is an equation of a straight line passing at the distance R
from the point r = 0.
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In the first approximation we look for a solution in the form ��1� = �0 +�1, where
�1/�0 ∝ �. The function �1 must then obey

d2�1

d�2
+�1 = �

R2
cos2 ��−�0 � (14.78)

A particular integral of (14.78) is

�1 = �

3R2

[

1+ sin2 ��−�0
]

� (14.79)

The full solution of (14.78) up to terms of order � is thus

1
r

= 1
R

cos ��−�0+
�

3R2

[

1+ sin2 ��−�0
]

� (14.80)

This may be solved for � with the result

�± = �0 ± arccos

[

3R
2�

(
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√

1+ 8�2
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− 4�

3r

)]

� (14.81)

This orbit has two asymptotes whose directions are calculated from here in the limit
r → �. The angle between them is (see Fig. 14.1)

��= lim
r→� ��+ −�−−	 = 2 arccos

[

3R
2�

(

1−
√

1+ 8�2

9R2

)]

−	� (14.82)

Equation (14.80) is an approximate solution to (14.76), so it will apply only with a limited
precision (up to terms linear in �). Hence, we do not have to consider Eq. (14.82) in its
exact form – it suffices to take it with the same precision, and then it becomes

��= 4�
3R

= 4GM
c2R

� (14.83)

This is another famous result. Before we confront it with observations, we will first rectify
a misunderstanding that still lingers in the literature.

Some authors wish to calculate the angle of gravitational deflection of a light ray in a
quick and easy way, and for that purpose they use a combination of special relativity and
Newton’s theory. They assume that a photon of energy E has the mass E/c2 that interacts
with the central body by the ordinary law of gravitation. Consequently, the orbit of a
light ray is just an orbit of a particle of mass E/c2. We will show below that the result
obtained in this way is exactly half of the correct (verified observationally!) Eq. (14.83).

The Newtonian orbit in polar coordinates is given by (14.77). From there

�± = �0 ± arccos
[

1
�

(
R

r
−1
)]

� (14.84)
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Fig. 14.1. Gravitational deflection of light rays in a spherically symmetric gravitational field.
T is the true position of the source of light, A is the apparent position seen by the observer O
in consequence of the deflection. According to Newton’s theory, the light ray emitted from T in
the direction TN would move along the straight line TN. In reality, and according to relativity, it
follows the curve TO. The straight line TN is the asymptote of the initial part of the ray’s path; AO
is the asymptote of the final part. L is the deflecting body, R is the distance between the centre of
the body L and the Newtonian path of the light ray, �+ −�− is the angle between the asymptotes,
calculated from (14.81) as �+ −�− = limr→�

(

�+ −�−
)

, and �� is the angle of deflection. The
origin of the polar coordinates is at the centre of the deflecting body L; � increases in the clockwise
direction.

The deflection angle is thus

��= lim
r→� ��+ −�−−	 = 2 arccos

(

−1
�

)

−	 = 2 arcsin
(

1
�

)

� (14.85)

For a Newtonian orbit the eccentricity � is

�=
√

1+ 2E0J
2

G2M2�3
(14.86)

(� > 1 because the orbit is hyperbolic), where E0 is the total energy of the particle on the
orbit, J is its angular momentum and � is its mass. In our case the ‘particle’ is a photon
moving at the velocity c, so

E0 = 1
2
mc2
 J =mcR� (14.87)

Hence, in (14.86):

�=
√

1+ R2c4

G2M2
� 1� (14.88)

Up to linear terms in GM/�c2R we thus have from (14.85)

��= 2GM
c2R


 (14.89)

i.e. half of the prediction of general relativity. Note that we arranged for the discrepancy
to be small: had we taken the special relativistic equation E =mc2 instead of (14.87), the
final result would have been �� = √

2GM/�c2R, differing from (14.83) by still more.
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The lesson to be drawn is this: simplified intuitive arguments constructed by picking out
elements of different theories and doing simple arithmetics on them are not guaranteed
to lead to correct results. Each physical theory has its inner logic that has to be applied
consistently.

The same result (14.89) can be derived from the pure Newton theory, without mixing
in special relativity; see Exercise 6.

14.7 Measuring the deflection of light rays

It can be seen from (14.83) that �� is inversely proportional to R, thus the angle of
deflection is greater for those rays that approach the central star to within a smaller
distance. For a light ray grazing the surface of the Sun, R = 6�9599 × 1010 cm. Taking
this number, and the other quantities in (14.83) as in Section 14.5, we obtain ��= 1�75′′.
This is the maximum value available in observations.1 For stars other than the Sun the
necessary parameters M and R cannot be measured with sufficient precision, and the
deflection angles would be much too small to be measured (see later in this section).
Planets cause unmeasurably small deflection angles.

We discussed the deflection of light rays, but of course the result applies to all kinds of
radiation and other objects that move on null geodesics, e.g. X rays, � rays, microwaves
and neutrinos, provided the latter do indeed have zero mass. However, during the first
decades of the twentieth century the whole of observational astronomy relied on optical
observations; other kinds of radiation from space had been either impossible to detect
with the technology of those times, or were not yet known. Consequently, in the first
attempt to measure the deflection of light in the gravitational field of the Sun optical
observations were applied.

The attempt was undertaken by Eddington in 1919 (Dyson, Eddington and Davidson,
1920). Observing the light rays that graze the Sun’s surface is possible only during a total
eclipse. The idea was this:

1. Find two stars that will be visible at the very edge of the Sun during the eclipse,
best of all on opposite ends of the Sun’s diameter.

2. Take a photograph of these stars during the eclipse, with the darkened Sun visible
between them.

3. Take a photograph of the same two stars several months later, when the Sun is
safely away from them in the sky.

4. Measure the differences between the positions of the stars in the two photographs.

1 Today, gravitational deflection of light is observed also for distant galaxies, in the gravitational lenses. In those configurations,
light rays deflected on opposite sides of the deflecting mass intersect on the Earth. However, the gravitational lenses are not
useful for testing relativity because the parameters of the deflecting objects – their mass distributions and radii – are not
known with sufficient precision. Also, in order to calculate the deflection angle in a gravitational lens correctly, the equation
of a null geodesic should be solved in a different geometry – a model of the Universe with an inhomogeneous distribution
of matter. No such results are available as yet.
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The geometry of this measurement is shown in Fig. 14.2. With the Sun being away, the
observer O sees the two stars at their true positions T1 and T2, at angular separation �1.
With the Sun between them, the stars are seen at the apparent positions A1 and A2, at
angular separation �2 > �1. The angle of deflection is ��= �2 −�1.

With the technology of 1919, this measurement posed severe technical difficulties. The
expected effect was so small that the mechanical deformations of photographic plates
during the months when they had to be stored could seriously disturb the result. Total
eclipses of the Sun typically occur in the tropical zone – in the oceans or in jungles and
deserts, far away from well-equipped observatories. Eddington’s expedition consisted of
two groups, carrying out the observations in Sobral in Brazil and on Principe Island in
the Guinea Bay off Africa.

Reaching such a destination on time is a problem in itself. In addition, one has to
carry out precise measurements under field conditions. During an eclipse the temperature
of the atmosphere drops rapidly, which causes some turbulence and the cooling of the
telescope. The precision achievable under such conditions was limited, but, neverthe-
less, the effect predicted by relativity was definitely confirmed. The deflection angle
measured at Sobral was 1�98 ± 0�16′′, that on Principe Island was 1�61 ± 0�40′′ (Will,
1981, p. 5). Unlike the anomalous perihelion shift of Mercury that had been known for
many years before relativity was created, the deflection of light rays was predicted by
relativity. Apart from the old and long-forgotten attempts by Cavendish and Soldner
(Will, 1988; Soldner, 1804; Schneider, Ehlers and Falco, 1992), nobody had expected
gravitation to influence the propagation of light. Eddington’s positive result catapulted
relativity and Einstein personally to the fame and public fascination that they still have
today.

A 2

A 1

T 1

T 2

OS α 1α 2

Fig. 14.2. Measuring the deflection of light rays by the Sun by Eddington’s method. When the
Sun is away, the observer O sees the stars at their true positions T1 and T2, at angular separation �1.
Then, the light from the stars reaches the observer along the straight lines T1O and T2O. When the
Sun S is seen between the stars, their light follows the curved arcs T1O and T2O, and the observer
sees the images of the stars at the apparent positions A1 and A2, at angular separation �2 >�1. The
straight lines A1O and A2O are tangent to the arcs T1O and T2O at the point O. The prediction of
relativity is ��= �2 −�1 = 1�75′′.
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Results obtained later from measurements by the same method gave results between
90% and 150% of the relativity value 1�75′′, with formal errors estimated to be 6% to
25%, and unknown systematic errors.

Today this measurement is made by a different method. The electromagnetic waves
used in the observation are microwaves, and the observing devices are radio telescopes.
Three radio sources, denoted by the symbols 0119 + 11
0116 + 08 and 0111 + 02, lie
almost exactly on a straight line, inclined at a large angle to the Sun’s yearly trajectory
through the sky. (The symbols of the radio sources are their coordinates on the sky,
namely the right ascension in hours and minutes and the declination in degrees.) Each
year, for about 3 weeks in March/April, the Sun passes in front of the middle radio
source, see Fig. 14.3. The other two radio sources are then so far from the Sun’s disc
on the sky that their radiation is not measurably deflected. Thus, the real position of the
middle radio source relative to the two others is measured when the Sun is elsewhere in
the sky and compared with the observed position while the Sun’s edge approaches the
line of sight. The Sun is a weak radio source and its own microwave radiation does not
disturb the measurement; the object 0116 + 08 can be observed right up to the moment
when it vanishes behind the Sun. The only complication is that the plasma in the solar
corona also deflects the microwaves. However, the plasma deflection depends, in a known
way, on the wavelength of the radiation, while the gravitational deflection is the same
for all wavelengths. Thus, carrying out the measurement at two wavelengths suffices to
disentangle the two effects.

This measurement was carried out for the first time in 1974 by Fomalont and Sramek
(1975) at the National Radio Astronomy Observatory in Green Bank (West Virginia).
With this method, no expeditions to remote sites are necessary – the whole observation is
done under laboratory conditions and so is more precise. It has become customary to quote
the observational results in the form of the ratio of the measured quantity to the value

P 1

P 2 P 2

P 3 P 3

P 1

Fig. 14.3. Measuring the deflection of microwaves by the Sun. When the Sun is away, the three
radio sources P1
P2 and P3 are seen nearly on a straight line (left). The true position of the middle
source P2 can then be measured relative to the other two. With the disc of the Sun approaching
(right), the image of P2 moves away from the Sun. Its true position (small circle) can then be
calculated from the positions of P1 and P2 (which do not change measurably) and compared with
the observed apparent position to calculate the angle of deflection. The shift of the image of P2 is
exaggerated for clarity.
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predicted by relativity. The value 1 means perfect agreement. In the radio-astronomical
observation, the deflection was measured to be 1�007 ± 0�009 (standard error), so the
value 1 is within the error bar.

14.8 Gravitational lenses

A gravitational lens is a body deflecting light rays that is situated relative to the
observer in such a way that the deflected rays intersect at the observer’s position.
The theory and observations of gravitational lenses has become a science in itself
(Schneider, Ehlers and Falco, 1992), and we will touch on this subject here only very
briefly.

A gravitational lens formed by a single star is shown in Fig. 14.4. S is the source
of light, L is the deflecting star (the lens) and O is the observer; R is the radius of the
star, dS and dO are the distances from the lens to the source of light and to the observer,
respectively; ��S and ��O are the angles filled by the radius R at the position of the
source and of the observer, respectively; �� is the deflection angle of the ray that grazes
the surface of the lens. Neglecting the curvature of space, we obtain, approximately for
small angles,

R= dS��S = dO��O� (14.90)

On the other hand, using (14.83) and Fig. 14.4 we have

��= ��S +��O = 4GM
c2R

� (14.91)

From (14.90) and (14.91) we obtain the ‘equation of a gravitational lens’:

1
dS

+ 1
dO

= 4GM
c2R2

� (14.92)

Unlike optical lenses, gravitational lenses do not focus the light rays: the rays flying
farther from the optical axis are deflected by smaller angles than are those flying closer
to the axis. Hence, it is not possible to ‘view’ anything through a gravitational lens
as if it were a magnifying glass – the image is very distorted. Nevertheless, there is

Δϕ Δϕ
Δϕ

s oS O

L

R

d dos

Fig. 14.4. A spherical star as a gravitational lens. In the approximation used here, the radius of the
star, R, equals the distance from the star’s centre to the point where the two straight lines intersect.
Everything else is elementary geometry – see the text.
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some intensification of light: the rays that would have dispersed in the absence of a lens
intersect again. Gravitational lenses can thus increase the range of optical observations,
and are actually used for this purpose (Schneider, Ehlers and Falco, 1992).

Would it be possible for an observer on the Earth to use the Sun as a gravitational lens?
Equation (14.92) allows us to answer this question decisively: no. The first rays (those
that graze the surface of the Sun) intersect at the distance dO that is smaller the greater
dS is. Hence, the minimal dO is calculated from (14.92) in the limit dS → �; it is dmin =
�cR2/�4GM = 8�2 × 1010 km, while the radius of the Earth’s orbit is 1�495 978 92 ×
108 km. (The distance dmin is more than 13 times the radius of the orbit of Pluto, i.e. far
beyond the Solar System.) Likewise, there is no chance to observe the ‘lensing’ by other
stars by measuring the deflection angles. Even for the closest star, which is 4.5 light years
away from the Earth, assuming it has the same radius as the Sun, the angle ��O would
be 3�4×10−3′′ – too little to be measured.1

By extending the formula (14.83) to intergalactic distances (which is not really correct)
we can conclude that galaxies do have a chance to be gravitational lenses, and indeed
many such lenses have been observed (Schneider, Ehlers and Falco, 1992). Substituting
in (14.92) the mass of our Galaxy, M = 1�4×1011M� and its smallest diameter R= 5 kpc,
with 1 kpc = 3�0857×1021 cm, we obtain dmin = 9�33×102 Mpc. According to the Hubble
formula the luminosity distance is DL = zc/H0, where H0 ≈ 50 km s−1 Mpc−1 is the
Hubble constant, the distance dmin corresponds to the redshift z≈ 0�15. Taking the largest
diameter of our Galaxy, R = 30 kpc, we get z = 5�6. The quasars are in the middle of
this range. For a galaxy of diameter 30 kpc at the distance 3×104 Mpc the angle ��O is
0�2′′, which is measureable. Thus, it should be not surprising that most of the observed
gravitational lenses are quasars.

However, (14.83) and (14.92) do not apply to quasars. The first of them applies
(approximately) only in the gravitational field of a single star; the second is an even
cruder approximation in the same geometry. The distance from the Earth to quasars is
large on the cosmological scale. For calculating the deflection of light over such distances
one should consider null geodesics in a model of the Universe. The models usually used
in astronomy are the Robertson–Walker (R–W) metrics derived in Section 10.7. But even
these are not general enough because they are conformally flat – the relations among
null geodesics in the R–W spacetimes are the same as in the Minkowski spacetime. In
particular, different null geodesics issued from point A can intersect at B �= A only if B is
a singular point of the conformal mapping. Then, however, if the null geodesics p and q
intersect at B, then so do all the null geodesics in a neighbourhood of p and q – which is
not the case with a gravitational lens. Hence, at nonsingular points of a conformally flat
spacetime there can be no gravitational lensing. Since gravitational lenses are observed,
it follows that the R–W models can apply only on scales at which the ‘particles’ of the
cosmic medium are much larger than distances between quasars. This leaves us with just
a couple of ‘particles’ with which to build the whole observed region of the Universe.

1 Such ‘microlensing’ has successfully been observed by measuring the changes in intensity of light from more distant stars
when they are eclipsed by the lenses.
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Models that should apply on any finer scale must be conformally nonflat, and hence
cannot belong to the R–W family.

In astronomical practice, gravitational lenses are described by a sort of geometric optics
based on the Newtonian description of propagation of light (Schneider, Ehlers and Falco,
1992). This description is not a theory in the sense that the word ‘theory’ has in physics –
rather, it is a collection of heuristic rules. Nevertheless, it gives testable results that are
in approximate agreement with observations.

14.9 The spurious singularity of the Schwarzschild solution at r = 2m

The Schwarzschild solution given by (14.40) and (14.42) has a singularity at r = 2m =
2GM/c2: as r → 2m, the component g00 of the metric goes to zero, while g11 becomes
infinite. However, for the determinant of the metric, g = −r4 sin4�, the value r = 2m is
not in any way special. Also, the tetrad components of the Riemann tensor, Rijkl, in the
tetrad defined by (14.25), are all regular at r = 2m: they are all of the form �m/r3, where
� = 0
±1
±2. These facts suggest that the singularity at r = 2m of the solution given
by (14.40) and (14.42) is spurious – created by the coordinates used there, and not by the
geometry of the manifold.1 To see that this is possible, let us recall the transformation
law of tensors:

g�′�′ = �x�

�y�′
�x�

�y�′ g��� (14.93)

It is seen that if g�� is regular in the old coordinates at x� = x�0 , but some of the functions
�x�/�y�

′
have a singularity at x� = x�0 , then some components of g�′�′ will be singular

at y� = y��x0. Such a singularity clearly can be removed by the inverse transformation
y� → x�.

There is no general criterion that would allow one to distinguish a ‘true’ singularity
of the Riemannian geometry from a singularity introduced artificially together with the
coordinate system.2 However, if a coordinate transformation that removes the singularity
is found, then this is proof that the singularity was spurious. For the Schwarzschild
solution several such transformations were discovered. The most general of them is the one
found (independently and almost simultaneously) by Kruskal (1960) and by G. Szekeres
(1960).3 This transformation leads to coordinates that reveal the global structure of the
Schwarzschild manifold.

1 But the singularity at r = 0 is real, as will be seen from the following.
2 If scalars connected with the geometry of the manifold, such as tetrad components of the curvature, become infinite at certain

points, then this is an indication that the singularity is genuine. Even so, one must be careful and verify whether these
singularities occur within the range of the map. For example, the singularity of the Schwarzschild solution at r = 0 occurs
beyond the allowed range of the curvature coordinates, and we can deal properly with that singularity only after introducing
coordinates that cover its neighbourhood.

3 The Kruskal–Szekeres transformation was a crowning of a whole series of less general results. Probably the oldest proof that
the singularity at r = 2m is spurious was given by Lemaître (1933a), who noticed that in coordinates connected with freely
falling observers the surface r = 2m is no obstacle to their motion. (In fact, this interpretation of the Lemaître coordinates was
provided much later by Novikov (1964b).) Other transformations removing the spurious singularity at r = 2m were found by
Raychaudhuri (1953) and by Finkelstein (1958).
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Let us write the Schwarzschild solution in the form1

ds2 =
(

1− 2m
r

)[

dt2 − dr2

�1−2m/r2

]

− r2
(

d�2 + sin2� d�2
)

(14.94)

and transform the coordinates as follows:

p̃= t+�
 q̃ = t−�
 (14.95)

where

�
def=
∫ dr

1−2m/r
= r+2m ln

(
r

2m
−1
)

� (14.96)

Then the metric becomes

ds2 =
(

1− 2m
r

)

dp̃ d̃q− r2
(

d�2 + sin2� d�2
)


 (14.97)

where r = r�� is the function inverse to the ��r of (14.96). Since �
r > 0 for r > 2m, the
transformation (14.96) is invertible in the region in which the Schwarzschild solution was
originally defined. The function (14.96) can be formally extended to the values r < 2m,
by writing � = r + 2m ln 	r/�2m−1	; Fig. 14.5 shows a graph of the extension. The
inverse functions exist in both domains, r > 2m and r < 2m, but there exists no single
inverse function in the domain 0< r <�.

Now let us carry out the next coordinate transformation:

�p
 q= (

ep̃/a
 eq̃/a
)⇐⇒ �̃p
 q̃= a�lnp
 ln q
 (14.98)

where a is a constant whose value will be chosen later. In these coordinates we have

ds2 = −
(

1− 2m
r

)
a2

pq
dpdq− r2

(

d�2 + sin2� d�2
)


 (14.99)

where this time r = r�p
 q; the transformation �̃p
 q̃ −→ �p
 q is invertible for all
positive values of p and q. Now let us substitute (14.98) and (14.95) in (14.99). The
result is:

ds2 = −
(

1− 2m
r

)

a2e−2r/a
( r

2m
−1
)−4m/a

dpdq

− r2
(

d�2 + sin2� d�2
)

� (14.100)

1 Even though the set r = 2m is the boundary of the region covered by the curvature coordinates, Eq. (14.94) still makes
sense when 0 < r < 2m. In that region, t becomes a spacelike coordinate and r becomes time. The resulting metric is the
unique vacuum Kantowski–Sachs (K–S) spacetime (Kantowski and Sachs, 1966) (see also Sections 8.9, 10.7 and 19.4 for
brief descriptions of the K–S metrics). This is the case that is commonly overlooked in textbooks and that was mentioned in
Section 14.1, Eq. (14.17).
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ξ

2m r

Fig. 14.5. A graph of the function ��r= r+2m ln 	r/�2m−1	.

If we choose a = 4m, then the factor that causes the singularity will cancel out and the
result will be

ds2 = −32m3

r
e−r/�2m dpdq− r2

(

d�2 + sin2� d�2
)

� (14.101)

The hypersurfaces of constant p and of constant q are null, which is not always convenient.
In order to go back to ordinary timelike–spacelike coordinates, we now introduce the
further new coordinates v and u by:

v= 1

2
�p−q≡ er/�4m

√

r

2m
−1 sinh

( t

4m

)




u= 1
2
�p+q≡ er/�4m

√

r

2m
−1 cosh

( t

4m

)

�

(14.102)

In the coordinates �v
u
�
�, the metric (14.101) becomes

ds2 = 32m3

r
e−r/�2m (dv2 −du2

)− r2
(

d�2 + sin2� d�2
)

� (14.103)

By following all the intermediate transformations, it is seen that the transformation
�t
 r → �v
u is single-valued and nonsingular for all r ≥ 2m, so it is invertible. At
r = 2m, the transformation is also well defined, but �v/�r and �u/�r go to infinity as
r → 2m. This is the reason why (14.94) has a singularity at r = 2m.
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In these coordinates, r can go arbitrarily near the value 0, and the tetrad components
of the Riemann tensor still go to infinity as r → 0. This shows that the set defined by
r = 0 is a singularity of the geometry.

For r < 2m, the transformation (14.102) cannot be carried out, but it can be formally
extended to all r > 0 by writing it in the form

u2 −v2 = er/�2m
(
r

2m
−1
)


 (14.104)

v/u = tanh
(
t

4m

)

� (14.105)

Hence, in the surface of the �v
u variables, the lines r = constant are hyperbolae, the
set r = 2m is the pair of straight lines u= ±v and the lines t = constant are straight lines
passing through the point u = v = 0 with different slopes; for t → ±�
 v/u = ±1. The
singularity r = 0 is the pair of hyperbolae u2 − v2 = −1. The �u
 v surface thus looks
as in Fig. 14.6. The radial null geodesics, which are u± v = constant in (14.94), are in
this figure straight lines inclined at 45� to the axes. The straight lines �r = 2m
 t = ±��
divide the figure into four sectors. The original curvature coordinates cover only sector I
or sector III, but not both at once. The region r < 2m in the curvature coordinates
corresponds to sector II or sector IV, but again not to both of them at once. We will use
this representation of the Schwarzschild manifold again later.

Figure 14.6 is called the Kruskal diagram. It not only provides new useful coordinates
for the Schwarzschild solution but is at the same time the maximal extension of the
original Schwarzschild spacetime. The incompleteness of the Schwarzschild spacetime as
represented in the curvature coordinates was recognised when it turned out that there exist
timelike and null geodesics that escape the range of the Schwarzschild map without hitting
any singularity. The Kruskal–Szekeres representation of the Schwarzschild solution does
not have this defect – any timelike or null (or spacelike, too) geodesic can either be
continued to infinite values of the affine parameter, or hits the singularity r = 0. Note
that, contrary to what the original Schwarzschild representation would have us expect,
the radial null geodesics reaching the observer in sector I come from a different part
of the manifold than the one to which the observer can send his light signals, and the
singularity set consists of two separate parts. An observer in sector I can never get an
answer to a signal that he would send through the hypersurface r = 2m, because any such
answer will hit the future singularity. However, observers in sector IV do have such a
possibility: after moving into sector II, they can get an answer from sectors I and III to
the signals they had sent in sector IV, but they will have no chance to reply.

A similar consideration was applied to the Reissner–Nordström solution by Graves and
Brill (1960), and the result was even more strange (see Section 14.15). When the electric
charge obeys e2 <m2, there are two hypersurfaces analogous to Schwarzschild’s r = 2m,
and the maximally extended manifold consists of an infinite number of copies of a set
somewhat similar to the one in Fig. 14.6. The same strange behaviour is found in the
Kerr solution that generalises Schwarzschild’s for rotation of the source; we will deal
with it in Chapter 20.
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T 2

T 3

S 1

S 2

Fig. 14.6. The Kruskal diagram of the maximally extended Schwarzschild spacetime. S1 and S2

are the singularities at r = 0; the regions above and below them are not parts of the spacetime.
The straight lines H1 and H2 are the event horizons; they divide the plane into four sectors denoted
I, � � �, IV. The curvature coordinates cover only sector I. Curvature coordinates applied inside the
horizons cover sectors II and IV, although one does not see then that the two sectors do not
coincide. The dotted lines LR1 and LR2 are paths of radial light rays; LR1 passes out from the past
singularity S2 and from under the horizon and escapes to infinity, LR2 falls from infinity and is
trapped inside the horizon, eventually hitting the future singularity S1. The hyperbolae R1 and R2

are lines of constant r, one inside the horizon (with r < 2m) and the other outside (with r > 2m).
The straight lines T1
T2 and T3 are lines of constant t. Note that, on the horizons, r = 2m and
	t	 = �, with t = +� on H1 and t = −� on H2. This misled some early researchers into believing
that the surface r = 2m can never be reached by a material object. But the value of t is not the
physical time; t is just a badly behaving parameter used to measure time.
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14.10 * Embedding the Schwarzschild spacetime in a flat Riemannian space

To gain more insight into the geometry of the Schwarzschild manifold, we will now
represent it as a subspace of a higher-dimensional flat space. Take first only the 2-surface
defined by t = constant
� = 	/2 = constant. It has the metric form

ds2 = dr2

1−2m/r
+ r2 d�2� (14.106)

Since the Schwarzschild metric in curvature coordinates does not depend on time, the
Schwarzschild manifold is in these coordinates a family of identical copies of the hyper-
surface t = constant. Then, � = 	/2 is exactly the subspace in which motion on timelike
and null geodesics occurs (see the text after (14.52)). The surface (14.106) is thus physi-
cally important.

It can easily be verified that (14.106) is the metric form of the surface in Euclidean
3-space given by the parametric equations

r = r
 �= �
 z2 = 8mr−16m2
 (14.107)

where r
� and z are cylindrical coordinates in the Euclidean space. (If x = r cos�
y =
r sin� and z are the Cartesian coordinates, then the metric of the surface (14.107) in the
Euclidean space is exactly (14.106).) The surface defined by Eq. (14.107) is shown in
Fig. 14.7. It is generated by rotating the parabola r = z2/�8m+ 2m around the z-axis.
For large r the geometry of this surface becomes approximately flat.1

This picture does not leave any place for the region r < 2m – on the other side of the
ring r = 2m (which is an intersection of the paraboloid with the plane z = 0) there is
another copy of the same sheet. This agrees with the implication of the Kruskal diagram,
and once more shows that the curvature coordinates do not cover the whole manifold. The
surface shown in Fig. 14.7 coincides with the surface �v= 0
� = 	/2� in the Kruskal–
Szekeres coordinates because v = 0 at t = 0. From Fig. 14.6 it is seen that the smallest
value of r on the surface �v= constant
� = 	/2�, which is attained at u= 0, is r = 2m.
Also from Fig. 14.6 it is seen that on other surfaces with �v= constant
� = 	/2�, where
0< v < 1, the smallest value of r (the radius of the smallest ring in the throat) is smaller
than 2m, until it becomes zero at v= ±1 (see Eq. (14.104)). For 	v	 = constant > 1, the
bridge connecting the two sheets disappears; each of those surfaces is composed of two
disjoint subsets.

1 Nonetheless, it is not correct to draw this surface as if it were actually becoming a plane far away from the ‘throat’ at z= 0.
It is a simple exercise to verify that no asymptotic plane exists for this surface.
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Fig. 14.7. The surface �t = constant
� = 	/2� in the Schwarzschild spacetime. The z-axis runs
vertically through the middle of the ‘throat’, the r-coordinate is the distance from that axis.

The full 4-dimensional Schwarzschild spacetime can be embedded in a flat
6-dimensional Riemannian space. This was first shown by Fronsdal (1959). The metric
form of the 6-dimensional space we will use is

ds6
2 = dZ1

2 −dZ2
2 −dZ3

2 −dZ4
2 −dZ5

2 −dZ6
2
 (14.108)

where

Z1 =4m

√

1− 2m
r

sinh
( t

4m

)




Z2 =4m

√

1− 2m
r

cosh
( t

4m

)




Z3 = ±
∫
[

2m
r

+
(

2m
r

)2

+
(

2m
r

)3
]1/2

dr

�Z3 > 0 for r > 2m and Z3 = 0 for r = 2m


Z4 = r sin� cos�
 Z5 = r sin� sin�
 Z6 = r cos��

(14.109)
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Z1

Z2

Z3

Fig. 14.8. Embedding of the Schwarzschild spacetime in six dimensions projected on the space of
the variables �Z1
Z2
Z3. The thick straight lines are the horizons r = 2m; they cross at the saddle
where Z1 = Z2 = Z3 = 0. r increases from bottom to top, at r → 0 all Zi go to ±� (except when
along a curve Z2 = constant). Along the Z2 = 0 curve, 	limr→0 dZ3/dZ1	 = 1. The curves running
horizontally are the Z3 = constant curves; the U-shaped curves are given by Z1 = constant, with
Z1 = 0 running through the saddle. The surface is mirror-symmetric with respect to the Z1 = 0
plane, but the back side below the saddle is not shown, for the sake of clarity.

Figures 14.8 and 14.9 show the projections of the 6-dimensional space of variables
�Z1
 � � �
Z6 on the 3-dimensional subspaces of the variables �Z1
Z2
Z3 (Fig. 14.8) and
�Z3
Z4
Z5 (Fig. 14.9).1 In order to draw the first projection, one must observe that the
surfaces r = constant are surfaces Z3 = constant, and that

Z2
2 −Z1

2 = 16m2

(

1− 2m
r

)


 (14.110)

so Z2
2 −Z1

2 = constant when Z3 = constant. The surface of the Schwarzschild variables
�t
 r is the saddle-shaped surface in Fig. 14.8. The pair of thicker straight lines is the

1 Reconstructing a 3-dimensional structure in a 3-dimensional Euclidean space from projections on different 2-planes is what
engineers routinely do. Are you good enough to be an engineer in a 6-dimensional space?
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Z4

Z5

Z3

Fig. 14.9. Embedding of the Schwarzschild spacetime in six dimensions projected onto the space
of the variables �Z3
Z4
Z5. r increases from bottom to top, with r → 0 at the tip of the funnel
(where Z3 → −�, Z4 → 0 and Z5 → 0). The thick circle is the horizon r = 2m.

image of the set r = 2m. Further properties of this surface that are helpful in reading the
diagram are

∣
∣
∣
∣
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The surface of the Schwarzschild variables �r
� in the subspace �Z3
Z4
Z5 can be
drawn after investigating the properties of dZ3/dr, where r2 = Z4

2 +Z5
2. It is seen that
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dZ3/dr > 0, dZ3/dr−→
r→0

+�, dZ3/dr−→
r→�0, Z3−→

r→� +� and Z3−→
r→0

−�. This surface is

shown in Fig. 14.9.

14.11 Interpretation of the spurious singularity at r = 2m; black holes

We verified that the Schwarzschild spacetime has no singularity at r = 2m. Nevertheless,
this set does have some special properties. Equation (14.57), rewritten in the form

(
dr
ds

)2

= E2 −
(

1+ J0
2

r2

)(

1− 2m
r

)


 (14.111)

shows that for r ≤ 2m the derivative dr/ds cannot be zero (note that E �= 0 for geodesics
that are timelike in the region r > 2m). Hence, if any body enters the region r ≤ 2m with
dr/ds < 0, then dr/ds will not be able to change its sign and the motion will be continued
right into the singularity at r = 0. If, however, dr/ds > 0 at an initial instant in the region
r ≤ 2m, then motion will be continued until values r > 2m are attained, and only then
can the recession possibly be reversed to become a fall. Equation (14.72) shows that light
rays have the same property. Consequently, material bodies and light rays, once they
have crossed the hypersurface r = 2m in the direction of decreasing r, will never be able
to turn back and will continue their motion until r = 0, also when J0 �= 0.

For ordinary astronomical objects, such as the Sun or the Earth, the quantity 2m =
2GM/c2, called the gravitational radius, is very small compared with the physical radius.
For example, for the Sun 2m≈ 2�95 km, for the Earth 2m= 0�89 cm (recall the physical
radii: 696 000 km and 6378 km, respectively). The point at the distance 2m from the
centre of such an object is hidden deep inside it, where the spacetime metric is different
from Schwarzschild’s because it is not vacuum. For such objects, the set r = 2m has no
physical meaning. This is why the strange properties of this set had been looked upon as
mathematical curiosities well into the 1960s. If the Sun had collapsed to a size r0 ≤ 2m,
then the mean density of matter in the Sun would go up to �0 ≥ 1�85×1016 g cm−3, which
is 100 times more than the density inside an atomic nucleus. Note, however, that 2m is
proportional to the mass M of the object, while the physical radius r is approximately
proportional to M1/3 (because M = �4/3	�r3, where � is the mean mass-density in
the object). Hence, when M is sufficiently large, 2m increases much faster than r with
increasing M . For every finite density such a mass exists, at which the whole object
will be inside the radius r = 2m. For � = 1 g cm−3 (the density of water) this mass is
equal to 4�8 × 1041 g ≈ 3 × 108 solar masses ≈ 0�002 of the mass of our Galaxy. The
corresponding radius is 4.7 astronomical units, which is less than the radius of the orbit
of Jupiter.

Those objects whose physical radii are smaller than 2m are called black holes because
everything that falls into them can never come back out. Note, however, that the theory
predicts also the inverse behaviour: objects of radius smaller than 2m may emit matter
as long as there is any supply inside. These (so far only hypothetical) objects are called
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white holes. They can be imagined as the initial cosmological singularity (the Big Bang,
see Sections 17.4 and 18.3) still going off at an isolated location.

Astronomers have several candidates for black holes among observed objects, and the
number of such objects is systematically increasing. It is commonly believed today that
every galaxy contains a very massive black hole at its centre. Signatures of such candidate
black holes are unusually high energy output in the form of X rays (caused by matter
spiralling into the black hole and radiating out energy in consequence of collisions) or
unusually high mass concentrated in a small volume (detected through the high orbital
velocities of stars in the galaxy). See Frolov and Novikov (1998) for an exhaustive
description of the theory and observations of black holes. We will come back to the
subject of black holes in Section 18.9, where we will discuss the formation of spherically
symmetric black holes in the Universe, and in Chapter 20, where we will briefly discuss
rotating black holes.

So far, the only sure identification of a white hole is the whole Universe. As we will
see in Chapters 16 and 17, in the currently accepted cosmological models the evolution
of the Universe begins with an explosion called the Big Bang. In the most commonly
used models, those of Robertson–Walker class, the Big Bang is a single event in the
spacetime. The process of expansion away from the Big Bang is the time-reverse of the
collapse to a singularity, i.e. it is precisely what a white hole should do. In fact, as we
will see in Chapter 17, the R–W models are exceptional in almost every possible respect.
In more general models (see Chapters 18 and 19), the Big Bang is not a single event, but
a process extended in time. In such models, ‘lagging cores’ of expansion may exist that
would be visible to distant observers as localised white holes. They were once proposed
as the explanation of the energy source in quasars (Novikov, 1964a; Neeman and Tauber,
1967), but this explanation was later abandoned in favour of black holes with orbiting
discs of matter.

In Newton’s theory of gravitation, the escape velocity from the surface of a spherical
object of massM and radius r is v2 = 2GM/r. Note then that rg = 2GM/c2 is the radius of
the object of mass M from whose surface the escape velocity equals the velocity of light.
This observation was first made by Laplace in the eighteenth century (Laplace, 1795).
Hence, the notion of a black hole had in fact already been introduced then, although the
name was coined only in the 1960s.1

The Kruskal diagram allows us to follow an object falling into a black hole. The lines
u±v= constant are intersections of the Kruskal diagram with light cones. Any timelike
line (not necessarily geodesic) in that diagram must thus have its tangent inclined to the
v-axis at an angle smaller than 45� at every point. Imagine an object proceeding towards
the black hole and emitting light signals at regular time intervals. Suppose that they are
picked up by an observer resting at r = r0 � 2m. When the emitter approaches the surface
r = 2m, the observer receives the signals at increasing intervals. These intervals tend to

1 However, it is risky to take the analogy between a black hole and Laplace’s ‘dark star’ literally. The surface of the black
hole, r = 2m, is absolutely impenetrable from inside out. In Newton’s theory, no object can escape from the ‘dark star’ to
infinity, but the surface r = 2GM/c2 is freely traversable in both directions.
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infinity as rsender → 2m. The signal sent at r = 2m will stay in the set r = 2m for ever.
For this reason, this set is called the event horizon. All signals sent at r < 2m will hit
the singularity at r = 0. Thus, from the point of view of the distant observer, the process
of falling into a black hole lasts infinitely long. The same is true for matter of an object
that collapses to form a black hole. Hence, one should not imagine a black hole as a
‘finished’ object existing somewhere out there. A distant observer only has a chance to
see a black hole at the stage of formation, as an object whose light is becoming darker
and redder until it disappears from sight. Objects falling into a black hole will disappear
from sight before they hit the event horizon.1

For an observer who decided to fall into a black hole, the proper time needed to reach
the event horizon is finite. This is seen from (14.111), which, for radial motion towards
the centre (with J0 = 0), becomes

dr

ds
= −

(

E2 −1+ 2m
r

)

1/2
 (14.112)

and then the time of flight from r = r0 to r = 2m is

sh = −
∫ 2m

r0

(

E2 −1− 2m
r

)−1/2

dr� (14.113)

This integral has a well-defined finite value for every r0 <�.

14.12 The Schwarzschild solution in other coordinate systems

The curvature coordinates were the oldest introduced for the Schwarzschild solution, and
in a way the most natural. However, for investigating some advanced topics, in particular
the relation of the Schwarzschild solution to other solutions of Einstein’s equations, other
coordinates are sometimes more useful. Two coordinate systems are used most often.

The first are the isotropic coordinates, in which the subspace t= constant is explicitly
conformally flat and in which a large number of nonvacuum generalisations of the
Schwarzschild solution was found (Krasiński, 1997). Take the Schwarzschild solution in
curvature coordinates, (14.40) and (14.42), and transform the r-coordinate as follows:

r = r ′
(

1+ m

2r ′

)2
� (14.114)

The resulting metric is:

ds2 = �1−m/�2r ′�2

�1+m/�2r ′�2
dt2 −

(

1+ m

2r ′

)4 [

dr ′2 + r ′2 (d�2 + sin2� d�2
)]

� (14.115)

1 Because of the high symmetry of the Schwarzschild solution, the event horizon in it coincides with two other entities that are
in general distinct. One of them is the apparent horizon. The future apparent horizon is a hypersurface in spacetime within
which all null geodesics can proceed only towards the singularity, never away from it. As we will see in Chapter 18, in
nonstatic spacetimes the apparent horizon and the event horizon in general do not coincide. Then, in gravitational fields of
rotating bodies, the infinite redshift hypersurface (IRH) does not in general coincide with the event horizon, as we will see
in Chapter 20. From within this hypersurface, light signals arrive at infinity being infinitely redshifted, yet the IRH is freely
traversable both ways for material particles and light rays.
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The spurious singularity now appears at r ′ =m/2.
The other important coordinates are sometimes called geodesic coordinates, Lemaître

coordinates or Novikov coordinates. They are comoving coordinates of a congruence
of radially freely falling observers. The Schwarzschild metric in them is:

ds2 = dt2 − R
r
2 dr2

1+2E�r
−R2�t
 r

(

d�2 + sin2� d�2
)


 (14.116)

where the function R�t
 r obeys the equation

R
t
2 = 2m

R
+2E�r
 (14.117)

E�r being an arbitrary function. A subcase of this coordinate system, corresponding to
E= 0, was first introduced by Lemaître (1933a).1 The remaining cases were introduced by
Novikov (1964b), who provided the physical interpretation of all cases. Equation (14.117)
is the equation of radial free fall in the spherically symmetric gravitational field generated
by the mass m, with E�r being the kinetic energy of the observer at infinity (and the
total conserved energy of the motion). An observer at fixed coordinate r (note that r
is in fact arbitrary in this metric; transformations of the form r = f�r ′ do not change
it) proceeds with time to other values of R, i.e. is either receding from or approaching
the centre of symmetry, in accordance with the equation of free fall. When E > 0, the
observers can recede to infinity and still have nonzero kinetic energy there. With E = 0,
they can still recede to infinity, but their kinetic energy decreases to zero. With E < 0,
the observers can fly away from the centre of symmetry only out to a finite distance, and
then fall back. For each sign of E, Eq. (14.117) may be explicitly solved for t�R, but for
E �= 0 the solutions cannot be inverted to define an explicit elementary function R�t
 r.

With E ≥ 0, the metric (14.116) has no singularity anywhere apart from R = 0.
As mentioned before, this is how Lemaître first noticed that the singularity of the
Schwarzschild solution at r = 2m is only an artefact of the coordinates used.

The Schwarzschild solution in the form (14.116)–(14.117) emerges as the vacuum
limit of the Lemaître–Tolman cosmological model that will be discussed in Chapter 18.
Equation (14.117) frequently appears in cosmology – it is the evolution equation that
governs the Lemaître–Tolman model and the Friedmann model that is a spatially homo-
geneous subcase of the former. It is in fact simpler to obtain this form by assuming
geodesic coordinates (in which g00 = 1, g01 = 0, other components are those appropriate
for a spherically symmetric metric, (8.51)) and solving the Einstein equations.

14.13 The equation of hydrostatic equilibrium

We will now investigate the Einstein equations inside a spherically symmetric body of
perfect fluid, with the additional assumption that the matter inside the body is at rest in

1 Lemaître’s form was somewhat unreadable because he parametrised his metric in such a way that the limit of zero cosmological
constant could not be directly taken.
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the coordinates of Section 14.1. This assumption means that the velocity field has only
the t-component:

u� = e−���0
 u� = e��0
�
 (14.118)

where ��t
 r is an unknown function, while the pressure and density of the perfect fluid
are constant along the lines of flow, i.e. depend only on r. Choosing an orthonormal
tetrad in which e0

� = u� (and consequently the tetrad components of u� are ui = �i0) and
using (14.26)–(14.29), we obtain the following set of equations:1

G00 = e−2�

(
2
r
�′ − 1

r2

)

+ 1
r2

= 8	G
c4

�
 (14.119)

G01 = 2
r

e−�−��̇= 0
 (14.120)

G11 = e−2�

(
2
r
�′ + 1

r2

)

− 1
r2

= 8	G
c4

p
 (14.121)

G22 = G33 = e−2�

(

�′′ −�′�′ +�′2 + �′ −�′

r

)

−e−2�
(

�̈− �̇�̇+ �̇2
)= 8	G

c4
p� (14.122)

Equation (14.120) implies that �̇= 0, like in the Schwarzschild solution. Since ṗ= �̇= 0,
differentiating (14.121) by t we obtain �̇′ = 0, i.e. � = f�t+ g�r. Then, the coordinate
transformation t′ = ∫

ef �tdt gives f = 0 in the new coordinates, and � = ��r.
Equation (14.119) can now be formally integrated. Assuming that ��0 is finite, we

obtain

e−2� = 1− 8	G
c4r

∫ r

0
��r ′r ′2 dr ′� (14.123)

We denote

M�r
def= 4	
c2

∫ r

0
��r ′r ′2 dr ′� (14.124)

This quantity has the dimension of mass and plays in (14.18) the same role as the mass
parameter played in the Schwarzschild solution: if ��r≡ 0 for r ≥ R (i.e. if the surface
of the matter distribution is at r = R), then M�R is equal to the mass parameter of the
Schwarzschild metric. Consequently, we interpret M�r as the mass within the sphere of
radius r . Note that this mass is smaller than the sum of rest masses of all the particles
inside the body. The density of rest mass is ��r = ��r/c2, so the sum of rest masses
within the sphere of radius r is

Mrest =
∫

Vol3�r
��r ′

√−g d3x= 4	
c2

∫ r

0
��r ′r ′2 e��r

′ dr ′� (14.125)

1 By choosing the metric in the form (14.18) we left aside the cases when the �
� in (8.51) is a timelike or null vector,
or is constant. Those cases do not contain static sources for the Schwarzschild metric, but they cannot be neglected when
considering nonstatic sources.
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Since e� > 1 (from (14.123)), we haveMrest >M�r. This is the large-scale (astrophysical)
analogue of the ‘mass defect’ known from nuclear/elementary particle physics: the mass
of a bound object is smaller than the sum of masses of its components. The mass defect
multiplied by c2 is equal to the energy that would have to be supplied in order to break
the object up into separate particles.

Using the notation (14.124), we obtain in (14.123)

e−2� = 1− 2GM�r
c2r

� (14.126)

The equations of motion T����= 0 must hold in consequence of the field equations,
and in the present case they will be first integrals of the field equations. For �= 0
2
3
they are fulfilled identically, while T 1���= 0 implies e−2� �p′ +�′��+p� = 0, which
means that

�′ = − p′

�+p� (14.127)

This can be integrated after an equation of state is assumed (necessarily of the form
�= ��p).

Using (14.126) and (14.127), Eq. (14.121) can now be written as

dp
dr

= −G
(

�+p/c2
) [

M�r+4	r3p/c2
]

r2 �1−2GM�r/�c2r�
� (14.128)

Equation (14.122) is now fulfilled by virtue of those already solved.
Equation (14.128) is called the equation of hydrostatic equilibrium. In the Newtonian

limit c→ � it becomes

dp
dr

= −G�M�r
r2

� (14.129)

Comparing (14.129) with (14.128) we see that in relativity the pressure increases the
gravitational attraction because it appears in the equilibrium equation as a positive contri-
bution to the mass and mass density. Given the same mass, density and pressure, the
gradient of pressure, opposing the gravitational attraction, is greater in (14.128) than in
(14.129). The greater pressure gradient implies faster growth of pressure towards the
centre of the object, and this increased pressure then requires a still greater gradient. One
can thus imagine a situation in which the equilibrium maintained over some time by a
certain process (such as energy production in a star) is perturbed, and then the growth of
pressure will lead to a loss of stability: no pressure gradient will be able to keep the object
static again. A collapse to a size smaller than the gravitational radius rg = 2GM/c2 will
then occur, and a black hole will be created. The Newtonian equilibrium equation (14.129)
does not allow such a situation: the gradient of pressure needed to maintain equilibrium
is determined by the mass density at the distance r from the centre of the object and does
not depend on the value of pressure, so the solution exists for every density and mass.
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14.14 The ‘interior Schwarzschild solution’

We are interested here in providing a material source for the Schwarzschild metric. Equa-
tion (14.127) can be integrated after an equation of state, or a distribution of mass density
inside the object, has been defined. Various equations of state and mass distributions
intended to imitate the real conditions inside various stellar objects are discussed in rela-
tivistic astrophysics. Typically, such general equations of state lead to complicated forms
of (14.127) that can be integrated only numerically. We will deal here with an example
that is unrealistic and of academic interest only, but it illustrates in a simple way the prob-
lems encountered while matching matter solutions with vacuum solutions. We assume
that � = constant, a constant mass density inside the object. From (14.122)–(14.124) we
then obtain:

e−2� = 1− 8	G
3c4

�r2 def= 1−Dr2
 (14.130)

M�r= 4	G
3c2

�r3 = c2

2G
Dr3
 (14.131)

where we used the abbreviation D
def= 8	G�/�3c4 = constant > 0. Subtracting (14.121)

from (14.122) and using (14.130) we obtain

(

1−Dr2
)(

�′′ +�′2
)

−Dr�′ − 1
r

(

1−Dr2
)

�′ = 0
 (14.132)

which is integrated with the result e� = C−B√
1−Dr2, where B and C are constants.

The pressure can now be calculated from (14.121):

p= 1

3
�

3B
√

1−Dr2 −C
C−B√

1−Dr2
� (14.133)

This pressure obeys (14.128). Hence, we have obtained a complete solution of
Eqs. (14.119)–(14.122):

ds2 =
(

C−B√
1−Dr2

)2
dt2 − dr2

1−Dr2
− r2

(

d�2 + sin2� d�2
)

� (14.134)

This is called the interior Schwarzschild solution (Schwarzschild, 1916b). Its charac-
teristic geometric property is conformal flatness (which is not evident in the coordinates
of (14.134) – but its Weyl tensor is zero).

Now let us verify the matching conditions between (14.134) and the vacuum
Schwarzschild solution, (14.40) and (14.42), at the hypersurface  given by r = R =
constant. The coordinate systems on both sides of  are already adapted, so we can use
the formalism of Section 12.17. Here, x4 = r. The continuity of the metric components
gIJ , I �= 4 �= J , requires

(

C−B√
1−DR2

)2 = 1− 2GM
c2R


 (14.135)

and then the continuity of the derivatives of the metric of  in directions tangent to  is
guaranteed, as stated in Section 12.17. Following the recipe of Section 12.17, we require



14.15 * Maximal extension of the R–N solution 207

the continuity of gIJ 
r /N at r = R, where N =√

1−2GM/�c2R in the exterior metric
and N = √

1−DR2 in the interior metric. This imposes two more equations:

√
1−DR2 =

√

1− 2GM
c2R


 (14.136)

2DBR
(

C−B√
1−DR2

)

= 2GM
c2R2

√

1− 2GM
c2R

� (14.137)

(The first one results from g22
r/N being equal on both sides of  , which implies N being
the same on both sides.) The solution of Eqs. (14.135)–(14.137) is

D= 2GM
c2R3


 B = 1
2

 C = 3

2

√

1− 2GM
c2R

� (14.138)

This guarantees that p�R= 0; see (14.133).

14.15 * The maximal analytic extension of the Reissner–Nordström solution

The Reissner–Nordström (R–N) solution, given by (14.40)–(14.41) with �= 0, can have
its spurious singularities at those points where e2� = 0. There are three cases to consider
separately:

• 1. Whenm2 −e2 < 0, e2� does not vanish at any value of r, and no spurious singularity
exists. This case has no Schwarzschild limit.

• 2. When m2 − e2 > 0, e2� vanishes at two different values of r,

r− =m−√
m2 − e2
 r+ =m+√

m2 − e2� (14.139)

These are spurious singularities – the tetrad components of the Riemann tensor have
well-defined values at those points. In the Schwarzschild limit e → 0, the inner
spurious singularity at r = r− collapses onto the genuine singularity at r = 0, while
the outer one goes over into the event horizon at r = 2m.

• 3. When m2 − e2 = 0, e2� vanishes at just one value of r, r = m. This case has no
Schwarzschild limit, either.

Similarly, as was done with the Schwarzschild solution in Section 14.9, the spurious
singularities of the R–N solution can be removed by a coordinate transformation. Follow-
ing Graves and Brill (1960), we will show how to remove a spurious singularity in a
more general static metric,

ds2 = �dt2 − 1
�

dr2 − r2
(

d�2 + sin2� d�2
)


 (14.140)

where ��r is any function. Like in the Kruskal method of Section 14.9, we begin by
introducing the coordinates u�t
 r and v�t
 r in which

ds2 = f 2�u
 v
(

dv2 −du2
)− r2�u
 v

(

d�2 + sin2� d�2
)

� (14.141)
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The functions f , u and v must obey

f 2
(

v
t
2 −u
t2

) = ��r
 f 2
(

v
r
2 −u
r 2

)= − 1
��r




u
r u
t −v
r v
t = 0� (14.142)

The last equation says that v
t /u
t = u
r /v
r . Dividing the first equation by the second
and using this, we obtain u
t

2/v
r
2 = �2�r. From here and from the last equation in

(14.142) we then obtain the set

u
t = ��rv
r 
 v
t = ��ru
r � (14.143)

This is easily solved if we introduce the new variable r∗�r defined by dr∗/dr = 1/�.
The general solution is

u= h�r∗ + t+g�r∗ − t
 v= h�r∗ + t−g�r∗ − t
 (14.144)

where h and g are arbitrary functions. A prime will denote derivatives of h and g by their
arguments. Using (14.144), we find from (14.142)

f 2 = ��r

4h′�r∗ + tg′�r∗ − t � (14.145)

Any singularity or zero of ��r must now be cancelled by the product in the denominator,
and the resulting f must be time-independent (success is not guaranteed, but such choices
of g′h′ were proven to exist for the Schwarzschild metric and for the R–N metric). The
product h′�r∗ + tg′�r∗ − t will be independent of t only if

h= Ae��r
∗+t+C
 g = Be��r

∗−t+D
 (14.146)

where A, B, C, D and � are arbitrary constants; we shall take A = B and C = D = 0.
The formula for f 2 then becomes

f 2 = ��r

4A2�2e2�r∗ � (14.147)

Now, the constant � must be chosen so that any zero or singularity in � is cancelled.
Substituting (14.147) in (14.144) we obtain the formulae for the transformation
�t
 r→ �v
u:

u=Ae�r
∗
�e�t + e−�t≡ 2Ae�r

∗
cosh��t


v=Ae�r
∗
�e�t − e−�t≡ 2Ae�r

∗
sinh��t�

(14.148)

In general, the inverse transformation can be given only implicitly because the formula
for r∗�r cannot be inverted in elementary functions. The inverse transformation is

F�r
def=4A2e2�r∗ = u2 −v2
 t = 1

�
artanh�v/u
 (14.149)
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where artanh is the inverse function to tanh. Thus, in the �v
u coordinates, lines of
constant t are straight lines through the origin, v/u = constant, and lines of constant r
are the hyperbolae u2 −v2 = constant.

For the R–N metric in the case e2 <m2 we have

�= 1− 2m
r

+ e2

r2
= �r− r+�r− r−

r2

 (14.150)

and the expression for r∗�r is

r∗ = r+ r+2

r+ − r−
ln 	r− r+	− r−2

r+ − r−
ln 	r− r−	� (14.151)

With this �, we have in (14.147)

f 2 = �r− r+1−2�r+2/�r+−r−�r− r−1+2�r+2/�r+−r−

4A2�2r2e2�r
� (14.152)

As can be seen, � can be chosen so that one of the spurious singularities is cancelled,
but not both at once. Let the index i = 1 refer to r+ and i = 2 to r−. To cancel the ri
singularity � must be

�i =
ri− rj
2ri2


 (14.153)

where i �= j.
If we choose � so as to cancel the spurious singularity at r = r+, then, in the �v
u

coordinates, we can proceed from large r towards smaller r across the set r = r+. In
order to continue further, across r = r−, we then have to go back to the original �t
 r
coordinates and transform them to such �v
u that cancel the second spurious singularity.
In the new coordinates, we can continue across r = r−. In order to visualise the extended
manifold, we first have to locate the spurious singularities and the true singularity in the
�v
u plane.

As can be seen from (14.151) and (14.153), with � = �i, the function F�r in (14.149)
vanishes at at r = ri, so this set, in the coordinate patch that makes it nonsingular,
has the equation u = ±v. Note that, just as in the Schwarzschild case, this spurious
singularity consists of two lines in the �v
u plane. At the true singularity r = 0, F�r is
a positive constant. Hence, in the �v
u coordinates, the equation of the singular set is
u2 − v2 = constant > 0, i.e. it is a pair of hyperbolae that intersect the horizontal u-axis.
(Note: unlike in the Schwarzschild spacetime, the hyperbolae here are timelike, i.e. they
are rotated by 90� with respect to those of the Kruskal diagram.)

Before we draw the picture, we will employ the method known as the Penrose trans-
formation. The �v
u plane is infinite, and in order to visualise its various properties it
is often useful to map it into a finite patch of the plane in such a way that null geodesics
go over into null geodesics. This kind of mapping is called the Penrose transformation,
and the picture of the spacetime in the new coordinates is called the conformal diagram.
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The radial null geodesics in the metric (14.141) are du/dv = ±1. Therefore we first go
over to the null coordinates

p= u+v
 q = u−v
 (14.154)

and then employ the following Penrose transformation:

P = tanhp
 Q= tanh q� (14.155)

In the �Q
P coordinates, the equation of the spurious singularity at u= v is Q= 0, and
that of the one at u = −v is P = 0. The �v
u plane now fits in the square �P
Q� =
��−1
1�× �−1
1��, and the null infinities p = ±�, q = ±� are mapped into the sets
P = ±1, Q= ±1. We can introduce the usual time–space coordinates in this square by

U = �P+Q/2
 V = �P−Q/2� (14.156)

The spurious singularity that was removed still has the equation U = ±V , while the null
infinities (infinities of p and q) become the four straight line segments P = U +V = ±1,
Q = U −V = ±1. The image of the true singularity at r = 0 and the lines r = constant
are still hyperbolae, given by equations of the form �2

[

�U +1/�2 −V 2
]= 1, where �=

constant; see Exercise 13.

Note that the equation of the true singularity, u2 − v2 = 4A2e2�r∗�0 def=� = constant,
in the �p
 q coordinates has the form pq = �, so the singular set contains the points
�p= ±�
 q = 0� and �p= 0
 q = ±��, whose �P
Q coordinates are �P = ±1
Q= 0�
and �P = 0
Q= ±1�. These four points thus lie also in the images of null infinities and
in the spurious singularities P = 0 or Q= 0. Thus, the spurious singularities r = r+, the
true singularities and the images of infinities do have common points, as will be seen in
the picture.

Just as in the Schwarzschild spacetime, when we proceed from a point A in the r > r+
region back in time along a p= constant null geodesic and cross the spurious singularity
r = r+ at q = 0, we land in a different region of spacetime from that which would be
reached by proceeding from A to the future along a q = constant null geodesic. By
extending these two kinds of null geodesics, we recover the analogues of sectors I, II and
IV of Fig. 14.6. By sending null geodesics back in time from sector II and to the future
from sector IV, we can also recover the analogue of sector III. Now, when we are in
one of the r < r+ regions, we change back to the �t
 r coordinates, transform them so as
to cancel the r = r− spurious singularity, and then carry out the Penrose transformation
once more. We draw the new conformal diagrams in such a way that their images of the
r = r+ spurious singularities coincide with the r = r+ singularities of the original Penrose
diagram (this in fact involves some deformation). The r = r− singularities are now again
straight lines and, as before, we find that their conformal images do have common points
with the endpoints of the true singularities. In this way, by patching together conformal
diagrams of different parts of the original manifold, we arrive at the manifold shown in
the rectangle in the centre of Fig. 14.10.
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II

IV

inf

inf

r +

r –

IIII

Fig. 14.10. The conformal diagram of the maximally extended Reissner–Nordström spacetime.
Explanation is given in the text.

The thin straight segments in Fig. 14.10 (two of them are marked ‘inf’) are the
conformal images of the null infinities, where r → �. Timelike and spacelike infinities
are the endpoints of the null infinity segments. The thin hyperbolae segments are the r =
constant lines; they are timelike for r > r+ and r < r− and spacelike for r− < r < r+. The
thick straight segments are the spurious singularities at r = r+ and r = r−. The hatched
hyperbolae segments are the true singularities at r = 0. Roman numbers label sectors
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analogous to those of Fig. 14.6. Radial null geodesics (none are shown in Fig. 14.10)
would be straight lines parallel to the spurious singularities. This shows that the spurious
singularities are in fact event horizons: no future-directed null geodesic can cross from
sector II to sector I or sector III. Unlike in the Schwarzschild case, the true singularity
here is timelike and it leaves open tunnels to the future and to the past.

Now we have to decide how to interpret the image within the thick-line rectangle in
Fig. 14.10. We note that the upper tunnel (the strip between the true singularities) is a
copy of the lower tunnel. We can identify the two tunnels, thus making the extended
manifold finite and cyclic in the timelike direction. Alternatively, we can continue to send
null geodesics to the future from the upper tunnel and to the past from the lower tunnel,
thus constructing more and more copies of the sectors already constructed, and extend
the picture indefinitely in both directions, obtaining an infinite chain. It has been said
(Carter, 1973) that the identification would result in an acausal spacetime, in which one
could send signals to the future and receive the same signals from the past. This, the story
goes, would lead to paradoxes such as sending a message that would say ‘do not send
any signal if you receive this message’, and then receiving it. However, it must be added
that causality could be violated only if the signals arriving from the past were intelligible
and recognisable as those that had previously been sent to the future. With a spacetime
such as the one in Fig. 14.10 this would not necessarily be the case: while a message
would continue through the tunnel to emerge from the past, the time would continue to
flow for observers in sectors I and III. The message might re-emerge after a very long
time and strongly distorted – too unreadable to influence the observers’ decisions. Current
experimental knowledge does not exclude such a possibility – so the identification of the
two tunnels does not contradict any laws of physics.

The extension of the R–N solution composed of two coordinate patches was first
contemplated (and constructed) by Graves and Brill (1960). The infinite mosaic of confor-
mal diagrams shown in Fig. 14.10 first appeared in a paper by Carter (1966a) and was
described in more detail in another article by Carter (1973).

Just like we did for the Schwarzschild solution, we can consider the embedding of the
�t = constant
� = 	/2� 2-surface in the Euclidean space. This surface has the metric

ds2 = 1
1−2m/r+ e2/r2

dr2 + r2 d�2
 (14.157)

and, if this is going to be the metric of the surface z�r in the Euclidean space with
ds2 = dz2 +dr2 + r2 d�2, then

z�r=
∫ r

r+

√

1

1−2m′/r+ e2/r ′2 −1 dr ′ ≡
∫ r

r+

√

2mr ′ − e2

r ′2 −2mr ′ + e2
dr ′� (14.158)

This integral reduces to (14.107) when e= 0. Figure 14.11 shows the comparison of the
surface (14.157) with the surface shown in Fig. 14.7. It is seen that the presence of charge
makes the throat longer and thinner.

Like in the Schwarzschild spacetime, the surface �t = constant
� = 	/2� coincides
with the surface v = 0 in those �u
 v coordinates that cancel the r = r+ singularity, i.e.
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Fig. 14.11. A comparison of the ‘throat’ in the Schwarzschild spacetime at v = 0 (inner curves)
and in the R–N spacetime with e2 <m2 at r = r+ (outer curves). The curves are cross-sections of
surfaces like the one in Fig. 14.7 with a vertical plane. The mass parameters for both surfaces are
the same. The presence of charge makes the throat longer and thinner; with the charge being close
to the limiting value ±m, it can be very much longer. In fact, it becomes infinitely long when
e2 →m2; see the comment after Eq. (14.162).

with horizontal sections of the manifold shown in Fig. 14.10 that go through the crossing
of the r = r+ horizons. Unlike in the Schwarzschild spacetime, when we go to higher
values of v, the throat never shrinks to a point and the two sheets of the surface never
separate. Imagine the v = constant plane being moved upwards from the position at the
crossing of the r = r+ horizons. The minimal value of r in the surface first decreases
from r+ to r− and then increases to r+ again. Thus, as some authors like to say, the flux
of the electric field through the throat prevents it from collapsing to a point; instead the
throat pulsates periodically between the radii r− and r+.

The surface v = constant changes its geometry completely as it enters the tunnel
between the true singularities – then it does not recede to infinite distances as in Fig. 14.11,
but remains finite in extent. Then, with r ≤ r−, embedding the surface with the metric
(14.157) in a Euclidean space by the same method as before requires solving the equation

z
r
2 = 2mr− e2

r2 −2mr+ e2
� (14.159)

A solution will exist only if e2/�2m ≤ r ≤ r−, because for r < e2/�2m the right-hand
side of (14.159) is negative. The other part of the �t= constant
� = 	/2� surface can be
embedded in a flat 3-space with the indefinite metric �dr2 + r2 d�2 −du2. The solution
of (14.159) with e2/�2m≤ r ≤ r− is

z�r= ±
∫ r

r−

√

2mr ′ − e2

r ′2 −2mr ′ + e2
dr ′� (14.160)
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With r < e2/�2m, the solution for u�r is

u�r= ±
⎡

⎣z

(
e2

2m

)

−
∫ r

0

√

e2 −2mr ′

r ′2 −2mr ′ + e2
dr ′

⎤

⎦ � (14.161)

The surfaces v = 0 corresponding to the function z�r defined by (14.160) and to the
function u�r defined by (14.161) are shown side by side in Fig. 14.12. The same
graphs, placed in the right positions and adjusted to the scale of Fig. 14.11, are shown in
Fig. 14.13.

Fig. 14.12. Embeddings of the v = 0 surface that passes through r = r−. The figure on the left
corresponds to the function z�r defined by (14.160) and an embedding in an ordinary Euclidean
3-space; the figure on the right corresponds to the function u�r defined by (14.161) and an
embedding in a flat 3-space with the indefinite metric of signature �++−. The ‘equator’ of the
left surface corresponds to r = r−; the upper and lower ends of the left surface correspond to
r = e2/�2m, where the embedding in the Euclidean space breaks down. The tips of the right figure
correspond to the singularity at r = 0; the gap between the two parts of the figure has its edges at
r = e2/�2m, where the embedding in this space also breaks down.

Fig. 14.13. Cross-sections of the surfaces of Fig. 14.12 transformed to the scale of Fig. 14.11
and placed in the correct positions with respect to the r = r+ surface. The horizontal lines separate
the part embedded in a Euclidean space (between them) from the part embedded in the space with
indefinite metric.
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For the extreme case e2 =m2 the metric can be written as

ds2 =
( r−m

r

)2
dt2 −

( r

r−m
)2

dr2 − r2
(

d�2 + sin2� d�2
)

� (14.162)

Note that this case is indeed essentially different from the case e2 < m2. In the latter,
the invariant radial distance from any point with coordinate r to the nearest spurious

singularity (for r > r+ the distance is equal to !�r = ∫ r

r+

(

r ′/
√

r ′2 −2mr ′ + e2
)

dr ′) is

finite. With e2 =m2, the invariant distance from any point r �=m to the spurious singularity
r =m is infinite, as may be verified from the above.

In order to find the extension, we consider the surface �� = constant
� = constant�,
and write the metric as

ds2 =
( r−m

r

)2
[

dt−
( r

r−m
)2

dr
][

dt+
( r

r−m
)2

dr
]

� (14.163)

We introduce the null coordinates p and q by

p = t+ "
 q = t− "


"
def=
∫ r2

�r−m2
dr = r−m− m2

r−m +2m ln 	r−m	� (14.164)

The metric then becomes

ds2 =
[( r−m

r

)2
dpdq− r2

(

d�2 + sin2� d�2
)
]

r=r�p
q
� (14.165)

The sets �r = m
� = constant
� = constant� are seen to be composed of radial null
geodesics, so in the �p
 q coordinates they are represented by lines parallel to p= constant
or q = constant.

The metric is regular for all real values of p and q, and the spurious singularity at
r = m lies at p = −� and q = +� when approached from r > m, and at p = +� and
q= −� when approached from r <m, but these two regions are covered by two different
infinite coordinate patches. The infinity r = � is at p = +� and q = −� in the first
patch. The singularity r = 0 lies on the straight line p−q = 4m lnm in the second patch.
We bring the infinite values of p and q to finite distances by the transformation

p= tanP
 q = tanQ� (14.166)

In this way, the images of r = m in the two patches can be laid side by side; they are
now at P = −	/2 and Q=	/2 in the r >m patch, and at P =	/2 and Q= −	/2 in the
r <m patch. The infinity is at P =	/2 and Q= −	/2 in the r >m patch. The singularity
is at tanP− tanQ = 4m lnm in the r < m patch. Note that, just as in the case e2 < m2,
the image of the singularity includes points at which simultaneously P = Q = 	/2 and
those where P = Q = −	/2, i.e. the singularity has common points with the images of
the spurious singularity. However, this time the singularity will have no common points
with the infinities. Putting all those bits of information together, we obtain the infinite
chain of conformal diagrams shown in Fig. 14.14.
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Fig. 14.14. Conformal diagrams for the maximal extension of the extreme R–N metric, with
e2 = m2. The thin straight segments are the images of the null infinities, where r → �. The thin
hyperbolae segments are r = constant lines; this time they are timelike except the r =m lines that
are null. The thick straight segments are the spurious singularities at r = m; they are again event
horizons. The hatched curve segments are the true singularities at r = 0; they are timelike, too. Just
as in the e2 <m2 case, we can choose to identify the square at the bottom with the next one up.

The extension of this case and Fig. 14.14 were first presented by Carter (1966a, 1973).
Just like we did for the Schwarzschild metric and for the R–N solution with e2 <m2,

also in the present case we can embed the surface �t = constant
� = 	/2� in a flat
3-dimensional space. As in the previous case, the embedding is different on each side of
the spurious singularity r =m, and again the region with r < m cannot all be embedded
in a Euclidean space. From d�z�r2 +dr2 + r2 d�2 = r2 dr2/�r−m2 + r2 d�2 we obtain
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Fig. 14.15. Embeddings of the �t = constant
� = 	/2� surface of the extreme (e2 = m2) R–N
metric. Left: the embedding of the part r > m. The funnel is infinitely long downwards, and it
approaches asymptotically from the outside of the cylinder of radius m as r →m. It goes infinitely
far outwards and upwards. Right: the embedding of the part 0 ≤ r < m in a flat 3-space. The upper
surface goes infinitely far upwards and approaches asymptotically from the inside of the cylinder
of the same radius m as r → m. The surface is cut off at r = m/2 (where z = 0) because the
remaining part cannot be embedded in a Euclidean space. The lower cone is the embedding of the
part r ≤ m/2 in the pseudo-Euclidean 3-space with the metric −d�u�r2 + dr2 + r2 d�2. It is cut
off at r =m/2, and its vertex touches the singularity at r = 0.

for the regions r > m and m/2 ≤ r < m:

z�r= √
2m
(

2
√

r−m/2+
√

m

2
ln

∣
∣
∣
∣

√
r−m/2−√

m/2√
r−m/2+√

m/2

∣
∣
∣
∣

)

� (14.167)

This tends to −� at r →m, to +� at r → � and to 0 at r →m/2. For r ≤m/2, we can
embed the surface �t = constant
� = 	/2� in a flat 3-space with the indefinite metric
−d�u�r2 +dr2 + r2 d�2; the equation of embedding is

u�r= −2
√

2m
(√

m/2− r−√m/2 arctan
√

1−2r/m
)

� (14.168)

This tends to 0 at r →m/2 and to the finite value −m	/2 at r = 0.
The embeddings are shown in Fig. 14.15.

14.16 * Motion of particles in the Reissner–Nordström spacetime with e2 < m2

This section is mostly borrowed from Graves and Brill (1960).
A free particle in a gravitational field moves on a geodesic x� = x��s, where s

is an affine parameter along the trajectory. The geodesic equation D2x�/ds2 = 0 is a
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generalisation of the Newtonian statement that the acceleration along the trajectory of free
motion is zero.1 A charged particle moving in a combined gravitational–electromagnetic
field will experience a force acting on it. In the particle’s rest frame, the force is qE, where
q is the particle’s charge and E is the intensity of the electric field. In agreement with
(13.1), the electric field consists of the components F 0I of the electromagnetic tensor, and
these components in the rest frame of the particle are F�� dx�/ds, where dx�/ds is the
particle’s velocity. Thus, the acceleration of such a particle will equal the force divided by
the particle’s mass. Putting all this together, the equation of motion of a charged particle
in a gravitational–electromagnetic field is

d2x�

ds2
+
{

�

��

}

dx�

ds
dx�

ds
= q√

8	�
F��

dx�

ds

 (14.169)

where � is the mass of the particle and the factor 1/
√

8	 was introduced in order to
simplify the subsequent formulae (it merely redefines the unit of charge). By (14.23),
(14.40) and (14.41), the electromagnetic tensor in the R–N solution has only two nonzero
components, F 01 = −F 10 = √

8	e/r2. Knowing this, we find that two of the equations
in the set (14.169) (those corresponding to �= 2 and �= 3) coincide with (14.48) and
(14.49), so Eqs. (14.53)–(14.54) remain in force. Using this result, the remaining two
equations are

d2t

ds2
+ 1
�
�
r

dt
ds

dr
ds

= − qe

�r2�

dr
ds

 (14.170)

d2r

ds2
+ 1

2
�
r

[

�

(
dt
ds

)2

− 1
�

(
dr
ds

)2
]

− r�
(

d�
ds

)2

= −qe�
�r2

dt
ds

 (14.171)

where we denoted

�= 1− 2m
r

+ e2

r2
� (14.172)

Multiplying (14.170) by 2�dt/ds, (14.171) by −2�dr/ds/� and adding the results, we
obtain an equation that is easily integrated with the result

�

(
dt

ds

)2

− 1
�

(
dr
ds

)2

− J0
2

r2
= �
 (14.173)

where � is a constant of integration. This is the same integral that exists for geodesics; it
says that the tangent vector to the trajectory has a constant length. By adjusting the affine
parameter, the constant can be made equal to 1. We shall keep the symbol �, however,
because later we will use (14.173) for null geodesics, for which �= 0. Equation (14.170)
can be integrated with the result

�
dt

ds
= qe

�r
+#
 (14.174)

1 See Section 15.2 for the definition of acceleration in relativity.
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where # is a constant of integration. Using this to eliminate dt/ds from (14.173), we
obtain

1
�

(
qe

�r
+#

)2

− 1
�

(
dr
ds

)2

= �+ J0
2

r2
� (14.175)

Since � = +1, this shows that the turning points of the trajectory �dr/ds = 0 can exist
only outside the outer horizon �r > r+ and inside the inner horizon �r < r−, where
�> 0. We now rewrite (14.175) in yet another form:

(
dr
ds

)2

=
(
qe

�r
+#

)2

−
(

�+ J0
2

r2

)(

1− 2m
r

+ e2

r2

)

� (14.176)

The motion can take place only in those regions where the right-hand side of (14.176)
is positive. With J0 �= 0, however, there is the term −J0

2e2/r4 that will always dominate
over the other terms when r → 0, and will render the right-hand side negative. Thus, the
neighbourhood of r = 0 is inaccessible for motion, which means that no charged particle
can ever hit the central singularity. This conclusion still holds with J0 = 0, provided q2 <

�2 – then the dominating term is �q2/�2 −1e2/r2. This means that even a radially moving
charged particle will be repelled by the singularity, provided its charge is small enough
compared to the mass, irrespective of the signs of the charges of the particle �q and of
the R–N black hole �e. Strangely enough, the conclusion continues to hold for neutral
particles for which q= 0, even with J0 = 0. Then the dominating terms are −J0

2e2/r4 and
−e2/r2, respectively. Thus, a charge on matter creates effective antigravitation – repulsion
that, in spite of its electromagnetic origin, acts also on electrically neutral particles. We
will come back to this in Section 19.3 and 19.3.3, where we will discuss the gravitational
and electric fields inside a charged dust sphere.

Equation (14.176) can be used to calculate the time it takes to reach the horizon r =m

along a timelike radial geodesic in the special case e2 =m2. In spite of the infinite distance
to this horizon within a t = constant space, the time along a timelike geodesic turns out
to be finite. The same is true for the value of the affine parameter along a null geodesic;
see Exercise 14 for both results. Thus the manifold of the extreme R–N metric in the
original R–N coordinates is indeed incomplete.

Equation (14.176) implies that the inner turning point of a radial trajectory of a charged
or uncharged particle (the value of r at which, with J0 = 0, dr/ds = 0 and the motion
reverses from fall to escape) is always within the inner horizon, i.e. at r < r−; see
Exercise 15.

14.17 Exercises

1. Prove that (14.1) is indeed a rotation around the axis �� = 	/2
� = 0� (e.g. find the corre-
sponding Killing field and transform it to Cartesian coordinates). Verify that the components
of the metric (8.51) do not change after the transformation (14.1).

2. Prove Lemmas 14.2 and 14.3.
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3. Prove that the duality rotation (13.13) with the parameter � = − arctan�q/e does indeed
transform the electromagnetic field (14.23), (14.21) and (14.20), with the metric (14.18), into
a new field for which the magnetic charge q̃ = 0 and the new electric charge is ẽ=√

e2 +q2.
4. Prove that, with E< 1, J0 > 2

√
3GM/c2 and the initial � being sufficiently small, the solution

��� of (14.59) must be bounded.
Hint. Assume (14.59) to be the equation of energy conservation on a Newtonian orbit in the
potential �− (1+ J0

2/r2
)

�1−2m/r�. Consider the possible shapes of this potential depending
on J0. Consider the orbital motion in various ranges of the total energy E.

5. For a light ray on a circular orbit d�/d�≡ 0 in (14.74), so the radius of this orbit must obey
E2r3 −J0

2�r−2m= 0. This equation has at most two positive roots. Most of these orbits are
unstable: any perturbation will cause the light ray to go around an orbit on which r oscillates
between a maximal and a minimal value. Find the condition that J0
m and E must obey for
circular photon orbits to exist. Show that only one of them is stable, with radius r = 3m.
Hint. Use the same method as in the previous exercise. At the radius of the stable circular
orbit the function E2 − J0

2�2 �1−2m� has a zero and a local minimum.
6. Prove that the same (incorrect) result (14.89) for the deflection of light rays can be obtained

by purely Newtonian methods.
Hint. Consider a hyperbolic orbit in polar coordinates, Eq. (14.77), where the geometric
parameters of the orbit, p and �, are connected with the physical parameters by Eq. (14.86)
and p= J 2/�GM�2. Calculate the deflection angle as in (14.85). Then replace the geometric
parameters by the physical ones. Note that J =mRvR, where R is the smallest distance between
the particle and the central star, and vR is the velocity at the point of smallest distance. Calculate
vR by equating the energy at that point to the energy at infinity, 1

2�v�2. Note that the value
of the deflection angle does not depend on the mass �. Assume that the ‘particle’ is a photon
and that v� = c. Finally, calculate the result up to linear terms in GM/c2.
Remark. This is how the angle of deflection of a light ray was calculated by Cavendish in the
eighteenth century, in unpublished notes (Will, 1988), and by von Soldner in 1804 (Soldner,
1804; Schneider, Ehlers and Falco, 1992). Einstein himself found at first this incorrect result,
before he formulated his field equations (12.21).

7. Calculate the tetrad components Rijkl of the Riemann tensor for the Schwarzschild solution
(14.40)–(14.42) and verify that they are all regular at r = 2m.

8. Verify that the integral in (14.113) is finite for every r0 <�.
9. Assume geodesic coordinates in (8.51), so that ds2 = dt2 −S2�t
 rdr2 −R2�t
 r

(

d�2 + sin2

� d�2
)

(make sure first that the transformations (8.52) do really allow such a choice!). Then
solve the vacuum Einstein equations G�� = 0 for this metric and verify that (14.116)–(14.117)
is the general solution that results when R
r �= 0.

10. Prove by direct coordinate transformation that (14.116)–(14.117) is indeed a representation of
the Schwarzschild solution (14.40) and (14.42).
Hint. Take the Schwarzschild solution (14.40) and (14.42) and transform the coordinates by
t = f��
u
 r = R��
u, where f and R are functions as yet unknown. Then demand that in
the new coordinates g�� = 1 and g�u = 0. Solve the resulting equations algebraically for the
derivatives of f . Impose the integrability condition f
�u= f
u� . (The � and u are the �t
 r
coordinates of Eqs. (14.116)–(14.117).)

11. Verify that (14.122) is fulfilled by virtue of (14.119)–(14.121).
Hint. Differentiate (14.121) by r, then manipulate (14.119)–(14.122) and (14.127) until you
reproduce (14.122).
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12. Verify that the Weyl tensor of (14.134) is zero.
13. The lines r = constant in the subspace �� = constant
� = constant� of the R–N metric are

the hyperbolae u2 −v2 = constant, as seen from (14.149). Follow the chain of transformations
(14.154)–(14.156) to show that in the �U
V  coordinates these lines are still hyperbolae
given by

(
1−C
1+C

)2
[(

U + 1+C
1−C

)2

−V 2

]

= 1
 C
def= e2pq = e2�u2−v2�

14. Show that the proper time s needed to reach the horizon r = m of the extreme R–N metric
from any point along a radial timelike geodesic is finite. Show that, for a radial null geodesic
starting at a finite r, the value of the affine parameter s at r =m is also finite.
Hint. The curve defined by (14.176) becomes geodesic when q = 0.

15. Prove that the inner turning point of a radial trajectory of a charged or uncharged particle is
always within the inner horizon if q2/�2 < 1.
Hint. The right-hand side of (14.176) with J0 = 0 (call it W�r) vanishes at r = r1 and
r = r2 > r1. The inner turning point is at r1 when r1 > 0 and at r2 when r1 < 0. One of the two
values must be positive because otherwise there would be no turning point at r > 0 and the
singularity at r = 0 would be accessible to particles. Assume that the value of r at the turning
point in question is greater than r+ and verify that it leads to a contradiction in both possible
cases, #2 > 1 and #2 < 1.
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Relativistic hydrodynamics and thermodynamics

15.1 Motion of a continuous medium in Newtonian mechanics

Let xi� i = 1� 2� 3, be the rectangular Cartesian coordinates in the Euclidean 3-space. We
assume that one line of flow of a fluid passes through every point of a certain region in
space. Let the velocity field of the fluid, vi�t� xj�, be differentiable at every point xi and
at every instant t. Then

dxj�t�

dt
= vj�t� yi�

∣
∣
xj=yj

� (15.1)

The xj�t� on the left are coordinates of the flowing fluid particle, while the yi on the right
are the coordinates of a point of space.

Let us follow the motion of the particle P, which at the instant t occupies the position
�xi� and moves with the velocity vj�t� xi�, and the motion of an adjacent particle Q
that, at the same instant t, occupies the position �xi +�xi� and moves with the velocity
vj�t� xi +�xi�. Up to terms linear in �xi, the velocity of the particle Q with respect to P is

�vQP�j�t� ≡ vj�t� xi +�xi�−vj�t� xi� = vj�k�t� xi��xk +O
(

�x2
)

(15.2)

(sums over all repeated indices are implied in all the equations in this section), where
O
(

�x2
)

denotes terms of order 2 and higher in �xk. Hence, at the instant �t + 	t� the
position of the particle Q relative to P will be given by the vector

�x′
j = �xj + (vQP

)

j
	t +O

(

	t2
)= �xj +vj�k�xk	t +O

(

	t2� ��x�2
)

� (15.3)

Thus the matrix vj�k determines the relative velocity of two neighbouring particles of the
fluid. If we use only Cartesian coordinates, then, under transformations between such
coordinates, the matrix vj�k transforms as a tensor. It can be decomposed into three parts,
each of which transforms independently of the others:

vj�k = 
jk +�jk + 1
3

�jk�� (15.4)

where

� = vj�j� (15.5)


jk = v�j�k� −
1
3

�jk�� (15.6)
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�jk = vj�k�� (15.7)

This decomposition can be done for every tensor of rank 2. However, for the tensor vj�k,
each part has a physical interpretation. The easiest way to read it out is to consider three
types of motion, such that in each of them just one of the three parts is nonzero.

• I. Let 
jk = �jk = 0 �= �. Then, from (15.2) and (15.3):

�x′
j =

(

1+ 1
3

� 	t

)

�xj +O
(

	t2� �x2
)

� (15.8)

The new vector that connects P and Q at the instant (t+	t) has in this case the same
direction as the old vector from P to Q, but a different length, and � = 3�d/dt� ln ��x��
The particles P and Q either recede from each other (when � > 0) or approach
each other (when � < 0) along the straight line PQ. Such motion is called isotropic
expansion, and the quantity � is called the scalar of expansion.

• II. Let � = 0 and 
jk = 0 �= �jk. Then, from (15.3) and (15.4):

�x′
i = ��ik +�ik 	t��xk +O

(

	t2� �x2
)

� (15.9)

Let us calculate the length of the vector �x′
i. In consequence of antisymmetry of �ik,

we obtain

��′ = ��x′
i �x′

i�
1/2 = [

�xk �xk +O
(

	t2� �x3
)]1/2

= ��xk �xk�
1/2 +O

(

	t2� �x3
)= ��+O

(

	t2� �x3
)

� (15.10)

Hence, the derivative along vi of the length �� is zero. Let us see what happens with
the direction of �xi:

��x′
i −�xi� �xi = �ik �xi �xk 	t +O

(

	t2� �x3
)= O

(

	t2� �x3
)

� (15.11)

Hence, the rate of change of �xi projected orthogonally on �xi is zero. The properties
(15.10) and (15.11) are characteristic for rotational motion. Thus, in this type of
motion, Q revolves around P.

Let us calculate the vector of angular velocity of this motion, �. We have, from
the definition of angular velocity:

vQP = �×�x =⇒ (

vQP

)

i
= �ikl�k �xl� (15.12)

At the same time, from (15.2) in the present case we have
(

vQP

)

i
= �il �xl S. These

two equations must hold for every �xl, hence

�il = −�ilk�k� (15.13)

Inverting this equation and using (15.7) we obtain

�j = 1
2

�jil�li = 1
2

�jilvl�i =⇒ � = 1
2

rot v� (15.14)
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In consequence of (15.13) and (15.14), �ik is called the rotation tensor. Note that

the quantity �2 def= �i�i = �kl�kl/2 is always non-negative and vanishes only when
�kl = 0. Hence, also the scalar of rotation � can be used to differentiate between
rotational and irrotational motion.

• III. Let � = 0 and �ij = 0 �= 
ij . Consider three particles Q1� Q2 and Q3 neighbouring
P and occupying, at the instant t, the positions relative to P given by the vectors
�x� �y and �z attached to P. The volume of the parallelepiped spanned on the vectors
�x� �y and �z at the instant t is equal to

�V = �x· ��y ×�z� = �ijk �xi �yj �zk� (15.15)

At the instant �t +	t�, the corresponding volume will be equal to

�V ′ = �V +D	t +O
(

	t2� �x4
)

� (15.16)

where

D
def= (

�lmk
kn + �ljn
jm + �imn
il

)

�xl �ym �zn� (15.17)

Using 
ij = 
ji and 
ii = 0 one can now verify that D = 0, i.e. that �V ′ = �V +
O
(

	t2� �x4
)

. Hence, in this type of motion, the rate of change of volume of the
parallelepiped spanned on the vectors �x� �y and �z is zero. However, the shape of
the parallelepiped is changing because the vector 
ik �xk has in general a different
direction and different length from �xi.

1

This kind of motion is called shearing motion, and the tensor 
ij is called the
shear tensor. Similarly to rotation, the shear tensor vanishes if and only if the scalar

 defined by 
2 = 
ij
ij/2, called simply shear, is zero.

15.2 Motion of a continuous medium in relativistic mechanics

In relativity, themotionofa fluid isdescribed inasimilarway to that inNewtonianmechanics.
We assume that one line of flow of a fluid passes through every point �x�� of a certain
region in spacetime, and that the velocity field of the fluid, u��x�, tangent to the flow lines,
is differentiable in this whole region. Then dx�/ds = u��x��, and, just as in (15.1), the x��s�

on the left-hand side are coordinates of the flowing fluid element, while the x� on the right-
hand side are the coordinates of that point of spacetime in which the x��s� equals x�. The
parameter s is the proper time on the worldlines of the fluid, hence

u��x�u��x� = 1� (15.18)

Note now that the tensor

h�
�

def=��
� −u�u� (15.19)

1 If �x� �y and �z are collinear with the eigenvectors of the matrix 
 , then their directions do not change during the motion,
but, in consequence of 
ii ≡ Tr�
� = 0, the sum of changes of their lengths must be zero. Hence, as long as 
 �= 0, if two of
the vectors become longer, the third one must become shorter. Consequently, the shape of the parallelepiped will be changed
also in this case.
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projects vectors on the hypersurface orthogonal to u� at a given point x. This is because
we have h�

�u� = 0 and, for any arbitrary vector B��u� · (h�
�B�

) = 0. The quantity

B�
⊥

def= h�
�B� is the component of the vector B� along the direction perpendicular to u�.

Note also that

g��B�
⊥B

�
⊥ = h��B�

⊥B
�
⊥ (15.20)

for any arbitrary vector B�. Thus, the tensor h�� plays the role of the metric tensor on
the hypersurfaces orthogonal to u�.1

Let us choose the proper time s on the flow lines as the time coordinate x0 in spacetime.
Then

u′�=∗ ��
0� (15.21)

Let us next choose three spatial coordinates xI� I = 1� 2� 3, so that their parametric lines
are contained in the hypersurfaces SP�s� orthogonal to one fixed worldline P. In such
coordinates g0I �P =∗ 0, so, for an arbitrary vector field B� orthogonal to u�

P�s�, we have 0 =
(

g��u�B�
)

P
=∗ g00�PB0

P, i.e. B0
P =∗ 0 (since g00 �= 0 in consequence of (15.21) and (15.18)).

Consider the curves tangent to the vector field B�, given by B� = dx�/d�. In our chosen
coordinate system we have 0=∗ B0

P = dx0/d�
∣
∣
P
, i.e. at points of the curve P these lines

are tangent to the hypersurface x0 = constant. Hence, the hypersurfaces x0 = constant
and the hypersurfaces orthogonal to P are tangent to each other along P. Consequently,
the hypersurface SP�s0� is called the hypersurface of events simultaneous with P�s0�

or the hypersurface of constant time s = s0 for the observer P.
Let the particle moving along the curve P occupy at the instant s the point P0 in

spacetime. Let Q be an adjacent worldline, and let �x� be a vector joining P0 to an arbitrary
point on Q. The event Q0 simultaneous with P0 is then at the position relative to P0 given
by the vector �⊥x� = h�

��P0��x�. The velocity of the fluid at P0 is u��x��, and the velocity
at Q0 is u��x� +�⊥x��. After the time 	s, the particle that at s occupied the point P0 will
be at P1 of coordinates x′� = x� +u�	s. Where will then be the particle that occupied the
point Q0 at s? Its position relative to P1 will be determined by the vector �⊥x� + v�	s,
attached to P1, where v� is determined by u��x� +�⊥x��. However, the vector v� cannot
be equal to u��x� + �⊥x��, because the latter is attached to the point of coordinates
x� +�⊥x�, while �⊥x� is attached to P0 of coordinates x�. In order to add the vectors,
we must first transport one of them parallely to the point of attachment of the other. Thus
v� must be the vector u��x� +�⊥x�� parallely transported from �x� +�⊥x�� to x�.

Let us apply Eq. (5.6) to our present case. The v�
	 ��2� of (5.6) is our u��x� +�⊥x��,

and the v���1� of (5.6) is our v�. Hence we have

u��x� +�⊥x�� = v� −
∫ x�+�⊥x�

x�
��


��x�u
�x�dx��

1 Each of the hypersurfaces meant here is orthogonal to a single flow line of the fluid. The family of hypersurfaces is in general
different for every flow line. For vector fields, the property of being orthogonal to a family of hypersurfaces is rather special,
and does not hold in general. As an exercise, readers may wish to verify that such a family of hypersurfaces exists if and
only if the rotation tensor, defined later in this section, is zero.



226 Relativistic hydrodynamics and thermodynamics

We now apply the mean value theorem to the integral, and also develop the vector on
the left-hand side by the Taylor formula up to terms linear in �⊥x�. The result is

u��x��+u��� �x���⊥x� +O
(

�⊥x2
)= v� −��


��x�u
�x��⊥x��

The point of coordinates x is the intermediate point between x� and �x� +�⊥x��. When
we replace it by x�, the difference will be of the order of ��⊥x��, and, since the whole
expression is multiplied by �⊥x�, the difference in the equation will be of order O

(

�⊥x2
)

.
Transferring the expression containing the connection coefficients to the left-hand side
of the equation we then obtain

v� = u��x��+u��� �x���⊥x� +��

��x�u
�x��⊥x� +O

(

�⊥x2
)

�

This is equivalent to

v� = u��x��+u��� �x���⊥x� +O
(

�⊥x2
)

� (15.22)

Hence, the particle that occupied the point Q0 at the instant s will at the later instant
�s +	s� occupy the point of coordinates

x′′� = x� +�⊥x� +u��x��	s +u��� �x���⊥x�	s +O
(

�⊥x2�	s2
)

� (15.23)

Hence, the new position of the particle Q relative to the particle P will be given by the
vector

�⊥x′� = x′′� −x′� = �⊥x� +u����⊥x�	s +O
(

�⊥x2�	s2
)

� (15.24)

Thus, the matrix u��� determines the rate of change of the position of the particle Q
with respect to the particle P. However, not the whole matrix u��� gives a nontrivial
contribution to (15.24). We have

u��� ≡ u��
 �

� ≡ u��


(

h

� +u
u�

)

� (15.25)

Only the first term in (15.25) gives a nonzero contribution in (15.24). Hence, finally

�⊥x′� = �⊥x� +u��
 h

��⊥x

�	s +O
(

�⊥x2�	s2
)

� (15.26)

The following identities hold:

u��
 ≡ h�
�u��
 � u��
 u� ≡ 0� (15.27)

They show that the matrix u��
 h

� is an operator acting in the 3-dimensional hypersurface

orthogonal to u�. Comparing (15.27) with (15.3) we see that the quantity u��
 h

� plays

in relativistic hydrodynamics the same role as the quantity vj�k played in Newtonian
hydrodynamics. This time, u��
 h


� is a genuine tensor, and we can decompose it into
the three independent parts in the same way:

u��
h

� = 
�� +��� + 1

3
�h��� (15.28)
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where

� = u��
 h

� ≡ u��� � (15.29)

��� = u���
�h



�� ≡ u���� − u̇�u��� (15.30)

u̇� = u���u
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15.3 The equations of evolution of ��������� and u̇�; the Raychaudhuri equation

The equations derived in this section will be simply consistency conditions imposed by the
Einstein equations on the hydrodynamical scalars, vectors and tensors introduced in the
previous section and on the curvature of spacetime. Although they may thus seem to be
of secondary meaning, they are surprisingly powerful in their applications. In particular,
they show that one cannot make any arbitrary assumptions about the properties of the
kinematical tensors – these properties are interrelated and some of them have important
consequences.1

From Eq. (6.3), applied to the velocity field of a fluid, we have

u���
 −u��
� = −R���
u�� (15.37)

Let us contract both sides of this equation with u
h�
�h�

�. In the second term on the left
we then transfer the derivative with the index � from u��
 to u
 , while on the right we
will use the antisymmetries of the Riemann tensor to eliminate some terms. The result is

h�
�h�

�

(

u���

)˙−h�
�h�

�u̇��� +h�
�h�

�u
�� u��
 = −R���
u�u
� (15.38)

where the overdot denotes the directional covariant derivative along the velocity field,

˙def= u���. Now we contract (15.38) with g�� and obtain

h��
(

u���

)˙−h��u̇��� +h��u
�� u��
 +R�
u�u
 = 0� (15.39)

Up to this point, these were general equations of differential geometry. Now we use the
Einstein equations with a perfect fluid source to replace

R�� = ��T�� − 1
2

g��T� = ���+p�u�u� + 1
2

�p− ��g���� (15.40)

and then we apply (15.28) to the term h��u
��. In the two remaining terms of (15.39)
we substitute (15.19) and we transfer the differentiation from the derivatives of u� to u� .
The result is

�u��� �̇ − �u�u��� �u� + u̇�u�u��� −u̇��� +�u�u̇���� u�

− u��� u�u̇� +u��
�

� +�
� + 1
3

�h
��+ 1
2

���+3p� = 0� (15.41)

Now we use (15.31) and (15.27); the latter implies u̇�u� = 0. We also use the definitions
of ��
�� and ��� and the equations


��u� = ���u� = 0 (15.42)

1 In the paper in which these equations were first derived (Ellis, 1971), and in probably all papers in which they were applied,
the signature �−+++� was used, as opposed to �+−−−� used here. This is why the equations of this section will differ
from those in other sources – but they are equivalent.
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that follow from (15.30), (15.32) and (15.27). We obtain then in (15.41):

0 = �̇ + 1

3
�2 − u̇��� +

��

� + u̇�
u�� +

1
3

�h
��

+�
����
 + u̇�u
��+ 1
2

���+3p�

= �̇ + 1
3

�2 − u̇��� +2
(


2 −�2
)+ 1

2
���+3p�� (15.43)

This equation, in the form quoted above, was derived by Ehlers (1961) and is called the
Raychaudhuri equation (the name seems to have been introduced by Ellis (1971)). The
idea, and a subcase of (15.43), corresponding to dust �p = 0�, without the definitions of
the shear and rotation, were first introduced by Raychaudhuri (1955).

Taking the antisymmetric part of Eq. (15.38), then its symmetric part and using in the
second one the Raychaudhuri equation to eliminate �̇, we obtain two other equations:

• the vorticity propagation equation

h�
�h�

��̇�� −h�
�h�

�u̇���� +2
����
�� +

2
3

���� = 0� (15.44)

• and the shear propagation equation

h�
�h�

�
̇�� − h�
�h�

�u̇����� + u̇�u̇� +�����
� +
��
�

�

+ 2
3

�
�� + 1
3

h��

[

2
(

�2 −
2
)+ u̇���

]+E�� = 0� (15.45)

where the quantity E�� is the ‘electric part’ of the Weyl tensor, which was defined
in (7.97).

In addition, the following three other equations hold:

������ + u̇���u�� + u̇����� = 0� (15.46)

h�
������� −
���� +2

3
����− ���

� +
�
��u̇� = 0� (15.47)

2u̇��w�� −√−gh�
�h�

�

(

���
��� +
��

���
)

������u
� = H��� (15.48)

where H�� is the ‘magnetic part’ of the Weyl tensor, defined in (7.98). Equation (15.46) is
obtained by antisymmetrising (15.37) in the indices ��� and 
 and using −R�����
�u

� =
u�R���
� = 0. Equation (15.47) is obtained by contracting (15.37) with g��h�
 and using
(15.40). In order to obtain (15.48), one has to rewrite (15.37) in the form

−u�
��� +u�

��� = R��
�
u
� (15.49)

then act on both sides of (15.49) with the operator 1
2

√−g�����u
�h�

�h�
� and then

symmetrise the result with respect to � and �. Equations (15.43)–(15.48) are algebraically
independent components of Eq. (15.37).
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A consequence of Eqs. (15.43)–(15.48) is that assumptions made about the kinematical
quantities can lead to restrictive results. For example, assume that u̇� = 
 = � = 0. Then
(15.44) and (15.46) are fulfilled identically, (15.47) says that the expansion scalar may
change only along the flow lines, while (15.45) and (15.48) imply that the Weyl tensor is
zero. The family of perfect fluid solutions of the Einstein equations for which the Weyl
tensor vanishes was found by Stephani (1967a) (see also Stephani et al. (2003)). They
have the properties 
 = � = 0, but in general u̇� �= 0. In the limit u̇� = 0 they reduce to
the Robertson–Walker metrics of Section 10.7 – which is a rather strong simplification.
The full set of solutions of Einstein’s equations with a perfect fluid source for which

 = � = 0 was found by Barnes (1973).

15.4 Singularities and singularity theorems

An important conclusion follows from the Raychaudhuri equation. Let us define the
function � �x�� through the equation

1
�

d�

ds
= 1

3
�� (15.50)

where d/ds
def= u�� / �x�. This function is a generalisation of the scale factor R�t� of the

Robertson–Walker models; see Section 10.7. It can be seen from (15.24), (15.19), (15.28)
and (15.31) that, with � = 
 = 0 = u̇�, the distance between the simultaneous positions of
two particles obeys (15.50). In the general case ��x� has no direct physical interpretation
and is just a convenient representation of the expansion scalar. We will assume that
� = 0 = u̇�; then the Raychaudhuri equation becomes

3
�̈

�
+2
2 + 1

2
���+3p� = 0� (15.51)

Since � + 3p > 0 for all kinds of matter known from laboratory, (15.51) shows that
d2�/ds2 < 0. This means that the function ��s� is concave in all its range – if at any point p
of the curve ��s� we draw a straight line tangent to ��s�, then the whole curve ��s� will lie
below that straight line. There are two possibilities. If at present �s = s0��d�/ds��s0� > 0
(i.e. the fluid expands, curve I in Fig. 15.1), then at a certain instant sP in the past,
s1 < sP < s0� � was zero. If, however, �d�/ds��s0� < 0 at present (i.e. the fluid contracts,
curve II in Fig. 15.1), then at a certain instant sF in the future, s2 > sF > s0� � will be zero.
Consequently, in every matter model in which u̇� = 0 = � there exists such an instant, in
the past or in the future, at which � → 0, which implies, via (15.51), that �+3p →  or

 → . Hence, every such portion of matter must have a singularity either in its future
or in its past.

Note that we have proven here the existence of the singularity using the Einstein
equations (15.40), without invoking any specific solution.

With the help of a similar analysis, based on various less restrictive assumptions,
Penrose, Hawking and Ellis proved several singularity theorems that imply that also
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s1 s2s0 s0 sFsP

I I I

(s)

Fig. 15.1. A function that is everywhere concave must go to zero either in the past (at sP > s1) or
in the future (at sF < s2).

quite general fluid configurations must contain singularities. A summary and overview
of these theorems is presented in the book by Hawking and Ellis (1973) that caused a
certain revision in the understanding of the relativity theory. The theorems were said to
show that general relativity cannot be the ultimate theory of space and time. In order to
avoid the singularities, one would have to resort to a more general theory that would be
capable of describing the quantum effects taking place at great densities of matter.

However, the singularity theorems are not as general as it was initially claimed. Several
interesting solutions of the Einstein equations that do not contain any singularities have
been found by Senovilla and coworkers (for an extended review see Senovilla (1998)).
They have not, so far, been shown to describe any actual astrophysical situation, but their
very existence proves that singularities are an inevitable part not of relativity as such,
but of the collection of models of matter defined by the assumptions of the singularity
theorems.

15.5 Relativistic thermodynamics

The considerations of this section are applied in relativistic astrophysics to interiors of
stars or to the Universe as a whole (see Section 16.1). For simplicity, we shall assume
that the medium is a one-component perfect fluid. More general media, like viscous, heat-
conducting or anisotropic fluids are considered in the literature, but they require more
advanced thermodynamics for their description. The equations of motion of a perfect
fluid are (12.17), with T�� given by (12.73).

Let n denote the particle number density. We shall consider only such processes
in which particles are neither created nor annihilated, so the total number of particles
contained in a volume at time t2 will be either the same as at any t1 < t2, or equal to the
sum of the number of particles at t1 and the number of those that entered/left the volume
between t1 and t2. In addition to the equations of motion (12.17) we thus postulate the
equation of continuity for n:

�nu�� �� = 0� (15.52)
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In phenomenological thermodynamics, if the volume V of a given system is determined,
the enthalpy of the system is defined by H = U +pV , where U is the internal energy of
the medium. In cosmology or in considering the interior of stars, the only well-defined
volume for local considerations is the proper volume, i.e. the volume per particle of
the fluid Vp = 1/n, and �� +p� is the enthalpy density. We can thus define the proper
enthalpy, i.e. the enthalpy per particle,

� = ��+p�/n� (15.53)

Now we postulate that, for a single ‘particle’ of the fluid, the non-relativistic phenomeno-
logical thermodynamics still holds (in the next chapter we will see that in cosmology that
‘particle’ will be a galaxy cluster or a still larger object). The classical enthalpy obeys
the Gibbs identity:

dH = V dp+T dS� (15.54)

Since � and p are provided by the Einstein equations, and n and V = 1/n have a clear
physical interpretation, one may treat H and � as given. Classical thermodynamics says
that at most two state functions are sufficient for a full thermodynamical description of
a one-component substance; the other functions can be calculated from the equation of
state. Hence, in keeping with classical thermodynamics, one would say that at most two
of the three functions p�V and � are independent. In that case, the differential 1-form
�d� −V dp� is a form in only two variables, and thus must have an integrating factor.
Denoting this factor 1/T , we conclude that the form �1/T��d� − V dp� is a perfect
differential of a function S, so

d� = dp/n+T dS� (15.55)

In this way, we have apparently defined the temperature T and the entropy S. The
integrating factor 1/T and the function S are not determined uniquely, but, still following
the rules of classical phenomenological thermodynamics, one may conclude that T is
determined up to linear transformations, i.e. up to the choice of scale (Werle, 1957).
Given T�S is determined up to an additive constant.

However, there is a problem with this reasoning. It remained unnoticed for a long time
because the solutions of Einstein’s equations used in astrophysics are almost exclusively
of high symmetry: they are spherically symmetric, or stationary and axisymmetric, or
homogeneous of Bianchi type (Robertson–Walker spacetimes being just a subcase of the
latter). In the first two cases all the metric components, and thus all the thermodynamical
quantities, depend only on two variables, so (15.55) may indeed be considered a definition
of T and S. In the third case, all thermodynamical quantities depend on just one variable
(the comoving time), so an even simpler equation of state of the type � = ��p� is
imposed on the matter by the assumed symmetry. However, if the metric has a 1-
dimensional symmetry group, or no symmetry at all, then the functions ��p and n

depend on three or four variables, respectively, and then the existence of an integrating
factor for the differential form �d� −V dp� is an additional postulate, not a certainty.
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Spacetimes in which the form �d� −V dp� does have an integrating factor, for which
thus temperature and entropy can be defined by the reasoning presented above, are said
to admit a thermodynamical scheme. The fact that the thermodynamical scheme might
not exist in some spacetimes was first noted by Bona and Coll (1985, 1988) and Coll
and Ferrando (1989). They also showed that the Stephani Universe (Stephani, 1967a),
which has in general no symmetry, acquires a 3-dimensional symmetry group acting
on 2-dimensional orbits when the thermodynamical scheme is imposed (Bona and Coll,
1988). The problem of existence of the thermodynamical scheme was further discussed by
Quevedo and Sussman (1995) and applied to all currently known cosmological solutions
with no symmetry by Krasiński, Quevedo and Sussman (1997). Apart from the Stephani
Universe, the problem of existence of the thermodynamical scheme shows up only in the
two classes of metrics found by Szafron (1977) (see our Section 19.5) – all other solutions
known at present are vacuum, have dust source or have a high symmetry. It turns out
that in the �′ �= 0 family of the Szafron metrics the thermodynamical scheme imposes a
3-dimensional symmetry group. For the �′ = 0 family of Szafron metrics, a metric with
no symmetry survives the imposition of the scheme, but it is a limited subcase of the
general class.

The conclusion from the results briefly reported above is that, in considering spacetimes
of no symmetry, one must allow for a more complicated thermodynamical scheme than
a single-component perfect fluid.

Having said this, we will now discuss the thermodynamics of single-component perfect
fluids in some more detail.

Using (15.52)–(15.54) one can now write (12.17) as

0 = nu���u�� �� −p�� = n
[

u� ��u�� �� −� �� +TS��

]

� (15.56)

By virtue of u�u� = 1 and u�u��� = 0 this becomes

0 = u�
[

��u�� �� − (�u�

)

��

]+TS�� = u�
[

��u��� − (�u�

)

�

]+TS�� � (15.57)

From here we see easily that S�� u� = 0, i.e. that the entropy is constant along the flow
lines. This is a general conclusion that follows from the definition of a one-component
perfect fluid. A more special kind of motion is often considered, in which

S�� = 0� (15.58)

i.e. the entropy is constant in the whole volume under consideration. Such motion is
called isentropic. Then, from (15.53) and (15.55):

dp

n
= d

(
�+p

n

)

= d�+dp

n
− ��+p�dn

n2
� (15.59)

Hence d� = �� + p�dn/n, which means that � = ��n�, and consequently p = p�n� and
� = ��p�. This type of equation of state is called barotropic. It is almost exclusively used
in cosmology (where it is necessitated by the high symmetry of the Robertson–Walker
models). However, it is an additional simplifying assumption when used in less symmetric
models.
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A reverse theorem also holds: for a perfect fluid, if � = ��p� and
(

nu�
)

�� = 0, then
either p�� u� = 0 or S�� = 0.

Proof. For a one-component perfect fluid, we have an equation of state F���p�n� = 0.
If � = ��p�, then the equation of state implies immediately that n = n�p�, so � = ��n�.
Then, u�T���� = 0, together with (15.55), implies that

��� u� + ��+p�u��� = 0 (15.60)

and the Gibbs identity (15.54) becomes

d�

n
− ��+p�dn

n2
= T dS� (15.61)

which can be written as

��� −��+p�n�� /n = nTS�� � (15.62)

Substituting u��� = −n�� u�/n (from
(

nu�
)

�� = 0) in (15.60) we obtain
d�/dn− ��+p�/n�n�� u� = 0. Hence, either n�� u� = 0 (the particle number density
does not change along the flow lines), or d�/dn = �� + p�/n, so ��� = �� + p�n�� /n.
Substitution of the last equation in (15.62) gives S�� = 0 �.

15.6 Exercises

1. Show that the quantity D defined in (15.17) is indeed zero.
Hint. Decompose the vectors �x� �y and �z in the basis of the eigenvectors of the matrix 
 .
Note that Tr�
� = 0.

2. Verify Eqs. (15.36).
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16.1 A continuous medium as a model of the Universe

When describing the Universe as a whole, one assumes that it is filled with a continuous
medium (fluid or gas), whose state can be described by physical fields (scalar fields
such as mass density and pressure, vector fields such as the velocity of flow, or tensor
fields, e.g. an electromagnetic field). This is a rather crude approximation, since our real
Universe has a ‘granular’ structure. Its basic units are stars, and the relevant information
from the point of view of observational cosmology is, for example, the number of stars in
a given volume rather than the average mass density in that volume. The less-than-perfect
adequacy of the fluid approximation is also demonstrated by the fact that the view on
which objects should be considered the ‘elementary cells’ of the cosmic fluid has been
changing with time. In the times of Hubble (1920s and 1930s), these were the galaxies.
In later times, when galaxy clusters and proper motions of galaxies in clusters were
observed, the galaxy clusters took over. In still later years, it was found that galaxies and
galaxy clusters tend to occupy edges of large volumes of space that are almost empty
inside (called voids). According to current beliefs, the elementary units of the Universe
should be groups of voids. These changes in the definition of the elementary unit of the
Universe were, characteristically, adopted in order to save the assumption of homogeneity
and isotropy of the Universe ‘in the large’.

This assumption deserves a separate comment. The astronomical observations provide
reliable quantitative information about a relatively small neighbourhood of the Solar
System. With increasing distance from the Earth, the precision of this information is
quickly degraded. If we want to describe the Universe as a whole, we have to extrapolate
the results of local observations to large volumes, and then test the conclusions from the
extrapolation. The extrapolations, however, always contain a large amount of arbitrariness.
Hence, if observations tell us that a given extrapolation leads to a correct prediction, this
does not mean that the extrapolation was the only one possible.

The most fundamental extrapolation is contained in the so-called cosmological prin-
ciple. It stems from the ideas of Copernicus, and so is sometimes called the Copernican
principle. Copernicus was the first astronomer who noted that the Earth is not at the
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centre of the Universe, but occupies a relatively unimportant position in the Solar System.
Afterwards, the Earth has been ‘degraded’ a few more times when it was established
that even the Sun is not at the centre of the Universe, but is one of a great number of
stars that are similar to each other, and that our Galaxy is also one of many, not the
greatest one and not placed at any important position. The cosmological principle is a
summary of this line of thinking. In its weaker form, it says: we (the inhabitants of the
Earth) occupy a position in the Universe that is not in any way preferred. Quite often,
however, the cosmological principle is expressed in the extreme form: all positions in the
Universe are exactly equivalent; the geometrical and physical properties of the Universe
do not depend on the point from which the Universe is observed. No matter whether one
believes in the cosmological principle, and in which version of it, it must be remembered
that this principle is not a summary of observational results, but an assumption, upon
which the theory of the structure of the Universe is built. This assumption was a good
working hypothesis when theoreticians constructed the first-ever models of the Universe
in the 1920s (Friedmann, 1922; Lemaître, 1927) because at that time there were no
observational data to contradict it. Today, the cosmological principle still has no direct
observational verification,1 while models not obeying this principle and generalising the
Friedmann–Lemaître models are known; see Chapter 18. The fact that virtually the whole
of observational cosmology is based on the Friedmann–Lemaître models is a consequence
of inertia in thinking and of emotional attachment to the, mathematically elegant and
appealing, doctrine of exact equivalence of all positions in the Universe. However, natural
sciences, physics and astronomy among them, are said to use the criterion of consistency
of theory with observations/experiments. At the very least, in order to verify the cosmo-
logical principle, alternatives to it have to be considered and compared with observations.
Working always from within the same theory, we make it more difficult to verify its
basic assumptions.

The cosmological principle is translated into assumptions about the geometry of space-
time in the following way. The observations show that the space is approximately isotropic
around us.2 According to the cosmological principle, the space should thus be isotropic
around every other point. A space that is isotropic around every point is homogeneous.
This argument points to the Robertson–Walker (R–W) spacetimes of Section 10.7.

Before we come to the R–W models, however, we shall discuss the fluid model of
the Universe in the background of a general geometry. We assume that each point in the
Universe can be assigned energy density, pressure and the 4-vector of velocity of the fluid
particle that passes through the point. We also assume that the matter of the Universe
treated in this way obeys the equations of hydrodynamics known from laboratory – which
is another bold assumption.

1 Because of difficulties in determining the distances to other galaxies. The isotropy of the cosmic microwave background
(CMB) radiation imposes only weak limitations on the anisotropy of matter distribution; see Chapter 18.

2 At present, the main argument supporting this statement is the isotropy of the microwave background radiation, but the
statement had been made long before the CMB radiation was discovered.
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16.2 Optical observations in the Universe – part I

16.2.1 The geometric optics approximation

The approach presented below is based on the papers by Ellis (1971, 1973) and Kristian
and Sachs (1966).

We will apply the geometric optics approximation to the Maxwell equations. We
assume that the electromagnetic field propagates into vacuum, with no charges or currents,
and that it is weak enough not to influence the geometry of the spacetime (i.e. it is a
test field in a given geometry). Then, the Maxwell equations are (13.4) and (13.6) with
j� = 0. We will seek solutions of this set in the form of waves:

F�� =G�� sin�S+�0�� (16.1)

where the amplitude G�� is assumed to vary slowly compared to the phase S; �0 is a
constant. Thus, we assume that each differentiation of G�� introduces a factor 	, where
	 is a small parameter. If G�� can be developed in a power series with respect to 	, then
we can write

G�� = B0
�� +

�
∑

i=1

	iBi
��
 (16.2)

We now assume that the Maxwell equations are fulfilled at each order in 	, and substitute
(16.2) in them. Denoting1

S�� = k�� (16.3)

we obtain at the zeroth order:

�B0���k� = 0� k��B
0
�� = 0 (16.4)

and at the first order

�B0����� sin�S+�� = −	�B1���k� cos�S+��� (16.5)

B0
����� sin�S+�� = −	B1

���k� cos�S+��
 (16.6)

(Since the �Bi���� i = 0�1� 
 
 
, are antisymmetric in ���, the covariant derivative in
(16.5) can be written as �1/

√−g� [√−g�B0���
]

��, so this expression is small by virtue
of our assumptions. The same applies to (16.6) – in this combination, the Christoffel
symbols cancel out and the covariant derivative reduces to a partial derivative.) The last
two equations show that the first-order terms act as sources in the Maxwell equations
for the zeroth order terms. Thus, comparing this scheme with the Maxwell equations
in empty space, we see that the electromagnetic wave does not in fact propagate into
vacuum – the higher order terms act as a medium with currents and charges, on which the
zeroth order wave may be dispersed. Similarly, the first order terms will be influenced
by second order terms, and so on. This is the influence of curvature on the propagation

1 With Eq. (16.3) fulfilled, the rotation of the vector field k�, defined later in this section, is zero. Thus, the geometric optics
approach turns out to be more general in this respect: the wave description does not allow rotating congruences of rays.
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of the electromagnetic wave. (In a flat space in Cartesian coordinates, a constant B0
��,

with all Bi
�� ≡ 0 for i ≥ 1 is a solution of (16.5)–(16.6).) Assuming that the scheme is

self-consistent (no formal proof of this assumption seems to be available) and that the
‘tail’ terms remain small, we will now consider the consequences of (16.4). The second
equation of (16.4) can be written as

k�B
0
�� +k�B

0
�� +k�B

0
�� = 0
 (16.7)

Contracting this with k� and making use of (16.4) we immediately obtain

k�k� = 0� (16.8)

i.e. the wave vector of the ray is a null vector. From this it follows that

k���k
� = 0
 (16.9)

But, since k� = S��, we have k��� = k���, and then from (16.9)

k���k
� = 0� (16.10)

which means that k� is geodesic, and its parametrisation is affine.
Further, contracting (16.7) with �B0��� and using (16.4) we obtain

B0
���B

0��� = 0
 (16.11)

Contracting (16.7) with �B0��� and using (16.4) once more, we obtain

k�B
0
���B

0��� −k�B
0
���B

0��� = 0
 (16.12)

This equation has the form k�V� −k�V� = 0 (except that V carries also an upper index
� in both places). Such an equation means that the vectors V� and k� are proportional
(collinear), thus

B0
���B

0��� = U�k�� (16.13)

where U� is the (vectorial) proportionality factor. With the index � lowered, the left-hand
side of (16.13) is symmetric in ����, so U�k� −U�k� = 0, and by the same argument
U� = �k�. Thus, finally

B0
���B

0��
� = �k�k�
 (16.14)

From (16.11) and (16.14) we see that the electromagnetic energy-momentum tensor
(13.10) of the field (16.1)–(16.2) is

T�� = 1
4�

(

�k�k� +O�	�
)

� (16.15)

which is, up to terms linear in 	, a perfect-fluid-type medium with the ‘4-velocity’ k�.
With k� being null, the velocity of flow equals the velocity of light, which means that
(16.15) corresponds to a stream of photons. From T���� = 0, and making use of (16.10),
we obtain

��k�� �� = 0� (16.16)

which means that the stream of photons is conserved.



16.2 Optical observations in the Universe – part I 239

16.2.2 The redshift

An observer moving with the 4-velocity u� will measure the rate of change of phase of the
light wave vp = S�� u

� = k�u
�. Within a short time-interval �s, the phase will thus change

by �S = k�u
��s. For another observer, moving with the velocity u�1 and measuring the

change of phase at another spacetime point, where k� = k�1 , the same change of phase
�S will in general take a different time-interval, �s1: �S = k1�u

�
1�s1. Hence:

�s1

�s2

= �k�u
��2

�k�u
��1


 (16.17)

If the electromagnetic wave is periodic, then the change of phase is connected with the
frequency � by �S = 2���s (this formula applies for an arbitrary time-interval �s).
Hence, for the same change of phase measured by two different observers we have
�1 �s1 = �2 �s2, so

�2

�1

= �s1

�s2

= �k�u
��2

�k�u
��1


 (16.18)

This is the formula for the cosmological redshift, derived without invoking any definite
cosmological model. It can be written in a more familiar form. Let the subscripts e and
o denote quantities calculated at the point of emission of the light ray and at the point of
detection, respectively. Then, from the definition of the redshift:

z= �o −�e

�e

= �o

�e

−1
 (16.19)

But �o/�e = �e/�o (because the locally measured velocity of light c = �� is constant),
hence

1+ z= �e

�o

= �k�u
��e

�k�u
��o


 (16.20)

The light ray with the wave vector k� is received by the observer from the direction
determined by the unit spacelike vector n�:

n�n
� = −1� (16.21)

which is collinear with the projection of k� on the hypersurface of constant time. Hence,
if the 4-velocity of the observer is u�, then

n� = �
(

��� −u�u�
)

k�
 (16.22)

Substituting (16.22) in (16.21) we obtain �2 = (

k�u
�
)−2

; hence

n� = − 1
k�u

�
k� +u� �=⇒ n�u� = 0� 
 (16.23)

We have chosen �= − (k�u�
)−1

because n� denotes the direction towards the source of
light, opposite to the direction of the wave vector.
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The considerations up to this point applied up to an arbitrary distance; the only approx-
imation involved was that connected with introducing the geometric optics. However, in
order to apply (16.20) to results of observations, one has to integrate the equations of a
null geodesic, which is almost always difficult. In that case, an approximate version of
(16.20) may be used, which applies for sources of light with small redshifts, z� 1. Then
(16.19) becomes z= d�/�, and in (16.20) we have

z= �k�u
��e − �k�u

��o

�k�u
��o

= d �k�u
��

�k�u
��o


 (16.24)

The change d�·� in (16.24) should be calculated along the light ray connecting the light-
source with the observer. Denoting the affine parameter on the ray by v, we have

d �k�u
��= D �k�u

��= (

k���k
�u�

)

o
dv+ (k�u��� k�

)

o
dv
 (16.25)

The first term vanishes in consequence of (16.10), and in the second term we substitute
the decomposition (15.28) and use the antisymmetry of ���. The result is

d �k�u
��=

[
(

���k
�k�

)

o
− 1

3
��k�u

��o
2 + �k�u̇

��o �k�u
��o

]

dv
 (16.26)

Using (16.23) and (15.42), we obtain

d �k�u
��= (

k�u
�
)

o

2
(

���n
�n� − 1

3
�−n�u̇

�

)

o

dv
 (16.27)

Equations (16.23) and (16.8) imply

k�n� = k�u�� (16.28)

and �− (k�n�
)

o
dv is the distance in the rest space of the observer travelled by the front

of the light wave corresponding to the change dv in the affine parameter, i.e. it is the
distance between the light-source and the observer, which we shall denote by ��. In
consequence of this, and using (16.27) in (16.24), we obtain:

z=
(

−���n
�n� + 1

3
�+n�u̇

�

)

o

��
 (16.29)

This shows that for z � 1 rotation has no influence on z. It is seen that ��� and u̇�

introduce anisotropy in z, whereas with ��� = 0 = u̇� the redshift should be isotropic.
Equation (16.29) is still correct in every cosmological model, but only for light-sources
that are near to the observer. Its advantage is that all the quantities contained in it can
always be calculated; one does not need to integrate any differential equations.

16.3 The optical tensors

We shall now apply a reasoning similar to that in Section 15.2 to families of null curves.
The tensor of projection onto a locally orthogonal space now has to be defined in a
different way, because a hypersurface orthogonal to a null vector k contains k. Therefore,
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given k�, we first define a second null vector �� that is tangent to the same light cone
and obeys:

��k� = 1� ���� = 0
 (16.30)

Note that �� is not defined uniquely. If m� is an arbitrary spacelike vector of unit length
(m�m� = −1) orthogonal both to k� and to ��, then �′� = ��+ 1

2b
2k�+bm� obeys (16.30)

as well, where b is an arbitrary parameter. We will come back to this in Section 16.5.
Then we define the projection tensor on the surface (this time 2-dimensional) that is

orthogonal to both �� and k�:

p�� = g�� −��k� −k��� =⇒ p��k
� = p���

� = 0
 (16.31)

This surface does not include �� or k� – because a vector that is orthogonal to two
linearly independent null vectors must be spacelike; it is an exercise in special relativity
to prove it.

Now assume that k� is a null vector field. It is usually assumed at this point that the
field k� is geodesic and affinely parametrised so that k�k��� = 0. We will not make this
assumption; instead we define

k̇�
def= k��� k

�� (16.32)

which we shall call the acceleration of a light ray. The specialisation to the geodesic
affinely parametrised case will then follow immediately by k̇� = 0. We will need the
more general formulae in Section 16.5.

Being null, the field k� obeys

k�k� = 0 = k�k��� =⇒ k�k̇� = 0
 (16.33)

We define

A��

def= k���p
�
�p

�
�
 (16.34)

Then the following holds:

k��� = A�� +a�k� +k�b� + k̇���� (16.35)

where

a�
def= ��k��� − 1

2
k����

���k��

b�
def= ��k��� − 1

2
k����

���k� − k̇�����
 (16.36)

It follows that a�k
� = b�k

� = 0. Now we apply to A�� the decomposition into the trace,
the trace-free symmetric part and the antisymmetric part, just like we did in Section 15.2
with the covariant derivative of a unit timelike field:

A�� = ��� +��� +p��� (16.37)
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(for some reason, tradition requires one to write the last term without the coefficient 1/2
that would be natural here), where

���

def= A��� (16.38)

is called the rotation of the family of null curves,

�
def= 1

2
g��A�� (16.39)

is called the expansion of the family, and

���

def= A���� −p��� (16.40)

is called the shear of the family. The geometric interpretation of rotation, expansion and
shear is similar to that in hydrodynamics; this time the respective changes apply to images
of an object projected by the family of light rays on 2-surfaces orthogonal to the family.
Like in hydrodynamics, rotation and shear do or do not vanish simultaneously with the
scalars defined below.1 Also, the following equations are useful:

p��p
�
� =p��� g��p�� = p��p�� = 2�

p����� =g����� = 0�

k���� =k���� = ����� = ����� = 0


(16.41)

The scalars of rotation, expansion and shear are then

�2 def= 1
2
����

�� = 1
2
k����

(

k��� −2k̇���
)

− 1
4

(

k̇��
�
)2
� (16.42)

� = 1
2
k��� −1

2
k̇��

�� (16.43)

�2 def= 1
2
����

��

= 1
2
k�����

(

k��� −2k̇���
)

+ 1
4

(

k̇��
�
)2 −�2
 (16.44)

As can be seen, for affinely parametrised geodesics (k̇� = 0) these quantities actually
depend only on k�, not on the auxiliary field ��.

16.4 The apparent horizon

We have already defined the event horizon for the Schwarzschild metric in Section 14.11.
There is one more variety of horizon that is important for studying dynamical black holes,
i.e. black holes that keep swallowing up new matter and increase their masses. The notion
of the event horizon has the disadvantage that it can be defined only when we know the

1 We recall that, in the wave description of light, rotation is necessarily zero (see footnote cited above (16.3)).
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whole future evolution of the spacetime. Hence, it is practically useless in observational
cosmology. It is more realistic to use only such notions as can be identified by local
observations of short duration. The apparent horizon is such a notion.

In a flat spacetime, a flash of light sent from both sides of a closed surface has the
property that the light rays are converging inside the surface and diverging outside. The
convergence/divergence is measured by the scalar of expansion for the family of rays,
� = 1

2k
���, defined in the previous section. However, in the vicinity of a singularity the

outward-directed bundle of rays is convergent. This is most easy to see in the Kruskal
diagram (Fig. 14.6): under the horizon H1 it is impossible to send any bundle of rays in
the direction of increasing r because the light rays intersect lines of still-decreasing values
of r (recall that each point in the Kruskal diagram represents a sphere �t = constant� r =
constant�). Hence, the area of the light front is decreasing for both bundles. A closed
surface from which it is impossible to send a diverging bundle of light rays is called a
closed trapped surface. Then, an apparent horizon is the outer envelope of the region
in which closed trapped surfaces exist.

There are two kinds of trapped surfaces and two kinds of apparent horizons, as seen in
Fig. 14.6: the future-trapped surfaces and future apparent horizons in region II, and
the past-trapped surfaces and past apparent horizons in region IV. For a past-trapped
surface, the light rays converge towards the past. A more physical way to formulate this
definition is to say that, for a past-trapped surface SP, both ingoing bundles of rays (i.e.
those that simultaneously reach SP both from inside and from outside) are necessarily
diverging, whereas for a future-trapped surface SF, both outgoing bundles of rays are
necessarily converging (where ‘outgoing’ means starting their journey simultaneously at
SF, both inward and outward).

In the Schwarzschild spacetime, the apparent horizons coincide with the event horizons,
but in nonstatic spacetimes these two horizons are different. Examples will be given in
Section 18.8.

16.5 * The double-null tetrad

We will set up a field of null vector bases over the spacetime that will include the k�

and �� introduced in Section 16.3. The other vectors in the basis, m� and m�, will be
complex conjugate to each other, orthogonal both to k� and to ��, and will obey relations
similar to (16.30):

g��m
�m� = g��m

�m� = 0� g��m
�m� = −1�

g��m
�k� = g��m

��� = 0� g��m
�k� = g��m

��� = 0

(16.45)

Thus we have1

e0̂
� = k�� e1̂

� = ��� e2̂
� =m�� e3̂

� =m�� (16.46)

1 Hats mark tetrad indices. Where no confusion may arise, they will be omitted.
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and, from (9.1), the tetrad metric is

[

�ij

]=

⎡

⎢
⎢
⎢
⎣

0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

⎤

⎥
⎥
⎥
⎦

 (16.47)

The upper and lower tetrad indices are related to each other as follows:

v̂0 = v1̂� v̂1 = v0̂� v̂2 = −v3̂� v̂3 = −v2̂ = v̂2
 (16.48)

The tetrad components of the basis vectors are thus

ki = �i 1̂� �i = �i 0̂� mi = −�i 3̂� mi = −�i 2̂�
ki = �i

0̂� �i = �i
1̂� mi = �i

2̂� mi = �i
3̂
 (16.49)

Some of the Ricci rotation coefficients in this basis, defined by (9.7), vanish in conse-
quence of (9.14), thus

�0
1a ≡ �11a = 0 = �00a ≡ �1

0a�

�2
3a ≡ −�33a = 0 = −�22a ≡ �3

2a

(16.50)

Some other Ricci rotation coefficients have physical interpretation. For example, the
nonzero tetrad components of the shear tensor (16.40) are:

�2̂̂2 = k���m
�m� = −�1

22 ≡ −�022 ≡ �202 ≡ −�3
02�

�3̂̂3 = k���m
�m� = −�1

33 ≡ −�033 ≡ �303 ≡ −�2
03


(16.51)

In order to calculate the expansion, we do the following operations

k��� = g��k
��� = �abe

a
�e

b
�k

����

and similarly for the term k̇��
�, and then we explicitly run through all the values of a

and b. Most of the terms are zero or cancel out, and what remains is

� = −1
2
k���

(

m�m� +m�m�

)= 1
2

(

�1
23 +�1

32

)≡ 1
2

(

�1
23 +�

1
23

)


 (16.52)

For the tetrad components of the rotation tensor we find

�23 = −�32 = −1
2

(

�1
23 −�1

32

)= �32 = −�23� (16.53)

all other components being zero. Thus, the only nonvanishing component of the rotation
tensor is pure imaginary, and, moreover, as follows from (16.42) and (16.45), it is
connected to the scalar of rotation � by �23

2 = −�2; thus �23 = −i�. As one can see
then, the expansion and the rotation are, respectively, the real and the imaginary part of
the same complex quantity

�+ i�= � 1
23 ≡ �023 ≡ −�203
 (16.54)



16.6 * The Goldberg–Sachs theorem 245

Finally, there are several identities among the Ricci rotation coefficients that are not
self-evident; examples were given in (16.51) and (16.54).

The double-null tetrad is a basis of a self-contained approach to relativity called the
Newman–Penrose formalism. Although shuffling indices in it is sometimes confusing
(because of the scalar metric being nondiagonal), this tetrad has proven useful and
powerful in finding exact solutions of Einstein’s equations. For more on this formalism,
see Stephani et al. (2003) and references cited therein.

The various identities obeyed by the Riemann and Weyl tensors were deduced under
the assumption that these tensors arise from commutators of second derivatives of tensors.
However, if the basic objects in the theory are the Ricci rotation coefficients, like in
the Newman–Penrose formalism, then the curvature tensors are present in first-order
equations, and not all the ‘identities’ will automatically be fulfilled (in fact, only Rijkl =
−Rijlk = −Rjikl and Ci

jil = 0). In the next two sections, and in Section 20.2, we will see
some of those other ‘identities’ being imposed as equations to fulfil.

The tetrad �k� ��m�m� is not uniquely defined. One usually begins with a given family
of null curves, so the direction of k� is fixed, but the field k� may be rescaled by an
arbitrary factor

k′� = Ak�� (16.55)

where A is an arbitrary real function. This change corresponds to changing the parametri-
sation of the curves tangent to k�. The vectors m� and m� can be rotated in their plane
by an arbitrary angle �; their scalar products with k� do not change when a multiple of
k� is added to any of them. Thus �m��m�� are defined up to the transformations

m′� = ei�m� +Bk�� (16.56)

where � is a real function and B is a complex function. Finally, �� may be changed by
a fixed multiple of k� and a fixed multiple of a fixed vector in the �m��m�� plane, thus

�′� = 1
A

(

�� +Bei�m� +Be−i�m� +BBk�
)


 (16.57)

As an example of usefulness of this tetrad, let us note how simply it expresses the
criterion for the Weyl tensor being algebraically special, i.e. obeying (11.55). Projecting
that equation on the double-null tetrad we obtain the equivalent equation

C200d = C300d = 0
 (16.58)

16.6 * The Goldberg–Sachs theorem

There is a connection between properties of the optical tensors of Section 16.3 and the
Petrov type of the Weyl tensor. We found a similar connection for the hydrodynamical
tensors in Section 15.3, where ��� = ��� = 0 = u̇� forced the metric to be conformally
flat.
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In order to prove an analogous, but weaker, limitation imposed by the properties of the
optical tensors, we must first list the full set of properties of an algebraically special Weyl
tensor in the tetrad �k� ��m�m�. With (16.58) assumed, the equations Cs

0s0 = 0 imply

−C0101 = C0213 +C0312 = −C2323�

C0112 = C1223� C0113 = −C1323�

C0212 = C0223 = C0313 = C0323 = C1213 = 0


(16.59)

The theorem we are going to prove consists of three parts that will be listed as separate
theorems.

Theorem 16.1

Assumptions:
1. The Weyl tensor is algebraically special, so that (11.55) and, equivalently, (16.58) are

fulfilled.
2. The vacuum Einstein equations are fulfilled, R�� = 0.

Thesis:
The degenerate Debever vector field k� in (11.55) is geodesic and shearfree, i.e.

k̇� = �k�� ��� = 0 =⇒ �202 = �303 = 0
 (16.60)

Proof:
Take the Bianchi identities R������� = 0, contract them with g�� and use the assumption
R�� = 0. The result is equivalent to C�

����� = 0. Now use (9.17) contracted with �ae :

ea
�Ca

bcd�� +�s
rsC

r
bcd −�s

brC
r
scd −�s

crC
r
bsd −�s

drC
r
bcs = 0
 (16.61)

Take the component �b� c�d�= �0�0�2� of this equation and use (16.58)–(16.59) together
with (16.50). The result is

�200 �C0213 +C0123 −C0101�= 0
 (16.62)

Then take the component (0, 0, 3) and make similar simplifications. The result is1

�300 �C0312 −C0123 −C0101�= 0
 (16.63)

Thus, either �200 = 0 =⇒ �300 = 0, or else the expressions in parentheses must vanish.
Consider first the second case. Then:

C0123 +C0213 −C0101 = 0�

−C0123 +C0312 −C0101 = 0�
(16.64)

1 Note that (16.63) is the complex conjugate of (16.62) – which was to be expected, since the interchanges 2 ↔ 3 always
correspond to complex conjugation in this tetrad. Thus, one could write down (16.63) on the basis of (16.62) without repeating
the calculations. This is one of the advantages of the double-null tetrad.
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and also the first of (16.59) and Ca�bcd = 0 must be obeyed:

C0213 +C0312 +C0101 = 0�

C0123 −C0213 +C0312 = 0

(16.65)

The solution of the set (16.64)–(16.65) is

C0123 = C0213 = C0312 = C0101 = C2323 = 0
 (16.66)

Now take the components (0, 0, 1) and (0, 2, 3) of (16.61), with (16.66) assumed. They
are

�300C0112 +�200C0113 = 0 = �300C1223 +�200C1323
 (16.67)

Taking into account the middle part of (16.59), we see that with �200 
= 0 
= �300 the
solution of (16.67) is

C0112 = C0113 = C1223 = C1323 = 0
 (16.68)

Take the components (0, 1, 2) and (0, 1, 3) of (16.61), with (16.66) and (16.68) assumed.
They say that �300C1212 = 0 = �200C1313, i.e. C1212 = C1313 = 0. Together with (16.58),
(16.66) and (16.68) this means Cabcd = 0. With Rab = 0, this is the Minkowski spacetime,
in which a congruence of shearfree null geodesics does exist, as can be verified by
calculation in the Cartesian coordinates. Thus, the theorem is then true in a modified
form: a shearfree null geodesic congruence exists.

We return to (16.62)–(16.63) and take the other solution

�200 = �300 = 0
 (16.69)

This means, from the definition of the Ricci rotation coefficients,

0 = � 3
00 =m���k

�k� = −k���m�k� = −m�k̇��

0 = � 2
00 =m���k

�k� = −k���m�k� = −m�k̇�

(16.70)

Thus k̇� is orthogonal both to m� and to m� and must lie in the plane spanned by k� and
��. Since k̇�k� = 0 and ��k� = 1, k̇� must be proportional to k�, thus the first of (16.60)
is proved. We can use the transformations (16.55)–(16.57) to rescale k� so that k̇� = 0.

Now take (16.61) with the sets of indices (2, 0, 2) and (3, 0, 3), and use (16.69). The
result is

�022 �C0123 +C0213 −C2323�= 0 = �033 �−C0123 +C0312 −C2323� (16.71)

(again, the second equation is just a complex conjugate of the first one). Suppose that
�022 
= 0 ⇐⇒ �033 
= 0. Since C2323 = C0101, again we obtain a set of equations ((16.71)
together with the first of (16.59) and with the cyclic identity – the second of (16.65))
whose solution is (16.66).

The components (1, 0, 2) and (1, 0, 3) of (16.61) now say that �202C0113 = �303C0112 = 0.
With the assumed �202 
= 0 
= �303, and with (16.59), this implies (16.68) again. Then,
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the components (1, 0, 1) and (1, 2, 3) of (16.61) become �303C1212 + �202C1313 = 0 =
−�303C1212 + �202C1313. With �202 
= 0 
= �303, the solution of this is C1212 = C1313 = 0,
i.e. again Cabcd = 0. Thus (16.71) implies �022 = �033 = 0, which, as seen from (16.51),
means that the shear of the k� congruence is zero.

Before formulating the next theorem, we must first write out a few equations. Take the
Ricci identity for the null field k�:

k���� −k���� = R����k
�
 (16.72)

We will project this on different combinations of the tetrad vectors.
The following equations will be useful:

g��k���� ≡ (

k���
)

�� = 2��� +
(

k̇��
�
)

�� � (16.73)

k�g��k���� ≡ k�k���� = k̇��� −k���k���� (16.74)

k���k��� = 2
(

�2 −�2 +�2
)+b�k̇

� +
(

��k̇
�
)2
� (16.75)

k�m�m�k���� = k�
(

m�m�k���
)

�� −k�m��� m
�k��� −k�m�m��� k���� (16.76)

k�m�m�k���� = m�
(

k�m�k���
)

�� −m�k��� m
�k��� −m�m��� k̇�� (16.77)

m��� k��� = g��m���m��� = �abea
�eb

�m���m���
 (16.78)

Equations (16.73) and (16.75) follow from (16.43) and (16.35)–(16.37). In simplifying
the right-hand sides of (16.76) and (16.77) we will use (9.7), and in simplifying the
right-hand side of (16.78) we will write out explicitly the terms corresponding to different
values of a and b.

Contract (16.72) with k�g��; the result is the equation of evolution of �, analogous to
the Raychaudhuri equation (15.43):

k���� + �2 −�2 +�2 + 1
2
A�1� = −1

2
R��k

�k�� (16.79)

where A�1� is a collection of terms containing acceleration:

A�1�
def= b�k̇

� +
(

��k̇
�
)2 − k̇��� +k�

(

��k̇
�
)

�� � (16.80)

and vanishes when k̇� = 0 (the index in parentheses is just a label, it does not refer to the
coordinates or to the tetrad vectors).

Now contract (16.72) with k�
(

m�m� −m�m�
)

and use the fact that R�����k
�k� ≡ 0.

The result is

k�
(

�1
�23

)

�� + 1
2

[(

�1
23

)2 − (�1
32

)2
]

− 1
2
A�2� = 0� (16.81)
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where A�2� is another collection of terms containing acceleration:

A�2�
def= −m�

(

m�k̇�

)

�� +m�
(

m�k̇�

)

�� +m�m��� k̇�

−m�m��� k̇� −m�k̇
�
(

2�1
13 +�2

10 −�1
31

)

+m�k̇
�
(

2�1
12 +�3

10 −�1
21

)

� (16.82)

and vanishes when k̇� = 0 (in accord with the rest of (16.81), A�2� is imaginary). In
consequence of (16.53), Eq. (16.81) can be written as

ik���� +2i��− 1
2
A�2� = 0
 (16.83)

Equations (16.79) and (16.83) can be written as one complex equation:

k�Z�� +Z2 +�2 + 1
2
A�1� −

1
2
A�2� = −1

2
R��k

�k� ≡ −1
2
R00� (16.84)

where

Z
def=�+ i�≡ �1

23
 (16.85)

Next, contract (16.72) with k�m�m� and use (16.76)–(16.78). The result is

k��1
22�� +2�1

22

(

�+�3
30

)+A�3� = R0202� (16.86)

where A�3� is yet another collection of terms with acceleration:

A�3�
def=m�

(

m�k̇�

)

�� −m�m��� k̇� +m�k̇
�
(

2�1
12 +�1

21

)


 (16.87)

The result of contracting (16.72) with k�m�m� can be written at once, as the complex
conjugate of (16.86):

k��1
33�� +2�1

33

(

�+�2
20

)+A�3� = R0303
 (16.88)

Finally, contract (16.72) with k�m�m� and use (16.76)–(16.78) to obtain

k��1
23�� + (�1

23

)2 +�1
22�

1
33 +A�4� = R0203� (16.89)

where

A�4�
def= −m�m��� k̇� +m�

(

m�k̇�

)

�� +m�k̇
�
(

2�1
13 +�2

10

)+m�k̇
��1

21
 (16.90)

Since �1
23 = �+ i� = Z, we can use (16.84) to eliminate k��1

23�� from the above and
obtain

1
2

(

A�2� −A�1�

)+A�4� = R0203 + 1
2
R00
 (16.91)
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At this point, we can formulate one more theorem:

Theorem 16.2

Assumptions:
1. There exists a shearfree geodesic null vector field k� on a spacetime.
2. The vacuum Einstein equations are obeyed, R�� = 0.
3. The Weyl tensor is nonzero.

Thesis:
The field k� is collinear with one of the Debever vector fields.

Proof:
In the double-null tetrad, the condition for the field k� to be collinear with a Debever
vector field, i.e. to obey (11.54), is

C0202 = C0303 = C0203 = 0
 (16.92)

Choose the parametrisation on the curves tangent to k� so that k̇� = 0. Then, with
k̇� = 0 = �ab, in consequence of R�� = 0 and of (16.51), equations (16.86), (16.88) and
(16.91) imply (16.92).

Now contract (16.72) with m���k� to obtain

C0210 = − k��1
21�� −�1

21

(

�3
30 +�1

23

)+�0
20�

1
23

+ �1
22

(

�0
30 −�1

31

)+A�5�� (16.93)

where A�5� is another collection of acceleration terms:

A�5�
def= −2m�k̇

��1
11 −��

(

m�k̇
�
)

�� + ��m��� k̇� −��k̇
��1

21
 (16.94)

In order to prove the next theorem, we need the following lemma:

Lemma 16.1 If k̇� = 0 = � and �+ i� 
= 0, then there exists such a transformation of
the basis vectors (16.55)–(16.57) after which �1

21 = 0. The direction of the new �� is
uniquely determined.

Proof:
Apply the transformation (16.55)–(16.57) to �1

21; the result is

�̃1
21 = ei��1

21 +B�1
23 + e2i�B�1

22 + ei�BB�3
00
 (16.95)

In view of (16.51), (16.70) and (16.54) it follows that �̃1
21 = 0 when the assumptions

are fulfilled and B = −ei��1
21/�

1
23. The property �1

21 = 0 is then preserved by the
transformations (16.57) with B = 0, so the direction of the new �� is indeed unique.
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Comments:
1. The result �̃1

21 = 0 could be achieved also with �1
23 = 0, provided that � 1

22�
3

00 
= 0.
However, in the following we will be interested precisely in the case �1

22 = �3
00 = 0.

2. With k̇� = 0 �=⇒ �2
00 = 0 = �3

00� the transformation (16.55)–(16.57) does not change
�1

23 and does not violate the equations �1
22 = �1

33 = 0.

We can now prove the last part of the main theorem:

Theorem 16.3 If there exists a shearfree geodesic null vector field k� on a spacetime and
the vacuum Einstein equations are obeyed, R�� = 0, then the Weyl tensor is algebraically
special (i.e. it obeys (11.55)).

Proof:
In view of Theorem 16.2 and of Eq. (16.58), we need only show that C0102 = 0 in the
double-null tetrad. As Lemma 16.1 demonstrates, the case �+ i�= 0 has to be considered
separately. Thus we split the proof into two parts.

Part I: �+ i�= 0
Contract (16.72) with k�

(

m��� −m���
)

; the result simplifies to

k�
(

�1
12 −�1

21

)

�� +�3
30

(

�1
12 −�1

21

)+�1
23

(

�0
20 −�1

21

)

+�1
32

(

�1
12 −�0

20

)+�1
22

(

�1
13 −�1

31

)+A�6� = 0� (16.96)

where A�6� contains the acceleration terms:

A�6�
def= −m�k̇

��1
11 +��k̇

�
(

2�1
12 −�1

21 +�3
10

)−��
(

m�k̇
�
)

��

+m�
(

��k̇
�
)

�� +��m��� k̇� −m����� k̇�
 (16.97)

Calculate −R02 = R0102 +R0223 ≡ R����

(

k���k�m� +k�m�m�m�
)

. Since it was assumed
that R�� = 0, it follows that

k��1
12�� = −�1

12

(

�1
32 +�1

23 +�3
30

)+�1
21

(

�1
32 −�1

23

)

+�1
32�

0
20 +�1

22

(

�0
30 +2�3

33

)−m��1
23�� +m��1

22�� +A�7�� (16.98)

where

A�7�
def= m�

(

��k̇
�
)

�� +m�����k̇
� −��k̇

�
(

2�1
12 +�3

10

)

+m�k̇
�
(

2�3
13 −�1

11

)


 (16.99)

Substituting (16.98) in (16.96) we find

k��1
21�� = −�3

30�
1

21 + [

�1
21

(

�1
32 −2�1

23

)+�1
23

(

�0
20 −�1

12

)

+�1
22

(

2�3
33 +�1

13 −�1
31 +�0

30

)

− m��1
23�� +m��1

22�� +A�6� +A�7�

]

� (16.100)
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where all the terms between the square brackets vanish when � = 0 = k̇� and �1
23 = 0.

Substituting (16.100) in (16.93) we see that the thesis of the theorem follows when
�1

23 = �+ i�= 0��22 = �1
22 = �1

33 = 0 and k̇� = 0.

Part II: �+ i� 
= 0
Then we choose, as the lemma allows, a direction of �� for which �1

21 = 0. As follows
from (16.93), we then need only show that � = 0 = k̇� implies �0

20 ≡ � 3
10 = 0. Since

� 1
21 = 0 was achieved under the assumptions � = 0 = k̇�, we shall not display the shear

and acceleration terms in what follows.
Take the equation 0 = R22 ≡ 2R0212 = 2R����k

�m���m�; it implies that the contraction
of (16.72) with m���m� is zero. After using the assumptions �1

21 = �1
22 = �2

00 = 0+
their complex conjugates we obtain the equation �1

23�
0

22 = 0. Since we are considering
the case �1

23 
= 0, this means that

�0
22 ≡ �3

12 = 0 =⇒ �0
33 ≡ �2

13 = 0
 (16.101)

Then take (16.100) with the current assumptions; the result is

m��1
23�� = �1

23

(

�0
20 −�1

12

)

� (16.102)

and Eq. (16.89) becomes

k��1
23�� = − (�1

23

)2

 (16.103)

Equations (16.102) and (16.103) imply the integrability condition, which, for non-
commuting directional derivatives, has the form

ea
� �eb

���� � �� −eb� �ea���� � �� = −2�c
�abec

���� (16.104)

for an arbitrary function �. Applying this rule to (16.102) and (16.103) we thus obtain

k�
(

�0
20 −�1

12

)

�� = −2�1
23�

0
20 + (�2

20 −�2
02

) (

�0
20 −�1

12

)


 (16.105)

Using (16.98) and (16.102) in this, we obtain

k��0
20�� = �0

20

(−3�1
23 +�2

20

)


 (16.106)

Now, calculating 0 =R22 =R0
202 +R1

212 (in fact, R1
212 ≡ 0 under the current assumptions)

and using (9.21) to calculate the scalar components of the Riemann tensor, we obtain

m��0
20�� = �0

20�
2

22 − (�0
20

)2

 (16.107)

Applying the integrability condition (16.104) to (16.106) and (16.107) we obtain

�0
20

(

k��2
22�� −m��2

20��

) = �0
20

[−�0
02�

2
20 −9�0

20�
1

23

− �2
02

(

�2
22 −�0

20

)+�2
20

(

�2
22 +�0

20

)]


(16.108)

One solution of this is �0
20 = 0, which is the desired result. In order to verify the

implications of the other alternative, we calculate the expression in parentheses on the
left-hand side above from the equation 0 =R20 ≡R1

210 −R2
220, in which we use Eq. (9.21)
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to calculate the tetrad components of the Riemann tensor. The result is, in consequence
of all the assumptions made,

k��2
22�� −m��2

20�� = �0
20

(

�1
23 +�2

20 +�2
02

)−�0
02�

2
20

+�2
22

(

�2
20 −�2

02

)


 (16.109)

Substituting (16.109) into (16.108) we obtain �0
20�

1
23 = 0, which, in view of the

currently considered case �1
23 
= 0, implies � 0

20 = 0. Thus, � 0
20 = 0 in both branches of

(16.108).

Theorems 16.1–16.3 are summarised in the following theorem:

Theorem 16.4 (The Goldberg–Sachs theorem) A vacuum spacetime is algebraically
special if and only if there exists on it a geodesic and shearfree null vector field k�. If the
Weyl tensor is nonzero, then the field k� is collinear with the degenerate Debever field.

This theorem was first formulated by Goldberg and Sachs (1962).1 Parts of this result,
such as Theorem 16.1 and the other theorems under additional assumptions, had been
proven earlier; references to those results are given in the original paper. The theorem is
useful in investigating vacuum solutions of Einstein’s equations; see Section 20.1.

A few generalisations of Theorems 16.1–16.4 are known (Stephani et al., 2003), but
their theses cannot be stated without more elaborate explanations. One generalisation of
Theorems 16.2 and 16.3 can be verified rather easily. The field equations we used in prov-
ing these two theorems were not really R�� = 0, but R��k

�k� = 0 =R��k
�m� =R��m

�m�

and their complex conjugates; the other equations used in the proof were properties of the
curvature tensor. All the equations that we made use of remain valid when R�� =�k�k�.
However, such a generalisation does not hold for Theorem 16.1 (Stephani et al., 2003).

16.7 * Optical observations in the Universe – part II

The Goldberg–Sachs theorem does not find any direct application in cosmology. Because
of the assumptions made in it, it is mainly applied to vacuum solutions, and we will use
it in Chapter 20 to derive the Kerr metric. However, some of the results derived along the
way in proving it are useful in cosmology, and this is why it was presented in this chapter.

16.7.1 The area distance

In curved spacetime, it is a problem to determine the distance between two objects. Abstract
geometric definitions, such as the integral of ds along a uniquely defined spacelike path
connecting two worldlines, are not satisfactory. We need a definition that would yield a
distance measurable by means of astronomical observations. The reasoning used here is
adapted from Ellis (1971), and the definitions of distance go back to Etherington (1933).

1 A few formulae in the later part of the proof in Goldberg and Sachs (1962) have misprints, which have been corrected here.
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An observer moving with a 4-velocity u� would measure the flux, i.e. the energy
density, of radiation reaching him to be equal to � = T��u

�u�, where T�� is the energy-
momentum tensor of radiation, given by (16.15). Thus, neglecting terms of order 	:

� = �

4�
�k�u

��2 
 (16.110)

On the other hand, combining the conservation equation (16.16) with the surface-area-
propagation equation (16.131) (see Exercise 2) we see that ���S� is constant along the
null geodesics, thus

���S��s=s1
= ���S��s=s2

(16.111)

(recall that �S is the area of an orthogonal cross-section of the bundle of rays). Combining
(16.110) and (16.111) we obtain � = constant × �k�u

��2 /�S. The subscript ‘e’ will
denote quantities calculated at the centre; ‘O’ will denote the quantities at the observer.
Remembering that �k�u

��e is constant along each null geodesic and using (16.20), we
obtain

�O = C�

�SO

[
�k�u

��O

�k�u
��e

]2

= C�

�SO �1+ zO�
2 � (16.112)

where C� is constant in each bundle (it depends on the solid angle occupied by the bundle).
Thus the flux decreases with increasing redshift. However, �SO does not necessarily
decrease with distance, as can be seen from (16.79). For geodesics, A�1� = 0. Assume that
�= 0 and R�� = 0 (vacuum) for simplicity. Then (16.79) shows that the derivative of �
along k� is negative, that is, � decreases and may become negative, too. This observation
is expressed in brief by saying that curvature causes null geodesics to converge, even
in vacuum. The conclusion remains true in a perfect fluid or dust, where R��k

�k� =
 ��+p� �k�u

��2 > 0. Consequently, a situation shown in Fig. 16.1 is possible: an observer
at Q will see the light source at G to have the same brightness as seen by the observer at
P. For Q, the source will appear anomalously bright and anomalously large.1

In order to make (16.112) a workable formula, we have to calculate the constant
C� . Imagine then that we surround G with a sphere S with the centre at G and radius
rS.2 Equation (16.112) shows that, for a given bundle of null geodesics, �1 + z�2� �S is
constant along the bundle. On the surface of a sphere, �S is proportional to the solid angle
�!G subtended by �S, thus �SG = rS

2�!G/�4��, where rS is the radius of the sphere S.
Assuming that the source G radiates isotropically, and denoting by L its total luminosity

1 In actual observations, the redshift will decrease the flux of photons. The effect of focussing by curvature would be clearly
visible only if the observer moved so as to cancel the redshift and if there were no absorption of light between the emitter
and the observer.

2 We assume the radius of the sphere to be sufficiently small that the space inside it can be approximated by the flat tangent
space to the manifold. Otherwise, it might be impossible to construct such a sphere – for example, when the bundle has
nonzero rotation.
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G

P Q

Fig. 16.1. A non-rotating null congruence in vacuum or in a perfect fluid necessarily has its
expansion scalar decreasing along the rays. This may (if the distance is sufficiently large) eventually
cause the expansion to become negative, which results in refocussing. The observer at Q would see
the source G to be anomalously bright and large, if he were able to cancel the redshift. Actually,
when the shear is nonzero, the geodesics will be refocussed not to a point, but to a caustic surface.

(i.e. rate of emission of radiation), we have on S �S = L/�4��. Also, z= 0 on S (because
S is close to the source), so, taking (16.112) on S, we have

C� = L

4�
rS

2�!G
 (16.113)

Now, following Etherington (1933) and Ellis (1971), we define the source area distance
rG (from the source to the observer) by

�SO
def= rG

2�!G
 (16.114)

Finally, combining (16.112)–(16.114), we obtain

�O = L

4�
rS

2

�1+ zO�
2 rG

2

 (16.115)

The quantity �O can be measured (this is the flux of energy from a given source through
a given surface sheet at the observer’s position) and so can zO; rS is any unit of distance
and can be chosen (for example, it can be the astronomical unit). However, rG cannot
be measured because we cannot get close enough to the source to measure �!S. With L

being essentially unknown, Eq. (16.115) cannot be observationally tested.
But we can define distance in another way. Imagine a surface sheet of area �SG placed

at the source G, and a bundle of light rays sent from this sheet in such a way that it
converges to a single point at the observer’s position O (Fig. 16.2). Assume that the sheet
is orthogonal to the central ray of the bundle and that the central ray is emitted from G.
Let the solid angle filled by this bundle as it reaches O be �!O. We can then define the
observer area distance from G to O by

�SG
def=rO

2�!O
 (16.116)

We can measure �!O, and we can in principle calculate �SG (for example, assuming that
the bundle subtends the whole source, whose geometric size we know). In this way, we
can in principle measure rO.

It turns out that rO is uniquely determined by rG, as we show in the next subsection.
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k = k ′
k

k ′

G

O

δSO
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Theorem 16.5 (the reciprocity theorem)

Assumption:
The bundle k completely surrounds O, i.e. there are rays of the bundle in every direction
from O within �SO.

Thesis:
The area distances rO and rG are related by

rG
2 = rO

2 �1+ zO�
2 
 (16.117)

Comment:
The assumption would not be fulfilled if O were placed on a reflecting or absorbing
surface, e.g. on a boundary between vacuum and opaque matter.

Proof:
Along the central ray we have v = v′ and k = k′ (but not p = p′). Thus, the geodesic
deviation equation (6.56) and the symmetries of the Riemann tensor imply that, along the
same ray,

p′� D2p�
dv2

−p�
D2p′

�

dv2
= 0
 (16.118)

Consequently

p′� Dp�
dv

−p�
Dp′

�

dv
= constant (16.119)

along GO. Note that Eq. (6.54), with zero torsion, implies that k�p��� = p�k���. Using
this in (16.119) (where Dp�/dv = p��� k

�), we see that the connection terms cancel out.
From now on we will thus replace the covariant derivatives by ordinary derivatives.
Taking (16.119) at G (where p� = 0) and at O (where p′� = 0), we obtain

[

p′� dp�
dv

]

G

= −
[

p�
dp′

�

dv

]

O


 (16.120)

Of the vectors p� at O we choose those that are orthogonal to the 4-velocity of the
observer; of p′� at G we choose those that are orthogonal to the source 4-velocity.
The chosen vectors span 2-dimensional planes tangent to the spacetime at O and G.
Consequently, we can choose a pair of the deviation vectors at G that obey

[
dp1

�

dv
dp2�

dv

]

G

= 0
 (16.121)

This is possible, since the vectors dp�/dv�G, together with p��G = 0, form the initial
data for the linear set of equations (6.56), and so are in fact a basis of the 2-dimensional
tangent plane at G. Condition (16.121) means only that we have chosen an orthogonal
basis. We choose any vector p� at O, and we make use of the assumption: since there are
rays of the bundle in every direction from O in the plane orthogonal to GO at O, whatever
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direction p��O we choose, there will be another direction perpendicular to it. Thus we
choose a pair of vectors such that

�p�1p2���O = 0 (16.122)

while (16.121) still holds.
These were conditions imposed on the field p� at both ends of GO.
We now impose the condition on the field p′�:

[

p′
1
� dp2�

dv

]

G

= 0 =
[

p′
2
� dp1�

dv

]

G


 (16.123)

Through (16.120) this implies that
[

p�1
dp′

2�

dv

]

O

= 0 =
[

p�2
dp′

1�

dv

]

O


 (16.124)

Since all the vectors lie in 2-planes at G and at O, the first equations of (16.123) and
(16.121) imply that p′

1
��G is collinear with dp�1 /dv�G, and then the second of (16.123)

says that
(

p′
1
�
p′

2�

)

G
= 0
 (16.125)

By a similar consideration, (16.124) and (16.122) imply that
[

dp′
1
�

dv
dp′

2�

dv

]

O

= 0
 (16.126)

In consequence of (16.121), (16.122), (16.125) and (16.126), all scalar products between
the vectors p�i and dpi

�/dv at G and O reduce to products of their lengths, denoted �pi�
and �p′

i�. Thus

�SO = ��p1� �p2�O �

�!G =
[∣
∣
∣
∣

dp1

d�

∣
∣
∣
∣
·
∣
∣
∣
∣

dp2

d�

∣
∣
∣
∣

]

G

�

�SG = ��p′
1� �p′

2�G �

�!O =
[∣
∣
∣
∣

dp′
1

d�

∣
∣
∣
∣
·
∣
∣
∣
∣

dp′
2

d�

∣
∣
∣
∣

]

O

�
(16.127)

where � is the radius at which the solid angles �!G and �!O subtend the surfaces �SG

and �SO, respectively. It is related to v by d� = −k�u� dv (see the text after (16.28)).
Thus we have from (16.127), (16.123) and (16.124):

�SO�!O =
[

�p1�
∣
∣
∣
∣

dp′
1

dv

∣
∣
∣
∣
�p2�

∣
∣
∣
∣

dp′
2

dv

∣
∣
∣
∣

]

O

1
(

k�u�
)

O

2

=
[

�p′
1�
∣
∣
∣
∣

dp2

dv

∣
∣
∣
∣
�p′

2�
∣
∣
∣
∣

dp1

dv

∣
∣
∣
∣

]

G

1
(

k�u�
)

O

2

=
(

k�u�
)

G

2

(

k�u�
)

O

2 �SG�!G
 (16.128)

This is equivalent to (16.117) by (16.20), (16.114) and (16.116).
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The reciprocity theorem implies that
If the observer moves so as to cancel the redshift, then equal projected surface areas

at the source G and at the observer O fill equal solid angles at O and G, respectively.
In Fig. 16.1, both rG and rO between the endpoints are zero, so (16.117) still holds, but

the above conclusion does not.
Recall that an observer at Q would see the source at G to be not only anomalously

bright, but also to have an anomalously large angular size. Imagine the observer being
placed on the symmetry axis and gradually removed farther from G. The angular size of
G would then at first decrease. As the observer moves past the first refocussing point,
the angular size would start increasing.

Substituting (16.117) in (16.115) we obtain an expression for rO:

rO =
√

L

4��O

rS

�1+ z�2 
 (16.129)

This allows us to calculate rO if we know L from theory and �O from measurement. The
rO calculated in this way is sometimes called the corrected luminosity distance.

16.7.3 Other observable quantities

Having introduced the two definitions of distance, the redshift, the flux of radiation and
the reciprocity theorem, one can define further observationally meaningful quantities. One
of them is the number of radiation sources in a given volume. Consider again the bundle
k′ in Fig. 16.2. Imagine that we move from the surface sheet �SG (at the observer area
distance rO from O) to a farther sheet �S′ at the distance �rO +d��. The d� is connected
to the affine parameter v on the bundle by d�= −k�u� dv; see the text after (16.28). Let
n�x� be the number of radiation sources per unit proper volume. The number of sources
within the bundle between �SG and �S′ will then be

dN = −rO
2�!O

(

nk�u�
)

G
dv
 (16.130)

The integral of this over the volume of the bundle from O to �SG will be the total number
of sources of radiation within this volume. This quantity is considered in observational
cosmology, and the procedure of determining it is called number counts.

Other observationally meaningful quantities are:

1. The specific flux – the flux per unit frequency interval;
2. The intensity of radiation – the flux per unit solid angle;
3. The specific intensity – the intensity per unit frequency interval;
4. The emission and absorption of light in the intergalactic space, and the optical depth.

While being useful for observations, these quantities do not really involve relativity in
their definitions and properties, and are handled by routine mathematics. A good overview
source for them is Ellis (1971); we will not discuss them here.



260 Relativistic cosmology I: general geometry

16.8 Exercises

1. Prove that any vector orthogonal to two linearly independent null vectors must be spacelike.
Hint. Consider the vertex of the null cone, p0, and choose the locally Minkowskian coordinates
at p0.

2. Using the methods of Section 15.1, prove that the expansion and rotation of a family of null
geodesics have the same interpretation as the corresponding quantities in hydrodynamics. Show
that shear changes the shape of a parallelepiped in a plane locally orthogonal to a ray, but
preserves its surface area. Verify that the expansion scalar obeys

2� = d

dv
ln��S�� (16.131)

where v is the affine parameter on the null geodesics and �S is the surface area of the propagating
light front of a bundle of rays at the parameter value v.
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Relativistic cosmology II: the Robertson–Walker
geometry

17.1 The Robertson–Walker metrics as models of the Universe

The Robertson–Walker (R–W) metrics were derived in Section 10.7 as being spatially
homogeneous in the Bianchi sense and at the same time isotropic. In the coordinates of
Section 10.7, they are

ds2 = dt2 − R2�t�
(

1+ 1
4kr

2
)2

[

dr2 + r2
(

d�2 + sin2 � d�2
)]

� (17.1)

where R�t� (called the scale factor) is a function to be determined from the Einstein
equations. The constant k, called the curvature index, when nonzero, can be scaled to +1
or −1 by the transformations r = r ′/

√�k�, R�t� =√�k�R̃�t�. After this, the R–W metrics
are no longer one continuous family; they become three different metrics and the limiting
transition k → 0 becomes impossible. This can cause difficulties when comparing the
three classes with each other; see Section 17.4.

Other representations of the R–W metric are also used. Let

r = 2r ′

1+√
1−kr ′2

⇐⇒ r ′ = r

1+ 1
4kr

2
� (17.2)

This changes (17.1) to (primes dropped for better readability):

ds2 = dt2 −R2�t�

(
dr2

1−kr2
+ r2

(

d�2 + sin2 � d�2
)
)

� (17.3)

When k = +1, the transformation

r = sin� (17.4)

changes (17.3) to

ds2 = dt2 −R2�t�
[

d�2 + sin2 �
(

d�2 + sin2 � d�2
)]

� (17.5)

where the hypersurfaces t = constant are 3-dimensional spheres.1

1 In (17.4) we assumed that r ≤ 1. With k = +1, the range 0 ≤ r ≤ 1 covers half of the 3-sphere. In order to cover the other
half, one has to employ a second copy of the coordinate chart introduced in (17.2) – as r goes from 0 to 	� r ′ first increases
from 0 to 1/

√
k, achieved at r = 2/

√
k, and then decreases to 0 as r → 	.
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With k = −1, the transformation

r = sinh� (17.6)

changes (17.3) to

ds2 = dt2 −R2�t�
[

d�2 + sinh2 �
(

d�2 + sin2 � d�2
)]

� (17.7)

A hypersurface t = constant in (17.5) and (17.7) is a space of constant curvature: its
Riemann tensor is

RIJ
KL = ± 1

R�t�
	IJKL� I� J�K�L = 1�2�3


with + for (17.5) and − for (17.7). When k= 0, it is seen from (17.1) and (17.3) that the
hypersurfaces t = constant are flat.

Because of these properties, the R–W spacetimes with k = +1 are colloquially called
the ‘closed Universe’, those with k= −1 are called the ‘open Universe’ and the one with
k = 0 is called the ‘flat Universe’.

The first author to investigate these spacetimes was A. A. Friedmann1 in 1922 (the case
k= +1, in the coordinates of (17.5)) and in 1924 (Friedmann, 1922) (the case k= −1; in
coordinates different from all those used here, and partly with incorrect conclusions about
the evolution (Krasiński and Ellis, 1999)). He solved the Einstein equations for these
metrics, with dust source and with the cosmological constant allowed. He himself treated
his result as merely a mathematical curiosity, since the expansion of the Universe had
not been discovered yet at that time, and no application for those solutions in astronomy
could be seen. Both papers were quickly forgotten – most astronomers and physicists
had not been ready to accept their implications, while Friedmann was not a sufficiently
prominent figure to win attention.2 Soon after finding these solutions, Friedmann died
prematurely and had no chance to claim credit for his discovery when the expansion
of the Universe was detected by Hubble (1929).3 The simplest case k = 0 was first
introduced by Robertson (1929) in a systematic survey of spacetimes with the, so-called
today, Robertson–Walker geometries.

The case k> 0 was discussed by Lemaître (1927, 1931),4 who generalised Friedmann’s
solution to nonzero pressure and was aware that the result reflects some properties of
the observed Universe. Unfortunately, he used to publish his papers in a local Belgian
journal, in French, and, being an unknown person at that time, did not win attention
for his results, either. Four years later, when the expansion of the Universe was already
well-known, Eddington asked whether exact models of the expanding Universe might
be derived from the relativity theory (Royal Astronomical Society Discussion, 1930). It

1 The transliteration of his name from Russian is ‘Fridman’, but, following the original publications in German, the form
‘Friedmann’ became standard.

2 Psychological/social factors of this kind do play a role in the acceptance of new results, also today, very unfortunately.
3 As already mentioned, Hubble did not believe that the Universe is actually expanding. He insisted that recalculating the

redshifts into velocities of recession is merely a convenient mathematical trick (Hubble, 1929, 1936, 1953).
4 The 1931 paper is a partly updated English version of the earlier one.
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was only then that Lemaître brought his paper from 1927 to Eddington’s attention; and
the English translation (Lemaître, 1931) followed. The recognition of Friedmann’s role
came gradually later (Krasiński and Ellis, 1999).

The general metric (17.1) was first derived from geometrical considerations by
Robertson (1933) and by Walker (1935). Friedmann and Lemaître derived the solutions of
Einstein’s equations (with slightly different sources) for that metric. In view of this history,
the spacetimes with this geometry are often called the Friedmann–Lemaître–Robertson–
Walker (FLRW) models, but various subsets of this collection of four names are also
in use. It seems appropriate to use the name Robertson–Walker when referring to the
general metric (17.1) and the names Friedmann or Lemaître when referring to the explicit
solutions.

In each of the coordinate representations, (17.1), (17.3), (17.5) and (17.7), the Einstein
tensor for the R–W metric is diagonal. This shows that, if the source in the Einstein
equations should be a perfect fluid, then its velocity field can have only the zeroth
component, and, because of u�u

� = 1 and g00 = 1, the velocity must be u� =∗ 	
�

0. This,

in turn, means that all those coordinate systems are comoving: each matter particle has
fixed spatial coordinates, and its proper time is the time coordinate in spacetime.

The velocity field u� =∗ 	
�

0 has the following properties: u̇� = 0��� = �� = 0 and

� = 3Ṙ/R. The velocity of expansion depends on time, but at each instant it is the same
at all points of the space t = constant.

The R–W spacetimes are the only perfect fluid solutions of the Einstein equations for
which �� = �� = 0 = u̇� and � �= 0. The proof follows from the paper by Stephani
(1967a); see also Stephani et al. (2003). As we stated in Section 15.3, with �� = �� =
0 = u̇� and a perfect fluid source, the metric must be conformally flat. Theorem 37.17,
p. 601 in Stephani et al. (2003), says that all conformally flat perfect fluid solutions are
those found by Stephani (1967a). Those of them for which � �= 0 have �� = �� = 0,
but in general u̇� �= 0. In the limit u̇� = 0 they reduce to the R–W metrics.

17.2 Optical observations in an R–W Universe

17.2.1 The redshift

In order to apply (16.20) to the R–W spacetimes, we have to know the field of vectors
tangent to light rays, k�. In consequence of the spatial homogeneity of any R–W spacetime,
all points within the same space t= constant are equivalent, so the result of any calculation
will be independent of the spatial position of the observer. Let us then assume that the
observer is at the origin, r = 0. A null geodesic sent off radially, with �̇0 = �̇0 = 0, will
preserve the radial direction �̇ = �̇= 0 at all other points. Hence, such a geodesic lies in
the surface �� = constant�� = constant� and obeys the equation

0 = dt2 − R2�t�
(

1+ 1
4kr

2
)2 dr2� (17.8)
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For a ray proceeding towards the observer sitting at r = 0 we thus have

∫ to

te

dt
R�t�

= −
∫ ro

re

dr

1+ 1
4kr

2
� (17.9)

It can be verified that v defined by

dt
dv

= 1
R�t�

(17.10)

is an affine parameter on the geodesic. In this parametrisation, the tangent vector to the
geodesic in Eq. (16.20) is

k� =
[

1
R
�− 1

R2

(

1+ 1
4
kr2

)

�0�0
]

� (17.11)

The velocity field is u� = 	�0 everywhere, so

k�u� = 1/R� (17.12)

and so in (16.20) we have

1+ z = R�to�/R�te�� (17.13)

When �R�to�−R�te��/R�te� is small, developing R�to� by the Taylor formula around te
and neglecting terms nonlinear in �to − te� gives

z ≈ [

Ṙ�te�/R�te�
]

�to − te� ≈ Ṙ

R
��� (17.14)

since c = 1 in the coordinates of (17.8), so to − te = �� is the distance from the light-

source to the observer; Ṙ
def= dR/dt. The same result follows from (16.29) when we recall

that �� = 0 = u̇� and � = 3Ṙ/R in the R–W models. This is the Hubble law, with the
Hubble parameter H = �c/3�� = cṘ/R (the factor c appeared because the physical time
� is related to the time coordinate t by � = t/c).

The Hubble law in fact holds exactly in the R–W models. Note that

��t� = R�t�
∫ re

0

dr

1+ 1
4kr

2
(17.15)

is the distance of the light-source at the point r = re from the observer at r = 0. Since the
coordinates are comoving, for each definite source of light we have re = constant, and
then from (17.15) we find

d�

dt
= Ṙ

R
� = H�

c
� (17.16)
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17.2.2 The redshift–distance relation

Assume that, this time, the origin is at the source G in Fig. 16.2. The element of surface
area in the surface �t = tv = constant� r = rv = constant� is, in the coordinates of (17.1),

dS =
(

R�tv� rv

1+ 1
4krv

2

)2

sin� d� d��

On the other hand, close to the origin r = 0, the metric of the space t= tv is approximately
flat, so in that space dS = rv

2 sin� d� d�, where d� = sin� d� d� is the element of
solid angle. Comparing these quantities with (16.114) we see that in the R–W models

rG = ROr

1+ 1
4kr

2 � (17.17)

where r is the r-coordinate of the observer and RO is the value of R at the time t = tv,
when the ray passes the observer. By the reciprocity theorem (16.117), we then have

rO = ROr

�1+ zO�
(

1+ 1
4kr

2
) � (17.18)

This provides a relation between r and the observable quantity rO, and (17.13) then
provides a relation between R and the observable quantity z. The integral of (17.8) along
a radial outgoing null geodesic is

∫ t

te

dt′

R�t′�
=
∫ r

0

d̃r

1+ 1
4 k̃r

2
� (17.19)

We can calculate this integral when R�t� is given explicitly. We will do it in Section 17.4.
The quantities that are used in astronomy to characterise R�t� are the Hubble param-

eter of (17.16)1 and the deceleration parameter q0:

q0
def= −RR�tt /R�t

2
∣
∣
now

≡ −1− 1

H0
2

dH0

dt
� (17.20)

The sign of q0 tells us whether the expansion of the Universe accelerates �R�tt > 0� or
decelerates, and so is relevant for estimating the value of the cosmological constant.

17.2.3 Number counts

This time, the observer will be at r = 0, and r will refer to the radial coordinate of the
source G. If we assume that the number of radiation sources is conserved ��nu�� 
� = 0�,
then nR3 must be constant, so

n = nORO
3/R3� (17.21)

1 It is most often denoted H0, to stress that its current value is meant.



266 Relativistic cosmology II: the Robertson–Walker geometry

where the index ‘O’ refers to any fixed instant, e.g. the instant of observation. Taking the
full solid angle ��O = 4� and substituting for the other quantities in (16.130), namely
for rO from (17.18), for RO = R�1+ zO� from (17.13), for

(

k�u�
)

G
= 1/R from (17.12)

and for dv = −R2 dr/
(

1+ 1
4kr

2
)

from (17.9)–(17.10), we obtain for the total number of
sources out to the distance corresponding to r

N�r� = 4�nORO
3
∫ r

0

r2 dr
(

1+ 1
4kr

2
)3

def= 4�nORO
3F�r�� (17.22)

The integral is equal to

F�r̄� =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2k3/2

��− sin� cos��� sin�
def=

1
2

√
kr̄

1+ 1
4kr̄

2
for k > 0�

r̄3/3� for k = 0�

1
2�−k�3/2

�sinh� cosh�−��� sinh�
def= −

1
2

√
kr̄

1+ 1
4kr̄

2
for k < 0

(17.23)
(this is the same � that appears in (17.4)–(17.7)). Equations (17.22)–(17.23) provide (in
principle!) a method to determine the sign of k observationally. However, in practice, the
determinations of distance in cosmology are too imprecise to distinguish among the three
forms of F .

17.3 The Friedmann equations and the critical density

With a perfect fluid source, in a general geometry, the following unknown quantities
must be determined from the field equations: six out of ten components of the metric
tensor g� (the remaining four can be fixed by choice of the coordinate system), the
energy-density, the pressure and three components of the velocity field u� (the fourth
component is determined via the normalisation condition u�u

� = 1). In total, this is 11
quantities to be found from 10 equations G� = �T�, and the set is underdetermined. To
make it determinate, we have to add one more equation, and usually this is the equation
of state.1

This indeterminacy survives in the R–W metrics, in spite of their high symmetry.
They automatically define a perfect fluid energy-momentum tensor. The energy-density,
pressure and velocity field of the fluid are all determined as functions of the scale factor
R�t� and of its derivatives. In order to obtain a definite solution, we have to add an
equation of state relating the pressure to the energy-density. With all functions depending
only on t, this must be a barotropic equation of state � = ��p� (see Section 15.5 for an

1 In vacuum, because of G�
 = 0, only six of the Einstein equations are independent (Stephani, 1990, pp. 160–168). In
matter, the equations of motion T�
 = 0 are in most cases not obeyed before all the field equations are solved. They are
usually simpler than the Einstein equations and are solved first.
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explanation of how very special this equation is). The equation of state is a differential
equation that determines R�t�.

What equation of state is most appropriate for describing the Universe as a whole?
At present, the mass-density in the Universe is so small �<10−28 g cm−3� that pressure
does not influence the large-scale dynamics of matter and p= 0 is an acceptable hypoth-
esis. This is the assumption that Friedmann made in obtaining his solutions (given in
Sections 17.4 and 17.6). However, if we want to describe the evolution of the Universe
with the early period of high density included, then we have to take pressure into account –
and the equation of state cannot be the same at all times. A very brief description of
the ‘history of the Universe’ is given in Section 17.10. We shall consider here the later
periods and, following Friedmann (1922), we assume p = 0.

Using any algebraic computer program, the tetrad components of the Einstein tensor
in the orthonormal tetrad for the metric (17.1) or (17.3)1 are found, and the Einstein
equations are

G00 = 3k
R2

+3
Ṙ2

R2
= ��−�� (17.24)

G11 = G22 = G33 = −
(

k

R2
+ Ṙ2

R2
+2

R̈

R

)

= �p+�� (17.25)

The equations of motion T�
 = 0, which are integrability conditions for Eqs. (17.24)–
(17.25), reduce here to the single equation

(

�R3
)˙+3R2Ṙp = 0� (17.26)

With p = 0, this becomes the mass conservation equation

�R3 = constant
def= 3�/�4��� (17.27)

where � = �/c2 is the mass-density. If Ṙ �= 0, then (17.25) follows from (17.24) and
(17.27). If Ṙ = 0, then the solution of (17.24)–(17.25) is the static ‘Einstein Universe’
(12.82), and we shall not consider this case. With p = 0 and Ṙ �= 0 we thus have only
Eq. (17.24) to solve, which becomes, in consequence of (17.27),

R�t
2 = 2G�

c2R
−k− 1

3
�R2� (17.28)

We can use (17.27) and (17.28) to obtain the formula for the critical density. With �= 0
and Ṙ/R = H/c – the Hubble ‘constant’, we obtain

� = 3H2

8�G
+ 3k
c2�R2

� (17.29)

1 Since the tetrad components of the Einstein tensor are scalars, and since in the R–W geometry they have to be spatially
homogeneous, i.e. independent of the radial coordinate, they come out the same no matter which of the two coordinate
representations is used. However, they would be different for (17.5) and (17.7) because there the constant k is scaled to +1
or −1, respectively.
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The quantities � and H are in principle directly measurable.1 Hence, Eq. (17.29) gives
us a possibility to determine the sign of k for the real Universe. If the observed density
�o is greater than the critical density

�cr
def= 3H2

8�G
� (17.30)

then our Universe is closed (k > 0); if �o < �cr, then it is open; and if �o = �cr, then it is
spatially flat (k = 0).

If we take into account only that matter which is visible in telescopes, then �o � �cr.
Taking the minimal value of H0 consistent with observations, H0 = 50 km s−1 Mpc−1, we
obtain �cr = 0�475×10−29 g cm−3, while �o ≤ 10−31 g cm−3 (Lang, 1974, p. 558). Greater
values of H0 increase the discrepancy. However, orbital velocities of stars in galaxies
indicate that galaxies contain large amounts of non-luminous matter. Estimates of density
of that matter imply �o ≤ 0�2�cr (Coles and Ellis, 1997). Observations of galaxy clusters
show that also the intergalactic space contains non-luminous matter, but including it does
not allow one to make �o greater than 0�3�cr. Unfortunately, the debate about the average
density of matter in the Universe, a valid scientific question, is compounded by enthusiasts
of the inflationary models (see Section 17.8), who, more often than not, resort to lobbying
(as opposed to scientific dispute) to promote their favourite subject. For these models it
is essential that the spatial curvature of the Universe is very close to zero. The current
majority view is that the actual density is equal to the critical one, and the invisible part
is hidden in the form of ‘dark matter’ (Padmanabhan, 1993; Peebles, 1993) – that can
be anything except matter known from laboratory – or in the form of ‘dark energy’, i.e.
the cosmological constant (see Section 17.9). A serious and critical evaluation of various
observational results concerning the amount of matter in the Universe is given by Coles
and Ellis (1997).

The history of astronomy teaches us that values of various parameters have sometimes
been revised radically – because the final results follow via long chains of assumptions
used in interpreting the observations. These assumptions change as knowledge advances.
Hence, all such numbers must be treated as temporary. It is possible that future obser-
vations will render �o closer to �cr. However, the current real knowledge (as opposed to
postulates and expectations) gives no grounds to assume that �o is greater than 0�3�cr,
and this low density is no problem for any theory but inflation. Moreover, the notion of
a critical density applies only to the R–W models. In more general cosmological models
(see Chapters 18 and 19) the curvature index k is a function of position. In those models,
the local value of matter-density is not connected with the type of evolution. Hence, the
whole discussion of the relation between �o and �cr concerns only a limited class of
models and is not necessarily important for the long-term evolution of our real Universe.

1 The difficult element is measuring the distances. All methods used to measure intergalactic distances rely on various theoretical
assumptions that are difficult to verify, and they can be carried out for relatively near galaxies. For very distant galaxies, in
astronomical practice the Hubble law is assumed to hold exactly, and then unceremoniously used as a measure of distance.
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Equation (17.28) can be written as follows:

dR
dt

= ±
(

2G�

c2R
−k− 1

3
�R2

)1/2

� (17.31)

The general solution of this equation can be expressed in terms of elliptic functions. We
will discuss these solutions qualitatively in Section 17.6.

17.4 The Friedmann solutions with � = 0

With � = 0, Eq. (17.31) becomes

dR
dt

= ±
(

2G�

c2R
−k

)1/2
def=
(

2�
R

−k

)1/2

� (17.32)

The solutions of this equation are best represented in a parametric way. For k < 0 we obtain:

R = −�

k
�cosh�−1�� t− tB = �

�−k�3/2
�sinh�−��� (17.33)

where � is the parameter and tB is an arbitrary constant. Usually, the time coordinate is
chosen so that tB = 0. For k = 0 the solution is

R =
(

9
2
��t− tB�

2

)1/3

� (17.34)

In this case the constant � can be scaled to any arbitrary value by transformations of r, so
its actual value merely defines the unit of distance and has no physical meaning. (Unlike
in the previous case and in the next case, where the value of � is related to the curvature
of space at a given time.) Finally, for k > 0, the solution of (17.32) is

R = �

k
�1− cos��� t− tB = �

k3/2
��− sin��� (17.35)

In all three cases we have taken into account the observed fact that at present Ṙ > 0. As
we predicted in Section 15.4, each of these solutions has a singularity at t → tB, at which
R → 0 and � → 	. At that instant (in the past), all matter of the model was condensed
in one point. The last model has a second such singularity, in the future, at

t = tFS = tB + 2��
k3/2

= tB + 2�G�

k3/2c2
= tB + 8�2G�oRo

3

3k3/2c2
� (17.36)

The models (17.33) and (17.34), if they are expanding at the initial instant, will continue
to expand for an infinite time. The model (17.35) has a finite lifetime; at t = tFS its
existence is terminated. The graph of R�t� corresponding to different values of k is shown
in Fig. 17.1, which again explains the dangers connected with rescaling of �k� �= 0 to 1.

Formally, Eqs. (17.35) describe a flattened cycloid, on which t runs through an infinite
range, while R oscillates between 0 and Rmax = 2�/k= 2G�/�kc2�. However, dR/dt →
	 as t = tFS, and the integration of (17.32) through this point is not possible. This is why
the k > 0 Friedmann Universes have only a finite time of existence equal to �tFS − tB�

(note that the value of this quantity depends on k!).
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time

R(t)

k = 0

k > 0

k < 0k = 0 limit 
after rescaling 
| k | to 1

t = tB

Fig. 17.1. The functions R�t� corresponding to Friedmann models with different values of k.
When k → 0, the rescaling of R required to achieve �k� = 1 maps the k = 0 graph into the vertical
straight line at t = tB, and no place is left for the k < 0 models. Note that, for models with k > 0,
the actual value of k determines the lifetime of the model, so it has physical meaning. Similarly,
for models with k < 0, the value of −k determines the asymptotic value of the expansion velocity,
Ṙ, as t → 	. Thus, rescaling k results in tampering with physical parameters.

17.4.1 The redshift–distance relation in the � = 0 Friedmann models

Having found the explicit forms of R�t�, we can now integrate Eq. (17.19), to find
the observer area distance as a function of the redshift, the Hubble parameter and the
deceleration parameter. From (17.32) R�tt = −�/R2, and from (17.20) R�tt = −q0R�t

2/R≡
−q0RH0

2. Thus R = [

�/
(

q0H0
2
)]1/3

. Using this, Eq. (17.32) can be rewritten as

H0
2 = 2�

R3
− k

R2
= 2q0H0

2 − k

�2/3
q0

2/3H0
4/3� (17.37)

Note that the sign of k is the same as the sign of �2q0 − 1�, and q0 = 1/2 when k = 0.
From here, when k > 0,

� =
(

k

2q0 −1

)3/2
q0

H0

� R = 1
H0

√

k

2q0 −1
� (17.38)

The integrals in (17.19) are different for each k. For k > 0 the result is

arctan

(√
kr

2

)

= 1
2
���t�−��te�� � (17.39)
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But, from (17.35), ��t� = arccos �1−kR/�� and ��te� = arccos �1−kR/��1+ z����.
Substituting for � and R from (17.38) we obtain

rO =
q0z+ �q0 −1�

(√

2q0z+1−1
)

H0q0
2�1+ z�2

� (17.40)

Going back to (17.38) and repeating the whole calculation for k < 0 we obtain again
(17.40), even though the intermediate formulae are different. With k = 0, we substitute
q0 = 1/2 in (17.40) and obtain

rO = 2

√
1+ z−1

H0�1+ z�3/2
� (17.41)

The limit of (17.40) at q0 → 0 is rO = �1/�2H0���1 − 1/�1 + z�2�� This corresponds to
� = 0, i.e. � = 0, which is the Minkowski spacetime in coordinates connected with an
expanding family of timelike straight lines. Equation (17.40) is called the Mattig formula
(Mattig, 1958).

Note that drO/dz = 1/H0 > 0 at z = 0 and becomes negative as z → 	. Thus the
function rO�z� is increasing at small z and decreasing at large z, achieving a maximum
in between. This means that there is refocussing in the Friedmann models with � = 0.
This is true for every k, including k = 0, for which the maximal rO occurs at z = 8.

17.5 The Newtonian cosmology

We will now use Newton’s theory to describe the motion of a cloud of particles that
interact only by gravitation. We will make the same assumptions that had led us to the
R–W models in relativity: a homogeneous and isotropic matter distribution, �= ��t�, and
a spherically symmetric initial distribution of velocities:

vi�t0� = v�t0� r�
xi
r
� (17.42)

Let us consider the motion of the particle on the sphere of radius r�t�. Since the
distribution of matter is spherically symmetric, the force exerted on this particle by matter
that lies outside this sphere is zero (see Exercise 3). The particle thus moves in the
gravitational field created by matter inside that sphere, i.e. in the potential

V�r� = −GM

r
= −4

3
�G��t�r2�t�� (17.43)

Consequently, the equation of motion of the particle is

dvi
dt

≡ �vi
�t

+vj
�vi
�xj

= −GM

r3
xi = −4

3
�G��t�xi�t�� (17.44)

Using Eq. (17.44) one can easily verify that

d
dt

(vi
v

)

= 0� (17.45)
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where v = √
vivi, i.e. the direction of the velocity vector at every point remains the same

for all time. Therefore, using (17.42) we can rewrite (17.44) as follows:

dv
dt

≡ �v

�t
+v

�v

�r
= −GM

r2
= −4

3
�G��t�r� (17.46)

This is the equation of motion. The equation of continuity ��/�t+ ��vi��i = 0, in conse-
quence of � = ��t�, (17.42) and (17.45), takes the form

1
�

��

�t
+v�r +

2
r
v = 0� (17.47)

We denote
1
�

��

�t

def= −3F�t�� (17.48)

Then we have in (17.47)
(

r2v
)

�r = 3F�t�r2, which is integrated to give

v�t� r� = F�t� r�r+ ��t�

r2
� (17.49)

We substitute this in (17.46) and obtain

Ḟ r+ �̇

r2
+
(

Fr+ �

r2

)(

F − 2�
r3

)

= −4
3
�G��t�r� (17.50)

This is an algebraic equation in r whose coefficients are functions of t. The coefficients
of different powers of r have to vanish separately, hence

��t� = 0� Ḟ +F 2 = −4
3
�G��t�� (17.51)

Consequently, (17.49) becomes

v�t� r� = F�t�r� (17.52)

and from (17.42) we have vi = F�t�xi, i.e. the Hubble law.
Equation (17.52) can be integrated again since v= dr/dt. We substitute this and (17.48)

in (17.52) and obtain �1/r�dr/dt = −�1/�3�����/�t, which is integrated with the result
r�t� = �A/��1/3, where A is an arbitrary constant. Hence, for each particle separately

�r3 = A = constant
def= 3M

4�
� (17.53)

This is the analogue of (17.27) in the Friedmann solution. Substituting (17.53) in (17.48)
and then substituting the result in (17.51) gives r̈/r = −GM/r3. This is easily integrated
with the result

ṙ2 = 2GM
r

−2K� (17.54)

where K = constant. This equation has the same form as (17.32). Thus, it has the
same three types of solutions. In relativity, Eq. (17.32) defined the scale factor R�t�

that determined the changes of distance (see (17.15)). Here, Eq. (17.54) determines the
distance of an arbitrary particle from the origin of the coordinate system. In the R–W
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models, the constant k determined the sign of the spatial curvature. Here, multiplying
(17.54) by m, the mass of a fluid particle, we see that the quantity �−mK� is the total
energy of the particle. If K > 0, then the energy is negative; then at r → GM/K the
velocity of the particle decreases to zero; the particle turns back towards the origin and
falls onto it in a finite time. When K = 0, the particle can escape infinitely far from the
origin, but its velocity tends to zero as r → 	. If K< 0, then ṙ →

r→	ṙ0 > 0.

Equation (17.54) was first found and interpreted by Milne and McCrea (1934), and the
authors were surprised that this result had not been known earlier. It is so elementary that
it could have been found still in the eighteenth century, if only anybody had allowed for
the possibility that the Universe is not static (this is one more piece of evidence of the role
played by psychology and prejudice in science). However, until Hubble’s discovery of the
expansion of the Universe, everybody believed that the Universe was unchanging in time.

Although the Milne–McCrea solutions are formally identical with the Friedmann solu-
tions, their physical interpretation is not the same. The solutions of (17.54) contain typical
Newtonian notions such as absolute space and absolute velocity of matter (relative to
space points). In contrast to relativity, they do not imply any law of propagation of light
rays and lead to a contradiction with special relativity. Making the Milne–McCrea model
consistent with special relativity requires the extension of Newton’s theory by new postu-
lates. Such a theory (called ‘kinematical relativity’) was devised by Milne in later years
(Milne 1948), but it did not gain acceptance in the physics community because, unlike
relativity, it was well suited only to this particular cosmological model.

17.6 The Friedmann solutions with the cosmological constant

Now we will discuss the full Friedmann equation (17.28). For later convenience we
denote � = −�. Equation (17.28) becomes then

Ṙ2 = 2G�

c2R
−k+ 1

3
�R2� (17.55)

The graph of the equation Ṙ2 = 0 in the plane of the parameters ���R� is shown in
Fig. 17.2. For k ≤ 0 the function ��R� determined by this equation is monotonic and
negative for all R. With k > 0, the function ��R� increases from −	 at R= 0 through 0

(attained at R= 2G�/�c2k�) to the maximum equal to �
def= �E = c4k3/�9G2�2�, attained

at R = 3G�/�c2k�
def=RE, and then monotonically decreases and tends asymptotically to

zero as R → 	.
Since � is a universal constant, R can vary only along straight lines parallel to the

R-axis. Since the � calculated from (17.55) is never smaller than the � determined by
the Ṙ= 0 curves, the allowed area for R-values is above the corresponding Ṙ= 0 curve,
and the extrema of R lie on Ṙ = 0. By definition, R�t� > 0. This implies the following:

• (1) For � < 0, only models oscillating between R = 0 and R = Rmax exist. The Rmax

is greater for k < 0 and smaller for k > 0. The ‘cosmological attraction’ implied by
� < 0 will always halt and reverse the expansion of the Universe.
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k < 0k = 0

k > 0

λ

λE

R
R1

RE

Fig. 17.2. The curves Ṙ = 0 in the �R��� plane. The area accessible for evolution is above
each curve. R1 = 2G�/�c2k� is the size of the Universe at maximal expansion when � = 0.
�E = c4k3/�3G��2 is the minimal value of � at which R changes between 0 and 	; it corresponds
to the maximum of the k > 0 curve that occurs at R = RE = 3G�/�c2k�.

• (2) For �= 0 and k≤ 0 there exist solutions in which matter expands monotonically
from infinite density at R = 0 to zero density at R → 	; they were discussed in
Section 17.4.

• (3) For � = 0 and k > 0 there exists a solution oscillating between R = 0 and
Rmax = 2G�/�c2k�.

• (4) For 0 < � < �E the following cases exist:

(4a) Ifk≤ 0, the model constantly expands from a singular state atR= 0 to zero density
at R → 	, or constantly contracts from R = 	 to R = 0. Note that the derivative
Ṙ in (17.55) cannot change sign in this case. Moreover, if Ṙ > 0, then Ṙ is an
increasing function of R. The expansion thus proceeds with acceleration – this
is the influence of the ‘cosmological repulsion’ implied by � > 0.

(4b) If k > 0, then we have two cases:
�4bA� If R < RE = 3G�/�c2k�, then the model is oscillating.
�4bB� If R > RE, then the model contracts from zero density at R = 	 to a
finite maximal density at R= Rmin (with Ṙ�Rmin�= 0), and then expands again
to R → 	.

• (5) For � = �E there are several possibilities:

(5a) If k ≤ 0, then the model constantly expands or contracts, like in case (4a).
(5b) If k > 0 and R < RE, then the model either expands from a singular state at

R = 0 asymptotically to R = RE at t → 	, or contracts from the asymptotic
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state R→ RE at t → −	 to a singularity at R= 0. It can be easily verified that
for � = �E the right-hand side of (17.55) has a double root R = 3G�/�c2k�,
and then the time required to reach RE = 3G�/�c2k�,

t =
∫ 3G�/�c2k�

t0

(
2G�

c2R
−k+ 1

3
�ER

2

)−1/2

dR (17.56)

is infinite.
(5c) If k > 0 and R > RE, then the model either expands from an asymptotic state

R→RE at t → −	 to R→ 	 at t → 	, or contracts from R→ 	 at t → −	
to R → RE at t → 	.

(5d) For k > 0 there also exists the static solution R≡ RE, which is unstable. This is
the ‘Einstein Universe’ (12.82). It is unstable because a small perturbation of R
will cause it to become expanding as in case (5c) or contracting as in case (5b).

• (6) For � > �E, independently of the sign of k, there exist only models that mono-
tonically expand from R = 0 to R → 	 or monotonically contract. Just as in cases
(4a) and (5c), the expansion proceeds with acceleration, since Ṙ increases with
increasing R.

These facts are summarised in Figs. 17.3–17.5. Figure 17.3 shows all the possible
oscillating models. With � negative, the maximal size of the oscillating model with k≤ 0

(I) (II) (III) (IV)

R

time

RE

R0

Fig. 17.3. The scale factor as a function of time for recollapsing Friedmann models, for different
values of the curvature index and of the cosmological constant. Curve (I): k > 0�� < 0; curve (II):
k > 0�� = 0 (this is one of the models considered in Section 17.4); curve (III): k > 0�0 < �< �E;
curve (IV): k ≤ 0�� < 0. The horizontal line RE is the constant value of R = RE = 3G�/c2 in
the static Einstein Universe. The horizontal line R0 is the maximal value of R in the recollapsing
� = 0 model. As seen from Fig. 17.2, negative � will always force recollapse, irrespective of the
sign of k. However, with k ≤ 0, an arbitrarily large maximal R can occur with a sufficiently small
absolute value of �. For better visualisation, the parameters of the four curves were chosen as close
to each other as possible. On all curves, G�/c2 = 1. On curve (I) k= +1��= −0�1; on curve (II)
k= +1��= 0; on curve (III) k= +1��= +0�1; on curve (IV) k= −1��= −0�1. With negative �
of sufficiently great absolute value, the lifetime for k≤ 0 models may be shorter than in any k > 0
model.
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(I) (II)

(III) (IV)

(V) (VI)

E

t

R

Fig. 17.4. The graphs of R�t� for those Friedmann models in which �= �E. The dotted horizontal
line marked E is the static Einstein Universe in which R=RE = 3G�/�c2k�. Curves I–IV represent
models that approach the Einstein Universe asymptotically towards the future or towards the past;
for all of them k > 0. On curve I, R> RE and R�t < 0. On curve II, R> RE and R�t > 0. On curve
III, R < RE and R�t > 0. On curve IV, R < RE and R�t < 0. Curve V represents the model with
k= 0, curve VI the model with k < 0. Curves V and VI have inflection points at intersections with
R=RE. Time-reverses of curves V and VI (i.e. collapsing models) are also solutions of Eq. (17.55),
but are omitted for clarity. Curves III-VI represent models that have singularities in the past or
in the future. Curves I and II represent models with no singularity. Note that the static Einstein
Universe is unstable: an arbitrarily small perturbation that sets R off the value RE will cause the
model to expand or contract away from the initial state. The actual values of parameters in the
figure are G�/c2 = 1 on all curves, k = +1 for curves I–IV and k = −1 for curve VI.

can be arbitrarily large, and the lifetime of the model can be arbitrarily long. Figure 17.4
shows all the models for which � = �E, and Fig. 17.5 shows the remaining models.

With � �= 0, the connection between the sign of spatial curvature and the type of motion
no longer holds. There are models with negative spatial curvature that recollapse after
a finite time (case (1)) and models with positive spatial curvature that expand to reach
infinite extent (cases (4bB), (5c) and (6)). The latter do not always attain a singular state.

The fact that, with � < 0, models expanding with acceleration may exist will be
important in the discussion of horizons in the next section.1

The discussion introduced above was first presented by Friedmann in his original
papers (Friedmann, 1922); it can also be found in the book by Robertson and Noonan
(1968) and, in a more extended form, in Rindler (1980). Friedmann’s original discussion
was incomplete because he considered only the case k = +1, and did not know the case
k = 0.

1 Currently, it is believed that our observed Universe is accelerating; see Section 17.9.
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t

R

E

(I) (II) (III) (IV) (V) (VI)

Fig. 17.5. The graphs of R�t� for the remaining Friedmann models, for different values of the
curvature index and of the cosmological constant. The horizontal line E is the constant value of
R = RE = 3G�/�c2k� in the static Einstein Universe. On curves I–III 0 < � < �E; on curves
IV–VI � > �E. On curve I k > 0 and R > RE, on curve II k < 0, on curve III k = 0. On curves
IV, V and VI k is, respectively, negative, zero and positive. Curves II and III have their inflection
points for R>RE; curves IV–VI have their inflection points for R<RE. Positive � implies cosmic
repulsion that opposes gravitational attraction. Beyond the inflection point the repulsion definitely
prevails and sets the Universe into accelerated expansion. With large initial R, the repulsion prevents
collapse even for k > 0.

17.7 Horizons in the Robertson–Walker models

This section is a brief presentation of the results of Rindler (1956).
Every observer in the Universe receives information about distant objects via null

geodesics. It turns out that in most of the Robertson–Walker models there exist, for every
observer, such objects, from which he/she has not yet received any signal. Then, in some
of the R–W models (those which expand with acceleration) objects exist from which
a given observer has not received and will never receive any signal. The boundaries
separating objects already observed from those not yet observed, and objects observable
from unobservable, are called horizons. This definition will be made precise below.

The event horizon for an observer A is the hypersurface in the spacetime that divides
the collection of all events into two nonempty classes: those events that have been, are
being or will be observed by A, and those that A has never observed and will never be
able to observe. Not every R–W spacetime has event horizons.

The particle horizon for an observer A at the instant t0 is a 2-dimensional surface in the
space t = t0 that divides all particles (i.e. worldlines of matter) into two nonempty classes:
those that had been observed by A up to t = t0, and those that A has not yet observed.
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There exist R–W models that do not possess any of these horizons (for example, the
Newtonian model described in Section 17.5). All the Friedmann solutions with � = 0
have particle horizons.

We will use the R–W metric (17.1). Let us define

��r�
def=
∫ r

0

dr ′

1+ 1
4kr

′2 =

⎧

⎪⎪⎨

⎪⎪⎩

2√
k

arctan
(√

kr
2

)

for k > 0�

r for k = 0�
1√−k

ln
(

1+ 1
2

√−kr

1− 1
2

√−kr

)

for k < 0�

(17.57)

This quantity is proportional to the length of the arc of the r-curve ��t = constant�� =
constant��= constant�� between the point r = 0 and the point with the current value of r.

For an observer at r = 0, the equation of motion of a particle at r = r1 is

��t� r1� = R�t���r1�� (17.58)

The equation of motion of a photon emitted at r = r1 and proceeding towards the observer
at r = 0 is, from (17.8), (17.9) and (17.57),

��r� = ��r1�−
∫ t

t1

d�
R���

� (17.59)

With k < 0 we have ��r�→ 	 for r → 2/
√−k, hence the range r ∈ �0�2/

√−k� covers
the whole space t = constant. For k > 0 we have � → �/

√
k for r → 	. Hence, r = 	

corresponds to the point that is antipodal to r = 0 on each sphere t= constant. The r-curve
can, of course, be continued beyond this point, although the coordinate r does not cover
the extra stretch. The extended line may wind multiply around the sphere t = constant.
On such multiply wound curves we will define � to be ��r� = n�/

√
k+ �̃�r�, where

n is the number of passages of the curve through the poles r = 0 and r = 	, and �̃�r�

is the quantity calculated by (17.57) between the final point r and the last pole passed.
Hence, also in the model with positive curvature, a point in the space t = constant can
be assigned to every value of � .

The reasoning below applies to models of infinite time of existence. For recollapsing
models, modifications are necessary and they will not be discussed here. For example, the
limit t → 	 has to be replaced by t → tFS, where tFS is the instant of the final singularity,
and ‘finite limit’ has to be replaced by ‘value smaller than �/

√
k’.

With k≤ 0, the necessary and sufficient condition for the existence of an event horizon
is the convergence of the integral

∫ t

t1
d�/R��� to a finite limit at t → 	. Then, there exist

particles at r = rH (with ��rH� < 	) such that the photon emitted from there at t = tH
will not reach the observer at r = 0 (where ��0� = 0) even after an infinite time. From
(17.59) we obtain for rh (the minimal value of rH)

��rh� =
∫ 	

th

d�
R���

< 	� (17.60)

With k > 0, the event horizon exists if ��rh� defined by (17.60) obeys ��rh� ≤ �/
√
k.

With ��rh� > �/
√
k, each photon sent from r = rh will manage, in a finite time, to travel
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farther than half of the circumference of the Universe, and, in consequence of this,
the light signal from the emission event will reach the observer at r = 0 on one route
or another.

For the recollapsing models with k > 0, the event horizon may exist even if

��rH�
def= ∫ tFS

tH
d�/R��� > �/

√
k (see the example below).

In consequence of the isotropy of the R–W models, if there exists rh obeying (17.60) (or
the corresponding condition for k > 0), then the event horizon exists for every direction
of observation. In consequence of their homogeneity, the origin r = 0 may be placed at
any point of the space t = constant. Hence, if there exists an event horizon for one given
observer, then event horizons exist for all observers.

When the event horizon exists, the events whose coordinate r obeys r > rh (when k≤ 0)
or rh < r ≤ �/

√
k (when k > 0) will never be observed by the observer at r = 0. How

can this be explained intuitively? If R�t� increases sufficiently rapidly, then the spatial
distance between the observer at r = 0 and the light source at r = r1 > rH, given by (17.58),
increases so fast that the light cannot overcome this ‘swelling of space’, even though it
keeps going towards the observer. Eddington once explained this as follows: imagine a
runner who runs on an expanding race track whose finish line moves away faster than the
maximum speed at which the runner can run. In the Friedmann models with �= 0� Ṙ is a
decreasing function. Consequently, with k≤ 0, every event will eventually become visible
for every observer. From (17.33)–(17.34) it follows that

∫ t2
t1

d�/R��� →
t2→		, i.e. the event

horizons do not exist. However, with k > 0�� = 2� at the final singularity, and then

��r1� =
∫ t�2��

t1

d�
R���

=
∫ 2�

��t1�

1
k

d� = 2�−��t1�

k
� (17.61)

Hence, if ��t1� > � (i.e. t1 > ��/k), then events at t > t1 and r > r1 will not become
visible for the observer at r = 0 before the final singularity occurs. The event horizon
will thus exist, although the integral in (17.61) is smaller than �/

√
k for t1 < ��/k.

From (17.59) it is also seen that, if a particle was initially in the field of view (i.e. inside
the event horizon) for the observer A, then it will remain visible to him for ever. This is
because, if the equation

0 = ��r1�−
∫ t0

t1

d�
R���

(17.62)

has a solution for t1 at a given r1 and a given reception time t0, then it will have a solution
for all times t > t0.

Proof: Since ��r1� does not depend on t, the solution of the problem consists in finding
an integration interval in which the integral in (17.62) has a given value. From Fig. 17.6
one sees that if one such interval �t1� t0� exists, then for every t′0 > t0 there will exist a
t′1 > t1 such that

∫ t′0

t′1

d�
R���

=
∫ t0

t1

d�
R���

(if 1/R�t� is continuous, but this we are assuming all the time).
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1/ R

t
t1 t0

Fig. 17.6. An illustration to (17.62). If the integral of a continuous function 1/R over the interval
�t1� t0� equals ��r1�, then for every t′0 > t0 there exists a t′1 > t1 such that the integral of the same
function over �t′1� t

′
0� has the same value ��r1�.

If the event horizon exists (i.e. ��r1� < 	 for t0 → 	 in (17.62)), then t1 goes to a
finite limit tout as t0 → 	. This means that, although the particle at r = r1 will always
be visible to the observer A, he/she will see it only up to the instant t = tout on the
particle’s clock. The signal sent out from r = r1 at t = tout will reach A after an infinite
time (t0 → 	), i.e. never. This, in turn, means that the worldline of the particle at r = r1

will intersect the event horizon of A at the instant t = tout. Moreover, a tout <	 exists for
every r1 < rh. Consequently, when the event horizon exists, each particle different from
A will be visible to A only for a finite period of its history and will eventually escape
from A’s field of view through the horizon. The crossing of the horizon occurs in the
infinite future of A. The farther away the particle, the shorter the period of its history
that will be visible to A.

The necessary and sufficient condition for the existence of a particle horizon is the
convergence of the integral in (17.62) to a finite limit at t1 → 0. (In those models that
have no initial singularity, it is the convergence to a finite limit at t → −	. The analysis
of this second case is similar and will be omitted here.) When the integral is finite at
t1 → 0,

��r1� =
∫ t0

0

d�
R���

def=��t0� (17.63)

determines the farthest particles from which the observer at r = 0 could have received a
light signal up to t0. If ��r1�−→

t1→0
	 in (17.62), then the observer at r = 0 could receive

signals from all other particles for any t0. At fixed t0, (17.63) is an equation of a 2-
dimensional sphere. Since 1/R > 0, the function ��t� is increasing. This means that, if
the particle horizon exists, then with time still more particles come within it. Whether
every particle will eventually enter the particle horizon depends on whether the integral
in (17.63) has a finite limit at t0 → 	. If it has, then, according to the previous definition,
the event horizon exists and some particles will never enter A’s field of view.
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The first signal received by an observer A from each particle is the signal sent out at the
initial singularity at t= 0. However, by Eq. (17.13), the signal sent out at te = 0 (for which
R�te�= 0) is received with an infinite redshift. This means that in the Robertson–Walker
models the initial singularity is not observable.1

In the models that contract from R = 	 at t = −	 and possess a particle horizon,
Eq. (17.13) gives 1 + z = 0 at te = −	. Since 1 + z = �o/�e, in these models the first
signal received from each particle has zero wavelength at the observation point, i.e. is
infinitely blueshifted.

In the Friedmann models with � = 0 the particle horizons do exist.
The two kinds of horizon were defined above for observers comoving with matter.

However, one can also consider observers moving independently of the matter back-
ground. In some cosmological models there exist horizons also for such observers: irre-
spective of how fast the observer moves towards a given worldline of matter, he/she will
never see any event on that worldline if the line is sufficiently far from the observer’s
starting point.

Rindler’s paper contains several examples of horizons in various R–W models; readers
are advised to consult that paper for further information.

There exists one more type of horizon: the apparent horizon (see Sections 14.11 and
16.4). In a Universe expanding from a singularity, it is a closed hypersurface at which both
the inward- and the outward-going light rays are diverging, i.e. at which the expansion
scalar of any bundle of emitted light rays is positive. This notion plays no useful role
in the R–W cosmology; it applies mainly to black hole models. Because of the peculiar
properties of the R–W models, it is actually easier to interpret an apparent horizon in
the more general Lemaître–Tolman model. However, we will calculate its position in the
Friedmann models for completeness, as an exercise. The calculation is simpler in the
coordinates of (17.3). The tangent vector field to a bundle of null geodesics emanating
radially from a sphere is found by transforming (17.11) with use of (17.2). Dropping
primes, the result is

k� =
[

1
R
�
 

R2

√
1−kr2�0�0

]

� (17.64)

where  = +1 for outward-going and  = −1 for inward-going rays. The expansion scalar
of this bundle is

2� = k�
� = 1√−g
�
√−gk�� �� � (17.65)

Calculating this and substituting for R�t from (17.32) with the + sign (we consider an
expanding Universe) we find that � > 0 is equivalent to

r
√

2�/R−k√
1−kr2

+ > 0� (17.66)

1 This is not a universal property of all cosmological models; in Chapter 18 we will see that a typical situation in the
Lemaître–Tolman cosmological model is an infinite blueshift for rays emitted from the initial singularity.
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This is fulfilled for an outward-going bundle ( = +1), and it will be fulfilled also for an
inward-going bundle ( = −1) when

R < 2�r2 = 2G�

c2
r2� (17.67)

This always holds in a vicinity of the Big Bang singularity; this is a region of past-trapped
surfaces. Its envelope, where R = 2�r2, is the past apparent horizon. Note from (17.17)
and (17.2) that, in the coordinates we are now using, rR is the source area distance
from the singularity at R = 0. Then, by analogy between (17.28) and the Newtonian
equation (17.54), note from (17.27) that �r3 is equal to the mass contained within the
source area distance rR from the singularity. Thus (17.67) can be written in the equivalent

form rG < 2m, where m
def=G�r3/c2. This is, not accidentally, similar to the condition

defining the interior of the horizon in the Schwarzschild solution. The meaning of this
will become clearer in the Lemaître–Tolman model; see Section 18.8.

17.8 The inflationary models and the ‘problems’ they solved

(The views expressed in this section are A. K.’s. J. P. should not be held responsible for
them.)

The R–W metrics are oversimplified models of the Universe. When taken literally,
they can lead to puzzles or problems, most of which do not exist in the L–T and Szekeres
models of Chapters 18 and 19. Two of such ‘problems’ gave rise to a booming field of
activity in cosmology – the inflationary models. They are of marginal interest for basic
relativity, but gained such prominence that we have to mention them.

The two problems are the ‘flatness problem’ and the ‘horizon problem’ (Guth, 1981).
In brief, the ‘flatness problem’ is this. With � allowed,1 the density at k = 0 is found
from (17.27) and (17.28) to be c2���cr = 3Ṙ2/R2 +�. Consider the quantity

�̃
def= ��cr

�
−1 = −kR

2�
� (17.68)

where � is defined in (17.32). Since in the ever-expanding models R → 	 as t → 	,
the parameter �̃ will tend to infinity, unless k = 0. To estimate the value of �̃ by today,
we take the � = 0 Friedmann model,2 so that (17.27) holds. We will calculate how
�̃ has changed since the instant when the average density in the Universe was equal
to that in the atomic nucleus, �N = 1014 g cm−3; the present density is assumed to be
�0 ≈ 10−31 g cm−3. Using (17.27) we obtain �̃0/�̃N = ��N/�0�

1/3 = 1015.
At present �cr/�0 ≈ 0�475 × 102 (see after (17.30)), which means �̃0 ≈ 46�5. This

discrepancy seems large. However, in order that the present value �̃0 can be so small, at
the epoch of nuclear density it had to equal �̃N = 10−15�̃0 ≈ 4�65×10−14. Hence, during
the first moments of the existence of the Universe the density had to be very close to the

1 We include the cosmological constant for later reference, although the original paper (Guth, 1981) assumed � = 0.
2 In the original paper (Guth, 1981), the radiation source with � = 0 and � = 3p was considered, but the conclusion was

similar.
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critical density, or else the present discrepancy between these two quantities would be
huge.1 Why had the initial conditions of the evolution of the Universe been set up in such
a way that it was described by the flat Friedmann Universe with such a high precision?

The ‘horizon problem’ needs to be explained first qualitatively; see Fig. 17.7. It is
conventionally assumed that the emission process of the cosmic microwave background
(CMB) took place instantly, at the last scattering instant (also called the recombination
instant), tls ≈ 3 × 105 years after the Big Bang (BB) (Lang, 1999, Vol. II). A light cone
with its vertex at the BB encompasses a certain volume at t = tls; Fig. 17.7 shows two
such cones. Particles that are still outside P’s light cone at tls could not have exchanged
any interaction with P because the interaction would have had to propagate faster than
light. The past light cone of a contemporary observer, with the vertex at O, encompasses
at tls a much larger volume than does any BB cone. Yet the radiation received by O from
points in the t= tls space has the same temperature, as if the various sources had interacted
before, to achieve equilibrium. How is this possible? This is the ‘horizon problem’.

P Q

O
t

r

BB

ls

Fig. 17.7. The ‘horizon problem’ in a Robertson–Walker Universe – an illustrative sketch
in comoving coordinates. The line BB is the Big Bang set, the line ls is the last scattering
hypersurface – the time by which the CMB radiation was emitted. O is the observer today. The
past light cone of the observer O encompasses a much larger volume at t = tls than the volume
inside any single light cone emitted at the Big Bang (two of which are shown). Hence, the different
regions we see today had had no chance to come into causal contact prior to the emission of the
CMB radiation, yet the temperature of the CMB radiation coming from them is nearly the same.
Inflationary models avoid this problem by replacing the part of spacetime prior to tls with a model
that expands much faster than any matter-filled R–W model. In effect, inflation makes the light
cones at P and Q much wider – encompassing the whole interior of O’s past light cone at t = tls.

1 The inflationary models consider still earlier periods, where the fine-tuning is by several orders of magnitude finer. We want
to be conservative and do not go too far from laboratory physics.
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To formulate the problem in numbers, we have to assume a model of matter for the
period prior to tls. After tls we assume dust. It is usually assumed that the Universe prior
to tls was radiation dominated, i.e. that the energy-density of radiation was larger than
the energy-density contained in the massive particles. Since radiation is supposed to obey
the Maxwell equations, and the energy-momentum tensor of a Maxwell field is traceless
(see (13.10)), it is assumed that a radiation-dominated matter is a perfect fluid with the
property T�

� = 0. This implies the equation of state � = 3p, and then the equation of
motion (17.26) becomes ��R4 = �0 = constant. Substituting this in (17.24) with � = 0
we obtain an equation for R that is easily integrated with the result

R =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

√

�0/�3k�−k

(

t− tB − 1
k

√

�0/3
)2

√

2
√

�0/3 �t− tB�

when k �= 0�

when k = 0�
(17.69)

For simplicity, and following Guth (1981), we take k = 0.1 We also take r = 0 for the
observer’s position, and tB = 0. The radius of the visible region of the Universe for an
observer at time t0 is calculated in the same way as in Eq. (17.63), with tls instead of
t = 0. With k = 0, ��r1� = r1 and the geometric radius of the visible region in the t = tls
space is

�0
ls = R�tls�

∫ t0

tls

dt
R�t�

= 3
(

tls
2/3t0

1/3 − tls
)

� (17.70)

Taking t0 = 15 × 109 years for the present age of the Universe and tls = 3 × 105 years
(Lang, 1999, Vol. II) we obtain �0

ls = 3�23×107 years.
The geometric radius of the intersection of the light cone originating at t = tB = 0 with

the space t = tls is calculated in a similar way, but with R given by (17.69):

�r
ls = R�tls�

∫ tls

0

dt
R�t�

= 2tls = 6×105 years� (17.71)

The observed region thus has the radius 53.8 times larger, and contains 1�56×105 times
as many particles.2

The solution of these two problems, proposed by Guth (1981), was that the equation
of state of matter during the early phase of evolution (between 10−34 and 10−32 s after the
BB) was such that the Universe expanded exponentially (‘inflated’), so that the radius
of a light cone originating at the BB was, at tls, much larger than the radius �0

ls of the
visible region of the Universe. In Guth’s original paper, the de Sitter metric (8.85) was
proposed as the model of the inflation process. This metric can formally be treated as

1 The difference with the cases k �= 0 is smaller than the uncertainties resulting from statistical errors in determining the
astrophysical quantities, and from controversies between different schools in interpreting the observations.

2 Guth (1981) compared the two radii at an earlier time than tls and obtained a much more impressive ratio of particle
numbers, 1083.



17.8 The inflationary models and the ‘problems’ they solved 285

a perfect fluid solution of Einstein’s equations with the equation of state � = −p.1 In
later papers, the source was assumed to be a scalar field, i.e. an entity ��x� whose field
equation is g��
� −�V/��= 0, where the potential V��� is chosen so as to give � the
desired behaviour. To cause inflation, it is enough that the energy-momentum tensor

T� = ��+p�u�u −pg�� u� = ��� /
√

��� �

��

� = ��� �

�/2−V� p = ��� �


�/2+V (17.72)

has the property p < −�/3 (Peebles, 1993).
Thus, the two ‘problems’ were solved within the class of R–W models by postulating

a new equation of state. They turned out to be problems of choosing a model rather
than fundamental problems of cosmology. In effect, they just implied that the matter of
the very early Universe must have obeyed an equation of state different from p = 0 and
p = �/3.

It is a mystery why the inflationary idea has become such a huge success with cosmol-
ogists. It gave rise to hundreds if not thousands of papers, and the subject cannot be
avoided by anyone interested in cosmology. This is so in spite of two circumstances:

1. The two ‘problems’ that the inflationary models were designed to solve had not been
perceived as much of a problem before. So much so that Guth (1981) felt compelled
to argue at length to convince readers that they were indeed problems.

2. Inflationary models created more problems than they solved.

The ‘flatness problem’ is completely transformed if we consider the Lemaître–Tolman
(L−T) and Szekeres models (see Chapters 18 and 19). In those models, the curvature
index is not a constant, but a function of a spatial variable. If we find that it is unusually
close to zero, then this means that we live in a privileged position in space. The ‘horizon
problem’ finds a simple solution in the L−T model without recourse to inflation; see
Section 18.17. Besides, inflation would have solved this problem if it were able to provide
a model in which the Universe is initially inhomogeneous and acquires the uniform
temperature of the CMB radiation in the course of its evolution. No such model has been
presented. All the inflationary models are homogeneous all the time, in the best case they
are anisotropic, of various Bianchi types. A great majority of them has a R–W geometry
all the way. So all inflation has done so far in solving the ‘horizon problem’ is to say:
these models expand so fast that they might homogenise the CMB radiation!

We will not go into details; overviews of the inflationary scenario may be found
in textbooks on cosmology (Peebles, 1993; Padmanabhan, 1993). The main virtue of
the inflationary idea is the collection of speculations and hypotheses that it inspired
(e.g. concerning the formation of structures in the Universe) rather than solid calculated
results.

1 Note, however, that the corresponding energy-momentum tensor T� = −pg� does not define any velocity field. This gave
rise to the following question: how are the local directions of flow defined after inflation stops? This was listed by Guth
(1981) as one of the problems – created by the idea of inflation – that needed to be solved.
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Among the problems that the idea of inflation created are these:

1. The so-called ‘graceful exit’ problem – once inflation sets in (its onset being a
problem in itself), it cannot end.

2. The cosmological constant problem – � is determined by the value of the scalar
field at the end of the inflationary period, and it could be arbitrary. Why is it so
close to zero?

3. Inflation overdid the solution of the ‘flatness problem’ – it implies that k must be
very close to zero, i.e. that the density of matter in the Universe must be very near the
critical one. Since observations of luminous matter cannot honestly account for more
than 20% of the critical density (Coles and Ellis, 1997), inflation had to postulate
the existence of ‘dark matter’ that makes up for the discrepancy. For reasons that we
will not discuss here, this should not be any kind of matter known from laboratory,
but matter consisting of hypothetical particles considered in high-energy physics
(Peebles, 1993; Padmanabhan, 1993). However, such matter has not been observed
directly.

4. Currently, it is assumed that the missing matter is made up for by the cosmological
constant (see the next section), and the numbers now favoured by astronomers are:
30% of the total density for ordinary (but not necessarily luminous) matter and 70%
for the cosmological constant (Perlmutter et al., 1999). This creates another problem:
the cosmological constant does not change with time, while the mass density falls
with time by the law � ∝ R−3. They cannot be so close to each other at all times,
which means that we live in a special epoch. This is a problem very much like the
‘flatness problem’.

Finally, let us mention a problem that does not seem to bother cosmologists. Inflation
is supposed to have taken place between 10−34 and 10−32 s after the BB. Note that, both in
the dust era (p= 0 for t ≥ 3×105 years) and in the radiation era (p= �/3 for t ≤ 3×105

years), the matter density obeys ��t− tB�
2 = constant. Thus, taking �0 = 10−31 g cm−3

for the present density, t0 = 15 × 109 years for the present age of the Universe and
1 year = 3�156×107 s, we conclude that during the inflation period the density must have
been greater than 2�24 × 1068 g cm−3. This is far outside the range of laboratory physics
and of any astronomical observations. Thus, if we wish to stick with the tradition that
physics is an empirical science, inflation cannot be called a physical theory.

Some more problems created by inflation were discussed by Rothman and Ellis (1987).

17.9 The value of the cosmological constant

Perlmutter and collaborators (1999) used a collection of high-redshift supernovae to find
the best-fit cosmological model in the collection that included different values of the
present density and of the cosmological constant. The underlying idea was that supernovae
of a certain kind, called type Ia, are ‘standard candles’, i.e. that their absolute luminosity
at maximum is the same for all of them. Thus, knowing L and measuring �O and zO
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in (16.115), one can calculate the source area distances rG. (In astronomy, a measure of
�O, is used, called apparent magnitude, m, and defined by m= −2�5 log10 �O +constant.)
Then, (16.117) and (17.40) provide a relation between rG and the �H0� q0� parameters. By
plotting magnitude against redshift, while knowing the value of H0, one can determine q0

and thus discern between different evolution laws. This gives, in principle, the possibility
to determine q0 if we know all the other parameters with sufficient precision.

The procedure used by the Perlmutter team requires advanced knowledge of astronomy,
and we cannot go into any of its details in this book. The authors took several distur-
bances into account, such as extragalactic extinction of light from the supernovae and
the possibility of gravitational lenses in the line of sight or evolutionary changes in the
supernovae-to-be (called progenitors). The result they obtained is that � = 0 is strongly
inconsistent with the measurements. With the Hubble parameter H0 = 63 km s−1 Mpc−1,
the best fit implies � accounting for more than 50% of the observed density. With k= 0,
this gives �M = 0�28+0�05

−0�04 as the percentage of mass in the form of matter, the remaining
0.72 being the cosmological constant. An additional bonus is the determination of the
age of the Universe, t0 = �14�5±1�0�×109 years.

This result will undoubtedly be checked by other teams.1 Meanwhile, we can take
it with caution – supernova explosions are rare and distant events. It is rather bold
to assume that we know enough about the mechanism of the explosion, and about
the propagation of light from it to us, to use the brightness measurements for such
intricate calculations. However, the quoted result has been welcomed by the astronomical
community, and the now-standard model of the Universe is the Friedmann model with
k = 0 and −c2� = 0�72�cr.

Meanwhile, Celerier (2000) interpreted the same observations in terms of the Lemaître–
Tolman model (see Chapter 18). She found that they can be reproduced by an inhomo-
geneous mass distribution, with no implications for the value of �, and � = 0 not being
excluded.

17.10 The ‘history of the Universe’

The realisation that the Universe might have a history was coming only gradually to the
minds of astronomers and physicists. The Hubble (1929, 1936) discovery of the expansion
of the Universe and the realisation that the Friedmann (1922)–Lemaître (1927) solutions
of Einstein’s equations account for it set this line of thinking in motion. Since the Universe
had been denser in the past, it must have been hotter as well. Some time ago then, it should
have been sufficiently hot that all atoms were ionised. When the temperature dropped
below the ionisation temperature, radiation had to be emitted. Expansion of the Universe
should have cooled the radiation. Assuming that it had a black-body spectrum all the

1 The subject of ‘dark energy’ is relatively new and can be followed only through papers and conference proceedings. An
overview of the situation can be found in Klapdor-Kleingrothaus (2001).
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time, the evolution of temperature can be calculated. The intensity I of the black-body
radiation as a function of frequency ! is given by

I�!� = 2h!3

c2 �exp �h!/�kT�−1��
� (17.73)

where h and k are the Planck and Boltzmann constants, respectively, and T is the
temperature of the radiation. The received frequencies of radiation obey (16.20), so
!�1+ z� = !e = constant along each ray. Consequently, to keep the form of the function
I�!� in (17.73) unchanged, we must have T�1 + z� = constant. That radiation should
still be present in the Universe today. This idea first occurred to Gamow (1948) and
collaborators (Alpher and Herman, 1948). The discovery came in 1965: the radiation
exists and has the temperature 2.73 K (Dicke et al., 1965; Penzias and Wilson, 1965).

The speculation went on. Atomic nuclei are built of protons and neutrons. Of these,
only protons are stable. All the known atomic nuclei could, in principle, be built by
adding protons and electrons consecutively one by one to the nucleus of hydrogen (the
proton). Still farther in the past, the Universe must have been hot enough to crash all
heavier nuclei; only protons, neutrons and loose electrons could survive. Could it have
been that matter originally consisted only of protons and electrons, and heavier nuclei
came into existence through collisions between these? This idea again occurred to Gamow
(1948) and Alpher and Herman (1948). Simulations, with use of computers, indicated that
something like this was going on, but only the first few nuclei of the Mendeleev table
could be created in this way: about 25% of the mass of the Universe would be converted
into helium 4He. Tiny traces of deuterium, helium 3He, lithium, beryllium and boron could
be created, but the falling temperature of the Universe would stop any further synthesis
(Wagoner, Fowler and Hoyle, 1967). (Heavier elements are synthesised later, in the stars
(Fowler, 1967), but this process is not within the domain of cosmology.) These calculated
proportions of nuclides were confirmed by observations (Boesgaard and Steigman, 1985).

Thinking along these lines, cosmologists reconstructed the possible sequence of events
in the evolution of the Universe. Some of the conclusions have been verified observa-
tionally (like the ones mentioned above); some others remain speculations. We will not
go into details since they are not within the domain of relativity; they can be found in
books on astrophysical cosmology (e.g. Padmanabhan, 1993). Here we give only a short
list of the most important events.

The leading motive in theoretical cosmology was this: as we proceed backwards in
time, approaching the singularity, the density and temperature of matter become arbitrarily
high. Thus, whatever processes we know or can think of that should take place at high
temperatures, must have taken place in the early Universe. Why the BB explosion occurred
and what preceded it are questions that cannot be answered by means of the currently
existing physics or mathematics. Thus, they are usually not asked and we take the BB as
a given thing.

The natural and interesting question is: at precisely what times the consecutive stages of
evolution took place. The numbers given in different sources are different. The selection
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of numbers and references given below is random and we make no claim to being precise
or up to date.

Assuming that k= 0 and �/�cr = 0�27, −c2�/�cr = 0�73, the values currently favoured
by astronomers, the BB explosion took place �14�5 ± 1�0�× 109 years ago (Perlmutter
et al., 1999).

During the first 10−34 s, the Universe had a temperature of about 1027 K and was
supposedly described by a ‘Grand Unified Theory’ (GUT) that unites the strong nuclear,
weak nuclear and electromagnetic interactions (Lang, 1999, Vol. II). The theory is still
in the making. The elementary particles we know today did not necessarily exist then,
and matter might have been composed of loose quarks and gluons.

Between 10−34 and 10−32 s after the BB, inflation took place (see Section 17.8). No set
of observations necessarily requires inflation for its explanation, but inflation is widely
believed to be a proven theory.1 At the end of the inflation period, the elementary
particles we know today should have come into existence, together with seeds for structure
formation. The reasons, mechanism and exact instant of creation of the seeds are still a
matter of debate (Lang, 1999, Vol. II). The BB did not have to be spatially homogeneous
(see Chapter 18), and the inhomogeneities may have existed in the Universe from the
very beginning, but this idea is not popular in the astronomical community.

About 1 s after the BB, neutrinos decoupled and should thereafter propagate freely
through space, similarly to the CMB photons. During the next few seconds, protons,
neutrons, electrons, positrons and photons existed in thermal equilibrium, at temperatures
T ≥ 1010 K (Misner, Thorne and Wheeler, 1973).

The formation of light atomic nuclei occurred between 2 and 1000 s after the BB
(Misner, Thorne and Wheeler, 1973). At the end of this period, the temperature dropped
to about 109 K.

Later, the Universe continued to be a radiation-dominated plasma, but the radiation
mass-density �r (which obeyed �rR

4 = constant, with R ∝ 1/T , as follows from (17.73)
and (17.13)) was decreasing faster than the mass-density of massive particles, �m (obey-
ing �mR

3 = constant). About 3 × 105 years after the BB (Lang, 1999, Vol. II), and at
temperatures of the order 103 K, �r became smaller than �m and radiation decoupled
from matter, having too little energy to ionise the atoms that had already captured their
electrons. It evolved into the CMB radiation of temperature 2.73 K that is observed
today.

Later, structures like galaxies, galaxy clusters, superclusters and still larger conden-
sations, and voids, must have formed. Even though the process of structure formation
should have proceeded by gravitation and should be well within the domain of classical
gravitation theory, it is still poorly understood. There exists no quantitative account of
the emergence of structures, only a general firm belief that structures came about by
gravitational magnification of fluctuations created very early, nobody knows how (see
above). The Lemaître–Tolman model offers some interesting possibilities in this respect;

1 Observations confirming the R–W models are sometimes appropriated as confirmations of inflation.
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see Sections 18.5 and 18.6. There is even no general agreement on what came earlier:
whether stars condensed out of galaxies that had been formed before, or galaxies came
into being by pulling pre-existing stars together.

As this very brief account shows, the only input from relativity to this subject was the
idea that the Universe began hot and dense, and then cooled as it expanded. Everything else
is thermodynamics and particle physics. The fact that observations confirm some of the
results does not uniquely point to the R–W models. Even in the R–W class, observations
are not precise enough to define the evolution uniquely, so there is certainly enough room
to consider more general models. It is often claimed that the high isotropy of the CMB
radiation (with maximal temperature anisotropies of "T/T ≈ 2�93 × 10−6 at the angular
scale of about 0�9�; see Hu (2004)) proves that our Universe has an R–W geometry.
Such statements are, however, meaningless without a quantitative account of interaction
between the CMB radiation and inhomogeneities in matter distribution. Existing estimates
(see Section 18.12) show that the interaction is weak, and no temperature anisotropies
larger than 10−5 should ever have been expected.

The above remarks were meant to convince the reader that, by considering more general
(L–T and Szekeres) cosmological models, one does not in any way deny the confirmed
successes of the R–W cosmology. The more general models should fill in the finer details
that cannot be captured in the R–W geometries, like the structure formation. The R–W
models still remain valid as a rough first approximation to a more detailed description.
Very unfortunately though, there is a tendency in the astronomical community to treat
any departure from the R–W class of geometries as a blasphemy that requires instant
punishment.

17.11 Invariant definitions of the Robertson–Walker models

It is often difficult to recognise a known metric when it is represented in an unfamiliar
coordinate system. Metrics of high symmetry can be disguised in particularly elaborate
ways; an example is the Schwarzschild solution represented in the Lemaître–Novikov
coordinates. The same applies to the R–W metrics, so we shall list here some invari-
ant criteria by which to recognise them. One invariant criterion, that has already been
presented in Chapter 10, is by the symmetry group, but it requires solving the Killing
equations and is therefore rather laborious.

The following set of properties is a necessary and sufficient condition for a spacetime
to be in the R–W class:

1. The metric obeys Einstein’s equations with a perfect fluid source.1

2. The velocity field of the perfect fluid has zero rotation, shear and acceleration.

1 Some authors considered the R–W metrics with nonperfect fluid and/or shearing/rotating/accelerating contributions to the
energy-momentum tensor. Those contributions cancel each other and leave no trace in the metric tensor – which means that,
from the point of view of the 4-dimensional geometry, they are undetectable. Hence, considering them is in contradiction to
the Ockham razor principle.
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The necessity of these properties follows by calculation. The proof of their sufficiency
follows from (15.43)–(15.51). Those equations imply that a perfect fluid solution with
� = � = 0 = u̇� must be conformally flat. All conformally flat perfect fluid solutions
were found by Stephani (1967a) (Stephani et al., 2003, Theorem 37.17, p. 601). They
have � = � = 0, but in general u̇� �= 0. Specialising them to the case u̇� = 0 we obtain
the R–W models.

In this text, we are concerned only with expanding and nonempty R–W models for
which � �= 0 �= �+p, and these inequalities are always tacitly assumed. The R–W model
with �= 0 is the Einstein static Universe; the ones with �+p= 0 are the de Sitter vacuum
Universes (the Minkowski spacetime is included among them as the limit �= 0�; neither
is appropriate for describing the observed Universe.

Condition 1, that is, the perfect fluid source, is essential. Examples are known
(Krasiński, 1997) of solutions for which �= � = 0 = u̇�, but which are not R–W because
the source is not a perfect fluid.

There is another invariant definition of the R–W spacetimes, which makes no use of
the field equations. The following set of properties is a necessary and sufficient condition
for a spacetime to be R–W:

3. The spacetime admits a foliation into spacelike hypersurfaces of constant curvature.
4. The congruence of lines orthogonal to the leaves of the foliation consists of shearfree

geodesics.
5. The expansion scalar of the geodesic congruence has its gradient tangent to the

geodesics.

17.12 Different representations of the R–W metrics

Several representations of the R–W metrics are met in the literature. The forms that appear
most often are (17.1), (17.3), (17.5) and (17.7). Another frequently used representation is:

ds2 = dt2 −R2�t�
[

dr2 +f 2�r�
(

d�2 + sin2 � d�2
)]

� (17.74)

where

f�r� =

⎧

⎪⎪⎨

⎪⎪⎩

sin r for k > 0�

r for k = 0�

sinh r for k < 0�

(17.75)

The three cases of (17.75) can be written in one formula as

ds2 = dt2 −R2�t�

(

dr2 + 1
k

sin2�
√
kr�

(

d�2 + sin2 � d�2
)
)

� (17.76)

The range of r is finite or infinite, depending on the sign of k and on the coordinates
used, but this is easy to recognise in each case. Note that in the case k > 0 the coordinates
of (17.3) cover only half of the 3-sphere t = constant �0 ≤ r < 1/k1/2� and are unsuitable
for considering the geometry in the vicinity of the equator r = k−1/2.
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Rather unfamiliar is the form of the R–W metric that results from solutions with two
commuting Killing vector fields. The easiest way to find it is to demand that the metric
be independent of y and z while the spaces t = constant have constant curvature. Then

ds2 = dt2 −R2�t�
[

dx2 +f�x
2 dy2 +f 2�x�dz2

]

� (17.77)

where

f�x� =

⎧

⎪⎪⎨

⎪⎪⎩

sin�
√
kx� for k > 0�

x for k = 0�

sinh�
√−kx� for k < 0�

(17.78)

Yet another form of the R–W metrics follows as a limit of plane symmetric solutions.
Then

ds2 = dt2 −R2�t�
[

dx2 + e2Cx
(

dy2 +dz2
)]

� (17.79)

where C is a constant. When C = 0, this is evidently the flat R–W metric; when C �= 0,
it is the k < 0 R–W metric. The k > 0 R–W metric is incompatible with plane symmetry.

The R–W models result in quite unfamiliar form from the Goode–Wainwright (G–W)
representation of the Szekeres models, which are discussed in Section 19.8. One of the
G–W forms is:

ds2 = dt2 −S2
[

W 2f 2!�z
2 dz2 + e2!

(

dx2 +dy2
)]

� (17.80)

where

W 2 = 1
 −kf 2

�

e! = f�z�

a�z� �x2 +y2�+2b�z�x+2c�z�y+d�z�
�

(17.81)

 and k are arbitrary constants, and S�t�� f�z��a�z�� b�z�� c�z� and d�z� are arbitrary
functions subject to

ad−b2 − c2 =  /4� (17.82)

The slices t = constant of the metric (17.80)–(17.82) are spaces of constant curvature
equal to k/S2. The t-coordinate lines are shearfree geodesics with the expansion scalar
depending only on t. This is a characteristic property of the R–W spacetimes (see points
3, 4 and 5 in the previous section).

The other G–W form is:

ds2 = dt2 −S2
[

A2 dz2 + e2!
(

dx2 +dy2
)]

� (17.83)

where

e! = 1

1+ 1
4k �x

2 +y2�
�

A = e!
{

a�z�

[

1− 1
4
k
(

x2 +y2
)
]

+b�z�x+ c�z�y

}

�

(17.84)
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S�t�� a�z�� b�z� and c�z� are arbitrary functions and k is an arbitrary constant. This metric
has exactly the same properties as (17.80)–(17.82).

17.13 Exercises

1. Verify that the Einstein tensor for the R–W metric is diagonal in all the coordinate representations
(17.1), (17.3), (17.5) and (17.7).

2. Prove that a null geodesic sent off radially from any point in an R–W spacetime, i.e. with
�̇0 = �̇0 = 0 at the initial point, will remain radial along its whole length.

3. Let ��t� r� be any spherically symmetric (possibly inhomogeneous) finite distribution of matter
(i.e. ��t� r� = 0 for r > r0, r0 < 	). Let A be a point inside this distribution located at r = r1.
Show that the total (Newtonian) gravitational force exerted on the point A by matter outside
the sphere r = r1 is zero.

4. Verify that the various forms of the R–W metrics given in Section 17.11 do fulfil the invariant
criteria.
Note. It is not advisable to try to prove the equivalence of the G–W forms to R–W by explicit
coordinate transformations.
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Relativistic cosmology III: the Lemaître–Tolman
geometry

18.1 The comoving–synchronous coordinates

The curvature coordinates introduced in Section 14.1 were convenient for investigating
the Schwarzschild solution. However, for other purposes other coordinates might be more
useful, the comoving coordinates are among them. They can be introduced whenever
there exists a timelike vector field u� in the spacetime, for example, the 4-velocity of
matter. By definition, they are coordinates in which the (contravariant) vector field u�

has only the time coordinate, thus u�
′ ∝ ��

′
0. They exist always – one has to solve the

set of three equations u�x�
′
�� =∗ 0 for �′ = 1�2�3. Then, the transformations preserving

the comoving coordinates are xI = f I�xJ
′
�� x0 = f 0′

�xJ
′
�x0′ +g�xJ

′
�.

If the vector field u� has zero rotation, then the comoving coordinates can be chosen
so that, in addition, they are synchronous, that is, in these coordinates the metric tensor
has no time–space components. Here is the proof that vanishing rotation is a necessary
condition.

Suppose that comoving–synchronous coordinates �x�
′
� exist. Then u�′ = 	�0

�′ and, on
changing from �x�

′
� to any other coordinates �x��, we obtain u� = f�� 	, where f = x0′

.
Because of u�u

� = 1 we have f�
 u

 = 1/	, and then u̇� = f�� 	�
 u


 +	f��
 u

 − 1

2u
�u


g
���. But u�u
g
��� ≡ 2u
u
�� = 2u

(

	f�
� +	�� f�

)

. From all this, we find �� = 0.
The proof that �� = 0 is also a sufficient condition for the existence of synchronous

coordinates is somewhat complicated. If �� = 0, then also
√−gw� = ����uu��� = 0.

This can be written as u∧ du = 0, where u
def= u�dx�. This means that there exists a

1-form � such that du = � ∧u. Then there exist such functions f and 	 that u = 	df ,
i.e. u� = 	f�� (Flanders, 1963, Section 7.2). Choosing x0′ = f as the time coordinate, we
see that it is synchronous.

The comoving–synchronous coordinates will be used throughout the remaining part of
this chapter.

18.2 The spherically symmetric inhomogeneous models

In a spherically symmetric spacetime in which the source in Einstein’s equations is a perfect
fluid, rotation is necessarily zero (see Exercise 1). Hence, the comoving–synchronous
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coordinates can be introduced, in which, in consequence of (8.51), the metric has the
form1

ds2 = eC�t�r� dt2 − eA�t�r� dr2 −R2�t� r�
(

d�2 + sin2 � d�2
)

� (18.1)

and the velocity field is

u� = e−C/2��0� (18.2)

Note that R is connected with S, the area of the surface �t = constant� r = constant�, by
the Euclidean relation S = 4�R2. Hence, R is called the areal radius. (N.B. this is the
source area distance, defined in (16.114), between an observer at an arbitrary location
and the centre at R = 0.)

The Einstein equations for this metric (in coordinate components), with the cosmolog-
ical constant taken into account, are

G0
0 = e−C

(
R�t

2

R2
+ A�t R�t

R

)

− e−A

(

2
R�rr
R

+ R�r
2

R2
− A�r R�r

R

)

+ 1
R2

= ��−�� (18.3)

G1
0 = e−A

(

2
R�tr
R

− A�t R�r
R

− R�t C�r
R

)

= 0� (18.4)

G1
1 = e−C

(

2
R�tt
R

+ R�t
2

R2
− C�t R�t

R

)

− e−A

(
R�r

2

R2
+ C�r R�r

R

)

+ 1
R2

= −�p−�� (18.5)

G2
2 = G3

3

= 1
4

e−C

(

4
R�tt
R

−2
C�t R�t
R

+2
A�t R�t
R

+2A�tt +A�t
2 −C�t A�t

)

−1
4

e−A

(

4
R�rr
R

+2
C�r R�r

R
−2

A�r R�r
R

+2C�rr +C�r
2 −C�r A�r

)

= −�p−�� (18.6)

Equation (18.3), multiplied by R2R�r , may be rewritten as
(

R+ e−CRR�t
2 − e−ARR�r

2 + 1
3
�R3

)

�r −R
(

e−CR�t
2
)

�r + e−CA�t RR�t R�r

= ��R2R�r � (18.7)

But, in consequence of (18.4), the second and third terms on the left-hand side sum up
to zero, so in fact (18.7) is

(

R+ e−CRR�t
2 − e−ARR�r

2 + 1
3
�R3

)

�r = ��R2R�r � (18.8)

1 Several different notations are used in the literature for the components of this metric. We have adopted here a notation that
will, we hope, avoid clashes.
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Multiplying it by R2R�t, we transform Eq. (18.5) to the equivalent form
(

R+ e−CRR�t
2 − e−ARR�r

2 + 1
3
�R3

)

�t = −�pR2R�t � (18.9)

From (18.8) we can now recognise that the quantity

m
def= c2

2G

(

R+ e−CRR�t
2 − e−ARR�r

2 + 1
3
�R3

)

(18.10)

has all the properties we expect from mass: assuming R = 0 at r = r0 and integrat-
ing (18.8) from r0 to a current r in the hypersurface of constant t, we obtain m�r� =
∫ r

r0
4��c2R2R�r ′ dr ′ ≡ ∫ R�r�

0 4��c2u2 du. Then, Eq. (18.9) can be read as the energy-
conservation equation: the time-derivative of mass equals volume-work.

In the derivation of (18.8) and (18.9) we assumed R�r �= 0 �= R�t. The case R�t = 0 is
not interesting for cosmology: it requires, from (18.4), that either R�r = 0, which leads to
the Nariai (1950) solution, or A�t = 0, which, by virtue of (18.3), has constant density.
But with R�r = 0, Eqs. (18.3)–(18.6) do admit an interesting solution; see Section 19.4.

At the surface of a spherical star, where p = 0, Eq. (18.9) reduces to m�t = 0, i.e. the
total mass of a star immersed in vacuum is constant.

The definition of mass given above (in the case �= 0) was first introduced by Lemaître
(1933a), and then re-derived by Podurets (1964), but in the literature it is most often
credited to Misner and Sharp (1964).

18.3 The Lemaître–Tolman model

In order to solve (18.3)–(18.6), we have to assume an equation of state. A relation of the
type �= f�p� does not seem to be the right one in inhomogeneous models since it implies
the entropy per particle to be a universal constant (see the end of Section 15.5). Lacking
any other workable idea, the most natural equation of state is p = 0, i.e. evolution by
gravitation only. We shall assume this now.

From (12.78), with p = 0 the fluid will move along timelike geodesics. Acceleration
being equal to zero then implies C�r = 0 in (18.1) (see Exercise 2), and the transformation
t′ = ∫

eC/2 dt leads to C = 0 in the new coordinates. Then (18.4) becomes
(

e−A/2R�r
)

�t = 0� (18.11)

The case R�r = 0 has already been set aside for separate consideration; see Section 19.4.
With R�r �= 0, Eq. (18.11) is integrated with the result

eA = R�r
2

1+2E�r�
� (18.12)

where E�r� is an arbitrary function; for the metric (18.1) to have the right signature it is
necessary that E obeys E ≥ −1/2 for all r.1

1 The value E = −1/2 is admissible provided that R�r = 0 at the same location. This is a neck or wormhole – see Section 18.10
and Hellaby and Lake (1985).
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Using C = 0 and (18.12) to eliminate R�r
2 from (18.5), we obtain

2
R�tt
R

+ R�t
2

R2
− 2E

R2
+� = 0� (18.13)

Since we assumed that R�t �= 0, we multiply (18.13) by R2R�t. The resulting equation has
(�/�t�

(

RR�t
2 −2ER+ 1

3�R
3
)= 0� and the integral

R�t
2 = 2E�r�+ 2M�r�

R
− 1

3
�R2� (18.14)

M�r� being one more arbitrary function. With � = 0, this equation is formally identical
to the Newtonian equation of radial motion in a Coulomb potential. In this Newtonian
analogy, c2M�r�/G plays the role of the active gravitational mass within an r = constant
shell, and c2E�r�/G plays the role of the total energy within the same shell.

The solution of (18.14) will contain one more arbitrary function, (tB�r�), that will
appear in the combination (t− tB�r�). It is called the bang-time function, and in the case
� = 0 we will see below that it does indeed define the time coordinate of the Big Bang
singularity, which is in general position-dependent. With an arbitrary value of �, the Big
Bang will not always occur, just as in the Friedmann models.

With C = 0 and Eqs. (18.11) and (18.13) fulfilled, Eq. (18.6) becomes an identity,
while (18.3) provides the definition of the mass density:

8�G
c4

� = 2M�r
R2R�r

� (18.15)

The mass density �/c2 becomes infinite where R = 0 �= M�r and where R�r = 0 �= M�r .
The first of these is the Big Bang, which occurs necessarily whenever �= 0. The second
is a shell crossing singularity, where the mass density goes to infinity and changes sign
to become negative. At those points, the radial geodesic distance between the point
�t0� r0��0��0� and the point �t0� r0 +dr��0��0�, equal to

√
grr 
dr, becomes zero, which
means that shells of different values of the r-coordinate coincide. This singularity can
be avoided with an appropriate choice of M�r��E�r� and tB�r�; see Section 18.10. In the
Friedmann limit, defined below, the shell crossing coincides with the Big Bang.

The final solution of Einstein’s equations is

ds2 = dt2 − R�r
2

1+2E�r�
dr2 −R2�t� r�

(

d�2 + sin2 � d�2
)

� (18.16)

where R�t� r� is determined by (18.14). It was first found and interpreted by Lemaître
(1933a). Then, more of its properties were discussed by Tolman (1934) and by Bondi
(1947). It will be called here the Lemaître–Tolman (L–T) model.1 Many papers have

1 Even though Tolman made it clear that he was discussing Lemaître’s solution, and Bondi cited Tolman, for some reason,
over many years, this solution had been known in the literature as the ‘Tolman’ or ‘Tolman–Bondi’ model. It is called here
‘Lemaître–Tolman’ only to avoid confusion with the Friedmann–Lemaître models, otherwise there would be no reason to
add anybody’s name to Lemaître’s.
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been published in which various properties of the L–T model were discussed. The book
by Krasiński (1997) contains an overview of these, complete until 1994.

The mass c2M/G in (18.14) and (18.15) is the active gravitational mass that generates
the gravitational field. It is not equal to c2N/G – the sum of masses of particles that
formed the gravitating body (compare Eqs. (14.124)–(14.126)). Suppose that matter fills
a sphere V with the centre at the centre of symmetry of the space, r = r0, and the surface
at r = rS. Then c2N/G is, from (18.16),

c2N/G =
∫

V

(

�/c2
)√−g d3V ≡ 4�

∫ rS

r0

(

�/c2
)

R2R�r
√

1+2E�r�
dr� (18.17)

while the active gravitational mass M is, from (18.15):

c2M/G = 4�
∫ rS

r0

(

�/c2
)

R2R�r dr� (18.18)

Depending on the sign of E, M may be larger than N (when E> 0), smaller than N (when
E < 0) or equal to it (when E = 0). If M < N , then (N −M) is called the relativistic
mass defect – the general-relativistic analogue of the mass defect known from nuclear
and elementary particle physics. In a bound system �E < 0�, part of the energy contained
in the component particles had to be shed, and this lost energy is responsible for the
mass defect. In the opposite case �E > 0�, the system is unbound and its excess energy
sums up with the energy equivalent to the sum of masses of components. When E = 0,
the system is ‘marginally bound’ – no energy has been shed to form it, and there is no
excess energy. This interpretation of E was first given by Bondi (1947).

With � �= 0, the explicit solutions of (18.14) involve elliptic functions. They were
discussed by Lemaître (1933a) and Omer (1965). When � = 0, they are as follows:

When E�r� < 0:

R�t� r� = − M

2E
�1− cos���

�− sin� = �−2E�3/2

M
�t− tB�r�� �

(18.19)

When E�r� = 0:

R�t� r� =
[

9
2
M�r� �t− tB�r��

2

]1/3

� (18.20)

When E�r� > 0:

R�t� r� = M

2E
�cosh�−1��

sinh�−� = �2E�3/2

M
�t− tB�r�� �

(18.21)

Actually, the conditions for the occurrence of each case are E/M2/3 <�= or > 0, since
the conditions of regularity of the spacetime at the centre of symmetry require that E = 0
at M = 0; see Section 18.4.
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The solutions (18.19)–(18.21) have the same algebraic form as the Friedmann solutions
(17.33)–(17.35). Indeed, the Friedmann solutions (17.33)–(17.35) follow from (18.19)–
(18.21) when

M = M0r
3� E = −1

2
kr2� tB = constant� (18.22)

This limit is coordinate-dependent. We will show that the invariant condition is ��r = 0. In
each interval of r in which M�r does not change sign, M�r� can be used as the independent
variable instead of r, since Eqs. (18.15) and (18.16) are covariant under the coordinate
transformations r = f�r ′�. Using M as the radial coordinate, we rewrite (18.15):

�� = 6
�R3� �M

⇐⇒ R3 −R3 �M0� =
∫ M

M0

6

���M̃�
dM̃� (18.23)

Then, the condition of spatial homogeneity is ��M = 0, i.e.
(

R3
)

�MM = 0. Working it out
in detail, one finds that this is equivalent to

E/M2/3 = constant� tB = constant� (18.24)

and these two equations define the Friedmann limit invariantly (see Exercise 3). The
functions

(

E/M2/3
)

�M and tB�M generate, respectively, the increasing and the decreasing
perturbation of the background Friedmann model (see Silk (1977) and Section 18.19).

The function E�r� has one more interpretation. In the subspace t= constant of (18.16), R
depends only on r, so it can be used as the radial coordinate. Taking the orthonormal tetrad
defined by the 3-metric of that subspace �e1 = dR/

√
1+2E�e2 =R d��e3 =R sin� d��,

we find the tetrad components of the 3-dimensional Riemann tensor to be

R1212 = −E�R
R

= R1313� R2323 = −2E
R2

� (18.25)

Thus, with E = 0, every space t = constant is flat. If E/R2 = constant, then the curvature
is constant and its sign is the sign of −E. Consequently, (−E) is a measure of the
curvature of the subspaces t = constant. Unlike in the Friedmann models, that curvature
is local – it depends on r, and in particular it may be positive in one neighbourhood
of the space, but negative elsewhere. This shows that the distinction between the R–W
models of different values of k is a peculiarity of the R–W class, and not a property
of the physical Universe – the same spacetime can be approximately like the k > 0
Friedmann model in one neighbourhood and like the k < 0 Friedmann model in another.
Thus, Eqs. (18.19)–(18.21) do not necessarily describe different cosmological models –
they can hold in different regions of the same spacetime.

Equation (18.15) implies that, with M�r = 0, the L–T model becomes vacuum. Being
spherically symmetric, when � = 0 = M�r it must coincide with the Schwarzschild
solution or its extension through the event horizon – and indeed it does, as shown in
Section 14.12 (Eqs. (14.116)–(14.117) and Exercise 10 in Chapter 14). See there for a
discussion.
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Other coordinate representations of the L–T model are rarely used. Gautreau (1984)
used a hybrid of the comoving and curvature coordinates; see Section 18.7. The proper
curvature coordinates are rather useless for this model (see Exercise 4) – in them, the
simple statements M�t = E�t = 0 become complicated differential equations.

Another example: Stoeger, Ellis and Nel (1992) tested their observational cosmology
programme on the L–T model. The basis of the programme is coordinates connected with
the observer’s past null cone. Transforming the L–T solution to such coordinates requires
the integration of the equations of null geodesics, which proved to be an impossible
task. Therefore, the authors re-derived the model from the Einstein equations using the
observational coordinates from the beginning. The L–T metric in these coordinates is (in
the original notation):

ds2 = A2���
(−dw2 +2 dw dy

)+C2�w� y�
(

d�2 + sin2 � d�2
)

� (18.26)

where �
def=w− y�A��� is a function related to the observed redshift z��� by A��� =

A0/�1+ z�����A0 = constant and C is determined by

�C

�y
= A���W�y��

�C

��
= A

√

2�0�y�

C
+W 2�y�−1� (18.27)

W�y� and �0�y� being arbitrary functions; W 2 is the analogue of (1 + 2E). The matter-
density is �� = �0�y�/

(

AC2
)

, and �0�y� is one more arbitrary function. The authors
explained how the functions are related to observable quantities, but the connection is not
simple, and readers are advised to refer to the original paper. The function z�y�
w=const can
in principle be read out from observations, but in practice the procedure would require
cosmological parallax distances to be measured and this is unrealistic with the present-day
technology. For comparison, the R–W metric in the observational coordinates is

ds2 = R2���
[

dw2 −2 dw dy−k−2 sin2�ky�
(

d�2 + sin2 � d�2
)]

� (18.28)

18.4 Conditions of regularity at the centre

We found that the mass density �/c2 becomes infinite at those locations where R = 0 �=
M�r . Thus, not the whole set R = 0 is a singularity. Part of this set is the centre of
symmetry, and we will now formulate the conditions that the arbitrary functions in the
L–T model have to obey in order that the centre of symmetry remains nonsingular.1

Let r = rc be the radial coordinate of the centre of symmetry, where R�t� rc� = 0 for

all t > tB�rc�, and let ��t� rc�/c
2 = 
�t� rc�

def=��t� < . Assuming that 
�t� r� is not only
finite at r = rc, but also continuous in a neighbourhood of r = rc, ��t� < , implies that

M�rc� = 0� (18.29)

1 One could consider models with a permanently existing singularity at the centre of symmetry, but they do not seem to be
relevant for astrophysics.
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Applying the de l’Hôpital rule and using (18.23), we then find

lim
r→rc

R

M1/3
=
(

lim
r→rc

R3

M

)1/3

=
(

lim
r→rc

(

R3
)

�M

)1/3

=
(

6
���t� rc�

)1/3

� (18.30)

Thus R must behave in the neighbourhood of r = rc as

R = �t�M1/3 +O1/3�M��  =
(

6
��

)1/3

� (18.31)

where the symbols Oa�M� will denote quantities with the property

lim
M→0

Oa�M�

Ma
= 0� (18.32)

Thus, if 
�t� rc� = 0, then limr→rc
�R/M1/3� = .

Note (from (18.20)) that (18.31) is always fulfilled when E = 0. For the other two
models, from (18.19) and (18.21), Eq. (18.31) implies that

�t�+O0�M� =
{

−M2/3

2E �1− cos�� for E < 0�
M2/3

2E �cosh�−1� for E > 0�
(18.33)

Thus, in order to allow for a well-defined value of � at r = rc (which is necessary for
the density to have a well-defined value at the centre at all times), E must behave in the
neighbourhood of the centre as

E = −CM2/3 +O2/3�M�� C = 1− cos��t� rc�� (18.34)

Finally, from (18.20) and (18.21), we see that tB�rc� must have a finite value, which can
be formally written as

tB = �+O0�M�� (18.35)

Equations (18.29)–(18.35) will be assumed from now on.

18.5 Formation of voids in the Universe

Voids are large (approximately 60 Mpc in radius) volumes in the intergalactic space with
a very low matter-density. Their observational discovery at the end of the 1970s (Gregory
and Thompson, 1978) was a surprise because it contradicted the universal belief in the
cosmological principle. In fact, the first papers indicating that voids should be ubiquitous
were published in the early 1930s, but had not been understood properly.

The first such indication was given by Tolman (1934) and Sen (1934). Tolman’s main
result was the proof that the Einstein and Friedmann models are unstable against the
growth of inhomogeneities. This is derived as follows. Let the initial conditions at t = t1
be chosen so that R = RLT�t1� r� in the L–T model is the same function as rR = rRF�t1�

in the Friedmann model and RLT�t�t1� r� = rRF�t�t1�. This does not uniquely determine
the evolution of the L–T model, since the radial coordinate can be chosen arbitrarily.
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(In fact, the condition RLT�t1� r� = rRF�t1� defines the relation between the coordinate
systems.) Hence, R�tt can still be chosen at will, so we can assume that the densities at
t1 are different. From the equations assumed it follows then that �R�tr /R�r � �t1�
LT =
�R�t /R� �t1�
F. Since R�t is a measure of the velocity of expansion, the above implies
a perturbation of the initial density in the Friedmann model, with unperturbed initial
velocity.

From (18.15) we find
[
�2

�t2
ln �

]

LT

�t1� =
[

−2
R�tt
R

+2
R�t

2

R2
− R�ttr

R�r
+ R�tr

2

R�r
2

]

LT

�t1� � (18.36)

Using (18.14) to find R�tt and R�ttr and then using (18.15), we simplify (18.36) to
[
�2

�t2
ln �

]

LT

�t1� =
[

1
2
��+�+2

R�t
2

R2
+ R�tr

2

R�r
2

]

LT

�t1� � (18.37)

A similar equation holds for the Friedmann model:
[
�2

�t2
ln �

]

F

�t1� =
[

1
2
��+�+3

R�t
2

R2

]

F

�t1� � (18.38)

Subtracting (18.38) from (18.37) and using the assumptions, we find:

�2

�t2
�ln �LT − ln �F� = 1

2
���LT − �F� � (18.39)

Thus, wherever the density of the L–T model is greater or smaller than the density of the
corresponding Friedmann model, the difference will be increasing in time. This means
that an L–T model with initial condensations or voids will be evolving away from the
background Friedmann model. This was as close as possible at that time to predicting
that the Friedmann models are unstable against the formation of condensations and voids.
This is how Tolman himself formulated the prediction:

‘� � � at those values of r where the density in the distorted model is different from that
in the Friedmann model, there is at least an initial tendency for the differences to be
emphasised � � � in cases where condensation is taking place � � � the discrepancies will
continue until we reach a singular state involving infinite density or reach a breakdown
in the simplified equations.’

Sen carried out a complementary study of stability of the Einstein and Friedmann
models with respect to the L–T perturbation – he assumed the initial density to be
unperturbed, with the velocity distribution being non-Friedmannian at the initial time. By
a similar method to Tolman’s, he concluded explicitly that ‘the models are unstable for
initial rarefaction’.

The book by Krasiński (1997) contains a complete overview of studies of void forma-
tion done on the basis of the L–T model until 1994. They were mostly motivated by
astronomical observations and used various shapes of the arbitrary functions to investigate
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observable effects. The most complete study (Maeda, Sasaki and Sato, 1983; Maeda and
Sato, 1983; Sato and Maeda, 1983), extensively summarised by Sato (1984), considered
the long-term evolution of voids.

A new approach was proposed by Krasiński and Hellaby (2002, 2004a, 2005), which
will be presented in the next section.

18.6 Formation of other structures in the Universe

Formation of galaxies (then called ‘nebulae’) was first considered by Lemaître (1933b).
He showed that the initial mass distribution may be set up so that a region of comoving
size r = r0 around the centre will recollapse while the region r > r0 will keep expanding
forever. In this situation, the curvature of the space is positive everywhere and the
expansion of the outer region is caused by the cosmological repulsion.

Bonnor’s (1956) model was a Friedmann dust tube around the centre of symmetry,
surrounded by an L–T transition zone, and that in turn surrounded by another Friedmann
dust region so that, at any t = t0 = constant, the density in the outer region is different
from that in the inner region. The boundaries of the Friedmann regions were assumed to
be comoving. If both Friedmann regions have positive spatial curvature and the density
in the inner region is higher than that in the outer region, then the inner region will start
to recollapse earlier than the background and will form a condensation. Bonnor assumed
that the condensation has the mass of a typical galaxy, that is, it contains N � 3 × 1067

nucleons, and that it formed at ti � 1000 years after the Big Bang. Then the following
problem arose: if such a condensation formed as a statistical fluctuation in a homogeneous
background, then the initial density contrast is ��/�=
�c −�b 
/�b �N−1/2 � 10−34, where
�c is the density in the condensation and �b is the background density. However, in order
to develop into a galaxy of typical density, the initial perturbation at ti would have to be
of the order ��/� � 10−5. On the other hand, if a perturbation of the order of 10−5 is to
arise as a statistical fluctuation, then it can involve only 1010 particles.

If the outer region has negative curvature while the inner region has positive curvature,
then the initial perturbation has to be about 10 times larger than in the preceding case.
If both Friedmann regions have negative curvature, a galaxy cannot form at all. The
cosmological constant does not help in a model that begins from a Big Bang. Hence, two
possibilities are left: either � �= 0 and the Universe begins as an instability in the Einstein
Universe in the asymptotic past (then there is an arbitrary amount of time available for the
statistical fluctuations to grow) or there exists a mechanism for producing large pertur-
bations.

The current thinking is that initial fluctuations of density were generated by quantum
fluctuations of the scalar field that drives the inflation and indeed are of the order 10−5

(Padmanabhan, 1996). However, one of the results of Krasiński and Hellaby (2004a) is
that density fluctuations alone cannot be responsible for the generation of structures: the
velocity distribution at the initial time must be taken into account. In particular, an initial
condensation can evolve into a void (Mustapha and Hellaby, 2001).
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The book by Krasiński (1997) contains an overview of other discussions of structure
formation in the L–T model. We shall present here a more recent approach (Krasiński
and Hellaby, 2002, 2004, 2005).

18.6.1 Density to density evolution

The mass M will be used as the radial coordinate. We specify the density distributions at
the instants t = ti� i = 1�2:


i�M� = 
�ti�M� ≡ ��ti�M�/c2� (18.40)

and calculate the corresponding functions R�ti�M� from Eq. (18.23). Throughout the
whole consideration we assume that R�t �t1�M� > 0, i.e. that matter is expanding at
the initial instant. This assumption is dictated by the intended application of the results
(structure formation in the Universe), but a similar investigation could be done for
collapsing matter. For definiteness, we also assume t2 > t1 throughout. The cases E > 0
and E < 0 have to be considered separately.1

For E > 0 we write out the evolution equations (18.21) at t1 and t2:

Ri�M� = R�ti�M� = M

2E
�cosh�i −1��

sinh�i −�i =
�2E��3/2�

M
�ti − tB�M�� �

(18.41)

and R2�M�>R1�M� in consequence of 
�t2�M�< 
�t1�M�. Solving for tB at t1 we obtain

tB = t1 − M

�2E�3/2

[√

�1+2ER1/M�2 −1− arccosh�1+2ER1/M�
]

� (18.42)

We substitute this in (18.41) at t2 and obtain

√

�1+2ER2/M�2 −1 −arcosh�1+2ER2/M�

−√�1+2ER1/M�2 −1+ arcosh�1+2ER1/M�

= �2E�3/2

M
�t2 − t1� � (18.43)

This equation defines E�M�, and, given E�M�, the previous one defines tB�M�. These
two functions then define the L–T evolution from 
�t1�M� to 
�t2�M�. In fact, this is
already a solution of our problem, but we have to answer the following question: does

1 The case E = 0 is highly exceptional because then just one of the distributions 
i�t�M� uniquely determines an L–T model.
Choosing the other 
i�t�M�, it is practically impossible to hit upon such a pair that is connected by the E = 0 evolution.
However, the E = 0 model will appear as an intermediate limiting case.
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Eq. (18.43) have any solutions, and, if so, is the solution unique? For ease of calculation,
let us denote

x
def= 2E/M2/3� ai

def=Ri/M
1/3� i = 1�2�

�H�x�
def= √

�1+a2x�
2 −1− arcosh�1+a2x�

−√�1+a1x�
2 −1+ arcosh�1+a1x�

− �t2 − t1�x
3/2�

(18.44)

Our problem is this: for what values of the parameters a2 > a1 and t2 > t1 does the
equation �H�x� = 0 have a solution x �= 0?1 From the properties of the function �H�x�

(Krasiński and Hellaby, 2002, and Exercise 5) it follows that (18.44) has a solution if
and only if

t2 − t1 <

√
2

3

(

a2
3/2 −a1

3/2
)

� (18.45)

and then the solution is unique. This inequality says that the expansion between t1 and t2
must have been faster than in the E = 0 model.

The result above shows only the existence of a solution for a given value of M . Some
initial conditions may lead to shell crossings, and these are not excluded by (18.45) –
one must check for their presence separately. But the criteria for the occurrence of shell
crossings are known – see Section 18.10. If they occur before t1, then they are no
problem – the L–T model cannot describe those epochs anyway.

For E < 0, the inverse of the function cos in the range �0��� is different from that in
the range ���2��. Consequently, the L–T model evolving between two given states must
be considered separately for the case when the final state is still expanding (� ∈ �0��� in
(18.19)) and for the case when the final state is already recollapsing �� ∈ ���2���.

For the still-expanding final state, the variables and the function whose zero has to be
found are the ai from (18.44) and

x
def= −2E/M2/3�

�X�x�
def= arccos�1−a2x�−

√

1− �1−a2x�
2

− arccos�1−a1x�+
√

1− �1−a1x�
2 − �t2 − t1�x

3/2� (18.46)

The reasoning is analogous to that for (18.44), but this time the arguments of arccos
must have absolute values not greater than 1. This implies x ≤ 2/ai for both i, so, since
a2 > a1,

0 ≤ x ≤ 2/a2� (18.47)

1 x = 0 is a solution of �H�x� = 0, but it corresponds to E = 0. In fact, we are looking for a zero of the function �H�x�/x
3/2.
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The two square roots in (18.46) will then also exist. Equation (18.47) is equivalent to
the requirement that �R�t �

2 (in (18.14) with � = 0) is non-negative at both t1 and t2.
Again, elementary reasoning (Krasiński and Hellaby, 2002) shows that �X�x� = 0 has

a nonzero solution if and only if
√

2
3

(

a2
3/2 −a1

3/2
)

< t2 − t1 ≤

�a2/2�3/2
[

�− arccos�1−2a1/a2�+2
√

a1/a2 − �a1/a2�
2
]

� (18.48)

With (18.48) fulfilled, the solution is unique. The first inequality means that the model
must have expanded between t1 and t2 slower than the E = 0 model; the second one means
that the final state is still earlier than the instant of maximal expansion. The condition
E ≥ −1/2 does not follow from (18.48) and has to be verified separately.

For the recollapsing final state, the variables are defined as in (18.48), but the function
whose zeros are sought is different:

�C�x�
def= �+ arccos�−1+a2x�+

√

1− �1−a2x�
2

− arccos�1−a1x�+
√

1− �1−a1x�
2 − �t2 − t1�x

3/2� (18.49)

The solution of �C�x� = 0 exists if and only if

t2 − t1 ≥ �a2/2�3/2
[

�− arccos�1−2a1/a2�+2
√

a1/a2 − �a1/a2�
2
]

� (18.50)

and then it is unique (Krasiński and Hellaby, 2002).
The results obtained above can be summarised in the following:

Theorem 18.1 Given any two instants t1 and t2 > t1, and any two spherically symmetric
density profiles 0 < 
2�M� < 
1�M� defined over the same range of M , an L–T model
can be found that evolves from 
1 to 
2 in time (t2 − t1). The inequalities (18.45), (18.48)
and (18.50) will tell which class of L–T evolution applies at each value of M . The
possibilities of shell crossings or excessively negative energies are not excluded, and
must be separately checked for.

18.6.2 Velocity to density evolution

A measure of velocity of expansion is R�t �t�M�. A more convenient measure is
R�t �t�M�/M1/3 because it becomes constant in the Friedmann limit, and so is also a
measure of inhomogeneity of the spacetime. Suppose now that the initial state of the
Universe is specified by

b1�M� = R�t �t1�M�/M1/3� (18.51)

while the final state is specified, as before, by a density distribution 
�t2�M�. Again, the
two signs of E must be considered separately.
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For E > 0, with the variables defined as in (18.44) and (18.51), the equation whose
solutions are sought is �H�x� = 0, where

�H�x�
def=
√

�1+a2x�
2 −1−

√
(
b1

2 +x

b1
2 −x

)2

−1

−arcosh�1+a2x�+ arcosh
(
b1

2 +x

b1
2 −x

)

−x3/2 �t2 − t1� � (18.52)

Now the necessary and sufficient condition for the existence of solutions of (18.52)
consists of two inequalities (Krasiński and Hellaby, 2004a):

t2 − t1 <

√
2

3
a2

3/2 − 4

3b1
3 � 2/a2 < b1

2� (18.53)

The second one is a necessary condition for the existence of a t2 > t1 obeying the first, and
is equivalent to R2 > R1. It came in place of 
�t2�M� < 
�t1�M� that we assumed when
considering a density to density evolution. With both inequalities fulfilled, the solution
of �H�x� = 0 is unique. Equation (18.53) is equivalent to (18.45).

For E < 0, as before, the cases when the final state is still expanding and recollapsing
have to be considered separately. When the final state is still expanding, the function
whose zeros are to be found is

�X�x�
def=
√

1−
(
b1

2 −x

b1
2 +x

)2

−
√

1− �1−a2x�
2

+ arccos �1−a2x�− arccos
(
b1

2 −x

b1
2 +x

)

−x3/2 �t2 − t1� � (18.54)

and the equation �X�x� = 0 has a solution if and only if
√

2
3
a2

3/2 − 4

3b1
3 < t2 − t1 ≤

�a2/2�3/2

[

�+ b1

√

2a2

a2b1
2/2+1

− arccos
(
a2b1

2/2−1

a2b1
2/2+1

)]

� (18.55)

This is equivalent to (18.48). With the inequalities fulfilled, the solution of the corre-
sponding equation is unique (Krasiński and Hellaby, 2004a).

When the final state is recollapsing, the appropriate function is

�C�x�
def=
√

1−
(
b1

2 −x

b1
2 +x

)2

+
√

1− �1−a2x�
2 +�

− arccos
(
b1

2 −x

b1
2 +x

)

+ arccos �−1+a2x�−x3/2 �t2 − t1� � (18.56)
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and the condition for the existence of the appropriate evolution is

t2 − t1 ≥ �a2/2�3/2

[

�+ b1

√

2a2

a2b1
2/2+1

− arccos
(
a2b1

2/2−1

a2b1
2/2+1

)]

� (18.57)

All derivations can be found in Krasiński and Hellaby (2004a).
Using the methods of this section, examples of evolution of various initial configura-

tions to galaxy clusters, voids and galaxies with central black holes were found (Krasiński
and Hellaby, 2002, 2004, 2005).

The approach presented in this section has not been entirely successful so far. If the
distributions of velocity at t1 and of density at t2 are assumed, then the density distribution
at t1 is determined, and has to obey the observational constraints. It is sensitive to the
shape of the velocity profile at t1, and the optimal shape has not been identified yet.

18.6.3 Velocity to velocity evolution

The given quantities are now the velocity distributions at t1 and t2:

bi�M� = R�t �ti�M�/M1/3� i = 1�2� (18.58)

the definition of x�x = ±2E/M2/3� being in each case the same as in the previous cases.
We assume that t2 > t1 and that the model is expanding at t1, thus b1 > 0. This way
of specifying the data is probably not useful for astrophysics, but is included here for
academic completeness.

For E > 0, the function whose zeros are to be found is

�H�x�
def=
√
(
b2

2 +x

b2
2 −x

)2

−1−
√
(
b1

2 +x

b1
2 −x

)2

−1

−arcosh
(
b2

2 +x

b2
2 −x

)

+ arcosh
(
b1

2 +x

b1
2 −x

)

−x3/2 �t2 − t1� � (18.59)

The necessary and sufficient condition for the existence of an E > 0 evolution between
the two states is the set of two inequalities

0 < b2 < b1� t2 − t1 >
4
3

(
1

b2
3 − 1

b1
3

)

� (18.60)

The second inequality becomes more intelligible when it is rewritten as

b2
3 >

b1
3

1+ 3
4b1

3 �t2 − t1�
� (18.61)

which means that the expansion at t2 is faster than it would be in the E = 0 model (for
which b3 = 4/�3�t− tB��, giving an equality in (18.61)).
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For an E < 0 evolution between t1 and t2 with the final state still expanding, the
function � is

�X�x�
def= −

√

1−
(
b2

2 −x

b2
2 +x

)2

+
√

1−
(
b1

2 −x

b1
2 +x

)2

+ arccos
(
b2

2 −x

b2
2 +x

)

− arccos
(
b1

2 −x

b1
2 +x

)

−x3/2 �t2 − t1� � (18.62)

A solution of �X�x� = 0 exists if and only if

0 < b2 < b1� t2 − t1 <
4
3

(
1

b2
3 − 1

b1
3

)

� (18.63)

which now implies that the expansion between t1 and t2 must have been slower than it
would be in an E = 0 model.

These two cases together exhaust all possibilities for b2 > 0. When the final state is
already recollapsing, we have b2 < 0. Then the evolution exists for any values of b1 > 0
and b2 < 0. The function � is here

�C�x�
def=
√

1−
(
b1

2 −x

b1
2 +x

)2

−
√

1−
(
x−b2

2

x+b2
2

)2

+�

+ arccos
(
x−b2

2

x+b2
2

)

− arccos
(
b1

2 −x

b1
2 +x

)

−x3/2 �t2 − t1� � (18.64)

and with t2 > t1 the equation �C�x� = 0 always has an x > 0 solution.

18.7 The influence of cosmic expansion on planetary orbits

The first formally correct study of the problem of expansion of orbits was carried out by
Einstein and Straus (1945).1 They showed that the Schwarzschild solution can be matched
to any Friedmann model. This implies that the planetary orbits are in this configuration
not influenced by the expansion of the Universe. The Schwarzschild mass m is related to
the Friedmann mass integral � from (17.27) by

m = G�r0
3

c2
(

1+ 1
4kr0

2
)3

def=��r0� � (18.65)

where r0 is the radius of the Schwarzschild vacuole in the coordinates of (17.1). The
geodesic radius of the vacuole, R�t�

∫ r0

0 r�1 + 1
4kr

2�−1 dr, expands together with the
Universe.

This relation was derived by Einstein and Straus from the Einstein equations in a
rather outlandish notation. It can be derived in a simple way from the Lemaître–Novikov

1 Some papers were published by other authors earlier, but they were based on questionable assumptions (Krasiński, 1997).
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representation of the Schwarzschild solution, Eqs. (14.116)–(14.117), and from the
Friedmann limit of Eqs. (18.16) and (18.14) (with �= 0). Assuming that the coordinates
on both sides of the hypersurface r = rb are the same, we conclude, from the matching
conditions of Section 12.17, that the R�t� rb� in (14.116) must be the same (as a function
of t) as the R�t� rb� in (18.16). Consequently, R�t �t� rb� must be the same in both metrics,
and then (18.14) implies that E�rb� is the same on both sides, and m = M �rb�, where
M�rb� is the L–T mass contained within the r = rb hypersurface of (18.16).

So far we have considered the matching conditions between the Schwarzschild metric
and a general L–T model. Now we take the Friedmann limit of (18.14) and (18.16). Hence,
by (18.22), M�rb� = (

G�/c2
)

rb
3, while the Friedmann limit of the metric (18.16) is

ds2 = dt2 −RF
2�t�

(
drF

2

1−krF
2
+ rF

2
(

d�2 + sin2 � d�2
)
)

� (18.66)

and the transformation leading from this to the coordinates of (17.1) is (17.2). Hence,
denoting by r0 the value of r corresponding to rF = rb, we obtain (18.65). This says that
the Schwarzschild mass at the centre of symmetry must be equal to the Friedmann mass
removed from within the sphere r = rb. However, contrary to superficial appearance,
Eq. (18.65) is not invariant under coordinate transformations in the Friedmann metric –
because the constant � is not a scalar, but can be scaled by coordinate transformations.

Einstein and Straus’ result was for many years taken as the general implication of
relativity. However, (18.65) need not be fulfilled if the Einstein–Straus configuration is
taken only at a single moment t = t0 as an initial condition for an L–T model. Then, the
results of other papers (Sato, 1984 and papers cited therein; Lake and Pim, 1985) imply
that if m<��r0�, then the boundary of the vacuole will expand faster than the Friedmann
background, whereas if m>��r0�, then initial conditions may be set up so that the vacuole
will start to collapse. This indicates that the Einstein–Straus configuration is unstable
against perturbations of the condition (18.65); that is, it is an exceptional situation.

The same problem was studied by quite a different method by Gautreau (1984). He
based his study on the subcase E = 0 of the L–T model that he derived in a hybrid
of comoving and curvature coordinates, in which the metric is non-diagonal. In these
coordinates, R is the radial coordinate defined by the curvature radius of the orbits of the
symmetry group. These orbits do not participate in the cosmic expansion and therefore
R of any single orbit can be used as a standard of length.

In Gautreau’s coordinates, the E = 0 L–T solution takes the form:

ds2 = Adt2 − 1
A

(

dR−
√

Z+2�− 1
3
�R2 dt

)2

−R2
(

d�2 + sin2 � d�2
)

� (18.67)

where

A
def= 1− 2�+Z

R
+ 1

3
�R2� (18.68)
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The function Z is given by an equation equivalent to (18.213), derived in Exercise 4:

R1/2 �Z

�t
+ 

(

Z+2�+ 1
3
�R3

)1/2
�Z

�R
= 0� (18.69)

and � = constant is the mass of the star. This is the L–T model with E = 0 and M =
�+Z/2. The metric (18.67) applies only outside the star, for R ≥ Rb = constant > 0;
the metric for the inside of the star is not considered. By investigating the equations of
timelike geodesics in (18.67), Gautreau showed that circular orbits do not exist. This is
in fact a purely Newtonian phenomenon: in the model (18.67)–(18.69), the smoothed-out
cosmic matter-density extends throughout the planetary system, and, as a result of cosmic
expansion, matter streams out of every sphere R = constant. Hence, each planet moves
under the influence of a gravitational force that is decreasing with time, so the orbit must
spiral out. Gautreau derived the Newtonian formula for the rate of change of orbital radius,
dR/dt = 8�R4H
/�2��, where R is the orbital radius, H is the Hubble parameter and 


is the mean cosmic density of matter. The effect is thus greater for orbits of greater radius;
for Saturn it is �dR/dt�S = 6 × 10−18 m per year. This is obviously unmeasurable (one
proton diameter per 1000 years!). For a star at the edge of the Andromeda galaxy the effect
would be �dR/dt�gal = 1100 km per year. From the ‘practical’ point of view Gautreau’s
result thus implies that planetary orbits do not react to the expansion of the Universe.
However, it is important to know that in principle the effect is nonzero. In the Einstein–
Straus approach, it was exactly zero. As explained above, the model of Einstein and Straus
is unstable against the perturbations of (18.65), and hence is less realistic than Gautreau’s.

18.8 * Apparent horizons in the L–T model

As defined in Section 16.4, an apparent horizon is the outer envelope of a region of closed
trapped surfaces, while a closed trapped surface St is one from which it is impossible
to send a diverging bundle of light rays – because both the outward-directed and the
inward-directed bundles immediately converge: k��� ≤ 0 at St.

Since the L–T model is spherically symmetric, the apparent horizon must be a sphere
around the centre of symmetry. Hence, it suffices to consider families of null geodesics
sent orthogonally from a surface r = constant. We must identify the surface at which
k��� becomes zero for all future-directed null geodesics. For this, we shall use the
method of Szekeres (1975b). Since the surface we are looking for is a sphere, its normal
rays will be radial. From (18.16), the tangent vectors to radial null curves obey k0 −
 R�r /

√
1+2Ek1 = 0, k2 = k3 = 0, where  = +1 for outward-directed and  = −1 for

inward-directed curves. Because of spherical symmetry, these curves must be geodesics.
Now consider a bundle of null geodesics originating at a surface St�r given by �t = ts�

r = rs�. At these constant values of t and r, the affine parameter on the null geodesics
may be chosen so that

k0 = R�r√
1+2E

� k1 =  on St�r � (18.70)
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The divergence of this field on St�r is then

k��� = k��� +
{

�


!

}

k
k!

= k0�t +k1�r +
R�r√

1+2E

(
R�tr
R�r

+2
R�t
R

)

+ 

(

− E�r
1+2E

+ R�rr
R�r

+2
R�r
R

)

� (18.71)

Since k� is null, geodesic and affinely parametrised, we have k�k
� = 0 and k��! k

! = 0.
Differentiating the first equation by t, and taking the second one with the index � = 1,
we obtain

k0�t −
R�tr√
1+2E

− 
R�r√

1+2E
k1�t = 0� (18.72)

R�r√
1+2E

k1�t + k1�r +2 
R�tr√
1+2E

+ R�rr
R�r

− E�r
1+2E

= 0� (18.73)

We add (18.73) multiplied by  to (18.72), and thereby eliminate k1�t. The resulting
equation is used to eliminate k0�t +k1�r from (18.71), and the result is

2
R�r
R

(
R�t√

1+2E
+ 

)

= 0� (18.74)

One solution of this equation is R�r = 0, but this is either a shell crossing singularity or a
neck. What happens there will be investigated in Section 18.10. The generic solution of
(18.74) is

R�t√
1+2E

= − � (18.75)

For outward-directed geodesics  = +1, so the solution of (18.75) will exist only in
collapsing models, in which R�t < 0. For inward-directed geodesics  = −1, and the
solution of (18.75) will exist only in expanding models. In each case, R�t must have the
sign of − . Using the evolution equation (18.14), we have in (18.75)

√

2E+ 2M
R

− 1
3
�R2 = √

1+2E� (18.76)

With � = 0, the solution of this is

R = 2M� (18.77)

In the Schwarzschild limit, M = constant, the apparent horizon becomes identical to the
event horizon. In a general L–T spacetime, the r = constant shell obeying (18.77) is just
falling into its own Schwarzschild horizon.

Using the result of Exercise 2 in Chapter 16, the formula for the apparent horizon can
be derived in an equivalent way. A bundle of light rays sent outwards from a spherical
surface forms, at any time, a spherical light front. The apparent horizon is where the
surface area of this front starts decreasing. Since this surface area is proportional to R2,
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it suffices to identify the location where R�t� r� starts decreasing as we go along the null
geodesics (Krasiński and Hellaby, 2004b).

The evolution equation (18.14) with � = 0 can be written as

Ṙ = "

√

2M
R

+2E� (18.78)

where " = +1 for expanding models and " = −1 for collapsing models. The radial null
geodesics, from (18.16), are given by

dt
dr

∣
∣
∣
∣
n

= jR�r√
1+2E

� (18.79)

where j = +1 for outgoing rays and j = −1 for incoming rays, whose solution we write
as t = tn�r�. Along this ray we have

Rn =R�tn� r��

�Rn��r = Ṙ
dt
dr

∣
∣
∣
∣
n

+R�r =
(

"j

√
2M/R+2E√

1+2E
+1

)

R�r �
(18.80)

The apparent horizon (AH) is the hypersurface in spacetime where R stops increasing
along the rays:

�Rn� �r = 0 ⇒
√

2M
R

+2E = −"j
√

1+2E ⇒ "j = −1� R = 2M� (18.81)

Inside the future apparent horizon, all light rays inevitably proceed towards the final
singularity (�Rn��r < 0 necessarily). The existence of such a region was predicted by
Bondi (1947) and later by Barnes (1970). Note that, in every L–T model that collapses,
the dust matter must enter the future apparent horizon before it hits the final singularity
at R = 0, and in every L–T model that expands the dust matter remains inside the past
apparent horizon for a while after leaving the Big Bang.

We now wish to establish whether the apparent horizon is timelike, spacelike or null.
For this purpose, we find dt/dr along the AH by differentiating (18.81):

Ṙdt+R�r dr = 2M�r dr� (18.82)

The result is

t′AH = dt
dr

∣
∣
∣
∣
AH

= 2M�r −R�r

Ṙ
= 2M�r −R�r

"
√

2M/R+2E
� (18.83)

and, since R = 2M on the AH,

dt
dr

∣
∣
∣
∣
AH

= " �2M�r −R�r �√
1+2E

� (18.84)

In the vacuum case M�r = 0, we have dt/dr
AH = dt/dr
n since "j = −1, i.e. the AH is
null. Note that M�r = 0 could be only local, so the AH would be null only in that region.

For hyperbolic regions, with E ≥ 0 along each dust worldline, there is either only
expansion or only collapse, i.e. only one AH (either the future AH+ or the past AH−)
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can occur. The two AHs can thus cross only in an elliptic E < 0 region. At the moment
of maximum expansion, where R�t = 0, the maximal value of R is R= −M/E. In elliptic
regions, with −1 < 2E < 0, this Rmax is thus always greater than 2M , so the dust source
always escapes from the past AH before it falls into the future AH. However, at those
locations where 2E = −1, the maximal R equals 2M , which means that the past AH
touches the future AH. Such a location is a neck, the nonvacuum analogue of the Kruskal
wormhole. We shall come back to it in Section 18.10.

To establish whether the AH is timelike, null or spacelike, we compare the slope of
the AH+ with the outgoing light ray (or the slope of the AH− with the incoming light
ray), i.e. "j = −1:

B
def= dt

dr

∣
∣
∣
∣
AH

/
dt
dr

∣
∣
∣
∣
n

= −"j

(

1− 2M�r
R�r

)

= 1− 2M�r
R�r

� (18.85)

Now, since the conditions for no shell crossings (Section 18.10) require M�r ≥ 0 where
R�r > 0 and vice versa, we have

Bmax = 1� → AH+ outgoing null �M�r = 0� 
 = 0��

1 > B> −1� → AH+ spacelike �for most M�r ��

B = −1� → AH+ ingoing null �large M�r /R�r ��

−1 > B> −� → AH+ ingoing timelike �very large M�r /R�r ��

(18.86)

so an outgoing timelike AH+ is not possible. Thus outgoing light rays that reach the AH+

fall inside the AH+, except where M�r = 0, in which case they move along it. The AH+

is timelike if1

"
dtAH

dM
>

1√
1+2E

� (18.88)

The argument is similar for light rays at the AH−, except that ‘ingoing’ should be
swopped with ‘outgoing’. If ingoing light rays reach the AH−, they pass out of it or run
along it.

The apparent horizons in the Friedmann models with � = 0 are always timelike, with
the parameter B = −2 (see Exercise 18.8).

The apparent horizons in elliptic regions require special attention, since two AHs are
present in the same spacetime.

We shall first consider the expansion phase of an elliptic model, where 0 ≤ �≤ � and
E < 0, so we have " = +1 and only the AH− is present. Since R = 2M on an AH, we
have from (18.19):

cos�AH = 1+4E� (18.89)

1 Note that Eq. (18.88) can be equivalently written as follows:

"
dt
dr

∣
∣
∣
∣
AH

>
M�r√
1+2E

= N�r � (18.87)

where N is the sum of rest masses within the r = constant sphere given by (18.17).
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and thus, along a given worldline, the proper time of passing through the AH−, counted
from the Big Bang time tB, can be calculated from (18.19) with R = 2M to be

tAH− − tB = M
arccos �1+4E�−2

√−2E �1+2E�

�−2E�3/2 � (18.90)

Note that tAH− − tB = 0 only at the centre of symmetry, where M = 0. This is the only
place where the AH− can touch the Big-Bang set.1 The function F = tAH− − tB of the
argument f = 2E, defined in (18.90), has the following properties,

F�−1� = M�� F�0� = 4M/3�
dF

df
< 0 for −1 < f < 0� (18.91)

i.e. it is decreasing. These properties mean that the AH does not touch the Big Bang
anywhere except at a centre, M = 0, even if E = 0. Along all worldlines with E>−1/2,
even parabolic worldlines for which E = 0 and M �= 0, the dust particles emerge from
the AH− a finite time after the Big Bang (� = 0) and a finite time before maximum
expansion (� = �).

So, although (18.89) shows that wordlines with larger E exit the AH− at a later stage
of evolution, this need not correspond to a later time t, or even to a longer time (t− tB)
since the bang. It is not at all necessary that E is a monotonically decreasing function of
r in an elliptic region; in general it can increase and decrease again any number of times.

A shell of parabolic (E = 0) worldlines occurs at the boundary between elliptic and
hyperbolic regions, where E → 0, but E�r �= 0 and M> 0. From (18.89) and (18.90) with
" = +1, we see that

�−→
E→0

0� tAH− − tB −→
E→0

4M
3

dtAH−

dM
−→
E→0

4
3

− 4M
5

dE
dM

+ dtB
dM

�

(18.92)

so the AH− never touches the bang here, despite � being zero.
The crunch time, i.e. the time of the final singularity, where � = 2�, is found from

(18.19) to be

tC�r� = tB�r�+
2�M

�−2E�3/2
� (18.93)

so it diverges wherever E → 0 at M �= 0. This divergence shows that either the bang time
or the crunch time recedes to infinity, or both of them do. The third possibility will be
illustrated in the next section. We also see the slope and the causal nature of the AH−

are uncertain here.

1 But whether the coincidence of the AH− and the Big Bang at M = 0 is real or only a spurious coordinate effect depends on
the precise shapes of the functions E�r� and tB�r�. A null or timelike segment of the Big Bang/Big Crunch singularity can
stick out at the centre, and it is invisible in the comoving coordinates because they have a singularity there that squeezes this
segment into a point. A signature of such a singularity is a family of different light cones with vertices at the same point of
the coordinate grid. See Section 18.14.
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The behaviour of the AH+ during collapse can be obtained form the above by replacing
(t−tB) with (tC −t), � with (2�−�), flipping the signs of " and j, and swopping ‘ingoing’
with ‘outgoing’. However, keeping tB as our arbitrary function, we have � ≤ � ≤ 2�.
Equation (18.89) still applies, but instead of (18.90) we now obtain

�t− tB�AH+ = M
�+ arccos�−1−4E�+2

√−2E�1+2E�

�−2E�3/2
� (18.94)

and (18.87) applies with " = −1.
The corresponding results in an expanding E = 0�E�r = 0 L–T model follow from

(18.20) with R = 2M . Then, Eq. (18.92) becomes

dtAH−

dM
= 4

3
+ dtB

dM
� (18.95)

The AH− may still exhibit all possible behaviours of (18.86) with ‘outgoing’ and ‘ingoing’
interchanged. In a collapsing parabolic model, time-reversed results apply.

In expanding hyperbolic regions, using the same methods as for expanding elliptic
regions, we find that the behaviour of the AH is qualitatively the same. There is of course
only one AH, no maximum expansion, and loci where E = −1/2 are not possible, but
the results for origins and for the parabolic limit both carry over. Collapsing hyperbolic
regions are essentially like collapsing elliptic regions.

18.9 * Black holes in the evolving Universe

This process was first described by Oppenheimer and Snyder (1939). They discussed the
collapse of a Friedmann dust cloud matched to the Schwarzschild solution. They found
that the collapse to the Schwarzschild horizon r = 2m takes a finite proper time for each
infalling particle, but an infinite time for a static distant observer in the Schwarzschild
region who would see the star gradually redden. For a comoving observer on the surface
of an object of the mass of the Sun, but rarefied so that the initial density equals that
of water, the time needed to reach the horizon would be of the order of one day. As
the horizon is approached, light can escape outwards within a cone around the radial
direction that becomes progressively narrower and closes completely at the horizon.

The novel idea in the Oppenheimer–Snyder paper was to study the black hole in the
process of its formation. The theory of black holes developed from the 1960s onwards is
based on stationary vacuum solutions; that is, it describes black holes that have always
existed and are observed from afar. The L–T model allows for an even more sophisticated
approach (see below).

Bondi (1947) observed that if matter in the L–T model is collapsing with a great
velocity so that �1+2E�r��1/2 + �R/�t < 0, then along a light ray emitted away from the
centre with the tangent vector k� the quantity k�R�� is negative, that is, the ray is forced
to move inwards. A necessary condition for this is R < 2M; that is, a sufficiently high
matter-density over a sufficiently large region. With hindsight, this was a prediction that
black holes would form under certain conditions.
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Several properties of the apparent horizons and black holes in an L–T model can be
explained using the simple example discussed below. The parameter values used in it are
unrealistic, having been chosen in such a way that all the figures are easily readable.

We take an E < 0 L–T model whose Big Bang function tB�M� is

tB�M� = −bM2 + tB0� (18.96)

and whose Big Crunch function is

tC�M� = aM3 +T0 + tB0� (18.97)

where T0 is the lifetime of the central worldline (M = 0). The values of the parameters
used in the figures will be a= 2×104� b = 200� tB0 = 5 and T0 = 0�05. They were chosen
so as to make the figures readable and illustrative; they are unrelated to any astrophysical
quantities. Since t = tC at � = 2�, we find from Eq. (18.19):

E�M� = −1
2

(
2�M
tC − tB

)2/3

= −
(
�2

2

)1/3
M2/3

�aM3 +bM2 +T0�
2/3 � (18.98)

As M → , we have tB → −� tC → + and E → 0. Hence, the space contains infinite
mass and has infinite volume. Unlike in the Friedmann models, positive space curvature
does not imply finite volume; this has been known since long ago (Bonnor, 1985; Hellaby
and Lake, 1985).

The main features of this model are shown in Fig. 18.1. Note that the AH+ first appears
at a finite distance from the centre, where the function tAH+�M� has its minimum, and at
a time ths < tC�0�.

At all times after the crunch first forms, t > tC�0�, the mass MS already swallowed up
by the singularity is necessarily smaller than the mass MBH that had disappeared into the
AH+. The mass MS cannot even be estimated by astronomical methods. The situation is
reversed in time for the Big Bang singularity and the AH−.

The 3-dimensional diagram of Fig. 18.2 shows the value of R at each t and each
M . Figure 18.3 shows the ‘topographic map’ of the surface from Fig. 18.2. It contains
contours of constant R (the thinner curves) inscribed into Fig. 18.1. It also shows several
outgoing radial null geodesics. Each geodesic has a vertical tangent at the centre. This is
a consequence of using M as the radial coordinate. Since dt/dM = ��R/�M�/

√
1+2E

on each geodesic and R ∝ M2/3 close to the centre, dt/dM ∝ M−1/3 and dt/dM → 
as M → 0. Each geodesic proceeds to higher values of R before it meets the apparent
horizon AH+, where it is tangent to an R= constant contour, and then proceeds towards
smaller R values. The future event horizon consists of those radial null geodesics that
approach the AH+ asymptotically. In Fig. 18.3, it lies between geodesics 5 and 6 (counted
from the lower right); we shall discuss its location in more detail below.

Geodesic 5 emanates from the centre M = 0, where the Big Bang function has a
maximum. The tangent to the geodesic is horizontal there. Geodesics to the lower right
of this one all begin with a vertical tangent. Likewise, the geodesics meet the Big Crunch
with their tangents being vertical.
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Fig. 18.1. Evolution leading to a black hole in the E < 0 L–T model of Eqs. (18.96)–(18.97). The
current state is defined at the instant t = t2 = now. Worldlines of dust particles are vertical straight
lines, each has a constant mass-coordinate. Intersections of the line t = t2 with the lines representing
the Big Crunch and the future apparent horizon determine the masses MS and MBH, respectively.

By the time the crunch has formed at t = tC�0�, the future apparent horizon already
exists (see Figs. 18.1 and 18.3). The shells of constant values of M first go through
the AH, and then hit the singularity at t = tC�M�. We assume that at the time t = t2
the singularity has accumulated the mass MS, while the mass hidden inside the apparent
horizon at the same time is MBH >MS. Both of them grow with time. From the definitions
of MS and MBH it follows that

t2 = tC�MS� = tAH+�MBH�� (18.99)
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Fig. 18.2. A 3-dimensional graph of the black hole formation process from Fig. 18.1: the areal radius
as a function of M and t. Each shell of constant mass evolves in a plane given by M = constant. It
starts at R = 0, then escapes from the past apparent horizon AH−, then reaches maximum R, then
falls into the future apparent horizon AH+, and finally hits the Big Crunch. Note that the surface
intersects the R = 0 plane perpendicularly all along the R = 0 contour. The apparent horizons are
intersections of the R�M� t� surface with the plane R = 2M . (In the k > 0 Friedmann model, the bang
and the crunch would be parallel straight lines, and all the R�t�
M=const curves would be identical.)

Even though the model has a rather simple geometry, locating the event horizon is quite
a complicated task that requires complete knowledge of the whole spacetime, including
the null infinity. Hence, in a real Universe, where our knowledge (mostly incomplete and
imprecise) is limited to a relatively small neighbourhood of our past light cone and our
past worldline, the event horizon simply cannot be located by astronomical observations.

The future event horizon (EH) is formed by those null geodesics that fall into the future
apparent horizon ‘as late as possible’, i.e. approach it asymptotically. Hence, in order to
locate the event horizon, we must issue null geodesics backwards in time from the ‘future
endpoint’ of the AH+. This cannot be done in the �M� t� coordinates used so far because
the spacetime and the AH+ are infinite. Hence, we must first compactify the spacetime.
The most convenient compactification for considering null geodesics at a null infinity is,



320 The Lemaître–Tolman geometry

time

mass

t = now

crunch

AH +

MS MBH

AH –

bang

centre 
(M = 0)

Fig. 18.3. Contours of constant R-value (the thinner lines) and outgoing radial null geodesics
inscribed into the spacetime diagram of Fig. 18.1. The R-values on consecutive contours differ by
always the same amount.
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theoretically, the Penrose (1964) transform that spreads the null infinities into finite sets.
However, in order to find a Penrose transformation, one must first choose null coordinates,
and in the L–T model this has so far proven to be an impossible task (Stoeger, Ellis
and Nel, 1992; Hellaby, 1996a). Hence, we will use a less convenient compactification
that will squeeze the null infinities into single points in the 2-dimensional (time–radius)
spacetime diagram. It is provided by the transformation

M = tan�� t = tan �� (18.100)

In these coordinates, the R
1 × R

1
+ space of Figs. 18.1–18.3 becomes the finite

�−�/2��/2�× �0��/2� rectangle. See Fig. 18.4. The upper curve in Fig. 18.4 is the
Big Crunch singularity; the future apparent horizon runs so close to it that it seems to
coincide with it.1 The horizontal line is the � = now line. The lower curve is the Big
Bang and the past apparent horizon, again running one on top of the other. The point
on the �-axis where the three lines meet is the image of the M = 0 line of Fig. 18.1,
squeezed here into a point because of the scale of this figure.

The theoretical method to locate the future event horizon would now be to run a radial
null geodesic backwards in time from the point ��� ��= ��/2��/2�, i.e. from the image
of the future end of the AH+. However, for the most part, the AH+ runs so close to the
crunch singularity, and the geodesics intersecting the AH+ are so nearly tangent to AH+,
that numerical instabilities crash any such geodesic into the singularity instantly. This
happens all the way down to � = 1�1 at double precision. The calculation succeeded,
with double precision, only at � = 1�0, and a null geodesic could be traced from there
to the centre at � = 0. On the scale of Fig. 18.4, this whole geodesic seems to coincide
with the crunch and the AH+. However, it is well visible if one closes in on the image
of the area shown in Fig. 18.1; the closeup is shown in the inset.

The event horizon is transformed back to the �M� t� coordinates and written into the
frame of Figs. 18.1–18.3 in Fig. 18.5. As stated earlier, the event horizon is located
between geodesics 5 and 6 from the lower right in Fig. 18.3. By accident (caused by
our choice of numerical values in this example), the EH hits the centre very close to the
central point of the Big Bang, but does not coincide with it.

This whole construction should make it evident that there is no chance to locate the event
horizon by astronomical observations, even approximately. It only makes sense, in the obser-
vational context, to speak about an upper limit on the mass inside the apparent horizon.

18.10 * Shell crossings and necks/wormholes

The mass density in the L–T model becomes infinite where R�r = 0 �=M�r . This singularity
is called shell crossing because at those locations the radial distance between two adjacent

1 From Eqs. (18.93)–(18.94), the time difference between the crunch and the AH+ goes to infinity when M → . However,
the ratio of this time difference to the crunch time goes to zero, which explains why the two curves in Fig. 18.4 meet at the
image of the infinity. The same is true for the Big Bang and the AH−.
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Fig. 18.4. The spacetime diagram of Fig. 18.1 compactified according to Eq. (18.100). The region
shown in Fig. 18.1 is squeezed into the point where the three lines meet at the �-axis. The worldlines
of dust are still vertical straight lines here. The upper curve is the future apparent horizon �AH+�
and the Big Crunch (BC) singularity, they seem to coincide at the scale of this picture. The lower
curve is the past apparent horizon �AH−� and the Big-Bang (BB) singularity, again coinciding only
spuriously. The horizontal straight line is the � = now time. Inset: a closeup view of the image (in
the coordinates ��� ��) of the region shown in Fig. 18.1. The thicker line is the event horizon. It
does not really hit the central point of the Big Bang; the apparent coincidence is just an artefact of
the scale.
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Fig. 18.5. The event horizon (thicker line) written into the frame of Fig. 18.1. Its intersection with
the M = 0 axis does not coincide with the central point of the Big Bang; this is only an illusion
created by the scale.

shells that have different values of r becomes zero. If R�r changes sign there, then the
mass density on the other side of the shell crossing becomes negative.

The tetrad components of the Riemann tensor (in the tetrad e0 = dt� e1 =
(

R�r /
√

1+2E
)

dr� e2 = Rd��e3 = R sin� d�) are:

R0101 = 2M
R3

− M�r
R2R�r

� R0202 = R0303 = −M

R3
= 1

2
R2323�

R1212 = R1313 = M

R3
− M�r
R2R�r

�

(18.101)
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Thus, the shell crossing is a curvature singularity (the quantities listed above are scalars
and some become infinite where R�r = 0 �= M�r). It is considered less ‘dangerous’ than
the Big Bang for two reasons:

1. In real astrophysical objects of high density, pressure gradients are present, and
these should be able to prevent the occurrence of shell crossings. The L–T model
is simply not general enough to describe such a situation, and it is believed that
the shell crossing is a zero-pressure limit of an acoustic wave – of high, but finite,
density.

2. A bundle of geodesics sent into a shell crossing singularity does not become focussed
into a surface or a line, unlike at the Big Bang. This means that material objects
hitting a shell crossing would not be crushed (we refer the reader to Joshi (1993)
for details). For this reason the shell crossing is called a weak singularity.

This singularity can be avoided if the shapes of the arbitrary functions are properly
chosen. There are two ways to avoid it:

(1) by setting up the functions so that R�r �= 0 in the whole range of applicability of
the model; and

(2) by setting up the functions so that R�r = 0 only at those locations r = rw where
M�r = 0, and limr→rw


M�r /R�r 
 < .

We shall first deal with the second situation, by the method of Hellaby and Lake
(1985). We assume that t ≥ tB, i.e. we consider an expanding model. For collapse towards
the Big Crunch �t ≤ tC�, it suffices to replace (t− tB) with (tC − t) and tB�r with (−tC�r).
In order that the density remains finite at r = rw, it is necessary that

M�r �rw� = 0� (18.102)

Since M does not depend on t, the density can be finite only if the locus of R�r =
0 does not depend on time, either. This means that R�r = 0 holds along a worldline
of dust. Equation (18.102) is only a necessary condition for finite mass density. The
sufficient condition is that the limit of M�r /R�r at r = rw is finite. This condition becomes
particularly simple if we choose M as the radial coordinate, it is then

lim
M→M�rw�

(

R3
)

�M > 0� (18.103)

From (18.20) we then easily see that for the E = 0 model, if R�r = 0 =M�r at r = rw, then
automatically tB�r �rw� = 0. For the other two models, we find from (18.19) and (18.21)

R�r =
(
M�r
M

− E�r
E

)

R+
[(

3
2
E�r
E

− M�r
M

)

�t− tB�− tB�r

]

R�t � (18.104)

Since R�t = ±√
2M/R+2E is a different function of time than R, the equation R�r = 0 =

M�r can hold over all times only if the coefficients of R�t and R vanish identically, i.e.

E�r = 0� tB�r = 0� (18.105)
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Thus the necessary conditions for the absence of a shell crossing at such r = rw at which
R�r = 0 are (18.102), (18.104) and (18.105).1 If these conditions hold and 1+2E�rw� �= 0,
then Eq. (18.16) shows that the metric component g11 goes to zero. However, since
we have already assumed that M�r /R�r is finite at r = rw, Eqs. (18.101) show that the
curvature is nonsingular there. Hence, with (18.102), (18.103) and (18.105) all fulfilled,
while 1+2E�rw� �= 0, the locus r = rw is only a coordinate singularity. It can be removed
by a coordinate transformation that also removes the property R�r = 0, i.e. makes at least
one of the functions M�r �E�r and tB�r non-zero at rw.

The situation is different when E�rw� = −1/2. Equations (18.90) and (18.94) show
then that the past and future apparent horizons meet at r = rw� t = tw = tAH�rw�, which
is the instant of maximal expansion. An outgoing radial null geodesic that would leave
the past AH through the hypersurface r = rw would immediately fall inside the future
AH. An outgoing radial null geodesic that is already out of the past AH with r < rw must
enter the future AH with t > tw� r < rw. Thus, no light ray can be sent from the region
�tAH− ≤ t ≤ tAH+� r < rw� to the region �tAH− ≤ t ≤ tAH+� r > rw�. In this case, the locus
r = rw is called a neck or a wormhole, and it is a generalisation of the Kruskal–Szekeres
‘throat’ at r = 2m of the Schwarzschild solution. In the vacuum limit (M�r = 0 over an
extended region), the neck goes over into the Kruskal–Szekeres throat. In the nonvacuum
case, the neck need not be mirror-symmetric with respect to (r − rw). The possibility of
existence of such a neck was first noted by Barnes (1970). Then, a generalisation of it
appeared in numerical studies of a model with nonzero pressure gradients by Suto et al.
(1984). For illustrative examples of necks see Hellaby (1987), Hellaby and Krasiński
(2002), Krasiński and Hellaby (2004b) and Fig. 18.6.2

Now we come to the conditions for avoiding shell crossings at those points where
M�r �= 0. We wish to translate the condition R�r �= 0 into properties of the functions
M�r��E�r� and tB�r�. The cases R�r > 0 and R�r < 0 have to be considered separately.
We will write out the conditions only for R�r > 0. For R�r < 0, the inequalities (18.106),
(18.110), (18.111), (18.116) and (18.117) must have their senses inverted.

In all cases, in those regions where R�r > 0, in order that the mass density is positive,
we must have

M�r > 0� (18.106)

From here on, the three types of models have to be considered separately.

18.10.1 E < 0

Making use of (18.14) for expansion (R�t > 0) and of (18.19), we rewrite (18.104) as

R�r
R

=
(
M�r
M

− E�r
E

)

+
(

3
2
E�r
E

− M�r
M

)

�1���−
�−2E�3/2

M
tB�r�2���

def= f���� (18.107)

1 Sufficient conditions more specific than (18.103) are difficult to formulate.
2 The functions used in drawing Fig. 18.6 are as follows: M�r� = Mw + d�r − rw�

2� tB�r� = tB0 − bd2�r − rw�
2�E�r� =

−�1/2�Mw/
[

Mw +d�r− rw�
2
]+ad�r − rw�

2 and tC�r� = 2�M�r�/�−2E�r��3/2 + tB�r� – the crunch time; the parameters
are Mw = 20�0�d = 0�1� rw = 2�0� tB0 = 10�0� b = 2000�0 and a = 1�0.
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Fig. 18.6. An example of a spacetime region around a neck. The neck is the vertical straight line,
which represents a world-tube with spherical cross-sections r = rw. The two apparent horizons touch
each other at the neck, at the instant of maximal expansion of the model. Every future-directed
radial null geodesic that touches the AH− is forced to leave the AH−; every such geodesic that
touches the AH+ is forced to fall into the AH+. This is why there is no communication between
the region outside both AHs to the left of the neck and the corresponding region to the right of the
neck. The functions in the figure are mirror-symmetric with respect to the neck, but in general they
would not be.

where

�1���
def= sin���− sin��

�1− cos��2
� �2���

def= sin�
�1− cos��2

� (18.108)

The function f��� should be strictly positive in the whole range � ∈ �0�2��. Note that

lim
�→0

�1��� = 2/3� lim
�→2�

�1��� = −�

lim
�→0

�2��� = � lim
�→2�

�2��� = −�

lim
�→2�

�1���

�2���
= 2��

(18.109)

Hence, taking (18.107) in the limit �→ 0, we see that the last term becomes unbounded,
and it will be positive only if

tB�r < 0� (18.110)

Now we take (18.107) in the limit �→ 2�. Then the last two terms become unbounded.
Factoring out �2, which goes to −, and demanding that the (bounded) coefficient is
negative in the limit, we obtain:

2�
(

3
2
E�r
E

− M�r
M

)

− �−2E�3/2

M
tB�r < 0� (18.111)
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Equations (18.106), (18.110) and (18.111) are the necessary conditions for the absence
of shell crossings in the case R�r > 0. They are also sufficient (see Exercise 10). The
meaning of (18.111) is that the crunch time must be an increasing function of r.

Figure 18.3 can now be used to illustrate how Eqs. (18.110) and (18.111) work. Recall
that mass is used as the radial coordinate there, so M�r = 1 > 0 is assured. Since the
worldlines of the dust source are constant-M lines (i.e. vertical straight lines), they can
never intersect in a t–M diagram, even at shell crossings. A shell crossing would show in
this picture as a point where a constant-R contour has a horizontal tangent. (Apart from
the central points of the two singularities, M = 0 at R = 0, no such points exist in this
example, because the functions E�M� and tB�M� were chosen appropriately.) The centre
of symmetry M = 0, the Big Crunch and the Big Bang together form the R = 0 contour.
Adjacent contours of small constant R must have a similar shape. Hence, if either of the
two equations were not fulfilled, either the upper branch or the lower branch of some
contours would be a non-monotonic function, whose derivative by M would change sign
somewhere. At the changeover points, the tangents to the contours would be horizontal,
and these would be the shell crossings.

18.10.2 E = 0

We calculate from (18.20):

R�r
R

= M�r
3M

−
√

2MtB�r
R3/2

� (18.112)

As R → 0, the second term dominates, so, in order that R�r > 0 everywhere, we must have
tB�r < 0. Together with (18.106) this is then seen to be the necessary and sufficient condition.

18.10.3 E > 0

The analogue of (18.107)–(18.108) is here

R�r
R

=
(
M�r
M

− E�r
E

)

+
(

3
2
E�r
E

− M�r
M

)

�3���−
�2E�3/2

M
tB�r�4���� (18.113)

where

�3���
def= sinh��sinh�−��

�cosh�−1�2
� �4���

def= sinh�
�cosh�−1�2

� (18.114)

The following properties of �3��� and �4��� are useful in calculations:

lim
�→0

�3��� = 2/3� lim
�→�3��� = 1�

lim
�→0

�4��� = � lim
�→�4��� = 0�

d�3

d�
> 0 for � > 0�

d�4

d�
< 0 for � > 0� (18.115)
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Now take (18.113) at � → 0. The last term dominates, and it will be positive if

tB�r < 0� (18.116)

Taking (18.113) at � →  we easily obtain

E�r > 0� (18.117)

Equations (18.106), (18.116) and (18.117) are necessary conditions for R�r > 0. To see
that they are also sufficient, it suffices to rewrite (18.113) in the form

R�r
R

= M�r
M

�1−�3�+
E�r
E

(
3
2
�3 −1

)

− �2E�3/2

M
tB�r�4��� (18.118)

and take note of (18.115).

18.11 The redshift

In several applications of a cosmological model, we need to calculate the redshift of
light emitted by a source at a given time and location and received by an observer
located down a null geodesic from the source. In fact, we already have a ready-to-
use formula, Eq. (16.20), but the field of tangent vectors to the geodesic, k�, must be
affinely parametrised. Transforming it to such a parametrisation is usually not easy, so,
for numerical calculations, it is often more convenient to use other methods.

One of them is the following method (copied from Bondi (1947)). From (18.16), for a
radial null geodesic proceeding towards the observer, we find

dt
dr

= − R�r �t� r�
√

1+2E�r�
� (18.119)

Let two light rays be emitted in the same direction, the second one later by a small
time-interval �. Let the equation of the first ray be

t = T�r� (18.120)

and that of the second ray t = T�r�+ ��r�. Both rays must obey (18.119), so

dT
dr

= −R�r �T�r�� r�
√

1+2E�r�
�

d�T + ��

dr
= −R�r �T�r�+ ��r�� r�

√

1+2E�r�
� (18.121)

Since ��r� was assumed small, we have, to first order in �,

R�r �T�r�+ ��r�� r� = R�r �T�r�� r�+ ��r�R�tr �T�r�� r�� (18.122)

Using (18.122) and the first of (18.121) in the second of (18.121) we obtain

d�
dr

= −��r�
R�tr �T�r�� r�
√

1+2E�r�
� (18.123)
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If � at emission is the period of a wave, then, comparing it with the corresponding period
at the point of observation, we obtain

��robs�

��rem�
= 1+ z�rem�� (18.124)

Keeping the observer at a fixed position and considering the sources at two distances, rem

and (rem +dr), we find by differentiating the above that �d�/dr�/� = −�dz/dr�/�1+ z�.
Using this in (18.123):

1

1+ z

dz
dr

= R�tr �T�r�� r�
√

1+2E�r�
� (18.125)

Hence, the redshift may be calculated numerically from:

ln�1+ z�r�� =
∫ robs

rem

R�tr �T�r�� r�
√

1+2E�r�
dr� (18.126)

This formula is equivalent to (16.20) (see Exercise 11), but here the parameter on the
null geodesic is just the coordinate r.

Exercise 11 also shows how to introduce the affine parametrisation for the field k�.
That parametrisation can be introduced by the general method presented in Section 5.2,
and we shall do it here.

Let us choose the parametrisation in (18.119) so that

k1 = −1� k0 = R�r√
1+2E

� (18.127)

The first equation above says that the parameter on the geodesic is

� = −r� (18.128)

Since this parametrisation is not affine, k� obeys, according to (5.11), k�� k
 =

−�d ln	/d��k�. Substituting here the k� from (18.127) we find the coefficient to be

− 1
	

d	
d�

= 2
R�tr√
1+2E

− R�rr
R�r

+ E�r
1+2E

� (18.129)

Now the meaning of all the symbols has to be precisely understood. The differential
equation (18.129) holds along a single null geodesic, so all quantities in it have to be taken
along that geodesic. In particular, wherever any function depends on t, the coordinate
t in it must be replaced by the T�r� of (18.120). The derivatives of R in (18.129) had
been taken before the quantities were specialised to the null geodesic, so they are partial
derivatives. Hence, R�rr is not the total derivative of R�r by r, but just the partial derivative
by the second argument of R�r . It is related to the total derivative, denoted D/dr, by

DR�r �T�r�� r�
dr

= R�tr �T�r�� r�
dT
dr

+R�rr �T�r�� r�� (18.130)
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Substituting from (18.121) for dT/dr we obtain from the above

R�rr �T�r�� r� = DR�r �T�r�� r�
dr

+R�tr �T�r�� r�
R�r �T�r�� r�
√

1+2E�r�
� (18.131)

Substituting this in (18.129) and recalling that � = −r we obtain

1
	

d	
dr

= R�tr �T�r�� r�
√

1+2E�r�
− 1
R�r �T�r�� r�

DR�r �T�r�� r�
dr

+ E�r
1+2E�r�

� (18.132)

Now this can be integrated with the result

	 = C

√
1+2E

R�r �T�r�� r�
exp

(
∫ R�tr �T�r�� r�
√

1+2E�r�
dr

)

� (18.133)

where C is an arbitrary constant. From (5.12), the parameter � of (18.127)–(18.128) is
related to the affine parameter s by d�/ds = 	/C, so the field k� of (18.127)–(18.128)
is related to the same field in the affine parametrisation, denoted k̃�, by k̃� = �	/C�k�.
Consequently, the components of the affinely parametrised field are

k̃0 = exp

(
∫ R�tr �T�r�� r�
√

1+2E�r�
dr

)

�

k̃1 = −
√

1+2E
R�r �T�r�� r�

exp

(
∫ R�tr �T�r�� r�
√

1+2E�r�
dr

)

� (18.134)

18.12 The influence of inhomogeneities in matter distribution on the cosmic
microwave background radiation

Saez and collaborators (Arnau et al., 1993, 1994; Saez et al., 1993) studied the interaction
of the cosmic microwave background (CMB) with inhomogeneities in matter distribution
placed in the path of the CMB rays. Since it was a major numerical project, its results
will be only briefly reported here.

The CMB radiation has, to a high accuracy, the black-body spectrum (17.73). During the
period to which the L–T model can be applied (after radiation had decoupled from matter),
photons do not interact with matter and it is assumed that their number is conserved. In
a Friedmann model, this conservation implies d

[

I�!�t��R3�t�
]

/dt = 0. Then, again in a
Friedmann model, Eqs. (16.20) and (17.13) imply !R = constant. Thus, assuming that
the black body spectrum is preserved in time, we conclude from (17.73) and (17.13) that
the temperature of the radiation changes from the emission instant te to the observation
instant to by the law

T�to� = T�te�

1+ z
� (18.135)

This can be generalised to the L–T model by observing that in small neighbour-
hoods it behaves like a Friedmann model, so Eq. (18.135) can be applied to nearby
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points on the same null geodesic, with parameter values r and (r + dr), thus
d�lnT�/dr = −d�ln�n+ z��/dr. In this way, differences in temperature at reception
between light rays going along different paths can be calculated. The quantity used in
calculations is the temperature contrast #T/T , where T is the temperature along a
ray that has been propagating through a Friedmann region all the way and #T is the
difference between T and the observed temperature in a given direction.

This approach was first applied by Raine and Thomas (1981). They considered a
large-scale but small-amplitude condensation in the path of light rays of the microwave
background reaching an observer. The rays were assumed to be emitted and received in a
Friedmann region. The equations of null geodesics were integrated numerically in order
to calculate the temperature at the reception point and compare it with the temperature at
endpoints of rays propagating all the way through a Friedmann medium. The temperature
variation was calculated as a function of the direction of observation.

The most comprehensive study by this method was done by Arnau, Fullana, Monreal
and Saez (Arnau et al. 1993, 1994; Saez et al., 1993). They computed numerically the
dependence of the temperature contrast on the direction of observation for the microwave
background radiation for a model consisting of a Friedmann background, with an arbitrary
density parameter $ = 
/
cr (where 
 is the actual mean mass density in the Universe
and 
cr is the critical density defined by (17.30)), and with a localised L–T perturbation
superimposed on it. The numerical code allowed them to fit a model with a few free
parameters (describing the density profile of the condensation, the background density
parameter and the Hubble parameter) to the observed characteristics of the Great Attrac-
tor or of the Virgo cluster, and then to calculate the anisotropy in temperature of the
background radiation caused by these condensations. The authors calculated the temper-
ature anisotropies in the background radiation produced by models of the Great Attractor
with different density and velocity profiles, and with different density parameters of the
Friedmann background. Specifically, they calculated the effects of the following:

1. Various velocity profiles in the attractor model with a fixed background density
parameter and fixed distance from the observer.

2. Various background density parameters with a fixed velocity profile and the distance
adjusted so as to produce the largest effect.

3. Various distances to the condensation with a fixed velocity profile and a fixed
background density parameter.

The result was that the maximal anisotropy to be expected is up to 3 × 10−5 (when
$= 0�15), at the angular scale of 10�. This agrees with the current measurements, which
give 2×10−5 (WMAP, 2004).1

1 The value of this anisotropy invites a comment. The high degree of isotropy of the CMB radiation has frequently been used
as an argument in favour of the Friedmann models, and the ‘reasoning’ was that inhomogeneities in matter distribution would
leave an imprint on the radiation. However, for a long time these claims had not been backed up by any calculations. The
results of Saez et al. show that no trace of such an imprint could show up until the precision of measurements of temperature
anisotropies reached the level of 10−6, which happened only in 1993 (Mather et al., 1993).
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18.13 Matching the L–T model to the Schwarzschild and Friedmann solutions

As already observed in Section 18.3, the Schwarzschild solution is the vacuum limit of
the L–T model that results when M�r = 0. For various purposes, a spacetime model is
sometimes considered consisting of the L–T solution in the region r ≤ rb matched to the
Schwarzschild solution in the region r ≥ rb. The Schwarzschild solution should then be
represented in the Lemaître–Novikov coordinates, as in (14.116)–(14.117). As shown in
Section 12.17, the matching conditions to (18.16) require that

RLT�t� rb� = RS�t� rb�� R�r /N 
LT = R�r /N 
S � (18.136)

where S stands for ‘Schwarzschild’ and LT for ‘Lemaître–Tolman’, and

N = R�r√
1+2E

(18.137)

in both metrics. As a result, R�r cancels out in the equations, and the matching conditions
reduce just to the continuity of E�R and R�t, i.e.

E�rb�
LT = E�rb�
S � tB�rb�
LT = tB�rb�
S �
M�rb� = m�

(18.138)

where m is the mass parameter of the Schwarzschild solution. What is obtained after the
matching is in fact a single L–T model with M�r� going over into the constant function
M = m at r = rb.

Sometimes, the matching between the L–T and Friedmann spacetimes is considered;
for example, when discussing the formation of galaxy clusters or voids (Krasiński and
Hellaby, 2002, 2004, 2005, and Section 18.6). It is then assumed that at a certain distance
from the centre of the cluster or void the L–T metric goes over into an unperturbed
Friedmann model. Equations (18.136)–(18.138) must apply also then, with the subscript
‘S’ now referring to Friedmann. In particular, the last equation of (18.138) now reads
MLT�rb�=MS�rb�, where MS�rb� is the Friedmann mass function calculated at r = rb. This
means that the Friedmann mass removed from within r = rb must be the same as the L–T
mass filling that sphere. This is a necessary and sufficient condition for matching because
the other two equations in (18.138) can always be fulfilled: the first determines the value
of the Friedmann curvature index k, the second can be fulfilled by time-translation in the
Friedmann spacetime.

As observed by Ribeiro (1992a), this equality of masses implies that in such a configu-
ration any region of density higher or lower than that in the Friedmann background must
be compensated by a region of a lower or higher density, respectively.

18.14 * General properties of the Big Bang/Big Crunch singularities in the L–T
model

At all points apart from the centre of symmetry, both these singularities are spacelike.
This is verified as follows: since the singularities are parts of the set R= 0, calculate the
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normal vector field to any hypersurface R= constant. It has components �R�t �R�r �0�0�,
so g�!n��n�! = g00R�t

2 +g11R�r
2, which, using (18.14) and (18.16), becomes

g�!n��n�! = 2M
R

−1� (18.139)

This is negative for R > 2M , zero at the apparent horizon and positive for R < 2M .
Consequently, the vector field n� is, respectively, spacelike, null or timelike, i.e. the
hypersurface R= constant is timelike, null or spacelike. Thus, as we approach the nonsin-
gular centre of symmetry R→ 0, the regularity condition (18.31) implies that 2M/R→ 0,
so the nonsingular part of the set R= 0 is timelike. As we approach the singularity R→ 0
along a line M> 0, the expression (18.139) tends to +, so the part of R = 0 in which
M> 0 is spacelike.

The orientation of the central part of the singularity, where the line of centre of
symmetry hits the Big Bang or Big Crunch set, is not simple to determine, since the
comoving coordinates have a singularity there, too, and they do not allow one to see
the geometric relations clearly. It had taken quite an effort to notice that the locus in
which the two parts of the set R = 0 meet need not be a single point, but, under certain
circumstances, may be a finite segment of a timelike or null curve.

The first to note the possibility of this peculiar behaviour (during a numerical investiga-
tion of an E = 0 model) were Eardley and Smarr (1979), and they called the phenomenon
shell focussing. They stated that the segment of the centre of symmetry in which shell
focussing occurs can only be null. However, the criteria for the occurrence of a shell
focussing, which they gave without derivation, do not look entirely credible because
they refer to the limit of tB/M as r → rc, while the value of tB is coordinate-dependent.
Hellaby, in his unpublished Ph.D. Thesis,1 found that the segment in question can be
timelike as well.

If the singularity is all spacelike, then its intersection with the worldline of the centre
of symmetry can be imagined as a single point – no future-directed light ray can leave the
singular set. However, if the singularity contains a timelike or null segment, then, as will
be shown below, that segment is a common vertex of an infinite family of distinct light
cones. The conclusion is that the non-spacelike segment of the singularity is an extended
arc of a curve that is mapped into a single point in the comoving coordinates, which have
their own singularity there.

The discussion below was inspired by the paper of Christodoulou (1984) and the
unpublished work of Hellaby and Lake (1988), but is a great simplification of both. Take
the E = 0 L–T model with the function M�r� chosen as follows:

M�r� = M0r
3� (18.140)

1 We are grateful to C. Hellaby for giving us access to his thesis.
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where M0 is a constant. (This is a definition of the coordinate r.) Since we will be
discussing collapse, we set in (18.20):

R�t� r� =
{

9
2
M�r� �tB�r�− t�2

}1/3

(18.141)

so that t increases from an initial value to t = tB�r�, which is now the final (Big Crunch)
singularity. Now choose tB�r�:

tB�r� = ar2� (18.142)

where a > 0 is a constant, so that the Big Crunch starts at r = 0 with t = 0 and then
proceeds to greater r-values as t increases (see Fig. 18.7). We find then that the equation
of an outgoing radial null geodesic is

(
dt

dr

)

n

=
(

9M0

2

)1/3 7
3ar

2 − t

�ar2 − t�1/3
� (18.143)

The set where t = 7ar2/3 would be a shell crossing singularity, but it lies to the future
of the Big Crunch, and hence does not belong to the physical spacetime. It is seen that,
as we approach the Big Crunch singularity along any line that terminates at t = ar2 with
a nonzero r-value, the derivative dt/dr becomes infinite, i.e. the geodesics hit the Big
Crunch set vertically in a �t� r� diagram. As we approach any nonsingular point of the
centre of symmetry line, �r = 0� t < tB�, the derivative dt/dr has a finite nonzero limit.
In order to note what happens as we approach the intersection of the centre of symmetry
with the Big Crunch along an arbitrary curve t = f�r�, write (18.143) in the form

(
dt

dr

)

n

=
(

9M0

2

)1/3

r4/3
7
3a− t/r2

�a− t/r2�1/3 � (18.144)

and consider the various possible limits of t/r2 at r → 0 along different curves. The limit
of t/r2 may be zero, finite non-zero, or infinite. In the first two cases, (18.144) clearly
shows that

lim
r→0�t→0

(
dt
dr

)

n

= 0� (18.145)

In the third case, when the limit of t/r2 is infinite, it is useful to rewrite (18.144) in yet
another form

(
dt
dr

)

n

=
(

9M0

2

)1/3

t2/3 7ar2/�3t�−1

�ar2/t−1�1/3 � (18.146)

The infinite limit of t/r2 means zero limit of r2/t, so (18.145) again holds. Thus, the
limiting slope of a light ray emitted from the point p0 of coordinates �t� r� = �0�0�
consistently comes out to be zero for all nonsingular paths of approach to p0 (see Fig. 18.7),
but when this point is approached along the Big Crunch singularity, the tangent to the
light ray is vertical. This suggests that there is some structure hidden in p0.
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t

r

Fig. 18.7. Outgoing radial light rays in the neighbourhood of the central singularity in the space-
time (18.141). The vertical arrow is the axis of symmetry, the thicker parabola is the Big Crunch
singularity and the lighter curve is the apparent horizon. At all points except at the centre, the rays
hit the singularity vertically (the figure does not show this). At all points except at the singularity,
the rays hit the axis of symmetry with non-horizontal tangents. When the common point of the axis
and of the singularity is approached along any curve except the singularity itself, the direction of
the outgoing light ray tends to the horizontal. Light rays emanating from the central point of the
singularity are tangent to the singular set and to the apparent horizon, but d2t/dr2 calculated along
those rays at �t� r�= �0�0� is still zero, while d2tB/dr2�0�= d2tAH/dr2 �= 0, so the rays can recede
from the singularity out to a finite distance, still remaining before the apparent horizon. One such
ray, the uppermost in the figure, is shown.

The equation of the apparent horizon in the spacetime considered is

tAH�r� = ar2 − 4
3
M0r

3� (18.147)

Thus, the apparent horizon surface is tangent to the Big Crunch at r = 0, and initially
proceeds towards larger t; tAH�r� becomes a decreasing function of r only at r =
a/�2M0� > 0 (that region is not visible in Fig. 18.7, which covers only the region
of r < 0�2a/M0).
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We thus note that the Big Crunch set, the apparent horizon and the light rays emitted
from p0 are all tangent at p0. However, while the second derivatives of both the Big
Crunch time and of the apparent horizon time are equal to 2a at p0, the second derivative
of t = tn�r� along a light ray is still zero, as can be found by differentiating (18.143) and
taking the limit t → 0� r → 0 along the light ray:

(
d2t

dr2

)

n

�p0� = lim
r→0

[(
9M0

2

)1/3 4ar4/3

�a− t/r2�4/3

(
7
9
a− t

r2

)

+ 2
3

(
9M0

2

)2/3

r2/3 7a/3− t/r2

�a− t/r2�5/3

(

−a

3
+ t

r2

)
]

� (18.148)

(This comes out zero, no matter what limit t/r2 has at �t� r� = �0�0�.) Thus, light rays
that start off from the point p0 initially recede from the Big Crunch and remain earlier
than the apparent horizon. Consequently, each such ray will proceed out to a finite r

without entering the apparent horizon. In Section 18.16 we will come back to the question
whether the ray can escape to infinity. (In the example we consider now, if the dust
distribution is spatially infinite, the apparent horizon begins to proceed to earlier times
when r > a/�2M0�, so the ray must eventually cross the apparent horizon and then hit
the Big Crunch.)

Which ray leaving the central point of the singularity is the earliest? Lacking an exact
solution of (18.143), that ray can be identified only by numerical calculation. The best that
can be achieved analytically is to prove that such a ray exists. For the proofs of existence
in another model, with E< 0, readers are referred to the papers by Christodoulou (1984)
and Newman (1986).

Suppose that L is any such ray emitted from p0 = �0�0�. Outgoing rays cannot intersect
at �t� r� �= �0�0�, and cannot be emitted into the spacetime from any other point of the
Big Crunch. It follows that a ray passing through any point that lies to the future of L was
also emitted from p0. Thus there is an infinite family of light rays emanating from the
point p0 and initially receding from the Big Crunch and the apparent horizon. It follows
that p0 only looks to be a single point in the comoving coordinates; in reality it must be
a timelike or null set.

We have considered just one example of an L–T model, constructed deliberately so that
it shows this unusual behaviour. There are L–T models in which the central point of the
Big Crunch singularity cannot emit any light ray because that singularity is all spacelike.

A time-reversed behaviour can occur at the central point of the Big Bang.
It is seen from (18.119) that the tangent to the light ray becomes horizontal wherever

R�r = 0. Using (18.104) for the E> 0 and E< 0 models and (18.20) for the E = 0 model
we find that the terms not involving tB�r go to zero at any point of the singular set t = tB,
independently of the path of approach.1 If tB�r �= 0 at r = r1, then the term tB�rR�t in
(18.104) and the corresponding term in (18.20) will become infinite as r → r1 because

1 To see this, note that R�t = "
√

2M +2ER/
√
R, " = ±1 and that limt→tB

�t− tB�/
√
R = 0 (use the de l’Hôpital rule).
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R�t −→
r→r1

. Hence, a necessary condition for the light ray to have a horizontal tangent at

a point p1 located in the Big Bang/Big Crunch singularity is tB�r �p1� = 0 (the same is
true for the E = 0 model). Whether it is also sufficient cannot be said in general because
the limit of tB�rR�t as p → p1 may depend on the path of approach to the point p1. If we
approach it along the r = r1 line, then the limit is always zero.

The tangent to the light ray being vertical or horizontal in the �t� r� graph has physical
consequences. If the tangent is horizontal at the emission point, then the redshift observed
at any other point is infinite. If the tangent is vertical, then an observer receiving the
ray elsewhere will see it infinitely blueshifted. This was first noted without a proof by
Szekeres (1980), and then calculated by Hellaby and Lake (1984) by the method of
developing the quantities present in Eq. (16.20) into truncated Taylor series in R around
R = 0. However, the calculation turned out to be rather complicated, so we shall explain
this result by intuitive arguments only.

Suppose that the tangent to the ray at the emission point is horizontal. This means that
the ray proceeds along the surface of constant time, so there will be an infinite number of
cycles of an electromagnetic wave in a unit of time. This just means that the frequency
at the emission point is then infinite, which, by (16.20), implies an infinite redshift.

Now let the tangent at the emission point be vertical. In the comoving coordinates, the
velocity of the dust is vertical everywhere, i.e. it is tangent to the light cone at emission.
Thus, the dust is leaving the Big Bang with the velocity of light. Consequently, an
observer sitting on a dust particle would be riding on the crest of a light wave and would
see zero frequency. By (16.20), this means that the ratio of the observed frequency to the
frequency at emission is infinite, so at the observation point there would be an infinite
blueshift. However, this infinity is just a consequence of the frequency of the emitter
being zero – the frequency at the observation point is finite. Therefore, one should not
expect any unusually strong influence of the radiation on matter in this case.

In the Friedmann models, the light rays are horizontal at the Big Bang, i.e. the Big
Bang is seen with an infinite redshift by any observer. Since the Big Bang in the L–T
model is in general non-simultaneous, most light rays leave it vertically, which implies
an instability of the Friedmann models – one more, in addition to the instability against
the formation of condensations and voids.

18.15 * Extending the L–T spacetime through a shell crossing singularity

The shell crossing singularity is considered a less serious breakdown of Einstein’s theory
than the Big Bang – because it is believed to be just an artefact of the zero pressure
gradient in the L–T model. In models with nonzero pressure gradients (which are so far
unknown), it is expected that the shell crossing will be replaced by a region of high but
finite density.

In this section, we shall present one more reason why a shell crossing is relatively
harmless: as observed by Newman (1986), the L–T spacetime can be extended through
it. The extension is provided by the Gautreau coordinates of Section 18.7. For the general
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L–T model (with arbitrary E) the Gautreau coordinates are ���R�����, where � = t and
R is the areal radius function obeying (18.14). Thus, in (18.16) we have

R�r dr = dR−R�t dt = dR−"

√

2E+ 2M
R

+ 1
3
�R2 d�� (18.149)

ds2 = 1
1+2E

[(

1− 2M
R

− 1
3
�R2

)

d�2

+ 2"

√

2E+ 2M
R

+ 1
3
�R2 d� dR−dR2

]

−R2
(

d�2 + sin2 � d�2
)

� (18.150)

where now the statement that M and E are functions of r translates into the partial
differential equations:

�M

��
+"

√

2E+ 2M
R

+ 1
3
�R2

�M

�R
= 0� (18.151)

and a similar equation for E. In these coordinates there is no trace of the shell cross-
ing singularity, which means that the metric can be extended through it. However, the
derivatives of the metric components g00, g01 and g11 by R will now be singular at the
shell crossing because

�M

�R
= �M

�r

�r

�R
= �M

�r
/R�r (18.152)

(all quantities to be taken at r = r���R�). Thus, the extension is of class C0 (continuous but
non-differentiable), and the curvature tensor still has a singularity at the set R�r ���R�= 0.

The components of the velocity field in the ���R� coordinates are

u0 = 1� u1 = R�t = "

√

2E+ 2M
R

+ 1
3
�R2� u2 = u3 = 0� (18.153)

The u1 is non-differentiable at the shell crossing, but continuous. Thus the derivative of
u1 (and consequently the Christoffel symbols) will have a finite discontinuity there. The
singularity of the flow makes itself visible in the behaviour of the geodesic deviation
of the velocity field. As seen from (6.56), to offset the infinite values of the curvature
at the shell crossing, the geodesic deviation �x� must be zero there, which means that
different flow lines intersect. However, they continue behind the intersection points.
Figures 18.8 and 18.9 show an example of a shell crossing in an E = 0 L–T model in the
comoving coordinates (Fig. 18.8) and in the Gautreau coordinates (Fig. 18.9). As seen
from Fig. 18.9, the region behind the shell crossing contains three superposed flows of
dust: the streams that entered through the left wall, through the right wall and through
the lower vertex.1

1 This kind of extension was considered by Clarke and O’Donnell (1992), but it is not clear from their figure what quantities
are measured on the coordinate axes.
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Fig. 18.8. A shell crossing (SC) singularity in an E = 0 L–T model in the comoving coordinates.
(The model used to draw the figure is the same as will appear in Section 18.16, Eqs. (18.154)–
(18.159), but with different parameter values.) The vertical straight lines are flow lines of the dust,
terminating in the Big Crunch (BC) singularity. AH+ is the apparent horizon. The other curves
in the figure are contours of constant values of R. In the comoving coordinates, the flow lines
cannot intersect in a spacetime diagram, even at shell crossings. A shell crossing is a location where
R�r = 0, i.e. where the contour of constant R has a horizontal tangent – note that this is indeed
so. The figure should help understand why the necessary and sufficient condition for avoiding a
shell crossing is that the BC is an increasing function of r: note that the centre of symmetry and
the BC singularity together form the R = 0 contour. Thus, since the contours of small constant
R-values must approximately follow the shape of the R = 0 contour, if tBC�r� is not an increasing
function, then the other R = constant contours must have a horizontal tangent somewhere. At the
point where tBC becomes an increasing function, the shell crossing set meets the BC and at larger
r-values is later than the BC, i.e. not in the physical region of the spacetime. Compare this with
Fig. 18.3, where there are no shell crossings.

18.16 * Singularities and cosmic censorship

The cosmic censorship hypothesis (CCH) does not in fact belong to the field of cosmology.
However, the L–T model has been used many times as a testing ground for various
formulations of the CCH. After reading this section, readers may have a false impression
that the subject of CCH is buried under counterexamples. In reality, the debate is far
from settled. The emphasis on counterexamples in this text does not reflect the true state
of affairs and results from the fact that we are more interested here in applications of the
L–T model than in settling the CCH issue.

In its original formulation by Penrose (1969), the CCH said that relativity does not
allow naked singularities. All singularities were supposed to be hidden inside horizons.
A singularity can be locally naked, when light rays proceed from it out to a finite distance
and turn back, or globally naked, when the light rays it emitted can escape to infinity.
The CCH would preferably prohibit both kinds of naked singularity.

It would certainly be desirable if the CCH were correct because a naked singularity
could emit matter or radiation in unpredictable quantities at unpredictable times. However,
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Fig. 18.9. The situation from Fig. 18.8 in the ���R� coordinates of Gautreau. The Big Crunch
singularity is at the vertical axis, where R = 0. The shell crossing (SC) is the wedge-shaped pair
of curves; the tip of the wedge is the minimum of tS from Fig. 18.8 and the lower branch of the
wedge is the part to the right of the minimum of tS in Fig. 18.8. More flow lines are drawn here
than in Fig. 18.8 – the extra lines are the leftmost nine (which would lie, evenly spaced, to the
left of the leftmost line in Fig. 18.8) and the uppermost one (which would lie to the right of the
rightmost line in Fig. 18.8). Inside the wedge, three streams of matter are seen: the particles that
entered through the lower face, the particles that entered through the upper face and the particles
that entered through the tip. Note that this diagram does not faithfully represent all the features of
Fig. 18.8. For example, the flow lines that intersect the right face of the SC here do not intersect
the SC in Fig. 18.8. The function t�r� given by R�t� r� = constant is not one-to-one, i.e. for every
point �t1� r1� in Fig. 18.8 in the SC to the left of the minimum, with the value R1 of R, there is a
point �t1� r2� to the right of the SC that has the same value of R.
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the history of the CCH turned out to be turbulent. A counterexample to this earliest
formulation was provided by Yodzis, Seifert and Müller zum Hagen (1973), then the
hypothesis was modified to exclude ‘non-generic’ cases, then another counterexample to
the modified version appeared, followed by a new modification, and so the story went.
We shall not follow it here; more information can be found in the book by Joshi (1993).
Instead, we will describe some of the applications of the L–T model to the discussion of
properties of singularities, the CCH among them.

Our example of a naked shell crossing singularity closely follows the method of Yodzis,
Seifert and Müller zum Hagen (1973). However, the functions used here are different
because the original example was, apparently needlessly, quite complicated. The idea is
to construct a ball of L–T dust of finite radius, matched to the Schwarzschild solution,
and then to design a shell crossing singularity in it so that it reaches the surface of the
ball before the surface crosses the future apparent horizon at R= 2M . At the surface, the
apparent horizon coincides with the Schwarzschild event horizon, so the singularity thus
constructed will be naked.

We take the collapsing E = 0 =� L–T model (in which t < tB and t increases towards
t = tB), and we find the locus of R�r = 0 in it:

t = tS�r�
def= tB�r�+2

M

M�r
tB�r � (18.154)

Following Yodzis et al., we choose the simple function M�r�=�r, where � is a constant
(this means only that we choose M/� as the radial coordinate; it does not limit the
generality of the example). The centre of symmetry is at r = 0, and the regularity condition
(18.31) is fulfilled. The surface of the L–T ball will be at r = b, and for r > b we have
the Schwarzschild solution with the mass parameter m = �b (it must be represented in
the Lemaître–Novikov coordinates with E = 0 and with the appropriate value of tB�b�).

Next, we choose such a form of the function tS�r� in (18.154) that it has a minimum
at some r:

tS�r� = a�r− c�2 +d� (18.155)

where a� c and d are arbitrary positive parameters, whose values will be discussed later.
The minimum of tS�r� is at r = c and it equals d, which means that for t < d the shell
crossing does not exist yet. We equate (18.154) and (18.155) and solve the resulting
differential equation for tB�r�. In order to fulfil the regularity condition (18.35), the
integration constant must be zero. The result is

tB�r� = a

5
r2 − 2

3
acr+ac2 +d� (18.156)

The time by which the shell crossing hits the surface of the ball is

t = tS�b� = a�b− c�2 +d� (18.157)
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The time by which the surface of the ball crosses the apparent horizon is found by solving
the equation R = 2M for t; it is

tH�b� = tB�b�−
4
3
�b = a

5
b2 − 2

3
b�2�+ac�+ac2 +d� (18.158)

and this must be greater than tS�b�, which means that

c >
3

5
b+ �

a
� (18.159)

This allows us to choose the mass parameter � and the location of the surface of the
ball, r = b, quite arbitrarily. Also the instant when the shell crossing first appears, t = d,
is arbitrary – Eq. (18.159) is the only condition to be fulfilled. If it is fulfilled, then the
singularity reaches the surface of the ball at t = tS�b� given by (18.157), while the surface
is still outside the Schwarzschild event horizon. Consequently, the singularity can send
a null geodesic out to the future null infinity; see Fig. 18.10. In fact, for better physical
interpretation, it is good to assume that the minimum of tS�r� is still inside the ball, so
that the shell crossing begins inside the ball and not at the surface. For this, it is necessary
that c < b. This can be fulfilled together with (18.159) only if a > 5�/�2b�. This still
leaves the parameters ��b and d arbitrary.

The Schwarzschild solution represented in the Lemaître–Novikov coordinates must
have its R�t� r� equal at r = b to the R�t� r� of (18.154)–(18.156). Hence, ES�b� = 0�
tBS�b� = tB�b� and m = �b, where the subscript ‘S’ stands for ‘Schwarzschild’. Thus, it
is simplest to choose ES�r� = 0 (which, in the Schwarzschild limit, is just a choice of
coordinates; see Exercise 10 in Chapter 14), and then tBS�r� can be given any form by
a transformation of r alone. A simple form is tBS�r� = �r, with � = tB�b�/b. Then, the
event horizon, R = 2m, is given by t = �r − 4m/3, i.e. the singularity t = tBS�r� and
the event horizon are parallel straight lines in the �t� r� diagram, as in Fig. 18.10. (With
arbitrary r, the event horizon would still be a parallely displaced copy of the singularity,
but the graphs of both sets are in general curves.) The null geodesic equation in the
Schwarzschild spacetime must then be integrated numerically.

Now we will show that a shell focussing singularity can be globally naked. The method
of proof is similar to the one used for shell crossings: the surface of the L–T dust ball
has to be chosen at such a location that the ray emitted from the central point of the Big
Crunch singularity hits it before the surface crosses the apparent horizon. Then the ray
can continue out to infinity in the Schwarzschild region. Figure 18.7 shows that this is
possible, since that ray remains before the apparent horizon for some time, but we will
prove it formally.

We will continue to consider the same example as in Section 18.14, i.e. the model
defined by (18.140)–(18.142). We showed that the apparent horizon in it, (18.147), and
the Big Crunch, (18.142), have a zero of second order at r = 0, while the function tn�r�

that obeys the equation of a radial null geodesic has a zero of higher order there.

Consider the function f�r�
def= tAH�r�− tn�r�. It is zero at r = 0 and its first derivative by

r is also zero at r = 0, while d2t/dr2�0�= 2a > 0. From (18.148) we see that d2tn/dr2 is
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Fig. 18.10. A schematic illustration of a naked shell-crossing singularity of the type of Yodzis
et al. (1973). The vertical line is the worldline of the surface of the dust ball; the area to the right
of it is the Schwarzschild spacetime. BC is the Big Crunch singularity, where t = tB�r�; outside
the ball it goes over into the Schwarzschild singularity denoted SS. AH+ is the future apparent
horizon; outside the ball it goes over into the Schwarzschild event horizon EH. SC is the shell
crossing singularity that appears at t = d and grows inwards and outwards. The seemingly straight
line below EH is the light ray emitted when the shell crossing reaches the surface of the body –
it proceeds unimpeded to the future null infinity. For the shell crossing singularity to exist it is
necessary that the Big Crunch function inside the body is decreasing with r (for an increasing tB�r�,
the shell crossing is later than the Big Crunch).

continuous at r = 0, and so is
(

d2tAH/dr2
)= 2a−8M0r. Consequently, d2f/dr2, which

equals 2a > 0 at r = 0, must remain strictly positive for 0 ≤ r ≤ r1, where r1 > 0. This
means that df/dr (which equals 0 at r = 0) is a strictly increasing function for 0 < r ≤ r1,
and so, being continuous, must be positive for 0 < r ≤ r2, where r2 > r1. This, in turn,
means that f�r�, which is continuous, is increasing for 0 < r ≤ r2, and so must be positive
for 0 < r ≤ r3, where r3 > r2. Thus, at r = r3� f�r3� > 0, i.e. tn�r3� < tAH�r3�. Choose the
surface of the dust ball at r = b= r3, and match the L–T model to the Schwarzschild space-
time there. The ray emitted from the central point of the Big Crunch singularity will reach
the surface of the ball at r = b while tn�b� < tAH�b�, and then will continue unimpeded
to infinity in the Schwarzschild region. This was the essential point of Christodoulou’s
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(1984) counterexample to the CCH, except that he used an E< 0 L–T model. Figure 18.7
can be used to illustrate this: the surface of the ball, r = b, can be chosen anywhere
between r = 0 and the value of r at which the ray emitted from the singularity intersects
the apparent horizon. The exterior region would then look the same as in Fig. 18.10.

The other L–T counterexamples to the CCH demonstrated ever stronger violations of
the hypothesis. We shall only describe them without going into details, since most of the
arguments are highly technical.

Newman (1986) discussed the strength of the naked singularities in the L–T model.
Imagine a non-spacelike geodesic and a set of spacelike vectors orthogonal to it and
propagated parallely along it. If the geodesic is timelike, the set will be 3-dimensional; if
it is null, the set will be 2-dimensional. The limiting focussing condition (LFC) means,
roughly, that the volume (for timelike geodesics) or area (for null geodesics) of the
parallelepiped spanned on the vectors is decreasing as the singularity is approached. The
strong LFC means that the volume/area tends to zero at the singularity. The conclusions
of the paper are as follows: 1. Radial null geodesics hitting or leaving a shell crossing
singularity in an L–T model do not obey the LFC. 2. Radial null geodesics hitting or
leaving a shell focussing singularity in an L–T model obey the LFC, but not the strong
LFC. The first result implies that a shell crossing singularity is weak and thus is not a
conclusive counterexample to cosmic censorship.

Waugh and Lake (1988) found that Newman (1986) excluded self-similar configu-
rations1 (through his assumptions about energy density), and discussed the self-similar
L–T model with E = 0 = �. They found that a shell focussing singularity may be
formed in it which will be globally naked and strong. It is strong in the sense that
lim	→0�	

2R�k
�k� �= 0, where k� is the tangent vector to a null geodesic hitting the

singularity, 	 is the affine parameter on the geodesic with 	 = 0 at the singularity and
R� is the Ricci tensor of the L–T spacetime.

Gorini, Grillo and Pelizza (1989) identified another subcase of the L–T models that was
not captured by Newman and showed that it develops a globally naked shell focussing
singularity that obeys the strong LFC, so it is to be taken as a serious counterexample to
(one particular formulation of) the cosmic censorship postulate.

Grillo (1991) showed by an example that a � = 0 L–T model with E < 0 and with a
certain definite choice of E�r��M�r� and tB�r� will form a locally naked shell focussing
singularity that satisfies the strong LFC.

A few authors (Waugh and Lake, 1988, 1989; Lemos, 1991; Eardley, 1974b; Dyer,
1979; Eardley and Smarr, 1979) found the conditions for the occurrence of a strong
globally naked singularity in self-similar L–T models with � = 0. For E �= 0, Lemos
(1991) found the conditions numerically; for E = 0 an exact result can be derived with
reference to the papers by Waugh and Lake (1989) and Dyer (1979). (In a self-similar
spacetime, the Big Crunch function must have the form tC�r� = Br, where B > 0 is a
constant. Then, a light ray can escape from the central point p0 of the Big Crunch only

1 A self-similar spacetime is one that admits a conformal Killing vector field such that the function 	 in (8.55) is constant.
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if the slope of the Big Crunch function, B, is larger than the slope of the ray at p0.) A
self-similar L–T spacetime has the metric (Dyer, 1979, and Exercise 12):

ds2 = dt2 − �S− sS′�2

1+2E
dr2 − r2S2

(

d�2 + sin2� d�2
)

� (18.160)

where E is a constant and S is a function of the variable s = t/r, the prime denotes the
derivative with respect to s, and S obeys the equation

S′2 = 2E+2/S (18.161)

(because of self-similarity, the function M�r� must obey M�r�/r =C = constant, and then
the coordinate freedom was used to set C = 1).

Now consider the orbits of the self-similarity transformations, t′ = e� t� r ′ = e�r�� =
constant, � = constant, i.e. the curves given by r = Dt�� = constant, � = constant.
They all meet at the point p0 with coordinates �t� r� = �0�0�. They are timelike, null or
spacelike according as the expression � = 1−D2�S− sS′�2/�1+2E� is positive, zero or
negative. With S and E given, the equation � = 0 may or may not have a solution for D.
If it has no solution, then all the orbits are spacelike and no light ray can escape the point
p0.1 Further (see Exercise 13), if � = 0 along the orbit, then the orbit is also geodesic (but
neither t nor r is an affine parameter). Consequently, an orbit with � = 0 is also a path
of a light ray escaping the central point of the singularity. We shall now find a condition
for its existence in the E = 0 model.

The solution of (18.161) with E = 0 is S = ��3/
√

2��s−B��2/3, where B > 0 is a
constant (so that the singularity is at t = Br), and for further considerations we choose
the new variable u so that

s−B = 1

6
u3� S = 1

2
u2� S′ = 2/u� (18.162)

As shown above, the first ray to escape the singularity obeys t/r ≡ s= S−sS′. Substituting
from the above and solving for B we obtain

B = u3�1−u�

6�u+2�
� (18.163)

and then the first of (18.162) yields

s = u3

2�u+2�
� (18.164)

Now we interpret (18.163) and (18.164) as the parametric equations of a curve in the
�B� s� plane; see Fig. 18.11. We are interested in the smallest value of B > 0. We see
that it corresponds to the local minimum of the function B�u�. (In the other branch of the
graph, the smallest value of B does not exist. That branch corresponds to rays proceeding
towards the central point of the Big Bang in an expanding model.) By elementary methods

1 The orbits cannot be all timelike because the Big Crunch singularity also begins at p0 and is spacelike in every neighbourhood
of p0, however small. Hence, any future-directed timelike curve leaving p0 would then immediately hit the Big Crunch.
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Fig. 18.11. The graph of solutions of the equation s = S− sS′ that determines the first ray to
escape from the central point of the Big Crunch. The left branch is not really tangent to the vertical
axis, it goes to small positive values of B. Values of B on the left branch correspond to a model
expanding away from the Big Bang, in which the incoming rays hit the central point of the BB.

we find that B�u = 0 at u� = −1 + �
√

3, where � = ±1. Since B�uu < 0 at u = u− and
B�uu > 0 at u = u+, we conclude that the minimum is achieved at u = −1 −√

3, which
corresponds to the value of B = Bm = 26/3+5

√
3. This is the minimum slope of the Big

Crunch function, below which no light ray can escape from the central point of the Big
Crunch. For B > Bm, the singularity is globally naked.

Dwivedi and Joshi (1992) identified a class of the functions M�r� which generate a
strong naked singularity at the centre. In this class, the first and second derivatives of the
initial density distribution by r are zero at r = 0� Most of the earlier papers considered
special cases of this.

In another paper, the same authors (Joshi and Dwivedi, 1993) showed that among the
L–T variety of models one can find a subset in which there will be an at least locally naked
strong curvature singularity at the centre. The class includes the configurations of Eardley
and Smarr (1979) and of Christodoulou (1984). A continuous family of non-spacelike
curves can be emitted from the singularity.

The status of the CCH in 1993 was reviewed by Clarke (1993) and, more extensively,
by Joshi (1993).

Deshingkar, Joshi and Dwivedi (1999) defined a shell focussing singularity (SFS) to be
strong if there exists a timelike or null geodesic % terminating in the SFS such that all the

geodesic deviation fields V� along % obey �
def= �s0 − s�2R�V

�V� = constant > 0, where
R� is the Ricci tensor, s is the affine parameter along % and s = s0 is the location of the
singularity. In terms of this definition, SFSs are always strong. The reason why earlier
papers identified some of these singularities as weak was the selection of a special family
of curves to calculate � . The property of being strong is stable against perturbations of
symmetry.
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18.17 Solving the ‘horizon problem’ without inflation

The ‘horizon problem’ was explained in Section 17.8 and Fig. 17.7. The inflationary
models solve it by postulating that at some time before last scattering the Universe had
been modelled by geometries in which the matter source was a scalar field, acting like
a repulsive cosmological constant of large value. In that case, the Universe would have
expanded exponentially, by the law R ∝ e�t.1

Another solution was invented by Celerier and Schneider (1998). They assumed that
the L–T Big Bang function tB�r� has a local minimum at r = 0 and is increasing with r

so that there is a shell crossing at some t > tB�r� for every r > 0. As seen from (18.16),
at a shell crossing, where R�r = 0, a radial null geodesic has a horizontal tangent in the
comoving coordinates. Consequently, all the curves passing through a shell crossing are
timelike or null at the intersection point. The time of shell crossing in the E = 0 model is

t
def= tS�r�= tB +2MtB�r/M�r , where tB�r > 0. Choosing the r-coordinate so that M =M0r

3,
and assuming that tS�r > 0, i.e. 5tB�r + 2rtB�rr > 0, we obtain that the curve t = tS�r� is
timelike everywhere.

Now consider a radial null geodesic k1 (given by the equation t = tn�r�) sent backwards
in time from the observer’s position at t = tp� r = 0; see Fig. 18.12. It obeys �dt/dr�n =
−R�r < 0 in the whole spacetime region that is later than tS�r�. Since the curve t = tS�r�

started also from r = 0 at an earlier time, and has a strictly positive derivative everywhere,
the two curves must intersect somewhere, and tn�r� will have a zero derivative there.
Let the point of intersection pis have the coordinates �tis� ris�. Consider another radial
null geodesic k2 sent backwards in time from a point p2 of coordinates �t2� r2�, where
t2 > tis� r2 <ris, towards the centre of symmetry at r = 0. The function t= tn2�r� describing
that geodesic has a strictly positive derivative at every point at which tn2�r� > tS�r�.
Assume that the curves tS�r� and tn2�r� are both differentiable for r ∈ �0� r2� and that
the mass density is nowhere zero. It is then a simple exercise to prove that k2 cannot
intersect tS�r� at any r obeying 0 ≤ r ≤ r2. In brief, the argument is that at an intersection
point q of coordinates �tq� rq� the derivative t′n2�r� would have to be zero and would
have to go down to zero from positive values as r is decreasing. This means, when
tn2�r� would be approaching tn2�rq�, the difference �tn2�r�− tS�r�� would have to be
increasing, and the intersection could not occur (see Exercise 14 for more details).
Consequently, k2 will reach the centre at r = 0 at a later time than the central point
of the Big Bang singularity, tB�0� (which coincides with the central point of the shell
crossing, tS�0�).

Consequently, there was a period in the past of the observer O (with time coordinates
t < T ) such that a signal sent out from the point �t1�0� with t1 < T had enough time to
proceed to the neighbourhood of the shell crossing, and then bounce back towards the
observer, to reach him at t = tp. Such a period (i.e. such a value of T ) exists for every
tp > tB�0�. Hence, all the regions that the observer sees at tp could have been in causal

1 As observed by Celerier and Szekeres (2002), this not so much solves, but rather postpones the horizon problem. At a later
time, the observer would still be able to see regions that had not been in causal contact at t = tls.



348 The Lemaître–Tolman geometry

k1

k 2

SC
BB

r

t

p is

p 2

O

Fig. 18.12. A solution of the ‘horizon problem’ in an E = 0 L–T model with an increasing Big
Bang (BB) function tB�r� (the form used in the picture is tB�r� = br2, where b = constant). The
null radial geodesic k1 sent backwards in time from the observer’s position O hits the shell crossing
SC at the point pis of coordinates �t� r� = �tis� ris�. From a point p2 on k1, of coordinates �t2� r2�,
with t2 > tis, r2 < ris, another radial null geodesic k2 is sent backwards in time towards the centre
at r = 0. As explained in the text, k2 must hit the centre at a time later than the BB at r = 0 (the
shell crossing set is in this example tangent to the BB set at r = 0). Consequently, all areas of
the sky that the observer O sees at present had a chance to be in causal contact with a common
source in the past. This solves the ‘horizon problem’ for as long as the observer has in the field
of view the shell crossing set t = tS�r� with t′S�r� > 0; the solution is permanent if t′S�r� > 0 for
all r > 0.

contact with a common source located in the observer’s past. This solution of the ‘horizon
problem’ is not just a postponement; with t′S�r� > 0 for all r > 0, the problem is avoided
permanently.

Note that the two rays in the construction remain in the region t > tS�r�, i.e. they never
hit the shell crossing set. Hence, they remain all the time in the physical region of the
spacetime.

18.18 * The evolution of R�t�M� versus the evolution of 
�t�M�

In the Friedmann models, the relation between the areal radius R and the mass density
is simple: in any given model, the greater R, the smaller �. In an L–T model, no such
relation exists because of the possible existence of local condensations, as we will prove
here.
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From (18.23), at any fixed time t:

R3�M�−R0
3 = 6

�

∫ M

M0

du
��u�

� (18.165)

where R0 is a (possibly time-dependent) constant of integration and M0 is another constant.
Equation (18.165) means that the value of R at any M depends on the values of � in the
whole range �M0�M�. Also the inverse relation in (18.23) is non-local – to find ��t�M�

we need to know R in an open neighbourhood of the value of M .
Assume now that �2 < �1 over the whole of �M0�M�. Then

R2
3�M�−R1

3�M�− (R0
3�t2�−R0

3�t1�
)= 6

�

∫ M

M0

(
1

�2�u�
− 1
�1�u�

)

du > 0� (18.166)

Hence, R2
3�M� > R1

3�M� if

R0
3�t2�−R0

3�t1�+
6
�

∫ M

M0

(
1

�2�u�
− 1
�1�u�

)

du > 0� (18.167)

This will hold if, for example, R0�ti� = 0, i = 1�2, in addition to �2 < �1.
The converse implication is simply not true. This is easy to understand on physical

grounds: R�t2�M� > R�t1�M� for all M ∈ �M0�M1� means that every shell of constant
M = M̃ has a larger radius at t2 than it had at t1. However, the neighbouring shells may
have moved closer to M̃ at t2 than they were at t1. If they did, then a local condensation
around M̃ was created, which may result in ��t2� M̃� being larger than ��t1� M̃�. This
does not happen in the Friedmann limit, where local condensations are excluded by the
symmetry assumptions.

A sufficient condition for �2�M� < �1�M�, M ∈ �M0�M1�, is

1
(

R1
3
)

�M
>

1
(

R2
3
)

�M
for all M ∈ �M0�M1�� (18.168)

If R�M > 0 for all M ∈ �M0�M1� at both t1 and t2 (i.e. there are no shell crossings in
�M0�M1�), then this is equivalent to

(

R2
3
)

�M >
(

R1
3
)

�M for all M ∈ �M0�M1�. Incidentally,
this implies R2 > R1 for all M ∈ �M0�M1� if R2�M0� > R1�M0�.

18.19 * Increasing and decreasing density perturbations

Formation of structures in the Universe used to be described by approximate perturbations
of the Robertson–Walker models. In that approach, two classes of perturbations had been
identified: those that increase with time and those that decrease with time. The same
classification can be done in the L–T and Szekeres models (for the latter see Section 19.8).
For the L–T model with �= 0, this approach was first applied by Silk (1977). His results
are re-derived here, by a somewhat different method.

The quantities used in studying perturbations of the Friedmann models are the density
contrast ��r /� and the curvature contrast R�3��r /R

�3�, where R�3� is the scalar curvature of
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the hypersurfaces t = constant. Both these functions vanish identically in the Friedmann
limit. From (18.15) and (18.25) we find

��r
�

= M�rr
M�r

−2
R�r
R

− R�rr
R�r

� (18.169)

R�3� = −4�RE��r
R2R�r

� (18.170)

#K
def= R�3��r

R�3�
= �RE��rr

�RE��r
−2

R�r
R

− R�rr
R�r

= E�rr /E−2R�r
2/R2 − �R�rr /R�r � �E�r /E�

R�r /R+E�r /E
� (18.171)

Since a perturbation with E = 0 would be rather exceptional, we assume E �= 0. For
E > 0, using (18.113)–(18.114) and (18.21), we find

��r�
def= M�r

M
− E�r

E
� �r�

def= 3
2
E�r
E

− M�r
M

�

��r�
def= 
2E
3/2

M
tB�r � (18.172)

R�rr
R�r

= ��r
R

R�r
+�+

(
R�r
R�r

+

)
sinh��sinh�−��

�cosh�−1�2

+ R

R�r

2�+� cosh�−3 sinh�
�cosh�−1�3

��sinh�−��−��

−
(
R��r
R�r

+�

)
sinh�

�cosh�−1�2

+ R�

R�r

cosh�+2
�cosh�−1�3

��sinh�−��−�� � (18.173)

We need to know the behaviour of ��r /� and #K as � → 0 and � →  in two cases:
when tB�r = 0 and when ��2E�3/2/M��r = 0. For this purpose, we must know the behaviour
in these limits of a few functions present in (18.169)–(18.171). Two of them are �3���

and �4���, defined in (18.114); their relevant properties are given in (18.115). The other
functions are (a coefficient at  is meant to determine the sign):

lim
�→0

R�r
R

= M�r
3M

� lim
�→

R�r
R

= E�r
2E

when tB�r = 0�

lim
�→0

R�r
R

= −tB�r ×� (18.174)

lim
�→

R�r
R

= M�r
3M

when ��2E�3/2/M��r = 0� (18.175)

�3���
def= �2�+� cosh�−3 sinh���sinh�−��

�cosh�−1�3
�
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lim
�→0

�3��� = 0� lim
�→�3��� = 0� (18.176)

�4���
def= cosh�+2
�cosh�−1�3

�

lim
�→0

�4��� = � lim
�→�4��� = 0� (18.177)

lim
�→0

R�r
R

�cosh�−1�2

sinh�
= − �2E�3/2

M
tB�r � lim

�→0

R�r
R

�cosh�−1�2 = 0� (18.178)

With tB�r = 0, we now find the following limits:

lim
�→0

R�rr
R�r

= M�rr
M�r

− 2
3
M�r
M

� lim
�→

R�rr
R�r

= E�rr
E�r

− E�r
2E

� (18.179)

With these, one finds that ��r /� −−→
�→0

+, while

lim
�→0

#K =
E�rr
E

− 2M�r
2

9M2
− E�r

E

(
M�rr
M�r

− 2M�r
3M

)

M�r /�3M�+E�r /E
� (18.180)

As � → , we obtain

lim
�→

��r
�

= M�rr
M�r

− E�rr
E�r

− E�r
2E

� lim
�→#K = 0� (18.181)

This shows that with tB�r = 0 the perturbation of the Friedmann density vanishes at the
initial singularity and tends to a finite limit as t→ , i.e. it is increasing. The perturbation
of curvature displays the exactly opposite behaviour.

With ��2E�3/2/M��r = 0, the limits are

lim
�→0

��r
�

= +tB�r × = lim
�→0

#K� lim
�→

��r
�

= 0�

lim
�→#K =

E�rr
E

− 2M�r
2

9M2
− E�r

E

(
M�rr
M�r

− 2M�r
3M

)

M�r /�3M�+E�r /E
�

(18.182)

so the perturbations generated by tB�r are decreasing.
Now we repeat the calculations done in (18.171)–(18.182) for the E < 0 model. Since

infinities will now appear both in R�rr /R�r and in R�r /R; we have to substitute for these
quantities before taking the limits. Using (18.15), (18.19), (18.107)–(18.109) and (18.172)
we find

��r
�

= M�rr
M�r

− ��r R

R�r
−3�−

(
R�r
R�r

+3
)

sin���− sin��
�1− cos��2

−R

R�r
× −2�−� cos�+3 sin�

�1− cos��3
���− sin��−��

+
(
R��r
R�r

+�

)
sin�

�1− cos��2
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− �R

R�r

cos�+2
�1− cos��3

���− sin��−�� � (18.183)

#K = −2
R�r
R

+ E�rr /E− �E�r /E� ���r /�−M�rr /M�r �

R�r /R+E�r /E
� (18.184)

Here we give some useful limits. For tB�r = 0:

lim
�→0

R�r
R

= M�r
3M

� lim
�→2�

R�r
R

= −
(

3E�r
2E

− M�r
M

)

×� (18.185)

and for ��2E�3/2/M��r = 0:

lim
�→0

R�r
R

= −tB�r ×� lim
�→2�

R�r
R

= tB�r ×� (18.186)

Other functions and limits are:

�1���
def= �−2�−� cos�+3 sin����− sin��

�1− cos��3
�

lim
�→0

�1��� = 0� lim
�→2�

�1��� = −� (18.187)

�2���
def= cos�+2
�1− cos��3

� lim
�→0

�2��� = lim
�→2�

�2��� = � (18.188)

In calculating the limits of the contrasts with � = 0, we observe that �1���/�1���−→
�→2�

0,

so the behaviour of the whole function at � → 2� is determined by the term containing
�1. Other useful limits are:

lim
�→0

R�r
R

�1− cos��2

sin�
= − �−2E�3/2

M
tB�r = −�� (18.189)

lim
�→0

R�r
R

�1− cos��2 = 0 = lim
�→2�

R�r
R

�1− cos��2� (18.190)

lim
�→2�

R�r
R

�1− cos��2

sin�
= 2�−�� (18.191)

Now, when tB�r = 0 �=⇒ � = 0), we find lim�→0 ��r /� = 0 and lim�→2� ��r /� = +.
Thus, the gradient of ��−2E�3/2/M� generates a perturbation of the Friedmann model that
vanishes at the initial singularity and increases without limits at the final singularity.

With ��−2E�3/2/M��r = 0, the density contrast tends to infinity at both singularities. In
this case, the time-difference between the bang and the crunch singularities is constant:

tC − tB = 2�/B, where B
def= �−2E�3/2/M = constant. Thus, it is impossible to fulfil both

of (18.110)–(18.111) and shell crossings are unavoidable.
For #K we obtain the following results. With tB�r = 0 �� = 0):

lim
�→0

#K = −2M�r
3M

+ E�rr /E+E�r M�rr / �EM�r �

M�r /�3M�+E�r /E
�

lim
�→2�

#K = ×
(18.192)
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(only the first term in (18.184) is infinite).
With ��−2E�3/2/M��r = 0 � = 0), the limits are

− lim
�→0

#K = lim
�→2�

#K = tB�r ×� (18.193)

Thus, the gradient of ��−2E�3/2/M� generates increasing perturbations of the Friedmann
curvature contrast, while the gradient of tB generates perturbations that increase without
limits at both singularities.

18.20 * L&T curio shop

In this section, a selection of material will be presented that did not fit under any other
heading in this chapter. A complete overview of such papers until 1994 can be found in
Krasiński (1997).

18.20.1 Lagging cores of the Big Bang

Novikov (1964a) used a similar setup to that of Bonnor (1956) (see Section 18.6) to
describe the lagging cores of Big Bang (BB). He considered the flat Friedmann model
with several Schwarzschild holes in it, matched into the background. Inside each hole
there was a small expanding Friedmann region that had its local BB later than the general
BB of Friedmann Universe. Particles and radiation emitted from such lagging cores of
BB should in principle be observable. The hope was that this could explain the source
of energy in quasars, but this attempt has had almost no following, except the paper
mentioned below.

Neeman and Tauber (1967) considered more possibilities for matter inside the core: it
could be either the Friedmann dust or the so-called stiff fluid (equation of state � = p),
both with or without � = 0. However, in every case there were difficulties to reconcile
the parameters of the model with the results of observations in a self-consistent way.

Miller (1976) described a Universe with the L–T geometry and with E = 0 =�� tB�r < 0
gradually emerging from the BB singularity. With the BB first occurring far from the
centre and proceeding inwards, one can assign mass to the singularity and interpret it
as the mass to be emitted from it. The mass of the singularity is the function M�r�

from (18.14) calculated at r = rB�t�, where rB�t� is the inverse function to tB�r�; it is
well behaved on the singularity. When the BB reaches r = 0, the singularity may either
disappear or continue to exist with a negative mass and still emitting matter. In the second
case it becomes a permanent timelike singularity.

18.20.2 Strange or non-intuitive properties of the L–T model

Novikov (1962a) showed that, with some choices of the arbitrary functions in the L–T
model, adding some amount of rest mass to a source may decrease the active gravitational
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mass. The model used (a Friedmann region going over into the Schwarzschild spacetime
through an interpolating L–T region) was specified numerically, and the effect was
demonstrated only for a definite amount of mass added. Novikov’s interpretation: ‘The
(negative) potential energy of gravitational interaction between the medium added and
the one present previously is greater than the energy corresponding to the mass of the
medium added. This leads to a decrease of the total gravitational mass.’ The effect is
an example of what happens beyond the neck (see Section 18.10): adding more rest
mass results in reducing the total active mass. By another numerically specified example
Novikov showed that an infinite amount of added rest mass may leave the active mass
still finite.

Hellaby and Lake (1985) presented a few more examples that run counter to the
intuitions based on the properties of the R–W models:

1. A model with E > 0 everywhere that has a globally closed space.
2. A model with E < 0 everywhere that has an open space.
3. A region of negative curvature placed between two regions of positive curvature,

yet it does not develop shell crossings.

The first situation occurs when, for example:

M = M0�
m� E = E0�

2m/3� tB = −a0�
p� (18.194)

where M0�E0� a0�m and p are positive constants, and

��r�
def= 3 sin��r/l�+2 sin�3�r/l�� (18.195)

l > 0 being one more constant. Note that ��0�= 0 = ��l�, and ��r� > 0 for all 0 < r < l.
The function ��r� has a (positive) local minimum at r = l/2 and two local maxima,
at r = r1 = l arcsin�

√
3/�2

√
2�� and r = r2 = l� − r1. For this model, �2E�3/2/M =

�2E0�
3/2/M0

def=C = constant, and, from (18.19):

R�t� r� = M0

2E0

�m/3�cosh�−1�� sinh�−� = C�t+a0�
p�� (18.196)

Thus, for all t > tB�R = 0 at r = 0 and at r = l, and R > 0 for 0 < r < l. Consequently,
R�t� r� must have, at every fixed t, at least one local maximum. We have

R�r =
[
m

3
�m/3−1�cosh�−1�+Ca0p�

p−1 sinh�
cosh�−1

]

��r � (18.197)

Since both terms in square brackets are positive for r ∈ �0� l��R�r can vanish only where
��r does, i.e. the maximum of R�t� r� at fixed t must coincide with one of the extrema
of ��r�. Since R = 0 at two different values of r for each t, each space t = constant
has two origins and a finite radius. Still, at every r the space expands to infinite size
as t → . Hence, the model has closed spaces, but is ever-expanding – a situation that
cannot happen in the Friedmann models with � = 0.

The second situation occurs in the spacetime discussed in Section 18.9. Hellaby and
Lake’s example had similar qualitative properties.
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The third situation, an ever-expanding region sandwiched between two recollapsing
regions, occurs with the following functions:

E = E0r
2�l− r�2�br−1��b�l− r�−1��

M = M0r
3�l− r�3� tB = −a0r�l− r��

(18.198)

where l > 0 and b > 2/l are constants. The three functions have vanishing derivatives
by r at the same three values: r = 0� r = l/2 and r = l. All three vanish at r = 0 and

r = l, while E�r� has two additional zeros, at r = r1
def= 1/b and at r = r2

def= l− 1/b. We
have M�r� > 0 for 0 < r < l�E�r� > 0 for r1 < r < r2 and E�r� < 0 for 0 < r < r1 and for
0 < r < r2. From the behaviour of E�r� it follows that it has minima in �0� r1� and �r2� l�,
and a maximum in �r1� r2� at r = l/2. In order to render the model physical, we have to
ensure that E�r� ≥ −1/2 for all r ∈ �0� l� and that there are no shell crossings.

The minima of E�r� occur at

r = r3�4 = l

2
± 1

6b

√

3 �3b2l2 −8bl+8� (18.199)

and at both of them E has the same value Emin = −�4E0/�27b4���bl− 1�3. Thus, the
condition E ≥ −1/2 implies that

E0 <
27
8

b4

�bl−1�3
� (18.200)

With the functions (18.198), the no-shell-crossing conditions in the E > 0 region are
fulfilled, we have tB�r < 0�M�r > 0 and E�r > 0 for r < l/2; tB�r = M�r = E�r = 0 for
r = l/2; and tB�r > 0�M�r < 0�E�r < 0 for r > l/2. In the E < 0 region, (18.111) has to
be fulfilled for r < l/2, and its opposite for r > l/2. No additional restrictions on the
constants come from this requirement, since these conditions are fulfilled automatically;
the left-hand side of Eq. (18.111) is equivalent to

[

3�b2 + �2E0�
3/2

M0

a0

(

b2r2 +b2lr+bl−1
)3/2

]

�2r− l�� (18.201)

The trinomial in r is positive for all r ≥ 0, the expression in square brackets is thus
positive, while the factor �2r− l� ensures the correct overall sign of the whole expression
in the ranges r < l/2 and r > l/2.

Just like the spacetime (18.194)–(18.196), the one specified in (18.198) has two centres,
one at r = 0 and the other at r = l� E�r� is negative in the vicinity of each centre and
positive around r = l/2. Thus, each of the two E< 0 regions recollapses onto a different
centre, and this is why the ever-expanding region between them can exist without shell
crossings ever being created.
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r

t

r = 1/ b r = l – 1/ b

r = l

Fig. 18.13. A map of the graph showing the evolution of the �t� r� subspace in the model given
by (18.198). The thin lines are contours of constant values of R. The differences in R between
consecutive contours are the same everywhere. The curve at the bottom is the Big Bang, the two
curves bordering the surface on the right and on the left together form the Big Crunch. The two
thick lines, at r = r1 = 1/b and at r = r2 = l− 1/b, separate the region with E�r� > 0 (between
them) from the regions with E�r� < 0. For r < r1 and r > r2, the lifetime of the model is finite,
although it tends to infinity as r approaches r1 or r2. The short straight segments at r = 0 and at
r = l are the two centres of spherical symmetry.

Figure 18.13 shows the evolution of the �t� r� surfaces in this model. At r = 0� r =
r1 = 1/b� r = r2 = l−1/b and at r = l the r = constant shells evolve by the E = 0 law.
For every 0 < r < r1 and for every r2 < r < l, the evolution proceeds by the E < 0 law,
and that part of the space recollapses after a finite time T , with T →  as r → r1 or
r → r2. For r1 < r < r2, the evolution proceeds by the E > 0 law.
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18.20.3 Chances to fit the L–T model to observations

Mészáros (1986) considered the implications of the assumption that the observed part
of the actual Universe is described by a finite-volume portion of the L–T model with a
simultaneous Big Bang. There are two chances of confirming this assumption observa-
tionally: (1) by observing the outer surface of the L–T sphere; (2) by detecting the cosine
anisotropy in the matter-density and in the Hubble parameter. There is no observational
evidence for point (1). As for point (2), Mészáros noted the following: (I) Observations
of matter-density are inconclusive. (II) The Hubble parameter and the temperature of
the microwave background radiation do reveal cosine anisotropies. They are usually
explained away as resulting from the motion of the Solar System around the Galaxy.
However, the directions and magnitudes of the velocities calculated from the two effects
are inconsistent. This inconsistency is a problem in a Robertson–Walker model, but it
can be accounted for on the basis of an L–T model. Unfortunately, the precision and
interpretation of the observations are questionable. The quadrupole anisotropy of the
background radiation is much simpler to explain in an L–T model than in a Friedmann
model. Mészáros concluded that there are more arguments for the L–T models than
against them, but present observations are inconclusive.

18.20.4 An ‘in one ear and out the other’ Universe

Hellaby (1987) presented a few illuminating examples of nontrivial L–T geometries and
topologies. One of them, called ‘In one ear and out the other’, has the geometry shown in
Fig. 18.14. The coordinate r is allowed to assume negative values. For r ≤ −E1, where
E1 > 0 is a constant, the model has E ≥ 0 �E = 0 at r = −E1� and collapses from past
infinity to the Big Crunch that has a finite value at all 0 > r > −. For −E1 < r < E2

(where E2 > 0 is another constant), E is negative, so the model has both a Big Bang
and a Big Crunch at finite times. For r ≥ E2, the model has E ≥ 0 again (with E = 0 at
r = E2), and expands from the Big Bang in the finite past to infinity.1 In the range r ≤ 0,
the L–T arbitrary functions are

M�r� = 1
2

(

M0 −M1r
3
)

� E�r� = −1
2

(

1− r2/E1
2
)

�

tC�r� = 1
2
�M0

(

1+ 3
2
r2/E1

2

)

�

(18.202)

The function tC�r� is the crunch time, and the bang time is

tB�r� = tC�r�−
�
(

M0 −M1r
3
)

(

1− r2/E1
2
)3/2 � (18.203)

Thus, as seen in Fig. 18.14, the bang time goes down to − as r → E1.

1 The configuration presented here is a slight generalisation of that used by Hellaby, who considered the case �E1�M1� =
�E2�M2�.
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crunch

bang

AH +

AH – AH –

AH +

r = – E1 r = 0, the neck

r = E2

t = 0

t

r

Fig. 18.14. The spacetime diagram for the L–T model of Eqs. (18.202)–(18.205). It has past
timelike infinity for r ≤ −E1 < 0, a finite lifetime for −E1 < r< E2 and future timelike infinity for
r ≥ E2 > 0. There is a neck at r = 0, where the past and future apparent horizons touch each other.
In the figure, the time along AH+ tends to − as r → −, and so does the time along AH− as
r → +. Whether these times go to + or − depends on the numerical balance between the
various constants; see Exercise 15.

In the range r ≥ 0, the functions are

M�r� = 1

2

(

M0 +M2r
3
)

� E�r� = −1
2

(

1− r2/E2
2
)

�

tB�r� = −1
2
�M0

(

1+ 3
2
r2/E2

2

)

�

(18.204)

The crunch time corresponding to the Big Bang at t = tB�r� is

tC�r� = tB�r�+
�
(

M0 +M2r
3
)

(

1− r2/E2
2
)3/2 � (18.205)

and it goes up to + as r → E2. There is a neck at r = 0, where the past and future
apparent horizons touch each other.

As we observed in Section 18.8, Eq. (18.86), an outgoing future apparent horizon
can never be timelike, and can be null only in vacuum. Since we are considering here
a model that is not vacuum anywhere, the future apparent horizon in Fig. 18.14 is
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everywhere spacelike. This observation is sufficient to see that no light ray can be sent
from the left part of the spacetime between AH− and AH+ to the right part between
AH− and AH+: a light ray that would touch any point of the future apparent horizon
would immediately pass inside it. This is in contrast to the Schwarzschild spacetime, in
which, as seen from the Kruskal diagram (Fig. 14.6), it is possible to send light rays
along the apparent/event horizon. Thus, as stated by Hellaby (1987), in the L–T spacetime
the communication between the opposite sides of the neck is even worse than in the
Schwarzschild spacetime. However, it is possible to receive a light ray that originated
behind the neck before the AH−.

18.20.5 A ‘string of beads’ Universe

Another of Hellaby’s (1987) illuminating examples is a ‘string of beads’ model. This is
a chain of recollapsing L–T regions, each of which begins in a separate Big Bang (BB),
then they become connected by necks, and then split to end their lives in separate Big
Crunches (BCs), see Fig. 18.15.1 In our example, for simplicity, the BC is a mirror image
of the BB. In general, in order to have necks without shell crossings, the minima of the
BC must have the same radial coordinates as the maxima of the BB, but otherwise the
BB and BC can be arbitrary. The L–T functions in Fig. 18.15 are:

tB�r� = − �M

�−2E�3/2
� M�r� = M0 +M1e−ar2

cos�br��

E�r� = −1
2

(

1−E1e−ar2
sin2�br�

)

�

(18.206)

where M0� a� b and E1 are arbitrary positive constants, subject to the conditions that
M > 0 and −1/2 ≤ E < 0 everywhere. The corresponding crunch function is tC�r� =
�M/�−2E�3/2. The space extends infinitely far in all directions. This Universe has no
centre of symmetry. It begins its existence in a series of (non-simultaneous!) explosions,
each of which creates a bubble of spacetime isolated from the others. Inside each bubble,
the BB is going on for some time, and it ends when the bubble becomes connected to a
neighbouring bubble by a neck. At a certain time te (different for each bubble), the BB
expires. After the last BB is over, the Universe becomes a chain of spacetime regions
connected by necks. Later, the BC sets in, also at a different time for each bubble. The
Universe splits again into unconnected bubbles, each of which gradually collapses into
its own final singularity.

18.20.6 Uncertainties in inferring the spatial distribution of matter

Partovi and Mashhoon (1984) calculated various cosmologically relevant parameters for
two types of a spherically symmetric inhomogeneous spacetime: one with a perfect fluid

1 Again, our example is a slight generalisation of that presented by Hellaby, who considered ‘beads’ isometric.
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r

t

Fig. 18.15. A ‘string of beads’ Universe. The lower curve is the Big Bang (BB); the upper curve
is the Big Crunch (BC). The Universe begins its existence as a chain of unconnected bubbles. The
dotted line shows the time by which four bubbles already exist, and for the fifth and sixth the BB
just begins. The horizontal line shows the time by which the two central bubbles have completed
their BBs. The vertical lines show the positions of three of the necks. (At the local minima of the
BB, which are the local maxima for the BC, there are no necks because E �= −1/2 there.)

source and a barotropic equation of state, the other with a dust source. The quantities
are calculated in terms of successive powers of the redshift around the values in a R–W
background. It was found that the leading terms in z are identical to the R–W terms, while
the next following terms are formally modified, but in such a way that the inhomogeneous
corrections cannot be properly read out from the formulae, and may lead to assignment
of incorrect values to the standard cosmological parameters. The conclusion is that up to
those following terms these inhomogeneous models are observationally indistinguishable
from the R–W models.

Kurki-Suonio and Liang (1992) used the L–T model to demonstrate the ambiguity
in reading out the spatial distribution of matter from redshift measurements. What the
astronomers can directly measure is the number of light sources in a given solid angle
and a given redshift interval, i.e. the density of matter in the redshift space. Lacking any
information about its geometry, the redshift space, in which z is the radial coordinate,
is assumed flat. Let us assume that the observer is at the centre of symmetry at z = 0,
and let N�z� be the mass contained in the sphere of radius z around the observer in the
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redshift space. This mass is the sum of rest masses defined in (18.17), and, from (18.18),
is related to the mass function M�r� of the L–T model by N�r =M�r /

√
1+2E. We define

the mass density in the redshift space, 
̂�z�, by

c2H0
3

G
N�z� =

∫ z

0
4�z′2 
̂�z′�dz′� (18.207)

The coefficients are there in order to provide convenient units; H0 is the current value of
the Hubble parameter at the observer’s position. Thus

c2H0
3

G
N�z = 4�z2
̂�z�� (18.208)

But N�z = N�r /z�r . Substituting for N�r from (18.17)–(18.18) and for z�r from (18.125)
we obtain


̂�z� = 2H0
3M�r

c2��1+ z�z2R�tr
= H0

3R2R�r
�1+ z�z2R�tr


�r�� (18.209)

where 
�r� is the physical mass density. The values of t and r refer to the time and
position of emission. Equation (18.209) connects one observed quantity, 
̂�z��1 + z�z2,
to two unknown functions, M�r� and R�t� r�, and obviously cannot determine both. The
authors investigated numerically the dependence of these functions on 
̂�z� with various
shapes of tB�r��E�r� and initial density distributions 
�t� r�. They assumed no shell
crossings �R�r > 0� and redshifts monotonically growing with distance �R�tr > 0�. The
results, greatly abbreviated, are as follows:

1. If tB�r�= constant, then the amplitudes of overdensity in the redshift space are larger
than the amplitudes of proper density by 40% or more. The overdensity regions in
proper density have larger sizes than their images in the redshift space.

2. When M�r�/r3 = constant and E�r�/r2 = constant, that is, when the bang-time
function is the only factor generating inhomogeneity, overdensities in the redshift
space translate into underdensities in proper density, of larger size and much larger
amplitude.

3. Since the two effects influence observations in opposite directions, they can momen-
tarily cancel each other, producing a homogeneous density in the redshift space
while the Universe is highly inhomogeneous. Conversely, the Universe may be
momentarily very smooth in density, but can appear highly inhomogeneous in the
redshift space because of the effects of inhomogeneous velocities. To illustrate this
last possibility, Kurki-Suonio and Liang fitted the velocity function in the L–T
model so that the proper density is constant on the past light cone, while the density
in redshift space is the same as in one of the deep-redshift observational surveys.
The proper density at the present time then has smaller amplitudes in the peaks and
a less regular distribution of the peaks. The authors concluded that using the R–W
relation between the redshift and the comoving distance to describe inhomogeneities
is ‘fundamentally self-inconsistent’. They said, further: ‘What we see on the past
light cone are only momentary “images”.’
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Kurki-Suonio and Liang’s paper contains several graphs and spacetime diagrams that
illustrate the conclusions more clearly. In particular, they show how the bang-time
non-simultaneity generates decaying inhomogeneities while variations in initial energy
generate growing inhomogeneities, even though these processes are not discussed in the
paper.

18.20.7 Is the matter distribution in our Universe fractal?

Ribeiro (1992a) defined a fractal distribution of matter by requiring that the number of
objects Nc and luminosity distance dl to the surface of the sphere containing the Nc

objects are connected by Nc = &dD
l , where & is a constant and D is the fractal dimension

of the distribution.
In a sequel paper (Ribeiro, 1992b), the author calculated the density versus distance

function along the past light cone in the k = 0 Friedmann model. This function is
not constant and does not seem to agree with the observations. Ribeiro stressed that
cosmological models should be tested in precisely this way. For the k = 0 Friedmann
model this function does not possess any features of a fractal distribution of mass.

In the third paper, Ribeiro (1993) showed that the density versus distance relation
measured along the past light cone in the k �= 0 Friedmann models is not homogeneous
either, nor is it fractal. However, the functions E�r��M�r� and tB�r� in the L–T model
can be chosen so that Nc = &dD

l . Ribeiro found several examples of such functions by
numerical experiments. In most of the examples, either the Hubble law is contradicted or
the Hubble constant is smaller than the astronomers currently believe it should be. The
only example that yields acceptable parameters is 2E�r� = sinh2 r�2M�r� = �rp� t0�r� =
ln�e0 +�1r�. If � = 10−4� p = 1�4�0 = 3�6 and �1 = 1000; then the implied fractal
dimension is D = 1�3, the Hubble constant is H = 61 km s−1 Mpc−1, and & = 5�4×105.
Even better agreement with observations follows when �1 = 0; then D = 1�4 and H =
80 km s−1 Mpc−1. Ribeiro emphasised that no positive observational evidence of spatial
homogeneity of the Universe is available. Should it be available, it would actually rule
out the Friedmann models because the light cones in them intersect hypersurfaces of
different densities.

18.20.8 General results related to the L–T models

Novikov (1962b) proved the following theorems for a general spherically symmetric
spacetime: 1. If limr→r0

R�t0� r� =  for a certain t0 (the r0 may be infinite), and for
r > r1 the matter-density � ≥ A/�8�R2�, where A = constant > 1, then there exists an
r2 such that the points with r > r2 and t = t0 are in the T-region.1 2. For every r = r2

there exist such t1 and t2 (dependent on r2) that the points with �t� r2� where t1 < t < t2
are in the T-region.2 3. There exists a solution for which the volume of a finite mass

1 For the definition of the T- and R-regions, see Section 14.1. This means that with sufficiently high density the spheres
t = constant� r = constant will not be static to any observer.

2 This means that each matter particle remains in a T-region for a period of time – in the vicinity of the Big Bang singularity.
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goes through a nonsingular minimum and the minimum is simultaneous for the whole
space. 4. The same is possible for an infinite mass. 5. There exists a solution in which a
volume minimum occurs at small distances from the centre, and, at the same instant, a
volume maximum occurs at large distances from the centre. 6. If M�r� = ∫

�dV grows
with r faster than the affine radius l= ∫ r

0 �−g11�
1/2 dr ′, and does so for a sufficiently large

interval of l, then the configuration cannot be static. 7. If M�r� grows faster than l�r�

over a sufficiently large interval of monotonic growth of R, then the volumes of different
shells cannot go through an extremum simultaneously. 8. If the surface of a spherical
ball is in a T-region and is shrinking, then, in a finite proper time, it will shrink to a
point; if the surface is in a T-region and is expanding, then it started its expansion from
a point. Finally, Novikov calculated the position of the boundary between the R- and
T-regions in a Friedmann model and concluded that the radio sources observed must lie
in the T-region. Consequently, they seem to have emerged from a point. The properties
listed above reveal what should be expected from exact solutions generalising the L–T
model for pressure with nonzero spatial gradient.

A later paper by Novikov (1964b) is a continuation of the one described above. One
of its new results is that in the Schwarzschild solution the boundary between the R- and
T-regions is the r = 2m event horizon, and such boundaries also exist for the Kottler
(i.e. Schwarzschild with � �= 0) and Reissner–Nordström solutions. Another result was
discussed in Section 14.12 (Eqs. (14.116)–(14.117) and Exercise 10 in Chapter 14).

In a series of papers, Dautcourt (1980, 1983a,b, 1985) developed a new approach to
integrating the Einstein equations that is better suited to incorporating observational results
into cosmological models. In this approach, the initial data are given on the past light
cone of a single event in the spacetime, and then the Einstein equations are integrated off
that cone to the future. The first paper (Dautcourt, 1980) is a short exposition of the ideas
of the other papers. In the second paper (Dautcourt, 1983b) the author gave a prescription
for integrating the Einstein equations in vacuum and for dust with the initial data given
on the past light cone of an observer. The Einstein Universe and the Friedmann models
were used as illustrations. In the third paper (Dautcourt, 1983a) the author described
the ideal observations needed to determine the initial data. In practice, several of those
observations are beyond the limits of current technology. In the last paper (Dautcourt,
1985), the author noted that the observable quantities introduced in the preceding papers
depend on the 4-velocity of the observer, and proposed a preferred set of coordinates
with a simple relation to the observable quantities and a simple transformation law under
a Lorentz rotation of the observer. Dautcourt’s approach was later developed by Ellis and
coworkers; the paper by Stoeger, Ellis and Nel (1992) mentioned in Section 18.3 is one
entry in that series.

18.21 Exercises

1. Prove that if the spacetime is spherically symmetric and the metric obeys the Einstein equations
with a perfect fluid source, then the rotation is necessarily zero.

2. Prove that u̇� = 0 in (18.1)–(18.2) implies C�r = 0.
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3. Prove that Eqs. (18.24) are the necessary and sufficient conditions for the L–T model to reduce
to the Friedmann limit.
Hint. Use M as the radial coordinate. Calculate �R3��MM in (18.23) separately for each sign of E.
With E �= 0, observe that the Jacobian ��M���/��M� t� = ��t �= 0. Hence, M and � can be chosen
as the independent variables. Eliminate �t− tB� from �R3��MM using Eqs. (18.19) and (18.21). What
will result will be a polynomial in functions of �with coefficients depending onM only. Equate to
zero the coefficients of independent functions of �. In order to show that (18.24) do indeed define
the Friedmann model, change the radial variable to r = �M/M0�

1/3 and substitute whatever you
have found in the metric (18.16), then compare the result with (17.1) and (17.33)–(17.35).

4. Transform the L–T metric to the curvature coordinates.
Hint. Note that, from (18.14),

R�r dr = dR−R�t dt = dR− l

√

2E+ 2M
R

− 1
3
�R2 dt� (18.210)

where l= +1 for expanding and l= −1 for collapsing models. Then transform t by t = f�T�R�

and demand that gTR = 0. This implies:

�f

�R
= − 1

1−2M/R+ 1
3�R

2

√

2E+ 2M
R

− 1
3
�R2� (18.211)

Now M and E are functions of r�T�R� and the metric becomes

ds2 = f�2
T

1+2E

(

1− 2M
R

+ 1
3
�R2

)

dT 2 − 1

1−2M/R+ 1
3�R

2
dR2

−R2
(

d�2 + sin2 � d�2
)

� (18.212)

The functions E and M obey the equations

0 = M�T T�t +M�R R�t � 0 = E�T T�t +E�R R�t � (18.213)

where T�t = �T/�t is found as an element of the matrix inverse to

[

f�t f�R

r�T r�R

]

�

5. Prove that Eq. (18.45) is the necessary and sufficient condition for the existence of a solution
of �H�x� = 0 at x �= 0, where �H is given by (18.44). Prove also that only one such value of x
exists.
Hint. Calculate d��H�x��/dx and consider how it changes.

6. Prove that (18.48) are the necessary and sufficient condition for the existence of a solution of
�X�x� = 0 at x �= 0, where �X is given by (18.46). Prove also that only one such value of x exists.

7. Verify that Eqs. (18.60) and (18.63) are indeed the sets of necessary and sufficient conditions
for the existence of the appropriate evolutions. Interpret the results (i.e. why the time-difference
has this time to be sufficiently large in (18.60) and sufficiently small in (18.63)).

8. Prove that for a Friedmann model with � = 0 (in which also p = 0) the parameter B given by
(18.85) is always equal to −2, and so the apparent horizons in it are timelike.

9. Derive Eq. (18.104) for the E > 0 and E < 0 L–T models.
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10. Prove that Eqs. (18.106), (18.110) and (18.111) are sufficient conditions for avoiding a shell
crossing when R�r > 0.
Hint. Note that (18.110) and (18.111) imply

M�r
M

>
3
2
E�r
E

� (18.214)

i.e. that the coefficient of �1��� in (18.107) is negative. Then write Eq. (18.111) as follows:

f��� = M�r
3M

+
(

3
2
E�r
E

− M�r
M

)(

−2
3

+�1���

)

− �−2E�3/2

M
tB�r�2���� (18.215)

Next, note that f��� is evidently positive for all � ≥ � in consequence of (18.106), (18.110)
and (18.214). Thus, it remains to investigate f��� in the range �0���. The first and third terms
in (18.215) are positive. The first factor in the second term is negative. Show that

d�1

d�
= 3 sin�−� cos�−2�

�1− cos��2
(18.216)

is negative for � ∈ �0���. Since lim�→0 �1 = 2/3 and �1���= 0, this means that �1��� < 2/3
for � ∈ �0���. This proves that the middle term in (18.215) is positive, too, for � ∈ �0���.

11. Prove that Eq. (18.126), is equivalent to (16.20).
Hint. With the coordinates of (18.16), Eq. (16.20) can be written as 1 + z = �k0�e/�k

0�o.
Keeping the observer at a fixed position, take the logarithmic derivative of this by r and
compare the result with (18.125). The conclusion is

�k0��r
k0

= R�tr �T�r�� r�
√

1+2E�r�
� (18.217)

Integrating this and using (18.119) we obtain (18.134). Verify that this field is affinely
parametrised (note that the integral is calculated along a null geodesic, so the integrand is a
function of r only).

12. The metric (18.160) is invariant under the transformations t′ = e� t, r ′ = e�r, where � is the
group parameter. Verify that their generators, k� = t��0 + r��1, obey (8.55) with 	 = 2.

13. Verify that if the curve t = Dr, � = constant�� = constant in the spacetime with the metric
(18.160) is null, then it is necessarily a geodesic (but the parametrisation by r or t is non-
affine!).

14. Prove that the light ray k2 sent backwards in time towards the centre of symmetry from the
point p2 in Fig. 18.12 can never intersect the shell crossing set if the following assumptions
are made:

(a) The functions t = tn2�r� (describing the light ray k2) and the shell-crossing function
t = tS�r� are differentiable for r ∈ �0� r2�.

(b) t′S�r� > 0 for r ∈ �0� r2�.
(c) R�r > 0 for all t > tS�r�.
(d) The mass density is nowhere zero.

Hint. Here is one suggestion of a proof. Since t′S�r� > 0 for r ∈ �0� r2�, there exists a minimal
value M> 0 of t′S�r� in this range, so t′S�r� ≥ M for r ∈ �0� r2�.

If k2 should intersect tS�r� at some r1 ∈ �0� r2�, then t′n2�r2� = 0 and t′n2 −−→
r→r1

0, while

t′n2�r� > 0 for r > r1 (by virtue of assumption (c)). Hence, for every 0 < � < M there exists
such a � > 0 that 0 ≤ t′n2�r� < � <M if r1 ≤ r < r1 +�.
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Since tn2�r� starts from �t2� r2� with a value tn2�r2� > tS�r2�, assume that tn2�r1 + �� >

tS�r1 +�� and compare tn2�r1� with tS�r1�. By virtue of the statements made we have

tS�r1� < tS�r1 +��−M�� tn2�r1� > tn2�r1 +��− ���

tn2�r1�− tS�r1� > tn2�r1 +��− tS�r1 +��+ �M − ���

> tn2�r1 +��− tS�r1 +���

Thus, whenever k2 would be approaching the horizontal direction, it would be receding from
the shell crossing rather than intersecting it.

In order that k2 can intersect the shell crossing set, it would have to either (1) change abruptly
from past-directed ingoing to past-directed outgoing, which is prohibited by assumption (a), or
(2) become vertical and then past-directed outgoing. However, at the point where the tangent
to k2 would be vertical, R�r would go to infinity, making the mass density zero, which is
prohibited by assumption (d).

Hence, k2 and tS�r� cannot intersect between r = 0 and r = r2.
15. Calculate the equations t = tAH�r� of the apparent horizons for the model (18.202)–(18.205).

Show that for the past AH tAH −→
r→+ r, where  r = ±1 and the sign of  r is the sign of

�2M2E2
3 −�M0/2�. Show that for the future AH tAH −→

r→− l, where  l = ±1 and its sign is

the sign of ��M0/2−2M1E1
3�.

16. Let the mass density in the L–T model (18.15) be a differentiable funciton of r. Prove that
the spatial extrema of density in the E �= 0 models are comoving only when the following
equations are fulfilled at the extremal values:

( 
2E
3/2

M

)

�r =
( 
2E
3/2

M

)

�rr = tB�r = tB�rr = 0�

[(
M3

E3

)

�r
1

M�r

]

�r = 0�

(18.218)

Find the corresponding condition for the E = 0 model.
Note. The fact that the extrema are comoving only under the conditions (18.218) means
that in general they are not comoving. Thus, they move across the flow lines of dust. This
phenomenon is known in cosmology as density waves. Their existence in relativistic models
was predicted by Ellis, Hellaby and Matravers (1990) by methods of the linearised Einstein
theory. Note also that the first four conditions mean that at the extremum the L–T model has
a second-order contact with the Friedmann model that approximates it.
Hint. Choose M as the spatial coordinate. The first four conditions do not change then, but the
last one takes the more readable form

(

M3/E3
)

�MM = 0. The extrema are at those values of M
where ��M = 0, i.e.

(

R3
)

�MM = 0. Then proceed as in Exercise 3. If the extrema are comoving,
then the values of M obeying (18.218) do not depend on t.
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Relativistic cosmology IV: generalisations of L–T and
related geometries

19.1 The plane- and hyperbolically symmetric spacetimes

The L–T models considered in the previous chapter have 2-spheres as orbits of their
symmetry groups. Do there exist spacetimes whose symmetry orbits are surfaces of zero
or negative constant curvature?

A surface of zero curvature has the local geometry of a plane, whose symmetries in
the Cartesian coordinates �x� y� z� are

�x′� y′� z′� = �x+a1� y� z�� �x′� y′� z′� = �x� y+a2� z��

�x′� y′� z′� = �x cosa3 +y sina3�−x sina3 +y cosa3� z� �
(19.1)

where a1� a2 and a3 are the group parameters; a1 and a2 are arbitrary, while 0 ≤ a3 ≤ 2�.
Proceeding just as in Section 8.9, we find that a 4-dimensional metric for which (19.1) is
the symmetry group is

ds2 = ��t� r�dt2 +2��t� r�dt dr +��t� r�dr2 +	�t� r�
(

dx2 +dy2
)


 (19.2)

Spacetimes with this symmetry group are called plane symmetric.
Then, proceeding as in Section 18.1, we prove that in such a spacetime rotation must

be zero, so comoving–synchronous coordinates can be introduced, in which the metric
becomes similar to (18.1):

ds2 = eC�t�r� dt2 − eA�t�r� dr2 −R2�t� r�
(

dx2 +dy2
)


 (19.3)

The curvature tensor of a sphere, R2
(

d�2 + sin2 � d�2
)

�R = constant, is

R��
�	 = R−2	

��
�	 � (19.4)

where 1/R2 > 0 is the constant scalar curvature. We can make the curvature negative by
the complex transformation � = i� ′�R = iR′�. Thereafter, the 2-metric becomes (with
primes dropped)

ds2 = R2
(

d�2 + sinh2 � d�2
)

� (19.5)

367
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and its curvature tensor is R��
�	 = −R−2	

��
�	 . We choose �x2� x3�= ����� as coordinates

in the spacetime. The Killing fields are then

k�
�1�

= sin�	�
2 + cos� coth� 	�

3�

k�
�2�

= cos�	�
2 − sin� coth� 	�

3� k�
�3�

= 	�
3�

(19.6)

and we require these to be the Killing fields for the whole spacetime. Solving the Killing
equations with (19.6) we find the metric

ds2 = ��t� r�dt2 +2��t� r�dt dr +��t� r�dr2 +	�t� r�
(

d�2 + sinh2 � d�2
)

� (19.7)

where ����� and 	 are arbitrary functions. These spacetimes are called hyperbolically
symmetric because the orbits of their symmetry group have several properties in common
with two-sheeted hyperboloids.

Once again, we prove that in such a spacetime rotation must be zero, and we introduce
the comoving–synchronous coordinates, in which

ds2 = eC�t�r� dt2 − eA�t�r� dr2 −R2�t� r�
(

d�2 + sinh2 � d�2
)


 (19.8)

The surface with the metric (19.5) cannot be embedded in a Euclidean 3-space – the
3-metric must have the signature �++−�. To verify this, consider (19.5) embedded in
a flat 3-space, draw an orthogonal geodesic through each point of the surface, take the
affine parameter r on the geodesics as the x1-coordinate in space, let r = R on the initial
surface and let the surfaces R �= r = constant have the geometry of (19.5) with different
values of R. In such coordinates, the 3-space metric will be

ds3
2 = �dr2 +f 2�r�

(

d�2 + sinh2 � d�2
)

� (19.9)

where �= ±1, to allow for different signatures. The Riemann tensor for the metric (19.9)
can vanish only when � = −1, and f�r �r� = 1.

The symmetry groups of the spherically, plane- and hyperbolically symmetric space-
times have 2-dimensional orbits. However, the groups themselves are 3-dimensional,
so their algebras can be classified by the Bianchi method of Chapter 10. The algebras
of spherical, plane and hyperbolic symmetry are of Bianchi types IX, VII0 and VIII,
respectively.

It is convenient to represent these spacetimes by a single formula:

ds2 = ��t� r�dt2 +2��t� r�dt dr +��t� r�dr2

+	�t� r�
[

d�2 + �1/�� sin2�
√
���d�2

]

� (19.10)

where � = ±1�0. Then, with � = +1, the metric is spherically symmetric; with � = −1
we recover the hyperbolically symmetric metric via the identity sin�i�� = i sinh�, and
the limit � → 0 of (19.10) is plane symmetric. The three cases will be collectively
called G3/S2-symmetric spacetimes, G3 standing for 3-dimensional groups and S2 for
2-dimensional orbits.
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In the comoving–synchronous coordinates that exist for each of the three metrics we
will use a variant of the notation of (19.10):

ds2 = eC�t�r� dt2 − eA�t�r� dr2 −R2�t� r�
[

d�2 +f 2���d�2
]

� (19.11)

where
f��� = sin� for spherical symmetry�

f��� = � for plane symmetry�

f��� = sinh� for hyperbolic symmetry


(19.12)

19.2 G3/S2-symmetric dust solutions with R�r �= 0

Just as for the spherically symmetric models, the case R�r = 0 has to be considered
separately; we will present it in Section 19.4.

The most general set of solutions for the metric (19.11)–(19.12) with R�r �= 0, a dust
source and nonzero cosmological constant was found by Ellis (1967, his case IIaii). They
are given by

ds2 = dt2 − R�r
2�t� r�

�+2E�r�
dr2 −R2�t� r�

[

d�2 +f 2���d�2
]

� (19.13)

where E�r� is an arbitrary function, while R�t� r� and the matter-density are determined
by (18.14) and (18.15). The required signature �+−−−� puts different limits on E�r�

for each �. With � = 0�E�r� must be non-negative everywhere, and can vanish only at
isolated values of r, provided that R�r = 0 and R�r

2/�2E� has a finite limit at the same
values. With � = −1�E�r� must be strictly positive everywhere.

In the Friedmann limit R�t� r� = g�r�S�t�; then the r-coordinate can be chosen so
that R�t� r� = rS�t� and it follows further that −2E/r2 = k = constant, k being the
Friedmann curvature index, M�r�/r3 = M0 = constant, M0 being the Friedmann mass
integral. Thus, only � = +1 allows all three Friedmann limits. The requirement of the
Lorentzian signature forces the Friedmann limit to have k < 0 when � = 0 or � = −1.

The physical and geometrical interpretation of the plane- and hyperbolically symmetric
solutions is less clear than that of the L–T model. In particular, it cannot be uniquely
determined where exactly the mass M�r� is contained. With plane symmetry, one can
imagine it to be the mass contained within a column of height r along the r-direction, its
base being a rectangle �1 ≤ � ≤ �2��1 ≤ � ≤ �2�. For brevity, we will be saying that
M�r� is contained within the surface r = constant.

19.3 G3/S2-symmetric dust in electromagnetic field, the case R�r �= 0

19.3.1 Integrals of the field equations

The most general solution of the Einstein–Maxwell equations with R�r �= 0 was found by
Bronnikov and Pavlov (1979). They considered charged dust under the assumption that
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the metric tensor and the electromagnetic tensor both have a G3/S2 group of isometries,
with the cosmological constant allowed. We shall allow also for magnetic charges.

With the assumed symmetries, in the coordinates of (19.11)–(19.12), the electromag-
netic tensor can have at most two nonzero components, Ftr (the electric field) and F�� (the
magnetic field). The F�� �= 0 is due to a distribution of magnetic monopoles – admittedly
a nonrealistic source, but it is useful to know what the theory implies for it.

The Einstein–Maxwell equations are in this case (compare them with Eqs. (13.6),
(13.10), (13.12), (13.15) and (13.16)):

R�� − 1
2
g��R+�g�� = 8�G

c4
�u�u� + 2G

c4

(

F�
�F�� + 1

4
g��F��F

��

)

� (19.14)

F���� = �4�/c��eu
�� (19.15)

∗F���� = �4�/c��mu
�
 (19.16)

Equation (19.14) is (13.16) rewritten for dust. Equation (19.15) is (13.6) with the current
generating the field being composed of electric charges attached to the dust particles.
Equation (19.16) is the generalisation of (13.15) for the current of magnetic charges
attached to dust particles. The �e and �m are the densities of the electric and magnetic
charge, respectively.

Equation (19.15) is equivalent to
(√−gF��

)

�� = �4�/c�
√−g�eu

�. Taking the various
values for the index � we find

F 01 = Qe�r�e
−�A+C�/2/R2� (19.17)

Qe�r = �4�/c��ee
A/2R2� (19.18)

where Qe�r� is an arbitrary function; it is the electric charge within the r-surface as
(19.18) shows. Doing the same with (19.16) we find

∗F 01 = Qm�r�e
−�A+C�/2/R2� (19.19)

Qm�r = �4�/c��meA/2R2� (19.20)

where now Qm�r� is the magnetic charge within the r-surface. Equation (19.19) translates
into

F23 = f���Qm�r�
 (19.21)

Now the coordinate components of the Einstein equations with the metric (19.11) and the
electromagnetic tensor (19.17)–(19.21) become

G00 = 8�G
c4

�eC + G

c4

Qe
2 +Qm

2

R4
eC −�eC� (19.22)

G01 = 0� (19.23)

G11 = −G

c4

Qe
2 +Qm

2

R4
eA +�eA� (19.24)
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G22 ≡ G33/f
2��� = G

c4

Qe
2 +Qm

2

R2
+�R2
 (19.25)

For G�� we find

G00 = �eC

R2
+ R�t

2

R2
+ A�t R�t

R
+ eC−A

(

−R�r
2

R2
−2

R�rr
R

+ A�r R�r
R

)

� (19.26)

G01 = −2
R�tr
R

+ A�t R�r
R

+ R�t C�r
R

� (19.27)

G11 = −�eA

R2
+ R�r

2

R2
+ C�r R�r

R
+ eA−C

(

−R�t
2

R2
−2

R�tt
R

+ C�t R�t
R

)

� (19.28)

G22 = 1
4

e−C
(−4RR�tt +2RC�t R�t −2RA�t R�t −R2A�t

2 −2R2A�tt +R2C�t A�t
)

+ 1
4

e−A
(

4RR�rr +2RC�r R�r −2RA�r R�r +R2C�r
2 +2R2C�rr −R2C�r A�r

)




(19.29)

Equations (19.14)–(19.16) imply the following:
(

�u�
)

�� = 0� (19.30)

�u��� u
� = −�1/c�

(

�eF
�
� +�m∗F�

�

)

u�
 (19.31)

In order to derive these equations, apply
(

R�� − 1
2g

��R
)

�� = 0 to the right-hand side of
(19.14) and note that (19.16) is equivalent to

F���� +F���� +F���� = −4�
c

√−g�mu
������
 (19.32)

Equation (19.30) follows when T���� = 0 is contracted with u�, Eq. (19.31) follows when
(19.30) is used in T���� = 0. The remaining terms cancel in consequence of (19.32) and
the antisymmetry of F��.

Equations (19.30) (the conservation of mass) and (19.31) (the Lorentz force acting
on charges in motion and pushing them off geodesic trajectories) are quite general and
independent of any symmetry properties of spacetime. Applying (19.31) to our metric
(19.11)–(19.12) we obtain

�C�r = ��eQe +�mQm�
2eA/2

cR2
≡ QQ�r

2�R4
� (19.33)

where

Q2 def=Qe
2 +Qm

2
 (19.34)

Applying (19.30) to our metric (19.11)–(19.12) we then obtain

�

2
�R2eA/2 = G

c4
N�r � (19.35)

where N�r is an arbitrary function of integration. We see that N so defined is, up to the
choice of units, the sum of rest masses within the r-surface. The coefficient defining the
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units was chosen so that the notation agrees with that in the pioneering paper (Bronnikov,
1983). From (19.18), (19.20) and (19.35) we now see that the ratios Qe�r/N�r = �e/�c��

and Qm�r/N�r = �m/�c�� are both time-independent.
Using now (19.33) and (19.27) we obtain from the equation G01 = 0

2e−A/2R�tr −e−A/2A�t R�r =
2R�t
cR2

(�e

�
Qe + �m

�
Qm

)


 (19.36)

(It is here that the case R�r = 0 has to be set aside for separate investigation. With R�r = 0,
the equation G01 = 0 reduces to R�t C�r = 0 and cannot be used to determine R�r as we
do below.) Since the expression in parentheses is independent of t, this can be integrated
with the result

e−A/2R�r = ��r�− �eQe +�mQm

c�R
� (19.37)

where ��r� is an arbitrary function of integration. Using (19.18), (19.20), (19.34) and
(19.35) we now find

�eQe +�mQm

c�
≡ QQ�r

N�r
= QQ�N 
 (19.38)

With this, (19.37) becomes

e−A/2R�r = ��r�− QQ�N
R

� (19.39)

and now the first part of (19.33) becomes

C�r = 2
eA/2

R2
QQ�N 
 (19.40)

Using (19.39) and (19.40) to eliminate R�r and C�r from (19.28), we obtain from the G11

equation

e−C

(

2
R�tt
R

+ R�t
2

R2
− C�t R�t

R

)

− �2 −�

R2
+ Q2

(

Q�N
2 −G/c4

)

R4
+� = 0
 (19.41)

Multiplying by R2R�t we easily find that the integral of this is

e−CR�t
2 = �2 −�+ 2M�r�

R
+ Q2

(

Q�N
2 −G/c4

)

R2
− 1

3
�R2� (19.42)

where M�r� is an arbitrary function. Comparing this with (18.14) we see that �� 2 −��/2
plays here the role of the L–T energy function E�r�.

The function M�r� is the effective mass that drives the evolution, but, as we will
see, it is a combination of mass and charge that need not be positive. In order to see
this, we will now compare (19.42) with the Newtonian limit, assuming � = 0. Let �x�
denote the physical dimension (unit) of x. The dimensions of the quantities appearing in
(19.42) are: �R�= �length�� �eC/2dt�≡ �ds�= �c�× �time�� �M�= �G�× �mass�/�c2�� �N�=
�mass�× �c2� and �Q� = �charge� ≡ �

√
mass�× �length3/2�/�time�. The function �� 2 −��

is dimensionless, but, for consistency, must be assumed to have the form 2�/c2, where
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��� = �velocity2�. In order to find the Newtonian limit of (19.42), we multiply it by c2

and let c → 	. Denoting the Newtonian time by �, we obtain

R��
2 = 2�+2Gm�r�/R


But the Newtonian equation of motion of spherically symmetric charged dust is

r��
2 = 2��r�+2�G��r�− ��e�r�/���r��Q�r��/r�

where ��r� is the total mass within the sphere of radius r�Q�r� is the total charge within
the same sphere, �e is the charge density and �� is the mass density. Thus, the M�r� in
(19.42) corresponds to the Newtonian �G��r�− ��e�r�/���r��Q�r��, and, as announced,
does not have to be positive. This relation will appear in other formulae later on.

In order to verify the G22 equation, we have to find C�t from the G11 equation and A�t
from the G01 = 0 equation. Substituting these, then finding A�r from (19.39), using the
r-derivative of (19.42) to eliminate R�t R�tr and again using (19.39) to eliminate e−A, we
obtain

QQ�N

(

−G

c4
�N�r + �M +QQ�N �� �r

)

= 0
 (19.43)

One solution of this is Q�N = 0, i.e. a constant total charge. We will deal with this simpler
case later. When Q�N �= 0,

G

c4
�N�r = �M +QQ�N �� �r 
 (19.44)

The quantity �
def=M +QQ�N � will appear again in Section 19.3.2, where, by matching

our metric to the Reissner–Nordström solution, we will find that � is the active gravi-
tational mass. Thus, via (19.44), � determines by how much � increases when a unit of
rest mass is added to the source, i.e. � is a measure of the gravitational mass defect/excess.
Solutions with � = 0 are known, this is the Datt–Ruban class of Subsection 19.4. Negative
� can also occur; see the comments on the Novikov (1962a) paper in Section 18.20.2. This
happens when the distribution of matter contains necks (see Section 18.10) or fills more
than half the volume of a closed 3-space, like in the Friedmann k > 0 model matched to
the Schwarzschild spacetime. However, the case � > 0 corresponds to the most ordinary
configuration.

Note the similarity of the formula M =�−QQ�N � to the Newtonian relation Gm�r�=
G��r�− (�e/��

)

Q.
The final equation to take into account is the G00 equation that defines the mass density

of the dust. It reproduces (19.35). Using (19.39) to eliminate eA/2 from (19.35), we obtain
� in a form analogous to (18.15):

�� = 2GN�r
c4R2R�r

(

� − QQ�N
R

)


 (19.45)

Finally then, the Einstein–Maxwell equations for charged dust reduced to a set that
defines the metric functions A�t� r�, C�t� r� and R�t� r� implicitly. The prescription for
constructing a solution is this:
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1. Choose the arbitrary functions M�r��Qe�r��Qm�r� and ��r�, and then solve (19.44)
to find N�r�.

2. Given these, express eA/2 through R via (19.39).
3. The set of equations (19.40) and (19.42) then defines eC and R.

In the following, we will assume Qm = 0, i.e. no magnetic charges, in agreement with
experimental knowledge. This does not influence the solutions in a significant way –
it just changes the interpretation of some functions: with Qm = 0 we have Q = Qe. If,
further, Q�N = 0, then Qe = constant, i.e. �e = 0 from (19.18). Thus in this case the whole
charge is contained in the set r = 0 – it is the electrically neutral dust moving in the
exterior electric field of a charge concentrated at r = 0.

Note, from (19.40), that when Q�N = 0, the dust moves on geodesics, whereas when
Q�N �= 0 it does not. Even so, note from (19.42) and (18.14) that a constant charge
Q modifies the geometry, and the neutral dust in electric field moves on geodesics in
a different geometry than does a neutral dust in pure gravitational field. This means
that electromagnetic field exerts an influence even on electrically neutral matter via the
Einstein equations. This is a purely relativistic effect. However, a constant charge at r = 0
does not modify the mass, and with Q�N = 0 Eq. (19.45) reduces back to (18.15).

Following Bronnikov and Pavlov (1979) let us note from Eq. (19.42) that, with �= 0,
the sign of � puts certain limits on the possible types of evolution of R�t� r�. When
R increases, the third and fourth terms on the right of (19.42) decrease. Nothing can
prevent R from growing to infinity when � ≤ 0. Thus these two cases cannot contain the
recollapsing L–T or Friedmann models as subcases. When � = 0�R�t will decrease to
zero at R → 	 only if � = 0. However, with � = 0, Eq. (19.44) implies M�r = 0, i.e. the
vacuum limit. Thus, the plane symmetric charged models do not contain the zero-energy
L–T (or k= 0 Friedmann) models in a limit, although the evolution of the charged model
can have qualitative features of the k = 0 model. Only in the spherically symmetric case,
� = +1, are all three types of evolution possible, and all three L–T models are contained
as subcases.

Special cases of the Bronnikov–Pavlov class presented here were discovered and
discussed by other authors in earlier papers – see Krasiński (1997) for a complete list.
Of the more important subcases, the electrically neutral case for all three symmetries
was solved by Ellis (1967), the spherically symmetric case with no magnetic charge was
solved and discussed by Vickers (1973), the �= 0 subcase of the Vickers case was solved
and discussed by Markov and Frolov (1970), the case with zero density of magnetic
monopoles and zero cosmological constant for all three symmetries was investigated
by Shikin (1974), and the further subcase with zero magnetic charge and zero electric
charge density was discussed in an earlier paper by Shikin (1972). In this chapter, we
will mention only the most important physical contributions.

With vanishing charges, Qe = Qm = 0, in the spherically symmetric case � = +1,
(19.31) reduces to the equation of a geodesic, while Eqs. (19.39), (19.40) and (19.42)
reduce to those defining the L–T model, where 2E = �2 −1.
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19.3.2 Matching the charged dust metric to the Reissner–Nordström metric

From now on, we will limit ourselves to the case of spherical symmetry �� = +1� and
zero magnetic charge �Qm = 0�.

Matching a matter solution to an electrovacuum1 metric can help in interpreting the
arbitrary functions and constants. For spherical symmetry and zero magnetic charge, the
appropriate electrovacuum metric is the Reissner–Nordström (R–N) solution2 presented
in Section 14.4. We will allow for a nonzero cosmological constant.

We first transform the R–N metric with �, Eqs. (14.40)–(14.41), to the appropriate
coordinates. For the �t� r� coordinates of (14.40) we will write ���RRN�, and we introduce
the symbol

h
def= 1− 2m

RRN

+ e2

RRN
2 + 1

3
�RRN

2 (19.46)

in place of e2�. We demand that the new coordinates �t� r� are still orthogonal, so that
gtr = 0, i.e.

h��t ��r −
1
h
RRN�tRRN�r = 0
 (19.47)

The function CRN�t� r� is

eCRN = h��t
2 − 1

h
RRN�t

2
 (19.48)

We now solve (19.47)–(19.48) for ��r and calculate

�g11�RN ≡ h��r
2 − 1

h
RRN�r

2 = − eCRRN�r
2

heC +RRN�t
2 
 (19.49)

The component �g00�RN is not fully determined at this point; we will determine it later.
Since � is defined by the partial differential equation (19.47), it still involves an arbitrary
function of one variable.

We wish to match the charged dust metric of Section 19.3 to the R–N solution given
above across a hypersurface r = rb. This requires that the induced 3-metric and the
second fundamental form of this hypersurface are the same for both spacetime metrics
(by Section 12.17). The coordinates are adapted to the boundary, so we may use (7.96).

Continuity of the 3-metric requires that

eC�t�rb� = eCRN�t�rb�� R�t� rb� = RRN�t� rb�
 (19.50)

The transformations that keep the metric diagonal are still allowed. Transforming t by
t′ = ∫ e��t�dt, where � = CRN�t� rb�−C�t� rb�, we fulfil the first of (19.50), while g′

11 and
g′

01 are not changed.

1 An electrovacuum metric is a solution of the Einstein–Maxwell equations such that the mass density � and charge density
�e are both zero, but there may be an electromagnetic field in the spacetime generated by charges placed outside the region
considered.

2 A generalisation of the Reissner–Nordström solution for magnetic charge is known (Stephani et al., 2003), but it is geomet-
rically insignificant. The only change is replacing e2 in the metric by e2 +q2, where q is the magnetic charge.
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On the surface r = rb�RRN�t� rb� must be the same function of t as R�t� rb�. Conse-
quently, R�t �t� rb� must be the same in both metrics, and so RRN�t� rb� must obey

e−CRN�t�rb�RRN�t
2�t� rb� = �2�rb�−1+ 2M�rb�

RRN�t� rb�
− GQ2�rb�

c4RRN
2�t� rb�

−1
3
�RRN

2�t� rb�
 (19.51)

The unit vector normal to the hypersurface r = rb has components

X� = (0� e−A/2�0�0
)≡

(

0�
(

� − QQ�N
R

)
/

R�r �0�0
)

(19.52)

for the interior metric, and, from (19.49),

X
�
RN =

(

0�

√

h+ e−CRNRRN�t
2

RRN�r

�0�0

)

(19.53)

for the R–N solution. From the continuity of the second fundamental form we have
R�r X

r 
r=rb
= RRN�rX

r
RN

∣
∣
r=rb

and
(

eC
)

�r X
r
∣
∣
r=rb

= (

eCRN
)

�r X
r
RN

∣
∣
r=rb

. The first condition
says that

(

h+ e−CRNRRN�t
2
)

r=rb
=
(

� − QQ�N
R

)2

r=rb

� (19.54)

which ensures the continuity of g11 = −eA across r = rb, even though we have not required
this. Substituting for RRN�t

2 from (19.51) and for h from (19.46), and then comparing the
coefficients, we obtain

e =
√
G

c2
Q�rb�� m = �M +QQ�N ��r=rb


 (19.55)

The continuity of the second fundamental form imposes one last condition, on C�r .
Using (19.40), (19.39) and (19.49), the condition is

CRN�r

� −QQ�N /R

RRN�r

∣
∣
∣
∣
r=rb

= 2
QQ�N
R2


 (19.56)

We have no expression yet for CRN�r , and we will find it from the field equations now.
We know that eA is continuous at r = rb, so we can use (19.39) for ARN�t� rb�. Substitute
this in (19.27), and take the equation G01 = 0 at r = rb. The result is

CRN�r �t� rb� = 2RRN�rQQ�N
R2 �� −QQ�N /R�

∣
∣
∣
∣
r=rb

� (19.57)

and it shows that (19.56) is fulfilled.
Thus, (19.55) are the only limitations imposed on the charged dust metric by the

matching conditions. This matching was first discussed by Vickers (1973). The second
of (19.55) once more reveals the connection between the active gravitational mass m and
the effective mass M .
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19.3.3 Prevention of the Big Crunch singularity by electric charge

It turns out that the presence of electric charges has a strong influence on the evolution of
the dust. In discussing this, we shall follow Vickers (1973), with a few corrections. In the
present section we will deal only with the Big Bang/Big Crunch (BB/BC) singularities.
The shell crossings will be discussed separately in Section 19.3.6. Also, we assume �= 0,
since with nonzero � the situation becomes more complicated.

When Q�r �= 0, the avoidance of the Big Bang singularity is not guaranteed. In the
following we shall denote E�r� = (�2 −1

)

/2.
The presence or absence of a singularity is detected by investigating the roots of the

right-hand side of (19.42), which, for this purpose, is more conveniently written as

e−CR2R�t
2 = 2E�r�R2 +2M�r�R+Q2

(

Q�N
2 −G/c4

) def=W�R�
 (19.58)

At each root of W�R�, the sign of R�t changes, and evolution is possible only in those
regions where W�R� ≥ 0. The following cases occur:

(a) When E < 0, W�R� has roots only if

M2 ≥ 2EQ2
(

Q�N
2 −G/c4

)


 (19.59)

With no roots, W�R� would be negative at all R, so (19.59) is the condition for the
existence of a solution of (19.58). The roots are

R± = − M

2E
± 1

2E

√

M2 −2EQ2
(

Q�N
2 −G/c4

)

� (19.60)

and W�R� > 0 between them. Nonsingular solutions will exist when both R± > 0
(with R± < 0, no solution exists at all, with R−R+ < 0, R = 0 is in the allowed
range.) This is equivalent to

Q�N
2 <G/c4 and M> 0
 (19.61)

We will interpret these conditions later on in this section.
If there is equality in (19.59), then W�R�< 0 for all R �=R− =R+, and W�R±�= 0.

Then R = R± and the model is static. If, in addition, Q�N �rb� = 0 (meaning that
�e�rb�= 0) and ��rb�= 0, then E = −1/2, and in this case the exterior R–N metric
is the extreme one, with e2 = m2, as seen from (19.59) and (19.55).

With (19.61) fulfilled, R oscillates between a minimum and a maximum, never
going down to zero.

(b) When E = 0, singularity is avoided if and only if M> 0 and Q�N
2 <G/c4. Collapse

is then halted and reversed once and for all.
(c) When E> 0, W�R�> 0 either everywhere (if there are no roots) or beyond the roots.

There will be no roots when M2 < 2EQ2
(

Q�N
2 −G/c4

)

, in which case W�R� > 0
for all R including R = 0, and the model can run into the singularity. Thus (19.59)
is here one of the necessary conditions for the existence of nonsingular solutions.
With (19.59) fulfilled, W�R� has two roots, and at least one of them has to be
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positive if singularity is to be avoided. With M> 0, we have R− < 0 always and
R+ > 0 if and only if Q�N

2 < G/c4. With M < 0, R+ > 0 and R− < R+ always,
so non-singular solutions exist with no further conditions, provided that R > R+
initially. Collapse is then halted and reversed as in case (b).

Now we will interpret the conditions (19.61). The inequality Q�N
2 <G/c4, with Qm = 0

and Qe = Q, translates into 
�e
 <
√
G�/c. Thus, with M< 0, the BB/BC singularity is

avoided only if E > 0 and (19.59) is fulfilled, with no further conditions on �e. This
is a non-relativistic bounce, since it occurs also in Newton’s theory, under the same
conditions.1 With M > 0, a nonsingular bounce will occur only if 
�e
 <

√
G�/c, i.e.

if the absolute value of the charge density is sufficiently small (but nonzero) compared
with the mass density. This is a purely relativistic effect that does not occur in the
Newtonian limit: with M > 0, R = 0 is always in the allowed range of Newtonian
solutions. The physical interpretation of the relativistic bounce is this: as seen from
(19.42), the charges provide a correction to the effective mass M , so that it becomes
M = M + �1/2�Q2

(

Q�N
2 −G/c4

)

/R. This correction is negative at small charge density
(when Q�N

2 <G/c4), so it weakens gravitation, thus helping the dust to bounce. However,
at large charge density (Q�N

2 > G/c4), charges enhance the effective mass and thus
oppose bounce. Nevertheless, in the latter case, the Newtonian electrostatic repulsion can
prevail, provided that M < 0 at the same time. Recall a similar phenomenon that we
encountered while discussing the motion of particles in the Reissner–Nordström spacetime
(Section 14.16), where an electric charge in the source of the gravitational field creates
effective antigravitation, provided the charge is small enough compared with the mass.

With Q�N = 0 the singularity is avoided in every case when a solution exists. Thus,
for neutral dust moving in an exterior electric field, the BC/BB singularity never occurs.
This was first found by Shikin (1972). This is a purely relativistic effect.

We have proven that in some cases a solution of (19.42), for which R �= 0 initially,
does not go down to 0. However, if the charged dust occupies a volume around the
centre of symmetry R = 0, then, at any time, there are dust particles with all values of
R, including R = 0. We will find in the next section the conditions to be obeyed in order
that the centre is nonsingular. For the particles at R �= 0, the initial conditions can be set
up so that the dust is collapsing at t = ti. Thus, the inner turning points given by (19.60)
will exist arbitrarily close to the centre. This has consequences for the shell crossings
discussed in Section 19.3.6.

If EM< 0 and Q�N
2 =G/c4, then (19.58) has a time-independent solution R= −M/E.

In this case, the electrostatic repulsion just balances the gravitational attraction and the
whole configuration is static – but unstable. Any small (necessarily negative) perturbation
of this value of R will send the dust into collapse that will terminate at R = 0.

At the surface of the charged sphere Eq. (19.58) will coincide with (14.176) (up to a
transformation of time) if J0 = 0 (radial motion) and e = √

GQ/c2, q/� = c2Q�N /
√
G,

1 It should not be surprising that there are no further conditions on �e when M< 0 and E > 0, since these two inequalities
already imply that the absolute value of the charge density must be large.
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m=M−qe�/�. Consequently, the surface of a charged dust sphere obeys the equation of
radial motion of a charged particle in the Reissner–Nordström (R–N) spacetime. As shown
in Section 14.16, for such a particle, if �q/��2 < 1, then the reversal of fall to escape can
occur only inside the inner R–N horizon, at R < r− = m−√

m2 − e2. Thus, the surface
of a collapsing charged dust sphere must continue to collapse until it crosses the inner
horizon at R= r−, and can bounce at R< r−. Then, as seen from Fig. 14.10, it cannot re-
expand back into the spacetime region I from which it collapsed, since this would require
motion backwards in time. The surface would thus continue through the tunnel between
the singularities and re-expand into another copy of the asymptotically flat region.

The bounce at small charge density (Q�N
2 <G/c4) would be more interesting physi-

cally, since the real Universe has no detectable net charge, so only small charges could
exist in it. We saw that an arbitrarily small uncompensated charge can prevent the
BB/BC singularity. Unfortunately, Ori (1990, 1991) proved that precisely in this case a
shell crossing is unavoidable, and it will block the passage through the tunnel. We will
derive this result in Section 19.3.6. Thus, a nonsingular bounce through the R–N tunnel
is impossible when Q�N

2 <G/c4 everywhere.

19.3.4 * Charged dust in curvature and mass-curvature coordinates

It is instructive to transform the metric given by (19.11) with f��� = sin�, (19.39),
(19.40) and (19.42) to coordinates in which the function R�t� r� is the radial coordinate.

We note that R�r dr = dR−R�t dt, and then we take t to be a function of the new
coordinates: t = f���R�. Thus

R�r dr = dR−R�t �f�� d�+f�R dR� �

dt = f�� d�+f�R dR�
(19.62)

and the new metric components, using (19.42), are found to be

g�� = eCf��
2�

�� −QQ�N /R�2 � (19.63)

g�R = eCf�� f�R �+f�� R�t

�� −QQ�N /R�2 � (19.64)

gRR = eCf�R
2�−1+2f�R R�t

�� −QQ�N /R�2 � (19.65)

�
def= 1− 2�

R
+ GQ2

c4R2
+ 1

3
�R2� (19.66)

where we have defined

�
def=M +QQ�N �
 (19.67)

Note, from (19.62), that the transformation for collapsing dust �R�t < 0� is different
from that for expanding dust �R�t > 0�. The transformation from ���R� to �t� r�, inverse
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to (19.62), is analogous to introducing, in the Reissner–Nordström region r > r+ =
m+√

m2 − e2, coordinates comoving with the congruence of charged particles that are
radially collapsing or expanding, respectively. Figure 14.10 shows that in this way we
obtain a coordinate map that covers regions I and II for the collapsing congruence or
regions I and IV for the expanding congruence. The extension is to the future or to the
past, respectively.

This can now be specialised in two ways. One possibility is to choose the proper
curvature coordinates, in which g�R = 0. This representation of the Vickers metric has not
found any application in the literature so far, but it is instructive. From g�R = 0 we find

f�R = −e−CR�t/�� (19.68)

and substituting it in (19.65) we obtain

gRR = −1/�� (19.69)

The resemblance to the Reissner–Nordström metric is now evident, and the quantity �
that plays the role of mass is indeed the one identified by Vickers (1973); see Eq. (19.55).
The component g�� is given by (19.63), with f�� to be found from the Einstein equations.

The other possible specialisation of (19.63)–(19.65) is to choose the � defined in
(19.67) as the new �-coordinate. These mass-curvature coordinates were first introduced
by Ori (1990). The surfaces � = constant are timelike, so none of the coordinates is time
and the metric cannot be diagonal. Since � , Q, � and N depend only on r in the original
coordinates, we have Q = Q���, � = ���� and N = N���. The Jacobi matrices of the
transformations �t� r� ↔ ���R� are

��t� r�

����R�
=
[

f�� f�R
r�� r�R

]

� (19.70)

����R�

��t� r�
=
[

0 ��r
R�t R�r

]


 (19.71)

These matrices is must be inverse to each other. Hence:

f�� = − R�r
R�t ��r

� f�R = 1/R�t � r�� = 1/��r � r�R = 0
 (19.72)

In the coordinates �x0� x1�
def= ���R� the velocity field still has only one contravariant

component:

u′1 = ±
√

�2 −1+ 2M
R

+ Q2
(

Q�N
2 −G/c4

)

R2
− 1

3
�R2
 (19.73)

We define the auxiliary quantities

u
def= � −QQ�N /R� (19.74)

�
def= eC/2/u� �f��

def= F���R�� (19.75)
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and, using (19.66), (19.73) and (19.42), we obtain in (19.63)–(19.65):

g�� = F 2�
def=�� (19.76)

g�R = F�u2/R�t = Fu/u′1 def=�� (19.77)

gRR = 1/�u′1�2 def= � 
 (19.78)

The function F��� is to be found from the field equations. Equations (19.76)–(19.78)
differ from those of Ori (1990) only by notation.

For some further calculations it is useful to note that

�� −�2 = −F 2
 (19.79)

Using (19.72), (19.17) and (19.75) we find that the only nonvanishing components of the
electromagnetic tensor in the ���R� coordinates are

F�R = −FR� = Q

FR2
� F�R = −FR� = −FQ

R2

 (19.80)

Further, using (19.17), (19.18), (19.35), (19.39), (19.44), (19.42) and (19.73) we find for
the charge density and energy-density

4��e

c
= uQ�r

R2R�r
≡ − uQ��

R2f�� R�t
≡ − Q��

R2Fu′1 � (19.81)

�� = 2u��r
�R2R�r

≡ − 2�u
�R2FR�t

≡ − 2

�R2Fu′1 
 (19.82)

Equations (19.76)–(19.78) and (19.80)–(19.82) show that F���R� is the only unknown
function. Denoting

uR def= u′1 ≡ ±√
u2 −� (19.83)

(the + sign for expansion, − for collapse), we obtain

u� = uF� uR = 1/uR� (19.84)

g�� = − 1

�FuR�2 � g�R = u

FuR
� gRR = −�
 (19.85)

Dividing (19.44) by ��r and using the definition of � , Eq. (19.67), we find that in
the ���R� coordinates Eq. (19.44) reads

G

c4
�N�� = 1
 (19.86)

The function F can be found from the equations of motion (19.31). With �m = Qm = 0,
using (19.38), they read

u��� u
� = −�e

c�
F��u� ≡ −Q�N F��u�� (19.87)
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and imply just one equation:

F�R = − uR��

u�uR�2 
 (19.88)

Using (19.74), (19.83) and (19.86), we transform (19.88) to

F�R = − 1

�uR���R��3

[

��� + 1
R�

(

1− c4

G
�Q�N

2 +QQ�NN �

)]


 (19.89)

This coincides, except for notation, with Ori’s (1990) result. Note that we have not
assumed � = 0. As Ori (1990) stressed, Eqs. (19.76)–(19.78), (19.84) and (19.89) deter-
mine the metric explicitly, in contrast to the representation by Vickers used in Section 19.3,
where the Einstein–Maxwell equations were reduced to a set of two differential
equations.

With � = 0, the integral of (19.89) is of the form
∫

�ax+b�x2

�cx2+dx+e�3/2 dx and is elementary,
though complicated; it requires separate treatment of various subcases. The full list of
results is given in Ori’s paper.

It can now be verified that the Einstein–Maxwell equations are all fulfilled. The identity
Q�N ≡ Q�� /N�� = G�Q�� /c4, resulting from (19.86), is helpful in the calculations.

Note, from (19.76)–(19.78) and (19.82), that the metric and the mass density are
insensitive to the sign of uR. As explained in the remark after (19.66), uR > 0 and uR < 0
correspond to different maps with different domains. Thus, integrating (19.89) from R1 to
R > R1 with uR > 0, we integrate forward in time, whereas calculating the same integral
with uR < 0, we integrate backwards in time.

19.3.5 Regularity conditions at the centre

Just as in the L–T model, the set R= 0 in charged dust consists of the BB/BC singularity
(which we showed to be avoidable) and the centre of symmetry, which may or may not
be singular. We will now derive the conditions for the absence of the central singularity.
We assume no magnetic charges.

Let r = rc correspond to the centre of symmetry. From (19.11), (19.12) and (19.35) we
see that N�r� = 4�

∫

� �
√−g d3x, where � is a sphere centred at r = rc in a t = constant

space. Thus, if � has no singularity of the type of the Dirac delta at the centre, N�r� must
obey N�rc�= 0. Similarly, Eqs. (19.11)–(19.12) and (19.18) show that if there is no delta-
type singularity of �e at the centre then the electric charge must obey Q�rc� = 0. With
both � and �e being nonsingular at rc, the ratio �e�rc�/��rc� is nonsingular, and (19.18)
with (19.35) show that limr→rc

Q/N = limr→rc
Q�N = �e�rc�/�c��rc�� is finite (possibly

zero). Then, (19.86) implies that ��rc� �= 0 and limr→rc
N/� = constant �= 0. Thus, we

can use � instead of N as the variable in calculating the behaviour of functions in the
vicinity of r = rc (of � = 0).

Since R�t� rc� = 0 and N�rc� = 0, we find from (19.45):

lim
r→rc

R3

N
= lim

r→rc

3R2R�r
N�r

= lim
r→rc

3
4��

(

� − QQ�N
R

)


 (19.90)



19.3 Dust in electromagnetic field, R�r �= 0 383

This limit will be finite if limr→rc
�QQ�N /R� <	. We already know that Q�N �rc�

def= q̃0 =
constant and Q = q̃0N +O1�N�, using the notation of Section 18.4. Thus, Q = q0� +
O1��� and limr→rc

�QQ�N /R� <	 if R= constant ×�� +O����, where � < 1. Then,
(19.90) imposes the further condition that, in the neighbourhood of rc,

R = ��t��1/3 +O1/3���
 (19.91)

Since R�t� rc�= 0 at all times, we have R�t �t� rc�= 0. All other terms in (19.42) except
��2 −�� vanish at r = rc, so, in the spherically symmetric case � = +1, we must have

lim
r→rc

�2�r� = 1 =⇒ lim
r→rc

E�r� = 0
 (19.92)

Note that this does not exclude � < 0.

19.3.6 * Shell crossings in charged dust

As can be seen from (19.75) and (19.72), F = 0 is equivalent to R�r = 0, so F = 0 is a
locus of shell crossings. Then, from (19.82) we see that �FuR must be negative for the
density of dust to be positive. Since uR = dR/ds < 0 during collapse, �F must then be
positive.

Now let us write the solution of (19.89) as follows:

F = −
∫ R

R1

1

�uR��� x��3

[

��� + 1
x�

(

1− c4

G

(

Q�N
2 +QQ�NN

)
)]

dx+g����

(19.93)

where g��� is an arbitrary function and R1 is the initial value of R. When approaching
the bounce in the central region, we have R1 > R, so the integral term is positive when
the expression in square brackets is negative.

We saw in Section 19.3.3 that there are dust particles with all values of R, including
arbitrarily small values. At the turning point in collapse uR → 0. The integrand is of the
form

(

ax2 +bx+ c
)−3/2 (

a2x
3 +a3x

2
)

, and the trinomial has real zeros, so the integral
is unbounded (which shows that uR = 0 is a coordinate singularity). From (19.93) it is
seen that as we approach near to R = 0�� = 0�, the coefficient 1/�x�� will domi-
nate. We know from the regularity conditions that lim�→0 �

2 = 1, lim�→0 Q = 0 and
lim�→0 Q�N = constant < 	. Thus, as long as Q�N

2 <G/c4, the term containing 1/�x��
will dominate in the vicinity of R = 0 and will determine the sign of the infinity in F .
Now it turns out that the sign of F will necessarily change to the opposite during collapse.
If � > 0, then F > 0 can be achieved at R = R1, as is necessary, by a choice of ��� and
g���, but F → −	 as R → 0. If � < 0, then F < 0 can be achieved at R = R1, but
F → +	 as R → 0. This means that there is necessarily a shell crossing somewhere at
R > 0 if Q�N

2 <G/c4 holds all the way down to � = 0. This is the theorem proven by
Ori (1990, 1991).1

1 We thank Amos Ori for an extended correspondence on this point. The discussion helped to clarify several other points in
this section.
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The infinity in F can be avoided altogether if the term in square brackets in (19.93) is
zero at the same x at which uR = 0. The zero of uR is given by (19.60); it is R = R+. In
that case F is finite at R=R+ and, by (19.82), � becomes infinite, i.e. R=R+ becomes a
true curvature singularity. Thus, also in this case the charged dust cannot tunnel through
the Reissner–Nordström throat.

The only situations in which both the BB/BC and shell crossing singularities can be
avoided are the following:

1. When lim�→0 Q�N
2 = G/c4. Then, because of lim�→0 Q/R = 0, the term ��� in

(19.93) has a chance to outbalance the other one and secure the right sign of F

everywhere.
2. When Q�N

2 > G/c4, E > 0 and M< 0. Then, as shown in Section 19.3.3, a non-
singular bounce is possible, and shell crossings will not occur, either.

However, at the time of writing this book, no examples of such solutions are known.

19.4 The Datt–Ruban solution

Now we will deal with the special case R�r = 0 in (19.11)–(19.12). The Einstein–Maxwell
equations and the equations of motion, (19.22)–(19.32), are still valid. Equations (19.23)
and (19.27) imply R�t C�r = 0. With R�t = 0, taking the combination e−CG00 + e−AG11,
we obtain �� = 0, i.e. an (electro)vacuum solution, which we will not consider. Thus
C�r = 0, which means that the dust is moving on geodesics. A transformation of time can

then be used to achieve C = 0. Using the notation Q2 def=Qe
2 +Qm

2, we find from (19.24)
and (19.28)

�

R2
+ R�t

2

R2
+2

R�tt
R

− GQ2

c4R4
+� = 0
 (19.94)

Since R�r = 0�Q must be constant. According to (19.18) and (19.20), this means that
the densities of electric and magnetic charge must be zero. Thus, the only kind of
electromagnetic field that is compatible with the geometry we are now considering is the
free field; the dust is uncharged and moves in the exterior electric field.

Multiplying (19.94) by R2R�t and integrating we obtain

R�t
2 = −�+ 2M

R
− GQ2

c4R2
− 1

3
�R2� (19.95)

where M is a constant. Then, Eqs. (19.25) and (19.29) imply

RR�tt +
1
2
RA�t R�t +

1
4
R2A�t

2 + 1
2
R2A�tt +

GQ2

c4R2
+�R2 = 0
 (19.96)
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This is much simplified by the substitution A = 2 lnu�t� r� and then u = R�t w�t� r�. For
the function w the following equation results:

2RR�tt w�t +RR�t w�tt +R�t
2w�t = 0
 (19.97)

Its general solution is w=X�r�
∫ [

1/
(

RR�t
2
)]

dt+Y�r�, where X�r� and Y�r� are arbitrary
functions. Thus

eA/2 = R�t

(

X�r�
∫ 1

RR�t
2 dt+Y�r�

)


 (19.98)

The expression for the metric is

ds2 = dt2 − eA/2 dr2 −R2�t�
[

d�2 + �1/�� sin2 (√��
)

d�2
]

� (19.99)

and the expression for matter density is found from (19.22) and (19.26) with use of
(19.95) and (19.98):

�� = 2X
R2eA/2


 (19.100)

This solution of the Einstein–Maxwell equations was first semi-published by Ruban
(1972), and then mentioned in a later paper (Ruban, 1983).

The Ruban spacetime is globally a T-region:1 the gradient of R is timelike everywhere.
Consequently, as mentioned in Section 14.1, the curvature coordinates do not exist in this
case. Since R depends only on t, the spaces t = constant do not contain their centres of
symmetry: R is not zero at any point of such a space (except when R = 0 at the given
value of t, but this is a singularity analogous to the Big Bang). In fact, Eq. (19.95) shows
that with � = 0 and Q �= 0 no Big-Bang-like singularity can occur: the term with the
electric charge is negative and tends to −	 when R→ 0, while the right-hand side of this
equation must be positive. (Note that with �= 0 and �= +1 Eq. (19.95) has no solutions
at all if M2 < GQ2/c4, and has only the static solution R = M when M2 = GQ2/c4.
However, we have shown at the beginning of this section that the solution with R�t = 0
is electrovacuum.) The radius R is constant in the 3-space t = constant. The geometry of
this 3-space with � = +1 is that of a 3-dimensional cylinder whose sections r = constant
are spheres, all of the same radius, and the coordinate r measures the position along the
generator. The space is inhomogeneous along the r-direction, and the electric field has
its only component also in the r-direction. The radius of the cylinder evolves with time
according to Eq. (19.95).

The subcase Q = 0� � = +1 of this solution, i.e. the case of zero electric field and
spherical symmetry, was found by Ruban in an earlier paper (Ruban, 1968) and discussed
in an illuminating way in yet another paper (Ruban, 1969); we will report on that
discussion below. The further subcase � = 0 appeared in a paper by Datt published
as early as 1938 (Datt, 1938), but the author arbitrarily dismissed it as being of ‘little
physical significance’. This subcase is the first in which explicit formulae for R and eA/2

1 For the definition of the T- and R-regions, see Section 14.1.



386 Relativistic cosmology IV

may be given. The solution for R�t� is in fact the same as for the k = +1 Friedmann
model, while

eA/2 = 2X�r��1−Z cotZ�+Y�r� cotZ� Z
def= arcsin

√

R/�2M�
 (19.101)

From (19.98) and (19.100) it can be seen that the solution becomes spatially homogeneous
���r = 0� when X/Y =C = constant. Then, by the coordinate transformation r ′ = ∫ Y�r�dr
the metric component eA/2 is made independent of r, which shows that in this case an
additional Killing field exists. This subcase has the Kantowski–Sachs geometry introduced
in Section 10.7. When, further, C = 0, the solution becomes vacuum. In the case � = 0
this vacuum solution corresponds to that part of the Schwarzschild manifold that is
not covered by the curvature coordinates, i.e. inside the event horizon, as mentioned in
Section 14.4.

Various generalisations to these subcases were found by several authors; see Krasiński
(1997) for a complete list. Among these generalisations are, for example, solutions with
the Kantowski–Sachs geometry and with various sources that are more general than just
perfect fluid. Here we will mention only one generalisation: Korkina and Martinenko
(1975) worked out the case when the source in the Einstein equations for the metric
(19.99) (with � = +1) is a general perfect fluid, with nonzero, time-dependent, pressure.
With no specific equation of state, the Einstein equations cannot be solved to the end, and
are then just reduced to a single ordinary differential equation that contains an arbitrary
function of time (the pressure).

Now we come to the geometrical/physical interpretation of the general Ruban solution
in the spherically symmetric case, � = +1. Note that the matter-density in this solution,
given by (19.100), depends on r and is everywhere positive if X> 0. Thus, the amount of
rest mass contained inside a sphere r = r0 = constant does depend on the value of r0, and
is an increasing function of r. Nevertheless, as seen from (19.95), the active gravitational
mass M that drives the evolution is constant. It looks as if all matter added to the source
loses all its ability to gravitate, and the active gravitational mass is just a parameter
of the space on which infalling matter has no influence. Ruban (1969) interpreted this
property as follows: the gravitational mass defect of any matter added exactly cancels its
contribution to the active mass.

Equation (19.95) with Q = 0 is the same that governs the evolution of the Friedmann
models, Eq. (17.28). Note that the constant � = ±1�0 in (19.95) that determines the
type of symmetry automatically fixes the type of evolution. Thus with � = +1 (spherical
symmetry), the model is necessarily the recollapsing one �k= +1�. Now compare (19.95)
with the law of evolution of the L–T model, (18.14) – the Datt–Ruban (D–R) model has
E = −1/2 and R�r = 0 permanently. Thus, it behaves like a neck in the L–T model (see
Section 18.10).

Finally, compare (19.95) with Q = 0 with the Schwarzschild solution in the Lemaître–
Novikov coordinates, (14.116)–(14.117). It is clear that the two solutions can be matched
across r = rb if E�rb� = −1/2 and m = M; see Exercise 7.
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In the special case Q = � = 0, the D–R model explodes out of a singularity at R = 0
at t = tB, expands until R = 2M is reached at t = tB +�M , and then collapses back
to R = 0 at t = tB + 2�M (Exercise 8). Thus, the hypersurface across which the D–R
model is matched to the Schwarzschild solution is hidden inside the Schwarzschild event
horizon, except at the instant of maximal expansion, when the D–R sphere touches the
Schwarzschild horizon from inside (Ruban, 1983).

The D–R model and its generalisations have no analogues in the Newtonian theory and
do not show up in linear approximations to Einstein’s theory.

19.5 The Szekeres–Szafron family of solutions

Consider the metric

ds2 = dt2 − e2� dz2 − e2�
(

dx2 +dy2
)

� (19.102)

where � and � are functions of �t� x� y� z� to be determined from the Einstein equations.
The source is taken to be a perfect fluid, and the coordinates of (19.102) are assumed to
be comoving so that u� = 	�

0. This implies that u̇� = 0 and that pressure depends only
on time.

Several different parametrisations are in use for the solutions of the Einstein equations
with the metric (19.102), and some notations are conflicting. We shall follow Szafron’s
(1977) exposition. The orthonormal tetrad components of the Einstein tensor for the
metric (19.102) are

G00 = e−2�
(−��x

2 −��y
2 −��xx −��xx −��yy −��yy

)

+ e−2�
(−3��z

2 −2��zz +2��z ��z
)+ 2��t ��t +��t

2� (19.103)

G01 = e−� �−2��tz +2��t ��z −2��t ��z � � (19.104)

G02 = e−� �−��tx −��tx −��t ��x +��t ��x � � (19.105)

G03 = e−�
(−��ty −��ty −��t ��y +��t ��y

)

� (19.106)

G11 = e−2���z
2 + e−2�

(

��xx +��yy
)−3��t

2 −2��tt � (19.107)

G12 = e−�−� �−��zx +��z ��x � � (19.108)

G13 = e−�−�
(−��zy +��z ��y

)

� (19.109)

G22 = e−2�
(

��y
2 + ��x ��x +��yy −��y ��y

)+ e−2�
(

��z
2 +��zz −��z ��z

)

−��t ��t −��t
2 −��t

2 −��tt −��tt � (19.110)

G23 = e−2�
(−��xy −��x ��y +��x ��y +��x ��y

)

� (19.111)

G33 = e−2�
(

��x
2 +��xx −��x ��x +��y ��y

)+ e−2�
(

��z
2 +��zz −��z ��z

)

−��t ��t −��t
2 −��t

2 −��tt −��tt 
 (19.112)
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With a perfect fluid source, the Einstein equations are G00 = �� and G11 = G22 = G33 =
−�p (the cosmological constant can be taken into account as the special case �p = −�,
�� → �̃�+�).

The equations G01 = G12 = G13 = 0 say, respectively,
(

e�−���z
)

�t = 0� �e−���z � �x = �e−���z � �y = 0
 (19.113)

The last two equations imply that

��z = u�t� z�e�
 (19.114)

The cases u = 0 and u �= 0 have to be considered separately because the integration
proceeds in a different way in each case, and the limit ��z → 0 of the solution for ��z �= 0
is singular (see Section 19.6.3). The relation between these two cases is closely analogous
to the relation between the Datt–Ruban model and the L–T model. We will see later
that the L–T and Datt–Ruban models are the spherically symmetric limits of the ��z �= 0
subfamily and of the ��z = 0 subfamily, respectively.

19.5.1 The ��z = 0 subfamily

The equations G01 =G12 =G13 = 0 are fulfilled identically. In solving the other equations,
we can assume that ��tx = 0 = ��ty because otherwise the equations have no solutions;
the proof is given in Section 19.10. Then

� = ln��t�+��x� y�� (19.115)

where � and � are unknown functions, while G02 = G03 = 0 imply that

e�−���x = �̃1�z� x� y�� e�−���y = �̃2�z� x� y�� (19.116)

where �̃1 and �̃2 are other unknown functions. Using (19.115) for � and denoting

�i�z� x� y�
def= �̃ie

�, i = 1�2, we obtain

e���x = �1�z� x� y���t�� e���y = �2�z� x� y���t�
 (19.117)

The integrability condition �e���x � �y = (e���y
)

�x implies �1�y = �2�x. This means that
a function ��z� x� y� exists such that �1 = ��x, �2 = ��y. Knowing this, (19.117) can be
integrated to give

e� = ��t���z� x� y�+��t� z�� (19.118)

where ��t� z� is an unknown function. Substituting for � and � from (19.115) and (19.118)
in (19.107) we obtain in the equation G11 = �p

e−2�
(

��xx +��yy
)= 2���tt +��t

2 +�p�2 def= −k = constant� (19.119)

because � depends only on x and y while � and p depend only on t.



19.5 The Szekeres–Szafron family of solutions 389

Now it is convenient to introduce the complex variables

 
def= x+ iy�  = x− iy� (19.120)

in which the first part of (19.119) becomes

−4e−2���  = k
 (19.121)

Differentiating this by  we obtain an equation equivalent to
(

��  −�� 
2
)

� = 0, whose
solution is

��  −�� 
2 = �� �� (19.122)

�� � being an arbitrary function. Now, −4e−2���  is the curvature scalar of the
2-dimensional metric

ds2
2 = e2� d d � (19.123)

and Eq. (19.121) says that the curvature is constant. Thus, depending on the sign of k,
the metric (19.123) is equivalent to one of the 2-metrics in (19.11)–(19.12). We will now
transform it to a simpler form.

A transformation of the form  = f� ′��→  = f� ′�� is a conformal symmetry of
(19.123); the new metric has a different �:

�̃� ′�  ′� = �� �  �+ 1
2

ln
(

f� ′
)+ 1

2
ln
(

f� ′
)


 (19.124)

After such a transformation, the new function � in (19.122) becomes

�̃� ′� = ��f� ′��f� ′
2 + 1

2

(

ln f� ′
)

� ′ ′ −1
4

(

ln f� ′
)

� ′
2

 (19.125)

We can choose f so that �̃ = 0, after which the new � will obey

��  −�� 
2 = 0
 (19.126)

This implies �e−�� �  = 0 = �e−�� �  since � is real. Hence

e−� = a  +B +B + c� (19.127)

where a, B, B and c are arbitrary constants (a and c being real) that, in consequence of
(19.121), must obey

ac−BB = k/4
 (19.128)

Let us note a few properties of the metric (19.123) with (19.127).

Lemma 19.1 If k �= 0, then (19.123) may be transformed to

ds2
2 = dx2 +dy2

[

1+ 1
4k �x

2 +y2�
]2 
 (19.129)
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Proof:
Suppose that k > 0. Then ac > 0 from (19.128). Carry out the following chain of trans-
formations: (1)  =  ′ −B/a; (2)  ′ = 1/�a ′′�; (3)  ′′ = x+ iy. The resulting metric is
(19.129).

If k < 0 and a �= 0, then the same chain of transformations will do the job. If a = 0
and c �= 0, then the transformation  = 1/ ′ restores a �= 0, with B and B interchanged.
If a = c = 0, then a �= 0 is restored by the Haantjes transformation (8.79) which, in the
variables � �  �, is

 =  ′ −C ′ ′

1−C ′ −C ′ +CC ′ ′ � (19.130)

where C = C1 + iC2. The transformed metric is

ds2
2 = d d 

[

B ′ +B ′ − �BC+BC� ′ ′
]2 � (19.131)

and (19.129) is achieved in the already-known way. Since c = 0 in (19.131), Eq. (19.128)
is fulfilled with the same B and B.

Lemma 19.2 Equation (19.129) applies also when k = 0.

Proof:
If a �= 0, then c=BB/a from (19.128), and the job is done by the chain of transformations
(1)  =  ′ −B/a; (2)  ′ = 1/�a ′′�.

If a = 0, then, with k = 0, Eq. (19.128) implies B = B = 0, and then the metric is
reduced to (19.129) by  = c ′.

For the proof that (19.129) is equivalent to the 2-dimensional metrics of constant
curvature contained in (19.11)–(19.12) see Exercise 9.

Conclusion:
The coordinates �x� y� may be chosen so that B = 0, c = 1, a = k/4:

e� = ��t�

1+ 1
4k �x

2 +y2�
= ��t�

1+ 1
4k  

def=�e�
 (19.132)

We will continue to use the complex coordinates (19.120). As shown in Section 19.10,
the equations G22 −G33 −G23 = 0 and G22 −G33 +G23 = 0 then become (19.334) and
its complex conjugate. After substituting from (19.118) and (19.132) they change to

�e−���  = �e−���  = 0
 (19.133)
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Thus, similarly to e−� itself, e−�� is of first degree in  and of first degree in  . Since
� depends on z, the integration constants will be arbitrary functions of z. In the �x� y�

coordinates, the solution of (19.133) is1

� = e�
[

1
2
U�z�

(

x2 +y2
)+V1�z�x+V2�z�y+2W�z��

]


 (19.134)

With this, the only equations that are not yet satisfied are G22 = �p and G00 = ��.
Substituting (19.134), (19.118), (19.132) and (19.113) in (19.110) and taking G22 = �p

we obtain

��tt �+��t ��t +���tt +���p = U�z�+kW�z�
 (19.135)

Substituting all the results in (19.103) we obtain for the matter density

�� = 2 ����tt /�−��tt � e−� +3��t
2/�2 +3k/�2
 (19.136)

With this, all the Einstein equations are solved. Collecting all the information together,
the metric thus found is

ds2 = dt2 − e2� dz2 − e2�
(

dx2 +dy2
)

�

e� = ��t�e�� e� = ��t���z� x� y�+��t� z��

� = e�
[

1
2
U�z�

(

x2 +y2
)+V1�z�x+V2�z�y+2W�z�

]

�

e−� = 1+ 1
4
k
(

x2 +y2
)

�

(19.137)

where k is an arbitrary constant, ��t� is determined by the equation

2���tt +��t
2 +�p�2 +k = 0� (19.138)

while ��t� z� and the matter-density are given by (19.135) and (19.136).
This is as far as one can get without assuming any equation of state, which is necessary

to determine p and then solve (19.138). However, since the pressure depends only on t,
the barotropic equation of state �= ��p� makes the matter density spatially homogeneous,
and the resulting model ceases to be interesting for advanced cosmology.

The model (19.137)–(19.138) is a generalisation of the Datt–Ruban class, which results
from here as the limit V1 = V2 = 0, U = kW .

All the Robertson–Walker models are also contained here as the limit �= 0, U = −kW ,
in the form (17.83)–(17.84). They result in a simpler form if U = W = V2 = 0, V1 = 1 in
addition (which just means a more specific choice of coordinates in the R–W limit):

ds2 = dt2 − �2�t�
[

1+ 1
4k �x

2 +y2�
]2

(

x2 dz2 +dx2 +dy2
)

� (19.139)

1 The coefficients at U and W were added in order to make the subsequent formulae consistent with those of Szafron (1977).
There is an inconsistency between Szafron’s Eqs. (2.23) and (2.24).
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and then the following transformation will reduce (19.139) to (17.1):

� = R� x = r sin�� y = r cos�� z = �
 (19.140)

Equation (19.138) is identical to (17.25) that governs the evolution of the R–W models
(the cosmological constant can be taken into account here by redefining p and �).

Note that W = 0 can be assumed without loss of generality because W = 0 results by
the reparametrisation U = ũ+kW , � = �̃−2�W ; ũ then replaces U and �̃ replaces � in
the equations. Note also that if k �= 0, then the reparametrisation � = �̃−��U/k+W�,
W = 2W̃ +U/k leads to the same result as if U = −kW , i.e. as if the right-hand side of
(19.135) were zero. Both these parametrisations have been used in various papers; see
Krasiński (1997) and Section 19.6.3.

In general, this family of spacetimes has no symmetry (Bonnor, Sulaiman and
Tomimura (1977) and Exercise 10). However, when U = kW and V1 = V2 = 0, it acquires
a 3-dimensional symmetry group acting on 2-dimensional orbits; the symmetry is spher-
ical, plane or hyperbolic when k > 0, k = 0 or k < 0, respectively. In the general case, a
certain quasi-symmetry is present: the surfaces given by t = constant� z= constant� have
constant curvature proportional to k. The lack of symmetry in the spaces t = constant
is due to the spheres being placed non-concentrically (when k > 0) and to the ‘planes’
being nonparallel (when k = 0).

The orbits of the O(3) group of (19.139) have nothing to do with the 2-surfaces of
constant curvature present in the general Szafron spacetime: the former are the spheres
on which x2 + y2 = constant, the latter are surfaces of constant z. In contrast to this, the
Datt–Ruban limit results in a natural way: the 2-surfaces of constant curvature become
orbits of the symmetry group; for example, the spheres become concentric when k > 0
and the ‘planes’ become parallel when k = 0.

An explicit solution of (19.138) and (19.135) corresponding to �p = −� (i.e. to dust
with a cosmological constant) was given by Barrow and Stein-Schabes (1984); it involves
elliptic functions.

When p = 0, Eq. (19.138) has the same solutions as those given in Section 17.4.
Equation (19.135) can then be solved explicitly, too. We shall come back to these solutions
in Section 19.6.

19.5.2 The ��z �= 0 subfamily

We go back to Eq. (19.114) and consider the case when u�t� z� �= 0. Then

e� = ��z
u�t� z�

� (19.141)

and the first of (19.113) becomes �e�u��t = 0, whose solution is

e� = ��t� z�e��z�x�y�� (19.142)
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where �
def= 1/u. It follows that ��tx =��ty = 0. Equation (19.141) implies e� =��t� z���z,

and an arbitrary factor dependent on z can be introduced in e� by a transformation of
the form z = f�z′�. This will simplify the limiting transition to the Robertson–Walker
models. Thus,

e� = h�z���t� z���z � (19.143)

where h�z� is an arbitrary function.
The equation G11 = �p, in consequence of (19.141), (19.142) and (19.107), becomes

e−2�
(

��xx +��yy
)+1/h2 = 2���tt +��t

2 +�p�2 def= −k�z�� (19.144)

the last part of the equation follows because the left-hand side does not depend on t,
while the middle part does not depend on x and y. The function k�z� is unknown, and it
will remain arbitrary.

We can now repeat the reasoning in Eqs. (19.120)–(19.128), with the modification that
the functions �, �, �̃, �̃, f and f now depend on z. The metric (19.123) and its curvature
were only an auxiliary construction that helped us guess the substitution (19.124) that
reduced Eq. (19.122) to (19.126). However, the reasoning that led to (19.129) is no longer
valid because it involved coordinate transformations in the �x� y� subspace. Thus, e−�

will have here a form analogous to (19.127), but with the coefficients being arbitrary
functions of z:

e−� = A�z�
(

x2 +y2
)+2B1�z�x+2B2�z�y+C�z�� (19.145)

while ��t� z� is defined by the equation

2
��tt
�

+ ��t
2

�2
+�p�t�+ k�z�

�2
= 0
 (19.146)

This shows that ��t� z� can be redefined by � → �f�z�, which will result only in
rescaling k�z�. In consequence of (19.144), the functions A�z�, B1�z�, B2�z�, C�z�, h�z�
and k�z� must obey

AC−B1
2 −B2

2 = 1
4

[

1/h2�z�+k�z�
]


 (19.147)

All the Einstein equations are now satisfied, and G00 = �� defines the matter-density. In
order to make the transition to the L–T limit easier, we will represent the solution of
(19.146) by the formal integral

��t
2 = 2M�z�

�
−k�z�− �

3�

∫

p

(
��3

�t

)

dt� (19.148)

and then the matter-density is given by

�� = e�
[(

e�
)

�z
]−1
[

2M�z
�2

+ 6M��z
�2

− �

3�2

∫

p

(
�2�3

�t�z

)

dt− ���z
�2

∫

p

(
��3

�t

)

dt
]

� (19.149)
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where the first line is all that remains in the L–T limit; see further on. Collecting all the
information together, the metric we obtained is given by the formulae

ds2 = dt2 − e2� dz2 − e2�
(

dx2 +dy2
)

�

e� = ��t� z�e��z�x�y��

e� = h�z���t� z���z ≡ h�z� ���z +���z � �

e−� = A�z�
(

x2 +y2
)+2B1�z�x+2B2�z�y+C�z��

(19.150)

with the matter-density defined by (19.149), ��t� z� obeying (19.146) and the arbitrary
functions obeying (19.147).

Equation (19.146) can be integrated once p�t� has been specified.
This subfamily, like the preceding one, has in general no symmetry (Exercise 10), and

acquires a G3 with 2-dimensional orbits when A�B1�B2 and C are all constant (that is,
when ��z = 0). If �p= −� in addition, then the L–T model results, with z= r and �=R;
the metric of the spheres �t = constant� z = constant� can then be transformed to the
standard form as explained in Lemmas 19.1 and 19.2 and Exercise 9; for the interpretation

of the coordinates in (19.150) see the next section. The sign of g�z�
def=AC −B1

2 −B2
2

determines here the geometry of the surfaces �t = constant� z= constant� in the same way
as the sign of k did for (19.136)–(19.138). However here, with A�B1�B2 and C being
functions of z, the surfaces z = constant within a single space t = constant may have
different geometries (i.e. they can be spheres in one part of the space and the surfaces
of constant negative curvature elsewhere, the curvature being zero at the boundary).
Moreover, the sign of g�z� is here independent of the sign of k�z�, so the geometries of
these surfaces are independent of the type of evolution.

The Robertson–Walker limit in the form (17.80)–(17.82) follows when ��t� z� =
f�z�R�t�� k= k0f

2 and k0 = constant. When B1 = B2 = 0�C = 4A= 1 and f = z in addi-
tion, the R–W limit is ‘natural’; its O�3� orbits are the spheres from the Szafron ��z �= 0
spacetime, made concentric in the limit. (The additional specialisations of the arbitrary
functions amount to a more specific choice of coordinates in the R–W limit.)

19.5.3 Interpretation of the Szekeres–Szafron coordinates

The transition from the metric of the 2-surface t = constant� r = constant� in (19.11)
to the metric (19.129) is called a stereographic projection. With � > 0, the surface
�t = constant� r = constant�R = 1� in (19.11) has the metric of a sphere of unit radius.
With � = 0, the same surface has the metric of a plane. With � < 0, the metric can be
visualised as that of a two-sheeted hyperboloid, but in a 3-space with indefinite metric
(Exercise 11). In the ��z = 0 subfamily, where the metric of the 2-surface is (19.129), the
transformation is as in Exercise 9:

�x� y� =
{

�2/
√−k� coth��/2��cos�� sin�� for k < 0�

�2/
√
k� cot��/2��cos�� sin�� for k > 0


(19.151)
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In the ��z �= 0 subfamily, the metric in the 2-surface t = constant� r = constant� is not
as simple, since the functions A�B1�B2 and C depend on z and cannot be transformed
away. By the same method as used in Lemma 19.1 it may be verified that A �= 0
can be restored in (19.150) by coordinate transformations in the �x� y� surface, even

if A = 0 initially. Suppose that !2 def= 1/h2 + k �= 0. Then, writing A = 
!�z�
/�2S��B1 =
−
!�z�
P/�2S��B2 = −
!�z�
Q/�2S�, �

def= !/
!
 and redefining � by � = �̃
!�z�
, we can
represent the metric (19.150) as1

e−� def= � = S

2

[(
x−P

S

)2

+
(
y−Q

S

)2

+�

]

�

ds2 = dt2 − ���z −���z /��
2

�−k�z�
dz2 − �2

�2

(

dx2 +dy2
)




(19.152)

When ! = 0, the transition from (19.150) to (19.152) is A = 1/�2S��B1 =
−P/�2S��B2 = −Q/�2S� and � is unchanged. Then (19.152) applies with � = 0.

In all cases, within each single t = constant� r = constant� surface, the transformation
from the ����� coordinates to the �x� y� coordinates is

� = +1 " �x−P�y−Q�/S = cot��/2��cos�� sin���

� = 0 " �x−P�y−Q�/S = �2/���cos�� sin���

� = −1 " �x−P�y−Q�/S = coth��/2��cos�� sin��
 (19.153)

The quantity � determines whether the �x� y� 2-surfaces are spherical �� = +1�, pseudo-
spherical �� = −1�, or planar �� = 0�. The geometric interpretation of the stereographic
projection (19.153) in the cases �= ±1 is shown in Fig. 19.1. With �= 0, the interpretation
of the coordinates in (19.150) is most easily seen when the ����� coordinates are
transformed to the Cartesian coordinates X = � cos��Y = � sin�. Then, using (19.153),
we find that the transformation �x� y� → �X�Y� is

�X�Y� = 2S
�x−P�2 + �y−Q�2

�x−P�y−Q�� (19.154)

which is an inversion with respect to the sphere of radius
√

2S centred at �x� y�= �P�Q�.
The �x� y� coordinates in the cases �= +1 and �= 0 have the range �−	�+	�. With

� = −1� x and y vary in that range in which � has a constant sign. Coming back to the
representation (19.150), we see that, for � = −1 and A �= 0, � is zero when

�x+B1/A�
2 + �y+B2/A�

2 = 1/�4A�2


� is positive for x and y outside this circle, and is negative for x and y inside it. Figure 19.1
suggests that with � = −1 we should rather take �−�� as the metric function so that
x and y have finite rather than semi-infinite ranges. However, both the � > 0 and the

1 The tildes were dropped in Eq. (19.152) for better readability. The � in (19.152) is in fact �̃, the e−� is e−�̃ def= e−�/
!
, and

the k�z� is k̃�z�
def= k�z�/!2.
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ϑ
a

a
PP PP

S S

y – Qy – Q

p 1p 1

p 2p  2

Fig. 19.1. The stereographic projection from the ����� coordinates to the Szekeres–Szafron
coordinates �x� y� for a sphere (left) and for a two-sheeted hyperboloid (right). The radius of the sphere
is a = 1� a is also half the distance between the vertices of the hyperboloid. A point p1 in the surface
with the ����� coordinates is mapped on the point p2 in the plane with the �x� y� coordinates related
to ����� by (19.153). The point PP is the pole of projection; it lies on the straight line p1–p2. S is the
distance from the pole to the plane. On the hyperboloid, the coordinate� has no simple metric interpre-
tation, but, similarly to the spherical �-coordinate, it determines the distance of the point p1 from the
point antipodal to PP. The figure is the cross-section of the setup with the x = P plane. The coordinate
� in both surfaces is the azimuthal angle around the axis of symmetry that passes through PP.

� < 0 regions are Szekeres spacetimes because they are mapped onto one another by
�x� y� = �x′� y′�/

(

x′2 +y′2), which interchanges the roles of A and C.
The surface area of a t = constant� r = constant� surface is finite only in the � = +1

case, for which it equals 4�R2. In the other two cases, it is infinite.

19.5.4 Common properties of the two subfamilies

Two common properties have already been mentioned: the lack of any symmetry in
general and the existence of the surfaces of constant curvature t= constant� z= constant�.
Other properties in common are the following:

The Weyl tensor of the Szafron spacetimes has its magnetic part with respect to
the velocity field of the source equal to zero (Szafron and Collins, 1979; Barnes and
Rowlingson, 1989) and is in general of Petrov type D (Szafron, 1977). It degenerates to
zero in the R–W limit only.

Rotation and acceleration of the fluid source are zero, the expansion is nonzero, and
the shear tensor is

��
� = 1

3

∑

diag�0�2�−1�−1�� where

∑ = ��tz −��t ��z /�

��z −���z/�
for ��z �= 0�

∑ = ��t −���t /�

�+��
for ��z = 0
 (19.155)
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Two eigenvalues of the 3-dimensional Ricci tensor, �3�RAB, of the slices t = constant are
also equal, and its eigenframe coincides with that of shear (Collins and Szafron, 1979).
The eigenspaces corresponding to the degenerate eigenvalues of shear and of �3�RAB are
the surfaces of constant curvature mentioned above.

The slices t = constant of these spacetimes are conformally flat (Berger, Eardley and
Olson, 1977), i.e. their Cotton–York tensor (7.50) is zero.

The curvature of the �x� y�-surfaces is a global constant only in the ��z = 0 subfamily,
and there it is equal to the curvature index of the t = constant slices in the resulting
R–W limit. In the ��z �= 0 subfamily, the curvature of the �x� y�-surfaces is determined
by g�z� = �AC−B1

2 −B2
2� and is independent of the curvature index of the R–W limit,

which is determined by k�z�. Both k�z� and g�z� are constant only within each �x� y�-
surface and can vary within a t = constant slice. Even the sign of k is not a global property
of a general Universe. Its global constancy is a peculiarity of the R–W class.

In the Szafron spacetimes in their full generality, with arbitrary p�t�, the dynamic
equations are not yet solved. The missing element is the equation of state. The favourite
equation of state for physicists and astronomers used to be the barotropic one, f���p�= 0.
It produces nontrivial results when p = constant, in particular when p = 0, and this case
will be discussed in Section 19.6. When � = ��p� and p = p�t�, the Szafron spacetimes
trivialise: those with ��z �= 0 become R–W, and those with ��z = 0 acquire either an R–W
or a K–S geometry, or the plane and hyperbolic counterparts of the latter (Spero and
Szafron, 1978).

The Szafron solutions are an example to which the discussion of the thermodynamical
interpretation and of the existence of a thermodynamical scheme (see Section 15.5)
applies. As shown by Krasiński, Quevedo and Sussman (1997), in the ��z �= 0 subfamily
Eqs. (15.52) and (15.55) necessarily either make the thermodynamics trivial (because
p = constant) or else imply a symmetry group with at least 2-dimensional orbits. Hence,
the general ��z �= 0 Szafron spacetimes require an interpretation in terms of a more
complicated source than a single-component perfect fluid – it could be a mixture in which
chemical reactions occur, or a mixture of two fluids, such as was first introduced by
Letelier (1980).

In the ��z = 0 subfamily, there is a subset of solutions that obey (15.52) and (15.55)
while still having no symmetry.1

19.5.5 * The invariant definitions of the Szekeres–Szafron metrics

The results reported in this subsection will be quoted without proofs. While the results are
important and worth knowing, the proofs are rather technical and laborious, and would
lead us too far from the subject of cosmology. Interested readers are advised to consult
the original papers.

1 We omit the derivation of these results because the formulae involved are rather complicated, while the subcase that admits
a thermodynamical scheme without a symmetry has no clear physical interpretation. We refer the reader to the original paper
(Krasiński, Quevedo and Sussman, 1997).
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In Section 19.5 we began with the historically earliest definition, through the metric
(19.102). Later, a few different coordinate-independent definitions were discovered.

The first invariant definition of the whole family was given by Wainwright (1977) for
the Szekeres limit p = 0, and then extended by Szafron (1977) to the general case. The
general Szafron spacetimes follow when the following properties are assumed:

1. The velocity field of the fluid is geodesic and irrotational.
2. The Weyl tensor is of type D, and the velocity vector of the fluid at every point of

the spacetime lies in the 2-plane spanned by the two principal null directions.
3. Any vector orthogonal to both repeated principal null directions is an eigenvector of

shear.
4. The 2-surfaces generated by the principal null directions admit orthogonal 2-surfaces.

It follows from here that the repeated principal null directions are orthogonal to the
surfaces of constant curvature, t = constant� z = constant�.

The principal null directions are not in general geodesic. They become geodesic if and
only if the spacetimes acquire local rotational symmetry, that is, a G3/S2 symmetry group.

Szafron and Collins (1979) worked out another invariant definition. The following
conditions must be obeyed simultaneously:

1. The metric is a solution of the Einstein equations with a perfect fluid source.
2. The flow lines of the fluid source are geodesic and nonrotating (the last property

implies that the flow lines are orthogonal to a family St of spacelike hypersurfaces).
3. Each hypersurface of the family St is conformally flat.
4. Two of the eigenvalues of the Ricci tensor �3�RAB of the hypersurfaces St are equal.
5. Two of the eigenvalues of the shear tensor ��� are equal.

For all spacetimes that have a G3/S2 symmetry group properties 4, 5 and # = 0 are auto-
matically fulfilled, and property 3 results from u̇� = 0 via the field equations. Hence, these
subcases of the Szekeres–Szafron spacetimes are defined only by property 1 and u̇� = 0.

If conditions 1–5 are fulfilled, then there exist coordinates in which the metric has the
form (19.102). These coordinates are defined up to the following transformations:

t = t′ +C� z = f�z′�� u = g�u′�+g�u′��

u
def= x+ iy� u′ def= x′ + iy′�

(19.156)

where C is an arbitrary constant, f is an arbitrary real function and g is an arbitrary
complex function.

The proper Szekeres solutions result from the two definitions when the additional
requirement p = 0 is made.

Yet one more invariant definition was provided by Barnes and Rowlingson (1989): the
Szafron spacetimes result from the Einstein equations if the following assumptions are
made:

1. The source is a geodesic and rotation-free perfect fluid.
2. The Weyl tensor is purely electric and of Petrov type D.
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3. The shear tensor has two equal eigenvalues and its degenerate eigensurface coincides
with that of the Weyl tensor.

19.6 The Szekeres solutions and their properties

19.6.1 The ��z = 0 subfamily

When �p = −� = constant, Eq. (19.138) is integrated to

��t
2 = −k+ 2M

�
+ 1

3
��2 def=���� (19.157)

and, using (19.138), Eq. (19.135) can be integrated to

��t ���t +
�M

�
− 1

3
���2 = �U +kW��+X�z�� (19.158)

where M is an arbitrary constant and X�z� is an arbitrary function (the integral (19.158)
is valid only when ��t �= 0, but this will be assumed always to be the case, otherwise the
solution is static).

The solution of (19.158) can be formally represented as

� = √
�

(∫ �U +kW��+X�z�

��3/2
d�+Y�z�

)

� (19.159)

where Y�z� is another arbitrary function.
If we want to interpret the constant � as the cosmological constant, then the energy-

density has to be redefined by � = �̃−�. Then, from (19.136), (19.157) and (19.158),
we obtain

�̃� = 2X+6M�

�2e�

 (19.160)

With � �= 0, the solutions of (19.157) involve elliptic functions. Each solution will contain
an additional arbitrary constant which defines the initial instant of evolution; it can be
assumed zero with no loss of generality. The evolution may or may not begin with a Big
Bang singularity (a sufficiently large positive � would prevent it), but if it does, then the
singularity is necessarily simultaneous in the comoving time t.

An additional singularity of infinite density occurs where (and if) e� = 0. This is a
shell crossing singularity, discussed for the ��z �= 0 subfamily in Subsection 19.7.4 and
for the L–T model in Section 18.10.

Equation (19.157) is identical to the Friedmann equation, and so are its solutions. Note
that M becomes the mass integral in the R–W limit, so in fact it should be assumed positive
for ‘physical reasons’. However, a solution exists when M< 0 and k < 0 or �> 0�, and
it should not be discarded without deeper consideration – which is still missing.

The solution (19.159) contains one more arbitrary function Y�z�, but one of the functions
U�V1�V2�W�X�Y� can be specified by a choice of the coordinate z. Hence, the general
solution depends on two arbitrary constants (k and M) and five arbitrary functions of z.
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In the parametrisation in which U = −kW (see the text after (19.140)), Eq. (19.159)
reproduces (19.98), with ��� z�Q�k� = �R� r�0� ��.

The solution of (19.157)–(19.158) with � �= 0 = k involves elementary functions only
and was given by Barrow and Stein-Schabes (1984). When M �= 0, one can redefine
� = �̃+X�/�3M�, W = W̃ −X/�3M� and U = Ũ −kX/�3M�, and the result is the same
as if X = 0. Thus X = 0 can be assumed without loss of generality whenever M �= 0, and
the Barrow–Stein-Schabes result is given in such a parametrisation. (We shall keep X for
the sake of comparison with other solutions later.) That solution tends asymptotically to
the de Sitter spacetime.

Both (19.157) and (19.158) have elementary solutions when � = 0; they define the
Szekeres (1975a) models with ��z = 0. The solutions of (19.157) with �= 0 are identical
to the Friedmann solutions (17.33)–(17.35). Given � and � = 0, Eq. (19.158) can be
integrated to find ��t� z�. The results are presented in the papers by Szekeres (1975a) and
by Bonnor and Tomimura (1976). We shall avoid displaying the explicit solutions because
then the various possible signs of k and M have to be considered separately (but see
Section 19.8). Bonnor and Tomimura discussed the evolution of each model. Depending
on the case, the metric or the matter-density may or may not approach homogeneity as
the initial singularity is approached and as the model evolves to infinity or to a final
singularity. The growing and decaying inhomogeneities are both present, just as in the
L–T model; see Section 18.19.

In the model with k = +1, the spheres t = constant� z = constant� evidently expand
and recollapse just as in the Friedmann k > 0 model – because the function R is here
exactly the same. Along the z-direction the space first has infinite extent at the instant
of the Big Bang, then collapses to a minimum size, and expands to infinite extent as
the final singularity is reached (Barrow and Silk, 1981). The maximum of expansion
of the spheres and the minimum of collapse in the z-direction do not in general occur
simultaneously.

19.6.2 The ��z �= 0 subfamily

When �p = −� = constant, Eq. (19.146) has the integral

��t
2 = −k�z�+ 2M�z�

�
+ 1

3
��2� (19.161)

the only difference from (19.157) being the dependence of k, M and � on z. As before,
the density is modified to �̃ = �−�, and

�̃� = �2Me3���z
e2��e���z


 (19.162)

Again, with � �= 0 the solutions of (19.161) involve elliptic functions. A general formal
integral of (19.161) was presented by Barrow and Stein-Schabes (1984). Any solution of
(19.161) will contain one more arbitrary function of z that will be denoted tB�z�, and will
enter the solution in the combination �t− tB�z��. The instant t = tB�z� defines the initial
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moment of evolution; when � = 0 it is necessarily a singularity corresponding to � = 0,
and it goes over into the Big Bang singularity in the Friedmann limit. When tB�z �= 0 (that
is, in general) the instant of singularity is position-dependent, just as it was in the L–T
model.

As before, another singularity may occur where �e���z = 0 (if this equation has solu-
tions). This is a shell crossing, but now it is qualitatively different from that in the
L–T model. If this singularity is present in the L–T model, then whole spherical shells
stick together at it. Here, as can be seen from (19.150), the equation �e���z = 0 may
define a subset of the x� y� surface. When a shell crossing exists, its intersection with a
t = constant space will be a circle, or, in exceptional cases, a single point, not a sphere
(see Section 19.7.4).

Equation (19.161) is formally identical with the Friedmann equation, but, just as in the
L–T limit, with k and M depending on z, each surface z= constant evolves independently
of the others.

The models defined by (19.150) and (19.161) contain eight functions of z, but only six
of them are arbitrary; one can be specified by a choice of z (still arbitrary up to now),
the other is determined by (19.147).

The elementary solution of (19.161) that results when k�z� = 0 was presented by
Barrow and Stein-Schabes (1984).

The solutions of (19.161) with � = 0 are formally identical with Friedmann’s, and
define the Szekeres (1975a) models with ��z �= 0. We will present them in the Goode–
Wainwright representation in Section 19.8.

The subcase AC−B1
2 −B2

2 > 0, in which the t = constant� z= constant� surfaces are
spheres, is the most important one physically. It is called the quasi-spherical Szekeres
model. Its properties are discussed in Section 19.7, but two little curiosities are listed
below.

The mass within the sphere z = r at the time t = t0 is

m�t0� r� =
∫

t=t0

��−g�1/2 d3x = 4�
∫ r

0
2M�z h�z�dz = m�r�� (19.163)

i.e. it does not depend on time and is given by the same formula as in the spherically
symmetric case (Szekeres, 1975a). The density may die off with increasing r so fast that
limr→	 m�r� < 	.

The Szekeres spacetime with AC−B1
2 −B2

2 > 0 can be matched to the Schwarzschild
solution across a z = constant hypersurface, even though the interior metric still has no
symmetry (Bonnor, 1976).

19.6.3 * The ��z = 0 family as a limit of the ��z �= 0 family

The integration of the Einstein equations required that the cases ��z = 0 and ��z �= 0 be
considered separately. Having derived the solutions, we can show now that the ��z = 0
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family is a limit of the ��z �= 0 family. The consideration below follows that of Hellaby
(1996b), with notation adapted to ours and with some corrections.1

Equation (19.147) does not in fact put any limitations on the functions A, B1, B2 and
C; given A, B1, B2, C and k it simply defines the function h�z�. Choose the arbitrary
functions in (19.150) and (19.161) as follows:

A =
∫ 1

2
U�z�

√
�−k dz+ 1

4
k�

B1 =
∫ 1

2
V1�z�

√
�−k dz� B2 =

∫ 1

2
V2�z�

√
�−k dz�

C =
∫

2W�z�
√
�−k dz+1�

M =
∫

X�z�
√
�−k dz+M0�

h = 1√
�−k

� tB = t1

∫ √
�−k dz+ t0�

�1
def= 1+ 1

4
��x2 +y2��

�0
def= 1

2
U�z��x2 +y2�+V1�z�x+V2�z�y+2W�z��

(19.164)

where M0, t1 and t0 are constants. We will take the limit k → � of all these quantities,
but first we must check what happens with the other quantities entering the metric under
such a reparametrisation.

Assuming that each integral becomes zero in the limit k → � (it is up to us to choose
the arbitrary constants appropriately) we have

lim
k→�

e−� = �1� lim
k→�

(

− ��z√
�−k

)

= �0
 (19.165)

The limits of the various other quantities are

M → M0� tB → t0� k → ��

M�z√
�−k

→ X�z��
tB�z√
�−k

→ t1�

k�z√
�−k

→ −2�U +�W�


(19.166)

Knowing this, we define

lim
k→�

��t� z�
def=�1�t�� lim

k→�

��z√
�−k

def= ��t� z�
 (19.167)

1 As given, the limit in Hellaby (1996b) reproduces only the subcase of the ��z = 0 Szekeres solution in which U , V1, V2 and
W are all constant.
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This �1 obeys (19.157) with k = � and M = M0. Then we differentiate (19.161) by z,
divide the result by

√
�−k, take the limit k → � and use (19.166)–(19.167), and find

that ��t� z� obeys (19.158).
Using (19.164)–(19.166) in (19.150) we finally obtain

ds2 = dt2 − ��−�1�1/�0�
2dz2 − ��1/�0�

2�dx2 +dy2�� (19.168)

which coincides with (19.137). Thus the ��z = 0 Szekeres solutions are a limit of the
��z �= 0 solutions, also when � �= 0.

Since (19.161) is the same as (18.14), we can use here Eq. (18.104), with z= r, R=�

and E = −k/2, to write in the � = 0 case:

��z =
(
M�z
M

− k�z
k

)

�+
[(

3k�z
2k

− M�z
M

)

�t− tB�− tB�z

]

��t 
 (19.169)

Using this and (19.167), we can verify that the explicit solution for � that results from
(19.169) in the limit k → � coincides with (19.101).

19.7 Properties of the quasi-spherical Szekeres solutions with ��z �= 0 = �

This subclass of the Szekeres models is physically the most important and has been
best investigated. With the exception of Subsection 19.7.8, the material in this section is
repeated after Hellaby and Krasiński (2002).

We will represent the quasi-spherical Szekeres solution with ��z �= 0 in the parametri-
sation introduced in (19.152). The metric is

ds2 = dt2 − ���z −��z/��
2

�−k
dz2 − �2

�2
�dx2 +dy2�� (19.170)

and the formula for density in these variables is

�� = 2�M�z −3M��z /��

�2���z −���z /��

 (19.171)

19.7.1 Basic physical restrictions

We choose � ≥ 0 (� = 0 is an origin, the bang or the crunch; in no case is a contin-
uation to negative � possible) and M�z� ≥ 0, so that any vacuum exterior has positive
Schwarzschild mass.

We require the metric to be non-degenerate and nonsingular, except at the bang or
crunch. Since �dx2 +dy2�/�2 maps to the unit sphere, plane or pseudosphere, 
S�r�
 �= 0
is needed for a sensible mapping, so S > 0 is a reasonable choice. In the cases � = 0 and
� = −1, � necessarily goes to zero at certain �x� y� values where the mapping is badly
behaved. For a well-behaved z-coordinate, we need to require

	 >
���z −���z /��

2

�−k
> 0� (19.172)
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i.e. �−k> 0 except where ���z −���z /��
2 = 0. Quasi-pseudo-spherical regions, �= −1,

then require k ≤ −1, hence they may exist only in hyperbolic spatial sections. Similarly,
quasi-planar regions, � = 0, may exist only in parabolic or hyperbolic spatial sections,
k≤ 0, whereas quasi-spherical regions are possible for all k≤ 1. In the Lemaître–Tolman
limit (��z = 0� � = 1), the equality 1−k = 0 = ���z �

2 can occur in closed models where
�=R on a spatial section is at a maximum, or in wormhole models where it is minimum,
��z �t� rm� = 0∀t. These can only occur at constant z and must hold for all �x� y� values.
We will consider maxima and minima in Section 19.7.5.

The density must be positive, and the Kretschmann scalar R���	R
���	 must be finite,

which adds

either M�z −3M��z /� ≥ 0 and ��z −���z /� ≥ 0 (19.173)

or M�z −3M��z /� ≤ 0 and ��z −���z /� ≤ 0
 (19.174)

If ���z −���z /�� passes through 0 anywhere other than at a regular extremum, we have
a shell crossing.

19.7.2 The significance of 	

The Szekeres metric is covariant with the transformations z= g�̃z�, where g is an arbitrary
function. Hence, if ��z < 0 in the neighbourhood of some value z = z0, we can take
g = 1/̃z and obtain d�/d̃z > 0. Therefore, ��z > 0 can always be assumed to hold in
some neighbourhood of any z = z0. However, if ��z changes sign somewhere, then this
is a coordinate-independent property.

As seen from Eq. (19.152), with � = +1� � is always nonzero. Since the sign of � is
not defined by the metric, we can assume that � > 0.

Can ��z change sign?

��z = 1
2
S�z
{− [�x−P�2 + �y−Q�2

]

/S2 +�
}

− [

�x−P�P�z + �y−Q�Q�z
]

/S
 (19.175)

The discriminant of this with respect to �x−P� is

�x = 1
S2

(

−S�z
2

S2
�y−Q�2 −2

S�z
S

�y−Q�Q�z +P�z
2 +�S�z

2

)


 (19.176)

The discriminant of �x with respect to �y−Q� is

�y = 4S�z
2
(

P�z
2 +Q�z

2 +�S�z
2
)

/S6
 (19.177)

Since, with � = +1, this is never negative, the equation ��z = 0 will always have at least
one solution (in exceptional situations) and in general will have two. The two exceptional
situations are when �y = 0. They are as follows:
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(i) S�z = 0 at z = z0. Then ��z �z0� = 0 has a family of solutions anyway, but the
solutions define a straight line in the �x� y� plane. This will be dealt with below
(see after Eq. (19.187)).

(ii) S�z = P�z =Q�z = 0 at z= z0. Then ��z ≡ 0 at z= z0, and we see from Eq. (19.171)
that � will be spherically symmetric there.

When �y > 0, �x will change sign at the following two values of y:

y1�2 = Q+S

(

−Q�z ±
√

P�z
2 +Q�z

2 +�S�z
2

)

/S�z 
 (19.178)

For every y such that y1 < y < y2 there will be two values of x (and one value of x when
y = y1 or y = y2) such that ��z = 0. They are

x1�2 = P−P�z
S

S�z
±S

√

−
(
y−Q

S
+ Q�z

S�z

)2

+ P�z
2 +Q�z

2

S�z
2 +�
 (19.179)

The regions where ��z is positive and negative depend on the sign of S�z. If S�z > 0, then
��z > 0 for x < x1 and for x > x2; if S�z < 0, then ��z > 0 for x1 < x < x2. ��z = 0 for
x = x1 and x = x2, but note that x1 and x2 are members of a continuous family labelled
by y. All the values of x and y from (19.178)–(19.179) lie on the circle

[

x− �P−P�z S/S�z �
]2 + [y− �Q−Q�z S/S�z �

]2 = S2
[(

P�z
2 +Q�z

2
)

/S�z
2 +��


(19.180)
The centre of this circle is at the point

�x� y� = �P−P�z S/S�z �Q−Q�z S/S�z � � (19.181)

and its radius is

L���z=0� = S
√
(

P�z
2 +Q�z

2
)

/S�z
2 +�
 (19.182)

Thus, with S�z > 0, the function ��z is negative inside the circle, zero on the circle and
positive outside it.

We will consider the variation of ��z� x� y� around the spheres of constant t and z.
Setting �= +1 and applying the transformation (19.153) to (19.152) and to its derivative
gives

� = S/�1− cos��� (19.183)

��z = −S�z cos�+ sin� �P�z cos�+Q�z sin��

1− cos�
� (19.184)

��zz = −S�zz cos�+ sin� �P�zz cos�+Q�zz sin��

1− cos�

+2
S�z
S

S�z cos�+ sin� �P�z cos�+Q�z sin��

1− cos�

+ (S�z2 +P�z
2 +Q�z

2
)

/S
 (19.185)
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The locus of ��z = 0 is

S�z cos�+P�z sin� cos�+Q�z sin� sin� = 0
 (19.186)

Writing z = cos�, y = sin� cos� and x = sin� sin�, we see that �x� y� z� is on a unit
sphere through (0, 0, 0), and (19.186) becomes S�z z+P�z x+Q�z y = 0, which is the
equation of an arbitrary plane through (0, 0, 0). Such planes all intersect the unit sphere
along great circles, therefore ��z = 0 is a great circle, with locus

tan� = −S�z / �P�z cos�+Q�z sin�� 
 (19.187)

The plane has unit normal �P�z �Q�z � S�z �/
√

P�z
2 +Q�z

2 +S�z
2.

Now it is easy to understand the meaning of the special case S�z = 0 mentioned after
Eq. (19.177). As seen from (19.187), with S�z = 0 we have � = 0, which means that the
great circle defined by ��z = 0 passes through the pole of stereographic projection. In
this case, the image of the circle ��z = 0 on the �x� y� plane is a straight line passing
through �x� y�= �P�Q�, as indeed follows from (19.175). ��z has a different sign on each
side of the straight line. Compare this also with Figs. 19.2 and 19.3. The other special
case, ��z ≡ 0, corresponds to the spherically symmetric subcase. Then, the positions of
the great circle from Eq. (19.186) and of the poles from Eq. (19.193) are undetermined.

From (19.184) and (19.183) we find

��z /� = − [S�z cos�+ sin� �P�z cos�+Q�z sin��
]

/S� (19.188)

thus

��z /� = constant ⇒ S�z z+P�z x+Q�z y = S× constant� (19.189)

which is a plane parallel to the ��z = 0 plane, implying that all loci of ��z /� = constant
are circles parallel to the ��z = 0 great circle.

The locations of the extrema of ��z /� are found as follows:

����z /��

��
= sin� �P�z sin�−Q�z cos��

S
= 0 ⇒ tan�e = Q�z

P�z

⇒ cos�e = �1

P�z
√

P�z
2 +Q�z

2
� �1 = ±1� (19.190)

����z /��

��
= S�z sin�−P�z cos� cos�−Q�z cos� sin�

S
= 0 ⇒

tan�e = P�z cos�e +Q�z sin�e

S�z
= �1

√

P�z
2 +Q�z

2

S�z
� (19.191)

cos�e = �2

S�z
√

S�z
2 +P�z

2 +Q�z
2
� �2 = ±1
 (19.192)
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The extreme value is then

���z /��extreme = −�2

√

S�z
2 +P�z

2 +Q�z
2/S
 (19.193)

Since

�sin�e cos�e� sin�e sin�e� cos�e� = �2�P�z �Q�z � S�z �
√

P�z
2 +Q�z

2 +S�z
2
�

Eq. (19.184) shows that the extreme values of ��z /� are poles to the great circles of
��z = 0.

Clearly ��z /� has a dipole variation around each constant-z sphere, changing sign
when we go over to the antipodal point: ����� → ��−���+��. Writing

��z −���z /� = ��z +�
[

S�z cos�+ sin� �P�z cos�+Q�z sin��
]

/S (19.194)

we see that ���z /� is the correction to the radial separation ��z of constant-z shells, due
to their not being concentric. In particular, �S�z /S is the forward (� = 0) displacement,
and �P�z /S and �Q�z /S are the two sideways displacements �� = �/2�� = 0� and
�� = �/2�� = �/2�. The shortest ‘radial’ distance is where ��z /� is maximum.

It will be shown in Subsection 19.7.4 that, where ��z > 0, ��z /� ≤ M�z /�3M� and
��z /� ≤ ��z /� are required to avoid shell crossings, and also ��z /� > M�z /�3M� in
Eq. (19.234). These inequalities, together with M�z > 0, imply that the density given by

(19.171), as a function of x
def= ��z /�

� = 2M�z
�2��z

1−3Mx/M�z
1−�x/��z

(19.195)

has a negative derivative by x

��x = �/��z −3M/M�z
�1−�x/��z �

2
· 2M�z
�2��z

< 0� (19.196)

so the density is minimum where ��z /� is maximum.

19.7.3 Conditions of regularity at the origin

For reference, we write out the evolution equations of the Szekeres models, even though
they are identical to those of the L–T and Friedmann models.

The function � = ��t� z� satisfies the Friedmann equation for dust that follows from
(19.161) as the limit � = 0:

��t
2 = 2M�z�/�−k�z�� (19.197)

where M�z� and k�z� are arbitrary functions. It follows that the acceleration of � is
always negative,

��tt = −M/�2
 (19.198)
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The function M�z� plays the role of the active gravitational mass within the sphere of
coordinate radius z. We assume that M ≥ 0 and � ≥ 0. In (19.197) −k�z� represents
twice the energy per unit mass of the particles in the shells of matter at constant z, but in
the metric (19.170) it also determines the geometry of the spatial sections t = constant.
The solution of (19.197) depends on the sign of k; it can be

(1) hyperbolic (when k < 0):

� = −M

k
�cosh$−1�� sinh$−$ = �−k�3/2��t− tB�

M
� (19.199)

(2) parabolic (when k = 0):

� = [9M�t− tB�
2/2
]1/3

� (19.200)

(3) elliptic (when k > 0):

� = M�1− cos$�/k� $− sin$ = k3/2��t− tB�/M� (19.201)

where tB�z� is an arbitrary function, giving the local time of the Big Bang or Crunch
� = 0, and � = ±1 permits time reversal. More correctly, the three types of evolution
hold for k/M2/3 < 0�= 0 and > 0, since k = 0 at a spherical type origin for all three
evolution types (see further on in this subsection). The behaviour of ��t� z� is identical
to that of R�t� r� in the L–T model, and is unaffected by the dependence of the Szekeres
solutions on the �x� y� coordinates.

When � = +1, � = 0 occurs at an origin of spherical coordinates (which we assume
to be at z = 0; this can always be satisfied by a transformation of z), i.e. ��t�0� = 0, ∀t,
where the 2-spheres have no size. Similarly, ��t �t�0�= 0 =��tt �t�0�, etc. ∀t. There will
be a second origin, at z = zO say, in any closed, regular, k > 0 model. Thus, by (19.201),
(19.199) and (19.197)–(19.198), for each constant $

lim
z→0

�M/k� = 0� lim
z→0

k = 0� lim
z→0

(

k2/M
)= 0
 (19.202)

The type of time evolution at the origin must be the same as that of its neighbourhood,
i.e., along a constant-t slice away from the bang or crunch, by (19.201) and (19.199),

0 < lim
z→0

[
k
3/2�t− tB�/M
]

< 	
 (19.203)

Clearly, we need M → 0, k → 0 and

0 < lim
z→0

(
k
3/2/M
)

< 	
 (19.204)

Using de l’Hôpital’s rule, this gives

lim
z→0

[

3Mk�z / �2M�z k�
]= 1
 (19.205)

The density and the Kretschmann scalar



def=R���	R���	 = �2

(

4�2/3−8��/3+3�2
)

� (19.206)
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where

��
def= 6M/R3 (19.207)

is the mean density within the ‘radius’ z, must be well behaved. We do not consider a
vacuum region of finite size at the origin (since that is just Minkowski space) or a single
vacuum point at the origin. Because � and � evolve differently, we also need

0 < lim
z→0

6M
�3

= lim
z→0

2M�z
�2��z

< 	 ⇒ lim
z→0

3��zM

�M�z
= 1 (19.208)

and

0 < lim
z→0

2 �M�z −3M��z /��

�2 ���z −���z /��
= lim

z→0

2M�z
�2��z

· 1−3M��z /�M�z ��

1−���z /���z ��
< 	
 (19.209)

We have

�2 ��z
M�z

= M2

k3
�1− cos$�

[

−
(

1− 3Mk�z
2M�z k

)

sin$�$− sin$�

+
(

1− Mk�z
M�z k

)

�1− cos$�2 − k3/2tB�z
M�z

sin$
]

� (19.210)

where, in consequence of (19.204) and (19.205), the first term is zero and the second finite
non-zero at an origin for all 0 < $ < 2�. Thus, we need only limz→0 MtB�z/M�z < 	.

Lastly, the metric must be well behaved, so � should have no unusual behaviour, such
as S = 0, that would compromise a valid mapping of �dx2 +dy2�/�2 to the unit sphere.
Also, to ensure that the rate of change of the proper radius with respect to the areal radius
is that of an origin, grr/���z �

2 should be finite:

0 < lim
z→0

���z −���z /��
2

�1−k���z
2 < 	 ⇒ (19.211)

0 < lim
z→0

(

1− 3M��z
M�z �

)2

< 	 ⇒ (19.212)

−	 ≤ lim
z→0

∣
∣
∣
∣

M��z
M�z �

∣
∣
∣
∣
< 	 and lim

z→0

∣
∣
∣
∣

M��z
M�z �

∣
∣
∣
∣
�= 1

3
� (19.213)

where the last of (19.208) has been used. This should hold for all �x� y�, i.e. all �����.
Thus (19.188) gives

−	 ≤ lim
z→0

∣
∣
∣
∣

MS�z
M�z S

∣
∣
∣
∣
< 	� −	 ≤ lim

z→0

∣
∣
∣
∣

MP�z
M�z S

∣
∣
∣
∣
< 	�

−	 ≤ lim
z→0

∣
∣
∣
∣

MQ�z
M�z S

∣
∣
∣
∣
< 	�

(19.214)

all three limits being different from 1/3.
All of the above suggests that, near an origin,

M ∼ �3� k ∼ −�2� S ∼ �n� P ∼ �n� Q ∼ �n� n ≥ 0
 (19.215)
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The condition ��z /� ≤ M�z /�3M� that will be obtained in the next subsection implies
that n ≤ 1 near an origin.

19.7.4 Shell crossings

A shell crossing, if it exists, is the locus of zeros of the function %
def= ���z /�−��z.

Suppose that % = 0 holds for all z at some t = t0. This leads to S�z = P�z =Q�z =��z = 0.
Since P, Q and S depend only on z, this means that they are constant throughout the
spacetime. As seen from (19.171), the Szekeres metric reduces then to the L–T metric,
so this case need not be considered.

Suppose that % = 0 holds for all t at some z = z0. This is an algebraic equation in x

and y whose coefficients depend on t and z. Taking the coefficients of different powers
of x and y we find P�z = Q�z = S�z = ��z = 0, but this time these functions vanish only
at z = z0, while ��z �t� z0� will vanish for all t. This will either be a singularity (when
M�z �z0� �= 0) or a neck (when M�z �z0� = 0, see Section 18.10). Hence, % �= 0 except at
a shell crossing or at special locations.

Now ��z > 0 and % < 0 cannot hold for all x and y. This would lead to
��z > ���z /� > 0, and we know that ��z cannot be positive at all x and y. Hence, with
��z > 0, there must be a region in which % > 0. By a similar argument, ��z < 0 and
% > 0 cannot hold for all x and y, so with ��z < 0 there must be a region in which % < 0.

Assuming ��z > 0, can % be positive for all x and y? Writing

% = 1
2S

(
S�z
S

+ ��z
�

)
[

�x−P�2 + �y−Q�2
]

−1
2
�S

(
S�z
S

− ��z
�

)

+ 1
S

[

�x−P�P�z +�y−Q�Q�z
]

� (19.216)

the discriminants of this with respect to �x−P� and �y−Q� are

�x = P�z
2

S2
− 1

S2

(
S�z
S

+ ��z
�

)

×
[(

S�z
S

+ ��z
�

)

�y−Q�2 +2�y−Q�Q�z −�

(
S�z
S

− ��z
�

)]

� (19.217)

�y = 4
1
S2

(
S�z
S

+ ��z
�

)2(
P�z

2 +Q�z
2 +�S�z

2

S2
−�

��z
2

�2

)


 (19.218)

Thus % will have the same sign for all x and y (i.e. there will be no shell crossings) when
�y < 0, that is, if and only if

��z
2

�2
> �

P�z
2 +Q�z

2 +�S�z
2

S2

def=& 2�z�
 (19.219)

When � = 0, this can fail only at those points where ��z = 0.
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If ��z
2/�2 = & 2, then �y = 0, so �x = 0 at just one value of y = ySS. With this value

of y, % = 0 at one value of x = xSS. In this case, the shell crossing is a single point in the
constant-�t� z�-surface, i.e. a curve in a space of constant t and a 2-surface in spacetime.

If ��z
2/�2 < & 2, then the locus of % = 0 is in general a circle (a straight line in the

special case S�z /S = −��z /�) in the �x� y� plane. The straight line is a projection onto
the �x� y� plane of a circle on the sphere of constant t and z, and hence is not really any
special case.

When �y > 0���z
2/�2 <& 2�, the two limiting values of y at which �x changes sign are

y1�2 = Q+ −Q�z ±
√
	

S�z /S+��z /�
�

	
def= P�z

2 +Q�z
2 +�

(

S�z
2 −S2��z

2/�2
)

� (19.220)

and then for every y such that y1 < y < y2 there are two values of x (only one if y = y1

or y = y2) such that % = 0. These are

x1�2 = P+ −P�z ±
√

− [�S�z /S+��z /�� �y−Q�−Q�z
]2 +	

S�z /S+��z /�

 (19.221)

The x and y obeying (19.221) lie on a circle with the centre at

�xSC� ySC� =
(

P− P�z
S�z /S+��z /�

�Q− Q�z
S�z /S+��z /�

)

� (19.222)

and with the radius LSC = √
	/�S�z /S+��z /��. This is in general a different circle from

the one defined by ��z = 0. As seen from (19.216), the shell crossing set intersects with
the surface of constant t and z along the line ��z /� = ��z /� = constant. As noted after
Eq. (19.189), this is a circle that lies in a plane parallel to the ��z = 0 great circle. It
follows that the ��z = 0 and SC circles cannot intersect unless they coincide.

Now we will consider the conditions for avoiding shell crossings. These were worked
out by Szekeres (1975b) and improved upon by Hellaby and Krasiński (2002). The
account here is based on the latter reference.

For positive density, (19.171) shows that �M�z −3M��z /�� and % must have the same
sign. Consider the case when both are positive. When M�z −3M��z /� ≤ 0 and % < 0,
the inequalities in all the following should be reversed.

Both �M�z −3M��z /�� and % can be zero for a particular �x� y� value if M�z /3M =
��z /�, but the latter cannot hold for all time. This case can hold for all �x� y� only if
M�z = 0���z = 0 and ��z = 0, which requires all of M�z � k�z � tB�z� S�z �P�z and Q�z to be
zero at some z value.

Consider the inequality M�z −3M��z /� ≥ 0. It must hold for all values of ��z /�,
including the extreme value (19.193), for which

M�z
3M

≥ ��z
�

∣
∣
∣
∣
max

=
√

�S�z �
2 + �P�z �

2 + �Q�z �
2

S
∀z
 (19.223)
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It is obvious that this is sufficient, and also that M�z ≥ 0 for all z.
We will now consider % > 0 for all three types of evolution.

Hyperbolic evolution, k < 0.
For hyperbolic models, we can write:

��z
�

= M�z
M

�1−'4�+
k�z
k

(
3
2
'4 −1

)

− �−k�3/2tB�z
M

'5� (19.224)

where

'4
def= sinh$�sinh$−$�

�cosh$−1�2
� '5

def= sinh$
�cosh$−1�2


 (19.225)

At early times, when $ → 0, we have � → 0�'5 → +	 and '4 → 2/3. Thus the
term with '5 dominates and goes to ±	, its sign being determined by −�−k�3/2tB�z/M .
Consequently, % > 0 implies

tB�z < 0 ∀z
 (19.226)

Similarly, at late times, where $→ 	, we have � → 	�'5 → 0�'4 → 1 and ��z /� →
1
2k�z /k, so that

��z /�−��z /� > 0 ⇒ k�z /�2k�−��z /� > 0
 (19.227)

Following the above analysis of M�z −3M��z /� ≥ 0 we obtain

k�z /�2k� >
√

�S�z �
2 + �P�z �

2 + �Q�z �
2/S ∀z� (19.228)

which obviously implies k�z < 0∀z. Since we already have M�z ≥ 0, this is sufficient, and
implies ��z > 0.
Parabolic evolution, k = 0.

The easiest way to obtain the conditions for the case k = 0� k�z �= 0 is to put $̃ =
$/

√−k > 0 in the hyperbolic case, and take the limit k→ 0�$ → 0. All terms involving
k�z /k cancel out and we retain conditions (19.226) and (19.223). Naturally, (19.228)
ceases to impose any limit.
Elliptic evolution, k > 0.

For elliptic models, the following holds:

��z
�

= M�z
M

�1−'1�+
k�z
k

(
3
2
'1 −1

)

− k3/2tB�z
M

'2� (19.229)

where

'1
def= sin$�$− sin$�

�1− cos$�2
� '2

def= sin$
�1− cos$�2


 (19.230)

At early times $ → 0 and � → 0�'2 → +	, '1 → 2/3. Thus the term contain-
ing '2 dominates and, by the same argument as in the hyperbolic case, (19.226) is
needed to keep ����z /� − ��z /�� > 0. Similarly, at late times, $ → 2��� → 0,
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'2 → −	�'1 → −	 and '2/'1 → 1/�2��. Consequently, �3/2���z /�−��z /�� > 0
now gives

2�M
k3/2

(
M�z
M

− 3k�z
2k

)

+ tB�z > 0 ∀z� (19.231)

which says that the crunch time must increase with z. Since we already have M�z ≥ 0,
these conditions are sufficient to keep ��z > 0 for all $.

We now show that the above also ensure �% > 0. Since the crunch time is

tC = tB +2�M/k3/2� (19.232)

we can rewrite (19.229) as

��z
�

= M�z
3M

+ tC�z
�tC − tB�

(
2
3

−'1

)

− tB�z
tC − tB

(
2
3

−'1 +2�'2

)


 (19.233)

The derivative of �2/3−'1� is �2$−3 sin$+$ cos$�/�1−cos$�2, and the third deriva-
tive of the numerator of the latter is $ sin$. It follows that 2/3 −'1 ≥ 0 and declines
monotonically from +	 to 0 as $ goes from 2� to 0. Since �2/3 −'1 + 2�'2� is the
mirror image in $ = � of �2/3−'1�, we have that

��z /� >M�z /�3M�� (19.234)

so that (19.223) guarantees that for each given z, the maximum of ��z /� as �x� y� are
varied is no more than the minimum of ��z /� as $ varies.

Although (19.231) implies k�z /�2k� < M�z /�3M�, a condition such as (19.228) is not
needed in this case.

19.7.5 Regular maxima and minima

Certain topologies necessarily have extrema in �. For example, closed spatial sections
have a maximum areal radius, and wormholes have a minimum areal radius, i.e.
��z �t� zm� = 0�∀t.

Suppose that �− k = 0 at some z = zm. We need %1
def=��z −���z /� = 0 to keep

grr finite, and hence M�z −3M��z /� = 0 (from (19.171)) to keep � finite, both holding
∀�t� x� y� at that zm. More specifically, along any given spatial slice away from the bang
or crunch, we want

%1/
√
�−k → L� 0 < L< 	� (19.235)

�M�z −3M��z /�� /%1 → N� 0 ≤ N < 	
 (19.236)

In consequence of (19.188), (19.224) and (19.229), %1 = 0 implies

M�z = k�z = tB�z = S�z = P�z = Q�z = 0
 (19.237)
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The limits (19.235) and (19.236) must hold good for all t and for all �x� y�, so using
(19.152), (19.224) and (19.229) with �> 0, M> 0 and S > 0 shows that

M�z√
�−k

�
k�z√
�−k

�
tB�z√
�−k

�
��z√
�−k

� (19.238)

S�z√
�−k

�
P�z√
�−k

�
Q�z√
�−k

�
��z√
�−k

(19.239)

must all have finite limits at z → zm. Using de l’Hôpital’s rule, each of the above limits
can be expressed in the form

L�M�z�

def= lim
k→�

M�z√
�−k

= −2M�zz
√
�−k

k�z

def= − 2M�zz
L�k�z�


 (19.240)

19.7.6 The apparent horizons

With � = +1, a general null vector field k� obeys

%2

1−k

(
dz
dt

)2

= 1− �2

�2

[(
dx
dt

)2

+
(

dy
dt

)2
]


 (19.241)

At each event dz/dt is maximal where kx = 0 = ky. Since � is independent of �x� y�, this
also gives the direction of maximum d�/dt
null at any event. We will call this ‘radial’
motion, and its paths ‘rays’. Thus, the differential equation dt/dz
n = j%1/

√
1−k, j = ±1,

when solved, would give t = tn�z� along the ‘ray’. In general, this is not a geodesic, but we
regard it as the limit of a sequence of accelerating timelike paths, and thus the boundary to
possible motion through a wormhole. The areal radius along a ‘ray’ is �n = ��tn�z�� z�.
These rays stop diverging when ��n��z = 0, where, using the previous formulae,

��n��z = ��t �tn��z +��z = !j%1

√
2M/�−k√

1−k
+��z � ! = ±1
 (19.242)

Light rays initially moving along constant x and y will not remain so. However, since
these ‘radial’ directions are at each point the fastest possible escape route, we define this
locus to be the apparent horizon (AH).

At an ordinary spacetime point the metric components will be nonzero. Assuming that
� is increasing with z on constant-t slices, i.e. that ��z > 0 and %1 > 0, for a solution of
��n��z = 0 to exist, we must require !j = −1, i.e. either j = +1� != −1� (outgoing rays
in a collapsing phase ⇐⇒ future AH, denoted AH+) or j = −1� != +1� (incoming rays
in an expanding phase ⇐⇒ past AH, denoted AH−). By ‘outgoing’ we mean moving
away from the neck at z= 0. A ray passing through the neck would change from incoming
to outgoing at z = 0, and, since ��z flips sign there, j would also have to flip there.
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Now define D
def= √

1−k−√
2M/�−k. Then �D> 0�⇐⇒ ��> 2M). Since M/�> 0,

we see that D≥ 1 leads to a contradiction, and hence D< 1, but D<−1 is not prohibited.
We have

�D < −1� =⇒
[

�<M
/(

1+√
1−k

)]


 (19.243)

This will always occur when � is close to the Big Bang/Big Crunch.
Using D, the equation of the AH, Eq. (19.242), is

���z +D��z � = 0� (19.244)

and in terms of x and y this equation is

�S�z /S−D��z /��
[

�x−P�2 + �y−Q�2
]

+2
[

�x−P�P�z + �y−Q�Q�z
]−S2

(
S�z
S

+D
��z
�

)

= 0
 (19.245)

The discriminant of this with respect to �x−P� is

�x = 4P�z
2 −4

(
S�z
S

−D
��z
�

)

×
[(

S�z
S

−D
��z
�

)

�y−Q�2 +2�y−Q�Q�z −S2

(
S�z
S

+D
��z
�

)]


 (19.246)

The discriminant of this with respect to �y−Q� is

�y = 64
(
S�z
S

−D
��z
�

)2 [

P�z
2 +Q�z

2 +S2

(
S�z

2

S2
−D2 ��z

2

�2

)]


 (19.247)

Now, if �y < 0 everywhere, then �x < 0 for all y, in which case there is no x obey-
ing (19.244), i.e. the apparent horizon does not intersect this particular surface of
constant �t� z�.

If �y = 0, then �x < 0 for all y except one value y = y0, at which �x = 0. At this value
of x = x0, (19.244) has a solution, so the intersection of the apparent horizon with this
one constant-�t� z� surface is a single point. Note that the situation when the apparent
horizon touches the whole 3-dimensional t = constant hypersurface at a certain value of
t is exceptional; this requires, from (19.244), that P�z = Q�z = S�z = ��z = 0 at this value
of t. The first three functions being zero mean just spherical symmetry, but the fourth
one defines a special location, as mentioned at the beginning of Section 19.7.4. These
equations hold in the Datt–Ruban solution; see Section 19.4.

If �y > 0, then �x > 0 for every y such that y1 < y < y2, where

y1�2 = Q+ −Q�z ±
√
�

S�z /S−D��z /�
�

�
def= P�z

2 +Q�z
2 +S2

(

S�z
2/S2 −D2��z

2/�2
)

(19.248)
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and then a solution of (19.244) exists given by

x1�2 = P+ −P�z ±
√

− [�S�z/S−D��z/�� �y−Q�+Q�z
]2 +�

S�z /S−D��z /�

 (19.249)

Except for the special case when S�z /S = D��z /�, these values lie on a circle in the
�x� y� plane, with the centre at

�xAH� yAH� =
(

P− P�z
S�z /S−D��z /�

�Q− Q�z
S�z /S−D��z /�

)

� (19.250)

and with the radius LAH = √
�/�S�z /S−D��z /��. The special case S�z /S = D��z /�

(when the locus of AH in the �x� y� plane is a straight line) is again an artefact of the
stereographic projection because this straight line is an image of a circle on the sphere.

In summary, the intersection of AH with the �x� y� plane is

(1) nonexistent when ��z
2/�2 >& 2/D2 (this is the & defined in (19.219) for the shell

crossing);
(2) a single point when ��z

2/�2 = & 2/D2;
(3) a circle or a straight line when ��z

2/�2 <& 2/D2.

The condition ��z
2/�2 <& 2/D2 is consistent with the condition for no shell crossings,

Eq. (19.219), when 
D
 < 1. We already know that necessarily D< 1, but D< −1 is not
excluded.

With 
D
 < 1, when the intersection of the AH with �t = constant� r = constant� is a
single point, a shell crossing is automatically excluded.

From (19.244) and from �> 0, � > 0 and ��z > 0 we have

�D > 0� =⇒ ���z < 0�� �D < 0� =⇒ ���z > 0�
 (19.251)

But D > 0 and D < 0 define regions independent of x and y. Hence, on that surface
on which D > 0, ��z < 0 on the whole of the AH. Where D < 0, ��z > 0 on the whole
of the AH. This implies that the ��z = 0 circle and the AH cannot intersect unless they
coincide. Indeed, these circles lie in parallel planes, by the same argument that was used
following Eq. (19.189): the line on the �t� z� = constant surface defined by (19.244) has
the property ��z /� = −D��z /� = constant, so it must be a circle in a plane parallel to
the ��z = 0 great circle. It follows that of the three circles (��z = 0, SC and AH) no two
can intersect unless they coincide.

When the ��z = 0 and AH circles are disjoint, they may be either one inside the other
or each one outside the other. However, when projected back onto the sphere, these two
situations turn out to be topologically equivalent: depending on the position of the point
of projection, the same two circles may project on the plane either as one circle inside
the other or as two separate circles; see Figs. 19.2 and 19.3.

Along � = 2M

��n��z = ��z �1+!j�−���z /�� (19.252)

so � = 2M does not coincide with the AH except where ��z = 0.
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C1

C2

P1 P2

Fig. 19.2. The circles C1 and C2 on a sphere (seen here edge on) will project onto the plane (seen
here as the horizontal line) as the circles P1 and P2 that are outside each other. Only parts of P1
and P2 are shown here. Circle C1 is the ��z = 0 set; circle C2 is the apparent horizon circle.

C1

C2

P1

P2

Fig. 19.3. The same circles as in Fig. 19.2 projected onto a plane from a different pole will
project as one inside the other. The transition from the situation of Fig. 19.2 to that of Fig. 19.3
is continuous and occurs when the sphere is rotated, but the pole and the plane are not moved.
Then one of the circles (C1 when a clockwise rotation is applied to Fig. 19.2) will pass through the
pole at one value � = �0 of the rotation angle. Its image on the plane acquires a larger and larger
radius with increasing �, until it becomes a straight line when � = �0. When � increases further,
the straight line bends in the opposite direction and surrounds P2.

Equation (19.242) with !j = −1 can be written

�AH = 2M
[

1−���z / ���z ��
]2

1−k
{

1− [1−���z / ���z ��
]2
} = 2M�1−V�2

1−k�2V −V 2�
�

V
def= ���z / ���z �� 
 (19.253)

The effect of ��z� x� y� is to create a dipole in the geometry and density around each �t� z�

shell, with ��z = 0 on an ‘equator’, and extreme values given by (19.193) at the poles.
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The ‘radial’ displacements between two nearby surfaces of constant z are shortest where
��z /� is maximum, and light rays move outwards fastest (maximum dz/dt, minimum
dt/dz). It has also been shown that the density is minimum here. The longest ‘radial’
displacements, slowest light ray motion and maximum density occur at the opposite pole.
We will call the direction where ��z /� is maximum the ‘fast’ pole and that where ��z /�
is minimum the ‘slow’ pole.

From (19.223) and (19.234) we have

V 2 < 1� �1−V�2 > 0� −3 < 2V −V 2 < 1
 (19.254)

In those places on the AH where V = 0 = ��z we see that the surface � = 2M intersects
the AH at all times, but the AH is a kind of oval with half inside � = 2M and half
outside.

For k= 1, �AH/�2M�= 1 regardless of V . Thus the AH+ and AH− cross in a 2-sphere
at the neck �k = 1� at the moment of maximum expansion �� = 2M�, as in the L–T
model. At the bang, wherever tB�z �= 0, � → 0 and ��z → 	 imply V → 0, and the
anisotropy becomes negligible. Similarly for the crunch. But in general, for all 0 ≤ k < 1,

4/�1+3
k
� ≥ �AH/�2M� ≥ 0 (19.255)

and �AH/�2M� decreases monotonically as V goes from −1 to 1.
We have that �AH/�2M� < 1 where V > 0, i.e. where ��z > 0. In other words, taking

a �t� z� shell that intersects the AH at the fast pole, the light rays move fastest between
the shells exactly where the shell is just emerging from the AH.

19.7.7 Szekeres wormholes and their properties

Properties of wormholes (necks) in the quasi-spherical Szekeres spacetimes were
discussed by Hellaby and Krasiński (2002). However, that discussion requires compli-
cated calculations, so we refer the reader there for details. Here, only the results are
briefly reported.

Since the Szekeres spacetime is not spherically symmetric, its wormhole is in general
‘bent’ – it is shorter along one side and longer along the opposite side. This raises two
questions:

1. Can the wormhole be bent so strongly that the regions on its opposite ends are
matched together, thus forming a single space, with the wormhole being a handle
on it, as in Fig. 19.4?

2. With one side of the wormhole being shorter, can one send a light ray through the
wormhole to the region outside the apparent horizons?

Unfortunately, both answers are ‘no’. The matching hypersurface would have to
coincide with a shell crossing, or else ��t = 0.

The paper by Hellaby and Krasiński (2002) also contains numerical examples of light
rays propagating through the wormhole.
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shorter

longer

Fig. 19.4. A conceptual illustration of joining a Szekeres wormhole model to itself, to form a
handle on a 3-space. The matching surface (an intersection of the matching hypersurface with the
space of the figure) would run between the ends of the tube shown. (Figure provided by C. Hellaby.)

19.7.8 The mass-dipole

In the ��z �= 0 Szekeres solution, the distribution of mass over each single sphere t =
constant� z = constant� has the form of a mass-dipole superposed with a monopole. This
was first noted by Szekeres (1975b) and then explained in much more detail by de Souza
(1985). The presentation here is based on the latter reference, but somewhat modified.

The basic idea is to separate the expression for matter density, (19.171), into a spher-
ically symmetric part �s, depending only on t and z, and a nonsymmetric ��. Without
additional requirements, this can be done in an infinite number of ways. Add and subtract
H�t� z�/�2 on the right-hand side of (19.171), where H�t� z� is an arbitrary function. The
result is

� = �s�t� z�+���t� z� x� y�� (19.256)

where:

��s = H

�2
� ��� = ��2M�z −H��z �−��z �6M −H��

�2����z −���z �

 (19.257)

Now additional requirements on H will make the splitting unique. Transform �x� y� to
spherical polar coordinates on a sphere of radius 1 that is tangent to the �x� y� plane at the
point �x� y�= �0�0�. The transformation is as in (19.153), but with S = 1 and P =Q= 0,
thus

x = cot��/2� cos�� y = cot��/2� sin�
 (19.258)

This transforms � = e−�, as given by (19.150), to

� = A cot2��/2�+2B1 cot��/2� cos�+2B2 cot��/2� sin�+C
 (19.259)

We substitute this in (19.257) and consider the equation �� = 0. We embed the sphere in
a Euclidean 3-space, and express ����� through the Cartesian coordinates in the space

X = sin� cos�� Y = sin� sin�� Z = cos�
 (19.260)
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Using (19.259) and (19.260) in �� = 0 we obtain
[

A�z �1+Z�+2B1�zX+2B2�zY +C�z �1−Z�
]

�6M −H��

= �A�1+Z�+2B1X+2B2Y +C�1−Z�� �2M�z −H��z � 
 (19.261)

Now we require that the surface of �� = 0 passes through the centre of the sphere, i.e.
that Eq. (19.261) is fulfilled at X = Y = Z = 0, thus

�A+C� �2M�z −H��z � = �A�z +C�z � �6M −H��
 (19.262)

Since �A�C�M��� depend only on t and z, this can be solved for H :

H = 2M�z �A+C�−6M�A+C��z
��z �A+C�−��A+C��z


 (19.263)

This solution makes sense except when ��A+C�/���z ≡ 0. But then, the Szekeres model
would degenerate into the Friedmann model. Hence, (19.263) applies whenever the
Szekeres model is inhomogeneous.

With H given by (19.263), Eqs. (19.257) become:

��s = 2M�z �A+C�−6M�A+C��z

�2
[

��z �A+C�−��A+C��z
] � (19.264)

��� = A�z +C�z −�A+C���z /�

�2 ���z −���z /��
× 6M��z −2M�z �

�2
[

��z �A+C�−��A�z +C�z �
] 
(19.265)

Now, �� = 0 has two solutions:

A�z +C�z −�A+C���z /� = 0 (19.266)

and �2M/�3��z = 0. The second one defines a hypersurface that depends on t, that is, it is
not comoving except when �2M/�3��z ≡ 0, but then the matter-density becomes spatially
homogeneous. The first hypersurface, call it H1, has its equation independent of t – it is
a world-sheet of a comoving surface. Moreover, �� changes sign when H1 is crossed,
and, in the variables �X�Y�Z�, �� is antisymmetric with respect to H1. Hence, �� is a
dipole-like contribution to matter density. Although the separation (19.256) is global, the
orientation of the dipole axis is different on every sphere t = constant� r = constant�.

We will now verify that H1 intersects every �t = constant� z = constant� sphere along
a circle, unless P�z = Q�z = S�z = 0 (= A�z = C�z), in which case the dipole component
of density is simply zero. The intersection of H1 with any sphere of constant z is a
circle parallel to the great circle ��z = 0, as noted after Eq. (19.189). It will coincide
with the ��z = 0 circle at those points where A�z +C�z = 0 (if they exist). The dipole-like
component will be antisymmetric with respect to ��z /� only at those values of z where
�A+C�� = 0 = �A�z +C�z ���z, but such values may exist only at the centre, � = 0,
because A+C = 0 contradicts Eq. (19.147) with k > 0.

The solution of (19.266) will exist when
(
��z
�

)

min

≤ A�z +C�z
A+C

≤
(
��z
�

)

max


 (19.267)
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Since ���z /��min = −���z /��max, Eq. (19.267) is equivalent to

�A�z +C�z �
2

�A+C�2
≤
(
��z
�

)2

extreme

= P�z
2 +Q�z

2 +S�z
2

S2

 (19.268)

We have

A+C = (1+P2 +Q2 +S2
)

/�2S��

A�z +C�z = S�z
(

S2 −P2 −Q2 −1
)

2S2
+ PP�z +QQ�z

S



(19.269)

Substituted in (19.268), this leads to

4S2S�z
2
(

1+P2 +Q2
)−4S2 �PP�z +QQ�z �

2

−4SS�z �PP�z +QQ�z �
(

S2 −P2 −Q2 −1
)

+ (P�z2 +Q�z
2
) (

1+P2 +Q2 +S2
)≥ 0
 (19.270)

The discriminant of this with respect to S�z is

� = −16S2
(

1+P2 +Q2 +S2
)2
[

�PQ�z −QP�z �
2 +P�z

2 +Q�z
2
]

� (19.271)

and is negative unless P�z = Q�z = 0. Thus, with �P�z �Q�z � �= �0�0�, the left-hand side
of (19.270) is strictly positive. Even when P�z = Q�z = 0, it is still strictly positive unless
S�z = 0. However, P�z = Q�z = S�z = 0 implies A�z = C�z = 0 and ��z = 0 on the whole
sphere, and then �� = 0; i.e. on such a sphere the density is spherically symmetric.
Hence, apart from the spherically symmetric subcase, Eq. (19.267) is fulfilled, with sharp
inequalities in both places. This means that the �� = 0 hypersurface intersects every
�t = constant� r = constant� sphere along a circle parallel to the ��z = 0 circle (see the
remark after Eq. (19.189)).

19.8 * The Goode–Wainwright representation of the Szekeres solutions

Goode and Wainwright (1982) introduced a description of the Szekeres solutions in which
many properties of the two subfamilies can be considered at one go.1 The metric is

ds2 = dt2 −S2
[

e2�
(

dx2 +dy2
)+H2W 2 dz2

]

� (19.272)

where S�t� z� is defined by

S�t
2 = −k+2�/S� (19.273)

k = 0�±1, and ��z� is an arbitrary function,

H = A�x� y� z�−�+f+ −�−f−� (19.274)

1 The G–W notation became a standard that is partly in conflict with the notation widely used for the L–T models. It is used
only in this section.
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A, e� and W will be defined below (they differ for each subfamily), �+�z� and �−�z� are
functions of z defined below, and f+�t� z� and f−�t� z� are the two linearly independent
solutions of the equation

F�tt +2�S�t /S�F�t − �3�/S3�F = 0
 (19.275)

Those solutions of (19.273) for which S�t > 0 are

S = �g�$ �$�� t−T�z� = �g�$�� (19.276)

where T�z� is an arbitrary function (the bang time) and g�$� is

g�$� =

⎧

⎪⎪⎨

⎪⎪⎩

$− sin$ when k = +1�

sinh$−$ when k = −1�

$3/6 when k = 0


(19.277)

With k = 0, S can be rescaled so that � = constant (see later), and this choice of S will
be assumed. The corresponding solutions of (19.275) are

f+ =

⎧

⎪⎪⎨

⎪⎪⎩

�6�/S� �1− �$/2� cot�$/2��−1 when k = +1�

�6�/S� �1− �$/2� coth�$/2��+1 when k = −1�

$2/10 when k = 0�

(19.278)

f− =

⎧

⎪⎪⎨

⎪⎪⎩

�6�/S� cot�$/2� when k = +1�

�6�/S� coth�$/2� when k = −1�

24/$3 when k = 0


(19.279)

The coefficients in f± were chosen for later convenience. The solutions with S�t < 0 are
time reverses of (19.278)–(19.279), and � > 0 is assumed for correspondence of the
results with the Friedmann models. With these assumptions, f+ are the solutions that
increase with time and f− are the solutions that decrease with time.

The two subfamilies are now defined as follows:

��z �= 0

T�z
2 +��z

2 �= 0, so S�z �= 0, and then

e� = f�z�

a�z� �x2 +y2�+2b�z�x+2c�z�y+d�z�
� (19.280)

where f�z� is arbitrary and a�b� c�d are functions of z subject to:

ad−b2 − c2 = �/4� � = 0�±1� (19.281)

W 2 = ��−kf 2�−1� (19.282)

�+ = −kf��z /�3��� �− = fT�z /�6��� (19.283)

A = f��z −k�+� (19.284)
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and it is understood that ��z = 0 when k = 0 (see later).

��z = 0

��z = T�z = 0, so S�z = 0, and:

e−� = 1+ 1
4
k
(

x2 +y2
)

� W = 1� (19.285)

A =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e�
{

a�z�
[

1− 1
4k
(

x2 +y2
)]

+b�z�x+ c�z�y�−k�+ for k = ±1�

a�z�+b�z�x+ c�z�y

− 1
2�+

(

x2 +y2
)

for k = 0�

(19.286)

a, b, c, �+ and �− being arbitrary functions of z.
The remarkable thing about the Goode–Wainwright (G–W) parametrisation is that

Eqs. (19.272)–(19.279) all hold for both subfamilies, the ��z = 0 subfamily differing from
the other one only by � and T being both constant. In both subfamilies the subcase
�+ = �− = 0 gives the Friedmann models, but represented in a rarely used coordinate
system. That this subcase is indeed a coordinate transform of the Friedmann models can
be seen by applying the criteria of Section 17.12.

In the ��z �= 0 subfamily, the G–W representation arises as follows. Define '�z� by

k�z� = K'2�z�� (19.287)

where k�z� is the function from (19.144), and K = 0�±1. When k �= 0, ' = 
k
1/2; when
k = 0, Eq. (19.287) does not define '�z�, and in this case we take '�z� to be a new
arbitrary function. Then define S�t� z� by

� = 'S� (19.288)

so that S obeys

2
S�tt
S

+ S�t
2

S2
+ K

S2
= 0� (19.289)

resulting from (19.146) with (19.287), (19.288) and p = 0. Equation (19.273) is the
integral of (19.289). Equation (19.147) now becomes

AC−B1
2 −B2

2 = 1
4

(
1

h2�z�
+K'2

)


 (19.290)

Let us define G�z� by

1/h2�z�+K'2 = �G2� (19.291)

where � = 0�±1 so that G = ∣∣1/h2 +K'2
∣
∣
1/2

when 1/h2 +K'2 �= 0 and 0 �= G�z� is an
arbitrary function otherwise. Then let us define a, b, c, d, f and W by

�A�B1�B2�C�'� = �a� b� c�d� f�G� h = W/G� (19.292)
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the functions a, b, c, d will then obey (19.281). In the new variables, from (19.142),
(19.145) and (19.288), we obtain e� = Se�, where � is the � given by (19.280) (not
equal to the one from (19.145)), and from (19.150), (19.288) and (19.291)–(19.292) we
obtain

e� = WS �fS�z /S+f��z � (19.293)

and so H = fS�z /S+ f��z. When k = 0� the function '�z� (and with it f�z�) is not yet
defined. In this case, let us define ' by

' = M1/3� (19.294)

where M is the function from (19.161). Then, S as defined by (19.288) will obey (19.273)
with k = 0 and � = 1, all other equations (19.272)–(19.284) remaining unchanged.
Hence, when k = 0� one can assume � = constant, and we will assume it in this
section.

Now it can be verified, case by case from (19.277)–(19.279), (19.283), (19.284) and
(19.294), that

F
def=�+f+ +�−f− = A−H = −fS�z /S−k�+ (19.295)

obeys (19.275). Note that with k= 0 necessarily �+ = 0. In the case under consideration,
the formula for matter density (19.162) becomes

�� = 6��1+F/H�/S3 ≡ 6�S3H/A
 (19.296)

In the ��z = 0 subfamily, the constant k can be rescaled to +1 or −1 when k �= 0
by simple rescalings of x, y, ', U and W . We will therefore assume that k = 0�±1.
The G–W representation is then introduced in a different way when k = ±1 and when
k = 0.

When k = ±1 we can redefine U , W and � by

U = �u−kw�/2� W = �ku+w�/2� � = �̃−ku�� (19.297)

and then �̃ obeys (19.135) with p= 0 and U +kW = 0. This can be assumed with no loss
of generality – see the comments after (19.140). The G–W representation then arises by

� = S� e� = Se��

W = a/2� U = −ka/2� V1 = b� V2 = c�

e� = �A+k�+�S+�
def=HS� �+ = −kX�z�/�3M��

(19.298)

where e� and A are given by (19.285)–(19.286) and X�z� is the function from (19.158).
Hence

F = A−H = −�/S−k�+� (19.299)
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and it can be verified, case by case again, with the help of (19.159), that F obeys (19.275)
and F = �+f+ +�−f−, where f+ and f− are given by (19.278)–(19.279) and �−�z� is an
arbitrary function.

When k = 0� the procedure is different. We first observe that when � = k = 0, the
function X�z� in (19.158) can be assumed zero with no loss of generality because X = 0
results after the reparametrisation � = �̃+X�/3, W = w−X/6 (then e� = �̃+�� , as
before). Then, we take � = S = e� and e� = �+S� , where � is given by (19.134) and
S is given by (19.276)–(19.277). Next, we find � from (19.159) in the case k = � = 0.
Finally, we define

F
def= −�/S = �+f+ +�−f− +A� (19.300)

where �+ = −U , b = V1, c = V2, a = 2W and �−�z� is arbitrary. The functions f+ and
f− are as in (19.278)–(19.279), while A is as in (19.286). Using the information given in
this paragraph, one can verify that such an F obeys (19.275). The matter-density is given
by (19.296) for the ��z = 0 subfamily as well.

As Goode and Wainwright observed, Eq. (19.275) is linear and has the same form as
the equation derived for the density perturbation in the linearised perturbation scheme
around the Friedmann background, if the perturbed solution is also dust. This holds
both in relativity and in Newtonian theory; see Eqs. (15.9.23) and (15.10.57) in the
Weinberg (1972) textbook and Eqs. (12.10) and (12.31) in the textbook by Raychaudhuri
(1979). However, this is only a formal similarity. The following differences should be
noted:

1. In the corresponding equation of the linearised perturbation scheme, the coefficients
�2S�t /S� and 3�/S3 = ��/2 are taken from the background Friedmann model,
whereas here they come from the perturbed model. Assuming F small, this means,
not surprisingly, that the equation of the linearised perturbation is the linear approx-
imation to (19.275).

2. In the linearised perturbation scheme, the solution of (19.275) is 	 = ��p − �b�/�b,
where �p is the perturbed density and �b is the Friedmann background density. In
the Szekeres models, assuming F small and linearising about the background, one
obtains F =A��p −�b�/�b, that is, F � 	 only if A� 1, which is a limitation imposed
on the model. Otherwise, F has no clear physical meaning, although it does define
a certain deformation on the Friedmann background.

3. In the linearised perturbation scheme, every solution of (19.275) generates a
perturbed model. In the Szekeres models of the ��z �= 0 subfamily the coefficients
�+ and �− are provided by other field equations (see (19.283)), and when k= 0 the
growing mode is necessarily absent ��+ ≡ 0�. In the ��z = 0 subfamily with k �= 0�
the coefficients are truly arbitrary, but with k = 0 the �+ is again provided from
elsewhere.

Still, the G–W representation is enlightening in several ways. From Eq. (19.283) one
can see that the growing mode of perturbation is generated by the spatial inhomogeneity
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in the mass distribution ���z �= 0�, and the decaying mode is generated by the non-
simultaneity of the Big Bang �T�z �= 0� – a result that required much labour to obtain in
the standard representation of the L–T model; see Section 18.19.

The expansion and shear of the dust source are in both cases:

( = 3S�t /S−F/H� 2�11 = 2�22 = −�33 = 2F/�3H�
 (19.301)

From the above and from (19.278)–(19.279) one can now show that (19.275) is the
Raychaudhuri equation (15.43), which, surprisingly, becomes linear for the Szekeres
models in the G–W representation.

In general, there can be two scalar polynomial curvature singularities; they occur where
S = 0 and H = 0
 The first is the Big Bang. It is pointlike when �− = 0 or cigar-type
when �− �= 0. In the ��z �= 0 subfamily, �− = 0 implies a simultaneous Big Bang; in the
��z = 0 subfamily the Big Bang is always simultaneous. The second singularity is the
shell crossing. When ��z0� > 0, the shell crossing along the flow lines with z = z0 will
occur later than the Big Bang, so it is astrophysically relevant. Whenever it occurs, it is
of the pancake type.

The book by Krasiński (1997) contains a list of other papers in which the G–W
representation was used.

19.9 Selected interesting subcases of the Szekeres–Szafron family

19.9.1 The Szafron–Wainwright model

Szafron and Wainwright (1977) considered the subcase of the Szafron �′ = 0 class in
which k = 0 = W and p = �/t2, � = constant. Then (19.138) is fulfilled by ��t� =
�Q�t��2/3, where Q obeys

4Q�tt /3+ (�/t2
)

Q = 0� (19.302)

and (19.135) reduces to

�4/3�%�tt +
(

�/t2
)

% = 4U�z�/
(

3Q1/3
)

� (19.303)

where %
def= �Q1/3. Note that (19.302) is the homogeneous part of (19.303). The general

solution of (19.302) is

Q�t� = C1t
1−q +C2t

q� (19.304)

where C1 and C2 are arbitrary constants and � = �4/3�q�1−q�; q will be real only when
� ≤ 1/3. With � = 1/3, the two basis solutions in (19.304) become linearly dependent,
and there exists an additional solution. With q complex, the constants C1 and C2 must be
complex, too, and the real solutions for Q have different properties than those with real
q. All these cases have to be considered separately. Szafron and Wainwright considered
only the case � < 1/3 (q �= 1/2 and real).
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A. The case � < 1/3

With reference to (19.137), the solution is

��t� = �Q�t��2/3� Q�t� = C1t
1−q +C2t

q�

��t� z� = %/�Q�t��1/3� % = �1t
1−q +�2t

q�

�1 = B�z�+ U�z�

1−2q

∫ tq

Q1/3
dt�

�2 = A�z�− U�z�

1−2q

∫ t1−q

Q1/3
dt�

(19.305)

where A�z� and B�z� are arbitrary functions.
This model begins with a (simultaneous) Big Bang at t = 0 and then expands forever. It

reduces to a k= 0 Robertson–Walker metric when U = V1 = V2 = 0, B =C1 and A=C2,
but the equation of state in the limit is none of the astrophysicists’ favourites. The density
in the R–W limit is �� = �4/3��Q�t /Q�2, with Q the same as in (19.304).

B. The case � = 1/3 �q = 1/2�

Only the expressions for Q and % are different from the previous case:

% = A�z� ln t
√
t+B�z�

√
t+U�z�

(

�ln t�
∫

√
t

Q1/3
dt−

∫ �ln t�
√
t

Q1/3
dt
)

�

Q�t� = C1

√
t+C2

√
t ln t
 (19.306)

The evolution of this model is qualitatively similar to the previous one: a simultaneous
Big Bang followed by expansion forever. The R–W limit results in the same way as
before.

C. The case � > 1/3

In this case, q is complex:

q± = 1/2± iq2� q2 = √
3�−1/2 (19.307)

(note that q− = 1−q+), and the solution is

Q�t� = C1

√
t cos�q2 ln t�+C2

√
t sin�q2 ln t��

% = A�z�
√
t sin�q2 ln t�+B�z�

√
t cos�q2 ln t�

+ U�z�
√
t

q2

(

sin�q2 ln t�
∫

√
t cos�q2 ln t�

Q1/3
dt

− cos�q2 ln t�
∫

√
t sin�q2 ln t�

Q1/3
dt
)




(19.308)

The function � begins from zero value at t = tB, increases to a maximum and then
decreases back to zero a finite time later. Unlike in typical R–W models, the duration
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Fig. 19.5. A graph of the function ��t� for a model of the Szafron–Wainwright class with �> 1/3.
The graph is self-similar: it looks the same for every scale on the horizontal axis.

of the cycle increases with increasing t. The period between bang and crunch tends to
zero as t → 0 and to infinity as t → 	, and the same is true for the maximal value of
� in each cycle; see Fig. 19.5. The pressure �p = �/t2 acts like a cosmological constant
decreasing with time, and is responsible for this behaviour, which persists also in the
R–W limit (achieved in the same way as in Case A).

The value of � is the radius of the cylindrical space t = constant. Along the generator
of the cylinders, the variation of � with time is still more complicated. This model has
never been investigated from the point of view of cosmology.

The solutions described above have their exact counterparts in the ��z �= 0 family. With
p = �/t2, the solution for � is of the same algebraic form, only its constants become
arbitrary functions of z. The one corresponding to �< 1/3 was found by Szafron (1977);
the other two have never been investigated.

19.9.2 The toroidal Universe of Senin

Senin (1982) found a solution whose local geometry (not just topology!) is that of a
3-dimensional torus. We shall re-derive it here.

The parametric equations of a 2-dimensional torus embedded in a Euclidean 3-space,
with large radius b and small radius a (Fig. 19.6) are

x = �a cos)+b� cos�� y = �a cos)+b� sin�� z = a sin)� (19.309)

b

a

Fig. 19.6. A 2-torus of large radius b and small radius a.
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where � is the azimuthal angle around the vertical axis in Fig. 19.6, while ) is the angle
around the small circle; both angles vary in the range �0�2��. We will make the torus
3-dimensional by allowing that the subset � = constant is a sphere rather than a circle.
The generalisation is straightforward, the appropriate parametric equations being:

x = �a cos)+b� cos�� y = �a cos)+b� sin��

z = a sin) sin *� u = a sin) cos *�
(19.310)

the 3-torus being now embedded in a 4-dimensional Euclidean space with the metric
dx2 +dy2 +dz2 +du2. The metric of the 3-torus is

ds2 = a2
[

d)2 + �cos)+b/a�2 d�2 + sin2 ) d*2
]


 (19.311)

In this 3-space, the surfaces * = constant are 2-dimensional tori, and the surfaces � =
constant have the local geometry of 2-spheres. Note, however, that, although on a surface
� = constant the coordinate ) plays the role of the lateral angle (normally denoted by
�), it varies from 0 to 2�, not from 0 to �. Moreover, in the 3-space (19.311) the points
with ) = )1 = �+)0� * = *0� are not equivalent to points with ) = )2 = �−)0� * =
� + *0�, as they would be on a sphere, because the coefficient of d�2 does not return
to its initial value after ) is increased by �. We conclude from this that each surface
� = constant is actually a pair of spheres that touch each other at one pole, and their
opposite poles are identified, as in Fig. 19.7.

The next step is to make the 3-torus (19.311) a subspace t= constant of a 4-dimensional
spacetime, and to allow the parameters of the torus to evolve with time. The simplest

P 1

P 2

Fig. 19.7. The subspace � = constant of the 3-torus with the metric (19.311). The two spheres
are tangent at one pole; the poles P1 and P2 are identified. The coordinate ) has the value 0 at P1,
� at the common point of the spheres and 2� at P2; it increases along the meridians of the spheres.
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thing to do is to assume that the two radii a and b are momentary values of functions of
time, so

ds2 = a2�t�
{

dt2 −d)2 − sin2 ) d 2 − �cos)+b�t�/a�t��2 d�2
}


 (19.312)

Somewhat miraculously, it turns out that the metric does contain perfect fluid solutions.
The tetrad components of the Einstein tensor, in the orthonormal tetrad defined by
(19.312), are

G00 = a�t
2

a4
+ 2 cos)a�t

2

a3S
+ 2a�t b�t

a3S
+ 2 cos)

aS
+ 1

a2
�

G11 = G22 = a�t
2

a4
− a�tt

a3
− cos)a�tt

a2S
− b�tt

a2S
− cos)

aS
�

G33 = a�t
2

a4
− 2a�tt

a3
− 1

a2
�

(19.313)

where S
def= a cos)+ b. To allow a perfect fluid source, only one equation, G22 = G33,

must be imposed on the set (19.313), and it is equivalent to

a�tt /a = b�tt /b−1
 (19.314)

Hence, one of the radii of the torus can be chosen arbitrarily, while the other one will
follow from (19.314). Since the metric depends on just two variables, t and ), the existence
of a thermodynamical scheme is guaranteed (see Section 15.5). One sensible choice would
then be to define an equation of state, which would provide a second equation connecting
a and b, and then solve all equations. However, in testing a completely new class of
models, Senin chose a�tt = −a, and then it follows that

a = a0 sin t� b = C1t+C2� (19.315)

a0, C1 and C2 being arbitrary constants. This is a perfect fluid solution with

u� = 	�
0/a� �p = a0

2/a4�

�� = 2C1 cos t+3a0 cos)+ �C1t+C2� / sin t

a0
2 sin3 t�a cos)+b�


 (19.316)

When C1 =C2 = b= 0, the solution reduces to the k> 0 R–W model in the form (17.77)–
(17.78) with the equation of state � = 3p. Each surface t = constant�  = constant� has
the local geometry of a torus with large radius b and small radius a; the two radii evolve
according to different laws. The model has a finite duration. At t = 0, it has a Big-Bang
singularity; the space t = constant begins its expansion from a ring of radius C2. The
large radius of the torus keeps growing from C2 to ��C1 +C2�; the small radius grows
from zero at t = 0 to the maximum a0 at t = �/2, then collapses again to zero at the
final singularity t = �. The final singularity is again a ring, of radius �2�C1 +C2�. With
C2 = 0, the Big Bang is pointlike. The energy-density will be positive throughout the
evolution when C2 = 0 if C1/a0 is sufficiently large.
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In order to relate the Senin solution to the others, it is convenient to transform the
coordinates as follows:

t = arccos ��a0 −T�/a0� � ) = 2 arctan�r/2�
 (19.317)

Then the metric becomes

ds2 = dT 2 − a2�T�

�1+ r2/4�2

(

dr2 + r2 d*2
)−
(

a�T�
1− r2/4
1+ r2/4

+ 1
2
b�T�

)2

d�2�

(19.318)

a2�T� = a0
2 − �a0 −T�2 � (19.319)

b�T� = C1 arccos ��a0 −T�/a0�+C2�

and is the following limit of the Szafron ��z = 0 class (19.137):

k = 1� U = −1/2� V1 = V2 = 0� W = 1/2
 (19.320)

19.10 * The discarded case in (19.103)–(19.112)

In Section 19.5 we omitted the cases when ��tx �= 0 or ��ty �= 0 in (19.103)–(19.112).
We show here that they contain no perfect fluid solutions. For clarity, we formulate the
various statements as lemmas.

Lemma 19.3 If ��z = 0 and ��tx �= 0, and the metric (19.102) is to obey the Einstein
equations with a perfect fluid source, then coordinates may be chosen so that ��z = 0.

Proof:
Rewrite Eqs. (19.105), (19.106) and (19.111) as follows:

��tx = −��tx −��t ��x +��t ��x � (19.321)

��ty = −��ty −��t ��y +��t ��y � (19.322)

��xy = −��x ��y +��x ��y +��x ��y 
 (19.323)

Apply the integrability conditions ��tx�y −��ty�x = 0, ��ty�x −��xy�t = 0 and
��tx�y −��xy�t = 0. The resulting equations are, respectively,

��x ��ty −��y ��tx = 0� (19.324)

−��txy = 2��x ��ty −��y ��tx +��x ��ty � (19.325)

−��txy = 2��y ��tx −��y ��tx +��x ��ty 
 (19.326)

Now differentiate (19.326) by z. Since ��z = 0, the result is ��yz ��tx = 0. Then, since
��tx �= 0 by assumption, the implication is

��yz = 0
 (19.327)
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But from (19.324) with ��tx �= 0 we have

��y = ��ty ��x /��tx 
 (19.328)

Differentiating this by z and using ��z = 0 and (19.327) we obtain ��xz ��ty = 0. We thus
have to consider two cases separately.

Case 1: ��ty = 0.
Then from (19.324) we have immediately ��y = 0, and from (19.325) ��y = 0. Substitute
this in (19.110) and (19.112) and take the equation G22 −G33 = 0; the result is

��xx −��x
2 −2��x ��x = 0
 (19.329)

Differentiate this by t and use (19.321) to eliminate ��tx and ��txx. The result is

−��txx −2��x ��tx +2��x ��tx = 0
 (19.330)

Differentiate this by z. Since ��tx �= 0, the conclusion ��xz = 0 follows anyway. Thus we
go back to consider

Case 2: ��xz = 0.
Equations (19.327) and the above imply that

� = �1�t� x� y�+�2�t� z�
 (19.331)

Substitute this in (19.321) and differentiate the result by z. The resulting equation is
�1�x�2�tz = 0. But with �1�x = 0 we would have ��x = 0, and then ��tx = 0 from (19.321) –
contrary to the assumption. Hence, �2�tz = 0, which means that �2 = �3�t�+�4�z�. Then,
the coordinate transformation z′ = ∫ e�4 dz will make the metric independent of z.

Lemma 19.4 If ��z = 0 and ��tx �= 0, and the metric (19.102) is to obey the Einstein
equations with a perfect fluid source, then coordinates may be chosen so that ��y = ��z =
��y = 0, i.e. so that the metric depends only on t and x.

Proof:
We have already proven that no generality is lost on assuming that ��z = 0.

Substitute (19.328) in (19.322) and use (19.321) to eliminate ��tx. The result is
��x ���ty /��tx ��t = 0. Since ��x = 0 would lead to ��tx = 0 (from (19.321)), this implies
that

��ty /��tx = f�x� y� =⇒ ��y = f�x� y���x � (19.332)

where f�x� y� is an arbitrary function independent of t.
With ��z = ��z = 0, do the complex coordinate transformation in Eqs. (19.110)–

(19.112):

 = x+ iy�  = x− iy� (19.333)

and consider the equations G22 −G33 −G23 = 0 and G22 −G33 +G23 = 0. They are

��  +�� 
2 −2�� �� = 0 (19.334)
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and its complex conjugate. The solution of (19.334) is

e�−2��� = h�t�  �� (19.335)

where h�t�  � is an arbitrary function, independent of  . Since � and � are real functions,
by taking the complex conjugate of (19.335) we obtain

e�−2��� = h�t�  �� (19.336)

which happens to be the general solution of the complex conjugate equation to (19.334).
Note that h �= 0, or else � becomes a function of t only, which leads to ��tx = 0 via
(19.321) – contrary to the assumption.

Now do the transformation (19.333) in (19.332) and calculate

f�x� y� = ��y

��x
≡ i

�� −�� 

�� +�� 
≡ i

�� /�� −1

�� /�� +1

 (19.337)

This shows that �� /�� = h/h does not depend on t. Hence

�� 

�� 
= h�t�  �

h�t�  �
= h�t0�  �

h�t0�  �
� (19.338)

where t0 is some fixed instant. Now define the function g� � by

1/h�t0�  � = dg/d 
 (19.339)

Then Eq. (19.338) may be written as

�� 

�� 
= dg/d 

dg/d 

 (19.340)

Let us take g� � and g� � as the new variables. Then Eq. (19.340) is equivalent to
��/�g = ��/�g, whose solution is

� = ��t� g+g�
 (19.341)

Now use (19.339) in (19.335) and (19.336), obtaining

e2� = e��′ (g� 
)2 = e��′ (g� 

)2
� (19.342)

where the prime denotes the derivative with respect to �g + g�. Since  and  are
independent variables, Eq. (19.342) implies that

g� = ±g� = C = constant� (19.343)

the constant being real in order that � given by (19.342) is real. We choose the sign +
to avoid having g+ g = 0. Equations (19.341), (19.343) and (19.342) then imply that �
and � are functions of the one argument g+g = C� + �. Then choose

g+g
def= x′� −i�g−g�

def= y′ (19.344)
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as the new coordinates. Clearly, � = ��t� x′� and � = ��t� x′�, and, applying the chain
of transformations �x� y� → � �  � → �g� g� → �x′� y′� to the metric e2�

(

dx2 +dy2
)

, we
obtain

e2�
(

dx2 +dy2
) = e2� d d = e−2� e2���z

2 dg dg

= e2�−2���z
2
(

dx′2 +dy′2
)

/4� (19.345)

where �̃ = �−�+ ln��z − ln 2 depends only on t and x′.

Conclusion. If ��ty �= 0 and ��z = 0, and the metric (19.102) is to obey the Einstein
equations with a perfect fluid source, then coordinates may be chosen so that the metric
depends only on t and y.

Proof:
The transformation �x� y� = �y′� x′� is an isometry of (19.102). The rest of the proof
follows by interchanging x and y in the proof above.

Since the cases ��tx �= 0 and ��ty �= 0 are thus equivalent, we will follow only the case
��tx �= 0 =⇒ � = ��t� x�, � = ��t� x�.

Lemma 19.5 If the functions � and � in the metric (19.102) depend only on t and x,
while ��tx �= 0, then the metric does not obey the Einstein equations with a perfect fluid
source.

Proof:
Substitute ��y = ��z = ��y = ��z = 0 in (19.103)–(19.112) and take the equation
G22 −G33 = 0. It is

��xx +��x
2 −2��x ��x = 0
 (19.346)

Its solution is

e���x = he2� =⇒ 2� = �+ ln��x − lnh� (19.347)

where h�t� is an arbitrary function. We assume h �= 0, or else (19.321) would imply
��tx = 0. Use (19.347) to eliminate � from G02 = 0; the result is

��tx +��txx
2��x

− ��xx ��tx
2��x2

+ 1
2
��t ��x +h�t

2h
��x = 0
 (19.348)

This is integrated with respect to x, yielding

e� ���t +h�t /h� = k1�t��+k2�t�� (19.349)

where k1�t� and k2�t� are arbitrary functions. Substituting (19.347) and (19.349) into the
integrability condition �e���t � �x = �e���x � �t we obtain

��t = k1e−�/2−h�t /h
 (19.350)
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Now take the equation G11 −G22 = 0, use (19.347), (19.349) and (19.350) to eliminate
�, ��t, ��tt, ��t and ��tt, and multiply the result by ��x, obtaining

he−� ���xx −��x ��x � +
(

−1
2
k1�te

−� + (k1�t�+k2�t

)

e−�

− 2
h�t
h

�k1�+k2� e−� − 1
2
k1

2e−2� +2k1 �k1�+k2� e−2�

)

��x = 0


(19.351)

The integral of this is

he−���x − 1
2
k1�te

−� − (k1�t�+k2�t

)

e−� +2
h�t
h

�k1�+k2� e−�

+ 2k1

h�t
h

e−� − 1
4
k1

2e−2� −k1 �k1�+k2� e−2� +!1�t� = 0
 (19.352)

Substitute here for � from (19.347) and multiply the resulting equation by e2���x. This
can be integrated with respect to x again; the result is

1
2
he���x + 1

2
k1�te

� − (k1�t�+k2�t

)

e� +2
h�t
h

�k1�+k2� e�

− 1
4
k1

2�−k1

(
1
2
k1�

2 +k2�

)

+ 1
2
!1�t�e

2� +!2�t� = 0
 (19.353)

On this equation, the following sequence of operations should now be carried out:
(1) replace e���x from (19.347); (2) differentiate the result by t; (3) use (19.350) to
eliminate ��t; (4) use (19.349) to eliminate ��t; (5) multiply (19.353) by k1e−� and
subtract the product from the equation obtained in the previous step. The term containing
� will cancel out, and what will remain will be a polynomial in �, e−� and e�. Since
��x �= 0 and the other functions do not depend on x, the coefficients of independent
functions of � must vanish separately. The coefficient of �2e−� will vanish only when
k1 = 0. However, then we have ��t = −h�t /h in (19.350), which makes ��tx = 0, contrary
to our assumption. Consequently, no perfect fluid solutions exist for (19.102) when
� = ��t� x�, � = ��t� x� and ��tx �= 0.

19.11 Exercises

1. Find the Killing vector fields for the transformation (19.1). Then solve the Killing equations for
the components of the metric tensor in spacetime and verify that the solution is indeed given
by (19.3).

2. Verify that −	
��
�	 /�

2 is the curvature tensor for the metric (19.5).
3. Find the Killing fields for the metric (19.5) and verify that they are given by (19.6). Then

solve the Killing equations in four dimensions with the Killing fields (19.6) and verify that the
resulting metric is (19.7).
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4. Calculate the Riemann tensor for (19.9) and verify that it can vanish only with � = −1. Then,
(19.9) is flat when df�r�/dr = 1.

5. Find the Bianchi types for the algebras of Killing fields given by (8.41) and (19.6) and for the
algebra defined by the transformations (19.1).

6. Verify that by equating the two expressions for G22, Eqs. (19.25) and (19.29), we do indeed
obtain (19.44). Hints are given in the text.

7. Show that the Datt–Ruban solution, given by (19.95) with Q = 0 and (19.99), can be matched
to the Schwarzschild solution in the Lemaître–Novikov coordinates, (14.116)–(14.117).

8. Solve the equation of evolution of the Datt–Ruban model, (19.95), in the case Q = � = 0.
Show that the model expands from a singularity � = 0 at t = tB to the maximal size � = 2M
at t = tB +�M , and then recollapses in a time-symmetric manner.

9. Show that the 2-dimensional metric (19.129) is a coordinate transform of the 2-dimensional
metrics resulting from (19.11)–(19.12) when t = constant, r = constant, with k= � and �= e� .
Hint. With k > 0, apply the transformation x = �2/

√
k� cot��/2� cos�, y = �2/

√
k� cot��/2�

sin� to (19.129). With k < 0, the transformation is x = �2/
√−k� coth��/2� cos�, y =

�2/
√−k� coth��/2� sin�.

10. Prove that, in the most general case, the Szafron metrics given by (19.136)–(19.138) and
(19.149)–(19.150) have no symmetry.
Hint. Solve the Killing equations and verify that with no further limitations on the metric
the solution is k� ≡ 0. Note. this is a laborious exercise. You may use the paper by Bonnor,
Sulaiman and Tomimura (1977) as an aid.

11. Consider a surface given by the equation r = a = constant in the coordinates �r����� related
to the Cartesian coordinates �x� y� z� by

x = r sinh� cos�� y = r sinh� sin�� z = r coth� (19.354)

in the pseudo-Euclidean flat 3-space with the metric ds2 = dx2 + dy2 − dz2. Show that the
surface obeys the equation of a two-sheeted hyperboloid �z/a�2 − �x2 +y2�/a2 = 1 and that its
internal metric coincides with that of the surface �t = constant�� = a� in the metric (19.11)
with f��� = sinh�.

12. Verify that the magnetic part of the Weyl tensor with respect to the velocity field in the Szafron
spacetimes (19.150) and (19.137) is zero.

13. Prove that (1) two eigenvalues of the 3-dimensional Ricci tensor, �3��AB, of the slices t =
constant are equal (in both classes of Szafron’s spacetimes); (2) the eigenframe of this Ricci
tensor coincides with that of shear; (3) the eigenspaces corresponding to the degenerate
eigenvalues of shear and of �3��AB are the surfaces of constant curvature defined by the
Szekeres geometry.

14. Prove that the slices t = constant of the Szafron spacetimes are conformally flat, i.e. that their
Cotton–York tensor (7.50) is zero.

15. Verify that the barotropic equation of state �= ��p� reduces the ��z �= 0 Szafron spacetimes to
the Robertson–Walker ones, and the ��z = 0 spacetimes to either R–W or Kantowski–Sachs-
type spacetimes, or the plane and hyperbolically symmetric counterparts of the latter.
Note. this is a very laborious exercise. It is advisable to use the paper by Spero and Szafron
(1978) as an aid.

16. Calculate the integral in (19.159) when �= 0 and verify that along the z-direction the space has
infinite extent at the instant of the Big Bang, then collapses to a minimum size, and expands to
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infinite extent as the final singularity is reached. Show that the maximum of expansion of the
spheres and the minimum of collapse in the z-direction do not in general occur simultaneously.

17. Verify Equation (19.163).
18. Verify that the Szekeres solution with AC−B1

2 −B2
2 > 0 can be matched to the Schwarzschild

solution.
19. Verify that the metric (19.152) results from (19.150) after the reparametrisation indicated is

carried out.
20. Verify that the explicit solution for � that results from (19.169) in the limit k → � coincides

with (19.101).



20

The Kerr solution

20.1 The Kerr–Schild metrics

Most of the known solutions of Einstein’s equations resulted from a purposeful search
related to the later application. The Kerr metric was discovered rather accidentally, in
the course of formal mathematical investigations not obviously related to physics, and
only afterwards was it found to describe the exterior gravitational field of a rotating body
or black hole. Actually, no explicit solution of Einstein’s equations with a perfect fluid
source has been found until today that could be matched to the Kerr metric. Its main
application is to the description of rotating black holes, which earned it great importance
in relativistic astrophysics.

In the first two sections we shall briefly describe the way in which Kerr (1963) first
chanced upon his solution. In the next sections, we shall introduce the quasi-derivation
by Carter (1973), and will derive its most important properties. Sections 20.1 and 20.2
are based on the papers by Boyer and Lindquist (1967) and by Kerr and Schild (1965).

The starting point is the consideration of metrics of the form

g�� = ��� − l�l�� (20.1)

where ��� is the flat (Minkowski) metric in any coordinates and l� is a null vector field.
The reasons given for studying this metric vary from paper to paper. Kerr and Schild
(1965) justified it by saying that it allows for an easy conversion between covariant
and contravariant components (see below). Boyer and Lindquist (1967) quoted another
reason: the Schwarzschild solution has this form, which inspired the search for further
metrics with the same property. The vector field l� is required to be null with respect
to the metric g��, but then it follows that it is null with respect to ��� as well and that,
consequently, it does not matter which metric is used to raise and lower the index of l.
It follows also that the inverse metric has the form

g�� = ��� + l�l�� (20.2)

Note that the sign of l�l� cannot be changed by coordinate transformations, so it is relevant. Depending on it, one or another
coordinate will become time. For example, take coordinates in which the flat background metric is

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦

438
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and take l� = �1�0�0�0�. Consider both possible signs of l�l� in the metric, thus take 	l�l� with 	 = ±1. The full metric, with
coordinates �u� v� y� z�, is then

ds2 = 2 dudv+	dv2 −dy2 −dz2�

With 	 = +1 we have

ds2 = d�u+v�2 −du2 −dy2 −dz2�

whereas with 	 = −1 we have

ds2 = du2 −d�u−v�2 −dy2 −dz2�

To be consistent with the existing literature, we must take the sign as in (20.1) (note that we use a different signature from that
in the papers cited).

Now consider the vacuum Einstein equations, R�� = 0, and take the component
R��l

�l� = 0. The following formulae help in the calculation:

{




��

}

l�l� =
{




��

}

���l�l��

{




��

}

l
l
� =

{




��

}

���l
l
�� (20.3)
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}

=
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�


}

����

{




��

}

l� =
{




��

}

���l� − 1
2
l
(

l
l�
)

� � (20.4)

{




��

}

l
 =
{




��

}

���l
 + 1
2
l
(

l�l�
)

� �

where

{




��

}

��� denotes the Christoffel symbols corresponding to the flat metric �
�

(recall that �
� may be expressed in non-Lorentzian coordinates, so the Christoffel
symbols do not have to be zero). The covariant derivatives in the formulae can be taken
with respect to any of the two metrics, so for definiteness let us assume that they are
with respect to �
�. Using these formulae, after a lot of algebra, we find that R��l

�l� = 0
implies

l̇�l̇� = 0� (20.5)

where

l̇

def= l�l
�� � (20.6)

In consequence of Eqs. (20.3)–(20.4), it does not matter which of the two metrics is used
to calculate the covariant derivative in (20.6), both definitions of l̇
 give the same result.
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Now, in consequence of ���l
�l� = 0 we have ���l

�l̇� = 0. Thus, l̇� is orthogonal to the
null vector l� and is itself null, by (20.5). One null vector can be orthogonal to another
null vector only when they are collinear. Consequently

l�l
�� = �l
� (20.7)

Thus, the vacuum Einstein equations imply that l
 must be tangent to geodesics, but the
geodesics are not necessarily affinely parametrised. To obtain an affine parametrisation,
we define

k� def= l�/
√

2H� (20.8)

where the function H is defined by H�� l
�/�2H� = � . Then

k��� k
� = 0� g�� = ��� −2Hk�k�� g�� = ��� +2Hk�k�� (20.9)

In terms of k
, Eqs. (20.3) do not change, whereas, in consequence of k
 being geodesic
and affinely parametrised, Eqs. (20.4) simplify to

{




��

}

k� =
{




��

}

���k� −kH� k

k��

{




��

}

k
 =
{




��

}

���k
 +kH� k�k��

(20.10)

In the next step, the following formula will be needed
{




��

}

=
{




��

}

���−k
k�H�� −Hk
k��� −Hk
�� k� −H�� k
k�

−Hk
k��� −Hk
�� k� +�
H� k�k� +�
Hk��k�

+�
Hk�k�� +2HkH� k

k�k�� (20.11)

The covariant derivatives are with respect to �
�. Note that the difference of two
Christoffel symbols is a tensor, as follows from (4.23).

A direct calculation with use of Eqs. (20.3) rewritten in terms of k� and of (20.10)
gives for the Riemann tensor

R
���k
�k� = H��� k

�k�k
k�� (20.12)

In vacuum, the Weyl tensor will obey the same equation. But then, it will obey also
(11.55), and so we have derived the following

Lemma 20.1 The vacuum Kerr–Schild metrics cannot be of the most general Petrov
type, they are algebraically special, that is, of Petrov type II or simpler. The Kerr–Schild
null geodesic vector field k
 is at the same time the degenerate Debever vector of the
Weyl tensor.
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From the Goldberg–Sachs theorem 16.4 it follows then immediately that the field k
 is
not only geodesic, but also shearfree.

20.2 The derivation of the Kerr solution by the original method

The Kerr solution has no clear-cut invariant definition. Therefore, in order to understand
how it came about, it is most instructive to follow the historical path. The presentation
in this section is based on Kerr and Schild (1965). (Another derivation can be found in
Debney, Kerr and Schild (1969), but in that paper a tetrad different from the one used
here is employed and a different notation is used.)

In the Minkowski space, let us choose the real null coordinates �u� v� and the complex
null coordinates ��� ��, related to the Cartesian orthogonal coordinates �t� x� y� z� by

�u� v� �� �� = �t+x� t−x� y+ iz� y− iz�/
√

2� (20.13)

In these coordinates, the Minkowski metric is

[

�
�

]= [�
�
]=

⎡

⎢
⎢
⎢
⎣

0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

⎤

⎥
⎥
⎥
⎦

� (20.14)

A general real null direction field in the Minkowski spacetime is in these coordinates
given by

k� dx� = du+YY dv+Y d�+Y d� ⇐⇒ k� = �YY �1�−Y�−Y �� (20.15)

where Y�u� v� �� �� is an arbitrary complex function. If this field is to be geodesic, then
the function Y must obey

kY� = kY � = 0� (20.16)

With (20.16) fulfilled, (20.15) is already affinely parametrised.
Let us now consider a Kerr–Schild metric (20.9) with (20.14) as the background

Minkowski metric and the geodesic field (20.15)–(20.16) as the field k
. Let us introduce
a double-null tetrad such as was defined in Section 16.5 for the metric (20.9), with
e0


 = k
. The simplest choice of the other tetrad vectors is1

e1

 def= �
 = �


0 +Hk
� �
 = dv−Hk
 dx
�

e2

 def= m
 = �Y �0�−1�0�� m
 = Y dv+d��

e3

 def= m
 = �Y�0�0�−1�� m
 = Y dv+d��

(20.17)

1 The tetrad (20.17) obeys the orthogonality relations (16.45) with respect to both g
� and �
�.
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Then, by virtue of (16.51), the field (20.15) will be shearfree if Y and Y obey in addition

mY � = mY� = 0� (20.18)

By (16.54) we also have

Z = �+ i� ≡ � 1
23 = m�Y �� � (20.19)

In what follows we will be assuming that �+ i� �= 0.
The tetrad (20.15)–(20.17) is not the special one we used in Section 16.6. Never-

theless, the equations1 R00 = R02 = R03 = R22 = R33 = 0 that were used in proving the
Goldberg–Sachs theorem are now all fulfilled identically in consequence of the special
form (20.17) and of the geodesic – shearfree properties (20.16) and (20.18). Some of the
Ricci rotation coefficients vanish independently of the property �1

21 = 0; they are listed
in the last line of (20.20). The other ones vanish in consequence of the form of the tetrad
(20.15)–(20.17):

�a
b0 = �0

02 = �1
12 = �0

03 = �1
13 = �a

22 = �a
33 = �2

23 = �3
32 = 0�

�a
00 = �1

a0 = �1
22 = �1

33 = 0�
(20.20)

Since we are working in coordinates in which the background metric is constant, the
background Christoffel symbols vanish and the covariant derivatives in (20.11) become
partial derivatives. Using (20.11) thus simplified, we find (the list does not include those
�s that are obtained by complex conjugation)

�0
01 = −�1

11 = −kH� � �1
23 = �3

03 = Z�

�0
21 = �3

11 = −mH� −HY�u � �1
21 = �3

01 = Y �u �

�0
23 = �3

13 = HZ� �2
21 = H�Z−Z��

(20.21)

Substituting all these in the equation 0 = R23 = R0
203 +R1

213 +R2
223 and using (9.21),

(16.104) and (20.16)–(20.18) we find

kH� �Z+Z�+H
(

Z2 +Z
2
)

= 0� (20.22)

Since Z obeys the equation kZ� = −Z2 (which follows from (16.84)), the above says
that k�H/�Z+Z��� = 0, whose solution is

H = e3P�Z+Z�� (20.23)

where P is a real function such that kP� = 0.

1 In this section, the indices of the Riemann and Ricci tensors are tetrad indices, with the tetrad vectors being labelled as in
Section 16.6: �e0� e1� e2� e3� = �k� ��m�m�.
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In consequence of (20.23), the equation R10 = 0 is fulfilled identically, while the
equations R21 = 0 and R31 = 0 give

mP� = −Z

Z
Y �u ≡ −Z

Z
�Y � � mP� = −Z

Z
Y�u ≡ −Z

Z
�Y� � (20.24)

These two equations imply the integrability condition m �m�P�� � � −m �m�P�� � � =
−2�s

23es
P� (see (16.104)). Explicitly, it reads

S
def= Z

Z
2 Y�u m

Z − Z

Z
mYu − Z

Z2
Y �u m

Z + Z

Z
mY u

+
(

Z

Z
− Z

Z

)

Y�u Y �u −�P� �Z−Z� = 0� (20.25)

The equation R11 = 0 is the most difficult to handle. The following identities are useful
in calculating R11; they follow from the equations established so far, with use of the
commutator formula (16.104):

mZ� = �Z−Z�Y �u � (20.26)

�Z� = Y�u Y �u −HZ2 +mY u� (20.27)

and their complex conjugates. Also, it is important to note that R11 = R2
121 +R3

131 ≡
−2R1213 = −2R0

213. Although R11 must be real, the equation R1213 = R1312 does not
hold identically (see the remark after Eq. (16.54)),1 so 2R1213 is not identically equal to
R1213 +R1312. Calculating R0

213 = 0 with use of (9.21) and (20.20)–(20.27) we find

Z�
(

e3P
)

� �Z+Z�+3H
Z+Z

Z
Y�u Y �u +3Z e3PmYu

−3
Z

2

Z
e3PmY u +3

Z
2

Z2
e3PY �u m

Z −3
Z

Z
e3PY�u m

Z = 0� (20.28)

Taking the imaginary part of the above, we obtain �Z+Z�S = 0, where S is the expres-
sion defined in (20.25). Thus, the imaginary part of (20.28) vanishes by virtue of the
integrability condition of (20.24). Using now (20.25) in (20.28) to eliminate the mY�u
terms and recalling that Y�u = �Y�, we obtain the last equation of the Rij = 0 set:

�P� = − (1/Z+1/Z
)

Y�u Y �u � (20.29)

The functions Y and Y are independent, i.e. dY ∧ dY �= 0 (because otherwise Z = 0;
see Exercise 7). Each of �P�Y�Y � obeys

k�� = 0� v�� = 0� v def= � − ��Y��

Z
m − ��Y ��

Z
m� (20.30)

1 It holds by virtue of (20.25).
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where � stands for any of �P�Y�Y �. The vectors k
 and v
 are linearly independent.
This means that the gradients of P, Y and Y are orthogonal to two linearly independent
vectors, i.e. that they lie in the same 2-dimensional plane within the tangent vector space
at each point of the manifold. Consequently, the gradients P�
, Y�
 and Y �
 are linearly
dependent, so there exists a functional relation of the form ��P�Y�Y � = 0, and hence P

is a function of Y and Y . Then, Eqs. (20.24) become

P�Y = −Y �u/Z� P�Y = −Y�u/Z� (20.31)

With this, and with P =P�Y�Y �, (20.29) is satisfied identically. Calculating the directional
derivative of the first equation in (20.31) along m�, and of the second equation along m�,
and using the commutator equation (16.104) to simplify the right-hand sides, we obtain
ZP�YY = ZP�Y

2 and ZP�YY = ZP�Y
2, which is equivalent to

(

e−P
)

�YY = 0 = (e−P
)

�YY � (20.32)

The solution of this is e−P = B+A1Y +A2Y +CYY , where A1, A2, B and C are arbitrary

constants. Since e−P must be real, it follows that B and C must be real, while A
def= A1 =A2

can be complex. Thus

e−P = B+AY +AY +CYY � (20.33)

Each of the functions Y , Y �Z and Z satisfies the equation

� ��
def= B�u +C��v +A��� +A��� = 0� (20.34)

where � is any of �Y�Y �Z�Z�. It follows that P and H obey the same equation, so
� g
�� = 0 for the whole metric. The components of �
 are constant (in the coordinates
currently used), so Eqs. (8.12) are satisfied. Consequently, �
 is a Killing field –
simultaneously for the metric g
� and for the flat background metric �
�.

The coordinates �u� v� �� �� have not yet been defined uniquely – we are still free to
transform them so as to preserve the form of the flat background metric (i.e. by the
Lorentz transformations). Since ��� does not change under a Lorentz transformation, the
equations k�Y�� = g��k�Y�� ≡ ���k�Y�� = 0 = m�Y�� = g��m�Y�� ≡ ���m�Y�� still hold
in unchanged form after the transformation. Let us then assume that the Killing field �


is timelike with respect to ���,1 and let us carry out a Lorentz transformation after which
�
 becomes collinear with the time axis of the background Minkowski space, thus

A = 0� B = C > 0 =⇒ �
 = B�1�1�0�0�� (20.35)

1 Kerr and Schild (1965) considered also the cases when �
 is spacelike or null; see also Debney, Kerr and Schild (1969).
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Then, Equations (20.16), (20.18) and (20.34) imply

Y�� = YY�u � Y�� = Y�v /Y� Y�u +Y�v = 0� (20.36)

Each of these is a quasi-linear partial differential equation of first order and can be solved
by standard methods (Courant and Hilbert, 1965). The general solution of the whole set
may be represented as

F�Y��� ��u−v�
def= Y 2�−�+ �u−v�Y +��Y� = 0� (20.37)

where � is an arbitrary complex function of one variable.
Calculating 0 = mF� ≡ YF�u −F�� we find

Z = −�1+YY �/F�Y (20.38)

(where F�Y = 2Y�+u−v+��Y ). Then, calculating 0 = F�u ≡ F�Y Y�u +Y we find, with
use of (20.31) and (20.38),

Y�u = −Y/F�Y = −ZP�Y = �1+YY �P�Y /F�Y � (20.39)

Hence P�Y = −Y/�1+YY �, so e−P = constant × �1+YY � and

e3P = √
2m/�1+YY �3� (20.40)

where m is an arbitrary constant.
Equations (20.9), (20.15), (20.23), (20.40), (20.37) and (20.38) implicitly define the

most general vacuum Kerr–Schild metric in which the (necessarily existing) Killing field
is timelike. The definition is implicit because Y has not been given as a function of the
coordinates. In order to find it, we must specify the function ��Y� in (20.37).

It is here that we shall make an arbitrary non-covariant assumption, in order to find
an explicit solution. We assume that ��Y� is a polynomial of second degree of the form
��Y� = 
Y 2 +�Y −
.

We adapted the coordinates to the Killing field �
, but we are still free to carry out
transformations preserving the direction of �
. These are the translations and rotations
in the 3-space orthogonal to �
. By the translation � = �

′ −
 we can then cancel the
term 
Y 2 −
 in ��Y�, and by one of the translations u = u′ −Re� or v = v′ +Re� we
can cancel the real part of �. Finally, we obtain � = √

2iaY , where Im � = √
2ia was

assumed in this form for later convenience.
With this �, we transform back to the real coordinates �t� x� y� z� by

� = 1√
2
�x+ iy�� u = 1√

2
�t+ z�� v = 1√

2
�t− z�� (20.41)

and F becomes

F = �x− iy�Y 2/
√

2+√
2�z− ia�Y − �x+ iy�/

√
2� (20.42)
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the function Y�x� y� z� being defined by F = 0. In order to simplify the final expression,
we introduce the real function r�x� y� z� > 0 by1

x2 +y2

r2 +a2
+ z2

r2
= 1� (20.43)

The solution of F = 0 is now2

Y = �r − z��r + ia�
r�x− iy�

� (20.44)

Substituting this where necessary, we obtain

F�Y =
√

2
r

(

r2 − iaz
)

� YY = r − z

r + z
�

Z = −
√

2r2
(

r2 + iaz
)

�r + z� �r4 +a2z2�
� e3P =

√
2m�r + z�3

8r3
�

H = − mr�r + z�2

2 �r4 +a2z2�
�

(20.45)

and then substituting (20.41) in (20.15) we obtain in (20.9)

ds2 = dt2 −dx2 −dy2 −dz2 − 2mr3

r4 +a2z2

(

dt+ z

r
dz

+ r

r2 +a2
�x dx+y dy�+ a

r2 +a2
�x dy−y dx�

)2

� (20.46)

This is the form in which the Kerr metric first appeared in the literature,3 but Kerr (1963)
did not give any hint on how it had been derived.

Nothing in this derivation presaged the prominence that the result acquired later. The
Kerr solution turned out to be extremely important from the point of view of physics. It is
still the simplest exact solution of Einstein’s equations that describes the exterior field of
a rotating body and the spacetime around a stationary rotating black hole. Because of this,
it became a basis of hundreds of papers (if not more) discussing astrophysical aspects
of black holes. Also, the Kerr solution is believed to be the universal asymptotic state
towards which all nonstationary uncharged black holes should evolve. This last statement
is based on the still unproven cosmic censorship conjecture (see Section 18.16), and we
shall not consider the arguments in favour of it.

1 If x, y and z are interpreted as Cartesian coordinates, then the surfaces r = constant are confocal ellipsoids of revolution,
with a being the radius of the focal ring and 2r being the smallest diameter of the ellipsoid.

2 The other solution of F = 0 is obtained by the replacement r → −r . We discard it because we assumed r > 0. The value of
r is the semiminor axis of the ellipsoid r = constant. The resulting metric can be extended to the region of negative values
of r, but the extension involves nontrivial problems. We will discuss it in Section 20.8.

3 Actually, the signature in Kerr’s paper was different from ours.



20.3 Basic properties 447

20.3 Basic properties

The Kerr metric becomes the Minkowski metric when m = 0. Also, it becomes
approximately flat when r becomes large – the Kerr–Schild term then becomes negligible
compared with the Lorentzian part. Thus, at large values of r the metric (20.46) obeys
the assumptions made in Section 12.18, where we discussed the weak-field limit of
relativity. The component

g00 = 1− 2mr3

r4 +a2z2
≈ 1− 2m

r
+ 2ma2z2

r5
+O�1/r5�� (20.47)

when compared with (12.153), allows us to recognise m as the mass of the source. The
g0I components, however, are not exactly of the form (12.154) because they contain terms
of order 1/r, namely

gtx = − 2mr4x−2mar3y

�r2 +a2� �r4 +a2z2�
� gty = − 2mr4y+2mar3x

�r2 +a2� �r4 +a2z2�
�

gtz = − 2mr2z

r4 +a2z2
� (20.48)

The unwanted terms are 2mr4x and 2mr4y in gtx and gty, and the whole of gtz. We guess
that the coordinates of (20.46) are not those that were used in deriving (12.153)–(12.155),
so we need a transformation of the form (12.131) that would transform the metric as in
(12.152). The simplest choice is to take bI = 0 and a time-independent b0. The following
b0 will do the job:

b0�x = − 2mr4x

�r2 +a2� �r4 +a2z2�
� b0�y = − 2mr4y

�r2 +a2� �r4 +a2z2�
�

b0�z = − 2mr2z

r4 +a2z2
� (20.49)

The partial derivatives of b0 determined above identically obey the integrability conditions
b0�xy = b0�yx and b0�xz = b0�zx (by virtue of (20.43)), so such a b0 does exist, and the
transformed g0I are:

g̃tx = 2mar3y

�r2 +a2� �r4 +a2z2�
≈ 2may

r3
+O�1/r3��

g̃ty = − 2mar3x

�r2 +a2� �r4 +a2z2�
≈ −2max

r3
+O�1/r3��

g̃tz = 0�

(20.50)

These are exactly of the form (12.154), with the angular momentum PI = �0�0�−ma�

(where �x1� x2� x3� = �x� y� z�). Thus the parameter a is the total angular momentum of
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the source per unit mass. This much was said in the original paper of Kerr (1963), and
the physical interpretation became immediately clear.

The coordinates of (20.46), although convenient for interpreting the parameters, are
not convenient in most other calculations because of the complicated form of the function
r�x� y� z�. Often, it is more practical to use r as one of the coordinates. One such coordinate
system was introduced by Kerr (1963). It is related to the coordinates of (20.46) by

x = �r cos�+a sin�� sin� ≡
√

r2 +a2 sin� cos��− arctan�a/r���

y = �r sin�−a cos�� sin� ≡
√

r2 +a2 sin� sin��− arctan�a/r���

z = r cos�� (20.51)

where r ≥ 0, � ∈ �0��� and � ∈ �0�2��. The transformed metric is

ds2 = dt2 −dr2 −2a sin2 � dr d�−�d�2 − (r2 +a2
)

sin2 � d�2

−2mr

�

(

dt+dr +a sin2 � d�
)2

�

�
def= r2 +a2 cos2 �� (20.52)

In these coordinates, since the metric is independent of �, it is seen that one more
Killing vector field exists, in addition to the timelike Killing field k


�1�
= �


0 . It is k


�2�
= �


3 ,

with x3 = �. The group generated by k


�1�
and k


�2�
is Abelian, and it is a complete symmetry

group of the Kerr metric, as can be verified by solving the Killing equations. In the
Minkowski limit m = 0, the coordinate � becomes the azimuthal angle, so we say that
the Kerr metric is axially symmetric.

Since the �x� y� z� coordinates of (20.46) become Cartesian rectangular at infinity, they
can be imagined as ‘approximately Cartesian’ at finite distances. Then, as already stated,
the surfaces of constant r are confocal ellipsoids of revolution whose foci lie on the ring
�z = 0� x2 +y2 = a2 . On this ring r = 0 and � = �/2; it is a singularity of the coordinate
system of (20.52), and, as we shall see below, a singularity of the spacetime as well. It
is easily verified, using (20.51), that the following holds

x2 +y2

a2 sin2 �
− z2

a2 cos2 �
= 1� (20.53)

which shows that the surfaces � = constant are one-sheeted hyperboloids of revolution,
with foci on the same ring. The hyperboloid corresponding to � = �/2 is degenerated to
the plane z = 0 with the ring r = 0 and its interior removed. Figure 20.1 shows the axial
cross-section through the family of the r = constant and � = constant hypersurfaces.

The geometry of the � = constant surfaces is more complicated. To see it, let us change
the variables in (20.51) as follows:

� = x cos�+y sin�� � = −x sin�+y cos�� (20.54)
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Fig. 20.1. A cross-section through the space t = constant by a plane containing the axis of
symmetry. The figure shows the surfaces of constant r (the ellipses) and the surfaces of constant
� (the hyperbolae). The ellipsoids and the hyperboloids all have their foci on the ring of radius a,
seen here as the thick horizontal line. The �r����� coordinates are singular on this ring; it has the
equation r = 0, � = �/2. When � → �/2, the hyperboloid degenerates to the z = 0 plane with the
disc r = 0 removed.

It follows then from (20.51) that

�� = r sin��� = −a sin�� ⇐⇒ �a/��2 − �z/��2 = 1� (20.55)

Since r ≥ 0 and � ∈ �0���, we have � ≥ 0 and � ≤ 0. The coordinates � and � are
obtained by rotating the x- and y-axes by the angle �. The surface (20.55) consists of two
sheets that are mirror images of each other; the sheet corresponding to z ≥ 0 is shown
in Fig. 20.2. Other � = constant surfaces are obtained by rotating the one in Fig. 20.2
around the z-axis. The surface contains the straight half-lines �z = � cot ��� = constant 
along which it intersects the � = constant hyperboloids.

A still more readable form of the Kerr metric results when the Boyer–Lindquist (1967)
(B–L) coordinates are introduced. They are related to those of (20.52) by1

r = r ′� � = � ′�

t = t′ +2m
∫ r dr

!r�r�
� � = −�′ −a

∫ dr

!r�r�
�

!r�r�
def= r2 −2mr −a2�

(20.56)

1 The �′ in (20.56) and the term with dt d� in (20.57) have opposite signs to those implied by Boyer and Lindquist (1967).
We have made the change in order to be consistent with the papers referred to in subsequent sections.
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−η

ξ

z

Fig. 20.2. A surface of constant � in the coordinates of (20.52). The tangent planes of this surface
become vertical at the right edge and at z → �. The distance from the z-axis to the right edge of the
surface is a. The surface contains the straight half-lines �z = � cot ��� ≥ 0 seen in the figure, they
are intersections with the surfaces of constant �. The figure shows only one half of this surface, for
better clarity. The other half is the mirror reflection in the z = 0 plane; other surfaces of constant
� are obtained by rotating this one around the z-axis. The �-axis is drawn in reverse, so the actual
coordinate on it is �−��. The circle is the singular ring �r = a�� = �/2 .

The resulting metric, with primes dropped, is

ds2 =
(

1− 2mr

�

)

dt2 + 4mra sin2 �

�
dt d�− �

!r

dr2 −�d�2

−
(

2mra2 sin2 �

�
+ r2 +a2

)

sin2 � d�2� (20.57)

The limit a = 0 of this is seen to be the Schwarzschild solution.
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Since the B–L coordinates �r����� are orthogonal in the hypersurface t = constant,
the surfaces � = constant can be imagined as planes orthogonal to the ellipsoids and to
the hyperboloids. (In fact, they are only approximately planes – they are clearly nonflat.)

The Schwarzschild metric has a spurious singularity at r = 2m, at which grr → �
and g00 = 0. The coordinate t in the Schwarzschild metric (and also in the Kerr metric
in the B–L coordinates) coincides with the proper time of an observer at infinity. In
consequence of g00 = 0, the ratio of the proper time interval of the observer at rest in
the set g00 = 0 to the corresponding proper time interval of infinity is zero, which means
that the light emitted from g00 = 0 arrives to a distant observer with an infinite redshift.
In the Kerr metric, the set grr = � is not the same as the set g00 = 0. The first one,
given by r2 − 2mr + a2 = 0, exists only when a2 ≤ m2 and will be seen later to be a
spurious singularity, removable by a coordinate transformation. Actually, when a2 < m2,
the spurious singularity consists of two disjoint sets

r = r±
def= m±√

m2 −a2� (20.58)

The set r2 −2mr +a2 cos2 � = 0 is sometimes called an infinite redshift hypersurface, by
analogy with the Schwarzschild metric. However, as rightly pointed out by Carter (1973),
this name is misleading. An observer at rest in the B–L coordinates has the coordinates r,
� and � all constant. Now, on the hypersurface g00 = 0 and inside it (where g00 < 0), for
such an ‘observer’ the interval ds2 ≤ 0, which means that he/she would have to be moving
with the velocity of light or faster just to remain at rest. This means that the state of rest
with respect to infinity is simply impossible where g00 ≤ 0 – stationary observers do not
exist in that region. This is why this hypersurface has also a second, more appropriate
name: the stationary limit hypersurface.

It is seen from (20.57) that when a2 < m2, r becomes time in those regions where
!r < 0. Consequently, just as in the Schwarzschild solution, it is impossible to stay
at constant r there. In those regions where !r > 0 and g00 ≤ 0, timelike vectors must
necessarily have a nonzero �-component. The minimal value of the �-component is found
from ds2 = 0 at dr = d� = 0 using (20.57); it is:

v
�
min = v0 2mra−�

√

!r/ sin�

2mra2 sin2 � +��r2 +a2�
�

where v0 is the t-component of that vector. (Note that, as expected, v
�
min → 0 as g00 →

0, i.e. as � → 2mr and !r → a2 sin2 �.) This is an example of the phenomenon of
frame dragging in the gravitational field of rotating bodies, which was mentioned in
Section 12.18; see after Eq. (12.156).

When � is near �/2, while r is negative and �r� sufficiently small, the term
�2mra2 sin2 �/�� in the component g�� of (20.57) becomes negative and large in absolute
value, which means that � becomes a timelike coordinate. Hence, the curves of constant
t, � and r in that region are timelike. If we require that, by continuity, these lines
are closed with period 2� also in that region, then closed timelike curves exist in the
r < 0 sheet of the extended Kerr manifold. This applies to all three varieties of the Kerr
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solution. This observation was reported by Boyer and Lindquist (1967), and attributed to
a remark by Carter.

The existence or nonexistence of regions with !r ≤ 0, their geometry and their relation
to the regions with g00 ≤ 0 will be discussed in Section 20.5. Their physical meaning will
emerge gradually later.

The singularities of the Kerr metric are best recognised when, following Carter (1973),
one calculates the tetrad components of the Riemann tensor in the orthonormal tetrad
defined by

e0 =
√

!r�r�

��r�

(

dt−a sin2 � d�
)

� e1 =
√

��r�

!r�r�
dr�

e2 =√��r�d�� e3 = sin�
adt− (r2 +a2

)

d�
√

��r�
�

(20.59)

The tetrad components of the Riemann tensor are then

R0101 = −R2323 = 2I1�

R0123 = 2R0213 = −2R0312 = −2I2�

R0202 = R0303 = −R1212 = −R1313 = −I1�

I1
def= mr

r2 −3a2 cos2 �

�3
�

I2
def= ma cos�

3r2 −a2 cos2 �

�3
�

(20.60)

The singularity is located on the ring �r = a�� = �/2 , where � = 0. Since the interior
of the ring is nonsingular, one can extend the metric through this set, to negative values
of r . From (20.51) we see that the �t� x� y� z� coordinates cover both sides of this surface
sheet. With a2 ≤ m2, the spurious singularities lie in the r > 0 region, so the extension
through the interior of the singular ring does not simply result in another copy of the
same set. We will come back to this in Section 20.8.

Equations (20.60) imply that the Kerr metric is of Petrov type D.

20.4 * Derivation of the Kerr metric by Carter’s method – from the separability of
the Klein–Gordon equation

The Kerr metric emerged in Section 20.2 after imposing coordinate-dependent assump-
tions of unknown interpretation. It would be good to have an invariant definition that
would single out the Kerr metric by a set of geometric properties. Such a definition is
still lacking. Carter (1973) came one step closer to it by considering generalisations of
the Schwarzschild metric in which the Klein–Gordon equation, in appropriately chosen
coordinates, is still separable. Although this method is not unique and not invariant either,
and makes ample use of the expected result, its bonus is that it allows one to generalise
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the Kerr metric for the cosmological constant and the electric/magnetic charge in a rather
simple way. We will present this derivation now.1

The Klein–Gordon equation in curved space has the form

1
�

"

"x


(√−gg
� "�

"x�

)

−m0
2√−g = 0� (20.61)

where m0 is not to be confused with the mass parameter m of the Kerr metric. Equa-
tion (20.61) is called separable when the function � is a product of one-variable functions,
� =∏i �i�x

i�. Such a form of � causes the left-hand side of (20.61) to become a sum of
four ordinary differential equations, each involving just one coordinate.

In considering the Klein–Gordon equation, it is convenient to use the metric co-form
�"/"s�2 = g
� �"/"x
�

(

"/"x�
)

instead of the metric form. For the Schwarzschild solution,

introducing the coordinate �
def= cos� (to simplify the determinant of the metric), the

metric co-form is

(
"

"s

)2

= 1
r2

[

− (1−�2
)
(

"

"�

)2

− 1
1−�2

(
"

"�

)2

− !r

(
"

"r

)2

+ Zr
2

!r

(
"

"t

)2
]

� (20.62)

where !r

def= r2 −2mr and Zr

def= r2, these quantities being introduced for later convenience.
The corresponding Klein–Gordon equation is

r2

Zr

{

− 1
�

"

"�

[
(

1−�2
) "�

"�

]

− 1
� �1−�2�

"2�

"�2
−m0

2r2

}

− 1
�

"

"r

(
r2!r

Zr

"�

"r

)

+ 1
�

r2Zr

!r

"2�

"t2
= 0� (20.63)

The substitution � =∏i �i�x
i� and multiplication by the appropriate functions allows one

now to separate out the term that depends only on �, then the term that depends only on
�, and then the terms depending only on r and t.

Now we would like to generalise the co-form (20.62) so as to preserve the separability
property, but allow the Kerr metric as a subcase. We thus keep the assumption that the
metric functions are independent of t and �. We also keep the property that the co-form
is proportional to the sum of a term independent of r and a term independent of �.

1 Carter (1968a) showed that the separability of the Klein–Gordon equation implies the separability of the Hamilton–Jacobi
equation for the geodesics. We shall not quote the proof, since this implication will not be exploited here.
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We must take into account that the Kerr metric is not diagonal and contains the gt� terms.
Consequently, we take as our first hypothesis

(
"

"s

)2

= 1
Z

[

−!�

(
"

"�

)2

− 1
!�

(

Z�

"

"t
+Q�

"

"�

)2
]

+ 1
Z

[

−!r

(
"

"r

)2

+ 1
!r

(

Zr

"

"t
+Qr

"

"�

)2
]

� (20.64)

where !����, Z����, Q����, !r�r�, Zr�r� and Qr�r� are arbitrary functions, and Z will
be determined later. The factors !� and !r could be made equal to 1 by coordinate
transformations and renaming the other functions, but it is more convenient to keep them
and make use of the freedom later in another way. The determinant of the metric is

√−g = Z2/
∣
∣ZrQ� −Z�Qr

∣
∣ � (20.65)

The Klein–Gordon equation in the metric determined by (20.64) is

1
�

[

− "

"�

(√−g

Z
!�

"�

"�

)

− "

"r

(√−g

Z
!r

"�

"r

)

−
√−g

Z
m0

2Z�

]

− 1
�

(

Z�

"

"t
+Q�

"

"�

)[
1
!�

√−g

Z

(

Z�

"�

"t
+Q�

"�

"�

)]

+ 1
�

(

Zr

"

"t
+Qr

"

"�

)[
1
!r

√−g

Z

(

Zr

"�

"t
+Qr

"�

"�

)]

= 0� (20.66)

The factor
√−g/Z present in each term may depend only on r and � in consequence

of the assumed symmetry. But, to achieve separation, it must be a product of a function
of r by a function of �. Then, after dividing Eq. (20.66) by

√−g/Z, we can transform
r = f1�r

′�, � = f2��
′�, and redefine !�, !r , Z�, Q�, Zr and Qr so as to achieve the result

as if
√−g/Z = 1, which, by (20.65), means that we choose

Z = ZrQ� −Z�Qr� (20.67)

However, this is only a necessary, not yet a sufficient, condition for separability; the term
that may still cause problems is the one containing m0. It will allow separability if Z

has the form Z = U����+Ur�r�, where U� and Ur are functions of one variable, as yet
undetermined. The derivative Z�r� must then vanish, which means, from (20.67)

dZr

dr

dQ�

d�
− dZ�

d�
dQr

dr
= 0� (20.68)

This can be satisfied in three ways: (1) at least one of �Zr�Q��Z��Qr� is zero; (2) Zr

and Z� are constant; (3) Qr and Q� are constant. We shall believe Carter (1973) that
case (1) leads to subcases of (2) and (3). Cases (2) and (3) are clearly equivalent, so, for
better correspondence with the Schwarzschild limit, we will take

Qr = Cr = constant� Q� = C� = constant� (20.69)
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In this way, we have arrived at the following metric form:

ds2 = !r

(

C� dt−Z� d�
)2 −!� �Cr dt−Zr d��2

C�Zr −CrZ�

− (C�Zr −CrZ�

)
(

dr2

!r

+ d�2

!�

)

� (20.70)

Now we take into account the electromagnetic field. The Klein–Gordon equation with
the electromagnetic 4-potential included is

1
�

(
"

"x

− ieA


)[√−gg
�

(
"�

"x�
− ieA�

)]

−m0
2√−g = 0� (20.71)

For simplicity, we assume that only the t- and �-components of the 4-potential are
nonzero, just as in the Schwarzschild case, and we assume the same symmetry as for the
Kerr metric, so the nonzero components depend only on r and �. Thus

A
 dx
 = A0�r���dt+A3�r���d�� (20.72)

Substituting this in (20.71), and taking into account the simplifications achieved in (20.70),
we obtain

1
�

[

− "

"�

(

!�

"�

"�

)

− "

"r

(

!r

"�

"r

)

−m0
2Z�

]

− 1
�

(

Z�

"

"t
+C�

"

"�
+ ieX�

)[
1
!�

(

Z�

"�

"t
+C�

"�

"�
+ ieX��

)]

+ 1
�

(

Zr

"

"t
+Cr

"

"�
− ieXr

)[
1
!r

(

Zr

"�

"t
+Cr

"�

"�
− ieXr�

)]

= 0� (20.73)

where the following abbreviations were introduced:

A0Zr +A3Cr

def= Xr� A0Z� +A3C�

def= −X�� (20.74)

Equation (20.73) will be separable if X� depends only on � and Xr depends only on r.
Assuming this, the 4-potential is

ZA
 dx
 = Xr

(

C� dt−Z� d�
)+X� �Cr dt−Zr d�� � (20.75)

The constants C� and Cr , if they are nonzero, can be rescaled by coordinate transfor-
mations of the form t = 
t′, � = ��′, accompanied by redefinitions of !r and !�, and by
a similar rescaling of r. Both these constants could be rescaled to 1 in this way. However,
in anticipation of the result we aim at, we rescale only C� and rename Cr as follows:
C� = 1, Cr = a. We thus leave out the case C� = 0.

With this, we now proceed to the Einstein–Maxwell equations. We will include the
cosmological constant and the electromagnetic field of an electric and a magnetic charge.
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We will calculate the Einstein tensor using the following orthonormal tetrad of differential
forms:

e0 =
√

!r

Z

(

C� dt−Z� d�
)

� e1 =
√

Z

!r

dr� e2 =
√

Z

!�

d��

e3 =
√

!�/Z �Cr dt−Zr d�� � (20.76)

Using (20.75)–(20.76) and (13.10) we find

T00 = −T11 = T22 = T33 = (F01
2 +F23

2
)

/2� (20.77)

where the Fij are the only two tetrad components of the electromagnetic field tensor that
do not vanish:

F01 = − [Xr�r

(

Zr −aZ�

)−Zr�r

(

Xr +aX�

)]

/Z2�

F23 = [X���

(

Zr −aZ�

)+Z���

(

Xr +aX�

)]

/Z2�
(20.78)

For the Einstein tensor we find

G00 = − 1
2Z

!���� − a

2Z2
!���Z��� − a2

4Z3
!�Z���

2 + 3
4Z3

!rZ���
2

− a2

4Z3
!�Zr�r

2 − 1
Z2

!rZr�rr + 3
4Z3

!rZr�r
2 − 1

2Z2
!r�rZr�r � (20.79)

G03 = 1
2Z2

√

!r!�

(

aZr�rr +Z����

)

� (20.80)

G11 = 1
2Z

!���� + a

2Z2
!���Z��� + a2

4Z3
!�Z���

2 − 1
4Z3

!rZ���
2

+ a2

4Z3
!�Zr�r

2 − 1
4Z3

!rZr�r
2 + 1

2Z2
!r�rZr�r � (20.81)

G22 = − a2

4Z3
!�Z���

2 + 1
4Z3

!rZ���
2 − a

2Z2
!���Z���

− a2

4Z3
!�Zr�r

2 + 1
2Z

!r�rr − 1
2Z2

!r�rZr�r + 1
4Z3

!rZr�r
2� (20.82)

G33 = − a

Z2
!�Z���� − a

2Z2
!���Z��� − 3a2

4Z3
!�Z���

2

+ 1
4Z3

!rZ���
2 − 3a2

4Z3
!�Zr�r

2 + 1
2Z

!r�rr − 1
2Z2

!r�rZr�r

+ 1
4Z3

!rZr�r
2� (20.83)

We are now going to solve the equations Gij +#gij = $Tij .
The G03 equation is a sum of two terms, one of which depends only on � and the other

only on r . The solution is easily found to be

Zr = Cr2 +C1r +C2� Z� = −aC�2 +C3�+C4� (20.84)
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where the C and Ci are arbitrary constants. Substituting these in the equation
G22 −G33 = 0 we obtain

C4 = C2/a− (C1
2 +C3

2
)

/�4aC�� (20.85)

Substituting this in (20.84) we see that the transformation � = �′ +C3/�2aC� and the
redefinition C2 = aC ′

2 +C1
2/�4C� have the same result as if C3 = 0. Thus

Zr = C �r +C1/�2C��2 +aC ′
2� Z� = C ′

2 −aC�2� (20.86)

The transformation t = t′ +C ′
2�− aC� does not change the combination �Zr − aZ��

and has the same result as if C ′
2 = aC. Then, a translation of r makes C1 = 0, and the

rescaling � = �′/C�!� = C!′
��!r = C!′

r has the same result as if C = 1. Thus finally,
we have

Z� = a
(

1−�2
)

� Zr = r2 +a2� (20.87)

We now solve the Maxwell equations. The equations F�
���� = 0 = (√−gF 1�
)

�� =
(√−gF 2�

)

�� (coordinate indices) are already fulfilled. The ones that remain to be
solved are

�ZrF01� �r − (Z�F23

)

�� = 0� (20.88)

aF01�r −F23�� = 0� (20.89)

the indices of Fij above being tetrad indices. The solution of (20.89) is

Xr = Dr4 + er −aD1� X� = −a3D�4 +q�+D1� (20.90)

where e and q are arbitrary constants. Equation (20.88) results in D = 0. The constant
D1 does not enter the electromagnetic field tensor, and can thus be assumed zero
with no loss of generality. The final solution of the Maxwell equations is then
Xr = er, X� = q�.

We now go back to the Einstein equations. The equation G00 −G22 = −2# is equivalent
to a function of � being equal to a function of r, and thus being constant. Calling this
constant E and integrating, we obtain

!r = 1
3
#r4 +Er2 +2mr +E2� !� = 1

3
#a2�4 −E�2 +E3�+E4� (20.91)

where m and Ei are arbitrary constants. The last equation to solve is

G22 −# = (e2 +q2
)

/
(

r2 +a2�2
)2

� (20.92)

and it leads to E2 −a2E4 = e2 +q2.
With this, the Einstein–Maxwell equations are solved. However, a few conditions have

to be imposed on the solution in order that the metric is physically reasonable. One of
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them is E3 = 0 – otherwise there would be a term proportional to � = cos� in the
metric and the field would not be mirror-symmetric with respect to the equatorial plane.
To avoid a singularity at the axis � = 0, we require E = 1 +#a2/3, and to obtain the
correct Schwarzschild limit we require E4 = 1. Thus

!� =
(

1− 1
3
#a2�2

)
(

1−�2
)

�

!r = 1
3
#r2�r2 +a2�+ r2 −2mr +a2 + e2 +q2� (20.93)

The final result for the metric is

ds2 = !r

r2 +a2 cos2 �

(

dt−a sin2 �d�
)2

− sin2 �
(

1− 1
3#a2 cos2 �

)

r2 +a2 cos2 �

[

adt− (r2 +a2
)

d�
]2

− (r2 +a2 cos2 �
)

(

dr2

!r

+ d�2

1− 1
3#a2 cos2 �

)

� (20.94)

This agrees with the result of Carter (1973) up to a constant factor in the first two terms1

that can be recovered by a simple rescaling of t and �. A result equivalent to (20.94)
under a coordinate transformation was obtained by Frolov (1974).2

It may be verified that the algebraic structure of the Weyl tensor for the metric (20.94)
is still the same as in (20.60), so the generalised Kerr metric is still of Petrov type D.

Comparing (20.94) with the spherically symmetric limit (a = 0, Section 14.4) and the
proper Kerr limit (# = 0 = e = q, Eq. (20.57)) we recognise e and q as the electric and
magnetic charges, respectively,3 and a as the angular momentum per unit mass (while,
of course, m is the mass of the source and # is the cosmological constant).

The farthest-reaching generalisation (so far) of the Kerr solution was obtained by
Debever, Kamran and McLenaghan (1983, 1984). It contains 13 arbitrary constants, for
most of which no physical or geometrical interpretation has been provided. Among them,
in addition to the parameters contained in (20.94), it includes the acceleration of the
source (Stephani et al., 2003). It is still of Petrov type D, and has the same Abelian
symmetry group. The paper by Debever, Kamran and McLenaghan (1984) and the book
by Stephani et al. (2003) contain lists of specialisations of this metric that recover the
earlier-known solutions.

Historically, the generalisation for electric charge was discovered by Newman et al.
(1965) by a procedure equally mysterious as the derivation of the Kerr metric itself. They
allowed the constants and coordinates in the Reissner–Nordström solution to be complex

1 Another difference is that Carter used the signature �+++−�.
2 We are grateful to Valeri Frolov for demonstrating the equivalence in a letter to A. K., long ago.
3 As remarked in Section 14.4, the magnetic charge may be removed by a duality rotation, so the generalisation with respect

to the case q = 0 is rather illusory.
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and applied such a complex coordinate transformation that the result of it was real – and
was a generalisation of the Kerr metric for electric charge. The trick is known to work
also in other cases, leading from given solutions of the Einstein or Einstein–Maxwell
equations to other solutions, but nobody knows why it works, and why only in these
particular cases – see Stephani et al. (2003) for more information. This metric (the limit
# = 0 of (20.94)) is called the Kerr–Newman solution. The first author to generalise the
Kerr metric for the cosmological constant was Carter (1968a); that paper in fact contains
a 10-parameter electrovacuum solution and a list of possible specialisations of it.

20.5 The event horizons and the stationary limit hypersurfaces

We come back now to the proper Kerr solution, with # = e = q = 0, and we will consider
this case to the end of this chapter.

We have already noted that the hypersurfaces given, in the B–L coordinates, by (20.58),
if they exist, play a special role. We will call them event horizons – we will see later
that they are indeed event horizons. We also noted that the stationary limit hypersurfaces,
given by

r2 −2mr cos� +a2 cos2 � = 0 =⇒ r = m±√
m2 −a2 cos2 � (20.95)

play a special role. We will now consider the shapes of these two families of hypersurfaces
and their relation to each other.

When a2 < m2, there are two event horizons, the one at r = r− is contained inside the
one at r = r+. There are also two stationary limit hypersurfaces in this case. The outer one,
at r = m+√

m2 −a2 cos2 �, envelops the outer event horizon, and is tangent to it only at
the axis, � = 0 and � =�. The inner stationary limit surface, at r =m−√

m2 −a2 cos2 �,
lies all within the inner event horizon and is tangent to it also only at the axis. It is tangent
to the disk r = 0 at its singular edge. The geometry of these four hypersurfaces is shown
in Fig. 20.3.

As a → 0, the Kerr solution tends to the Schwarzschild solution. Then, the inner
stationary limit surface and the inner event horizon both shrink to a point, together with
the disc r = 0. The outer stationary limit surface and the outer event horizon coalesce
and go over into the Schwarzschild horizon at r = 2m.

As a → m, the two event horizons approach each other to meet at r = m when
a2 = m2. The concave regions of the outer stationary limit surface shrink to points, and
the surface becomes conical in their neighbourhoods, the vertices of the cones touching
the event horizon. Similarly, the neighbourhoods of those points of the inner stationary
limit surface that lie on the axis of symmetry become conical, the vertices being common
with the outer surface. The geometry of these surfaces in the case a2 = m2 is shown in
Fig. 20.4.

When a2 > m2, the event horizon disappears completely. This case, similarly to the
previous one, has no Schwarzschild limit. The conical points of the stationary limit surface
change to open holes, and the two stationary limit surfaces become parts of one surface
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r+

r–

zo

zi

r = 0

Fig. 20.3. An axial cross-section through the space t = constant in the Kerr metric, in the
Boyer–Lindquist coordinates, in the case a2 < m2. The surfaces r = r+ and r = r− are disjoint;
the outer stationary limit surface (‘zo’ in the figure) is tangent to r = r+ at the axis of symmetry.
Likewise, the inner stationary limit surface (zi) is tangent to r = r− at the axis. The disc r = 0
is seen as the horizontal line; the surface zi has a sharp edge, tangent to the disc. When �a�/m
decreases, the surface r = r− approaches the disc r = 0, whereas the surface r = r+ recedes from
the disc and becomes more spherical. When a → 0, the disc r = 0 and the surfaces zi and r = r−
all collapse to a single point, while the surfaces zo and r = r+ coalesce at r = 2m and become
spherical.

that has the topology of a torus. The hole in the surface around the axis of symmetry is
the larger the greater the difference a2 −m2. The surface still has an edge at r = 0, where
it is tangent to the disc r = 0, but now the ‘outer’ and the ‘inner’ parts of it join smoothly
at two rings, given by �r = m�� = arccos�m/a�� and �r = m�� = � − arccos�m/a��.
The geometry of this case is shown in Fig. 20.5.

A comment must be added here. We have already alluded to the possibility of extending the Kerr spacetime to negative values
of the Boyer–Lindquist r-coordinate (in the footnote to Eq. (20.44)), and such an extension will be discussed in Section 20.8.
The following question then arises: where should the region with r < 0 be placed in Figs. 20.3–20.5? In the theory of analytic
functions, one deals with the problem of multi-valued mappings by introducing Riemann surfaces: multi-sheeted manifolds
such that to each value of a given function there corresponds only a single point of the Riemann surface (see, for example,
Knopp (1996)). In our present case, one has to imagine that each of the planes of Figs. 20.3–20.5 branches out into two sheets
at the disc r = 0. By going through the interior of the ring �r = 0�� = �/2 from above, one does not reach the lower half
of the figure, but a sheet with r < 0. There are in fact two such sheets. To enter the second one from the first, one has to go
back up through the interior of the ring, go around the ring on the right or on the left, and then go through the disc r = 0 from
below. Note that by going around the ring in this way one has to intersect the inner horizon r = r− (in Fig. 20.3) or the horizon
r = m (in Fig. 20.4) twice, each time a different half of the horizon, and the two halves meet only at the ring singularity. This
agrees with the picture of the maximally extended Kerr manifold shown in Fig. 20.14: there are two disjoint r < 0 sheets, and
to proceed from one to the other one has to go through the r = r− horizon at least twice.
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r+ = r–

zo

zi

r = 0

Fig. 20.4. An axial cross-section through the space t = constant in the Kerr metric, in the
Boyer–Lindquist coordinates, in the case a2 = m2. There is now a single surface r = r+ = r−,
the surfaces zo and zi both touch it at the axis (but are not tangent to it – they approach it at
nonzero angle). As a → m, the concave areas on the zo surface from Fig. 20.3 shrink to points,
and the neighbourhoods of those points become conical. The zi surface becomes conical at the axis
as well.

Figure 20.6 shows the 3-dimensional subspace of the Kerr spacetime with a2 < m2

given by setting � = �/2 in (20.57). The vertical axis in Fig. 20.6 is time. The top part
of Fig. 20.6 shows a perspective view; the bottom part shows the view from above. The
direction of rotation is clockwise �a < 0�, so that the X-axis in the top figure would move
towards the viewer. The outermost ring is the stationary limit surface at r = 2m, the two
middle rings are the event horizons r± and the innermost ring is the inner stationary limit
surface that, because of � = �/2, coincides with the ring singularity at r = 0. Several
future light cones are shown. For r � 2m they look like slightly deformed Minkowski
light cones. At r = 2m, the light cone has one generator parallel to the t-axis: no timelike
vector at that point can have a zero �-component.1 As we move from r = 2m towards
r = r+, the cones lean forward further and become thinner in all directions. The limit
r → r+ is discontinuous. As r → r+ from the r > r+ side, the cones tend to a single beam

1 Because of gt�� �= 0, the time axis is not orthogonal to the t = constant hypersurface, but it is drawn as orthogonal for better
readability.
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zo

z i

r = 0

Fig. 20.5. An axial cross-section through the space t = constant in the Kerr metric, in the
Boyer–Lindquist coordinates, in the case a2 >m2. The spurious singularities have disappeared, and
the two stationary limit surfaces have merged into one that has the topology of a torus. The points
mark the places where zo (the surface with the plus sign in (20.95)) and zi meet; this happens at

�r = m�� = �0
def= arccos�m/a�� and �r = m�� = � −�0�.

along the Y -direction in the T = 0 plane. As r → r+ from the r < r+ side, the cones tend
to the whole plane X = √r+2 +a2 = constant (not shown in Fig. 20.6 for the sake of
better clarity). With r > r+, the intersections of the cones with a T = constant plane are
ellipses that recede to Y → +� as r → r+. With r− < r < r+, the intersections of the
cones with the X = constant planes are ellipses elongated and rotated as shown in the
inset; their axes both become infinite as r → r+. A similar discontinuity exists at r = r−;
the intersections of the cones with a T = constant plane again become ellipses in the
region r < r−.

Since at r = r+ the cone degenerates to the plane x =√r+2 +a2 = constant, no timelike
vector attached there can have a zero r-component; in fact r takes over as the time
coordinate here. Inside r = r+, it is impossible for an ingoing timelike or null curve to turn
back without becoming spacelike along an arc or having a non-differentiable reflection.
This shows that r = r+ is indeed an event horizon. In Fig. 20.6, ingoing and outgoing null
curves cross at r = r+, but the B–L coordinates give a false picture here. In reality, there
are two event horizons at r = r+. The Kruskal diagram (Fig. 14.6) gives a good picture
of the situation, and we will deal with the corresponding extension for the Kerr manifold
in Section 20.8. For r < r−, the cones become similar to those in the sector �r+�2m�. As
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X
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T

r = 2m

r  = r +

r  = r –

X

Y

r = 2m

r = r+

r = r–
r = 0

Fig. 20.6. A general perspective view (top graph) and a view along the time axis from above
(bottom graph) of the Kerr subspace � = �/2 in the coordinates of (20.57). Explanation is given
in the text. Large dots mark the positions of the vertices of the cones in the T = 0 plane. The inset
is an X = constant intersection of the light cone from the sector r ∈ �r−� r+�.
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r → 0, the cones squeeze to the straight line �X = a�T = Y . See the last exercise in this
chapter for directions on how to draw this figure.

20.6 General geodesics

The geodesic equations have a first integral corresponding to each existing Killing
field. Let k
 be a Killing field, and let p
 be a vector field tangent to an affinely
parametrised geodesic. Then, along the geodesic, d�k
p


� /ds = D �k
p

� /ds =

k
��p

p� +k
p


�� p� = 0, because k�
��� = 0 and p
�� p� = 0.
Thus, since there are two Killing fields in the Kerr solution, k


�t�
= �


0 and k


���
= �


3 , there

are two integrals of the geodesic equations; in the Boyer–Lindquist coordinates they are

p
k



�t�
= p0

def= E� p
k



���
= p3

def= −Lz� (20.96)

In every geometry, there also exists the first integral that says that the tangent vector
to a geodesic has constant length, d

(

g
�p

p�
)

/ds = D
(

g
�p

p�
)

/ds = 0. The affine
parameter s is determined up to a constant factor. We choose it so that for timelike
geodesics

g
�p

p� = �0

2 = constant� (20.97)

where �0 is the mass of the orbiting particle. This parametrisation will allow an easy
specialisation to null geodesics, for which �0 = 0.

In fact, there exists a fourth first integral, discovered by Carter. We will follow Carter
(1973) in introducing it. The geodesic equations are the Euler–Lagrange equations for the
following Lagrangian:

� = 1

2
g
�

dx


ds
dx�

ds
def= 1

2
g
�ẋ


ẋ�� (20.98)

The momentum is then p
 = g
�ẋ
�, and the geodesic equations can be derived by the

Hamilton–Jacobi method, where the Hamiltonian is

H
def= p
ẋ


 −� = g
�ẋ

ẋ�/2 = �� (20.99)

The following Lemma holds:

Lemma 20.2 Let the Hamiltonian have the form

H = 1

2

Hr +H�

Ur +U�

� (20.100)

where H� and U� depend only on �, while Hr and Ur depend only on r. (Note: the
functions depend also on the components of momentum, which are variables independent
of the coordinates.) Then

K
def= − UrH� −U�Hr

Ur +U�

(20.101)
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commutes (in the sense of vanishing Poisson bracket) with the Hamiltonian, and thus is
a constant of the motion.

The proof follows by simple calculation.
The Kerr Hamiltonian with # = 0 is

H = −!�p�
2 −!�

−1 (Z�pt +C�p�

)2

2
(

C�Zr −CrZ�

)

+−!rpr
2 +!r

−1 (Zrpt +Crp�

)2

2
(

C�Zr −CrZ�

) � (20.102)

Substituting whatever necessary in (20.102) and (20.101), and using (20.52), we obtain
for the fourth constant of the motion

K = a2 sin2 �

(
�

!r

ṙ2 − !r

�

(

a sin2 ��̇− ṫ
)2
)

+ (r2 +a2
)

(

��̇2 + sin2 �

�

[(

r2 +a2
)

�̇−aṫ
]2

)

� (20.103)

The constants defined in (20.96) and (20.97) are

E = r2 −2mr +a2 cos2 �

�
ṫ+ 2mra sin2 �

�
�̇� (20.104)

Lz = −2mra sin2 �

�
ṫ+
[

−!ra
2 sin2 � + (r2 +a2

)2
]

sin2 �

�
�̇� (20.105)

�0
2 = −�

(
ṙ2

!r

+ �̇2

)

− sin2 �

�

[(

r2 +a2
)

�̇−aṫ
]2 + !r

�

(

a sin2 ��̇− ṫ
)2

� (20.106)

These equations can now be solved for the velocities, which allows some general discus-
sion. We introduce the following new functions:

R�r�
def= −K!r −�0

2
(

r2 +a2
)

!r + [(r2 +a2
)

E−aLz

]2
� (20.107)

%���
def= K−�0

2a2 sin2 � − sin2 �

(

aE− Lz

sin2 �

)2

� (20.108)

The components of the velocity are then given by

�2ṙ2 = R�r�� (20.109)

�2�̇2 = %���� (20.110)

��̇ =
(

1

sin2 �
− a2

!r

)

Lz +
2mra

!r

E� (20.111)

�ṫ = −2mra

!r

Lz +
((

r2 +a2
)2

!r

−a2 sin2 �

)

E� (20.112)
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This can be disentangled still further. From (20.109) and (20.110) we see that
��̇/

√

%��� = �ṙ/
√

R�r� = 1. We take the quotient of these two equations to obtain
(20.113), and their sum to obtain (20.114) below. In deriving (20.114) we substitute for �

and group the terms so that each integrand depends on just one coordinate. The result is
∫ d�√

%
=
∫ dr√

R
= Q = constant� (20.113)

&−&0 =
∫ a2 cos2 �d�√

%
+
∫ r2 dr√

R
� (20.114)

where & is the affine parameter on the geodesic. The two equations above determine
r�&� and ��&� implicitly.

In order to disentangle (20.111)–(20.112) in a similar way, we note from (20.109)–
(20.110) that 1/� = �̇/

√

%��� = ṙ/
√

R�r�, and use one or the other of these equations
to obtain an integrand that is a function of r only, or one that is a function of � only.
The result is

�−�0 =
∫ Lz d�

sin2 �
√

%
+
∫ 2mraE−a2Lz

!r

√
R

dr� (20.115)

t− t0 =
∫
(

r2 +a2
)2

E−2mraLz

!r

√
R

dr −
∫ a2 sin2 �E√

%
d�� (20.116)

In this form, the geodesic equations can be solved and investigated numerically. The
equations of null geodesics follow as the subcase �0 = 0.

Without numerical integration, only a few qualitative conclusions may be drawn. For
example, if an orbit lies in the equatorial plane (� = �/2 and �̇ = 0 on the whole orbit)
or is tangent to that plane at one point (� = �/2 and �̇ = 0 only at that point), then

C
def= K+�0

2a2 − �aE−Lz�
2 = 0� (20.117)

For the orbits that cross the equatorial plane at a nonzero angle, C> 0. (For the equations
to be well defined, R and % must be non-negative.) For the orbits that never go through
� = �/2, C may be negative. For the orbits that run along the symmetry axis, Lz = 0.

A detailed investigation of arbitrary timelike geodesics in the Kerr solution, and also
in its generalisation for the cosmological constant, was published recently by Kraniotis
(2004). The discussion includes physical effects, such as frame dragging, in the proper
(# = 0) Kerr metric, and it has been announced that a similarly detailed discussion of the
physical effects in the presence of # will be published in the future.

20.7 Geodesics in the equatorial plane

This section is based on the papers by Bardeen (1973) and by Boyer and Lindquist (1967).
In the spherically symmetric case each timelike or null geodesic lies in a plane, and

then the coordinates are chosen so that it is the equatorial plane. In the Kerr spacetime,
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which is mirror-symmetric with respect to the plane � = �/2 (in the B–L coordinates),
but not spherically symmetric, we do not have that freedom. The equatorial plane is
� = �/2, and a given geodesic either lies in it or does not. Equations (20.109)–(20.116)
simplify a lot when it does, and we will consider this case now.

Consider Eq. (20.109) in the case � = �/2, �̇ = 0. The regions accessible for motion
are determined by R�r� ≥ 0. It is more convenient to treat R�r� as a function of E. For
motions in the equatorial plane, C = 0 in (20.117), which allows us to express K through
the other constants. Substituting such K in (20.107) we obtain

1
r
R�r� = [r (r2 +a2

)+2ma2
]

E2 −4amLzE− �r −2m�Lz
2 − r!r�0

2� (20.118)

The discriminant of this, with respect to E, is

� = 4!r

{

r2Lz
2 +�0

2r
[

r
(

r2 +a2
)+2ma2

]}

� (20.119)

and for each r > 0 its sign is the same as the sign of !r . Hence, R has zeros only in those
regions where !r ≥ 0. Before we conclude what this means, note that the component p0 of
the tangent vector to the geodesic must be positive: since p0 ∝ dx0/ds, the opposite would
mean that we follow the motion backward in time. From (20.96) and (20.57) we find

p0 = g00E+g03Lz = B �E−�Lz� / �!r�� � (20.120)

where

B
def= (r2 +a2

)2 −!ra
2 sin2 �� �

def= 2amr/B� (20.121)

Hence, p0 > 0 ⇐⇒ E > �Lz, which, in the plane � = �/2, reduces to

E > 2amLz/D� D
def= r
(

r2 +a2
)+2ma2� (20.122)

The two roots of the equation R�r� = 0 are

E± = 1
D

(

2amLz ±
√

!r

(

r2Lz
2 +�0

2rD
)
)

� (20.123)

We see that the root E− does not obey (20.122). Thus, the motion in the equatorial plane
can occur only at values of E > E+.

Now consider the sign of !r . If a2 >m2, then !r > 0 for all values of r, and there exists
no hypersurface analogous to the Schwarzschild horizon at r = 2m. This means that there
are no obstacles to communication with the singular ring at �r = 0�� = �/2 . This is
the case of naked singularity. The prevailing opinion in the astrophysical community is
that real astronomical objects, when they are about to collapse to a black hole state, must
somehow get rid of the excess angular momentum to achieve a2 < m2. Nevertheless, our
familiar celestial bodies, like the Sun and the Earth, have a2 > m2 (verification of this is
left as an exercise for the reader).
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If a2 < m2, then !r > 0 for r < r− and for r > r+, where the r± are given by (20.58).
Between r− and r+, the discriminant (20.119) is negative, which means that R�r� cannot
have any zeros there, which in turn means that dr/ds �= 0. Hence, there exist no circu-
lar orbits in that region and no turning points for other orbits. An orbiting body that
enters the region �r−� r+� from the side of r > r+ must keep decreasing its r until it flies
through the hypersurface r = r−. Unlike in the Schwarzschild case, however, it does not
have to hit the singularity, since the orbit can have a turning point at r < r−. Conversely,
a body that entered the region �r−� r+� from the side of r < r− must keep increasing its r

until it flies through the hypersurface r = r+. Thus, the region r− < r < r+ is analogous
to the region r < 2m in the Schwarzschild spacetime and to the respective region in the
Reissner–Nordström spacetime. The analogy with the R–N spacetime is far-reaching; see
Section 20.8.

More information about the orbits follows from the graph of the function Emin�r� =
E+�r�; see Fig. 20.7. We consider only the case a2 < m2 and the region r > r+, so the
curves begin at r = r+. Each orbit has a constant E ≥ Emin�r� = E+�r�. Thus, the area
accessible for motion is above the graph of Emin�r�, and the value of E determines the
allowed range of r on the orbit. Note that Emin/�0 →

r→� 1, independently of the value of

Lz. When Lz = 0, the function Emin/�0 has a positive derivative for all r ≥ r+, and so
is smaller than 1 for all r ≥ r+. However, if �Lz� is sufficiently large, then there exists
an interval �r1� r2�, with r+ ≤ r1 < r2, in which Emin/�0 ≥ 1, and Emin/�0 < 1 for r > r2

(see Exercise 11), independently of the sign of Lz. Thus, with �Lz� sufficiently large,
Emin/�0 necessarily has a local maximum at some r = ru > r+ and a local minimum at
r = rs > ru, just as is shown in Fig. 20.7. The region where Emin/�0 < 1 is the locus of

r

y

marginally stable

unstable

stable

Fig. 20.7. Graphs of the function y�r�
def= Emin�r�/�0 − 1 for different values of Lz. For every

value of Lz, y�r� → 0 as r → �. The lower graph corresponds to Lz = 0; then the function is
all monotonic. The upper graph corresponds to �Lz� being large – the function y�r� then has a
maximum that determines the position of the unstable circular orbit and a minimum that determines
the stable circular orbit. The middle graph approximately corresponds to such an intermediate value
of Lz, at which the maximum and the minimum coalesce into a single point where d2y/dr2 = 0.
This point then determines the position of the marginally stable circular orbit. The curves begin at
r = r+; the y-axis is drawn at approximately this value of r.
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bound orbits, and r = rs is the radius of the stable circular orbit (i.e. there exists one for
each sufficiently large value of �Lz�, for each sign of Lz). A circular orbit also exists at
r = ru, but it is unstable.

Note in (20.123) that a and Lz may have opposite signs. When aLz > 0, the orbital
angular momentum of the orbiting body and the internal angular momentum of the source
of the gravitational field have the same sense. Such orbits are called direct. When aLz < 0,
the two angular momenta have opposite senses. Such orbits are called retrograde. The
value of Emin at a given r is different for each of these orbits. The difference between them
is a relativistic effect: the Newtonian gravitational field does not ‘feel’ in which direction
the central body is rotating. It is only sensitive to the asymmetries in the gravitational field
created by asymmetries (polar flattening) in the central body caused by the centrifugal
force. Retrograde orbits in Newton’s theory are exactly the same as direct orbits.

The qualitative difference between them in relativity is in fact quite pronounced. Note
from (20.123) that with aLz < 0 and r sufficiently close to r+ (i.e. with !r close to zero)
Emin < 0, so E can be negative. This is the total energy ‘at infinity’, with the energy
equivalent of the rest mass included.1 Thus, E< 0 means that the whole energy contained
in the particle is insufficient to actually send it to infinity. In other words, the energy that
the particle must have lost on entering such an orbit was greater than the rest energy.
This effect does not appear for direct orbits, or in the Schwarzschild limit a = 0.

Where exactly can such negative-energy orbits occur? Note that the momentum of a
physical particle must be a timelike vector, g
�p
p� > 0. Let us choose an orthonor-
mal tetrad, in which gij = diag�+1�−1�−1�−1�; then for the tetrad components of the
momentum we have

p0̂
2 −p1̂

2 −p2̂
2 −p3̂

2 = �0
2 > 0 =⇒ �p3̂� < p0̂� (20.124)

For the metric (20.57), we choose the following orthonormal tetrad:

e0 = e� dt� e1 = e& dr� e2 =
√

�d�� e3 = e��d�−�dt�� (20.125)

where

e2� = !r�/B� e2& = �/!r� e2� = B sin2 �/�� (20.126)

and B and � were defined in (20.121).2 The tetrad components of the momentum, defined
in (20.96), are then

p0̂ = e−� �E−�Lz� � p3̂ = e−�Lz� (20.127)

From the first equation we have E = e�p0̂ +�e�p3̂. But p0̂ = p0̂ > 0, as explained after
(20.119). Hence, for E to be negative, �e�p3̂ must be negative. Since �p3̂� <p0̂, it follows
that �2e2� > e2�, which means that g00 < 0. Thus, orbits with negative energy can exist
only between the stationary limit hypersurfaces.

1 The gravitational field ‘at infinity’ vanishes, hence special relativity applies there, and in special relativity p0 = E is the total
energy of the orbiting particle.

2 The verification that the metric defined by such a tetrad coincides with (20.57) is rather laborious. The first thing to verify
is that !r�

2 −4a2m2r2 sin2 � = B
(

r2 −2mr +a2 cos2 �
)

.
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This was a necessary condition for the existence of orbits of negative energy. What
is a sufficient condition? Suppose that p1̂ = 0 at an initial point of the orbit. Then p0̂ is
bounded because p0̂

2 = �0
2 +p2̂

2 +p3̂
2, while p2̂

2 = �2�̇2 and p3̂
2 = e−2�Lz

2 are both
bounded in the region r > r+; see (20.110) and (20.121). Consequently, e�p0̂ can be made
as small as we wish by taking r sufficiently close to r+. Then, since E = e�p0̂ +�Lz, and
� is seen to have a positive value at r = r+, it suffices to take aLz < 0 and such r that
e�p0̂ < ��Lz� to achieve E < 0.

Equation (20.123) simplifies for photon orbits, for which �0 = 0:

E�
min = ±Lz

(

r
√

!r ±2am
)/

D� (20.128)

where ‘+’ corresponds to Lz > 0 and ‘−’ to Lz < 0. One can show that, for any sign, the

function F�r�
def= E�

min/ �Lz� has exactly one maximum and no minima for r ∈ �r+��� (see
Exercise 12). Thus, a photon orbit in the equatorial plane can have only one turning point
and there are no stable circular orbits. For each value of Lz, there exists a circular orbit
that lies on the maximum of the function F�r�, and so is unstable. The same conclusion
follows in the Schwarzschild limit a= 0 (see Misner, Thorne and Wheeler (1973) for more
details on this subcase). A representative graph of the function F�r� is shown in
Fig. 20.8.

Still more information about equatorial null geodesics can be drawn from the equation
of radial motion. As seen from (20.109) and (20.118), for null geodesics (where �0 = 0)
the affine parameter may be redefined by s = Es′, so that only the ratio Lz/E enters
the equation. Consequently, it may be assumed without loss of generality that E = 1.
We redefine some of the variables as follows:


def= r/�2m�� &

def= −Lz/�2m�� 

def= a/�2m�� (20.129)

r

F (r )

Fig. 20.8. The analogue of the graph from Fig. 20.7 for null geodesics in the equatorial plane.
The curve begins at r = r+. The graph has the same general shape for all values of Lz.
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Then, for equatorial geodesics, for which C = 0, we obtain

ṙ2 = [3 + (
2 −&2
)

+ �
+&�2
]

/3 def= ���/3� (20.130)

The turning points of the null geodesics are at the zeros of the polynomial ���, and the
motion can take place in those ranges of  where ���/3 > 0. Since we will extend the
Kerr manifold in the next section to include also negative values of r, we will take them
into account here.

Apart from the special arrangement in which 
 = −&, i.e. a = Lz, the last term in � is
always positive, so ��0� > 0, while � becomes negative for sufficiently large negative .
Thus, � typically has a real root at  = 1 < 0 and is positive for some  > 1. Then any
ray sent in from r = −� will eventually return to r = −� (the ray with 
 = −& hits the
r = 0 singularity). If &2 ≤ 
2 while & �= −
, then there are no positive roots of �, and any
ray sent in from the side of positive  will necessarily hit the singularity. If &2 is smaller
than some &1

2, then � is positive for all  > 0 and such rays will hit the singularity,
too. However, if &2 is sufficiently large, then � will have two positive roots. In that
case, there will be rays that come in from r = +� and turn back at a 2 > 0, possibly
after circling the central body several times in a spiral, and rays that come from the side
of r = 0 and turn back towards r = 0 after reaching a maximal distance 0 < 1 < 2.
The situation is shown in Fig. 20.9. Figures 20.10 and 20.11 show the situations when
a2 = m2 and a2 > m2, respectively. The contours separating the allowed and prohibited
areas are graphs of the &�� function found by solving the equation ��� = 0 for &; from
the definition (20.130) the solution is

& =
(

−
±��√2 −+
2
)/

�1−�
def= &±��� (20.131)

In comparing Eq. (20.131) with the figures note well that the relation between the various
branches of &�� depends on the sign of , in consequence of the �� in front of the square
root. Namely, in the  < 0 area of Fig. 20.9, the upper branch corresponds to &−��, and
the lower branch to &+��, while the opposite is true in the  > 0 area. Also, note well
that it is �/3 that must be positive in the allowed region; hence in the  < 0 area the
allowed region is where � < 0.

For timelike geodesics, we can choose the affine parameter so that �0 = 1. We define

�
def= E2 −1, and, using (20.129), we obtain from (20.109) and (20.118) (with � = �/2):

ṙ2 = 1
3

[

�3 +2 + (
2� −&2
)

+ �
E+&�2
] def= 1

3
���� (20.132)

The allowed range of r is given by ���/3 ≥ 0. The zeros of ��� exist only for those
values of  at which the discriminant of ��� treated as a function of & is non-negative,
thus

� = �−−� �−+� ��+1� ≥ 0� (20.133)
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λ

ρ
λ−

λ+

λ−

λ−
λ+

ρ− ρ+

Fig. 20.9. The allowed ranges of & and  for null geodesics in the case a2 < m2 (the areas
covered with crosses are prohibited). For & sufficiently small or sufficiently large, the rays can
either emanate from  = 0 and turn back at a finite distance, or come in from r = +� and turn
back to infinity at a finite distance. In between, on the  > 0 side, the rays mostly hit  = 0, except
for a small range of &, in which there is the little prohibited ‘peninsula’. On the  < 0 side, all
rays that come in from the direction of r = −� turn back at a finite distance, except the rays with
& = −
 that hit the singularity. The right tip of the peninsula is at  = −, the radius of the inner
event horizon. The left tip of the prohibited wedge in the  > 0 region is at  = +, the outer event
horizon. With decreasing 
, the peninsula shrinks and its left tip moves towards the -axis (and
so does the tip of the white wedge on the left), the upper prohibited area on the right moves down
and left, while the lower prohibited area moves down and right. In the limit a = 0 the peninsula
disappears, and the whole graph becomes mirror-symmetric with respect to the -axis. For what
happens when a increases, see Figs. 20.10 and 20.11.

where ± are the event horizons; − < 1/2� − <+ < 1. Note that � ≥ −1 by definition.
The following cases have to be considered:

Case 1: � < 0.
Then �� � ≤ 1, and � ≥ 0 for 0 ≤  ≤ − and for + ≤  ≤ 1/�� �. By considering the signs
of � and of �1−� (the coefficient of &2), the following subcases are discerned:

(a)  < 0 – this area is all prohibited;
(b) 0 ≤  ≤ − – orbits exist for & ≤ &− and for & ≥ &+, where

&±�� =
(

−
E±√
�
)/

�1−� (20.134)

(note that &− < &+ when  < 1 and &+ < &− when  > 1);
(c) − <  < + – all values of & are allowed;
(d) + ≤  < 1 – orbits exist for & ≤ &− and for & ≥ &+;
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ρ

λ

λ–

λ+

λ–

λ–

λ+

ρ− = ρ+

Fig. 20.10. The allowed ranges of & and  for null geodesics in the critical case a2 = m2. The
little prohibited peninsula from Fig. 20.9 has extended to touch the tip of the lower prohibited area.
The contact point has  = − = +.

ρ

λ

λ–

λ+

λ–

λ–

λ+

Fig. 20.11. The allowed ranges of & and  for null geodesics in the case a2 > m2. The two
prohibited areas at � > 0�& < 0 merged into one. As a2 increases, the lower prohibited wedge
becomes gradually wider and its tip moves down, while the upper prohibited area on the right
moves up and farther to the right.
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(e)  = 1 – orbits exits for & ≥ − [� (2
2 +1
)+
2 +1

]

/�2
E�;
(f) 1 <  ≤ 1/�� � – orbits exist for &+ ≤ & ≤ &−;
(g)  > 1/�� � – this area is all prohibited.

Figure 20.12 shows Case 1 with a > 0. The curves &�� determined by ��� = 0 have
vertical tangents at  = 0�  = ±�  → 1 and at  = −1/� . At  > 1, the part above each
‘belly’ in the main figure is the &−�� branch; the part below is &+��. At  < 1, the
roles of &− and &+ reverse, with &− going to +� or −� as  → 1±, respectively. Curve
(a) corresponds to � = −1; curves (b)–(d) correspond to increasing values of � . The

ln ρ

λ

1ρ+

a

b c d

a
b

c

ρ
λ

Fig. 20.12. The allowed ranges of & and  for timelike geodesics in the case a2 <m2, for different
values of � . All the curves correspond to a > 0 and � < 0; � increases from curve (a) (on which
� = −1 ⇐⇒ E = 0) to curve (d). The allowed areas are to the left of each curve. With � < 0, the
whole region  < 0 is prohibited. Little prohibited peninsulas similar to the one from Fig. 20.9 are
present also here; they are shown in the inset (where curve (d) is omitted). The scale on the -axis
is logarithmic in the main figure and linear in the inset. Horizontal lines show the allowed ranges
of  on two bound orbits. Since a > 0 for all curves, & > 0 corresponds to retrograde orbits and
&< 0 to direct orbits; the figure clearly shows their inequivalence. There exist allowed regions also
with  < 0 when � > 0; see the text.
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information about the allowed ranges of & can be briefly summarised by saying that the
allowed area is to the left of each curve. The inset shows a magnified view of the region
0 ≤  ≤ −, where small prohibited ‘peninsulas’, similar to the one seen in Fig. 20.9,
exist.

Case 2: � > 0.

Then � ≥ 0 and there are the following ranges of  to consider: (a)  ≤ −1/� , (b) −1/�<

 < 0, (c) 0 ≤  ≤ −, (d) − <  < +, (e) + ≤  ≤ 1 and (f)  > 1.
In cases (a), (c) and (e) the allowed range is & ≤ &− and & ≥ &+, in case (f) the allowed

range is &− ≤ & ≤ &+, in the remaining two cases all values of & are allowed.

Case 3: � = 0.

Details of Case 2 and the whole Case 3 are left as an exercise for the readers.
Bound orbits exist in those cases where a line & = constant in the graph has a segment

that runs in the allowed region and has both ends on the same &�� curve. In Fig. 20.12
such bound states exist for curves c and d; two of them are shown.

20.8 * The maximal analytic extension of the Kerr spacetime

This section is based on the paper by Boyer and Lindquist (1967), who were the first
to construct a complete extension of the case a2 < m2. Important contributions to this
subject were published also by Carter, who first constructed such an extension along the
symmetry axis (Carter, 1966b) and then extended the Boyer–Lindquist (B–L) construction
to the charged case (Carter, 1968b) and to the critical case a2 = m2 (Carter, 1973).

It can be predicted that the maximal extension of the Kerr spacetime will be qualita-
tively similar to the corresponding extension of the Reissner–Nordström (R–N) spacetime
(see Section 14.15). In the Schwarzschild spacetime, the singularity at r = 0 lies in
the region where the hypersurfaces r = constant are spacelike, i.e. transversal to all
causal curves. Hence, any causal curve running in that region must hit the singularity
after a finite proper time (or, for null geodesics, at a finite value of the affine parame-
ter). In the R–N and Kerr spacetimes, the singularity at r = 0 lies in the region where
the hypersurfaces r = constant are timelike. Consequently, it is possible for a causal
curve in that region to steer clear of the singularity. Any such curve in the R–N space-
time can be continued infinitely far to the future, but, in consequence of the geometric
arrangement of the event horizons, it cannot return to the asymptotically flat region
from which it entered – this would require travelling backward in time. This is how
the infinite chain structure arises. We will find a similar thing to happen in the Kerr
spacetime.

The B–L coordinates are useful for many calculations, but not for considering the exten-
sions across spurious singularities, since they had in fact introduced these singularities.
Therefore, we will have to begin with other coordinates.
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Take the Kerr metric in the form (20.52) and find its inverse. It is

(
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)2

=
(

"

"t

)2

− 1
�

[

(

r2 +a2
)
(
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+ 2mr

�

(
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)2

� (20.135)

This has the Kerr–Schild form (20.9), in which the flat metric (the limit m= 0 of (20.135))
is expressed in spheroidal coordinates. The Kerr–Schild vector field k
 is seen to be
proportional to

k
 = (kt� kr� k�� k�
)= �1�−1�0�0�� (20.136)

It turns out that this is exactly the Kerr–Schild field – it obeys kk
� = 0, i.e. it is affinely
parametrised. In fact, since k
 = dx
/ds, the coordinate t or r can be chosen as the affine
parameter. Since kt > 0, the vector field k
 is future-pointing, and, since kr < 0, it is
ingoing. It is tangent to the surfaces �� = constant�� = constant�. With � �= �/2, the
null geodesics tangent to k
 proceed towards smaller r until they cross the r = 0 disc
and continue into the r < 0 region. The null geodesics lying in � = �/2 hit the ring
singularity at �r = 0�� = �/2 .

However, since the Kerr metric is of Petrov type D, it defines a second degenerate
Debever congruence (call it �
), which, by virtue of the Goldberg–Sachs theorem 16.4,
must also be geodesic and shearfree. There is no reason why one of these congruences
should be preferred, so it should be possible to express the Kerr metric in the Kerr–
Schild form (20.9) also with respect to �
. The B–L coordinates of (20.57) are helpful in
identifying �
. The metric expressed in them is invariant under the substitution dr → −dr,
which changes the ingoing field (20.136) into an outgoing one, and so puts an outgoing
field into the position of k
. That outgoing field must thus be a Kerr–Schild field, too.
To find that second field we transform k
 to the B–L coordinates, obtaining

k
 = [(r2 +a2
)

/!r�−1�0� a/!r

]

� (20.137)

which implies that

�
 = [(r2 +a2
)

/!r�+1�0� a/!r

]

� (20.138)

and then we transform �
 back to the coordinates of (20.52):

�
 = [(r2 +a2 +2mr
)

/!r�+1�0�−2a/!r

]

� (20.139)

The coordinate r is still an affine parameter on the geodesics tangent to �
, but t is
not. The expressions (20.138) and (20.139) become singular where !r = 0. To find the
expression for �
 on the horizons, we note that it is proportional to the vector field (in
the B–L coordinates)

�̃
 = (r2 +a2�!r�0� a
)

� (20.140)
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At r = r±, the field �̃
, while being still null, becomes �̃

± = N �2mr±�0�0� a�, i.e. it

becomes tangent to the r = r± hypersurfaces. Thus, the hypersurfaces r = r± are tangent
to the light cones, i.e. matter and light can cross them in one direction only (they are
crossed by the null curves tangent to k
, which is an ingoing field, so the allowed direction
is from outside in). This confirms that they are event horizons. Moreover, note that �̃


± is
geodesic and affinely parametrised.

In the coordinates of (20.52), the fields k
 and �
 appear non-symmetrically, while they
play similar roles in the metric. This is because the coordinates of (20.52) are adapted
to the field k
. Since in the B–L coordinates the roles of these fields are interchanged
by the substitution dr → −dr, we find the coordinates adapted to �
 in the following
way: (1) carry out the substitution dr → −dr in (20.57); (2) carry out the transformation
inverse to (20.56) on the result of step (1) – the result will be (20.52) with dr replaced
by −dr ′ (or, equivalently, with �t��� replaced by �−t�−��); (3) carry out the same two
transformations on the components of the fields k
 and �
. The result will be

k
 = [(r2 +a2 +2mr
)

/!r�−1�0�−2a/!r

]

� �
 = �1�+1�0�0�� (20.141)

i.e. the roles of k
 and �
 are now interchanged, except that k
 is still ingoing, while �


is still outgoing. In these coordinates it is seen that k
 at the horizons is tangent to them.
This looks mysterious, but the coordinates of (20.136) (call them, after Boyer and

Lindquist (1967), an E frame) and of (20.141) (call them an E′ frame) do not have the
same domain, and the horizon tangent to k
 is not the same one that is tangent to �
. To
see this, note that both vector fields are future-pointing, k
 is ingoing and �
 is outgoing.
Begin at a point in the r > r+ region and proceed along the null geodesics tangent to k
.
Since it is ingoing, by moving to the future you proceed towards smaller r, and you will
eventually cross the surface r = r+ (at which k
 has no singularity). Not so with the �


field – if you follow its integral lines to the future from any point in r > r+, then you
proceed towards larger r and you will never reach any of the horizons. In order to meet
the r = r+ hypersurface, you would have to move along �
 to the past.

The transformation from E to E′ is regular for all values of r only when a2 > m2,
but then no horizons exist. When a2 < m2, the domains of the two frames overlap only
partially. The transformation is

t′ = t− 2m√
m2 −a2

(

r+ ln
∣
∣
∣

r − r+
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∣
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∣
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2m

∣
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∣

)

�

�′ =�− a√
m2 −a2

ln

∣
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∣
∣

r − r+
r − r−

∣
∣
∣
∣
�

(20.142)

and it is singular at both horizons. Thus, the extension of the region r > r+ along the k

field, obtained by transforming to the E frame, is not the same as the extension along
the � field obtained by transforming to the E′ frame. This is an analogy to the Kruskal
extension of the Schwarzschild manifold.

These inequivalent extensions now have to be put together into an extended manifold.
Let us begin with the region r > r+ and the E′ frame, and let us move back in time along
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the � field. We can carry out the transformation from the E′ frame to the B–L coordinates
separately in each of the regions r > r+, r− < r < r+ and −� < r < r−. Hence, this E′

frame can be understood to be the common extension of these three regions; we will call
them regions �0�, �−1� and �−2�, respectively. Now let us go back to the r > r+ region,
let us transform the coordinates to the E frame and let us move forward in time along
the k field. Again, we can carry out the transformation from the E frame to the B–L
coordinates in each of the regions r > r+, r− < r < r+ and −� < r < r−. The first one
will be the same �0� as before, but the other two will be different from �−1� and �−2�
since they lie to the future of �0�. We shall call them �+1� and �+2�, respectively. The
result of these extensions is schematically shown in Fig. 20.13 on the left.

But then, in the �−1� region the field k exists together with �. Since !r < 0 there,
we see from (20.141) that a future-pointing field is actually �−k
�, not k
 itself, and
�−k
� is outgoing there, just like �
. We will thus hit the r = r+ horizon irrespective of
whether we move along �−k
� or along �
. However, the horizon that we meet when
moving along �−k
� is not the same as that which we meet when moving along �
. At the
first one, �
 becomes tangent to it, while �−k
� crosses it smoothly (as can be seen by
transforming to the E frame); at the second one �−k
� becomes tangent and �
 crosses it.
Thus, just like we did in the Kruskal extension of the Schwarzschild spacetime, we must
assume that there are two ways back to the future from region �−1� and that there exists
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r = +∞
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r = r–
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Fig. 20.13. Left: The coordinate patches −1 and −2 obtained by extending the region r > r+
along the � field (in the E′ frame), and the coordinate patches 1 and 2 obtained by extending the
same region along the k field (in the E frame). Right: The coordinate patches 0′′ and −2′′ were
added by extending the −1 patch along the k field, and then the coordinate patches +1′′ and +2′′

were added by extending the 0′′ patch along the � field. At this point there is no justification yet
for identifying the patches 1′′ and 1, and not even for placing 0′′ side by side with 1, but a proof
that this is correct is provided further on in the text. The straight segments of the edge of the figure
are null infinities. Spatial infinities are the extreme points on the left and on the right. The extreme
points at mid-height are +�; the others are −�.
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a second copy of region �0� that we will call �0′′�. Similarly, when we move from region
�−1� along �−k� back in time across r = r−, we obtain a second copy of region �−2�
that we will call �−2′′�.

Let us then move from region �−1� to �0′′� along the �−k� field.1 We are then back in a
region where !r > 0, so k
 itself is future-pointing and ingoing, while �
 is future-pointing
and outgoing. By moving along k
 to the future across r = r+ and then across r = r−, we
create second copies of regions �+1� and �+2� that we call �+1′′� and �+2′′�, respectively.
By analogy with the Kruskal extension of the Schwarzschild spacetime, we expect that
we can identify regions �+1� and �+1′′� – after all, there are timelike curves inside the
light cone tangent to the k and � fields with vertex in the region �−1�, and their future
should be continuously predictable. This (at this point still hypothetical) identification is
shown in Fig. 20.13 on the right. However, in order to prove that such an identification
is correct, we must find a coordinate map that will cover regions �0�� �+1�� �+1′′�� �0′′�
and �−1� simultaneously and will show explicitly that �+1� and �+1′′� coincide.

There is a difficulty here. In the Schwarzschild case, the a → 0 limits of k
 and �


are tangent to the surfaces �� = constant�� = constant , and the Kruskal diagram shows
that surface. Here, the fields k
 and �
 are not surface-forming, so we cannot adapt
coordinates to them. We will choose such coordinates u and v that the integral curves of
k
 and �
 will lie in the hypersurfaces u+v = constant and u−v = constant, respectively.

Take the B–L coordinates, since in them both null fields are treated on a nearly equal
footing – see Eqs. (20.137) and (20.138). As we approach the r = r+ hypersurface along
these fields, they approach the direction �2mr+�0�0� a�, which is a tangent vector to the
helix in spacetime with the equation d�/dt = a/�2mr+�. In the first step, we transform the
�-coordinate so that the fields approach the horizon along the hypersurface �′ = constant.
We call the new �-coordinate w and transform

w = �−at/ �2mr+� (20.143)

(this is not the only possible transformation that ‘untwists’ the fields at the horizon, but
it is the simplest one). This makes kw�r+� = 0, as desired.

The k and � fields obey

dt/dr = ± (r2 +a2
)

/!r (20.144)

(plus the equation that determines w�r�). The solution of (20.144) is

exp
(
r ± t

�+

)
r − r+

2m

( r − r−
2m

)−r−/r+ def= F�u±v� = constant�

�±
def= mr±/

√
m2 −a2�

(20.145)

1 Actually, after we have crossed the r = r+ hypersurface, we have to move on along k again.
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We want to cancel the spurious singularity at r = r+ (we will deal with the one at
r = r− later). Using the extension of the R–N metric as a guide (see Section 14.15), we guess

F�u±v� = �u±v�2� (20.146)

Then we obtain

u±v =
√

r − r+
2m

( r − r−
2m

)−r−/�2r+�

exp
(
r ± t

2�+

)

� (20.147)

'�r�
def= r − r+

2m

( r − r+
2m

)−r−/r+
er/�+ = u2 −v2� (20.148)

t = �+arctanh
(

2uv
u2 +v2

)

�

This is well defined in the �u� v� plane except on the straight lines u2 = v2, where t

becomes infinite. We have '�r� →
r→r−

−�, '�r+� = 0 and '�r� →
r→+� +�. The function

'�r� is well defined and analytic on the whole plane, so r�u� v� exists for all values of
u and v. The function t�u� v� is analytic everywhere except at the two straight lines. In
spite of that, the Kerr metric transformed to the �u� v���w� coordinates is analytic for
all values of u and v, including the two straight lines. To see this, verify that the result
of the transformation is

ds2 = 1
�!r

[(
2�+f�+
r+2 +a2

�vdu−udv�−a sin2 �!r dw
)2

−
(

2�+f�
r2 +a2

�vdu−udv�
)2
]

+ 4�+2f�

�r2 +a2�2

(

dv2 −du2
)

−�d�2 − sin2 �

�

(

af �r + r+�√
m2 −a2 �r − r−�

�vdu−udv�+ (r2 +a2
)

dw

)2

�

(20.149)

�±
def= ��r±��� �

f�r�
def= !r

'�r�
= 4m2

( r − r−
2m

)2m/r+
e−r/�+ �

The only term that might cause problems is the one with !r in the denominator, which
has a zero at r = r+. However, the numerator has a zero of the same (first) order there, so
the ratio has a finite limit and the metric is analytic for all values of u and v in the range
�−��+��, of w ∈ �0�2�� and of � ∈ �0���. (But recall that u2 −v2 = −� corresponds
to r = r−, so the extension we have just found has dealt with the spurious singularity at
r = r+, but not with the one at r = r−. We will deal with that one below.) Since r = r+
is no longer a singularity for (20.149), this is the metric that applies throughout regions
�0�, �+1�, �0′′� and �−1� in Fig. 20.13, so we have shown that the identifications made
in that figure can indeed be made.
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In order to remove the spurious singularities at r = r−, we would have to choose
F�u ± v� = �u ± v�−2r−/r+ in (20.146), with a result analogous to (20.148). Then the
range u ∈ �−��+��, v ∈ �−��+�� would cover the region r ∈ �−�� r+�, but the true
singularity at �r�u� v� = 0�� = �/2 would still be there. The coordinate system thus
obtained would apply throughout the regions �−2�−1�−2′′ and �+2�+1�+2′′ , plus in
the regions �+3� and �−3� that we are going to construct now.1

We can continue the process of extending the spacetime in the same way both upwards
and downwards, see Fig. 20.14. Thus, we can generate regions �+3� and �+4� by adapting
the coordinates to the � field in region �+2� and proceeding to the future, and we can
generate regions �+3� and �+4′′� by adapting coordinates to the k field in region �+2′′�
and proceeding to the future. Likewise, we can extend region �−2� along the k field to
the past and thus generate regions �−3� and �−4�, and extend region �−2′′� along the �

field to the past, thus generating regions �−3� and �−4′′�. Exactly as in the case of the
R–N spacetime (see Section 14.15) we must then decide whether we wish to continue
the process ad infinitum, or to identify two regions that are isometric, for example �−1�
and �+3�.

Like in the R–N case, the lines r = constant are hyperbolae in the surface �� =
constant�� = constant (compare Eqs. (14.149) and (20.148)), so the remark after
Eq. (14.156) applies also here – they will still be hyperbolae after the surface has been
compactified by (14.154)–(14.156). They are drawn accordingly in Fig. 20.14. Again
in analogy to the R–N case, they are timelike for r > r+ and r < r−, and spacelike for
r− < r < r+.

The arcs of hyperbolae in Fig. 20.14 represent the r = constant hypersurfaces; they
are timelike in even-numbered areas and spacelike in odd-numbered areas. The thick
arcs represent the sets r = 0; they are nonsingular except at � = �/2. This is the only
difference from the corresponding diagram for the R–N spacetime (Fig. 14.10): here,
null and timelike curves can be continued through the open disc �r = 0�� �= �/2 to
r → −�. The left and right edges of Fig. 20.14 are null infinities; those with numbers
divisible by 4 are +�, the remaining ones are −�. The extreme points of the edges
are the corresponding spatial infinities. Thick straight segments are the event horizons,
alternately r− and r+. Identifications can be made so that an odd-numbered area with
number n is identified with the area numbered �n+4k�, where k is a natural number.

There remains now the question of geodesic completeness of the mosaic manifold
represented by Fig. 20.14. We call a manifold geodesically complete if every geodesic
in it can be continued to an arbitrarily large absolute value of the affine parameter. We
already know that the extended Kerr manifold is not geodesically complete in the strict
sense: there are null geodesics that hit the ring singularity �r = 0�� = �/2 at a finite
value of the affine parameter and cannot be continued further. But we can consider
the geodesics that do not run into these singularities and then ask whether they can be
continued indefinitely. It turns out that in the extended Kerr geometry they can.

1 In fact, these coordinates could be used to extend regions �−2� and �−2′′� through r = r− to cover the not-yet-constructed
region �−3� between them, and likewise to extend �+2� and �+2′′� to �+3�, but we will do it by the previous method.
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Fig. 20.14. The compactified �u� v� surface of the maximally extended Kerr spacetime. The arcs
of hyperbolae are the r = constant lines, the thick arcs are the r = 0 lines. More explanation is
given in the text.
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Consider the geodesic equations (20.109)–(20.112). We applied them to timelike and
null geodesics only, but spacelike geodesics are automatically included if we replace the
parameter �0

2 with a negative quantity. The infinite values that appear as r → ±� are
no problem, since we know already that the spacetime becomes approximately flat there,
and so complete. The components of the tangent vector to a geodesic become infinite at
� = 0, sin� = 0 and !r = 0. The set � = 0 is just the singularity that we know exists.
The set sin� = 0 is the axis of symmetry. As seen from (20.110), a geodesic can run
only in the regions where % ≥ 0, and % → −� as � → 0, unless Lz = 0. Thus the axis
cannot be intersected by any geodesic that has Lz �= 0, and for those with Lz = 0 the set
sin� = 0 is nonsingular. Thus, we have to take care only about the infinities in ṫ and �̇

that appear on the horizons !r = 0.
Before we continue, note that a timelike or null geodesic can properly be called ingoing

only when along it, simultaneously, either �dt/ds > 0 and dr/ds < 0� or �dt/ds < 0 and
dr/ds > 0�. This can be summarised in the single inequality dr/dt < 0. By looking at
Eqs. (20.107), (20.109) and (20.112) we see that a geodesic is ingoing at r± if and only
if the quantities ṙ�r±� and �2mr±E−aLz� have opposite signs.

Now take the geodesic equations (20.111) and (20.112) and transform them by the
transformation inverse to (20.56) (in which, recall, t′ and �′ are the B–L coordinates).
The result is (the non-primed coordinates are now those of (20.52)):

�ṫ = −Ea2 sin2 � +
{(

r2 +a2
)2

E−2mraLz +2mrṙ
}

/!r�

��̇ = Lz/ sin2 � +a�2mrE−aLz + ṙ /!r�

(20.150)

If ṙ and �2mr±E −aLz� have opposite signs (i.e. if the geodesic is ingoing), then the
terms in braces vanish at both horizons, and their quotients by !r have finite limits, which
means that we have removed the singularities by a coordinate transformation. But why
does this work only for ingoing geodesics? This is because the coordinates of (20.52) are
adapted to the k field, which is ingoing, so they apply only in those regions where k
 is
finite. In order to deal with outgoing geodesics, we must employ coordinates adapted to
the outgoing � field, i.e. coordinates related to those of (20.150) and (20.52) by (20.142)
(t′ and �′ are the new coordinates, while t and � are those of (20.150)). Indeed, after
the transformation the terms containing ṙ in (20.150) change signs, so these coordinates
remove the singularities at !r = 0 for outgoing geodesics. Thus, by switching between
coordinate systems we can carry all geodesics through both horizons. Consequently, if a
geodesic does not strike the true singularity at � = 0, it can be continued to arbitrarily
large absolute values of its affine parameter.

The foregoing discussion concerned geodesics intersecting r = r±, but in fact the
conclusion applies also to geodesics that have turning points at r = r± or approach r = r±
asymptotically (by winding around the horizon). The key point was that ṫ and �̇ remain
finite as r → r±, asymptotically or not.

What remains are the null geodesics that run along the horizons – we left them after
(20.140) for separate consideration. For such geodesics r = r± = constant�ṙ = 0��!r = 0
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and, as seen from (20.140), �̇ = 0. It follows further from (20.140) that on the horizon

�̇ = aṫ/ �2mr±� � (20.151)

With this, (20.104) and (20.105) imply E = Lz = 0, and then (20.108) implies that also
K = 0. Substituting (20.140) and (20.151) in the geodesic equation we find1

t = s+ s1� � = a�s+ s2� / �2mr±� � (20.152)

where s is an affine parameter and s1 and s2 are arbitrary constants. Such a geodesic can
obviously be continued to s → ±�.

Finally, then, all geodesics that do not strike the ring singularity �= 0 can be continued
to infinite absolute values of their affine parameters.

We could draw figures similar to Figs. 14.7 and 14.11 for the surface �t = constant�� =
�/2 in (20.57). This surface has the metric

ds2
2 = r2

r2 −2mr +a2
dr2 +

(
2ma2

r
+ r2 +a2

)

d�2� (20.153)

If we want to embed it in a flat space, then the Cartesian coordinates in the flat space
must be given in terms of r and � as

x = F�r� cos�� y = F�r� sin�� z = ±G�r�� (20.154)

with F and G obeying

F = √2ma2/r + r2 +a2�

G�r
2 = (�r�

def= r2

r2 −2mr +a2
−

(

r −ma2/r2
)2

2ma2/r + r2 +a2
� (20.155)

Just as in the R–N case, the embedding can occur in a Euclidean space when (�r� ≥ 0
and in a pseudo-Euclidean space otherwise. It may be verified that (�r� > 0 for r ≥ r±
(see Exercise 14). However, for r < r+� (�r� can change sign several times. Thus, several
embeddings would be necessary to represent the full collection of shapes. Figure 20.15
shows the embedding of the region r ≥ r+.

In the extreme case a2 = m2 we use as a guide the e2 = m2 case of R–N Eqs. (14.163)–
(14.166)) and the procedure applied earlier in this section. The considerations about the
null Kerr–Schild fields k and � do not depend on whether a2 < m2 or a2 = m2. So, in
the present case, one of the fields passes through the hypersurface r = m smoothly, while
the other becomes tangent to it. The transformation (20.143) that ‘untwists’ the helical
field is here w = �− t/�2m�, and the solution of (20.144) is

±t = ��r�
def= r −m− 2m2

r −m
+2m ln

( r

m
−1
)

� (20.156)

1 The result obtained by Boyer and Lindquist (1967) in a strangely roundabout way is equivalent to (20.152), but their parameter
is non-affine.
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Fig. 20.15. An axial cross-section through the surface (20.154) for the region r ≥ r+ (thicker line)
and the corresponding cross-section for the Schwarzschild metric (thin line; this is a cross-section
through the surface from Fig. 14.7). For the Kerr metric, the quantity on the horizontal axis is
F�r� – the geometric radius of a circle r = constant in (20.153). The surfaces are tangent at the
equator (verify that F�r+� = 2m). Compare this figure with Fig. 14.11 for the Reissner–Nordström
spacetime.

We now introduce the null coordinates p and q such that the fields k
 and �
 obeying
(20.144) lie in the hypersurfaces p± q = constant; they are p = t + �, q = t − �. The
transformed metric is

ds2 = 1
4

(

1− 2mr

�

)

�dp+dq�2 − ��r −m�2

4 �r2 +m2�
�dp−dq�2 −�d�2

+2m2r sin2 �

�
�dp+dq�

(

dw+ dp
2m

+ dq
2m

)

−
(

2m3r sin2 �

�
+ r2 +m2

)(

dw+ dp
2m

+ dq
2m

)

� (20.157)

and it is non-singular everywhere except at the ring � = 0. The coordinates �p� q� have
infinite ranges, so in order to compactify the space and be able to draw a diagram like
Fig. 20.14, we transform �p� q� just like we did in (14.166), p = tanP�q = tanQ. The
resulting picture is again easy to construct, by analogy with Fig. 14.14. We can extend
the region r > m across r = m either along the ingoing k field to the future, or along
the outgoing � field to the past. Once we have crossed the r = m hypersurface, there
is nothing to prevent us from going to r → −�, unless we hit the �r = 0�� = �/2 
singularity. But on the other side of the horizon, when we used the k field to cross it, we
can use the � field to go to the past; and when we crossed the horizon along the � field,
we can use the k field to go to the future. What results looks like Fig. 20.14, but with the
odd-numbered regions all squeezed to lines, together with their lower-left and upper-right
neighbours; see Fig. 20.16. All r = constant surfaces are now either timelike or null. This
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Fig. 20.16. The �P�Q� surface of the maximally extended Kerr spacetime with a2 = m2. The
whole left edge represents r = −�, the whole right edge corresponds to r = +�. The thick straight
segments form the horizon r = m; the thick hyperbolae are the r = 0 sets. More explanation is
given in the text.

extension was first constructed by Carter; see Carter (1973) for a brief presentation and
references to earlier work.

Just like in the extremal R–N case, the invariant spatial distance from any point in the
r > m region to the horizon at r = m along a curve of constant �t����� is infinite, and
the embedding of the r > m part of the surface �t = constant�� = �/2 looks very much
like the left part of Fig. 14.15.

20.9 * The Penrose process

Penrose (1969) contemplated a process by which, in principle, the rotational energy of
a Kerr black hole can be extracted. The idea is based on the observation we made after
Eq. (20.127), that a body on a retrograde orbit inside the stationary limit hypersurface
can have a negative total energy if it is close enough to the event horizon r = r+. In brief,
Penrose’s idea was this: put two masses at the ends of a sufficiently strong spring, then
squeeze the spring and bind the masses together. Then send the composite on an orbit that
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enters the region between the stationary limit hypersurface and the event horizon r = r+.
That region is called the ergosphere, and the meaning of this name will become clear at
the end of this section. Design the orbit so that it has its turning point very close to r = r+
(how close will become clear below). When the composite object is at the turning point,
release the spring in such a direction that one of the masses is sent, with ṙ = 0 at the initial
point, on a retrograde orbit with a negative energy and with �Lz� sufficiently small that it
falls through the event horizon. It follows from the reasoning between Eqs. (20.127) and
(20.128) that this is possible: we direct the ejected mass so that aLz < 0, we make �Lz�
small enough that the mass is sure to go through r = r+ (see Fig. 20.12), and the orbit
has to be pre-designed so that at the turning point e�p0̂ < ��Lz�.

Since the mass dropped into the black hole carried away some negative energy, the
other mass acquires some additional energy, and additional momentum by recoil so that
it is sure to return to the outside of the stationary limit hypersurface – and it does so
having a greater energy than it had at the beginning of the journey. This trick can be
applied for as long as the stationary limit hypersurface and the horizon exist. The logical
conclusion is that the extra energy of the returning mass was gained at the expense of
the rotational energy of the black hole: the slower the black hole rotates, the smaller �a�
becomes, and the smaller the volume of the ergosphere. Strictly speaking, however, this
is a speculation that goes beyond the area of applicability of the Kerr metric. In order to
discuss this energy-extraction process in a perfectly correct way, we would have to use a
nonstationary solution in which the angular momentum of the source of the gravitational
field can depend on time.

The ergosphere was named after the Greek word 	�o, meaning ‘work’ – because, as
shown, thanks to its existence, a rotating black hole is in principle able to do some work.

20.10 Stationary–axisymmetric spacetimes and locally nonrotating observers

The Kerr spacetime, with its two commuting Killing fields, is an example of a stationary–
axisymmetric spacetime. We call a spacetime stationary when its metric tensor allows
a timelike Killing field (if the Killing field is hypersurface-orthogonal, then the spacetime
is called static). We call it axisymmetric when there exists a Killing field whose integral
lines are closed, and there exists a location in the spacetime at which the length of the
lines goes to zero. (Take a look at (20.57) – the length of the lines of constant �t� r���

is zero at � = 0.) For the stationary–axisymmetric spacetimes it is assumed in addition
that the two Killing fields commute; in consequence they are surface-forming.

Then, coordinates can be chosen so that the metric is independent of x0 = t (where
dx
/dt =k


�0�
– the timelike Killing field) and of x3 = � (where dx
/d� =k


�3�
– the

Killing field connected with axial symmetry). Let us call the other two coordinates x1

and x2.
At this point, it is assumed in addition that the surfaces generated by the Killing fields

admit orthogonal surfaces, i.e. that in the coordinates adapted to the Killing fields g01 =
g02 = g13 = g23 = 0 (this property is called orthogonal transitivity). This is equivalent
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to the requirement that the metric, and the motion of matter if any is present, is invariant
under the discrete transformation �t��� → �−t�−��.1 Several theorems were proven

in which the property
[

k
�0�

� k
�3�

]

= 0 and the orthogonal transitivity follow from other

assumptions. The intention of those theorems (see Stephani et al. (2003) for a brief listing)
was to show that spacetimes that do not possess these properties are rare, unimportant
or weird in some sense. The fact is, though, that not much is known about the cases left
out – no exact solutions of the Einstein equations have been found in those cases.

In a stationary–axisymmetric spacetime that is orthogonally transitive, coordinates
in the �x1� x2� surfaces can be chosen so that g12 = 0 – since we know that every
2-dimensional metric is conformally flat, and the property g12 = 0 is even weaker than
that. The metric is thus

ds2 = g00 dt2 +2g03 dt d�+g33 d�2 +g11 d�x1�2 +g22 d�x2�2� (20.158)

When two Killing fields exist and nothing else is assumed about them, the basis of the
space of Killing fields can be chosen arbitrarily. The transformation of the basis of the
form

k
�0�

′ = C0 k
�0�

+C3 k
�3�

� k
�3�

′ = D0 k
�0�

+D3 k
�3�

induces a transformation of the coordinates adapted to the Killing fields; the coordinates
�t′��′� adapted to k

�0�

′ and k
�3�

′ are related to �t��� by

t′ = C0t+C3�� �′ = D0t+D3�� (20.159)

Such a transformation preserves the independence of the metric tensor of t and � and
the orthogonal transitivity property; it only reshuffles the components g00� g03 and g33

among themselves. Note, however, that the Killing fields are in fact unique if they
correspond to stationarity and axial symmetry, and it is assumed in addition that the
spacetime is asymptotically flat. Then the integral lines of k

�3�
are closed, and the coor-

dinate � defined by this field is periodic with the period 2�. This excludes those
transformations (20.159) in which C3 �= 0, or else the strange behaviour illustrated in
Fig. 20.17 would occur: after increasing �′ by 2�C0D3/ �C0D3 −C3D0� we would land

at the same t′ line from which we started, but with the t′-coordinate increased by !t′
def=

−2�C3D3/ �C0D3 −C3D0�. The orbits of the k
�3�

field would thus be disrupted and changed

into infinite helices, while on two sides of the initial t line adjacent points would exist
whose time coordinate would differ by !t′. The time coordinate would thus fail to be a
continuous function of the spacetime point.2

1 An example of a configuration that does not obey this is a rotating gaseous body, inside which the gas circulates in the
meridional planes.

2 However, exactly this kind of time coordinate is used on the surface of the Earth – the discontinuity occurs across the line
of change of date that runs through the middle of the Pacific.
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t ′ = constant

  ′ = constantϕ 

Fig. 20.17. A coordinate transformation of the form (20.159) would result in disrupting the orbits
of the k

�3�
field and in a discontinuous time coordinate. The thick helix segment shows the jump in

t′ along the �′ = 0 line (given in the text).

The constant D0 has to be zero for a different reason. Suppose that the coordinates of
the stationary–axisymmetric spacetime that is asymptotically flat go over, asymptotically,
into the cylindrical coordinates:

ds2 = dt2 − r2 d�2 −dr2 −dz2� (20.160)

This means that asymptotically g03 must go to zero while g33/r
2 goes to −1. After a

transformation (20.159) with D0 �= 0, in the coordinates adapted to the transformed Killing
fields, the g03 component becomes

g′
03 = �g03 −D0g33� / �D3C0� �

and would fail to go to zero asymptotically at infinity. Consequently, D0 = 0 in conse-
quence of the assumed asymptotic flatness.

Finally, D3 = 1 in order that the period of � is 2�. Thus, the only freedom remaining
is the choice of the unit of time, connected with C0.

This uniqueness allows us to introduce the notion of locally nonrotating observers
(Bardeen, 1970). Write the metric (20.158) in the form

ds2 = e2� dt2 − e2� �d�−�dt�2 − e2& dr2 − e2� d�2� (20.161)

Now imagine an observer moving with the 4-velocity U
 such that Ur = U� = 0, i.e.

circulating within the �t��� surface. Define )
def= U�/Ut ≡ d�/dt – this is the angular

velocity of the observer. Imagine that she has set up mirrors all along her orbit so that
light rays emitted by her source can travel around the same circle in both directions and
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come back to her. Let the time of the round-trip of the light ray be T	, with 	 = +1
for the ray rotating forward and 	 = −1 for the ray rotating backward with respect to
the observer. The observer will during the time T	 move from the position �1 to the
position �2 = �1 +)T	. The light ray, during its round-trip, will move from �1 to �3 =
�1 +)T	 +2�	. Along the ray ds2 = 0, so 	e� dt = e��d�−�dt�, and consequently

dt = e�

�e� +	e�
d�� (20.162)

Integrating this over the whole round-trip we obtain

T	 = )T	 +2�	

�+	e�−�
� (20.163)

Solving this for T	 we obtain

T	 = 2�
e�−� −	�)−��

� (20.164)

Along the observer’s path d� =)dt, so her proper time s is related to her time coordinate
by

ds2 = [e2� − e2��)−��2
]

dt2� (20.165)

Hence, the proper time of the round-trip of the ray measured by the observer is

S	 =√e2� − e2��)−��2T	 ≡ 2�e�

√

1+	e�−��)−��

1−	e�−��)−��
� (20.166)

This time is different for the forward-sent ray and for the backward-sent ray (S1 �= S−1),
except when ) = �. Since, as has been shown, in an asymptotically flat spacetime the
�t��� coordinates of (20.161) are unique, � is uniquely determined by the geometry, so
there is a uniquely determined set of observers for whom the effect of rotation, �S1 −S−1�,
disappears. They are called locally nonrotating observers, after Bardeen (1970). Their
worldlines are orthogonal to the t = constant hypersurfaces, so their rotation tensor defined
by (15.30) is zero.

The quantities present in (20.161) were defined for the Kerr metric in Eqs. (20.121)
and (20.126). The Kerr metric is stationary, axisymmetric and asymptotically flat, with
the period of � equal to 2�, so it is an example of a spacetime that allows the existence
of locally nonrotating observers.

20.11 * Ellipsoidal spacetimes

Together with locally non-rotating observers, one can define another set of observers in
the Kerr spacetime – those for whom the locally orthogonal subspaces are composed of
confocal ellipsoids of revolution.

In order to define these observers, we first introduce the notion of an ellipsoidal
spacetime. It is defined in analogy to the spherically symmetric spacetimes – that are
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composed of concentric spheres. The ellipsoidal spacetimes are composed of concentric
ellipsoids in a similar manner.1

Consider a Euclidean space E3 with rectangular Cartesian coordinates �x� y� z� and
the metric ds2 = dx2 +dy2 +dz2. Introduce such �r����� coordinates that r = constant
defines an ellipsoid of revolution:

x = g�r� sin� cos�� y = g�r� sin� sin�� z = r cos�� (20.167)

They will be orthogonal when g2�r�− r2 = constant, i.e. when

g�r� =
√

r2 +a2� a = constant� (20.168)

This implies that the ellipsoids corresponding to different values of r are confocal, and
a is the radius of their common focal ring �r = 0�� = �/2 . The surfaces � = constant
are one-sheeted hyperboloids of revolution with their foci on the same ring. The metric
in these coordinates becomes

ds2 = r2 +a2 cos2 �

r2 +a2
dr2 + (r2 +a2 cos2 �

)

d�2 + (r2 +a2
)

sin2 � d�2� (20.169)

The space with the metric (20.169) is still flat. We make it curved by assuming that
grr = f 2�r��� is an arbitrary function – in analogy to a curved spherically symmetric space
that results when the Cartesian grr = 1 is replaced by grr = f 2�r�.

We now define an ellipsoidal spacetime as follows: there should exist a congruence
of timelike lines in it, with the tangent vector field

u
 = U�

0 +V�


3 (20.170)

(where x0 = t and x3 = �) such that the metric

ds3
2 = f 2�r���dr2 + (r2 +a2 cos2 �

)

d�2 + (r2 +a2
)

sin2 � d�2 (20.171)

coincides with the metric of the space locally orthogonal to u
, i.e.

h
� = g
� −u
u�� (20.172)

Since we intend to apply this construction to the Kerr metric, we assume that the ellipsoidal
spacetime is stationary and axially symmetric, and thus has the metric (20.158). Equating
(20.171) with (20.172) we obtain

−h
� dx
 dx� = −g11 dr2 −g22 d�2 − (g00g33 −g03
2
)

U 2

(

d�− V

U
dt
)2

= f 2�r���dr2 + (r2 +a2 cos2 �
)

d�2 + (r2 +a2
)

sin2 � d�2�

(20.173)

1 In this section, we will consider confocal ellipsoids of revolution. In principle, it should be possible to generalise this
construction to other types and arrangements of the ellipsoids, but so far those other possibilities have not been explored.
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Thus

g00g33 −g03
2 = − (r2 +a2

)

sin2 �/U 2� g11 = −f 2�r����

g22 = − (r2 +a2 cos2 �
)

� d� = d�− �V/U�dt�
(20.174)

and from the normalisation g
�u

u� = 1 we have

g00U
2 +2g03UV +g33V

2 = 1� (20.175)

The set (20.174)–(20.175) cannot be uniquely solved for g
� because we defined only
the 3-dimensional projection of the metric, h
�. Hence, g
� will contain one arbitrary
function, which we choose to be

k2 def= g33 + (r2 +a2
)

sin2 �� (20.176)

The resulting 4-dimensional metric is then

ds2 =
(

1∓kV

U
dt±kd�

)2

−f 2�r���dr2 − (r2 +a2 cos2 �
)

d�2

− (r2 +a2
)

sin2 � �d�− �V/U�dt�2 � (20.177)

The conditions (20.174)–(20.175) define metric components, so they are coordinate-
dependent. Thus, the condition of ellipsoidality in fact says that coordinates should exist
in which the metric obeys (20.174)–(20.175). In order to show that the Kerr metric is
ellipsoidal, the Boyer–Lindquist coordinates of (20.57) have to be transformed as follows

t = t′ +a�� �r����� = �r ′�� ′��′�� (20.178)

This transformation is of the ‘forbidden’ type (20.159) that leads to a discontinuous time
coordinate. The resulting metric is

ds2 =
(

1− 2mr

�

)

dt2 +2a
(

1− 2mr cos2 �

�

)

dt d�

+
(

a2 − 2mra2 cos4 �

�
− (r2 +a2

)

sin2 �

)

d�2 − �

!r

dr2

−�d�2� (20.179)

This is seen to coincide with (20.177) when

k2 = a2
(

1−2mr cos4 �/�
)

� U 2 = (r2 +a2
)

/!r�

V = �±k−g03U�/g33�
(20.180)

where the metric components refer to (20.179).
The ellipsoidal spacetimes were introduced by Krasiński (1978) with the hope that the

construction would help in the search for a perfect fluid source of the Kerr metric. It did
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not (see Section 20.13), and the ellipsoidal form turned out to be rather difficult to use
in calculations. So far, it has not found any practical application.

20.12 A Newtonian analogue of the Kerr solution

We found in Section 12.11 that the Newtonian theory results as the c → � limit of
relativity if the metric, when developed in power series with respect to 1/c2, has the
form (12.46). The corresponding expression for the Kerr metric is given in Eq. (20.47).
Since the r = constant surfaces were found to be confocal ellipsoids of revolution,
the Newtonian limit of the Kerr metric might be a gravitational field whose equipo-
tential surfaces are such ellipsoids. However, the potential implied in (20.47) is not
necessarily −2m/r; this may be just an approximation to it. Thus, in order to find the
Newtonian potential that is constant on the surfaces of confocal ellipsoids of revolution,
we have to consider the complete set of Newtonian field equations and equations of
motion.

In fact, an example of a source of such a potential has been known for a long time; it
was found by Chasles in 1840.1 The source was a homoeoid, i.e. an ellipsoid of revolution
with a uniform 2-dimensional distribution of matter over it. The equipotential surfaces are
ellipsoids confocal to the source. In the spheroidal coordinates, related to the Cartesian
ones by (20.167)–(20.168), the exterior potential is

Ve�r� = −�GM/a� arctan�a/r�� (20.181)

where M is the total mass of the homoeoid. (See Krasiński (1980) for details. The proof
that the potential of the homoeoid is independent of � is tricky; hints for it may be found
in Kellogg (1929).) Knowing that the potential depends only on r, it is actually quite easy
to guess a continuous density distribution that will generate the same exterior potential;
it is (Krasiński, 1980)

�r��� = f�r�/
(

r2 +a2 cos2 �
)

� (20.182)

where f�r� is an arbitrary function. The total mass of the source is then

M = 4�
∫ r0

0
f�r ′�dr ′� (20.183)

where r = r0 is the equation of the surface of the source. The field (20.181) may be
verified to be the unique solution of the Laplace equation that depends only on r (recall
that this is the spheroidal r!) and obeys the boundary conditions limr→� V = 0 and
limr→� r2 dV/dr = GM .

Some properties of this source were investigated by Krasiński (1980) and by Bażański,
Kaczyńska and Krasiński (1985). Among other things, the interior potential was found,
and the equations of motion were solved to find the distribution of velocity of matter

1 This information is based on Chandrasekhar (1969) and Webster (1949); the authors had no access to the original paper by
Chasles.
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and of pressure. The equipotential surfaces are ellipsoids of the same family (confocal)
also inside the source. If �r < 0, then the surfaces of constant matter-density are more
oblate than the equipotential surfaces; they do not coincide in any case. The pressure
is not constant on the equipotential surfaces either. The focal ring of the ellipsoids,
�r = 0�� = �/2 , is in general a singularity; in order to make it nonsingular the density
would have to increase with increasing r, at least in some neighbourhood of the ring.

We refer the reader to Krasiński (1980) and Bażański, Kaczyńska and Krasiński (1985)
for a more extended list of properties of this configuration. Let us only note a few
curiosities here:

1. The exterior field is determined only by the mass and angular momentum of the
body; it does not depend on the body’s size.

2. At a point P inside the body, the gravitational potential is determined only by
the mass contained inside the equipotential ellipsoid passing through P; the matter
exterior to that ellipsoid gives a zero contribution to the potential.

3. Although the configuration is rather special, in the spherically symmetric limit
a → 0 it reproduces all possible spherically symmetric configurations (because of
the arbitrary function f�r�).

This Newtonian solution is reported here for a certain reason. It is fashionable in
some sectors of the astronomical community to claim that relativity is just too difficult
to be used, and ad-hoc simplified methods were introduced in order to mimic rela-
tivistic effects within Newtonian gravitation. One such artificial crutch is the so-called
‘pseudo-Newtonian potential’. A pseudo-Newtonian potential is a ‘potential’ pulled out
of somebody’s mind without verifying whether it obeys the Laplace equation (usually it
does not), for example V�r� = constant/�r − r0�, where r is the ordinary spherical coordi-
nate and r0 is a constant. The orbits in such a potential are not ellipses; they display the
‘relativistic effect’, the perihelion shift, which is supposed to justify using this potential
in place of the Schwarzschild solution.1 Never mind that the potential is not vacuum.

The field (20.181) is an example showing that, with a little extra effort, one can have
‘relativistic effects’ in a potential that is at least a correct Newtonian vacuum potential.

20.13 A source of the Kerr field?

The Kerr solution has been known for more than 40 years now, and from the very
beginning its existence provoked the simple question: what material body could generate
such a vacuum field around it? Several authors have tried very hard to find a model of
the source, but so far without success. The most promising positive result is that of Roos
(1976), who investigated the Einstein equations with a perfect fluid or an anisotropic
non-dissipating fluid source, with the boundary condition that the Kerr metric is matched

1 It has been known since time immemorial that any non-Coulombian spherically symmetric potential has the same property.



20.14 Exercises 495

to the solution. Roos’ result was that the equations form an integrable set. All attempts
so far to find an explicit example of a solution have failed.1 The sources known are all
rather artificial (see Krasiński (1978) for references): a 2-dimensional disc spanned on the
singular ring of the Kerr metric; a body with anisotropic stresses, sometimes enveloped
in a crust of another kind of anisotropic matter. The continuing lack of success prompted
some authors to spread the suspicion that a perfect fluid source might not exist; rumours
about this suspicion were then taken as a serious suggestion. The opinion of one of the
present authors (A. K.) is that a bright new idea is needed, as opposed to routine standard
tricks tested so far. Simply having a look at the Newtonian models that, even in the
apparently simple cases of homogeneous density distribution, can be very difficult (see
Chandrasekhar (1969), for example) allows one to realise that the corresponding problem
in relativity must be at least as difficult.

20.14 Exercises

1. Prove that the Schwarzschild solution has the property (20.1).
2. Prove that the vector field l� in (20.1) is null with respect to g�� if and only if it is null with

respect to ��� . Prove then that l�
def= g��l� ≡ ���l� and verify that (20.2) holds.

3. Verify Eqs. (20.3) and (20.4). Note. verifying (20.4) is rather laborious; it requires using the
definition of the covariant derivative and observing that a symmetric tensor doubly contracted
with an antisymmetric one gives zero identically.

4. Verify Eq. (20.12) (it is rather laborious and requires multiple changes of names of indices in
order to detect simplifications).

5. Verify that Eqs. (20.16) and (20.18) are consistent with each other and do admit nonzero Y s.
Hint. Solve (20.16) and (20.18) for Y�� and Y�� , and then check the integrability condition
Y��� = Y��� .

6. Verify Eqs. (20.25) and (20.26).
7. Prove that the assumption Z �= 0 in (20.19) implies that Y and Y in (20.15) obey dY ∧ dY �=

0�⇐⇒ Y��
 Y ��� �= 0�.
Hint. Assume that Y��
 Y ��� = 0, which implies Y �
 =�Y�
, where � is a function, then write
out explicitly the invariance equations (20.16) and the definition of Z, Eq. (20.19). It will
follow that Z = 0.

8. Verify that the functions Y , Y , Z and Z obey (20.34).
Hint. To prove that Y obeys (20.34), solve kY� = 0 = mY� for Y�� and Y�� , then find Y�v
from Z = YY�u −Y�� and substitute for Y�u from (20.31). To prove (20.34) for Z note that the
directional derivatives along �
 and along m
 commute, and use the result that � Y � = 0.

9. Verify that if x, y and z are interpreted as Cartesian coordinates, then the surfaces r = constant
defined by (20.43) are confocal ellipsoids of revolution. Since they are axially symmetric, the
foci of cross-sections through the axis all lie on a circle. Verify that the radius of that circle is
a and that 2r is the smallest diameter of the ellipsoid r = constant.

10. Verify, by any method, that the Kerr metric is of Petrov type D.

1 See Krasiński (1978) for a systematic overview of the attempts prior to 1976; all the later attempts can be classified according
to the same scheme and none has moved the matter forward.
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11. Prove that with a2 < m2 and a sufficiently large value of �Lz�, there exists a range �r1� r2�, with
r+ ≤ r1 < r2, such that Emin�r�/�0 > 1 for r1 < r < r2 and Emin�r�/�0 < 1 for r > r2 in (20.123).
Hint. Substitute (20.123) in the inequality Emin�r�/�0 > 1 and simplify. Note that r2!r −
4a2m2 = �r − 2m�D. You will see that, if Lz

2 is large enough, then the discriminant of the
resulting square trinomial in r is positive, hence Emin�r�/�0 > 1 for r1 < r < r2, with

r1�2 = 1
4m

⎡

⎣

(
Lz

�0

)2

∓
√
(

Lz

�0

)4

−16m2

(
Lz

�0
−a

)2
⎤

⎦ �

and Emin�r�/�0 < 1 for r > r2. Then verify that r1 ≥ r+ for any Lz.

12. Prove that the function F�r�
def= E�

min/ �Lz� defined in (20.128) has only one maximum and no
minima in the range r ∈ �r+���.

Hint. One method to do it is as follows: 1. Note that F = �1 − 2m/r�/
(√

!r ∓2am
)

. Note

also that F �= 0 at r = 2m with the lower sign because the denominator vanishes there,
too, and the limit of the whole expression is finite. This remark applies also to the deriva-
tives of F . 2. Calculate dF/dr, equate it to zero, and observe that it is +� at r = r+
and goes to zero from below as r → �. Hence it has at least one zero in the range r ∈
�r+���. The derivative has the form

√

!r+ (polynomial in r� = 0. 3. Solve this for
√

!r and
square the result. The resulting fifth order equation looks bad, but it factorises and becomes

�r −2m�2
(

r3 −6mr2 +9m2r −4ma2
) def=�r −2m�2H�r� = 0. (The r = 2m is not a zero of the

derivative: with the minus sign, the limit of F ′�r� at r → 2m is finite; with the plus sign, F ′�r�
has a nonzero value there.) 4. Observe that H�r� has in fact two zeros in the range r ∈ �r+���;
however, only one of them is also a zero of F ′�r�. This is done as follows: H�r� is positive
at r = r+ and at r = 4m, but negative at its minimum at r = 3m. Thus one of its zeros is in
�r+�3m� and the other in �3m�4m�. Now, with the minus sign, F ′�r� changes sign an odd
number of times in �r+�3m�, but an even number of times in �3m�4m�, hence the second zero
of H is not a zero of F ′. With the plus sign, the opposite is true: F ′�r� changes sign an even
number of times in �r+�3m�, but an odd number of times in �3m�4m�, so the first zero of H

is not a zero of F ′. Consequently, F ′ has only one zero in �r+���. That this corresponds to a
maximum of F follows from point 2 above: F is increasing in the neighbourhood of r = r+
and decreasing as r → �.

13. Draw graphs analogous to Fig. 20.12 for the cases � > 0 and � = 0 (preferably by using a
good plotting program).

14. Prove that (�r� > 0 in (20.155) for all r ≥ r+.
Hint. Note that if f�r0� > 0 and df/dr > 0 for all r > r0, then f�r� > 0 for all r > r0. Write the
condition (�r� > 0, multiply this inequality by whatever is necessary to obtain an inequality
P�r� > 0, where P�r� is a polynomial, then differentiate P�r� repeatedly until you find out
that one of the derivatives is seen to have the property f�r� > 0 for all r ≥ r+. Then use the
observation to deduce the same about all the lower-order derivatives.

15. Prove that for the locally non-rotating observers defined in Section 20.10 the rotation tensor is
zero and that the worldlines of these observers are orthogonal to the r = constant hypersurfaces.

16. Find the equations of the light cones in Fig. 20.6.
Hint. The metric of the subspace � = �/2 in (20.57) is

ds2 =
(

1− 2m
r

)

dt2 + 4ma

r
dt d�−

(
2ma2

r
+ r2 +a2

)

d�2 − r2

!r

dr2�
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The equation of the light cones is ds2 = 0. The relation between the B–L coordinates �r���

and the �X�Y� spatial coordinates in the figure is X = √
r2 +a2 cos�, Y = √

r2 +a2 sin�.

The cones are drawn at the points of the plane � = 0, where dr =
(√

r2 +a2/r
)

dX and

d� = dY/
√

r2 +a2. Thus the equation of a cone with vertex at �T�X�Y� = �0�0�X0� is
(

1− 2m
r

)

T 2 + 4ma

r
√

r2 +a2
TY −

(
2ma2

r �r2 +a2�
+1
)

Y 2

− r2 +a2

!r

�X−X0�
2 = 0� (20.184)

The vertical axis in the figure is T , the �X�Y� axes are as shown. The equations for drawing
the graphs are obtained by solving the above for T or for X, but a few special cases must
be treated separately. The limit r = 2m (the outer stationary limit hypersurface) in the above
equation is nonsingular. Before taking the limits r → r±, the equation must be multiplied by
!r . These limits are discontinuous, as described at the end of Section 20.5. On approaching
r = r± from inside the segment �r−� r+�, the equation becomes X = X0�r±�, which is a vertical
plane. On approaching these values from outside that segment, the equation becomes singular,
but by calculating the curves along which the cones intersect with a T = constant plane one
finds that they are ellipses whose both axes shrink to a point, while the ellipses themselves
recede to Y → −� as r → r±. Before taking the limit r → 0, the equation must be multiplied
by r; in the limit it becomes −2m�T − �a/�a��Y �2 = 0, which is one of the straight lines T = Y

(when a > 0) or T = −Y (when a < 0, the case shown in the figure).
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Subjects omitted from this book

As stated in the introduction, it would not be possible to include the whole of relativity
in a book of manageable size. We chose to go into several selected topics in depth, but
omitted some other topics completely or nearly so. This short chapter is a list of the topics
we omitted, with some suggestions to the reader for further reading.

The following topics were covered inadequately or not at all:

1. Gravitational waves. Speaking most generally, a gravitational wave is any gravita-
tional field that propagates through space independently of matter. It may, but need not,
be periodic. There exists a large collection of exact solutions of Einstein’s equations
describing waves, for these see Stephani et al. (2003). There exists also an elaborate
theory of nearly-linear waves, a relatively good source for it is the book by Ohanian and
Ruffini (1994), and also the classic MTW course (Misner, Thorne and Wheeler, 1973).
The theory of generation and detection of gravitational waves is worked out rather well,
but progress in it is still going on, so current knowledge can be gained only from papers.
A sophisticated and elaborate experimental technology is already in place, but to keep
up with this one has to attend conferences in addition to reading the literature. The
pioneer of the search for gravitational waves was Weber (1961); his small book can be
recommended to readers interested in the history of the subject.

2. The Cauchy problem. In each coordinate system, the set of Einstein’s equations can
be separated into those equations that contain at most the first-order time derivatives
of the metric components and those that are of second order in time. The former are
limitations imposed on the initial data, the latter are the dynamical evolution equations.
This approach makes it possible to discuss such problems as the global existence or
nonexistence of solutions of Einstein’s equations, horizons in general spacetimes and
general principles of propagation of gravitational waves. The pioneering paper in this
field was that by Arnowitt, Deser and Misner (1962), which gave the name ADM to
the whole approach. Misner, Thorne and Wheeler (1973) and Joshi (1993) are also good
sources for this topic, and Hawking and Ellis (1973) make elaborate use of it.

3. Generating new stationary–axisymmetric solutions out of known solutions. This
is a very large field of activity. We saw in Section 20.2 that the Kerr solution resulted
from the Einstein equations in consequence of a set of assumptions, not all of which

498
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had a clear interpretation. By changing these assumptions one can obtain other solutions.
The first important step in this direction was made by Ernst (1968a), who reduced
the Einstein equations for stationary–axisymmetric vacuum spacetimes to one equation
for one complex function, now called the Ernst potential (in a subsequent paper, this
approach was extended to the Einstein–Maxwell equations (Ernst, 1968b)). Then it was
discovered that these equations admit transformations of variables that lead from one
solution to another, with a geometry that is not a coordinate transform of the initial
one. On the basis of this finding, several generating techniques for obtaining new
solutions were introduced. Meanwhile, the most famous among the next-generation
stationary–axisymmetric metrics, the Tomimatsu–Sato (1972) solution, was found. An
overview of the generating techniques can be found in Stephani et al. (2003); a more
extended overview is the recent book by Belinskii and Verdaguer (2001).

4. The Penrose transform. We mentioned this approach when discussing the maximal
analytic extensions of the Reissner–Nordström spacetime in Section 14.15, and of the
Kerr metric in Section 20.8. More on it can be found in the books by Misner, Thorne and
Wheeler (1973) and by Hawking and Ellis (1973). The main advantage of this approach
is that it maps points at infinity into finite points of another manifold, which in turn
allows one to discuss values of functions instead of limits. This is a powerful tool, even
though few spacetimes are known for which the Penrose transform has been constructed
explicitly.

5. Cosmic censorship. We mentioned this subject in Section 18.16, but our brief account
does not fairly represent the activity behind it. This is a lively paradigm, on which
perhaps the best source is the book by Joshi (1993).

6. Experimental tests. Apart from the very few classical and most basic tests, we did
not really do justice to this subject. This is now a science in itself, with large groups of
physicists involved in projects lasting many years. Apparently, there exists no up-to-date
book on it. As a historical introduction to the subject, the old volume of proceedings of
the Fermi school from 1972 can be recommended (Bertotti, 1974); a discussion of results
and their meaning for the theory can be found in the book by Will (1981).

7. Spinor methods. Our Chapter 11 is a very concise introduction to this subject, but
spinors can do much more than we described there. Fortunately, a large monograph
(Penrose and Rindler, 1984) is available.

8. Relativistic astrophysics. We did not give a fair representation of the classical
applications of relativity to astrophysics because we concentrated on the conceptual
basis of relativity. The most extended course on this subject is still the two volumes by
Zel’dovich and Novikov (1971, 1974); briefer accounts can be found in Misner, Thorne
and Wheeler (1973) and Weinberg (1972).

9. The history of relativity. This subject is treated rather superficially in most textbooks,
and ours is no exception. That history is important and can be exciting is best attested
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by the classic book by Pais (1982) – a detailed account of Einstein’s life and scientific
activities. Other important sources are the book by Mehra (1974) that explains how
relativity had been taking shape step by step, and the collection of original papers in
which special and general relativity were created (Einstein et al., 1923). Some important
bits of history can be found in the monograph by Dicke (1964).

10. Special relativity. We omitted this subject altogether because we assumed that special
relativity is now part of all courses on electrodynamics and should be familiar to anyone
setting out to study general relativity. Should any reader need to learn, we recommend the
following sources: Synge’s (1965) book is an expert-level complete textbook. The book
by Kopczyński and Trautman (1992) is only in a small part devoted to special relativity,
but it presents an enlightening geometric approach that simplifies many problems. Equally
enlightening is the textbook by Rindler (1980). Finally, special relativity in the context
of electrodynamics is presented in a readable way by Jackson (1975).
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Krasiński, A. (1980). A Newtonian model of the source of the Kerr metric, Phys. Lett.
A80, 238. [493, 494]

Krasiński, A. (1981). Spacetimes with spherically symmetric hypersurfaces, Gen. Rel.
Grav. 13, 1021. [105]
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Note: In general, only those appearances of each term are listed where something of importance is said about it. Simple

references to frequently used terms, such as ‘coordinates’ or ‘metric’, are not listed.

4-potential, see electromagnetic 4-potential

accelerated

expansion of the Universe 265, 277

frame 125

motion 5, 125

reference system 5

acceleration 2, 4, 5, 13, 125, 126, 218, 227, 241, 248–252,

290, 296, 396, 407, 458

absolute- 2

of a light ray 241, 248–252

of expansion of the Universe 274–277

relative- 125

-transformations 92

-vector 227

active gravitational mass 297, 298, 353, 354, 373, 376,

386, 408

affine

connection 30, 32–35, 38, 48, 51, 106

parameter 35, 45, 49, 63, 129, 141, 143, 176, 177, 194,

217–219, 221, 240, 256, 259, 260, 264, 311, 330,

344–346, 368, 466, 470, 471, 475, 476, 481, 483, 484

parametrisation 49, 143, 238, 241, 242, 312, 328–330,

365, 440, 441, 464, 476, 477

radius 363

algebraically special

metric 440

spacetime 253

Weyl tensor 245, 246, 251

angular

momentum 158, 160, 179, 180, 185, 447, 458, 467, 469,

487, 494

scale 290, 331

separation 187

size 259

velocity 160, 178, 223, 489

anisotropic

fluid 231, 494

stress 495

anisotropy

of matter distribution 236

of temperature of the CMB radiation 290, 331

cosine- 357

quadrupole- 357

antigravitation 219, 378

antilinear

index 114

transformation 113

antiparallel angular velocities 178

antipodal point 278, 396, 407

antisymmetric

part of a tensor 19, 30, 87, 100, 158, 229, 241

spinor 119

tensor (density) 18, 22, 23, 25–27, 46, 60, 66, 88–89,

95, 100, 113, 115, 121, 161, 172, 237, 420, 495

antisymmetrisation 19, 24, 46–47, 97, 229

antisymmetry 52, 95, 97, 113, 116, 120, 172, 223, 228,

240, 371

anti-self-dual (spinor or tensor) 115

apparent

horizon 202, 242, 243, 281, 282, 311, 312–314, 317,

318, 319, 321, 322, 325, 326, 333, 335, 336, 339,

341–344, 358, 359, 364, 366, 414–415

future 202, 243, 318, 319, 321, 322, 325, 341, 343,

358, 359

past 243, 282, 319, 321, 322, 325, 358

magnitude 287

position 185, 187, 188

areal radius 295, 319, 338, 348, 409, 413–414

asymptote 184, 185

asymptotic

approach 217, 273, 275, 276, 317, 319, 400, 483, 489

flatness 489

past 303

plane 196

state 275, 446

value 270

518
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asymptotically

Cartesian coordinates 136, 143, 160

flat

region 379, 475

spacetime 136, 488–490

axial

cross-section 448, 460–462, 485

symmetry 487, 488

axially symmetric metric/spacetime/surface 448, 491, 495

axisymmetric

metric 499

rotation 139

solution of Einstein’s equations 232, 498

spacetime 487–490, 499

back-reaction 154

bang

time 315, 357, 361, 422

-time function 297, 361

barotropic (equation of state)

Bianchi identities

Big Bang 201, 282, 283, 297, 303, 313, 315, 317, 319,

321–324, 327, 332, 333, 336, 337, 346, 347, 348, 353,

356–360, 362, 377, 385, 399–401, 403, 408, 413, 415,

418, 426–427, 430, 436

-function 317, 347, 348, 352

lagging cores of 353

non-simultaneity of 362, 426

-set 283, 333

simultaneous- 357, 426–427

-singularity 282, 297, 317, 322, 332, 347, 362, 377, 385,

399, 401, 430

-time 315, 409

Big Crunch 315, 317–319, 321, 322, 327, 332–339, 342,

343, 345, 346, 352, 356, 357, 359, 360, 377, 403, 408,

413, 415, 418, 428

-function 317, 343, 345, 346, 359

-set 333, 334, 336

-singularity 315, 321, 322, 332, 334–339, 342–344, 352,

377

-time 336

Birkhoff theorem 174, 176

bi-tensor 39

black body

radiation 288

spectrum 287, 330

black hole 50, 62, 168, 179–180, 182, 200–202, 205, 219,

242, 281, 308, 316–319, 438, 446, 467, 486, 487

central- (in a galaxy) 308

dynamical- 242

evolution leading to 318

-formation 316, 319

in the evolving Universe 316

Kerr- 486

-model 281

Reissner–Nordström- 219

rotating- 438, 446, 487

rotational energy of 487

-theory 316

Boltzmann constant 288

Boyer–Lindquist (B–L)

construction 475

see also coordinates, Boyer–Lindquist

Cartesian

product 171

reference system 4

see also coordinates, Cartesian

Cauchy problem 498

Christoffel symbols 51, 54, 81, 95, 96, 126–128, 133, 134,

139, 146, 154, 162, 165, 177, 237, 340, 439, 440, 442

class of a Riemann space 69

collineation 90

commutator

formula for directional derivatives 252, 443, 444

of directional covariant derivatives 38

of linear operators 47

of second covariant derivatives 36, 37, 42, 47, 245

of vector fields 38, 91, 101, 102, 107, 111

comoving

boundaries 303

distance 361

extrema of density 366

hypersurface 420

observer 281, 316

size 303

time 232, 399

volume element 141, 142

see also coordinates, comoving

conformal

condition 91

curvature 58

diagram 209, 210, 211, 212, 215, 216

factor 91, 105

image 72, 210, 211

Killing vector field 86, 87, 89, 91–92, 344

mapping 57, 58, 72, 190

symmetry 86, 88, 90, 92, 105, 389

transformation 150

conformally

equivalent

metrics 86

spaces 86

flat

metric 58, 60, 89, 190, 206, 245, 263, 291, 488

space 57, 58, 69, 190, 202, 397, 398, 436

invariant theory 150

related

metrics 58

spaces 56, 57, 58, 72
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connection

see also affine connection

coefficients 31, 35, 44, 48, 51, 136, 150, 226

forms 95, 96

symmetric part of 35

terms 257

contraction (of a tensor over indices) 18, 27, 29, 46,

89, 252

coordinate

-components of a tensor field 29

-system 14, 94, 202

time- 61, 128

-transformation 21, 22, 74

5-dimensional- 165

coordinates 13, 15, 126, 170, 171

adapted- 38, 47, 68, 69, 70, 141, 142, 152, 206, 375,

445, 477, 483, 487–489

Boyer–Lindquist- (B–L) 449, 451, 459–462, 464, 467,

475–479, 483, 492, 497

Cartesian- 1, 33, 44–46, 48, 53, 61, 82, 83, 91–92, 130,

136, 143, 160, 196, 219, 222, 238, 247, 367, 395,

419, 436, 441, 446, 448, 484, 491, 493, 495

approximately- 448

asymptotically- 136, 143, 160

locally- 61

orthogonal- 441

rectangular- 48, 53, 222, 448, 491

comoving- 141, 143, 152, 203, 263, 264, 283, 294, 300,

310, 315, 333, 336–339, 347,

367–369, 380, 387

comoving–synchronous- 294, 367, 369

complex- 390

cylindrical- 196, 489

Fermi- 127, 128

Gautreau- 310, 337, 338–340

geodesic- 203, 220

isotropic- 202

Kruskal–Szekeres- 196

Lemaître- 191, 203, 290, 332, 341, 342, 386, 436

locally Cartesian- 61

locally Minkowskian- 260

Lorentzian- 160, 439

mass-curvature- 379, 380

Novikov- 203, 290, 332, 341, 342, 386, 436

null- 210, 215, 321, 441, 485

observational- 300

polar- 33, 35, 54, 104, 184, 185, 220, 419

radial- 359

rotating- 160

space- 62, 128, 156, 225, 263, 497

spherical- 35, 53, 72, 83, 84, 86, 93, 168, 178,

183, 419

spheroidal- 476, 493

synchronous- 294, 367, 368, 369

Szekeres–Szafron- 394, 396

cosmic

censorship 339, 344, 499

conjecture 446

hypothesis 339

postulate 344

expansion 309, 310, 311

fluid 235

matter density 311

medium 190

microwave background radiation 236, 283, 330

repulsion 277

cosmological

attraction 273

constant 144–146, 150, 171, 174, 176, 203, 262, 265, 268,

273, 275, 277, 282, 286, 287, 295, 303, 347, 369, 370,

374, 375, 388, 392, 399, 428, 453, 455, 458, 459, 466

problem 286

repulsive 347

value of 265, 275, 277, 286

model 201, 203, 239, 240, 268, 273, 281, 286, 290, 299,

328, 362, 363

best fit- 286

parallax distances 300

parameter 359, 360

principle 235, 236, 301

redshift 239

repulsion 145, 274, 303

scale 190

singularity 201

solution 233

cosmology 111, 168, 203, 232, 233, 235, 236, 243, 253,

259, 261, 266, 271, 281, 282, 285, 288, 294, 296, 339,

366, 367, 391, 397, 428

Newtonian 271

observational cosmology programme 300

R–W- 281, 290

Cotton–York tensor 58, 60, 397, 436

covariant

action integral 133

components 50, 438

constancy 43, 65, 106, 136

definition 69

derivative 26, 28–33, 36, 42–44, 47, 51, 59, 64, 65, 69,

78, 87, 89, 96, 134, 151, 153, 154, 162, 228, 237,

241, 257, 439, 440, 442, 495

along a curve (directional) 33, 38, 64, 81, 143, 228

second- 36, 37, 42, 59, 65

commutator of 37, 42

third 65

differentiation 28, 36, 37, 39, 42, 64, 65

divergence 135, 144

doubly covariant tensor 16, 17, 24, 25, 32, 77

equation 63, 133, 299

form of the Maxwell equations 161

Lorentz- (description of electromagnetic field) 161
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non- 69, 445

rotation 32

spinor 113

tensor 18, 21, 32, 48, 57, 77, 115, 404

theory 165

vector (-field) 14, 16, 21, 26, 29, 32, 36, 37, 39, 40, 43,

50, 59, 91, 94, 95, 100, 113, 114

covariantly constant fields 43, 44, 51, 96, 135

crunch time 315, 321, 325, 327, 357, 358, 413

curvature 12, 39, 46, 54, 60, 87, 90, 91, 94, 98, 104, 106,

112, 126, 127, 131, 171, 191, 237, 254, 262, 268, 269,

278, 299, 303, 317, 325, 338, 351, 354, 389, 393,

394, 397

conformal- 58

constant- 79, 91, 93, 104, 262, 291, 292, 367, 389, 390,

392, 394, 396, 397, 398, 436

-contrast 349, 353

-coordinates 168, 171, 191, 192, 194–196, 202, 294,

300, 310, 364, 379, 380, 385, 386

extrinsic- 65

focussing by 254

Gauss- 54, 55

-index 261, 268, 275, 277, 285, 332, 369, 397

mass- (coordinates) 379, 380

normal- 54

of a curve 55

of a manifold 36

of a Riemann space 51, 189, 228, 269, 273, 276

of a surface 12, 54, 55, 72

perturbation of 351

quick calculation of 94

radius 310

relation to parallel transport 39

Riemann- 54

scalar- 97, 104, 149, 166, 349, 367, 389

sign of 273, 276

-singularity 324, 338, 346, 384, 426

spaces of constant- 79, 91, 93, 262

spatial- 268, 276

-tensor 36, 37, 43, 46, 47, 51, 54, 55, 79, 98, 131, 151,

152, 154, 245, 253, 340, 367, 368, 435

tetrad components of 191

zero-curvature limit 90

Datt–Ruban metric/model 110, 373, 384, 386, 388, 391,

392, 415, 436

de Sitter spacetime 91, 93, 109, 284, 291, 400

Debever

congruence 476

method (of Petrov classification) 120

spinor 117–122

vector (field) 121, 122, 246, 250, 253, 440

deceleration parameter 265, 270

density

background- 303, 331, 425

constant 296

-contrast 303, 349, 352

critical- 266, 267, 268, 283, 286, 331

dipole component of 420

-distribution 15, 130, 304, 306, 308, 346, 493, 495

energy- 130, 139, 140, 141, 146, 158, 162, 236, 254,

266, 284, 344, 381, 399, 430

enthalpy- 232

extrema of 366

fluctuations of 303

homogeneous- 361, 495

infinite- 274, 302, 399

initial- 302, 316, 346, 361

mass- 130, 139, 152, 205, 206, 235, 267, 286, 289, 297,

300, 321, 323, 324, 325, 347, 348, 361, 365, 366,

373, 375, 378, 382

-in the redshift space 361

physical- 361

matter- 131, 172, 268, 286, 288, 300, 301, 311, 316,

357, 360, 362, 385, 386, 391, 393, 394, 400, 419,

420, 424, 425, 494

maximal 274

mean/average density of matter 409

in the Sun 200

in the Universe 125, 136, 145, 268, 282, 286,

311, 331

nuclear 282

observed- 268, 287

of angular momentum 158

of dust 383

of electric charge 161, 373, 375, 378, 379, 381

of magnetic monopoles 374

of rest mass 204

-parameter 331

particle number- 231, 234

-perturbation 349, 351, 425

decreasing 349

increasing 349

present- (in the Universe) 282, 286

-profile 306, 331

proper- 361

scalar- 17, 24, 30, 36, 37, 43, 133

spinor- 114

Hermitean 114

tensor- 17, 18, 19, 22, 26, 28–32, 34, 37–39, 43, 100

-to density evolution 304, 307

total- (in the Universe) 286

vector- 17, 28

velocity to density evolution 306

vs. distance 362

-waves 366

zero- 274

derivative

as a vector field 20, 21

directional 14, 16, 70, 83, 96, 252, 444, 495
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derivative (cont.)

exterior 95, 98

Lie- 80, 81, 82, 107

logarithmic 365

time-derivative of the quadrupole moment 158

see also covariant derivative

differentiable

curve 10, 347

manifold 13, 19, 22

vector field 75

velocity field 222, 224

differential

-equation(s) 28, 35, 39, 44, 69, 70, 132, 169, 240,

267, 300, 329, 338, 341, 375, 382, 386, 414,

445, 453

-form 94–97, 162, 173, 232, 456

-geometry 6, 17, 228

2-dimensional- 9, 48

-identities (of the curvature tensor) 46, 47

perfect- 34, 232

differentiation

covariant- 28, 36, 37, 39, 42

of tensors 26

direct (orbital motion or orbit) 178, 469, 474

distance 48, 50, 157, 179, 189, 190, 197, 200, 215, 235,

240, 253, 255, 259, 264, 266, 268, 329, 331, 332, 335,

339, 450, 471, 472, 486

area- 253, 257

observer- 255, 259, 270

source- 255, 282, 287, 295

comoving- 361

definition of 253, 255, 259

dimension of 179

extremal- 55, 56

geodesic- 297

infinite- 219

limit of 136

intergalactic- 190, 268

large- 144

luminosity- 190, 362

corrected- 259

minimal- 181

parallax- 300

parallelism at 9, 12

parameter- 76

radial- 176, 321, 407

redshift–distance relation 265, 270

unit of 269

double-null tetrad 97, 243, 245, 246, 250, 251, 441

dragging

inertial frames 160, 451, 466

a vector along a curve 12

dual

anti-self- (tensors/spinors) 115

-basis 29, 44, 94

self- (tensors/spinors) 115

tensor 162

duality 40, 167

rotation 163, 167, 173, 220, 458

dust 140, 143, 145–147, 229, 233, 254, 262, 284, 303, 313,

314, 316, 322, 324, 327, 337, 338, 339, 341–343, 353,

360, 363, 366, 369, 370, 373, 374, 377–379, 383, 384,

392, 407, 425

charged- 219, 369, 373, 375, 376, 378, 379, 382–384

-distribution 336

-era 286

interplanetary- 3

-particles 315, 318, 370, 378, 383

-solution 369

eccentricity of an orbit 180, 181, 185

effect

Lense–Thirring- 160

of the cosmological constant 144

quantum- 231

effective

antigravitation 219, 378

mass 372, 376, 378

eigenframe 397, 436

eigenspace 397, 436

eigensurface 399

eigenvalue 71, 100, 101, 112, 119, 120, 142, 172,

397–399, 436

eigenvector 142, 172, 224, 234, 398

Einstein

–Cartan theory 150, 151

equations 131, 132, 135–136, 139, 144, 145, 147, 148,

150, 151, 154, 164, 166–168, 171, 172, 175, 203,

220, 228, 230, 263, 266, 267, 290, 294, 295, 297,

300, 309, 363, 370, 374, 380, 386–388, 398, 401,

431, 432, 434, 439, 440, 457, 459, 488, 494,

498, 499

linearised 155, 156

modified 144, 145, 160

Newtonian limit of 136

solutions of 105, 145, 148, 151, 168, 175, 176, 202,

231, 232, 245, 253, 263, 285, 387, 398, 438, 446,

488, 498

matching 151

sources 125, 294

5-dimensional 166

–Maxwell equations 161, 163, 164, 166, 171, 173, 174,

369, 370, 373, 375, 382, 384, 385, 455, 457,

458, 499

variational principle for 164

tensor 131, 144, 152, 153, 263, 267, 293, 387, 430, 456

theory 126, 132, 136, 140, 149, 150, 151, 154, 337, 387

linearised 157, 366, 387

weak-field approximation 154

Universe 145, 267, 275–277, 291, 302, 303, 363
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electric

charge 15, 161, 173, 194, 220, 370, 377, 378, 382, 384,

385, 453, 455, 458, 459

density of 161, 374

prevention of singularity by 377

current 140, 163

field 70, 161, 163, 213, 218, 219, 370, 374, 378, 384, 385

part of the Weyl tensor 70, 229

purely electric Weyl tensor 398

electrically neutral particles 219, 374

electrodynamics 151, 155, 156, 172, 500

electromagnetic

field 161–163, 166, 172, 173, 176, 218, 220, 235, 237,

369, 374, 375, 384, 455, 456

energy-momentum tensor of 132, 162, 163, 172,

173, 238

in vacuum 135, 172, 174

tensor 70, 161, 163, 174, 218, 370, 381, 456, 457

interactions 289

origin of antigravitation 219

wave 188, 237, 238, 239, 337

4-potential 162, 164, 455

electromagnetism 164, 167

electron 288, 289

electrostatic

field 171

repulsion 378

electrovacuum metric 375, 385, 459

ellipse 2, 3, 41, 449, 462, 494, 497

ellipsoid 446, 448, 449, 451, 490, 491, 493, 494, 495

ellipsoidal spacetime 490–493

ellipsoidality 492

elliptic

evolution 412

function 180, 269, 392, 399, 400

integral 179

model 314, 412

orbit 2, 180

region (of a Universe) 314–316

solution 408

energy 130, 137, 140, 141, 185, 201, 203, 205, 220, 273,

298, 353, 354, 469, 487

at infinity 469

chemical- 141

-conservation equation 143, 220, 296

dark- 268, 287

-density 130, 139, 140, 141, 146, 158, 162, 236, 254,

266, 284, 344, 381, 399, 430

equivalent of the rest mass 469

-extraction (from a black hole) 487

-flow 141

flux of 255

-function (in the L–T model) 372

initial-, variations in 362

internal- 232

kinetic- 137, 203

-momentum tensor 130–132, 140, 142, 150, 152, 154,

156, 160, 162, 163, 172–174, 238, 254, 266, 284,

285, 290

negative- 469, 470, 486, 487

-output 201

per unit mass 408

potential- 354

-production in a star 205

rest- 137, 139–141, 469

rotational energy of a black hole 486, 487

-stream 130, 139, 141, 143, 151, 162

total- 137, 185, 220, 273, 297, 469, 486

transport of 140

zero-energy L–T model 374

enthalpy 232

-density 232

proper- 232

equation/equations

of hydrostatic equilibrium 203, 205

of motion 4, 47, 130, 137, 139, 143, 154, 158, 160, 163,

167, 205, 218, 231, 266, 267, 271, 272, 278, 284,

373, 379, 381, 384, 493

see also under specific names, e.g. Raychaudhuri equation

equivalence 119, 126, 236, 293, 458

problem 71

ergosphere 487

Ernst potential 499

Euler equations of motion 143, 160

Euler–Lagrange equations 55, 132, 133, 137, 464

expansion

in power series 156

lagging cores of 201

of the Universe 144, 145, 201, 223, 262, 265, 273–275,

287, 303, 305, 306, 308, 309, 363

accelerated- 277

exponential- 284, 347

influence on planetary orbits 309–311

isotropic- 223

velocity of 263, 270, 302, 306

-scalar 223, 227, 230, 291, 292, 426

of a family of light rays 242–244, 255, 260, 281

flat

limit 90

manifold 36, 43–46, 115

metric 136, 151, 154, 155, 438, 439, 444, 476

approximately 265, 447

asymptotically 490

conformally- 58, 60, 89, 190, 245, 263, 291, 488

region

asymptotically- 379, 475

Riemann space 52–54, 57, 69, 79, 90, 91, 129, 196, 197,

436

conformally- 57, 58, 69, 202, 398, 436



524 Index

flat (cont.)

space 9, 10, 69, 90, 91, 92, 154, 171, 213, 214, 216,

217, 238, 254, 262, 299, 360, 368, 436, 484, 491

spacetime 61, 136, 243

approximately- 483

asymptotically- 136, 488–490

conformally- 190, 206, 397

surface 54, 90

Universe 262, 268, 283, 292, 353

‘flatness problem’ 282, 285, 286

focus (of an ellipse) 2

focussing of light rays 189, 324

by curvature 254, 255, 259, 271

limiting focussing condition 344

see also shell focussing

Friedmann 262

background 299, 310, 331, 332, 425

curvature contrast 353

curvature index 332, 369

equation 266, 273, 399, 401, 407

limit of the L–T + Szekeres models 297, 299, 306, 310,

349, 350, 364, 369, 374, 401, 423

mass 309, 310, 332, 369

model/solution/spacetime(s) 203, 236, 262, 267, 269,

270, 273, 275, 277, 281, 299, 302, 303, 330, 331,

348, 349, 354, 362, 364, 366, 373, 386, 400, 401,

407, 420, 422, 423

apparent horizon in 314

instability of 301

matched:

to the Schwarzschild solution 309, 316

to the L–T model 332

perturbation of 302, 351, 352

Friedmann–Lemaître models 236, 263, 297

future 61, 62, 151, 210, 212, 230, 231, 276, 280, 334, 336,

363, 380, 475, 477, 478, 479, 481, 485

-apparent horizon 202, 243, 313, 314, 318, 319, 321,

322, 325, 341, 343, 358, 359, 366, 414

-directed curve 212, 311, 326, 333, 345

-event horizon 317, 319, 321

-evolution of spacetime 243

-light cone 62, 461

-infinity

null 342, 343

timelike 358

-pointing vector field 476–479

-singularity 194, 195, 269

-trapped surface 243

Gauss

– Codazzi equations 68, 69, 152, 153

-curvature 54, 55

-law 158

generating techniques 498, 499

generation

of electric field 370, 375

of energy stream by pressure 143

of gravitational waves 498

of perturbations in a model 299, 351–353, 361, 362, 425

of structures in the Universe 303

generator

of a cylinder 54, 385, 428

of a group 76–79, 81–84, 86–88, 90–92, 99, 104, 106,

110, 111, 112, 146, 172, 365, 448

of a light cone 62, 461

geodesic 10, 45, 62, 72, 127, 129, 131, 143, 176, 194, 217,

218, 255, 264, 291, 292, 312, 324, 344, 374, 464, 466,

467, 481

-completeness 481

-coordinates 203, 220

-deviation 45, 256, 338, 346

-equation 46, 257, 342

-distance 297

-equation 35, 56, 72, 137, 176, 177, 183, 186, 217, 374,

453, 464, 466, 483, 484

-line 33–35, 55, 72, 126

-motion 138, 143

null- 62, 183, 186, 190, 194, 196, 202, 209, 210, 212,

215, 218, 219, 221, 240, 247, 254, 260, 263, 265,

277, 281, 293, 300, 311, 313, 317, 319, 320, 321,

325, 326, 328, 331, 334, 342, 344, 346, 464, 466,

467, 470–473, 476, 477, 481, 483

-radius 309

spacelike- 483

timelike- 126, 127, 176, 177, 194, 196, 200, 219, 221,

296, 311, 344, 464, 466, 467, 471, 474, 483

-vector field 238, 241, 246, 250, 251, 253, 312, 398,

440, 441, 476, 477

geodesically complete spacetime 481

Gibbs identity 232, 234

Goldberg–Sachs theorem 253, 441, 442, 476

G3/S2-symmetric spacetime 368, 369, 370, 394, 398

gravitation

laws of 125, 184

other theories of 149

self- 176

-theory 1, 3, 129, 130, 132, 133, 136, 145, 151, 160,

167, 201

linearised- 154

gravitational

attraction 145, 205, 277, 378

constant 149, 175, 181

deflection of light 184–186, 188

field 3–5, 13, 45, 58, 69, 125–126, 129–131, 136, 139,

143, 154, 160, 163, 168, 174, 176, 178, 183, 217,

218, 271, 438, 451, 469, 487, 493, 498

weak- 140

force 5, 13, 45, 125, 126, 311

interaction 2–4, 125, 354
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lens 186, 189–191, 287

equation of 189

mass 126

active- 297, 298, 353, 373, 376, 386, 408

-defect 373, 386

-excess 373

total- 354

perturbation 182

potential 130, 131, 137, 494

radius 182, 200, 205

wave 58, 498

Haantjes [acceleration] transformation 92, 390

Hamilton–Cayley equation 118

Hamilton–Jacobi

equation 453

method 464

Hamiltonian 464, 465

history

of cosmic censorship hypothesis 341

of cosmological constant 145

of R–W models 263

of Kantowski–Sachs metrics 110

of relativity 4, 97, 498–500

of the Universe 287

homoeoid 493

homogeneity of the Universe 362

homogeneous

background 303

Big Bang 289

density 361, 391, 420, 495

equation(s) 39, 60, 78, 180, 426

gravitational field 125, 126

hypersurface 108

matter distribution 271

metric 109, 136, 144, 232, 285

spatially- 261, 386

space 105, 236

spacetime 106

spatially- 106, 109, 146, 203

horizon 277, 498

apparent- 202, 242, 243, 281, 311–314, 317, 318, 321,

326, 333, 335, 336, 339, 341, 342, 344, 359, 364,

366, 414–415, 417–418

future- 202, 243, 313, 318, 319, 321, 322, 325, 341,

343, 358, 359

past- 243, 282, 313, 319, 321, 322, 325, 358

event- 195, 198, 199, 202, 207, 212, 213, 216,

219, 221, 242, 243, 277–280, 299, 312, 317,

319, 321–323, 341–343, 359, 363, 386, 459,

460, 461, 462, 472, 475–479, 481, 483,

485–487

particle- 277, 278, 280, 281

-‘problem’ 282, 283, 285, 347, 348

Reissner–Nordström- 379

Schwarzschild- 312, 316, 387, 459, 467

Hubble 145, 262

constant 190, 267, 362

formula 190

law 264, 268, 272, 362

parameter 264, 265, 270, 287, 311, 331, 357, 361

hypersurface 14, 61, 62, 68, 69, 72, 86, 94, 95, 105, 106, 108,

141–143, 152, 153, 193, 194, 196, 200, 202, 225, 239,

240, 261, 277, 291, 313, 375, 387, 415, 418, 451, 459, 467

-element 120

infinite redshift 451

last scattering- 283

of constant time 225

of simultaneity 225

-orthogonal vector field 487

stationary limit- 451, 459, 469, 486, 487, 497

induced

metric 53, 152, 375

transformation 94, 99, 150, 488

variation of the gravitational constant 149

inhomogeneity

decaying- 362, 400

growing- 362, 400

growth of 301

in matter distribution 330, 331, 361, 425

measure of 306

inhomogeneous

distribution of matter 186, 287, 290, 293

equation(s) 156, 169, 180

models of the Universe 294, 296, 360, 420

spacetime 359

transformation(s) 176

Universe 285, 361

invariance

-equation 79, 80

-group 77, 78, 79, 89, 90

-transformation 75, 77, 79, 81, 90, 91, 106

invariant

conformally invariant theory 150

definition

of R–W models 290, 291, 299

of Szekeres–Szafron models 397, 398

scalar 104

tensor field 74–76, 78, 80, 91

vector field 106–108, 112

isentropic motion 233

isometric spaces 54, 91, 359, 481

isometry 75, 90, 91, 92, 168, 172, 434

group 82, 88, 104, 370

isotropic

expansion 223

matter distribution 271

metric 144, 261
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isotropic (cont.)

space 236

spacetime 109

see also coordinates, isotropic

isotropy

of the cosmic microwave background 236, 290

of the R–W models 279

of the Universe 235

Jacobi

identity 47, 100

matrix 22, 380

Jacobian 17, 171, 364

Kaluza–Klein theory 149, 161, 164, 166, 167

Kantowski–Sachs (K–S)

class 110

geometry 386, 397

spacetime 192, 436

symmetry 86, 110, 176

Kerr

black hole 486

geometry 481

Hamiltonian 465

limit 458

manifold 451, 460, 462, 471, 481

metric 253, 438, 446–449, 451–455, 458–462, 466, 476,

480, 485, 487, 490–495, 499

with cosmological constant 458, 459

solution 194, 441, 446, 451, 458, 459, 464, 466, 493,

494, 498

Newtonian analogue of 493

source of 494

spacetime 178, 460, 461, 463, 466, 475, 482, 486,

487, 490

Kerr–Newman solution 459

Kerr–Schild

form 476

metrics 438, 440, 441, 445

term 447

vector field 440, 476, 484

Killing

equations 77–80, 82, 83, 84, 91, 104, 108, 109, 146,

290, 368, 435, 436, 448

vectors (vector fields) 77–79, 81, 83, 86, 91, 93,

107–110, 165, 168, 219, 292, 344, 368, 386, 435,

444, 445, 448, 464, 487, 488, 489

algebra of 81, 436

conformal 86, 87, 89, 91, 92

finite basis of 78, 79, 81, 86–89

Klein–Gordon equation 452–455

Kottler solution 363

Kretschmann scalar 404, 408

Kronecker delta 23, 26, 28, 47

multidimensional 23, 24

Kruskal

diagram 194–196, 201, 209, 243, 359,

462, 479

extension of the Schwarzschild manifold 477–479

method 207

wormhole 314

Kruskal–Szekeres

coordinates 196

representation of the Schwarzschild solution 194

throat 325

transformation 191

Lagrange function 137

Lagrangian 137, 138, 164, 167, 464

Laplace 201

equation 493, 494

last scattering 283, 347

Lemaître

coordinates for the Schwarzschild metric 191, 203, 290,

332, 341, 342, 386, 436

definition of mass 296

metric 111

–Novikov representation of the Schwarzschild

solution 309

see also Lemaître coordinates

Lemaître–Tolman (L–T)

counterexamples to cosmic censorship 344

evolution 304, 306

limit of the Szekeres solutions 393, 394, 401

mass 310, 332, 361

metric/model/solution/spacetime 203, 281, 282, 285,

287, 289, 296, 297, 298, 300, 302, 312, 332, 337,

353, 367, 374

Big Bang in 337, 347

extension through a shell crossing 337

matching to the Friedmann and Schwarzschild solutions

332, 341, 343

singularities in 332

shell crossing singularity 338, 339

solution of the ‘horizon problem’ in 348

see whole Chapter 18

perturbation of the Friedmann models 302, 331

transition zone 303, 354

Lense–Thirring effect 160

Le Verrier 182

Levi-Civita symbol 22–24, 26, 28, 58, 88, 100, 113–115,

119, 160

Lie

algebra 81, 99

Bianchi classification of 99

derivative 80–82, 99, 107

transport 107

light 5

absorption 254, 259

atomic nuclei 289
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cone 61–63, 201, 241, 283, 284, 315, 333, 337, 362,

461, 463, 477, 479, 496, 497

future- 461

past- 283, 319, 361–363

emission 259

extinction 287

flash 243

front 243, 260, 312

intensity 190

propagation 287

ray 4, 5, 9, 189, 195, 200, 202, 220, 239, 240, 242, 243,

255, 256, 273, 281, 311–314, 316, 325, 328, 331,

333–337, 339, 343–345, 346, 359, 365, 414, 418,

489, 490

acceleration of 241

gravitational deflection of 183–187, 189, 190, 220

orbit of 183–185

tangent vector to 263

redshift of 328, 451

signal 194, 201, 202, 279, 280

source 239, 240, 254, 256, 264, 279, 360

velocity 129, 130, 177, 181, 201, 238, 239, 337, 451

wave 239, 240, 337

wave description of 242

year 190

local

Big Bang 353

change of scale 150

condensation 348, 349

curvature 299

directions of flow 285

embedding 63

geometry 54, 367, 428–430

gravitational field 126

inertial frame 125, 126, 129, 144, 160

mean matter density 125

minimum

of the Big Bang function 347

of orbital distance 220

observations 235, 243

orthogonal space 240, 260, 490, 491

rotational symmetry 398

time of BB/BC 408

value of matter density 268

localised perturbation 331

locally

isometric spaces 91

measured velocity of light 239

Minkowskian coordinates 260

naked singularity 339, 344, 346

nonrotating observers 487, 489, 490, 496

see also coordinates, locally Cartesian

Lorentz

coordinates 160

-covariance of Maxwell’s equations 161

-covariant description of electromagnetic field 161

force 371

rotation 363

transformation 73, 91, 94, 158, 161, 444

Lorentzian

manifold 49

metric

form of 154, 155

signature 70, 369

lower

dimension 50

index 18, 23, 27, 60

tetrad index 244

limit of a function 180

lowering an index 50, 92, 96, 113–115, 122, 154, 238, 438

luminosity 254

absolute 286

-distance 190, 262

corrected- 259

Mach’s principle 1–4, 149

magnetic

charge 173, 220, 370, 374, 375, 382, 384, 453, 455, 458

current 163

field 70, 161, 163, 370

monopole 163, 172, 173, 370, 374

part of the Weyl tensor 70, 229, 396, 436

map 13, 21, 56, 74, 191, 356, 380, 382, 479

Schwarzschild- 194

topographic 317

mapping(s) 13, 14, 17, 19–22, 50, 74, 75, 81, 92, 104, 105,

115, 209, 210, 270, 333, 396, 403, 409, 499

associated 20, 21

bilinear 120

conformal 57, 58, 72, 190

family of 104

group of 104, 105

inverse 50, 56, 57, 116

linear 20, 39, 114, 120

Mercator- 72

multi-valued 460

of Riemann spaces 56

mass 126, 139, 157, 158, 175, 176, 179, 200, 201, 203, 204,

218, 219, 273, 282, 296, 303, 311, 317, 354, 360, 361,

369, 372, 373, 380, 401, 447, 458, 464, 486, 487, 493, 494

centre of 13, 158, 176

-conservation 143, 267, 371

-coordinate 304, 318, 327

-curvature coordinates 379, 380

-defect/excess 205, 298, 373, 386

deflecting- 186

-density 130, 139, 152, 205, 206, 235, 267, 286, 289,

297, 300, 321, 323–325, 347, 348, 361, 365, 366,

373, 375, 378, 382

average/mean- 145, 200, 235, 331
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mass (cont.)

-dipole 157, 419

-distribution 139, 160, 186, 206, 287, 303, 419, 426

effective- 372, 376, 378

-flow 140

fractal distribution of 362

Friedmann- 309, 310, 332

-integral 309, 369, 399

-function 361

gravitational- 126

active- 297, 298, 354, 373, 376, 386, 408

total- 354

inertial- 126

influence of charge on 374

Lemaître–Tolman- 310, 332

of a particle 184

of a photon 184

of a singularity 353

of our Galaxy 190, 200

of the Sun 181, 316

of the Universe 288

-parameter 204, 213, 332, 341, 342, 453

point- 176

-quadrupole 157

rest- 15, 204, 314, 353, 354, 361, 371, 373, 386, 469

Schwarzschild- 309, 310, 403

solar 200

zero- 186

massive black hole 201

Matching metrics 151, 152, 153, 206, 310, 332, 375

Mattig formula 271

maximal

angle of deflection of light 186

density 274

dimension of a group 88, 89

expansion of the Universe 274, 306, 314–316, 319, 325,

326, 387, 400, 418, 437

extension

of the Kerr solution 460, 475, 482, 486

of the R–N solution 204, 211, 216

of the Schwarzschild spacetime 194, 195

luminosity 286

number of Killing fields 79

size 275

temperature anisotropies of CMB 290, 331

maximum

areal radius 413

of the BB/BC function 317, 359, 360

metric 14, 48, 49, 52, 53, 56, 57, 86

5-dimensional 164, 165

background- 151, 155, 442, 444

co-form 453

conformal symmetry of 86

conformally

flat- 58, 60, 89, 245

related- 58

degenerate- 49, 50

electrovacuum- 375

Euclidean- 104

flat- 154, 439, 444, 476

-form 48, 54, 85, 86, 109, 111, 168, 196, 197, 453

indefinite- 213, 214, 217, 394

induced- 53

invariant- 75

linearised- 157, 159

multidimensional- 167

positive-definite- 50

scalar- 245

signature of 49, 50

-space 50

-tensor 48, 49, 51, 52, 54, 56, 57, 72, 79

limits of 90

tetrad- 94, 244

see also under specific names, e.g. ‘Kerr metric’

Mendeleev table 288

Mercator mapping 72

Mercury 2, 3, 149, 180–182, 187

Minkowski metric/spacetime 61, 62, 63, 90–93, 115, 116,

125, 138, 160, 172, 190, 247, 271, 291, 441, 447

neck 296, 312, 314, 325, 326, 354, 358, 359, 360, 373,

386, 410, 414, 418

see also wormhole

Neptune 2

Newman–Penrose formalism 245

Newtonian

analogue of the Kerr solution 493

cosmology 271

equation(s) of motion 137, 139, 282, 297, 373, 493

gravitation 125

gravitational

field 469

force 293

potential 131, 493, 494

hyrdodynamics 226

hydrostatic equilibrium equation 205

Lagrangian 137

limit of relativity 130, 136, 137, 139, 143, 160, 175,

179, 183, 205, 372, 373, 378, 493

orbit 180, 184, 185, 220

physics (appears under various names) 1–6, 13,

125, 126, 129, 130–133, 136, 139, 140, 144, 145,

160, 168, 175, 176, 179, 182, 185, 186, 191, 201,

222, 224, 271, 273, 378, 387, 425, 469, 493, 494

principles of dynamics 13

stress tensor 142

time 373

velocity 137

normal

curvature 54

ray 311



Index 529

section 55

vector 63, 65, 68, 70, 135, 152, 333, 376, 406

normalisation 266, 492

Novikov

coordinates 203, 290, 332, 341, 342, 386, 436

representation of the Schwarzschild solution 309

null

cone 260, 300

congruence 255

coordinate(s) 210, 215, 321, 441, 485

curve/line 62, 63, 216, 240, 242, 245, 311, 333, 347,

462, 477, 481

direction 398, 414, 441

geodesic 62, 176, 183, 186, 190, 194, 196, 202, 209,

210, 212, 215, 218, 219, 221, 240, 247, 254, 260,

263, 265, 277, 281, 293, 311, 313, 317, 319–321,

325, 326, 328, 329, 331, 334, 342, 344, 346–348,

365, 464, 466, 470–473, 475, 476, 477, 481, 483

equation 342

hypersurface 105, 152, 193, 313–315, 333, 358, 485

infinity 210, 211, 216, 319, 321, 342, 343, 478, 481

interval 61

orbit 105, 183, 345

relation 62

set 336, 344

subspace 63

tetrad 97

vector (field) 62, 115, 121, 170, 204, 238, 240, 241,

243, 248, 250, 251, 253, 256, 260, 312, 333, 414,

438, 440, 444, 477, 479, 484, 495

see also double-null tetrad

number counts 259

orbit

of a group 75–77, 80, 82, 85, 86, 104–106, 109, 110,

168, 171, 233, 310, 345, 367, 368, 392, 394, 397,

488, 489

parameter 80, 91

of a photon 470, 472, 474

of a planet/particle 2, 3, 149, 176–185, 190, 200, 220,

309, 311, 466, 468, 469, 470, 475, 486, 487, 489, 494

parameter 179

orthogonal

basis 257

coordinates 375, 441, 451, 491

cross-section 254

curve/line 68, 127, 291, 311, 368, 398, 461, 490, 496

(hyper)surface 14, 142, 225, 226, 240, 241, 242, 255,

257, 260, 398, 445, 487, 490, 491

-element 72, 120, 130, 143

hypersurface-orthogonal vector field 487

projection 223

transformation 94, 112, 148

transitivity 487, 488

vector(s) 14, 64, 66, 94, 95, 108, 127, 129, 141, 225,

241, 243, 247, 257, 260, 344, 398, 440, 444

orthogonality relations 441

orthonormal

tetrad/basis 97, 98, 116, 142, 173, 204, 267, 299, 387,

430, 452, 456, 469

overdensity 361

Palatini variational principle 136

parameter of an orbit, see orbit of a planet, parameter

Parametrised Post-Newtonian (PPN) formalism 140

Pascal law 140, 141

past 61, 62, 212, 230, 231, 243, 269, 276, 287, 288, 347,

348, 357, 380, 477, 481, 485

-apparent horizon 243, 282, 313, 314, 319, 321, 322,

325, 358, 366, 414

asymptotic- 303

-directed curve 366

-infinity 357, 358

-light/null cone 283, 300, 319, 361, 362, 363

-singularity 151, 195

-trapped surface 243, 282

-worldline 319

Pauli matrices 114, 115, 121, 122

Penrose

class 119

diagram 210

method (of the Petrov transformation) 70, 117, 120

process 486

transformation 209, 210, 321, 499

see also Newman–Penrose formalism

perfect

differential 34, 232

fluid 140–143, 152, 153, 160, 172, 203, 204, 228, 230,

231, 233, 234, 254, 255, 263, 266, 284, 285, 290,

291, 294, 359, 363, 386–388, 397, 398, 430–432,

434, 435, 438, 492, 494, 495

perihelion 2, 3, 179, 181

shift 181, 182, 187, 494

Petrov

classification 70–71, 113, 116, 117, 119, 120, 122

type(s) 71–73, 117, 121, 122, 245, 396, 398, 440, 452,

458, 476, 495

Planck constant 288

planet(s) 2, 3, 145, 176, 180, 181, 182, 186, 309, 311

Pluto 180, 190

post-Newtonian approximation 157, 182

principal

direction 398

spinor 117

propagator of parallel transport 39, 40, 42, 44

proper

density 361

enthalpy 232

motion 235

radius 409

Riemannian geometry 49
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proper (cont.)

time 140, 141, 143, 177, 202, 221, 224, 225, 263, 315,

316, 363, 451, 475, 490

volume 232, 259

pullback 20, 21, 56, 57

pushforward 20

quasi

-linear differential equation 445

-planar region 404

-pseudo-spherical region 404

-spherical region/model 401, 403, 404, 418

-symmetry 392

radiation 186, 188, 236, 254, 255, 259, 283–285, 287–290,

330, 331, 337, 339, 353, 357

-dominated matter 284, 289

-era 286

-intensity 259

-source 259, 265, 282

raising an index 50, 59, 92, 96, 113, 118, 154, 438

Raychaudhuri equation 228, 229, 230, 248, 426

reciprocal matrix 114, 122

reciprocity theorem 256, 257, 259, 265

recombination 283

redshift 145, 190, 239, 240, 254, 255, 259, 262, 263, 270,

286, 300, 328, 329, 337, 360, 361, 451

infinite 281, 337

-redshift hypersurface 202, 451

–distance relation 265, 270

space 360, 361

refocussing, see focussing

Reissner–Nordstöm (R–N)

black hole 219

coordinates 219

horizon 379

metric/solution/spacetime 173, 194, 207, 208, 209,

211–213, 216–219, 221, 363, 373, 375–380, 458,

468, 475, 481, 499

throat 384

tunnel 379

relativistic mass defect, - see mass defect

retrograde orbit/orbital motion 178, 469, 474, 486, 487

Ricci

formula/identity 37, 65, 78, 86, 87, 248

rotation coefficients 95, 96, 244, 245, 247, 442

tensor 58, 97, 104, 131, 146, 150, 166, 173, 344, 346,

397, 398, 436, 442

Riemann/Riemannian

curvature 54

geometry 4, 48, 54, 65, 125, 126, 191

manifold 78

space 49, 50, 51, 52, 53, 54, 56–58, 61, 63, 65, 69, 72,

74–75, 78, 82, 83, 85–86, 89, 90, 91, 97, 126, 129

6-dimensional 197

conformally related 56, 57

flat 52, 53, 79, 90, 129, 196

surface 460

tensor 51, 52, 54, 58, 65, 67, 78, 79, 89, 90, 91, 96, 98,

131, 133, 146, 152, 153, 155, 207, 228, 245, 257,

262, 368, 436, 440

tetrad components of 191, 194, 220, 252, 253, 299,

323, 442, 452

Robertson–Walker (R–W)

geometry/metric/model/spacetime/Universe 109, 111,

190, 191, 201, 230, 232, 233, 236, 261–266, 268,

271, 277–279, 281–283, 285, 289–293, 299, 300,

354, 357, 360, 391–394, 396, 397, 399, 427, 428,

430, 436

horizons in 277

perturbations of 349

rotating

black hole 438, 446, 487

coordinates 160

current 167

rotation 139, 160, 490

angular velocity of 160

duality- 163, 167, 173, 220, 458

-group 82

Lorentz- 363

-tensor 224, 225, 227, 229, 237, 240, 242, 244, 254,

260, 290, 294, 363, 367, 368, 490, 496

-transformation 75, 82–84, 91, 101, 105, 168, 178,

219, 445

-scalar 224, 227, 242, 244

see also Ricci rotation coefficients

rotational

energy of a black hole 486, 487

symmetry 86, 398

Ruban spacetime 384–388, 391, 392, 415, 436

Saturn 311

scale factor 230, 261, 266, 272, 275

Schwarzschild

geometry 183

horizon 194, 282, 312, 316, 341, 342, 387, 459, 467

limit

of the Kerr solution 454, 458, 459, 469, 470

of the L–T model 312, 342

manifold 171, 191, 194, 196

map 194

mass 309, 310, 403

metric/solution/spacetime 173, 175, 191, 192, 194–200,

202–204, 206, 213, 220, 243, 299, 309, 316, 332,

341, 354, 359, 363, 386, 387, 401, 436, 437, 438,

450, 451, 453, 475, 485, 495

interior 206

singularity 343

second fundamental form 64, 65, 69, 72, 152, 375, 376

self-dual tensor 115
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self-intersection of a light cone 62, 63

self-similar spacetime 105, 344, 345, 428

shear 224, 229, 248, 252, 255, 260, 290, 426

propagation equation 229

scalar 227, 242

tensor 224, 227, 242, 244, 396–399, 436

shearfree congruence/vector field 246, 247, 250, 251, 253,

291, 292, 441, 442, 476

shearing motion 224, 227

shell 297, 312, 315, 318, 319, 323, 349, 356, 363, 401,

407, 408, 417, 418

-crossing 297, 305, 306, 312, 314, 321, 323–325, 327,

334, 337–339, 340, 341, 342–344, 347, 348, 349,

352, 354, 355, 359, 361, 365, 366, 377, 378, 379,

383, 384, 399, 401, 404, 407, 408, 410–411, 416,

418, 426

extending a spacetime through- 337, 338

naked- 341, 343

-focussing 333, 342, 344, 346

signature 49, 50, 60, 61, 69–70, 85, 90, 92, 93, 97, 106,

110, 114, 129, 138, 142, 169, 214, 228, 296, 368, 369,

439, 446, 458

singularity 151, 191, 193–195, 200, 202, 207–211,

212–217, 219, 221, 230, 231, 243, 269, 275, 276, 282,

300, 315, 317, 318, 324, 327, 332, 333, 335, 336, 339,

341, 342, 344, 345, 352, 353, 377, 379, 382, 384, 385,

387, 399, 401, 410, 426, 436, 448, 452, 460, 461, 468,

471, 472, 475, 476, 481, 483, 484, 494

Big Bang- 201, 282, 288, 297, 315, 322, 332, 337, 347,

352, 353, 362, 377–379, 382, 384, 399, 401, 430

Big Crunch 315, 321, 322, 332, 334–337, 339, 340, 342,

343, 345, 352, 377, 378, 379, 382, 384

coordinate/spurious- 176, 191, 200, 203, 207, 209–212,

215, 216, 325, 333, 383, 448, 451, 452, 462, 475,

480, 481

-free model 151, 276

final/future- 194, 195, 278, 279, 313, 315, 352, 359,

400, 430, 437

initial/past- 195, 280, 281, 351, 352, 400

naked- 339, 341, 343, 344, 346, 467

locally 339

globally 339, 342, 344, 346

Schwarzschild- 343

-theorems 230, 231

weak- 324

see also shell crossing and shell focussing

space, see under specific names, e.g. Riemann space

space 1, 2, 4–6, 9

coordinates 62

of constant curvature 79, 91, 93, 104, 262, 291, 292,

367, 390, 392, 394, 396, 397, 398, 436

spacelike

coordinate 152, 192, 193

curve 62, 63, 253, 345, 462

geodesic 176, 194, 483

(hyper)surface 105, 106, 153, 211, 291, 313, 314, 333,

358, 398, 475, 481

infinity 211

interval 61

relation 62

singularity 332, 333, 336

vector 62, 146, 170, 171, 174, 239, 241, 260, 333, 344, 444

spacetime 61–63, 68, 69, 86, 90, 109, 114, 115, 129, 133,

141, 145, 152, 171, 172, 176, 201, 209, 210, 212, 224,

227, 243, 253, 277, 283, 299, 332, 392, 499

acausal- 212

admitting a thermodynamical scheme 233

asymptotically flat- 136, 488–490

axisymmetric- 487

Bianchi-type-(spatially homogeneous) 99, 105, 106,

107–109, 145, 146, 148, 232

conformally flat- 190

ellipsoidal 490–492

flat- 61, 243

G3/S2-symmetric- 368, 398

hyperbolically symmetric- 368

inhomogeneity of 306

nonstatic- 243

of no symmetry 233

plane symmetric- 367

self-similar- 105, 344, 345

spherically symmetric- 178, 294, 362, 368, 490

static- 487

stationary- 487

stationary–axisymmetric- 487–489, 499

with intrinsic symmetry 105

see also under specific names, e.g. Minkowski

spacetime

special

algebraically special spacetime/Weyl tensor 245, 246,

251, 253, 440

Lorentz transformation 91

relativity 1, 49, 61, 62, 90, 91, 125, 129, 130, 132, 136,

138–139, 154, 161, 184, 186, 273, 469, 500

spherical

ball 363

coordinates 35, 53, 72, 83, 84, 86, 93, 168, 178, 183,

408, 419, 494

cross-section 326

shell 401

star 296

surface 53, 312, 395, 460

symmetry 172, 311, 368, 375, 386, 392, 415

center of 356

spherically symmetric

black hole 201

body 203

charged dust 373

configuration 494

distribution
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spherically symmetric (cont.)

of matter 271, 293, 419, 421

of velocities 271

electromagnetic field 172

gravitational field 69, 168, 174–176, 183, 185, 203

metric(form)/model /solution/space/spacetime 82, 85, 86,

109, 168, 178, 203, 232, 294, 299, 311, 359, 362,

363, 368, 388, 490, 491

potential 494

profile of density 306

spin

of matter 151

-tensor 114, 115, 121, 122

spinor 113–117, 119, 122, 499

Debever- 117–122

-density 114

Hermitean- 114

-image of a tensor 114–116, 120–122

-index 114, 122

-method 113, 117, 499

principal- 117

-representation 116

-transformation 114

Weyl- 117

static

configuration 378

gravitational field 174

mass/object 139, 205, 362

metric/model/solution/spacetime/Universe 144, 145, 204,

207, 267, 275–277, 291, 377, 385, 399, 487

observer 316

stationary

–axisymmetric solution/spacetime 232, 487–489,

498, 499

black hole 446

-limit (hyper)surface 451, 459–462, 469, 487, 497

observer 451

solution/spacetime 316, 487, 490, 491

stereographic projection 394–396, 406, 416

Stokes theorem 41, 135

structure 289, 334

algebraic- 458

chain- 475

-constant(s) 81, 90, 92, 93, 99, 100, 107, 112

-formation 285, 289, 290, 303, 304, 349

global- 191

granular- 235

of a group 90

of the Universe 235, 236

Sun 2, 3, 149, 176, 179, 181, 186–188, 190, 200, 236,

316, 467

surface 35, 54, 62, 72, 84, 86, 104, 105, 130, 158, 191,

194–201, 212, 213, 214, 216, 217, 241, 254, 257, 311,

341, 342, 343, 356, 367, 368, 392, 394, 395, 397, 401,

419, 448, 449, 450, 487

2-dimensional- 12, 41, 48, 53, 54, 55, 88, 171, 196,

212, 242

-area 254, 259, 260

caustic- 255

closed 243

curvature of 12, 54, 55

curved- 10, 11, 13

-element 41, 42, 141, 265

equipotential- 493, 494

flat- 54

-forming vector fields 81, 82, 487

-leaf/sheet 41, 43, 255, 256, 259

-matter distribution 152

multi-sheeted- 63

of a black hole 201

of a body 152

of a charged sphere 378, 379

of a star 296

of constant curvature 396, 397, 398

of the Earth 56, 72, 488

of the Sun 186, 190

Riemann- 460

spherical- 53, 312

trapped- 243, 282, 311

symmetric

axially symmetric surface 62

part of a tensor 19, 35, 87, 100, 229, 241

mirror-symmetric surface 198, 325, 326, 458, 467, 472

tensor/spinor(density) [in indices] 18, 27, 48, 50, 52, 58,

64, 70, 88, 115, 116, 118, 121, 122, 128, 130, 131,

136, 144, 148, 172, 238, 495

time-symmetric recollapse 436

see also specific symmetries, e.g. spherically symmetric

symmetrisation 19, 229

symmetry 75, 78, 79, 81, 86, 90, 105, 111, 374

-axis 55, 259, 335, 396, 449, 459, 460, 466, 475, 483

centre of 86, 203, 298, 303, 310, 311, 315, 327,

332–334, 339, 341, 347, 359, 360, 365, 378, 382, 385

conformal- 86, 88, 90, 92, 105, 389

-generator 90, 99, 110

-group 81, 85, 86, 89–91, 104, 105, 106, 109, 146, 168,

232, 233, 290, 367, 368, 392, 397, 398, 448, 458

-inheritance 90, 172

intrinsic- 105

local rotational- 398

of a space 74

-orbit 171, 310, 367, 368

perturbations 346

-transformation 74

synchronous coordinates 294, 367, 368, 369

Szafron spacetime 392, 394, 396, 397, 398, 431, 436

Szafron–Wainwright spacetime 426, 428

Szekeres spacetime 396, 398, 399, 400, 401, 403, 404,

407, 408, 418, 419, 420–426
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tangent

curve/line 14, 20, 35, 41, 62, 80–82, 146, 187, 201, 225,

230, 245, 250, 317, 327, 336, 337, 466, 476, 477

direction 206

(hyper)surface 72, 77, 108, 225, 321, 335, 348, 419,

429, 459, 460, 477, 485

plane 10, 13, 90, 257, 450

space 14, 29, 44, 57, 64, 67, 90, 106, 107, 127, 128,

142, 254

vector(field) 10–12, 14, 15, 20, 34, 35, 46, 62, 64, 65,

75–77, 81, 82, 127–129, 143, 165, 218, 224, 227,

241, 256, 263, 264, 281, 291, 311, 316, 317, 328,

334, 335, 337, 339, 344, 347, 366, 440, 444, 464,

467, 474, 476, 477–479, 483, 484, 491

temperature 283, 285, 287–289, 330, 331, 357

anisotropy 290, 331

contrast 331

definition 232, 233

tensor(s) 13, 15, 16

associated mapping of 20, 21

-calculus 97, 98

-density 13, 17, 18

differentiation of 26

invariant- 75, 79

optical- 240, 244, 245, 246

parallel transport of 34, 39

-product 18, 28, 37, 39, 40, 80

-transformation

linearised 155

see also under specific names, e.g. curvature tensor,

Einstein tensor

tetrad 97, 248, 323, 441

-components of a tensor 173, 174, 191, 194, 204, 207,

220, 244, 253, 267, 299, 323, 387, 430, 452,

456, 469

double-null- 97, 243, 245, 246, 250, 251, 441

-image of a tensor 96

-index/indices 243, 244, 442, 457

-metric 94, 244

null- 97

of vector fields 94

orthonormal- 97, 98, 142, 173, 204, 267, 299, 387, 430,

452, 456, 469

theorems, see under specific names, e.g. ‘Goldberg–Sachs

theorem’

thermodynamical scheme 233, 397, 430

thermodynamics 222, 231–233, 290, 397

timelike

coordinate 152, 193, 451

curve/line 63, 176, 201, 209, 211, 216, 271, 333, 345,

347, 414, 451, 462, 479, 481, 491

direction 212

geodesic 126, 127, 176, 194, 196, 200, 219,

221, 296, 311, 344, 346, 464, 466,

467, 471, 474, 483

hyper(surface) 105, 141, 313, 314, 333, 358, 364, 380,

475, 481, 485

infinity 211, 358

interval 61

relation 62

singularity 212, 216, 315, 333, 336, 353

vector(field) 62, 70, 72, 73, 142, 170–172, 204, 294,

333, 385, 444, 445, 448, 451, 461, 462,

469, 487

torsion tensor 30, 32, 38, 46, 49, 151

torsion-free manifold 36, 44–46, 51

trace (of a matrix/tensor) 17, 18, 58, 70, 72, 174, 241

trace-free/traceless

matrix/tensor 118, 284

part of a tensor 58, 241

transitive

-action of a group 105

multiply- 105, 109

simply- 105, 106, 110

orthogonally transitive spacetime 488

trapped surface 243

closed 243, 311

future- 243

past- 243, 282

underdensity 361

upper

index 18, 19, 23, 24, 27, 238

limit of mass 321

tetrad index 244

vector 10

contravariant- 15

covariant- 16

current- 161

-field(s) 14

basis of 29

coordinates adapted to 47

invariant 106

Killing- 77

conformal- 86

mapping of 20

surface-forming- 81, 82

length of 49

normal- 65

null- 62

of angular momentum 160

of angular velocity 223

parallel- 10, 11

-space 14, 17, 113

spacelike- 62

tangent- 10, 14, 34, 35

timelike- 62

transport of 39, 40
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vector (cont.)

wave- 238, 239

zero- 20

see also under specific names, e.g. eigenvector or Debever

vector

Virgo cluster 331

void 235, 289, 301–303, 308, 332, 337

weak-field

approximation 140, 154, 156, 157

limit of relativity 447

weight of a tensor density 17, 18, 24, 26, 28, 30, 36, 37,

114, 133, 135

Weyl

spinor 117

tensor 58, 60, 70, 71, 72, 121, 131, 206, 245, 396, 398,

399, 440, 458

algebraically special 246, 251

electric part of 71, 229

magnetic part of 70, 229, 396, 436

Petrov classification/types of 70, 245

principal spinors of 117

spinor image of 116, 120, 121

white hole 201

wormhole 296, 314, 321, 325, 404, 413, 414,

418, 419
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