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1 Introduction

All stars visible to the naked eye owe their momentary brightness to nuclear
reactions occurring in their interior. While this certainly makes them jewels
of the night skies, it will eventually lead them to a tragic end, in which they
will explode to become either degenerate white dwarfs, neutron stars or black
holes. Another, more numerous but barely visible population has chosen to
lead a dull but quiet and almost eternal life: these are careful not to ever
become dependent on hydrogen to shine. Some, in their youth, do burn less
energetic substances as deuterium and lithium, but they rapidly get short of
supply. As a consequence, they steadily cool and contract, retaining intact
most of the elements that made them.

These brown dwarfs and giant planets form an entirely new class of astro-
nomical objects. They fill a gap between stars and the planets of our Solar Sys-
tem. Their study informs us on our origins, the formation of stars and planets.
It can also help us to understand or test theories from high pressure physics,
to atmospheric dynamics, tides, condensation and cloud formation...etc.

The course focuses on some physical aspects related to the theoretical
study of these substellar objects: I detail their hydrostatic evolution and how it
is modeled, what we can learn from Jupiter, Saturn, Uranus and Neptune, how
the atmospheres of brown dwarfs and giant planets are key to their appearance
and cooling, what we can learn from the recent observations of brown dwarfs
and extrasolar planets, and how this affects our view of planet formation.

2 “Our” Giant Planets as a Basis for the Study of
Substellar Objects

2.1 Origins: Role of the Giant Planets for Planet Formation

The Solar System contains our Sun, which possesses more than 98% of the
mass of the system, and eight planets orbiting around it in the same plane and
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same direction with quasi-circular orbits. The planets contain 99.5% of the
angular momentum of the system. The four inner planets, Mercury, Venus,
Earth and Mars have the highest densities, but more than 99.5% of the mass
of the planetary system is in its four outer planets, Jupiter, Saturn, Uranus
and Neptune. Most of the planets have moons, or natural satellites. Orbiting
around the Sun, one also finds asteroids, Kuiper belt objects (including Pluto)
and comets.

A picture emerges naturally from these observations: the formation of the
planets in a circumstellar disk: the protosolar nebula. Planets formed close to
the Sun naturally contain less volatiles and ices, while the outer planets were
favored by the abundant presence of ices and could therefore grow fast enough
to get hold of the surrounding hydrogen and helium of the nebula before
its dissipation. In this picture, asteroids, Kuiper belt objects and comets all
represent leftovers from an inefficient planet formation mechanism.

By their masses, the giant planets Jupiter, Saturn, Uranus and Neptune
played a key role in this story. While the inner, terrestrial planets took tens
of millions of years to reach their present masses, the giant planets had to
form rapidly, before the gas of the protosolar nebula disappeared onto the
star or was swept away from the system. They led to the ejection of numerous
material, preventing the formation of a planet between Mars and Jupiter,
and sending planetesimals into the Oort cloud, from where these remains of
planetary formation come back once in a while as comets.

Their study therefore informs us on our origins. It also allows us to ex-
tend our knowledge beyond the frontiers of the Solar System and to model
with confidence the other giant planets that have been found orbiting other
stars. Before presenting the theoretical aspects of that understanding, I will
detail here a few of the observations and measurements of significance for our
purposes.

Most of the measurements at the basis of our understanding of the struc-
ture of our giant planets have been acquired by spacecraft missions: Pioneer
10 & 11, Voyager 1 & 2, Ulysses, Galileo, Cassini-Huygens.

2.2 Gravity Field and Global Properties

The mass of the giant planets can be obtained with great accuracy from the
observation of the motions of their natural satellites: 317.834, 95.161, 14.538
and 17.148 times the mass of the Earth (1M⊕ = 5.97369×1027 g) for Jupiter,
Saturn, Uranus and Neptune, respectively. More precise measurements of
their gravity field can be obtained through the analysis of the trajectories
of spacecrafts during flyby, especially when they come close to the planet
and preferably in a near-polar orbit. The gravitational field thus measured
departs from a purely spherical function due to the planets rapid rotation.
The measurements are generally expressed by expanding the components
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of the gravity field on Legendre polynomials Pi of progressively higher
orders:
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where Req is the equatorial radius, and Ji are the gravitational moments .
Because the giant planets are very close to hydrostatic equilibrium the coeffi-
cients of even order are the only ones that are not negligible. We will see how
these gravitational moments help us constrain the planets’ interior density
profiles.

Table 1 also indicates the radii obtained with the greatest accuracy by
radio-occultation experiments. By convention, these radii and gravitational
moments correspond to the 1 bar pressure level. The rotation periods show
the relatively fast revolution of these planets: about 10 hours for Jupiter and
Saturn, about 17 hours for Uranus and Neptune. The fact that this fast rota-
tion visibly affects the figure (shape) of these planets is seen by the significant
difference between the polar and equatorial radii.

A first result obtained from the masses and radii indicated in Table 1 is the
fact that these planets have low densities: 1.33, 0.688, 1.27, and 1.64 g cm−3

for Jupiter, Saturn, Uranus and Neptune, respectively (these values are calcu-
lated using the planets’ mean radii, as defined in Sect. 3.5). Considering the

Table 1. Characteristics of the gravity fields and radii

Jupiter Saturn Uranus Neptune

M × 10−29 [g] 18.986112(15)a 5.684640(30)b 0.8683205(34)c 1.0243542(31)d

Req × 10−9 [cm] 7.1492(4)e 6.0268(4)f 2.5559(4)g 2.4766(15)g

Rpol × 10−9 [cm] 6.6854(10)e 5.4364(10)f 2.4973(20)g 2.4342(30)g

J2 × 102 1.4697(1)a 1.6332(10)b 0.35160(32)c 0.3539(10)d

J4 × 104 −5.84(5)a −9.19(40)b −0.354(41)c −0.28(22)d
J6 × 104 0.31(20)a 1.04(50)b . . . . . .

Pω × 104 [s] 3.57297(41)h 3.83577(47)h 6.2064i 5.7996j

The numbers in parentheses are the uncertainty in the last digits of the given
value. The value of the gravitational constant used to calculate the masses of
Jupiter and Saturn is G = 6.67259×10−8 dyn cm2 g−1 (Cohen and Taylor 1986)
a Campbell and Synnott (1985)
b Campbell and Anderson (1989)
c Anderson et al. (1987)
d Tyler et al. (1989)
e Lindal et al. (1981)
f Lindal et al. (1985)
g Lindal (1992)
h Davies et al. (1986)
i Warwick et al. (1986)
j Warwick et al. (1989)
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compression that strongly increases with mass, one is led to a sub-classification
between the hydrogen–helium giant planets Jupiter and Saturn, and the “ice
giants” Uranus and Neptune.

2.3 Magnetic Fields

As the Earth, the Sun and Mercury, our four giant planets possess their own
magnetic fields, as shown by the Voyager 2 measurements. The structures of
these magnetic fields are very different from one planet to another and the
dynamo mechanism that generates them is believed to be related to convection
in their interior but is otherwise essentially unknown (see Stevenson 1983 for
a review).

The magnetic field B is generally expressed in form of a development in
spherical harmonics of the scalar potential W , such that B = −∇W :

W = a

∞∑
n=1

(a
r

)n+1 n∑
m=0

{gmn cos(mφ) + hmn sin(mφ)}Pm
n (cos θ) . (2)

r is the distance to the planet’s center, a its radius, θ the colatitude, φ the lon-
gitude and Pm

n the associated Legendre polynomials. The coefficients gmn and
hmn are the magnetic moments that characterize the field. They are expressed
in magnetic field units (i.e. the Gauss in c.g.s. units).

One can show that the first coefficients of relation (2) (for n = 0 and n = 1)
correspond to the potential of a magnetic dipole such that W = M · r/r3 of
moment:
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)2
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)2}1/2
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Jupiter and Saturn have magnetic fields of essentially dipolar nature, of
axis close to the rotation axis (g01 is much larger than the other harmonics);
Uranus and Neptune have magnetic fields that are intrinsically much more
complex. To provide an idea of the intensity of the magnetic fields, the value
of the dipolar moments for the four planets are 4.27GaussRJ, 0.21GaussRS,
0.23GaussRU, 0.133GaussRN, respectively (Connerney et al. 1982; Acuña et
al. 1983; Ness et al. 1986, 1989).

2.4 Atmospheric Composition

The most important components of the atmospheres of our giant planets are
also among the most difficult to detect: H2 and He have a zero dipolar mo-
ment. Also their rotational lines are either weak or broad. On the other hand,
lines due to electronic transitions correspond to very high altitudes in the
atmosphere, and bear little information on the structure of the deeper levels.
The only robust result concerning the abundance of helium in a giant planet
is by in situ measurement by the Galileo probe in the atmosphere of Jupiter
(von Zahn et al. 1998). The helium mole fraction (i.e. number of helium atoms
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over the total number of species in a given volume) is qHe = 0.1359± 0.0027.
The helium mass mixing ratio Y (i.e. mass of helium atoms over total mass)
is constrained by its ratio over hydrogen, X: Y/(X + Y ) = 0.238± 0.05. This
ratio is by coincidence that found in the Sun’s atmosphere, but because of he-
lium sedimentation in the Sun’s radiative zone, it was larger in the protosolar
nebula: Yproto = 0.275 ± 0.01 and (X + Y )proto ≈ 0.98. Less helium is there-
fore found in the atmosphere of Jupiter than inferred to be present when the
planet formed. We will discuss the consequences of this measurement later:
let us mention that the explanation invokes helium settling due to a phase
separation in the interiors of massive and cold giant planets.

Helium is also found to be depleted compared to the protosolar value in
Saturn’s atmosphere. However, in this case the analysis is complicated by the
fact that Voyager radio occultations apparently led to a wrong value. The
current adopted value is now Y = 0.18 − 0.25 (Conrath and Gautier 2000),
in agreement with values predicted by interior and evolution models (Guillot
1999a,b; Hubbard et al. 1999). Finally, Uranus and Neptune are found to have
near-protosolar helium mixing ratios, but with considerable uncertainty.

The abundance of other elements (that I will call hereafter “heavy ele-
ments”) bears crucial information for the understanding of the processes that
led to the formation of these planets. Again, the most precise measurements
are for Jupiter, thanks to the Galileo probe. Most of the heavy elements are
enriched by a factor 2 to 4 compared to the solar abundance (Niemann et al.
1998; Owen et al. 1999). One exception is neon, but an explanation is its cap-
ture by the falling helium droplets (Roulston and Stevenson 1995). Another
exception is water, but this molecule is affected by meteorological processes,
and the probe was shown to have fallen into a dry region of Jupiter’s at-
mosphere. There are strong indications that its abundance is at least solar.
Possible very high interior abundances (∼10 times the solar value) have also
been suggested, either to explain waves propagation after the Shoemaker-
Levy 9 impacts (Ingersoll et al. 1994) or as a scenario to explain the delivery
of heavy elements to the planet (Gautier et al. 2001).

Assuming that all elements are enriched by a factor∼3 in Jupiter’s interior,
the total mass of heavy elements in the planet would be ∼18M⊕. In the other
planets, the case is considerably less clear as only the abundance of CH4 can
be measured with confidence. As shown in Table 2 this ratio is consistent
with an increased proportion of heavy elements when moving from Jupiter to
Neptune. The problem of how these elements were delivered to these planets
will be discussed later.

2.5 Energy Balance and Atmospheric Temperature Profiles

Jupiter, Saturn and Neptune are observed to emit significantly more energy
than they receive from the Sun (see Table 3). The case of Uranus is less
clear. Its intrinsic heat flux Fint is significantly smaller than that of the
other giant planets. Detailed modeling of its atmosphere however indicate
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Table 2. Chemical species detected in the atmospheres of giant planets (courtesy
of B. Bézard)

Jupiter Saturn Uranus Neptune

H2 0.864 0.86− 0.90 0.81− 0.86 0.77− 0.82

He 0.134 0.10− 0.14 0.12− 0.17 0.16− 0.22

rare gases Ne, Ar, Kr, Xe

species in CH4: 2× 10−3 CH4: 3−6×10−3 CH4: ∼2×10−2 CH4: ∼2×10−2

thermochemical NH3: 5× 10−3 NH3

equilibrium H2O: > 10−3 H2O

H2S: 8× 10−5 H2S? H2S?

species in PH3 PH3

thermochemical CO CO CO

disequilibrium GeH4 GeH4

AsH3 AsH3

photochemical C2H6, C2H2, C2H6, C2H2, C2H2 C2H6, C2H2,

products C2H4, CH3C2H, CH3C2H, C4H2, C2H4, CH3,

C6H6 C6H6, CH3 HCN

meteoritic flux H2O, CO H2O H2O H2O

CO2 (from H2O)

SL9 residuals CO, CO2

CS, HCN

Table 3. Energy balance as determined from Voyager IRIS dataa

Jupiter Saturn Uranus Neptune

absorbed power [1023 erg s−1] 50.14±2.48 11.14±0.50 0.526±0.037 0.204±0.019
emitted power [1023 erg s−1] 83.65±0.84 19.77±0.32 0.560±0.011 0.534±0.029
intrinsic power [1023 erg s−1] 33.5±2.6 8.63±0.60 0.034 +0.038

−0.034 0.330±0.035
intrinsic flux [erg s−1 cm−2] 5440±430 2010±140 42 +47

−42 433±46
bond albedo 0.343±0.032 0.342±0.030 0.300±0.049 0.290±0.067
effective temperature [K] 124.4±0.3 95.0±0.4 59.1±0.3 59.3±0.8
1-bar temperatureb [K] 165±5 135±5 76±2 72±2
a After Pearl and Conrath (1991)
b Lindal (1992)

that Fint ∼> 60 erg cm−2 s−1 (Marley and McKay 1999). With this caveat, all
four giant planets can be said to emit more energy than they receive from the
Sun. Hubbard (1968) showed in the case of Jupiter that this can be explained
simply by the progressive contraction and cooling of the planets.
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A crucial consequence of the presence of an intrinsic heat flux is that it re-
quires high internal temperatures (∼10, 000K or more), and that consequently
the giant planets are fluid (not solid) (Hubbard 1968; see also Hubbard et al.
1995). Another consequence is that they are essentially convective, and that
their interior temperature profile are close to adiabats. We will come back to
this in more details.

The deep atmospheres (more accurately tropospheres) of the four giant
planets are indeed observed to be close to adiabats, a result first obtained
by Trafton (1967), but verified by radio-occultation experiments by the Voy-
ager spacecrafts, and by the in situ measurement from the Galileo probe
(Fig. 1). The temperature profiles show a temperature minimum, in a region
near 0.2 barcalled the tropopause. At higher altitudes, in the stratosphere,
the temperature gradient is negative (increasing with decreasing pressure). In
the regions that we will be mostly concerned with, in the troposphere and
in the deeper interior, the temperature always increases with depth. It can
be noticed that the slope of the temperature profile in Fig. 1 becomes almost
constant when the atmosphere becomes convective, at pressures of a few tens
of bars, in the four giant planets.

It should be noted that the 1 bar temperatures listed in Table 3 and the
profiles shown in Fig. 1 are retrieved from radio-occultation measurements us-
ing a helium to hydrogen ratio which, at least in the case of Jupiter and Saturn,
was shown to be incorrect. The new values of Y are found to lead to increased
temperatures by ∼5K in Jupiter and ∼10K in Saturn (see Guillot 1999a,b).

Fig. 1. Atmospheric temperatures as a function of pressure for Jupiter, Saturn,
Uranus and Neptune, as obtained from Voyager radio-occultation experiments (see
Lindal 1992). The dotted line corresponds to the temperature profile retrieved by
the Galileo probe, down to 22 barand a temperature of 428K (Seiff et al. 1998)
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However, to make things simple (!), the Galileo probe found a 1 bar temper-
ature of 166K (Seiff et al. 1998), and generally a good agreement with the
Voyager radio-occultation profile with the wrong He/H2 value.

When studied at low spatial resolution, it is found that all four giant
planets, in spite of their inhomogeneous appearances, have a rather uniform
brightness temperature, with pole-to-equator latitudinal variations limited to
a few kelvins (e.g. Ingersoll et al. 1995). However, in the case of Jupiter, some
small regions are known to be very different from the average of the planet.
This is the case of hot spots, which cover about 1% of the surface of the planet
at any given time, but contribute to most of the emitted flux at 5 microns, due
to their dryness (absence of water vapor) and their temperature brightness
which can, at this wavelength, peak to 260K. This fact is to be remembered
when analyzing e.g. brown dwarfs spectra.

2.6 Spectra

A spectrum of a jovian hot spot obtained from the Galileo orbiter is shown in
Fig. 2. It demonstrates the complex structure of a planet, and the significant
departures from a black-body radiation. At short wavelengths (λ ∼< 3µm,
the spectrum is dominated by the directly reflected solar light. At longer
wavelengths, the thermal radiation dominates. The spectrum is dominated by
the absorption bands of methane with some absorption by ammonia; water
lines are seen around 5µm, and a number of less abundant chemical species
(e.g. phosphine) contribute to this spectrum.

Fig. 2. Flux emitted by a Jupiter hot spot as seen by the Galileo orbiter with NIMS
[From Carlson et al. 1996; Courtesy of P. Drossart]
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2.7 Atmospheric Dynamics: Winds and Weather

The atmospheres of all giant planets are evidently complex and turbulent in
nature. This can for example be seen from the mean zonal winds (inferred from
cloud tracking), which are very rapidly varying functions of the latitude (see
e.g. Ingersoll et al. 1995): while some of the regions rotate at the same speed
as the interior magnetic fields (“system III”), most of the atmospheres do not.
Jupiter and Saturn both have superrotating equators (+100 and +400m s−1 in
system III, for Jupiter and Saturn, respectively), Uranus and Neptune have
subrotating equators, and superrotating high latitude jets. Neptune, which
receives the smallest amount of energy from the Sun has the largest peak-to-
peak latitudinal variations in wind velocity: about 600m s−1. It can be noted
that, contrary to the case of the strongly irradiated planets to be discussed
later, the winds of Jupiter, Saturn, Uranus and Neptune, are significantly
smaller than the surface speed due to the revolution of the planet on itself
(from 12.2 km s−1 for Jupiter to 2.6 km s−1 for Neptune).

The observed surface winds are believed to be related to motions in the
planets’ interiors, which, according to the Taylor–Proudman theorem, should
be confined by the rapid rotation to the plane perpendicular to the axis of
rotation (e.g. Busse 1978). Unfortunately, no convincing model is yet capable
of modeling with sufficient accuracy both the interior and the surface layers.

Our giant planets also exhibit planetary-scale to small-scale storms with
very different temporal variations. For example, Jupiter’s great red spot is
a 12000 km-diameter anticyclone found to have lasted for at least 300 years.
Storms developing over the entire planet have even been observed on Saturn
(Sanchez-Lavega et al. 1991). Neptune’s storm system has been shown to
have been significantly altered since the Voyager era. On Jupiter, small-scale
storms related to cumulus-type cloud systems has been observed by Galileo,
and lightning strikes can be monitored.

It is tempting to extrapolate these observations to the objects outside our
Solar System as well. However, it is important to stress that an important
component of the variability in the atmospheres of our giant planets is the
presence of relatively abundant condensing chemical species: ammonia and
water in the case of Jupiter and Saturn, and methane for Uranus and Neptune.
These species can only condense (and thus provide the necessary latent heat)
in very cold atmospheres. Other phenomena are however possible.

2.8 Moons and Rings

A discussion of our giant planets motivated by the opportunity to extrapolate
the results to objects outside our solar system would be incomplete without
mentioning the moons and rings that these planets all possess. First, the satel-
lites/moons can be distinguished from their orbital characteristics as regular
or irregular. The first ones have generally circular, prograde orbits. The latter
tend to have eccentric, extended, and/or retrograde orbits.
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These satellites are numerous: After the Voyager era, Jupiter was known
to possess 16 satellites, Saturn to have 18, Uranus 20 and Neptune 8. Recent
extensive observation programs have seen the number of satellites increase
considerably. The number of satellites detected is now 60 around Jupiter, 31
around Saturn, 26 around Uranus and 11 around Neptune (see Gladman et
al. 2001; Sheppard and Jewitt 2003). All of these new satellites are classified
as irregular.

The presence of regular and irregular satellites is due in part to the history
of planet formation. It is believed that the regular satellites have mostly been
formed in the protoplanetary subnebulae that surrounded the giant planets
(at least Jupiter and Saturn) at the time when they accreted their envelopes.
On the other hand, the irregular satellites are thought to have been captured
by the planet. This is for example believed to be the case of Neptune’s largest
moon, Triton, which has a retrograde orbit.

A few satellites stand out by having relatively large masses: it is the case of
Jupiter’s Io, Europa, Ganymede and Callisto, of Saturn’s Titan, and of Nep-
tune’s Triton. Ganymede is the most massive of them, being about twice the
mass of our Moon. However, compared to the mass of the central planet, these
moons and satellites have very small weights: 10−4 and less for Jupiter, 1/4000
for Saturn, 1/25000 for Uranus and 1/4500 for Neptune. All these satellites
orbit relatively closely to their giant planets. The furthest one, Callisto rotates
around Jupiter in about 16 Earth days.

The four giant planets also have rings, whose material is probably con-
stantly resupplied from their satellites. The ring of Saturn stands out as the
only one directly visible with only binocular. In this particular case, its enor-
mous area allows it to reflect a sizable fraction of the stellar flux arriving at
Saturn, and makes this particular ring as bright as the planet itself. The oc-
currence of such rings would make the detection of extrasolar planets slightly
easier, but it is yet unclear how frequent they can be, and how close to the
stars rings can survive both the increased radiation and tidal forces.

2.9 Oscillations

Last but not least, the case for the existence of free oscillations of the giant
planets is still unresolved. Such a discovery would lead to great leaps in our
knowledge of the interior of these planets, as can be seen from the level of ac-
curacy reached by solar interior models since the discovery of its oscillations.
Observations aimed at detecting modes of Jupiter have shown promising re-
sults (Schmider et al. 1991), but have thus far been limited by instrumental
and windowing effects. A recent work by Mosser et al. (2000) puts an up-
per limit to the amplitude of the modes at 0.6m s−1, and shows an increased
energy of the Fourier spectrum in the expected range of frequencies. Obser-
vations from space of through an Earth-based network should be pursued in
order to verify these results.
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3 Basic Equations, Gravitational Moments and Interior
Structures

3.1 Hydrostatic Equilibrium

A very pleasing property of giant planets and brown dwarfs is that in spite of
more than two decades of variation in mass, these objects basically obey the
same physics: for most of their life, their interior is fluid and they are governed
by the equilibrium between their internal pressure and their gravity. Unlike
terrestrial planets, the characteristic viscosities are extremely small and can
be neglected. The standard hydrostatic equation is thus:

∂P

∂r
= −ρg, (4)

where P is the pressure, ρ the density, and g = Gm/r2 the gravity (m is the
mass, r the radius and G the gravitational constant).

Another equation is necessary to obtain the temperature as a function of
pressure:

∂T

∂r
=
∂P

∂r

T

P
∇T . (5)

While the equation itself is trivial, the calculation of the temperature gradient
∇T ≡ (d lnT/d lnP ) is not, and depends on the process by which the internal
heat is transported. This term will be analyzed in a following section.

Thirdly, a special case of the mass conservation with zero velocity is:

∂M

∂r
= 4πr2ρ . (6)

Again, the physics of this equation is hidden in the dependency of the density
ρ with the pressure, temperature and composition, something given by the
equation of state (see Sect. 3.2).

Finally, a crucial equation is derived from energy conservation considera-
tions:

∂L

∂r
= 4πr2ρ

(
ε̇− T ∂S

∂t

)
, (7)

where L is the intrinsic luminosity, t the time, S the specific entropy (per unit
mass), and ε̇ accounts for the sources of energy due e.g. to radioactivity or
more importantly nuclear reactions. Generally it is a good approximation to
assume ε̇ ∼ 0 for objects less massive than ∼13MJ, i.e. too cold to even burn
deuterium (but we will see that in certain conditions this term may be useful,
even for low mass planets).

3.2 Boundary Conditions

At the center, r = 0; m = 0, L = 0. The external boundary conditions are
more complex to obtain because they depend on how energy is transported in
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the atmosphere. One possibility is to use the Eddington approximation , and
to write (e.g. Chandrasekhar 1960):

r = R : T0 = Teff ,

P0 =
2
3
g

κ
,

(8)

where κ is the opacity in cm2 g−1 (see Sect. 5). Note for example that in the
case of Jupiter Teff = 124 K, g = 2600 cm s−2 and κ ≈ 5×10−2(P/1 bar) cm2 g−1.
This implies P ≈ 0.2 bar, which is actually close to Jupiter’s tropopause, where
T ≈ 110 K.

Another possibility is to use an atmospheric model and to relate the tem-
perature and pressure at a given level to the gravity and effective temperature
of the object (or equivalently luminosity and radius):

T0 = T0(Teff , g); P0 = P0(Teff , g) . (9)

In the case of Jupiter and Saturn, an approximation often used is based on
old calculations by Graboske et al. (1975). It takes the form

T1 bar = KT aeffg
−b , (10)

where K = 1.5, a = 1.243 and b = 0.167, all the quantities being expressed
in cgs units. As shown by Fig. 3, this approximation is relatively good for
effective temperatures lower than 200 K, but it degrades substantially above
that value (see also discussion in Saumon et al. 1996).

Fig. 3. Comparison of the boundary condition obtained from (10) (dashed) to a gray
atmosphere from Saumon et al. 1996 (plain), in the case of Saturn (g ≈ 1100 cm s−2),
Jupiter (g ≈ 2600 cm s−2) and Gl229B (g ≈ 105 cm s−2)
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Note that these boundary conditions assume that the object is isolated.
This is not the case of the giant planets of the solar system and for extrasolar
planets for which the insolation can play an important role. We leave that
problem for a further discussion.

3.3 Simple Solutions

Central Pressure

In order to estimate the central pressure, it is useful to write the hydrostatic
equilibrium in a form which is independent on density:

∂P

∂m
= − Gm

4πr4
. (11)

Approximating by m ≈ M/2, r ≈ R/2 (M and R being the total mass and
radius, respectively) yields

Pc ≈
2
π

GM2

R4
. (12)

Another simple solution is obtained by assuming uniform density ρ =
3M/4πR3. Equation (4) can then be integrated to obtain

Pc ≈
3
8π

GM2

R4
. (13)

Knowing the mass and radius of a moon, planet or star, its central pressure
can therefore be approximated within a factor of a few.

Using (12,13) the central pressure of the moon is found to be 17−91 kbar,
1.7− 9.1Mbar for the Earth, 12− 64Mbar for Jupiter and 1.3− 7.2Gbar for
the Sun. For comparison, the corresponding values given by more elaborate
models are ∼40 kbar, 3.6Mbar, 40 to 70Mbar and 230Gbar, respectively. The
approximation is least successful in the case of the Sun, mostly because of the
increase in density of the central regions (ρc ≈ 150 g cm−3).

When dealing with objects of small masses like planetary moons, the uni-
form density model is in fact a good approximation to the internal pressure,
which can be shown to be:

P (ξ) ≈ 4π
6
GR2ρ2

[
1−
( r
R

)2]
. (14)

The central temperatures are more difficult to obtain a priori because
contrary to main-sequence stars the interiors strongly depart from ideality.
An a posteriori estimate uses the fact that these objects are mostly convec-
tive and that their temperature gradient ∇T ≡ (d lnT/d lnP ) ≈ 0.3. One
then finds that T ≈ Teff(P/P0)∇T , with Teff and P0 being defined by the
boundary conditions discussed in Sect. 3.2. In the case of Jupiter, starting
from T (1 bar) = 165K and Pc ≈ 12Mbar, one gets Tc ≈ 22000K, a relatively
accurate estimate of the temperature at the bottom of the hydrogen–helium
envelope.
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Polytropic Solutions

A full integration of the set of differential equations is of course necessary
to obtain the necessary precision on quantities such as pressure, temperature
and density. However, it is sometime useful to use approximate analytical so-
lutions to understand the underlying physics. One of these approximations, of
considerable importance for stellar physics, is to assume a polytropic relation
between pressure and density:

P = Kρ1+1/n , (15)

where K is supposed constant, and n is the polytropic index . Of course, this
relation implicitly assumes that either density only depends on pressure not
on temperature, or that the temperature profile is well-behaved and yields K
and n constants.

This property is indeed verified in the limit when the pressure is due to
non-relativistic fully degenerate electrons (e.g. Chandrasekhar 1939). In that
case, a pure hydrogen plasma obeys the polytropic relation (15) with n = 3/2
and a constant K defined by fundamental physics (i.e. independent of M ,
Teff ...etc.).

On the other hand, a perfect gas with a constant temperature gradient
can be shown to obey a polytropic relation of index n = 1/(1+1/∇T ). In the
case of a monoatomic perfect gas, n = 3/2. It is important to notice that in
that case K is set by the atmospheric boundary condition: it depends on pa-
rameters such as the mass and effective temperature of the object considered.

A solution of the polytropic problem is obtained from the integration of
the hydrostatic and Poisson equations:


dP

dr
= −dΦ

dr
ρ ,

1
r2

d

dr

(
r2
dΦ

dr

)
= 4πGρ ,

(16)

where Φ is the gravitational potential. The problem can be solved with some
algebra. With the following change of variables,

z = Ar , A2 =
4πG

(n+ 1)K
ρ

n−1
n

c

w =
Φ

Φc
=

ρ

ρc
,

(17)

where ρc and Φc are the central density and gravitational potential, respec-
tively, one is led to the famous Lane–Emden equation (see Chandrasekhar
1939; Kippenhahn and Weigert 1991 for a demonstration):

1
z2

d

dz

(
z2
dw

dz

)
+ wn = 0 . (18)
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This equation possesses analytical solutions for n = 0, 1 and 5. For our
purpose, it is sufficient to say that the solutions are characterized by the
surface condition: zn such that w(zn) = 0 and by the derivative of the function
w at that point: (dw/dz)zn

. It can be shown that the total mass and surface
radius of a polytrope are such that:

M = 4πρcR3

(
−1
z

dw

dz

)
z=zn

, (19)

R = zn

[
1

4πG
(n+ 1)K

]1/2
ρ

1−n
2n

c . (20)

If we assume that K and n are independent of the mass and surface condi-
tions of the object considered, it is easy to show that the mass–radius relation
is such that

R ∝M
1−n
3−n . (21)

First, one can notice that the exponent diverges for n = 3. In this case, the
Lane–Emden equation has only one solution: this leads to the Chandrasekhar
limit for the mass of white dwarfs. Second, for uncompressible materials, n = 0
and we can verify that R ∝ M1/3. Third, objects whose internal pressure
is dominated by non-relativistic degenerate electrons (this is formally valid
only in the white dwarfs regime) are such that n = 3/2 (see Sect. 4.1) and
R ∝M−1/3.

3.4 Mass–Radius Relation

The relation between mass and radius has very fundamental astrophysical
applications. Most importantly is allows one to infer the gross composition
of an object from a measurement of its mass and radius. This is especially
relevant in the context of the discovery of extrasolar planets with both radial
velocimetry and the transit method, as the two techniques yield relatively
accurate determination of M and R.

Figure 4 shows as a plain line the mass–radius relation of isolated hydrogen–
helium objects (of approximate solar composition) after 10Gyr of evolution.
As could have been inferred from the polytropic solutions, this curve has a
local maximum: at small masses, the compression is rather small so that the
radius increases with mass (corresponding to a low polytropic index). (Note
for example that in the case of the Earth, the central density is ∼13 g cm−3, to
be compared with a mean density of 5.52 g cm−3). At large masses, degeneracy
sets in and the radius decreases with mass (note from Fig. 4 that it never quite
reaches the white dwarf limit R ∝M−1/3). At still larger masses (more than
70MJ), we get in the stellar regime, which is dominated by thermonuclear
reactions, and thermal effects have to be taken into account.

The polytropic indexes of the isolated 0.1, 1 and 10MJ are shown in Fig. 5.
At small masses, n is effectively rather small and the tends toward a uniform
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Fig. 4. Radius versus mass for hydrogen–helium planets (Y=0.25) after 10 Ga of
evolution (plain line). An approximate mass–radius relation for zero-temperature
water and olivine planets is shown as dashed and dash-dotted lines, respectively
(Courtesy of W.B. Hubbard). The observed values for Uranus, Neptune, Saturn and
Jupiter, as well as that for the Pegasi planet HD209458b are indicated.

Fig. 5. Polytropic index n (such that P ∝ ρ1+1/n) as a function of internal radius,
for 0.1, 1 and 10MJ isolated planets of solar composition after 10Ga of evolution
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density solution. At around the mass of Jupiter, we get n ∼ 1, which effec-
tively corresponds to a maximum in the polytropic mass–radius relation (21).
Above a mass of ∼4MJ, the radius starts decreasing with increasing mass,
and effectively, the 10MJ object has n ≈ 1.3 in most of its interior. Equa-
tion (21) would imply R ∝M−0.18, which is steeper than obtained on Fig. 4.
This is due to the fact that even after 1010 years, a 10MJ object still retains
part of its primordial heat and that K cannot be considered as independent
of effective temperature and mass, as assumed in (21).

Another conclusion that can be derived from Fig. 4 is that the planets in
our Solar System are not of solar composition: their radii lie below that pre-
dicted for Y = 0.25 objects. Indeed, it can already be inferred that Jupiter,
Saturn, and the two ice-giants Uranus and Neptune contain a growing pro-
portion of heavy elements. The theoretical curves for olivine and ice planets
predict even smaller radii however: even Uranus and Neptune contain 10 to
20% of their mass as hydrogen and helium.

An object is found above the hydrogen–helium curve: HD209458b. In this
case, we will see that the planet has its evolution dominated by the intense
stellar irradiation it receives. Thermal effects are no longer negligible: One
cannot neglect the variations of the polytropic constant K with mass. Instead
of (21), one is led to:

R ∝ K
n

3−nM
1−n
3−n . (22)

The constant K can be estimated through the surface boundary condition,
assuming that the planetary interior is tied to the surface with an approxi-
mately constant polytropic index n (a condition which is generally verified).
Thus, using a perfect gas relation

K = P
−1/n
0

(
RT0
µ

)1+1/n

. (23)

Let us assume that T0 is, in the case of irradiated planets , set by the stellar
insolation (and therefore independent of M). Using the Eddington boundary
condition P0 ∝ g/κ. The relation for the opacity κ ∝ P is generally valid
for hot atmospheres not dominated by hydrogen–helium collision-induced ab-
sorption (see Sect. 5). Therefore, a constant insolation and constant interior
n implies

K ∝
(
M

R2

)−1/2n

. (24)

It is then easy to show that the mass–radius relation for strongly irradiated
planets becomes

R ∝M
1/2−n
2−n . (25)

Thus, for n = 3/2, a relation valid for an adiabatic, ideal monoatomic gas,
one finds R ∝ M−2. For n = 1, one finds R ∝ M−1/2. Strongly irradi-
ated hydrogen–helium planets of small masses are hence expected to have
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the largest radii. Note that this estimate implicitly assumes that n is con-
stant throughout the planet. The real situation is more complex because of
the growth of a deep radiative region in most irradiated planets, and because
of structural changes between the degenerate interior and the perfect gas at-
mosphere.

3.5 Rotation and the Figures of Planets

Hydrostatic Equilibrium and Symmetry Breaking

We have thus seen that the knowledge of the mass and radius of a planet
could inform us on its global composition. Fortunately, the giant planets in
the Solar System are also fast rotators and their figure can also inform us
more precisely on their internal composition. In the case of an inviscid fluid
rotating with an angular velocity Ω(r), the hydrostatic equilibrium has to be
written in the frame of rest of the system (see e.g. Pedlosky 1979):

∇P
ρ

= ∇V −Ω× (Ω× r) , (26)

where the gravitational potential is defined as

V (r) = G

∫
ρ(r′)
|r− r′|d

3r′ . (27)

The resolution of (26) is generally a complex problem. It can however be
somewhat simplified by assuming that |Ω| ≡ ω is such that the centrifugal
force can be derived from a potential:

W (r) =
1
2
ω2r2 sin2 θ , (28)

where θ is the angle from the rotation axis (colatitude). This implies that ω is
either constant, or a function of the distance to the axis of rotation (rotation
on cylinders).

The total potential is U = V +W and the hydrostatic equilibrium can be
written as

∇P = ρ∇U . (29)

The figure of a fluid planet in hydrostatic equilibrium is then defined by
the U = cte level surface. The expression of W shows that the centrifugal
acceleration will be maximal at the equator. Since it tends to oppose gravity,
it can be intuited that the planet’s figure will depart from a sphere and become
oblate, with a smaller polar radius than its equatorial radius. This was first
demonstrated by Newton in 1687, but is in no way straightforward, and was
contested by contemporaries, some advocating that the Earth’s dimension
should be larger at the poles!
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Most of the problem lies in the breaking of the symmetry by rotation: the
gravitational potential can no longer be integrated simply. We will summarize
here one method, worked out by Lagrange, Clairaut, Darwin and Poincaré
and detailed by Zharkov and Trubitsyn (1978). At its basis is a projection of
the integrand of (27) onto a basis of Legendre polynomials Pn(cosψ):

1
|r− r′| =




1
r

∞∑
n=0

(
r′

r

)n
Pn(cosψ) if r ≥ r′ ,

1
r

∞∑
n=0

(
r′

r

)−n−1

Pn(cosψ) if r < r′ ,

(30)

where ψ is the angle between the radius vectors r and r′. The Legendre poly-
nomials are determined from the formula

Pn(x) =
1

2nn!
dn

dxn
[
(x2 − 1)n

]
. (31)

In particular, P0 = 1 and P2(x) = (3x2 − 1)/2. These polynomials also have
very important orthogonal properties that will not be detailed here.

Some geometry, the properties of Legendre polynomials and the assump-
tion of hydrostatic equilibrium (azimuthal symmetry) allows one to write the
gravitational potential in the form

V =
G

r

∞∑
n=0

(
r−2nD2n + r2n+1D′

2n

)
P2n(cos θ) ,

D2n =
∫
r′≤r

ρ(r′, cos θ′)r′2nP2n(cos θ′)d3r′ ,

D′
2n =

∫
r′>r

ρ(r′, cos θ′)r′−2n−1P2n(cos θ′)d3r′ . (32)

The potential V is thus projected on the basis of Legendre polynomials
P (cos θ). The D2n and D′

2n coefficients are complex functions. It is to be
noted that this projection, as proposed by Lagrange poses a mathematical
problem of divergence of the Legendre series between the sphere and level
surface. Using a method initially proposed by Lyapunov, Trubitsyn showed
that this expression is however valid because of the exact cancellation of the
divergent terms (see Zharkov and Trubitsyn 1978).

On the other hand, the centrifugal potential can be written on the same
basis:

W =
1
3
ω2r2[1− P2(cos θ)] . (33)

The total potential U thus appears as a weighted sum (however complex) of
Legendre polynomials.
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Equations for the Level Surfaces: Principles

The figure of a planet is determined by the level surfaces on which the total
potential is constant. As shown by (29), in hydrostatic equilibrium ∇P and
∇U are in the same direction. Taking the curl of that equation, one finds that
∇ρ×∇U = 0. The surfaces of constant potential are also surfaces of constant
pressure, density, and hence temperature. Hydrostatic equilibrium therefore
also corresponds to barotropic equilibrium. (But remember our hypothesis
that the centrifugal acceleration derives from a potential). These surfaces of
constant U are sought in the form:

r(s, cos θ) = s

[
1 +

∞∑
n=0

s2n(s)P2n(cos θ)

]
, (34)

where s2n(s) are coefficients to be determined, and s is chosen to be the radius
of a sphere of equal volume (and hence, equal mass):

4π
3
s3 =

4π
3

∫ 1

0

r3(s, cos θ)d cos θ . (35)

This allows one to integrate the angular part entering the calculation of
the coefficients D2n and D′

2n in (32). The solution of the problem is found by
noticing that the total potential can now be written

U(s, cos θ) =
4π
3
Gρs2

∞∑
n=0

A2n(s)P2n(cos θ) , (36)

where ρ is the planet’s mean density. Since by definition the gravitational
potential is constant on a level surface (fixed s), all coefficients A2n(s) must
be zero for n �= 0. With (35), we thus have n + 1 equations for the n + 1
variables s0, . . . , s2n. The problem can thus be solved for weak rotation rates
ω by introducing a small parameter, q, the ratio of the centrifugal acceleration
at the equator to the leading term in the gravitational acceleration:

q =
ω2R3

eq

GM
, (37)

Req being the equatorial radius. One can show that s0 ∝ q and s2n ∝ qn

for n �= 0. This system of integro-differential equations is rather complex and
will not be given here (see Zharkov and Trubitsyn 1978 for equations to third
order).

With our choice of coordinates, the hydrostatic equation retains a simple
form:

∂P

∂s
= ρ

∂U

∂s
, (38)

i.e. the equation is now integrated with respect to the mean planetary
radius. Furthermore, because of our assumption that the fluid remains
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barotropic, the other equations are unchanged. A detailed calculation of U
shows that

1
ρ

∂P

∂s
= −Gm

s2
+

2
3
ω2s+

GM

R3
sϕω , (39)

where ϕω is a slowly varying function of s which, in the case of Jupiter varies
from about 2× 10−3 at the center to 4× 10−3 at the surface.

The External Potential: Constraints from Observations

As suggested previously, the effect of rotation is not only to complexify the
equation for hydrostatic equilibrium. It also provide ones with the only way
(yet) to probe the interiors of the giant planets of the solar system. This was
first recognized by Sir H. Jeffreys (1923), but has seen significant progresses
due to the flybys of the giant planets by the Pioneer and Voyager spacecrafts
that allowed for a direct measurement of the planets’ gravitational potentials.

The thus measured gravitational potentials are generally written in the
form

Vext(r, cos θ) =
GM

r

[
1−

∞∑
n=1

(a
r

)2n
J2nP2n(cos θ)

]
, (40)

and the coefficients J2n are the planet’s gravitational moments . These are
hence directly related to the coefficients D2n defined by (32), from which it
can be shown that

J2n = − 1
Man

D2n . (41)

(Note that because we are always outside the planet r > r′ and the centrifugal
potential does not appear since we are in an inertial coordinate system).

For example, the first gravitational moment can be calculated as

−Ma2J2 =
∫
ρ(r′)r′2

(
3
2
cos2 θ′ − 1

2

)
d3r′

=
∫
ρ(r′)

1
2
(2r′2 cos2 θ′ − r′2 sin2 θ′)d3r′

=
∫
ρ(r′)

1
2
[(y2 + z2) + (x2 + z2)− 2(x2 + y2)]d3r′

=
A+B − 2C

2
, (42)

where A, B and C are the principal moments of inertia of the planet with
respect to axes x, y and z, respectively.

The measured gravitational moments can thus be compared to the the-
oretically measured ones. For a planet in hydrostatic equilibrium, the odd
moments J2n+1 are all zero while the even moments have a magnitude
J2n ∝ qn. The high order gravitational moments also correspond to inte-
grals with weighting functions peaking closer to the external layers of the
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Table 4. Parameters constraining interior structure

q Λ2 C/MR2eq

Jupiter 0.08923 0.165 0.26

Saturn 0.15491 0.105 0.22

Uranus 0.02951 0.119 0.23

Neptune 0.0261 0.136 0.24

planet. The information contained by the {J2n} is therefore limited: without
other information from e.g. global oscillations of the planet, it is impossible
to accurately constrain the structure of the inner regions.

Table 4 shows the values of the parameter q and of the axial moment
of inertia of the giant planets calculated from J2 using the Radau–Darwin
approximation (Zharkov and Trubitsyn 1978):

C

MR2
eq

≈ 2
3

[
1− 2

5

(
5

3Λ2 + 1
− 1
)1/2

]
, (43)

where we have introduced the linear response coefficient Λ2 ≡ J2/q, and we
have neglected second order terms proportional to the planets’ flattening. Our
four giant planets all have an axial moment of inertia substantially lower than
the value for a sphere of uniform density, i.e. 2/5MR2, indicating that they
have dense central regions.

An analytical solution of the figure equation can be found for a polytropic
equation of state of index n = 1 (P ∝ ρ2), which is, as we have seen relevant
for most of Jupiter’s interior. In that case, one finds that (see Zharkov and
Trubitsyn 1978; Hubbard 1989), Λ2 = 0.173 and thus C/MR2 = 0.263, indeed
very close to the value found for Jupiter. This shows already that Jupiter’s
core is small, relatively to the planet’s total mass. It also indicates that Saturn,
Uranus and Neptune have dense central regions and hence depart substantially
from solar composition.

Effect of Differential Rotation

In order to be able to integrate the system of integro-differential equations, we
have implicitly assumed a solid body rotation. The atmospheres of all giant
planets is seen to rotate with a speed which is latitudinally dependent. These
latitudinal variations amount to about 1% for Jupiter to more than 15% in
the case of Neptune, from peak to peak.

A first consequence is that the gravitational calculated assuming solid body
rotation will be different than if the interior rotation is, say, on cylinders. For
a given structure, differential rotation such as imposed by the surface winds of
Jupiter and Saturn increases the absolute values of the planets’ gravitational



Interiors, Atmospheres, Evolution 265

moments. In order to account for that effect using solid body rotation, one
has to use effective gravitational moments that are smaller in absolute value
than those directly measured (Hubbard 1982).

Another interesting consequence concerns the high order gravitational
moments, J10 and above. Hubbard (1999) has shown that if the observed
atmospheric rotation pattern persists deep enough into the interior (say to
within a few % of the total radius beneath the atmospheric layer), then the
gravitational moments will stop decreasing and reach a plateau at a value
|Jn| ≈ 10−8 with n ∼> 10. This lends support to space missions that would
enable a detailed mapping of the gravitational fields of the giant planets. This
would require both a polar-like orbit and one (or better several) very close
flybys.

3.6 Equations of Evolution

We have so far expressed the differential equations in terms of the radius r.
This Eulerian approach has the inconvenience that the spatial variable can be
a rapidly varying function of time (when, during the evolution, the contraction
is fast). It is therefore generally more convenient to use a Lagrangian approach,
in which the new independent coordinates are the massm and time t. This has
the advantage that except in the case of mass loss/gain, the outer boundary
condition is defined at a fixed m = M , the total mass of the object. Note
that because of our definition of the radius as the mean radius, the effect of
rotation is just to add two terms to the hydrostatic equation. Hereafter, we
will use r instead of s as the mean radius (see e.g. Guillot and Morel 1995
for a possible method to numerically resolve the equations). The system of
differential equations becomes:



∂P

∂m
= − Gm

4πr4
+

ω2

6πr
+

GM

4πR3r
ϕω ,

∂T

∂m
=
(
∂P

∂m

)
T

P
∇T ,

∂r

∂m
=

1
4πr2ρ

,

∂L

∂m
= ε̇− T ∂S

∂t
.

(44)

The boundary conditions are as discussed in Sect. 3.2, except that the
variable is now m instead of r. Note however that when studying the present-
day interiors of Jupiter, Saturn, Uranus or Neptune, the most logical surface
boundary condition is at a fixed temperature T = Tsurf and pressure Psurf , for
m = M . Note that in that case, there is no time dependency, and the energy
conservation equation cannot be integrated. This requires a priori setting the
luminosity (usually by assuming that it is uniformly equal to the measured
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intrinsic luminosity of the planet). In all other cases, i.e. when considering the
evolution of substellar objects, the outer boundary condition must depend on
L and R.

Most of the important physics in the system of equations (44) is hidden
in several quantities: ϕω contains the physics related to rotation discussed
previously, but is generally a small perturbation. The term ∇T depends on the
process which transports the energy inside the planet and will be discussed in
Sect. 5. The density ρ and specific entropy S are functions of the temperature,
pressure and composition. They have to be calculated independently using
an appropriate equation of state, the subject of Sect. 4. Finally, ε̇ accounts
for any source of energy, e.g. thermonuclear reactions, radioactivity or heat
dissipation. This term is generally neglected, but will be discussed for brown
dwarfs, and also in the case of Pegasi planets.

4 Equations of State

4.1 Basic Considerations

Calculation of Equations of State

The knowledge of appropriate equations of state is at the basis of any modeling
of substellar objects. Basically, for a given atomic composition, and two macro-
scopic thermodynamic variables, say temperature and volume, an equation of
state is to provide all the other thermodynamic variables and their deriv-
atives (pressure, internal energy, entropy, specific heat...etc.). As discussed
by Fontaine, Graboske and van Horn (1977), the thermodynamic constraints
that have to be satisfied for any equilibrium thermodynamic description of a
single-phase material are:

I. Accuracy P approx(T, V ) = P exact(T, V ) .
Uapprox(T, V ) = U exact(T, V ) .

II. Stability
(
∂P
∂V

)
T
< 0,

(
∂U
∂T

)
V
> 0 .

III. Consistency
(
∂P
∂T

)
V
=
(
∂S
∂V

)
T
= 1

T

(
P +

(
∂U
∂V

)
T

)
.

IV. “Normality”
(
∂P
∂T

)
V
> 0,

(
∂2P
∂V 2

)
T
> 0 .

As noted by the authors, condition II is generally trivial to achieve; con-
dition III is straightforward but often grossly violated; condition IV is not
thermodynamically demanded, but holds for most ρ, T values. Indeed, we
will see one possible equation of state for which condition IV is violated.

The calculation of equations of state itself can become extremely complex.
For our purposes, it will suffice to say that it can be split into two main groups:
the “chemical” and “physical” pictures. In the chemical picture, one assumes
that bound configurations (e.g. atoms, molecules) retain a definite identity and
interact through pair potentials. The system of particles of species α confined
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to a volume V at temperature T is conveniently described by the Helmoltz
free energy F , which is itself obtained from microscopic physics through

F ({Nα}, V, T ) = −kT lnZ({Nα}, V, T ) , (45)

where Nα denotes the number of particles and Z is the canonical partition
function of the system. Other thermodynamical quantities are then obtained
from derivatives of F . For example,

P = −
(
∂F

∂V

)
{Nα},T

.

When confronted to ionization and/or dissociation, the actual composition
of the system (i.e. abundances of electrons, ions, atoms and molecules) is ob-
tained through a minimization of the free energy of the system. As discussed
by Fontaine et al. the calculation of the free energy requires several assump-
tions that necessarily limit its accuracy. Its main drawback is the apriori
definition of certain classes of particles, i.e. ions, atoms and molecules which
necessitates the use of effective interaction potentials. The calculation can
thus fail in states where more complex systems are formed and the distinction
between bound and free states is not easily made.

Another method consists in directly computing the n-body Schrödinger
equation of the quantum-statistical system. This approach is generally ex-
act in the limit set by the computationally intensive method that has to be
used to solve the problem. Within this physical picture, two main approaches
have been used: restricted path integral Monte Carlo simulations, and density
functional theory molecular dynamics. The first approach consists in solving
the full problem for a limited number of protons and electrons in a box (64
of each at the most, with today’s computers). The second approach involves
local solutions to the problem and fails when both short range and long range
interactions have to be taken into account.

The Phase Diagram

In terms of pressures and temperatures, the interiors of giant planets and
brown dwarfs lie in a region for which accurate equations of state are extremely
difficult to calculate. Some of the important phenomena that occur in these
objects are illustrated by the phase diagram of hydrogen (Fig. 6).

The photospheres of these objects is generally relatively cold and at low
pressure, so that hydrogen is in molecular form and the perfect gas conditions
apply:

P =
ρRT
µ

; U = CV T , (46)

with µ ≈ 2 (neglecting helium atoms and heavy elements) and CV ≈ 5/2k,
due to the vibration of the hydrogen molecule.



268 T. Guillot

Fig. 6. Phase diagram for hydrogen with the main phase transitions occurring in the
fluid or gas phase. The temperature–pressure profiles for Jupiter, Saturn, Uranus,
Neptune, and Gl229B (assumed to be a 30MJ brown dwarf) are shown. The plain,
almost vertical line near 1Mbar represents the Plasma Phase Transition (PPT)
supposed to separate molecular from metallic hydrogen as computed by Saumon et
al. (1995). The region in which hydrogen is predicted to be solid is represented as a
dashed area. Lines showing the values of the parameters θ and Γ (see text) are also
shown

As one goes deeper into the interior however, the molecules become closer
to one another. The system progressively becomes a liquid, in which the in-
teractions between molecules play an important role. This occurs when the
intermolecular distance becomes of the same order as the size of a hydrogen
molecule. Using real equations of state, it can be estimated that the perfect
gas relation tends to underestimate the pressure by 10% or more when the
density becomes larger than about 0.02 g cm−3 (pressures above 1 kbar in the
case of Jupiter).

At higher densities (or pressures) and relatively low temperatures, the elec-
trons can become degenerate : in that limit, their momentum is not determined
by the temperature of the mixture, but by the fact that, as fermions of spin
−1/2 or +1/2, only two of them can be stacked in a cell ∆p∆V = h3 (Pauli’s



Interiors, Atmospheres, Evolution 269

exclusion principle). The significance of this phenomenon can be measured
through a degeneracy temperature parameter

θ =
T

TF
=

2mek

h2

(
8π
3
µemu

)2/3
T

ρ2/3
, (47)

where TF is the Fermi temperature, and the number density of electrons is
ne = ρ/µemu. The quantity µe is the mean molecular weight per electron
(µe ≈ 2/(1 +X)). The parameter θ can be defined regardless of the presence
of bound states. However, in the presence of atoms and molecules, the energy
of most of the electrons is not kT nor kTF so that its usefulness in that regime
is limited. It can be seen from Fig. 6 that the interiors of substellar objects
are always characterized by θ < 1. It is never possible to assume that free
electrons behave like a perfect gas .

Another important quantity is the coupling parameter, defined as the ratio
of the Coulomb potential to the thermal energy:

Γ =
e2

akT
=
e2

k

(
4π

3µmu

)1/3
ρ1/3

T
, (48)

where a is the mean distance between nuclei. As Γ increases due either to
an increase of the density or to a decrease of the temperature, the Coulomb
forces becomes more effective. With increasing densities, the system of ions
eventually favors a non-random organization and becomes bound into a lat-
tice system. This occurs for large values of Γ (∼100). Figure 6 shows that
substellar objects always have Γ > 1: the system is dominated by the repul-
sive coulombian potential between nuclei. However, we will be concerned with
values of Γ < 50, i.e. unlike white dwarfs, substellar objects are not expected
to crystallize (this occurs for Γ ∼> 180). Hubbard (1968) was the first to show
that Jupiter’s interior should be hot enough for its interior to be fluid. It can
also be seen in the phase diagram that it is the case of Saturn. For Uranus and
Neptune, the situation is actually more complex because at large pressures
they are not expected to contain hydrogen, but several studies show that ices
in their interior should be fluid as well (e.g. Cavazzoni et al. 1999).

The largest fraction of the interior of brown dwarfs and giant planets is
in a region in which hydrogen is metallic: the hydrogen molecules have been
dissociated and ionized. The pressure inside this region can be expressed in
the following form (e.g. Stevenson 1991):

P = Pe + Pth,ion + Pcoul + Pex , (49)

where Pe represents the contribution from the electron gas, Pth,ion the con-
tribution from the thermallized ions, and Pcoul and Pex are negative terms
due to the Coulombian interactions of nuclei in the sea of electrons, and the
reduction in electron–electron repulsion due to the exclusion principle, respec-
tively. Pcoul is significant when Γ becomes large. The exchange pressure Pex

has to be taken into account for small values of θ. Although quantitatively,
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the terms due to ions are important, most of the important physics and in
particular the molecular/metallic transition is due to a difference in behavior
of the electrons when the density rises.

The Degenerate Electron Gas

In stars with masses larger than about 0.3M� the electrons always behave
with a near-maxwellian distribution of the momenta. However, for objects of
lower interior temperatures, the Pauli exclusion principle yields a distribution
which is determined by Fermi–Dirac statistics. The number of electrons in a
volume dV and with an absolute of the momentum in [p, p+ dp] is:

f(p)dpdV =
8πp2dpdV

h3
1

1 + eE/kT−ψ , (50)

where in the non-relativistic case E = p2/(2me) and ψ is the degeneracy para-
meter. For ψ → −∞ the distribution is identical to the Maxwell–Boltzmann
one. In the limit ψ → +∞ the electrons are said to be fully degenerate.

The density of electrons, electronic pressure and internal energy can be
obtained through integrations of that distribution:

ne =
8π
h3

∫ ∞

0

p2dp

1 + eE/kT−ψ , (51)

Pe =
8π
3h3

∫ ∞

0

vp3dp

1 + eE/kT−ψ , (52)

Ue =
8π
h3

∫ ∞

0

Ep2dp

1 + eE/kT−ψ . (53)

The degeneracy parameters ψ obtained in the central region of substellar
objects is relatively independent of the mass and age (to a factor ∼3) and is
of the order of ψ ≈ −30 (e.g. Chabrier and Baraffe 2000). The combination
of these low values of θ and ψ thus implies that a significant fraction of the
electrons are indeed degenerate.

Although this is not true of regions at lower pressures, we will find it
instructive to use the relations for a fully degenerate electron gas for qualita-
tive estimates. In the limit ψ →∞, one finds that the completely degenerate
non-relativistic electron gas is such that (e.g. Kippenhahn and Weigert 1991):

Pe =
1
20

(
3
π

)2/3
h2

me
n5/3
e

= 1.0036× 1013
(
ρ

µe

)5/3

(cgs)

Ue =
3
2
Pe .

(54)
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Pressure Ionization

As seen in the phase diagram, hydrogen can become ionized due to increasing
pressure instead of standard ionization at increasing temperature. Basically,
this occurs when the degenerate electrons get a Fermi energy which is larger
than that necessary to ionize hydrogen atoms. The approximate level at which
this occurs can be estimated as follows.

First, it can be noted that both free and bound electrons have to obey the
Pauli principle.

The energy of each electron is hence of the order Ue/ne. For a set value of
ne a lower bound on Ue can be obtained by assuming full degeneracy (54). In
order to become ionized this value has to become larger than the ionization
potential of hydrogen, u0 = 13.6 eV. This occurs when

ne ∼>
(
8π
3

)5/2( 5me

4πh2

)3/2

u
3/2
0 , (55)

corresponding to an electronic pressure

Pe ∼>
2
3

(
8π
3

)5/2( 5me

4πh2

)3/2

u
5/2
0 . (56)

Quantitatively, hydrogen metallization is then found to occur around ne ∼ 5×
1023 cm−3, ρ ∼ 0.8 g cm−3 and Pe ∼ 7Mbar. Even though crude assumptions
were made, this is relatively close to more elaborate calculations.

The same estimates can be used for helium ionization, assuming helium
atoms are immersed in a sea of protons and electrons. Because u0 = 54.4 eV,
the density and electronic pressure for helium ionization rise to 6.5 g cm−3

and 230Mbar, respectively. However, at those very high densities, the distance
between nuclei has become much smaller than the Bohr radius (a0 = 5.3 ×
10−9 cm). A very crude solution is to use an effective potential ueff = u0(1−
(a0/d)2) to account for the fact that the ionization energy is reduced due
to the proximity to the other nuclei. The mean distance between hydrogen
nuclei is d ∼ (3/4πne)1/3. Including that correction and solving iteratively
(55), one finds that helium could ionize at a pressure as low as Pe ∼ 17Mbar.
Applied to hydrogen, this procedure also leads to a reduced ionization pressure
Pe ∼ 2Mbar.

The total pressure cannot be obtained through that method because one
then needs to describe the system of ions. In the metallic regions of substel-
lar objects, an order of magnitude estimate is that ions and electrons have
similar contributions to the total pressure. Our assumption of full degeneracy
in fact tends to overestimate the pressures at which the transition occurs.
This can be understood by the fact that the Pauli distribution corresponds
to the minimum energy state for a fixed density ne. Thermal effects have the
tendency to move some of the electrons to higher energies, thereby0 favoring
ionization. The transition from molecular to metallic hydrogen is therefore
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expected to occur at lower pressures and densities when the temperature is
increased. Of course, these crude estimates are given for didactic purposes,
but cannot replace a full treatment of this complex problem.

4.2 Experiments and Theoretical Hydrogen EOSs

Reaching Ultrahigh Pressures: Experimental Results

The high pressures and high temperatures typical of the interiors of giant plan-
ets can be achieved in the laboratory by shock-compression of a small sample
of material. The shock is typically generated by a hypervelocity impactor or by
a powerful laser. Measuring the thermodynamic properties of the compressed
sample is quite difficult since such dynamical experiments last only 5 – 100 ns
and the sample can be very small (0.4 – 500mm3). For a given initial state of
the sample, the family of shocked states that can be achieved follows a curve
in the (P, ρ, T ) phase diagram known as a Hugoniot. The Hugoniot is one of
the Rankine–Hugoniot relations that result from the conservation of energy,
momentum, and matter flux across the shock front. Nearly all dynamical ex-
periments on hydrogen and deuterium performed share the same cryogenic
initial state and therefore measurements from different experiments can be
directly compared. By reflection of the shock wave on a back plate made of a
material stiffer than the sample, a double-shocked state can be achieved that
reaches even higher pressures with a modest increase in temperature. Multi-
ple shock reflections, known as shock reverberation, lead to a succession of
compressed states that approach adiabatic compression.

Since 1995, deuterium has been the subject of intense experimental study
using several independent techniques.1 Measurements of the pressure, density,
temperature, reflectivity, electrical conductivity, and sound speed have been
performed along the single-shock Hugoniot and, in some cases, along double-
shock Hugoniots.

The most reliable experimental results come from experiments where the
impactor is accelerated with a gas gun. This technique allows for larger sam-
ples (∼500mm3) and longer lasting (∼100 ns) experiments but is generally
limited to pressures below 1Mbar. Pressures and densities have been measured
along the single-shock Hugoniot up to 0.2Mbar and along the double-shock
Hugoniot up to 0.8Mbar (Nellis et al. 1983). The reshocked states reproduce
the (P, T ) conditions of the molecular hydrogen envelope of Jupiter and pro-
vide a direct probe of the thermodynamics of hydrogen.

Under conditions where the dissociation of molecules becomes significant,
the temperature becomes a sensitive test of the EOS. Processes that can
absorb substantial amounts of energy like dissociation and ionization result

1 Due to its higher density, deuterium is experimentally more advantageous than
hydrogen because higher shock pressures can be achieved for a given impactor
speed.



Interiors, Atmospheres, Evolution 273

in relatively cool temperatures and higher degrees of compression for a given
pressure along the Hugoniot. In the absence of such processes, the energy
of the shock is expended mostly in the kinetic degrees of freedom with a
corresponding increase in temperature. The temperature of double-shocked
deuterium (Holmes, Ross and Nellis 1995) was found to be lower than all
EOS predictions by about 30–40%, indicating that dissociation plays a more
important role than predicted by contemporaneous models.

Finally, the sound speed has been measured along the Hugoniot in gas
gun experiments up to 0.28Mbar (N. C. Holmes, priv. comm.). Since it is a
derivative of the pressure, the sound speed is a sensitive test of EOS models
with the advantage of being measurable very reliably.

With powerful lasers, deuterium can be shocked to much higher pres-
sures than with gas guns but the small sample size and the very short du-
ration of the experiments make accurate diagnostics very challenging. The
(P, ρ, T ) single shock Hugoniot has been measured recently up to 3.5Mbar
with the NOVA Laser Facility (Da Silva et al. 1997; Collins et al. 1998, 2001),
reaching a maximum density of ∼1 g cm−3 at ∼1Mbar (Fig. 7). Such a high
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Fig. 7. Comparison of experimental data and theoretical Hugoniot for deuterium
(densities are twice larger than expected for hydrogen at any given pressure). Empty
ellipses correspond to data points obtained from laser compression (Collins et al.
1998). Filled ellipses were obtained by magnetic compression (Knudson et al. 2001).
Theoretical calculations are represented by lines. They are respectively: the “PPT”
(solid) and “interpolated” (dashed) Saumon–Chabrier equations of state (Saumon,
Chabrier and Van Horn 1995), and a Path Integral Monte Carlo EOS (Militzer and
Ceperley 2000). The solid line to the left shows the T=0 equation of state for D2 as
determined by an exp-6 potential fit to diamond-anvil cell measurements (Hemley
et al. 1990). The temperatures along the Hugoniot have been calculated using the
PPT-EOS. [From Guillot et al. 2004]
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compressibility was not anticipated by most EOS models and this work
sparked the current interest in the thermodynamics of warm dense hydro-
gen as well as controversy, both on the theoretical and experimental fronts.
The reflectivity of shocked deuterium reaches about 60% for pressures above
0.5Mbar along the Hugoniot (Celliers et al. 2000), a value indicative of a large
density of free electrons and of a high electric conductivity characteristic of
fluid metallic hydrogen. Second-shock compression up to 6Mbar with the Nike
laser give results in agreement with the NOVA (P, ρ) data (Mostovych et al.
2000). On the other hand, Knudson et al. (2001) used a magnetic Z-accelerator
to accelerate impactors to very high velocities. Their single-shock Hugoniot
agrees well with the NOVA data for P ∼< 0.4Mbar but it is not as compressible
at higher pressures, reaching a density of only∼0.7 g cm−3 at 0.7Mbar (Fig. 7).

Hydrogen: EOS Calculations

While the temperatures obtained along the single-shock Hugoniot rapidly be-
come much higher than those inside Jupiter at the same pressure (Fig. 8),
these measurements provide very important, and heretofore unavailable tests

Fig. 8. Hydrogen phase diagram, with interior profiles of present-day Jupiter and
Saturn overlaid, and with some experimental data shown. The boundary between
liquid H2 and solid H2 is somewhat uncertain in the Mbar pressure range (2 estimates
are shown), but is not relevant to Jupiter. The laser shock measurements of Collins
et al. (2001) and the gas-gun measurements of Holmes et al. (1995) are shown
as triangles and filled circles in the upper left-hand corner, respectively. Single-
and double-shock hydrogen Hugoniots calculated by Saumon et al. (2000a,b) are
shown as dot-dashed lines in the same region of the plot. The solid line labeled
“50%” shows where 50% of molecular dissociation is obtained in the model of Ross
(1998)
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of equations of state in the 0.5 to 5 Mbar range where pressure ionization of
hydrogen occurs. Conversely, EOS models can be used to compute the vari-
ous physical quantities measured in the lab and to interpret the experimental
results.

Theoretical single-shock Hugoniots computed from a wide variety of EOS
models basically fall into two groups. First principle calculations (e.g.Militzer
and Ceperley 2000; Lenosky et al. 2000; Galli et al. 2000) all predict a rather
stiff Hugoniot that is in general agreement with the Z-accelerator data of
Knudson et al. (2001). This is illustrated in Fig. 7 by the Path Integral Monte
Carlo calculation of Militzer and Ceperley (2000). On the other hand, models
that are partly calibrated with experimental data (Saumon, Chabrier and
Van Horn 1995; Ross 1998; Ross and Yang 2001), obtain a generally good
agreement with the NOVA data (Fig. 7; Collins et al. 1998). Interestingly, the
standard SESAME EOS of deuterium (Kerley 1972) predicts a Hugoniot that
generally agrees with the much more sophisticated ab initio calculations.

Our study of a number of theoretical Hugoniots shows that EOS that
have been fitted to the gas gun single- and double-shock (P, ρ, T ) data of
Nellis et al. (1983) and Holmes et al. (1995) – all taken below 0.8Mbar and
5300K – reproduce the high compression of the NOVA data (Collins et al.
1998) and the sound speed data along the single shock (N. C. Holmes, priv.
comm.). On the other hand, the first-principle calculations generally agree
with the stiffer Hugoniot of Knudson et al. (2001) and cannot reproduce the
high compression of the NOVA data. They also fail to reproduce the double-
shock temperatures and the sound speed measurements. Some of the ab initio
calculations disagree with the low-pressure gas gun data (e.g. Lenosky et al.
2000). On the one hand, the Knudson et al. (2001) data and nearly all first-
principle EOS calculations are in good agreement with each other. On the
other hand, more heuristic EOS models clearly show that four independent
EOS experiments (second-shock temperature, sound speed, the NOVA single
shock and the Nike double shock) are fully consistent with each other but
neither with first principle calculations nor the Knudson et al. (2001) data.
Both the high compressibility of the NOVA Hugoniot and the low gas-gun
reshock temperatures can be explained by the absorption of the shock energy
resulting from molecular dissociation.

This polarization of EOS calculations along different data sets has cre-
ated a lively debate and is stimulating much additional (and challenging)
experimental and theoretical work. The EOS of hydrogen in the 0.5 to 5
Mbar regime, where it is transformed from an insulating molecular fluid to
a conducting liquid metal remains uncertain to a level that is significant for
modeling the interior of Jupiter. The recent progress in this area as been very
beneficial, however, as it appears that the current data and models bracket
the actual EOS of hydrogen.

In order to model Jupiter’s interior with confidence, a careful study of the
uncertainties arising from the EOS would be required. This is not presently
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available, but Fig. 7 shows that this can be crudely approximated by using
the “interpolated” and the “PPT” equations of state of Saumon, Chabrier
and Van Horn (1995) even though they do not fit the experimental data well.
However, large uncertainties in density along the Hugoniot at 1 Mbar (∼30%)
result in much smaller differences along the Jupiter adiabat (∼8%). The effects
on the inferred core mass and the mass of heavy elements in Jupiter and Saturn
are discussed later on.

A Plasma Phase Transition?

We have seen that hydrogen undergoes a transition from a low-pressure mole-
cular insulating fluid to a high-pressure conductive fluid. Is the transition
continuous, as is the case for temperature ionization, or rather a first or-
der phase transition (the so-called Plasma Phase Transition, or PPT) with
discontinuities in density and entropy across the coexistence curve? Such a
first-order transition was first suggested by Wigner and Huntington (1935)
on the basis of the different nature of the interaction potentials in metals (a
weakly repulsive, screened Coulomb potential) and in insulators (a strongly
repulsive “hard-sphere” potential).

The PPT has not been observed experimentally in hydrogen (i.e. there
is no evidence for the expected discontinuities), but it can be argued that
the gas-gun experiments have not reached high enough pressures, and that
laser-shocks may be supercritical. Note for example that using the new data,
the critical point for the PPT computed by Saumon et al. (2000a) is lower
(T ≈ 14, 600K; P ≈ 0.73Mbar) than shown in Fig. 8. The PPT is predicted
by some of the more heuristic “chemical picture” EOS models (Saumon et
al. 1995 and references therein) and Beule et al. (1999). On the other hand,
none of the first-principle EOS calculations show evidence for a first order
phase transition in warm dense hydrogen. This can be seen in Fig. 9 which
shows a continuous variation of the proton–proton pair correlation function
as a function of density and temperature obtained by Militzer and Ceperley
(2001). The figure indicates that H2 molecules are present at low temperatures
and densities, as seen by the peak at ∼0.8 Å, and the fact that the correlation
function goes to zero at larger distances. As one increases the density, the
correlation function becomes non-zero everywhere except close to a proton,
indicating that hydrogen has been dissociated.

If present, the PPT would have significant consequences for the structure
of Jupiter, Saturn, and low-entropy extrasolar giant planets. Its main effect
would be to create an impenetrable barrier for convection between the molecu-
lar and metallic hydrogen parts of the envelope, affecting the mixing of chemi-
cal species (Stevenson and Salpeter 1977b). The thermodynamic conditions of
phase equilibrium imply that the chemical composition across the PPT must
be discontinuous (Landau and Lifschitz 1976), with the consequence that at-
mospheric abundances of all elements would no longer be indicative of their
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Fig. 9. Proton–proton pair correlation function multiplied by the density n as a
function of interparticle distance r (in Angstrom). The columns correspond, from left
to right, to decreasing values of the density parameter rs = a0/ae (increasing density
ρ; a0 is Bohr’s radius, ae is the mean electronic distance). The rows correspond to
temperatures increasing from 5, 000K (bottom) to 62, 500K (top). [Courtesy of B.
Militzer; see also Militzer and Ceperley 2001]

bulk abundance in the planet. In addition, as the planet cools, a fraction of
the mass of the envelope is converted from one phase to the other with an
associated latent heat release (or absorption). The effect on the evolution is
not very pronounced for a latent heat of ∼0.5kB per proton (Saumon et al.
1992).

4.3 Other Elements

Approximate Equations of State

An equation of state has been computed for helium by Saumon et al. (1995),
but it is less sophisticated (realistic?) than the hydrogen EOS. This shouldn’t
affect the results too much because in a solar composition mixture, hydrogen
represents about 90% of the atoms, and helium only about 10%. The con-
sequent EOS for the hydrogen–helium mixture is then calculated using the
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additive volume rule:

ρ−1 = (1− Y )ρ−1
H + Y ρ−1

He

U = (1− Y )UH + Y UHe

S = (1− Y )SH + Y SHe + Smix(Y ) ,
(57)

where Smix is the entropy of mixing, and all quantities depend on P and
T . This method implicitly neglects any interactions between hydrogen and
helium.

For other elements, the treatment is even more approximate. Zharkov
(1986) suggests a fit in the form of a zero temperature pressure plus a thermal
component:

P (ρ, T ) = P (ρ, 0) +
3RT
A

ργ , (58)

where γ is the Grüneisen parameter (generally of order ∼1). Fits for various
elements are given by Zharkov (1986). Similar approximate relations are also
provided by Hubbard et al. (1995).

A fit to the densities of “ices” (initially a mixture of water, methane and
ammonia) and “rocks” at high pressures and planetary temperatures is pro-
vided by Hubbard and Marley (1989) based on experimental Hugoniot data:

“ices” P = ρ3.719 exp(−2.756− 0.271ρ+ 0.00701ρ2) , (59)
“rocks” P = ρ4.406 exp(−6.579− 0.176ρ+ 0.00202ρ2) , (60)

where P is the pressure in megabars and ρ is the density in g cm−3. This fit
is valid in the pressure range 0.1Mbar < P < 8Mbar.

Miscibility of Elements in Hydrogen

As first proposed for Jupiter and Saturn by Smoluchowski (1967) and Salpeter
(1973), helium can undergo a phase separation from hydrogen: at low temper-
atures, helium (or other elements) can become insoluble and form droplets.
Under the action of gravity, these droplets will tend to fall toward the central
regions of the planet.

Physically, a phase separation arises in a binary mixture of concentra-
tion c when the second derivative of the Gibbs free energy ∂2G/∂c2 < 0.
The two concentrations c1 and c2 of equal chemical potentials (∂G/∂c)(c1) =
(∂G/∂c)(c2) correspond to the concentration of the droplets and the environ-
ment which are in equilibrium. The lower the temperature, the closer c1 and
c2 are to 0 and 1, respectively.

Of course, when calculating the miscibility of hydrogen–helium mixture,
both hydrogen, helium and their interactions should be accounted for. Given
the difficulty in modeling the EOS for hydrogen alone, it may not be so sur-
prising that the question of the helium phase separation in the giant planets
is still unsolved.
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One approach has been to calculate the hydrogen–helium phase diagram
assuming complete ionization. In that case, critical temperatures of order
8000K at 2Mbar can be calculated (see Stevenson 1982). Even more im-
portantly, this leads to a critical temperature that decreases with increasing
pressure. The consequence is that (i) this would imply that a phase separation
has occurred in Jupiter, and earlier in Saturn, as suggested by the abundance
of helium measured in the atmosphere (see Sect. 2); (ii) helium would be most
insoluble near the molecular/metallic transition.

Other calculations have been attempted in the local density approximation
(physical picture). Earlier work (Klepeis et al. 1991) suggested a unrealistically
high critical temperature (40, 000K at 10.5Mbar). However, a more careful
study by Pfaffenzeller et al. (1995) with the same basic technique led to a
lower critical temperature (less than 5, 000K at 4Mbar). This value would
imply no demixing of helium in Jupiter and Saturn. More importantly, the
work of Pfaffenzeller et al. implies a critical temperature that increases with
pressure. This can be explained if hydrogen is still not fully ionized at the pres-
sures considered (4 to 24Mbar), which seems difficult to reconcile with the
more standard hydrogen EOSs. Another problem of the work of Pfaffenzeller
et al. is that it does not recover the fully ionized limit. If the critical tem-
perature increases with pressure, this would open the possibility that helium
separates from hydrogen over an extended fraction of the planetary radius,
with significant consequences for the interior and evolution models.

Other elements are also expected to separate from hydrogen if the temper-
ature is low enough. However, the only estimates are for fully ionized mixtures.
Table 5 shows critical temperatures and concentrations for the separation of
various mixtures, as estimated by Stevenson (1976b). The low temperatures
for demixing are due to the different coulombian potential for hydrogen and
ions of progressively larger charges. As for helium however, these elements are
not expected to be fully ionized which severely limits the applicability of these
estimates to substellar objects.

5 Opacities and Heat Transport

We have seen that modeling the interiors of substellar objects requires to be
able to calculate the temperature gradient ∇T at each level. This necessitates

Table 5. Separation of fully ionized mixtures

mixture Tc [K] cc

H–Li 1.4× 104 0.18

H–C 1.1× 105 0.086

H–O 2.6× 105 0.064

H–Fe 5.5× 106 0.019
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to know how energy is transported. Three processes can contribute to this
transport: radiation, conduction and convection.

5.1 Radiation Absorption – Basic Considerations

Let us consider a ray of radiation whose initial intensity is I0ν as a function
of frequency ν passing through a medium of density ρ on a distance l. The
final intensity is then

Iν = I0νe
−κνρl ,

where 1/κνρ corresponds to the mean free path of photons of frequency ν,
and κν is the monochromatic opacity . As example of possible values in the
interiors of giant planets and brown dwarfs are κ ∼ 1 cm2 g−1, ρ ∼ 10−2 leads
to a photon mean free path of lph ∼ 1 meter.

As can be intuited from this very small mean free path, radiation in the
interior is almost isotropic. In order to show that, let us consider the radial
temperature difference between two levels separated by the photon mean free
path:

∆T = lph
dT

dr
.

The temperature lapse rate dT/dr cannot be calculated a priori. However,
typical values for the Jupiter’s interior are dT/dr ≈ 104/109 Kcm−1, and
lph ≈ 102 cm implying ∆T ≈ 10−3 K. Since the energy density is proportional
to T 4, the anisotropy has to be of the order 4∆T/T . Using the previous
estimate and T ≈ 104 K, one can see that it is of the order of 4 × 10−7, i.e.
most of the interiors of giant planets and brown dwarfs can be considered
as isotropic when radiation is concerned. Note that this is not the case near
the photospheres of these objects, where photons can escape to space and
lph becomes large. In that case, the full radiative transfer equation has to be
solved. We refer the reader to available textbooks on the subject for further
information on that problem (e.g. Goody and Yung 1989).

For modeling the interior, it is therefore justified to use the diffusion ap-
proximation, : radiation then obeys a standard diffusion equation:

j = −D∇n ,
where j is the radiation flux, D is the diffusion coefficient, which can be shown
to be equal to clph/3 (e.g. Clayton 1968) and n represent the energy density
Uν . Because all the variables only vary radially, we can rewrite the diffusion
equation as:

Fν = − c

3κνρ
∂Uν
∂r

, (61)

where Fν is the net radial flux per unit wavelength2.
2 Note that when including rotation, this equation is not strictly valid any more:
the surfaces of constant intrinsic flux then tend to become more spherical than
those of constant pressure. In a radiative environment, this gives rise to a slow
meridional circulation also known as the Eddington–Sweet circulation.
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In this approximation, the energy density at each level of temperature T
is proportional to the black body function Bν(T ):

Uν(T ) =
4π
c
Bν(T ) =

8πh
c3

ν3

hν/kT − 1
. (62)

The total radial flux can then be obtained by integrating over all frequencies:

F = −
[
4π
3ρ

∫ ∞

0

1
κν

∂Bν

∂T
dν

]
∂T

∂r
. (63)

It is thus convenient to define the Rosseland mean opacity as

κR =
[

π

acT 3

∫ ∞

0

1
κν

∂Bν

∂T
dν

]−1

. (64)

Note that κR is a harmonic average of the opacity, weighted by a function
which is close to a blackbody function and peaks at ν = 4kT/h (or equiv-
alently σ = 2.78T where σ is expressed in cm−1 and T in Kelvins). This
has crucial consequences for its calculation, as spectral regions for which the
monochromatic opacity is the smallest will tend to have the most important
contribution to the mean. Physically, this can be interpreted by the fact that
the cooling of any given layer in the star/planet will be governed by the pho-
tons which have the longest mean free path. Numerically, this implies that
regions where the opacities are least known will have potentially very impor-
tant contributions and that the final accuracy is extremely hard to estimate.

On the other hand, in a radiative or conductive environment, the temper-
ature gradient will be directly given by the intrinsic luminosity, as can be seen
from (63) and (64):

∂T

∂r
= − 3

16πac
κRρL

r2T 3
. (65)

In a radiative/conductive region, the temperature profile is hence steeper when
the luminosity to be transported is larger. In the limit of a zero luminosity, it
becomes isothermal as can be expected from thermodynamic principles.

5.2 Rosseland Opacities

Absorption of a Zero-Metallicity Gas

The contribution of hydrogen and helium to the overall opacities is often rela-
tively small but fundamental, due to the nature of the Rosseland mean. At the
pressures (bars or more) and temperatures (100s to 1000s K) of interest, these
elements mostly have continuum opacity and therefore avoid any divergence
of (64).

One of the most complete and useful work on the subject so far is certainly
that of Lenzuni et al. (1991). I refer the reader to that paper for details on
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this problem. In this course, the materials that will be considered is relatively
cool and at high density, implying that the main absorption sources are:
H2–H2and H2–He collision-induced absorption (CIA): H2 and He in their

ground state have no electric dipole and mainly absorb during collisions. The
H2 molecule has three degrees of freedom: translation, rotation3 and vibra-
tion4. The largest energy transitions are between the vibrational bands, while
the rotational bands imply a finer structure whose main consequence is to
broaden these bands. The detailed calculation and structure is complex, es-
pecially in the case of the H2–H2 collision (4 other quantum numbers are then
required to describe the state of the supermolecule), but to simplify it is dom-
inated by 4 almost evenly spaced absorption bands (transitions v : 0 → 0 to
v : 0 → 3) between 0 and 14000 cm−1. (See Borysow et al. 2000; Borysow
1992 and references therein).
H− bound-free absorption: At high enough densities, the abundance of the

H− ion can become non-negligible. In this case, photons of sufficiently high
energy can dissociate the ion into a hydrogen atom and a free electron. The
absorption rapidly rise with increasing wavenumbers to reach a maximum at
1 micron. At higher wavenumbers (energies) it slowly decreases.
H−

2 free-free absorption: At very high densities, free electrons can “feel”
the potential of the neutral H2 molecule and therefore act as a superparticule
which can absorb radiation. The cross-section for this reaction is a rapidly
decreasing function of wavenumber.
Rayleigh scattering by H2: Although this is not real absorption, Rayleigh

scattering is very important for limiting the propagation of high energy radi-
ation due to its 1/λ4 dependency.

Molecular Line Opacities

Due to the relatively low temperatures and high pressures encountered in
regions where radiative heat transport matters, the opacity is dominated by
molecular absorption. At low temperatures, the dominant molecules are H2O,
CH4 and NH3. For hotter objects CH4 transforms into CO, and then TiO and
VO, two important absorbers in the stellar regime appear (see Fegley and
Lodders 1994, 1996; Lodders 1999).

Due to the complexity of the rotation and vibration modes of these mole-
cules, one often has to rely on experimental measurements. Those can consist
of measurements of mean absorptions in frequency intervals. These are how-
ever limited to a fixed number of pressures and temperature at which the
measurements have been done. Another approach chosen for example for the
GEISA and HITRAN data base is to measure the intensity of the largest
3 Approximately, Erot ∼ �

2/2 Ij(j+1) where I is the molecule’s moment of inertia
and j the rotational quantum number.

4 Evib ∼ �ωosc(v + 1/2) where ωosc is the vibration frequency of the equivalent
harmonic oscillator and v the vibrational quantum number.
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possible number of lines. The absorption at any temperature and pressure
of a given compound can then theoretically be calculated from the following
relation:

κν(T, P ) =
∑
i

Ii(T0, P0)
[
1− ehν/kT
1− ehν/kT0

] [
Q(T )
Q(T0)

e
−Ei

k

(
1
T − 1

T0

)]
Lν(T, P, νi) ,

(66)
where the monochromatic opacity κν and the observed intensity of the line
i are generally given in cm2 molec−1 and the measured quantities have been
obtained at temperature T0 and pressure P0. The ratio of exponential corre-
sponds to induced emission. Q(T ) is the partition function at temperature T ,
Ei the energy of the level from which the observed line i comes from, and
therefore the second term in square brackets is the ratio of the population of
the initial energy level between temperature T and T0. The line profile is Lν
and this function is such that

∫∞
0

Lνdν = 1.
Although theoretically reasonable, one of the main drawback of this ap-

proach is the fact that the extrapolation to high temperatures involves excited
energy level transitions which are extremely difficult to detect at room tem-
peratures. The problem of formula (66) is therefore that the population of
energy levels corresponding to known lines decreases whereas the population
of unknown excited levels increases. This problem, known as the “hot band”
problem eventually leads to a strong (and false) decrease of the absorption
with increasing temperature.

In recent years, progresses in computational power have lead to very inter-
esting advances in ab initio calculations. These calculation predict the entire
energy levels of a given molecule and can therefore yield the absorption spec-
trum at all temperatures and pressures. These kind of calculations have been
successfully applied to diatomic molecules such as TiO, CO, VO...etc for quite
a few years, using the principles of the harmonic oscillator. The case of the
linear molecules as HCN has also been solved after that. However it is only
relatively recently that convincing calculations have been performed for more
complex molecules such as H2O. Other important molecules in the context of
cool objects (Teff ∼< 1200K) that still resist are CH4 and NH3. In the absence
of crucial data for these molecules, one has to rely on hazardous extrapolation
of experimental data.

Line Profiles

In the case of stellar atmospheres, the problem of the profile of absorp-
tion lines is relatively straightforward. Because the medium is at relatively
high temperatures and low densities the absorption of a molecule away
from the center of a line is due to the Doppler shift of the radiation as
seen by the absorber. The Doppler line profile is written as a function of
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wavenumber (σ = ν/c):

Lσ(T, σ0) =
e−(σ−σ0)

2/∆σ2
D

∆σD
√
π

, (67)

and the line halfwidth is

∆σD =
σ

c

√
2kT
m

, (68)

where m is the mean molecular mass.
In the case of most substellar objects, the cooler and denser conditions

which prevail imply a different kind of broadening which is dominated by
the effect of collisions: because the energy levels are populated only for finite
periods of time (due to excitations/deexcitations caused by collisions), the
transition cannot have a unique frequency. This gives rise to the so-called
Lorentzian line profile, which is

Lσ(T, P, σ0) =
∆σL

(∆σL)2 + (σ − σ0)2
, (69)

and the Lorentzian half-width then depends on details of the physics of micro-
scopic collisions. In general, it can be approximated by the following perfect
gas approximation

∆σL ≈ σ0
P√
T
, (70)

and σ0 depends on the line considered. This value can be experimentally
determined at room temperature, but when using ab initio calculation it is
generally set to a fixed value corresponding to the mean of the observed ones.

The use of the Doppler line broadening can be justified when its halfwidth
value is larger than that of a Lorenztian profile, i.e. when

T ∼> 7000K
(

ρ

10−4 g cm−3

)
.

At significantly lower temperature and/or larger densities, one is justified to
use a pure Lorentzian profile. In between, the Voigt profile is a combination
of the two:

Lσ(T, P, σ0) =
∫ +∞

−∞

∆σL

(∆σL)2 +
(
σ − σ0 − uσ0

c

)2 ( m

2πkT

)
e−mu

2/2kT du .

(71)
The Lorentzian (or Voigt) broadening is intrinsically more complicated

than the Doppler one due to the additional pressure dependency and the a
priori unknown halfwidth. It is also more complicated due to its slow decay
compared to the Doppler profile.

A cutoff to the Lorentzian profile is generally used first because it is com-
putationally much less intensive. It has also been empirically verified that syn-
thetic spectra of the giant planets generally fit the observations better when
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using a cutoff. This is for example the case of the 5µm spectrum of Jupiter,
modeled by Kunde et al. (1982) using a cutoff of ∆σcutoff ∼ 120 cm−1. Last
but not least, there are theoretical grounds for which the Lorentzian profile
should fail far from the line center.

The Lorentzian “core” is indeed a result of the impact approximation: it
is valid when the collision time is large compared to the characteristic time of
the transition:

rc
vc

= τcol ∼> τω =
1

2πc|ω − ω0|
, (72)

where rc and vc are the mean radius and velocity at closest approach during
collisions. Further from the line center, the impact approximation fails and a
faster exponential decay should prevail (Birnbaum 1979). This simplification
was indeed used by Guillot et al. (1994a) to predict a line cutoff proportional
to
√
T around 100 cm−1 at T = 200K, consistent with spectroscopic models

of Jupiter’s atmosphere.
More generally, the Lorentzian profile is known to fail in a variety of con-

ditions. Both superlorentzian and sublorentzian profiles can be observed, and
spectral lines can even be shifted due to microscopic interactions and line mix-
ing. However, a surprising result of the recent years is that, at least in the case
of alkali metals, far wings can still be of significance much beyond expectation.
In the case of Na lines in the visible spectral region, Nefedov et al. (1999)
find that the expected exponential cutoff occurs for ∆σ � 1000 cm−1. Us-
ing a Lorentzian profile convoluted with an exponentially-decaying function,
Burrows et al. (2000a) find that alkali metals, and especially the potassium
doublet at 0.77µm can explain the absence of flux emitted by brown dwarfs
in the visible and the slope of the spectrum for wavelengths shorter than 1µ.

The consequences of these results is still to be investigated, as are many
microscopic problems of line mixing and departure from ideality.

Radiative Rosseland Mean Opacities

The calculation of a Rosseland opacity table for substellar objects is a difficult
task, and indeed no such table spanning the range of giant planets to M-dwarfs
is yet available. An opacity table for stars have been calculated by Alexander
and Ferguson (1994), but at low temperature it is dominated by the presence
of interstellar-sized grains. It is then essentially designed to the study of cir-
cumstellar disks. Another effort was led by Lenzuni et al. (1991) with their
zero-metallicity opacity table. As suggested by the name, the calculations in-
cludes only hydrogen and helium and its applicability to real giant planets and
brown dwarfs is thus limited. The theoretical spectra of M-dwarfs and cooler
objects are now relatively good but unfortunately no Rosseland opacity table
has been published by modelers. Finally, a limited Rosseland table was com-
puted for Jupiter and Saturn by Guillot et al. (1994a) and Guillot (1999a,b)
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Fig. 10. Absorption of a solar-composition mixture, at 300K and 1 bar (left), and
at 2000K and 100 bar. Various contributions are shown. Top diagrams: H2–H2 CIA
(shaded) and H2O (gray lines);Middle: NH3 (shaded) and CH4 (gray lines); Bottom:
PH3 (shaded, left diagram), CO (shaded, right diagram) and H2S (gray).

but it does not include high-temperature species (such as TiO), and, as other
tables calculated so far, it does not account for the absorption of alkali metals.

I won’t attempt to discuss any specifics of these calculations. However
the broad features can be understood by looking at the monochromatic ab-
sorptions shown in Fig. 10. At low temperatures and pressure, the spectrum is
dominated by water and methane with a small contribution of H2–H2 collision-
induced absorption, ammonia and phosphine (PH3). The molecular bands
are relatively narrow. At higher temperatures and pressures, the absorption
bands become much broader. The H2–H2CIA becomes more important but
water still dominates the absorption spectrum. However, methane has almost
disappeared in the favor of carbon monoxide, which peaks at 5µm. The be-
havior of the Rosseland opacity over this range of conditions evolves mostly
because of the displacement of the weighting function dBν/dT in (64). At
300K, it is maximum at 830 cm−1, in a spectral region where the absorption
is large. At 2000K, its peak is around 5600 cm−1, and the contribution of
the low-absorption region around 1µm(10, 000 cm−1) becomes important. At
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still higher temperatures, the increased abundance of electrons imply a very
rapidly increasing H− and H−

2 continuous absorption: the Rosseland mean
opacity then rises so much that any radiative process becomes very inefficient
until eventually conduction dominates.

Two important points are to be mentioned: first, this local minimum of the
Rosseland opacity at temperatures of the order of 1500 to 2000K which pre-
vails for a zero-metallicity gas is conserved in the presence of water, methane,
ammonia, silane and a variety of other species observed in the atmospheres of
Jupiter and Saturn. This is due to the fact that these elements all have low
absorptions around 1µm. The presence of other chemical elements can alter
this conclusion. First, those that have low ionization potentials can increase
the number of electrons. This is the case of Al, Na...etc., but has been shown
not to be sufficient to erase this minimum (Guillot et al. 1994a). Second,
alkali metals have been shown to absorb precisely at these wavelengths (Bur-
rows et al. 2000a) and can therefore greatly affect this conclusion. Finally, the
presence of grains/dust/cloud particles can have a very significant effect.

Clouds and Dust

A great variety of chemical species in condensed form have been identified
in the interstellar medium, and their contribution to the energy balance of
interstellar clouds and circumstellar disks has been shown to be absolutely
essential. Solid grains have also been shown to affect the structure and evolu-
tion of red giant stars, and in particular to be determinant for understanding
the violent mass loss processes that these objects undergo. Finally, we owe our
very existence to the presence of condensed species in our own atmosphere:
the presence of clouds, of rain, proves that these phenomena greatly affect
the energy balance in Earth atmosphere. This is also the case in the giant
planets, and the presence of big particles (i.e. clouds) (generally of unknown
composition) is required for a proper fit of the observed spectra.

Condensed grains have such a fundamental importance because of their
ability to absorb light: Taken alone, the grains that can potentially condense
out of a solar-composition mixture are capable of providing a Rosseland opac-
ity up to ∼10 cm2 g−1 (e.g. Pollack et al. 1985, 1994). This value depends on
the abundance and composition of the condensed material, and hence mostly
on the temperature of the mixture, but also on the size distribution.

One can define three regimes, depending on the ratio of the wavelength
to the size of the grains. For grains much smaller than the wavelength of
the incoming light, the opacity is essentially due to Rayleigh scattering and
the Rosseland mean is independent of the size. For large grains, the cross
section decreases as the grains are bigger (the total mass of condensed material
being held constant), and the Rosseland opacity is consequently inversely
proportional to the size of the grains. The opacity is maximal at wavelengths
of the order of the size of the grain.
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Astrophysical opacity tables have generally been calculated assuming a
full chemical equilibrium in which the condensing species have been retained.
Furthermore, their size distribution has generally been taken to be that of
the interstellar medium. A good example is the widely used table provided by
Alexander and Ferguson (1994), which shows several absorption jumps due
to the condensation of various species, in particular silicates at temperatures
lower than ∼2000K.

However, it is not clear that this approach is even useful in the case of gi-
ant planet and brown dwarfs atmospheres. The size distribution then obtained
strongly depends on complex advective processes and has in most cases noth-
ing to do with that of interstellar clouds. Gravity is indeed a very important
factor in planetary atmospheres: it will generally lead to the removal of grains,
but several complications can occur due to convection and more generally ad-
vection of material. Heterogeneity is also likely to occur, and instabilities can
be generated by the presence of clouds. Finally, latent heat release can also be
an important factor, as in the case of the Earth, for which cumulus clouds can
penetrate the upper atmosphere because of the significant release of energy
occurring during the condensation of water vapor to a liquid or solid phase.

The calculation of a mean opacity table for substellar atmospheres that
would include condensed species is hence at the least impractical and limited
to very special conditions. However, it may be possible to use this simplified
treatment by noting that grains often dominate the absorption when they
occur. A combination of two tables, one without grains, and one with grains
only might be a possibility.

Conductive Opacities

We have seen that at high temperatures, the number of electrons present
yields a very rapid increase of the opacity. Because we are considering envi-
ronments in which the electrons become partially degenerate, conduction by
these electrons can become, at high pressures, an efficient way to transport
the internal heat.

In environments in which heat is entirely transported by conduction, the
heat flux obeys a standard diffusion equation:

Q = −Kc∇T , (73)

whereKc is the thermometric conductivity, expressed in units of erg s−1 cm−1 K−1.
An order of magnitude estimate of this quantity for the jovian interior is pro-
vided by Stevenson and Salpeter (1977a):

Kc ≈ 108ρ4/3 erg s−1 cm−1 K−1 , (74)

and ρ is expressed in g cm−3.
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The relationship between the conductive opacity and the thermometric
conductivity is

κc =
4acT 3

3Kcρ
. (75)

The diffusion equations for radiation and conduction being additive, one
can define a conductive + radiative opacity κ as

κ−1 = κ−1
R + κ−1

c . (76)

Tables of either the thermometric conductivity or the conductive opacity
have been calculated by Hubbard and Lampe (1969) and more recently by
Potekhin et al. (1999). The results by Potekhin et al. indicate slightly smaller
opacities by ≈ 10%. Typically, the conductive opacity of the hydrogen gas at
107 K decreases from about 105 cm2 g−1 at ρ = 1g cm−3 to 103 cm2 g−1 for
ρ = 100 g cm−3.

5.3 Heat Transport

We have described two ways of transporting heat: radiation and conduction. In
the diffusion approximation, i.e. at levels where the medium can be considered
isotropic, these fundamental physical processes can be described by relatively
simple equations. However, another extremely important mechanism has been
left out so far: the advection of heat by macroscopic motions. There are many
ways to generate heat advection, or convection, and it can take many forms.
We will only mention the most simple one: when convection is generated
by a destabilizing temperature gradient, and the medium can be considered
barotropic (surfaces of constant P and ρ coincide). The method pioneered
by Prandtl, Schwarzschild and Ledoux and widely used in stellar physics is
explained thoroughly in many textbooks. We will therefore only sketch it.

Convective Instability Criterion

In stellar (or in this case substellar) physics, viscosity is considered negligible
and convection is predicted to occur whenever it is energetically favorable.
This is unlike e.g. the Rayleigh–Bénard instability for which the system has
to overcome a barrier of potential to occur. In stars and giant planets, the
barrier is so small that it can be neglected (see later Sect. 5.3).

In our case, convection is supposed to occur whenever the medium is locally
unstable to convection, i.e. when a parcel of fluid displaced upward (resp.
downward) is lighter (resp. heavier) than its surrounding. Let us consider this
parcel of fluid versus its environment. When it is arbitrarily displaced radially
by ∆r, its density changes by ∆ρ? and has changed by ∆ρ in the unperturbed
environment. A convective instability then develops if:

∆ρ?

∆r
<
∆ρ

∆r
. (77)
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Because pressure variations are equilibriated much faster (at the speed of
sound) than temperature variations in the interior, this is equivalent to5:

(
∂ρ

∂T

)
P,µ

(
dT

dP

)?
dP

dr
<

(
∂ρ

∂T

)
P,µ

(
dT

dP

)
dP

dr
+
(
∂ρ

∂µ

)
T,P

(
dµ

dP

)
dP

dr
, (78)

where (dT/dP )? corresponds to the temperature variation in the perturbed
fluid parcel. We have implicitly considered that the molecular diffusivity is
slower than the thermal one so that the mean molecular weight µ is held
constant in the parcel and varies in the environment. Clearly this is not the
case for fast chemical reactions as ionization. In that case, convection can be
thought to occur in a homogeneous medium.

This implies that convection should develop whenever

∇T > ∇?T +
ϕ

δ
∇µ, (79)

where ϕ and δ are thermodynamical derivatives of the density (equal to 1 for
a perfect gas):

δ = −
(
∂ ln ρ
∂ lnT

)
P,µ

; ϕ = −
(
∂ ln ρ
∂ lnµ

)
P,T

. (80)

This criterion is not yet in a useful form because neither ∇?T nor ∇T
are known a priori. However, one should note that the following inequalities
should be satisfied in a convective zone:

∇rad > ∇T > ∇?T > ∇ad , (81)

where ∇rad is the radiative (+conductive) gradient

∇rad =
3

4πσG
κPL

mT 4
, (82)

∇ad ≡ (∂ lnT/∂ lnP )S is the adiabatic gradient, ∇T ≡ ∂ lnT/∂ lnP is the
real temperature gradient and ∇?T is that gradient in the parcel of fluid.
The first inequality to the left is due to the fact that given a set luminosity,
the radiative gradient is a strict maximum to the temperature gradient. The
second inequality is a consequence of the convection criterion. The last one is
due to the fact that heat can be transported by the parcel only if its motion
is slightly superadiabatic i.e. if it looses some of its heat during its ascent.

It is then easy to derive the so-called Schwarzschild–Ledoux criterion for
convective instability (Note that ϕ and δ are positive quantities):

∇rad > ∇ad +
ϕ

δ
∇µ . (83)

5 For simplicity, we forget the time derivative and use dP/dr instead of ∂P/∂r.
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This criterion is fundamental for the evolution of planets to stars. It is impor-
tant to notice that ∇rad is proportional to the luminosity L and to the mean
opacity κ. Convection will occur if L and κ are too large so that radiation can
transport the heat flux only with a steep, unstable temperature gradient.

Mixing Length Theory

While we now know when convection should occur, we haven’t derived an ex-
pression for the temperature gradient ∇T . In stellar modeling, this is generally
done using the approach due to Prandtl (1925): the Mixing length theory. This
is in fact a phenomenological approach and as such it has been widely crit-
icized. In the case of substellar objects, a detailed treatment of convection
will generally not be necessary because, as we will see, convection is almost
adiabatic.

The main hypothesis of the mixing length theory is that convective el-
ements should dissolve after a “mixing length” l ≡ αHP , where HP is the
pressure scale height and α is a free parameter of order unity.

We will first assume a homogeneous medium, i.e.∇µ = 0. By definition, the
total flux F , radiative flux Frad and convective flux Fconv obey the following
relations: 



F = Frad + Fconv

Frad =
4acT 3

κρ

T

HP
∇T

F =
4acT 3

κρ

T

HP
∇rad .

(84)

Prandtl’s approach allows to estimate the convective flux and the convective
velocity by integrating the acceleration by the buoyancy force over the mixing
length. This is done in several textbooks (e.g. Kippenhahn and Weigert 1991)
and I will not rederive these expressions. After some algebra, one derives the
cubical equation of the mixing length:


9
4
Γ 3 + Γ 2 + Γ = A2(∇rad −∇ad) ,

A =
cPκρ

2α2

12
√
2acT 3

(gδ)1/2H3/2
P ,

(85)

where 0 ≤ Γ ≤ ∞ is a parameter characterizing the efficiency of convection,
and I used as second parameter of the mixing length a ratio of the volume V
of convective elements over their surface S, V/S = l/6. The cubical equation
has only one real and positive root: it defines a unique value of Γ .

The temperature gradient and convective velocity are given by

∇T = ∇ad +
Γ (Γ + 1)

A2
, (86)

v =
(gδHP )1/2

2
√
2

α
Γ

A
. (87)
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The cubical mixing length equation should be consistently solved when cal-
culating the evolution of substellar objects. However, in most cases, convection
is found to be very efficient and Γ is large. In that case, simpler expressions
for the convective velocity and temperature gradient can be obtained:

∇T −∇ad ∼
[

4
√
2

α2δ1/2
Fconv

cPT (ρP )1/2

]2/3
, (88)

v ∼
[
αδ

4
P

ρcPT

Fconv

ρ

]1/3
. (89)

According to (84), the convective flux is Fconv = F (1−∇T /∇rad). When the
opacities become large, ∇rad � ∇T ≈ ∇ad and Fconv ≈ F . Physically, the
superadiabatic gradient is an adimensional quantity involving the ratio of the
energy per unit mass F/

√
ρP to be transported to that of a given layer, cPT .

The convective velocity is essentially proportional to (F/ρ)1/3: since F is a
slowly varying function, v should be expected to be larger near the surface,
where ρ is smaller. This corresponds to the fact that in a low density material,
transporting the same energy requires higher velocities.

Since we consider objects that are almost fully convective, and for which
our assumption that Γ � 1 is verified in most of the interior, the value of
α can affect the results through the change in the superadiabatic gradient.
As we will see next, this value is generally extremely small. The structure of
substellar objects is thus weakly dependent on the treatment of convection,
except possibly for the largest masses and early in the evolution.

Properties of Convection in Substellar Objects

First, let us determine the physical reasons for which the interiors of substellar
objects are found to be essentially convective (for direct applications to our
giant planets, see Hubbard 1968; Stevenson and Salpeter 1977b; Guillot et al.
1994b, 1997; Guillot 1999a,b). At any given level, we define a critical opacity
κcrit as the Rosseland mean opacity for which ∇rad = ∇ad. It can be seen
from the definition of ∇rad (82) that

κcrit =
∇ad

3
g

P

(
T

Teff

)4

. (90)

We now assume that ∇T is approximately constant so that T ∝ P∇T , and
that the flux σT 4

eff and gravity g are also constant. This yields

κcrit ≈
∇ad

3
g

P0

(
P

P0

)4∇T −1

. (91)

The critical opacity is thus only weakly dependent on the pressure level. Using
the definition of the photospheric pressure, and introducing the photospheric
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opacity κ0 ≡ κ(P0, Teff), one finds that

κcrit ≈
∇ad

2
κ0

(
P

P0

)4∇T −1

. (92)

Note that this expression is relatively simple, but caution should be made
regarding to its applicability. We have assumed g and Teff to be constant,
an assumption which generally verified, except in the central regions. The
hypothesis ∇T=cte is more ad hoc. However, because of the small superadi-
abaticities in substellar objects, ∇T ≤ ∇ad + ε where ε is a small quantity
(see (93) hereafter). With ∇ad ∼ 0.3, regardless of variations of ∇T , one finds
that in most cases κcrit is a function that weakly depends on P . We are thus
led to the conclusion that substellar objects are mostly convective because of
the strong increase of their Rosseland opacities with increasing pressure and
increasing temperature.

It should be stressed however that (92) is not valid near the photosphere
because it is calculated in the diffusion approximation. One can notice for
example that κcrit is a Rosseland mean opacity, whereas κ0 would correspond
more or less to a Planck mean opacity (straight mean weighted by the Planck
function).

In the case of isolated substellar objects, we can distinguish two regimes:

1. Cool objects (Teff ∼< 1500K): The opacity κ is essentially due to molecu-
lar absorption which is weakly dependent on pressure and temperature.
However, an important contribution is due to the H2–H2collision-induced
absorption which is proportional to P . The increase in this opacity guar-
anties convection.

2. Hot objects (Teff ∼> 1500K): The increase in temperature provides a grow-
ing number of electrons which greatly contribute to the total opacity via
H−

2 and H− absorption. Convection is then also guaranteed in this regime.

Note that this is the case only for isolated, or weakly irradiated planets
or brown dwarfs. The case of strongly irradiated objects will be discussed
afterward. Furthermore, any decrease of the Rosseland opacity, such as that
due to minimum 1 micron absorption in the absence of alkali metals can
yield a small but important radiative region. Finally, the presence of moist
convection or of gradients of composition can alter this conclusion. However,
this only affects limited regions, and one can consider that substellar objects
are mostly convective (however see Chabrier et al. 2000b).

Let us characterize convection in these objects. Under typical conditions,
(88) can be shown to yield:

∇T −∇ad ≈ 10−3

(
Teff

1000K

)7/3(
P

1 bar

)−2/3

. (93)

Convection can thus be considered adiabatic in most cases. This is due to the
fact that the energy to be transported is relatively small when compared to



294 T. Guillot

that available from thermonuclear reactions in stars. Because of this property,
the structure and evolution is found to be relatively insensitive to the treat-
ment of convection (and e.g. to the choice of the mixing length parameter
α).

The convective velocity is estimated from (89):

v ≈ 150
(

Teff
1000K

)4/3(
ρ

1 g cm−3

)−1/3

cm s−1 . (94)

The velocities thus derived are relatively small for giant planets such as Jupiter
(Teff ∼ 100K) and in the interior. They can however reach 100m s−1 at the
top of the convective region of the hottest brown dwarfs (Teff ∼ 2000K).
Note that in the case of Jupiter, the condensation of water provides another
source of energy which is not considered here. Due to that effect, updrafts can
reach several 10’s of m s−1. (The same principle holds for the Earth’s cumulus
clouds).

Table 6 illustrates the properties of convection in Jupiter, based on esti-
mates from Stevenson and Salpeter (1977a). The pressure scale height varies
from a few tens of kilometers near the photosphere to a fraction of the plan-
etary level near the center. The convective velocity is very small deep in the
interior, but as discussed, it decreases significantly at smaller densities.

A few adimensional numbers characterize convection itself: the Prandtl
number is the ratio between the opacity and the viscosity. It is small in regions
where either radiation or convection are relatively efficient at transporting
heat (independently of the presence of convection), i.e. near the surface and
in the metallic interior where conduction becomes dominant. The Reynolds
number compares macroscopic diffusion to the viscosity. It is very large, indi-
cating that convection is turbulent. Finally, the Rossby number is a measure
of the importance of rotation on convective motions. It is low, due to the
rapid rotation of the planet in ∼10 hours. This indicates that rotation will
significantly affect convective motions, implying that convective motions will
be mostly confined to a plane perpendicular to the axis of rotation. This gives
rise to the so-called Taylor columns (e.g. Busse 1978).

Table 6. Properties of convection in Jupiter

HP vconv Pr = ν/κ Re = vd/ν Ro = v/ωd

[km] [m /s]

Surface 40 1 10−4 109 1

PPT/molecular 1

PPT/metallic 10−3

Center 13000 0.03 10−3 1011 10−4
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Possible Inhibitions of Convection

A few phenomena are susceptible of inhibiting convection. I will enumerate a
few of them:

1. Rotation: In the limit of very low Rossby numbers, convective motions
are confined to a plane perpendicular to the axis of rotation (see e.g.
Pedlosky 1979). In the case of Jupiter, it has been estimated that this
yields a limited increase of the superadiabaticity and is hence negligible
to first order (Stevenson 1976a).

2. Magnetic field : In an ionized medium, a strong magnetic field can force
motions to follow the magnetic lines. All giant planets in our Solar System
possess such a magnetic field. Some low-mass stars have been observed to
show variability presumably related to the presence of star spots. This is
a strong indication that these stars are magnetic. One can therefore sur-
mise that magnetic dynamos occur in most or all substellar objects. The
mechanisms that generate these dynamos have not been fully elucidated,
and consequences for convection and heat transport remain unclear.

3. Compositional gradients: The presence of compositional gradients (∇µ >
0) can lead to the inhibition of convection. The problem becomes complex
because this gradient is a priori unknown: on one hand, convection tends
to homogenize layers, leading to ∇µ → 0; on the other hand, sharp in-
terfaces can form for which ∇µ →∞, yielding sharp, diffusive interfaces.
This is indeed observed in the Earth oceans, where salt and heat have
opposite effects.

4. Condensation: Phase changes of minor species, such as water can strongly
modify convection. First, the latent heat released favors updrafts, as ob-
served in Earth’s cumulus clouds. In Jupiter, this leads to convective up-
drafts of tens of m/s. However, in hydrogen–helium atmospheres, another
effect can be potentially important: in this case, because any condensing
species is heavier than the surrounding air, condensation tends to yield a
stable compositional gradient (∇µ > 0)6. Guillot (1995) shows that con-
vection is locally inhibited when the abundance of the condensing species
is larger than a certain critical value. This value is of the order of 5, 15
and 40 times the solar values for H2O, CH4 and NH3, respectively. The
temperature profiles of Uranus and Neptune retrieved from radio occul-
tation of Voyager 2 indeed show a strong superadiabaticity in the region
of methane condensation, implying that convection is probably inhibited
by this mechanism (Guillot 1995).

6 This is unlike the Earth’s atmosphere in which the condensing molecule, water
(µ = 18), is lighter than air (µ = 29).
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6 Interior Structures of our Giant Planets:
Numerical Integrations and Results

6.1 Basic Principles

Constraints on the interior structure of the giant planets of our Solar System
are derived from knowledge of their mass, M , equatorial radius a, and grav-
itational moments J2 and J4. Measurements of these quantities still go back
to the Pioneer and Voyager missions.

Basically, the procedure is to integrate the hydrostatic equations including
rotation using appropriate equations of state, opacities and a set of observed
parameters (mass, surface temperature...etc.). The a priori unknown compo-
sition is constrained by the gravitational moments. In the case of Uranus and
Neptune, we will see that another approach has been proposed which simply
relies on the computation of random density profiles. It is to be stressed that
in the absence of other information such as a vibration spectrum, only a few
moments of the interior density can be constrained. Most of the knowledge
concerning the interiors of these planets is indirect: it heavily relies on the
input physics.

All four giant planets appear to emit more energy than they receive from
the Sun (see Table 3 and Sect. 2). As first proposed by Hubbard (1968) for
Jupiter, this implies that their interior is hot, fluid and because of the large
opacities (see “Possible Inhibitions of Convection”), mainly convective. This
is an essential property which allow to model these objects with the same
underlying physics.

I will first discuss the case of Jupiter and Saturn, which are mostly formed
with hydrogen and helium. These two planets have been extensively modeled
(see Hubbard and Marley 1989; Zharkov and Gudkova 1992; Chabrier et al.
1992; Guillot et al. 1994b; Gudkova and Zharkov 1999), but these works gen-
erally aimed at finding a limited sample of models matching the observational
constraints. I choose to present models calculated in the purpose of extensively
exploring the set of parameters (Guillot 1999a).

I will then present more briefly the cases of Uranus and Neptune. These
planets are mostly made of ices, and their interior structure is consequently
more difficult to grasp. They are also distantly connected to the much more
massive brown dwarfs and extrasolar planets that have been detected thus
far. However, they are also a crucial piece in the puzzle to understand how
the Solar System was formed.

6.2 Jupiter and Saturn

Input Data

Gravitational field : The characteristics of Jupiter and Saturn’s gravity fields
as obtained from spacecrafts measurements are listed in Table 7. Note that
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Table 7. Characteristics of the gravitational fields

Jupiter Saturn

measureda adjustedb measuredc adjustedb

M/M⊕ 317. 83 95. 147

Req/10
9 cm 7. 1492(4) 6. 0268(4)

ω/10−4 s−1 1. 76 1. 64

J2/10
−2 1. 4697(1) 1. 4682(1) 1. 6332(10) 1. 6252(10)

J4/10
−4 −5. 84(5) −5. 80(5) −9. 19(40) −8. 99(40)

J6/10
−4 0. 31(20) 0. 30(20) 1. 04(50) 0. 94(50)

Note. The numbers in parentheses are the uncertainty in the last digits of the given
value. All the quantities are relative to the 1 bar pressure level.
a Campbell and Synnott (1985).
b Campbell and Anderson (1989).
c Adjusted for differential rotation using Hubbard (1982).

the rotation rate ω is that of the planets’ magnetic field, assumed to be tied
to the rotation of the deep interior.

A complication arises from the fact that the equations derived from that
theory generally assume the planet to be rotating as a solid body. Observations
of the atmospheric winds show significant variations with latitude, however
(e.g., Gierasch and Conrath (1993)). The question of the depth to which these
differential rotation patterns extend is still open. Hubbard (1982) has proposed
a solution to the planetary figure problem in the case of a deep rotation field
that possesses cylindrical symmetry. It is thus possible to derive, from interior
models assuming solid rotation, the value of the gravitational moments that
the planet would have if its surface rotation pattern extended deep into its
interior. It is a priori impossible to prefer one model to the other, and I will
therefore present calculations assuming both solid and differential rotation.
Table 7 gives both the measured gravitational moments, and those corrected
for differential rotation.

Atmospheric abundances: Because Jupiter and Saturn are believed to be rela-
tively well-mixed, precise measurements of atmospheric abundances is crucial
for modeling the interior. First, helium is found in relatively small abun-
dance: Solar evolution models indicate that the protostellar helium mass mix-
ing ratio relative to hydrogen was Y/(X + Y ) = 0.270 ± 0.005 (Bahcall and
Pinsonneault (1995)). In situ measurements of that quantity in Jupiter yield
Y/(X + Y ) = 0.238± 0.007 (von Zahn et al. (1998)). Combined radio occul-
tation measurements and spectra analysis from Voyager 2 indicate that, in
Saturn, Y/(X + Y ) = 0.06± 0.05 (Conrath et al. (1984)). This last value has
been challenged by several approaches (Guillot 1999a,b; Hubbard et al. 1999;
Conrath and Gautier 2000) and could be significantly larger. However, it still
appears to be smaller than the protosolar value.
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The conclusion that more helium was present in the protosolar nebula
gas from which Jupiter and Saturn formed than is observed today in their at-
mospheres seems inescapable. As discussed in Sect. 4, this implies the existence
of a hydrogen/helium phase separation, in which helium droplets can grow suf-
ficiently fast to be dragged down by gravity despite convection (Salpeter 1973;
Stevenson and Salpeter 1977b). The fact that the Galileo probe measured a
depleted abundance of neon is also indicative of such a phase separation, as
neon tends to dissolve into the helium-rich drops (Roulston and Stevenson
1995).

The measured abundances of other elements also provide important clues
to the composition of the planets. Both Jupiter and Saturn are globally en-
riched in heavy elements compared to the Sun. In Jupiter, the in situ measure-
ments of the Galileo probe are compatible with a ∼3 times solar enrichment
of carbon, sulfur, argon, xenon and krypton (Niemann et al. 1998; Owen et al.
1999). It is still unclear as to whether nitrogen is close to solar (by a factor 1
to 1.5; dePater and Massie 1985), moderately (2.2 to 2.4; Carlson et al. 1992)
or strongly enriched (3.5 to 4.5 times solar; Folkner et al. 1998). Water is still
a problem because of its condensation at deep levels, and only a lower limit
of ∼0.1 times solar can be inferred from the measurements. The enrichment
in noble gases (except neon) is problematic and bears directly on formation
issues. It has been proposed that these elements are brought to the planet in
the form of clathrates (Gautier et al. 2001).

Unfortunately, the uncertainties for Saturn are still relatively large. Its
atmosphere is enhanced in carbon by a factor of 2 to 7, and in nitrogen by a
factor 2 or more (Gautier and Owen 1989). Observationally, it could therefore
be more rich in heavy elements than the jovian atmosphere. This will be tested
by the Cassini–Huygens mission.

Atmospheric temperatures: The temperatures at the tropopause (at pressures
of about 0.3 bar) are relatively well constrained by direct inversions of infrared
spectra. These predict relatively large latitudinal temperature changes of the
order of 10K (Conrath et al. 1989). The temperature gradients decrease with
tropospheric depth, as interior convection presumably becomes more efficient
in redistributing the heat. However, the accuracy of this method drops rapidly
with increasing pressure and does not reach levels deep enough to be used as
surface condition for interior models. So far, the only reliable measurement of
the deep tropospheric temperature of a giant planet is that from the Galileo
probe in Jupiter: 166 K at 1 bar (Seiff et al. 1998). It is not clear however
how representative of the whole planet this measurement is. Previous analyses
have relied upon (local) radio occultation data acquired with the Pioneer and
Voyager spacecrafts (Lindal et al. 1981, 1985) that predicted 1 bar tempera-
tures of 165 ± 5 K in Jupiter and 134.8 ± 5 K in Saturn. The temperatures
inferred from these data are however dependent on the assumed mean molec-
ular weight m. The Galileo helium mixing ratio, applied to the Voyager data
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would yield a temperature of 170.4K at 1 bar in Jupiter. It is therefore rea-
sonable to assume that the uncertainty on these temperatures if of the order
of ∼5K.

Equations of state: Ideally, one should use an equation of state valid for any
chemical composition. This is of course unrealistic. The most recent astro-
physical equation of state for hydrogen and helium provided by Saumon,
Chabrier and Van Horn (1995) does not account for interactions between
the two species. The presence of other species can be added using generally
less reliable equations of state.

Figure 11 compares different pressure–temperature profiles for Jupiter and
Saturn, using the various equations of state described here. The figure is
intended to provide an estimate of the uncertainties on the various equations
of state (hydrogen–helium, heavy elements). It is important to notice at this
point that Saturn’s interior lies mostly in a relatively well-known region of
the hydrogen-helium EOS, i.e. in which hydrogen is molecular, whereas a

Fig. 11. Density profiles in models of Jupiter (gray line) and Saturn (continuous
lines: adiabatic i-EOS and PPT-EOS models; dashed : non-adiabatic i-EOS model).
Upper curves (dashed and dot-dashed) are T = 0 K density profiles for water ice
and olivine (from Thompson 1990). The dashed region represents the assumed uncer-
tainty on the EOS for heavy elements (ρZ(P, T )). Within this region, the continuous
line corresponds to our “preferred” profile for ρZ . Inset : Differences of the decimal
logarithm of the Saturn density profiles with the same profile using the i-EOS and an
adiabatic structure (plain and dotted lines). The gray line corresponds to the same
difference but for a PPT-EOS non-adiabatic Jupiter model (From Guillot 1999a)
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significant fraction of Jupiter’s interior is at intermediate pressures (one to a
few Mbar) for which the EOS is most uncertain.

Opacities: As discussed in Sect. 5 the Rosseland opacities available for models
of Jupiter and Saturn are still uncertain. A small table is provided by Guillot
(1999a) but does not include the absorption due to alkali metals. It therefore
predicts the existence of a radiative region in both Jupiter and Saturn at tem-
peratures around 1500K and pressures of 1–10 kbar. However, including the
absorption of sodium and potassium, as observed in brown dwarfs (Burrows
et al. 2000a) provides the required opacity source and the radiative regions
then disappear for both planets (Freedman et al. in preparation). The models
presented hereafter include uncertainties on the opacities as follow: a mini-
mum value is set by the calculation of a Rosseland opacity table assuming no
alkali metals, and thus include the presence of a radiative zone. Other models
simply assume that the planets are fully convective. The differences between
these models are in fact, in term of interior structure, relatively limited. How-
ever, we will see that the presence of a radiative zone affects the evolution
more significantly.

Construction of Models

Most models of Jupiter and Saturn assume a three-layer structure: a helium-
poor molecular region, a helium-rich metallic region and a central dense core.
The fact that the molecular/metallic transition coincides with a jump in the
abundance of helium is related to the idea that helium is most insoluble in
low-pressure metallic hydrogen, as obtained from calculations assuming full
ionization (see Sect. 4). The consequences of a different phase diagram have
not been calculated so far.

The three regions are linked to three parameters: Mcore the mass of the
core, Zmol and Zmet the mass mixing ratio of heavy elements in the mole-
cular and metallic envelopes, respectively. (The helium mixing ratio in the
molecular envelope is set equal to the atmospheric value; That in the metallic
region is constrained by the fact that the total helium/hydrogen ratio should
be equal to the protosolar value).

The total mass of the planet being fixed, the observational constraints are
the equatorial radius Req and gravitational moments J2, J4 and J6, measured
with respective observational uncertainties σReq , σJ2 , σJ4 and σJ6 . In the
framework of the three-layer models, the adjustable parameters are Zmol, Zmet

and Mcore. A way of finding models matching the observational constraints is
therefore to minimize the following function:

χ2(Zmol, Zmet,Mcore) =
1
4

[(
∆Req

σReq

)2

+
(
∆J2
σJ2

)2

+
(
∆J4
σJ4

)2

+
(
∆J6
σJ6

)2
]
,

(95)
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where ∆Req, ∆J2, ∆J4, ∆J6 are the differences between observed and the-
oretical Req, J2, J4 and J6. The non-uniqueness of solutions matching the
observed gravitational fields is found to be mostly due the uncertainty on J4.
So far, no useful constraint can be derived from the values of J6, owing to
their large observational uncertainties (see Table 7).

Results

The resulting interior models of Jupiter matching all available observations
are shown in Fig. 12. Hundreds of models have been calculated, but the solu-
tion is represented as a filled area instead as dots for an easier interpretation
of the figure. A striking result obtained from Jupiter’s modeling is the large
uncertainty due to our relatively poor knowledge of the behavior of hydro-
gen at Mbar pressures. As a consequence, two kind of solutions are found
depending on one using the Saumon–Chabrier PPT EOS, or the one that
is smoothly interpolated between the molecular and the metallic fluids. The
uncertainties in the solutions are not due to the qualitative difference at the
molecular/metallic transition but instead by the quantitatively different den-
sity profiles, as seen in Fig. 11. Any solution between the two regions in Fig. 12
would be valid, provided the “true” EOS for hydrogen lies between the PPT
and interpolated EOSs.

More quantitatively, Fig. 12 shows that an upper limit to Jupiter’s core
mass is rather small, i.e. about 10M⊕ only. This is significantly smaller than
found ∼20 years ago, the main difference being due to the improved EOSs.
The lower limit on the core mass is found to be zero: in this case, Jupiter could
have no core, or a very small one. This corresponds however to rather extreme
models, assuming a hydrogen EOS close to the interpolated one, and a large
J4 value. The lower panel of Fig. 12 also indicates that this corresponds to a
planet that is enhanced in heavy elements by 4 to 6 times over the solar value
(assuming Zmol = Zmet, a consequence of the presence of no physical discon-
tinuity of the EOS). Generally, it is found that Jupiter’s molecular region is
enriched in heavy elements by 1.5 to 6.5 times the solar value, in agreement
with the observations that indicate a ∼3 times solar enrichment for C, N, S.

In the case of Saturn (Fig. 13), the solutions depend less on the hydrogen
EOS because the Mbar pressure region is comparatively smaller. The total
amount of heavy elements present in the planet can therefore be estimated
with a better accuracy than for Jupiter. It is interesting to see that presently,
we do not know which of Jupiter and Saturn contain more heavy elements
in absolute value! However, because Saturn’s metallic region is deeper into
the planet, it mimics the effect that a central core would have on J2. The
uncertainty on Mcore is therefore large. In Fig. 13 constraints obtained from
the evolutionary models have been used to eliminate models that otherwise
satisfied the static constraints (see Guillot 1999a for details). Saturn’s core
is therefore found to be between 6 and 17M⊕. Saturn’s enrichment in heavy
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Fig. 12. Constraints on Jupiter’s interior structure. The upper panel shows values of
the core mass (Mcore) and total mass of heavy elements (MZtot) of models matching
all available observational constraints. The lower panel shows the mass mixing ratio
of heavy elements of the molecular (Zmol) and metallic (Zmet) regions, in solar units
(Z� = 0.0192). The two different regions correspond to different EOSs for hydrogen
(see text). Arrows indicate the direction and magnitude of the assumed uncertainties,
if J4 or Yproto are increased by 1σ, rotation is assumed to be solid (“Ω”), the core
is assumed to be composed of ices only (“fice”) and if Jupiter’s interior becomes
fully adiabatic (“∇T ”). The dashed line in the lower panel indicates a homogeneous
abundance of heavy elements (Zmol = Zmet) [Adapted from Guillot 1999a]
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Fig. 13. Same as Fig. 12 in the case of Saturn. The solutions for the PPT and
interpolated hydrogen EOSs are very similar and are thus not highlighted. The
arrow labeled T1 bar corresponds to an increase of Saturn’s 1 bar temperature from
135 to 145K. The arrow labeled Y mol corresponds to an increase of the helium mass
mixing ratio from 0.16 to 0.21 [Adapted from Guillot 1999a]

elements is found to be generally larger than in the case of Jupiter, but with
a considerable uncertainty in the metallic region.

Figures 12 and 13 also show as arrows the significance of various sources
of uncertainties for estimating precisely the parameters of the interior struc-
ture. The uncertainty on the measured value of J4 is shown to signifi-
cantly affect the results: in the case of Saturn in particular, a more accurate
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measurement (that the Cassini–Huygens mission will probably provide) is ex-
pected to substantially narrow the ensemble of viable models. Note that in
the case of Saturn, a more accurate determination of the surface tempera-
ture and of the helium to hydrogen ratio would also be invaluable for better
constraining the interior models.

6.3 Uranus and Neptune

Spectroscopic measurements indicate that their hydrogen–helium atmospheres
contain a large proportion of heavy elements, mainly CH4, which is enriched
by a factor ∼30 compared to solar composition (see Table 2). The two plan-
ets have similar masses (14.53M⊕ for Uranus, 17.14M⊕ for Neptune) and
radii. Neptune’s larger mean density is partly due to greater compression, but
could also be the result of a slightly different composition. The gravitational
moments impose that the density profiles lie close to that of “ices” (a mix-
ture initially composed of H2O, CH4 and NH3, but whose composition most
probably does not consist of intact molecules in the planetary interior), ex-
cept in the outermost layers, which have a density closer to that of hydrogen
and helium (Marley et al. 1995; Podolak et al. 2000). Three-layer models of
Uranus and Neptune consisting of a central “rocks” core (magnesium-silicate
and iron material), an ice layer and a hydrogen–helium gas envelope have
been calculated (Podolak et al. 1991; Hubbard et al. 1995).

The fact that models of Uranus assuming homogeneity of each layer and
adiabatic temperature profiles fail in reproducing its gravitational moments
seem to imply that substantial parts of the planetary interior are not homoge-
neously mixed (Podolak et al. 1995). This could explain the fact that Uranus’
heat flux is so small: its heat would not be allowed to escape to space by
convection, but through a much slower diffusive process in the regions of high
molecular weight gradient. Such regions would also be present in Neptune,
but much deeper, thus allowing more heat to be transported outward. The
existence of these non-homogeneous, partially mixed regions are further con-
firmed by the fact that if hydrogen is supposed to be confined solely to the
hydrogen–helium envelope, models predict ice/rock ratios of the order of 10 or
more, much larger than the protosolar value of ∼2.5. On the other hand, if we
impose the constraint that the ice/rock ratio is protosolar, the overall compo-
sition of both Uranus and Neptune is, by mass, about 25% rocks, 60–70% ices,
and 5–15% hydrogen and helium (Podolak et al. 1991, 1995; Hubbard et al.
1995). An upper limit to the total amount of hydrogen and helium present in
these planets is 3M⊕ for Uranus and 5M⊕ for Neptune (Podolak et al. 2000).

The characteristics of typical models of the four giant planets are sum-
marized in Fig. 14, including corresponding uncertainties in the temperature
profiles. The distinction between the “gas giants” Jupiter and Saturn and the
smaller “ice giants” Uranus and Neptune is evident.
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Fig. 14. Schematic representation of the interiors of Jupiter, Saturn, Uranus and
Neptune. The hashed region indicate a possible radiative zone (in Jupiter, it corre-
sponds to P ∼ 0.15 to 0.6GPa, T ∼ 1450 to 1900K, and R ∼ 0.990 to 0.984RJ;
in Saturn, it is located around P ∼ 0.5GPa, T ∼ 1700K, R ∼ 0.965RS). The ra-
diative zone are expected to disappear in the presence of alkali metals. The range
of temperatures for Jupiter and Saturn is for models neglecting the presence of the
inhomogeneous region. Helium mass mixing ratios Y are indicated. In the case of
Saturn, it is assumed that Y/(X + Y ) = 0.16 in the molecular region. The size of
the central rock and ice cores of Jupiter and Saturn is very uncertain. Two represen-
tative models of Uranus and Neptune are shown, but their actual interior structure
may be significantly different (see text) [From Guillot 1999b]

6.4 Consequences for Formation Models

The Minimum Mass Solar Nebula

The composition of the giant planets provides crucial information to under-
stand the formation of planets in general. A useful first indication of the
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structure of the early protosolar nebula comes from the estimation of the
minimum amount of gas that initially had to be present in the disk in order
to form the planets that we see today. The result is commonly called the min-
imum mass nebula (see Weidenschilling 1977; Hayashi 1981). Figure 15 shows
the minimum surface density (g/cm2 projected onto the plane of the Solar
System) of hydrogen and helium, as a function of the distance to the Sun, as-
suming that the planets were formed at their present locations, and using the
most recent interior models for Jupiter, Saturn, Uranus and Neptune. The gas
to solids ratio was assumed to lie between 55 and 90; these two extremes cor-
respond to (1) the condensation of all species except H, He, and noble gases,
and (2) the condensation of only water and metals and only small amounts
of condensed C (which is then assumed to mostly remains in the form the
gaseous CO) and N (remaining mostly bound up as N2), respectively.

In Fig. 15, the surface density required by two models of formation of
the giant planets are indicated. The most “standard” model of formation of
the giant planets is based on the formation of a solid protoplanetary embryo
followed by the capture of the surrounding hydrogen and helium, on a few
million year time scale (Pollack et al. 1996). The density required to form

Fig. 15. Surface density of hydrogen and helium as a function of distance to the Sun,
as estimated by various workers. The dashed and plain black lines correspond to the
minimum mass protosolar nebula as derived by Hayashi (1981) and Weidenschilling
(1977) respectively. The thicker vertical error bars outside 5 AU are updates of the
Weidenshilling values using interior models of the outer planets from Guillot (1999a).
The diamonds are the optimal surface densities for giant planet formation in a core-
accretion scenario, assuming a gas to solids ratio of 70 (Pollack et al. 1996). The
two upper lines (Boss 1998, 2000) correspond to a scenario of formation of Jupiter
and possibly Saturn by direct gravitational instability in the gas
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Jupiter in less than 10 million years is just slightly over the the new median
estimate for the minimum mass nebula. Neglecting any migration process,
this implies that between 20 and 75% of the solids in that region have been
lost, probably due to dynamical evolution. (These numbers account for the
fact that the gas to solids ratio has to be the same when comparing different
results). The density increases over the minimum one required to form Saturn,
Uranus and Neptune is higher, implying an even larger ejection efficiency (or
other loss mechanism) for solids in those regions.

An alternative model that might explain the formation of Jupiter is by di-
rect gravitational instability of the gas itself, on much shorter time scales (Boss
1998, 2000). This requires even larger densities than in the core-accretion sce-
nario, but it could be advocated that part of the gas present in the disk at
that early times has been accreted onto the star. The subsequent formation of
central cores in these models would require an early settling of heavy elements.

Delivering Planetesimals to the Giant Planets

To study the delivery of heavy-element rich planetesimals to the forming giant
planets, Guillot and Gladman (2000) performed extensive numerical dynam-
ical simulations of the fate of 10,000 massless particles distributed between
4 and 35 AU. In a baseline model, the masses and radii of the giant planets
were set to their present-day values, exploring a scenario in which the planets
“suddenly” reach nearly their current masses by a rapid gas accretion onto a
much smaller core. After 100Myr, 61% of the initial particles had been ejected
out of the system, 23% had been sent to the Oort cloud (aphelia larger than
10,000 AU), with only 13% remaining in the system. Only 4% of the par-
ticles impacted one of the four giant planets. In this physical scenario, the
probability of impact is low compared to that of ejection, mainly due to the
presence of Jupiter, to which the other giant planets efficiently ‘pass’ their
planetesimals. However, this inefficiency of planetesimal accretion poses grave
problems when we consider the known mass of heavy elements in the giant
planets.

Focusing on the core-accretion scenario, Fig. 16 shows the accretion effi-
ciency, defined as the ratio between the inferred amount of heavy elements in
the giant planets (Guillot 1999a) and the amount of solids required for their
formation (Pollack et al. 1996). Planets with the present characteristics are
found to be too efficient at ejecting material from the system compared to
accreting it, as indicated by the diamonds on Fig. 16.

Guillot and Gladman (2000) therefore propose that the heavy elements
present in the giant planets today were captured first during a runaway growth
phase, probably yielding the cores that are observed today and second dur-
ing an extended phase during which the planets had large effective capture
radii (∼3RJ) but relatively small masses (∼20M⊕). This case corresponds to
triangles in Fig. 16 and agrees with the accretion efficiencies needed for the
giant planets’ envelopes (lower thick error bars).
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Fig. 16. Accretion efficiencies required to form the giant planets in the core accretion
scenario. The accretion efficiency for a given planet is defined as the quantity of
heavy elements that had to impact the planet divided by the total amount of heavy
elements within the annulus that extends halfway to the next planet. The upper left
error bar for each planets corresponds to the ratio between the total mass of heavy
elements and the quantity of solids required by Pollack et al. (1996). The lower
thick error bars account for core formation by runaway growth, and include only
heavy elements in the envelopes. Diamonds are accretion probabilities in the Jupiter,
Saturn, Uranus and Neptune regions, respectively, as calculated in the standard
case. Triangles correspond to the reduced-mass case (see text) [From Guillot and
Gladman 2000]

Possible Formation Scenarii

Three possible scenarii may explain Jupiter and Saturn’s core mass and total
mass of heavy elements:

1. Rapid formation with a small core or no core (Gas instability scenario).
The formation of giant planets by gas instability is very fast, i.e. 104 to 105

years at the most (e.g. Boss 2000). Because the final mass of the planet
is rapidly reached, the hydrostatic equilibrium imposes a fast contraction
of the planet. Although this would have to be quantified, it appears that
this planet would have a very low accretion efficiency. In order to explain
the structure of Jupiter and Saturn, one needs to invoke a very large mass
of solids. This scenario also would predict that Saturn has a smaller core
than Jupiter, which isn’t implied by the interior models. A possibility
would be the capture of very small particles by the planet during their
fast migration toward the Sun. All in all, this scenario cannot be ruled
out but seems to be unlikely.

2. Slow formation with extended-phase. In the model of Pollack et al. (1996),
the growth of a giant planet by capture of a hydrogen–helium envelope
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onto a core cannot proceed extremely fast due to the feedback mechanism
produced by the release of gravitational energy heating the envelope. A
phase in which the planet has 20 to 30M⊕ and its effective capture radius
can be of the order of 2 to 3 times the present radius of Jupiter can
persist for millions of years. This scenario is found to be consistent with
the dynamical calculations. Most of the heavy elements are hence captured
during the first Myr. An important consequence is that in order to explain
the enrichment observed in the atmosphere, an efficient upward mixing is
required.

3. Formation from an initially massive core. Another alternative could be to
form a giant planet from an initially very massive core (this happens e.g. if
the surface density of solids is higher than the values indicated in Fig. 15).
Part of the core would then have to be mixed upward. The advantage is
that the phase of extended capture radius is not required anymore and
that the formation can be considerably faster.

As discussed in Sect. 5, the problem of mixing is a difficult one. It has
been advocated by Stevenson (1982) that the energy available in Jupiter is
barely sufficient to mix the any significant fraction of the core, owing to the
strongly stabilizing compositional gradient. This would imply that the cores
of the giant planets are primordial. Due to the properties of runaway growth
that I will not discuss here (see e.g. Wuchterl et al. 2000), one would then
expect the giant planets to have relatively similar cores.

However, an analysis of the accretion efficiency has shown us that the
heavy elements observed in the atmosphere must have been mixed upward.
If we report the 3 times solar value measured in Jupiter’s atmosphere in the
entire planet, this means that 18M⊕ had to be transported upward. Effi-
cient mixing mechanisms had therefore to exist to be capable of overcoming
the gradient of molecular weight. Two possibilities exist: one is the adiabatic
compressional heating during the rapid contraction phase. This phenomenon
could heat water more than hydrogen and therefore ease the mixing process.
Another possibility consist in advocating Kelvin–Helmoltz instability (e.g.
Chandrasekhar 1961) during the accretion of the envelope: their is indeed
no reason that the primordial core and the gaseous envelope would have the
same angular momentum. The powerful shear would be progressively erased
by mixing the different layers and transporting part of the heavy elements
upward. This scenario would also explain why Jupiter would have a smaller
core than Saturn: its envelope being more massive, it would be capable of
mixing more of the central core.

7 Evolution of Giant Planets and Brown Dwarfs

The problem of the formation of giant planets and brown dwarfs is still ob-
scure. That of their evolution, which, as we will see, is only weakly dependent
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on the initial conditions, is relatively better understood. The accuracy of these
calculations in fact mostly reflects our limited knowledge of their atmospheres
as we will see in the next sections. They however allow us to predict probable
characteristics of extrasolar giant planets, and appear to describe reasonably
well brown dwarfs, based on their measured spectra.

7.1 The Virial Theorem

Integrating the hydrostatic equation leads to a well known relation linking
the internal energy to the potential gravitational energy. It is very basic to
stellar evolution, but I choose to rederive it here, following the formulation
of Kippenhahn and Weigert (1991), because it is fundamental to understand
the evolution of substellar objects. For simplicity, rotation or the presence of
magnetic fields is neglected. Starting from (11), we write∫ M

0

4πr3
∂P

∂m
dm =

∫ M

0

4πr3
Gm

4πr4
dm . (96)

The left hand side can be integrated by part to yield:

3
∫ M

0

P

ρ
dm =

∫ M

0

Gm

r
. (97)

The right hand of (97) corresponds to the gravitational energy with a
minus sign:

Eg ≡ −
∫ M

0

Gm

r
dm (98)

and −Eg is the energy required to bring all the mass to infinity. The left hand
side of (97) is related to the internal energy

Ei ≡
∫ M

0

udm =
∫ M

0

3
ξ

P

ρ
dm , (99)

where ξ ≡ 3P/uρ and u is the internal specific energy. In the case of a perfect
gas, ξ = 3(γ − 1) where γ = cP /cV . In the case of a monoatomic perfect gas,
ξ = 2. If we furthermore assume that ξ is uniformly constant throughout the
star/planet considered, (97) takes the following form:

ξEi + Eg = 0, (100)

known as the virial theorem.
If we furthermore consider the total energy of the system W = Ei + Eg

(W < 0 for a gravitationally bound system), and assume that the luminosity
is entirely due to the loss of energy (i.e. we neglect thermonuclear reactions,
radioactivity...etc.),

dW

dt
+ L = 0 (101)
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and hence

L = (ξ − 1)
dEi

dt
= −ξ − 1

ξ

dEg

dt
. (102)

This relation is valid in a variety of cases, including giant planets for their
entire life and brown dwarfs for the parts of their life when thermonuclear
reactions represent a small fraction of the total luminosity.

Let us consider a contracting brown dwarf or giant planet beginning its
life mostly as a perfect H2 gas. In this case γ ≈ 7/5, hence ξ = 16/5 = 3.2.
Two third of the energy gained by contraction is therefore radiated away, one
third being used to increase the internal energy. This being proportional to
the temperature, the effect is to heat the object. This represents the slightly
counter-intuitive but well known effect that a star or giant planet initially
increases its luminosity while heating up.

Let us now move further in the evolution, when the contraction has pro-
ceeded to a point where the electrons have become degenerate. The problem
then becomes relatively complex because of the interplay between ions and
electrons. It is instructive however to consider the ideal case, formerly valid
only in the white dwarf regime, in which most of the pressure is provided by
non-relativistic degenerate electrons. In that case, P/ρ ≈ (2/3)u and therefore
ξ ≈ 2: Half of the gravitational potential energy is radiated away and half of
it goes into internal energy. The problem is to decide how this energy is split
into an electronic and an ionic part. The gravitational energy changes with
some average value of the interior density as Eg ∝ 1/R ∝ ρ1/3. The energy of
the degenerate electrons is essentially the Fermi energy: Ei ≈ EF ∝ ρ2/3. One
is therefore led to a simple relation between Eg and Ee:

Ėe ≈ 2
Ee

Eg
Ėg = −Ee

Ei
Ėg , (103)

where Ei is introduced via the virial theorem (Eg = −2Ei). In the case of
white dwarfs, Eion � Ee and therefore Ei = Eion+Ee ≈ Ee. This means that
Ėe ≈ −Ėg ≈ 2L. The energy balance L = −Ėion − Ėe − Ėg becomes

L ≈ −Ėion ∝ −Ṫ . (104)

In this case, the gravitational energy lost is entirely absorbed by the degen-
erate electrons, and the observed luminosity is due to the thermal cooling of
the ions.

For brown dwarfs and giant planets, the problem is more complex because
the electrons are only partially degenerate, and the contribution of the ions to
the pressure and internal energy cannot be neglected. However this only affects
the solution through numerical factors: qualitatively, most of the gravitational
energy lost is used up to increase the energy of the degenerate electron gas,
while the luminosity is essentially provided by the cooling of the ions.
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7.2 A Semi-Analytical Model

Solution for Isolated Objects

It is possible given certain assumptions to solve analytically the evolution
problem. A more detailed numerical solution is of course eventually required,
but the analytical solution is a tool to comprehend the physical problem. The
solution that is presented here is due to Hubbard (1977).

We consider an already dense giant planet or brown dwarf without ther-
monuclear reactions, and assume that its metallic region provides the essential
contribution to its cooling. Second, we will assume that it is adiabatic. One
can then show that the internal temperature profile obeys a relation of the
form

T ≈ CT1 barρ
γ . (105)

In the case of Jupiter, C ≈ 42.8 when ρ is expressed in g cm−3, and γ ≈ 0.64
is the Grüneisen parameter.

In the set of equations (44) governing the evolution of substellar objects,
only the energy conservation equation involves time, through the −T∂S/∂t
term. This equation can be rewritten in the form

∂L

∂m
= −cV

∂T

∂t
+ cV

(
∂T

∂ρ

)
S

∂ρ

∂t
. (106)

The term (∂T/∂ρ)S being positive, the luminosity is provided both by the
contraction and cooling of the planet.

Let us first neglect insolation. Integrating (106), we obtain

L = 4πR2σT 4
eff = −

∫
CV

(
∂T

∂t
− γ T

ρ

∂ρ

∂t

)
dm . (107)

Furthermore, (10) and (105) imply that

∂T

∂t
= T

(
−b∂ ln g

∂t
+ a

∂ lnTeff
∂t

+ γ
∂ ln ρ
∂t

)
. (108)

The gravity dependence is weak. The term proportional to ∂ ln g/∂t can hence
be neglected. Reporting (108) into (105), one finds

dt = −α(Teff)T a−5
eff dTeff , (109)

α(Teff) =
aCK

4πR2σgb

∫
CV ρ

γdm . (110)

In the case of Jupiter, CV ≈ 1.66kB/mH yielding α(Teff = 124.4K) ≈ 2.8 ×
1023 cgs.

Let us assume α constant (i.e. we neglect the evolution of the planet’s
structure during the contraction). The time necessary to cool from an effective
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temperature Teff,0 to Teff,1 is therefore

∆t =
α

4− a (T
a−4
eff,1 − T

a−4
eff,0 ) . (111)

Using a ≈ 1.24, one can see that the time for the planet to cool from an infinite
temperature to Teff,1 is approximately 50 times smaller than that required for
cooling from Teff,1 to Teff,1/4. The evolution problem is very weakly dependent
on initial conditions.

Jupiter’s cooling time from an initially infinite effective temperature to
its present value Teff = 124.4K is found, using (111) to take about 5.4Gyr.
Saturn’s cooling time is much shorter, i.e. about 2Gyr.

Correction due to Irradiation

Let us now include the absorbed stellar luminosity. The total luminosity of
the planet (or irradiated brown dwarf) has then three components: a directly
reflected stellar part which does not contribute to the heating of the planet
and is hence often not mentioned when studying the evolution; a part cor-
responding to the absorbed stellar luminosity, that I choose to note L��; the
intrinsic luminosity Lint. The effective temperature now has to be redefined.
The definition tying most closely the effective temperature to the temperature
at the photosphere is

4πR2σT 4
eff ≡ L�� + Lint . (112)

In the interior of the planet, the only relevant quantity is the intrinsic
luminosity (and it thus convenient to forget the int suffix when considering
the internal structure). The stellar flux is generally very rapidly absorbed
and contributes in fact only to heating the outer boundary. The problem is
therefore to derive the new boundary temperature. A simple approach is to
use the same boundary condition [(9,10)] but with the new definition of Teff .
We will come back on that assumption when discussing the case of Pegasi
planets (Sect. 9).

We therefore rewrite (107) by taking account of the absorbed stellar lumi-
nosity:

4πR2σ(T 4
eff − T 4��) = −

∫
CV

(
∂T

∂t
− γ T

ρ

∂ρ

∂t

)
dm , (113)

where T�� is the effective temperature that the planet would have if its intrinsic
luminosity would drop to zero while conserving the same atmosphere and
overall structure. It is defined by L�� = 4πR2σT 4��.

It is easy to show that (109) is now replaced by

dt = −α(Teff)
T a−5
eff

1− (T��/Teff)4 dTeff . (114)
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An expansion in powers of (T��/Teff)4 leads to

t =
α

4− aT
a−4
eff

[
1 +

4− a
8− a

(
T��
Teff

)4

+
4− a
12− a

(
T��
Teff

)8

+ ...

]
. (115)

The value of (T��/Teff)4 is 0.60 for Jupiter and 0.56 for Saturn. Using a =
1.243, the term between the square brackets is therefore of the order of 1.3 for
both Jupiter and Saturn. The contribution to the evolution of Solar radiation
is hence far from negligible. Equation (115) furthermore demonstrates that
the evolution is slowed by the stellar radiation.

Numerically, these equations predict that Jupiter should take about 7Gyr
to cool from an infinite effective temperature to today’s value. This value is
however overestimated due to the fact that α was held constant, i.e. variations
in the structure of the planet itself were neglected. Obviously, more sophisti-
cated models have to be developed anyway to go beyond the approximations
made in this semi-analytical model.

Influence of a Radiative Zone

The possible presence of a radiative zone can have deep, structural changes
on the evolution of a planet. These modifications are not always easy to in-
tuit. Of course, the most fundamental question is to know whether a radiative
zone leads to a quicker cooling, or if on the contrary it slows the evolution
of the planet. In fact, we shall see that the answer depends on the evo-
lution of the radiative zone itself.

Let us consider two adiabatic models separated in time by an unknown
interval ∆tad. Let us also consider two non-adiabatic models (possessing an
internal radiative zone), which have the same external conditions as the adi-
abatic ones (i.e. same surface temperature, intrinsic luminosity...etc.), but
separated by in time by an unknown amount ∆tnad. The energy conservation
equation tells us that

∆tad ≈ −
M

L
Tad∆Sad , (116)

∆tnad ≈ −
M

L
Tnad∆Snad , (117)

where Tad, Tnad, Sad and Snad are characteristic values of temperature and
specific entropy of adiabatic and non-adiabatic models, respectively.

The external boundary conditions being identical, the condition of convec-
tive instability necessarily implies (neglecting small compositional differences
between the two models) Tad > Tnad: the radiative model is always cooler
than the fully convective model. However the difference in entropy variation
between the two kind of models will depend on the evolution of the charac-
teristics of the radiative zone during the planet’s cooling.
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Fig. 17. Example of evolution of the specific entropy profile in the purely adiabatic
case (left) and in the presence of a radiative zone (gray area in the right hand side
figure). In each case, the entropy is represented in function of the mass variable at
two different times. Here the entropy jump is chosen to decrease with time. In spite
of the fact that the initial surface conditions are the same in the two cases for the
initial and final models, the mean entropy difference is smaller in the non-adiabatic
case than in the adiabatic one (∆Snad < ∆Sad). In this example, the cooling of the
non-adiabatic model is faster (see text)

In the entirely adiabatic case, Fig. 17 shows that the entropy variation
∆Sad between the models at ages t0 and t0+∆tad is equal to the entropy vari-
ation imposed by the external conditions ∆Sext. In the non-adiabatic case, the
presence of a radiative zone induces a decrease of the entropy in the planet’s
interior. The evolution of this entropy decrease (shaded area in Fig. 17) is cru-
cial. In the case of the giant planets and opacities with no alkali metals, the
entropy variation in the radiative zone is greater when the planet is hotter.
This implies that ∆Snad < ∆Sext. Consequently, for the case illustrated by
Fig. 17, one can see that

∆tad > ∆tnad . (118)

In other terms, the presence of a radiative zone tends, in this case, to accelerate
the evolution.

7.3 Evolution of Jupiter and Saturn

Results of Numerical Simulations

The evolution of Jupiter and Saturn to their present state is represented on
Figs. 18 and 19. As indicated by the analytic calculation, the initial contraction
is very fast, and the initial conditions are forgotten after a few million years or
less. The ages of the models which reproduce the observed radii, and effective
temperature are for Jupiter 3.7 to 4.5 Gyr for models with a radiative zone,
and 4.5 to 5.2 Gyr for fully-convective homogeneous models. In the case of
Saturn, these values are 2.0 to 2.4 and 2.2 to 2.6 Gyr, respectively (Guillot
et al. 1995; Guillot 1999a,b). Because, as discussed in Sect. 5, the opacities
do not account for the presence of alkali metals, one would expect values for
fully-convective models to be closer to reality. These corresponds to the largest
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Fig. 18. Contraction and cooling of a non-adiabatic model of Jupiter (opacities not
including alkali metals). The 1 bar temperature, effective temperature and mean
radius are represented as a function of time. All these quantities are normalized to
their present value, T �

1bar, T
�
eff , and R�. The right figure is an enlargement of the left

one. Note that time is then represented linearly. The vertical dotted line indicates the
age of the solar system. The arrow labeled SHCV corresponds to the age obtained
for a fully convective model by Saumon et al. (1992) [From Guillot et al. 1995]

Fig. 19. Same as Fig. 18 for a model of Saturn

ages (and indeed, one can verify that the alkali-free opacities lead to a faster
cooling, as discussed previously).

The “real” age of Jupiter and Saturn should be relatively well constrained,
unless our understanding of planet formation is utterly wrong. Isotopic dating
of meteorites shows that the first condensates appeared in the Solar System
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4.56Gyr ago. Jupiter and Saturn are mostly made with hydrogen and helium,
and had to be formed when these elements were still present in the nebula.
Observation of forming stars as well as models of circumstellar disks (see
Chapter by Pat Cassen) show that hydrogen and helium should have been
present for at most ∼10Myr. The age of both Jupiter and Saturn must be
about 4.55Gyr.

There is therefore a problem both for Jupiter and Saturn. In the case of
Jupiter, the more-realistic adiabatic models seem too old. It can be argued
however that the atmospheric model is crude and introduces an uncertainty
on the final age of at least 10%. Imprecisions in the equations of state also
introduce a probably significant uncertainty. In the case of Saturn, the dis-
crepancy with the age of the Solar System is large and cannot be explained by
inaccuracies in the calculation. Another source of energy has to be invoked:
that due to the slow release of gravitational energy thus appears as the most
likely one (Salpeter 1973; Stevenson and Salpeter 1977b).

It has been suggested that deuterium-deuterium reaction in a deuterium-
enhanced shell around the central core may explain “Jupiter’s excess heat”
(Ouyed et al. 1998). The models that I have presented explain Jupiter’s lu-
minosity naturally by the slow release of gravitational energy through the
planet’s contraction and cooling. The corollary is that any additional source
of energy, and in particular the putative D-D thermonuclear reactions would
pose a very difficult problem to relate Jupiter’s evolution to that of the Solar
System. Furthermore, the model of Ouyed et al. requires the presence of an
ad hoc deuterium shell and is therefore extremely unlikely.

Including a Hydrogen/Helium Phase Separation

The energy released by helium sedimentation per unit time can be very sig-
nificant. It is of the order of

Lgrav ∼
(
dM

dt

)
He

gH , (119)

where H is the mean distance over which the helium has fallen. In the case
of Saturn, if 10% of the helium atoms were to be transported on a distance
equal to half the planet radius in 1Gyr then Lgrav ≈ 4 × 1024 erg s−1, to be
compared with Saturn’s present intrinsic luminosity 8.6 × 1023 erg s−1. This
process indeed provides the right amount of energy. Note that the energy is
essentially proportional to the distance H. If the hydrogen/helium phase sep-
aration is tied to the molecular/metallic transition (see discussion in Sect. 4),
this could explain relatively naturally why this effect is more important in
Saturn than in Jupiter since Saturn’s metallic zone is much deeper than that
of Jupiter (R/Rtot ∼ 0.43 for Saturn compared to 0.80 for Jupiter).

However, the fact that a phase separation occurs is not sufficient in itself
to explain helium sedimentation. Since the planets are also convecting, the
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helium drops also have to grow fast enough before they are carried away by
convective cells. The problem has been estimated by Stevenson and Salpeter
(1977b). First, one has to estimate the size above which the free-fall velocity
of drops is larger than the convective speed. In the Stokes limit, they show
that this speed is, as a function of the drop size b:

vb ≈
b2g

24ν
. (120)

The convective velocity being of order 10 cm s−1, the free-fall time becomes
larger for sizes b ∼> 1 cm.

Furthermore, the molecular diffusivity of helium in hydrogen being esti-
mated to be D ∼ 10−3 cm2 s−1, the time scale for the drops to grow to ∼1 cm
is found to be of order of 103 s, i.e. much faster than convective time scales.

Let us now estimate analytically how helium sedimentation affects the
evolution, using an analytic model inspired by the one of Sect. 7.2. We assume
that at a mass mt, which can vary in time, an evolving jump of the helium
mass mixing ratio ∆Y occurs. ∆Y is chosen to be positive when more helium
is present at deeper levels (small values of m).

An integration the energy equation (107), but splitting the entropy deriv-
ative in a homogeneous and an inhomogeneous part yields

L =
∫
−T
[(

∂S

∂t

)
Y

+
dY

dt

(
∂S

∂Y

)
t

]
dm . (121)

Neglecting the entropy of mixing and the presence of species other than hy-
drogen and helium implies that(

∂S

∂Y

)
t

= SHe − SH ≡ −δYS . (122)

Note that the larger mass of the helium atom implies that δYS is positive.
Let us now assume that both ∆Y and mt vary with time. Mass conserva-

tion implies that

dX

dt
=



∆Y

dmt

dt
+mt

d∆Y

dt
if m > mt(t),

∆Y
dmt

dt
− (1−mt)

d∆Y

dt
if m < mt(t+ dt) .

(123)

dX/dt is infinite between mt(t) and mt(t+ dt) but its integral is finite:

∫ mt(t+dt)

mt(t)

−dY
dt

TδYSdm = T (mt)δY S(mt)∆Y
dmt

dt
. (124)
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We therefore obtain that the luminosity of the model at a time t is the
sum of three contributions:

L =
∫ M

0

−T
(
∂S

∂t

)
Y

dm

+
d∆Y

dt

{∫ mt

0

TδYSdm−
mt

M

∫ M

0

TδYSdm

}

− ∆Y
dmt

dt

{∫ M

0

TδYSdm− T (mt)δYS(mt)

}
. (125)

The first part is the contribution from the homogeneous evolution assumed
not to change as a result of the helium sedimentation (obviously a zero-order
assumption). The second part is proportional to d∆Y/dt and is always positive
if ∆Y increases with time (more helium is bought to deeper levels). The third
part can be either positive or negative depending on the displacement of the
transition region. The term between curved brackets is usually positive for
large enough values of mt (mt/M ∼> 0.45 for models of Jupiter and Saturn).
In this case, the contribution of this third part is thus to add to the luminosity
if the transition region moves to deeper levels (small mt).

Numerically one finds that

1
M

{∫ mt

0

TδYSdm−
mt

M

∫ M

0

TδYSdm

}
≈ 5× 1011 erg g−1 (126)

for both Jupiter and Saturn and

1
M

{∫M
0

TδYSdm− T (mt)δYS(mt)
}
≈ 2.5× 1012 erg g−1 Jupiter
≈ 1011 erg g−1 Saturn

(127)

If the transition follows the PPT, then

1
M

∣∣∣∣dmt

dt

∣∣∣∣ ∼< 2× 10−2 Gyr−1 , (128)

and the contribution of the displacement of the transition region is negligible.
One therefore finds that the lifetime added to the planet through a phase

transition from an initially homogeneous planet to one that has a helium jump
∆Y is approximately

∆t ≈ ∆Y

L

{∫ mt

0

TδYSdm−
mt

M

∫ M

0

TδYSdm

}
, (129)
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where L is the planet’s present intrinsic luminosity. Numerical applications
indicate that

∆t ≈ 9∆Y Gyr , (130)

for both Jupiter and Saturn. This is consistent with more detailed numerical
calculations (Hubbard et al. 1999). From our evolution models, we can infer
that ∆Y ∼< 0.01 for Jupiter, and that 0.2 ∼< ∆Y ∼< 0.3 in Saturn. Interior
models of Jupiter are in contradiction with that upper limit since they lead to
∆Y ∼ 0.04 (Guillot 1999b). This problem is still not resolved. In the case of
Saturn, this implies that the Voyager value for the atmospheric helium mixing
ratio is too low, something recognized independently from interior models
(Guillot 1999a), evolutionary models (Hubbard et al. 1999) and a reanalysis
of Voyager IRIS data (Conrath and Gautier 2000).

7.4 From Giant Planets to Brown Dwarfs

Giant planets and brown dwarfs share the same physics. It is so much the
case that it is difficult to make the distinction between the two classes of
objects. Presumably they should be formed by different mechanisms (see e.g.
Wuchterl, Guillot and Lissauer 2000). However, I will here arbitrarily define
giant planets as substellar objects in which thermonuclear reactions do not
occur, and brown dwarfs as objects which burn some deuterium during their
life, but which never attain the equilibrium phase (main sequence) in which
most of their energy is provided by hydrogen burning.

Nuclear Reactions

For brown dwarfs, the occurrence of thermonuclear reactions is almost entirely
due to a truncated PPI cycle (e.g. Burrows and Liebert 1993):

p + p→ d+ e+ + νe
p + d→ 3He+ γ.

Note that because of the relatively low central temperatures, only 3He, not
4He is formed through these reactions. The pp and pd reactions release 1.442
and 5.494MeV, respectively.

The energy released through these reactions is, assuming no screening
(Fowler et al. 1975):

ε̇pp = 2.5× 106
ρX2

T
2/3
6

e−33.8/T
1/3
6 erg g−1 s−1, (131)

and
ε̇pd = 1.4× 1024

ρXYd

T
2/3
6

e−37.2/T
1/3
6 erg g−1 s−1 , (132)



Interiors, Atmospheres, Evolution 321

where X and Yd are the mass mixing ratios of hydrogen and deuterium, re-
spectively, and T6 = T/106 K. Note that the primordial deuterium abundance
is of the order of Yd = 2× 10−5.

However, (131, 132) are underestimates because the fact that the plasma
is strongly coupled significantly softens the repulsive potential of the nuclei.
A detailed analysis of this is discussed by Saumon et al. (1996) and Chabrier
and Baraffe (1997). In the case of brown dwarfs, the enhancement factor is of
the order of ∼2 for both reactions. An estimate of the final sensitivity of the
reactions to temperature and density variations is provided by Burrows and
Liebert (1993):

ε̇n ≈ 5.9× 1010
(

T

3× 106 K

)6.3(
ρ

103 g cm−3

)1.28

erg g−1 s−1 . (133)

This expansion around T = 3×106 K and ρ = 103 g cm−3 shows the strong sen-
sitivity of the energy production to the temperature. Note however that other
thermonuclear reactions can have much steeper temperature dependences in
the case of more massive stars (e.g. Clayton 1963).

Brown Dwarf Models and Results

The two most cited evolution models of giant planets and brown dwarfs to
date are those of the “Tucson group” (e.g. Burrows et al. 1997) and of the
“Lyon group” (e.g. Chabrier and Baraffe 1997). These models share many
similarities, and in particular have the same equation of state and same nuclear
burning rates. They however differ on a few points:

• On the atmospheric model: The ‘Tucson’ model uses the k-coefficient ap-
proach from Marley et al. (1996) and an approximate treatment of clouds
using Lunine et al. (1989). The ‘Lyon’ model is based on a detailed line
by line approach (e.g. Allard and Hauschildt 1995).

• On the treatment of convection: The ‘Tucson’ model is essentially adia-
batic, whereas the ‘Lyon’ one uses the mixing length theory.

• On conduction: implemented in the ‘Lyon’ model only, using conductive
opacities from Potekhin et al. (1999). Figure 20 shows the evolution of the
conductive core of a 0.06M� brown dwarf (from Chabrier et al. 2000b).

Other models by D’Antona and Mazitelli (see Montalbán et al. 2000) are
available but will not be discussed since they have generally concerned objects
of larger masses.

Figures 21 and 22 show the evolution of isolated giant planets, brown
dwarfs and stars. The distinction between stars and brown dwarfs can be read-
ily seen from the fact that stars reach a long equilibrium period during which
the tendency of the star to contract under the action of gravity is balanced
by thermonuclear hydrogen fusion. For brown dwarfs, even if thermonuclear
reactions are indeed possible (even of hydrogen for the most massive ones),
they are never energetic enough to reach this balance: brown dwarfs and giant
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Fig. 20. Evolution of the conductive core Mcond/Mtot (shaded area) as a function
of time for a 0.06M� brown dwarf [From Chabrier et al. (2000b)]

Fig. 21. Evolution of the luminosity (in L�) of solar-metallicity M dwarfs and
substellar objects vs. time (in yr) after formation. The stars, “brown dwarfs” and
“planets” are shown as solid, dashed, and dot-dashed curves, respectively. In this
figure, we arbitrarily designate as “brown dwarfs” those objects that burn deuterium,
while we designate those that do not as “planets.” The masses (in M�) label most
of the curves, with the lowest three corresponding to the mass of Saturn, half the
mass of Jupiter, and the mass of Jupiter [From Burrows et al. (1997)]
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Fig. 22. log10 radius (in cm) vs. effective temperature (Teff, in K), with Teff de-
creasing to the right. The isochrones are the almost horizontal lines and are labeled
in log10 yr. In all cases, the radius decreases with time. Initially, for the more massive
brown dwarfs, the effective temperature is roughly constant, or slightly increasing,
before decreasing inexorably at later times [From Burrows et al. (1997)]

planets contract inexorably. Note that the crossing of evolution lines in Fig. 21
is due to deuterium burning. It occurs later for brown dwarfs of small masses
(∼15MJ), and those can hence be, for a small period of time, more luminous
than slightly more massive brown dwarfs that have already consumed all their
deuterium.

Figure 22 shows the relative constancy of the radius both as a function
of time and mass, as well as the range of effective temperatures spanned
by brown dwarfs and isolated giant planets. After 0.1Gyr of evolution, it is
found that all isolated brown dwarfs and giant planets should have a radius
ranging between 1010 and 5× 109 cm. For comparison, Jupiter’s mean radius
is 7 × 109 cm. The effective temperatures can range from about 3000K for a
young (∼10Myr) massive brown dwarf to only ∼100K for a 5Gyr isolated
Jupiter-mass planet.

Figure 23 is a theorist’s H–R diagram for the “brown dwarfs” and giant
“planets.” The inset is a continuation of the figure down to low luminosi-
ties and Teffs. The current Jupiter and Saturn are superposed for compari-
son (Pearl and Conrath 1991). Importantly, constant mass trajectories never
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Fig. 23. H–R diagram: luminosity (in L�) versus Teff (in K) for various masses
labeled on the figure in M�. Due to the large range in luminosity and the near
degeneracy of the tracks of substellar objects at late stages of evolution, it is not
possible to represent with adequate detail the whole H–R diagram as one figure.
Accordingly, the low-temperature and low-luminosity tail of the H–R diagram is
shown in the inset. The observed positions of Jupiter and Saturn are labeled as
points “J” and “S,” respectively [From Burrows et al. (1997)]

cross and it is only for objects below 25MJ that temperatures below 400 K
are reached within 1010 years. All substellar objects decrease in luminosity
monotonically, though during the early phases deuterium burning slows the
evolution. As the “brown dwarfs” and “planets” cool to their cold radii, their
tracks in the lower right of the H–R diagram correspond closely to curves of
constant radius.

The consequences of a different helium to hydrogen ratio, of rotation or
of the presence of a central dense core on the final luminosity and radius of
1 and 5MJ planets are indicated by Saumon et al. (1996). They show that a
10% variation of Y generally translate into a 5% variation of R and L (Y and
R being always anti-correlated, while Y and L are generally correlated). The
presence of rapid rotation (with rotational speeds similar to that of Jupiter)
can also significantly affect both the radius, increasing it by up to 20%, and
the luminosity, which can be decreased by the same amount (but complex
behavior can be found).
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Deuterium, Lithium and Hydrogen Burning

The calculation of central temperatures shows at what masses and when vari-
ous key-species are burned in brown dwarfs and stars. Because thermonuclear
reactions are mostly temperature dependent, Fig. 24 shows as horizontal lines
the burning temperatures of deuterium, lithium and hydrogen. It can be seen
that objects of 0.012M� (∼12MJ) fail to reach the deuterium-burning limit.
Using this property to distinguish brown dwarfs and planets sets the realm of
brown dwarfs beyond 13MJ (see Burrows et al. 1997; Chabrier et al. 2000a).

In objects of about 0.06M�, lithium starts burning. The signature of
lithium in the spectrum of an object is thus an important sign to prove its
substellar nature. There are various caveats however: at low temperatures,
lithium pairs with hydrogen to form the mostly undetectable LiH (Lodders
1999). Furthermore, stars retain some of their primordial lithium for a few
million years for the less massive of them. Therefore, lithium can be observed
in young objects without these being brown dwarfs.

Hydrogen starts burning for masses higher than 0.7M�. This however
depends on the metallicity of the object: this limit is valid for solar-metallicity,

Fig. 24. Central temperature as a function of age for different masses. TH, TLi and
TD indicate the hydrogen, lithium and deuterium burning temperatures, respectively
[From Chabrier and Baraffe 2000]
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but goes up to 0.8M� for objects with [Fe/H]= −2 (Chabrier and Baraffe
2000). This can be understood as follows. We have seen that the photospheric
pressure is proportional to g/κ. Objects with a smaller metallicity, hence
smaller atmospheric κ have a larger photospheric pressure, for a given gravity.
They hence have a colder interior at a given pressure. One therefore needs to
go to higher gravities, hence higher masses to reach a central temperature
above the deuterium fusion point.

7.5 Extrasolar Giant Planets

The extrasolar planets that have been discovered so far by the radial velocime-
try technique orbit all relatively close to a star; the amount of radiation that
they receive has to be taken into account. I present here results obtained in
the weak-irradiation approximation discussed in Sect. 7.2: these results are
valid when most of the stellar flux is absorbed in a convective, adiabatic zone.
We will see however that this is not true of strongly irradiated planets: in this
case specific calculations have to be performed (Sect. 9)

Figure 25 gives examples of effective temperatures and radii predicted for
some of the recently found extrasolar giant planets and brown dwarfs, assum-
ing solar composition, a factor 2 uncertainty on the mass (due to the fact
that radial velocity measurements only yield M sin i, where i is the inclina-
tion of the orbital plane), and including uncertainties on the ages and albedo
(between 0.1 and 0.5). It illustrates the diversity of planets detected so far.
Because of the range of temperatures, many different condensates (from am-
monia to silicates) are expected in planetary atmospheres. However, the cal-
culated radii are always close to that of Jupiter, until the mass is large enough
to sustain hydrogen fusion, at about 75MJ. A local maximum of the radius
at a mass of ∼4MJ for isolated planets is due to the competition between
additional volume and increased gravity. (This is because, when considering
planets of larger masses, the degenerate metallic hydrogen region grows at the
expense of the molecular region.) Planets that are significantly heated by their
star have larger radii for smaller masses because their cooling is strongly sup-
pressed. This case will be discussed in more detailed in Sect. 9, in connection
with the constraints obtained for HD209458b.

8 Spectra and Atmospheres

8.1 Direct Observations of Substellar Objects

Gliese 229 B

Numerous observations of brown dwarfs are now available, but the first object
whose substellar nature has been recognized as such beyond any doubt is
Gliese 229 B. That object was discovered in 1995 (Nakajima et al. 1995;
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Fig. 25. Predicted effective temperatures and radii (in units of Jupiter radii,
RJ ∼ 70, 000 km) of some extrasolar planets and brown dwarfs, including reasonable
uncertainties for their mass, albedo and age (see text). The dashed line is for iso-
lated H–He (Y = 0.25) objects after 10Ga of evolution. The upper panel also shows
potentially important chemical species expected to condense near the photosphere
in the indicated range of effective temperatures [From Guillot (1999b)]

Oppenheimer et al. 1995), but it is still one of the most studied object of the
field. It has the particularity of being companion to a cool M1-dwarf star,
only 5.77 parsecs away. Its projected separation is only 45AU, i.e. about the
distance between Pluto and the Sun. (Note that its real mean orbital distance
is still unknown.) One of the key features of the spectrum of Gl229B was the
presence of methane absorption (Fig. 26). Because this molecule turns into
CO at temperatures above 1000 to 1500K for realistic photospheric pressures
(see Sect. 8.2 hereafter), this implied that Gl229B was a genuine brown dwarf.
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Fig. 26. Synthetic spectra for (bottom to top) Teff = 890K, 960K, 1030K and
g = 105 cm s−2 together with observed data from Geballe et al. (1996) (top panel)
and photometric broadband measurements also from Geballe et al. (bottom panel).
In both panels, spectral intervals are labeled with the molecules primarily responsible
for the opacity in that interval [From Marley et al. 1996]

Two theoretical attempts to model the brown dwarf’s spectrum were per-
formed independently by Allard et al. (1996) and Marley et al. (1996). These
works concluded to an effective temperature Teff ∼ 900± 100K and a gravity
log g ∼ 5 ± 0.5 with g in cm s−2. They identified several water and methane
bands, and were able to correctly reproduce most of the spectrum. Another
work from Tsuji et al. (1996), also coincided with the discovery. The compar-
ison of this work with the observations showed that clouds were not present,
in Gl229B, or that they were patchy. A few problems were however found at
the time:
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• The fit to the observed spectrum were relatively poor in the region of
methane absorption. This problem is still present, in the lack of reliable
opacity data for that molecule at temperatures of ∼1000K and more.

• The predicted fluxes were much too large, by several orders of magnitude,
for wavelength λ ∼< 1µm. The works of Tsuji et al. and Allard et al. did
not include the condensation and settling of the very efficient absorber
TiO: their fluxes were coincidentally similar to the observed ones, but
for the wrong reasons. None of the distinctive features of TiO absorption
have indeed been found in Gl229B’s spectrum (Oppenheimer et al. 1998).
Marley et al. used an arbitrary cutoff of the absorption for λ < 1µm. It
was later advocated that photochemical processes due to the irradiation
of the weak Gl229A could create large-enough particles to explain that
absorption but no component could be found to provide the right slope
(Griffith et al. 1998). The problem was later shown quite convincingly to be
due to the absorption of alkali metals, and in particular to the potassium
doublet (Burrows et al. 2000a). Although this theory depends on an ad
hoc parameter, the slope of the non-lorentzian line profile (see Sect. 5.2), it
has been shown to properly reproduce the spectrum of another cool brown
dwarf (Liebert et al. 2000).

• The theoretical spectra predict absorption minima that are much deeper
(by one to two orders of magnitude) than the observed one. Although one
possible explanation could be the contamination of the observations by
light scattered from Gl229A, a careful analysis of the measured spectrum
(e.g. Oppenheimer et al. 1998) shows that this is unlikely. No convincing
explanation has yet been proposed to explain the discrepancy.

The New Spectral Classes

As discussed in the introduction, the technological progresses made possible
the detection of hundreds of brown dwarfs in only a few years. This led to
the definition of a new spectral type, the first one in more than a hundred
years. This spectral type, “L” was first proposed by Mart́ın et al. (1997), and
later worked out by Kirkpatrick et al. (1999) and Mart́ın et al. (1999). I will
not discuss in detail the classification itself (or rather the classifications, there
being some divergences between the two groups). In a nutshell, M-type stars
are identified by distinctive signatures of molecules, especially TiO and VO.
The spectra of L-type objects see the progressive disappearing of TiO and VO
lines and the advent of K, H2O, Cs...etc. Cooler than the L-dwarfs, one then
finds the T-dwarfs, whose detailed classification scheme has obviously to be
worked out, but which are characterized by the presence of CH4 absorption.
Finally, it has been proposed that even cooler objects similar to Jupiter and
Saturn (who mainly show features of CH4 and NH3) be termed “Y-dwarfs”
(see Basri 2000 for a review).

The correspondence between hydrogen-burning and spectral-type is not a
simple one because it depends on factors such as the gravity and metallicity of
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the object. For solar composition, the limit between stars and brown dwarfs
is at M10 around 1Gyr, M7 around 100Myr, and M6 around 10Myr.

The Colors of Brown Dwarfs

The abundance of brown dwarfs now discovered makes us almost forget how
faint these objects are, and how difficult it is to find them. They are indeed
10,000 to 100,000 times fainter than our Sun. Since high-resolution spectra
imply long exposures, programs aiming at the detection of brown dwarfs have
relied on color information, i.e. images taken with several broadband filters
that combined together provide information on the effective temperature of
the targets. Because of the coolness of the sources, brown-dwarf surveys (e.g.
DENIS, 2MASS) have generally been done using infrared I, J and K bands
(see Basri 2000).

It is a well known property of blackbodies that they get redder and redder
as one looks at objects that are cooler and cooler: the peak of the Planck
function is then displaced to longer wavelengths. This implies that, e.g. relative
to the K band, less flux is emitted in the J band. Because astronomers are
nostalgic of outdated conventions, this implies an increasing J–K value (J and
K being the magnitudes in the J and K bands, respectively).

Figure 27 shows a color-magnitude diagram in which theoretical calcula-
tions are compared to observations. Main sequence stars are easily spotted by
their low, relatively uniform J–K value. This is due to the fact that at high
temperatures, the J and K bands are in the Wien tail of the Planck function
and their difference is independent of temperature. Objects of smaller absolute
magnitudeMK then progressively move to the red-part (right) of the diagram.
This tendency is well reproduced by a “dusty” atmospheric model, i.e. one in
which all the condensed particles are assumed to remain in the atmosphere.
The effect of the presence of dust is effectively to reduce spectral variations so
that the spectrum is more similar to that of a black body (Allard et al. 2001).

However, at still lower temperatures, Gl229B sticks clearly out of this
tendency, and is in fact significantly bluer in J and K than main sequence stars!
Furthermore, it is not an isolated case: several other cool brown dwarfs have
now been detected to have the same characteristics (e.g. Burgasser et al. 1999;
Strauss et al. 1999). As we will see, this rapid variation in color is indicative of
a transition from “dusty” to “clear” atmospheres, probably sharpened by the
additional cooling provided by the apparition of methane at low temperatures.

Detection of Very Young Substellar Objects

Brown dwarfs can be discovered in the field, as for the DENIS and 2MASS
surveys. They can also be discovered in known star-forming regions: because
they are young, they can be considerably hotter than the average field objects.
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GD165B

LHS102B

  GL229B

Kelu1

COND

DUSTY

Fig. 27. MK vs (J–K) diagram for different ages and metallicities: [Fe/H]=0 for
108 yr (dotted lines) and 5 × 109 yr (solid lines); [Fe/H]= −2, t=10 Gyr (dashed
line). The curves on the upper right correspond to the DUSTY models for [Fe/H]=0.
The curves on the down left correspond to the COND models for [Fe/H]=0. Filled
circles and triangles on the isochrones indicate masses either in M� or MJ (1 MJ ≈
10−3 M�) [From Chabrier and Baraffe 2000]

However, most of these regions are relatively far away (100’s of parsecs), and
extinction then becomes a problem.

A very interesting region is the σ−Orionis cluster, which is only a few
Myr old. Very faint, low-mass objects have been successfully discovered (see
Mart́ın et al. 2001 and references therein). These authors have shown that
a continuous sequence of brown dwarfs is present, down to very low masses
(perhaps ∼8MJ). Similar results have been obtained for other clusters, were
numerous brown dwarfs were detected down to and beyond the deuterium
burning limit. Mass functions down to these low masses have been derived
for the IC348 cluster (Najita, Tiede, and Carr 2000) and the Trapezium (Hil-
lenbrand and Carpenter 2000; Luhman et al. 2000). The mass functions thus
obtained are extremely interesting as they bear on formation theories, but
will not be discussed in this course.
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Fig. 28. K vs I–K color-magnitude diagram. Empty circles are substellar members
in σOrionis. The thick solid line and filled triangles represent the mean locus of the
σOrionis objects. The 5 Myr isochrones from Chabrier et al. (2000b) are displayed
(Nextgen no-dusty models—dotted line, Dusty models—dot-dashed line, and Cond
models—dashed line). The thin solid line with asterisks is a best-guess isochrone
that combines the models [From Mart́ın et al. 2001]

Figure 28 shows the observations of Mart́ın et al. (2001) in σ−Orionis as a
color-magnitude diagram. The theoretical interpretation using the Lyon model
is shown by the dotted, dash-dotted and dashed lines. (The models computed
by the Lyon and Tucson groups yield very similar results). As previously, a
tendency arise with hotter, more massive objects being closer to a theoretical
sequence that accounts for the presence of dust in the atmosphere, and one
assuming a clear atmosphere for cooler objects. We will come back to that
transition in the following sections. The very low masses obtained for the
fainter objects are interesting and one has to consider the uncertainties that
are associated with them.

Because the age of the cluster is not precisely known (note that all stars
do not form exactly at the same time), the intrinsic uncertainty of 1–5Myr
leads to an uncertainty on the predicted masses. It is interesting to see however
that the uncertainty of the models themselves, as computed by two groups and
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with several assumptions relative to atmospheric composition give strikingly
similar results.

First, the age of the cluster is not known. In the case of σOrionis, it is 1–
5Myr. This translates into a factor∼2 uncertainty on the mass, the young ages
corresponding to the lowest values of the masses. Another important source
of uncertainty is due to the relative closeness to unknown initial conditions. If
in the process of formation the proto-brown dwarfs are able to loose some of
their entropy, their interior entropy will be lower than the external one, until
cooling (possibly over millions of years) readjusts the profile to a uniform
one. For some time the brown dwarf or planet will therefore have a cooler
interior, for the same external boundary conditions. (See the entropy profiles
and discussion in Sect. 7.2). The objects could then be found for some time
to the left of the Hayashi track (see Fig. 23), implying for already compact
objects that they could be interpreted to be less massive than they really are.
However, the magnitude of this effect has to be investigated.

Rotation, Magnetic Activity and Variability

Rotation is a particularly important astrophysical parameter to understand
formation processes. In the case of stars, most of the angular momentum
present in the molecular cloud had to be lost. Two physical processes can
be advocated: the formation of a circumstellar disk and angular momentum
transport within that disk, and magnetic braking. The situation is similar for
substellar objects.

The rotation rates of brown dwarfs can be inferred through radial-velocity
measurements. Contrary to the case of the detection of companions however,
one then seeks the intrinsic line broadening due to the rotation. The mea-
sured parameter is v sin i, the rotation speed at the equator multiplied by the
sine of the inclination. Observations of type M (see e.g. Basri 2000 for a re-
view) indicates that objects all down to ∼M10 have very widespread values
of v sin i, and show intense chromospheric heating, as characterized by their
Hα emission. On the other hands, the observed L-type objects are all very
fast rotators (v sin i = 20 to 80 km s−1), and have a weak Hα emission. This
probably indicates that low-mass objects have a weaker magnetic braking.
Several interpretations are possible (see Basri 2000).

Photometric variations of up to 5% in fluxes have also been detected in M
and L dwarfs (e.g. Bailer-Jones and Mundt 2001). In a few cases, these vari-
ations are periodic with a period comparable to that of the dwarfs’ rotation.
They can then be attributed to surface features. Non-periodic variability is
also observed, indicating a more complex, time-variable activity. Interestingly,
a greater occurrence of variability is found in objects later than M9 indicating
that it is not correlated with chromospheric activity. We will see hereafter that
in atmospheres at low temperatures (corresponding to dwarfs of later types),
condensation sets in. The observed variability could thus well be due to the
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presence of non-homogeneously distributed, time-variable, photospheric dust
clouds.

8.2 Atmospheric Models: Importance of Condensation

Modeling the atmospheres of substellar objects is a complex subject that
would require several courses. I will focus on a problem which is particular
to cool atmospheres: that of condensation. Although condensation has long
ago been recognized as an important astrophysical phenomenon, it has been
mostly developed in a low- or no-gravity framework. In planetary and sub-
stellar atmospheres, condensates are expected to be formed, transported, and
vaporized continuously, as is the case on Earth. Their study consequently
requires new tools, with a particular emphasis on problems related to the
transport of material in these atmospheres.

Basics of Condensation

Let us consider the equilibrium between a condensed phase and a vapor phase
of a given chemical species. The thermodynamical condition for equilibrium
is that the pressures, temperatures and Gibbs free energies of the two phases
should be equal. The last condition implies that:

v(v)dPs − S(v)dT = v(c)dPs − S(c)dT , (134)

where the (v) and (c) superscripts indicate the vapor and condensed phases,
respectively. v and S are the volume and entropy per unit mass. Equation (134)
implicitly neglects any surface tension that would appear on a finite size drop
formed of condensed material. It is hence valid for equilibrium of the vapor
over an infinitely long surface of condensed material. Strictly, the formation
of droplets will involve a slightly larger saturation pressure, but this effect will
be neglected.

The latent heat is defined as the difference in enthalpies of the two species,
hence

L = (S(v) − S(c))T . (135)

One therefore obtains from (134) the Clausius–Clapeyron equation:

dPs

dT
=

L

T (v(v) − v(c)) . (136)

Using the perfect gas equation and neglecting the specific volume of the con-
densed phase over that of the vapor leads to the following equation:

d lnPs

d lnT
=

L

kT
. (137)

This equation allows one, from a known condensation temperature at a given
pressure to derive the condensation temperatures at any other pressure. Note
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that Ps is the saturation pressure, i.e. the pressure corresponding to an equi-
librium between the condensate and vapor phases.

The saturation pressure obtained from (137) will be useful in the following
for a derivation of the composition gradient, but is only correct to first order.
In the case of giant planets and brown dwarfs, the following relations have an
accuracy of order 10%:

H2O : log10 ps = 5.0587− 1630.91
T − 50.396

, (138)

CH4 : log10 ps = 4.3180− 451.64
T − 4.66

if T ≤ 91K, (139)

log10 ps = 3.8205− 405.42
T − 5.37

if T ≥ 91K, (140)

NH3 : log10 ps = 7.0887− 1617.91
T − 0.60

, (141)

MgSiO3 : ps = exp
(
−58663

T
+ 25.37

)
. (142)

The pressures are expressed in bars and the temperatures in kelvins. In the
case of water, the following approximation for the equilibrium of the vapor
with liquid water and ice, respectively, give still better accuracies (better than
0.3%) in the temperature interval −30◦C ≤ T ≤ 40◦C for liquid water, and
−80◦C ≤ T ≤ 0◦C for ice:

liquid H2O : ln ps = 46.77181− 6743.769
T

− 4.8451 lnT, (143)

ice H2O : ln ps = 16.42311− 6111.72784
T

+ 0.15215 lnT, (144)

where pressures are still in bars and temperatures in kelvin.

Abundance of Condensing Species in an Atmosphere

Let us consider an atmosphere in which the condensing species is not the
dominant one. The saturation abundance of the condensing species is deter-
mined by the ratio of the saturation partial pressure to the total pressure:
xs = Ps/P . We introduce the following adimensional quantity:

β =
L

kT
. (145)

For most species of interest in substellar atmospheres, β ≈ 10 − 20. Assum-
ing that β is constant, one can derive the compositional gradient in the at-
mosphere:

d lnxs
d lnP

= β∇T − 1 . (146)
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One can thus see that in most cases (e.g. convective tropospheres), ∇T ≈ 0.3
and d lnxs/d lnP ≈ 2 − 5. The abundance at saturation is decreasing with
altitude faster than the pressure itself. To the contrary, in nearly isothermal
regions, and in stratospheres (∇T < 0), the abundance at saturation increases
with altitude.

Possible abundance profiles are depicted in Fig. 29. In all cases the abun-
dance x has its maximal value (the bulk abundance) and is constant at large
depths. However, the composition at upper levels strongly depends on phys-
ical mechanisms. In one extreme case (labeled (a) in Fig. 29), solid species
are immediately removed by gravity and atmospheric circulation is not fast
enough to oppose the effect of upward diffusion of the condensing species. The
other extreme (b) corresponds to a situation in which solids are transported
by convection so rapidly throughout the atmosphere that they can never grow
to a size at which they would fall. The total (vapor + solid) abundance is then
constant.

In reality, a third situation (c) is more likely. In the presence of advec-
tion and sedimentation of part of the condensed material, downward motions
will tend to produce an undersaturated mixture, while upward motions will
lead to the formation of clouds. This necessarily leads to a non-homogeneous

log x

z

Vapor

log x

z

Vapor

log x

z

Vapor

(a) (b)

(c)

Dust

Clouds

Fig. 29. Possible abundance profiles x of a condensing species in a substellar or
planetary atmosphere (plain lines). The dashed lines corresponds to the saturation
profiles. Three cases are: (a) clear atmosphere (immediate “rainout” of condensates);
(b) dusty atmosphere (no “rainout”); (c) a possibly more realistic situation (see text)
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atmosphere, where clouds of the same condensing species appear at various
altitudes and do not cover the entire atmosphere. This patchiness is observed
in the four giant planets, but is maximal when clouds occur in a convective
and not radiative region.

Note that downward motions can lead to a lower-than expected abundance
at great depths. This has been observed in Jupiter by the Galileo probe for
NH3, H2S and H2O (Niemann et al. 1998), but is also evident in Voyager 2
radio-occultation data for Neptune, in the case of CH4 (Lindal 1992; see also
Guillot 1995).

It is important to stress that depending on the condensation model (a, b
or c), the chemistry of the atmosphere will be very different. In model (b),
condensed particles are still present in the atmosphere and can react with
other species. In model (a) they are completely removed. Therefore, model (a)
cannot be consistently calculated by simply using model (b) for the chemistry
and removing the opacity arising from condensed particles. In both models (a)
and (c), the chemical equilibrium must be consistently calculated, accounting
for the full or partial removal of the elements that have condensed.

An important example is titanium: this atom is expected to form CaTiO3

and thus become solid at temperatures ∼2000K. However, chemical equilib-
rium calculations predict that the abundance of the solid is very small, and
that most of the titanium is in form of the strong absorber TiO . If solid
CaTiO3 particles are kept in the atmosphere and allowed to react with the
environment, TiO will remain as the most important absorber. It is however
not observed in Jupiter and Saturn, a sign that condensation, grain growth
and subsequent sedimentation have occurred and removed Ti from the upper
levels (see e.g. Fegley and Lodders 1994, 1996). This is also observed in the
case of Gl229B, which shows no sign of TiO absorption (Oppenheimer et al.
1998; Marley et al. 1996).

This problem would therefore require to consistently calculate atmospheric
models using a microphysical description of the clouds and including a descrip-
tion of vertical mixing and a fully self-consistent chemical equilibrium model.

Temperature Profiles

An important consequence of condensation is to modify heat transport by
providing latent heat. The adiabatic temperature gradient is thus modified.
Neglecting the heat capacity of condensed species (or equivalently, assuming
any condensed material to be left behind during an ascending motion), one can
derive themoist pseudo-adiabatic temperature gradient. Using the formulation
of Emanuel (1994), but simplified notations:

∇pseudo = ∇ad

[
1 + β fε
1 + β2

c̃P

f
ε

]
, (147)

where ∇ad is the adiabatic gradient when neglecting latent heat effects (dry
adiabatic gradient), ε = mv/md is the ratio between the molecular mass of
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the condensable species over that of dry air, f = ρv/ρd = εx/(1 − x) is the
mass mixing ratio of the vapor over dry air, and c̃P is the adimensional mean
specific heat per molecule (including dry air and vapor).

In the cases that are of interest to us, f/ε� 1 so that

∇pseudo ≈ ∇ad

[
1−
(
β

c̃P
− 1
)
β
f

ε

]
. (148)

Because β ≈ 10−20 and c̃P ≈ 3.5, we obtain that f/ε ≈ x ∼> 2×10−4 in order
to change the adiabatic gradient by ∼1% or more. In objects of approximately
solar composition, the only potentially condensable species that are abundant
enough are H2O and CH4. Note that NH3 can induce a change of ∼0.6% and
compounds formed from Mg, Si and Fe a change of ∼0.2% .

The phenomenon of moist convection , i.e. of convection powered by latent
heat release, such as that observed in cumulus clouds on Earth is therefore
likely to be limited to atmospheres in which water and methane can con-
dense, i.e. to relatively cold atmospheres. In the case of condensation of more
refractory species, the limited effect of latent heat release on the tempera-
ture gradient is likely to be outweighted by the strongly inhibiting condensate
loading.

Another consequence of condensation in substellar hydrogen atmospheres
is that it yields a stable molecular weight gradient. Assuming that the at-
mosphere is saturated and using (146),

∇µ = Yf(β∇T − 1) , (149)

where Y = (1 − 1/ε)/(1 + f). In the case of hydrogen atmospheres, Y ∼ 1,
β ∼ 20, ∇T ∼ 0.3 so that ∇µ > 0. In the case of the Earth, Y ∼ −0.5 due to
the smaller weight of the water molecule than of N2: in that case, moist air
tends to rise, thereby favoring the occurrence of moist convection.

In the ideal case of a saturated atmosphere in which condensed species
are removed instantaneously by gravity, the criterion for convective is slightly
modified compared to (79). Because of condensation occurring both in the
environment and the upwelling parcel, the local criterion becomes (Guillot
1995):

(1−Yβf)(∇T −∇pseudo) > 0 . (150)

Convection is thus inhibited when the abundance of the condensable is such
that

f > (Yβ)−1 . (151)

Physically, this condition results from the fact that the abundance of condens-
able species drops faster in the environment than in the rising parcel. In spite
of its higher temperature, the parcel thus becomes negatively buoyant. This
occurs however only for condensing species whose mass mixing ratio can raise
above ∼0.03, i.e. enrichment over the solar value of ∼5 for H2O, ∼15 for CH4

and ∼10–20 in silicates and iron. This is potentially interesting in the case
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of water condensation in Jupiter and Saturn and of methane condensation in
Uranus and Neptune. In the case of the two latter planets, it could explain
the superadiabatic gradients obtained from the Voyager radio-occultation in
the region of methane condensation (Guillot 1995).

For objects of solar composition however, the molecular weight gradient
effect is limited, i.e. ∇µ ∼< 10−2 as long as water condensation is not involved.
To first order, the effect of condensation on the temperature gradient can be
neglected.

Figure 30 shows several atmospheric temperature profiles calculated by
Burrows et al. (1997) for isolated substellar objects. The figure shows as
dashed lines the limits for condensation of water, ammonia, MgSiO3 and iron,
assuming solar composition. The lines where CO and CH4 and where N2 and
NH3 have the same abundances are also indicated. As can be intuited, depend-
ing on the effective temperatures and gravity, various elements are expected
to condense near the photospheres of substellar objects having great effects
on their spectra: Particularly important are the condensation of methane,
ammonia and water for low effective temperatures, and iron and silicates in
relatively warm atmospheres. Note that these are only the most abundant
species to be formed: other potentially condensing species include numerous
sulfides and chlorides (e.g. K2S, Na2S...etc.)

Fig. 30. Atmospheric pressure–temperature profiles for non-irradiated substellar
atmospheres with surface gravity fixed at 104 cm s−2 and Teff = 800, 600, 500, 400,
200, and 128 K. Note that the inner radiative zones disappear in the presence of
alkali metals (not accounted for in the calculation) [From Burrows et al. (1997)]
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The temperatures profiles of Fig. 30 do not account for the presence of
any clouds. When present, these would lead to a significant warming of the
atmosphere (see Allard et al. 2001). Note that the inner radiative zones shown
in Fig. 30 disappear when alkali metals are included in the calculation.

Dust and Clouds: Relevant Physical Processes

The formation of dust and clouds in substellar atmospheres is governed by
several processes:

1. Chemistry : given the composition, temperatures and pressures of a sub-
stellar atmosphere, a set of chemical species is predicted to undergo va-
por/liquid or vapor/solid phase changes. The deepest level at which that
occurs is the condensation level, sometime improperly called cloud base
(as we can see from model (c) in Fig. 29, clouds do not necessarily orig-
inate from that level). Among the different kinds of condensation, one
might distinguish the condensation of a minor species, as it involves a
chemical reaction (e.g. CaTiO3 with TiO remaining in gaseous form), and
the condensation of a major species (e.g. H2O).

2. Grain growth: this groups all the mechanisms that affect the size of the
condensed grains or droplets. Those include condensation (vapor mole-
cules/atoms sticking upon an already condensed site), coagulation (due to
Brownian motion) and coalescence (merging of big droplets with slightly
different vertical velocities). It also includes evaporation which occurs in
an undersaturated environment (i.e. when the partial pressure of the con-
densing species is smaller than its saturation pressure).

3. Sedimentation: condensed particles are affected by gravity forces, the more
massive ones falling more rapidly than the lighter ones.

4. Mixing : the advection of saturated/undersaturated gas and small parti-
cles due to various effects (convective instability, meridional circulation,
waves...etc.) inevitably influences grain growth and sedimentation. As we
have seen, in the case of water and methane, this is complicated by the
significant latent heat effect that tends to favor updrafts in which conden-
sation occurs.

5. Radiative heating/cooling : the presence of solid/liquid particles modifies
the radiative properties of the medium, which can in turn affect mixing
(by creating small-scale or large-scale instabilities) and condensation (by
modifying the temperature profiles).

The processes of grain growth and sedimentation can be approximated us-
ing the timescales provided by Rossow (1978). These estimates are applied to
the case of an iron cloud in a typical 2000K brown dwarf and shown in Fig. 31
(see also Lunine et al. 1989). Grain growth is dominated by condensation for
sizes larger than several microns. However, before they reach those sizes, they
are expected to be removed efficiently by sedimentation. Let us define a time
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Fig. 31. Time scales for grain growth and sedimentation at the basis of an “iron-
cloud” in a brown dwarf of Teff = 2000K, g = 3× 105 cm s−2 [Brown dwarf model:
courtesy of F. Allard; timescales from Rossow 1978]

τ? and size a? as satisfying the following condition:

τsedimentation(a?) = τgrowth(a?) ≡ τ? . (152)

These two quantities are defined by the point at which the sedimentation and
condensation lines cross in Fig. 31.

The amount of condensed particles and their sizes will then depend on the
mixing of vapor and small particles from levels above and below the one con-
sidered. In terrestrial clouds, this is modeled through the solution of a complex
set of differential equations (see e.g. Cotton and Anthes 1989). In giant plan-
ets and substellar objects this problem is far from being well understood, and
a much simpler approach is generally sufficient. One thus generally defines a
turbulent diffusivity as relevant of mixing processes in the atmosphere. In our
very simple case, we will define τmix as the characteristic time scale for mixing
over one pressure scale height HP .

Two cases occur:

1. τmix ∼< τ?: This is the case of efficient mixing (i.e. case (b) in Fig. 29).
Fresh particles and vapor are constantly supplied by the mixing before
they can fall under the action of gravity. In the limit when mixing does
not affect the largest grains, the final mean size is expected to be of the
order of a?. If the largest grains are also transported, then the final mean
radius will depend mostly on the time during which they remain above
the condensation level. The situation can become complex: in the Earth’s
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clouds, a bi-modal distribution of water droplets is generally observed (e.g.
Cotton and Anthes 1989).

2. τmix ∼> τ?: Here, the relatively sluggish mixing prevents the formation of
particles as large as a? because they are removed by sedimentation. The
mean size is expected to be largely set by the equilibrium between mixing
and sedimentation, i.e. τmix = τsedimentation. This yields of course particles
of sizes smaller than a?. It also yields a lower abundance of particles (i.e.
case (a) or (c) in Fig. 29).

A Transition from Dusty to Clear Atmospheres

As shown in Fig. 27, there is a transition from high effective temperature,
red, and dusty brown dwarfs, to brown dwarfs of lower effective temperatures
that are much bluer and appear to have clear atmospheres (or more accu-
rately, to deviate from case (b) of Fig. 29). This transition is thought to be
due to the sedimentation of dust in brown dwarfs of low temperatures and also
to the additional cooling due to the CO to CH4 transition.

Let us focus first on the high temperature, dusty brown dwarfs . In the
case of our Teff = 2000K brown dwarf, one finds that a? ≈ 1µm, and τ? ≈
3 × 103 s. The time scale for mixing in the convective zone can be estimated
from τmix ≈ HP /v and v is the convective velocity from (94). At the basis
of the iron cloud, we have T ≈ 1700K and P ≈ 0.4 bar. The convective
velocity would then be v ≈ 2 × 104 cm s−1, HP ≈ 2 × 105 cm and hence
τmix ≈ 10 s. However, convection is found to start at much deeper levels, i.e.
around 10 bar (F. Allard, pers. communication). The good results obtained
from stellar models using an ad hoc interstellar grain size distribution (Allard
et al. 2001) indicates that the mean particle size is indeed probably between
0.1 and 1µm. Therefore, a mixing process is needed to explain the presence
of these particles in the brown dwarfs upper photosphere. Several possibilities
exist, and the fact that these objects are generally fast rotators (e.g. Basri
2000) is interesting because it could yield enough meridional circulation to
provide the right amount of mixing.

The transition to brown dwarfs of lower temperatures (“T-dwarfs”) is still
unclear. A possible model based on the timescales discussed here is provided by
Ackerman and Marley (2001), and with a free parameter reproduces relatively
well the observations. However, the model assumes an eddy mixing time scale
that even in radiative regions is arbitrarily large. One may therefore wonder
whether the real problem to solve may instead be “why are grains present in
brown dwarfs of high effective temperatures?”

Observational constraints on the amount of atmospheric mixing exist at
least for one well-studied brown dwarf: Gl229B. The detection of chemical
species that are out of thermochemical equilibrium informs us on how fast
these species are transported throughout the atmosphere. This is in particular
the case of CO which partially escapes a transformation into CH4 as it is
transported upward in Gl229B’s atmosphere (roughly from levels of ∼10 bar
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to ∼1 bar where it is detected). Griffith and Yelle (1999) estimate that the
diffusion coefficient of mixing is Kmix ∼ 3 × 102 to 104 cm2 s−1. The mixing
time scale is (very inaccurate!) τmix ≈ H2

P /Kmix ≈ 1.5×106 to 5×109 s. This
is to be compared to the mixing times of 10–103 s required to keep grains up
in the atmosphere.

Dust and Variability

The presence of dust opens new possibilities for atmospheric variability. As
discussed previously, moist convection is not a likely possibility in the case
of brown dwarfs and hot giant planets. The situation is therefore different
than for our giant planets. However, variability is linked to the spatial hetero-
geneities. The fact that in Jupiter, small regions of the planet can emit much
more than others because of a lack of clouds there has to be kept in mind.

One possibility for the presence of Jupiter’s hot spots is the presence of
a planetary wave (Showman and Dowling 2000). In the same frame of mind,
waves could well affect the distribution of dust in the atmosphere of brown
dwarfs. A potential interesting source of waves is again in the rapid rotation
of these objects and the possibility of Rossby and Kelvin waves. Baroclinic
instabilities linked to the rotation and the presence of meridional circulation
are also a possibility. Finally, a coupling between dust formation and heat
transfer may be envisioned: we have seen that the presence of dust indeed
greatly increases the opacity.

9 Pegasi Planets (“51Peg b-like” Planets)

9.1 Introduction

The detection of planetary-mass companions in small orbits around solar-type
stars has been a major discovery of the past decade. More than 100 extrasolar
giant planets (with masses M sin i < 13MJ, i being the inclination of the
system) have been detected by radial velocimetry. A significant fraction have
distances less than 0.1 AU. This is for example the case with the first extrasolar
giant planet to have been discovered, 51 Peg b (Mayor and Queloz 1995).
These close-in planets form a statistically distinct population: all planets with
semi-major axis smaller than 0.06 AU have near-circular orbits while the mean
eccentricity of the global population is < e >≈ 0.27. This is explained by the
circularization by tides raised on the star by the planet (Marcy et al. 1997).
One exception to this rule, HD83443b (e = 0.079± 0.033), can be attributed
to the presence of another eccentric planet in the system (Mayor et al. 2001).
As we shall see, the planets inside ∼0.1 AU also have very specific properties
due to the closeness to their star and the intense radiation they receive. For
this reason, following astronomical conventions, I choose to name them after
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the first object of this class to have been discovered: “51Peg b-like” planets,
or in short “Pegasi planets”.

Such planets provide an unprecedented opportunity to study how intense
stellar irradiation affects the evolution and atmospheric circulation of a gi-
ant planet. Roughly 1% of stars surveyed so far bear Pegasi planets in orbit,
suggesting that they are not a rare phenomenon. Their proximity to their
stars increases the likelihood that they will transit their stars as viewed from
Earth, allowing a precise determination of their radii. (The probability varies
inversely with the planet’s orbital radius, reaching ∼10% for a planet at 0.05
AU around a solar-type star.) One planet, HD209458b, has already been ob-
served to transit its star every 3.524 days (Charbonneau et al. 2000; Henry
et al. 2000). The object’s mass is 0.69±0.05MJ. Hubble Space Telescope mea-
surements of the transit (Brown et al. 2001) imply that the planet’s radius
is 96300 ± 4000 km (see light curve on Fig. 32). An analysis of the lightcurve
combined with atmospheric models shows that this should correspond to a
radius of 94430 km at the 1 bar level (Hubbard et al. 2001). This last esti-
mate corresponds to 1.349RJ, where RJ≡ 70, 000 km is a characteristic radius
of Jupiter. This large radius, in fair agreement with theoretical predictions
(Guillot et al. 1996), shows unambiguously that HD209458b is a gas giant.

One expects that the evolution of Pegasi planets depends more on the
stellar irradiation than is the case with Jupiter. HD209458b and other Pegasi
planets differ qualitatively from Jupiter because the globally-averaged stellar
flux they absorb is ∼108 erg cm−2 (105 Wm−2), which is ∼104 times greater
than the predicted intrinsic flux of ∼104 erg cm−2. (In contrast, Jupiter’s ab-
sorbed and intrinsic fluxes are the same within a factor of two.)

Fig. 32. Phased light curve of four planetary transits across the star HD209458
observed with the HST. The orbital period of the planet is 3.52474 days. [Figure
from Brown et al. (2001)]
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9.2 Evolution of Strongly Irradiated Giant Planets

Including Stellar Heating: Definitions

As discussed in Sect. 7.2, the total luminosity of an irradiated planet or brown
dwarf consists of three parts: (i) the part of the stellar flux which is directly
reflected and does not contribute to the atmosphere’s energy budget; (ii) L��,
the part which is absorbed, thermalized and reemitted (we assume that no
seasonal effects take place and that the system is in equilibrium); (iii) L, the
intrinsic luminosity due to the object’s contraction and cooling.

First, the effective temperature of any irradiated planet is defined by:

4πR2σT 4
eff = L+ L�� (153)

and the equilibrium effective temperature T�� by

4πR2σT 4�� = L�� . (154)

T�� is the effective temperature toward which the planet tends as it cools and
L→ 0. It is a function of the Bond albedo A (i.e. the ratio of the luminosity
directly reflected to the total luminosity intercepted by the planet):

T�� = T?

(
R?

2D

)1/2

(1−A)1/4 , (155)

where T? and R? are respectively the star’s effective temperature and radius,
and D is the star–planet distance.

It is important to stress that these definitions are valid independently of
heat absorption and heat transport in the atmospheres of these objects. Most
of the physics is hidden in the Bond albedo A. The values for our giant planets
are listed in Table 3. They all lie between 0.29 (Neptune) and 0.35 (Jupiter).
In the case of extrasolar giant planets, simulations indicate similar values of
the albedo when alkali metals are not present (Marley et al. 1999), but very
low values A ∼ 0.05 when alkali metals contribute to the absorption in the
optical (Sudarsky et al. 2000). This would imply that extrasolar planets are
very difficult to detect in the optical, since they reflect little of the incoming
flux. However, the albedo can be significantly modified by the presence of
grains in the atmosphere (see Marley et al. 1999). Our understanding of grain
and cloud formation being far from complete, these estimates of A have to be
taken with caution.

Finally, in the case of Pegasi planets we will see that the stellar heat
is absorbed very inhomogeneously and is not necessarily well redistributed
over the entire atmosphere. This does not affect the above definitions, but
it strongly modifies any calculation of the atmospheric structure. The bond
albedo, and surface boundary conditions then have to account for this. I will
focus on cases in which this effect is neglected. However, the effect of day/night
temperatures variations both on the evolution and on chemistry in Pegasi-
planet atmospheres will be discussed.



346 T. Guillot

Temperature of Irradiated Atmospheres

Most of the course has been concerned with mostly-convective objects. We
have seen in Sect. 7.2 that in this case, which corresponds to weak irradiation, a
relatively trivial modification of the external boundary condition was sufficient
to obtain a relatively good estimate of the evolution. We derived (115) an
evolution time scale for weakly irradiated object that was equal to the time
scale in isolation plus an expansion in powers of (T��/Teff)4. In the case of
Pegasi planets however, the strong stellar irradiation leads to Teff ≈ T�� (the
absorbed stellar flux is typically about 104 times stronger than the intrinsic
heat flux). With the assumptions of Sect. 7.2, one would find a cooling time
scale tending to infinity. This is because when Teff → T��, L → 0, and the
planetary interior necessarily becomes partly radiative.

The strong irradiation thus not only significantly slows the cooling of the
planet, it also profoundly modifies its very structure. The growth of a radiative
zone located just below the “atmosphere” (defined as the region which is
penetrated by the stellar photons) implies that standard boundary conditions
cannot be used. The problem hence becomes relatively complex, and requires
a detailed treatment of the radiative transfer equations in the atmosphere.

In the absence of adequate atmospheric models, Guillot et al. (1996) how-
ever derived evolution models for Pegasi planets using the approximation of
Sect. 7.2. This was also later used by Burrows et al. (2000b) for the evolution
of HD209458b. In these papers, the atmospheric boundary condition is at the
same pressure and temperature than that of an isolated object of the same
effective temperature:

T (P = 10 bars) = Tisolated(Teff , g) . (156)

This approximation is exact in the limit when the stellar luminosity is entirely
absorbed at the 10 bar level, or if the region of absorption is connected to
the 10 bar level by an isentrope (i.e. the 10 bar level is in a nearly-adiabatic
convective zone).

Unfortunately, the approximation becomes incorrect in the case of strongly
irradiated planets because of the growth of a thick external radiative zone. An-
other boundary condition has therefore to be sought: either part of the stellar
flux is able to penetrate to deeper levels (P0 > 10 bar) and lead to a boundary
condition defined by T (P0) > Tisolated, or most of the stellar flux is absorbed at
P0 < 10 bar, yielding T (P0) < Tisolated. (This is due to the fact that in the ra-
diative zone dT/dP ∝ F , where F is the flux to be transported). Indeed, more
detailed models of the atmospheres of Pegasi planets have shown that most
of the starlight is absorbed at pressures less than 10 bar, and that (156) over-
estimates the atmospheric temperatures by as much as 300 to 1000K (Seager
and Sasselov 1998, 2000; Goukenleuque et al. 2000; Barman et al. 2001).

A similarly incorrect approach has been used by Lin, Bodenheimer and
Richardson (1996) and Bodenheimer et al. (2001): they also use the same
approximation as described in Sect. 7.2, but instead of (156), they use the
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Eddington approximation (8). Their boundary pressure P0 is much smaller,
i.e. P0 ≈ 1mbar, a consequence of g ≈ 103 cm s−2 and κ ≈ 1 cm2 g−1. Their
temperatures in the deep atmospheres (around 10 bar) are much smaller than
calculated by detailed atmospheric models. This is mostly due to the fact that
the opacities used (Pollack et al. 1994) are very high because they include the
presence of grains but no sedimentation. We have seen in Sect. 8.2 that the
true abundance of grains should be much lower. With κ ≈ 10−3 cm2 g−1, a
more realistic value, the photospheric pressure becomes P0 ≈ 1 bar. However, a
more serious problem is that the Eddington approximation has no theoretical
validity for irradiated atmospheres.

In order to get around that problem Guillot and Showman (2002) use an
ad hoc atmospheric boundary temperature which is lower than predicted by
(156) by 1000K. According to the detailed atmospheric models, this “cold”
boundary condition is supposed to be more realistic.

Hertzprung–Russell Diagram

On a Hertzprung–Russell diagram (L vs. Teff), isolated brown dwarfs and
planets essentially follow the Hayashi evolution track , which is defined by the
trajectory of a fully convective object of given mass and composition (Hayashi
1961). Figure 23 shows a set of Hayashi lines for various masses. Massive brown
dwarfs can only slightly deviate from these tracks in the case of the growth
of an inner conductive region. This is however a relatively marginal effect. In
the case of strongly irradiated planets, the deviation from the Hayashi track
can be much more pronounced.

Figure 33 is a H–R diagram for irradiated 1-Mj planets. The dark region at
low effective temperatures (to the right-hand side of the graph) corresponds
to the Hayashi forbidden region: no object in hydrostatic equilibrium can be
found there because it would violate the Schwarzschild instability criterion.
(The situation is more complex in the presence of stabilizing compositional
gradients, but this effect will be ignored). The forbidden region is bounded to
the left by the fully-convective Hayashi line.

Jupiter is found to follow the Hayashi line (even when a radiative zone
such as that found by Guillot et al. (1994a) is included, the departure is
small). The evolution starts with an extended planet, to the top right of the
diagram. In a first phase, the contraction yields higher values of Teff . When the
degeneracy becomes important, the virial theorem shows that the luminosity is
then essentially provided by the planet’s cooling and the effective temperature
decreases (see Sect. 7.1).

In the case of irradiated planets, the evolution cannot proceed to low
values of Teff due to (153). It is easy to see that the planet then cannot
stay on the Hayashi line. Not only would it imply an nonphysical singularity
in the diagram, it would also violate thermodynamics principles: the planet
would then stop cooling, but its interior would remain much hotter than its
atmosphere (∼30, 000K vs. ∼1500K).
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The solution to this paradox is, as discussed previously, the growth of
an inner radiative zone. The evolution tracks are then observed to deviate
substantially from the Hayashi line, as shown by the almost vertical lines in
Fig. 33. A very important consequence of the growth of the radiative zone is
that the planets continue to shrink, and their radii after a few billions of years
of evolution are close to that of Jupiter, assuming a solar composition. (In
the case of planets made entirely out of rocks, the radii obtained are about
1/3RJ, as indicated by triangles in Fig. 33.)

The evolution is found to be relatively fast on the Hayashi line, but slow
away from it. This is due to the fact that when a radiative zone develops, due
to irradiation, the ability of the planet to cool is not governed by the heat
leaking from the atmosphere but instead by the slow shrinking or growth of

Fig. 33. Hertzprung–Russell diagram for 1MJ planets orbiting at 0.02, 0.025, 0.032,
0.05 and 0.1 AU from a solar-type star, assuming a Bond albedo of 0.35. Arrows
indicate the corresponding equilibrium effective temperature (T��). A Jupiter model
is also shown, the diamond in the bottom right-hand corner corresponding to the
present-day effective temperature and luminosity of the planet. Evolutionary tracks
for planets of solar composition are indicated by lines connecting dots which are
equally spaced in log(time). The numbers 7, 8, 9 and 10 are the common loga-
rithms of the planet’s age. Zero-temperature models for 1MJ planets made of olivine
(Mg2SiO4) are indicated by triangles. The Hayashi forbidden region, which is en-
closed by the evolutionary track of the fully convective model, is shown in dark gray
(see text). Models in the light gray region have radii above the Roche limit (and
therefore are tidally disrupted by the star). The region where classical Jeans escape
becomes significant is bounded by the dash-dotted line. Lines of constant radius are
indicated by dotted curves. These correspond, from bottom to top, to radii (in units
of RJ) in multiples of 2, starting at 1/4. [From Guillot et al. (1996)]
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the radiative zone. In the early phases, when the irradiated planet is very
extended, the radiative zone shrinks as the object contracts. This slow evolu-
tion is effectively a problem for the formation of the planet at this distance.
One can get around this problem by increasing the abundance of solids in the
nebula and progressively capturing the gaseous envelope (e.g. Bodenheimer
et al. 2001). However, a more simple (probable?) solution is that the planets
were not formed very close to their stars but were formed at greater distances
and then migrated inward (Lin et al. 1996; see also Trilling et al. 1998 and
the chapter by Pat Cassen).

Growth of a Radiative Zone

The evolution models applied to HD209458b (M = 0.69MJ; T�� = 1400K)
are shown in Fig. 34. Initially (t ∼< 107 years in this case), as predicted by the
virial theorem, the interior heats up. When the central pressure rises above
several Mbar, the gravitational energy lost due to the contraction is mostly
used to increase the pressure of the degenerate electrons. The luminosity is
then mostly due to the planet’s cooling.

As discussed previously, due to the strong stellar irradiation, the only pos-
sibility for the interior to cool is through the growth of a radiative zone, as
evidenced by the dashed region in Fig. 34. This region is almost isothermal. In

Fig. 34. Evolution of HD209458b using a “cold” atmospheric boundary condition
(see text). The evolution of the central pressure with time is shown as the bottom
thick line. The planet is convective except for an upper radiative zone indicated by
a hashed area. Isotherms from 4000 to 20 000K are indicated. The isotherms not
labeled correspond to 3500, 30 000 and 40 000K. The dashed line indicates the time
necessary to contract the planet to a radius of 1.35RJ. [From Guillot and Showman
(2002)]
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Fig. 35. Evolution of the radius of a solar composition 0.69MJ planet with T�� =
1400K. The plain lines correspond to standard evolution models with the “hot”
(larger radii) and “cold” (smaller radii) atmospheric boundary condition. The dotted
curve corresponds to an evolution calculation with dissipation, and in the “cold”
case. The box indicates inferred radii and ages of HD209458b. [Adapted from Guillot
and Showman (2002)]

these calculations, Guillot and Showman (2002) used opacities from Alexan-
der and Ferguson (1994). These opacities do not include the presence of alkali
metals, but they include the presence of grains. Other opacity tables includ-
ing alkali metals and grain settling should be used, but are expected not to
significantly alter the results.

Reproducing the Radius of HD209458b

Of course, an evident constraint to the model calculations is the photometrical-
ly-measured radius of HD209458b. Figure 35 shows how the radius of a 0.69MJ

solar-composition object with T�� = 1400K is found to vary with time, de-
pending on several assumptions. The plain curve indicating the largest radii
corresponds to a model calculation with the standard (“hot”) atmospheric
boundary condition (Burrows et al. 2000b). This “hot” model thus appears
to reproduce satisfactorily the measured radius.

However, Fig. 35 shows that a model calculated with a more realistic
(“cold”) atmospheric boundary condition fails to reproduce the observations7.
The problem becomes even more severe if one accounts for the presence of a
7 Note that, as can be seen from Fig. 33, the characteristic time of contraction of
an irradiated planet cannot be made arbitrarily small by an increase of the initial
radius. One therefore has to start the calculation from a finite initial time step,
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dense core (Bodenheimer et al. 2001). Of course, a slower evolution can be
found if one assumes a larger mass, or higher interior opacities, but it appears
very difficult to obtain a fair match to the observations that way.

Instead, Bodenheimer et al. (2001) and Guillot and Showman (2002) pro-
pose that energy is dissipated by stellar tides and contributes to the energy
budget in the atmosphere. In this case the equation of energy conservation in
the planetary interior (7) is calculated using ε̇ > 0. The dotted line in Fig. 35
corresponds to the dissipation of Ė ≡

∫
ε̇dm = 1.8× 1026 erg s−1 (which cor-

responds to less than 0.1% of the globally-averaged absorbed stellar heat flux)
at the planet’s center. In that case, one finds that the evolution is very similar
to that of stars: an equilibrium is found, in which the planet’s evolution is
effectively halted, as long as the star dissipates its energy into the planet.

Other cases corresponding to dissipation in external regions are also calcu-
lated by Guillot and Showman (2002) but are not shown here. It is sufficient
to mention that a dissipation of a small fraction (1% or less) of the stellar
photons to deeper levels than by radiative transfer is sufficient to explain the
measured radius.

Survival of Pegasi Planets

The radii predicted by models (Guillot et al. 1996) and the one measured for
HD209458b (Brown et al. 2001) both point to a relatively modest inflation
(∼50%) of Pegasi planets as compared to Jupiter (see Fig. 25). This point is
crucial for the survival of these objects so close to their star.

A first important consequence is that they do not suffer from Roche lobe
overflows (see Fig. 33). Were it the case, the planets would be very rapidly lost
due to the mass–radius relation implying an increase of radius for decreasing
mass.

However, mass loss is expected to proceed simply through the escape of
chemical species from the planets’ exospheres. This happens when a particle
acquires a velocity larger than the planet’s escape speed. This can occur either
by the escape of particles in the tail of the Maxwell–Boltzmann velocity dis-
tribution (thermal escape) or because of the production of hot ions by stellar
ultraviolet radiation (non-thermal escape).

Thermal escape is difficult to estimate because the temperature of the
exosphere is unknown. One possibility is that it could be limited by the ion-
ization of H atoms near 10,000K. Even in this relatively hot case, it is found
to yield a relatively small evaporation of the planet. Non-thermal escape is
generally found to be more significant. Extrapolating results for Jupiter for
a 104 higher flux of photons, Guillot et al. (1996) find that a gas giant at

which strongly depends on the surface boundary temperature. In the hot case,
this initial time step is larger than in the cold case. This is why the two evolution
curves do not appear to have started from the same initial condition.
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0.05AU from a solar-type star with a mass of a 1MJ would loose ∼1034 hy-
drogen atoms per second. Only ∼0.5% of its mass would be lost over the main
sequence lifetime of the star. Lin et al. (1996) also reach a similar conclusion.

Very recent observations by Vidal-Madjar et al. (2003) tend to con-
firm these estimates. Using HST observations, these authors observe that
HD209458b appears much bigger when observed in Lyman α than at other
wavelengths. They interpret this finding by the presence of escaping hydrogen
atoms, and infer a minimum escape flux of around 1010 g s−1. This is, coinci-
dentally or not, almost exactly what was predicted in 1996 (∼1.7×1010 g s−1).

Pegasi planets thus appear to be able to survive their proximity to their
parent star, even if they are made of hydrogen and helium. In the case of
planets made of denser material, the situation would be of course more com-
fortable. However, I stress that only rough estimates of this important problem
have been made so far. Our best argument to decide that gas giant survive
very close to their star is that they are observed to be there!

9.3 Tidal Effects

One of the specificity of Pegasi planets is that most of them have circular
orbits. This indicates that tides raised by the planet on the star acted to
strongly damp the planets’ orbital eccentricities. The other specificity is that
the tides raised by the star on the planet are expected to rapidly drive them
into synchronous rotation (Guillot et al. 1996; Marcy et al. 1997; Lubow et al.
1997). This can be shown by considering the time scale to tidally despin the
planet (Goldreich and Soter 1966; Hubbard 1984):

τsyn ≈ Q

(
R3

GM

)
(ω − ωs)

(
M

M?

)2 ( a
R

)6
, (157)

where Q, R, M , a, ω and ωs are the planet’s tidal dissipation factor, radius,
mass, orbital semi-major axis, rotational angular velocity, and synchronous
(or orbital) angular velocity. M∗ is the star’s mass. Factors of order unity
have been omitted. A numerical estimate for HD209458b (with ω equal to the
current Jovian rotation rate) yields a spindown time τsyn ∼ 3Q years. Any rea-
sonable dissipation factor Q (see Marcy et al. 1997; Lubow et al. 1997) shows
that HD209458b should be led to synchronous rotation in less than a few mil-
lion years, i.e. on a time scale much shorter than the evolution timescale. Like
other Pegasi planets, HD209458b is therefore expected to be in synchronous
rotation with its 3.5-day orbital period.

Nevertheless, stellar heating drives the atmosphere away from synchronous
rotation, raising the possibility that the interior’s rotation state is not fully
synchronous. Here, I discuss (1) the energies associated with the planet’s initial
transient spindown, and (2) the possible equilibrium states that could exist
at present.
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Spindown Energies

Angular momentum conservation requires that as the planet spins down, the
orbit expands. The energy dissipated during the spindown process is the dif-
ference between the loss in spin kinetic energy and the gain in orbital energy:

Ė = − d

dt

(
1
2
k2MR2ω2 − 1

2
Ma2ω2

s

)
, (158)

where k is the dimensionless radius of gyration (k2 = I/MR2, I being the
planet’s moment of inertia). The orbital energy is the sum of the potential
gravitational energy and of the kinetic energy of the planet on its orbit and is
hence negative by convention. The conservation of angular momentum implies
that the rate of change of ωs is constrained by that on ω:

d

dt

(
Ma2ωs + k2MR2ω

)
= 0 . (159)

The fact that the planetary radius changes with time may slightly affect the
quantitative results. However, since τsyn appears to be so short, it can be safely
neglected in this first order estimate. R being held constant, it is straightfor-
ward to show, using Kepler’s third law, that:

Ė = −k2MR2(ω − ωs)ω̇ . (160)

The total energy dissipated is E ≈ k2MR2(ωs−ω)2/2, neglecting variation
of the orbital distance. Using the moment of inertia and initial rotation rate
of Jupiter (k2 = 0.26 and ω = 1.74 × 10−4 s−1), we obtain for HD209458b
E ≈ 4×1041 erg. If this energy was dissipated evenly in the planet, this would
correspond to a global increase of the temperature of the planet of 1400K.

By definition of the synchronization timescale, the dissipation rate can be
written:

Ė =
k2MR2(ω − ωs)2

τsyn
. (161)

With Q = 105, a value commonly used for Jupiter, τsyn ∼ 3 × 105 years and
the dissipation rate is then ∼1029 erg s−1, or 35,000 times Jupiter’s intrinsic
luminosity. Lubow et al. (1997) have suggested that dissipation in the radiative
zone could yield lower values of Q before spindown has occurred; if so, the
initial energy deposition rate could be as large as 10−2 L� = 2× 1031 erg s−1,
but this would last for only ∼100 years.

The thermal pulse associated with the initial spindown is large enough
that, if the energy is dissipated in the planet’s interior, it may affect the
planet’s radius. It has previously been argued (Burrows et al. 2000b) that
Pegasi planets must have migrated inward during their first 107 years of evolu-
tion; otherwise, they would have contracted too much to explain the observed
radius of HD209458b. But the thermal pulse associated with spindown was
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not included in the calculation, and this extra energy source may allow later
migration to be consistent with HD209458b’s radius. Unfortunately, therefore,
it may be difficult to derive constraints on the migration time scale from radii
measurements.

On the other hand, it seems difficult to invoke tidal synchronization as the
missing heat source necessary to explain HD209458b’s present radius. High
dissipation rates are possible if τsyn is small, but Ė would drop as soon as
t > τsyn in the absence of a mechanism to prevent synchronization. The most
efficient way of slowing the contraction of Pegasi planets would then be to
invoke τsyn ∼ 1010 years. In that case, the energy dissipated becomes Ė ∼
1024 erg s−1, i.e. at least two orders of magnitude smaller than that necessary
to significantly affect the planet’s evolution. Dissipation of the energy due
to transient loss of the planet’s initial spin energy is therefore unlikely to be
an substantial-enough source of present-day heating to explain the radius of
HD209458b.

Another possible source of energy is through circularization of the orbit.
Bodenheimer et al. (2001) show that the resulting energy dissipation could
reach 1026 erg s−1 if the planet’s tidal Q is 106 and if a hypothetical com-
panion planet pumps HD209458b’s eccentricity to values near its current ob-
servational upper limit of 0.04. If such a companion is absent, however, the
orbital circularization time is ∼108 years, so this source of heating would be
negligible at present. Longer circularization times of 109–1010 years would
allow the heating to occur until the present-day, but its magnitude is then
reduced to 1025 erg s−1 or lower, which is an order of magnitude smaller than
the dissipation required.

The Equilibrium State

The existence of atmospheric winds implies that the atmosphere is not syn-
chronously rotating. Because dynamics can transport angular momentum ver-
tically and horizontally (including the possibility of downward transport into
the interior), the interior may evolve to an equilibrium rotation state that is
asynchronous.

Let us split the planet into an “atmosphere”, a part of small mass for
which thermal effects are significant, and an “interior” encompassing most of
the mass which has minimal horizontal thermal contrasts. Suppose (since τsyn
is short) that the system has reached steady state. The two possible cases are
illustrated by Fig. 36 and depend on the physical mechanisms that determine
the gravitational torque caused on the atmosphere (see Showman and Guillot
2002 for a more detailed discussion).

A simple estimate illustrates the extent of nonsynchronous rotation pos-
sible in the interior. Suppose that the globally-averaged flux of absorbed
starlight is F��, which is of order 108 erg s−1 cm−2 for Pegasi planets near
0.05 AU, and that the globally-averaged flux of kinetic energy transported
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Fig. 36. Angular momentum flow between orbit, interior, and atmosphere for a
Pegasi planet in steady state. Arrows indicate flow of prograde angular momentum
(i.e., that with the same sign as the orbital angular momentum) for two cases: An-
ticlockwise: Gravitational torque on atmosphere is retrograde (i.e., adds westward
angular momentum to atmosphere). For torque balance, the gravitational torque
on the interior must be prograde (i.e., eastward). These gravitational torques must
be balanced by fluid-dynamical torques that transport retrograde angular momen-
tum from atmosphere to interior. Clockwise: Gravitational torque on atmosphere
is prograde, implying a retrograde torque on the interior and downward transport
of prograde angular momentum from atmosphere to interior. Atmosphere will su-
perrotate if gravitational torques push atmosphere away from synchronous (as on
Venus). It will subrotate if gravitational torques synchronize the atmosphere (e.g.,
gravity-wave resonance)

from the atmosphere to the interior is ηF��, where η is small and dimension-
less. If this kinetic energy flux is balanced by dissipation in the interior with a
spindown timescale of τsyn, then the deviation of the rotation frequency from
synchronous is

ω − ωs =
(
4πηF��τsyn

k2M

)1/2

. (162)

Experience with planets in our solar system suggests that atmospheric kinetic
energy is generated at a flux of 10−2F��, and if all of this energy enters the
interior, then η ∼ 10−2. Using a spindown time of 3×105 years then implies ω−
ωs ∼ 2×10−5 s−1, which is comparable to the synchronous rotation frequency.
The implied winds in the interior are then of order ∼2000m s−1. Even if η is
only 10−4, the interior’s winds would be 200m s−1. The implication is that
the interior’s spin could be asynchronous by up to a factor of two, depending
on the efficiency of energy and momentum transport into the interior.

Any scenario involving different rotation rates of the atmosphere and inte-
rior inevitably leads to significant energy dissipation. Since we have considered
situations for which the system is in gravitational equilibrium, the energy as-
sociated with the flow is provided by the stellar photons. A fraction of the
absorbed stellar flux is therefore dissipated at levels other than what would be
predicted from radiative transfer. Depending on whether the energy is dissi-
pated at low pressures or deep in the interior, the consequences for the planet’s



356 T. Guillot

evolution are very different. If energy is dissipated in the high atmosphere, as
may be the case for gravity waves, the effect on the evolution will be small. If it
is dissipated in the interior, as in the case of a Kelvin–Helmoltz instability, this
could potentially be the dominant process governing the planet’s evolution.

9.4 Atmospheric Dynamics

I have so far implicitly assumed that Pegasi planets have uniform atmospheres.
Because of the strong inhomogeneous stellar irradiation, and the near-synch-
ronous rotation, this hypothesis is in fact probably very far from reality. The
consequences of the presence of day/night temperature variations for the evo-
lutions are found to affect only weakly the planet’s contraction (Guillot and
Showman 2002). Here, I analyse the consequences for the atmosphere of Pegasi
planets, on the basis of the articles by Guillot (2001) and Showman and Guil-
lot (2002).

Timescales

Temperature variations across planetary atmospheres are governed by the
time required for the atmosphere to absorb the stellar heat, to radiate its
heat to space, and by the characteristic advective time scales.

The radiative heating/cooling timescale can be estimated by a ratio be-
tween the thermal energy within a given layer and the layer’s net radiated flux.
In the absence of dynamics, absorbed solar fluxes balance the radiated flux,
but dynamics perturbs the temperature profile away from radiative equilib-
rium. Suppose the radiative equilibrium temperature at a particular location
is Trad and the actual temperature is Trad+∆T . The net flux radiated toward
outer space is then 4σT 3

rad∆T and the radiative timescale is

τrad ∼
P

g

cp
4σT 3

. (163)

This timescale is thus particularly dependent on the characteristic tem-
perature of the atmosphere. For our giant planets, T ∼ 200K, so that the
radiative timescale is long, i.e. about a year at 1 bar. This is to be compared,
e.g. to the rotation period, which is of the order of 10 hours for Jupiter and
Saturn. Their atmospheres are thus found to be relatively uniform. However,
as shown in Fig. 37, Pegasi planets have ten times hotter atmospheres, so that
τrad is of the order of 1 day at photospheric levels, to be compared with their
rotation period of ∼4 days.

The timescale for advection by winds is more difficult to estimate. Guillot
(2001) and Showman and Guillot (2002) use a shear instability criterion: as-
suming that the convective core is locked into synchronous rotation, they
assume that at upper levels winds build up with increasing altitude only if
they do not exceed the Kelvin–Helmholtz instability criterion (Chandrasekhar
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Fig. 37. Left: Characteristic time scales as a function of pressure level. τzonal is
the minimal horizontal advection time (dashed). τrad is the timescale necessary to
cool/heat a layer of pressure P and temperature T by radiation alone (solid). For
each case, the thin black and thick gray lines correspond to the “hot” and “cold”
models. Right: Approximate cooling/heating rate as a function of pressure. [From
Showman and Guillot (2002)]

1961), i.e. if:

Ri =
N2

(du/dz)2
>

1
4
, (164)

where Ri is the Richardson number, and N2 = (g/HP )(∇ad −∇T ) (N is the
Brünt–Vaisala frequency). This thus implies a constraint on the wind shear
du/dz. The resulting timescale is shown as dashed curves in Fig. 37, for both
the “cold” and “hot” cases.

At pressures exceeding 0.1 bar, radiation is slower than the maximal advec-
tion by zonal winds, but by less than one order of magnitude. The consequent
day/night temperature difference ∆Tday–night to be expected is:

∆Tday–night
∆Trad

∼ 1− e−τzonal/τrad , (165)

where∆Trad is the day–night difference in radiative equilibrium temperatures.
Rough estimates from Fig. 37 suggest that τzonal/τrad ∼ 0.3 at 1 bar, implying
that ∆Tday−night/∆Trad ∼0.3. If ∆Trad = 1000K, this would imply day-night
temperature differences of 300K at 1 bar. Values of ∆Tday−night even closer
to ∆Trad are likely given the fact that slower winds will lead to an even more
effective cooling on the night side and heating on the day side.
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The small radiative time scale implies that, for the day-night temperature
difference to be negligible near the planet’s photosphere, atmospheric winds
would have to be larger than the maximum winds for the onset of shear
instabilities.

Possible Circulation and Atmospheric Chemistry

As discussed by Showman and Guillot (2002), the intense stellar radiation is
expected to drive both zonal and meridional winds, but the atmospheric cir-
culation is unknown. However, they note that even if locked into synchronous
rotation, the atmospheres of Pegasi planets are characterized by relatively low
(∼0.1) Rossby numbers. This implies that the Coriolis force plays a very im-
portant role and that zonal circulation is favored over meridional circulation.

A preliminary numerical simulation with a global circulation model by
Showman and Guillot (2002) indicates that a fast superrotating equatorial jet
develops, and that the atmosphere is globally superrotating, a situation very
similar to that of Venus. This situation is depicted in Fig. 38. It is interesting

Fig. 38. Conjectured dynamical structure of Pegasi planets: At pressures larger than
100–800 bar, the intrinsic heat flux must be transported by convection. The convec-
tive core is at or near synchronous rotation with the star and has small latitudinal
and longitudinal temperature variations. At lower pressures a radiative envelope is
present. The top part of the atmosphere is penetrated by the stellar light on the day
side. The spatial variation in insolation should drive winds that transport heat from
the day side to the night side. [From Guillot (2001); Showman and Guillot (2002)]



Interiors, Atmospheres, Evolution 359

to notice that this kind of circulation pattern implies that the equator to pole
temperature variation is even more pronounced than the day to night one.

However, the consequences for cloud formation and chemistry in the at-
mospheres of Pegasi planets are still unclear. The solution to that problem
depends in fact on whether the heating/cooling is mostly balanced by vertical
motions (in which case clouds would tend to form at the substellar point, on
the day side), or by horizontal advection. The latter seems to be favored by
the simulations and it is instructive to discuss it further.

Let us assume that a superrotating wind advects air roughly on constant
pressure levels (negligible vertical advection). In that case, air is cooled on the
night side, then it is intensely heated on the day side. As a consequence, any
chemical species that condenses on the night side and forms clouds there will
evaporate on the day side. The night side should then be relatively cloudy,
while the day side would be clear (low albedo). But this circulation has another
very important consequence for atmospheric chemistry: most abundant species
that condense on the night side are, according to the estimates from Rossow
(1978), expected to settle down on short timescales (Guillot 2001). Because,
according to our hypothesis, the air is transported on isobars, when it reaches
the day side, the condensing species are undersaturated everywhere down to
the condensation level on the night side.

The magnitude of this effect can be estimated as follows: Let us assume
that on the day side, the saturation abundance of the condensing species,
x = p/P is maximal and equal to x? at P = P ?

day (the condensation level on
the day side). On the night side, the temperature is lower. Equations (137)
and (145) can be used to show that the abundance at saturation on the night
side becomes:

lnx(P ?
day) = lnx? − β ln(Tday/Tnight) . (166)

In order to reach condensation, i.e. x = x?, one has to penetrate deeper into
the atmosphere. Equation (146) implies that on the night side,

lnx(P ) = lnx(P ?
day) + (β∇T − 1) ln(P/P ?

day) , (167)

assuming that ∇T is constant. Using (166), one obtains the condensation
pressure on the night side:

P ?
night

P ?
day

=
(
Tday
Tnight

)β/(β∇T −1)

. (168)

Using β ∼ 10, ∇T ∼ 0.15 and Tday/Tnight ∼ 1.2, one finds P ?
night ∼ 38P ?

day, a
very significant variation of the condensation pressure. This implies that air
flowing on constant pressure levels around the planet would lead to a rapid
depletion of any condensing species on the day side, compared to what would
be predicted from chemical equilibrium calculations. This can potentially also
remove important absorbing gases from the day side, as in the case of TiO,
which can be removed by CaTiO3 condensation, or Na, removed by Na2S
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condensation (Lodders 1999). Of course, most of the variation depends on
the exponential factor β/(β∇T − 1), which is infinite in the limit when the
atmospheric temperature profile and the condensation profile are parallel to
each other. In the discussion, we implicitly assumed β∇T − 1 > 0; however,
when the atmosphere is close to an isotherm, this factor can become negative.
In this case the day/night effect is even more severe, as the condensing species
is entirely removed from this quasi-isothermal region.

The rapid circulation from the night side to the day side can also lead
to a disequilibrium chemistry for non-condensing species when the reaction
timescales are longer than the advection timescale (∼ a day). This is for
example the case of the N2 to NH3 reaction in Gl229B (Saumon et al. 2000b),
but many other chemical species should be affected.

Observational Consequences

The structure and evolution of Pegasi planets is much more complex than
envisioned when these planets were first discovered. The possibility of dis-
sipation by stellar tides is interesting because it will be directly tested by
observations and because this phenomenon is poorly understood even for the
planets of our solar system. However, the drawback is that it should be more
difficult to infer the planets’ global compositions from radii measurements, as
first suggested (Guillot 1999b).

However, our understanding of these objects should be greatly increased
by the numerous direct or indirect observations that are now possible. With
several ground programs (STARE, VULCAN) and space missions (COROT,
MONS, MOST, KEPLER, EDDINGTON) aiming at detecting photometric
transits of Pegasi planets, there is indeed a good chance that statistically sig-
nificant information on e.g. the mass radius relationship of Pegasi planets can
be gathered.

Measurement of starlight reflected from these planets may allow the albedo
to be estimated. Because the star–planet–Earth angle changes throughout
the planet’s orbit, crude information on the scattering properties of the at-
mosphere (e.g., isotropic versus forward scattering) may be obtainable. Asym-
metries in the reflected flux as the planet approaches and recedes from the
transit could give information on the differences of albedo near the leading and
trailing terminators, which would help constrain the dynamics. Finally, tran-
sit observations of Pegasi planets using high resolution spectroscopy should in
the near future yield constraints on the atmospheric temperature, cloud/haze
abundance, and winds (Seager and Sasselov 2000; Brown 2001; Hubbard et al.
2001). If these measurements are possible during the ingress and egress, i.e.,
the phases during which the planets enters and leaves the stellar limb, re-
spectively, asymmetries of the planetary signal should be expected and would
indicate zonal heat advection at the terminator.
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