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1 Introduction

The idea that the planets of the Solar System formed from a “protoplanetary
disk” of material swirling about the primitive Sun follows naturally from the
observation that the planetary orbital angular momentum vectors are nearly
aligned with each other and that of the Sun itself. The existence of such a
progenitor disk was implicit in the ideas of Descartes, and has been a common
feature of scientific attempts to explain the systematic aspects of the Solar
System since then. A corollary of these “nebular” theories is that planetary
systems are an ordinary consequence of star formation. Modern astronomy
has confirmed the essential aspects of the hypothesis by revealing the common
existence of planets around other stars, and disks around young stars.

But the idea that planets form from circumstellar disks carries the further
implication that the properties of planetary systems are somehow related to
those of their parent disks; that is, an understanding of disk evolution leads
naturally to an understanding of the nature of the resultant planetary system.
Certainly this premise has been adopted in much of the theoretical work on
the formation of the Solar System; indeed, it is the basis upon which much
of the content of these lectures is organized. It may be, however, that nature
contrives to obscure the conditions of planetary formation to the extent that
the disk-planetary system connection is no longer recognizable, at least in
some cases. We will discuss some lines of theoretical argument which suggest
that this is the case. Certainly the dynamical properties of the extrasolar
planetary objects discovered so far are not obviously associated with specific
disk properties, or even a disk origin, despite the overwhelming circumstantial
evidence that they must have formed from disks. It remains to be seen to
what degree these bodies, or the Solar System, are representative of planetary
systems in general.

Whether or not the particular properties of a protostellar disk are eventu-
ally reflected in the properties of a planetary system, the disk origin of planets
is on firm ground. Furthermore, disks are complex and interesting objects in
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their own right. Thus the first half of these lectures are devoted to methods
of elucidating their properties. The second half deals with theories of planet
formation. The literature on these subjects is enormous, so my choice of spe-
cific subjects to be treated, as well as the references supplied, are somewhat
subjective. I have tried to tie arguments to first principles wherever possi-
ble, although references must be relied upon for many details. Inevitably, the
derivations of some results are too cumbersome for inclusion here, in which
cases the reader is directed to the appropriate references.

2 Observations of Protostellar Disks

2.1 T Tauri Stars

Most of what we know about protostellar disks is derived from observations
of T Tauri stars. These are pre-main sequence stars of spectral class G, K
and M, originally identified by their observational characteristics: prominent
Balmer emission lines, excess ultraviolet (UV) and infrared (IR) emission,
variability and evidence for outflows. It is now known that the defining emis-
sion characteristics of T Tauri stars are due to the presence of circumstellar
accretion disks. Lynden-Bell and Pringle (1974) identified the source of IR
radiation as dissipation within the disk, due to angular momentum transport
and the release of gravitational energy, as material is fed through the disk to
the star. The UV radiation was attributed to gas heated to high temperatures
by dissipation in a narrow boundary layer between the (rapidly rotating) in-
ner edge of the disk and the surface of the (slowly rotating) star. It turns
out that starlight shining on the disk, which is absorbed and re-emitted at
longer wavelengths, also contributes substantially to the IR radiation. Also,
there is evidence that the UV radiation is due to disk material falling onto
the star along stellar magnetic flux tubes, rather than through the viscous
boundary layer imagined by Lynden-Bell and Pringle (1974). Nevertheless,
the theory developed by these authors (and their predecessor, (Lüst 1952))
forms the basis of the current understanding of protostellar disks, and cor-
rectly describes the continuum spectrum a T Tauri star in terms of several
components (see Fig. 1): the nearly blackbody radiation from the star itself;
a broad IR component from the optically thick part of the disk; microwave
(submillimeter-to-millimeter) emission from the more distant, optically thin,
parts of the disk; and an optical and UV component from hot gas transferred
from the disk to the star.

Figure 2 shows the Hertzprung–Russellure (H–R) diagram for classical T
Tauri stars and “weak-line” T Tauri stars (WTTS; premain sequence stars
without evidence for disks) in the Taurus–Auriga star-forming region, along
with theoretically derived pre-main sequence evolutionary tracks and their
isochrons. Note that although some disks apparently last as long as 107 years,
they appear to be gone by the time a star reaches the main sequence. Also,
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Fig. 1. Accreation disk theory predicts that the continuum spectrum of a pre-
main sequence star and disk (thick solid line) is the sum of three components: the
nearly blackbody radiation from the star (thin solid line), a broad component from
the disk (short dashed line),and a blackbody-like component from hot gas being
accreted from the disk to the star (long dashed line)

there are some stars that appear to be quite young and yet show no evidence
for disks. These stars are of particular interest: either disks never formed;
they did form, but were rapidly dissipated; or they rapidly became invisible
because the dust in them coagulated to form larger objects (e.g., planets)
which are not detected by standard means. These young “weak-line” T Tauri
stars deserve more systematic study than they have so far received.

2.2 Interpretation of T Tauri Spectral Energy Distributions

An array of observational methodologies are now used to probe the proper-
ties of protostellar disks. High-resolution spectroscopy, optical and near-IR
imaging, microwave interferometry (reviewed in chapters of Protostars and
Planets IV ) have all yielded fascinating, detailed information on individual
objects. So far, however, the most general information has come from the
determination of the spectral energy distributions (SEDs) of a large number
star/disk systems, by multiwavelength photometry. The SED is defined as the
quantity λFλ (λ), where Fλ is the measured flux per unit wavelength λ [or
equivalently, in terms of frequency, ν Fν(ν)]. The SED constrains the trends
of several properties potentially important for planet formation: disk mass,
temperature, accretion rate, lifetime and the degree to which solid particles
have coagulated. Therefore, in the remainder of this section, we concentrate
on the basics of interpreting SEDs, with an emphasis on the derivation of
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Fig. 2. Positions on the H–R diagram of classical T Tauri stars (filled circles) and
“weak-line” T Tauri stars (open circles) for stars in the Taurus–Auriga star-forming
region. The solid lines are theoretical evolutionary tracks, labeled by mass in units
of M�, from D’Antona and Mazzitelli (1994) The dashed lines are isochrons, corre-
sponding to (from the top down): 105, 106, 3×106, 107 and 3×107 years, respectively.
The dot-dash line is a theoretical upper limit pre-main sequence locations in the di-
agram (Stahler 1983). (Figure from Kenyon and Hartmann 1985)

fundamental relationships and the approximations commonly employed to
obtain useful estimates of disk properties.
We start with some concepts from basic radiative transfer theory (Mihalas

1978). Define the specific intensity Iν , to be the radiant energy dE flowing
in direction k through an area dA (with normal in direction n), in time dt,
frequency interval dν and solid angle dΩ:

dE = Iνk · ndAdνdΩ .

Then the flux vector is defined to be the moment

Fν =
∫
Iνk dΩ .

Thus the flux component Fν , coming from a protostellar disk and passing into
a telescope pointed at the disk is given by

Fν =
∫
(2πrdr)

cos θ
d2

Iν ,
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where the integral is to be taken over all disk radii. Interpretation of the
measurement of Fν therefore requires that the quantity Iν be understood
in terms of disk properties. Now the significance of Iν is that it obeys a
conservation law of the form

∂Iν
∂t

+ ck · ∇Iν = sources + sinks . (1)

The first term on the left is negligible in cases where changes in the source and
intervening medium are slow compared to the light travel time. In a vacuum,
the right hand side is zero. In the presence of matter, the source and sink
terms are expressed as

sources =
Zεν
4π

+ (scattering terms)

sinks = ZκνIν + (scattering terms) ,

where Z is the material mass density, εν is the emissivity/mass and κν is the
absorption opacity (the latter two being wavelength-dependent). The scat-
tering terms quantify the amount of radiation scattered into and out of the
relevant direction and wavelength interval, and we assume them to be unim-
portant for the present purposes. In the case of local thermodynamic equi-
librium (LTE), in which the radiative state of material is defined solely by
its temperature, the relationship εν = 4πκνBν(T ) holds, where Bν(T ) is the
Planck function:

Bν(T ) =
2hν3/c3

e hν/kT − 1
.

Thus, (1) can be written

dIν
dτν

+ Iν = Sν , (2)

where

τν =
∫ S

0

Zκν ds′

is the optical depth along the ray path length s, and the source function Sν
is given by

Sν =
ε

4πκν
= Bν(T ) .

The last equality holds for LTE. Equation (1) has the formal solution

Iν(τν) = Iν(0)e−τν +
∫ τν

0

Bν(T ) exp [− (τν − τ ′ν)] dτ ′ν .
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For the radiating disk, we can measure the optical depth along the normal
to the disk (τν⊥) and from the midplane, in which case Iν(0) = 0 and τν =
τν⊥/ cos θ. If Bν(T ) was independent of τν , the integral would yield

Iν = Bν(T ) (1− exp (−τν⊥/ cos θ))

and

Fν =
∫

(2πr dr)
cos θ
d2

Bν(T )
(
1− exp

(
−τν⊥/ cos θ

))
. (3)

Beckwith et al. (1990) used this expression to derive estimates of disk
masses and temperature distributions from the SEDs of about 40 T Tauri
stars, as described below. Of course the function Bν(T ) is generally not inde-
pendent of τν , so (3) represents an approximation. The approximation, how-
ever, does make sense in the limits of large and small disk optical depth, as
long as care is taken in the interpretation of the value of the temperature T
in Bν(T ).

The inner parts of protostellar disks are usually optically thick, even at
far IR and millimeter wavelengths. For those regions, the exponential term in
(3) can be neglected, and T is clearly to be regarded as a photospheric, or
effective radiating temperature, Te. If one represents its radial distribution as
a power law, Te = Teo (r/ro)

−q, a transformation of the variable of integration
leads to

νFν = A (Teo) ν4−
2
q

(
cosθ

d2

)∫
xdx

exp (xq)− 1
.

Thus the slope and magnitude of the SED (the latter modulated by the incli-
nation and distance to the disk) correspond to a particular power law effective
temperature distribution.

Simple theoretical arguments led to the expectation that the value of q
would be 3/4. First, the power radiated by an accretion disk at any distance
was expected to scale as the radial mass flux through an annulus of the disk,
times the gravitational energy per unit mass of the annulus. The expression
of this power in terms of an effective temperature yields

2 (2πrdr)σT 4
e ∝ Ṁdd

(
−GM

2r

)
= Ṁd

GM

2r2
dr

or T 4
e ∝ r−3/4. (This expression turns out to be correct, except for the constant

of proportionality; see Sect. 3.1)Second, stellar radiation impinging on a flat,
optically thick disk would be absorbed and re-radiated at a temperature T ′

e

according to

T ′4
e = T 4

∗

(
r∗
r

)2

sinα ≈ T 4
∗

(
r∗
r

)2(
r∗
r

)
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(where α is the angle upon which starlight impinges the disk), which again
implies T ′4

e ∝ r−3/4. In fact, Beckwith et al. (1990) found q to be greater than
3/4 (Figs.3 and 4), with the most frequent value being close to 1/2, which cor-
responds to a flat SED in the IR. This observation led to the development of
more sophisticated models of disk thermal structure than provided by the sim-
ple arguments given above. It was recognized, for instance, that if the surface

Fig. 3. Histogram of disk temperatures at 1 AU inferred by modeling SEDs, for a
sample of T Tauri stars. (Figure from Beckwith et al. 1990)

Fig. 4. Histogram of disk temperature power law indices, q, inferred from SEDs, for
a sample of T Tauri stars. Most values of q are less than that predicted for accretion
or reprocessing from a flat disk, which indicates that SEDs are generally flatter than
predicted by the simplest models. (Figure from Beckwith et al. 1990)
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of the disk flared upwards with distance from the star, proportionally more
stellar radiation would be absorbed and re-emitted at larger distances, which
would produce a flatter SED in the IR (Kenyon and Hartmann 1985). In par-
ticular, Chiang and Goldreich (1997) analyzed the two-layer model illustrated
in Fig. 5.

Dust particles in the upper layer of the disk absorb stellar radiation and
emit IR radiation, both outward to space and downward, toward the disk
midplane. Because they are smaller than IR wavelengths (≤ 1µm), the par-
ticles are inefficient emitters and must become superheated (relative to the
gas) in order to attain thermal equilibrium with the radiation they absorb.
The lower layers of the disk are heated by the radiation from the dust.
The vertical extent of the disk is determined by a balance between pres-
sure and the vertical component of stellar gravity at every radius. In this
model, the net effect of this balance is that the thickness of the disk increases
faster than linearly with radius, i.e., it flares upward. Both the superheat-
ing of the dust and the flaring contribute to flattening the SED relative to
that which would correspond to T ′

e ∝ r−3/4, as shown in Fig. 6. The es-
sential features of the Chiang and Goldreich (1997) model are evident in
the results of D’Alessio et al. (2001), who analyzed disk structure in much
greater detail. This work shows that heating by stellar radiation is the pri-
mary determinate of Te (r) beyond a few AU, and therefore of the slope of
the SED at IR and submillimeter wavelengths. Within a few AU, internal

Fig. 5. The two-layer disk model of Chiang and Goldreich (1997), used to explain
the flat continuum spectrum of many pre-main stars. Stellar radiation, incident
on the disk at distance a, height H, and angle α, is absorbed by dust within one
(visible wavelength) optical depth along its path into the upper layers of the disk.
The radiation is re-emitted at infrared wavelengths, outward to space and inward
toward the midplane. Because the dust particles are too small to be efficient radiators
in the infrared, their temperature Tds exceeds that of the surrounding gas, and
the temperature Ti of the interior dust (which absorbs and emits the IR radiation
from the upper layers with equal efficiency). (Figure from Chiang and Goldreich
1997)
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Fig. 6. A fit to the SED of the T Tauri star GM Aur, using the two-layer model.
(The SED here is plotted as a function of frequency, with wavelength along the top.
Astronomers differ in their preferences of independent variable.) The contribution of
the hot surface dust layer dominates throughout the IR, falling below that from the
interior only at wavelengths long enough for the disk to be optically thin. (Figure
from Chiang and Goldreich 1997)

dissipation associated with disk accretion is important for determining the
thermal structure.

At wavelengths where large parts of the disk are optically thin (typically,
λ > 1 millimeter), (3) may be written

Fν =
1
d2

∫
(2πr dr)

2ν2kT
c2

Σ(r)κν .

The quantity Σ(r) is the surface density. To obtain this expression, the expo-
nential was approximated in the limit of τν⊥ << 1, the Planck function was
approximated by the Rayleigh–Jeans form Bν ≈ 2ν2kT/c2, and the substitu-
tion τν⊥ = Σ(r)κν was made. In protostellar disks, as in the cool interstellar
medium, the opacity is determined essentially by the size and composition
of dust. Except near resonant absorptions, it can be expressed as a power of
frequency, κν = κ0(ν/ν0)

β , in which case

νFν =
A

d2
ν3+βκ0

∫
(2πr dr)T (r)Σ (r) .

The quantity A is a known constant. In principle, β can be determined by
observations alone, through measurements of the same system at different fre-
quencies. The integral then represents a “temperature-weighted” disk mass.



378 P. Cassen

Beckwith et al. (1990) constructed composite models of the SEDs of stars ob-
served at 1.3 and 2.7 mm, by combining their radio data with ground-based
optical photometry and IR measurements obtained by the Infrared Astronom-
ical Satellite, and so obtained the disk mass estimates shown in Fig. 7. The
masses are mainly in the range 10−3–10−1 M�, and so are typically within
an order of magnitude of the minimum mass inferred for the primitive solar
nebula, 10−2 M� (Weidenschilling 1977). The lack of correlation of disk mass
with age is not understood, but may reflect the fact that it is really dust that
is being observed, and the mass of dust present in a system could be the fluc-
tuating result of a residual interstellar component, loss by coagulation, and
production by collision and fragmentation of larger bodies.

Fig. 7. Histograms of disk masses (measured in M�) inferred by modeling SEDs,
for a sample of T Tauri stars. The upper panel is that deduced directly from the
data; the lower panel is an inferred distribution which accounts for sampling bias.
Values of disk masses are subject to uncertainties associated with dust emissivity
and abundance. (Figure from Beckwith et al. 1990)
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The exponent β is expected to lie in the range 0 < β < 2, with the smaller
values favored as particles grow. Comparisons of observed values of β and
κ0 with laboratory measurements and theoretical calculations of absorptivity
should then yield information on particle growth in disks (?). There is, in fact,
evidence from multiwavelength imaging and SED fits (D’Alessio et al. 2001;
Throop et al. 2001) that particle growth to mm-sized pebbles is observed, but
compelling, quantitative results are difficult to obtain because of ambiguities
in the modeling; see Beckwith et al. (2000) for a discussion.

2.3 Accretion Rates of Protostellar Disks

The accretion rate of a protostellar disk is an important quantity because
it determines the amount of energy released within the disk, which is the
primary determinant of midplane temperatures in optically thick parts of the
disk. Optical and UV radiation provide better diagnostics of accretion rates
than IR radiation, because the latter tends to be dominated by reprocessing
of stellar emission. Figure 8 shows a comparison between the optical spectrum
of the T Tauri star BP Tau and the WTTS LkCa7. The notable features
of the BP Tau spectrum are the excess emission at shorter wavelengths, the
prominent Balmer lines (at 4861, 4340, 4101 Å...; Hα at 6563 Å not shown),

Fig. 8. Optical spectra of the T Tauri star BP Tau (solid) and the weak-line T
Tauri star LkCa7 (dotted). The BP Tau spectrum exhibits excess emission at short
wavelengths, prominent Balmer lines and the narrower absorption lines, features
which are typical of stars with disks. They are explained by the accretion of hot,
infalling gas onto the star. The normal, pre-main sequence photosphere of LkCa7
indicates that this star is not undergoing accretion; its lack of IR excess indicates
that it has no disk. (Figure from Hartmann 1998)
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and the narrower absorption lines. These features are typical of T Tauri stars,
and are attributed to the presence of hot (several thousand K) gas, overlying
a normal, pre-main sequence photosphere, such as that of LkCa7. There is
evidence that the hot gas is produced by infalling material, channeled along
stellar magnetic field lines, from the inner edge of the accretion disk to the
surface of the star (Hartmann 1998).

Gullbring et al. (1998) and Calvet and Gullbring (1998) have derived ac-
cretion rates for T Tauri stars based on this concept. They assume that the
two components (photosphere and hot, infalling gas) contribute to the optical
spectrum, so the observed optical and UV luminosity Lobs = Lphotosphere +
Laccretion. The excess continuum emission due to accretion is determined by
the subtraction of a “template” spectrum provided by a WTTS of the same
spectral type, by the method described by Hartigan et al. (1998). Special
procedures must be used to account properly for extinction and UV emission
which cannot be observed from the ground. Accretion is then modeled as a
one-dimensional flow from a distance Ri (the inner edge of the disk, typically
several stellar radii) down a magnetic flux tube which intersects some frac-
tion f of the stellar surface (Fig. 9). The inflow becomes supersonic, and must
therefore pass through a shock before hitting the star.

The accretion rate is given by

Ṁd = Z
(
4πr2∗f

)
νs ,

where νs and Z are the gas velocity and density at the shock. The former is
taken to be the free-fall velocity from Ri:

ν2s =
2GM∗
r∗

(
1− r∗

Ri

)
.

The density is determined by the assumption that the shock location occurs
at optical depth unity above the star, where pressure balance between the
stellar atmosphere and the inflow requires:

ps =
1
2
Zν2s = g∗Σs = g∗

τ

κ
.

Here g∗ is the stellar gravity, Σs is the surface density of the shock layer, κ is
the mean opacity and the optical depth τ = 1. Thus, for knownM∗, r∗, g∗, Ri

and κ, the flux of energy from the accretion column can be calculated:

Faccretion =
(
1
2
Zν2s

)
νs .

The total accretion luminosity is

Laccretion =
(
4πr2∗f

)
Faccretion ,

which then, in principle, determines f . Comparisons of calculated spectra
with excess emission determined from observations, and corresponding values
of Faccretion and f , are shown in Fig. 10. An important result is that accretion
apparently occurs on only 1% or less of the stellar surface.
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Fig. 9. Accretion rates can be obtained from models in which it is assumed that gas
from the inner edge of the disk falls onto the star along stellar magnetic flux tubes.
Optically thin gas, flowing supersonically toward the star, passes through a shock
wave near the stellar surface. Radiation from the shocked gas heats both the stellar
photosphere and the infalling gas above it, which produce excess UV and optical
radiation and the characteristic emission features of accreting stars

Accretion rates determined by these methods are shown as a function of
stellar age in Fig. 11. Note that a typical accretion rate of 10−8 M�/year is
consistent with a disk mass of 10−2 M� for a million year old disk. Note also
that active (accreting) disks last for many thousands of dynamical (rotation)
periods; thus disk evolution is gradual and the processes that cause it are
subtle.

2.4 Internal Temperatures of Protostellar Disks

Temperatures within protostellar disks are not directly observable because
most disks are optically thick within a few AU of the star, even at long
(λ ≥ 1mm) wavelengths. Therefore, some model of the vertical structure,
like those referred to above, must be constructed to relate the observed sur-
face fluxes to the internal state. A key parameter in such a model is the rate
of energy dissipation within the disk, which is related to the accretion rate,
as described below in Sect. 1.3.1. Midplane temperatures for disks around T
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Fig. 10. Comparisons of calculated continuum spectra (thick line) with excess emis-
sion determined from observations, for a sample of T Tauri stars. Values of Faccretion
and f determined from the model illustrated in Fig. 10 are given. Note that f ≤ 0.1;
that is, accretion apparently occurs on only 1% or less of the stellar surface. (Figure
from Calvet and Gullbring 1998)

Tauri stars were estimated by Woolum and Cassen (1999), by combining the
results described above for disk surface temperatures, masses and accretion
rates, with a simple model based on radiative transport through a plane-
parallel atmosphere. The observed IR flux was treated as the sum of that due
to internally released accretion energy and a reprocessed stellar component.
In optically thick parts of the disk, the former largely controls the midplane
temperature, while the latter dominates the observed flux. They concluded
that midplane temperatures at 1 AU are mainly in the range 200–800K, for
disks with ages of about 1 million years. At the low pressures in these disks
(< 10−3bars), H2O would exist as vapor within a few AU of the star (wher-
ever the midplane temperature exceeds 160 K), and so would not be readily
incorporated into planetary objects. Icy objects could form beyond 2–3 AU.
They also argued that if very young disks were characterized by accretion
rates as high as 10−6M�/year (Fig. 11), midplane temperatures would then
be high enough to vaporize even the rock-forming elements (primarily Fe, Mg,
Si) at a few AU.
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Fig. 11. Mass accretion rates and ages inferred for T Tauri stars in three star-
forming regions. The vertical line indicates the mean and dispersion of accretion rates
estimated for embedded stars (assumed to be 105 years old). (Figure from Calvet et
al. 2000)

3 Theory of Disk Structure and Evolution

3.1 Conservation Equations

The equations that govern the structure and evolution astrophysical disks
are derived from the equations of mass, momentum and energy conservation,
which have the general form

∂

∂t


 Z
v
e


 + ∇ ·


v

 Z
v
e




 =


 0

forces
sources + transport


 .
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When applied without reference to a specific geometry, they lead to the equa-
tions of fluid motion, which are usually expressed as

∂Z

∂t
+∇ · (Zv) = 0 (mass)

Z

(
∂v
∂t

+ v · ∇v
)

= −∇p+∇ ·w − Z∇Φ (momentum)

Z

(
∂e

∂t
+ v · ∇e

)
= −p∇ · v −∇ · F+D (energy) .

In these equations, w is the non-diagonal part of the stress tensor, wij being
the stress on a j-facing surface in the i-th direction; Φ is the gravitational
potential; F is the energy flux vector due to radiation, conduction, or other
means; and D is the rate of energy dissipation associated with stresses:

D = wij
∂vi
∂wj

.

Magnetic fields have been ignored in these equations, as they will be in the
rest of this section; but they can be important and will be discussed later.

The equations of disk structure and evolution are most illuminatingly de-
rived by application of the conservation equations in their general form to a
control volume such as that shown in Fig. 12. Variations in φ are not consid-
ered. Because the disk is assumed to be thin, it is practical to consider the
values of z-integrated quantities, such as the surface density:

Σ =
∫ +∞

−∞
Zdz .

Thus, the conservation of mass equation , integrated over z, is:

∂Σ

∂t
+

1
r

∂ṁ

∂r
= 0, (4)

Fig. 12. Control volume for the derivation of conservation equations for a disk with
radially flowing material and no azimuthal gradients. The radial velocity vr is taken
positive outward by convention, but will generally be inward in the inner parts of
the disk and outward in the outer parts
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where

ṁ =
∫ +∞

−∞
Zvrr dz

is 1/2π times the radial mass flux through the disk (the “reduced” mass flux).
In what follows, it is assumed that the radial velocity vr varies little over the
disk thickness, so ṁ = Zvrr.

To a high degree of accuracy, the vertical momentum balance is hydro-
static, just as in a planetary atmosphere. Pressure forces are balanced by
gravity:

0 = −∂p
∂z

+ Z
∂Φ

∂z
.

The gravitational potential consists of two terms, one due to the vertical
component of stellar gravity and one due to the self-gravity of the disk. The
latter is negligible for stable, unperturbed disks, so

∂Φ

∂z
=
∂Φ∗
∂z

= − GM∗
(r2 + z2)

z

r
≈ −GM∗

r2
z

r
= −Ω2

Kz .

The quantity Ω2
K = GM∗/r

3 is the square of the Keplerian frequency, i.e.,
the angular velocity of a freely orbiting object in a circular orbit at distance
r from the star. Thus,

1
Z

∂p

∂z
= −Ω2

Kz . (5)

If we characterize the distance z by the thickness of the disk measured, say, in
terms of a scale height h, and note that the quantity p/Z is, to order unity, the
sound speed cs, we find that the relative thickness h/r = cs/rΩK = cs/VK <<
1, for a thin disk. (VK is the Keplerian velocity.) Disk models typically yield
values of h/r in the range 10−2–10−1.

The radial momentum equation is:

∂ (vrΣ)
∂t

+
1
r

∂ (vrṁ)
∂r

= Σ

(
∂Φ

∂r
+ rΩ2

)
− ∂P

∂r
,

where P ≡
∫ +∞

−∞
pdz and ∂Φ/∂r = −GM∗/r

2. It is readily seen that, as

long as the characteristic evolution time r/vr is much longer than the orbital
period 2π/Ω, the terms on the left are much smaller than the first term on
the right-hand side. Also, the pressure gradient is a factor of (h/r)2 smaller
than the first term on the right. Thus, to this order, Ω = Ωk; the orbital
motion is Keplerian. (It turns out that the small radial pressure gradient is
important when considering the fate of solid objects in the disk, as discussed
in Sect. 1.4.1.).
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Disk evolution is addressed directly by the angular momentum equation,
which is:

∂ (Σj)
∂t

+
1
r

∂ (ṁj)
∂r

=
1
r

∂
(
r2Wrφ

)
∂r

+
1
2π

∂T

∂r
.

Here, j is the angular momentum/mass = r2ΩK = rVK = (GM∗r)
1/2, T is

any externally applied torque, and

Wφr =
∫ +∞

−∞
wφr dz .

The mass conservation equation (4) can be used to solve for the reduced
mass flux:

ṁ =
r

j

∂

∂r

(
T

π
+ 2r2Wφr

)
. (6)

This equation and (4) specify the rearrangement of surface density in terms
of the forces that affect angular momentum (we omit the external torque term
from now on, for brevity):

∂Σ

∂t
= − 2

r
√
GM∗

∂

∂r

[
r1/2

∂

∂r

(
r2Wφr

)]
.

Now it is usually supposed that Wφr is a Newtonian stress; that is, it is
linearly proportional to the rate of strain (as is true for many viscous fluids).
If this is the case,

Wφr = Σνr
∂Ω

∂r
,

where we follow standard notation and use ν for the kinematic viscosity (not
to be confused with frequency, in Sect. 1.2). The disk evolution equation is
then

∂Σ

∂t
=

3
r

∂

∂r

[
r1/2

∂

∂r

(
r1/2Σν

)]
. (7)

This equation has the form of a diffusion equation for Σ, and the prob-
lem of disk evolution has been essentially reduced to one of determining the
proper expression for ν. For instance, if ν were given as any function of r,
the equation would be linear, and could be solved by any of a number of
standard techniques (Lynden-Bell and Pringle 1974). In general, solutions for
disks which conserve overall angular momentum (but can lose energy) have
the properties shown schematically in Fig. 13. Material in the inner parts of
the disk lose angular momentum and spiral in to the central star, while mater-
ial in the outer disk gains angular momentum and expands outward. This very
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Fig. 13. Schematic representation of the variations of surface density (left) and
accretion rate (right), as functions of time and radius. Surface density decreases in
the inner parts of the disk as the disk spreads. The mass accretion rate is negative
(inwards) in the inner parts, nearly independent of radius and diminishing in mag-
nitude with time. There is a stagnation radius, at which the radial motion changes
direction; the location of the stagnation radius moves outward with time

fundamental behavior of accretion disks can be demonstrated by the applica-
tion of simple conservation arguments, and is independent of the particular
mechanism(s) of angular momentum transport (see Lynden-Bell and Pringle
1974).

What is the value of ν indicated by observations? The viscous evolution
time is given by r2d/ν, where rd is a characteristic disk size, say, 100 AU. A disk
age of 1 million years then yields a kinematic viscosity of about 1015 cm2/sec,
far greater than the ordinary molecular viscosity of hydrogen gas, which is
about 106 cm2/sec for conditions appropriate for these disks. It is therefore
commonly supposed that turbulence in the disks enhances the viscosity far
above the molecular value. The turbulent kinematic viscosity (or eddy diffu-
sivity, as atmospheric scientists call it) can be expressed as the product of a
turbulent velocity and a mixing length. If the latter is as large as the scale
height of the disk, relatively modest turbulent velocities, about 103 cm/sec
would suffice to provide the inferred value of the viscosity.

The concept of turbulent viscosity gives rise to a prescription originally
postulated by Shakura and Sunyaev (1973), in another context. They assumed

ν = αcsh

where the parameter 0 < α < 1, as expected if the scale height and sound
speed are upper limits to the mixing length and turbulent velocity, respec-
tively. This widely adopted formulation shifts the burden of quantifying an-
gular momentum transport from ν to α. If one adopts expected values of cs
and h (say 1 km/sec and 0.1 AU, respectively), a value of α between 10−3

and 10−2 would provide the necessary viscosity. Useful as such prescriptions
may be for some purposes, one should bear in mind that the clear inadequacy
of molecular viscosity renders even the assumption of Newtonian viscosity
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suspect. For this reason, it is prudent to recognize the more basic forms of the
evolution (4) and (6).

The energy lost from an evolving disk contributes to the observed radiation
and provides diagnostic information, as discussed in Sect. 1.2. If the dissipated
energy is expressed in terms of an effective radiating temperature Te, the
energy conservation equation is

∂ (Σe)
∂t

+
1
r

∂ (ṁe)
∂r

=
1
r

∂ (rWφrvφ)
∂r

− 2σT 4
e + (external irradiation) . (8)

The thermal energy is (h/r)2 times smaller than the kinetic and gravitational
energies, so the pressure work term has been ignored, and a good approxima-
tion for the energy/mass is

e =
v2φ
2

+ Φ = −GM∗
2r

.

The last term in (8) may include energy deposition from the star, the back-
ground radiation field, and radiation from other parts of the disk itself. Ignor-
ing it for the moment, and using the mass conservation equation to eliminate
terms in (8), one finds

2σT 4
e = rWφr

∂Ωk

∂r
= −3

2
WφrΩK .

This formula can be expressed in terms of the disk mass flux by noting that
solutions of the disk evolution equation generally produce an r-independent
ṁ over some portion of the inner disk. In that region, (5) can be integrated
to obtain

Wφr =
ṁj

r2
.

Therefore

σT 4
e =

3ṀdGM

8πr3
,

where Ṁd = −2πṁ. Note that this frequently encountered formula for the
distribution of internally generated, radiated energy does not depend on the
nature of the stresses causing angular momentum transport. Its validity does
require that energy be dissipated “locally”; that is, that radial transport of
energy is negligible compared to vertical transport, and that the disk mate-
rial behave as a Newtonian fluid. And, as discussed above, it is not the sole
source of the observed radiated energy, which can be dominated by external
irradiation which is absorbed and re-emitted by the disk.
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Finally, it is important to have a description of the vertical structure of
the disk, especially when considering the accumulation of solid material into
planets. Equation (5) gives the mechanical balance. The thermal state must
be ascertained by an energy equation of the form

∂Fz
∂z

= − (dissipation) + (external irradiation) ,

where Fz is the flux of energy in the z direction and the terms on the right
must now be specified as functions of z. Although Fz may have radiative and
convective components, the latter is usually unimportant for heat transport
in disks (Cassen 1993; D’Alessio et al. 1999). Several other factors, however,
do complicate vertical structure models. First, without a detailed model for
the stresses responsible for angular momentum transport, some assumption
must be made regarding the vertical distribution of dissipation. Usually it is
assumed that the dissipation rate is proportional to the local mass density,
although this need not be the case in a real disk. Second, the evaporation,
condensation and coagulation of dust and ice, which are the major contribu-
tors to the opacity (Pollack et al. 1994; Henning and Stognienko 1996), must
be solved for self-consistently. Third, the effect of the external radiation can
be a complicated function disk radial structure (Bell 1999).

The nature of the most useful approximations and assumptions employed
to determine vertical structure may depend on the particular objective. Stud-
ies directed toward the astronomical appearance of disks must properly ac-
count for the external illumination, but may simplify the issues of opacity
structure and internal dissipation, as in, for instance, Chiang and Goldre-
ich (1997). Studies directed toward understanding the thermal conditions of
planet-building may simplify the treatment of external irradiation, which has
a minor effect on midplane temperatures where disks are optically thick,
but must account for the vertical distributions of dissipation and opacity
(e.g., Cassen 2001).

A simplification that is usually valid is to treat the vertical structure as
“quasi-steady”. That is, the time for even an optically thick disk to adjust to
new heating and cooling conditions,

tthermal =
Σc2s
2σT 2

e

is usually much shorter than other evolutionary timescales (e.g., the charac-
teristic dust coagulation time or the time over which the local accretion rates
changes). There are conditions, however, when even this simplification is in-
valid (e.g., during outbursts). See the papers by D’Alessio et al. (1998, 1999,
2001), Bell and Lin (1994) and Bell et al. (1997) and Cassen (2001) for further
applications of vertical structure modeling.
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3.2 Turbulence in Disks

The problem of disk evolution is that of determining the precise mechanisms
of angular momentum transport. What are the processes that produce the
torques and stresses that appear in (6) and how are they quantified? Insta-
bility leading to turbulence is the most frequently invoked phenomenon for
providing the required viscosity, but the nature of the instability and the con-
sequences of the turbulence remain controversial, despite assertions that the
problem has been solved (e.g., Balbus and Hawley (1991, 2000). The prob-
lem begins with the realization that a Keplerian disk, although possessing a
strong radial gradient of azimuthal velocity (shear), does not suffer the kind
of shear-induced instability known to produce turbulence in other situations.
An annulus of disk material displaced outward from radius r1 to r2, while
conserving its angular momentum, experiences a centrifugal force j21/r

3
2 at its

new location. The centrifugal force required to maintain it in equilibrium is
j22/r

3
2. So, as long as j1 < j2, as it is in a Keplerian disk, the material ex-

periences a net force which restores it toward its original location. The disk
satisfies Rayleigh’s criterion for stability,

dj2

dr
> 0

and some other source of turbulence must be sought.

Other instabilities exist, of course. For instance, it was proposed by Lin
and Papaloizou (1980) that convective instability, which stirs a fluid when
radiation alone would require a superadiabatic temperature gradient, could
provide the required radial mixing of angular momentum. They envisioned a
feedback loop, in which internally dissipated energy in an optically thick disk
would drive convection; the turbulence so produced would give rise to Wφr

stresses; the stresses would result in the net outward transfer of angular mo-
mentum from the (more rapidly rotating) inner annuli to the (less rapidly)
rotating outer annuli; the loss of angular momentum by the inner annuli would
release gravitational energy, which would be the ultimate source of the dis-
sipated energy driving convection. It is just such a feedback process that is
required to overcome the inherent stability conferred by rotation.

But strong arguments have been presented against the existence of any
such feedback process, in the absence of magnetic forces Balbus et al. (1996).
The issue can be addressed by examining the equations of turbulent motion,
derived from the mass and momentum equations by separating variables into
an average part and a fluctuating part. For instance, for the velocity compo-
nent vi,

vi = 〈vi〉+ ui

〈νi〉 =
1

2π∆r

∫
vi dφdr dz,
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where the r-integration is taken over some suitably small interval. In partic-
ular, one can derive a set of energy equations by multiplying each component
of the momentum equation by its respective velocity component, and drop-
ping terms smaller than second order in the fluctuating quantities (and other
terms assumed to be small). The results for the r and φ directions, derived
by Balbus et al. (1996), are:

∂

∂t

〈
Zu2r
2

〉
= 2Ω 〈Zuruφ〉 −

〈
ur
∂p

∂r

〉
−
〈
Zν|∇ur|2

〉

∂

∂t

〈
Zu2φ
2

〉
= −〈Zuruφ〉

r

d
(
r2Ω
)

dr
−
〈
uφ
r

∂p

∂φ

〉
−
〈
Zν|∇uφ|2

〉
. (9)

These equations do not represent the energy conservation law, being derived
from the momentum equations alone, but are relations that must hold be-
tween the mechanical energies associated with turbulent fluctuations and the
mean flow, the latter being represented by Ω and its derivative. The last
term on the right is the energy dissipated by viscosity; it always reduces the
energy of the fluctuating part of the flow (the terms whose derivatives ap-
pear on the left). The first term on right prescribes the interaction of the
turbulent stress, 〈Zuruφ〉, with the mean flow. The point stressed by Bal-
bus et al. (1996) is that, in Keplerian disks (or any disk that is stable by
Rayleigh’s criterion) this interaction provides a negative feedback for the
energy of φ-fluctuations if the stress is such as to transport angular mo-
mentum outward, i.e., 〈Zuruφ〉 > 0. But it is necessary for turbulence to
transport angular momentum outward in an accretion disk, because it is the
loss of angular momentum that allows material to flow inward. Thus, tur-
bulence that allows accretion appears to be self-defeating, no matter what
the source of the turbulence. (True, the radial fluctuations are not damped,
but correlated azimuthal fluctuations are necessary to produce any turbu-
lent stress.) What about the φ-pressure gradient term? Balbus et al. (1996)
argue that it cannot isotropize the turbulence enough to overcome the damp-
ing effect of the positive angular momentum gradient (while pointing out
that long-range correlations in pressure fluctuations associated with orga-
nized waves can provide the desired effect, but would not be considered to be
turbulence).

The conclusion that purely hydrodynamic turbulence cannot be self- sus-
taining in Keplerian disks is supported by numerical calculations of the evo-
lution of a turbulent field in a “local” patch of a disk. In these calculations
(e.g., Balbus et al. (1996) and Hawley et al. (1999), in which an appropri-
ate form of periodic boundary conditions are imposed on a sheared, rotating
fluid, instabilities are not manifested and an initially turbulent field decays.
Furthermore, calculations in which convective turbulence is forced by impo-
sition of an ad hoc heat source produce stresses which induce inward angular
momentum transport, consistent with the arguments given above.
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These results indicate that protostellar disk evolution must be driven by
either magnetic instability or the action of waves, topics discussed below. And
yet the issue should not be considered settled; not all researchers are ready to
rule out the possibility of hydrodynamic turbulence in the unequivocal manner
that its detractors have. For instance, calculations by Klahr and Bodenheimer
(2000) indicate that baroclinic instabilities lead to sustained positive turbulent
stresses and consequent outward angular momentum transport (see also Shee-
han et al. (1999) and Li et al. (2001)). Baroclinic instability, well-known in
planetary atmospheres, can occur when surfaces of constant pressure do not
coincide with surfaces of constant density, i.e., when

∇p×∇Z �= 0 .

This condition is precluded in any calculation for which a barotropic relation
between pressure and density, p ∼ Zγ , is assumed, for then

∇p×∇Z ∼ ∇Zγ ×∇Z = 0

and surfaces of constant p and Z do coincide. But it is virtually inevitable
in an optically thick protostellar disk, where radial entropy gradients prevent
the simple proportionality represented by the constant in the above equation.
Local calculations, which assume a barotropic relation or do not account for
a radial entropy gradient, and which exhibit decaying turbulence or negative
turbulent stresses, do not allow the possibility of baroclinic instability. Now
a common feature of the nonlinear development of baroclinic instabilities is
the generation of relatively long-lived, organized structures, such as vortices,
jet streams and spiral shock waves. Associated with these structures are non-
local, correlated fluctuations which contribute to the transport of angular
momentum. Related instabilities, which depend on the existence of a locally
steep pressure gradient have similar properties (e.g., Lovelace et al. (1999)
and Li et al. (2001). The full implications of these sources of turbulence (and
possibly others; real disks are complicated structures) remain to be worked
out (see the comments on Rossby waves, below).

In whatever way the issue of non-magnetic turbulence is resolved, Balbus
and Hawley (1991, 1998) have shown that magnetically coupled protostellar
disks are inevitably turbulent in a manner that produces outward angular
momentum transport at the level required to drive the observed activity. Ad-
ditional stress terms appear in (9) which can act as sources of azimuthal
fluctuations. The instability that produces the turbulence relies on the fact
that adjacent annuli are magnetically tethered, so they act like spring-coupled,
rotating masses. If the spring constant is very strong, the instability is sup-
pressed, but for a weak spring (magnetic field), perturbations in displacement
grow. The reader is referred to the above references for a formal stability
analysis. Here, we develop a useful analogy provided by Balbus and Hawley
(1998) that gives some insight into the nature of the instability, and can be
used to describe its essential properties.
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Fig. 14. Two masses, attached by a spring and displaced from a common orbit
about a star (left), obey the same equations as orbiting, perfectly conducting fluid
annuli threaded by a vertical magnetic fluid (right). Both systems are unstable for
a range of values of the effective spring constant. This unstable range encompasses
the only physically realistic values for the magnetic fluid

Consider two masses (identical for convenience) in orbit about a star, but
attached by a spring with spring constant fs (Fig. 14a) The equation of motion
of either mass, in the rotating frame, is

d2r
d2t

= Ω × (Ω × r) + 2Ω × dr
dt

= −2fsx+ g,

where x is the displacement from the equilibrium orbit. Let r = r0 + x and
expand g about its value at r0 to obtain the set

ẍr − 2Ωẋφ = xr
(
−2fs + 3Ω2

)
ẍφ + 2Ωẋr = −2fsxφ .

The effective spring constant for the r motion is 2fs − 3Ω2, which must be
positive for a restoring force. Now it turns out that these equations are exactly
equivalent to those for the small displacement of annuli in a disk of perfectly
conducting gas, threaded by a vertical magnetic field B(Fig. 14b), with the
correspondence

2fs − 3Ω2 → r
dΩ2

dr
+ (k · ua)

2
.

The last term is the scalar product of the wave vector of the disturbance and
the Alfvén velocity, the latter defined by

ua ≡
B√
4πZ

.
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Note that since dΩ2/dr < 0 in a Keplerian disk, stability requires

(k · ua)
2
> −rdΩ

2

dr
⇒ u2a >

∣∣∣∣ rk2 dΩ
2

dr

∣∣∣∣ .
But k must be large enough to allow a wavelength to fit within the thickness
of the disk: k > π/h. So the right hand inequality can be extended to

u2a >

∣∣∣∣ rk2 dΩ
2

dr

∣∣∣∣ >
∣∣∣∣rh2π2

dΩ2

dr

∣∣∣∣ = 3Ω2h2

π2
≈ 3c2s

π2
.

But this condition for stability requires that the magnetic field pressure dom-
inate the thermal pressure, a condition difficult to achieve in disks because
magnetic buoyancy effects tend to expel such strong fields. Therefore, mag-
netic disks are unstable; in fact, they are unstable even in the limit of vanish-
ingly weak field. Numerical simulations confirm the instability and indicate
that the resulting turbulence would be sufficient to provide the inferred ac-
cretion rates of protostellar disks Hawley et al. (1995).

Can we conclude that magnetic turbulence is the main process responsi-
ble for protostellar disk evolution? For this to be the case, the disk gas must
be well-coupled to the magnetic field. This condition is quantified by the re-
quirements that the magnetic Reynolds number be larger than unity and that
collisional ion-neutral momentum exchange occur rapidly compared to, say,
the orbital period. Disks are dense enough in most places to insure that the
latter condition is fulfilled, but the former condition requires a level of ion-
ization which, although not very high (ionization fraction ≈ 10−13), is still
difficult to attain in their cold, dusty interiors. One can identify four sources of
ionization: (1) galactic cosmic rays, (2) stellar energetic particles and x-rays,
(3) radioactive nuclides and (4) thermal (collisional) excitation. Galactic cos-
mic rays penetrate no more than about 102 gm/cm2 of material, and so would
be largely excluded from the inner disks (r ≤ 1AU) where the surface density
is estimated to typically exceed 103 gm/cm2. (The current galactic cosmic ray
flux is obviously incapable of significant ionization of most of the approxi-
mately 103 gm/cm2 of terrestrial atmosphere.) Furthermore, one expects that
the intense stellar wind associated with young stars would attenuate the flux
of such particles to levels well below that currently experienced by the solar
system. Stellar particles and x-rays, although abundant, penetrate only about
1 gm/cm2 ,and so are expected to ionize only a very thin “ionodisk” at high
altitudes. Similarly, the most abundant energetic particles from radioactive
nuclides have very limited ranges. Only close to the star, perhaps within a
few tenths of an AU, is the disk temperature expected to be high enough to
evaporate most of the dust, a condition that is probably required to maintain
the ionization level necessary for magnetically induced turbulence. Thus the
issue of turbulent angular momentum transport throughout the disk remains
open. For a recent discussion of relevant issues by the advocates of exclusively
magnetic turbulence, see Balbus and Hawley (2000).
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3.3 Waves in Disks

It was mentioned above that organized, non-axisymmetric structures trans-
port angular momentum. These structures frequently have the form of waves,
which may be thought of as coherent perturbations of the flow through which
the fluid medium flows. An astounding variety of fluid waves have been iden-
tified, many of them familiar in our everyday experience; one should expect to
find many of them in disks. Waves usually result from the interaction of some
disturbing force (or instability) and the natural restoring forces present in the
system, necessary for the existence of an equilibrium. The restoring forces can
be associated with the natural frequencies of a system. Some of the impor-
tant natural frequencies of a disk are its orbital frequency Ω, the epicyclic
frequency (associated with the Coriolis force and characteristic of radial os-
cillations), and the Brünt-Väisälä frequency (associated with pressure forces
and characteristic of vertical oscillations). In a thin disk, these frequencies are
all of comparable magnitude, so one might expect that there are complicated
interactions among various wave types.

The nature of a wave is quantitatively described by a dispersion relation,
which is a relation between the frequency of oscillation of the wave, ω, and the
wave number, k = 2π/λ (λ is the wavelength): ω = ω (k; parameters). From
the dispersion relation, one can determine the rate at which energy is car-
ried by the wave (∂ω/∂k), the speed at which the wave pattern moves (ω/κ),
places where the waves can and cannot propagate, and so forth. The usual
method of deriving a dispersion relation involves three steps: (1) all variables
are expressed as the sum of their equilibrium values and small perturbations
which oscillate in time and space; (2) the fluid equations are linearized by
retaining only terms first-order in the perturbations and using the fact that
the equilibrium values satisfy the steady-state equations exactly; and (3) spa-
tial derivatives in the equilibrium values are considered negligible compared
to the spatial oscillations of the perturbations (WKB approximation). These
steps result in a set of linear, algebraic equations (algebraic because the spa-
tial and temporal derivatives of oscillating quantities are proportional to the
quantities themselves). If there are no explicit forcing functions, the equations
are homogeneous and have solutions (the “free wave” solutions) only if there
is a specific relation between ω (specifying the temporal oscillation) and k
(specifying the spatial oscillation); this is the dispersion relation.

In Keplerian disks, the strong variation in rotation rate with radius tends
to shear disturbances, so that waves commonly have a spiral pattern. The
equation of a spiral is φ = ψ (r); the equation of a spiral rotating at frequency
ω is φ = ψ (r)+ωt; and many such spirals, with the same shape and frequency,
are described by mφ = ψ (r) + ωt, where m is an integer. Therefore, in ana-
lyzing disk waves, it is expeditious to express the oscillating perturbations in
the form:

x = Xe i[ωt−mφ+ψ(r)] .
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where X is the amplitude of the perturbation. The radial wavenumber is
given by k = dψ/dr and the pattern speed is Ωp = ∂φ/∂t = ω/m. A pos-
itive wavenumber corresponds to a leading wave (phase increasing with r)
and a negative wave number corresponds to a trailing wave. It turns out
that only trailing waves carry angular momentum in ways that are physically
sustainable.

Waves in disks have been studied using many different approximations,
assumptions and techniques, with the consequence that it is not always easy
to relate the results of one study to those of another. There are approxima-
tions based on disk geometry: 1-D (axisymmetric), 2-D (r, φ ), and “shearing
sheet” (or local Cartesian). In the last approximation, the (r, φ ) coordinate
system is replaced by a local, rotating (x, y) system, and terms associated with
the curvature of streamlines are neglected. The “tightly wound” (short radial
wavelength) assumption exploits the spiral geometry of the wave and is usually
equivalent to the WKBJ approximation. Physical forces that are frequently
(but not always) neglected are viscous, magnetic and disk self-gravitational.
The following approximations of the equation of state are often encountered:
isothermal, polytropic and Boussinesq (in which density variations due to dy-
namic pressure are neglected, but not those in the base state). In particular,
it is often assumed for mathematical convenience that the surface density
(rather than the volume density) is a power of the vertically integrated pres-
sure, a kind of polytropic approximation unjustifiable by any simple physical
assumption. Finally, analyses can be Lagrangian, in which the fluid displace-
ment is used as a dependent variable, or Eulerian, in which fluid velocities are
the primary dependent variables. I will identify the specific assumptions used
in the analyses described below.

Spiral density waves can be considered to be the primary wave-form in
astrophysical disks. They were originally studied in connection with galactic
structure (Lin and Shu 1964), but observational confirmation of the theory
was obtained in the structure of Saturn’s rings. A standard analysis (Shu 1992)
considers the disk to be infinitely thin, so that perturbations are restricted
to the (r, φ) plane and the volume density Z = Σδ (z), where δ is the Dirac
function. It is assumed that the vertically integrated pressure is a function
of only the surface density: P = P (Σ). Viscous stresses and dissipation are
ignored, but the self-gravity of the disk is included. For this purpose, the
standard conservation equations of Sect. 3.1 are supplemented by Poisson’s
equation for the gravitational potential:

1
r

∂

∂r

(
r
∂Φ

∂z

)
+

1
r2
∂2Φ

∂r2
+
∂2Φ

∂z2
= 4πGδ (z) + Z∗ .

Here, Z∗ represents the contribution to the stellar potential. Shu (1992) shows
how this equation can be simplified and solved in the WKB approximation
to yield a simple relation between the amplitudes of the surface density and
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gravitational potential perturbations. The following dispersion relation can
then be derived from the linearized conservation equations:

(ω −mΩ)2 = Ω2 + k2c2s − 2πG |k|Σ0 . (10)

Subscript 0 refers to the unperturbed state. (Here and in the following it
is assumed that the orbital and epicyclic frequencies are the same, as they
nearly are whenever the disk mass is small compared to the stellar mass.
More general relations can be derived, in which κ appears instead of Ω.)
The derivation of (10) involves some subtle issues of ordering. It must be
recognized that the perturbation to the surface density is intrinsically larger
than the velocity, displacement and potential perturbations. This effect is
illustrated geometrically in Fig. 15, where a density wave has been constructed
by representing the perturbed streamlines of the disk by a set of nested ellipses,
each ellipse being rotated slightly with respect to its neighbor. Note how
small displacement perturbations (eccentricities) produce large surface density
perturbations (tightly bunched streamlines).

The dispersion relation yields an axisymmetric (m = 0) stability crite-
rion. Recognize that ω2 > 0 (i.e., ω real) is required for oscillating (not

Fig. 15. Motions in a spiral density wave can be represented by elliptical streamlines
with radially varying phases. Even a small displacement of the streamlines from
circular can produce a large surface density perturbation, as seen in the tightly
bunched streamlines
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exponentially growing) perturbations, and find from (10) (with m = 0) that
the condition

Q ≡ csΩ

πGΣ
> 1 (11)

is required for stability; i.e., ω2 > 0 positive for all values of k. This important
inequality is commonly known as Toomre’s stability criterion (Toomre 1964),
although Toomre derived a slightly different relation for a galactic disk of stars,
and it has been derived by in other forms by a number of people (perhaps
first by Safronov (1960)). (The analysis of non-axisymmetric perturbations
is more complicated, but it is found that values of Q only somewhat greater
than unity are required for stability.) It is seen that the effects of pressure and
rotation are stabilizing, while the effect of gravity is destabilizing. Estimates
of the temperatures and surface densities obtained by the methods described
in Sect. 1.2 usually indicate that protostellar disks are stable by this criterion.
It is quite possible, however, that a disk could become unstable at some time
during its evolution. This might happen during the formation of the disk, if
mass builds up faster than it is accreted by the star, or at later times if the
outer part of the disk (for instance) becomes sufficiently cool. The question of
what happens to an unstable disk is of great importance to the issue of giant
planet formation, and will discussed in Sect. 1.6.2.

The dispersion relation also reveals other important properties of the
waves. These are conveniently described in terms of the nondimensional
wavenumber and frequency defined by

k′ =
k2πGΣ0

Ω2

ω′ =
ω −mΩ

Ω
.

The radius at which ω′ = 0 is the corotation radius , where the pattern
speed Ωp = ω/m matches the orbital frequency (which, for our Keplerian pro-
tostellar disks is the natural frequency for radial oscillations). The quantity
ω′ thus measures the “distance” from corotation in frequency space. The lo-
cations at which ω′ = ±1 also have special significance. This condition defines
the Lindblad resonances, where the orbital frequency is exactly an integer
times the difference in the orbital and wave pattern frequencies:

Ω = ±m (Ωp −Ω) .

The resonant radii are found from the Keplerian rotation law:

rL =
(
m± 1
m

)1/3

rcorotation (m = 1, 2, 3, ....) . (12)

The plus and minus signs correspond to outer and inner Lindblad resonances,
respectively. At these locations, the disturbance caused by the wave is in
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phase with the local natural frequency of oscillation, and one expects that
disturbances would interact strongly with the disk material there.

The dispersion relation, solved for k′, then becomes

|k′| = 2
Q2

[
1±
√

1−Q2
(
1− ω′2)] . (13)

The requirement that the radical be real excludes wave propagation from
within a certain distance of corotation:

ω′2 > 1− 1
Q2

.

Furthermore, the fact that the right-hand side of (13) must be positive indi-
cates that waves associated with the minus sign (“long” waves) cannot prop-
agate where ω′2 > 1. For very stable disks (Q >> 1), the range of long wave
propagation is very limited. These waves are governed primarily by rotational
and gravitational forces. The propagation of “short” waves (for the plus sign),
which are like acoustic waves, is not so restricted. The situation is illustrated
in Fig. 16. Spiral density waves can be excited by instability if Q < 1 some-
where in the disk, or by an object embedded in, or external to, the disk, such
as a planet or stellar companion. In fact, they can be excited by any number
of disturbances. Their importance for disk evolution lies in their ability to
transport angular momentum. One can get some idea about how this works
by examining the fate of energy, Ew, and angular momentum, Jw, carried by

Fig. 16. Long (gravity-like) waves of a given spiral mode (m) are restricted to
propagate in a limited range between the inner and outer Lindblad resonances,
the boundaries of which exclude the corotation radius. Short (acoustic-like) waves
can propagate within the inner Lindblad resonance and beyond the outer Lindblad
resonance, but are also excluded by the same boundaries near corotation
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a wave. In the absence of dissipation, wave energy and angular momentum
are conserved, in the sense that they obey conservation equations of the form:

∂ (Ew, Jw)
∂t

+
1
r

∂ [rcgr (Ew, Jw)]
∂r

= 0,

where cgr is the group velocity, and the quantities (Ew, Jw) represent the
azimuthally averaged energy and angular momentum, per unit surface area,
associated with the wave. They are, of course, functions of the wave para-
meters ω, k,m and the radius r. Their specific functional dependencies need
not concern us now (see Shu (1992) for formulae), except to note that quite
generally, Jw = Ew/Ωp. In the presence of dissipation, waves exchange energy
with the disk material, and the wave conservation equations take the form

∂Ew
∂t

+
1
r

∂ [rcgrEw]
∂r

= −D − ∂Ed
∂t

+
1
r

∂ [rvrEd]
∂r

∂Jw
∂t

+
1
r

∂ [rcgrJw]
∂r

= −∂Jd
∂t

+
1
r

∂ [rvrJd]
∂r

,

where D is the appropriately averaged dissipation rate and

Ed = −GM∗Σ

2r

Jd = Σ
√
GM∗r .

From these equations, with the aid of the azimuthally averaged mass con-
servation equation, and assuming that the disk quantities do not change in
the time of wave propagation, one can derive an explicit formula for the ra-
dial mass flux induced by angular momentum deposition from the attenuated
waves:

2πΣrvr =
4πD

Ω (Ωp −Ω)
.

This relation demonstrates that the mass flux is proportional to the dissipa-
tion, and that it is inward inside corotation and outward outside of corotation.
The relation does not hold at corotation because it was derived from the free
wave dispersion relation, which must be violated at the corotation resonance.
We return to the connection between waves and resonances in the discussion
of planet-disk interactions (Sect. 1.7.1).

What about the vertical structure of these waves? The 2-D analysis just
described cannot address this question, of course. In fact, a complete 3-D
analysis has yet to be accomplished. Interesting results have been obtained,
however, by means judicious approximations (Lubow and Pringle (1993); Ko-
rycansky and Pringle (1995); Lubow and Ogilvie (1998); Ogilvie (1998)). The
strategy employed is the following. The conservation equations, in the shear-
ing sheet approximation, including z and r dependencies, are linearized in the
usual way, but only axisymmetric waves are considered. The WKB approxi-
mation is used for r, but not z dependencies, so r takes the role of a parameter.



Protostellar Disks and Planet Formation 401

This procedure reduces the problem to a set of 1-D (in z) differential equa-
tions (eigenvalue problems), with coefficients dependent on r. These equations
are solved for the z structure of the waves. The radial propagation properties
are diagnosed by solving the equations at different r and constraining the
solutions to obey conservation of wave energy. It is then argued that the re-
sults are applicable to non-axisymmetric waves, with the replacement of ω by
ω −mΩ, as long as the waves are tightly wound in the sense that m << kr.
Self-gravity is not included, so only the counterparts of the short (acoustic)
modes described above are present. Finally, it is assumed that the fluid obeys
a polytropic equation of state: p ∝ Zγ , as might be the case for an optically
thick disk. This point is important for the following reason: the vertical ex-
tent of a locally polytropic disk is finite. That is, there is an altitude at which
temperature, density and pressure fall to zero, which defines the thickness of
the disk. To see this, solve the vertical hydrostatic equation (5) to find that
the state variables are proportional to a power of the quantity

(
1− z2/H2

)
,

where

H2 = 2γp0/ (γ − 1)Ω2Z0

and subscript 0 refers to values at z = 0. This kind of vertical structure has
the effect of a waveguide, and strongly affects the nature of waves and their
propagation properties, as described below.

Resolving the vertical disk structure reveals a multiplicity of modes, each
with its own characteristic vertical oscillations, some of which are associated
with buoyancy restoring forces. Some modes have counterparts in stellar os-
cillations, and are therefore designated accordingly. The p-waves are com-
pressible, with the main restoring force provided by pressure. The g-waves
are essentially gravity waves, and are incompressible, with buoyancy provid-
ing the restoring force. Waves of the third mode, designated r-waves, have
no counterpart in (non-rotating) stars; they are inertial waves, with angular
momentum and buoyancy providing the restoring forces. Each of these modes
possess z-symmetric and antisymmetric components, and each is represented
by a series of waves with n nodes in the z direction. In addition, there are two
fundamental (designated f) modes (z- symmetric and antisymmetric), which
turn out to be particularly important because they carry almost all of the
angular momentum contained in waves stimulated at resonances. They are
the dominant 3-D counterparts of the short, 2-D spiral density waves.

Like their 2-D counterparts, the radial propagation of these waves is con-
strained, as shown in Fig. 17. Note that vertical resonances (where radial os-
cillations are in phase with vertical oscillations) now play a role in restricting
the radial propagation of the p-waves. The waves also become vertically con-
strained, in some cases severely so, as they propagate away from resonances.
The f , p and g modes become confined to within a wavelength of the surfaces
of the disk; the r modes become restricted to a distance of about (λH)1/2

from the midplane. An example of the confinement of the f mode is shown
in Fig. 18. This effect is due to the waveguide character of disks with finite
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Fig. 17. When the vertical structures of spiral density waves are resolved, variety of
additional modes are discovered. These also have restricted ranges of propagation,
some of which are bounded by the locations of vertical resonances, as well as the
Lindblad resonances. Shown are the boundaries of allowed propagation for the r−,
p−, g− and f− modes discussed by Lubow and Ogilvie (1998). I and O refer to
inner and outer, LR and VR are Lindblad and vertical resonances, respectively, and
CR is corotation. (Figure from Lubow and Ogilvie 1998)

vertical extent. In fact, it disappears in disks that are vertically isothermal, for
such disks formally extend to infinite z, as demonstrated by the appropriate
solution of (5). So what about a more realistic disk, which might resemble the
polytropic model except near the surfaces, where an optically thin, isothermal
atmosphere should exist? This situation was analyzed by Ogilvie and Lubow
(1999), who found that wave confinement still occurred, but was less severe.

Now recall that the angular momentum carried by a wave is deposited
in the disk according to how the wave energy is dissipated. The fact that
the energy of spiral density waves tends to be concentrated toward the disk
surfaces could have a profound effect on their non-linear behavior and the
ultimate manner in which they are dissipated. They might form shocks or
“break” in other ways. The problem deserves further attention, probably most
fruitfully by the application of high resolution numerical simulations.
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Fig. 18. A representation of the distribution in disk cross-section of the wave en-
ergy associated with the fundamental, m = 2 mode, launched at an inner (a) and
outer (b) Lindblad resonance. The scale refers the logarithm to the base 10 of a
dimensionless energy. The plot illustrates the channeling effect imposed by vertical
structure. (Figure from Lubow and Ogilvie 1998)

Before leaving the subject, something should be said about another kind
of wave, the Rossby wave. Rossby waves have the property of propagating
vorticity, which is a measure of the local shear in a flow, defined as the curl
of the velocity. These waves are well-studied in the context of planetary at-
mospheres and have been shown to be potentially important in protostellar
disks. Indeed, the baroclinic instability (and related instabilities) referred to
in Sect. 3.2 is known to stimulate such waves, which may then couple with
other modes in complicated ways. The Rossby wave dispersion relation, as
derived by Sheehan et al. (1999), is

(ω −mΩ)2 = Ω2 + k2c2s +m2c2s/r
2 . (14)

This looks very much like (10), except that the gravitational term has disap-
peared (because self-gravity was not included in the analysis), replaced by the
last term on the right. This term was neglected in the spiral density disper-
sion relation because it was smaller than other terms, for short wavelengths
(kr >> 1) in thin disks. But Rossby waves have long wavelengths and are
revealed only when this term is retained. For this reason, radial gradients of
the base state should not be suppressed, i.e., the WKBJ approximation is not
valid. [In other respects, the assumptions leading to (14) are the same as those
for (10).]

In planetary atmospheres, Rossby waves are known to be responsible for
the extraction of energy from external sources (such as solar radiation or
internally generated heat) and its transfer to organized motions. For instance,



404 P. Cassen

large storms and jet streams in the terrestrial atmosphere are manifestations
of Rossby waves, as are the vortices and high speed belts on Jupiter. The role
of these waves in disk angular momentum transport has yet to be determined.
Their effectiveness will depend on the existence of appropriate instabilities and
the establishment of a feedback loop that permits energy extraction from the
disk itself, as discussed above.

This ends our discussion of disks as astrophysical objects independent of
their potential for forming planets. The remaining sections focus on the theory
of how they produce planetary systems.

4 Dust-Gas Dynamics

4.1 Drift and Settling Velocities in the Absence of Turbulence

In a cool protostellar disk of the same composition as our Sun, about 0.4 %
of the mass is in the form of rock-forming solids (mainly iron and magnesium
silicates). If it is cold enough (less than about 160 K), another 1.5 % exists
as H2O ice. Initially, these solids are in the form of sub-micron particles, or
“dust”, inherited from the interstellar medium, or newly condensed, if and
where the disk was once hot. Small dust particles are well-coupled to the
gas, and so follow the overall gas motions closely. While dispersed, their main
effect is as a source of opacity; they have no direct effect on the gas dynamics,
because they comprise such a small mass fraction. Occasionally they collide
with each other, stick together (see ?, and references therein), and gradually
accumulate, reducing the opacity and altering the nature of their dynamical
interaction with the gas. So begins, it is believed, the process of rocky planet
formation.

The dynamical interaction of gas and solids is described by the equations
of motion for the solid particles, which may be written (e.g. Dubrulle et al.
1995)

dvrp
dt

= gr +
j2p
r3
− vrp − vr

tr

djp
dt

= −jp − j
tf

dvzp
dt

= gz −
vzp − vz

tf
. (15)

Subscript p refers to the particles. The last term on the right hand side of
each equation is the frictional force between the gas and the particles. The
“friction time” tf is the characteristic time in which a particle of given size
and mass exchanges momentum with the gas (sometimes referred to as the
“stopping time”). The way it is calculated depends on whether the mean free
path in the gas is larger or smaller than the particle and whether the initial
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relative velocity is super- or sub-sonic. The mean free path for gas at 1 AU in
a typical protostellar disk is a few tens of centimeters. For smaller particles
moving subsonically through such a gas,

tf =
Zprp
Zcs

,

where Z and rp are the particle’s density and radius, respectively. This formula
can be derived by equating the frictional force to the rate at which thermal
gas molecules transfer momentum to a solid, spherical particle and solving
the resulting momentum equation. (Of course, the particles are likely to be
irregularly shaped rather than round, in which case rp must be interpreted to
be an appropriate dimension. For instance, it might be the characteristic size
of the individual particles making up a fractal structure.) For particles larger
than the mean free path, the friction time depends on the relative velocity
itself:

tf =
8Zp

3ZCd (vp − v)
.

Here, Cd is the drag coefficient, which also depends on the relative velocity
as well as the particle size and shape, and gas viscosity; however, its value is
generally of order unity. In most of the following, we will be concerned with
particles smaller than the mean free path.

The first important point to be learned from these equations is the follow-
ing: solid particles experience an azimuthal drag due to the fact that the gas
motion is slightly sub-Keplerian, and this drag can cause a substantial radial
drift as particles lose angular momentum. In Sect. 3.1, we used the gas radial
momentum equation to derive the fact that, to order, (h/r)2, Ω = ΩK . But if
the pressure gradient term is retained in that equation, one finds for the gas

(rΩ)2 = (rΩK)2 +
r

Z

∂p

∂r

or

j2 = j2K +
r3

Z

∂p

∂r
.

With this expression, the solid particle radial momentum equation (the first
of 15) yields

vrp − vr =
tf
Z

∂p

∂r
.

Since the pressure gradient is usually negative, the effect produces an inward
drift. Weidenschilling (1977) calculated the drift rate in a model disk, for
a variety particle sizes and gas densities, for a disk in which vr = 0. His
results are shown in Fig. 19, in which it is seen that very small particles are
well-coupled to the gas and have small drift rates, and large solid objects
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Fig. 19. Particle drift rates due to loss of angular momentum by gas drag,
as a function of particle size and gas density, for typical disk conditions. Small
particles have small drift rates because they are easily carried along by the gas;
large objects have small drift rates because drag forces are small compared to inertial
forces. Intermediate-sized particles, in this case about a meter in size, drift rapidly.
(Figure from Weidenschilling 1977)

are decoupled from the gas and also have small drift rates. Intermediate-
sized particles, however, can drift rapidly. The peak drift rates in Fig. 19,
104 cm/sec, would deliver a particle from 1AU to the Sun in only 100 years.
The survival of planetary-sized objects therefore implies that growth through
the critical size range (about 1 meter, for a typical gas density) was rapid,
or that there were sustained, systematic outward gas velocities which were
larger than the drift rate, or that collective effects (for which formula derived
for individual, isolated particles do not apply) protected the particles from
drift loss.

The solid particle equations also quantify the rate at which vertical settling
and concentration at the midplane occurs. For the gas velocity vz = 0, and
writing vzp = dz/dt and dvzp/dt = d2z/dt2, one finds

d2z
dt2

+
1
tf

dz
dt

+ zΩ2 = 0 .
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This is the equation of a damped harmonic oscillator, which is critically
damped for tf = 1/2Ω. Particles larger than rp = Σ/4�p follow orbits which
oscillate through the midplane; smaller particles gradually spiral toward the
midplane. If tf << 1/Ω, the terminal velocity vzp = −zΩ2tf is quickly at-
tained. Suppose Ω = 2× 10−7 sec−1, the orbital frequency of the Earth, and
�0 = 10−9 gm/cm3, a typical value at 1AU. Then, if we measure the quantity
�prp in cgs units, we find tf ≈ 5 × 103 (�prp) sec, vzp ≈ 200 (�prp) cm/sec,
and the settling time = h/vzp ≈ cs/vzpΩ ≈ 103/Ω�prp sec. The density �p
is of order unity, so one sees immediately that micron-sized particles would
take millions of years to settle, and the least breeze in the vertical direction
would inhibit any concentration by settling. They must grow first. On the
other hand, a golf-ball sized rock would settle, in the absence of vertical gas
velocities, in 103–104 years.

4.2 Particle Growth and Trajectories in the Absence of Turbulence

Differential velocities among particles of different sizes cause them to collide,
stick and grow. The rate of growth of a particle and the path that it follows
as it grows can be determined by integration of the set (15), augmented by
an equation for the growth rate . The latter is given by

dmp

ds
= πr2p�s,

where mp is the particle mass (assumed here to be 4πr3p�p/3), s is the path
length along the trajectory, and �s is the volume density of solids encoun-
tered along the trajectory. This expression is valid if all solids encountered
by the growing particle stick to it, as is expected when relative velocities be-
tween particles are less than about 1m/sec (Dominik and Tielens 1997; ?).
If this is not the case, the right-hand side must be appropriately reduced by
some efficiency factor. If relative velocities are too high, fragmentation oc-
curs, rather than growth; see the discussion in Wurm et al. (2001). Note also
that the density of solids, �s, is an evolving quantity whose value depends on
how all of the particles are settling. Nakagawa et al. (1986) calculated growth
and trajectories by assuming that at early times �s was well represented by
its initial value, a constant fraction of the gas density. At later times, as
settling proceeded, it was approximated by Σs/z, where Σs is the initial col-
umn density of solids. They also adopted typical forms for the distribution of
gas density, and assumed that there were no gas velocities. Their results are
shown schematically in Fig. 20, for a particle starting at altitude Z0. There is
little radial drift until the particle has settled and grown. At Z1, it is large
enough to drift radially, but rapidly accumulates smaller (background) par-
ticles, and begins to spiral vertically again at Z3. But by this time, it has
entered a region (at Z2) in which settling has caused the dust density to be
comparable to the gas density. Further details are given in Fig. 21. Most of
the settling time is spent at high altitudes, while the particle grows. The total
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Fig. 20. Schematic representation of the trajectory of a particle settling and growing
in a non-turbulent disk. The initial position of the particle is at altitude Z0. It settles
mainly vertically until Z1, where it has become large enough to drift radially. It then
rapidly accumulates smaller particles, whereupon, at Z2, it enters a region where the
dust density is comparable to the gas density. After Z3 it spirals vertically toward
the midplane. Small amounts of turbulence, however, can prevent the formation of
the dense dust layer; see Fig. 23 and the discussion in Sect. 4.3. (Figure adapted
from Nakagawa et al. 1986)

Fig. 21. Quantitative results for settling and growth in a non-turbulent disk: al-
titude vs. particle size (a), and altitude vs. time. The quantity zg is the disk scale
height. The curves labeled E, J and N refer to locations in a disk at the orbits of
Earth, Jupiter and Neptune, respectively. The solid symbols correspond to the points
z1, z2 and z3 of Fig. 21, and the endpoint of the calculation. (Figure from Nakagawa
et al. 1986)



Protostellar Disks and Planet Formation 409

radial drift experienced by these particles is limited to a small fraction of an
AU, because rapid radial drift is associated with rapid growth through the
size of maximum drift.

4.3 The Effect of Turbulence on Particle Settling

Although the calculation just described is useful for understanding the funda-
mental processes and timescales, even a small degree of turbulence could have
a substantial impact on some of the quantitative details. The rather small
values of the settling velocity estimated above motivate the following ques-
tion: What values of the turbulence parameter α would prevent (or inhibit)
settling? Suppose we calculate∣∣∣∣ vzpvturb

∣∣∣∣ = zΩ2tf
αcsh/lturb

=
2
αΣ

zlturb
h2

�prp .

Here, lturb is the turbulent mixing length. Realizing that zlturb/h2 < 1, one
concludes that ∣∣∣∣ vzpvturb

∣∣∣∣ < 2
αΣ

�prp = rp
2× 10−3

α

for �p = 1g/cm3 and a typical value (at 1 AU) of Σ = 103 gm/cm3. Turbulent
velocities would therefore exceed the settling velocities of small grains (rp <<
1 cm) even for values of α well below that required to evolve a disk in a
million years (10−3–10−2). Therefore, even if turbulence is not the primary
agent for transporting angular momentum in disks, it could still be important
for controlling the initial distribution and evolution of the solid component.

It is often useful to characterize the turbulent field by an ensemble of
transient eddies (or vortices), with some wavelength distribution of energy,
usually expressed as a power law in the wavenumber k:

Ek =
v2
k

k0

(
k

k0

)−a
.

The characteristic eddy velocity and size are vk and 2π/k, respectively. In
random turbulence, eddies typically last only a single turnover time, so their
lifetime tk is given by 1/kvk. The motion of a solid particle in a turbulent field
is then a diffusive process, as its velocity is altered by random encounters with
turbulent eddies. The velocity perturbations depend on the particle size and
the gas properties, as characterized by tf . For instance, if tf > tk, the eddy
disappears before the particle is entrained in it. If the particle has a systematic
velocity vp, and if the “eddy crossing time” tcross ≡ 1/kvp is greater than tk,
the particle can be entrained, but will also encounter smaller eddies within the
eddy of size 2π/k. If tcross < tf , the particle passes through the eddy without
being entrained. Such considerations must be accounted for when deriving
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a diffusion coefficient κp for the particles (Volk et al. 1980). The diffusion
coefficient can then be represented as an integral of the effects of each eddy
size. For particles settling in a turbulent disk, Dubrulle et al. (1995) derive

κp = κ0

[∫ ∞

k0

Ek (k) dk
k2

]1/2
,

where the coefficient κ0 represents the effects of the largest eddies, which
dominate the transport, and is a function of tf , vzp and k0 This diffusion
coefficient κp is to be used in the equation governing the diffusive settling of
particles:

∂�s
∂t

+
∂ (�svzp)

∂z
=

∂

∂z

[
�κp

∂ (�s/�)
∂z

]
.

Dubrulle et al. (1995) consider a disk with an isothermal vertical structure
and calculate the evolutions of initially uniform dust distributions, of a sin-
gle particle size, for various values of α. They find that stationary solutions,
shown in Fig. 22 (for α = 2× 10−3), are attained in a few times the timescale

Fig. 22. Steady state, vertical concentrations of solid particles in a turbulent disk
with turbulence parameter α = 0.002 . The quantity plotted on the vertical axis
is the enhancement in the concentration of solids above the initial, uniform value.
Particles are assumed to be of uniform size. The curves correspond to particle sizes of
250 cm (dot-dashed), 25 cm (dashed), 2.5 cm (dotted) and 0.25 cm (solid), for values
of the disk surface density of 103 gm/cm2 and particle density 2 gm/cm3. (Figure
from Dubrulle et al. 1995)
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tf/ (tfΩ)2. (These solutions can be scaled to other values of the parameters
by preserving α/tfΩ.) Strong concentrations about the midplane are only at-
tained by particles considerably larger than 1 cm. The theory predicts that
only large rocks (rp > 2.5m) could settle to a layer in which the density of
solids approaches that of the gas (but the analysis breaks down for such large
objects, which could oscillate about the midplane). Even if turbulence was
vanishingly small in the ambient disk, a dense layer of solids would produce
local turbulence by virtue of the velocity difference between it and the gas
(Weidenschilling and Cuzzi 1993), so the formation of such a layer appears
to be self-inhibiting. The conclusion is that substantial particle growth must
occur before a dense, dusty (or rocky) layer can form at the midplane.

4.4 The Initial Stages of Accumulation

The conclusion of the last section has important consequences for the initia-
tion of planet-building. If dense particle layers could form by settling, as in
the calculation by Nakagawa et al. (1986), they might form clumps due to
a gravitational instability in the layer (Safronov 1969; Goldreich and Ward
1973). The instability would be like that which occurs in a gas disk when
the criterion (11) is violated. This is an appealing prospect, because the most
primitive meteorites, which are objects representative of the earliest stage
of accumulation, appear to be made by the indiscriminant collection of neb-
ular solids, as might occur in such gravitational clumping. But the results
described above indicate that gravitationally unstable layers are not readily
formed; accumulation must proceed snowball fashion, as individual particles
and collections of particles collide. Calculations of this kind of accumulation
in the presence of turbulence have been performed (see Wasson 1985) and
indicate that it could produce rocky objects on a timescale of 104 years. But
the effects of fragmentation are either ignored or represented by untested hy-
potheses; furthermore, the detailed interactions of particles with the turbulent
field are approximated by averages which may obscure important physics.

An attempt to address these issues more rigorously was undertaken
by Cuzzi et al. (1996, 2001), with interesting results. They noted that the in-
stantaneous distribution of solid particles entrained in a turbulent flow tends
to be inhomogeneous; particles are transiently concentrated at stagnant re-
gions of the flow, between eddies. Moreover, there is a preferred particle size
for concentration, selected by the condition tf = tη, where η = kmax and
kmax is the wavenumber of the smallest eddies. (This kind of concentration is
not the same as that which is sometimes seen at the center of vortices, which
only occurs when long-lived, large scale eddies are present.) The expected
concentrations and preferred sizes depend on the turbulent characteristics.

Now the properties of the smallest eddies can be found by using the well-
known Kolomogorov rules of steady turbulence (Tennekes and Lumley 1972).
The starting point is the observation that, in steady, 3-D turbulence, energy
does not accumulate at any wavenumber despite the fact that it is being
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continuously transferred from larger to smaller eddies. Thus, Ėk, the rate at
which energy is transferred at wavenumber k, must be independent of k:

Ėk =
v2k
tk

=
v2k

1/kvk
= v3kk = v30k0 = v3ηkη .

Subscript 0 refers to the largest wavelength. Introduce the Reynolds number, a
dimensionless combination that measures the ratio of inertial forces to viscous
forces:

Re =
velocity × length
kinematic viscosity

.

The large scale turbulence is characterized by

Re = v0/k0νmol,

where νmol is the molecular viscosity. The smallest scale is that where energy
is dissipated by molecular viscosity, so

Reη = vη/kηνmol .

From these relations, and the invariance of ν3kk, one finds

η/k0 = R3/4
e

vη/v0 = R−1/4
e

tη/t0 = R−1/2
e .

These expressions give the turbulent characteristics at the dissipation scale in
terms of the large scale turbulent characteristics. So what is the value of Re in
a protostellar disk? It can be expressed in terms of the turbulence parameter
α as follows:

Re =
v0

k0νmol
=
αcsh

νmol
≈ αh

lmfp
≈ α× 1011 .

Here we have used the fact that νmol ≈ cslmpf , and chosen representative
values of lmpf = 10 cm and h = 1012 cm to obtain the numerical factor. The
preferred size for concentration is given by the condition tf = tη = R

−1/2
e t0,

so for this we need to know the lifetime of the largest eddies. It seems safe
to assume that, in random turbulence, this lifetime would be comparable to
an orbital period. With this assumption, the expression for preferred particle
size becomes

tf =
Zprp
Zcs

=
1

R
1/2
e Ω
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or

rp =
Σ

ZpR
1/2
e

= α−1/210−3 .

The numerical factor in the last equality corresponds to Σ = 103 gm/cm2 and
Zp = 3gm/cm3. Values of α commonly expected for disk evolution, or derived
from numerical simulations of angular momentum transport, (say, 10−4–10−2)
produce concentrations of particles in the size range 10−2–10−1. Cuzzi et al.
(2001) have emphasized that this is the range of sizes of chondrules, the abun-
dant and ubiquitous igneous pebbles found in primitive meteorites. In fact,
the distribution of sizes they find in concentrations from numerical simula-
tions matches that of chondrules in meteorites remarkably well (Fig. 23). Also,
from such simulations, and a fractal description of the turbulent properties
as a function of Re, they predict large concentration factors for the high

Fig. 23. Size distributions of chondrules from four meteorites (solid squares), com-
pared with predicted size distributions from numerical simulations of turbulent con-
centration (open circles). The quantity plotted on the horizontal axis is the Stokes
number, a non-dimensional parameter that measures (in this case) the ratio of the
friction time, tf , to the frequency of the smallest turbulent eddies; it is proportional
to the product of particle size and density. Thus the plots show, in effect, particle
size vs. density. (Figure from Cuzzi et al. 2001)
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Reynolds numbers of protostellar disks (see their Fig. 4, where concentrations
are expressed as the fraction of total particles expected to exceed a given
enhancement in spatial density, as a function of Re).

From this analysis, Cuzzi et al. (2001), noting that settling is inhibited
by turbulence, propose that the initial stages of rocky body accumulation oc-
curred by the formation of chondrule precursors by sticking collisions, their
subsequent transformation into chondrules (an enigmatic process, not under-
stood despite much attention and applied creativity), and concentration in
the manner described above. However, it must be emphasized that turbu-
lent concentrations are transient; particles actually flow through the regions
of concentration, so some further development must be postulated to attain
larger solid objects. Perhaps concentrations are high enough to promote gravi-
tational instability or some other positive feedback due to heavy mass loading
on the gas by solids. Incidentally, I note that an equivalent analysis of sys-
tematic inhomogeneities produced by waves has not been performed.

Other mechanisms for the concentration of solid material at the earliest
stage of planet formation have also been suggested. An example is the two-
phase (gas-dust) fluid instability proposed by Goodman and Pindor (2000),
which produces radial fluctuations in a dust layer at the midplane. Again, the
perturbations must grow to the point where gravitational instability sets in,
if the process is to lead to the formation of long-lived solid objects.

The fact is, we do not yet know exactly how the first rocks form from the
dusty component of protostellar disks. This is the case despite the fact that
we actually have samples of these rocks, in the form of meteorites, for our
own Solar System. The most primitive of the meteorites look like sediments,
the result of a gentle accumulation of disparate components, the ensemble of
which escaped familiar planetary equilibrating processes (heat and pressure).
Our lack of understanding of how this happened does not prevent us from
analyzing the later stages of planet formation, which, in some ways, is a less
complicated problem.

5 Growth of Planetesimals to Planets

5.1 Basics of Collisional Planet-building; Runaway Growth

For the present purposes, we define a planetesimal to be a body large enough
to gravitationally perturb its neighbors, but smaller than a full-grown planet,
say Moon-sized. The first part of this definition can be quantified by saying
that a planetesimal produces gravitationally induced velocity perturbations
larger than typical drift or settling velocities, perhaps 103 cm/sec. The velocity
perturbations are comparable to the escape velocity, so we are talking about
rocky objects of roughly a kilometer in radius or greater. Somehow these
objects formed, but, as indicated in the preceding discussion, gasdynamic
effects are sufficiently complex that the mechanisms of growth to this stage
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remain poorly described. Further growth is dominated by the gravitational
interactions among bodies, so the nature of the problem changes (although
gasdynamic effects are not necessarily negligible).

The number of kilometer-sized objects required to build the terrestrial
planets is about 1011. Even with modern computers and sophisticated algo-
rithms for integrating the equations of motion, this is far too many bodies
to treat by any direct numerical means; statistical methods are required. De-
spite the difficulty of the problem, a great deal of progress has been made in
understanding planetesimal growth in the past two decades. The reasons, I
believe, are to be found not only in the advances in computational capability
and the technical creativity of researchers, but in a cooperative effort in which
a combination of numerical and statistical treatments have been continuously
tested against each other to resolve discrepancies.

The statistical approach to understanding the coalescence of many small
objects into a few large ones starts with the coagulation equation:

dnk
dt

=
1
2

∑
i+j=k

Aijninj − nk
∞∑
i=1

Aikni .

Here, nk denotes the number of objects with massmk, and Aij is the probabil-
ity of collision (and merger) of bodies with masses mi and mj . The first term
on the right is the gain of bodies with mass mk and the second term is the
loss of bodies with mk that merge to make bigger bodies. All of the physics is
in the collision term Aij , which usually depends in complicated ways on the
relative velocities of colliding bodies, their masses, number densities and so
forth. Thus one must understand both the detailed physics of collisions (in-
cluding the effective cross-section for collision) and the dynamical evolution of
the ensemble, in order to calculate relative velocities and mass distributions.

Let us start with a description of collisional growth in the simplest situa-
tion. If all collisions result in merger, one can say

dmp

dt
=
(
πr2p
)
vrelZsFg .

The first factor on the right is the geometric cross-section of the particle, vrel
is the mean relative velocity of the ensemble of particles, Zs is their spatial
density and Fg is a gravitational enhancement factor, which represents an
increase in effective cross-section due to the gravitational bending of parti-
cle paths toward the growing object. In the simplest case, the growing body
sweeps up smaller particles (with much smaller masses) by two-body interac-
tions. It is readily shown by solution of this “scattering” problem that

Fg = 1 +
(
v2esc/v

2
rel

)
,

where the escape velocity is given by

v2esc =
2Gmp

rp
=

8
3
πr2pZp .
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Thus

dmp

dt
=
(
πr2p
)
vrelZs

(
1 +

8πr2pZp
3V 2

rel

)
.

Note that the dependence of growth rate on the radius of the growing particle
depends strongly on the relative magnitudes of vesc and vrel. If vesc << vrel,
dmp/dt ∝ r2p; in the opposite limit, dmp/dt ∝ r4p. In general, dmp/dt ∝ ryp ,
where 2 ≤ y ≤ 4. This dependence turns out to be extremely important
in determining the nature of solutions to the coagulation equation and the
physics of planetary growth.

To see this, consider the growth of two large objects sweeping up smaller
objects by two-body interactions. Calculate the time dependence of their mass
ratio:

d
dt

(
m1

m2

)
=

[(
r1
r2

)y−3

− 1

]
.

The “+” term on the right indicates a positive definite factor, the details of
which are unimportant for the present point. What is important, is that the
ratio m1/m2 continuously grows if y > 3 (as for vesc >> vrel). The possibility
of this “runaway growth” of one (or a few) body(ies) with respect to oth-
ers has a substantial effect on how the planetesimal growth problem must be
solved. For instance, because the coagulation equation involves probabilities
and deals with mean quantities (as do all statistical treatments), particu-
lar care must be used in evaluating such quantities which can be skewed in
unphysical ways if the distribution of masses (or other properties) becomes
discontinuous. (In fact, there are other aspects of the coagulation equation
that are potentially unphysical; see Wetherill (1990), for a discussion.) Be-
cause runaway growth occurs when relative velocities are smaller than escape
velocities, it is important to have an accurate representation of the dynamical
state of the entire ensemble. The central problems of planetesimal growth are
therefore those of obtaining real collisional cross-sections and outcomes (in-
cluding the effects of fragmentation), and describing the real velocity evolution
of the system.

5.2 Three-Body Effects on Collision Cross-Section

Greenzweig and Lissauer (1990) used numerical integrations of the restricted
three-body problem to determine the gravitational enhancement factor, Fg,
for an object sweeping up massless “test” particles in orbit about a star.
Averages of the outcomes of many integrations, starting from different initial
conditions, were used to evaluate

Fg = Fg [i, e, (rp/rhill)] ,
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where i and e are inclination and eccentricity of a test particle, respectively,
and rhill is the radius of the “Hill sphere”:

rhill =
(
mp

3M∗

)1/3

ap .

The quantity ap is the semi-major axis of the growing planetesimal. (The Hill
sphere is a measure of the extent of the gravitational influence of a secondary
compared to the gravitational influence of the primary. Its radius is defined to
be the distance from the secondary, in the direction of the primary, at which
the potential is a minimum, in a frame rotating with the secondary; that is,
the distance to the inner Lagrange point. It arises as a natural parameter
in the “shearing sheet” coordinate system.) By performing many integrations
and relating the eccentricities and inclinations to relative velocities, the results
shown in Fig. 24 were obtained. Scaling relations allow the results to be applied
to general values ofmp and ap. Although the two-body formula for Fg indicates
divergence as relative velocities vanish, three-body effects limit its value. It is
noteworthy that the orbits of test particles near the growing planetesimal can
be extremely complicated (see Fig. 1 of Greenzweig and Lissauer 1990). These
orbits should give pause to anyone contemplating a brute force, numerical
attack on the entire planetesimal growth problem.

Armed with the details of these encounters, one can say something about
the limits to runaway growth. Runaway slows when a planetesimal has

Fig. 24. The gravitational enhancement in collision cross-section, including three-
body effects, as a function of the ratio of escape velocity to planetesimal velocity
dispersion (or planetesimal eccentricity). The dashed line indicates the two-body
approximation. (Figure from Lissauer 1993)
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substantially cleared its neighborhood, after its own random velocity has di-
minished so that the boundaries of its neighborhood are reasonably stable.
From numerical integrations like those referred to above, this occurs after
test particles are depleted from a zone ∆r of a few rhill in width about the
planetesimal. The mass contained in such an annulus therefore represents the
mass attained after runaway:

mrunaway ≈ (few times)2πap∆rΣs ≈
(
10πa2pΣs

)3/2
(3M∗)

1/2
, (16)

where Σs is the surface density of solids. Note that this is not the upper
limit to the mass that may ultimately be attained; it is merely the mass that
corresponds to the end of the runaway phase, after which the growth rate
diminishes substantially. We note here that, for typical parameters, mrunaway

in the terrestrial planet region is about 0.04M⊕, or 3 lunar masses.

5.3 Evolution of the Velocity Distribution

One of the most successful techniques for describing the evolution of the plan-
etesimal velocity distribution is based on classical methods of statistical me-
chanics (Stewart and Kaula 1980; Lissauer and Stewart 1993). It employs the
collisional Boltzmann equation, or more specifically a Fokker-Planck equation,
in which encounters are regarded as instantaneous and local, and motions be-
tween encounters are effectively freely orbiting. (These techniques have also
been used in stellar dynamics.) As will be seen, distant, non-local encounters
are also important, so modifications must be made to incorporate their effects.
The basic premise is that the planetesimal ensemble can be described by as a
perturbation to a Boltzmann-like distribution function, f (r,v), expressed in
terms of inclination and eccentricity as f (i, e), where the number density of
planetesimals is

n =
∫
f d3v .

Evolution obeys the collisional Boltzmann equation

∂f

∂t
+

dr
dt

∂f

∂r
+

dv
dt

∂f

∂v
=

δf

δt

∣∣∣∣
encounter

. (17)

It is assumed that encounters cause perturbations to an equilibrium distribu-
tion, f = f0 + f1 , where f1 << f0 and

f0 (i, e) =
4Σs

mp

ei

〈e2〉 〈i2〉 exp
(
− e2

〈e2〉 −
i2

〈i2〉

)
. (18)

Equation (17) is linearized, using the fact that, because f0 is an integral of free
orbital motion, it satisfies the homogeneous equation. The result is a linear,
inhomogeneous equation for f1.
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It remains to specify the encounter term on the right hand side of (17). The
reader is referred to Wetherill and Stewart (1989) for mathematical details;
here I only describe the physical mechanisms that are included. The term is
usually divided into five components:

1. Gravitational “viscous stirring”, due to close encounters between orbiting
bodies converts ordered, orbital energy to random kinetic energy. This
component is always positive, in the sense that it increases relative veloc-
ities.

2. Inelastic collisions also produce “viscous stirring”, which increases ran-
dom energy at the expense of ordered, orbital motion. Cross-sections for
collision are provided by data such as that shown in Fig. 24.

3. Inelastic collisions can, of course, also extract energy from the random
component, which reduces relative velocities.

4. The effect of “dynamical friction” is also included in the encounter term,
although this effect really depends on the long-range, collective interaction
of large numbers of small objects with their larger counterparts. It acts to
drive the system toward a state of energy equipartition, in which different
masses have the same energy. Thus, it reduces the relative velocities of
the more massive bodies, and is a thereby a critical driver of runaway
accretion.

5. Gas drag extracts energy from both the ordered orbital motion and the
random velocities, but it can actually increase the relative velocities of
disparate masses by differential drag.

It is useful to examine steady state velocity distributions (the mean relative
velocity as a function of mass) derived by setting the sum of encounter terms
equal to zero. An example is shown in Fig. 25. The index q defines the power
law mass distribution; the value q = 2 gives an equal mass in each logarithmic
mass interval. When mass is distributed rather smoothly among the bodies
(q < 2), relative velocities are relatively uniform. For steeper power laws, and
particularly for q > 2, all relative velocities are less, but dynamical friction
caused by the relatively large number of smaller bodies dramatically decreases
those of the largest bodies. This, of course, promotes runaway accretion. (See
the discussion in Lissauer and Stewart 1993).

5.4 Calculating Planetesimal Growth

Modern computer codes that calculate the evolutionary development of an
ensemble planetesimals employ complicated algorithms that have been tuned
extensively by comparison with direct numerical simulations of more restricted
(and therefore more manageable) problems, careful comparison with exact so-
lutions of the coagulation equation (Wetherill 1990), and comparisons among
different methods (e.g., Stewart and Ida (2000) and Inaba et al. (2001)). Many
issues, not only of physics, but of numerical stability and accuracy must be
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Fig. 25. Equilibrium velocity dispersions as a function of planetesimal mass, for
different mass power law distributions. Larger objects tend to have lower random
velocities. As the mass power law steepens, the random velocities of the largest
objects are significantly depressed, a result of the equipartitioning effect of dynamical
friction. (Figure from Lissauer and Stewart 1993)

confronted. To give some flavor of what is involved in a comprehensive cal-
culation, we describe, with unfortunate but necessary brevity, the calculation
of Wetherill and Stewart (1993).

As in all such statistical treatments, a “box” of planetesimals is considered
to be representative of the ensemble evolution at a given distance from the
star. Wetherill and Stewart (1993) start with a box at 1 AU, of radial width
∆a = 0.17 AU, containing approximately 109 equally massive objects (i.e.,
all objects reside in a single mass bin, m1 = 4.8 × 1018 gm). At t = 0, the
distribution of velocities is given by (18), from which mean horizontal and ver-
tical relative velocities, and collision probabilities can be found. The number
of mergers, and the change in relative velocities in timestep ∆t due to en-
counters, is then calculated from δf/δt|encounter. The number of mass bins in
increased to two; one containing objects with initial massm1, and one contain-
ing objects with mass m2 (= 2m1, if all collisions resulted in perfect mergers).
Fragmentation is accounted for by creating a multi-mass bin, into which frag-
ments are distributed according to a fragmentation size distribution law. The
smallest of these fragments are particularly vulnerable to the gas drag term
in δf/δt|encounter, and may be lost from the system (dragged into the Sun).
The populations and mean relative velocities are calculated for each mass bin,
and each is advanced through ∆t, the number of mass bins being increased
as bodies merge. But soon the number of objects in the largest mass bins be-
comes rather small, challenging the validity of mean quantities calculated for
those bins. So an algorithm for identifying and treating such runaways must
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be implemented. Wetherill and Stewart (1993) find that these runaways tend
to be on circular, coplanar orbits, and so become isolated from each other
(but not from smaller objects). They define a “gravitational interaction ra-
dius” Rg = Rg (rHill, a, e) and regard as isolated the largest N bodies, where
N is defined by the condition that∑

N

Rg ≥ ∆a .

These objects are not permitted to collide with each other, but they do interact
with objects in bins of smaller mass. For more details the reader should consult
Wetherill and Stewart (1993) and subsequent literature.

A representative of the (Wetherill and Stewart 1993) results are shown as
successive cumulative mass distributions in Fig. 26. After 103 years, 52 bodies

Fig. 26. The results of a calculation of the evolution of cumulative mass distribu-
tion in the terrestrial planet. These calculations considered planetesimals in a box,
0.17AU on a side, located at 1AU, using special methods to treat the runaway
bodies. (Figure from Wetherill and Stewart 1993)
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with m > 30m1 have formed; after 7 × 103 years years, 50 bodies have be-
come isolated (the largest being bigger than 103 km in radius); by about
20 × 103 years, fragmentation has begun to increase the small body popula-
tion noticeably; and by 1.2× 105 years there are 7 runaway bodies containing
roughly half the mass of the system, the largest body being the size of Mer-
cury. The results of another calculation is shown in Fig. 27 (Weidenschilling
et al. 1997). This simulation is based on similar techniques, but treats the
isolation of the largest objects directly by explicitly calculating the properties
of individual runaway bodies, and including 100 radial zones, encompassing
a = 0.5–1AU. Their results are similar in essential ways to those of Wetherill
and Stewart (1993).

5.5 The Final Stage of Accumulation;
Rocky Planets in the Terrestrial Planet Region

Planetesimal growth simulations indicate that a final stage of rocky planet
accumulation begins when several (or perhaps a few tens) of lunar or Mars-
sized protoplanets, which have grown by runaway accretion, become rela-
tively dynamically isolated. Secular resonances among these objects and/or
externally produced perturbations (i.e., those produced by giant planets) then
must increase their eccentricities and inclinations to the point where their or-
bits cross and further collisional growth ensues. Modern computeralgorithms
(e.g., Sugimoto et al. (1990), Wisdom and Holman (1991), Saha and Tremaine
(1992), Saha and Tremaine (1994), Makino et al. (1997), Duncan et al. (1998)
and Chambers (1999)) can integrate the orbits of several tens to hundreds
of individual gravitating objects for hundreds of millions of years, and so
can be applied to the problem of this final stage. Monte Carlo techniques
(e.g., Wetherill (1992, 1994, 1996)) have also been applied with considerable
success, although they neglect secular effects. Inevitably, such calculations are
performed specifically for the terrestrial planets and asteroids, as they pro-
vide the only currently available quantitative test. Here, I only summarize the
main features of current results.

A typical calculation which begins with several tens of “protoplanets” in
the terrestrial planet region usually evolves to a situation in which only a few
planets remain (Fig. 28). The entire process may take a few times 108 years.
A few conclusions about the process are robust: (1) If there are no exter-
nal perturbers, mass and angular momentum are conserved to a high degree
(only a few percent lost in ejected bodies or collisions with the star). In the
presence of Jupiter or Saturn, more objects are lost, the amount depending
on how much material originally resided close to the regions most affected by
the giant planet resonances (i.e., beyond about 2 AU). (2) After a few hun-
dred million years, a few terrestrial-mass planets remain (if the appropriate
mass was present to begin with), although the final orbital configurations and
individual masses are stochastically determined. Thus, specific quantitative
predictions about the precise nature of the final planets cannot be made.
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Fig. 27. The results of another calculation of the evolution of cumulative mass
distribution in the terrestrial planet region. These calculations considered planetesi-
mals between 0.5 and 1.5 AU, and allowed for the interactions between a continuum
distribution of small bodies and a population of discrete runaway objects in individ-
ual orbits. There is qualitative agreement with the results shown in Fig. 27. (Figure
from Weidenschilling et al. 1997)



424 P. Cassen

Fig. 28. Results of an N-body simulation (starting with about 150 bodies) of the
final stage of planetary formation in the inner Solar System. The size of the symbols
are proportional to the planetesimal radii. This particular simulation produces a
reasonable facsimile of the terrestrial planets. (Figure from Chambers (2001))

(3) Giant collisions were inevitable during the last stages of rocky planet
formation. (4) There is some radial mixing of material, but not complete ho-
mogenization, during the period of final assembly.

Some problems remain. Because it is believed that the giant planets formed
in less than a hundred million years, their perturbations on terrestrial planet
formation are included in the most recent calculations. Yet, when this is done,
there is a tendency for N-body simulations to produce eccentricities and in-
clinations higher than those of the present terrestrial planets. Sometimes this
results in only one or two massive planets being formed in the simulations,
because more eccentric orbits permit more mergers. The results appear to
be somewhat sensitive to the initial mass distribution, and it might be that
the configuration of the terrestrial planet system reflects initial conditions not
well-represented by the calculations so far. But it is also clear that the loca-
tions of the giant planets, and the timing of their growths can have important
consequences. See Chambers and Wetherill (1998) and Chambers (2001) for
recent discussions of these issues.
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6 The Formation of Gas Giant Planets

6.1 Atmospheric Capture or Gravitational Collapse?

Although Jupiter and Saturn contain a greater mass of hydrogen and he-
lium than rock-forming and icy material, they are nevertheless enhanced in
the heavy elements relative to solar abundances. This fact excludes gravi-
tational collapse from the protoplanetary disk, a compositionally indiscrimi-
nant process, as the sole mechanism by which these planets formed. Moreover,
Uranus and Neptune, which have managed to retain large amounts of hydro-
gen and helium, are still made mostly of the heavier elements. Thus a great
deal of attention has been directed toward understanding the growth of plan-
ets, by the means described in Sect. 5.5, to the point where they can capture a
massive atmosphere. To be sure, one can imagine that these planets formed by
gravitational collapse followed by some other process (e.g., preferential loss of
gases, or gain of rocky planetesimals) which resulted in their present compo-
sitions. Furthermore, what appear to be gas giant planets have been detected
around other stars, and we do not know whether or not their compositions
are the same as that of their parent star; these might have formed by gravi-
tational collapse. So two distinct modes of giant planet formation may occur;
both are interesting.

6.2 Giant Planet Formation by Atmospheric Capture

Let us begin by asking: What do calculations predict for planetesimal growth
at 5 AU and beyond? Growth rate is proportional to collision frequency,
which is less at 5 AU than at 1 AU, because both orbital frequencies and
(presumably) the surface density of solids decrease with distance from the
star. Note, however, that settling in a non-turbulent nebula would still be ex-
pected to proceed on a 103–104 year timescale (see Fig. 21). As a planetesimal
grows, it is capable of retaining an increasing mass of gas in its atmosphere.
In fact, upon reaching a critical mass, it can induce the collapse of all the gas
available in its neighborhood, limited only by a finite reservoir, or by dynam-
ical effects associated with rotation (see Sect. 7.1). The planetesimal becomes
the core of a gas giant planet.

This mechanism of gas giant planet formation is frequently called the “core
instability” model, although it can be caused by evolution to a state in which
there is no static equilibrium. The phenomenon is a consequence of the simul-
taneous constraints imposed by hydrostatic equilibrium and radiative trans-
fer. A simple illustration is given by Stevenson (1982), although his argument
involves some sleight-of-hand. Hydrostatic equilibrium requires that the at-
mosphere above the core satisfy

1
Z

dp
dr

= −GMr

r2
,
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where Mr is the mass contained within radius r. Radiative transport in the
optically thick atmosphere is governed by

16σT 3

3κZ
dT
dr

= − L

4πr2
,

where the luminosity L (supplied by core accretion) and opacity κ are assumed
constant, for the sake of example. As long as Mr is dominated by the core
mass (and is therefore nearly constant), these equations are satisfied by state
variables with the dependencies

Z ∝ 1/r3, p ∝ 1/r4, T ∝ 1/r .

But when the core becomes large enough to attract an envelope which itself
begins to contribute substantially to the total mass, no physically realistic
solutions exist; the gravitational force within the atmosphere cannot be bal-
anced by the pressure gradient and the atmosphere collapses. Figure 29 shows
the critical core masses calculated by Mizuno (1980), along with an those de-
rived from an analytic expression derived by Stevenson (1982). Note that the
critical core mass has a strong dependency on opacity; it also depends on the
core mass accretion rate.

Fig. 29. Core mass as a function of total (core plus atmosphere) mass, for differ-
ent (normalized) concentrations of dust in the atmosphere (or, equivalently, opacity
normalized to a standard, solar composition). The solid lines are from calculations
of Mizuno (1980); the dot-dashed line is derived by a simple model of Stevenson
(1982). Portions of the curves with negative slope are unstable; no static equi-
librium solutions exist to the right of the vertical portions of the curves. (Figure
from Stevenson 1982)
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What limits the mass once the nebular gas begins to collapse around the
core? Undoubtedly, rotational effects become important at some point. Gravi-
tational interactions with the disk, i.e., gap clearing Lin et al. (1996), may act
to diminish Lubow and Artymowicz (2000) or terminate atmospheric accumu-
lation. Or, it may be that the mass of available gas diminishes with time, so
later-forming planets accrete less gas Shu et al. (1993). It has also been pro-
posed that gas accumulation can be terminated by a hydrodynamic instability
associated with accretion, if nebular densities are sufficiently low (Wuchterl
et al. 2000), and references therein). There is currently no consensus on this
important question.

The mass of Jupiter’s core is uncertain. It could be as large as 15M⊕, but
data constraining its size also permit models with no core (Guillot et al. 1997).
(If the latter were the case, the atmospheric capture model would be invalid,
of course.) Can a core of 15M⊕ grow before the gas of the protoplanetary disk
has disappeared? Recall that the lifetimes of protostellar disks do not appear
to exceed 107 years. Recall also that planetesimal growth slows considerably
after the runaway phase, and that even in the terrestrial planet region (where
planetesimal growth is faster) full-sized planets are attained only after 107–
108 years. Thus it seems necessary that the critical core mass for Jupiter
be attained before runaway ceases. The runaway mass is given by (16), which
demands thatΣs ≥ 10 gm/cm2 formc = 15M⊕. This surface density, if spread
over the Jovian zone, would yield a mass of solids of about 50M⊕, substantially
greater than that which now resides in Jupiter. We shall return to the question
of what happened to this “extra mass” in a moment, but supposing it to have
existed, a critical mass core, consistent with the limits imposed by models
of Jupiter’s composition and structure, could have accumulated within about
106 years.

Pollack et al. (1996) have constructed quantitative models of the forma-
tion of Jupiter and Saturn, based on the atmospheric capture idea. The study
incorporates a model for the growth of planetesimals and a calculation of the
hydrostatic structure of the gaseous envelope, including its interaction with
accreting planetesimals. They consider a zone in the disk centered on Jupiter’s
orbit (assumed not to change), with a width ∆a = ∆a

(
rHill,

〈
e2
〉)
. That is,

∆a grows as Jupiter’s Hill sphere grows, and as the eccentricity dispersion of
the accreting planetesimals increases. The planetesimals are assumed to be
distributed instantaneously uniform throughout ∆a, but their number dimin-
ishes as they are consumed by Jupiter (or increases as ∆a expands). The fates
of the planetesimals as they encounter Jupiter’s atmosphere are calculated.
They may have a grazing encounter, entering and leaving the atmosphere; they
may be trapped by gas drag and disintegrate in the atmosphere; or they may
plunge all the way to the core. Their kinetic energy is deposited accordingly.
Calculations are performed for an ensemble of impact parameters. Statistical
averages are then used as inputs to the atmospheric envelope growth calcu-
lation. The envelope is supported by the luminosity of accretion, and gas is
supplied to it from the disk in accordance with the growth of the Hill sphere.
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As might be suspected from the discussion above, opacity in the envelope is
a key variable. Pollack et al. Pollack et al. (1996) assume that it corresponds
to cosmic abundances.

Results of this study for the growth of Jupiter are shown in Fig. 30.
(Calculations for Saturn were also performed.) Runaway growth of the core
to about 12M⊕ occurs in less than one million years, after which it becomes
dynamically isolated and core growth slows. Atmospheric mass grows faster
until, at about 8 million years, it exceeds the core mass and induces dynamical
collapse. The authors point out that the quantitative aspects of this solution
depend rather sensitively on the assumed surface density of solids. If Σs is
much greater than 10 gm/cm2, the fraction of heavy elements (i.e., the core
mass) is too large to be consistent with models of Jupiter. If Σs is much
less than 10 gm/cm2, the core grows too slowly. Thus the model is essentially
“tuned” to provide the maximum core mass allowed by the data, so that
it can form within the inferred lifetime of the nebula. Variations on model
parameters are discussed in Pollack et al. (1996).

What of the “extra mass” in the Jupiter region implied by this value of
the surface density? Theory predicts that a few other potential giant planet
cores would form from this material (e.g., Kokubo and Ida 1998). Thommes
et al. (1999), noting the difficulty with which planetesimal accumulation the-
ories have in explaining the formation of Uranus and Neptune (bodies become
too isolated; growth is too slow) suggested that these planets formed between
Jupiter and Saturn and were gravitationally scattered to their present orbital
locations during the growth of Jupiter and Saturn. Their orbits were circu-
larized, according to Thommes et al. (1999), by interaction with the residual

Fig. 30. Growth of Jupiter as a function of time, according to calculations of Pollack
et al. (1996). Shown are the core mass (solid line), atmosphere mass (dot-dashed line)
and total mass (dotted line).(Figure from Lissauer 1993)
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planetesimal disk. This is an appealing hypothesis, potentially solving a few
puzzles at once.

At this point, one should realize that the planetesimal accumulation theory
of planet formation has attained considerable success in explaining the over-
all dynamical configuration of the Solar System, the only planetary system
available for meaningful tests. But there remain difficulties and uncertain-
ties concerning both the terrestrial and gas giant planets (and the asteroids,
which I have not discussed). Moreover, the existence of extrasolar giant plan-
ets close to their parent stars is not readily explained by gradual planetesimal
accumulation alone. We now turn to the possibility of planetary formation by
gravitational instability.

6.3 Giant Planet Formation by Gravitational Collapse

The idea that planets could form, like stars, by direct gravitational collapse
of gas and dust together, is an appealing one, particularly in the light of the
discoveries of extrasolar planets. Gravitational collapse would likely be fast
and efficient, taking only several orbital periods to isolate the planetary mass.
This is an obvious advantage, as the atmospheric capture process, as applied
to Jupiter, seems barely able to satisfy the requirement that the process be
complete before the disk gas disappears. Most of the extrasolar planets exceed
the mass of Jupiter and have non-circular orbits. It is not known how effective
atmospheric capture might be in producing such objects, but if they formed
rapidly by gravitational instability, one can readily imagine situations in which
multiple protoplanets scatter each other into irregular orbits, with occasional
mergers increasing the largest masses. Indeed, it has been argued (without no-
table acceptance, I should add) that the masses and distribution of eccentrici-
ties of extrasolar companions indicate that they represent a low mass extension
of the stellar population, and that they therefore probably formed as stars do,
by gravitational collapse, and should not even be called planets (Stepinski
and Black 2001). It should be understood, however, that here we are talking
about gravitational collapse within a protostellar disk, which represents quite
a different situation than the collapse of a molecular cloud core.

Gravitational instability occurs if the criterion of (11) is violated. It is pos-
sible to estimate Q from the diagnostics outlined in Sect. 1.2.2 and theoretical
models. Figure 31 shows the radial distribution of Q calculated from the mod-
els of D’Alessio et al. (1998) for typical T Tauri stars. It is seen that the disks
are quite stable over all radii less than about 10 AU, but that it is only the
effect of stellar radiation that stabilizes them beyond that distance. Thus, if
some heating event in the inner disk caused it to swell vertically and shadow
the outer disk (for instance), an instability might develop beyond 10 AU. Or
it might be that disks were substantially more massive during their early his-
tories, thereby lowering Q, as in the models of Boss (1997, 1998). Given the
model results shown in Fig. 31, it is reasonable to suspect that instances of
gravitational instability do occur.
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Fig. 31. The radial distribution of the gravitational stability parameter Q (solid
line) for a typical T Tauri star, calculated from the models of D’Alessio et al. (1998).
The dashed line indicates the value that would result if the disk was not illuminated
by stellar radiation. Disks appear to be stabilized by stellar radiation over radii less
than about 10 AU. They might be unstable at an earlier, more massive, stage, or if
shadowed by a hot inner region.(Figure from D’Alessio et al. 1998)

In Sect. 3, I stated that gravitational instability produces spiral density
waves. This fact has been confirmed in many numerical simulations, and is
not surprising because almost all disturbances in highly sheared disks produce
spiral structure. But the manifestations of instability are difficult to assess
by direct observation. The waves seen vividly in Saturn’s rings can usually
be attributed to the disturbance of a satellite rather than instability, and the
precise origin of galactic spiral structure is complicated by overlying processes
such as star formation and molecular cloud evolution. Thus, so far, we have
had to rely on the numerical simulations to determine the ultimate fate of
unstable disks.

There are two fundamental problems that plague gas disk simulations,
unique among numerical astrophysical problems. One source of difficulty is
the intrinsic dynamic range of global phenomena in Keplerian disks, as de-
fined by the variation of orbital period over the radial extent of the disk.
Gravitational disturbances close to the star develop rapidly and can affect
things far away, where the much slower orbital period can retard response.
Thus a useful simulation must be sustained, and resolve a large range of or-
bital periods. This problem has been addressed in galactic simulations by the
development of variable timestep techniques and tree codes, in which integra-
tions are performed non-uniformly over the disk; equivalent techniques have
not been developed for gas disks. The second problem stems from the fact that
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small changes in kinetic and gravitational energy can cause large changes in
internal energy, because the latter quantity is a factor of (h/r)2 smaller than
the former. And, as we shall see, the response of a disk’s internal energy to
instability plays a large role in determining the nonlinear development of the
instability.

The first problem is somewhat mitigated in simulations of gas giant planet
formation by gravitational instability, because the instability and interesting
effects are presumed to occur in the outer disk, with minimal influence of
the (highly stable) inner disk. Thus the inner disk has been effectively re-
moved from some calculations (e.g., Boss (2000) and Pickett et al. (2000b)),
although it remains to be demonstrated rigorously that this is an acceptable
procedure. Up until recently, the calculations have also been performed un-
der simplifying assumptions regarding the disposition of internal energy. It
has been established that if an unstable disk remains everywhere at its initial
temperature (as might be possible under optically thin conditions), instabili-
ties proceed violently to a state dominated by strong density waves and high
density contrasts (Boss 1997, 2000; Nelson et al. 1998; Pickett et al. 1998), as
in Fig. 32. Boss (1997) argued that some of the density perturbations were,
in fact, gravitationally bound and therefore could be regarded as potential
protoplanets. But it has also been shown that disks which respond adiabati-
cally to instability-generated disturbances sustain much milder density waves
(Pickett et al. 2000a; Boss 2000; Nelson et al. 2000). That is, the energy loss
rate determines the effect of the instability: isothermal disks, in which energy
is easily lost (and gained, in gas undergoing expansion) remain unstable and
evolve violently; adiabatic disks tend to heat up and become more stable.

It is clear that processes which transport and dissipate energy must be
accurately represented if we are to determine, from numerical simulations,
whether or not planets can form by gravitational instability and, if so, what
their characteristics would be. I can’t help mentioning that these calcula-
tions, as difficult (and therefore subject to error of assumption or algorithm)
as the calculations of planetesimal growth, have been undertaken by relatively
few researchers. A satisfactory theoretical understanding would be hastened,
no doubt, by the kind of cooperative attention that has so advanced the
planetesimal growth problem. Of course, determination of the heavy element
abundances of extrasolar giant planets could provide a definitive test: compo-
sitional identity of planet and parent star would heavily favor gravitational
collapse.

7 Planet Migration

7.1 Tidal Interaction and Angular Momentum Exchange Between
Planet and Disk

The discovery of large planets in orbits very close to their parent stars has
focussed attention on a theoretical result that had been previously disregarded
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Fig. 32. A representation of equatorial density in a gravitationally unstable pro-
tostellar disk. In this numerical simulation, the evolution was assumed to be
isothermal; that is, its temperature was fixed everywhere to its initial value. The
contour/gray-scale interval is 0.5 in the log of the fractional density perturbation; it
spans 4.5 orders of magnitude. An important unresolved question for giant planet
formation is whether the high density (dark) arcs seen in this simulation eventually
evolve into discrete, gravitationally coherent objects (protoplanets), or whether they
are transient entities, like the many waveforms that dissolve into the background.
(Figure from Pickett et al. 2000b)

in most theories of planet formation. The result states that angular momentum
can be exchanged between a planetary body (or other stellar companion) and
a circumstellar disk, due to tidal interaction, such that the net torque on the
planetary body causes rapid orbital evolution (Goldreich and Tremaine 1979).
Thus, even when a solid body has grown too large to be coupled to the gas
by viscous drag, it may still be coupled by gravitational forces strong enough
to affect its orbital motion.

An intuitive derivation of the tidal torque was given by Lin and Papaloizou
(1979), by means of an “impulse approximation”, in which the interaction is
considered to arise from the local gravitational deflection of fluid parcels in
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Fig. 33. A planet gravitationally deflects gas near the edge of a disk, changing
its angular momentum. If close encounters between the planet and a given fluid
element occur in a phase-coherent way, angular momentum is systematically ex-
changed between planet and disk. This tidal interaction can cause radial migration
of the planet

the disk by the planet (Fig. 33). The fluid is deflected through an angle δ as
it passes the planet, located ∆r away:

δ =
∆vr
vrel

=
2Gmp

∆rv2rel
.

Here vrel is the relative velocity between disk gas and planet and mp is the
mass of the planet. The change in the gas angular momentum (per unit mass)
is

∆j = −vrelrd (1− cos δ) ≈ −vrelrd
δ2

2
= −

2G2m2
prd

(∆r)2 v3rel
.
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This interaction occurs every time the planet comes near the particular fluid
under consideration, or every ∆t = 2π/ |Ω −Ωp|, so the rate of angular mo-
mentum exchange is given by

∆j

∆t
=

∆j

2π/ |Ω −Ωp|
= −

G2m2
p |Ω −Ωp|

πr2p (∆r)
2 (Ω −Ωp)

3 .

We have used the fact that vrel = rdΩ − rpΩp. To find the total angular
momentum exchanged between planet and disk, this expression should be
integrated over the whole disk:

dJ
dt

=
∫ ∞

∆rd

Σ
∆j

∆t
2πr d (∆r) .

But it is assumed that the torques nearest the planet dominate, so Ω may be
expanded

Ω2 =

(
Ωp +

dΩ
dr

∣∣∣∣
p

∆r + ....

)2

.

The result is
dJ
dt

= T = − 8
27

( rp
∆r

)3(mp

M∗

)2

Ω2
pΣr

4
p . (19)

Remarkably, this formula for the torque on the disk close to the planet is
almost correct, requiring only a modest adjustment of the constant to match
a more rigorous derivation. Note that, according to this formula, the torque
diverges as ∆r → 0, a fact which leads to the notion that the planet actually
clears a gap around itself, by extracting angular momentum from the gas
within its orbit and giving angular momentum to the gas outside of its orbit.
The size of the gap is presumably set by the ∆r at which the tidal torques
are balanced by some other (e.g., viscous) torque. It is then the difference
between the inner and outer torques that determines the net torque on the
planet, i.e., how fast and in what direction the planet’s orbit will change.

The problem with this derivation is that it obscures the real physics of
the interaction, which is rich in hydrodynamical phenomena, and is really
one of resonant (or near-resonant) interaction and wave excitation (Goldreich
and Tremaine 1979, 1980). These aspects are revealed only by solving the
full fluid equations, as in Sect. 3 for waves, but now including the forcing
by the gravitational potential of the planet. The linearized equations that
lead to the dispersion relation (9) then have inhomogeneous “driving” terms
which represent the Fourier decomposition of this potential. Solutions of the
inhomogeneous equations can be matched to the homogeneous, “wave” solu-
tions to obtain a full description of the excitation of the disk caused by the
planet (Goldreich and Tremaine 1979; Yuan and Cheng 1989). The torque is
indeed concentrated near the planet, but at the special locations identified
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previously as the Lindblad resonances (Sect. 3). These local disturbances ex-
cite spiral density waves which, behaving as previously described, propagate
away from the resonances carrying angular momentum to be deposited wher-
ever the waves damp. The effects associated with each resonance must then
be summed to obtain the total angular momentum exchange rate. The torque
exerted on the disk near a single resonance (designated as the mth Lindblad
resonance) is given by Ward (1997a); cf. Artymowicz (1993) as:

Tm = −π
2mΣψ2

m

r
dD∗
dr

, (20)

where the terms have the following definitions:

ψm =
r
dφm
dr

+ 2mφmf√
1 + 4 (mcs/Ωr)

2

φm = −Gmp

rp
bm1/2 (r/rp)

bm1/2 =
2
π

∫ π

0

cosmθ dθ√
1− 2 (r/rp) cos θ + (r/rp)

2

f = m (Ω −Ωp) /Ω

D∗ = Ω2 −m2 (Ω −Ωp)
2 + (mcs/r)

2
.

The quantity bm1/2 is the coefficient of the mth term in the Fourier expansion
of the planet’s gravitational potential (in the frame of the center of the disk).
Examination of these terms shows that the numerator of (20) contains the
intrinsic strength of the forcing term and the denominator contains the dis-
tance (measured in frequency space) from the resonance. Artymowicz (1993)
showed that the terms proportional to mcs/rΩ, which had been neglected in
previous analyses because this factor was considered to be small, of order the
disk thickness ratio, are important in limiting the maximum value of torque.
Recall that the impulse approximation indicates that the torque diverges as
the distance to the planet ∆r approaches zero. But note that the highest order
resonances also occur closest to the planet, so the relevant m becomes large
as ∆r becomes small; thus terms proportional to mcs/rΩ are not necessarily
negligible. These terms reflect the displacement of the resonant locations due
to the non-zero pressure gradient in the disk.
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Fig. 34. Normalized torque as a function of mode number m, for typical values of
disk parameters. In this figure, k refers to the power law index for the base state sur-
face density (i.e., k = 0 for constant surface density) and l is the (negative) power law
index for the base state temperature. Outer torques are systematically higher than
inner torques, an asymmetry which produces inward planetary migration. (Figure
from Ward 1997a)

Ward (1997a) calculated Tm from (20) for a typical disk configuration and
obtained the results shown in Fig. 34. A maximum value of Tm occurs for
intermediate values of m. Thus the highest order Lindblad resonances are of
diminishing importance and there exists a “torque cut-off” which limits the to-
tal torque even when there is no gap. Most importantly, note that the torques
associated with outer Lindblad resonances systematically exceed those of the
inner Lindblad resonances. This imbalance is due to intrinsic characteristics
of Keplerian disks; outer resonances are slightly closer to the planet than their
inner counterparts, and are less diminished by pressure effects, among other
factors (Ward 1997a). The result is that the dominance of the outer reso-
nances produces a net negative torque on the planet, which induces inward
migration.

The total torque can be found by the following trick. Calculate the torque
density by assuming that the torque is distributed more or less smoothly
between Lindblad resonances:

dT
dr

=
Tm

∆rLm
.

The distance rLm is the separation of successive resonances; see (12). The
total torque is then found as before, from the integral

T =
∫ ∞

∆r

dT
dr

dr .
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The trick is rigorously justified if the waves excited by the resonant interac-
tion are damped immediately, i.e., at or very close to the resonance. Even if
they are not, the total torque is usually accurately represented, because the
effect of propagating waves is simply to redistribute the torque deposited near
the resonance. If the terms proportional to mcs/rΩ are ignored, a formula es-
sentially the same as (19) is found, except with the coefficient 0.84 instead
of 8/27 = 0.296 (Goldreich and Tremaine 1980). Including the torque cut-off
effect yields a different coefficient, which depends on the details of the disk
base state.

7.2 Rates of Orbital Evolution

What do the results described above predict for the rate of planetary migra-
tion? To answer this question, one must calculate both the total torque and
the response of the disk, in a self-consistent manner. Note that the torque is
proportional to the local value of the surface density (19), which changes as
the disk material is redistributed in response to the torque. Thus one cannot
simply use the base state disk conditions to calculate the torque on the planet.
Ward (1997a) found an illuminating solution to this problem, in which the
planet migrates inward at constant radial velocity, accompanied by a steady,
wave-like disturbance in the disk density distribution (Fig. 35). In essence,

Fig. 35. The surface density perturbation produced by a migrating planet that is
not large enough to clear a gap (Type I drift), for three planetary masses and typical
disk parameters. The horizontal axis is the distance from the planet (normalized by
the scale height) in a frame moving with the planet. (Figure from Ward 1997b)
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the solution represents a situation in which the disk surface density is locally
disturbed in just the way necessary for the planet-induced torque to produce
a constant mass flux in the frame of the radially migrating planet. For an
inviscid disk, the planet’s radial velocity is given approximately by

vp = .25cs
mp

M∗Q

r3

h3
,

where Q is Toomre’s stability parameter (11). For typical parameter values
(cs = 1km/sec, h/r = 0.1, Q = 10, M∗ = 2 × 1033 gm), one finds vp =
7.5 (mp/M⊕) cm/sec. Thus a 1M⊕ planet would migrate from 1 AU to the Sun
in about 6×104 years and a 10M⊕ planetary core would migrate from 5 AU to
the Sun in about 3× 104 years. This mobility (called Type I migration, when
the planet is not massive enough to clear a gap around itself) can therefore
result in large radial displacements of planetary objects in times comparable
to or less than their formation times.

It is found, however, that there is a critical mass, mc, above which a gap
in the disk forms around the planet and Type I migration ceases. Because
viscosity acts to spread material into the gap, the critical mass increases with
disk viscosity; it is given by Ward (1997b)

mc ≈ (constant)M∗α

(
M∗
Σr2

)( cs
rΩ

)2
,

where the constant depends on specifics of the disk properties, and is generally
of order unity. For masses exceedingmc, radial flow past the planet is inhibited
and the planet becomes “trapped” in the gap. The planet and gap then move
with the local disk gas, and drift at the rate

vp ≈
ν

r
≈ αcsh

r
=
αc2s
rΩ

.

This drift is called Type II migration, and is slower than Type I migration,
although it is clearly significant on timescales relevant to the evolution of
the disk. Note that Type II migration could be outward, if the planet was
located in the expanding part of the disk. Ultimately, however, most of the
disk moves inward, and the planet would be carried with it toward the star.
Figure 36 summarizes the drift rates for Type I and II migration, as a function
of planet mass, for a typical disk configuration (Ward 1997a).

Although there is no obvious evidence for tidal drift in the Solar System,
it is a likely for the Jovian-sized planets found very close to other stars. That
is, it seems implausible that these planets formed so close to their parent
stars (Bodenheimer et al. 2000), so one might suppose that they formed further
away and then migrated inward to their present locations (Lin et al. 1996).
Why might some systems suffer extensive tidal drift while others exhibit no
effects? Trilling et al. (1998) addressed this question by calculating the orbital
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Fig. 36. Inward migration velocity as a function of planetary mass and turbulent
viscosity parameter α, showing the transition from Type I to Type II drift. The
velocity is normalized by 2 (M⊕/M∗)

(
π r2Σ/M∗

)
(VK/cs)

3 VK . The time shown on
the right-hand scale is the characteristic orbital decay time from 5 AU. (Figure
from Ward 1997b)

evolutions of planets subject to Type II migration in a circumstellar disk. The
planets were considered to be fully formed at the beginning of the calculation,
and located at a specified distance from a solar mass star, usually about 5
AU. Subsequent orbital migration due to disk tides was calculated using the
impulse approximation. If and when a planet approached the star, it suffered
additional torques due to mass exchange with the star (Roche lobe overflow)
and tidal interaction with the star, both of which tend to increase the orbital
angular momentum of the planet and thereafter oppose the disk tidal torques.
These torques depend on the size and internal structure of the planet, which
were also calculated. Finally, it was assumed that the disk disappeared after
a time interval of, say, 107, after which tidal interaction with the disk ceased.

Representative results from Trilling et al. (1998), for planets with initial
masses between 1 and 5 times that of Jupiter, are shown in Fig. 37. For the
case shown (disk mass 1.1 × 10−2 M�, α = 1 × 10−3), planets with initial
masses less than 3.36 Jupiter masses migrate toward the star and ultimately
lose most or all of their mass by Roche lobe overflow. Planets with initial
masses greater than 3.41 Jupiter masses lose no mass, and the most mas-
sive do not migrate far from their initial location before the disk disappears.
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Fig. 37. (upper) Orbital radius as a function of time for planets of various initial
masses, starting at 5 AU in a typical disk, and (lower) planetary mass versus orbital
radius for the same planets. Masses are in units of Jupiter’s mass. The dark region
in the upper figure represents the radial extent of the central star. Outward motion
is caused by mass loss and tidal interaction with the star. (Figure from Trilling et al.
1998)

Planets with initial masses between 3.36 and 3.41 Jupiter masses migrate to
distances at which they lose mass to the star, but are saved by the disap-
pearance of the disk. Trilling et al. (1998) suggest that the few percent of
the planets that fall into the last category may account for the extrasolar
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giant planets found close to other stars, although the relevant mass range
would vary with model parameters (disk mass and lifetime, initial planetary
location, etc.).

Note that the analysis of Trilling et al. (1998) is not consistent, in detail,
with the solutions found by Ward (1997a) First, Type I migration, which is
consequential during the planet building stage, being more rapid than Type
II, cannot be rigorously treated in the impulse approximation and is therefore
ignored in Trilling et al. (1998). Also, according to Ward’s analysis, Type II
migration rates are mass-independent, because gap formation in a viscously
evolving disk produces density perturbations which adjust the torque imbal-
ance on the planet to that which causes the planet migration to match the
movement of disk material. In contrast, according to Fig. 37, larger planets
migrate slower than smaller ones, a result attributed by Trilling et al. (1998)
to the larger gaps cleared by the larger planets. In fact, the final word on
planet migration has yet to be spoken. Not all of the potentially relevant feed-
back effects have been examined (e.g., the effects of waves on thermal state,
turbulent viscosity, dissipation, etc.). The interactions of multiple migrating
planets have yet to be fully assessed. For instance, differential Type I migra-
tion of planets of differing masses could affect planetary growth rates (Ward
and Hahn 1995). Numerical simulations by Artymowicz and Lubow (1996)
show that gap formation may not be complete, in the sense that material
can be accreted through the gap, which, in turn, would affect the migration
rate. See Ward (1997a) and Lin et al. (2000) and Ward and Hahn (2001) for
discussions of some of these issues.

7.3 Modeling the Formation of the Solar System

The Solar System will continue to provide the main test case for theories of
planet formation until the orbital configurations of other systems have been
determined to a much greater degree of completeness than they are presently
known. Thus our quantitative theories of particle accumulation, collisional
growth, giant planet formation, planetary migration, etc. must, in the end,
satisfactorily explain the dynamical state of the Solar System, which we know
to high accuracy. As discussed in these lectures, much progress has been made,
but the problem is of such complexity that a completely satisfactory model
does not yet exist, and may indeed be unattainable without further specific
constraints.

In fact, aside from dynamical factors, there exists a wealth of information
about the composition and physical state of the Solar System’s individual
members, which must also be consistent with our theories. For instance, the
outstanding characteristic of Solar System planetary composition is the ex-
treme volatile depletion of the terrestrial planets compared to the gas giants.
The former lack not only their cosmic share of the light gases hydrogen and
helium and noble gases, but are also vastly deficient in water and carbon-
and nitrogen-containing compounds. This state is commonly attributed to
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the relatively small masses of the terrestrial planets and the higher temper-
atures they have experienced by virtue of their proximity to the Sun, but a
quantitative integration of this idea with a general theory of planet formation
is lacking.

Among the most intriguing objects of the Solar System are the meteorites:
rocky fragments of asteroids, as well as some from the Moon and Mars, whose
orbits have brought them to Earth. Of the many kinds of meteorites, the most
common (the “chondritic” meteorites) are primitive, in the sense that they
have escaped the equilibrating processes (sustained high temperatures and
pressures) that are characteristic of terrestrial rocks. Thus they are composed
of an unequilibrated mix of pebbles and fine-grained material. The outstand-
ing features of chondritic meteorites are the following:

1. They are as old as the Solar System. The ages of individual components,
as determined by nucleochronological methods, are typically within sev-
eral million years of 4.56 Gyr (Wadhwa and Russell 2000, and references
therein). The oldest known components (calcium-aluminum rich inclu-
sions, or CAIs) are commonly taken to be the first solid objects formed in
the Solar System, with ages as great as 4.566±0.002 Gyr. Despite the am-
biguities encountered in interpreting radiometric ages, there is no doubt
that the chondritic meteorites have retained their essential character since
their formation in earliest Solar System history.

2. Their composition, as measured by the relative abundances of elements,
is the same as the Sun’s, within a factor of two or so, for all but the most
volatile elements. Although there are modest systematic differences in
composition, these meteorites formed from “solar material”, presumably
the protoplanetary disk itself, and have experienced little compositional
modification since then.

3. They are composed largely of igneous (melted and solidified) pebbles,
the “chondrules” from which the chondritic meteorites derive their name.
These chondrules exist within a matrix of fine-grained material to form
the bulk rock, which, laboratory studies have shown, could not have expe-
rienced the high temperatures required to melt the individual chondrules.
Moreover, there also exist within the meteorites, material with isotopic
compositions which identify them as pre-solar, and which apparently sur-
vived the formation of the Solar System intact, to be incorporated and
preserved in these primitive rocks. For the detailed properties of chondritic
meteorites and pre-solar material, see Bernatowicz and Zinner (1997),
Kerridge and Matthews (1988), and Hewins et al. (1996).

4. They contain unequivocal evidence for the existence of short-lived ra-
dionuclides (with half-lives less than a few million years) in the early
Solar System (Goswami and Vanhala 2000). These radionuclides were ei-
ther made in stellar sources or the interstellar medium shortly before the
Solar System formed, or they were produced by energetic events within
the Solar System itself.
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The first three properties listed above identify the chondritic meteorites
as early products of the planet-building epoch. They have therefore been re-
garded as key elements in understanding planet formation in the Solar System.
However, attempts to explain their properties have led to widely divergent
hypotheses. I will mention three approaches to the problem, to illustrate the
diversity of ideas regarding the origin of the primitive meteorites and their
radically different consequences for planetary formation theories.

A traditional approach has been to relate the bulk compositions of planets
and chondritic meteorites to the thermal state of the protoplanetary disk
at the time of their formation (e.g., Lewis (1974), Cameron (1978), Wasson
(1985) and Cassen (2001)). In this case, it is assumed that thermal gradients
reflect, directly or indirectly, position in the disk, and that a memory of these
gradients has been retained in the final product. This approach focuses on
bulk properties and usually has little to say regarding the details of physical
state, chondrule formation, or isotopic properties.

A contrasting theory has been extensively developed by Shu et al. (1996,
2001), which postulates extensive redistribution of planetary material by in-
ward drift within the disk and subsequent outward transport by the protosolar
wind. The theory takes advantage of the energetic environment near the Sun
(within 0.1 AU ) to account for the observed thermal processing of chondrules
and CAIs (as well as the production of short-lived radionuclides). Because
of the high abundance of chondrules in chondritic meteorites (up to 80% by
volume), a large amount of material must be recycled from close to the Sun
back to the terrestrial planet region and the asteroid belt. Therefore, in this
theory, one would expect that the final bulk compositions of planetary ma-
terial retained little memory of its initial distribution in the protoplanetary
disk.

Yet another idea (currently unpopular among meteoriticists) is that the
chondritic meteorites are the products of vaporizing collisions among massive
(perhaps lunar-sized), volatile-rich planetesimals of chondritic composition.
Collisional production of chondrules has been dismissed for various rea-
sons (Grossman 1988; Bos 1996), but I am partial to it because (1) the
chondritic meteorites reflect a range of physical and chemical conditions
(pressures, temperatures and oxidation states) which might be expected in
such collisions, and which are not particularly characteristic of those we be-
lieve prevailed in the solar disk, (2) the time scales inferred for chondrule
heating and cooling (minutes to days) (Jones et al. 2000) are commensurate
with those expected to result from such large collisions, (3) large amounts of
material might be locally processed and rapidly re-accumulated, thus pre-
serving the individual characteristics of various meteorite classes and (4)
such collisions are predicted by planetary formation dynamics. A consequence
of this hypothesis would be that the detailed properties of the chondritic
meteorites would have little to do with disk properties or any astronomi-
cally observable phenomena. But until a rigorous model for the remnants
of such collisions is developed, the hypothesis will remain in speculative
limbo.
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7.4 Concluding Comments

I began these lectures by noting that, despite the unequivocal genetic as-
sociation of circumstellar disks with planetary systems, there was reason to
be skeptical of the premise that the nature of a planetary system could be
predicted (or even modeled from) the properties of its progenitor disk. This
skepticism might be provoked just by the existence of planets with highly
eccentric orbits. Indeed, an argument can be made that final planetary con-
figurations are determined only by the dynamical laws governing many-body
systems, regardless of the origins of the bodies. I mentioned that the dis-
tribution of inferred extrasolar planet eccentricities appears to be similar to
the distribution stellar binary eccentricities (Stepinski and Black 2001), which
could be interpreted to mean that dynamics alone determines the orbits of
gravitating objects, regardless of origins. Also, it must be remembered that
the first extrasolar planets discovered were two Earth-sized objects in regular
orbits about a pulsar (Wolszczan and Frail 1992), a planetary system of or-
thodox mass and orbital configuration, but surely with an origin and history
dramatically different from other systems. One might speculate that we will
eventually recognize classes of planetary systems, distinguished by distinct
(or a continuous distribution of) dynamical histories, solely determined by
the range and variety of stable (i.e., long-lived) states.

The idea that any connection with a primordial disk is effectively obscured
is supported by numerous theoretical concepts, besides the gravitational scat-
tering of large objects: the radial mobility of small solid objects in disks due
to gas drag, the orbital evolution of planets due to tidal interactions with a
gaseous disk, the potential recycling of material by a stellar wind and so forth.
And yet the dynamical regularity found in our own Solar System, as well as
its enigmatic but systematic compositional regularities, seem to provide sound
evidence for inheritance from a disk. It still seems useful, therefore, to pursue
the idea that the properties of individual planets, as well as the system they
comprise, can be traced to their disk origins.
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(1999)
P. D’Alessio, N. Calvet, L. Hartmann: ApJ 553, 321, (2001)
F. D’Antona, I. Mazzitelli: ApJS 90, 467, (1994)
C. Dominik, A.G. G. Tielens: ApJ 480, 647, (1997)
B. Dubrulle, G. Morfill, M. Sterzik: Icarus, 114, 237, (1995)
M.J. Duncan, H.F. Levison, M.H. Lee: ApJ 116, 2067, (1998)
P. Goldreich, S. Tremaine: ApJ 233, 857, (1979)
P. Goldreich, S. Tremaine: ApJ 241, 425, (1980)
P. Goldreich, W.R. Ward: ApJ 183, 1051, (1973)



446 P. Cassen

J. Goodman, B. Pindor: Icarus 148, 537, (2000)
J.N. Goswami, H.A. T. Vanhala: Protostars and Planets IV (V. Mannings,
A.P. Boss and S.S. Russell University of Arizona Press, Tucson, 963,2000)

Y. Greenzweig, J.J. Lissauer: Icarus, 87, 40, (1990)
J.N. Grossman: Meteorites and the Early Solar System, (J.F. Kerridge and

M.S. Matthews, University of Arizona Press, Tucson, 680, 1988)
T. Guillot, D. Gautier, W.B. Hubbard: Icarus 130, 534, (1997)
E. Gullbring, L. Hartmann, C. Briceño, N. Calvet: ApJ, 492, 323, (1998)
L. Hartmann: Accretion processes in Star Formation, (Cambridge University
Press 1998)

P. Hartigan, L. Hartmann, S.J. Kenyon, R. Hewett, J. Stauffer: ApJS 70, 899,
(1998)

J.F. Hawley, S.A. Balbus, W.F. Winters: ApJ 518, 394, (1999)
J.F. Hawley, C. Gammie, S.A. Balbus: ApJ 440, 742, (1995)
Th. Henning, R. Stognienko: A&A 11, 291-303, (1996)
S. Inaba, H. Tanaka, K. Nakazawa, G.W. Wetherill, E. Kokubo: Icarus 149,

235, (2001)
R.H. Jones, T. Lee, H.C. Connally Jr., S.G. Love, H. Shang: Protostars and
Planets IV (eds. V. Mannings, A.P. Boss and S.S. Russell University of
Arizona Press, Tucson, 927, 2000)

S. Kenyon, L. Hartmann: ApJs 101, 117, (1985)
H.H. Klahr, P. Bodenheimer: ’ Disks, Planetesimals and Planets’. In: ASP
Conference Series , eds. F.Garzn, C. Eiroa, D. de Winter, T.J. Mahoney,
(Astronomical Society of the Pacifc, 2000)

E. Kokubo, S. Ida: Icarus, 131, 171, (1998)
D.G. Korycansky, J.E. Pringle: MNRAS 272, 618, (1995)
J.S. Lewis: Science 186, 440, (1974)
H. Li, S.A. Colgate, B. Wendroff, R. Liska: ApJ 551, 874, (2001)
C.C. Lin, F.H. Shu: ApJ 140, 646, 1964
D.N. C. Lin, J. Papaloizou: MNRAS 186, 799, (1979)
D.N. C. Lin, J. Papaloizou: MNRAS, 191, 37, (1980)
D.N. C. Lin, P. Bodenheimer, D.C. Richardson: Nature, 380, 606, (1996)
D.N. C. Lin, J.C. B. Papaloizou, C. Terquem, G. Bryden, S. Ida: Protostars
and Planets IV, (V. Mannings, A.P. Boss, and S.S. Russell, University of
Arizona Press, Tucson, 1111, 2000)

J.J. Lissauer: Ann. Rev. Astron. Astrophys. 31, 129, (1993)
J.J. Lissauer, G.R. Stewart: Protostars and Planets III, (E.H. Levy and J. Lu-

nine, University of Arizona Press, Tucson, 1061, 1993)
R.V. E. Lovelace, H. Li, S.A. Colgate, A.F. Nelson: ApJ 513, 805, (1999)
S.H. Lubow, P. Artymowicz: Protostars and Planets IV, (V. Mannings,
A. P. Boss, and S.S. Russell, University of Arizona Press, Tucson, 731, 2000)

S.H. Lubow, G.I. Ogilvie: ApJ 504, 983, (1998)
S.H. Lubow, J.E. Pringle: ApJ 409, 360, (1993)
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