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Abstract —The Sanskrit text Bhägavata Puräëa gives a detailed account of the 
earth as a disk, divided into a series of concentric, ring-shaped oceans and islands. 
This paper explores the hypothesis that the earth disk can be interpreted as a 
geocentric map of the solar system, showing how the planets approach and recede 
from the earth. 
 

Introduction 
 
 

 It is widely believed that the ancients thought of the earth as a flat disk. 

However, there is evidence that the flat earth of classical antiquity may have been 

a misinterpretation of a realistic astronomical concept dating back to an earlier 

time. In their book Hamlet’s Mill, Giorgio de Santillana and Hertha von Dechend 

(1969) studied the myths and legends of societies from around the world and found 

evidence for an “archaic” culture antedating the ancient civilizations we know of 

today. Here is what they said about how this archaic culture viewed the earth: 

 

“It is necessary to explain again what this ‘earth’ is that modern interpreters like to 

take for a pancake. The mythical earth is, in fact, a plane, but this plane is not our 

‘earth’ at all, neither our globe, nor a presupposed homocentrical earth. ‘Earth’ is 
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the implied plane through the four points of the year, marked by the equinoxes 

and solstices, in other words the ecliptic” (op. cit., p. 235). 

 

 The Bhägavata Puräëa contains an account of an earth disk that may 

illustrate the ideas of Santillana and von Dechend. The Bhägavata Puräëa or 

Bhägavatam is a Sanskrit text sacred to the Vaiñëavas or worshippers of Viñëu. 

Scholars generally date it somewhere between the 8th and the 10th centuries A.D. 

(Hardy, 1983, pp. 486–88), and astronomical evidence in the text itself points to a 

date no earlier than about A.D. 500.   

 The Bhägavatam appears to describe the earth as a disk, called Bhü-

maëòala or earth mandala. This disk is 500 million yojanas in diameter,1 and it is 

divided into a series of concentric ring-shaped oceans and islands. The islands, 

called dvépas, are further subdivided by mountains, rivers, and other geographical 

features. A schematic diagram of Bhü-maëòala is given in Figure 1. The radii of 

the dvépas, oceans, and ring mountains are given in  Table 1. 

 The disk of Bhü-maëòala is said to cut the sphere of the universe in half, 

and it has the same diameter as the universe. The universal sphere is called the 

Brahmäëòa, or “Brahma-egg,” and it  contains the sun, the moon, and the planets. 

There are also  a few stars, as well as lower and higher worlds extending 

perpendicular to Bhü-maëòala. 

                                         
1 The length of the yojana is not well-defined in the existing Sanskrit literature, and a 
variety of lengths have been given for it, ranging mostly from 5 to 10 miles (see 
Cunningham, 1871). 
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TABLE 1 
   N    Radius   Thickness Geographical type     Sanskrit  name 
   1          50             50 Island (dvépa)     Jambüdvépa 
   2        150           100 Ocean     Lavaëoda 
   3        350           200 Island     Plakñadvépa 
   4        550           200 Ocean     Ikñurasoda 
   5        950           400 Island     Çalmalédvépa 
   6     1,350           400 Ocean     Suroda 
   7     2,150           800 Island     Kuçadvépa 
   8     2,950           800 Ocean     Ghåtoda 
   9     4,550        1,600 Island     Krauïcadvépa 
  10     6,150        1,600 Ocean     Kñéroda 
  11     9,350        3,200 Island     Çakadvépa 
  12   12,550        3,200 Ocean     Dadhimaëòoda 
  13   15,750        3,200 1/2 Island & mtn.     Mänasottara mtn. 
  14   18,950        3,200 1/2 Island     Puñkaradvépa 
  15   25,350        6,400 Ocean     Svädüdaka 
  16   41,100      15,750 Region     Loka (Inhabited) 
  17 125,000      83,900 Region & mtn.     Lokäloka mtn. 
  18 250,000    125,000 Region     Aloka varña 

   The radii in thousands of yojanas of the features of Bhü-maëòala, as given 
in the Bhägavata Puräëa.  The oceans, islands (dvépas), and regions are all 
annular in shape. The radial thickness and the outer radius of each annulus 
are listed. There are two circular mountains. The first, called Mänasottara, 
cuts the island of  Puñkaradvépa in half. The second, called Lokäloka, is the 
outer boundary of the annular region called Käïcanébhümi. 

 

 The Bhägavatam gives several reasons for identifying the plane of Bhü-

maëòala not with a primitive flat earth, but with the solar system. The sun, moon, 

and planets are said to orbit “above” this plane (towards celestial north). Their 

orbits are contained within a thin, cylindrical disk of antarikña (“inner space”), 

which is shown in Fig. 2. This disk has Bhü-maëòala as its base, and its thickness is 

equal to the distance from Bhü-maëòala to the beginning of the region of heaven 

called Svargaloka. The thickness is 3.8 × 106 yojanas, much smaller than the 250 × 

106 yojana radius of Bhü-maëòala itself. Thus the orbits of the planets are 
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bounded within a narrow region between two planes that cut across the middle of 

the universal sphere. 

 In Figure 2, the disk of antarikña is shown on the right. The spacing between 

the two bounding planes has been multiplied by 3 for visibility. The planetary 

orbits in antarikña are reminiscent of the solar system, where  each planet orbits 

the sun in a plane. The solar system is shown on the left of Fig. 2, with the same 

stretching of the vertical axis by a factor of 3. (Pluto was omitted in this figure due 

to its 17-degree orbital inclination.) 

 The planes of these orbits lie at small angles to one another, and thus all the 

orbits are close to one plane. The plane of the earth’s orbit is called the ecliptic, 

and this is also the plane of the sun’s orbit, from the point of view of an observer 

stationed on the earth. To an observer on the earth, the solar system is a more-or-

less flat arrangement of planetary orbits that stay close to path of the sun. Thus, 

Bhü-maëòala can be interpreted as a plane parallel to the ecliptic and bounding 

the planetary orbits on one side (towards celestial south), while the parallel plane 

of Svargaloka bounds them on the other side (towards celestial north). 

 A notable feature of Bhü-maëòala is that it agrees with the solar system in 

scale. This is shown in Figs. 2 and 3, where Bhü-maëòala is plotted next to the 

solar system using 8 miles per yojana—the standard used in the Bhägavatam 

translation that we consulted (Bhaktivedanta, 1982). 

 This agreement in scale becomes particularly striking if we restrict our 

attention to the five planets,  Mercury, Venus, Mars, Jupiter, and Saturn, that are 

visible to the naked eye. We see that their apogees and perigees tend to line up 

with the circular features of Bhü-maëòala. Our main thesis in this paper is that 

these circular features of can be interpreted as a map showing apogees and 

perigees of the sun and these five visible planets. 
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Model and Results 

 

 Bhü-maëòala is earth-centered. In contrast, the orbits of the planets are 

centered on the sun. How, then, can they be compared with earth-centered 

features of Bhü-maëòala?    

 The solution is to express the orbits of the planets in geocentric (earth-

centered) form. Although modern astronomy treats these orbits as heliocentric 

(sun-centered) in orbital calculations, they can be expressed in relation to any 

desired center of observation, including the earth.  

 The geocentric orbit of a planet is a product of two motions, the geocentric 

motion of the sun around the earth and the motion of the planet around the sun. 

This is shown in Fig. 4 for the planet Mercury. The looping curve of the planet’s 

geocentric orbit lies between two boundary curves, marked A and B in the figure. 

If we continue plotting the orbit for a long enough time, it completely fills in the 

donut-shaped area between these two curves.  

 This is exactly what we did for the five planets, Mercury, Venus, Mars, 

Jupiter, and Saturn, using the planetary subroutines of Duffett-Smith (1985) for 

geocentric ecliptic coordinates.  

 To compare the resulting geocentric orbits with the features of Bhü-

maëòala, we first compute the orbits and convert them from miles to yojanas. We 

use 1 yojana = y miles, where we allow y to vary from 1 to 16—an interval that 

covers the known historical range of possible yojana lengths. Then we superimpose 

the orbits on a map of Bhü-maëòala and observe the results. 

 For the value of y = 8 miles used in the translation of the Bhägavatam that 

we consulted, we saw that the pattern of Bhü-maëòala tended to match the pattern 



6 

of the solar system out to Saturn in an interesting way. In the solar system, the 

orbits of the outer planets Jupiter and Saturn are noticeably larger in scale than 

the orbits of the inner planets, Mercury through Mars. When superimposed on 

Bhü-maëòala, the orbits of the inner planets fell on the small inner cluster of seven 

dvépas and oceans (called Saptadvépa), and Jupiter and Saturn fell on a large outer 

annulus (Käïcanébhümi). Thus the structure of Bhü-maëòala seemed to mirror the 

structure of the solar system.  

 If we examine the orbits of Mercury, Venus, and Mars, we see that each 

orbit seems to go from a perigee near one circular feature of Saptadvépa to an 

apogee near another circular feature. The apogee of Saturn and the perigee of 

Jupiter also line up with the boundary circles of  Käïcanébhümi. The agreement is 

rough for 8 miles/yojana, but it becomes quite striking if we shift to about 8.5 

miles/yojana.  

 These alignments are shown graphically in Figs. 5–8, but before discussing 

them, we must consider whether or not a unique yojana length y gives a good 

alignment and, if so, how y is to be determined. To find an optimal y, we need to 

define a measure of “goodness of fit,” G(y).  

 Each boundary curve has two extreme points, where it becomes tangent to 

a circle centered on the earth. These are indicated in Fig. 4. For the outer 

boundary curve, these are the apogee of the planet, and the point designated 

apogee-, where the boundary curve approaches closest to the earth. For the inner 

boundary curve they are the perigee of the planet and the point, perigee+, where 

the curve is furthest from the earth. These 4 points are called orbital turning 

points. 

 By observation, we arrived at the hypothesis that each orbit has at least one 

turning point that matches the radius of a circular feature of Bhü-maëòala. 

Assuming y miles per yojana, we can evaluate how good a match is as follows:  
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 For each planet, Mercury through Saturn, find the smallest difference 

between a Bhü-maëòala feature radius and an orbital turning point converted into 

yojanas using y. The difference is expressed as a percentage of the width of the 

Bhü-maëòala ring in which the turning point falls. Do this over the set of all 

circular features of Bhü-maëòala (listed in Table 1) and over the set of 4 orbital 

turning points of the planet. Take the root mean square of these minimal 

percentage differences for the five planets. The reciprocal of this is called G(y). It 

is large if the orbits line up well with the circular features, and it is small if they do 

not line up well.  

 In Fig. 11, G(y) is plotted as a function of y, which is allowed to range from 

1 to 16 miles. We can see that the curve has a pronounced peak at 8.534 miles. This 

length of the yojana is singled out as optimal, and there are no notable peaks for 

any other yojana lengths. 

 To check this result, we also defined another goodness of fit function, C(y), 

which is discussed below. This has a pronounced peak at 8.489 miles, and this 

differs by 0.53% from the yojana length obtained from G(y). C(y) is also plotted in 

Fig. 11. 

 Table 2 shows how the geocentric orbits of the five planets and the sun 

compare with Bhü-maëòala features, using an optimal yojana length of 8.489 

miles. 

 In the table, we see a tendency for perigees and apogees of planets to align 

closely with Bhü-maëòala feature radii, although this correlation is not perfect. In 

the case of Mercury, the alignments of the perigee and apogee are about 8% and 

4%, respectively. Thus the inner boundary of Mercury’s orbit swings in and nearly 

grazes feature 10 in Table 1, and its outer boundary swings out and nearly grazes 

feature 13 (see Fig. 5). 
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 For Venus, the perigee and apogee are, respectively, within about 6% of 

feature 8 and 1% of feature 14 (see Fig. 6). Mars does not do as well. Its perigee  

 

TABLE 2 
N Planet turning 

point 
turning 
point  
radius 

inner 
feature 
radius 

outer 
feature 
radius 

% error 

 10 Mercury  perigee 6019.37 4550.     6150. 8.16 
 10 Mercury  perigee+ 7410.30 6150.     9350. 39.38 
 13 Mercury  apogee- 14486.08 12550.    15750. 39.50 
 13 Mercury  apogee 15882.92 15750.    18950.  4.15 
  8  Venus  perigee 2902.88 2150.     2950.  5.89 
  8  Venus  perigee+ 3173.21 2950.     4550. 13.95 
 14  Venus  apogee- 18740.67 15750.    18950.  6.54 
 14  Venus  apogee 19014.22 18950.    25350.  1.00 
 11  Sun  perigee 10760.79 9350.    12550. 44.09 
 11  Sun  mean 10950.49 9350.    12550. 49.98 
 12  Sun  apogee 11139.72 9350.    12550. 44.07 
  9  Mars  perigee 4075.18 2950.     4550. 29.68 
 10  Mars  perigee+ 7382.63 6150.     9350. 38.52 
 15  Mars  apogee- 25972.60 25350.    41100.   3.95 
 15  Mars  apogee 29282.39 25350.    41100. 24.97 
 16  Jupiter  perigee 43315.33 41100.   125000.  2.64 
 16  Jupiter  perigee+ 48709.66 41100.   125000.  9.07 
 16  Jupiter  apogee- 65203.62 41100.   125000. 28.73 
 16  Jupiter  apogee 70599.14 41100.   125000. 35.16 
 17  Saturn  perigee 87237.21 41100.   125000. 45.01 
 17  Saturn  perigee+ 99819.00 41100.   125000. 30.01 
 17  Saturn  apogee- 109080.82 41100.   125000. 18.97 
 17  Saturn  apogee 121738.82 41100.   125000.   3.89 
Correlation between radii of Bhü-maëòala features and orbital turning points. 
The feature radii are from Table 1, and are in thousands of yojanas. Each 
turning point falls between two feature radii and is compared with the one 
which is closest. The percent error is the difference between the turning point 
and this radius, expressed as a percentage of the difference between the two 
feature radii. The orbital turning points are calculated using a modern 
ephemeris program for the epoch of A.D. 500, using 8.489 miles/yojana. 
 

and apogee come within 30% and 25% of features 9 and 15, although its third 

turning point (apogee- in the table) comes within 4% of feature 15 (see Fig. 7). 
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The turning points of Jupiter and Saturn fall, respectively, within 3% to 35% and 

4% to 45% of  features 16 and 17 of Table 1 (see Fig. 8). 

 We include the sun in the table as a special case. The sun’s geocentric orbit 

is different from that of the planets, in that it is produced by a single heliocentric 

motion, rather than two. It therefore has only two turning points, the sun’s perigee 

and apogee, which are nearly equal to one another. The perigee falls 44% higher 

than feature 11, and the apogee falls 44% lower than feature 12. Thus the mean of 

the sun’s apogee and perigee lies almost exactly halfway across the “ocean” 

spanning features 11 and 12 (see Fig. 9). 

 The boundary curves of Mercury through Mars are plotted together in Fig. 

10, without the overlapping curves of the orbits themselves.                                       

 In Table 2, N lists the number of the feature that comes closest to the 

indicated orbital turning point. We will say that this feature is “used” by that 

turning point. The feature numbers, N, are related to the planets as indicated in 

Table 3. The numbers in this table reflect the heliocentric arrangement of the solar 

system, and they also reflect the fact that Mercury, Venus, and Mars (but not 

Jupiter and Saturn) can come closer to the earth than the sun. We would expect a 

random series of alignments to use some features and omit others in an irregular 

fashion. So it is noteworthy that all of the features from 8 to 17 are used in the 

pattern in Table 3.  
                                          

          TABLE 3 
 perigee apogee 
Sun 11 12 
Mercury 10 13 
Venus   8 14 
Mars   9 15 
Jupiter 16 16 
Saturn 17 17 
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 The information in Tables 2 and 3 can be evaluated using several criteria 

which assess the strengths and weaknesses of the orbit correlations. These are as 

follows: 

 

(1) First, there are two points based on the text of the Bhägavatam. Features 

beyond the circular Lokäloka “mountain” (radius 17) should not be used in the 

alignment, since it is said in the text that no luminaries (planets) pass beyond 

Lokäloka mountain. Also, the sun should  be somewhere between the center 

(earth) and the circular Mänasottara mountain (feature 13).   

 We call these criteria 1a and 1b, respectively, and we assign them 1 or 0 for 

true or false.  Both are satisfied by Table 2. 

 

(2) In the ideal pattern, each perigee and apogee of a planet (or the sun) should 

come close to a Bhü-maëòala ring. To show how well this is satisfied, let n be the 

number of perigees or apogees within P percent of their closest feature radius. 

Using P = 6%, the pattern in Table 2 is assigned 5, but the highest possible value 

would be 11 (2 for each planet and at most 1 for the sun). 

 

(3) It would be ideal if each feature corresponded to exactly one perigee or 

apogee. So let r be the ratio of the number of features with this property to the 

total number of features used. The pattern in Table 3 is assigned r = 8/10 by this 

criterion, since features 8–15 each correspond to one perigee or apogee. In 

contrast, feature 16 serves for both the apogee and the perigee of Jupiter, since the 

apogee lacks a ring of its own. The situation is similar for feature 17 and Saturn. 
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Ideally, all circular Bhü-maëòala features should be used in the alignment, since 

unused features would be superfluous in a planetary map.  Criteria 4–6 address this 

idea: 

 

(4) Let n be minus the number of unused features from Jambüdvépa up to the first 

feature used in the alignment. The minus sign is chosen, since the pattern gets a 

lower evaluation as n increases. Here the pattern in Table 2 gets a low score of -7, 

since the used features begin with number 8.  

 

(5) Let m be minus the number of unused features between Lokäloka mountain 

and the outermost used feature. In this case, the pattern in Table 2 is assigned the 

highest score of 0. 

 

(6) Finally, let k be minus the number of blocks of contiguous unused features in 

the whole pattern. This measures how much the pattern is broken up by unused 

circles. By this measure, the pattern in Table 2 is assigned -1.  

 

 Criteria 2–6 are intended to express what we would expect to find in a solar 

system map in which perigees and apogees of geocentric planetary orbits are 

represented by a series of concentric circles, and they also express criticisms that 

can be lodged against the map given in Table 2 and in Figs. 5–10. To sum up, in 

such a map, each perigee or apogee should correspond to a circle, and each circle 

should correspond to a perigee or apogee. Criteria 1a and 1b express the special 

roles of Lokäloka mountain and Mänasottara mountain.  

 Our first observation is that the 6 criteria can be used to define the optimal 

yojana length, without making any reference to the goodness of fit function, G(y).  

Consider the range of possible yojana lengths from 1 to 16 miles. For a given 



12 

yojana length, add criteria 1a, 1b, and 2–6 together, using weights designed so that 

each criterion varies over the same range on the interval of possible yojana 

lengths. This is done to give the criteria equal weight. The resulting curve C(y) is 

plotted in Figure 11, along with G(y). (We added 10 to the curve to make it 

positive.) As we pointed out above, this curve has a pronounced maximum at 8.489 

miles, close to the maximum of G(y).  

 

Critical Analysis of the Results 

 

 It is clear that Bhü-maëòala, as described in the Bhägavatam, can be 

interpreted as a geocentric map of the solar system out to Saturn. But an obvious 

and important question is: Did some real knowledge of planetary distances enter 

into the construction of the Bhü-maëòala system, or are the correlations between 

Bhü-maëòala features and planetary orbits simply coincidental?  

 One problem with interpretations in general is that they pick out certain 

features from a body of material, while neglecting others. This choice may be 

dictated by the pattern that is being seen, and thus this pattern may be imposed by 

the viewer on the evidence, rather than being inherent in the evidence itself.  

 In this case, the decision to give an astronomical interpretation to an 

ostensibly geographical description is supported by substantial material in the text 

of the Bhägavatam connecting Bhü-maëòala and the adjoining region of antarikña 

with the ecliptic (sun’s orbit) and the planetary orbits. The circular features of 

Bhü-maëòala stand out as the most likely candidates for an astronomical 

interpretation, due to their shape and to the fact that they have roughly the right 

size for planetary orbits. Also, since they are given dimensions in the text, they can 

be examined quantitatively. 



13 

 Given this starting point, we can carry out a statistical analysis by defining a 

null hypothesis as follows: The medieval author of the Bhägavatam had no access 

to correct knowledge of planetary distances, and therefore all correlations between 

Bhü-maëòala features and planetary distances are due to chance.  

 If such a null hypothesis involves a known statistical distribution, such as a 

normal distribution, then there are standard statistical methods for evaluating 

whether or not the observed data satisfy this hypothesis. The basic method would 

be to ask how probable the correlations in question are, given a statistical 

distribution of possible Bhü-maëòala features. The problem is that we do not 

know this statistical distribution.  

 Nonetheless, by looking at the Bhägavatam’s discussion of distances in Bhü-

maëòala, we can make some general observations about how these distances were 

expressed numerically. For example, from Table 1, we see that large powers of 10 

were used. Throughout Puräëic literature, numbers such as sahasra (1,000), lakña 

(100,000), and koöi (10,000,000) are common. Fractions of these numbers, such as 

1/2, 1/4, and 1/8 are also common, and we see such fractions in the table. The table 

also shows procedures such as doubling a previous distance. In other parts of the 

Bhägavatam, we encounter multiples of a previous distance by 10 (i.e. the shells of 

the Brahmäëòa). 

 Table 1 thus presents a combination of regular rules and seemingly 

arbitrary decisions, such as the decision to set thickness 16 equal to radius 13 

instead of doubling thickness 15. We took the null hypothesis to mean that such 

decisions were made by complex cultural causes that would be effectively random 

relative to the unknown dimensions of the solar system. Thus, we interpret Table 1 

as a combination of regularity and effectively random choice. 

 Based on such observations, we wrote an algorithm to generate sets of 

artificial Bhü-maëòala feature radii. This algorithm applies rules generalized from 
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Table 1, and it applies these rules in a random fashion. We are prepared to make 

the C code for this algorithm available for examination. Although the algorithm is 

in many ways arbitrary, it does generate sets of radii similar to those in Table 1, 

and one particular set of random choices generates Table 1 itself. (In line with the 

table, the algorithm also designates one ring as “Mänasottara mountain” and 

another as “Lokäloka mountain.”) 

 We used this algorithm to determine how common are patterns which 

satisfy the criteria we have discussed above. The specific method is as follows: We 

say that a randomly generated set of radii and a particular yojana length satisfies a 

criterion if it does as well or better by this criterion than the actual set of radii 

defined in Table 2, using 8.489 miles/yojana. Let x and y be two sets of rings and 

yojana lengths. If C(x) represents a criterion for x, then x does as well or better 

than y on C if C(x)>=C(y). 

 The purpose of the “as well or better” rule is to avoid the following 

problem: If we observe that one thing matches another, we may be misled by 

adopting loose criteria for a match, so that a match by our criteria may be quite 

probable by chance. But if the formal analysis considers matches that are as loose 

as those we observe, then it should reveal whether such loose matches are 

probable or not. 

 We combined criteria 1a and 1b into a single criterion, (namely  1a and 1b), 

and we included the “goodness of fit” function G(y) as a 7th criterion.  

 For each subset of these 7 criteria, we calculated the probability that a 

randomly generated set of radii satisfied all the criteria in the subset for some 

yojana length between 1 and 16 miles. This was done by using a computer to 

generate 20,000 random sets of rings, and checking each set for the full range of 

yojana lengths. (We used an increment of .00375 miles in yojana length). 
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 The probability that criterion k is satisfied is fairly large for each k=1,...,7, 

considered separately. These percentages are listed in columns 1 and 2 of Table 4, 

below. But if we combine several criteria, the percentage goes down rapidly. This 

is illustrated in columns 3 and 4. For example, 0.785% of the trials satisfied all of 

the criteria from 1–5, and none of the trials satisfied criteria 1–6 or 1–7. 

 Note that the addition of criterion 4 reduced the percentage only slightly, 

from 6.39% to 6.035%. This is due to the fact that the original pattern in Table 2 

does not score very well on criterion 4, and therefore many randomly generated 

patterns do as well or better on this criterion. However, the addition of criterion 6 

reduces the percentage from 0.785% to 0%. This is because the original pattern is 

not broken up by unused circles, even though this is likely to happen by chance. 
  

     TABLE 4 
  Individual 

Criteria 
Percentage Combined 

Criteria 
Percentage 

          1:   45.695        1:         45.695       
          2:   43.405        12:         29.680      
          3:   24.705        123:           6.390     
          4:   59.780        1–4:           6.035    
          5:   64.300        1–5:           0.785   
          6:   74.410        1–6:           0.000  
          7:   27.135        1–7:           0.000 
       

 If we combine 6 with 1, 2, and 3 directly, we find that the 4 criteria 1236 are 

satisfied by only 0.04% of the trials. Leaving aside 1, we find that 0.105% of the 

trials satisfy the 3 criteria 236. These are among the strongest criteria, in the sense 

that no more than about 1 set of artificial radii in 1000 do better than Table 2 on 

these 3 criteria combined, for some yojana length between 1 and 16 miles. 

 Criterion 7, the goodness of fit function G(y), also has a strong effect, 

especially in combination with 6. Thus the combination 267 is satisfied for 0.23% 
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of the trials and 367 is satisfied for 0.03%. The combination 2367 was satisfied for 

only 1 of the 20,000 trials (0.005%). 

 Criteria 2–6 are general in nature, and they are designed to penalize 

irregularities in the correlation between Bhü-maëòala features and perigees and 

apogees of planets. Ring patterns satisfying criteria 2, 3, and 6 for some yojana 

length have a probability of about 0.1%, and this probability goes down sharply as 

more criteria are added. It can be concluded that patterns of rings satisfying such 

combinations of criteria are quite rare in the output of our pattern-generation 

algorithm, which was intended to create sets of rings similar to those of Bhü-

maëòala in the Bhägavatam. This seems to go against the null hypothesis, which 

says that any correlation between Bhü-maëòala features and planetary orbits must 

be coincidental. The alternative to the null hypothesis is that some real knowledge 

of planetary distances may have entered into the construction of the Bhü-maëòala 

system in the Bhägavatam. 

 

Historical Considerations 

  

 One natural question is: If the Bhägavatam incorporates knowledge of 

planetary distances, then when did this knowledge originate and how did it come 

to be incorporated into the text? Unfortunately, it is difficult to give a definite 

answer to this question, since we know very little about the origin of the 

Bhägavatam. Hardy (1983) attributes the Bhägavatam to 9th-century South India 

on linguistic and literary grounds, but it is hard to say where or when specific 

information in the text may have originated. Thus O’Flaherty (1975, p. 16)  

remarks that, “since the Epics and Puranas represent an oral tradition that was 

constantly revised over a period of several thousand years, a passage actually 

composed in the twelfth century A.D. may represent a surprisingly accurate 
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preservation of a myth handed down since the twelfth century B.C.—or a 

completely original retelling of that myth.”  

 References in the text to the zodiac, with the vernal equinox in the 

beginning of Aries (Meña), suggest input from the jyotiña sañtras— Indian 

astronomical texts that are generally traced to Hellenistic Greek sources (Pingree, 

1976). However, the Bhägavatam presents astronomical information in a way that 

is quite different from the jyotiña sañtras, and thus it appears to be connected with 

a different astronomical tradition. Of course, the jyotiña sañtras, in line with Greek 

astronomy, make the distances to the planets much smaller than they really are. 

 Cosmological presentations similar to that of the Bhägavatam are found in 

other Puräëas, in the Mahäbharata, and in Jain and Buddhist texts (Harley and 

Woodward, 1987). The Jain and Buddhist cosmologies are particularly complex, 

and they seem to be imaginative elaborations of themes originating in earlier 

Hindu cosmology. Harley and Woodward (op. cit., p. 372) point out that paintings 

portraying these cosmologies generally pay little attention to quantitative 

dimensions, even though these may be mentioned in written texts. 

 Puräëic cosmology is generally similar to that of the Bhägavatam, with some 

variations in nomenclature and in quantitative dimensions. From a survey of 

Puräëas, we concluded that many Puräëic presentations of Bhü-maëòala appear to 

be garbled and incomplete. Of the texts we examined, only the Bhägavatam gives a 

complete and consistent account of the dimensions of the different features.  

 If the dimensions given in the Bhägavatam do, in fact, represent realistic 

planetary distances based on human observation, then we must postulate that 

Bhägavata astronomy preserves material from an earlier, and presently unknown, 

period of scientific development. Other texts represent elaborations of material 

from this earlier period, with varying degrees of divergence from the original. 
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 This hypothesis should be pursued by seeking other evidence of an earlier 

astronomical school. However, we should also mention another hypothesis based 

on the traditions surrounding the Bhägavatam itself. This is that the text is a 

product of divine inspiration, and therefore it may encode levels of meaning not 

understood even by the author himself. According to this hypothesis, the 

Bhägavatam may contain information that was unknown in the period of its 

composition, but which can be discerned in the text now on the basis of our more 

advanced scientific knowledge. In this case, a simple model of the ecliptic, which 

could have been based on Greek astronomy, is supplemented by information 

reflecting advanced knowledge of planetary distances. 
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Figure Captions 

 
Figure 1.  The circular features of Bhü-maëòala, drawn to scale. The rings on the 
left are collectively called Saptadvépa, and they are a subset of Bhü-maëòala, 
which is shown on the right.  
 
Figure 2. The solar system out to Neptune, compared with the region of planetary 
orbits, as described in the Bhägavatam. The planets are said to orbit between the 
two disks of Bhü-maëòala and Svargaloka. The scale assumes 8 miles per yojana, 
and the angle of view is 75 degrees from the vertical. Vertical relief (perpendicular 
to the ecliptic) is multiplied by 3 so that it can be seen in the figure. 
 
Figure 3. The solar system, compared with Bhü-maëòala. The scale assumes 8 
miles per yojana.  
 
Figure 4. The structure of a geocentric orbit (of Mercury, in this case). The 
geocentric orbit of a planet is bounded by boundary curves A and B, each of which 
has two extreme points relative to the center. These are marked as perigee, 
perigee+, apogee-, and apogee. 
 
Figure 5. The geocentric orbit of Mercury, compared with Bhü-maëòala using 
8.489 miles/yojana. 
 
Figure 6. The geocentric orbit of Venus, compared with Bhü-maëòala using 8.489 
miles/yojana. 
 
Figure 7. The geocentric orbit of Mars, compared with Bhü-maëòala using 8.489 
miles/yojana. 
 
Figure 8. The geocentric orbits of Jupiter and Saturn, compared with Bhü-maëòala 
using 8.489 miles/yojana. 
 
Figure 9. The geocentric orbit of the sun, compared with Bhü-maëòala using 8.489 
miles/yojana. 
 
Figure 10. The boundary curves of the sun and Mercury through Mars,  compared 
with Bhü-maëòala using 8.489 miles/yojana. 
 
Figure 11. Plot of the two functions, G(y) and C(y),  measuring how well Bhü-
maëòala lines up with planetary orbits at y miles/yojana. The yojana length y 
ranges over 1 to 16 miles, an interval that encompasses nearly all known variants of 
the yojana. 
 
 


