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Units
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M2
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Pl = 1/(8πG).
MPl ∼ 10−5 g ∼ 1019 GeV.
lPl = 1/MPl ∼ 10−33 cm.
tPl = 1/MPl ∼ 10−44 s.

The main parameters of our Universe

Size: ∼ 1028 cm, or ∼ 6000 Mpc.
Age: ∼ 14 billion years.
The Hubble parameter: H0 = 100h km s−1 Mpc−1 ; h � 0.72.
Composition: ΩΛ � 0.72; ΩDM � 0.24; Ωb � 0.04.
∼ 1011 of galaxies concentrated in clusters, with voids between them.

xiii



August 17, 2012 9:40 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-fm

xiv Black Holes, Cosmology and Extra Dimensions

Our Galaxy, the Milky Way

Size: ∼ 50 kpc.
∼ 1011 of stars; neutron stars, white dwarfs, dark stars (brown dwarfs),
black holes, hidden mass (dark matter).

History of the Universe, main landmarks

Time since the
Big Bang Temperature, K Redshift Comments

10−43 − 10−37 s >1026 Inflation

10−6 s >1012 Quark-gluon plasma, electrons,
neutrinos and their antiparticles

3 · 10−5 s 1012 Baryosynthesis, nucleon formation

10−4 s – 3min. 1012 − 109 D, He, Li formation

15, 000 yrs 104 3000 Equal matter and radiation
densities

300, 000 yrs 4000 1300 Recombination, transparency of
the Universe

15·106 yrs 300 100 Room temperature in the Universe

1 − 3·109 yrs 20 6 Birth of the first stars

3·109 yrs 10 3 Formation of heavy nuclei in
Supernovae

3 − 14·109 yrs 3 1 Emergence of life and intelligence

1014 yrs — — Stellar formation stops

1037 yrs — — The last stars die

10100 yrs — — All black holes have evaporated



August 16, 2012 10:27 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-ch01

Chapter 1

Modern ideas of
gravitation and
cosmology — a brief essay

At the beginning of the 20th century, only two physical fields were known,
electromagnetic and gravitational. Einstein’s theory of special relativity
(SR), created in 1902–1905, described quite well the mechanical and elec-
tromagnetic phenomena at velocities up to the velocity of light, which
had been impossible in the framework of Galileo and Newton’s classical
approach. However, Newton’s theory of gravity, which was almost a per-
fect basis for celestial mechanics and all terrestrial physics, was formulated
using the old notions of absolute space and time and could not be reconciled
with SR where space and time were unified in Minkowski’s four-dimensional
geometry.

After the advent of SR there were numerous attempts to describe the
gravitational field in Minkowski space in the hope to include rapidly moving
gravitating objects into the theory. Newtonian gravity in such cases ought
to be recovered in the limit of small velocities.

Henri Poincaré, great French mathematician who had actually “dis-
covered” SR simultaneously with Einstein, was the first to try to extend
it to gravity, assuming a finite propagation velocity of the gravitational
field. The idea that gravity is transferred with the speed of light had
been expressed before, but without SR there was no proper geometric

1
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language for such ideas to underlie a consistent theory. But the fate of
special-relativistic theories of gravity was also not too happy. Despite being
intrinsically free of contradiction, they still faced serious problems. One
of them was their inability to explain the anomalous secular perihelion
advance of planet Mercury’s orbit, about 43′′ per century, which could not
be explained by Newton’s theory as well. This perihelion shift had been
quite confidently measured in astronomical observations.

By the way, Mercury is the fastest planet of the Solar system, and it was
natural to expect a manifestation of the new “gravity of high velocities” in
the peculiarities of its motion.

By Kepler’s laws, which follow from Newton’s universal law of grav-
ity, the planets of the Solar system move along closed elliptic orbits. This
ideal picture is true if each planet interacted with the Sun only. In reality,
the mutual influence of the planets upon each other slightly changes their
orbits, so that their ellipses slowly rotate from one revolution to another,
thus becoming unclosed spiral-like curves. These effects are calculated in
Newtonian celestial mechanics with high accuracy. The anomalous peri-
helion shift is obtained by subtracting all “normal” shifts (explained in
Newtonian physics by coordinate effects and gravitational perturbations
due to other planets, whose sum amounts to about 5558 angular seconds
per century) from the observed value of 5601′′ per century (see, e.g., [417]
for details).

One more circumstance of theoretical nature made any attempts to
describe gravity in the framework of SR, so to say, less attractive. Since
Galilean times it has been well known that, if one excludes air resistance,
quite different bodies — a bit of fluff, a wooden bar, a brick, a lead ingot,
a can of water etc. — fall to Earth with precisely the same acceleration.
The universality of free-fall acceleration was confirmed with high accuracy
(up to 10−9 ) in the Eötvös experiment with a torsion balance at the end of
the 19th century: in fact, it established an equivalence between the Earth’s
attraction force and the inertial centrifugal force due to the Earth’s diurnal
rotation. In Newton’s equations it is expressed as an equality between
the inertial and gravitational masses, the so-called equivalence principle
(EP). Newton’s theory itself cannot explain this equality, as well as all its
generalizations in the framework of SR.

The inertial mass that appears in the second law of Newtonian mechan-
ics �a = �F/m (acceleration is equal to force divided by mass) and the
gravitational mass that appears in the law of gravity are, in essence, quan-
tities of absolutely different physical nature. It was clear to Einstein that
an equality between them cannot be a mere coincidence and should have
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deep reasons. The universality of the action of gravity on all bodies led
him to the idea that became the basis of general relativity (GR): the grav-
itational field is a property of space itself, and this property should change
from point to point since the gravitational field is, in general, inhomoge-
neous. Therefore, the Minkowski space, which is flat, homogeneous (the
same at all its points) and isotropic (the same in all directions) is not suit-
able; gravity should warp and curve it. That is how emerges the idea of
curvature of physical space-time. And since the gravitational field is created
by heavy bodies, the same must be true for the curvature.

Certainly the main idea of GR, as any fundamental idea, had its forerun-
ners and proclaimers. Even N.I. Lobachevsky, discoverer of non-Euclidean
geometry, spoke in 1826 of a possible experimental determination of the
world’s geometry. Riemann (1854) and Clifford (1876) assumed that the
curvature of space must depend on the properties of matter that fill it, and
Clifford even expressed the idea that curvature may propagate by waves.
So the ideas as though wandered in air. But it was Einstein (in contact with
Hilbert, Poincaré and other outstanding mathematicians and physicists of
that time) who converted them into an elegant and logically consistent
theory.

The fruit was ripe by 1915. GR became one more step aside from the
simple and clear views of classical physics: the four-dimensional space-time
(or simply space, as is often said for brevity) became curved. Riemannian
geometry, the geometry of curved spaces, already invented by that time,
became a mathematical tool and a language of the new physical theory.

In Riemannian geometry, hence also in GR, the basic quantity used to
describe the space-time is the symmetric metric tensor gµν(xα) (the met-
ric), which depends on the four coordinates xµ and consequently changes
from point to point. The metric carries information on intervals between
close space-time points, or events, and in its terms one expresses the quan-
tities that directly characterize the space-time curvature, the Riemann and
Ricci tensors. It is the metric tensor components that are the unknowns
in the dynamic equations of GR, the Einstein equations (or the Hilbert-
Einstein equations, as they are sometimes called to emphasize Hilbert’s
substantial contribution in GR’s creation):

Rµν − 1
2
gµνR = −8πG

c4
Tµν (1.1)

In the general case, it is a set of ten nonlinear partial differential equa-
tions with respect to ten unknown functions of four space-time coordinates.
Their basic sense is a direct relationship between the space-time curvature
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(the left-hand side of the equations, called the Einstein tensor) and the
distribution and motion of matter (the right-hand side of the equations,
called the stress-energy tensor). Thus “matter tells space how to curve”.
Any solution to the Einstein equations describes some possible configura-
tion of matter and the gravitational field.

Just as SR did not cancel Newton’s mechanics (quite suitable at small
velocities), GR did not cancel SR, which is valid in any small region of a
curved but smooth space-time. The smaller the size of such a region, the
more precisely this region coincides with a certain region of the Minkowski
flat tangent space, and with greater accuracy hold SR and its numerous
consequences. The Newtonian theory of gravity also follows from GR under
proper conditions: Newton’s equations are obtained from those of GR in
the limit of small curvature (that is, in weak gravitational fields) and small
relative velocities of the gravitating bodies. Most of the observable phe-
nomena belong to this “weak regime”. But GR interprets the gravitational
forces in quite a different manner: these are now not forces but certain
geometric characteristics of the world lines along which the bodies move
in four-dimensional space-time. From the viewpoint of GR, a body falling
freely in a gravitational field moves without any external forces, and its
world line is a geodesic, a direct analogue of a straight line in flat space.

A phenomenon of utmost importance, absent in Newton’s theory but
predicted by GR, is the gravitational waves. Their existence directly follows
from the wave nature of GR equations and is confirmed (though so far
only theoretically) by their numerous wave solutions. There is also indirect
experimental data confirming their existence based on an analysis of pulsar
dynamics: a binary pulsar loses its energy just as predicted by the general-
relativistic radiation formulas.

GR readily responded to the observational challenge and surprisingly
precisely explained the above-mentioned anomaly in Mercury’s motion.
Another classical effect of GR available to verification is the effect of gravity
on light rays, leading to light bending in the field of a celestial body. By
Einstein’s calculation, light passing near the Sun should be bent by an angle
of 1,75′′ . A similar effect is obtained in Newtonian theory if one represents
light as a flow of particles flying, naturally, with the speed of light. But
then the calculated bending will be half as much as in GR: approximately
0,87′′ for a ray passing near the edge of the solar disk.

The total eclipse of the Sun on 29 May 1919 made it possible to measure
this effect by comparing the photos of stars near the solar disk closed by
the Moon with usual night photos of the same part of the sky. As was
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expected, for pictures taken during the eclipse, the stars turned out to be
slightly shifted from the disk edge as compared to their night positions. The
deflection angle varied in different observers’ data from 1,61′′ to 1,98′′ near
the disk edge, gradually diminishing in the outward direction, at an error
within 30′′ . So the sky confirmed the rightness of Einstein’s prediction.

It was a true triumph: a theory created on the tip of a pen, swiftly won
a place under the Sun. And what is even more amazing is that it generally
preserves its leading position even now, withstanding the challenges of time
and lots of experiments.

Einstein after Einstein

But let us not “run ahead of the engine” and return to the 20s and 30s
of last century. It was the time of physics’ active penetration into the
micro-world and formation of a language adequate to its properties —
quantum mechanics, later quantum electrodynamics and, wider, quantum
field theory. The quantum theory was first built in the framework of the old,
Newtonian concepts of absolute time and absolute space (nonrelativistic
quantum mechanics), and it required substantial effort to extend it to the
world of large velocities and high energies and to formulate its content in
Minkowski’s four-dimensional space-time.

The understanding of gravity as space-time curvature endowed GR with
an exclusive character as compared to all the rest of physics, and this was
in conflict with the feeling of unity of the material world, important for
both philosophers and physicists. On the other hand, in GR itself there
emerge quite a number of important problems, one of which is known as the
problem of energy. The notions of energy and other conserved quantities
play a very significant part in the structure of quantum theory. In flat
space, one easily formulates the energy, momentum and angular moment
conservation laws due to the symmetry of Minkowski space with respect to
temporal and spatial translations and rotations, forming the 10-parameter
Poincaré group. In curved space-time there are no such symmetries at all,
and it is therefore quite difficult to define the energy and momentum of
the gravitational field in GR in a consistent way.

For this and some other reasons, not all physicists have agreed with
GR, and even now there are repeated attempts to build a theory of gravity
in Minkowski space. Unlike the first attempts of this kind, the new authors
have learned to explain the classical observed effects of GR, and gravitation
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in such theories is represented by a field with normal conservation laws
and hopes to be quantized on equal grounds with other physical fields.
According to Will’s book [425], as early as in 1960 the number of such
theories exceeded 25. But neither then nor afterwards did such theories give
rise to really substantial interest (though certainly their followers would not
agree with such a conclusion).

Going the other way, the contrary trend “to reduce all physics to geom-
etry” created a number of new ideas which even now remain topical in
theoretical physics. In this connection, GR was considered (and is now
considered) as a basis for extension which can be achieved by introducing
more complicated geometries than the Riemannian one (Weyl, Eddington,
Cartan), space-time dimension larger than four with additional invisible
coordinates (Kaluza, Klein), and new requirements to the symmetry of the
initial formulation of the theory (Weyl’s gauge symmetry principle). An
ambitious task was then formulated, going far beyond a simple unification
of the gravitational and electromagnetic fields: to obtain, from a unified
field, all characteristics of the small number of elementary particles known
at that time. And Einstein was not aside from all this effort, he was a
leader of the program aimed at building a unified field theory on the basis
of GR, and he remained that leader to the end of his life.

A description of these attempts would lead us too much away from
our main subject, gravitation. Therefore we would like only refer to
Heisenberg’s words said in the early 60s: “It has been in essence a splendid
attempt But at the time when Einstein developed his unified field theory,
more and more new elementary particles were discovered, with their cor-
responding new fields. So there did not exist a steady empirical basis for
carrying out Einstein’s program, and his attempt did not lead to any con-
vincing results.” [Back translation from Russian.]

Even today the problem of creating a “theory of everything” remains
a central problem of theoretical physics.

The technological breakthrough

By the end of the 1950s, physics already knew four rather than two basic
interactions: the gravitational, electromagnetic, strong nuclear (due to
which protons and neutrons join to form atomic nuclei) and weak nuclear
(which is responsible for many particle transmutations and nuclear reac-
tions of which the most well-known is beta decay). Among them, the
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gravitational interaction appeared to be something of minor importance:
for particles, being much weaker than even the weak interaction, it seemed
absolutely insignificant in micro-world physics. The accelerators supplied
more and more new experimental data about the other three interac-
tions, and quantum field theory in flat Minkowski space experienced rapid
progress, formulating and solving various problems of particle physics.
Against such a background, gravitational studies seemed to be something
of extravagance. Yes, GR was recognized as a fundamental, almost philo-
sophical theory, important for the world outlook, but its experimental basis
was too poor: one effect, Mercury’s perihelion advance, was checked up to
1%, and another, light bending near the Sun, up to roughly 30%. The cos-
mological observations could only testify to a nontrivial geometry of the
Universe but could tell nothing about the validity of particular gravita-
tional equations. . . Kip Thorne, at that time a student and now one of the
most famous gravitational physicists, was advised by his professors not to
deal with GR, which, in their opinion, was a theory very weakly connected
with the rest of physics and astronomy. He did not obey such an advice
and, as far as we can guess, hardly regrets now.

The situation began to change only in the late 50s and early 60s. The
development of experimental technology made it possible to plan and carry
out a number of new tests of gravity while astronomical observations gave
more and more evidence of the existence of real sources of strong gravita-
tional fields in space. As the number of alternative theories of gravity grew,
tens of new effects were predicted along with suggestions to test them.

Amazingly it is GR that is being confirmed now with greater and greater
accuracy. Very briefly, that is how the present experimental status of GR
looks.

One of the fundamentals of GR, the equivalence principle, has been
confirmed, using torsion balances and various test bodies, to an impressing
accuracy of 10−12 by now [46]. It seems that the limit of experiments on
Earth’s surface has been reached by this result, due to inevitable atmo-
spheric, seismic, and technological noise. The planned satellite experiment
STEP (Satellite Test of the Equivalence Principle) [430] will raise the accu-
racy to 10−17–10−18 . The equivalence principle is predicted by all metric
theories of gravity, including GR and its numerous extensions where gravity
is identified with space-time curvature.

Another effect, which is also universal and common to a large class of
theories is the so-called gravitational redshift. Its essence is quite simple:
a photon, moving away from a gravitating centre, loses energy, hence its



August 16, 2012 10:27 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-ch01

8 Black Holes, Cosmology and Extra Dimensions

wavelength grows (the photon “reddens”), while if it approaches the centre,
it gains energy and becomes “more blue”. In the same way a stone thrown
up loses its speed but gains it while falling down. In GR this effect is
also related to the clock slowing-down: the more we approach a source
of gravity, the slower are clocks of the same physical nature. This effect
has been checked both for photons (the experiments of Pound, Rebka and
Snider with resonance photon absorption by atomic nuclei) [330, 331], and
directly for clocks (deflections in precision atomic clock readings in air
travels around the world) [193].

By the way it is this effect that makes GR not only an abstract theory
but really a working tool. And, it should be stressed, very well working.
The global positioning systems using satellites, of which the one named
GPS is the most well-known and widespread, are more and more actively
used in diverse military and civil applications and by lots of individuals.
The system includes high-precision clocks, whose rate depends on both
the satellite velocity (an effect of special relativity) and the Earth’s grav-
itational field (an effect of GR), therefore corrections taking into account
these effects are included in the signal calculation software: the on-board
clocks are periodically “slowed down” adjusting them to clocks located on
Earth. One satellite revolution around the Earth yields a clock difference
that, if neglected, leads to an error of 50 to 100 meters in determining the
coordinates of a receiver on Earth; meanwhile, the positioning accuracy is
on the order of a meter.

The light (and radio signal) bending effect has been checked many times
and with high accuracy, approaching 10−4 arcseconds. It became a basis for
the theory of gravitational lensing, the basic method used for discovering
otherwise-invisible heavy bodies in the Universe.

One more confirmation of GR is a measurement of radar echo delay
in the solar gravitational field (the Shapiro effect, sometimes called the
fourth classical effect of GR, in addition to the perihelion advance, light
bending and redshift). The delay is not caused by lower velocity of the
signals (the speed of light in vacuum is the same everywhere since spe-
cial relativity holds in a small neighborhood of every point) but by their
longer distance as compared to the calculated trajectory in flat space. The
experiments consisted of active radar tracking of spacecrafts, and the most
precise results have been obtained by using the Viking orbital and landing
components that reached the planet Mars in 1977 [369]. The effect itself
amounted to about 250 microseconds while the signals travelled for about
an hour in the interplanetary space.
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A measurement of a qualitatively different effect of GR at last produced
its final result in 2011: the mission is called Gravity Probe B [159, 426].
It was an amazing project that took 47 years and 750 million dollars [426]. It
was designed to test two fundamental predictions of GR, connected with
precession of a gyroscope in the gravitational field of a rotating body (this
time, the Earth) that had never been measured before, using four high pre-
cision gyroscopes on board a satellite orbiting the Earth at about 640km
above its surface. One of the effects is called geodetic precession: the space-
time curvature exerts a torque on the gyroscope so that its axis slowly pre-
cesses, in the relevant case, by about 6.6 arcseconds per year, in the plane
of the satellite’s orbit. The other phenomenon, called frame-dragging, or
the Lense-Thirring effect, causes a precession of the gyro axis perpendic-
ular to the orbital plane and amounts to 40 milliarcseconds per year. The
results once again well confirm the GR predictions: 6.602±0.018′′ vs. pre-
dicted 6.606′′ for the first effect (a relative uncertainty of about 0.27%),
and 0.0372±0.0072′′ vs. predicted 0.0392′′ for the second effect (a relative
uncertainty near 18%) [159].

All effects of GR in the Solar system are small corrections to the predic-
tions of classical physics, which have been confidently checked up to 10−3

by now, and a number of modern projects suggest an improvement by a few
orders of magnitude, reaching the second post-Newtonian approximation.

Much more interesting phenomena might be expected in strong grav-
itational fields. Observations bring us more and more new data on the
manifestations of strong gravitational fields in the Universe. Thus, neutron
stars, whose existence had been predicted by Oppenheimer and Volkoff as
early as in the 1930s (by the way, on the basis of GR) [320], were discovered
in 1967 as radio pulsars [202]. A rapid development of pulsar astronomy
and physics has led, among other things, to new tests of GR. The pul-
sars are superdense objects with masses of the order of the solar mass and
size of a few kilometers; quite often they are components of binary sys-
tems, sometimes rather close. In such systems there “operate” gravitational
fields stronger than those of the Solar system by factors of hundreds and
even thousands. The outstandingly high stability of pulsar “clocks” allow
for accurate tracking of the celestial mechanics of such a binary. This, in
particular, has brought about new confirmations of the GR prediction of
secular pericentre (analogue of perihelion) shifts in binary systems.

An even more substantial contribution to gravitation theory from pul-
sar observations is related to gravitational waves. Despite enormous effort,
they have not yet been observed directly, but binary pulsar observations
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unambiguously point at their trace: a slow decrease in the pulsar orbital
period indicates an energy loss, and, as obtained from a calculation by
general-relativistic formulas, such a loss can be explained with reasonable
accuracy by gravitational wave emission. Nowadays there are hardly any
people who doubt the reality of gravitational waves; on the contrary, dis-
cussed is a future advent of gravitational-wave astronomy as an important
source of data on the most violent events that occur in the Universe. On
the other hand, the above observational result immediately rules out many
alternative theories which predict the same effects as GR in the Solar sys-
tem but a more rapid energy loss by binary stars due to gravitational wave
emission.

The most popular and exotic prediction of GR is certainly the existence
of black holes. The image of huge insatiable mouths that devour everything
and return nothing has become, no exaggeration, a part of human culture,
from science fiction to folklore. Modern astrophysics considers black holes
as quite real objects in space, emerging as a result of gravitational collapse
of massive stars, while many phenomena in the cores of galaxies and quasars
are well explained by the existence of supermassive black holes of billions
of solar masses.

Curiously, the first exact solution of the Einstein equations, the
Schwarzschild solution (1916, [365]), characterizing the static field of a
gravitating centre, describes the simplest black hole. Though, the prop-
erties of the Schwarzschild solution were entirely understood only in the
50s [261, 392], and its peculiarities are sometimes a subject of controversy
even now.

Since the early 60s, black hole physics has been developing as an inde-
pendent line of investigations, and it has led to many interesting and unex-
pected results. Thus, it has been discovered that it is possible to mine
energy from rotating black holes by launching small bodies in their neigh-
borhood (thereby slightly slowing down their rotation) [325]; that black
holes can be at full rights considered as thermodynamic objects with cer-
tain temperature and entropy [29]; that black holes “evaporate”, emitting
energy to the ambient space precisely as usual bodies heated to the corre-
sponding temperature [197]. The Hawking evaporation process is connected
with quantum particle production in the hole’s classical gravitational field.
The black holes of stellar and larger masses evaporate extremely slowly,
and this does not affect any observable processes. Under real conditions,
on the contrary, a black hole increases its mass at the expense of mat-
ter falling. But this process is of utmost importance for small black holes
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which could have survived since the first stages of the Universe expansion.
Their evaporation gradually becomes stronger and stronger (since the
black hole temperature grows as the mass decreases) and ends with an
explosion.

In the third and fourth chapters of this book we introduce the basic
notions of black hole physics and briefly discuss their main properties.
A comprehensive presentation of this area of physics can be found, e.g., in
the books [168, 413].

There is one more, no less intriguing consequence of the description of
gravity in terms of space-time curvature. Indeed, if it is curved in principle,
it is quite natural to assume that under certain conditions the curvature
will be very strong — for example, it may lead to something like narrow
bridges between different weakly curved universes, or “handles” connect-
ing remote regions of the same Universe. Such geometric structures have
been named wormholes. If they really exist, then, at least in principle,
both time machines and interstellar travel become possible. It is not sur-
prising that all this is readily employed in science fiction — nowadays the
properties of wormholes and the conditions for their existence and construc-
tion are broadly discussed in special physical literature, see, e.g., Visser’s
book [405] and the review [265]. We will touch upon some of these questions
in Chapter 5.

To quantize or not?

As already pointed out, experiment entirely supports GR. However, the
picture is not so unclouded in theory. We have previously mentioned
the gravitational energy problem. Another well-known difficulty of GR
is the existence of singularities which emerge in the majority of exact
solutions to the Einstein equations and, in particular, they are hidden
beyond black hole horizons and occur at the beginning and, in some mod-
els, at the end of the cosmological evolution as well as in modelling isolated
bodies. These are, to put it simply, the points, lines or surfaces where the
space-time loses smoothness and the quantities characterizing the curva-
ture become either indefinite or infinite. Singularities may be connected
with infinite matter densities or pressures, but there also exist purely geo-
metric singularities, such as those in solutions to the Einstein equations in
vacuum, in the absence of any matter. The inevitability of singularities in
GR solutions has been proved under very general and reasonable conditions
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in a number of theorems, and this clearly indicates that GR is apparently
not very precise in its description of extremely strong gravitational fields.

Unlike event horizons, i.e., black hole boundaries (distinguished but
quite regular surfaces that work according to the remarkable principle
“everybody can come in, nobody can go out”), singularities represent a
real problem for the theory since they indicate, on the basis of the theory
itself, the places where it does not work any more. Thus GR itself prompts
to the necessity of going out of its own framework. How to do that? It is a
question of great importance, the subject of many studies and discussion,
maybe a question outside the framework of not only gravitation theory but
physics as a whole.

It seems natural, for example, to try to account for quantum
phenomena.

The relationship between gravity and quantum theory is a separate,
long and very intricate story. On the one hand, as any wave field, grav-
itation should possess quantum properties at small scales. On the other
hand, the mathematical procedures of quantization, working well in particle
theory, cope very poorly with space-time curvature. There are a few ways of
obtaining quantum versions of GR, but they lead to fundamentally different
results. For this reason it is often claimed that quantum gravity must not
be built on the basis of GR, but one should instead begin with formulating
a deeper and more general theory unifying gravity with other interactions.
It is well known that Einstein was for many years Bohr’s opponent in dis-
cussions on the interpretation of quantum mechanics (“God does not play
dice”). Quite possible, the nonacceptance of a probabilistic picture of the
world by Einstein was related to its incompatibility with GR.

Some qualitative arguments prompt what might be expected from
quantum gravity. Thus, from the three fundamental constants: the Planck
constant � (quantum of action, the attribute inherent to quantum mechan-
ics), the speed of light c (the equally fundamental constant of relativity, the
maximum velocity of matter and interaction transfer) and the gravitational
constant G (it is the same in Newton’s theory and GR) one can construct
a quantity with the dimension of length. It is called the Planck length ( lPl )
and is equal to approximately 10−33 cm — it is probably this characteristic
scale at which the space-time begins to display quantum properties. It is a
very small quantity: it is smaller that an atomic nucleus (about 10−13 cm)
by roughly the same factor by which such a nucleus is smaller than the
globe (∼107 cm).
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At such lengths there must be significant fluctuations of the metric and
even topology. Accordingly, at such lengths one can expect a foam-like
structure of space, which permanently changes, “breathes” at the Planck
time rate lPl/c . At still smaller lengths, the very notion of smooth space-
time becomes inapplicable, and instead of it, very likely, there is some
discrete (point) structure. All this is certainly nothing more than hypothe-
ses, but they have already given rise to numerous attempts of mathematical
calculations and observational predictions.

The zoo of theories

To have a general idea of what concerns gravitational physicists nowa-
days, it makes sense to look through the program of some recent large
gravitational conference. About a third of all talks presented will proba-
bly belong to classical GR, its astrophysical and cosmological applications.
The mathematical tools are being refined, including the methods of solving
the Einstein equations, new solutions are found and old ones are analyzed,
questions of principle are discussed and new observational effects are sug-
gested or predicted. In the experimental section, there are numerous works
on gravitational wave detection and suggestion of measurements in space.
There is inevitably a section or a few sections devoted to alternative theo-
ries of gravity, where the grand trend belongs to multidimensional theories
and unification of interactions including gravity. (Let us note that the very
word “alternative” — naturally, with respect to GR — stresses the pecu-
liar role of GR among gravitational theories.) A quantum section is also
certainly there.

Those who work on alternative or generalized theories pursue quite
diverse objectives. There are attempts to overcome the difficulties of GR
(such as, for instance, the gravitational energy problem) while preserving or
strengthening its advantages; there are attempts to take into consideration
principles and phenomena absent in GR. But probably the main point in all
new theories is an approach to gravity as a constituent of a future “theory
of everything” (or much more if not everything). The unified theories that
include gravity, as a rule, use more complex geometric structures than 4D
Riemannian geometry and new physical fields apart from the metric. Many
of them employ ideas put forward as long ago as in the 1920s. Each of them
reduces to GR under certain conditions or restrictions. And, as in GR, one
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seeks there solutions of physical interest (such as black holes, cosmologies,
etc.) and observational predictions.

Let us mention some examples, by no means exhausting the whole diver-
sity of approaches.

Scalar-tensor theories (STT). As is clear from the name, in these
theories gravity is characterized, apart from the metric that determines
the space-time curvature, by one or a few scalar fields. Let us present the
Lagrangian of the Bergmann–Wagoner–Nordtvedt general STT with a sin-
gle scalar field [36, 312, 412]:

LSTT = f(φ)R + h(φ)gµνφ,µφ,ν − 2U(φ) + Lm, (1.2)

where R is the scalar curvature, φ is the scalar field, f, h, U are arbi-
trary functions of φ , and Lm is the Lagrangian of all other matter. The
STT make the mathematically simplest extension of GR, which predicts,
in general, the dependence of the gravitational constant on the scalar
field and consequently on the position in space and time; it also pre-
dicts different values of classical gravitational effects from GR and more
types of gravitational waves. The Lagrangian (1.2) reduces to that of GR,
LGR = (R−2Λ)/(16πG), if the field φ is constant in the whole space-time.
(Here G is the gravitational constant and Λ is the cosmological constant.)

The observational data strongly constrain the choice of admissible STT.
Without touching upon the motivations that led Jordan, Brans and Dicke
in the 50s and 60s to formulation of the first STT [49, 219], let us note
that numerous scalar fields naturally emerge in various multidimensional
theories, in particular, those following from unification ideas, when reduced
to four dimensions.

Curvature-nonlinear theories. Another important class of extended
theories are those whose Lagrangian includes, apart from the scalar cur-
vature R , some other functions of R (the so-called f(R) theories) as well
as other curvature invariants. Their distinguishing feature is that their
gravitational field equations include third-order and higher derivatives of
the metric tensor whereas this order is no more than second in GR. As a
result, the set of solutions of these equations becomes much wider (though,
together with the difficulty of finding them).

It should be noted that the advent of curvature-nonlinear terms in the
gravitational Lagrangian is a direct consequence of quantum field theory
in curved space since such terms inevitably emerge in the regularization
and renormalization procedures necessary to give sense to the results of
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calculations [38, 178]. In other words, any theories which do not include
curvature-nonlinear contributions, should be regarded as approximate ones,
able to describe reality at small curvature only (certainly, to the extent that
we trust the methods of quantum field theory in curved space-time).

Gauge theories. The basic idea of gauge theories traces back to the works
of Hermann Weyl of 1918–1922, where he suggested using the equations
of gravity and electromagnetism with a richer set of symmetries than the
one contained in the Einstein equations. The additional symmetry includes
some transformations of the fields themselves. Beginning with the 50s (the
works of Yang and Mills), such symmetries, called local gauge symme-
tries, are widely used for a description of particles’ interactions. It is this
basic idea that has led to a unification of the weak nuclear interaction,
responsible, e.g., for beta decay, with the familiar electromagnetic inter-
action (Weinberg, Salam, Glashow). There are promising versions that
unify the resulting “electroweak” interaction with the strong nuclear one:
such theories are called Grand Unification Theories (GUTs). But all this
does not concern gravity. What is important is that gauge symmetries can
be described in terms of geometries of some special spaces (fiber bundles),
thus continuing the trend of geometrization of physics, see, e.g., the books
[39, 128, 248].

Attempts to include gravity in the general scheme of gauge theories
have led to different variants of gravitational theories with torsion which,
in addition to the curvature, is one of the forms of “warping” the flat geom-
etry (the Einstein–Cartan theory, the Poincaré gauge theory and others
[166, 215, 328]). It has turned out that in such theories one can get rid of
many kinds of singularities which exist in GR solutions as well as give new
formulations of the problems of energy and quantization.

Multidimensional theories, models of superstring origin. One more
idea related to geometrization of physics rests on the possible existence
of extra space-time dimensions. It traces back to the pioneering works
of T. Kaluza and O. Klein (1921) related to attempts to unify gravity
and electromagnetism. In recent decades this idea has become a necessary
ingredient of almost all attempts to unify all the four physical interactions.

Among the candidate “theories of everything”, probably the most pop-
ular are the so-called superstring theories [176, 230]. Strings are one-
dimensional micro-objects which, like, say, guitar strings can oscillate with
a certain spectrum of frequencies. These frequencies correspond to ener-
gies of different particles. The prefix “super” designates the presence of
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the so-called supersymmetry, a symmetry between bosons (particles with
integer spin) and fermions (particles with half-integer spins). Supersym-
metry requires that each boson have a fermion counterpart. Superstrings
“live” in curved spaces of dimensions 10 or 11 (depending on the partic-
ular version of the theory) and, under certain conditions, lead to a 10- or
11-dimensional version of GR. Classical GR is then obtained after distin-
guishing four “usual” coordinates in such spaces and inherits a large set of
diverse fields from its multidimensional prototype.

Brane worlds, wells and trenches. Let us say a few words on one of
the “fashionable” trends in the theory of gravity, the brane-world concept,
related to unification ideas and superstrings but being of interest of their
own as such.

All theories formulated in space-times of dimension higher than four
have to answer the question of why the extra dimensions are still not
observed. In the majority of models, beginning with those due to Kaluza
and Klein, the answer is like that: the extra dimensions are closed, or com-
pact, and have an extremely small size. A tube (a two-dimensional surface)
of a micron in diameter cannot be distinguished from a geometric line, a
one-dimensional object, without a microscope. The same happens to the
fifth or tenth dimension: since our instruments have not reached a suffi-
ciently small size (or, from the viewpoint of particle physics, a sufficiently
high energy), the world for us is four-dimensional.

But another answer is also possible: the fifth dimension is not small, it
can even be infinite, but ourselves and all observable particles and fields
are “confined” in a single four-dimensional surface, or a thin layer, and a
huge energy is required in order to leave it. It is like sitting on the bottom
of a deep well having no power to climb out. The well is extended in three
spatial dimensions, so it is more like a trench than a well: you can move
along it where you wish, but not up or aside.

Such a distinguished surface or layer is called a brane (the cut-off word
“membrane”), and the whole concept is called the “brane world”. The
first models of this sort were suggested in the 80s [10, 12, 322, 351] and
became very popular in a few recent years. It became clear that they lead
to new approaches in quite a number of problems of particle physics and
cosmology. From the viewpoint of the theory of gravity, it is of interest
that the gravitational field equations on the brane (the only field that we
can observe) are more complicated than the Einstein equations and lead to
somewhat different predictions. Thus, Newton’s law of gravity should be



August 16, 2012 10:27 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-ch01

Modern ideas of gravitation and cosmology — a brief essay 17

violated at distances smaller than a fraction of a millimeter: instead of a
squared distance, there should appear its higher power in the denominator
(see, e.g., the review [75]). A discovery of such a modification of Newton’s
law would be a weighty argument in favor of extra dimensions in reality.
Brane worlds can contain nonsingular black holes [60], wormholes without
exotic matter [87] and other nonstandard phenomena.

It seems to be a good time to stop and look at the situation as a whole.
We have seen that, despite the splendid observational status of GR,

most of the specialists do not believe that it is the last word in this area
of physics, but only a low-energy limit of a so far unknown fundamental
theory, most probably, a multidimensional one, unifying all interactions
and free of such difficulties as singularities, the problem of energy and
ambiguity of quantization.

Variable “constants”. Among experimental predictions of the alterna-
tive theories of gravity there are quite a number of effects, such as the
already-mentioned difference in the properties of gravitational waves. But
probably the most striking new prediction as compared to GR is a common
fact for most of the new theories, variability of quantities which had been
regarded before as Fundamental Physical Constants (FPCs). In the first
place, it is the gravitational constant G that appears both in Newton’s law
of gravity and in the Einstein equations. The electron charge, the elemen-
tary particle masses and many other constants can also vary, though the
characteristic times of their variation should be comparable with the age
of the Universe or even exceed it, otherwise such a variability would have
been discovered long ago.

To date, the experiments and observations give only upper limits of
such FPC variations. But there are two exceptions. First, beginning with
the 70s, now and then there appear data on variations of G on the level
∼10−12 per year, but there is no confident result confirmed by different
research groups. Second, observations of optical spectra of remote quasars
[415] testify to slow variations of the fine structure constant α = e2/(�c),
where e is the electron charge [74]. The most recent data [416] testify
to spatial variations of α , more precisely, that quasar observations in the
Northern hemisphere (mostly by the Keck telescope, Hawaiian islands) give
slightly smaller values of α in the remote past while the opposite part of
the celestial sphere shows values of α slightly larger than the modern one,
α0 , measured on Earth (by approximately 10−5 ). The anisotropy has a
dipole nature and has received the name “Australian dipole” [34]. The
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existing data are summarized by the following expression for deflections of
α from α0 at any point of space:

δα/α0 = (1.10 ± 0.25)× 10−5 r cosψ,
where ψ is the angle between the measurement direction and the axis of
the dipole (declination −61± 9 degrees, right ascension 17.3± 0.6 hours),
and the distance r is measured in billions of light years. There have already
appeared theoretical models trying to explain both spatial and temporal
variations of α [111, 319]. These models include a scalar field interacting
with electromagnetism (thus affecting the value of α) and forming a cosmic
domain wall due to the properties of its potential.

More details on the theoretical grounds for FPC variability and the
experimental situation can be found in books and review papers [112, 246,
247, 380, 400, 401, 425].

Gravitation and the Universe

For gravitational theory, the application area of utmost importance is cos-
mology, the science on the Universe as a whole or on its part available to
observation. Modern cosmology is a rapidly developing field of knowledge:
the wealth of observational data is impetuously growing, and a lot of most
diverse models are being developed. Some of the models will be discussed
in detail in this book.

For a long time the Universe was considered as a kind of “vessel” con-
taining different object: particles, stars, planets etc. It seemed that there
is no relationship between the properties of this “vessel” and its content.
The situation began to change with the advent of GR whose equations
just established a relationship between matter and geometry. In cosmol-
ogy, this relationship became even more evident after A.A. Friedmann’s
discovery that a stationary state of the Universe was unstable, so that
it must either expand or contract. It inevitably followed from an analy-
sis of the Einstein equations in a cosmological context. The expansion or
contraction rate depends on the density and other properties of matter.
The properties of the “box” have turned out to depend on its content.
Further studies have led to the conclusion that the presently observed part
of the Universe some time ago (about 14 billion years) had a size of about
10−27 cm or even smaller. But it is smaller than the size of an atom by
19 orders of magnitude. Such a small region certainly could not contain
the whole wealth of particles making the stars. It means that the Universe
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and the particles were born simultaneously or almost simultaneously and
undoubtedly exerted influence on each other. By now it is quite clear that
the Universe is not a “vessel” able to contain anything but a complex organ-
ism whose parts are all mutually intertwined and interrelated. Everything
is of importance here: the particle properties, gravitational physics, statis-
tical physics, electrodynamics . . . and frequently all that at the same time.

A fundamental feature of the present epoch is the establishment of
cosmology as a science. We can now answer many questions with proper
grounds, we can explain a lot of observational data and theoretically predict
many effects. The general path of the Universe’s evolution is becoming
clear, beginning with its creation and further into the future. Certainly
not all details are clear, but it seems that almost all possible variants of
the Universe’s evolution have been named.

Gravity plays a key role not only in the physics of local objects, such as
stars, galaxies, black holes, etc., but also in the properties of the Universe
as a whole. Thus, the size of our Universe (more precisely, of its visible
part) unambiguously depend on the value of the gravitational constant.
The development of cosmology on the basis of GR is gradually establish-
ing the features of the Standard Cosmological Model (SCM) whose basic
significance begins to approach that of the Standard Model of particle
physics.

The SCM on the basis of GR explains, above all, the following
phenomena:

1. The homogeneity and isotropy of the Universe;
2. Fluctuations of the Cosmic Microwave Background (CMB)

temperature;
3. The primordial nucleosynthesis.

One can assert that the history of cosmology as a science studying the
Universe as a whole began in 1929 with E. Hubble’s discovery. He found
that the numerous nebulae, which looked on the photographs as small
spots of unclear origin, are galaxies located millions of light years from our
Milky Way Galaxy. It also turned out that these galaxies fly away from
ours, leading to the conclusion that the whole Universe is expanding and
hence there has been some time in the past when the Universe was born.
Further studies have confirmed this conjecture. The abundance of helium
and the existence of the CMB, discovered in 1965, also indicated that the
primordial Universe consisted of a very hot plasma. It is the essence of the
idea of the Big Bang.
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The Universe as a whole is to a large extent homogeneous and isotropic,
which is by itself hard to explain, but the large-scale structure, consisting
of galaxies and clusters of galaxies, could only appear due to primordial
energy density fluctuations. A detailed analysis has shown that only bary-
onic fluctuations are insufficient for modern structure formation. There
should be some “invisible” component of energy density (“dark matter”)
in order that the gravitational forces be able to compress the domains of
enhanced energy density and to launch stellar formation. The existence of
dark matter has been by now practically proven, but its precise nature and
its composition are still unclear. It is only clear that its total mass is larger
than that of baryons, the particles that form stars, by approximately a
factor of five.

A discovery of fundamental significance was made in 1998. It was dis-
covered that our Universe is expanding not with a deceleration, as had
been believed before, but with an acceleration. In the framework of GR it
can only be explained by that the main part of the energy density is not
concentrated in baryons or even dark matter but in some strange form of
matter possessing a large negative pressure. It cannot consist of particles,
otherwise it would form inhomogeneous structures, which is not confirmed
by observations. This strange kind of matter, which has been called “dark
energy”, is distributed in space in a surprisingly homogeneous way, but its
presence affects the galaxies’ recession rate. The origin of dark energy is
still unclear. The simplest explanation is that the minimum of the poten-
tial energy of a certain hypothetic field is not strictly zero but is a small
positive constant. This very fact is not too surprising: what is strange is
that this minimum is extremely close to zero. There is so far no widely
accepted theory explaining this smallness.

There are now many open questions, but there also exist substantial
advances. The most impressive step forward has occurred with the advent
of the idea of inflation, i.e., a very rapid expansion of space at a primordial
stage of the Universe evolution. According to the inflationary scenario,
immediately after the end of inflation there happened abrupt heating of
matter, reproducing the already well-known picture of a hot Universe which
had been considered in pre-inflationary models as the initial stage. There
are an enormous number of specific realizations of the inflationary scenario,
and it is the matter of future studies to choose the correct model. Their
common feature is that all of them predict an extremely rapid expansion
of space in the framework of that or other theory of gravity.
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One should bear in mind that cosmological models crucially depend on
the choice of a theory of gravity. Therefore one can hope that cosmology,
as greater and greater amounts of knowledge are stored, will not only help
us to make clear the fate of our Universe but also to come to a better
understanding of the mechanisms of gravity.
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Gravitation
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Chapter 2

Fundamentals of general
relativity

The basic content of general relativity (GR) is very well presented in quite
a number of well-known textbooks and monographs (e.g., [263, 296, 393,
413, 417]). Assuming that the reader is aware of these fundamentals, in this
chapter, above all for reference purposes, we will mention only its basic
facts and relations. Many geometric notions (such as those of a vector
and a tensor, co- and contravariant components of vectors and tensors,
contraction of tensors and so on) are supposed to be known and are used
without explanations.

The space-time in GR is a four-dimensional manifold with a pseudo-
Riemannian metric (the prefix “pseudo” is often omitted to say sim-
ply “Riemannian space-time”). The gravitational field is described in
GR in terms of space-time curvature, which is expressed using the met-
ric tensor and its derivatives with respect to the coordinates. Thus GR
belongs to the class of metric theories of gravity [425]; it is histor-
ically the first, the simplest, and the most well-elaborated theory of
this class.

We begin this presentation by recalling the basic facts of special rela-
tivity (SR), bearing in mind that in the close neighborhood of any point a
Riemannian space-time coincides with its tangent flat (Minkowski) space-
time, in which SR is formulated. So GR is not only a generalization of
SR including gravity: SR holds locally in all cases as long as gravitational
effects can be neglected.

25
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2.1 Special relativity. Minkowski geometry

2.1.1 Geometry

The simplest example of a Riemannian geometry is the Minkowski flat
space-time. The basic geometric invariant in this space is the interval
between two arbitrary points — events. There is a class of preferable coor-
dinates (the Minkowski coordinates) xµ , of which each possible choice cor-
responds to a certain Cartesian inertial reference frame (IRF). The summed
force applied to a body at rest in a certain IRF is equal to zero, or, in other
words, such a body moves by inertia, uniformly and straightly with respect
to any other IRF. In any IRF, the squared 4-dimensional “distance” (inter-
val) between the events 1 [xµ1 = (ct1, �x1)] and 2 [xµ2 = (ct2, �x2)] is written
in the form

s2(1, 2) = c2(t2 − t1)2 − (�x2 − �x1)2, (2.1)

where c is a universal constant coinciding with the propagation veloc-
ity of electromagnetic waves (light, in particular) in vacuum and called
the speed of light. For close events 1 and 2, the interval (2.1) can be
written as

ds2 = ηµνdx
µdxν , µ = 0, 1, 2, 3, (2.2)

where the tensor with the covariant components

ηµν = diag(1,−1,−1,−1) (2.3)

is called the Minkowski metric tensor (the Minkowski metric). As usual,
summing is assumed over repeated indices if one of them is covariant and
the other contravariant. The matrix (2.3), together with its inverse matrix

ηµν = diag(1,−1,−1,−1) (2.4)

of the contravariant components of the Minkowski tensor are used for rais-
ing and lowering vector and tensor indices, so that, e.g., for an arbitrary
vector a = (aµ) we have aµ = ηµνaν , aµ = ηµνa

ν . The Minkowski ten-
sor defines a scalar product (ab) of two arbitrary 4-vectors aµ and bµ as
follows:

(ab) = ηµνa
µbν = ηµνaµbν = aµb

µ = aµbµ. (2.5)

In particular, the squared interval is a scalar square of the vector
xµ1 − xµ2 .
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Evidently, the scalar square a2 = aµaµ = gµνaµaν of any 4-vector a

can take a positive, negative or zero value because the matrix ηµν is not
positive- or negative-definite. In the case a2 > 0 the 4-vector a is called
timelike, if a2 < 0, it is called spacelike, and if a2 = 0 it is called null, light,
or lightlike. These notions also refer to the vectors x1 − x2 that connect
events 1 and 2 as well as intervals between events.1

Let us fix an arbitrary point O in Minkowski space and place there
the origin of the coordinate system of a certain IRF. Then the whole
set of ends of all null vectors xµ beginning at O form a conic surface
called the light cone (or null cone) of the point O . Its equation follows
from (2.1):

(x0)2 − �x2 ≡ c2t2 − x2 − y2 − z2 = 0 (2.6)

(where, as usual, x0 = ct, x1 = x, x2 = y, x3 = z , and �x2 = x2 + y2 + z2

is the 3-dimensional scalar square). All timelike straight lines that contain
the point O are located inside the light cone (2.6) while all spacelike ones
are located outside it.

The trajectories (world lines) of particles of nonzero mass are timelike
at their any points. Since the speed of light in SR is the maximum velocity
of body motion and signal propagation, two events may be causally related
only if they are connected by a timelike or null interval, and one can use
for them such notions as “earlier than” and “later than”. In such cases,
one of the events is located either inside the light cone of the other or on
the cone itself. The light cone of any event splits into the future and past
light cones.

2.1.2 Coordinate transformations

A transition from one IRF to another is described in the simplest way if the
velocity �v of the system S′ with respect to the system S is directed along
one of the coordinate axes of the latter, for instance, along the axis Ox ,
i.e., in the system S the origin of the system moves according to the law

1In some books, e.g., [263], the Minkowski metric and coordinate systems are strangely
called “Galilean”, despite the fact that, in Minkowski space, the (special) Einstein rel-
ativity principle is valid rather than the Galilean one, and the latter is only restored
at small velocities. The usage of the word “Galilean” instead of “Minkowski” is still
more confusing in connection with some new ideas in the theory of gravity, involving
the Galilean transformations in some multidimensional space-times.
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x = vt . In this case, the coordinate transformation (the special Lorentz
transformation) that leaves the interval (2.1) invariant, has the form

x′ =
x − vt√
1 − v2/c2

, y′ = y, z′ = z, t′ =
t − vx/c2√
1 − v2/c2

, (2.7)

where the primed coordinates belong to the IRF S′ .
A general Lorentz transformation, connecting any two IRFs, includes

a boost (a transition of the type (2.7) with a vector �v of arbitrary direc-
tion) and an arbitrary rotation of the spatial coordinate axes. All Lorentz
transformations form a six-parameter group called the Lorentz group. In
addition to general Lorentz transformations, the interval (2.1) is invariant
under space and time translations

x′µ = xµ + aµ, aµ = const, (2.8)

forming the four-parameter group of translations. Thus the complete group
of isometries (coordinate transformations leaving invariant the metric
tensor) contains ten parameters. It is called the Poincaré group.

The matrix of an arbitrary Lorentz transformation A = (Aν
µ) has

the definitive property of pseudo-orthogonality. It is this property that
expresses the invariance of the Minkowski metric under such transforma-
tions. Namely, let the coordinates xµ of the system S and the coordinates
yµ of the system S′ be connected by the linear transformation

xµ = Aµ
αyα + aµ, Aµ

α, aµ = const. (2.9)

According to (2.9), Aµ
α = ∂xµ/∂yα . Substituting (2.9) to the expression

for the interval (2.2), we obtain

ds2 = ηµνAµ
αAν

βdyαdyβ. (2.10)

The invariance of the metric ηµν means that in the right-hand side of this
equality there stands the expression ηαβdyαdyβ , where the matrix ηαβ is
the same as ηµν and has the form diag(1,−1,−1,−1). The condition

ηµνAµ
αAν

β = ηαβ (2.11)

is the condition that the matrix A is pseudo-orthogonal. The arbitrary
constants aµ in the transformation (2.9), forming the translation vector,
are absent in the condition (2.11) and play the part of integration constants
for the condition (2.11) treated as a set of differential equations for the
functions xµ(yα).
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2.1.3 Kinematic effects

An analysis of the Lorentz transformations leads to the most important
kinematic effects of SR. Thus, any motion of a point particle at any fixed
time instant can be considered to be approximately inertial, so one can
introduce an IRF S′ in which the particle is at rest at this time instant.
Assuming, without loss of generality, that the motion occurs along the axis
Ox , it is easy to find that the time increment dt′ by a clock connected
with the particle (and equal to ds/c) is related to the time increment dt

by the clock of the “laboratory” IRF S according to

dt′ = dt
√

1 − v2/c2. (2.12)

Due to arbitrariness of choosing the axes, this formula is valid for a velocity
of any direction, �v = d�x/dt . Consequently, for an arbitrary trajectory of
motion �x(t), the proper time interval τ of the particle (that is, the time
elapsed according to a clock connected with the particle or any object
whose size is insignificant) is determined by the relation

τ(t1, t2) =
1
c

∫ t2

t1

ds =
∫ t2

t1

dt
√

1 − v2(t)/c2, (2.13)

if the time t1 to t2 has elapsed at the clock of an observer at rest.
From (2.12) and (2.13) it follows that the proper time interval of a

moving object is always smaller than the time between the same events
from the viewpoint of an observer at rest. It is the so-called Lorentzian
time slowing-down; it leads, in particular, to the famous twin paradox . If
one of the twins is at rest (or moves slowly) in a certain IRF while the
other travels with relativistic velocities and, having completed his closed
trajectory, meets his brother, then, at their meeting, their ages will be
different: the traveller will be younger than the home-sitter. It could seem
that if one considers the situation in the RF where the traveller is at rest,
the result should be the opposite. However, a careful analysis, taking into
account the fact that the traveller must have changed his IRF at least three
times (at acceleration, at turning back and at final deceleration) shows that
his calculated age will be smaller than that of his brother. The paradox is
explained by the asymmetry of the situation: the integral (2.13) turns out
to be smaller for an object (or subject in the present case) that has carried
out noninertial motion.

Another effect, the Lorentzian length contraction, consists in the fact
that the length of a ruler or a rod has different values while measured in
different IRFs. The length is maximum in the RF where the rod is at rest
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and contracts in the ratio
√

1 − v2/c2 in an IRF moving with the velocity
�v parallel to the rod. This result is derived by finding the coordinates of
the rod ends at the same time by the clock of a moving RF. The transverse
size of a body does not change at its motion, and its volume changes in
the same ratio as the length in the direction of motion. A body moving at
relativistic velocities, comparable with the speed of light, becomes oblate,
and in the ultrarelativistic limit v → c a spherical body acquires the shape
of a disc or pancake.

The third effect is the relativity of simultaneity: in different IRFs, the
spacelike hypersurfaces t = const are different. Even more than that: any
two events separated by a spacelike interval can be made simultaneous
by choosing a suitable IRF. This circumstance is illustrated by Fig. 2.1
showing a two-dimensional section of Minkowski space-time making the
(t, x) plane. In the coordinates x, t belonging to the IRF S , depicted
are the axes x′, t′ of another IRF, S′ ; the lines t = const represent
the spatial sections (surfaces of simultaneity) of the IRF S , and the lines
t′ = const (the x′ axis and lines parallel to it) depict similar surfaces of
the IRF S′ .

�

�

����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
���

x

x′

t

t′

O

Figure 2.1 The x and t coordinate axes in different IRFs
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There are other relativistic kinematic effects, e.g., light aberration (non-
coincidence of directions to a distant source of light being observed from dif-
ferent IRFs), the relativistic formulae for velocity addition and the Doppler
effect, different from their nonrelativistic counterparts etc. Their detailed
analysis can be found in numerous textbooks on SR.

2.1.4 Elements of relativistic point mechanics

In the formulation of SR in terms of the Minkowski geometry, the three-
dimensional quantities appearing in nonrelativistic mechanics are replaced
by their four-dimensional counterparts, which leads to a more elegant,
economic and transparent form of many equations. In particular, for the
motion of a material point or an element of a medium, the 4-velocity
(γ ≡ 1/

√
1 − v2/c2) is introduced:

uµ =
dxµ

ds
=
(
γ,
γvi

c

)
, (2.14)

Here ds = c dt
√

1 − v2/c2 is an element of the interval along the parti-
cle trajectory. It is easy to verify that the vector defined in this way is
normalized:

uµu
µ = 1. (2.15)

The 4-acceleration of a material point or an element of a medium is

aµ =
duµ

ds
=
γ

c

duµ

dt
. (2.16)

Due to the normalization condition (2.15), the 4-velocity and 4-acceleration
are mutually orthogonal: aµuµ = 0.

The 4-momentum of a material point (particle) is, by definition,

pµ = muµ = (E/c,�p), m = const, (2.17)

where m is the particle rest mass, characterizing its inertial properties,
�p = (pi) is the spatial momentum, and E = γmc2 is the particle energy in
a given IRF. By definition, the squared momentum is p2 = pµp

µ = m2c2 .
At small velocities, v � c , expanding the expression for the energy in

powers of v/c , we obtain

E ≈ mc2 +
mv2

2
+O(v2/c2). (2.18)
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From this relation follows a conclusion of utmost importance: that the total
energy of a particle includes, in addition to the classical kinetic energy, the
rest energy mc2 .

The role of Newton’s second law is played by an equality which can be
considered as a definition of the force 4-vector fµ :

fµ =
dpµ

ds
= mcaµ = mc

duµ

ds
, (2.19)

where the components fµ are connected with the usual force 3-vector by
the relations

f0 =
γ

c2
(�F�v), f i =

γ

c
F i. (2.20)

The action of a free particle is written in the form [263]

S = −mc
∫
ds = −mc2

∫ √
1 − v2

c2
dt, (2.21)

and, since by definition S =
∫
Ldt , the Lagrangian L is

L = −mc2
√

1 − v2

c2
. (2.22)

For a particle moving subject to an action of external forces, this action
must be supplemented with other terms which include potentials of inter-
action between the particle and other bodies and actions of various physical
fields.

For a free particle, variation of the action (2.21) with respect to the
functions xi(t), describing the particle world line, is zero, from which we
obtain the Lagrangian equation

d

dt

vi√
1 − v2/c2

= 0 ⇒ vi = const, (2.23)

so that, as should be the case, a uniform rectilinear motion is obtained.
Photons and other massless particles follow lightlike (null) rectilinear

trajectories and can have an arbitrary energy E and spatial momentum
pi = (E/c2)vi , so that |�p | = E/c . The connection between the photon
energy and frequency, E = hν appears, as is well known, not in SR but in
quantum mechanics.

The relativistic mechanics satisfies the correspondence principle:
Newtonian mechanics for massive bodies is restored at velocities v � c .
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2.2 Riemannian space-time. Coordinate

systems and reference frames

So far we have been using Minkowski coordinates in Minkowski space-
time, where the metric has the form (2.2), and the inertial reference frames
(IRFs) connected with these coordinates. However, nothing prevents us
from describing physical processes in the framework of SR with the aid
of other coordinate systems, even remaining in a fixed RF in Minkowski
space. For example, one can introduce spherical or cylindrical coordinates.

In the most general cases, both in Minkowski space-time and in any
Riemannian space-time, and wider, in any differentiable manifolds, arbi-
trary coordinate transformations xµ �→ yµ are possible, with arbitrary
functions

xµ = xµ(y0, y1, y2, y3). (2.24)

In the physical space-time, the coordinate transformations (2.24) lead in
general to changes in the reference frame.

One should note that a relationship between the notions of coordinate
systems and reference frames is rather a subtle question which sometimes
leads to confusions and misconceptions. It is therefore reasonable to explain
in which sense we shall use these notions.

In this discussion, we will mostly follow the books [406, 437, 438].
To begin with, omitting a number of mathematical details, we can say

that a Riemannian space (or space-time) is a differentiable manifold of
arbitrary dimension D equipped with a metric gµν of arbitrary signature.
If it is positive-definite [the signature (+ + . . .+)], the space is called
proper Riemannian, in other cases it is called pseudo-Riemannian, but the
prefix “pseudo” is often omitted.

We will consider an arbitrary real four-dimensional (pseudo-)
Riemannian space-time with the interval

ds2 = gµνdx
µdxν , µ, ν = 0, 1, 2, 3, (2.25)

with a symmetric metric tensor gµν , having the signature (+ − − −).2

2Space-times with this signature are called Lorentzian. The same term is also applied
to the signature (− + + +); many authors use this signature. The physical content
of the theory certainly does not depend on the choice of one plus and three minuses or
vice versa, but the forms of some equations become slightly different which creates some
inconvenience and requires certain care.
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Fixing an arbitrary point, we can bring the metric tensor at this point
to a diagonal form by linear coordinate transformations, and then, by evi-
dent additional transformations, ordering the obtained diagonal elements
and normalizing them to plus or minus unity, we will always obtain the
Minkowski tensor (2.3) due to our choice of the signature. This clearly
indicates that in a small neighborhood of each point the geometry of any
Riemannian space-time coincides with the Minkowski geometry, and all
phenomena for which the curvature is insignificant can be described in the
framework of SR.

2.2.1 Covariance, maps and atlases

Let us present the general definition of a coordinate system in a differen-
tiable manifold. The definitions of all the corresponding notions and their
detailed and rigorous discussions can be found in textbooks and mono-
graphs on global differential geometry, such as, e.g., [198, 270, 338].

A coordinate system in a certain region U of a differentiable manifold
of class k and dimension D (or, which is the same, a map of the region U )
is a one-to-one map of the region U to a certain region of the arithmetic
space R

D . The region U itself is then called the range of the map or the
range of the coordinate system.

Thus each point x of the region U is put into correspondence with an
ordered set of D real numbers, which numbers are called the coordinates of
this point. Moreover, if U1 and U2 are ranges of two maps and x ∈ U1 ∩U2 ,
then the coordinates of the point x in one of these maps are functions
of class Ck of the coordinates of the point x in the other map, with
a nonzero Jacobian of the transformation. Most frequently, manifolds of
the class C∞ are considered, with infinitely differentiable transformation
functions.

The global properties of a manifold are described by sets of maps whose
ranges cover the whole manifold (atlases). In other words, a union of ranges
of maps belonging to a certain atlas is identical to the whole manifold.

Thus a coordinate system in a manifold and, in particular, in a four-
dimensional Lorentzian space-time is simply a way to supply each point
(event) with a certain “address” or label in the form of a set of numbers,
and different ways of addressing must be related to each other by smooth
transformations.

It is thus clear that the space-time coordinates in general do not bear
any physical meaning if their values are not deliberately taken as functions
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of certain physical or geometric quantities (such as distances, time intervals,
values of the electric field strength and so on). At the same time, the
equations of a physical theory, describing objects in the space-time, contain
coordinate of points as variables or parameters. But neither the properties
of any physical bodies or phenomena nor any measurable quantities can
depend on which labels are ascribed to the points-events. Thus social life
in a city cannot depend on whether the houses are numbered by order, by
meters, miles, cubits or leagues and from which point the counting begins.
But the numbering can be very convenient or quite clumsy. The same with
coordinates in space-time.

It then follows that physical laws should admit a universal formula-
tion independent of a choice of the coordinate system (the so-called gener-
ally covariant formulation). This statement is the content of the General
Covariance Principle.

The General Covariance Principle may be called a mathematical expres-
sion of common sense: any physical theory pretending to be reason-
able should admit a generally covariant formulation. For instance, New-
ton’s theory of gravity, special and general relativity are all generally
covariant.

2.2.2 Reference frames and relativity

Let us now pass on to the notion of a reference frame (RF). By defini-
tion, a reference frame is an imaginary, massless, in general, arbitrarily
(but smoothly) deformable body (the reference body), existing in a cer-
tain region of space-time and equipped at each point with perfect rulers,
allowing for length measurements, and perfect clocks, allowing for time
measurements.

Thus, unlike coordinate systems, which notion is purely mathemati-
cal, a RF is a physical notion, quite necessary for connecting the theory
with measurements. As is well known, real prototypes of perfect clocks
are atomic clocks, while real prototypes of perfect rulers are the length
standards attached to the wavelengths of certain spectral lines.

The General Relativity Principle asserts the equivalence of all RFs in
formulating the laws of nature. It is a consistent physical principle, from
which follows the absence of preferred RFs in the nature. Let us note that
even theories in which there are preferred RFs admit a generally covariant
formulation of their equations. An evident example is SR, where inertial
RFs (IRFs) play a distinguished role.
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The absence of preferential RFs in the formulation of the laws of physics
certainly does not mean that the results of physical measurements will be
the same in all RFs: indeed, a measurement instrument is always situated
in a certain RF, and this inevitably affects its readings. In particular, in
SR, none of the IRFs is preferential, but measuring the length of the same
rod by instruments situated in different RFs give, as we have seen, different
results.

2.2.3 Reference frames and chronometric invariants

In principle, it is possible to use coordinate systems quite independently
from RFs. For example, when describing the life of a city in its natural
RF connected with its streets and houses, nothing and nobody forbids one
from using coordinates connected with a certain system of regularly moving
buses, or with the shadows of clouds floating in the sky.

In practice, however, it is much simpler and more convenient to attach
the coordinates to a certain RF, assuming that the reference body is cov-
ered by a three-dimensional coordinate net xi while the time coordinate
x0 changes along the world lines of fixed points of the reference body (they
are naturally called time lines). It is said in this case that the coordinate
system belongs to a reference frame. The world lines of particles at rest in a
given RF are described by the equation xi = const (are x0 -independent).
If one makes a coordinate transformation (2.24), then the condition that
the new coordinates yµ belong to the same RF as xµ is that the new
spatial coordinates yi are x0 -independent.

Thus the transformations

yi =yi(x1, x2, x3), (2.26)

y0 =y0(x0, x1, x2, x3), (2.27)

are the most general transformations between coordinate systems that
belong to the same RF. The equality (2.26) describes three-dimensional
coordinate transformations which change the spatial coordinate net. The
equality (2.27) describes arbitrary chronometric transformations that
change the course of arbitrary (coordinate) clocks as well as their syn-
chronization from one spatial point to another.

In any coordinate system xµ , one often considers simulatneity surfaces,
or spatial sections, i.e., the sets of space-time points (events) defined by
the condition x0 = const.
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It is clear from Eq. (2.27) that the condition x0 = const does not at all
guarantee y0 = const. In other words, even in coordinates belonging to the
same RF, there can be different spatial sections, since there can be different
sets of coordinate clocks (not to be confused with perfect clocks) which
are synchronized in different ways and having different (and differently
variable!) rates. A good example: different time scales on the Earth, i.e.,
manifestly in the same RF: Greenwich time, times in other time zones,
the true solar time etc. Also, time according to clocks with pendulums of
fixed length (whose rate depends on the gravity force which depends on
latitude and altitude) and atomic time which is thought to be universal
and is identified as the true physical time.

All measurable physical quantities in a given RF should be covariant
under the transformations (2.26) and invariant under (2.27) (chronometri-
cally invariant ). This is the chronometric invariance principle introduced
by Zel’manov [437]. It is dictated by the same reasoning as the general
covariance principle but applied to a particular RF.

It is not hard to obtain expressions for chronometric invariants from
the components of any four-dimensional tensors. Thus, any 4-vector Aµ

has the following chronometrically invariant (ChI) components:

Ai, i = 1, 2, 3; At = A0/
√

g00. (2.28)

Dealing with higher-rank tensors, one must do the same with each
index. More specifically, from the components of an arbitrary tensor
Aµ1µ2...µr

of rank r one constructs the quantities

Ai1i2...im

0...0 (g00)−(r−m)/2, (2.29)

where m ranges from zero to r while the number of lower indices (zeros)
is equal to r − m . The expressions (2.28) are ChI and form contravariant
tensors with respect to the spatial transformations (2.26). This result is
verified in a straightforward manner. The metric coefficient g00 is always
nonzero in coordinates belonging to a certain RF.

A very important example is the 3D chronometric metric tensor hik :
according to the above, its contravariant components coincide (up to the
sign) with their 4D counterparts:

hik = −gik. (2.30)
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It can be shown [297, 437] that the covariant components of the chrono-
metric spatial metric tensor and its determinant are expressed in terms of
4D quantities as follows:

hik = −gik +
gi0gk0

g00
, h = det(hik) = − g

g00
. (2.31)

The tensors hik and hik can be used to raise and lower indices in various
chronometric vectors and tensors.

The ChI coordinate displacement vector dxi and the ChI (physical)
time interval dt =

√
g00dx0 can be used to obtain the expressions for the

ChI spatial length element dl and the 4D interval:

dl2 = hikdxidxk, ds2 = dt2 − dl2, (2.32)

the latter coinciding with the interval in SR. It is also clear that the ChI
3-velocity defined as dxi/dt automatically turns to unity in the case of a
null interval, ds = 0. Thus the locally measured velocity of light in GR is
always the same and equal to the fundamental velocity, as should be the
case since a Riemannian space-time coincides at any point with its tangent
Minkowski space (up to O(dxµ)).

A further development of the chronometric invariants theory includes
a reformulation of all equations in terms of ChI quantities and ChI dif-
ferential operators as well as a description of RFs employing their ChI
characteristics: acceleration, rotation and deformation [297, 437, 438].

One should note that it is sometimes reasonable to use coordinates
that do not belong to any RF, e.g., null coordinates, and in such systems
it is quite possible to have g00 = 0 in the whole space-time or its certain
subsets.

An even more universal description of reference frames is realized using
the so-called monad formalism [298, 406, 438], where a monad is the 4-
velocity field of the reference body; this formalism considers chronometric
invariants as one of its “gauges”.

More well-known is the tetrad (vierbein, hedron) formalism of RF
description (see, e.g., [296, 297, 346]), where an RF is characterized with the
aid of an orthonormalized hedron in Minkowski tangent space at each world
point. Recall that, to specify an RF according to the above definition, it is
sufficient to fix only one (timelike) vector at each point (i.e., the monad),
while the other three vectors of a tetrad, characterizing the positions of
spatial axes, are unnecessary. However, the tetrad formalism is extremely
useful for calculations of observable quantities and for the description of
fermions in curved space-times. More than that, some authors consider
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tetrads (rather than the metric) as the dynamic variables describing the
gravitational field in GR and its extensions.

2.2.4 Covariance and relativity

As we have seen, the general covariance principle is nothing else but an
opportunity to use any coordinates for describing the space-time and the
events in it.

On the contrary, various forms of the relativity principle are important
postulates of physical theories. Thus, the Galilean relativity principle that
acts in Newtonian mechanics asserts that the laws of nature are indepen-
dent of the choice of an IRF in Newtonian absolute space. The special
relativity principle asserts quite the same but in Minkowski space, where
IRFs are related by Lorentz transformations. In both cases, the theory con-
tains a class of privileged RFs, and the transformations in question occur
inside this class.

The Cartesian coordinates in Newtonian (Euclidean) space and the
Minkowski coordinates in Minkowski space are privileged in two respects.
They are distinguished mathematically since their coordinate lines coincide
with the orbits of isometry groups of the corresponding spaces (though,
this choice is not unique: spherical and cylindrical coordinates also pos-
sess this property). On the other hand, they are distinguished physically
by the convenience of describing IRFs with their aid. It is well known,
however, that, in many problems of classical mechanics, curvilinear coor-
dinates are used, and physical phenomena in various noninertial RFs are
studied. In SR, there is also a necessity to study accelerated RFs and to
use coordinates belonging to them (e.g., uniformly accelerated frames and
Rindler coordinates [344]). In such cases, quite helpful are the methods
elaborated in GR and related to generally covariant formulations of all
equations.

One should say that the word “relativity” that is part of the names of
both SR and GR may be said to have two faces. On the one hand, this word
denotes principles which declare quite an opposite property of physical
laws, their absolute nature, their RF-independence; however, one applies
the laws in specific RFs, i.e., relative to a chosen class of observers. On
the other hand, in both SR and GR, many things that have been absolute
in classical theory, become relative, i.e., RF-dependent. In SR these are
simultaneity, lengths, time intervals. In GR (as well as in other metric
theories of gravity) one should add to this list the finiteness or infiniteness
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of the spatial volume and even the topology of 3-space. In what follows we
will meet specific examples of such relativity.

2.3 Riemannian space-time. Curvature

Let us present some definitions and relations, important for what follows.
Above all, the contravariant components of the metric gµν form a

matrix reciprocal to the matrix gµν :

gµαgαν = δν
µ, (2.33)

where δν
µ is the Kronecker symbol, equal to unity for coinciding values of

the indices and to zero for noncoinciding ones. The tensors gµν and gµν

are used for raising and lowering arbitrary tensor indices.
Partial derivatives of any scalar function f(xµ) with respect to the

coordinates, ∂µf , form a covariant vector called the gradient of f . Par-
tial derivatives of the components of a vector Aµ or Aµ in general do not
form a tensor because coordinate transformations are, in general, non-
linear. To obtain a covariant form of physical equations and for many
other purposes it is thus necessary to generalize the notion of a deriva-
tive, to make it a tensor. This goal is achieved by introducing the covariant
derivatives

∇µAν =∂µAν − Γα
µνAα;

∇µAν =∂µAν + Γν
µαAα, (2.34)

where the quantities Γα
µν (they do not form a tensor!) are called the

Christoffel symbols, or affine connection coefficients agreeing with the met-
ric (the metric connection, or the metric affinity); they are expressed in
terms of the metric tensor and its first-order partial derivatives:

Γσ
µν =

1
2
gσα(∂νgαµ + ∂µgαν − ∂αgµν), (2.35)

where for the contraction Γα
µα , using (2.35), it is easy to obtain

Γα
µα = ∂µ(ln

√−g), g := det(gµν). (2.36)

The Christoffel symbols are symmetric in their lower indices, therefore, in
general, there can be as many as 40 different components (ten variants of
the lower pair and four values of the upper index).

One can directly verify the tensor nature for the transformations of the
covariant derivatives in coordinate transformations.



Fundamentals of general relativity 41

For tensors of any rank, the covariant derivatives are calculated accord-
ing to the methodology (2.34) applied to each upper or lower index sepa-
rately. For instance, for the mixed tensor T ν

µ we have

∇αT ν
µ = ∂αT ν

µ + Γν
αβT β

µ − Γβ
αµT ν

β . (2.37)

Due to (2.35) (in fact, since the connection agrees with the metric), the
metric tensor is covariantly constant:

∇αgµν = ∇αgµν = 0. (2.38)

It then follows that the operation of covariant differentiation commutes
with index raising and lowering, which is extremely convenient in transfor-
mations of complex tensor expressions.

The next point of importance is repeated application of covariant
derivatives. Usual partial derivatives are known to commute with each
other; the same is true for covariant derivatives of a scalar f . The first-
order derivative, ∇µf ≡ ∂µf , coincides with the partial one; the second
nabla operator is already applied to a vector (gradient), but nevertheless

(∇α∇β −∇β∇α)f = 0.

Applied to a vector, commutation of covariant derivatives gives

(∇µ∇ν −∇ν∇µ)Aρ = Rα
ρµνAα;

(∇µ∇ν −∇ν∇µ)Aρ = −Rρ
αµνAα, (2.39)

where the quantities Rρ
αµν are components of a tensor called the curvature

tensor, or Riemann tensor (sometimes also called the Riemann-Christoffel
tensor):

Rσ
µρν = ∂νΓσ

µρ − ∂ρΓσ
µν + Γσ

ανΓα
ρµ − Γσ

αρΓ
α
µν . (2.40)

The Riemann tensor plays a central role in Riemannian geometry since it
is this tensor that characterizes the distinction of a given metric from that
of flat space. For the latter, all components of the Riemann tensor are zero
(and, due to its tensor nature, all its components are zero, being calculated
in an arbitrary coordinate system, not only in Minkowski coordinates).

It is most convenient to describe the symmetry properties of the
Riemann tensor if it is represented by its covariant components, Rµνρσ =
gµαRα

νρσ . By construction, it is symmetric under permutation of the first
and second pair of indices and is antisymmetric within each pair:

Rµνρσ = Rρσµν = −Rνµρσ = −Rµνσρ. (2.41)
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Furthermore, the components of the Riemann tensor satisfy the Ricci
identity

Rµαβγ + Rµβγα + Rµγαβ = 0, (2.42)

where the first index is the same in all terms while the other ones are
subject to cyclic permutation. Due to (2.41), one can rewrite this identity
with any other fixed index.

Given the symmetry of the Riemann tensor, the number of its inde-
pendent components in 4-dimensional space is 20. In the general case of
a D -dimensional space this number is equal to D2(D2 − 1)/12. In spe-
cial examples of spaces possessing substantial symmetries, the number of
independent components is much smaller: for example, in de Sitter space
that has the maximum possible symmetry, all components of the Riemann
tensor are expressed via only one constant.

Contractions of the Riemann tensor lead to the Ricci tensor Rµν and
the scalar curvature R , also called the Ricci scalar:

Rµν = Rα
µαν ; R = gµνRµν = Rα

α. (2.43)

A direct inspection shows that the Riemann tensor, in addition to the
algebraic identities (2.41) and (2.42), satisfies the differential identities

∇[σRαβ]γδ = 0, (2.44)

called the Bianchi identities.3

Their contraction by one pair of indices gives

∇σRσ
αβγ + ∇γRαβ −∇βRαγ = 0, (2.45)

while a further contraction leads to an equality of utmost importance in
gravitation theory:

∇αGα
µ = 0, Gν

µ := Rν
µ − 1

2
δν
µR. (2.46)

The tensor Gν
µ is called the Einstein tensor.

To conclude the section, we would like to present a formula for the
invariant volume element in a Riemannian space of arbitrary dimension
D : if we try to find the volume of a small parallelepiped specified by D

3As usual, symmetrization is meant over indices taken in parentheses and alternation
over those in square brackets.
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vectors dxµ
a (a is the number of a vector, and µ is, as usual, the number

of its component), the invariant volume element is

dV =
√

|g|| det(dxµ
a)|, g := det(gµν). (2.47)

Consequently, an invariant integral of a scalar function f(x) over a certain
volume V is ∫

V

√
|g|f(x)dDx, dDx := dx1dx2 · · ·dxD. (2.48)

Evidently, similar formulae are valid for integration over surfaces of any
dimension d < D if xµ denotes the coordinates specified on the surface
while gµν is the internal metric of the surface, induced by the metric of
ambient space.

2.4 The gravitational field action and dynamic

equations

2.4.1 The Einstein equations

In GR, the dynamic variables characterizing the gravitational field are the
metric tensor components gµν . The dynamic equations of GR are derived
from Hilbert’s variation principle

δS = 0, S =
∫

R − 2Λ
2κ

√−g d4x + Sm, (2.49)

where Sm =
∫

Lm
√−g d4x is the action of matter, i.e., substance and all

fields except the gravitational field, and Λ is the cosmological constant,
which is usually negligible when considering “local” configurations (up to
the scale of a cluster of galaxies) but is manifestly important on the cosmo-
logical scale. The condition δS = 0 leads to the Hilbert-Einstein equations
(more frequently they are simply called the Einstein equations)

Rµν − 1
2
gµνR + gµνΛ = −κTµν . (2.50)

Here, κ = 8πG/c4 is the Einstein gravitational constant (G is the
Newtonian gravitational constant), and Tµν is the (metric) stress-energy
tensor (SET) of matter:

Tµν =
2√−g

δSm

δgµν
. (2.51)

In (2.50) there are in general ten nonlinear partial differential equa-
tions. However, first, the freedom of choosing a coordinate system makes it
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possible to impose four arbitrary coordinate conditions which can be formu-
lated as equalities involving the coefficients gµν , and there remain only six
independent equations. Second, among the remaining equations there are
four differential dependences related to the identities (2.46), which results
in only two real dynamic equations. The other four are constraint equations
which do not contain second-order time derivatives. These circumstances
are of importance for all dynamic processes in GR, and above all for grav-
itational waves, which can have only two independent polarizations.

Due to the contracted Bianchi identities (2.46) and the Einstein equa-
tions (2.50), the SET of matter obeys four differential equalities having the
meaning of conservation laws4

∇αT α
µ = 0, (2.52)

from which one can obtain the equations of motion for matter. Thus the
equations of motion follow from the field equations. This circumstance is
a fundamental difference between GR and the majority of classical field
theories, including the Newtonian theory of gravity, where one has to pos-
tulate the equations of motion for field sources separately from the field
equations.

Evidently, if the matter sources of gravity contain more than four
degrees of freedom, their equations of motion are only partly restored from
the Einstein equations.

2.4.2 Geodesic equations

The equations of motion for free particles in Riemannian space-times
can be obtained by varying the action (2.21) (now written for a
Riemannian linear element). The variation equation, as in Minkowski
space, has the meaning of a trajectory (geodesic) equation, describing the
extremum of the world line length between two given points. It can be
written as

duα

ds
+ Γα

µνuµuν = 0. (2.53)

4In the general case, these differential equalities do not lead to integral conservation
laws because, to do so, they should have the form ∂fν

µ/dxν = 0, and it would be
more precise to say that they express the SET change related to the metric change.
Nevertheless, the name “conservation laws” for the equalities (2.52) has become quite
common, and even more, any tensor T ν

µ , obeying the condition (2.52), is often called
conservative.
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Here s is the interval which coincides with the proper time of an observer
moving along the geodesic if it is timelike and the proper length along the
geodesic if it is spacelike. In all cases s is a canonical parameter.5

Let us derive Eq. (2.53) from the conservation law (2.52). It will illus-
trate the possibility of deriving the equations of motion for matter from
the Einstein equations.

Let us begin with the expression for the SET of a perfect fluid, which
can be obtained as a natural extension of the corresponding expression
from SR [263] to Riemannian spaces:

Tµν = (ε + p)uµuν − p gµν , (2.54)

where uµ is the 4-velocity of particles of the fluid, ε = ρc2 is its energy
density, and p its pressure. In particular, for dustlike matter consisting of
noninteracting particles,

p = 0, Tµν = εuµuν . (2.55)

The dust grains move without influence of external forces other than
gravity, therefore their equations of motion coincide with those of free
particles. Let us obtain it by differentiating the tensor (2.55):

∇αT α
µ = uµ∇α(ρuα) + ρ uα∇αuµ = 0. (2.56)

Multiplying this equality by uµ , taking into account that uµuµ = 1 ⇒
∇α(uµuµ) = 0, we obtain from (2.56) the continuity equation ∇µ(ρuµ) =
0 (its meaning is mass conservation for the dust) and the equation of
motion

uµ∇µuα = 0, (2.57)

which can be rewritten in the form

uµ∇µuα = 0 ⇒ dxµ

ds

∂uα

∂xµ
+ Γα

µνuµuν = 0,

whence finally we obtain Eq. (2.53):

duα

ds
+ Γα

µνuµuν = 0.

5A canonical parameter is defined as the parameter along a curve with which the geodesic
equation has the form (2.53) (see, e.g., [393]). Evidently, if s is a canonical parameter,
then s̄ = as + b , where a and b are numbers, is also a canonical parameter; however,
in gravitation theory it is reasonable to use just the parameter equal to the interval,
and the freedom of its choice is restricted to constant shifts, s̄ = s + b . Usage of other,
noncanonical parameters would complicate the form of Eqs. (2.53).
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The geodesics can be spacelike, timelike and null, and this nature of a
particular geodesic does not change along it because ∂α(uµuµ) = 0.

2.4.3 The correspondence principle

Since a Riemannian space-time coincides with Minkowski space (its tan-
gent space) in a small vicinity of each world point, the laws of SR are
approximately valid at any point. It is possible to pass over to SR in the
whole space in the limit of weak gravity; the weak gravity condition is for-
mulated as the condition that the metric is only weakly deflecting from the
flat metric (in any coordinates), or that the Riemann tensor is small.

It should be noted, however, that the formal transition κ → 0 in a
solution to the Einstein equations does not generally lead to a flat metric:
instead, it leads to a certain nonflat vacuum solution (that is, with Tµν ≡ 0)
of the Einstein equations.

Newton’s law of gravity follows from GR under the conditions of small
velocities (v ≪ c) and weak gravity (that is, the Newtonian gravitational
potential, introduced in a proper way, should be small, V ≪ c2 ). In what
follows, we shall verify the existence of such a transition using as an example
the Schwarzschild metric, and also the validity of the relation κ = 8πG/c4 .

A transition to Newtonian gravity can also be carried out under some
additional conditions as the formal transition c → ∞ , and an expansion of
the metric in powers of c−1 (more precisely, in powers of v/c and V/c2 ) is
convenient for describing the observable effects of relativistic gravity both
in GR (the post-Newtonian approximation) and in other metric theories of
gravity (the parametrized post-Newtonian approximation) [425].

2.5 Macroscopic matter and nongravitational

fields in GR

All kinds of matter, except the gravitational field, admit a description in
the framework of SR. For their description in GR (and, in general, in any
theory formulated in a Riemannian space), most frequently, the so-called
minimal coupling principle is used, according to which all equations known
in SR are extended to curved space-time by replacing all partial derivatives
with covariant derivatives. We note that this trick can even increase the
freedom of calculations in the framework of SR, without restriction to
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Minkowski coordinates, introducing curvilinear coordinates and invoking
any accelerations, both translational and rotational ones.

We will present some relations valid for nongravitational matter in
curved space-time according to the minimal coupling principle.

2.5.1 Perfect fluid

We have previously presented the expression (2.54) for the SET of a per-
fect fluid in Riemannian space-time. Using the conservation law for it, let
us derive the corresponding equations of motion, the general-relativistic
analogues of the continuity equation and the Euler equation.

Rewrite the tensor (2.54) in mixed components,

T ν
µ = (ε + p)uµuν − pδν

µ, (2.58)

apply to it the operator ∇ν and equate the result to zero:

∇νT ν
µ = (∂νw)uµuν + w∇ν(uµuν) − ∂µp = 0, (2.59)

where w := ε + p is the thermal function of the fluid. Contracting (2.59)
with uµ (i.e., making its projection to the direction of uµ ) and recalling
that ∂µ(uνuν) = 0, we obtain:

∇ν(wuν) − uµ∂µp = 0. (2.60)

Let us now make a projection of (2.59) to a direction perpendicular to
uµ . Such a projection has the form ∇νT ν

µ − uνuµ∇λT λ
ν = 0. As a result,

we arrive at the perfect fluid equation of motion, the general-relativistic
analogue of the Euler equation

wuν∇νuµ = ∂µp − uµuν∂νp. (2.61)

In nonrelativistic hydrodynamics, the continuity equation is known to
represent the mass conservation law. In SR and, even more in GR, the
mass is not conserved, and analogues of the continuity equation are only
obtained for conserved quantities such as the number of particles if one can
neglect their possible production and absorption. Then one can introduce
the particle number current nµ = nuµ , where n is the particle number
density in the RF where the fluid formed by these particles is at rest,
and uµ is the 4-velocity of this fluid. The particle number conservation
law (valid in the absence of their creation, annihilation and conversion) is
expressed in the equality

∇µ(nuµ) = 0, (2.62)

quite similar to the electric charge conservation law (2.70) (see below).
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More general kinds of condensed matter, such as viscous fluids, are
also frequently used in gravitational problems related to astrophysics and
cosmology.

2.5.2 Scalar fields

For a scalar field φ with arbitrary self-interaction, described by a potential
V (φ), if it is minimally coupled to gravity, the Lagrangian in curved space
is written in precisely the same way as in Minkowski space:

Ls =
1
2
gµνφ,µφ,ν − V (φ), c, (2.63)

and its variation with respect to φ leads to an equation that generalizes
the Klein-Gordon relativistic equation

�φ + dV/dφ = 0, (2.64)

with the general-relativistic d’Alembert operator

� = ∇α∇α =
1√−g

∂α

(√−ggαβ∂β

)
. (2.65)

The scalar field SET is obtained from the Lagrangian (2.63) by its
variation according to (2.51):

T ν
µ s = φµφν − δν

µLs. (2.66)

More complex forms of scalar fields are also considered in the problems
of gravitation and cosmology. For instance, the so-called k-essence with
Lagrangians of the general form Ls = L(φ, X) (with X = (∂φ)2 ) does not
violate the minimal coupling principle.

Some of these Lagrangians as well as those with nonminimal coupling
will be considered later.

2.5.3 The electromagnetic field

The electromagnetic (massless vector) field is characterized by the vector
potential Aµ and by the strength tensor, also called the Maxwell tensor

Fµν = ∂µAν − ∂νAµ. (2.67)

The electromagnetic field Lagrangian directly generalizes the correspond-
ing flat-space expression. For a field with sources, the Lagrangian reads

Le−m = −1
4
FµνFµν − jµAµ, (2.68)
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where jµ is the electric charge current density. Its variation with respect
to Aµ gives a dynamic equation that corresponds to the second pair of
Maxwell equations in usual electrodynamics,

∇νFµν ≡ 1√−g
∂ν(

√−gFµν) = jµ, (2.69)

and due to (2.69), the electric charge conservation law automatically holds:

∇µjµ ≡ 1√−g
∂µ(

√−gjµ) = 0. (2.70)

The first pair of Maxwell equations finds its analogue in the identity
that follows from (2.67),

∇µFνσ + ∇σFµν + ∇νFσµ = 0, (2.71)

or, equivalently,

∇∗
µFµν = 0, (2.72)

where ∗Fµν is the tensor dual to Fµν :

∗Fµν =
1
2

εµνρσ

√−g
Fρσ . (2.73)

The electromagnetic field SET is obtained by varying the action of the
field Fµν with respect to the metric gµν :

T ν
µ e−m = −FµαF να +

1
4
δν
µFαβFαβ . (2.74)

The Maxwell field (2.67) does not change if one adds a gradient of any
scalar function f(xµ) to the vector potential Aµ . This property of gauge
invariance is of utmost importance in electrodynamics. This property is
evidently preserved if one considers Lagrangians more general than (2.68),
such as L(F ) and L(F, G), where F := FµνFµν and G := ∗FµνFµν .
Such forms of nonlinear electrodynamics, respecting the minimal coupling
principle, can also be used in gravitational problems.

In this book, we will not consider other fields, such as the spinor
(spin 1/2) and massive vector fields and that with spin 3/2. The prop-
erties of such fields are discussed in detail, as well as their applications
in the problems of gravity, particle physics and astrophysics, e.g., in the
books [176, 232, 297].

The minimal coupling principle is not universal, and many researchers
discuss nonminimal interactions between material fields and gravity. These
interactions are introduced by adding such terms in the Lagrangian that
contain both a material field and some invariants of the curvature (most
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frequently the scalar curvature), or invariants involving both the mate-
rial field and the curvature (like, for instance, Aµ∂µR). Thus, a nonmin-
imal interaction between a scalar field and gravity can be introduced by
adding in (2.63) the term ξRφ2 , ξ = const, while a nonminimal inter-
action between the electromagnetic field and gravity can be described by
the term ξR FµνFµν . In what follows, we will deal with nonminimal inter-
actions of scalar fields and gravity in the framework of scalar-tensor and
multidimensional theories of gravity.

2.6 The most symmetric spaces

2.6.1 Isometry groups and Killing vectors

Minkowski flat space-time possesses the greatest possible symmetry,
expressed in the invariance of the interval with respect to the Poincaré
group (G10 , i.e., a 10-parameter group). A general Riemannian space-time
V4 does not possess any symmetry, while in special cases where such a
symmetry does exist, it is described by an isometry group with a certain
number of parameters, obviously no more than ten. This number is equal
to the number of linearly independent solutions ξα of the Killing equation

∇αξβ + ∇βξα = 0. (2.75)

The vectors ξµ satisfying Eq. (2.75) (the Killing vectors) possess the fol-
lowing property: if all points are shifted by ξαdλ (where dλ is an infinites-
imal quantity), all metric relations in V4 remain invariable. Consecutive
shifts by ξαdλ lead to a motion of world points along an orbit of the
Killing vector , whose points are all mutually equivalent. (Example: on an
arbitrary surface of rotation in usual 3-dimensional space, there is a Killing
vector pointing along the “parallel” and describing shifts along it by small
azimuthal angles, while the whole “parallel” is an orbit of this Killing
vector.)

The maximally symmetric (G10 ) metrics in V4 are known to be solu-
tions to the Einstein equations in vacuum,

Rν
µ − δν

µΛ = 0, (2.76)

with the cosmological constant Λ, which corresponds to the effective SET
T ν

µ = δν
µΛ/κ . These are spaces called the constant curvature spaces: the

space of zero constant curvature is the Minkowski space (Λ = 0), that of
positive constant curvature is the de Sitter (dS) space (Λ > 0), and that
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of negative constant curvature is the so-called anti-de Sitter (AdS) space
(Λ < 0) (even though an author named Anti-de Sitter never existed). In
constant curvature spaces, the Riemann tensor is determined by a single
constant (Λ) and is expressed in terms of the metric tensor in an algebraic
manner:

Rµνρσ =
Λ
3

(gµρgνσ − gµσgνρ), (2.77)

whence for the Ricci tensor and scalar we obtain

Rµν = Λgµν , R = 4Λ. (2.78)

Explicit forms of the de Sitter [374] and anti-de Sitter metrics will be
presented a bit later.

2.6.2 Isotropic cosmology. The dS and AdS spaces

A smaller but still high symmetry (G6 ) characterizes homogeneous
isotropic cosmological models, to be discussed in detail later. In accor-
dance with their name, these space-time are characterized by spatial sec-
tions satisfying the cosmological principle, that their metric properties are
the same at all points (homogeneity) and all directions (isotropy). Here
we will restrict ourselves to obtaining the simplest metrics, including those
of spaces with symmetries higher than G6 — these are the dS and AdS
space-times.

The general form of the metric of a homogeneous and isotropic space-
time, which is called the Friedmann-Robertson-Walker (FRW) metric, is

ds2 = dt2 − a2(t)dl2,

dl2 =
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2), (2.79)

where k = 1, 0,−1 correspond to closed (spherical), open flat and open
hyperbolic models; t is the physical (proper) time measured by perfect
clocks of comoving observers. It is the metric with maximally symmet-
ric spatial sections: for k = +1, each spatial section t = const is a 3-
dimensional sphere, for k = 0 it is a 3-dimensional Euclidean space, and
for k = −1 it is a 3-dimensional Lobachevsky space. The isometry group
G6 of any of them, including translations in three directions and rotations
around three axes, is at the same time the isometry group of the space-time
as a whole.
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The function a(t) describes the common evolution of all spatial lengths
and is called the scale factor.

For the metric (2.79), the Einstein tensor has nonzero components G0
0

and G1
1 = G2

2 = G3
3 only:

G0
0 = − 3

a2
(ȧ2 + k); G

i
i = − 1

a2
(2aä + ȧ2 + k), (2.80)

where the dot denotes d/dt and the underlined index means that there is
no summing over it.

Due to the Einstein equations, the SET of matter, irrespective of its
particular nature, has the same structure as the Einstein tensor, therefore
inevitably

T ν
µ = diag(ρ,−p,−p,−p), (2.81)

where ρ is the energy density, and p is the isotropic pressure. It is an
example of how the space-time geometry prescribes the form of matter:
in the FRW metric, any kind of matter has actually the perfect-fluid
SET (2.81).

The
(
0
0

)
and

(
1
1

)
components of the Einstein equations are written in

the form

3
a2

(ȧ2 + k)=κρ, (2.82)

1
a2

(2aä + ȧ2 + k)=−κp, (2.83)

Eq. (2.83) is a consequence of (2.82) if one takes into account the conser-
vation law (2.52), which gives

dρ

ρ + p
= −3 da

a
. (2.84)

Thus we have a set of two independent equations for three unknown func-
tions of time: a(t), p(t), and ρ(t). To make the system determined, one
should add one more equation, the equation of state of matter, i.e., a
relation between p and ρ , which will actually determine the form of the
solution.

In the case of the simplest, so-called barotropic, equation of state p =
wρ where w = const, Eq. (2.84) gives the density evolution law

ρ = const · a−3(1+w). (2.85)
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Some characteristic values of w are:

• w = 0 — dustlike matter, no pressure;
• w = 1/3 — disordered radiation, in particular, the cosmic microwave

background;
• w = 1 — the maximally stiff matter compatible with causality, for which

the speed of sound is equal to the speed of light;
• w = −1/3 — disordered cosmic strings;
• w = −1 — the cosmological constant;
• w < −1 — phantom matter.

In the case of dustlike matter, w = 0, the law (2.85) corresponds to
mass conservation in a given coordinate volume (proportional to a3 ) in the
course of expansion or contraction.

The hypothetic phantom matter is invoked by many authors to account
for the modern accelerated expansion of the Universe. Looking at (2.85),
it is easy to understand that it is indeed a very strange form of matter:
as the volume ∼ a3 grows, its density also grows instead of decreasing.
Such a behavior, being extrapolated to remote future, really leads to a
specific form of space-time singularity, called the Big Rip. Let us look how
it happens due to Eqs. (2.82) and (2.85).

Suppose k = 0 (spatially flat cosmological models). Then, with (2.85),
Eq. (2.82) is easily integrated to give (provided w = −1)

a(t) = const · |t − t0|2/(3+3w), t0 = const. (2.86)

For w < −1, we thus obtain an infinite value of a at some finite time
t = t0 , and at this time the phantom matter density grows to infinity,
while all forms of “normal” matter vanish.

The case w = −1, the cosmological constant, is also called the case of
vacuum matter. One of the reasons is that the corresponding effective SET,
Λδν

µ/κ , is invariant under all coordinate transformations, hence any RF is
comoving for such matter — this property is incompatible with any kind
of massive particles which are at rest only in some particular RF. Its other
important feature is that it has a constant energy density ρ = const = Λ/κ

irrespective of any evolution of the metric.
In the case w = −1, Eq. (2.82) leads to the following solutions at dif-

ferent k and Λ: for Λ > 0 we obtain

k = 0: a(t) = a0 e±H0t, a0 = const; (2.87)

k = 1: a(t) = H−1
0 cosh[H0(t − t0)], t0 = const; (2.88)
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k = −1: a(t) = H−1
0 sinh[H0(t − t0)], t0 = const, (2.89)

where H0 :=
√

Λ/3. For Λ < 0, Eq. (2.82) has a solution for hyperbolic
models only, k = −1:

a(t) = H−1
0 sin[H0(t − t0)], t0 = const, l =

√
−3/Λ. (2.90)

The metrics (2.87)–(2.89) describe the de Sitter space in different coor-
dinates belonging to diff erent RFs. It is evident that even the topology of
spatial sections is different: it is R

3 for the models (2.87) and (2.89) and
S

3 (a 3-sphere) for the model (2.88). An analysis shows (see, e.g., the book
by Hawking and Ellis [198]) that the dS space-time is described completely
by the metric (2.88), whereas (2.87) and (2.89) only describe certain parts.

The metric (2.90) describes the AdS space.



Chapter 3

Spherically symmetric
space-times. Black holes

In this chapter, we will begin considering some questions of black-hole
physics. A black hole (BH) is, by definition, a space-time region where the
gravitational field is so strong that no material bodies or light rays can
leave this region and escape to infinity [168].

In the opinion of the majority of astrophysicists, BHs are widespread
in the Universe, a great number of BHs formed in the early Universe, they
form as a result of massive star evolution, and supermassive BHs (106

to 109 solar masses) are located in the central regions of many types of
galaxies, including our own Milky Way Galaxy, quasars and active galac-
tic nuclei. BHs possess many interesting and unusual properties, both
theoretical and observational ones, described in detail in the books
[168, 198, 296, 413] and others as well as a lot of review papers. We here
only give an elementary introduction to this complicated and rapidly devel-
oping branch of physics, and we will be mostly restricted to the simplest
case of spherical symmetry. Still many of the results to be presented here
(e.g., the methodology of building Carter–Penrose diagrams in the gen-
eral case, exact solutions with scalar fields and others) have not yet been
included in standard textbooks, and some of them, to our knowledge, have
only been published in journal articles and appear in a book for the first
time.

3.1 Spherically symmetric gravitational fields

Spherical symmetry is a natural assumption in describing the sim-
plest isolated bodies and island-like configurations. Spherically symmetric

55
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space-times are invariant under spatial rotations forming the isometry
group G3.

In the general case, a spherically symmetric metric can be written in
the form (see, e.g., [263])

ds2 = e2γdt2 − e2αdu2 − e2βdΩ2, dΩ2 = dθ2 + sin2 θ dφ2, (3.1)

where α, β, γ are, generally, functions of the radial coordinate u and the
time coordinate t . We will also use the notation r≡ eβ ; thus r is the radius
of a coordinate sphere u = const, t = const, or the Schwarzschild radial
coordinate. (Let us note from the very beginning that in curved space the
spherical radius r has nothing to do with a distance to the centre, and
there can even be no centre at all.) In the expression (3.1), there is a
freedom in choosing a reference frame (RF): different RFs correspond to
reference bodies with different radial velocity distributions with respect to
each other.

In the case of a static space-time (the isometry group G4 , since rota-
tions are supplemented with time translations), one can always choose the
RF in such a way that α, β, γ depend on u only. But there still remains
the opportunity of replacing the radial coordinate u with another one by
transformations of the form u = u(unew); one can fix the choice of the
radial coordinate by postulating a relation between the functions α, β, γ .

In solving different problems, different variants of such coordinate con-
ditions can be convenient. Let us enumerate some of them.

1. eα ≡ 1, du = dl — the Gaussian normal coordinates; the coordinate l is
the true length along the radial direction, counted from a certain fixed
sphere l = 0.

2. u = r , γ = γ(r), α = α(r) — the curvature (Schwarzschild) coordi-
nates: r is the curvature radius of the sphere r = const.

3. e2β(u) = e2α(u)u2 — isotropic coordinates, in which the spatial part of
the metric is written in a conformally flat form:

dl2 = e2α(u)(du2 + u2dΩ2) = e2α(u)d�x 2, (3.2)

where, in the three-dimensional linear element, Cartesian coordinates
have been introduced: �x = (x1, x2, x3).

4. α(u) = 2β(u) + γ(u) — the harmonic coordinate u is particularly
convenient for solving problems with scalar fields.

5. α = −γ — the quasiglobal coordinate u . This name is connected with
the fact that (as we shall see later) that it is more suitable than others
for describing BH and other similar metrics at both sides of horizons.
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6. α(u) = γ(u) — such u is sometimes called the “tortoise coordinate”
because in many important cases the metric functions change very
slowly when expressed in terms of u . In this case, the metric of the
(t, u) subspace takes a conformally flat form, which simplifies a consid-
eration of wave equations.

Other coordinate conditions can also be used.
Let us present the form of some quantities for the metric (3.1) with

arbitrary coordinates u and t , without specifying their choice (and even
the choice of a RF) from the very beginning. To obtain them in specific
coordinates like those enumerated above, one should simply substitute the
corresponding coordinate condition.

For a static metric (3.1), the Ricci tensor is diagonal; if there is a
t dependence, there appears the component R01 �=0. Let us present its
nonzero components in the general case:

R0
0 = e−2γ [2β̈ + α̈ + 2β̇2 + α̇2 − γ̇(2β̇ + α̇)]

− e−2α[γ′′ + γ′(2β′ + γ′ − α′)];

R1
1 = e−2γ [α̈ + α̇(2β̇ − γ̇ + α̇)]

− e−2α[2β′′ + γ′′ + 2β′2 + γ′2 − α′(2β′ + γ′)];

R2
2 = e−2β + e−2γ [β̈ + β̇(2β̇ − γ̇ + α̇)]

− e−2α[β′′ + β′(2β′ + γ′ − α′)] = R3
3;

R01 = 2[β̇′ + β̇β′ − α̇β′ − β̇γ′]. (3.3)

Dots and primes stand for ∂/∂t and ∂/∂u , respectively. The expressions of
Rν

µ for a static metric are obtained from here by putting all time derivatives
equal to zero.

Among the components of the Einstein tensor, of most interest to us is
the component G1

1 since it does not contain second-order derivatives in u ;
for a static metric,

G1
1 = − e−2β + e−2αβ′(β′ + 2γ′). (3.4)

The expressions (3.3) and (3.4) are necessary for substituting into the
basic equations that determine the properties of self-gravitating systems in
GR, the Einstein equations (2.50), which can be written in two equivalent
forms:

Gν
µ ≡ Rν

µ − 1
2
δν
µR = −κT ν

µ (3.5)
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and

Rν
µ ≡ Rν

µ = −κ

(
T ν

µ − 1
2
δν
µT

)
, (3.6)

where T ≡ T α
α is the trace of the stress-energy tensor (SET) of matter,

and we have put κ = 8πG according to the Newtonian limit of GR.
When studying any space-time, it is above all important to know

whether it is regular, which means that all curvature invariants are finite at
all its points, or contains curvature singularities at which at least one such
invariant is infinite. In many cases, it is most helpful to check the finite-
ness of the Kretschmann scalar (sometimes also called the Riemann ten-
sor squared) K= RαβγδR

αβγδ. For a static metric (3.1), the Kretschmann
scalar is a sum of squares of all nonzero components Rαβ

γδ of the Riemann
tensor:

K=4K2
1 + 8K2

2 + 8K2
3 + 4K2

4 ,

K1 = e−α−γ(γ′ eγ−α)′ = −R01
01,

K2 = e−2αβ′γ′ = −R02
02 = −R03

03,

K3 = e−α−β(γ′ eβ−α)′ = −R12
12 = −R13

13,

K4 =− e−2β + e−2αβ′2 = −R23
23. (3.7)

This happens because in this case (and in many other important cases) the
tensor Rαβ

γδ is pairwise diagonal.
It is significant that all Ki are invariant under reparametrizations of

the u coordinate, i.e., under the transformations u �→ f(u). In other words,
they behave as scalars at such transformations. The same is true for mixed
components of all second-rank tensors, including Rν

µ and Gν
µ — that is

why, when writing the Einstein equations, we prefer to deal with these
components rather than Rµν , Gµν or Rµν , Gµν , which are sensitive to u

reparametrizations. Let us note that a reparametrization u �→ f(u) is a
special case of a purely spatial transformation of coordinates, leaving the
reference frame unchanged (see Chapter 2).

Since the scalar K is a sum of squares, for its finiteness it is necessary
and sufficient that all its components Ki , or, in other words, all nonzero
components of the Riemann tensor Rµν

αβ are finite. Thus, if the scalar
K is finite, then all invariants that can be constructed algebraically from
the Riemann tensor and the metric tensor are finite, in particular, the
scalar curvature R , the “Ricci tensor squared” RαβRαβ , the invariant
RαβγδR

αγRβδ and so on. So, the finiteness of K at some space-time point
means that a curvature singularity is absent at this point.
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In the general case of a time-dependent metric (3.1), the situation with
singularities is more involved.

It should be mentioned here that curvature singularities are not the only
type of singularities that can appear in physically relevant space-times. In
the most general form, a singularity is defined as a point or a set of points
where geodesics terminate at a finite value of their canonical parameter.
In other words, they are places of geodesic incompleteness. This can
happen in any case where the metric loses its analyticity, for instance,
where some of the metric functions behave like (x − x0)a with fractional
a in terms of a manifestly admissible coordinate x .

3.1.1 A regular centre and asymptotic flatness

A centre in a static, spherically symmetric space-time is, by definition, a
point, line or surface where r ≡ eβ =0, a place where coordinate spheres
are drawn to points. A centre can be regular or singular; regularity, as in
any space-time point, is determined by finiteness of all Ki in the expression
(3.7). It is necessary to note that there can be no centre at all in a spheri-
cally symmetric space-time; this happens if the quantity r is nonzero in the
whole space-time, or at least in its static region. We will encounter such
behavior very soon, while discussing the properties of the Schwarzschild
geometry.

With an arbitrary u coordinate, the necessary and sufficient conditions
for regularity of the metric at the centre (r = 0) are obtained in the form

γ = γ0 + O(r2), |β′| e−α+β = 1 + O(r2), (3.8)

where γ0 is a constant. The second condition is obtained from the finiteness
requirement of the quantity K4 in (3.7). Its meaning is that the circum-
ference to radius ratio should take the correct value (2π ) for small circles
circumscribed around the centre. This guarantees local flatness of space at
the centre and the existence of a tangent space. These are properties of
any regular point — but for a centre one has to introduce special regular-
ity conditions because a centre is a singular point of the class of spherical
coordinate systems used.

Asymptotic flatness. As r → ∞ , far from gravitational field sources, in
many cases (though not always) the space-time geometry should coincide
with the Minkowski geometry. Such space-times are called asymptotically
flat. It means, above all, that all components of the Riemann tensor turn to
zero, i.e., all Ki → 0. The latter condition is, however, not sufficient: for an
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asymptotically flat space-time it is also necessary to have a correct circum-
ference to radius ratio (2π ) for large coordinate circles, otherwise even with
a zero curvature tensor the three-dimensional space will have a funnel-like
asymptotic, with a deficit or excess solid angle as compared to its stan-
dard value of 4π . Such a geometry characterizes a specific type of con-
figurations called global monopoles. (A two-dimensional analogue of such
three-dimensional surfaces is a conical surface whole metric is flat at all
points but the top, however, the length of a circle circumscribed near the
top relates to its radius by a factor different from 2π .)

Just as a centre can be lacking in a spherically symmetric space-time,
a flat infinity can also be lacking; moreover, there can be no limit r→∞ .
We have already met such a geometry: Friedmann’s closed world is spheri-
cally symmetric, and its every spatial section contains (in a given spherical
coordinate system) two centres but no spatial infinity.

The necessary and sufficient conditions for the metric (3.1) to be asymp-
totically flat as r → ∞ in terms of an arbitrary coordinate u are as follows:

γ = γ∞ + O(1/r), |β′| e−α+β = 1 + O(1/r), (3.9)

where γ∞ is a constant.
In the conditions (3.8) and (3.9), as everywhere, the notation y = O(x)

means that either x and y are quantities of the same order (y ∼ x) or y

is much smaller than x (the latter is denoted as y ≪ x or y = o(x)).

3.2 The Reissner–Nordström–(anti-)de Sitter

solution

3.2.1 Solution of the Einstein equations

Let us find an important class of exact static, spherically symmetric solu-
tions to the Einstein equations, characterizing the gravitational fields in
vacuum or in the presence of an electromagnetic field (without charges) and
a cosmological constant. This class contains the metrics that have the great-
est number of astrophysical applications among all spherically symmetric
metrics; it will also provide us with explicit examples in our future discus-
sion of general properties of spherically symmetric space-times, including
those with BHs.

It proves to be convenient to solve the problem in the curvature coordi-
nates, in which two independent Einstein equations can be written in the
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form (3.5):

G0
0 + Λ = e−2α

(
1
r2

− 2α′

r

)
− 1

r2
+ Λ = −κT 0

0, (3.10)

G1
1 + Λ = e−2α

(
1
r2

+
2γ′

r

)
− 1

r2
+ Λ = −κT 1

1, (3.11)

where the prime denotes d/dr while the SET in the present case corre-
sponds to the electromagnetic field.

The Lagrangian and SET of the electromagnetic field are

Le−m = −1
4
FµνFµν , T ν

µ =
1
4
[−4FµαF να + δν

µFαβFαβ ]. (3.12)

The Maxwell equations ∇αFαβ = 0 must now be written for the spher-
ically symmetric case, so that among the components of Fµν only the ones
describing a radial electric field (F01 = −F10 ) and a radial magnetic field
(F23 = −F32 ) can be nonzero.6 Let us restrict ourselves to an electric field.
Then the only nontrivial Maxwell equation yields

(
√−gF 01)′ = 0 ⇒ F 01 =

Q e−α−γ

√
4πr2

, F10 =
Q eα+γ

√
4πr2

, (3.13)

where the constant Q is interpreted as an electric charge (we are using the
Heaviside units in electrodynamic). The SET takes the form

T ν
µ =

Q2

8πr4
diag(+1, +1,−1,−1). (3.14)

Let us now solve the Einstein equations. Eq. (3.10) can be brought to the
form

[r(A − 1)]′ = −(Λ + κT 0
0)r

2

⇒ A = 1 − Λr2

3
− G

r

∫
T 0

0r
2dr, (3.15)

where A(r) = e−2α and we have recalled that κ = 8πG . On the other
hand, the difference of Eqs. (3.10) and (3.11), under the condition T 0

0 =T 1
1 ,

6It is often claimed that a radial magnetic field is only possible if one assumes the
existence of magnetic monopoles. However, in configurations like wormholes both electric
and magnetic radial fields can exist without any charges, see Chapter 5.
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gives

α′ + γ′ = 0 ⇒ eα+γ = 1, (3.16)

under a proper choice of scale along the time axis. As a result of integration
in (3.15), the metric finally takes the form

ds2 = A(r)dt2 − dr2

A(r)
− r2dΩ2,

A(r) = 1 − Λ
3

r2 − 2GM

r
+

GQ2

r2
, (3.17)

where the integration constant M is interpreted as the active gravitational
mass of the gravitational field source.

3.2.2 Special cases

The (anti-)de Sitter metric

In the special case of zero mass and charge, the function A(r) in Eq. (3.17)
takes the simple form A = 1− (Λ/3)r2 . At Λ = 0, the Minkowski metric is
reproduced. At Λ > 0, it can be shown that the metric describes the de Sit-
ter space-time, already discussed in the previous chapter in a cosmological
context. But here we have its static representation, hence we obtain it here
in a RF different from the previous ones. At Λ < 0 we accordingly obtain
the AdS space-time. Explicit relations between the static and cosmological
coordinates in de Sitter space-time will be presented later.

Consider the case Λ = 3H2 > 0 in more detail. The metric is

ds2 = (1 − H2r2)dt2 − (1 − H2r2)−1dr2 − r2dΩ2. (3.18)

At r = 0 it has a regular centre. It must be so because de Sitter space-
time, being a constant-curvature space, is homogeneous; all its points are
equivalent and regular, and any of them can be “appointed” to be a centre.

At r = 1/H the metric coefficients g00 and g11 turn to zero (this sphere
is called a horizon), while at r > 1/H they take negative values, so that
the coordinates r and t exchange their roles: the quantity r now becomes
a temporal coordinate and t a spatial coordinate. Such a region is called a
T-region; see a more general description of horizons, R- and T-regions in
the next section. In this T-region, the metric can be rewritten as follows:

ds2 = (H2r2 − 1)−1dr2 − (H2r2 − 1)dx2 − r2dΩ2

= dτ2 − sinh 2(Hτ)dx2 − H−2 cosh 2(Hτ)dΩ2, (3.19)
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where the “former time” t is renamed x while the variable τ , introduced
instead of r , has the meaning of proper time in this cosmological model,
which is homogeneous but anisotropic. The homogeneity follows from the
fact that, in addition to spherical symmetry, the metric coefficients are
independent of the spatial coordinate x ; the anisotropy manifests itself
by the existence of two different scale factors, |gxx | = sinh2(Hτ) and
|gθθ| = r2 = cosh2(Hτ), characterizing the expansion of the Universe in
the x direction and in the two angular directions. Such spherically sym-
metric cosmological models, with the topology of the spatial section R×S

2 ,
whose special case is the model (3.19), are called Kantowski–Sachs models.
Looking ahead, we note that Kantowski–Sachs models describe T-regions
of any spherically symmetric BHs.

In the model (3.19), the cosmological expansion begins with the horizon
τ =0, which is an extremely anisotropic state because gxx =0, but becomes
isotropic and exponential (with the Hubble constant H ) at large τ . It is
one more face of the de Sitter metric in addition to the three isotropic
cosmological models and (3.18).

Let us stress that in this description the metrics (3.18) and (3.19) must
be considered separately from each other because at r = H−1 , A=0, so
both metrics possess coordinate singularities. The same is true for all R-
and T-regions up to the end of this section. At all horizons, corresponding
to regular zeros of the function A(r), as is easily verified using Eqs. (3.7),
the four-metric is regular, and it is natural to suppose that a transition
to new coordinates can allow for avoidance of coordinate singularities and
obtaining a complete space-time picture naturally including R- and T-
regions. Such transformations will be described in the next sections.

The Schwarzschild metric and the Newton law

In the case Λ = 0, Q = 0, the metric (3.17) turns into the Schwarzschild
metric

ds2 =
(

1 − 2GM

r

)
dt2 −

(
1 − 2GM

r

)−1

dr2 − r2dΩ2, (3.20)

where the integration constant M has the meaning of an active gravita-
tional mass. To confirm this interpretation, let us use the geodesic equa-
tion (2.53) for the case of a test particle instantaneously at rest, at a large
(compared to 2GM ) value of the radius r :

d2xi

ds2
+ Γi

00(u
0)2 = 0,
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where ds2 = g00dt2 ≈ dt2 and u0 ≈ 1 due to the assumptions made.
Among the Christoffel symbols Γi

00 only one is nonzero, namely, Γ1
00 =

γ′ e2γ−2α (in terms of the metric (3.1)), or, with (3.20), Γ1
00 ≈ GM/r2 .

Thus the particle experiences the acceleration −GM/r2 in the direction of
smaller radii, as was required.

The Schwarzschild metric describes the gravitational field in vacuum
around any isolated spherically symmetric body provided that the space-
time far from the body can be regarded as asymptotically flat — and this
is the case for an overwhelming majority of phenomena of astrophysical
interest. The properties of the Schwarzschild metric will be discussed in
detail in section 3.4. We will only mention here that, like the de Sitter
metric (3.18), the Schwarzschild metric (3.20) contains a single horizon at
r = rg = 2GM , beyond which, at r < rg , there is a T-region representing
a certain Kantowski–Sachs model.

The region r ≤ rg is the simplest example of a black hole.

The Reissner–Nordström metric

The Reissner–Nordström metric is obtained from (3.17) at Λ =0 and
describes the external gravitational field of a body of mass M having
the electric charge Q . The geometric and hence physical properties of the
Reissner–Nordström space-time depend on the charge to mass ratio. Let
us introduce the “geometrized” mass and charge having the dimension of
length:

m = GM, q =
√

GQ, (3.21)

then under the condition m2 > q2 the quadratic trinomial (see (3.17))

r2A(r) = r2 − 2mr + q2, (3.22)

has two positive roots

r± = m ±
√

m2 − q2, (3.23)

so that A(r) > 0 (the metric is static) at r+ < r < ∞ — it is the
outer R-region, and at 0 < r < r− — the inner R-region. The interme-
diate values r− < r < r+ correspond to a T-region, in which, as in the
Schwarzschild and de Sitter space-times, the metric describes a certain
homogeneous anisotropic Kantowski–Sachs model. The spheres r = r+

and r = r− , separating the R- and T-regions, are called the outer and
inner horizons of a Reissner–Nordström BH, respectively.
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Under the condition m2 = q2 , so that A = (r − m)2 , the two horizons
merge into a single one, r = rh = m = |q| ; it is called a double, or
extremal horizon, and the region r ≤ m (or sometimes the whole con-
figuration) is called an extremal Reissner–Nordström BH. At both sides of
the sphere r = rh , the function A(r) is positive.

Lastly, for “large charges”, q2 > m2 , the whole space r > 0 is occupied
by a single R-region.

At r → ∞ , the contribution of the charge to the function A(r) can be
neglected, and the metric approximately coincides with Schwarzschild’s.

On the contrary, at small radii, r → 0, the properties of the metric are
completely determined by the charge. Since it is in all cases an R-region,
the value r = 0 corresponds to a centre, and, as shown by comparison with
Eqs. (3.7), this centre is singular. Since g00 = A → ∞ as r → 0, it is easy
to find that the centre repels neutral test particles.

Metrics with a nonzero cosmological constant

At Λ �= 0, the basic properties of the metric (3.17) are again determined by
the behavior of the function A(r) and, above all, by the number and dispo-
sition of its zeros, each of them corresponding to a horizon that separates
R- and T-regions.

At Q = 0, M > 0 and Λ > 0 (the Schwarzschild-de Sitter metric),
the number of horizons can range from zero to two, but at small and large
r , at r → 0 and r → ∞ , there are T-regions. If there is, in addition, a
nonzero charge, then there is an R-region at r → 0, with a singular centre
just as in the Reissner–Nordström solution, while at r → ∞ the metric
behaves as in the de Sitter solution (a T-region), so that the number of
horizons varies from 1 to 3 depending on the particular values of the three
parameters m , q and Λ.

3.3 Horizons and geodesics in static, spherically

symmetric space-times

After the first appearance of horizons in the de Sitter, Schwarzschild and
Reissner–Nordström metrics and their generalizations, it makes sense to
make the notion of a horizon more exact and to establish its close rela-
tionship with the notion of a black hole (BH). As was mentioned at the
beginning of this chapter, a BH is by definition such a space-time region
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that no material body or light signal can leave it. Since the motion of
massive and massless particles is described in metric theories of gravity
by geodesic equations, the question of which space-time region is a BH is
answered by studying the properties of geodesics.

It is for this reason that this section begins with a description of the gen-
eral form of geodesics in an arbitrary static, spherically symmetric space-
time; after that, we will discuss the behavior of geodesics in the vicinity
of horizons and their relationship with the BH notion. We will conclude
the section by briefly describing different kinds of horizons mentioned in
papers on the theory of gravity.

3.3.1 The general form of geodesic equations

Let us return to the general static, spherically symmetric metric (3.1) with
an arbitrary radial coordinate u and consider the geodesic equations (2.53)
as equations with respect to the unknown functions x0 = t(λ), x1 = u(λ),
x2 = θ(λ), x3 = φ(λ), the coordinates of a point on the trajectory, as
functions of the canonical parameter λ .

For simplicity, and in connection with the symmetry of the problem, we
will assume that the geodesic is located in the equatorial plane θ = π/2;
we denote d/dλ by a dot and d/du by a prime. The equations, along with
first integrals of two of them, have the form

ẗ + 2γ′ṫu̇ = 0 ⇒ ṫ = E e−2γ , (3.24)

ü + γ′ e2γ−2αṫ2 + α′u̇2 − β′ e2β−2αφ̇2 = 0, (3.25)

φ̈ + 2β′φ̇u̇ = 0 ⇒ |φ̇| = L e−2β , (3.26)

where E and L are integration constants. The equation that contains θ̈ is
trivial.

Eqs. (3.24)–(3.26) are not independent: there is the constraint
uαuα = k , where uµ = dxµ/dλ ; k = +1 for timelike geodesics (in this
case uµ is the 4-velocity and the parameter λ coincides with the proper
time), k = 0 for null geodesics, and k = −1 for spacelike ones. Let us write
down the explicit form of this constraint, which represents an integral of
Eq. (3.25):

e2γ ṫ2 − e2αu̇2 − e2βφ̇2 = k, (3.27)

and substitute the integrals (3.24) and (3.26). After multiplying by e2γ we
obtain

e2α+2γ u̇2 + k e2γ + L2 e2γ−2β = E2. (3.28)
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The latter relation has the form of an energy conservation law for a particle
moving in a potential field along the u axis; the quantity E2 ≥ 0 plays
the part of the total energy, the first term is an analogue of the particle’s
kinetic energy while a sum of the second and third ones makes an analogue
of the potential energy; moreover, the effective potential

V (u) = e2γ(k + L2 e−2β) (3.29)

plays the same role for geodesic motion as the potential in classical mechan-
ics for a one-dimensional motion of a point particle: the motion is only
possible in a region where E2 ≥ V (u), while the values of the coordinate
u at which E2 = V correspond to turning points.

The constant L related to changes in the azimuthal angle φ can be
interpreted as the particle’s conserved angular momentum.

3.3.2 Horizons, geodesics and the quasiglobal
coordinate

In our further discussion, we will frequently use the quasiglobal coordinate
ρ (see Section 3.1), which possesses some advantages as compared with
other choices of the radial coordinate.

Thus, we can say in advance that this ρ behaves at horizons in the
same way as the coordinates used to carry out an analytic extension of
the metric, and therefore it can be used simultaneously on both sides of
the horizon (hence the name “quasiglobal”). In addition, as we will see
immediately, in some important cases the behavior of the ρ coordinate
can be a criterion of geodesic completeness of the space-time and therefore
the very necessity of its extension.

In terms of the quasiglobal coordinate u = ρ , the static metric (3.1) is
written as follows:

ds2 = A(ρ)dt2 − dρ2

A(ρ)
− r2(ρ)dΩ2, (3.30)

where A(ρ) ≡ e2γ .
We have previously introduced the notion of a horizon using as examples

the de Sitter, Schwarzschild and other metrics in which the coordinate r =
ρ turned out to be simultaneously a curvature and quasiglobal coordinate.
In agreement with what has been said, let us define a horizon in any space-
time with the metric (3.30) as a regular sphere ρ = ρh , near which

A(ρ) ∼ (ρ − ρh)n, (3.31)
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where n ∈ N is the order of the horizon. Since A(ρ) is equal to the norm
ξαξα of the Killing vector ξα = (1, 0, 0, 0), regular surfaces where A = 0
are Killing horizons (surfaces where the timelike or spacelike Killing vector
becomes null).

It is easy to notice that, in terms of the metric (3.30), an R-region is a
region where A > 0, and a T-region is a region where A < 0. A horizon
of odd order n separates an R-region from a T-region, while a horizon of
even order separates two R-regions or two T-regions from one another.7

Consider the behavior of geodesics of the metric (3.30) near horizons.
According to (3.28), in the notation of the metric (3.30) (u = ρ , e2γ =
e−2α = A(ρ)), and bearing in mind that u̇ = du/dλ , we obtain

±dλ

dρ
=

[
E2 − A

(
L2

r2
+ k

)]−1/2

. (3.32)

In particular, as ρ → ρh such that A(ρh) = 0 (a possible horizon), where
the quantity ρh may be finite or infinite, we have

dλ ≈ E dρ. (3.33)

If E is a finite constant, then, evidently, near a possible horizon the coor-
dinate ρ behaves as a canonical parameter for any geodesic approaching it,
be it spacelike, timelike or null. For timelike geodesics one can state that a
horizon is achieved along a geodesic at finite proper time λ ≡ τ i f and only
if this horizon corresponds to a finite value of the quasiglobal coordinate ρ .

If A → 0 as ρ → ∞ , such a surface may be called a remote horizon:
it is reached along a geodesic at infinite proper time, and apparently any
nongeodesic trajectories cannot make this time finite.

The constant E can be zero only in the case (see (3.24)) of spacelike
geodesics completely located in the spatial section t = const. In this case
the canonical parameter λ , coinciding with the proper length l , is deter-
mined by the integral

l =
∫

du√
A(1 − L2/r2)

. (3.34)

7Noninteger n would violate the analyticity of the metric even if the curvature invariants
are finite, thus making meaningless an analytic extension beyond the horizon. Thus, if
ρ > ρh in a R- or T-region, then at fractional n the metric loses sense at ρ < ρh .
Although while considering only a static reference frame one could include fractional n
into consideration, we here put n ∈ N for simplicity.
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The integrand is meaningless at r < L . Therefore r = L is the minimum
value of r reached by purely spatial geodesics. This is the simple geometric
meaning of the constant L .

According to (3.32), if E = 0, then in the limit A → 0, if ρ → ∞ ,
then the canonical parameter λ along the geodesics tends to infinity, just
as for nonzero values of E . Thus we obtain the following important result
for static, spherically symmetric space-time:

I f ρ → ∞ on a surface where A → 0 ( i .e., on a candidate horizon) , then
this surface (called a remote horizon) is the boundary of the space-time
under consideration, and it cannot be reached by any geodesics at finite
values of their canonical parameter .

So the space-time is geodesically complete at a remote horizon, and no
extension is needed beyond such a horizon.

Let us now return to usual (not remote) horizons and look how the
coordinate time t (it is also the time according to the clocks of a distant
observer at rest in the case of an asymptotically flat space-time) behaves
there on timelike and null geodesics approaching such a horizon. From
(3.24) and (3.28) we obtain for the metric (3.30)

dρ

dt
= ±A

√
1 − V (ρ)/E2, (3.35)

where E > 0, and the potential has the form V = A(k + L2/r2). At the
horizon, the potential turns to zero, and due to (3.31), we get from (3.35)

t ∼ ±
∫

dρ

(ρ − ρh)n
→ ±∞. (3.36)

Thus the coordinate time t is infinite at the horizon for all geodesics that
cross it, except for purely spatial ones: it is equal to +∞ for motion to the
horizon and −∞ for motion from the horizon. It means that a horizon is
in absolute past or absolute future for any observer located in the static
region, and it becomes clear that to cross a horizon and to gain a joint
description of regions on its both sides it is necessary to pass on to coor-
dinates which do not belong to the static RF. More than that: even from
this consideration, completely restricted to the static RF, it follows that a
horizon as a limiting surface in the set of spheres r = const splits into two
parts: the past horizon and the future horizon.

Eq. (3.35) looks especially simple for radially moving photons:
dρ/dt = ±A . It shows that the coordinate velocity of photons (and the same
for massive particles), from the viewpoint of any static observer, tends to
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zero as the photon approaches a horizon, and tends so rapidly that the
coordinate time t at which a photon reaches or leaves a horizon is infinite.

We see that if a given static region of space-time contains a future
horizon, then this horizon and the region beyond it realize the notion of
a BH from the viewpoint of this static region since, to put it simply, it
is possible to fly there but it is impossible in principle to return from
there — from the absolute future. In a similar way, a past horizon and a
region beyond it can be called a white hole, from which photons or any
other particles can appear, but it is impossible in principle to get there
from the static region because it is located in the absolute past.

3.3.3 Transitions to Lemâıtre reference frames

Let us now use the geodesic equations to make a transition to a nonstatic
RF connected with a family of test particles moving in a static, spherically
symmetric gravitational field.

Consider the general static metric (3.30) written using the quasiglobal
coordinate ρ . We shall see that a transition from the coordinates (ρ, t) of
the static RF to the geodesic coordinates (R, τ), where τ is the proper time
along a geodesic and the radial coordinate R is the congruence parameter,
different for different geodesics, can be described in a general form. A radial
timelike geodesic in the metric (3.30) satisfies the equations following from
(3.24) and (3.28)

(
dρ

dτ

)2

= E2 − A(ρ),
dt
dτ

=
E

A(ρ)
, (3.37)

where the constant E is connected with the initial velocity of a particle
moving along this particular geodesic at a given value of R . In general,
E = E(R), i.e., the particle energies are different for different geodesics.

Equation (3.37) gives two of the four components of the transition
matrix

‖∂(t, ρ)/∂(τ, R)‖, (3.38)

namely, ρ̇ and ṫ (dots and primes here stand for ∂/∂τ and ∂/∂R , respec-
tively) since this partial differentiation occurs along the geodesics:

ρ̇ = ±
√

E2(R) − A(ρ), ṫ = E(R)/A(ρ). (3.39)

A relation between the other two components, t′ and ρ′ , can be found
from the condition gτR = 0 when we substitute dt = ṫdτ + t′dR and
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dρ = ρ̇dτ + ρ′dR into the metric (3.30):

t′ =

√
E2(R) − A(ρ)
E(R)A(ρ)

ρ′. (3.40)

It remains to find ρ′(R, τ), which can be done by using the integrability
condition (∂τ∂R − ∂R∂τ )ρ = 0. The latter takes the form of a linear first-
order differential equation with respect to ρ′ considered as a function of
R and ρ , ρ′ = y(R, ρ):

∂ρy = − y ∂ρA

2(E2 − A)
+

EE′

E2 − A
. (3.41)

Solving it, we obtain

y = ρ′(R, τ) =
√

E2 − A(ρ)

[
f0(R) + EE′

∫
dρ(

E2 − A(ρ)
)3/2

]
, (3.42)

where f0(R) is an R -dependent integration constant. The other integra-
bility condition (∂τ∂R−∂R∂τ )t = 0 holds automatically due to (3.40). The
functions t(R, τ) and ρ(R, τ) can now be found by further integration of
Eqs. (3.39)–(3.42). The resulting metric can be written as follows:

ds2 = dτ2 − ρ′(R, τ)2

E2(R)
dR2 − r2(ρ(R, τ))dΩ2. (3.43)

One can see how this procedure works using the de Sitter space-time
as an example. Its static form is (3.30) with r ≡ ρ and A(r) = 1 − H2r2 ,
H = const > 0. Let us choose three different families of geodesics such that

E(R) =
√

1 − kR2, k = 0,±1, (3.44)

and show that their corresponding reference frames represent the three
well-known forms of the de Sitter metric as isotropic cosmologies with
different signs of spatial curvature (see the end of the previous chapter).
Indeed, integrating the first relation in (3.39) as an equation for τ = τ(r, R)
and properly choosing the arbitrary function of R that appears as an
integration constant, we obtain the following expressions for r :

r(R, τ) = (R/H) × {cosh(Hτ), eHτ , sinh(Hτ)}, (3.45)

where the expressions in the curly brackets are ordered according to k =1,
0,−1. Substituting them into (3.43), we obtain the metric in the form

ds2 = dτ2 − a2(t)
(

dR2

1 − kR2
+ R2dΩ2

)
,

a(τ) = (1/H) × {cosh(Hτ), eHτ , sinh(Hτ)}, (3.46)
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as was intended. One can also verify that the expression (3.42) with E(R)
given by (3.44) (provided the function f0(R) is chosen properly) coincides
with the expression for r′ obtained directly from (3.45) in all three variants.
So the transition in the metric has been completed.

We see that the de Sitter metric in the form of an isotropic cosmolog-
ical model is written in geodesic RFs, comoving to some families of freely
moving test particles in de Sitter space-time.

Thus for finding the metric in the Lemâıtre RF we needed only the tran-
sition matrix (3.38) consisting of derivatives whereas for writing explicitly
the corresponding coordinate transformation it is necessary to perform
further integration. In our example this integration has been performed
for r as a function of R and τ but not for t . Let us find t(R, τ) for the
geodesic family k = 0 that leads to a spatially flat cosmology. We have the
expressions

ṫ =
1

1 − R2 e2Hτ
, t′ =

R e2Hτ

1 − R2 e2Hτ
. (3.47)

Their integration gives

t = t0 + τ − 1
2H

ln(1 − R2 e2Hτ ), (3.48)

where t0 is an integration constant corresponding to an arbitrary zero point
of t . The corresponding expression for r from (3.45) is r = (R/H) eHτ .

The resulting metric (3.46) does not show any trace of the horizon at
r =H that restricted the static RF. This agrees perfectly with the previous
result that a horizon is reached by a geodesically moving particle at its finite
proper time. Such a particle (or observer) simply does not notice a horizon
being crossed. On the other hand, according to (3.48), the coordinate time
of the static RF makes sense only at r <H and diverges where r = H .
(This happens at different values of the proper time τ of different geodesics
whose family parameter R characterized their initial conditions.)

Meanwhile, the metric (3.46) makes sense at any r . Thus the transfor-
mation to a geodesic (Lemâıtre) RF is one of the ways of extending the
metric beyond a horizon, and such an extension was really carried out not
only for de Sitter but also for BH space-times. It is really a useful tool
for many purposes, in particular, for comparison and matching vacuum
metrics with those describing the gravitational field inside matter distribu-
tions (such as, e.g., the Tolman solution for a dust cloud, to be presented
in Sec. 3.6.2). It is, however, not very convenient for extracting information
on the global structure of space-time.
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3.3.4 Horizons, R- and T-regions

The horizons described above in static (or homogeneous if a T-region is con-
cerned) spherically symmetric space-times are special cases of more general
kinds of horizons discussed in the literature on the theory of gravity. Let us
mention some of them, only briefly explaining their meaning but without
going into deep details and subtleties since it would require an introduction
of many concepts from such advanced branches of mathematics as differen-
tial and algebraic topology and global differential geometry. An interested
reader can find a detailed analysis of these concepts and their application
to gravity in the books [168, 198, 296, 413] and in review articles.

An event horizon is a boundary of a black hole, and both these notions
are rigorously defined in an asymptotically flat space-time, while in other
cases, such as spaces with a nonzero cosmological constant, natural exten-
sions of these notions are used. It is known (Penrose’s theorem) that an
event horizon is formed by null geodesics.

An apparent horizon is defined as a two-dimensional surface, such that
null geodesics which orthogonally leave it have zero expansion. In station-
ary BHs, the apparent horizon coincides with the event horizon; however,
an advantage of the apparent horizon is that it is defined locally.

A Cauchy horizon is the boundary of a space-time region in which the
evolution of physical fields and matter distributions can be found from
their equations of motion with initial data specified on a certain Cauchy
hypersurface (which can be null or spacelike). The emergence of Cauchy
horizons is most frequently connected with singularities since they can be
a source of impacts unpredictable in the framework of classical gravity.

A Killing horizon is, by definition, a surface whose normal is null and
coincides with a Killing vector. In other words, it is a surface at which a
certain Killing vector is null. Quite evidently, Killing horizons can occur
only in space-times possessing isometries which are then characterized by
Killing vectors.

For static space-time, of greatest importance are Killing horizons at
which the timelike Killing vector ξµ = (1, 0, 0, 0) becomes null. This hap-
pens where g00 = e2γ = 0. From the viewpoint of a static RF, there is a
singularity at such a horizon, although the 4-curvature is certainly finite8.

8The definition of a Killing horizon implicitly assumes its regularity since otherwise such
a definition would be meaningless: we would then deal with a singularity rather than a
horizon.
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Lastly, sometimes the notion of a horizon is introduced, connected with
a certain scalar. Thus, for instance, in spherically symmetric space-times
with the metric (3.1), the quantity r(u, t) is a scalar from the viewpoint of
the two-dimensional subspace parametrized by the coordinates u and t .
On the basis of the behavior of the function r(u, t), one can introduce
the notions of R- and T-regions, generalizing these notions from static to
arbitrary nonstatic space-times. By definition, an R-region is a space-
time region where the gradient of the function eβ = r(u, t), considered as
a scalar in the (u, t)-subspace, is spacelike:

r,αr,α = e−2γ ṙ2 − e−2αr′2 < 0. (3.49)

In this case the quantity r can be chosen as a spatial coordinate.
A T-region is, by definition, a region where r,αr,α > 0, and therefore one
can choose r as a time coordinate. Furthermore, an r -horizon is a surface
on which r,αr,α = 0.

All the horizons considered previously are evidently r -horizons and
Killing horizons. The sphere r =2m =2GM in the Schwarzschild met-
ric and the sphere r = r+ in the Reissner–Nordström metric are Killing
horizons and event horizons simultaneously, while r = r− in the Reissner–
Nordström metric is a Cauchy horizon, like many horizons in metrics with
Λ �=0.

3.4 Schwarzschild black holes. Geodesics

and a global description

3.4.1 R- and T-regions

As already noticed, in the Reissner–Nordström–de Sitter solution (3.17)
the radial coordinate is simultaneously a curvature coordinate and a
quasiglobal coordinate (r ≡ ρ). Therefore we can directly use the results
of the previous section in analyzing the properties of the solution.

Let us address the simplest special case, the Schwarzschild metric
(3.20). At r = 2GM = 2m = rg (this value of r is called the gravita-
tional radius corresponding to the mass M , or the Schwarzschild radius),
there is a simple horizon, and in the region r < 2GM (T-region) the coor-
dinates r and t exchange their roles: r becomes a temporal coordinate
and t a spatial one (just as was already discussed for the de Sitter metric).
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The T-region is described by the Kantowski–Sachs metric

ds2 =
dr2

|A(r)| − |A(r)|dy2 − r2dΩ2, (3.50)

where |A(r)| = 2GM/r− 1, and the spatial coordinate y replaces t . If we
suppose that r decreases from the value 2GM to zero, then the homoge-
neous model (3.50) contracts (collapses) to zero in two angular directions
along the coordinate spheres, whereas in the third direction (y ) it stretches
without limit. The final state r = 0 is a spacelike singularity, reached at a
certain time instant.9

The inverse process of anisotropic evolution (expansion of coordinate
spheres θ = const, φ = const and contraction from infinity to zero along
the y axis) is observed as r changes from r = 0 to r = 2GM .

The metric (3.50) describes both expanding (in the sense of growing r )
and contracting cosmological models since the time direction is not unam-
biguously related to the growth or fall of r : the physical time τ is related
to r by the integral

τ = ±
∫

dr/
√

A(r), (3.51)

whose convergence at both r → 2GM and r → 0 indicates that the
evolution from the horizon to the singularity (or conversely) occurs in a
finite time interval according to a clock at rest in the metric (3.50) at a
fixed spatial point (y, θ, φ).

Meanwhile, the expanding or contracting T-region is in no way con-
nected with the initial R-region even though the curvature at the horizon
r = τ = 2GM which separates them is finite: the Kretschmann scalar is

K = 48(GM)2/r6. (3.52)

3.4.2 Geodesics in the R-region

The behavior of geodesics near the horizon corresponds to the general
description presented above. Thus, according to (3.28) and (3.24), in the

9It is sometimes claimed that the Schwarzschild space-time has a singularity at the
centre. As is clear from the above-said, this claim is completely wrong. Indeed, the
singularity r = 0 is in a T-region, which represents a homogeneous cosmological model,
whose all spatial points are equivalent, whereas the notion of a centre assumes a certain
distinguished spatial point. Moreover, in the coordinate system in which the metric
(3.50) is written, all spatial points reach the singularity simultaneously.
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Schwarzschild metric(
dr

dλ

)2

+
(

1 − 2m

r

) (
L2

r2
+ k

)
= E2,

dt
dλ

=
E

1 − 2m/r
, m := GM. (3.53)

(The quantity m , having the dimension of length, is sometimes called
the geometrized mass.) The first of these equations gives near the horizon
(r → 2m), independently of the nature of the geodesic and on the angular
momentum L , dr/dλ ≈ ±E , whence (assuming E > 0) dλ ≈ ±dr/E .
Thus all geodesics cross the horizon at a finite value of their canonical
parameter λ . In particular, for timelike geodesics it means that the hori-
zon is crossed at finite proper time s .

In the exceptional case of purely spatial geodesics (E = 0), (3.34)
implies:

L > 2m : r = L is the minimum value of r , such geodesics do not reach
the horizon.

L = 2m : the horizon is reached but the length l ∼
∫

dr/(r − 2m) loga-
rithmically diverges. In other words, the distance from any fixed
point to the horizon along such a (tangent) geodesic is infinite.

L < 2m : the horizon is reached, and the integral (3.34) converges at
r = 2m .

It is also not difficult to verify directly that the 3-curvature of the
hypersurfaces t = const is singular at the horizon.

Let us dwell upon massive particle motion in the Schwarzschild field,
i.e., on timelike geodesics (k = 1, dλ = ds), where ds is the increment of
the particle’s proper time. From (3.53) we obtain

(
dr

ds

)2

+ V (r) = E2 (3.54)

with the potential

V (r) ≡
(

1 +
L2

r2

) (
1 − 2m

r

)
. (3.55)

Taking the derivative d/ds , we obtain the equation of motion

d2r

ds2
= −1

2
V ′(r). (3.56)
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Stable circular orbits can be found from the conditions V ′ = 0, V ′′ > 0.
Substituting the expression of the potential, we obtain

mr2 − L2r + 3mL2 = 0. (3.57)

A solution of this quadratic equation gives extrema of the potential:

rext(L) =
L

2m
(1 ±

√
1 − 12m2/L2). (3.58)

The sign of the second-order derivative V ′′(r) at r = rext

V ′′(rext) =
2
r4

(2mr − L2)
∣∣∣
r=rext

distinguishes the orbital radii (V ′′ > 0 [the plus sign in (3.58)] and a maxi-
mum of the potential that occurs at smaller radii [the minus sign in (3.58)]:

r = rmax(L) =
L

2m
(1 −

√
1 − 12 m2/L2) =

6m

1 +
√

1 − 12 m2/L2
. (3.59)

It is clear that stationary orbits are absent at small angular momenta L ,

L ≤ Lmin = 2
√

3m.

The minimum orbital radius is

rmin = rext(Lmin) = 6GM = 3rg, (3.60)

and this orbit is only marginally stable due to V ′′ = 0 (see Fig. 3.1).
Let us stress that in curved space-time the radius r of a coordinate

sphere is in general not equal to its distance from the centre even if there
is a centre. And in the Schwarzschild field, as we have seen, there is no
centre at all because the value r = 0 belongs to a T-region.

3.4.3 Particle capture by a black hole

Let us return to Eq. (3.54) and consider the problem of particle capture
by a Schwarzschild black hole. Let the particle move from infinity with an
“energy” E ≥ 1 (where E = 1 corresponds to zero velocity at infinity). If
it is not captured by the black hole, it again escapes to infinity. Then there
should be a maximum proximity position such that

dr = 0 ⇒ V (r) = E2.

On the contrary, if it is captured, the equation V (r)= E2 , with V (r) given
by (3.55), must not have a solution.
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Figure 3.1 The potential (3.55) for L/m = 3.2, 2
√

3, 3.8, 4.1 (bottom-up). Stable
circular orbits correspond to minima of the potential. The dot on the second curve
at r/m = 6 corresponds to the smallest (marginally stable) circular orbit. The horizon
is located at r/m = 2.

For a particle of unit mass moving from infinity with the initial veloc-
ity v∞ ≪ 1, we have the following expressions for the energy and angu-
lar momentum corresponding to nonrelativistic mechanics in flat space:
E∞ = 1 + v2

∞/2 ≃ 1 and L = bv∞ , where b is the impact parameter. We
arrive at the algebraic equation(

1 +
L2

r2

) (
1 − rg

r

)
≃ 1,

whose solution is absent if

L � 2rg ⇒ b � 2rg/v∞.

Consequently, the capture cross-section for a nonrelativistic particle is

σ = πb2 = 4πr2
g/v2

∞ = 16πm2/v2
∞. (3.61)

In the general, relativistic case, the capture condition is the same: the
absence of solutions to Eq. (3.54) with dr/ds = 0. By definition of the
angular momentum (see (3.26)),

L ≡ r2 dφ

ds
.
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At large distances from the black hole, φ ≈ b/r , hence dφ = −dr(b/r2)
(where again b is the impact parameter), and therefore dr/ds = L/b .
Substituting it into Eq. (3.54), at large r , we obtain

E2 = 1 +
L2

b2
.

Now, for arbitrary r , (3.54) takes the form
(

1 +
L2

r2

) (
1 − rg

r

)
= 1 +

L2

b2
.

In the ultrarelativistic limit, L/r ≫ 1, L/b ≫ 1, and the equation is
simplified:

b2

r2

(
1 − rg

r

)
≃ 1.

This equation has no solution if

b ≤ 3
√

3
2

rg.

Thus the capture cross-section for ultrarelativistic particles moving near a
Schwarzschild black hole is

σ = πb2 =
27
4

πr2
g . (3.62)

The above derivations did not take into account that an interaction of
a particle with a black hole is accompanied by gravitational wave emis-
sion. Most frequently this emission is really negligible, but it cannot be
neglected at interactions of two black holes and, in such cases, it substan-
tially increases the cross-section of their mutual capture. More precisely,
the cross-section of gravitational capture of two black holes with masses
M0 and M to a close binary is expressed as follows [304]:

σ = 2π

(
85π

6
√

2

)2/7
G2(M0 + M)10/7M

2/7
0 M2/7

c10/7v
18/7
rel

, (3.63)

where vrel is the relative velocity of the two black holes. After the capture,
the black holes rapidly merge due to energy loss from gravitational wave
emission, and a new mighty gravitational-wave outburst is produced at the
moment of merging. The above cross-section is larger than the cross-section
of direct black hole collisions taking into account the gravitational focusing
in a wide range of black hole masses and velocities.
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3.4.4 A global description: The Kruskal metric

A transition from the Schwarzschild static metric to coordinates providing
its complete description by a single map was independently formulated in
1960 by Kruskal and Szekeres [261, 394].

Let us describe this transition. Only the (r, t) subspace should be trans-
formed while the angular coordinates θ, φ remain the same.

First of all we transform r passing on to the “tortoise” coordinate
r∗ , such that the two-dimensional metric in the (r, t) subspace becomes
conformally flat:

r∗ =
∫ (

1 − 2m

r

)−1

dr = r + 2m ln
∣∣∣ r

2m
− 1

∣∣∣ ,

ds2
2 =

(
1 − 2m

r

)
dt2 −

(
1 − 2m

r

)−1

dr2

=
(

1 − 2m

r

)
(dt2 − dr∗

2). (3.64)

The horizon corresponds to the limit r∗ → −∞ .
In Eq. (3.64) it is convenient to pass on to the null coordinates V, W :

2t = V + W, 2r∗ = V − W. (3.65)

At fixed V , the horizon corresponds to W → ∞ , hence t → ∞ . On the
contrary, at fixed W the horizon corresponds to V → −∞ , hence t → −∞ .
Thus (in agreement with the previous discussion of geodesics), the horizon
is either in absolute past or in absolute future with respect to an observer
at rest and splits into a past horizon and a future horizon. So, in terms of
V and W , the Schwarzschild metric has the form

ds2 =
(

1 − 2m

r

)
dV dW − r2dΩ2. (3.66)

We have not yet removed the singularity at r = 2m . To this end, one more
step is necessary: a transformation of the form V = V (v), W = W (w).
Let us for certainty consider a transition through the future horizon: we
fix V and concentrate on the limit W → ∞ . We wish to choose such a
function W (w) that the coefficient of dV dw in the metric is finite. It is easy
to verify that a suitable choice is W = −2m ln |w| , because 1 − 2m/r =
(r − 2m)/r ∼ r∗/(2m) ∼ −w/(2m) as r → 2m .
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In a similar way the metric is regularized at a transition through the
past horizon. It is not hard to see that the transformation

V = 2m ln |v|, W = −2m ln |w| (3.67)

leads to the relation

1 − 2m

r
= −vw e−r/(2m), (3.68)

and the metric acquires the regular form

ds2 =
32m3

r
e−r/(2m)dv dw − r2dΩ2. (3.69)

It is possible to further transform the null coordinates into spatial (R)
and temporal (T ) ones by assuming

v =
1
2
(T + R), w =

1
2
(T − R), dv dw = dT 2 − dR2, (3.70)

whence

ds2 =
32m3

r
e−r/(2m)(dT 2 − dR2) − r2dΩ2. (3.71)

This is the Kruskal metric giving a complete picture of the Schwarz-
schild space-time. The initial region r > 2m is mapped in it into the right
quadrant v > 0, w < 0, or R > 0, −R < T < R (region R+ , see Fig. 3.2).
In addition to it, there are two T-regions T− and T+ (the first one is
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Figure 3.2 The Kruskal diagram.
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obtained by transition through the future horizon, the second one through
the past horizon) and one more R-region, R− .

The horizon r = 2m is now depicted by the pair of intersecting axes
v = 0 and w = 0, or, equivalently, T = ±R . These axes (or these null
hypersurfaces if we recall that each point on the diagram corresponds to a
2-sphere) do not belong to any of the R- or T-regions, and the same is true
for their intersection point u = v = 0; still all points at the horizons are
regular points in the Schwarzschild-Kruskal space-time, as is evident from
the metric (3.69) or (3.71).

The singularity r = 0 is depicted by two hyperbolas: T = −
√

1 + R2

(the past singularity) and T = +
√

1 + R2 (the future singularity). It is
the future singularity where everything gets after falling beyond the future
event horizon.

Due to the null nature of the v and w coordinates, all radial null
geodesics in the diagram are parallel to the v or w axes. Other causal
curves (timelike as well as nonradial null trajectories) have slopes smaller
than 45◦ from the vertical. This is true, in particular, for the lines r =
const in the R-regions (which depict the coordinate spheres at rest and are
not geodesics).

3.4.5 From Kruskal to Carter-Penrose diagram
for the Schwarzschild metric

In studies of the causal structure of space-time containing Killing horizons,
it is often helpful to use Kruskal-like coordinate transformations which pro-
vide smooth transitions between regions separated by horizons. The results
are most frequently presented with the aid of two-dimensional diagrams
(Carter–Penrose diagrams) whose form contains the basic information on
the global causal structure of the space-time in question. Such diagrams
are more convenient than the Kruskal diagram because each R- or T-region
is depicted there by a square or triangle of fixed finite size.

Let us build such a diagram for the Schwarzschild space-time using the
Kruskal metric (3.69):

ds2 =
32m3

r
e−r/(2m)dv dw − r2dΩ2, (3.72)

where the radius r is related to the coordinates v and w by Eqs. (3.68), or

−vw =
r − 2m

2m
er/(2m). (3.73)
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Figure 3.3 The Carter–Penrose diagram for the Schwarzschild metric.

The diagram becomes compact if, instead of the coordinates v ∈ R

and w ∈ R , we introduce the coordinates ξ, η , specified on the segment
(π/2, π/2) by putting

v = tan ξ, w = tan η. (3.74)

It is easily seen (Fig. 3.3) that the horizon is now represented by the two
segments ξ = 0, η = 0 (BE and CF), and the singularity r = 0 by other
two segments where ξ + η = ±π/2 (BC and EF). The values ξ = ±π/2
and η = ±π/2 (the line strings FAB and CDE) correspond to an infinite
radius r . The whole two-dimensional (r, t) manifold has been mapped into
the interior of the hexagon ABCDEF. The null nature of the coordinates ξ

and η allows for easily distinguishing spacelike, timelike and null directions
at any point in precisely the same way as it is done using the Kruskal
diagram.

3.5 The global causal structure of space-times
with horizons

3.5.1 Crossing the horizon in the general case

Transformations similar to those applied to the Schwarzschild metric are
of quite general nature, and, as a result, Carter–Penrose diagrams can be
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built in the general case of two-dimensional sections of space-time with the
aid of simple correspondence rules between the behavior of metric functions
and graphic images.

Consider an arbitrary static or stationary space-time where the metric
depends on a spatial coordinate u , and let us restrict ourselves to its two-
dimensional section with the metric

ds2
2 = e2γ(u)dt2 − e2α(u)du2. (3.75)

(If the metric depends on other spatial coordinates, we suppose that they
are fixed.) Let the surface u = u∗ be a horizon, so that eγ(u∗) = 0. Let us
introduce two “radial” coordinates x and ρ by the relations

dx = ± eα−γdu

⇒ ds2
2 = e2γ(dt2 − dx2), x = “tortoise”. (3.76)

dρ = ± eα+γdu,

ds2
2 = e2γdt2 − e−2γdρ2, ρ = quasiglobal. (3.77)

As u → u∗ , at the horizon x → ±∞ [it is easy to verify that a finite
x(u∗) would mean a singularity, see (3.7)], while the coordinate ρ can
tend both to a finite and to an infinite limit. As we have already seen in
Sec. 3.3, if ρ → ±∞ as u → u∗ , the space-time under consideration is
geodesically complete at u → u∗ even without an extension beyond the
horizon, and such a “remote horizon” is a natural boundary of the space-
time. No extension is necessary in this case.

Let us address the more general case |ρ(u∗)| < ∞ . Without losing
generality we suppose that ρ(u∗) = 0, x → −∞ and ρ → +0 as u → u∗ .
Besides, we assume that in some finite neighborhood of u = u∗

e2γ = ρq F (ρ), (3.78)

where q = const ≥ 1, and F (ρ) is an analytic function with a finite value
F (0). It is precisely this behavior of the metric that takes place in most
situations of physical interest.

By analogy with the method of obtaining the Kruskal picture, we first
introduce the null coordinates

V = t + x, W = t − x. (3.79)

The limit V → −∞ at fixed finite W corresponds to the past horizon
(since t → −∞) while the limit W → ∞ at fixed finite V to a future
horizon. Further, if one introduces new null coordinates v and w related
to V and W by

V = V (v), W = W (w), (3.80)
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then, under some simple requirements on these functions, the mixed coor-
dinate patch (v, W ) will cover the past horizon V → −∞ while the (V, w)
patch will cover the future horizon W = +∞ .

Indeed, consider the future horizon. It is easy to verify that a finite
value of the metric coefficient gV w at w = 0 is achieved if, as W → ∞ ,

w ∼
{

e−WF (0)/2, (q = 1),

W−q/(q−1), (q > 1).
(3.81)

A transition across the future horizon corresponds to a smooth transition
of the w coordinate through zero.

On the other hand, it is also easy to verify that, under the assumptions
made, as x → −∞ , the following relationship between ρ and x is valid:

ρ ∼
{

exF (0)/2 (q = 1),

|x|−1/(q−1) (q > 1).
(3.82)

Consequently, according to (3.78), at transitions through horizons the coor-
dinate ρ behaves in precisely the same way as w , i.e., smoothly crosses
the zero value. Thus precisely this choice of the static spatial coordinate
makes it possible to describe the region beyond the horizon, despite the
impossibility of describing the whole space-time in the framework of the
static reference frame. It is for this reason that the coordinate ρ is called
quasiglobal.

Depending on the parity of q , the region beyond the horizon will be a
R- or T-region.

The extension through the past horizon is carried out in absolutely the
same way with the aid of the (v, W ) patch and leads to similar results.

Remark. It often happens in specific problems that it is hard to perform
a transition to the quasiglobal coordinate in the whole region. For instance,
it can be necessary to solve a transcendental equation. Let us note in this
connection that for the above reasoning it is only significant that the coor-
dinate ρ satisfy the relation (3.77) near the horizon, remaining arbitrary
in the remaining space. This makes the choice much easier.

We have seen that an extension of the metric across a horizon can be
described in terms of a certain distinguished coordinate (w or ρ), which
changes its sign at such a transition. If, however, the number q is fractional
in the representation (3.78), then at the values ρ < 0 the metric coefficients
lose their meaning. Hence the candidate horizon is actually a space-time
singularity. Such a singularity is connected with a loss of analyticity of the
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metric, and it does not necessarily imply an infinite value of any algebraic
invariant of the curvature tensor. In such cases, evidently, some diff eren-
tial invariants, containing derivatives of the form (∇α∇β . . .)Rµνρσ , are
singular.

We will sometimes call such surfaces singular horizons.
This “quantization” condition q ∈ N can turn out to be not unique

if fractional powers of ρ appear in other metric coefficients besides gρρ

and gtt . Such examples are really sometimes considered in the literature.

3.5.2 Construction of Carter–Penrose diagrams

As follows from the above, for an analysis of the global causal structure of
two-dimensional Lorentzian surfaces with the metric (3.75), it is convenient
to use the coordinate ρ , specified by (3.77) and connected with the null
coordinates providing a smooth extension of the metric. Thus, suppose
that under some choice of the coordinates, the metric of a two-dimensional
section of space-time has the form

ds2 = f(ρ)dt2 − dρ2

f(ρ)
, (3.83)

where the coordinate ρ belongs to some finite or infinite range a < ρ < b

on the real axis. According to (3.76), x = ±
∫

dρ/f(ρ). Then, using the
same reasoning as was used above in the discussion of the global properties
of the Schwarzschild space-time, it is not difficult to verify that in some
coordinate system one can juxtapose the end points a and b and zeros
(ρ = ρi ) of the function f(ρ) to the following graphic images (assuming
that there are zeros of f(ρ) not coinciding with a or b):
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Figure 3.4 Examples of transition across horizons. The double tilted segments show
the horizon of the initial region, single segments show new segments added at the
transition, and arrows correspond to the direction of the transition. The symbol R des-
ignates a region where f(ρ) > 0 (an R-region), the symbol T a region where f(ρ) < 0
(a T-region). In a few subsequent figures the notations are the same.

(the arrows mark the direction along which we approach the point a , b or
ρi ). The construction process begins from any of the end points. To each
interval where the function f(ρ) has a constant sign there corresponds
the interior of a triangle or a square in the diagram. A horizon ρ = ρi is
depicted by a pair of tilted segments forming a right angle. To carry out a
transition across this horizon, one should add two more tilted segments of
the same length as shown in Fig. 3.4. The way of adding new segments is
chosen depending on the sign of f(ρ) at ρ < ρi and ρ > ρi . The new pair
of segments corresponds to the same value ρ = ρi .

One can formulate a convenient rule for transitions through horizons:
at RT and TR transitions (i.e., from a R-region to a T-region or vice
versa) the old and new segments form an X-shaped figure while at
RR and TT transitions the figure is like a zigzag. An explanation of
the rule is that a horizon with a given value of ρi is located in the diagram
to the right or to the left of a R-region (and splits into a past horizon and
a future horizon) whereas with respect to a T-region a horizon is located
either above or below it.

The construction can continue endlessly or terminate if the diagram
covers a finite area whose boundary points correspond to the boundary
values ρ = a and ρ = b , which (recall) can be finite or infinite.

For each pair of regions separated by a tilted segment (i.e., a horizon)
there exists a common system of null coordinates like (3.79). The
rules formulated above are sufficient for building any two-dimensional
Carter–Penrose diagrams as soon as the metric is written in the form
(3.83). To illustrate the method, let us give examples of diagrams for the
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Figure 3.5 The qualitative behavior of the function f(r) in the metric (3.84) at 0 <
Λq2 < 1/4 with two or three zeros.

Reissner–Nordström–dS metric, for which, in the notations (3.83),

f(r) = 1 − 2m/r + q2/r2 − Λr2/3, (3.84)

where m and q are the mass and the charge, respectively, in geometrized
units. The coordinate ρ introduced in (3.77) coincides here with the
(Schwarzschild) radial coordinate r .

The behavior of the function f(r) at r ∈ (0,∞) is rather diverse and
depends on the values of the parameters m, q, Λ. Figure 3.5 shows the
qualitative form of f(r) in the cases where it has three simple roots or one
simple root and one double root. Figures 3.6–3.8 show the corresponding
Carter–Penrose diagrams. In other, simpler cases where f(r) has a single
root or two simple roots, the space-time structure is well known, see, e.g.,
the books [198, 296]. With the aid of the rules given above, the reader can
easily build the corresponding diagrams him or herself.

In Figs. 3.6–3.8, the tilted segments depict the Killing horizons whose
corresponding roots ri of the function f(r) are enumerated in increas-
ing order. The squares excluded from the diagram in Fig. 3.7 as well as
the segments drawn by thick lines in Figs. 3.6 and 3.8 can play the role of
branching points (a trip around any of then does not necessarily lead to the
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Figure 3.6 The Carter–Penrose diagram corresponding to curve 1 for f(r) in Fig. 3.5.
The diagram continues indefinitely both up and down. The thick lines correspond to
r = ∞ .

Figure 3.7 The Carter–Penrose diagram corresponding to curve 2 for f(r) in Fig. 3.5.
The diagram continues indefinitely in all directions and occupies the whole plane
except the squares bounded by double and thick lines. The double lines correspond to
r = 0, the thick ones to r = ∞ .
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Figure 3.8 The Carter–Penrose diagram corresponding to curve 3 for f(r) in Fig. 3.5.
The diagram continues indefinitely to the left and to the right. The thick lines correspond
to r = 0.

same initial region), therefore any multisheet extensions of these diagrams
are possible. On the other hand, identifications of isometric hypersurfaces
are also possible.

3.6 A black hole as a result of gravitational collapse

3.6.1 Internal and external regions. Birkhoff’s theorem

As is known from astrophysics, as soon as the nuclear fuel of a star is
exhausted, it experiences a catastrophic contraction (collapse) due to grav-
itational forces which can no longer be balanced by hydrodynamic and
radiative pressure. The result of a gravitational collapse depends on which
mass is taking part in it (generally speaking, it is not the star as a whole
but only its inner part). At masses smaller than the Chandrasekhar limit
(about 1.4 M⊙ , where M⊙ is the solar mass), the stellar inner core becomes
a white dwarf with a density of the order of 106 g ·cm−3 . At m > 1.4m⊙ ,
after gravitational collapse there emerges a neutron star whose density is
of the order of nuclear matter density, (1013–1015 g ·cm−3 ), while at still
larger masses the mass of the collapsing core exceeds the stability limit of
neutron stars (about 3–4 M⊙ , its precise value depends on the equation
of state of neutron matter, on the structure details of the neutron star
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and on the choice of the theory of gravity), and the contraction leads to
BH emergence. As shown by calculations, a BH should form if the initial
stellar mass is � 10M⊙ ; in this process, more than half of the stellar mass
is thrown into the ambient space, which appears to a remote observer as a
supernova explosion.

BHs of smaller mass could form from collapsing density fluctuations at
very early stages of the Universe evolution.

Calculations of the gravitational collapse are very complicated, there
are only a few exactly solvable models (such as, for instance, the collapse
of a spherically symmetric dust cloud [398]; see, e.g., [263]), while in more
complex cases the problem is solved only numerically. Still there are some
general, model-independent features of gravitational collapse ending with
BH formation.

The main feature is that outside the collapsing body the space-time
remains a vacuum, hence all the results obtainable for the properties of
vacuum solutions to the equations of gravity are valid. Moreover, if a spher-
ically symmetric body is collapsing, the whole process occurs with spherical
symmetry, and then Birkhoff’s famous theorem holds [37],10 whose simpli-
fied formulation is “in GR, a spherically symmetric gravitational field in
vacuum is necessarily static”. It then reduces to the Schwarzschild solu-
tion (or Schwarzschild–de Sitter if the cosmological constant is included).11

From a more general and correct viewpoint, the theorem indicates the case
where the field equations, under certain conditions, induce an additional
space-time symmetry that was not postulated initially. For example, for
a T-region of the same Schwarzschild space-time, what follows from the
theorem is certainly not staticity (which is absent) but homogeneity, or
independence of the metric on the spatial coordinate which corresponds to
the temporal coordinate t in the static region.

10After Birkhoff the theorem was extended to spherically symmetric systems with a
cosmological constant Λ, systems with electromagnetic and scalar fields, some scalar-
tensor theories (STT) of gravity, etc. The most general approach to the problem [78]
consisted in studying the general conditions under which one could prove the static
or homogeneous nature of the system. This included into consideration not only all
the previously studied cases of the theorem in GR and STT but also many new ones.
The theorem was generalized in two respects: inclusion of new symmetry types (planar,
cylindrical, pseudoplanar) and new kinds of matter sources of gravity (scalar fields,
gauge fields, perfect fluid, etc.). A multidimensional generalization of this approach is
described in [80].
11The theorem was actually proved earlier by J. Jebsen [217], but it has happened that
his work is less well-known than Birkhoff’s; see also [218].
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Let us present a schematic proof of Birkhoff’s theorem for the sim-
plest case of spherical symmetry [the metric (3.1)] and vacuum, T ν

µ ≡ 0.
According to the Einstein equations, Rν

µ ≡ 0. Suppose that the inequality
(3.49) holds in the space-time region under consideration, that is, we are
in a R-region, and we can choose r = eβ as a spatial coordinate. Then in
the expressions (3.3) for the Ricci tensor components one can put β̇ = 0.
The equation R01 = −2α̇β′ = 0 then immediately leads to α̇ = 0 [β′ �= 0
due to (3.49)], and among the three metric functions only γ can still be
time-dependent. The Einstein equation G1

1 = R1
1− 1

2R = 0 contains γ only
in the combination e−2αβ′γ′ , whence it follows that γ′ ≡ dγ/dr = γ′(r),
and, γ = γ1(r)+γ2(t). But the function γ2(t) can be excluded by a proper
choice of the time coordinate, which leads to a completely static metric.
The theorem is proved.12

The validity of Birkhoff’s theorem is related to the fact that in GR the
gravitational field has spin 2 and consequently it does not have dynamic
monopole and dipole degrees of freedom. In other words, there are no
monopole and dipole gravitational waves.

As follows from Birkhoff’s theorem, in the collapse of spherical bodies,
the exterior space-time is unique and is described by the Schwarzschild
metric at all times. From the properties of the metric it follows that, from
the viewpoint of a distant observer, the stellar surface contracts to the
horizon for an infinitely long time — it seems to be frozen at the Schwarz-
schild radius r = 2m . However, as follows from calculations, deflections
from r = 2m decay exponentially in the distant observer’s time, with a
characteristic time of about 2m , which is about 10µs (the time for which
light passes 2m = 3 km) in the case of m = M⊙ [340]. Very quickly it
happens that signals from the collapsing stellar surface stop coming, and
it disappears from the sight of a remote observer almost instantaneously.

On the surface itself, only a finite proper time passes at contraction
from any finite radius, not only to the horizon but to the singularity r = 0
(recall that it is a cosmological singularity).

12If, in the conditions of the theorem, we replace the inequality (3.49) with its opposite,
i.e., assume that we are in a T-region, then, by the same reasoning, we shall again
find out that the metric is t -independent, but t is now a spatial coordinate, and the
independence from it proves the space-time homogeneity. However, if one assumes that
the gradient of r is null, the theorem cannot be proved, and under this condition wavelike
solutions to the Einstein equations become possible.
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The global space-time structure for a collapsing star drastically differs
from the structure of an “eternal” Schwarzschild BH depicted in Kruskal
(Fig. 3.2) and Carter–Penrose (Fig. 3.3) diagrams. Thus, for instance, in
Fig. 3.2, from the whole empty space-time there only remains the region
to the right of the curve AB that depicts the world line of a point on the
stellar surface, while everything to the left of this curve remains uncertain
until a dynamic solution to the Einstein equations is known for the stellar
interior. There remain only one R-region (the right one) and one T-region
(the upper, contracting one).

3.6.2 Gravitational collapse of a spherical dust cloud

As an example of a solution describing the interior of a collapsing body, let
us consider Tolman’s solution [398] describing the evolution of a spherical
cloud of dustlike matter in a comoving reference frame. Since for dust
particles this is also a geodesic reference frame, the metric can be taken in
the synchronous form

ds2 = dτ2 − e2λ(R,τ)dR2 − r2(R, τ)dΩ2, (3.85)

where τ is the proper time along the particle trajectories labelled by dif-
ferent values of the radial coordinate R . The only nonzero component of
the SET is T 0

0 = ρ , and the Einstein equations read

2rr̈ + ṙ2 + 1 − e−2λ = 0, (3.86)

1
r2

(1ṙ2 + 2rṙλ̇) − e−2λ

r2
(2rr′′ + r′2 − 2rr′λ′) = 8πGρ, (3.87)

ṙ′ − λ̇r′ = 0. (3.88)

Equation (3.88) is easily integrated in τ giving

e2λ =
r′2

1 + f(R)
, (3.89)

where f(R) is an arbitrary function satisfying the condition 1+f(R) > 0.
Substituting (3.89) into (3.86), we obtain the equation

2rr̈ + ṙ2 = f(R), (3.90)

whose first integral is

ṙ2 = f(R) +
F (R)

r
. (3.91)
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This expression makes clear the physical meaning of the function f(R):
since ṙ can be understood as the radial velocity of a dust particle, f(R)
specifies the initial dust velocity distribution: for f ≥ 0 it is the particle
velocity squared at large r (f > 0 and f = 0 correspond to hyperbolic
and parabolic motion, respectively). If f(R) < 0 but F (R) > 0 (elliptic
motion), the particle cannot reach infinity, and the quantity F (R)/|f(R)|
shows the maximum value of r accessible to it.

The meaning of the other arbitrary function, F (R), becomes clear if
we substitute (3.89) and (3.91) into (3.87). We obtain

ρ =
1

8πG

F ′(R)
r2r′

, (3.92)

or

F (R) = 8πG

∫
ρr2r′dR. (3.93)

Assuming that in the initial configuration (before collapse) there was a
regular centre, so that F = 0 at r = 0, we can write

F (R) = 2GM(R), M(R) = 4π

∫ r

0

ρr2dr, (3.94)

so that M(R) is the mass function equal to the mass of a spherical body
including all matter inside the sphere of given radius r , and F (R) is the
corresponding Schwarzschild radius.

Eq. (3.91) can be further integrated, and the solution can be written in
a parametric form for f �= 0 and explicitly for f = 0 [263]:

f > 0 : r =
F

2f
(sinh η − 1), τ0 − τ =

F

2f3/2
(sinh η − η); (3.95)

f < 0 : r =
F

−2f
(1 − cos η), τ0 − τ =

F

2(−f)3/2
(η − sin η); (3.96)

f = 0 : r =
(

9F

4

)1/3

(τ0 − τ)2/3. (3.97)

The new arbitrary function τ0(R) here indicates the instant of τ at which
the particle with a given R reaches the singularity r = 0. To find out
whether this singularity occurs in a R-region (and can then be called a sin-
gular centre) or in a T-region (and is then cosmological in nature), we
must check whether the gradient of r(R, τ) is spacelike or timelike at
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small r . Evidently,

r,αr,α = ṙ2 − e−2λr′2 = −1 − 2rr̈, (3.98)

where the second equality sign follows from (3.86).
It can be verified that for any f(R) near the singularity the function

r(R, τ) is given by Eq. (3.97), whence it follows that rr̈ ∼ −(τ0−τ)−2/3 →
−∞ , so that r,αr,α → +∞ , and the singularity occurs in a T-region for
any choice of the arbitrary functions.

Then of interest is the question: when does a given dust particle cross
the horizon thus getting from R- to T-region? The answer again fol-
lows from (3.98): since r̈ = F (R)/(2r2), the gradient of r is null where
r = F (R) = 2GM(R), that is, a particle crosses the horizon precisely at
the time instant when r(R, τ) reaches the value of the Schwarzschild grav-
itational radius corresponding to the interior of the sphere specified by a
given R . Note that such a crossing is quite regular, and this instant is
actually unnoticed in the comoving reference frame.

To obtain a global solution including both a dust distribution and
an external vacuum region, it is necessary to describe such a vacuum
(Schwarzschild) region in a reference frame suitable for smooth match-
ing to the internal solution. This problem is easily solved since the vac-
uum solution in a proper form is obtained from the Tolman solution by
putting F (R) = const whence ρ = 0. The resulting solution reproduces
the Schwarzschild metric in a geodesic reference frame as described above
in Sec. 3.3.3.

So a spherical collapse of a dust cloud always leads to a BH. One of the
most fundamental questions discussed in BH physics is whether or not there
are matter configurations whose gravitational collapse can lead to a naked
singularity instead of a BH. The so-called cosmic censorship conjecture
requires that such unwanted entities as space-time singularities, if any,
can only appear separated from external observers by BH horizons. There
are counterexamples to censorship, processes where naked singularities do
occur as a result of collapse, but it is still not certain whether or not such
situations are generic. Moreover, an answer can be different in GR and
its different extensions; see, in addition to textbooks on gravity and BH
physics, the reviews [124, 187, 209, 216, 414].
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Chapter 4

Black holes under more
general conditions

4.1 Black holes and massless scalar fields

In the previous sections we have seen that the presence of a massless vector
(electric or magnetic) field does not prevent the existence of BHs. In other
words, a BH can possess an electric or/and magnetic charge and be a source
of the corresponding fields. In this section we will discuss the question of
whether a BH can also be a source of a massless scalar field. To this end, it
appears to be possible to use exact solutions which are in this case obtained
rather easily and whose properties are of separate interest.

4.1.1 The general STT and the Wagoner
transformations

In what follows we will consider the properties of static, spherically sym-
metric gravitational fields for two most important versions of the massless
scalar field equations, the minimally coupled one13 (ψ = φmin ) with the
equation �ψ = 0 and the conformally coupled one (φ = φconf ) with the
equation �φ + 1

6Rφ = 0, where R is the scalar curvature.

13The term “minimally coupled” applied to any field means (see Chapter 2) that the
influence of gravity manifests itself in replacing partial derivatives in the field equations
by covariant ones.
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We would like to begin with a more general formulation of nonminimal
coupling of scalar fields to gravity called the general (Bergmann–Wagoner–
Nordtvedt) scalar-tensor theory (STT) of gravity, whose Lagrangian

LSTT = f(φ)R̃ + h(φ)g̃µνφ,µφ,ν − 2U(φ) + Lm, (4.1)

is specified in a space-time Ṽ4 with the metric g̃µν and scalar curvature R̃ .
U(φ) is a potential, in some cases generalizing a cosmological constant; Lm

is the Lagrangian of all other matter which can also depend on g̃µν and φ .
Let us present the well-known conformal mapping [412] which formally

reduces rather a wide class of systems with scalar fields in the framework
of the Bergmann–Wagoner–Nordtvedt STT of gravity to systems with the
scalar field φmin . Consider the Lagrangian of the general STT (4.1) speci-
fied in the space-time Ṽ4 with the metric g̃µν and the scalar curvature R̃ .
Lm is the Lagrangian of the rest of matter, maybe also depending on φ and
g̃µν . This formulation, corresponding to the Jordan conformal frame (or
picture) is of fundamental nature in STT as it is usually formulated since
it is in this picture that the SET of matter T µ

ν satisfies the usual conser-
vation law ∇νT ν

µ = 0, thus providing the standard equations of motion in
the atomic system of measurement. In particular, free particles move along
geodesics.

The field equations are easier studied and solved in the so-called Ein-
stein conformal frame (or picture) in which the scalar field is minimally
coupled to gravity. Namely, the conformal transformation [412]

g̃µν =
gµν

f(φ)
,

dφ

dψ
= f

∣∣∣∣∣fh +
3
2

(
df

dφ

)2
∣∣∣∣∣
−1/2

, (4.2)

leads the Lagrangian (4.1) to a Lagrangian typical of GR (up to a full
divergence) with ψ = φmin :

L = R + εgµνψ,µψ,ν +
−2U(φ) + Lm

f2(φ(ψ))
, ε := sign

[
fh +

3
2

(
df

dφ

)2
]

(4.3)

for a system with the scalar field ψ in a space-time with the metric gµν .
It is supposed that the function f(φ) used in the transformation (4.2) is
finite and positive in the whole region of interest.

Depending on ε = ±1, the STT splits into two classes: normal ones,
in which ε = +1, i.e., the kinetic energy of the scalar field in the Einstein
picture is positive, and anomalous or phantom (ghost), ε = −1, where this
energy is negative.
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Special examples of the theory (4.1) are GR with a minimally coupled
scalar field (f ≡ 1, h = ε = ±1) and a conformally coupled scalar field
φ = φconf :

f = 1 − φ2/6, h = 1, ε = +1,
√

6φ = tanh
ψ + ψ0√

6
, (4.4)

where ψ0 is an arbitrary constant.
The equation for a massless conformally coupled scalar field

�φ +
1
6
Rφ = 0 (4.5)

is invariant under the conformal transformation g̃µν = Ω−2(x)gµν , accom-
panied by the scalar field transformation φ̃ = Ωφ , as one can verify directly
using the corresponding transformation formulas for the scalar curvature
and the d’Alembert operator:

R̃ = Ω2R − 6Ω � Ω + 12Ω,αΩ,α,

�̃φ = Ω2 � φ − 2ΩΩ,αφ,α. (4.6)

It is easy to see that the transformation (4.2) is different from the one with
respect to which Eq. (4.5) is invariant. Therefore it becomes possible to
pass on from Eq. (4.5) to the equation �ψ = 0.

The most well-known example of an STT is the Brans-Dicke theory [49]
for which

f(φ) = φ, h(φ) =
ω

φ
, φ = exp[(ψ − ψ0)/

√
|ω + 3/2|], (4.7)

ω =const. This theory is normal for ω >−3/2, phantom for ω <−3/2 and
has no dynamics at ω = − 3/2.

On phantom fields

We have seen that a large class of STT reduce to a phantom field in GR.
Being quite unusual, such fields are often considered as purely artificial
entities. But recently these fields attracted much interest in connection
with the Dark Energy problem, a search for models able to account for the
so-called Dark Energy (DE) that drives the observed growing acceleration
of the Universe expansion (for more details see Part II of this book, in
particular, the footnote on page 217).

It is known that phantom DE behavior can be explained without explic-
itly introducing phantom fields, in particular, in the framework of the gen-
eral STT (4.1) which has sufficient freedom for describing all observational
data (see, e.g., [169]).
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The main objection against a phantom field is that a field with a neg-
ative kinetic term can have an arbitrarily large negative energy of high-
frequency oscillations, which, according to quantum field theory, can lead
to runaway production of particles and antiparticles accompanied by addi-
tion of equal negative energy of the phantom field itself. Nothing of this
kind is observed, which casts serious doubt on possible existence of phan-
tom fields.

On the other hand, there are theoretical reasons for considering phan-
tom fields since they naturally appear in some models of string theory [367],
supergravities [307] and theories in more than 11 dimensions like F-theory
[236] and in some Kaluza-Klein theories (e.g., those discussed in Part III of
this book). They can be effective fields, following in some reduction proce-
dure from an underlying theory; they may not be subject to quantization
(at least directly) and possibly do not interact with other fields. This, at
least partly, counters the above objections.

Even not being a steady theoretical object, phantom fields seem useful
for a kind of gedanken experiment, they can lead to models or predictions
of interest which can afterwards be obtained by other, less exotic means.
It is the main reason for considering them in this book.

4.1.2 Minimally coupled scalar fields

Consider configurations with the metric (3.1) in the presence of a massless
scalar field ψ = φmin ) with the Lagrangian

Ls =
1
2
εψ,αψ,α, ε = ±1, (4.8)

and an electromagnetic field Fµν with the Lagrangian

Lem = −1
4
FµνFµν . (4.9)

The most general form of the electromagnetic potential compatible with
spherical symmetry is

Aµ = δ0
µA(u) + δ3

µqm cos θ + ∂Φ/∂xµ, (4.10)

where Φ(xµ) is an arbitrary function and qm = const is the magnetic
charge. Accordingly, the SETs of the fields ψ and Fµν have the form

T ν
µ [ψ]=

1
2
ε e−2αψ′2 diag(1,−1, 1, 1); (4.11)

T ν
µ [F ]=2(E2 + B2) diag(1, 1,−1,−1), (4.12)
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where

E2 = F 01F10 = q2
e/r4; B2 = F 23F23 = q2

m/r4, (4.13)

E are B are the electric field strength and the magnetic induction, and

F 01 = qe e−α−γ/r2, F10 = qe eα+γ/r2, (4.14)

where qe is the electric charge. Let us denote Q2 = 1
2κ(q2

e + q2
m).

The equation for ψ and its first integral are

( eγ+2β−αψ′)′ = 0, ψ′ = C̄ eα−2β−γ , (4.15)

where the integration constant C̄ is interpreted as a scalar charge.
The tensors (4.11) and (4.12) have the property T 1

1 + T 2
2 = 0. In this

case it is helpful to use the harmonic (�u = 0) radial coordinate u [50],
such that the metric coefficients in (3.1) satisfy the condition (see Sec. 3.1)

α = 2β + γ. (4.16)

Then the combination
(
1
1

)
+

(
2
2

)
of the Einstein equations reduces to the

Liouville equation

(β + γ)′′ = e2β+2γ , (4.17)

which is easily integrated giving

e−β−γ = s(k, u) :=




k−1 sinh ku, k > 0;

u, k = 0;

k−1 sinku, k < 0;

(4.18)

where k is an integration constant; one more integration constant has been
removed by choosing the zero point of u . As a result, we come to the metric

ds2 = e2γdt2 − e−2γ

s2(k, u)

[
du2

s2(k, u)
+ dΩ2

]
. (4.19)

Without loss of generality we assume u ≥ 0, so that u = 0 corresponds to
spatial infinity at which the metric is asymptotically flat, and we can put
in addition γ(0) = 0 under a proper choice of scale along the time axis t .

At the asymptotic (u → 0), the coordinate u behaves as 1/r , so that

r = eβ ≈ 1/u; eα ≈ 1/u2; γ′ → γ′(0) = −GM, (4.20)
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where M is the Schwarzschild mass, as follows from comparing the limit
of large r (4.20) with the Schwarzschild metric.

It should be noted that many exact static, spherically symmetric solu-
tions obtained by now refer to systems with T 1

1 +T 2
2 = 0 (or can be reduced

to them) and can therefore be found using the method described here.
The field equation for ψ in the metric (3.1) with the coordinate (4.16)

gives

ψ = C̄u + ψ0, ψ0 = const. (4.21)

Let us pass on, in addition to Q , to geometrized mass and scalar charge:
m = GM and C =

√
κC̄ having the dimension of length.

Among the remaining Einstein equations only one is independent (cor-
responding to one remaining unknown function γ(u)), but it makes sense
to write down two equations: the component

(
0
0

)
from (3.6), having the

Liouville form, and the component
(
1
1

)
from (3.5), which does not contain

second-order derivatives and is a first integral of other equations:

e2αR0
0 =−γ′′ = −Q2 e−2γ , (4.22)

e2αG1
1 =β′(β′ + 2γ′) =

1
2
εψ′2 − Q2 e2γ . (4.23)

Integrating (4.22), we arrive at the following metrics:

(a) for Q �= 0:

ds2 =
dt2

Q2s2(h, u + u1)
− Q2s2(h, u + u1)

s2(k, u)

[
du2

s2(k, u)
+ dΩ2

]
; (4.24)

with the constants k, h, u1, C, Q connected with each other and the
mass m by the relations

s2(h, u1)=1/Q2;

m2 − Q2 =h2 signh = k2 sign k − εC2/2, (4.25)

where the first equality follows from the boundary condition γ(0) = 0 and
the second one from substituting the expressions (4.18) for β − γ and the
solution to (4.22) into (4.23);
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(b) for Q = 0:

ds2 = e−2hudt2 − e2hu

s2(k, u)

[
du2

s2(k, u)
+ dΩ2

]
;

Gm=h; k2 signk = εC2/2 + h2.

(4.26)

The function s is defined by Eq. (4.18) in all cases.
In the limit C → 0, the solution (4.21)–(4.25) passes on to the Reissner–

Nordström electrovacuum solution and as Q → 0 to the solution (4.26); in
turn, (4.26) passes on, as C → 0, to the Schwarzschild vacuum solution. In
other coordinates the solution (4.26) (naturally, only for the normal sign
of scalar field energy, ε = 1) was found for the first time by I.Z. Fisher in
1948 [164] and was repeatedly rediscovered later; the solution (4.21)–(4.25)
was found by R. Penney in 1969 [324]. For ε = −1, the solution (4.26) was
obtained in [35], and (4.21)–(4.25) in [50].

Let us briefly discuss the properties of solutions for ε = +1.
In the electrically neutral case (4.26) the coordinate u is changing in

the range u > 0, and u → ∞ corresponds to a naked singularity, which is
attractive (g00 → 0) for m > 0. The metric (4.24) behaves in a sim-
ilar way at h ≥ 0, i.e., at small charges as compared to the mass in
proper units, Q2 ≤ m2 . The singularity may be characterized as scalar
field dominated because there φ → ∞ , and the total scalar field energy Es

is infinite whereas the electromagnetic field energy Ee is finite. The cor-
responding Reissner–Nordström electrovacuum metric possesses horizons
(two for Q2 < m2 and one for Q2 = m2 ), which, as we see, disappear if
there emerges a scalar field, however small the scalar charge C is.

At h < 0 (a large charge, Q2 > m2 ), the coordinate u is changing in
the range 0 < u < umax , where umax is the closest zero of the function
sin[|h|(u + u1)] . The value u = umax corresponds to the central naked
repulsive (eγ → ∞) singularity of Reissner–Nordström type, dominated
by the electromagnetic field (φ < ∞ , Es < ∞ , Ee = ∞).

We see that in all cases the solution with a scalar field contains a
naked singularity. Thus at least in spherically symmetric space-times the
massless field φmin cannot be an external field of a BH. This statement,
as we will see below, is one of the special cases of the so-called no-hair
theorems for BH. Such a terminology traces back to J.A. Wheeler whose
famous phrase “Black holes have no hair” meant that BHs have no external
parameters other than mass, electric (and/or magnetic) charge and angular
momentum.
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4.1.3 Conformally coupled scalar field

The scalar-electrovacuum gravitational field with φconf is obtained from
(4.21)–(4.26) with the aid of the transformation (4.2), (4.4); as a result,
the metric acquires a conformal factor substantially changing the nature
of the geometry. The solution has the form:14

(a) for Q �= 0

ds2 =
cosh2[C(u + u0)]

cosh2 Cu0

{
dt2

q2s2(h, u + u1)

− q2s2(h, u + u1)
s2(k, u)

[
du2

s2(k, u)
+ dΩ2

]}
, (4.27)

s2(h, u1) = 1/q2, q = Q coshCu0,

k2 signk = h2 signh + 3C2;
(4.28)

the electric field and the (geometrized) Schwarzschild mass m are deter-
mined according to (4.13) and by comparison with the Schwarzschild metric
at large spherical radii r =

√−g22 :

E2 = F 10F01 = q2 e−4β = q2(g22)−2;

[m + C tanh(Cu0)]2 = q2 + h2 signh; (4.29)

(b) for Q = 0

ds2 =
cosh2[C(u + u0)]

cosh2 Cu0

[
e−2hudt2 − k2 e2ku

sinh2 ku

(
k2du2

sinh2 ku
+ dΩ2

)]
;

m = h − C tanh Cu0; k =
√

3C2 + h2, (4.30)

in both cases, the scalar field φ = φconf is given by

φ =
√

6 tanh[C(u + u0)]. (4.31)

Let us note that, unlike the solution for φmin , the coordinate condition
(4.16) no longer holds because of the applied conformal transformation.

As before, the value of the coordinate u = 0 corresponds to flat spatial
infinity.

In the case h < 0, the solution with a nonzero charge q (4.27)–(4.29) is
specified on the segment 0 < u < umax < ∞ , where umax is the zero of the

14We here restrict ourselves to normal scalar fields, ε = +1.
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function sin[|h|(u+u1)] closest to u = 0. The value u = umax corresponds
to a naked central (r = 0) repulsive (g00 → ∞) singularity similar to the
Reissner–Nordström one at q2 > m2 ; however, unlike the analogous case
with the field φmin , here both energies Ee and Econf

s diverge. The solution
(4.27)–(4.29) at h ≥ 0, u1 < 0 behaves in a similar way.

The case 0 < h < |C| , u1 > 0 differs from the one just described in
that the solution now ranges over the whole positive semiaxis, u > 0, and
the singularity at u = ∞ is scalar-dominated: r → 0, e2γ = g00 → ∞ ,
Econf

s = ∞ , Ee < ∞ . The solution (4.30), (4.31) at h < |C| behaves in a
similar way.

In the case |h|> |C| , u1 > 0, both solutions exist on the semiaxis u > 0,
but now the value u =∞ corresponds to an attractive ( e2γ → 0) naked
singularity with an infinite spherical radius r , called a “space pocket”
(the term is suggested by P. Jordan). The singular nature of this sphere is
verified directly using (16). The spatial infinity (u = 0) and the singularity
(u = ∞) are separated by a throat, a sphere where the function eβ = r(u)
has a minimum. The energy Ee < ∞ (it is zero at q = 0), whereas
Econf

s = −∞ . The anomalous sign of the energy is related to the lack
of positive definiteness of the temporal component of the SET for φconf .

At h = |C| , u1 > 0, the sphere u = ∞ is regular, and it becomes
necessary to extend the solution beyond it. We can recall that this regular
sphere in the Jordan picture corresponds to a singularity in Einstein’s
picture. In other words, the whole space-time of Einstein’s picture maps to
only a part of the space-time in Jordan’s picture. It is an example of the
so-called conformal continuation [54].

To extend the solution beyond the sphere u = ∞ , let us introduce the
new radial coordinate

y = coth |Cu|. (4.32)

Then both solutions for φconf take the form

E2 =
√

F 10F01 =
|q|
r2

|q|y2

h2(y + y0)2(y + y1)2
,

φ=
√

6
1 + yy0

y + y0
;

ds2 =(y + y0)2
[

dt2

(y + y1)2
− h2 (y + y1)2

y4
(dy2 + y2dΩ2)

]
;

y0 =tanh hu0; y1 = coth hu1. (4.33)
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At Q = 0 we have y1 = 1; spatial infinity corresponds to y = ∞ , where
φ = φ∞ =

√
6y0 .

If y0 < 0, the solution is defined for −y0 < y < ∞ and has a naked
attracting singularity at the centre (y → −y0 > 0; eγ = eβ = 0), where
both fields φ and Fµν are singular.

In the case y0 > 0, the coordinate y is specified for all y > 0, so
that, as y → 0, just as in the limit y → ∞ , the metric becomes flat,
i.e., there is the second spatial infinity where e2γ → (y0/y1)2 and φ →
(1/y0)

√
6. Thus we have obtained a regular configuration, a wormhole,

with a throat (minimum of r ) at y =
√

y0y1 . This solution is the only
nonsingular solution among those with linear fields. Wormholes will be
discussed in more detail in Chapter 5.

Lastly, in the case h = |C| , y0 = 0 (i.e., φ → 0 as y → ∞) the sphere
y = 0 turns out to be a horizon (r → r0 = m = hy1 , eγ → 0). In this case
it is helpful to pass on to the curvature coordinates: r = h(y +y1), whence

ds2 =(1 − m/r)2dt2 − (1 − m/r)−2dr2 − r2dΩ2;

F 10 =F01 = q/r2; φ = C/(r − m). (4.34)

This solution is known as a BH with a scalar charge [30, 41, 50]. The
metric has the same form as that of the Reissner–Nordström extremal
BH (m2 = q2 ), to which this solution reduces in the case C = 0. It is
noteworthy that, even though the φ field itself is singular at the horizon,
its SET is finite there (it follows from regularity of the metric and the
Einstein equations and can also be verified by a direct calculation).

A subsequent analysis has shown that the BHs (4.34) are unstable under
small radial perturbations [73].

Solutions with nonconformal coupling

Vacuum and electrovacuum solutions have also been considered for a more
general nonminimal coupling of a scalar field with gravity, corresponding
to the Lagrangian (4.1) with

f(φ) = 1 − ξφ2, ξ = const > 0;

h(φ) ≡ 1, U(φ) ≡ 0. (4.35)

At ξ = 0 and ξ = 1/6 this reduces to minimal and conformal couplings,
respectively. For ξ �= 1/6, it has been shown that the solution properties
are to a large extent similar to those for ξ = 1/6: they are generically
singular, but under some special relation between the integration constants,
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the singularity of the Einstein frame corresponds to a regular sphere in the
Jordan frame [22, 69–71].

If ξ > 1/6, all solutions continued beyond this sphere have a second flat
infinity, i.e., describe wormholes, but, as always in such cases, the region
beyond the transition sphere is anti-gravitational in the sense that the
effective gravitational constant is negative there. Similar wormhole solu-
tions also exist for ξ < 1/6, but only under an additional inequality for
integration constants, otherwise the conformally continued solution pos-
sesses a naked singularity [22, 71].

All these wormhole solutions with zero or small electric charges prove to
be unstable under radial perturbations [69–71], and the characteristic time
of perturbation growth is of the order of the time needed for a light signal
to cover a distance of the order of the throat radius. Meanwhile, numer-
ical calculations have shown [71] that the perturbation growth increment
diminishes as the charge grows. It therefore seems possible that some values
of the electric charge can lead to a stable wormhole.

BH solutions like (4.34) are absent at ξ �= 1/6.

4.1.4 Anomalous (phantom) fields. The anti-Fisher
solution

In the case of anomalous fields, both minimally and conformally coupled,
there are more variants of the solution behavior. In particular, wormholes
are obtained with both φmin and φconf not in exceptional cases (as the
metric (4.33)), but in the general case for k < 0. From a formal viewpoint,
this is connected with the fact that in the solutions (4.24)–(4.26) one can
obtain either k < 0 at h ≥ 0 or |k| > |h| if both h < 0 and k < 0. In these
cases, at appropriate values of the constant u1 , the solution is defined on
the interval 0 <u <π/|k| , and at both its ends there is a flat spatial infinity.
From a physical viewpoint, the emergence of wormholes is connected with
violation of the Null Energy Condition Tµνξµξν ≥ 0, ∀ξµ : ξνξµ = 0 —
see Chapter 5.

As an example, let us consider the properties of the scalar-vacuum
solution (4.30) for ε = −1, the phantom analogue of Fisher’s solution,
which, by analogy with “anti-de Sitter”, we suggest to call “the anti-Fisher
solution”.

Branch A: k > 0. In this case it is helpful to pass over to the quasiglobal
coordinate ρ by the transformation

e−2ku = 1 − 2k/ρ ≡ P (ρ), (4.36)
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and the solution takes the form

ds2 =P adt2 − P−adρ2 − P 1−aρ2dΩ2,

φ=− C

2k
ln P, (4.37)

with the constants related by

a = h/k, a2 = 1 + C2/(2k2). (4.38)

In the case h < 0, i.e., m < 0, we have a < −1, and, just as in the
Fisher solution, a repulsive central singularity at ρ = 2k corresponding to
u = ∞ .

The situation is, however, drastically different for m > 0, or a > 1.
Indeed, the spherical radius r then has a finite minimum at ρ = ρth =
(a + 1)k , corresponding to a throat of the size

r(ρth) = rth = k(a + 1)(a+1)/2(a − 1)(1−a)/2, (4.39)

and tends to infinity as ρ → 2k . Moreover, for a = 2, 3, . . . the metric
exhibits a horizon of order a at ρ = 2k and admits a continuation to
smaller ρ . A peculiar feature of such horizons is their infinite area. Such
configurations have been named “cold black holes” (CBHs) [58, 59] since
all of them have zero Hawking temperature.

Furthermore, all Kretschmann scalar constituents Ki [see (3.7)] behave
as P a−2 as ρ → 2k and P → 0. An exception is the value a = 1, in which
case C = 0, φ = 0, and the Schwarzschild solution is reproduced. Hence,
at ρ = 2k the metric has a curvature singularity if a < 2 (except for
a = 1), a finite curvature if a = 1 or a = 2 and zero curvature if a > 2.

For noninteger a > 2, the qualitative behavior of the metric as ρ → 2k

is the same as that near a horizon of infinite area, but a continuation
beyond it is impossible due to nonanalyticity of the function (1 − 2k/ρ)a

at ρ = 2k . Since geodesics terminate there at a finite value of the affine
parameter, this is a space-time singularity (a singular horizon, as it has
been called in Chapter 3) even though the curvature invariants tend there
to zero.

Branch B: k = 0: the solution is defined in the range u ∈ R+ and is
rewritten in terms of the quasiglobal coordinate ρ = 1/u as follows:

ds2 = e−2h/ρdt2 − e2h/ρ[dρ2 + ρ2dΩ2], φ = C/ρ. (4.40)

As before, ρ =∞ is a flat infinity, while at the other extreme ρ→ 0, the
behavior is different for positive and negative mass m = h/G . Thus, for
m < 0, ρ = 0 is a singular centre (r = 0 and all Ki are infinite). On the
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contrary, for m > 0, r→∞ , and all Ki → 0 as ρ→ 0. It is again a singular
horizon: despite the vanishing curvature, the nonanalyticity of the metric
in terms of ρ makes its continuation impossible.

Branch C: k < 0: the solution describes a wormhole with two flat asymp-
totes at u = 0 and u = π/|k| . The metric has the form

ds2 = e−2hudt2 − k2 e2hu

sin2(ku)

[
k2 du2

sin2(ku)
+ dΩ2

]

= e−2hudt2 − e2hu[dρ2 + (k2 + ρ2)dΩ2], (4.41)

where u is expressed in terms of the quasiglobal coordinate ρ , defined
on the whole real axis R , by |k|u = cot−1(ρ/|k|). This metric is further
discussed in Chapter 5.

4.1.5 Cold black holes in the anti-Fisher solution

Among different branches of the anti-Fisher solution, of greatest interest
for us is the case of cold BHs. Let us briefly discuss their structure and
properties.

For odd a , the principal geometric and causal properties, including the
Carter-Penrose diagram, coincide with those of the Schwarzschild metric.
Thus, at ρ < 2k , ρ is a temporal coordinate, t spatial, and the space-
time is homogeneous and anisotropic, corresponding to the Kantowski-
Sachs type of anisotropic cosmologies. The singularity at ρ = 0 (r = 0) is
spacelike (cosmological) and is reached by all timelike geodesics in a finite
time interval after crossing the horizon.

For even a , the Penrose diagram is the same as that of the extreme
Reissner-Nordström space-time; however, the physical meaning of the
regions where ρ < 2k is quite different. Since g22 and g33 change their signs
at the horizon, the metric at ρ < 2k has the signature (− + ++) instead
of (+ − −−) at large ρ . The Lorentzian nature of space-time is still pre-
served, and one can verify that all geodesics are continued smoothly from
one region to the other (the geodesic equations depend only on the Christof-
fel symbols and are invariant under the anti-isometry gµν → −gµν ). The
time coordinate in that region is ρ since gρρ < 0 while the other diag-
onal components of gµν are positive. Thus, just as for odd a , we have
a Kantowski-Sachs type cosmology with a spacelike singularity at ρ = 0
(r = 0). The direction of the arrow of time can be arbitrary there since
timelike geodesics that penetrate from the static region become spacelike
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(one cannot say for them where is the past and where is the future) there,
and can even avoid the singularity.

The properties of the scalar field are no less exotic. According to (4.37),
φ → ∞ as ρ → 2k ; this, however, does not contradict the regularity of the
surface ρ = 2k for a ≥ 2 since the energy density

T 0
0 = −1

2
Aφ′2 = −C2

2
(ρ − 2k)a−2

ρa+2
, (4.42)

as well as the other components of T ν
µ , are finite there (recall that for a < 2

the curvature invariants also diverge, together with T ν
µ ). Thus the infinite

value of φ does not prevent the continuation of the space-time manifold to
smaller ρ , where the solution is valid with φ = −(C ln |P |)/(2k). On the
other hand, the total scalar field energy, calculated as the conserved quan-
tity corresponding to the timelike Killing vector, turns out to be infinite in
the static region independently of a ,

E =
∫

T 0
0

√
g d3x = −2πC2

∫
dρ

ρ(ρ − 2k)
, (4.43)

and the integral logarithmically diverges at ρ = 2k . The divergence is
related to the infinite spatial volume: the integral

∫ √
3g d3x diverges near

ρ = 2k even stronger than (4.43).

4.1.6 Vacuum and electrovacuum in Brans–Dicke theory

All static, spherically symmetric solutions of the Brans–Dicke (BD) theory
(4.1), (4.7) with U(φ) ≡ 0 are easily obtained from those described in
Sec. 4.1.2 using the transformation (4.2). Namely, in the general theory
(4.1) one can choose the Brans-Dicke scalar field parametrization f(φ) = φ ,
h(φ) = ω(φ)/φ , so that

LSTT = φR̃ +
ω(φ)

φ
g̃µνφ,µφ,ν − 2U(φ) + Lm, (4.44)

and the transformation (4.2) reads

g̃µν =
1
φ

gµν ,
dφ

dψ
= φ|ω(φ) + 3/2|−1/2. (4.45)

where the metrics g̃µν and gµν correspond to the Jordan and Einstein
frames, respectively. In BD theory, ω = const, so the fields φ and ψ are
related by

φ = eψ/
√

|ω+3/2|. (4.46)
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Recall that the BD theory is normal for ω > −3/2, phantom for ω < −3/2
and has no dynamics at ω = −3/2; accordingly, Eq. (4.46) is meaningless
at ω = −3/2.

Substituting the metrics from Sec. 4.1.2 for g̃µν and the corresponding
expressions for ψ into (4.45) and (4.46), we obtain scalar-(electro)vacuum
solutions of the BD theory. Their properties are analyzed in detail in quite
a number of papers, see, e.g., [51, 58, 59, 85] and references therein. One can
note that in the scalar-vacuum case (q = 0), the conformal mapping (4.45)
with ω = const applied to Fisher’s solution and the three branches of the
anti-Fisher solution leads to Brans’s four classes of vacuum BD solutions
[48] (in other notations). The main conclusions are as follows.

1. In the case of a normal BD field, i.e., ω + 3/2 > 0, all solutions possess
naked singularities, with the only exception: a special wormhole solution
existing at ω = 0 [51] due to a conformal continuation, similar to that
described in Sec. 4.1.3.

2. One of the generic types of BD solutions for all ω < −3/2 is a wormhole
with two asymptotically flat infinities.

3. Other generic types of BD solutions for all ω < −3/2 contain singu-
lar horizons with an infinite area; their singular nature is connected
with violation of analyticity rather than an infinite curvature. Some of
these singularities are remote, i.e., correspond to infinite values of the
canonical parameter along geodesics that reach them. In such cases the
space-time is geodesically complete.

4. There is a discrete family of solutions with ω < −3/2, parametrized by
two integers, where the horizon of infinite area is regular and admits
an extension beyond it (see diagrams 2b and 2d in Fig. 4.4). These
configurations have been termed cold BHs since they inevitably have a
zero Hawking temperature. Many of these configurations do not contain
any singularities.

5. The electric charge adds some branches of solutions as compared with
the vacuum case but does not drastically change the situation with
singularities, BHs and wormholes [59].

4.1.7 Summary for massless scalar fields

From our consideration of exact static solutions with massless scalar fields,
one can draw the following basic conclusions concerning BHs.
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1. In GR with a normal scalar field φmin (ε = +1), there are no solutions
with horizons.

2. In GR with a phantom scalar field φmin (ε = −1), there are “cold
BH” solutions containing horizons of infinite area under special discrete
values of the parameters (integration constants). There are no horizons
of finite area.

3. In GR with a conformal scalar field φconf , with the normal sign of
kinetic energy (ε = +1), there is an unstable special solution in the
form of an extremal BH (with a second-order horizon).

4. Other kinds of nonminimally coupled scalar fields, scalar-tensor theo-
ries: at ε = +1 cases like item three are possible in principle but are yet
unknown; at ε = −1 the situation is similar to item two. For instance,
such discrete families of electrically neutral and charged cold BHs have
been found in the Brans-Dicke theory. Some of them are globally regu-
lar.

4.2 Scalar fields with arbitrary potentials. No-go

theorems

4.2.1 What is the use of no-go theorems?

In most of the applications, it is necessary to consider more general scalar
fields than those discussed in the previous section, namely, fields with
nonzero potentials as well as various interactions, generalized or modi-
fied scalar field theories. Meanwhile the equations for such self-gravitating
scalar fields can be explicitly integrated only in very rare special cases even
for fields with high symmetry, such as isotropic models in cosmology and
static, spherically symmetric systems. Therefore, of great value are general
statements or theorems about the properties of such systems which can be
obtained without completely solving the field equations.

For static, spherically symmetric scalar-vacuum configurations in GR,
described by the action

S =
∫

d4x
√
|g|

[
R/κ

2 + Lsc

]
,

Lsc = gµνφ,µφ,ν − 2V (φ), (4.47)
where R is the scalar curvature and κ

2 the gravitational constant, the
following theorems are known:

A. “No-hair” theorems ([5, 31]), claiming that asymptotically flat black
holes with a nontrivial scalar field cannot exist under certain conditions
imposed on the potential V (φ).
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B. The generalized Rosen theorem, claiming that a particle-like solution
(PLS) (that is, an asymptotically flat solution with a regular centre)
cannot exist if V ≥ 0 [84].

C. The nonexistence theorem for regular solutions without a centre (e.g.,
wormhole solutions) [53].

D. The global structure theorem [53], claiming that the list of possi-
ble global causal structures (and the corresponding Carter-Penrose
diagrams) for configurations with arbitrary potentials V (φ) and any
asymptotic behavior is the same as the analogous list in the case
φ = const, namely it includes the Minkowski (or AdS), Schwarzschild,
de Sitter and Schwarzschild-de Sitter structures.

A number of known exact solutions represent examples of configuration
admitted by these theorems: black hole solutions with scalar fields where
V (φ) ≥ 0 but without asymptotic flatness; asymptotically flat PLS and
black holes with at least partly negative potentials V (φ), etc. All this,
taken together, leads to a clear enough picture of what can and what
cannot be expected from minimally coupled scalar fields in GR. A detailed
description of all these results is beyond the scope of our presentation here,
see, e.g., [53, 84] and references therein.

There are quite a number of generalizations of the action (4.47), for
which it is of interest to know whether or not the above Statements A–D
hold, and if yes, under which additional conditions. In particular:

1. Multidimensional spherically symmetric configurations in GR, with the
scalar field Lagrangian given in (4.47) and the metric

ds2 = e2γdt2 − e2αdu2 − e2βdΩ2
d0

, (4.48)
where α, β, γ are functions of the radial coordinate u and dΩ2

d0
is a

linear element on a d0 -dimensional sphere of unit radius.
2. More general scalar field Lagrangians in GR, such as Lsc = F (φ, I),

where I = gµνφ,µφ,ν and F is an arbitrary function of two variables
(the so-called generalized k-essence).

3. Sets of scalar fields �φ = {φK} , K = 1, N of σ model type, considered
as coordinates in the N -dimensional target space Tφ , so that

Lsc = HKL(�φ)(∂φK , ∂φL) − 2V (�φ), (4.49)
where the target-space metric HKL (usually supposed to be positive-
definite) and the potential V are functions of the N variables φK , and
we use the notation

(∂y, ∂z) = gµν∂µy∂νz. (4.50)
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4. Scalar-tensor theories (STT) of gravity, with the D -dimensional action

SCTT =
∫

dDx
√

g[f(φ)R + h(φ)(∂φ)2 − 2U(φ)], (4.51)

where (dφ)2 = (∂φ, ∂φ) and f, h, U are arbitrary functions of the
scalar field.

5. Theories of gravity with higher derivatives (curvature-nonlinear theo-
ries) where the scalar curvature R in (4.47) is replaced by a function
f(R), or, more generally, including, for example, the invariant RµνRµν .

6. More general multidimensional configurations such as products like

M
D = Ru × M0 × M1 × M2 × · · · × Mn, (4.52)

where Mext = Ru×M0×M1 is the “external” manifold with the metric
(4.48), Ru ⊆ R is the range of the radial coordinate u , M1 is the
time axis, and M0 = S

d0 . Furthermore, M2, . . . , Mn are the “internal”
factor spaces of arbitrary dimensions di , i = 2, . . . , n ; by this notation,
dim M0 = d0 and dim M1 = d1 = 1.

This list can be continued and/or its items can be combined to obtain
new generalizations.

We will consider here static, spherically symmetric systems in GR, in
space-times of arbitrary dimension D with a sufficiently general σ -model
source. The proofs turn out to be almost the same as for similar systems
in four dimensions (4.47), but the present formulation is well suited for
(multi-)scalar-tensors and multidimensional generalizations.

4.2.2 Basic equations

Consider D -dimensional GR with the set of scalar fields (4.49). As in four
dimensions, the Einstein equations can be written in two equivalent forms:

Gν
µ

def= Rν
µ − 1

2
δν
µR = −κ

2T ν
µ , (4.53)

or

Rν
µ = −κ

2T̃ ν
µ

def= −κ
2

(
T ν

µ −
δν
µ

D − 2
T α

α

)
, (4.54)

where T ν
µ is the stress-energy tensor (SET). For the fields (4.49) it is

given by

T ν
µ = ∂ν �φ∂µ

�φ − 1
2
δν
µLsc, (4.55)
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or in the “tilded” version,

T̃ ν
µ = ∂ν�φ∂µ

�φ − δν
µV (�φ), (4.56)

where two arrows denote a scalar product in the target space Tϕ : �a�b =
HKLaKbL .

The static, spherically symmetric metric (4.48) is written with an arbi-
trary radial coordinate u . Now, it is convenient for our purposes to use
the quasiglobal coordinate u = ρ corresponding to the gauge condition
α + γ = 0, so that the metric takes the form

ds2 = A(ρ)dt2 − du2

A(ρ)
− r2(ρ)dΩ2

d0
, (4.57)

where we have denoted r(ρ) = eβ and A(ρ) = e2γ ≡ e−2α . This choice is
preferable for considering Killing horizons, described as zeros of the func-
tion A(ρ). The reason is that in a close neighborhood of a horizon the
coordinate ρ defined in this way varies (up to a positive constant factor)
like manifestly well-behaved Kruskal-like coordinates used for an analytic
continuation of the metric. This fact refers to the geometry of the (t, ρ)
subspace and does not depend on the geometry of other dimensions and
even on their number.

With this choice of the coordinate gauge, the nonzero components of
the Ricci tensor for the metric (4.57) read

Rt
t =− 1

2rd0
(A′rd0)′, (4.58)

Rρ
ρ =− 1

2rd0
(A′rd0)′ − d0A

r′′

r
, (4.59)

Rθ
θ =

d0 − 1
r2

− A

[
r′′

r
+ (d0 − 1)

r′2

r2
+

A′r′

Ar

]
, (4.60)

where θ is any of the spherical angles in (4.57). Accordingly, the scalar field
equations and four different combinations of components of Eq. (4.54) can
be written as follows:

[Ard0HKL(ϕL)′]′ =rd0∂V/∂ϕK ; (4.61)

(A′rd0)′ =−(4/d0)rd0κ
2V ; (4.62)

d0r
′′/r=−κ

2(�φ′)2; (4.63)

A(r2)′′ − r2A′′ + (d0 − 2)r′(2Ar′ − A′r)=2(d0 − 1); (4.64)

d0(d0 − 1)(1 − Ar′
2) − d0A

′rr′ =−Ar2(�φ′)2 + 2r2V. (4.65)
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Eqs. (4.62), (4.63) and (4.64) are the components
(
t
t

)
,
(
t
t

)
−

(
ρ
ρ

)
and

(
t
t

)
−

(
θ
θ

)
of (4.54) respectively, and (4.65) is the

(
ρ
ρ

)
component of (4.53). We have

written (N +4) equations for (N +2) unknowns ϕK , A and r , but there
are only two independent equations among (4.62)–(4.65); in particular,
(4.65) is a first integral of the other equations. So this set of equations is
determined.

4.2.3 Global structure theorems

The first theorem concerns the nonexistence of wormholes, horns and flux
tubes. A wormhole is, by definition, a configuration with two asymptotic
regions that have large r(ρ) (see Chapter 5), hence r(ρ) must have at least
one regular minimum. A flux tube is a configuration with r = const > 0,
a static (d0 + 1)-dimensional cylinder. A horn is a geometry that tends to
a flux tube at one of its asymptotics, which happens if r(ρ) → const > 0
at one of the ends of the range of ρ . Such “horned particles” with a flat
asymptotic region have been discussed as possible remnants of black hole
evaporation [19].

Theorem 4.1 (on configurations without a centre). Eqs. (4.61)–
(4.65) for D ≥ 4 and positive-definite HKL do not admit (i) solutions

where the function r(ρ) has a regular minimum , (ii) solutions describing

a horn , and (iii) flux-tube solutions with ϕK �= const .

A proof rests on Eq. (4.63), implying r′′ ≤ 0, which actually expresses
the null energy condition valid for the SET T ν

µ as long as the matrix HKL

is positive-definite. As a result, not only are wormholes as global entities
impossible but even wormhole throats.

Another theorem concerns the possible number and order of Killing
horizons, coinciding with the number and order of zeros of A(ρ). A simple
(first-order) or any odd-order horizon separates a static region, A > 0
(R-region), from a nonstatic region, A < 0 where (4.48) is a homogeneous
cosmological Kantowski–Sachs-type metric (a T-region). A horizon of even
order separates regions with the same sign of A(ρ).

The disposition of horizons unambiguously determines the global causal
structure of space-time (up to identification of isometric surfaces, if any).
The following theorem severely restricts such possible dispositions.

Theorem 4.2 (on the global structure). Consider solutions to

Eqs. (4.61)–(4.64) for D ≥ 4 . Let there be a static region a < ρ < b ≤ ∞ .
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Then:

(i) all horizons are simple;

(ii) no horizons exist at ρ < a and at ρ > b .

A proof of this theorem [53, 84] employs the properties of Eq. (4.64),
which can be rewritten in the form

r4B′′ + (d0 + 2)r3r′B′ = −2(d0 − 1), (4.66)

where B(ρ) = A/r2 . At points where B′ = 0, we have B′′ < 0. Therefore
B(ρ) cannot have a regular minimum. Having once become negative while
moving to the left or to the right along the ρ axis, B(ρ) (and hence A(ρ))
cannot return to zero or positive values.

By Theorem 4.2, there can be at most two simple horizons around a
static region. A second-order horizon separating two nonstatic regions can
appear, but this horizon is then unique, and the model has no static region.

The possible dispositions of zeros of the function A(ρ), and hence
the list of possible global causal structures, are thus the same as in the
case of vacuum with a cosmological constant. The latter is a solution to
Eqs. (4.61)–(4.64) with ϕK = const, κ

2V = Λ = const, and the metric

ds2 = A(r)dt2 − dr2

A(r)
− r2 dΩ2

d0
, (4.67)

A(r) = 1 − 2m

(d0 − 1)rd0−1
− 2Λr2

d0(d0 + 1)
. (4.68)

This is the multidimensional Schwarzschild-de Sitter (or Tangherlini-de
Sitter) solution. Its special cases correspond to the Schwarzschild (d0 = 2)
and Tangherlini [395] (d0 ≥ 2) solutions15 when Λ = 0 and the de Sitter
solution in arbitrary dimensions when m = 0, called anti-de Sitter (AdS)
in case Λ < 0. For Λ > 0, if m is positive but smaller than the critical
value

mcr =
d0 − 1
d0 + 1

[
d0(d0 − 1)

2Λ

](d0−1)/2

, (4.69)

there are two horizons, the one at smaller r being interpreted as a black
hole horizon and the other as a cosmological horizon. At m = mcr , the two

15The mass M in conventional units, say, grams, is obtained by writing m = GM
where G is a (d0 +2)-dimensional analogue of Newton’s constant. The coefficient of m
is chosen in (4.70) and accordingly in (4.68) in such a way that at large r in the case
Λ = 0, when the space-time is asymptotically flat, a test particle at rest experiences a
Newtonian acceleration equal to −GM/rd0 .
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horizons merge, and there are two homogeneous nonstatic regions separated
by a double horizon. The solution with m > mcr is purely cosmological
and has no Killing horizon. In the cases m < 0 and/or Λ < 0 there is at
most one simple horizon.

Possible behaviors of A(r) and the corresponding Carter–Penrose
diagrams are presented in Figs. 4.1 and 4.2.

✲

✻

1a
1b

2b 2a
3

4

5b

5a
6a6b

6c

1

Figure 4.1 The behavior of A(r) , Eq. (4.68), for different values of m and Λ.

In (2+1)-dimensional gravity (d0 = 1) we have a still shorter list of
global structures: at most one simple horizon is possible.

Theorems 1 and 2 are independent of the form of the potential and of
any assumptions about spatial asymptotics.

4.2.4 No-hair theorem

Let us now consider asymptotically flat space-times, which means, in terms
of the metric (4.57), that without loss of generality, r ≈ ρ and the function
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Figure 4.2 Carter–Penrose diagrams for different cases of the metric (4.67) and
(4.68), labelled according to Fig. 4.2.3. The R and T letters correspond to R
and T space-time regions while T+ and T− denote expanding and contracting
T region (i.e., with r increasing and decreasing with time, respectively). Single
lines on the border of the diagrams denote r = 0, double lines r = ∞ . Diagrams
6b and 6c are drawn for the case of expanding Kantowski-Sachs cosmologies; to
obtain diagrams for contracting models, one should merely interchange r = 0
and r = ∞ and replace T+ with T− . Diagrams 6a and 6b admit identification
of isometric timelike sections.

A(ρ) ≈ A(r) has the Tangherlini form, (i.e., 4.68) with Λ = 0:

A(r) = 1 − 2m

(d0 − 1)rd0−1
, (4.70)

as ρ → ∞ . It then follows from the field equations that the SET compo-
nents, and hence the quantities V and (�φ)2 , decay at large ρ ≈ r quicker
than r−(d0+1) .
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Let us now prove the following no-hair theorem [68], extending to our
system the theorems known in four dimensions [5, 31]:

Theorem 4.3 (on external scalar fields of black holes). Given

Eqs. (4.61)–(4.65) for D ≥ 4, with a positive-definite matrix HKL(�φ) and

V (�φ) ≥ 0, the only asymptotically flat black hole solution is characterized

by V ≡ 0, �φ = const and the Tangherlini metric (4.67), (4.70) in the whole

range h < ρ < ∞ (the domain of outer communication of the black hole)
where ρ = h is the event horizon.

At the event horizon ρ = h we have by definition A = A(h) = 0, and
A > 0 at ρ > h . By Theorem 4.2, the horizon should be simple, so that
A ∼ ρ − h as ρ → h . Consider the function

F1(ρ) =
rd0

r′
[2V − A�φ′2]. (4.71)

One can verify that

F ′(ρ) = F2(ρ) def= rd0−1

[
2d0V + (d0 − 1)

�φ′2

r′2
+ A�φ′2

]
. (4.72)

To do so, when calculating F ′
1 , one should substitute �φ′′ from (4.61), r′′

from (4.63) and A′ from (4.65). Let us integrate (4.72) from h to infinity:

F1(∞) −F1(h) =
∫ ∞

h

F2(ρ) dρ. (4.73)

Since r′(∞) = 1 and r′′ ≤ 0, we have r′ > 1 in the whole range of ρ ,
but r′(h) < ∞ . Indeed, regularity of the horizon implies a finite value
of the Kretschmann scalar given by (3.7), hence finite values of all its
constituents. Of interest for us is the condition |A′r′| < ∞ . Since A′(h) > 0
(the horizon is simple due to the Global structure theorem), its finiteness
means r′(h) < ∞ .16

The quantity F1(h) should be finite, since otherwise we would have
either V or A�φ′2 infinite, leading to infinite SET components (see (4.55))
and, via the Einstein equations, to a curvature singularity.

If, however, we admit a nonzero value of A�φ′2 at ρ = h , the integral in
(4.73) will diverge at ρ = h due to the second term in brackets in (4.72),

16The expressions (3.7) are written for the case D = 4, but for the metric (4.57) they
have the same form up to numerical factors.
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and this in turn leads to an infinite value of F1(h). Therefore A�φ′2 → 0
as ρ → h , and we conclude that

F1(h) =
2rd0(h)
r′(h)

V (h) ≥ 0.

On the other hand, F1(∞) = 0 due to the asymptotic flatness conditions.
Thus, in Eq. (4.73) there is a nonpositive quantity in the left-hand side and
a nonnegative quantity on the right. The only way to satisfy (4.73) is to
put V ≡ 0 and �φ′ ≡ 0 in the whole range ρ > h , and the only solution for
the metric then has the Tangherlini form. �

As follows from the scalar field equations (4.61), the equality V = 0
should take place where ∂V/∂ϕK = 0, i.e., at an extremum or saddle
point of the potential, and it should obviously be a minimum for stable
equilibrium.

It is of interest that one of the key points of the above proof, that
A�φ′2 = 0 at ρ = h , might be obtained from smoothness considerations.
Indeed, since A ∼ ρ − h near ρ = h , a nonzero value of A�φ2 means that
some of (φK)′ behave as (ρ − h)−1/2 , violating the C1 requirement for
the scalar fields. Our proof is “more economical” since it only uses the
requirement of space-time regularity at the horizon.

One can also note that our no-hair theorem is in a complementarity
relation with a recent black hole uniqueness theorem [348] (see [349] for
recent generalizations and [201, 290] for earlier reviews). In D -dimensional
general relativity coupled to the σ -model (4.49) with V ≡ 0, it has been
proved without assuming spherical symmetry at the outset that “the only
black hole solution with a regular, nonrotating event horizon in an asymp-
totically flat, strictly stationary domain of outer communication is the
Schwarzschild-Tangherlini solution with a constant mapping φ” [348]. In
contrast to that, our Theorem 4.3 applies to σ -models with arbitrary
V (�φ) ≥ 0 but selects the Tangherlini solution among spherically symmetric
configurations.

There are a number of other theorems of similar nature whose common
meaning is that any stationary (rather than static or spherically symmetric
only) black hole is completely and uniquely characterized by solutions to
the Einstein equations determined by the parameters M (mass), Q (elec-
tric [and magnetic] charge) and J (angular moment). It is this statement
that is meant in Wheeler’s claim [424] that “Black holes have no hair”.
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There exist many generalizations and analogues of such theorems in exten-
sions of GR in diverse dimensions as well as for some non-asymptotically
flat configurations (see, e.g., [31, 161, 290] for reviews).

4.2.5 Two expressions for the mass and the properties
of particle-like solutions

In this subsection we will discuss particle-like solutions, i.e., solutions with
a flat asymptotic and a regular centre. We begin by deriving two gen-
eral expressions for the active gravitational (Tangherlini) mass m of a
D -dimensional configuration with the metric (4.48) and an arbitrary SET
compatible with the regular centre and asymptotic flatness conditions.

One expression is easily obtained from the
(
t
t

)
component of Eq. (4.53)

which may be written in the curvature coordinates (u = r ) in the following
way:

d0

(d0 − 1)rd0

dm

dr
= κ

2T t
t , (4.74)

where m(r) is the mass function,

m(r) def=
d0 − 1

2
rd0−1(1 − e−2α), (4.75)

generalizing the well-known 4-dimensional mass function m(r) = 1
2r(1 −

e−2α). For a system with a regular centre (r = 0), the function m(r),
expressed from (4.74) as

m(r) =
d0 − 1

d0
κ

2

∫ r

0

T t
t rd0dr, (4.76)

can be interpreted as the mass inside a sphere of radius r . If, in addition,
the space-time is asymptotically flat, this integral converges at large r and
if taken from zero to infinity, gives the full Tangherlini mass m = m(∞).
The constant κ

2 is expressed in terms of d0 and the multidimensional
Newtonian constant G (such that m = GM , see footnote 15) if we require
the validity of the usual expression for mass in terms of density, M =∫

T t
t dv (dv being the element of volume) in the flat space limit. One thus

obtains

κ
2 =

d0

d0 − 1
s(d0)G,

s(d0)=2π(d0+1)/2
/
Γ

(
d0 + 1

2

)
, (4.77)

where s(d0) is the area of a d0 -dimensional sphere of unit radius and Γ is
Euler’s gamma function. In case D = 4 we have, as usual, κ

2 = 8πG .
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Eq. (4.76) for the Tangherlini mass is easily rewritten in terms
of any radial coordinate, e.g., the quasiglobal ρ coordinate used in
Eqs. (4.61)–(4.65):

m =
d0 − 1

d0
κ

2

∫ ∞

ρc

T t
t (ρ)rd0r′dρ, (4.78)

where ρc is the value of ρ at the centre.
On the other hand, one can integrate the

(
t
t

)
component of Eq. (4.54),

which, in terms of the same ρ coordinate for Rt
t , assumes the form

1
2rd0

(A′rd0)′ = κ
2T̃ t

t. (4.79)

For an asymptotically flat metric (4.57) with a regular centre, integration
of (4.79) over the whole range of ρ gives

m =
κ

2

d0

∫ ∞

ρc

[(d0 − 1)T t
t − T i

i ]r
d0dρ, (4.80)

where the index i enumerates spatial coordinates. It is a multidimensional
analogue of Tolman’s well-known formula [398] for the mass of a regular
matter distribution in general relativity. Comparing the expressions (4.78)
and (4.80), we obtain the following universal identity valid for any particle-
like static, spherically symmetric configuration in D -dimensional GR:∫ ∞

ρc

[(r′ − 1)(d0 − 1)T t
t + T i

i ]r
d0dρ = 0. (4.81)

For the σ -model (4.49), Eq. (4.80) takes the form

m = −2κ
2

d0

∫ ∞

ρc

V (�φ)rd0dρ, (4.82)

leading to a multidimensional version of what has been previously called
the generalized Rosen theorem [84]: a static, spherically symmetric particle-
like solution with positive mass cannot be obtained with scalar fields having
a nonnegative potential V .

An even stronger no-go theorem follows from the universal identity
(4.81) [68]:

Theorem 4.4 (on particle-like solutions). Eqs. (4.61)–(4.65) with

D ≥ 4 for the σmodel (4.49) do not admit any particle-like solution if

the matrix HKL is positive-definite and V ≥ 0 .

In other words, even negative-mass particle-like solutions can only be
obtained with (at least partly) negative potentials.
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To prove the theorem, it is sufficient to show that the expression in
brackets in (4.81) is positive for any nontrivial solution under the conditions
of the theorem — it will then follow that the integral is positive, hence it
is not a particle-like configuration. This expression is

1
2
(d0 − 1)A(�φ′)2 + V [2 + (d0 − 1)r′].

Its positivity is evident since, as already mentioned, r′ = 1 at the flat
asymptotic and, due to r′′ ≤ 0, we have r′ ≥ 1 in the whole range
of ρ . �

4.3 Rotating black holes

Until now we have been discussing only spherically symmetric BHs, whose
angular momentum is zero. Now we will very briefly describe the basic
properties of rotating BHs. We will assume them to be electrically neutral
both for simplicity and in connection with the small role of possible BH
charges in astrophysical conditions.

Rotating BHs form as a result of the gravitational collapse of rotating
bodies (practically all celestial bodies are rotating) and at BH mergers.
Therefore rotating BHs are much more realistic than spherically symmetric
ones. Their structure and properties are, however, much more complicated.

Stationary rotating BHs are described by the Kerr metric [229]

ds2 =
(

1 − 2mr

ρ2

)
dt2 +

4m r a2 sin2 θ

ρ2
dφ dt − ρ2

∆
dr2 − ρ2dθ2

−
(

r2 + a2 +
2m r a2

ρ2

)
sin2 θ dφ2, (4.83)

where

a = J/m, ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2m r + a2. (4.84)

Here, (t, r, θ, φ) are the so-called Boyer–Lindquist coordinates [45] (ini-
tially, Kerr obtained his metric in less convenient notations). The metric
(4.83) represents an asymptotically flat (as r → ∞) stationary, axially
symmetric solution to the Einstein equations in vacuum (T ν

µ ≡ 0). The
stationarity and axial symmetry are determined by the existence of the
Killing vectors ξµ = (1, 0, 0, 0) and ηµ = (0, 0, 0, 1), respectively (with
the usual order of enumerating the coordinates: t, r, θ, φ). The station-
arity, instead of staticity, of the metric manifests itself in its noninvariance
under the substitution t �→ −t .
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The solution is parametrized by two constants, the mass m and the
angular momentum J ; at J = 0 it turns into the Schwarzschild solution.

A true curvature singularity occurs at ρ = 0, r = 0, θ = π/2, and
an inspection shows that this singularity has the shape of a ring (this fact
is not evident in the Boyer-Lindquist coordinates and is established using
another parametrization of the metric, see, e.g., [168, 296]). The surfaces
where ∆ = 0, i.e.,

r± = m ±
√

m2 − a2, (4.85)

are horizons. Evidently, the horizons exist if m2 ≥ a2 , and in the case of
inequality there are two simple horizons while at equality there is only one
extremal (double) horizon.

Consider the metric (4.83) with horizons. In this case, the norm of the
Killing vector ξµ , equal to

ξµξµ = gtt =
∆ − a2 sin2 θ

ρ2
, (4.86)

vanishes on the surface where

∆ = a2 sin2 θ, (4.87)

i.e., outside the horizon (with the surface ∆ = 0, i.e., the horizon r = r+ ,
it has only two common points, namely, the poles θ = 0 and θ = π ,
see Fig. 4.3). The surface (4.87) is called the stationarity limit because

horizon

stationarity limit

ergosphere

Figure 4.3 The horizon and the ergosphere of a Kerr BH, a meridional section.
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stationary observers cannot exist on and inside this surface. Besides, the
surface (4.87) is a surface of infinite redshift for photons emitted from it
to spatial infinity.

The region of space between the horizon r = r+ and the surface (4.87)
has received the name of the ergosphere. This name is connected with
the opportunity to extract the rotational energy of the Kerr BH with the
aid of the Penrose process [325]. The point is that the ergosphere con-
tains orbits of massive particles with a negative total energy (this means
that the absolute value of the binding energy exceeds the particle mass).
Then one can launch, say, a spacecraft into the ergosphere, where it will
emit particles with negative energy and return to the usual spatial region
with a larger energy than it initially had. As to particles with a nega-
tive energy, their motion is directed against the BH rotation and, being
absorbed by the BH, they diminish its rotation rate and total rotational
energy.

It has been shown [18, 183, 184, 434] that particle collisions close to
horizons of rotating black holes can lead to extremely high energies of the
order of the Grand Unification scale in the centre-of-mass reference frame
of colliding particles. According to [18], close to the horizon of an extremal
Kerr black hole, there is a resonance for the centre of mass (CM) energy
of two scattering particles: a pole for some special value of the angular
momentum of the scattered particle was found, showing that the centre of
mass energy can be arbitrarily large. The papers [183, 184] show that the
same effect can occur in nonextremal black holes if one takes into account
the possibility of multiple scattering of a particle: at the first scattering
close to the horizon the particle gets an angular momentum close to its
critical value, and at the second scattering, due to the resonance effect, it
can acquire an energy at the level of high energy physics, Grand Unification
or even Planck values.

Assuming that a rotating black hole is located at the centre of an active
galactic nucleus, the time needed for a particle to come from the accretion
disk to the first scattering point was estimated [184] and turned out to be
of the order of a week. Then, the time needed for a high-energy particle
to leave the ergosphere to be observed on Earth as a particle of ultra-high
energy cosmic rays (UHECR) was evaluated. This time was also found to
be quite reasonable: of the order of days, plus the time needed to travel to
the observer.

Electrically charged stationary rotating BHs are described by the
Kerr-Newman solution to the Einstein–Maxwell equations, characterized
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by the metric in the Boyer–Lindquist coordinates similar to those in (4.83)

ds2 =
(

1 − 2mr − q2

ρ2

)
dt2 +

(2m r − q2)2a2 sin2 θ

ρ2
dφ dt − ρ2

∆
dr2 − ρ2dθ2

−
(

r2 + a2 +
(2m r − q2)a2

ρ2

)
sin2 θ dφ2, (4.88)

with

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2m r + a2 + q2, (4.89)

where q is the electric charge. m and a have the same meaning as in
Kerr’s solution. Evidently, ρ2 is the same as in (4.84) while ∆ has the new
contribution q2 . The electromagnetic field of the BH is determined by the
vector potential Aµ given by

Aµdxµ = −qr

ρ2
(dt − a sin2 θ dφ). (4.90)

This solution reduces to the Reissner–Nordström solution if a = 0, and
to the Kerr solution if q = 0. A detailed analysis of the properties of
Kerr–Newman BHs can be found in the book [168].

At large charges and/or angular momenta (q2+a2 > m2 ), the Kerr and
Kerr–Newman solutions are no longer BHs but describe the gravitational
fields of naked singularities. It is of interest that if we juxtapose these
parameters with masses, spins and charges of known elementary particles,
they correspond to such naked singularities. Surprisingly, it turns out that
the above solutions with rotation do really describe the particle properties
fairly well, even including some of their quantum features, see [92, 93] and
references therein.

4.4 Black hole thermodynamics

4.4.1 Four laws of BH thermodynamics

By definition, a BH can emit nothing (in the framework of the classical
theory) because neither photons nor massive particles are able to leave it.
Nevertheless, as found for the first time by Bekenstein [29], BHs satisfy
some relations identical to the well-known relations of thermodynamics,
and we can ascribe to them such thermodynamic characteristics as tem-
perature (which is in general not zero) and entropy.
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Hawking [197] discovered, while considering quantum processes near
horizons, that BHs emit radiation like black bodies with a certain temper-
ature, and he derived an exact relationship between the BH entropy and
the BH horizon area. A little later, four laws of BH thermodynamics were
formulated [172]. As a result, there emerged a consistent description of
thermodynamic systems which include both conventional matter and BHs.

The so-called zeroth law of BH thermodynamics is formulated as follows:

The Zeroth Law. The surface gravity of a BH does not change from

point to point of the event horizon.

The surface gravity is, by definition, the value of the free-fall accelera-
tion, calculated at the event horizon in terms of the particle acceleration.
For a Schwarzschild BH, the surface gravity κ is

κ = 1/(4m), (4.91)

while for a Kerr BH a rather bulky calculation gives (see, e.g., [185])

κ =
r+ − m

2mr+
=

√
m2 − a2

2m
(
m +

√
m2 − a2

) . (4.92)

Eqs. (4.91) and (4.92) contain only the BH parameters, without any angular
dependence, thus confirming the Zeroth Law.

The First Law of BH thermodynamics reads

dm =
κ

8π
dA + Ω dJ, (4.93)

where A is the horizon area,

A = 4π(r2
+ + a2) (4.94)

(at a = 0 we obtain the expression for the Schwarzschild BH, A = 4πr2
+ =

16πm2 ), and Ω is the angular velocity at the horizon,

Ω =
a

r2
+ + a2

. (4.95)

The equality (4.93) is similar to the first law of conventional thermody-
namics dU = TdS + dW (U is the internal energy, S the entropy, W

the work). Therefore, Eq. (4.93) may be pronounced as follows: Ω dJ is the
work executed over the BH by adding the angular momentum dJ . Further
reasoning leads to the following identifications for the BH temperature and
entropy [197]:

TBH = κ/(2π), SBH = A/4. (4.96)
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In particular, from the expression (4.92) it follows that the temperature is
zero only for an extremal BH with a double horizon ( |a| = m).

The Second Law of BH thermodynamics is similar to the statement
that the entropy cannot decrease:

The Second Law. There is no physical process that could decrease the

horizon area of a BH.

The quantum process of BH evaporation due to Hawking radiation
violates this classical law.

Lastly, the Third Law asserts the nonaccessibility of an absolute zero of
temperature, or, as is sometimes formulated, the nonexistence of negative
temperatures. For a BH, a similar statement reads [24]:

The Third Law. There is no procedure able to bring the BH temperature

to zero by a finite sequence of operations.

In other words, it is impossible to make an extremal BH from a non-
extremal one, to say nothing of exceeding the extremal limit (to reach
|a| > m) and to obtain a naked singularity from a BH.

4.4.2 Black hole evaporation

As already mentioned, according to [197], BHs evaporate, emitting like
black bodies with the temperature TBH = κ/(2π), where the surface
gravity at the horizon κ is determined by Eqs. (4.91) and (4.92). A quali-
tative physical picture of BH evaporation consists in that virtual particle-
antiparticle pairs, permanently appearing and disappearing according to
quantum field theory, are subject to a sufficiently strong gravitational field
in the neighborhood of the horizon. Then, with a certain probability (which
is larger for larger space-time curvatures), the gravitational field can drag
apart such virtual pairs, so that one of the particles falls to the horizon
while the other escapes to infinity. As particles with nonzero energy leave
the BH, the latter loses its mass.

A substitution of the corresponding constants leads to the following
approximate expression for the temperature of a Schwarzschild BH in
kelvins:

TBH ≈ 10−7m⊙/m K, (4.97)

where m⊙ is the solar mass. Thus the temperatures of BHs of solar (a for-
tiori, galactic) masses is very small, and their evaporation occurs very
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slowly: in fact, they increase their masses much more rapidly due to accre-
tion of ambient matter. The smaller a BH, the larger is the curvature of
space near its horizon and higher its temperature. In particular, the tem-
perature becomes smaller if mass is added, thus BHs have a negative heat
capacity.

The loss of mass (energy) of a BH can be calculated according to the
Stefan-Boltzmann law, −Ė/A = σT 4

BH , where σ is the Stefan-Boltzmann
constant. Integration of this expression leads to the following BH mass as
a function of time:

m(t) = (m3
0 − 3Kt)1/3, K =

1
15360π

=
�c4

15360πG2
, (4.98)

where m0 is the BH mass at t = 0; after the last equality sign, the expres-
sion is given in conventional units. At the time instant tf = m3

0/(3K),
the evaporation terminates, but it is so far not clear whether the BH must
completely disappear or if there remains a certain object with a mass of
Planckian order of magnitude, m ∼ 10−5 g. The point is that as the mass
approaches its Planck value (hence also the horizon radius approaches the
Planck length ∼10−33 cm), the so far unknown law of quantum gravity
must come into force.

A second before the end of the process, as one can easily find, the BH
mass is of the order 109 g ∼ 1033 GeV. It is the energy released in the last
second of BH evaporation.

On the other hand, if one equates the lifetime tf = m3
0/3K of a BH

with a given mass m0 to the age of the Universe, tU ∼ 13 · 109 years,
we obtain the mass m0 = mU ∼ 1015 g. Thus all primordial BHs of mass
smaller than 1015 g, having formed in the first seconds (or millennia) of
the Universe existence, have already evaporated and contributed to the
chemical composition of the modern Universe, while the remaining BHs
of masses close to mU must now and then explode in the modern epoch.
Heavier BHs will have a much longer life.

4.5 Regular black holes and black universes

4.5.1 Different kinds of regular black holes

One of the long-standing problems in black hole (BH) physics, and GR
as a whole, is the existence of curvature singularities beyond the event
horizon in the BH solutions obtained under the simplest and the most
natural physical conditions (the Schwarzschild, Reissner–Nordström, Kerr
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and Kerr-Newman solutions of general relativity and their counterparts in
many alternative theories of gravity). Singularities are places where general
relativity (or another classical theory of gravity) does not work since they
do not belong to a Riemannian space-time. Therefore, a full understanding
of BH physics requires avoidance of singularities or/and modification of the
corresponding classical theory and addressing quantum effects. There have
been numerous attempts on this trend, many of them being connected with
the hope that the singularities of classical gravity will be cured by effects
of quantum gravity. However, of great interest also are the opportunities
of singularity avoidance in the framework of classical gravity.

Let us discuss the possible geometry of classical nonsingular BHs,
restricting ourselves to asymptotically flat static, spherically symmetric
configurations. We begin with the general static, spherically symmetric
metric

ds2 = A(ρ)dt2 − dρ2

A(ρ)
− r2(ρ)dΩ2, (4.99)

written in terms of the quasiglobal coordinate ρ , which is, as we have
already seen, particularly convenient for dealing with Killing horizons. At
a flat asymptotic (ρ → ∞) we have, without loss of generality, A(ρ) → 1
and r(ρ) ≈ ρ . A centre ρ = ρc (if any) corresponds to r = 0 in a static
region; horizons (if any) are described by regular zeros of the function
A(ρ), and their number, order and disposition determine the global causal
structure of space-time.

The four simplest types of regular 4-dimensional, asymptotically flat,
and static, and spherically symmetric BHs known in the literature can be
presented as follows (see Fig. 4.4):

1. BHs with a regular centre (r ≈ constρ−ρc , A → Ac > 0, A(dr/dρ)2 ≈
1 + O(r2) as ρ → ρc ). Since a regular centre can only be located in
a R-region, such a BH must have at least two simple horizons or one
double horizon, and its causal structure is then represented by the same
Carter–Penrose diagram as that of the nonextreme or extreme Reissner-
Nordström BH (diagrams 1b and 1c in Fig. 4.4), respectively. A larger
number of horizons is not excluded, leading to more complex causal
structures.

2. BHs without a centre, having second-order horizons of infinite area
(so-called cold BHs because such horizons are always characterized by
zero Hawking temperature) [58, 59, 97]. They may have different causal
structures. In one case, the Carter–Penrose diagram coincides with that
of Kerr’s extreme BH, consisting of an infinite tower of R-regions but
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Figure 4.4 Plots showing the qualitative behaviour of the metric functions and
Carter-Penrose diagrams for four different types of regular static, spherically
symmetric black holes. Diagrams 1b and 1d (like those for the nonextreme and
extreme Reissner–Nordström metrics) refer to curves A1 and A2 in plot 1a,
respectively. Diagram 2b, like that for the extreme Kerr metric, refers to plot
2a, diagram 2d to plot 2c, 3b to 3a and 4b to 4a. The R and T letters in the
diagrams designate the R and T space-time regions. Diagrams 1b, 1c, 2b and
3b are infinitely extendible upward and downward. In all diagrams, all inner
slanting lines depict horizons while all boundaries correspond to r = ∞ , with
the following exceptions: the verticals in diagrams 1b and 1d describe a regular
centre, r = 0; the horizontal lines in diagram 4b correspond either to r = ∞ or
to r = r0 > 0, according to the curves r1(ρ) or r2(ρ) at large negative ρ .

certainly without a ring singularity which is present in Kerr’s solution
(plots 2a and diagram 2b in Fig. 4.4). In another case, there are only
four R-regions (plots 2c and diagram 2d).

3. BHs whose causal structure coincides with that of a nonextreme Kerr
BH, again without a singular ring [60, 104] (diagram 3b).
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4. Regular BHs with a Schwarzschild-like causal structure [66] (dia-
gram 4b) but with cosmological expansion instead of a singularity. Such
BHs have been termed black universes [61].

Type 1 of regular BHs traces back to Bardeen’s work [23] which puts
forward the very idea of regular BHs instead of singular ones and suggested,
as an example, a particular BH configuration with

r ≡ ρ, A(ρ) = 1 − Mρ2

(ρ2 + q2)3/2
, (4.100)

where M, q = const, and two horizons exist provided q2 < (16/27)M2 .
Later on there appeared numerous examples ([17, 52, 151] and others) of
regular BH solutions where, just as in Eq. (4.100), r ≡ ρ . This, by virtue of
the Einstein equation, implies that the stress-energy tensor of the matter
source satisfies the condition

T 0
0 ≡ T 1

1 (4.101)

or, in other words, ε = −pr (ε = T 0
0 is the energy density and pr = −T 1

1 is
the radial pressure). The condition (4.101) is invariant under radial boosts,
making it possible to ascribe the source to vacuum matter [151]. Indeed,
it is a definitive property of vacuum that there is no comoving reference
frame: this kind of matter looks the same whatever is our motion in the
radial direction. At the regular centre in this case the matter equation of
state has necessarily the form of a cosmological constant [62], T ν

µ ∝ δν
µ .

It has also been shown [52] that regular BHs with r≡ ρ and any A(ρ)
satisfying the regular centre conditions may be obtained as magnetic
monopole solutions of general relativity coupled to gauge-invariant non-
linear electrodynamics with the Lagrangian L(F ), F :=FµνFµν (Fµν is
the electromagnetic field tensor): the arbitrariness in A(ρ) corresponds
to the freedom of choosing the function L(F ). Solutions with an electric
charge were shown [52] to be impossible whatever the choice of L(F ) if
L(F ) is the same in the whole space; this theorem, however, may be cir-
cumvented by assuming different forms of L(F ) near the centre and at
large r [94], i.e., by requiring a sort of phase transition(s) at some value(s)
of the radial coordinate.

Other examples of type 1 regular BHs have also been found and dis-
cussed, see, e.g., [16, 33, 200, 268, 291, 300, 368, 378] and references
therein. Among them, the BH models [16, 300, 378] are related to different
ideas of quantum gravity (the so-called UV-complete quantum gravity and
noncommutative geometry) realized in a semiclassical approximation.
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Type 2 regular BHs, with and without an electric charge, have been
obtained [58, 59, 97] in the framework of the Brans-Dicke scalar-tensor
theory (STT) with the coupling constant ω < −3/2, when the theory is of
anomalous, or phantom nature. Their existence requires fine tuning in the
form of specific relations between ω and the integration constants of the
corresponding exact solutions. It is of interest to note that these regular
cold Brans–Dicke BHs have singular counterparts in the Einstein frame, in
other words, in general relativity with a minimally coupled phantom scalar
field (see the anti-Fisher solution (4.41)) [57].

Type 3 regular BHs have been found [60, 104] as static, spherically
symmetric solutions to the effective equations [371] describing 4D gravity
in an RS2 type brane world. It has been shown that such regular solutions
are generic in a certain range of the integration constants [60] and that
many of them are stable, at least under some kinds of perturbations [2].
It should be stressed, however, that these 4D equations do not form a
closed set; to study the full 5D geometry of the bulk one should solve the
corresponding 5D equations, and there are only tentative results in this
direction [105].

Type 4 configurations have been obtained [66] as generic solutions to
the Einstein-scalar equations for the case of minimally coupled phantom
scalar fields with certain potentials. We would remind the reader that such
scalar fields have recently become popular in the cosmological context since
they are able to provide an equation of state with the pressure to density
ratio p/ε = w < −1. It is this kind of equation of state that is probably
required for the dark energy (DE) component of the material content of
the Universe to account for its accelerated expansion (see, e.g., the reviews
[120, 363] and references therein). Type 4 configurations, termed black
universes [61], are, in our view, of particular interest, and in what follows
we will discuss them in some more detail.

Let us note that the above list of structures is certainly incomplete:
thus, one could easily imagine regular configurations with a larger number
of horizons (e.g., draw in a proper place a smooth peak twice crossing the
ρ axis in any plot of A(ρ) in Fig. 4.4).

An interesting example of a structure somewhat similar to a black uni-
verse has recently appeared in studies on the basis of a semiclassical limit
of loop quantum gravity [299, 323], see Fig. 4.5. This “quantum-corrected
Schwarzschild black hole” also has a Kantowski–Sachs temporal infinity
instead of the singularity r = 0, but there are at least three important
points in which it differs from our black universes: (1) the minimum radius
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Figure 4.5 A regular BH structure obtained in [323]. I and I’ are R-regions like those
in the Schwarzschild space-time, II and III are Kantowski–Sachs regions (II’ and III
expanding, II and III’ contracting).

rmin is always reached in the T-region; (2) rmin is of the order of the Planck
length whereas in our models it is arbitrary, and (3) this configuration does
not become isotropic at late times like ours.

Other conclusions on a quantum-corrected Schwarzschild space-time
have been obtained in [42] (approaching at large times a Nariai-type metric
with a constant spherical radius) and [16, 300, 378] (acquiring a regular
centre). This diversity is one of manifestations of an as yet uncertain choice
of a correct theory of quantum gravity.

4.5.2 Black universes with a minimally coupled
scalar field

Consider the action for a self-gravitating phantom scalar field in general
relativity

S =
∫ √

g d4x[R − (∂φ)2 − 2V (φ)], (4.102)

where g = | det(gµν)| , (dφ)2 = gµν∂µφ∂νφ and V (φ) is an arbitrary poten-
tial. With the metric (4.99) and φ = φ(ρ), the scalar field equation and



136 Black Holes, Cosmology and Extra Dimensions

three independent combinations of the Einstein equations read

(Ar2φ′)′ =−r2dV/dφ, (4.103)

(A′r2)′ =−2r2V, (4.104)

2r′′/r=φ′2, (4.105)

A(r2)′′ − r2A′′ =2, (4.106)

where the prime denotes d/dρ . The scalar field equation (4.103) is a con-
sequence of Eqs. (4.104)–(4.106), which, given a potential V (φ), form a
determined set of equations for the unknowns r(ρ), A(ρ), φ(ρ). Eq. (4.106)
can be integrated, giving

B′ ≡ (A/r2)′ = 2(ρ0 − ρ)/r4, (4.107)

where B(ρ) = A/r2 and ρ0 is an integration constant.
As we know from Sec. 4.2.2, Eq. (4.107) severely restricts the possi-

ble dispositions of zeros of the function A(ρ) and hence the global causal
structure of space-time [53], leading to the Global Structure Theorem (see
Sec. 4.3), according to which the choice of possible types of global causal
structure is precisely the same as for the general Schwarzschild-de Sitter
solution with arbitrary mass and cosmological constant. This result equally
applies to normal and phantom fields since Eqs. (4.106) and (4.107) are
the same for them. It holds for any sign and shape of V (φ) and under
any assumptions on the asymptotics. BHs with scalar hair (respecting the
existing no-hair theorems) are not excluded. Examples of (singular) BHs
with both normal (e.g., [84, 108, 316]) and phantom [126] scalar hair are
known. However, BHs with a regular centre (type 1 according to the pre-
vious section) are ruled out for our system since their existence requires a
regular minimum of B(ρ).

As shown in Ref. [66], the system (4.103)–(4.106) has as many as
16 types of regular solutions with flat, de Sitter and AdS asymptotic
behaviours. Let us discuss asymptotically flat configurations, for which
A(ρ) → 1 and r(ρ) ≈ ρ as ρ → ∞ . Then, as ρ decreases from infinity,
the derivative r′ also decreases according to Eq. (4.105), the decrease rate
depending on the details of the system. If the decrease is slow enough,
r(ρ) will reach zero at some finite ρ . It can be a regular centre only if
horizons are absent (otherwise there would be a type 1 regular BH which
is ruled out here), and a particle-like solution is then obtained instead of a
BH one.
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Assuming the absence of singularities, other opportunities are r(ρ) →
r0 = const and r(ρ) → ∞ as ρ → −∞ . (Note that any kind of oscillatory
behaviour of r(ρ) is ruled out by (4.105) according to which r′′ ≥ 0.)

In the first case, according to (4.107),

A′ ≈ −2ρ/r2
0 → +∞, A ≈ −ρ2/r2

0 as ρ → −∞.

So this “r0 asymptotic” is located in a T-region. The radius r0 is related
to the limiting value of the potential: V → −1/r2

0 . Changing the nota-
tions −ρ → T and t → x (since ρ here becomes a temporal coordinate
and the former time t a spatial one), we can write the asymptotic form of
the resulting Kantowski–Sachs metric as

ds2 ≈ r2
0

T 2
dT 2 − T 2

r2
0

dx2 − r2
0dΩ2 as T → ∞. (4.108)

It is a highly anisotropic universe, exhibiting no expansion in the two angu-
lar directions and an exponential (in terms of the physical time τ ∼ log T )
expansion in the third direction x . From the viewpoint of an observer at
large positive ρ , this universe is located beyond the event horizon of a BH.

In the case r → ∞ , the most interesting opportunity is that r ∼ |ρ|
as ρ → −∞ . Assuming r ≈ −aρ , a = const > 0, we obtain from (4.107)
and (4.104):

A ≈ 1/a2 − Ca2ρ2, V ≈ 3Ca2, C = const. (4.109)

It is easy to verify that C = 0 leads to a Minkowski metric at large negative
ρ (though the time rate will be different from that at large positive ρ if
a �= 1), an anti-de Sitter metric if C < 0 and a de Sitter metric if C > 0.
In the cases C ≤ 0 horizons are absent since otherwise the function B(ρ)
would have a minimum at some finite ρ , which cannot happen due to
(4.107). Thus possible solutions with C ≤ 0 describe traversable wormholes
(see Chapter 5), and the details of their geometry depend on the particular
choice of V (φ).

Lastly, for C > 0 we obtain a de Sitter asymptotic behavior of the
solution, describing (since we are now in a T-region) isotropic expansion or
contraction. From the viewpoint of an external observer, located at large
positive ρ , it is a BH, but a possible BH explorer now has a chance to sur-
vive for a new life in an expanding, gradually isotropizing Kantowski–Sachs
universe. The specific BH profile and the isotropization regime after cross-
ing the horizon depend on the choice of V (φ).

Since, according to the Global Structure Theorem (see above), an
asymptotically flat configuration can have only one simple horizon, such
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a BH has a Schwarzschild-like causal structure, but the singularity r = 0
in the Carter-Penrose diagram is now replaced by the de Sitter infinity
r = ∞ .

A simple example may be obtained by putting [66]

r = (ρ2 + b2)1/2, b = const > 0, (4.110)

and using the inverse problem scheme. Eq. (4.107) gives

B(ρ) =
A(ρ)
r2(ρ)

=
c

b2
+

1
b2 + ρ2

+
ρ0

b3

(
bρ

b2 + ρ2
+ tan−1 ρ

b

)
, (4.111)

where c = const. Eqs. (4.105) and (4.104) then lead to expressions for φ(ρ)
and V (ρ):

φ=±
√

2 tan−1(ρ/b) + φ0, (4.112)

V =− c

b2

r2 + 2ρ2

r2
− ρ0

b3

(
3bρ

r2
+

r2 + 2ρ2

r2
tan−1 ρ

b

)
, (4.113)

with r = r(ρ) given by (4.110). In particular,

B(±∞) = −1
3
V (±∞) =

2bc± πρ0

2b3
. (4.114)

Choosing in (4.112), without loss of generality, the plus sign and φ0 = 0,

we obtain for V (φ) (ψ := φ/
√

2):

V (φ) = − c

b2
(3 − 2 cos2 ψ) − ρ0

b3
[3 sinψ cosψ + ψ(3 − 2 cos2 ψ)]. (4.115)

The solution behaviour is controlled by two integration constants: c

that moves the plot of B(ρ) up and down, and ρ0 showing the maximum
of B(ρ). Both r(ρ) and B(ρ) are even functions if ρ0 = 0, otherwise B(ρ)
loses this symmetry. Asymptotic flatness at ρ = +∞ implies 2bc = −πρ0

while the Schwarzschild mass, defined in the usual way, is m = ρ0/3.
Under this asymptotic flatness assumption, for ρ0 = m = 0 we obtain

the simplest symmetric configuration, the Ellis wormhole [155]: A ≡ 1,
V ≡ 0. For ρ0 < 0, according to (4.114), we obtain a wormhole with
m < 0 and an AdS metric at the far end, corresponding to the cosmological
constant V− < 0. For ρ0 > 0, when V− > 0, there is a regular BH
with m > 0 and a de Sitter asymptotic far beyond the horizon, precisely
corresponding to the above description of a black universe.

The horizon radius r(ρh) can be obtained by solving the transcendental
equation A(ρh) = 0, where A(ρ) is given by Eq. (4.111). It depends on the
parameters m and b = minr(ρ) and cannot be smaller than b , which plays
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the role of a scalar charge: ψ ≈ π/2 − b/ρ at large ρ . Since A(0) = 1 + c ,
the throat ρ = 0 is situated in the R-region if c > −1, i.e., if 3πm < 2b ,
precisely at the horizon if 3πm = 2b and in the T-region beyond the horizon
if 3πm > 2b . These relations between the constants m and b prompt (and
this is probably the case in more general situations) that if the BH mass
dominates over the scalar charge, there is no throat in the static region,
and for a distant observer the BH looks approximately the same as usual
in general relativity.

As follows from Eqs. (4.103) and (4.104), the potential V tends to a
constant and, moreover, dV/dφ → 0 at each end of the ρ range. It is a
general property of all classes of regular solutions indicated in [66]. More
precisely, a regular scalar field configuration requires a potential with at least
two zero-slope points (not necessarily extrema) at diff erent values of φ .

Suitable potentials are, e.g., V = V0 cos2(φ/φ0) and the Mexican hat
potential V = (λ/4)(φ2 − η2)2 where V0, φ0, λ, η are constants. A flat
infinity at ρ = +∞ certainly requires V+ = 0, while a de Sitter asymptotic
can correspond to a maximum of V since phantom fields tend to climb
up the slope of the potential rather than roll down, as is evident from
Eq. (4.103). Accordingly, Faraoni [160], considering spatially flat isotropic
phantom cosmologies, has shown that if V (φ) is bounded above by V0 =
const > 0, the de Sitter solution is a global attractor. Very probably this
conclusion extends to Kantowski–Sachs cosmologies after isotropization.

One more point may be stressed: the late-time de Sitter expansion
rate is entirely determined by the corresponding potential value V− > 0
(which, in our notation according to (4.102), coincides with the effective
cosmological constant Λ at late times) rather than by the details of the
solution such as the Schwarzschild mass defined at the flat asymptotic.

We can conclude that black universes are a generic kind of solutions to
the Einstein-scalar equations in the case of phantom scalars with proper
potentials.

Thus we have classified the possible geometries of static, spherically
symmetric, and asymptotically flat BHs and discussed in more detail a par-
ticular type, the black universes. Such hypothetical configurations combine
the properties of a wormhole (absence of a centre, a regular minimum of
the area function) and a black hole (a Killing horizon separating R- and
T-regions).

Quite naturally, such unusual objects require unusual matter for their
existence. We saw how they can be obtained using a phantom scalar field.
As shown in [61], such solutions also exist in much more general frameworks
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for the description of phantom matter, namely, STT of gravity and the so-
called k-essence. A conclusion is that a great number of models of phantom
matter produce such solutions.

The latter lead to the idea that our Universe could appear from
phantom-dominated collapse in another, “mother” universe and undergo
isotropization (e.g., due to particle creation) soon after crossing the hori-
zon. It is known that a Kantowski–Sachs nature of our Universe is
not excluded observationally [8] if its isotropization had happened early
enough, before the last scattering epoch (at redshifts z � 1000). One can
notice that we are thus facing one more mechanism of universes multipli-
cation, in addition to the well-known mechanism existing in the chaotic
inflation scenario.

But, as we saw in Sec. 4.1.1, there are arguments both pro et contra
phantom fields, and the latter seem somewhat stronger. It is reasonable
to try to avoid such fields in modelling real or hypothetic objects and
phenomena. In what follows, we describe two such attempts: one [63] is
devoted to obtaining a black universe model in a brane-world scenarios
of RS2 type; another [64] uses the notion of a “trapped ghost” [88], i.e.,
a scalar field which has phantom properties only in a restricted region of
space, a strong-field region, whereas far away from it all standard energy
conditions are observed. This can explain why ghosts, or phantoms, are not
observed under usual physical conditions but certainly does not remove the
basic shortcomings of phantom fields, see Sec. 4.1.1.

4.5.3 A black universe in a brane world

The brane world concept describes our world as a 4D surface (brane) sup-
porting all or almost all matter fields and embedded in a higher-dimensional
space-time (called the bulk). This concept traces back to the early 80s and
leads to a variety of consequences in cosmology, gravitational and particle
physics, see the reviews [119, 283, 311, 350]. In particular, brane worlds
turn out to be a natural framework for wormholes (see Sec. 5.3.3) since
there the modified Einstein equations [371] (4.116) contain a source term
Eν

µ of geometric origin which need not observe the usual energy conditions.
As we shall see now, it is this source term that can replace phantom fields
in constructing black-universe models.

The modified Einstein equations (4.116) used here correspond to the
so-called RS2 scenario: a single brane in a Z2 -symmetric 5-dimensional
bulk, with all fields except gravity confined to the brane. It generalizes the
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second Randall–Sundrum model comprising a single Minkowski brane in
an AdS bulk [337]. In other brane-world scenarios, the effective 4D Einstein
equations also contain terms similar to Eν

µ , e.g., on codimension-1 branes
without Z2 symmetry [431] and in Dvali–Gabadadze–Porrati brane worlds
[150] with different kinds of induced gravity terms [360]. Thus we can
anticipate that black-universe solutions similar to ours exist in such brane
worlds as well, though probably under some other conditions.

The gravitational field on the brane is described by the modified
Einstein equations [371]

Gν
µ = −Λ4δ

ν
µ − κ

2
4T ν

µ − κ
4
5Πν

µ − Eν
µ, (4.116)

where Gν
µ = Rν

µ− 1
2δν

µR is the 4D Einstein tensor, Λ4 is the 4D cosmological
constant expressed in terms of Λ5 and the brane tension λ :

Λ4 =
1
2

(
Λ5 +

1
6

κ
4
5λ2

)
; (4.117)

κ
2
4 = 8πGN = κ

4
5λ/(6π) = m−2

4 is the 4D gravitational constant; GN is
Newton’s constant of gravity, and m4 is the 4D Planck mass;

κ5 = m
−3/2
5 , m5 being the 5D Planck energy scale;

T ν
µ is the SET of matter trapped on the brane;

Πν
µ is a tensor quadratic in T ν

µ , obtained from matching the 5D metric
across the brane:

Πν
µ =

1
4
T α

µ T ν
α − 1

2
TT ν

µ − 1
8
δν
µ

(
TαβT αβ − 1

3
T 2

)
, (4.118)

where T = T α
α ; and

Eν
µ is the “electric” part of the 5D Weyl tensor projected onto the brane:

in proper 5D coordinates,

Eµν = δA
µ δC

ν
(5)CABCDnBnD, (4.119)

where A, B, . . . are 5D indices and nA is the unit normal to the brane. By
construction, Eν

µ is traceless, and Eµ
µ = 0.

Other characteristics of Eν
µ are unknown without specifying the 5D

metric, hence the set of equations (4.116) is not closed. In isotropic cos-
mology this leads to an additional arbitrary constant in the field equations,
connected with the density of “dark radiation”. For static, spherically sym-
metric systems to be discussed here, this freedom is expressed in a single
arbitrary function of the radial coordinate.
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Reasons for neglecting Πν
µ

Let us show that under quite reasonable conditions we can neglect the
tensor Πν

µ in (4.116).
We put Λ4 = 0, so that

|Λ5| =
1
6

κ
4
5λ2 = 6π2(κ4/κ5)4, (4.120)

and use the observational restriction on the bulk length scale ℓ which
follows from the recent short-range Newtonian gravity tests [279], show-
ing that Newton’s inverse-square law holds at length scales greater than
about 0.1mm. This means that if we live on an RS2-like brane, the bulk
length scale can be estimated as

ℓ = (6/|Λ5|)1/2 � 10−2 cm. (4.121)

Note that the 4D Planck scale in our notation is

m4 = κ
−1
4 = 8πGN ≈ 2.4·1018 GeV,

l4 = 1/m4 = κ4 ≈ 8·10−33 cm.

Combining (4.120) and (4.121), we obtain

m5/m4 = (πℓ/l4)−1/3 � 10−10, (4.122)

so that the 5D Planck energy scale in this scenario is at least about 108

GeV.
Now, we can assert that the term with Πν

µ is negligible in (4.116) as
compared with the T ν

µ term as long as

κ
4
5W 2 ≪ κ

2
4W,

where W characterizes the magnitude of T ν
µ , say, the absolute value of the

largest component of T ν
µ or

W ≪ m6
5/m2

4 = m4
4(m5/m4)6, (4.123)

where m4
4 ≈ 3.5 ·1073GeV4 ≈ 8.4 ·1090 g ·cm−3 is the Planck density while

the second factor is, according to the experimental bound (4.122), about
10−60 or larger. As a result, for the “density” W we have

W ≪ 1030 g ·cm−3 .

Recalling that the density of nuclear matter is about 1013 g ·cm−3 , it is
clear that this bound certainly holds for any thinkable matter.
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Brane gravity with a scalar field

Consider Eq. (4.116) for static, spherically symmetric configurations of a
normal scalar field with an arbitrary potential, neglecting the term Πν

µ .
So the scalar field Lagrangian has the form (4.47). The general static,
spherically symmetric 4D metric is again taken in the form

ds2 = A(u)dt2 − du2/A(u) − r2(u)dΩ2 (4.124)

with the quasiglobal coordinate u .
The scalar field SET is conservative, so the same is required for Eν

µ . If
we take it, for convenience, in the form

Eν
µ = diag(−P−Af, −P, P+Af/2, P+Af/2), (4.125)

where P and f are some functions of the radial coordinate u (so that, as
required, its trace is zero), then the conservation law ∇αEα

1 is written as

(Pr4)′ =
1
2
r6f(A/r2)′. (4.126)

Equations (4.116) may be written in the form

1
2r2

(A′r2)′ =−V − P − Af, (4.127)

2r′′/r=−φ′2 + f, (4.128)

A(r2)′′ − r2A′′ − 2=2P +
3
2
Af. (4.129)

The scalar field equation (Ar2φ′)′ = r2dV/dφ follows from (4.127)–(4.129)
combined with (4.126).

Thus, if V (φ) is specified, we have four independent equations
(4.126)–(4.129) for five unknown functions of u : φ, A, r, f and P . The
system becomes still more underdetermined if V (φ) is not specified: in this
case we can choose as many as two functions by hand to obtain a solution.

To have a regular positive minimum of r(u), required for a black uni-
verse, we must have r′′ > 0 at least in some range of u . By (4.128), this can
be achieved only with f > 0. However, if we try to put r′′ > 0 everywhere,
i.e., f > φ′2 , it inevitably leads to an oscillatory behavior of A(u), with
at least three horizons instead of the desired one [63]. A way of avoiding
such a behavior is to try a “more concentrated” distribution of f and P .

So we first try f(u) maximally peaked on a single sphere, for example,
u = 0, i.e., proportional to δ(u), the Dirac delta function. We now make
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the equations dimensionless by putting

x = u/b, Pr4 = Q(x)b2, fr4 = 2F (x)b2,

(4.130)
r = br̄(x), B = B̄(x)/b2,

where b = const > 0 specifies a length scale of the configuration, and to
justify our rejection of Πν

µ we assume b ≫ ℓ (see above).
Omitting the bars over r and B , we write Eqs. (4.126), (4.128) and

(4.129) in the form

Q′ = r2FB′, (4.131)

r′′

r
= −ψ′2 +

F

r4
, (4.132)

(r4B′)′ + 2 +
4Q

r2
+ 6BF = 0, (4.133)

where the prime denotes d/dx and ψ = φ/
√

2.
Then, we choose r(x) so that r′′ < 0 at all x �= 0:

r2(x) = (|x| + c)2 − 1, c = const > 1. (4.134)

This conforms to both flat and de Sitter asymptotics. Then, in Eq. (4.132),
the quantity r′′/r has a delta-like singularity at x = 0. To compensate it
and make ψ′ continuous at x = 0, we put

F (x) = 2cr2
0δ(x), r0 =

√
c2 − 1. (4.135)

We then have

ψ′ = ± 1
r2

=
1

(|x| + c)2 − 1
, (4.136)

whence, without loss of generality,

ψ =

{
h(c − x), x < 0,

2h(c) − h(c + x), x > 0,

h(x) :=
1
2

ln
∣∣∣∣x + 1
x − 1

∣∣∣∣ . (4.137)

Equation (4.131) gives for Q(x):

Q(x) = Q0 + 2cr4
0Bx0θ(x), (4.138)

where Q0 = const, Bx0 = B′(0) and θ(x) is Heaviside’s function equal to
zero at x < 0 and to unity at x > 0.
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It remains to solve Eq. (4.133) and to find V . We have solved it choosing
the initial conditions at large negative x in the Schwarzschild form

A(x) = r2(x)B(x) = 1 − 2m

|x| , m = const. (4.139)

The solution [63] is analytical but rather bulky and will not be presented
here. It really describes a black universe, but the delta-like distribution of
the effective exotic matter, characterized by f(u), causes an undesirable
discontinuity of B′ at x = 0.

Evidently the qualitative behavior of the model will not change if we
replace the delta-like distribution of f(x) with a smooth one but sufficiently
peaked near x = 0. We will present an example of such a solution. Namely,
let us preserve the notations (4.130), so that the field equations have the
form (4.131)–(4.133); however, instead of (4.134), we choose the following
function r(x):

r2(x) = (|x| + 1)2 − 1, |x| > d, (4.140)

r2(x) = ax2 + s =
d + 1

d
x2 + d, |x| < d, (4.141)

where d = const > 0 is sufficiently small and the constants in (4.141) are
chosen to make r and r′ continuous at x = ±d , as shown in Fig. 4.6.

Let us take f(x) ≡ 0 at |x| > d and, for |x| < d , as in (4.71),
f = 2C/r6 . From (4.131) we find Q(x) as follows:

Q(x) =




Q0, x < −d;

Q0 + [B(x) − B(−d)]C, |x| ≤ d;

Q0 + [B(d) − B(−d)]C, x > d,

(4.142)

Figure 4.6 The area function r(x) chosen with a delta-like (a) and smooth (b)
function f(r) .
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where Q0 is an integration constant. The constant C (more precisely,
its dimensionless counterpart C̄ = C/b4 ) is determined from Eq. (4.132),
where we require continuity of ψ′ at x = ±d . Eq. (4.133) for the function
B(x) = A/r2 is then solved analytically for |x| > d but only numerically
for |x| < d .

Integrating and maintaining continuity of B and B′ at x = ±d , we
obtain B(x) shown in Fig. 4.7. Figure 4.8 shows the corresponding poten-
tial V (x). Clearly these are black universe models, where the asymptotic
behavior of V (x) approaching a positive constant as x → ∞ corresponds
to de Sitter expansion with a positive cosmological constant.

Thus we have built a family of black universe solutions to the modi-
fied Einstein equations valid in an RS2 type brane world without explic-
itly introducing any phantom matter. Instead of exotic matter in the field
equations we have used the “tidal” term of geometric origin, which has
no reason to respect the energy conditions known for physically plausible
matter fields.

The presently obtained models do not pretend to be quite realistic; they
simply show the possibility of such a scenario in principle. As any solution
to the effective 4D equations describing gravity on the brane, they certainly

Figure 4.7 The function B(x) obtained from a smoothed but peaked f(u) .
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Figure 4.8 The potential V (x) obtained from a smoothed but peaked f(u) .

need extension to the bulk, whose finding is quite a challenging problem,
although an extension always exists due to the known embedding theorems.
Another problem to be solved is that of stability of such solutions.

4.5.4 A black universe with a trapped ghost

Let us now discuss another opportunity [64, 88] of obtaining black universe
(and wormhole) configurations in the framework of general relativity, with
a kind of matter which is phantom only in a restricted strong-field region
of space, whereas outside it the standard energy conditions are observed.
As an example of such matter, we consider static, spherically symmetric
configurations of a minimally coupled scalar field with the Lagrangian

Ls =
1
2
h(φ)gµν∂µφ∂νφ − V (φ), (4.143)

where h(φ) and V (φ) are arbitrary functions. If h(φ) has a variable sign,
it cannot be absorbed by redefinition of φ in its whole range. Cases of
interest are those where h > 0 (that is, the scalar field is canonical, with
positive kinetic energy) in a weak field region and where h < 0 (a phantom,
or ghost scalar field) in some restricted region e.g., a wormhole throat. In
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this sense it can be said that the ghost is trapped. A possible transition
between h > 0 and h < 0 in cosmology was considered in [260].

Taking the metric in the form (4.124), let us specify which kinds of
functions r(u) and A(u) are required for obtaining a black universe.

1. Regularity in the whole range u ∈ R .
2. Asymptotic flatness as u → +∞ (without loss of generality), i.e.,

r(u) ≈ u , A(u) → 1;
3. A de Sitter asymptotic as u → −∞ , i.e., a T-region (A < 0) where

r(u) ∼ |u| , −A(u) ∼ u2 ;
4. A single simple horizon (i.e., a simple zero of A(u)) at finite u . It is an

event horizon as seen from the static side, and it is the starting point
of the cosmological evolution as seen from the T-region.

The existence of two asymptotic regions r ∼ |u| as u → ±∞ requires
at least one regular minimum of r(u) at some u = u0 , at which

r = r0 > 0, r′ = 0, r′′ > 0, (4.144)

where the prime stands for d/du . (In special cases where r′′ = 0 at the
minimum, we inevitably have r′′ > 0 in its neighborhood.)

The necessity of violating the weak and null energy conditions at such
minima follows from the Einstein equations. Indeed, one of them reads

2Ar′′/r = −(T t
t − T u

u ), (4.145)

where T ν
µ are components of the stress-energy tensor (SET).

In a R-region (A > 0), the condition r′′ > 0 implies T t
t − T u

u < 0; in
the usual notations T t

t = ρ (density) and −T u
u = pr (radial pressure) it

is rewritten as ρ + pr < 0, which manifests violation of the weak and null
energy conditions. It is the simplest proof of this well-known violation near
a static, spherically symmetric wormhole throat [302].

However, a minimum of r(u) can occur in a T-region, and it is then
not a throat but a bounce in the evolution of one of the Kantowski–Sachs
scale factors (the other scale factor is [−A(u)]1/2 ). Since in a T-region t is
a spatial coordinate and u temporal, the meaning of the SET components
is −T t

t = pt (pressure in the t direction) and T u
u = ρ ; nevertheless, the

condition r′′ > 0 applied to (4.145) again leads to ρ + pt < 0, violating
the energy conditions. In the intermediate case where a minimum of r(u)
coincides with a horizon (A = 0), the condition r′′ > 0 holds in its vicinity,
along with all its consequences. Thus the energy conditions are violated near
a minimum of r in all cases.
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Let us now turn to the scalar field φ(u) with the Lagrangian (4.143).
In a space-time with the metric (3.75) it has the SET

T ν
µ =

1
2
h(u)A(u)φ′(u)2 diag(1,−1, 1, 1) + δν

µV (u). (4.146)

The kinetic energy density is positive if h(φ) > 0 and negative if h(φ) < 0,
so the solutions sought for must be obtained with h > 0 at large values
of the spherical radius r(u) and h < 0 at smaller radii r . It has been
shown [88] that this goal cannot be achieved for a massless field (V (φ) ≡ 0).

Thus we seek black universe configurations with a nonzero poten-
tial V (φ). The Einstein-scalar equations can be written as

(Ar2hφ′)′ − 1
2
Ar2h′φ′ =r2dV/dφ, (4.147)

(A′r2)′ =−2r2V, (4.148)

2r′′/r=−h(φ)φ′2, (4.149)

A(r2)′′ − r2A′′ =2, (4.150)

−1 + A′rr′ + Ar′2 =r2

(
1
2
hAφ′2 − V

)
. (4.151)

Eq. (4.147) follows from (4.148)–(4.150) which, given the potential V (φ)
and the kinetic function h(φ), form a determined set of equations for
the unknowns r(u), A(u), φ(u). Eq. (4.151) (the

(
1
1

)
component of the

Einstein equations), free from second-order derivatives, is a first inte-
gral of (4.147)–(4.150) and can be obtained from (4.148)–(4.150) by
excluding second-order derivatives. Moreover, Eq. (4.150) can be integrated
giving

B′(u) ≡ (A/r2)′ = 2(3m − u)/r4, (4.152)

where B(u) ≡ A/r2 and m is an integration constant equal to the
Schwarzschild mass if the metric (4.124) is asymptotically flat as u → ∞
(r ≈ u , A = 1 − 2m/u + o(1/u)). If there is a flat asymptotic as
u → −∞ , the Schwarzschild mass there is equal to −m (r ≈ |u| ,
A = 1 + 2m/|u|+ o(1/u).

One more observation is that if the system contains a horizon and
r(u) ∼ |u| at large |u| in the T-region, then B ≡ A/r2 tends to a finite
limit, which means that there is a de Sitter asymptotic. Indeed, under
these conditions the integral of (4.152) evidently converges at large |u| ,
so B tends to a constant. Furthermore, Eq. (4.150) can be rewritten as
r4B′′ + 4r3r′B′ = −2, hence B′′ < 0 where B′ = 0, so B(u) cannot have
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a minimum (and it is this circumstance that restricts the possible kinds
of global causal structure of any scalar-vacuum solutions [53]). This means
that B(u) can only tend to a negative constant in a T-region.

Thus, in the Einstein-scalar system (4.147)–(4.151), any solution with
a horizon and r ∼ |u| as u → ±∞ is asymptotically de Sitter in the
T-region. It describes a black universe if it is, in addition, asymptotically
flat in the R-region.

As before, to find examples of solutions possessing particular properties,
we employ the inverse problem method, choosing some of the functions
r(u), A(u) or φ(u) and then reconstructing the form of V (φ) and/or h(φ).
We will first choose a function r(u) that can provide a black universe
solution. Then A(u) is found from (4.152) and V (u) from (4.148). The
function φ(u) is found from (4.149) provided h(φ) is known; however,
using the scalar field parametrization freedom, we can, vice versa, choose a
monotonic function φ(u) (which will yield an unambiguous function V (φ))
and then find h(u) from Eq. (4.149).

A simple example of the function r(u) satisfying the requirements 1–3
is [88] (see Fig. 4.9):

r(u) = a
(x2 + n)√
x2 + n2

, n = const > 2. (4.153)

where x = u/a , and a > 0 is an arbitrary constant (the minimum radius).

Figure 4.9 Plots of r(u)/a given by Eq. (4.153) with n = 3, 5, 10 (solid, dashed, and
dotted lines, respectively).
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Integrating Eq. (4.152) under the assumption m > 0, we find (see
Fig. 4.10)

B(u) =
3x4 + 3x2n(n + 1) + n2(n2 + n + 1)

3a2(x2 + n)3

+
mx

8a2n(x2 + n)3

[
3x4(5n2 + 2n + 1) + 8nx2(5n2 + 2n − 1)

+ 3n2(11n2 − 2n− 1)
]
− 3m

8a2n3/2
(5n2+2n+1) cot−1

(
x√
n

)
.

(4.154)

The emerging integration constant is excluded by the requirement B → 0
as u → ∞ , providing asymptotic flatness. Examples of the behavior of
B(u) for m = 0.2a and some values of the parameter n are presented in
Fig. 4.10.

Substituting the expressions (4.153) and (4.154) into (4.148), taking
into account that A(u) = B/r2 , we obtain the potential V as a function
of u or x = u/a . This expression is bulky and will not be presented here.

Figure 4.10 Plots of B(u) given by Eq. (4.154) for m = 0.2a , n = 3, 5, 10 (solid,
dashed, and dotted lines, respectively).
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To construct V as an unambiguous function of φ and to find h(φ),
it makes sense to choose a monotonic function φ(u). It is convenient to
assume

φ(u) =
2φ0

π
arctan

x

n
, φ0 =

πa

2

√
2(n − 2)

n
, (4.155)

and φ has a finite range: φ ∈ (−φ0, φ0), which is common to kink con-
figurations. Thus we have x = u/a = n tan(πφ/2φ0), whose substitution
into the expression for V (u) gives V (φ) defined in this finite range. The
function V (φ) can be extended to the whole real axis, φ ∈ R , by suppos-
ing V (φ) ≡ 0 at φ ≥ φ0 and V (φ) = V (−φ0) > 0 at φ < −φ0 . Plots of
V (φ) are presented in Fig. 4.11 for the same values of the parameters as
in Fig. 4.10.

The expression for h(φ) is found from (4.149) as follows:

h(φ) =
(n − 2)x2 + n2(1 − 2n)

a2(n − 2)(x2 + n)
, (4.156)

where x = n tan(πφ/2φ0). The function h(φ) given by Eq. (4.156) is also
defined in the interval (−φ0, φ0) and can be extended to R by supposing
h(φ) ≡ 1 at |φ| ≥ φ0 . The extended kinetic coupling function h(φ) is

Figure 4.11 Plots of V (u) for m = 0.2a and n = 3, 5, 10 (solid, dashed, and dotted
lines, respectively).



Black holes under more general conditions 153

Figure 4.12 Plots of h(φ) given by Eq. 4.156 with n = 3, 5, 10 (solid, dashed, and
dotted lines, respectively).

plotted in Fig. 4.12. Evidently, the null energy condition is violated only
where h(φ) < 0.

Thus we have shown [64, 88] that a minimally coupled scalar field may
change its nature from canonical to ghost in a smooth way without creating
any space-time singularities. This feature, in particular, allows for construc-
tion of wormhole models (trapped-ghost wormholes [88]) where the ghost
is present in some restricted region around the throat (of arbitrary size)
whereas in the weak-field region far from it the scalar has usual canonical
properties. The same model allows for construction of black universes.

It has also been found that, in the Einstein-scalar field system under
study, a static, spherically symmetric configuration is inevitably a black
universe if it is asymptotically flat, has a horizon, and the function r(u)
grows linearly as u → ±∞ . However, all this can only happen if the scalar
is of ghost nature at least in some part of space.
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Chapter 5

Wormholes

5.1 The notion of a wormhole

In this chapter we will discuss one more type of configurations involving
a significant space-time curvature, the wormholes. Above all, let us fix the
terminology.

The term “wormhole” was introduced by J.A. Wheeler [422] in 1955.
Wormholes are generally understood as comparatively narrow “bridges”,
or “tunnels” between comparatively large or infinitely extended space-time
regions. Needless to say such an opportunity is widely used by authors of
science fiction whose heroes easily and without much emotion leave behind
them interstellar or thousands of years.

The possible appearance of a wormhole geometry is illustrated
by Fig. 5.1, which presents two-dimensional images instead of three-
dimensional ones. Each of the surfaces depicted contains a part having
the shape of a thin tube that joins either flat “universes” (a) or spherical
ones (b) (a dumbbell-like configuration), or a flat one with a spherical one
(c) (a hanging-drop configuration), or distant regions of the same “uni-
verse” (d and e).

We see that the notion of a wormhole has in essence an intuitive nature
since it rests on such words as “comparatively narrow” etc., but it con-
tains an element that admits a rigorous definition. It is a throat, defined
as a two-dimensional surface of minimal area, which does not admit a
further contraction. In Fig. 5.1, the throats are one-dimensional circles of
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Figure 5.1 Diverse wormhole configurations, two-dimensional analogues.

minimum radius, which conditionally depict two-dimensional spheres of
minimum area. It is obvious, however, that in general a wormhole need not
be spherically symmetric, and its throat is not necessarily a sphere.

One should also add that all these shapes correspond to spatial sections
of the four-dimensional space-time and, as usual, these spatial sections can
not only evolve with time but can in general also depend on the choice
of reference frame (recall the discussion of relativity of the spatial section
topology in Sec. 2.2).

In the case of static, spherically symmetric space-times described by the
general metric (3.1), it is not difficult to formulate the common require-
ments to be imposed on the metric coefficients which, if satisfied, enable
one to say that this metric describes a wormhole geometry.

The condition that there are two large regions separated by a throat
means that the function r ≡ eβ(u), which is equal to the curvature radius
of the coordinate sphere u = const, t = const at each value of u , should
have a regular minimum r = rmin > 0 at some value of u and assume
values r ≫ rmin far from this minimum.



Wormholes 157

Another condition is that the wormhole must be freely traversable in
both directions. So the existence of a proper three-geometry is insufficient:
one must also require the absence of horizons. It is a fundamental dis-
tinction from black holes. For the metric (3.1), this requirement reads
gtt ≡ e2γ > 0 in the whole range of the radial coordinate.

The simplest example of a wormhole metric is

ds2 = dt2 − du2 − (u2 + a2)dΩ2, a > 0, (5.1)

it differs from the Minkowski flat-space metric only by the emergence of
the term a2 . But this drastically changes the geometry: at a = 0 we
have the Minkowski space, and the coordinate u changes from zero to
infinity, u =0 is a regular centre, and an extension to negative values of u

is meaningless. However, if a > 0, the value u = 0 is a regular minimum of
the function r(u) =

√
u2 + a2 , i.e., a throat, nothing prevents consideration

of u < 0, and u → −∞ is again a spatial infinity of the same kind as that at
u → +∞ . The 3-geometry corresponds to Fig. 5.1 and is time-independent.

To illustrate the importance of the second condition, let us make a small
historical digression.

Right after the advent of general relativity, the researchers began to
reflect on what could be expected if space-time is not simply curved but is
strongly curved. As early as in 1916, the birth year of GR, Schwarzschild
found his famous solution, Eq. (3.20), which describes, in modern terms,
the simplest black hole. Less well known is the work of Ludwig Flamm [163]
also dated 1916, where he noticed that the Schwarzschild solution describes
something like a bridge or shortcut between two worlds or two parts of the
same world, i.e., just what modern authors call a wormhole.

Let us explain this observation by passing on from the curvature coor-
dinates in the metric (3.20) to the isotropic coordinates (3.2) by the trans-
formation

r = u

(
1 +

m

2u

)2

. (5.2)

As a result, the Schwarzschild metric acquires the form

ds2 =
(2 − m/u)2

(2 + m/u)2
dt2 −

(
1 +

m

2u

)4

(du2 + u2dΩ2), (5.3)

where the coordinate u ≈ r as r → ∞ and has the value u = m/2 at
the horizon r = 2m . Here, it is convenient to introduce the dimensionless
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variable y = 2u/m . Then

ds2 =
(y − 1)2

(y + 1)2
dt2 − m2

4
(y + 1)4

y4
(dy2 + y2dΩ2), (5.4)

and the horizon corresponds to y = 1. The R-region r > 2m is now
described as the range y > 1. It is, however, easy to verify that the met-
ric (5.4) does not change at an inversion, y �→ 1/y . It means that the
range 0 < y < 1 describes one more R-region, with quite the same geom-
etry as the region y > 1, and the value y = 0 corresponds to another
spatial infinity quite similar to the one at (y = ∞); moreover, the value
y = 1, where the coordinate spheres have a minimum area equal to 16πm2 ,
describes a throat in the spatial section of the 4-manifold under study. If
the geometry were restricted to the spatial section only, we would have all
reasons to say that there is a wormhole. However, everything changes due to
gtt = 0 at y = 1: as we know from the previous chapters, it is a horizon,
whose existence means that the 4-geometry is inextendible in the static
reference frame. For a more complete description one can introduce, e.g.,
the Kruskal coordinates, in which the complete geometry of the Schwarz-
schild space-time can be described. The resulting complete picture implies
that the metric (5.4) describes only the two R-regions represented by the
left and right quadrants in the Kruskal diagram. (Compare: the metric
(3.20) at r > 2m describes only one of the R-regions.) The sphere y = 1,
which seems to be a boundary between the two R-regions when we look at
Eq. (5.4), turns out to be a pair of different surfaces in the full description,
and there is a whole T-region between them. The paradox is explained, in
particular, by the fact that the horizon r = 2m (or y = 1) does not belong
to any of the R-regions, hence the unity of their description by the metric
(5.4) is only seeming, and the coordinate regions y > 1 and y < 1, corre-
sponding to different R-regions of the Schwarzschild space-time, should be
considered separately.

Metrics like (5.4), containing horizons, are sometimes said to describe
“nontraversable wormholes”. In our view, in such cases, to avoid confu-
sion, one should speak of quite a different class of relativistic objects,
namely, black holes. Even more than that, as we have seen while build-
ing the Carter-Penrose diagrams, all black holes with simple horizons (and
any other horizons of odd order) contain quite the same pairs of R-regions
as the Schwarzschild black hole, and all of them could be called “non-
traversable wormholes” on the same grounds (more precisely, on the same
level of uselessness).
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It should be noted, though, that some families of solutions to the grav-
itational field equations can contain metrics describing objects of both
classes at different values of the parameters, see, e.g., [60].

5.2 A wormhole as a time machine

The works on wormhole physics are certainly only theoretical; others are
impossible right now. They can be divided into two trends, supplementing
each other. In one of them, the researchers assume the existence of worm-
holes from the very beginning and try to infer what can come out of that.
An important part of this trend is what can be called wormhole astro-
physics: assuming that there are wormholes of astrophysically relevant size,
it is reasonable to seek their observational signatures. In the other trend,
the researchers (quite frequently, the same authors) try to find out under
which conditions, natural or artificial, wormholes can emerge, and what
will be their properties and peculiarities. Among such works are certainly
numerous attempts to obtain particular wormhole solutions to the gravi-
tational field equations.

Let us here dwell upon some questions belonging to the first trend,
leaving aside for a while the question of “what the wormholes can be made
of”. We will discuss the (probably) most interesting version of a wormhole
assuming that it connects different regions of the same space-time. To begin
with, let us suppose that there is a stable wormhole somewhere in space,
and that the space-time outside it is flat or almost flat, where, as usual,
the laws of special relativity hold. Then, simply from the symmetries of
Minkowski space it is clear that a wormhole can not only be an intergalactic
tunnel but also an accelerator and even a time machine.

Indeed, the wormhole has two flat asymptotic regions. In each of them
one can choose a reference frame (RF) (for simplicity, an inertial one)
in which the wormhole mouth is at rest. But it follows from nowhere
that it is the same RF for both mouths! And even if it is the same RF,
and in the regions where the mouths are located, the clocks are synchro-
nized in some reasonable way, it follows from nowhere that after passing
through the wormhole the traveller will get into the same epoch by this
common time, since the Minkowski metric is invariant under time trans-
lations. In other words, even if we know where a given wormhole (say,
found in space by chance) leads, we in general cannot know “to when”
it leads.
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The invariance of the Minkowski metric under boosts, i.e.,
transformations from one inertial RF to another, leads to uncertainty in
the velocity of the mouth of exit with respect to the RF of the mouth of
entry. Thus, a traveller which has passed through the wormhole can find
himself in motion with an arbitrary relativistic velocity with respect to the
initial RF and (which is more important if the mouths are far from each
other) with respect to the ambient bodies.

Thus the appearance, role and function of a wormhole depends on the
positions and motion of its mouths, not simply in space but in space-time.

Another statement of the problem is also of interest. Suppose we are
able to create a wormhole here and now, with quite macroscopic parame-
ters, so that one can pass through a wormhole from one mouth to the other
for a few seconds, and the mouths themselves are placed relatively close to
each other somewhere in circumterrestrial space. Is it possible to convert
such a wormhole into a time machine? It is shown by Morris, Thorne and
Yurtsever [302] how to do that: the idea is to leave one of the mouths, to be
denoted A, at rest, while the other, B (which should in principle behave as
an ordinary massive body) should be accelerated to velocities comparable
with the speed of light, then returned back and stopped near A. Then, due
to the familiar special-relativistic effect, the Lorentzian time slowing-down
on the moving body as compared with the one at rest, the time elapsed at
B is smaller than at A. The particular difference depends on the velocity
reached and the travel duration. It is actually just the well-known twin
paradox: the twin returning from an interstellar trip at relativistic speed
turns out to be younger than his brother sitting at home. If the difference
between the mouths is, say, six months, then, being located near mouth A
in January 2012, we would be able to see the green leaves of summer 2011
through the wormhole — and will really return there if we pass it through!
If we again approach mouth A (as we agreed, it is not too far from B) and
passing through the wormhole once more, we would get into last year’s
snow of January 2011. And so on, until we get tired . . . Naturally, under
the assumption that the wormhole is stable or we ourselves are able to
maintain it in operation.

Let us quote the beginning of the article [302], which looks like a slogan
of wormhole physics: “Normally theoretical physicists ask: ‘What are the
laws of physics?’ and/or ‘What do these laws predict about our Universe?’
In this letter we ask, instead, ‘What constraints do the laws of physics place
on the activities of an arbitrarily advanced civilization?’ This will lead to
some intriguing queries about the laws themselves.”
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Soon after the works of Thorne’s group (1988) appeared the paper
by Frolov and Novikov [167] who showed that even without special effort
a wormhole in an external gravitational field, as time passes, inevitably
turns into a time machine. Indeed, suppose that one of the mouths (A)
of a stable wormhole is located near the surface of a neutron star and
the other (B) far from it. Then the time rate is slower near A and
faster near B, this difference is stored, and eventually there should appear
closed timelike trajectories threading the wormhole. The time machine is
ready.

The possible existence of wormholes would substantially affect black
hole physics as well, see a discussion in the same paper [167]. Thus, nothing
prevents us from assuming that mouth A of a wormhole is located outside
a black hole while the other, B, is inside the horizon. Such a wormhole
may be used to rescue an astronaut who fell into the black hole as well as
for exploring the inner properties of the hole itself. Strictly speaking, the
black hole horizon is then not an event horizon any more.

We have seen that if there is a stable wormhole at our disposal, we can
rather easily obtain a time machine. The above reasoning makes it possible
to conclude that the laws of physics (among which we include the notion of
gravity as space-time curvature), in principle, do not forbid the existence of
wormholes and consequently closed timelike and null trajectories that vio-
late the causality principle. As a result, in papers on theoretical physics one
can meet discussions of paradoxes whose place could be only expected in
science fiction. What about meeting another (third, tenth) copy of oneself?
What about the well-known “grandmother paradox” — the opportunity to
penetrate into the past and kill one’s grandmother in her childhood (or,
in a milder version, simply to marry the young grandmother, then a girl,
instead of the young grandfather)? Then the hero himself — where could
he come from?

One of the well-known ways to surmount such and other paradoxes
involves the hypothesis of parallel worlds, also called the Multiverse
hypothesis, which is closely related to Everett’s many-worlds interpreta-
tion of quantum theory [158]. Quantum processes are known to be of prob-
abilistic nature, and any of them can have a few outcomes. By Everett,
all possible outcomes are realized, but each of them in its own universe.
Thus any quantum event (including, by the way, all particle interactions
in any part of the Universe) increases the number of parallel worlds. Being
so exotic and evidently cumbersome, such an interpretation is free of log-
ical contradictions and rather naturally explains not only the quantum
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paradoxes but also the above-mentioned “grandmother paradox”: getting
to the past, the traveller actually creates a new universe, where a girl
looking like his grandmother in youth can exist, but she is not at all the
mother of his mother. . .

Another possible solution (more economical but not so easy to under-
stand) was suggested by Novikov as the “self-consistency principle” [314],
according to which “something can be realized locally only if it is globally
self-consistent”. It means [192] that events in a time loop affect each other
along a closed cycle, and not only the past determines the future, but the
future takes part in forming the past, which, whatever strange it can seem,
does not lead to a violation of the causality principle.

There is, though, the radically conservative viewpoint that nature does
not admit and cannot admit time loops — something like a chronological
censorship. As any censorship, it cannot cause sympathy with the authors
and many of their compatriots. But to put it seriously, this hypothesis, like
any other, needs proof on the basis of the first principles. (As is easy to
understand, any hypothesis claiming that something cannot exist can be
only rejected by experiment but not proved.)

5.3 Wormholes as solutions to gravitational

field equations

The works belonging to the second trend are more numerous and are also of
much interest: among them there are searches for specific wormhole models,
discussions of their properties and peculiarities that determine whether or
not they might be realized, what could be done with them and how to use
them.

Above all, if wormholes or, wider, space-times containing time loops are
not forbidden completely, they should be quite rare in Nature, otherwise
they would be observed long ago. Thus if a theory pretends to describe
Nature, it should contain a mechanism forbidding or at least strongly pre-
venting the formation of macroscopic wormholes.

No doubt, GR pretends to describe reality. However, there are many
solutions describing wormholes and other spaces with closed timelike loops.
But all of them are as a rule considered to be unrealistic or, in a sense, not
dangerous. Thus, a very interesting solution to the Einstein equations has
been found by Gödel [174]: it is a homogeneous stationary universe, rotating
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as a whole. It contains closed timelike trajectories, but a calculation shows
that the smallest total duration of such a loop is much larger that the age
of our Universe.

Important constraints follow from the very structure of the Einstein
equations. The idea is that if we substitute a metric, possessing some prop-
erties of interest, to the left-hand side of the equations, it becomes possible
to find explicit constraints on the possible form of the right-hand side (that
is, the SET) compatible with these properties. Let us look how it is done
using, as a simple but important example, static, spherically symmetric
space-times.

5.3.1 Spherically symmetric wormholes.
General properties

Let us, as before, begin with the general form (3.1) of a static, spherically
symmetric metric

ds2 = e2γdt2 − e2αdu2 − e2βdΩ2, (5.5)

and consider some general properties of static, spherically symmetric worm-
holes, assuming the SET in the general form compatible with this kind of
symmetry, viz.,

T ν
µ = diag(ρ, −pr, −p⊥, −p⊥), (5.6)

where ρ, pr, p⊥ are the density, radial pressure and transversal pressure
respectively, which in general can be arbitrary functions of the radial coor-
dinate u .

We will make use of two different radial coordinates, namely, the
quasiglobal and curvature coordinates.

With the quasiglobal coordinate17 u (α + γ = 0), the metric has the
form (3.30),

ds2 = A(u)dt2 − du2

A(u)
− r2(u)dΩ2, (5.7)

and the conditions on a wormhole throat u = uth , expressing the absence
of a horizon and a finite regular minimum of r , have the form A > 0,

17In this section we denote this coordinate by the letter u instead of ρ since the letter
ρ denotes density.
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r > 0, r′ = 0, r′′ > 0. Then two of the Einstein equations (see (3.5),
(3.6))

R0
0 − R1

1 =2A
r′′

r
= −κ(ρ + pr), (5.8)

G1
1 =

1
r2

[−1 + A′rr′ + Ar′2] = κpr, (5.9)

lead to the following conditions on the throat:

ρ + pr < 0, pr < 0. (5.10)

Notice that there is no restriction on the sign of the density. The condi-
tions (5.10) are of local nature and do not depend on any assumptions
on the space-time or matter properties far from the throat. It is clear that
both inequalities are quite unusual for macroscopic matter, though for field
matter the second condition (5.10) can be easily satisfied, e.g., for a radial
electric field we have, according to (3.14), pr = −ρ .

It is easy to verify that the first inequality (5.10) violates one of the
most important conditions, satisfied by the majority of known kinds of
matter. It is the Null Energy Condition (NEC). In the general case, this
condition is expressed by the inequality

Tµνξµξν ≥ 0, ∀ ξµ : ξνξµ = 0. (5.11)

In the metric (5.5), for the null vector ξµ = ( e−γ , e−α, 0, 0), this condi-
tion takes the form

T 0
0 − T 1

1 ≥ 0. (5.12)

For the tensor (5.6) it reads ρ + pr ≥ 0, contrary to (5.10). Thus the
wormhole existence requires NEC violation.

Matter that violates the NEC is commonly called exotic. The conclusion
that it is this kind of matter that is necessary for wormhole existence is not
restricted to cases that are static or spherically symmetric and has quite a
general nature: it holds true for throats of any spatial configuration, both
stationary and time-dependent [204, 205] (though for the latter even the
definition of a throat is rather complicated [205]).

But let us return to static spherical symmetry and now write the metric
in terms of the curvature coordinates:

ds2 = e2γ(r)dt2 − e2α(r)dr2 − r2dΩ2. (5.13)

Identifying the line elements (5.7) and (5.13), it is not hard to verify that on
a throat, if any, the following conditions hold: |γ| < ∞ , e−2α ≡ B(r) = 0,
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dB/dr 
= 0. One of the Einstein equations (3.5) has the form

−G0
0 =

1
r2

(1 − e−2α) +
2α′ e−2α

r
= κρ (5.14)

and can be integrated: putting e−2α = 1 − 2m(r)/r , we bring it to the
form 2m′(r) = κρr2 and consequently,

m(r) = 4πG

∫ r

r0

ρr2dr, (5.15)

where r0 is an integration constant. The function m(r) is called the mass
function; in the case of an asymptotically flat configuration with a regular
centre it really gives the Schwarzschild mass if one integrates from zero to
large radii where the metric is approximately Schwarzschild. However, the
integral (5.15) is quite general for the metric (5.13).

In the case of an asymptotically flat wormhole, integrating in (5.15)
from the throat r = rth to large values of the radius, we obtain

rth = 2m − κ

∫ ∞

rth

ρr2dr, (5.16)

since on the throat B(r) ≡ 1− 2m(r)/r = 0. Recalling that 2m(∞) = 2m

is the Schwarzschild radius corresponding to the mass m , we come to the
conclusion that the radius of a wormhole throat is larger than the Schwarz-
schild radius corresponding to the wormhole mass at its flat asymptotic
only if the density of matter supporting the wormhole is negative; the throat
radius is smaller than the Schwarzschild one if the density is positive.

It is really an important constraint: indeed, if we wish to have a worm-
hole with a throat of a few meters or kilometers rather than something of
planetary or stellar size, we must take into account that meters and kilome-
ters are just the scale of planetary and stellar Schwarzschild radii (for the
Earth it is of the order of 1 cm, for the Sun about 3 km). To avoid huge
gravity near the wormhole mouth and/or throat corresponding to such a
mass, we must invoke not simply exotic matter, but matter with negative
density.

5.3.1.1 Wormholes with scalar fields

We will now consider a few examples of exact wormhole solutions to the
gravitational field equations.
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Wormholes in the anti-Fisher solution

The simplest example is given by the anti-Fisher solution described by
Eq. (4.30) with ε = −1: in the case k < 0 it describes a wormhole with
two spatial asymptotics at u = 0 and u = π/|k| . The metric has the form

ds2 = e−2hudt2 − k2 e2hu

sin2(ku)

[
k2 du2

sin2(ku)
+ dΩ2

]

= e−2hudt2 − e2hu[dρ2 + (k2 + ρ2)dΩ2], (5.17)

where the harmonic coordinate u is expressed in terms of the quasiglobal
coordinate ρ , specified on the whole axis R , by |k|u = arctan (ρ/|k|).

At m > 0, the wormhole attracts the ambient test matter on the first
asymptotic (ρ → ∞) and repels it on the other (ρ → −∞), and vice
versa in the case m < 0. At m = 0 we obtain the simplest solution called
the Ellis wormhole (although H. Ellis’s paper [155] discussed anti-Fisher
wormholes of any mass).

The wormhole throat is located at ρ = h and has the size

rth = (h2 + k2)1/2 exp
(

h

k
cot−1 h

k

)
. (5.18)

It has been shown in the recent paper [175] that the anti-Fisher worm-
holes are unstable under small radial perturbations, and the characteristic
time of perturbation growth is of the order rth/c , i.e., the time needed for
a light beam to cover a distance of the order of the throat size.

Analogues of the metric (5.17) with a nonzero electric charge are also
known [50]; they can be obtained from (4.24), (4.25) at ε = −1: these are
counterparts of Penney’s solution [324] with a phantom scalar field. The
dependence of their stability or instability on the charge value has not been
studied yet. The stability of static, spherically symmetric configurations
will be discussed in the next chapter.

Quite naturally, wormholes can also be supported by minimally cou-
pled phantom scalar fields with nonzero potentials, see, e.g., [66]; a more
unusual observation is that wormhole solutions can be obtained with the
“trapped ghosts” [88], scalar fields which exhibit phantom properties only
in a string-field restricted region of space whereas in the rest of space
all standard energy conditions are observed. Such wormholes can only
exist with nonzero scalar field potentials. An example of such a solu-
tion can be found among the solutions presented in Sec. 4.5.4: it corres-
ponds to m = 0.
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Wormholes with nonminimally coupled scalar fields

In the case of a conformal scalar field with the Lagrangian (4.1), (4.4),
there exists a family of solutions to the field equations having the form
(4.32)–(4.33), with the metric [50]

ds2 = (y + y0)2
[

dt2

(y + y1)2
− h2 (y + y1)2

y4
(dy2 + y2dΩ2)

]
; (5.19)

y0 = tanhhu0, y1 = coth hu1, (5.20)

and the scalar field

φ =
√

6
1 + yy0

y + y0
. (5.21)

In the electrically neutral case Q = 0 we have y1 = 1; spatial infinity
corresponds to y = ∞ , where the scalar field tends to φ = φ∞ =

√
6y0 .

The metric (5.19) describes a wormhole in the case y0 > 0; the coor-
dinate y then has the range y > 0. It is easy to verify that as y → 0,
as well as for y → ∞ , the metric becomes flat. Thus y = 0 is the second
spatial infinity, where e2γ → (y0/y1)2 and φ → (1/y0)

√
6. Thus we have

a wormhole with a throat at y =
√

y0y1 .
The metric (4.26) (in other notations) and its generalizations to other

nonminimally coupled scalar fields (the Lagrangian (4.1), f(φ) = 1 − ξφ2 ,
h(φ) = 1, where ξ > 0 is an arbitrary constant) were discussed by Barcelo
and Visser [21, 22] as examples of wormholes existing even with a scalar
field with the normal sign of kinetic energy.

However, all wormholes supported by nonminimally coupled scalar
fields and, more generally, wormholes existing due to conformal contin-
uations in scalar-tensor theories [54] have a common peculiarity: at the
transition sphere, at which the nonminimal coupling function f(φ) in the
Lagrangian (4.1) passes through zero, the effective gravitational constant
also changes its sign. As a result, the second spatial infinity of such worm-
holes is situated in a region with a negative effective gravitational constant
(this phenomenon is sometimes characterized by the words “the graviton is
there a ghost”). The plausibility of such configurations is thus questionable;
also, evidently, they cannot connect distant regions of the same universe,
and their remote mouth should be situated in a world where the physical
laws are very unusual from our point of view. Besides, it has been estab-
lished [70, 71] that electrically neutral (or weakly charged) wormholes of
this kind are unstable under spherically symmetric perturbations (see also
Chapter 6), and there are reasons to believe that such an instability has a
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common nature since it is related to the field behaviour near the transition
surface with f = 0.

(For more details on conformal continuations in static, spherically sym-
metric configurations in scalar-tensor and f(R) gravity, the necessary and
sufficient conditions for their existence and the possible full geometries of
the continued space-times see [54–56].)

More generally, in the framework of STT and f(R) theories of gravity
(for instance, in the Brans-Dicke theory), wormhole solutions evidently do
exist and can be obtained from those of GR with a phantom scalar field
with the aid of the conformal mapping (4.3) provided the conformal factor
f(φ) is regular everywhere. Thus, all wormhole solutions with a massless
Brans-Dicke scalar are transforms of the anti-Fisher wormholes discussed
above, except for the special case ω = 0 [51] where a special wormhole
solution exists due to a conformal continuation (see Sec. 5.3.3).

5.3.2 Wormhole construction by solving the trace
of the Einstein equations

In this section we demonstrate the significant level of arbitrariness in worm-
hole solutions of the Einstein equations if we do not specify the form of
exotic matter from the beginning. We will show that even if, for simplicity,
we restrict ourselves to matter with zero trace of the SET, the wormhole
solutions form a set parametrized by one arbitrary function plus an inte-
gration constant [87].

We will start with the general static, spherically symmetric metric in 4
dimensions written in the curvature coordinates

ds2 = e2γ(r)dt2 − e2α(r)dr2 − r2dΩ2, (5.22)

where dΩ2 = dθ2 + sin2 θ dφ2 is the linear element on a unit sphere.
If the SET of matter has a zero trace, the equation R = 0 is valid,

and it can be written as a linear first-order equation with respect to
F (r) := r e−2α

Fr(2 + rγr) + F (2rγrr + 2rγ2
r + 3γr) = 2, (5.23)

where the subscript r means d/dr .
Let us note that Eq. (5.23) is of particular interest because the trace

equation is the only uniquely determined equation describing the 4D grav-
itational field in an RS type brane world since the set of equations for
gravity on the brane [371] contains a contribution Eµν depending on the
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5D Weyl tensor, having zero trace. (The basic concepts of the brane-world
scenario are briefly discussed in Sec. 4.6.3.) In vacuum, where matter on
the brane is absent and the 4D cosmological constant is zero (a natural
assumption for scales much smaller than the size of the Universe), these
equations reduce to

Gµν = −Eµν , (5.24)

where Gµν is the 4-dimensional Einstein tensor corresponding to the brane
metric gµν while Eµν is the projection of the 5-dimensional Weyl tensor
onto the brane. The traceless tensor Eµν connects gravity on the brane
with the bulk geometry (and is sometimes called the tidal SET), so that the
set of equations (5.24) is not closed. Due to its geometric origin, Eµν does
not necessarily satisfy the energy conditions applicable to ordinary matter.
Thus, examples are known [408] when negative energies on the brane are
induced by gravitational waves or black strings in the bulk. Therefore, if
the brane world concept is taken seriously, Eµν can be the most natural
“matter” supporting wormholes.

Thus the wormhole metrics obtained with the algorithms to be
described here may be considered as vacuum wormhole metrics in a brane
world [87].

The general solution of Eq. (5.23) is

F (r) =
2 e−2γ+3Γ

(2 + rγr)2

∫
(2 + rγr) e2γ−3Γ dr, (5.25)

where

Γ(r) =
∫

γrdr

2 + rγr
. (5.26)

Thus, choosing the form of γ(r) arbitrarily, we obtain F (r) from (5.25),
and, after fixing the integration constant, the metric is known completely
at least in the region where eγ and eα are smooth and nonzero.

From the solution (5.25), wormhole metrics (as well as black hole met-
rics [60]) are built algorithmically by specifying the generating function
γ(r) with desirable properties.

Let us note for reference purposes that in many articles on worm-
holes, beginning with [302], the function e2α in the curvature coordi-
nates is written in the form [1 − b(r)/r]−1 , where b(r) is called “the
shape function”. This name is, in our view, not quite appropriate since
b(r) bears information on the wormhole profile in a very indirect form;
one could more reasonably call r(l) in the metric (5.27) a shape function.
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In fact (see (5.15)) b(r) = 2m(r), where m(r) is the mass function. The
function F (r) introduced here is F (r) = r − b(r) = r − 2m(r).

Let us now make clear how to choose the function γ(r) (the so-called
redshift function) and the integration constant in Eq. (5.25) in order to
obtain a wormhole solution.

The coordinate r , which proves to be convenient for solving Eq. (5.23),
is not an admissible coordinate in the whole space for wormhole solutions
since in this case r has at least one minimum, and the solution in terms of r

therefore splits into at least two branches. As an admissible coordinate one
can take, e.g., the Gaussian coordinate l (proper length along the radial
direction) connected with r by the relation l =

∫
eαdr , and the metric is

rewritten as

ds2 = e2γ(l)dt2 − dl2 − r2(l)dΩ2. (5.27)

We seek static, traversable, twice asymptotically flat wormhole solu-
tions. So we require:

1. There should be two flat asymptotics: l ∈ R ; r ≈ |l| → ∞ and γ =
const + O(r−1) as l → ±∞ ;

2. Both functions r(l) > 0 and γ(l) should be smooth (at least C2 ) in the
whole range l ∈ R .

This guarantees the absence of curvature singularities and horizons (the
latter correspond to γ → −∞ which is ruled out). This also means that
r(l) should have at least one regular minimum, rmin > 0 (throat), at some
value of l . Moreover, returning to functions of r , we see that at a flat
asymptotic eα → 1 and F (r) ≈ r .

Suppose, without loss of generality, that a minimum of r(l), that is, a
wormhole throat, is located at l = 0. Then r(0) = r0 > 0, rl(0) = 0 and
(generically) rll(0) > 0, where the subscript l denotes d/dl . Near l = 0
one has r−r0 ∼ l2 , hence the metric function e2α(r) behaves as (r−r0)−1 ,
and F (r) = r e−2α ∼ r − r0 . In other words, a simple zero of F (r) is an
indicator of a wormhole throat provided γ(r) is smooth and finite at the
same r .

On the other hand, the derivative γl(0) may be zero (which is always the
case if the wormhole is symmetric with respect to the throat) or nonzero.
If γl(0) = 0, we shall have γr(r0) < ∞ . If, on the contrary, γl(0) 
= 0,
then near r0 we have γr ∼ 1/|l| ∼ √

r − r0 , so that

γ(r) ≈ γ(r0) + k
√

r − r0, k > 0. (5.28)
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We cannot put k < 0 since then we would obtain the expression 2 + rγr

ranging from 2 (at spatial infinity) to −∞ at r = r0 , so that 2+rγr would
vanish at some r > r0 causing a singularity in (5.25).

We are now ready to single out a class of symmetric wormhole metrics
(WH1) and a class of potentially asymmetric wormhole metrics (WH2) on
the basis of the solution (5.25).

WH1. Specify the function γ(r), smooth in the range r0 ≤ r < ∞ , r0 > 0,
in such a way that γ(∞) = 0, γr(r0) < ∞ , and 2 + rγr > 0 in the whole
range. Fix the integration constant in (5.25) by performing integration
from r0 to r . Then these γ(r) and F (r) determine a wormhole which has
a throat at r = r0 and is symmetric with respect to the throat.

Indeed, by construction, F (r) ∼ r − r0 near r0 . Introducing the new
coordinate x by the relation r = r0+x2 , we have e2αdr2 ∼ (r−r0)−1dr2 =
4dx2 , which leads to a perfectly regular metric whose coefficients are all
even functions of x ∈ R . Both x → +∞ and x → −∞ are flat asymptotics.

Each γ(r) chosen as prescribed creates a family of symmetric worm-
holes with zero scalar curvature. The family is parametrized by the throat
radius r0 , taking arbitrary values in the range where γ(r) is regular and
2 + rγr > 0.

Another procedure is applicable to functions γ(r) behaving according
to Eq. (5.28).

WH2a. Specify the function γ(r), smooth in the range r0 ≤ r < ∞ ,
r0 > 0, such that γ(∞) = 0, 2+rγr > 0 in the whole range, and Eq. (5.28)
holds near r0 . Then, for proper values of the integration constant in (5.25),
the sphere r = r0 is a wormhole throat, and the solution is smoothly
continued beyond it.

Indeed, the solution (5.25) may be rewritten as follows:

F (r) =
e−2γ+3Γ

(
1 +

1
2
rγr

)2

[∫ r

r0

(
1 +

1
2
rγr

)
e2γ−3Γ dr + C

]
. (5.29)

Suppose C > 0. Then F (r) behaves near r0 as r − r0 =: x2 , while
γ = γ(r0) + kx + O(x2). The metric behaves smoothly at r = r0 (x = 0)
in terms of the new coordinate x and can be continued through this sphere.
One cannot, however, guarantee that this continuation will lead to another
flat spatial infinity to yield an asymmetric wormhole, since the further
behavior of γ(x) and F (x) may lead to a horizon or to a singularity.
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If we choose C ≤ 0 in (5.29), we obtain two other situations:

WH2b. If C < 0, then f(r0) < 0; recalling that f ∼ r at large r , we see
that F (r) = 0 at some value r = r1 > r0 , where γr is finite, and we return
to the circumstances described as WH1, obtaining a symmetric wormhole
with r ≥ r1 , and the sphere r = r1 is its throat.

WH2c. If C = 0, then near r0 we obtain F (r) ∼ (r − r0)3/2 , and the
metric is regularized at r = r0 by another substitution: r − r0 = ξ4 . As a
result, Eq. (5.28) yields

γ = γ(r0) + kξ2 + further even powers of ξ,

and we again obtain a symmetric wormhole, but now with a quartic
behavior of r near its minimum as a function of the admissible coordinate
ξ ∈ R .

Now we will give some examples, presenting expressions for the met-
ric functions γ and F , the effective “tidal” energy density ρ and the
sum ρ + prad , which characterizes violation of the Null Energy Condi-
tion (for static, spherically symmetric systems this condition reduces to
ρ + prad ≥ 0).

We use the time scale of a distant observer at rest and so always assume
that eγ → 1 as r → ∞ .

Example 1. The simplest example is obtained for γ ≡ 0. Choosing any
r0 > 0 and applying the W1 algorithm of Sec. 2, we simply obtain F (r) =
r−r0 . This is a symmetric wormhole solution known as the spatial Schwarz-
schild geometry [123]:

ds2 =dt2 −
(

1 − r

r0

)−1

dr2 − r2dΩ2

=dt2 − 4(r0 + x2)dx2 − (r0 + x2)2dΩ2. (5.30)

The effective SET Eν
µ has the form T ν

µ = diag(0,−pr, pr/2, pr/2) with the
radial pressure

pr = −r0/r3. (5.31)

Example 2. Our next example uses the Schwarzschild form of γ :

e2γ = 1 − 2m

r
, m > 0. (5.32)
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Choosing any r0 > 2m , we obtain according to the W1 prescription:

F (r)=
(r − 2m)(r − r0)

r − 3m/2
, (5.33)

ds2 =
(

1 − 2m

r

)
dt2 − 1 − 3m/(2r)

(1 − 2m/r)(1 − r0/r)
dr2 − r2dΩ2

=
x2 + r0 − 2m

x2 + r0
dt2 − 4(x2 + r0)(x2 + r0 − 3m/2)

x2 + r0 − 2m
dx2

− (x2 + r0)2dΩ2. (5.34)

This is evidently a symmetric wormhole geometry for any r0 > 2m ≥ 0, or
for any r0 > 0 in case m < 0. The Schwarzschild metric is restored from
(5.34) in the special case r0 = 3m/2.

The SET components of interest are

ρ =
m(2r0 − 3m)
r2(2r − 3m)2

; ρ + prad = −2(r − 2m)(2r0 − 3m)
r2(2r − 3m)2

. (5.35)

The metric (5.34) was obtained by Casadio, Fabbri and Mazzacurati
[104] in search for new brane-world black holes and by Germani and
Maartens [171] as a possible external metric of a homogeneous star on
the brane, but the existence of traversable wormhole solutions for r0 > 2m

(in the present notations) was not mentioned. It was supposed in [104] that
the post-Newtonian parameters of the metric must be close to their Ein-
stein values for experimental reasons and therefore the authors restricted
their study to configurations close to Schwarzschild. Then r0 must be close
to 3m/2. In this case, as in the Schwarzschild metric, r = 2m is an event
horizon, but according to [104], the space-time structure depends on the
sign of η = r0 − 3m/2. If η < 0, the structure is that of a Schwarzschild
black hole, but the curvature singularity is located at r = 3m/2 instead
of r = 0. If η > 0, the solution describes a nonsingular black hole with a
minimum of r at r = r0 inside the horizon, which may be called a non-
traversable wormhole [104]. This kind of configuration is mentioned in the
classification of regular black holes in Sec. 4.6.1.

We would here remark that, in our view, such hypothetic objects as
brane-world black holes or wormholes, not necessarily of astrophysical size,
need not necessarily conform to the restrictions on the post-Newtonian
parameters obtained from the Solar system and binary pulsar observations,
and it therefore makes sense to discuss the full range of parameters which
are present in the solutions.
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Example 3. Consider the extreme Reissner-Nordström form of γ(r):

e2γ =
(

1 − 2m

r

)2

, m > 0. (5.36)

The W1 procedure now leads to

F (r)=
(r − r0)(r − r1)

r
, r1

def=
mr0

r0 − m
; (5.37)

ds2 =
(

1 − 2m

r

)2

dt2 −
(

1 − r0

r

)−1(
1 − r1

r

)−1

dr2 − r2dΩ2

=
(

1 − 2m

x2 + r0

)2

dt2 − 4(r0 + x2)
(

1 − r1

r0 + x2

)−1

dx2

− (r0 + x2)dΩ2. (5.38)

where we assume r0 > 2m , so that r1 < r0 . It is a symmetric wormhole
metric. The SET components of interest are

ρ =
mr2

0

r4(r0 − m)
, ρ + prad = − (r0 − 2m)2

r2(r − 2m)(r0 − m))
. (5.39)

In the solution (5.37), r0 may be regarded as an integration constant,
so it is of interest what happens if r0 ≤ 2m . Evidently, r0 = 2m leads to
the extreme Reissner-Nordström black hole metric (which is well known to
possess a zero Ricci scalar, as does the general Reissner-Nordström metric).
In case 2m > r0 > m , we have r1 > 2m , and we again obtain a symmetric
wormhole, but now r ranges from r1 to infinity and r = r1 is the throat.
Essentially, r0 and r1 exchange their roles as compared with the case
r0 > 2m . This property is expected due to symmetry between r0 and r1

in the metric (5.38).
The value r0 = m is meaningless. Lastly, r0 < m leads either to r1 < 0

(for r0 ≥ 0) or to 0 < r1 < 2m (for r0 < 0). The solution exists in both
cases for r > 2m only, and r = 2m turns out to be a naked singularity, as
is confirmed by calculating the Kretschmann scalar.

We have seen that the equation R = 0 leads to a great number of worm-
hole solutions. Symmetric wormhole solutions of class WH1 can be obtained
from any γ(r) providing asymptotic flatness; asymmetric wormhole solu-
tions belonging to class WH2a require somewhat more special conditions
and are more difficult to obtain from the general solution (5.25); see an
example in [87].

As is seen from Examples 1–3, wormholes are not always connected
with negative (effective) energy densities ρ . They can appear with ρ > 0,
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but only with comparatively large negative pressures maintaining violation
of the null energy condition; recall in this respect our general reasoning in
Sec. 5.3.1. Example 3 shows that, for given γ(r), sometimes even more
wormhole solutions than expected can be obtained in search for class WH1
solutions.

All the above refers to metrics satisfying the condition R =0 in 4 dimen-
sions, which admits an interpretation as the brane metric. We did not dis-
cuss the possible bulk properties of models in question; it can be noted
that the existence of the corresponding solutions to the 5D equations of
gravity (in our case, the 5D vacuum Einstein equations with a cosmological
constant) is guaranteed by the Campbell-Magaard type embedding theo-
rems [98, 286]. A recent discussion of these theorems, applied in particular
to brane-world scenarios, and more references can be found in Ref. [366].
It has also been claimed that “any 4D space-time with R = 0 gives rise
to a 3-brane world without surface stresses embedded in a 5-dimensional
space-time” [409] since the embedding contains a very significant arbitrari-
ness. Nevertheless, a complete model requires knowledge of the full 5D
space-time. In other words, one should “evolve” the 4-metric into the bulk,
using this 4-matric as initial data for the 5-dimensional equations. It is
rather a difficult task, as was demonstrated in a study of particular black
hole solutions in Refs. [104, 107]. There are, however, two favorable cir-
cumstances. One is the wealth of wormhole solutions: there is actually an
arbitrary function γ(r) leading to wormholes on the brane, which must
in turn lead to a wide choice of suitable bulk functions. The other is the
global regularity of wormhole space-times, and one can expect that the
bulk incorporating them will also be regular. (It may be recalled that it
was the singular nature of black hole solutions that caused some technical
difficulties in Ref. [107].)

5.3.3 Alternative gravity and vacuum
as wormhole supporters

The algorithms presented in the previous subsection demonstrate the
wealth and diversity of wormhole metrics even in the narrow class of spher-
ically symmetric space-times. Still this does not remove the question of
possible real material sources of wormhole geometry satisfying, under the
same symmetry, the conditions (5.10).

As we have seen, usual classical (nonphantom) matter, including fields,
does not lead to wormholes since it respects the NEC (5.11). This result
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is true in the Einstein theory, but it extends to a large class of alterna-
tive theories of gravity where the gravitational equations are reduced to
those of GR with an additional nonphantom scalar field. These are the
scalar-tensor theories (STT) under the condition ε = +1 (see Sec. 4.1,
Eqs. (4.1)–(4.3)), F (R) theories, which have recently become very pop-
ular and where, instead of the GR Lagrangian (const · R), the gravita-
tional Lagrangian is a certain function F (R), and the class of theories
that unifies the STT and F (R) theories, where the Lagrangian contains
a function of two variables F (φ, R). The transformation from the initial
equations involving the physical metric gµν (the so-called Jordan pic-
ture) to the equations of GR with minimally coupled scalar fields (the
Einstein picture) have been obtained in a general form in the papers [412]
for STT, [25, 26, 148, 228, 428] for F (R) theories and [284] for F (φ, R)
theories.

Indeed, let the metric gµν in the initial manifold MJ (the Jordan
picture) and the metric gµν in the manifold ME (the Einstein picture)
be related by the conformal mapping

gµν = f(x)gµν , (5.40)

where f(x) is an everywhere regular function of the space-time coordinates,
bounded both above and below by some positive constants. According to
[204], in GR, for the existence of a static throat (defined as a minimal
2-surface in 3-space) it is necessary that the material source in the Ein-
stein equations violate the NEC. Thus, if the NEC is respected, wormholes
and even throats cannot exist. Furthermore, under the assumptions made,
the transformation (5.40) always transfers a flat asymptotic in ME to a
flat asymptotic in MJ and vice versa (though the corresponding Schwarz-
schild masses may differ due to nonconstancy of f ). If we suppose that
there is a twice asymptotically flat wormhole in MJ , then each of its
flat asymptotics has a counterpart in ME , and due to smoothness of the
transformation we obtain a wormhole in ME , contrary to what was said
above. Therefore, static asymptotically flat wormholes are absent in MJ

as well.
This simple reasoning [68, 86] does not require any assumption on the

spatial symmetry and works under very general assumptions on the original
theory. It admits extensions to dynamic wormholes [86], since in GR they
also require NEC violation, although introducing the notion of a throat
faces some difficulties in the dynamic case [205]. The asymptotic flatness
condition can also be weakened in an evident manner.
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It should be stressed that throats in Jordan’s picture are not forbidden
since local violations of the energy conditions can occur. However, as we
have seen, there are no wormholes as global entities.

If the requirements on the function f(x) are weakened, one can obtain
wormholes in Jordan’s picture in some theories (as we have seen above for
a conformal scalar field); however, such wormholes possess some patholog-
ical features, for instance, the effective gravitational constant either tends
to infinity at the second flat asymptotic [56] or has the wrong sign (see
Sec. 5.3.2).

Thus it is rather difficult to obtain more or less realistic wormholes in
classical field theory without explicitly invoking phantom fields, at least
in GR and its simplest extensions in four dimensions. More opportunities
appear in multidimensional theories. As we saw in the previous subsection,
in the brane-world scenario the 4D gravitational field equations contain a
geometric source which has no reason to respect the usual energy condi-
tions and can thus create wormholes (but there remains the difficulty of
solving the full 5D equations). In more general theories of gravity in four
dimensions, the terms effectively added to the matter SET as compared
with GR can also lead to wormhole formation: an example can be found
in the recent paper [226] where a family of static, spherically symmetric
wormhole solutions was obtained numerically in dilatonic Einstein-Gauss-
Bonnet theory with the Lagrangian

L = const ·
[
R +

1
2
(∂φ)2 + α e−λφR2

GB

]
, (5.41)

where R2
GB = RµνρσRµνρσ −4RµνRµν +R2 is the Gauss-Bonnet invariant,

α and λ are constants. In these solutions, the scalar field is canonical,
nonphantom, and there is no other matter violating the NEC, so only
the Gauss-Bonnet contribution is responsible for the wormhole’s existence.
Curiously, among these solutions there are no force-free ones, i.e., those
with g00 = e2γ = const. Nonexistence of such wormholes has been proved
[65] for a class of Lagrangians more general that (5.41), with an arbitrary
potential V (φ) added and an arbitrary function h(φ) instead of e−λφ .

Another promising opportunity is connected with quantum phenomena.
We have already mentioned the concept of space-time foam existing at
Planck scales due to large chaotic quantum fluctuations of the geometry
and topology [422]. Among other formations, wormholes are elements of
space-time foam. Under usual conditions, the existence of the foam can-
not be noticed at macroscopic and even atomic and subatomic scales, but
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at the earliest stages of the Universe evolution, during its rapid expan-
sion (inflation, see the future chapters), some of the tiny wormholes get a
chance to expand to a large size. There exists an idea (see, e.g., [238, 239]
and references therein) that such wormholes of kiloparsec size (or like) form
a whole chaotic network in the Universe, and the Friedmann homogeneous
and isotropic space-time is only obtained as a result of averaging. It has
been shown that the inhomogeneities of this foam-like cosmic structure may
be observed as manifestations of dark matter (thus solving the well-known
problem of mass deficit in galaxies and clusters of galaxies for explain-
ing their dynamic properties [231, 321]). However, the authors themselves
admit [240] that by now there are quite a number of unsolved questions in
this scenario: what is the wormhole distribution by size and mass? Why
are they not yet observed astronomically? Do they take part in the present
expansion of the Universe? And so forth. And the same question is prob-
ably the most important: which material source supports the existence of
large wormholes after they left the Planck scale?

A possible answer is: vacuum polarization due to quantum fields. By
quantum field theory, as is well known, the vacuum is the field state with
minimum energy and without real particles. This state is not an absolute
rest but rather the chaotic creation and annihilation of pairs of all possible
virtual particles which all together form some energy density, which is
in general not small and can be of any sign. Both depend on the space
configuration where the vacuum is considered and on the matter present
there. This phenomenon, called vacuum polarization, does really exist and
has been repeatedly confirmed by experiment. In particular, the famous
Casimir effect, attraction of two closely located plane metal plates in empty
space, is explained by a difference in the properties of the electromagnetic
field vacuum in the region between the plates and in the whole remaining
space.

Calculation of the physical vacuum properties is a difficult task, but
some known results look promising from the viewpoint of wormhole exis-
tence. Thus, unlike macroscopic matter, the vacuum may not necessarily
obey the energy conditions, and it has been found [203, 258] that vacuum
polarization can in principle support static wormholes of any size. However,
as shown by Hsu [91], the so-called semiclassical matter, suitable for worm-
hole construction, possesses a special kind of instability due to quantum
fluctuations: a wormhole, being left to itself, will be distorted and will be
eventually destroyed (but what will then form is not clear). This insta-
bility is certainly not universal and not inherent to all wormhole models.
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Furthermore: if we discuss on the opportunities of principle, from a physi-
cal viewpoint of an “arbitrarily advanced civilization”, we can surely admit
that, having an interest in interstellar transport, it will launch some nega-
tive feedback mechanism that is able to damp the perturbations.

5.4 Observational effects. Wormhole astrophysics

In the recent years, the question of possible wormhole existence in our
Universe became a subject of serious analysis, which is evidently caused
by the discovery of the Universe’s accelerated expansion, repeatedly men-
tioned in this book. Let us recall the main facts. Acceleration replaced
deceleration rather recently from a cosmological viewpoint, about 3–4 ·109

years ago and, according to the growing observational evidence, continues
to grow. As is well known, if the evolution of an isotropic universe is dom-
inated by a cosmological constant (such that the corresponding density
and pressure are related by ε + p = 0), then it develops by a de Sitter
law, with a constant acceleration. For the acceleration to grow with time,
it is necessary to suppose ε + p < 0, which violates the weak and null
energy conditions. (Though, the cosmological constant is also within the
observational bounds.) At present, there must be about 70 per cent of this
exotic type of matter, called phantom dark energy, and this fraction is
increasing. Indeed, unlike ordinary matter, whose density decreases with
increasing volume, phantom matter behaves in just the opposite way: its
density grows with growing volume.

But is is this kind of exotic matter, whatever be its origin and physical
nature, that is required as a construction material for wormholes.

Thus a number of papers discuss the hypothesis that some active galac-
tic nuclei, quasars and/or other compact astrophysical objects can be
wormhole entrances, and one seeks specific features able to distinguish
wormholes from black holes or other, less familiar objects predicted by
theorists (such as boson stars [364], gravastars [292, 303], quasi-black holes
[266, 267] etc.) sometimes designated as “black hole mimickers” [390].

Many effects, such as gravitational microlensing and the existence of
accretion disks, are common to different classes of compact objects, so it is
in general hard to expect that they can reveal specific wormhole features.
However, numerous calculations of these effects have very little predictive
power, especially if they deal with particular wormhole models. A reason
is that there is too great an uncertainty in the nature of the exotic matter
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supporting the wormhole geometry: as we have seen in Sec. 5.3.2, even
under the condition that the scalar curvature is zero, wormhole metrics
are obtained with an arbitrary function; in the more general static case
there are two arbitrary functions. All this arbitrariness refers to static,
spherically symmetric geometries, to say nothing about more general and
realistic cases. More than that, if the exotic matter supporting a wormhole
occupies a finite volume in space, then the regions outside it are, as always,
described by usual, most probably vacuum solutions to the equations of
gravity (e.g., Schwarzschild’s) with their usual characteristics.

However, there are some effects able to reveal wormhole peculiarities.
An interesting point is that a wormhole entrance may be a source of a
monopole magnetic field. In such a case, there is no necessity of isolated
magnetic poles (monopoles): the magnetic lines of force, as well as electric
ones, can simply thread the wormhole, realizing Wheeler’s idea of electric or
magnetic “charge without charge” [422]). Other distinguishing effects are
(see, e.g., [227, 315]) (1) a possible observation of objects in remote parts of
the Universe (or another universe) through the throat (assuming that the
throat is wide enough and filled with a transparent substance); there is a
certain probability to see the same object beside the wormhole and through
it with different redshifts [144, 145, 315]; (2) specific modes of particle
acceleration and jet shapes due to possible radial magnetic fields; (3) test
particle orbits impossible in other settings, such as oscillations across the
throat, if there is a minimum of the gravitational potential, (4) gravita-
tional lensing in a strong-field regime [121, 130, 334, 361, 397], etc.

According to Harko et al. [195], a wormhole signature can still be
obtained from the properties of accretion disks: it has been obtained that
the intensity of a flux emerging from the disk surface is greater for worm-
holes than for rotating black holes with the same Schwarzschild mass and
accretion rate. The conversion efficiency of the accreting mass into radia-
tion was also calculated [195] showning that rotating wormholes provide a
much more efficient engine for transformation of the accreting mass into
radiation than Kerr black holes.

Curiously, according to [11], it turns out that similar wormholes in the
Brans-Dicke theory are “quasi-Schwarzschild objects”, and their accretion
energy fluxes are smaller by about an order of magnitude as compared to
their GR counterparts considered in [195].

Pozanenko and Shatskiy [332] have considered a promising effect con-
nected with observation through a wormhole throat. They remark that if
radiation from another universe comes in this way, then a distant observer
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in our Universe will perceive a wormhole throat like a point source. Further-
more, the brightest known sources are gamma-ray bursts (GRBs). Their
brightness in the gamma range may exceed that of the entire sky. If GRB
phenomena are present in the other universe (or anywhere beyond the
wormhole), an observer in our Universe will detect repeated aperiodic
gamma-ray flashes coming from a single point spatially coinciding with
the wormhole.

Objects like that do exist: these are sources of soft repeated gamma-ray
bursts called soft gamma repeaters. Although most of them can be reliably
associated with magnetars in our Galaxy, it still makes sense to check
whether or not some of those repeaters can be observational signatures
from GRBs of another universe. A calculation of power spectra from GRBs
transmitted by a wormhole has led to a conclusion [332] that known soft
gamma repeaters are very unlikely to be wormhole candidates.

Thus, for the moment, there are no clear observational traces of natural
wormholes in the Universe, but the rapidly growing wealth of observational
data leaves a hope that such evidence will sooner or later appear. If, cer-
tainly, they really do exist.
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Chapter 6

Stability of spherically
symmetric configurations

6.1 Preliminaries

In the previous chapters we have described a number of self-gravitating
static and stationary configurations described by solutions to the field equa-
tions. To see whether or not such solutions can lead to viable models of
some real objects in Nature, one needs to check their stability against var-
ious perturbations. This guarantees that the system under consideration
will not be immediately destroyed after its formation. The perturbations
can be large or small, and can appear as fluctuations in the system itself
or be caused by external influence. In all such cases we are dealing with
various stability problems.

Perturbations and stability of vacuum and electrovacuum solutions to
the Einstein equations (Schwarzschild, Reissner–Nordström, Kerr, Kerr-
Newman) have been studied by many authors; a comprehensive review
and bibliography can be found in the books [109, 168]. The most important
conclusion of these studies is that all these solutions are stable under any
small perturbation and have certain spectra of quasinormal modes, i.e.,
oscillations characterizing their late-time response to any disturbances.

Many papers are devoted to various more general and multidimensional
BHs (most often string theory-motivated ones) and their stability, see, e.g.,
[81, 177] and the recent reviews [213, 256].

Less attention has been paid to solutions with scalar fields although
they have some peculiarities of interest. Their main feature is that, unlike
gravitational (spin-2) and electromagnetic (spin-1) perturbations, scalar
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(spin-0) time-dependent perturbations can preserve spherical symmetry.
This circumstance is directly related to the Birkhoff theorem which holds
for gravitational and electromagnetic fields and in a very rough formulation
sounds like that: “spherically symmetric vacuum or electrovacuum space-
times are necessarily static” (see more details in Chapter 3), but a scalar
field inserts dynamics, so that both the scalar itself and the metric tensor
become essentially time-dependent.

Accordingly, in pure vacuum and electrovacuum space-times the multi-
pole expansion of small (linear) perturbations begins with dipole (if there
is an electromagnetic field) and quadrupole terms, whereas a scalar field
inserts a monopole term. Moreover, it turns out that monopole (spheri-
cally symmetric) perturbations are the most “dangerous” in the sense of
instability. The point is that in many important cases linear perturbation
equations can be reduced to single Schrödinger-like equations with certain
effective potentials with respect to some “wave function”, while the role
of an energy level is played by a frequency squared. Therefore negative
energy levels correspond to imaginary frequencies and hence a possible
exponential growth of the perturbations, i.e., instability. The experience
shows that higher multipoles lead to positive contributions into the effec-
tive potentials, like centrifugal barriers in quantum mechanics. Therefore
if a system to be studied is unstable, this instability will most probably
manifest itself under monopole perturbations.

In this chapter we will discuss in some detail the stability of static,
spherically symmetric solutions to the Einstein equations with scalar fields
as sources. Following [67], we will describe a general methodology of study-
ing small spherically symmetric perturbations of scalar-vacuum configura-
tions with any potential V (φ) (see (6.1)) and pay special attention to
space-times with throats. The difficulty with the latter lies in the fact
that the effective potentials Veff(x) for perturbations (not to be confused
with the self-interaction potential V (φ)) possess a singularity at the throat,
which prevents a complete perturbation analysis. It is for this reason that in
some previous stability studies of anti-Fisher solutions [14, 58] no unstable
modes were found whereas a numerical perturbation analysis of Shinkai
and Hayward [370] revealed an instability in the simplest representative of
this family of solutions, the Ellis massless wormhole [50, 155].

Gonzalez et al. [175], analyzing the stability of anti-Fisher wormholes,
made a proper substitution in the perturbation equation (a special case
of the so-called S-deformation [212, 213]) and regularized the effective
potential Veff . As a result, they were able to consider a previously missed
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perturbation mode with nonzero perturbation of the throat radius and
showed that it can exponentially grow, which means that the anti-Fisher
wormholes are unstable. We will verify that a similar methodology can be
applied to more general self-gravitating scalar field configurations includ-
ing those with arbitrary self-interaction potentials V (φ). To this end, we
will prove that, generically, (i) the effective potential Veff for such configu-
rations has precisely the form required for regularization by S-deformation
and (ii) any solution of the transformed wave equation with a regular-
ized potential leads to a regular perturbation of the background static
configuration.

As a particular example, we study the stability of all anti-Fisher solu-
tions (see Section 4.1) under spherically symmetric perturbations. We prove
the instability of Branch A and B solutions and confirm the conclusions of
[175] for Branch C solutions (wormholes). A study of particular solutions
with nonzero potentials V (φ) is postponed for the future.

6.2 Perturbation equations

Consider a self-gravitating, minimally coupled scalar field with an arbitrary
self-interaction potential in general relativity. The Lagrangian is (up to a
constant factor, see, e.g., Section 2.5)

L =
√−g

(
R + ǫgαβφ;αφ;β − 2V (φ)

)
, (6.1)

where ǫ = 1 for a normal scalar field with positive kinetic energy and
ǫ = −1 for a phantom scalar field. Other notations are usual; the gravi-
tational constant is absorbed in the definitions of φ and V (φ). The field
equations are

ǫ�φ + Vφ = 0, (6.2)

Rν
µ = −ǫφ,µφ,ν + δν

µV (φ), (6.3)

where Vφ ≡ dV/dφ .
The general spherically symmetric metric may be written in the form

ds2 = gµνdxµdxν = e2γdt2 − e2αdu2 − e2βdΩ2, (6.4)

where α , β , γ are functions of the radial coordinate u and the time
coordinate t and dΩ2 = dθ2 + sin2 θ dϕ2 . We will also employ the usual



186 Black Holes, Cosmology and Extra Dimensions

notation r = eβ for the areal radius, such that 4πr2 is the area of coordi-
nate spheres u = const, t = const. There remains a coordinate freedom in
the (u, t) subspace, which in general corresponds to choosing a reference
frame preserving the spherical symmetry. In the static case, there is a ref-
erence frame such that there is no t-dependence, and then the coordinate
freedom concerns the choice of the u coordinate.

We will assume that a certain static, spherically symmetric solution to
Eqs. (6.2) and (6.3) is known and study its stability under small spherically
symmetric perturbations. We thus consider, instead of φ(u), a perturbed
unknown function

φ(u, t) = φ(u) + δφ(u, t)

and similarly for the metric functions α, β, γ , where φ(u), etc., are taken
from the static solutions.

Preserving only linear terms with respect to time derivatives, we can
write all the nonzero component of the Ricci tensor and the time-time
component of the Einstein tensor as

R0
0 = e−2γ(α̈ + 2β̈) − e−2α[γ′′ + γ′(γ′ − α′ + 2β′)], (6.5)

R1
1 = e−2γα̈ − e−2α[γ′′ + 2β′′ + γ′2 + 2β′2 − α′(γ′ + 2β′)], (6.6)

R2
2 = e−2β + e−2γ β̈ − e−2α[β′′ + β′(γ′ − α′ + 2β′)], (6.7)

R01 = 2[β̇′ + β̇β′ − α̇β′ − β̇γ′], (6.8)

G0
0 = e−2α[2β′′ + β′(3β′ − 2α′)] − e−2β , (6.9)

where dots and primes denote ∂/∂t and ∂/∂u , respectively.

6.2.1 General form of the field equations

The zero-order (i.e., static) scalar,
(
0
0

)
,

(
1
1

)
,

(
2
2

)
components of Eqs. (6.3)

and the Einstein equation G0
0 = . . . are

φ′′ + φ′(γ′ + 2β′ − α′) = ǫ e2αVφ, (6.10)

γ′′ + γ′(γ′ + 2β′ − α′) = −V e2α, (6.11)

γ′′ + 2β′′ + γ′2 + 2β′2 − α′(γ′ + 2β′) = −ǫφ′2 − V e2α; (6.12)

− e2α−2β + β′′ + β′(γ′ + 2β′ − α′) = −V e2α, (6.13)

− e2α−2β + 2β′′ + β′(3β′ − 2α′) = − 1
2ǫφ′2 − V e2α. (6.14)
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The first-order perturbed equations (scalar, R01 = . . . , R2
2 = . . . , and

G0
0 = . . .) read

e2α−2γδφ̈ − δφ′′ − δφ′(γ′ + 2β′ − α′)

− φ′(δγ′ + 2δβ′ − δα′) + ǫδ( e2αVφ) = 0, (6.15)

δβ̇′ + β′δβ̇ − β′δα̇ − γ′δβ̇ = − 1
2ǫφ′δφ̇, (6.16)

δ( e2α−2β) + e2α−2γδβ̈ − δβ′′ − δβ′(γ′ + 2β′ − α′)

− β′(δγ′ + 2δβ′ − δα′) = δ( e2αV ), (6.17)

− δ( e2α−2β) + δβ′′ + 6β′δβ′ − 2β′δα′ − 2α′δβ′

= −ǫφ′δφ − δ(V e2α). (6.18)

Eq. (6.16) may be integrated in t ; since we are interested in time-dependent
perturbations, we omit the appearing arbitrary function of u describing
static perturbations and obtain

δβ′ + δβ(β′ − γ′) − β′δα = − 1
2ǫφ′δφ. (6.19)

Let us note that we have two independent forms of arbitrariness: one is
the freedom of choosing a radial coordinate u , the other is a perturbation
gauge, or, in other words, a reference frame in the perturbed space-time,
which can be expressed by imposing a certain relation for δα, δβ , etc. In
what follows we will employ both kinds of freedom. All the above equations
have been written in the most universal form, without coordinate or gauge
fixing.

6.2.2 Gauge δβ ≡ 0

This is technically the simplest gauge, in particular, it is convenient for
considering usual black hole perturbations, but causes certain difficulties
when applied to wormholes and other configurations with throats. The
reason is that the assumption δβ = 0 leaves the throat radius invariable,
while perturbations must in general admit its time dependence [58]. This
problem will be discussed below.

With δβ = 0, Eq. (6.19) expresses δα in terms of δφ :

2β′δα = ǫφ′δφ. (6.20)

Eq. (6.17) expresses δγ′ − δα′ in terms of δα and δφ :

β′(δγ′ − δα′) = 2 e2α−2βδα − δ( e2αV ). (6.21)
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Substituting all this into (6.15), we obtain the wave equation

e2α−2γδφ̈ − δφ′′ − δφ′(γ′ + 2β′ − α′) + Uδφ = 0,

U ≡ e2α

{
ǫ(V − e−2β)

φ′2

β′2 +
2φ′

β′ Vφ + ǫVφφ

}
. (6.22)

Before proceeding with a study of the wave equation, let us make sure
that all the remaining Einstein equations hold as a consequence of (6.20),
(6.15) and (6.17) and do not lead to any new restrictions. Consider the
component (6.18) (the constraint equation). It now takes the form

2δα e2α−2β + 2β′δα′ = ǫφ′δφ + δ(V e2α). (6.23)

This equation holds automatically owing to the zero-order equations and
(6.20). Indeed, a substitution of δα from (6.20) brings (6.23) to the form

δφ

β′

[
β′φ′′ − φ′β′′ + e2α−2βφ′ − e2αV φ′ − ǫ e2αVφβ′

]
= 0, (6.24)

Now, substituting φ′′ and β′′ from (6.10) and (6.13), respectively, we see
that all terms cancel, i.e., the equation does hold. Furthermore, the Einstein
equation G1

1 = . . . holds as a consequence of (6.17) and (6.18); lastly, the
equation G2

2 = . . . holds due to the Bianchi identity ∇νGν
1 = 0 and the

corresponding property of the stress-energy tensor of the scalar field.
So we can return to Eq. (6.22). Passing on to the “tortoise” coordinate

x introduced according to

du/dx = eγ−α, (6.25)

and changing the unknown function δφ �→ ψ according to

δφ = ψ(x, t) e−β , ⇔ ψ(x, t) = rδφ, (6.26)

we reduce the wave equation to its canonical form, also called the master
equation for radial perturbations:

ψ̈ − ψxx + Veff(x)ψ = 0, (6.27)

(the index x denotes d/dx), with the effective potential

Veff(x) = e2γ−2α[U + β′′ + β′2 + β′(γ′ − α′)]. (6.28)

This effective potential was previously obtained in other notations for
ǫ = −1 in [126]. A further substitution

ψ(x, t) = y(x) eiωt, ω = const, (6.29)

which is possible because the background is static, leads to the Schrödin-
ger-like equation

yxx + [ω2 − Veff(x)]y = 0. (6.30)
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If there is a nontrivial solution to (6.30) with Im(ω) < 0 satisfying some
physically reasonable conditions at the ends of the range of u (in particular,
the absence of ingoing waves that guarantees the absence of energy pump-
ing into the system from outside), then the static system is unstable since
δφ can grow exponentially with t . Otherwise our static system is stable
in the linear approximation. Thus, as usual in such studies, the stability
problem is reduced to a boundary-value problem for Eq. (6.30) — see, e.g.,
[58, 70–72, 109, 175, 254, 255].

Note that all the above relations are written without fixing the back-
ground radial coordinate u .

6.2.3 Gauge-invariant perturbations

To be sure that we are dealing with real perturbations of the static back-
ground rather than purely coordinate effects, it is necessary to construct
gauge-invariant quantities.

Small coordinate transformations xa �→ xa + ξa in the (t, u) subspace
can be written as

t = t + ∆t(t, u), u = u + ∆u(t, u), (6.31)

where ∆t and ∆u are supposed to be small. Any scalar quantity with
respect to such transformations, such as, e.g., φ(t, u) acquires an increment:

∆φ = φ̇∆t + φ′∆u ≈ φ′∆u, (6.32)

in the linear approximation since both φ̇ and ∆t are small. The quantity
r , also being a scalar in the (t, u) subspace (a 2-scalar, for short), behaves
in the same way. If there are perturbations δφ and δr , the transformation
(6.31) changes them as follows:

δφ �→ δφ = δφ + φ′∆u,

δr �→ δr = δr + r′∆u. (6.33)

It then follows that the combination

ψ1 ≡ r′δφ − φ′δr, (6.34)

is invariant under the transformation (6.31), or gauge-invariant. Recall that
the prime here denotes d/du in the background static configuration.

One can notice that combinations constructed like (6.34) from any
2-scalars (for example, eφ and β = ln r , or two different linear combi-
nations of φ and r ) are also gauge-invariant. Moreover, ψ1 multiplied by
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any 2-scalar or any combination of background quantities which are known
and fixed functions of u is gauge invariant.

The physical properties of perturbations must not depend on which
gauge-invariant quantity ψ is chosen to describe them. Meanwhile, with dif-
ferent ψ , the effective potentials will, in general, also be different. However,
given a specific background configuration, in order that the theory be con-
sistent, these different potentials should lead to the same perturbation
spectrum.

Due to gauge invariance of ψ1 , equations that govern it may be written
in any admissible gauge. In particular, we can choose the gauge δβ = 0,
and Eq. (6.27) for ψ may then be considered as a result of substituting
ψ = (r/r′)ψ1 = rδφ in a manifestly correct equation for ψ1 = r′δφ .

On the similar problem regarding cosmological perturbations and the
definition of the corresponding gauge invariants, see, e.g., the review [47].

6.2.4 Regularized potential near a throat

The gauge δβ = 0 (the same as δr = 0) is suitable for describing the per-
turbations at any points except those with r′ = 0: these are throats and
other critical points of r(u). Indeed [58], putting δr = 0, we forbid pertur-
bations of the throat radius, while there is no physical reason for that. Tech-
nically, this restriction manifests itself in a generically infinite value of the
potential U(u) in Eq. (6.22) and consequently in Veff involved in the wave
equation (6.27). Throats are only possible in the case ǫ = −1 and, provided
U/r2 < 1 at such a throat (u = uth ), the potential there is a wall of infinite
height, with the generic behavior Veff ∼ 1/(u− uth)2 near the throat since
we have there generically r′(u) ∼ u − uth . As a result, perturbations that
are independent at different sides of the throat necessarily turn to zero
at the throat itself, and we thus partly lose information on their possible
properties. Such an incomplete treatment has led to a conclusion that anti-
Fisher wormholes [50, 155] (that is, wormhole solutions to Eqs. (6.2), (6.3)
with V ≡ 0 and ǫ = −1) were stable under spherically symmetric pertur-
bations. A similar conclusion was made in [58] concerning such wormholes
and cold black holes by using another (harmonic) gauge, δα = 2δβ + δγ ,
which does not lead to a pole in the effective potential, but as follows from
our further consideration in this chapter, this analysis was also incomplete.

It could seem that the above difficulty only concerns the gauge δβ = 0.
However, due to the gauge-invariant nature of Eq. (6.27) (to be verified
below), it is clear that the problem is inherent to the background geometry
itself, and the pole in the effective potential always emerges at a throat,
if any.
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A way of avoiding the restriction δβ(uth) = 0 is connected with the
so-called S-deformations of the potential Veff . This method was used
in [212, 213] for transforming a partly negative potential to a positive-
definite one in master equations for perturbations of higher-dimensional
black holes. Using this method, Gonzalez et al. [175] transformed a sin-
gular potential to a nonsingular one for perturbations of the anti-Fisher
wormholes and discovered the existence of an exponentially growing mode,
showing that such wormholes are unstable. Let us try to formulate a similar
scheme suitable for the more general field system (6.1).

Consider a wave equation of the type (6.27)

ψ̈ − ψxx + W (x)ψ = 0, (6.35)

with an arbitrary potential W (x) (whose specific example is the above
potential Veff ). If there is a function S(x) such that W (x) is presented in
the form

W (x) = S2(x) + Sx, (6.36)

then Eq. (6.35) is rewritten as follows:

ψ̈ + (∂x + S)(−∂x + S)ψ = 0. (6.37)

Now, if we introduce the new function

χ = (−∂x + S)ψ, (6.38)

then, applying the operator −∂x +S to the left-hand side of Eq. (6.37), we
obtain the following wave equation for χ :

χ̈ − χxx + Wreg(x)χ = 0, (6.39)

with the new effective potential

Wreg(x) = −Sx + S2 = −W (x) + 2S2. (6.40)

If a static solution ψs(x) of Eq. (6.35) is known, so that ψs,xx =
W (x)ψs , then we can choose

S(x) = ψs,x/ψs, (6.41)

to carry out the above transformation.
Generically, the function U in (6.22) and hence the potential (6.28)

behave near a throat as r′−2 ∼ (u − uth)−2 ∼ x−2 , where, without loss of
generality, we put x = 0 at the throat. Assuming that the potential W (x)
behaves in such a way, let us look if a transition to Wreg can really remove
this singularity. Above all, we see that according to (6.40), such removal
is only possible if W → +∞ as x → 0 since we are dealing with real
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quantities. Thus a potential wall in W (x) can be removed but a potential
well cannot.

A positive pole W ∼ x−2 can be removed in Wreg if

S ≈ −1/x ⇒ ψs ∝ 1/x. (6.42)

It is a necessary condition for regularizing the potential. Besides, to avoid a
singularity of Wreg , ψs must be nonzero in the whole range of u . Moreover,
according to (6.40), it is clear that near the throat x = 0 in this case

W (x) ≈ 2/x2. (6.43)

Thus, to be regularized by the procedure described, the pole in W (x)
must behave as (6.43). Let us show that this is generically the case for the
potential W = Veff(x) given by Eq. (6.28).

Suppose such a generic situation, so that

(i) the function β(x) in the background metric is expanded near its min-
imum (the throat) in powers of x as follows:

β(x) = β0 + 1
2β2x

2 + 1
6β3x

3 + . . . . (6.44)

where β0,2,3 are constants;
(ii) the background quantity φ′(x) �= 0 at x = 0.

Here and till the end of the section, we use the coordinate freedom to
choose the “tortoise” radial coordinate u = x specified by the condition
α = γ . All functions are considered as power series in x at small x .

Let us estimate Veff (6.28). The term that determines the pole at
x = 0 is

Wpole(x) = e2γ(V − e−2β)
φ′2

β′2 , (6.45)

where we have put ǫ = −1 since throats are possible only in this case. By
(6.44),

βx = β2x + 1
2β3x

2 + . . . . (6.46)

Now we use the equations governing the static configuration: from (6.13)
it follows that e2γ( e−2β − V ) = βxx at x = 0, and then from (6.14) we
find that φ2

x = 2βxx at x = 0. Thus from assumption (ii) it follows that
β2 �= 0. Substituting all this to (6.45), we find that it behaves precisely as
required in (6.43).

Thus we have shown that, for a (generic) throat in a solution to
Eqs. (6.10)–(6.14), the effective potential Veff for spherically symmetric
perturbations satisfies the necessary condition for regularization by the
above method.
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Whether or not this regularization really works and leads to a regular
boundary-value problem for the perturbations should be investigated for
specific background configurations. (In particular, one should also take
into account the other singular term in the potential Veff , proportional to
Vφ/βx : the terms ∝ 1/x evidently depend on the finite part of S(x).)

A positive example of such a study, concerning anti-Fisher wormholes,
is known from [175]; we will show that the other two branches of the anti-
Fisher solution are also such examples.

6.2.5 Regular perturbations near a throat

Suppose we have found a solution χ(x, t) to Eq. (6.39), satisfying the appro-
priate boundary conditions. The function χ is regular at x = 0 since the
potential Wreg is regular there. If χ is a growing function of t , it prob-
ably indicates an instability of the initial static configuration; but this is
indeed the case only if χ(x, t) creates regular perturbations of the metric
functions α , β , γ and the scalar field φ .

Let us look at how it happens. Given χ(x, t), a solution to (6.35), or
(6.27), is found as ψ = (∂x + S)χ . Generically, χ is finite at x = 0 while
S ≈ 1/x at small x , hence ψ ∼ 1/x , and according to (6.26) we obtain
δφ → ∞ at the throat. This result is in fact quite natural since the relation
(6.26) corresponds to the gauge δr = 0, in which the throat radius is fixed,
whereas we are seeking perturbations with nonzero δr on the throat. So it
is necessary to pass on to another gauge, which is easily done due to gauge
invariance of the quantity ψ given by

ψ = rδφ − rφx

rx
δr. (6.47)

Namely, a finite expression for δr is obtained in the gauge δφ = 0 provided
φx(0) �= 0 since then

δr = − rx

rφx
ψ, (6.48)

while the product rxψ is finite. It remains to find δα and δγ from the
perturbation equations in the gauge δφ = 0. From Eqs. (6.16) and (6.15)
we find

βxδα = δβx + δβ(βx − γx), (6.49)

δγx = δαx − 2δβx − 2ǫ

φx
Vφ e2αδα, (6.50)

but here we are again facing a problem: according to (6.49), in general δα

diverges at the throat where βx = 0. This divergence is only avoided if the
right-hand side of (6.49) behaves like βx ∼ u − uth ∼ x .
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Surprisingly, this is the case in a generic situation, as can be verified
in a general form using near-throat expansions. Indeed, let us preserve the
above assumptions (i) and (ii) and assume, in addition, that

(iii) the function χ(x, t) that solves Eq. (6.39) is finite and nonzero at
x = 0,

(iv) the function S(x) behaves at small x according to (6.42).

Our task is to estimate the right-hand side of Eq. (6.49) in the order
O(x0): if it is zero, it means that βxδα ∼ x ∼ βx and thus δα(0) is finite;
the remaining metric perturbation δγ is then found from (6.50) and is also
finite.

Taking δβ = δr/r from (6.48) and substituting ψ as ψ = χx +Sχ∼ −
χ0/x , where χ0 = χ(0), we find

δβ =
χ0 e−β

φx

(
β2 +

1
2
β3x + . . .

)
.

Then we substitute this expression to (6.49) to obtain

βxδα ≈ χ0 e−β

φ2
x

[
− φxxβ2 +

1
2
φx(β3 − 2γxβ2)

]
,

where all quantities are taken at x = 0. Now, φxx can be expressed from
the background equation (6.10), βxx from (6.13); we can use the fact that
β2 = βxx(0) etc., and we can also ignore all terms proportional to βx .
After these substitutions we finally obtain

βxδα ∝ e2γVφ

[
ǫβxx +

1
2
φ2

x

]
x=0

.

But the expression in the square brackets vanishes due to the difference of
Eqs. (6.11) and (6.12), which proves that βxδα = O(x) and thus δα(0) is
finite.

We conclude that under the generic assumptions (i)–(iv), regularization
of the potential Veff always leads to finite perturbations of the background
static solution.

6.3 Instabilities of the Fisher and anti-Fisher
solutions

6.3.1 The static solutions

Let us recall the well-known static, spherically symmetric solutions to the
field equations (6.2) and (6.3) for zero potential, V ≡ 0. For ε = +1 this
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corresponds to Fisher’s solution [164] and for ε = −1 to that of Bergmann
and Leipnik [35] (but these authors used the curvature coordinates [i.e.,
the condition u ≡ r in terms of the metric (6.4)], which are not well
suited for the problem, and maybe therefore they did not give a clear inter-
pretation of the solution). These solutions are described in detail in Sec.
4.1.4 and 5.3.2, but here we will briefly recall them using slightly different
notations.

The solution can be written jointly for ǫ = ±1 using the harmonic
coordinate u = v in the metric (6.4), corresponding to the coordinate
condition α(v) = γ(v) + 2β(v) [50]. The solution reads

ds2 = e−2mvdt2 − e2mv

s2(k, v)

[
dv2

s2(k, v)
+ dΩ2

]
, φ = Cv, (6.51)

where the integration constants m (the Schwarzschild mass), C (the scalar
charge) and k are related by the equality

2k2 signk = 2m2 + ǫC2. (6.52)

The function s(k, v) is defined according to (4.18). The coordinate v is
defined in the whole range v > 0 for k ≥ 0 and in the range 0 < v < π/|k|
for k < 0. The value v = 0 in all cases corresponds to flat spatial infinity:
at small v , the spherical radius is r(v) ≈ 1/v , and the metric becomes
approximately Schwarzschild with mass m .

In the case k > 0, we pass over to the quasiglobal coordinate u (such
that α + γ = 0 in (6.4)) by the transformation

e−2kv = 1 − 2k/u =: P (u), (6.53)

and the solution takes the form

ds2 = P adt2 − P−adu2 − P 1−au2dΩ2, φ = − C

2k
ln P (u), (6.54)

with the constants related by

a = m/k, a2 = 1 − ǫC2/(2k2). (6.55)

The Fisher solution [164] corresponds to ǫ = +1, it consists of a
single branch k > 0 and, in (6.54), |a| < 1. It is defined in the range
u > 2k , and u = 2k is a naked central (r = 0) singularity which is
attractive for m > 0 and repulsive for m < 0. The Schwarzschild solution
is restored at C = 0, a = 1 for m > 0 and at C = 0, a = −1 for
m < 0.
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The solution for ǫ = −1 (the anti-Fisher solution) splits into three
branches with the following basic properties.

Branch A, k > 0: we have again the solution (6.54), but now |a| > 1. For
m < 0, that is, a < −1, we have, as in the Fisher solution, a naked central
singularity at u = 2k . The situation is, however, drastically different for
m > 0, a > 1: there is a throat (a regular minimum of r ) at u = uth =
(a + 1)k , and r → ∞ as u → 2k . Moreover, for a = 2, 3, . . . the metric
exhibits a horizon of order a at u = 2k and admits a continuation to
smaller u [57]. These horizons have an infinite area and zero Hawking
temperature (the so-called cold black holes [58]). The throat radius does
not coincide with the (geometrized) Schwarzschild mass m = ak but is of
the same order of magnitude.

The metric (6.54) has a curvature singularity at u = 2k if a < 2
(except for the Schwarzschild case a = 1), a finite curvature if a = 2 and
zero curvature if a > 2. At noninteger a > 2, we are dealing with weaker
singularities termed “singular horizons” (see Sec. 4.1 and [58]).

Branch B, k = 0: the solution is defined in the range u ∈ R+ and is
rewritten in terms of the quasiglobal coordinate u = 1/v as follows:

ds2 = e−2m/udt2 − e2m/u[du2 + u2dΩ2], φ = C/u. (6.56)

As before, u = ∞ is a flat infinity, while at the other extreme, u → 0, the
behavior is different for positive and negative mass. For m < 0, u = 0 is
a singular centre (r = 0), while for m > 0, r → ∞ , and all Ki → 0 as
u → 0. This is again a singular horizon: the nonanalyticity of the metric in
terms of u makes its continuation impossible. The throat occurs at u = m

and has the size e · m , e being the base of natural logarithms.

Branch C, k < 0: the solution describes a wormhole with two flat asymp-
totics at v = 0 and v = π/|k| . The metric has the form [50, 155]

ds2 = e−2mvdt2 − k2 e2mv

sin2(kv)

[
k2 du2

sin2(kv)
+ dΩ2

]

= e−2mvdt2 − e2mv[du2 + (k2 + u2)dΩ2], (6.57)

where v is expressed in terms of the quasiglobal coordinate u , defined on
the whole real axis, by kv = cot−1(u/k), where we denote −k = k > 0.
If m > 0, the wormhole is attractive for ambient test matter at the first
asymptotic (u → ∞) and repulsive at the second one (u → −∞), and vice
versa in case m < 0. The wormhole throat occurs at u = m .
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6.3.2 Perturbations: The Fisher solution

For a massless scalar field [V ≡ 0 in (6.1)], the effective potential in (6.27)
takes the following form in terms of the quasiglobal coordinate u :

Veff = −ǫ
Aφ′2

r′2
+

Ar′′

r
+

A′r′

r
= −ǫ

Aφ′2

r′2
+

A

r2
− A2r′2

r2
, (6.58)

where A(u) := e2γ(u) = e−2α(u) , and the second equality in (6.58) follows
from Eq. (6.13).

Calculating Veff for the solution (6.54), we find a common expression
for both ǫ = +1 and ǫ = −1:

Veff(u) =

kP 2a 2au3 − 3(1+a)2ku2 + 2(3 + 4a + 3a2 + 2a3)k2u − (1+a)4k3

u2(u − k(1 + a))2(u − 2k)2
.

(6.59)

Since in the Fisher solution a < 1, the binomial u − k(1 + a) is positive
at all u ≥ 2k , and the only singularity in Veff is u → 2k , coinciding with
the singularity of the background solution. Near the singularity, at which
according to (6.25) we can put x = 0, Veff(u) ∼ −1/(4x2), a negative pole
in agreement with [72] and many subsequent papers.

The boundary condition at spatial infinity (u → ∞ , x → ∞) is
natural: δφ → 0, or ψ → 0. For u → 2k , where the background field
φ tends to infinity, the boundary condition is not so evident. In [72] and
other papers, dealing with minimally coupled or dilatonic scalar fields, the
minimal requirement was used providing the validity of the perturbation
scheme:

|δφ/φ| < ∞. (6.60)

(The requirement of absence of ingoing waves then does not lead to further
restrictions.) Under this boundary condition it is easy to conclude that
there are solutions to the Schrödinger-like equation (6.30) with any ω2 < 0,
which means that the static field configuration is unstable, in agreement
with the previous work [72] (see also [57] for details).

6.3.3 Perturbations: The anti-Fisher solution

Branch A

The effective potential has the same form (6.59), but now, since a > 1
(we restrict ourselves to this case providing m > 0), the potential has a
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positive pole at u = uth = k(a + 1) > 2k , the throat in the background
configuration.

To remove this singularity, we were able to find the following simple
static solution to Eq. (6.27):

ψs+(u) ∝ r(u)
au − uth

u − uth
. (6.61)

Applying the technique described in Sec. 6.2.4 with these ψs(u), we calcu-
late the new effective potential Wreg = WA(u):

WA(u) =
(

1 − 2k

u

)2a
N(u)

u2(u − 2k)2(au − uth)2
,

N(u) = 3(1 + a)4k4 − 2a(6 + 19a + 16a2 + 3a3)k3u

+3a2(9 + 10a + a2)k2u2 − 2a2(4 + 5a)ku3 + 2a2u4. (6.62)

The potential (6.62) has no singularities at r > 2k and is partly negative,
which should in general lead to an instability. To prove it, one can use the
method of time-domain integration [186] allowing for the time evolution of
the perturbations under prescribed initial and boundary conditions. The
latter, as usual, must provide the absence of ingoing waves from the bound-
ary, and in our case it is sufficient to simply require ψ → 0 and χ → 0 as
x → ±∞ for all three branches of the anti-Fisher solution. The reason is
that the effective potential Veff as well as the regularized potentials vanish
at large |x| , and therefore those modes of interest with ω2 < 0 should
exponentially decay at large |x| .

Examples of plots for the potential (6.62) and the results of time-domain
integration are shown in Fig. 6.1. By fitting of the profile we find that the
perturbations grow approximately as ψ ∝ e0.25t/m .

In the limit a → 1 the regularized potential still has a negative gap;
however, at a = 1 no growing mode is observed, and a stationary solution
dominates at late times (Fig. 6.2), while at any nonzero a − 1 the per-
turbation does grow. This shows how the instability is “dying out” when
approaching the Schwarzschild solution. One can recall that in the genuine
Schwarzschild case there is no scalar field, and the modes we are considering
here simply do not exist.
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Figure 6.1 The regularized effective potential WA (left panel) and the time-domain
profiles (right panel) for the Branch A solutions with a = 3/2 (blue), a = 2 (green),
a = 3 (red). Smaller values of a correspond to deeper potential wells and a more rapid
growth of perturbations.
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Figure 6.2 The potential WA (left panel) and the time-domain profile (right panel)

for the Branch A solution with a = 1.

Branch B

For the solution (6.56), the effective potential (6.58)

Veff(u) =

m exp
(
−4m

u

)
2u3 − 3mu2 + 4m2u − m3

(u − m)2u4
, (6.63)

is singular at uth = m . We again find a static solution to (6.27)

ψs0(u) ∝ u2 em/u

u − m
, (6.64)

and perform the transformation described in Sec. 2.5.
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Figure 6.3 The potential WB (left panel) and the time-domain profile (right panel)
for the Branch B solution.

The regularized effective potential has the form of an inverse potential
barrier:

WB(u) = exp
(
−4m

u

)
3m2 − 10mu + 2u2

u4
. (6.65)

The perturbations grow approximately as ψ ∝ e0.23t/m (see example in
Fig. 6.3).

Branch C

For the wormhole solution (6.57), the potential (6.58) has the form

Veff(u) =

e−4mv 2k4 + k2(3m2−2mu+3u2) − m(m3−4m2u+3mu2−2u3)
(m − u)2(k2 + u2)2

.

(6.66)

It again exhibits a positive pole on the throat. To regularize it, we can take
any of the two static solutions

ψs−1(u) ∝ r(u)
u − m

[k2 + m2 − mv(k2 + mu)], (6.67)

ψs−2(u) ∝ r(u)
u − m

(k2 + mu). (6.68)

The first of them coincides with the solution found by González et al. in
[175]. As a result, we reproduce their regular potential

WC1(u) = e−4mv N1(u)
(k2 + u2)2(k2(mv − 1) + m2(uv − 1))2

, (6.69)
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Figure 6.4 The potential WC1 (left panel) and the time-domain profile (right panel)
for Branch C (k = m = 1).

where

N1(u) = −3k6(mv − 1)2 + m4(3m2 − 10mu + 2u2)(uv − 1)2

+ k2m3(uv − 1)(8u + 2m2v + m(5 − 15uv))

+ k4m(mv − 1)(2u + m2v + m(9 − 12uv)).

A further investigation revealing an unstable mode of perturbation is
described in detail in [175] (Fig. 6.4).

The second static solution (6.68) can be used to demonstrate that,
despite the different regularized potentials, the physical result, namely,
the perturbation growth rate remains the same. Indeed, the regularized
potential produced by the solution (6.68) reads

WC2(u) = e−4mv N2(u)
(k2 + mu)2(k2 + u2)2

,

N2(u) = −3k6 + k4m(m − 12u) + k2m2(2m − 15u)u

+ m2u2(3m2 − 10mu + 2u2), (6.70)

and leads to perturbations growing as shown in Fig. 6.5, at the same rate
as in Fig. 6.4.

We have demonstrated the instability of all anti-Fisher solutions to the
Einstein-scalar equations under spherically symmetric perturbations, thus
confirming and extending the conclusions of [175] made for Branch C solu-
tions (wormholes). It turns out that in almost all cases the characteristic
time of perturbation growth is of the order of the time needed for a light
signal to cover a distance equal to the throat radius.

We have found out that the S-deformation method of regularizing the
effective potential for the perturbations, having a positive pole at a throat
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Figure 6.5 The potential WC2 (left panel) and the time-domain profile (right panel)
for Branch C (k = m = 1).

(a minimum of the spherical radius r(u)), used in [175], is applicable to any
static, spherically symmetric configuration of self-gravitating scalar fields
with self-interaction potentials. We have shown in a general form that,
under some generic assumptions [items (i)–(iv) in Sec. 6.2], the potential
Veff near the throat has the form admitting regularization, and that a
regular mode found as a solution to the regularized equation leads to a
regular perturbation of the initial configuration. The latter circumstance
is quite nontrivial because regularity is required not only for solutions to
the master equation but also for all metric coefficients.

However, application of this methodology to specific solutions with self-
interaction potentials V (φ) �= 0 faces the problem of explicitly finding the
function S(x) satisfying Eq. (6.36), or, equivalently, a proper static solution
to the master equation (a zero mode). We hope to extend this study to
some configurations with nonzero V (φ) (including black universe solutions
desribed above) in the near future.

6.4 Extensions and related problems

An important extension of the presently obtained results is connected with
the fact that Eqs. (6.2), (6.3) are not only the equations of GR but also the
Einstein-frame equations of the general scalar-tensor (STT) (see Sec. 4.1)
and f(R) theories of gravity [284, 294, 309, 412]. Note that in f(R) theo-
ries, the Einstein frame always contains a scalar field with nonzero V (φ).
The observable physics in such theories is usually described in the corre-
sponding Jordan conformal frame, whose metric differs from that of the



Stability of spherically symmetric configurations 203

Einstein frame only by a conformal factor that varies from theory to the-
ory. A transition from one frame to the other is, from the viewpoint of
differential equations, simply a substitution, therefore the stability study
can be safely performed in the Einstein frame. Then, if the conformal fac-
tor is everywhere regular and nonzero (including the end points of the
coordinate range), the conformal mapping preserves the boundary condi-
tions for regular perturbations, and the stability conclusions obtained in
the framework of GR are readily extended to the corresponding solutions
of these generalized theories. In particular, we can assert that all vacuum
static, spherically symmetric solutions in scalar-tensor theories, connected
with the (anti-)Fisher solutions by everywhere regular conformal factors,
are unstable.

However, in many cases the conformal factors bear nontrivial features,
i.e., they blow up or vanish somewhere, and this can affect the bound-
ary conditions for the perturbation equations; in any such case a sepa-
rate study is necessary. Consider, for instance, the counterpart of Fisher’s
solution (6.54) in the Brans-Dicke (BD) scalar-tensor theory, where the
Jordan-frame metric is gJ

µν = (1/Φ)gµν ; Φ = exp(φ/
√

ω + 3/2) is the BD
scalar field, ω > −3/2 is the BD coupling constant, and |a| < 1. It is the
so-called Brans class 1 solution. In both frames, the value u = 2k is a naked
singularity (see more details on these solutions in [58, 85]). In the stability
study, to formulate a boundary condition at this singularity, we have used
the minimal requirement (6.60) for Fisher’s solution , |δφ/φ| < ∞ , provid-
ing the validity of the perturbation scheme, and we then concluded that
the background solution is unstable. In the BD picture, it is more reason-
able to require that the perturbed conformal factor 1/Φ behave not worse
than the unperturbed one, i.e., |δΦ/Φ| < ∞ . However, since δΦ/Φ ∼ δφ ,
we arrive at the condition |δφ| < ∞ which is more restrictive then (6.60)
if φ → ∞ , and this made us conclude in [58] that this BD solution is
stable.

Another example of using the conformal mapping between Jordan and
Einstein frames for stability studies can be found in [70, 71], where the
instability was proved for electrically neutral and charged wormholes sup-
ported by nonminimally coupled scalar fields [22, 50, 71] (for the case of
conformal coupling see Sec. 5.3). Then there is a drastic difference between
the manifold structures in the two conformal frames: in the Einstein frame,
without an electric charge, it is the Fisher solution with the metric gµν that
has a singularity at u = 2k . In Jordan’s, this singularity is removed due to
the conformal factor, the solution is continued beyond this (now regular)
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sphere and has a flat asymptotic at the other end. Such wormholes proved
to be unstable [70, 71], but their instability is of quite different nature
than that described in this chapter and in [175]: it is related to a negative
pole of the effective potential (6.59) at u = 2k for Fisher’s solution (6.54),
ǫ = +1 and a similar singularity in its counterpart with an electric charge.
Actually, it is the same singularity as that in Veff for Fisher’s solution,
but for the latter it occurred at the boundary of the range of the solutions
whereas in continued solutions it is located somewhere in the middle.

The same reason leads to an instability [73] in the black hole solution
with a massless conformally coupled scalar field [30, 41] with the metric
coinciding with the extreme Reissner–Nordström metric with a scalar
source — see (4.34). This solution also involves a conformally continued
space-time with respect to the Einstein frame, and there is again a sin-
gularity in Veff on the transition surface, but the stability study involves
other boundary conditions as compared with the wormhole case since one
of the boundaries (r = m) is now a horizon.
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Chapter 7

Stages of the Universe’s
evolution

This chapter describes the standard theory of our Universe’s evolution.
The physical essence of the phenomena under study is emphasized. For
understanding the material, it is sufficient to know the fundamentals of
field theory, gravitation and quantum mechanics.

7.1 The cosmological principle and the Einstein
equations

When discussing many problems concerning the properties of the Universe
as a whole or its part accessible to observations, one can distract from
specific properties of its separate regions and the matter that fills them.
It is expressed in the so-called cosmological principle, according to which
all points of the Universe and all directions in it are equivalent, or, in
other words, the space is homogeneous and isotropic. Due to the Einstein
equations, the matter distribution must also be homogeneous and isotropic.
The cosmological principle agrees fairly well with observations: regions of
the size ≥ 100 Mpc really differ very little from each other.

The assumption of homogeneity and isotropy of space and matter
distributed in it drastically simplifies the calculations and the analysis of
physical processes. The corresponding equations were very briefly discussed
in Chapter 2. Let us dwell upon them in more detail.

The system contains dynamic variables related to matter (density,
pressure, etc.) and gravity (the metric tensor components gµν ). They obey

207
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the Einstein equations

Gν
µ ≡ Rν

µ − 1
2
δν
µR = −8πGT ν

µ − Λδν
µ, (7.1)

where Rν
µ is the Ricci tensor and R ≡ Rα

α is the scalar curvature; both
of them are expressed in terms of the metric tensor and its first- and
second-order derivatives with respect to the space-time coordinates. The
stress-energy tensor (SET) T ν

µ describes the properties of matter filling the
space, see Chapter 2. The equations also take into account the so-called
cosmological constant Λ, which is very probably observed in experiments.
Eq. (7.1) can be written in another equivalent form,

Rν
µ = −8πG

(
T ν

µ − 1
2
δν
µT

)
+ δν

µΛ, (7.2)

where T ≡ T α
α . Due to the contracted Bianchi identities (2.46) and the

Einstein equations, the SET satisfies the equalities (2.52)
∇νT ν

µ = 0, (7.3)
which have the meaning of conservation laws (see Chapter 2 and the foot-
note to Eq. (2.52)), and the equations of motion for matter can be derived
therefrom.

Owing to the assumption of spatial homogeneity and isotropy, the
squared interval can be written in the Friedmann–Robertson–Walker
(FRW) form

ds2 = gµνdxµdxν = dt2 − a2(t)
[

dr2

1 − kr2
+ r2dΩ2

]
, (7.4)

where dΩ2 = dθ2 + sin2 θdϕ2 is the length element on a unit sphere (as in
the previous chapters). Here, a particular choice of the coordinates has been
made: the synchronous (true cosmological) time t and the dimensionless
spherical coordinates r, θ, ϕ . The behaviour of the gravitational field is
determined by the scale factor a(t) (with the dimension of length) and the
parameter k which can take three values depending on the sign of spatial
curvature: k = +1 for spherical space, k = 0 for flat space, and k = −1
for hyperbolic space.

In the metric (7.4), the nonzero components of the Ricci and Einstein
tensors are

R0
0 =

3ä

a
, R

i
i =

1
a2

(aä + 2ȧ2 + 2k),

G0
0 = − 3

a2
(ȧ2 + k), G

i
i = − 1

a2
(2aä + ȧ2 + k); (7.5)

there is no summing over an underlined index.
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Due to the symmetry properties of the tensor Gν
µ and the Einstein

equations, the tensor T ν
µ automatically takes the form

T ν
µ = diag(ρ,−p,−p,−p), (7.6)

where ρ and p are certain functions of the time coordinate. It is easy to
verify that if the matter is a perfect fluid, then the coordinates chosen
correspond to the comoving reference frame (RF) of the fluid, and the
quantities ρ and p should be interpreted as its density and pressure.

Indeed, the SET of a perfect fluid is

T ν
µ = (p + ρ)uµuν − pδν

µ, (7.7)

where ρ and p are its density and pressure, respectively, and uµ is the
4-velocity of its element. In the comoving RF (i.e., for an observer at rest
with respect to the fluid), the 4-velocity has the form uµ = (1, 0, 0, 0), and
the SET takes the form (7.6).

From (7.5) it is evident that there are two different Einstein equations.
It is convenient to choose for consideration the equation with the left-hand
side G0

0 because it contains only a first-order derivative of the scale factor
a , and the trace R = 8πGT + 4Λ:

3
ȧ2

a2
+

3k

a2
= 8πGρ + Λ, (7.8)

6
a2

(aä + ȧ2 + k) = 8πG(ρ − 3p) + 4Λ. (7.9)

One more first-order equation follows from the conservation law (7.3):

dρ

da
= −1

a
3(p + ρ),

or
dρ

dt
= −3H(p + ρ), (7.10)

where the quantity H := ȧ/a , characterizing the expansion rate, is called
the Hubble parameter.

It is easy to verify that Eq. (7.9) is a consequence of (7.8) and (7.10).
Thus we have two independent equations (7.8) and (7.10) for three
unknown functions a(t), ρ(t) and p(t).

Evidently, a full solution of the equations depends on the properties of
matter described by the equation of state that connects the energy density
and the pressure, p = p(ρ). Very frequently this relation can be chosen in
the simplest linear form

p = wρ, (7.11)
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where w = const has different values for different kinds of matter:

w = −1 corresponds to a cosmological constant,
w = 0 to dustlike matter (or a gas of noninteracting particles),
w = 1/3 to disordered radiation or an ultrarelativistic gas,
w = 1 to matter of maximum rigidity compatible with causality, in which

the velocities of sound is equal to that of light in vacuum.

Let us consider some geometric properties of FRW space-times with the
metric (7.4) and an arbitrary scale factor a(t).

Let one observer be located at the point r = r0 = 0, and another one
at a point with some r �= 0. Then the last term in (7.4) makes it possible
to calculate the area of the sphere r = const, at which the second observer
is located at some time instant t : S = 4πa2(t)r2 . Thus even if the second
observer is at rest, that is, r = const, the physical radius of the sphere is
changing proportionally to the scale factor a(t):

R(t) ≡ a(t)r. (7.12)

Different clusters of galaxies are examples of such “second observers”.
The coordinate radius of such a cluster, r , is fixed, whereas the physical
radius R(t), with an observer at the centre of the sphere, is growing with
time. An experimental confirmation of the physical radius growth is the
frequency decrease of light emitted by the second observer and received by
the first one (the cosmological redshift).

The distances between points of space can be measured in different
ways. The results of measurements (even in Minkowski space) depend on
the choice of the RF and, for a time-dependent metric, even on the choice of
a spatial section (i.e., on the clock synchronization method) in the frame-
work of the same RF. We will use the notion of instantaneous physical
distance, i.e., the distance at a fixed time instant in the metric (7.4). This
distance is measured by a set of observers in the RF which is at rest in the
metric (7.4) with clocks synchronized by the cosmological time t . At mea-
surements along the radius r , the physical distance between neighbours
separated by the coordinate difference dr is a(t)dr/

√
1 − kr2 . The total

distance

Rinst = a(t)
∫ r

0

dr√
1 − kr2

, (7.13)

measured by all such observers at the same time instant, is equal to the
instantaneous physical radius.
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If we introduce, instead of r , the coordinate χ by the equality

χ =
∫ r

0

dr√
1 − kr2

=




arcsin r, k = 1,

r, k = 0,

sinh−1 r, k = −1,

(7.14)

we obtain in terms of χ an alternative expression for the metric (7.4):

ds2 = dt2 − a2(t)[dχ + r2(χ)dΩ2],

r(χ) =




sinχ, k = 1,

χ, k = 0,

sinhχ, k = −1,

(7.15)

and a very simple expression for the instantaneous distance (along the
radius, at fixed values of θ and ϕ) between the observers r = r(χ1) and
r = r(χ2):

Rinst = a(t)(χ2 − χ1). (7.16)

Consider the motion of a light signal emitted at t = t0 on an arbitrary
sphere, labelled by some r , and coming at t = t1 to an observer located at
the origin (centre) r = 0. In this case the motion occurs along the radius
(dθ = dϕ = 0). From the condition ds = 0, according to (7.4) and (7.15),
we have ∫ t1

t0

dt

a(t)
=

∫ r

0

dr√
1 − kr2

= χ. (7.17)

Thus the instantaneous physical distance Rinst = Rhor(t1, t0) between the
observer and the source (with the radial coordinate r1 or χ1 ), measured
at t1 , is

Rhor(t1, t0) = a(t1)χ1 = a(t1)
∫ t1

t0

dt

a(t)
. (7.18)

This quantity is called the particle horizon radius at the time t1 for parti-
cles emitted at the time t0 . (Frequently, omitting the word “radius”, it is
called “the particle horizon” or even simply “the horizon” in cases where
it cannot cause a confusion.)

A subtle point should be mentioned here: this distance measured at
t1 is always larger than the physical distance covered by the light sig-
nal as it travelled from the source to the observer. The latter is simply
equal to t1 − t0 (or c(t1 − t0) if one wishes to write the speed of light c

explicitly), since the speed of light, measured locally at each point on the
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signal trajectory, is a universal constant, and the time t coincides with the
physical time of the considered reference frame. The distance Rhor(t1, t0)
is larger because the Universe has expanded while the signal travelled.18

However, the distance c(t1 − t0) is never used in cosmological calculations
since other quantities like Rinst are much more convenient in both theo-
retical and observational relations.

It should be noted that the notion of a particle horizon has a few defi-
nitions at different levels of rigour. One of them is “the distance to which
the light signal has moved away from its source in a certain time interval”.
For example, the particle horizon radius of our Universe is about 1028 cm
for its lifetime since the beginning of expansion.

Let us also remind the reader that, apart from the notion of a parti-
cle horizon in cosmology, there are quite a number of horizons defined in
the theory of gravity, which are above all used in black hole physics (see
Chapters 3 and 4). Thus, the event horizon is sometimes defined as the
locus of points that can be achieved by light signals, emitted from a fixed
distant point, for infinite time. A typical example of such a horizon is the
event horizon of the Schwarzschild BH.

Some solutions for the scale factor

Consider the time dependence of the scale factor a(t) for some kinds of
matter with the equation of state (7.11) in the homogeneous and isotropic
space-time with the FRW metric (7.4). Recall that we can speak of spatial
homogeneity and isotropy in the modern epoch only if we mean averaging
of matter density at scales of the order of hundreds of megaparsecs.

The basic equations for our analysis are Eqs. (7.8) and (7.10). As will
be seen from what follows, in many cases (including models of early stages
of the evolution) the scale factor is much larger than unity, and the term
k/a2 in Eq. (7.8) may be neglected. Then Eq. (7.8) takes the form

ȧ2 =
8πG

3
ρa2. (7.19)

18The distance covered by the signal and the distance to which it has moved away in
an expanding background are quite different quantities. It can be understood from the
following example. Imagine that you enter an escalator moving up, ascend along it at
your usual pace and have made, say, ten steps — but you are now as far away as 40
steps from the bottom at the expense of the escalator’s own velocity!
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Eq. (7.10) with (7.11) takes the form
dρ

da
= −3γ

ρ

a
, γ := w + 1, (7.20)

with the obvious solution

ρ = Ca−3γ = Ca−3(w+1). (7.21)

The constant C is found from the initial conditions: C = ρina3γ
in , where the

subscript “in” refers to an initial instant at the evolutionary stage under
consideration. Transitions between stages cannot be abrupt in reality, but
this effect is often neglected.

Substituting the expression (7.21) to Eq. (7.19), it is easy to find the
time dependence of the scale factor [234]:

a(t) =

[
a(tin)3γ/2 +

2
3γ

√
8πG

3
C(t − tin)

]2/(3γ)

.

Inserting the constant C , we obtain the following expression for the scale
factor with different values of w or γ :

a(t) = ain

[
1 +

2
3γ

√
8πGρin

3
(t − tin)

]2/(3γ)

. (7.22)

The influence of the properties of matter is reflected in the parameter γ .
It is conventional to divide the Universe evolution into five stages: infla-

tion, reheating, the radiation dominated stage, the matter dominated stage,
and the modern stage of accelerated expansion, also called secondary infla-
tion. Every stage, depending on the dominating form of matter, is approx-
imately characterized by its parameter γ .

Since the scale factor rapidly grows with time, the first term in the
brackets can frequently be neglected. As a result, we obtain the compact
expression

a(t) ≃ ain

[
2
3γ

Hin · (t − tin)
]2/(3γ)

. (7.23)

Here Hin ≡ H(tin) =
√

8πGρin/3 is the value of the Hubble parameter at
the beginning of this stage.

It is easy to obtain the time dependence of the Hubble parameter:

H(t) ≡ ȧ(t)
a(t)

=
2

3γt
. (7.24)

(We note that the Hubble parameter was called the Hubble constant for
some time after the expansion of the Universe was discovered, since only
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times close to the present epoch were only considered, and the value of H

is almost invariable during this period.)
All stages, except for the inflationary ones, are well described by the

above relations. The inflationary stages, approximately described by the
de Sitter metric, have a number of important features. Before discussing
them, it is useful to consider the basic properties of de Sitter space.

7.2 De Sitter space

At the beginning of last century, de Sitter studied the properties of a curved
space which does not contain any matter. The only feature different from
Minkowski space was the presence of a nonzero cosmological constant in
Eq. (7.8). The peculiar properties of this space were only of academic inter-
est for a long time. But now it is becoming evident that it is de Sitter space
that describes fairly well both the initial, inflationary stage of our Universe
and the modern accelerated stage. It is therefore useful and instructive to
devote some time to learning its properties.

This kind of space was briefly discussed in Chapter 2, and now we will
consider it in more detail. Since there is no matter, p = ρ = 0, Eq. (7.8) is
greatly simplified,

ȧ2 − H2a2 = −k, H2 ≡ Λ
3

(7.25)

(assuming Λ > 0) and is easily integrated:

k = 0 : a(t) = a0 e±Ht, a0 = const

(a spatially flat Universe); (7.26)

k = 1 : a(t) = H−1 cosh[H(t − t0)], t0 = const

(a closed Universe); (7.27)

k = −1 : a(t) = H−1 sinh[H(t − t0)], t0 = const

(a hyperbolic Universe). (7.28)

The choice of constants (i.e., the choice of zero point for t) such that
a0 = H−1 , t0 = 0, and the plus sign in (7.26) (it corresponds to the Uni-
verse expansion) lead to a convenient general expression for an asymptotic
form of all three expressions for a(t) at late times:

a(t) = H−1 eHt, t ≫ H−1. (7.29)



Stages of the Universe’s evolution 215

Let us use this expression for an analysis and a deeper understanding
of the general expressions obtained above. Let two observers be located
at spatial points with fixed values of r : r1 = 0 and r2 = r , i.e., both
are at rest in the RF in which the metric is written. Nevertheless, the
physical distance which they measure, according to the expressions (7.12)
and (7.29), grows exponentially with time.

It is also important to clearly understand the question of distances to
which light signals escape in de Sitter space. Consider a flat Universe (k =
0) with the scale factor a(t) = H−1 eHt as the simplest case preserving all
necessary features (by the way, all three models have the same asymptotic
behaviour). For flat models, the dimensionless coordinates r and χ that
we have introduced coincide. Similarly to (7.17), we obtain the expression

∆r(t, t′) =
∫ t′

t

dτ/a(τ) = e−Ht − e−Ht′ (7.30)

for the coordinate distance covered by a light signal which has started at
the time t , by the time t′ . Hence the maximum value of ∆r accessible to
a signal emitted at the time t , is

∆rhor ≡ ∆r(t, t′ → ∞) = e−Ht. (7.31)

Thus the horizon is located at a finite coordinate distance, and even more
than that, the later is the signal emitted, the smaller this distance is. In
the coordinate sense, the horizon size is decreasing with time.

From the viewpoint of physical distances, the situation is different: for
the time (t′ − t), the light signal moves away to the distance

Rphys(t, t′) = a(t′)∆r(t, t′) = H−1[ eH(t′−t) − 1].

With fixed initial time t , the distance grows exponentially, which is in
drastic contrast with the usual situation in Minkowski space. Moreover,
according to the equation

Rhor(t) = Rphys(t, t′ → ∞) = H−1 eH(t′−t), (7.32)

the horizon size tends to infinity.
The notion of a horizon is of utmost importance in cosmology because

it determines the dynamic processes in the early Universe. In the infla-
tionary period, soon after the birth of the Universe, the space-time could
be approximately viewed as the de Sitter one, and the horizon size was
about 10−27 cm. Such was the size of causally connected regions. Recalling
that the Compton length of the electron is about 10−11 cm, it is easy to
see that the very existence of the horizon inserts certain peculiarity into
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the physical processes. At the modern stage, dark energy is dominating,
and this most probably means that we are entering a de Sitter space. In
this case, the modern horizon size is ∼ 1028 cm, and larger distances are
unobservable.

Is there real expansion in de Sitter space?

Let us once again consider the de Sitter metric in the form (7.4) with flat
3-space (k = 0):

ds2 = dt2 − H−2 e2Ht(dr2 + r2dΩ2), (7.33)

where H =
√

Λ/3. The scale factor is time-dependent, and therefore the
distances between point objects at rest with respect to the cosmological
RF also change.

Meanwhile, there is a coordinate transformation that brings the metric
to a static form, see (3.18):

ds2 = (1 − H2r2)dt2 − (1 − H2r2)−1dr2 − r2dΩ2.

In this metric, the distances between bodies fixed in this static RF are
invariable. There also exists an RF in which the distances decrease in time,
e.g., this will be the case if we take the minus sign in Eq. (7.26).

Let us return to the metric (7.33) and consider test particle motion.
The geodesic equation has the form

d2xi

ds2 + Γi
µν

dxµ

ds
dxν

ds
= 0, (7.34)

Since the Christoffel symbol Γi
tt = 0, one of the solutions of this equation

is xi(t) = const. The coordinates of points (and their differences) are
time-independent. On the other hand, physical measurements (Rphys(t) =
eHtRphys(0)) clearly indicate the growth of distances between particles at
rest.

So, does the Universe really expand, while the de Sitter space is max-
imally symmetric and all its points-events are absolutely equivalent? This
seems to mean that a transition from one time instant to another changes
nothing and there is no expansion at all.

A simple explanation of this seeming paradox is that it is not the
4-dimensional space-time that expands but the 3-space of that or other
RF. Moreover, we have just seen that the time lines xi = const of the
RF, in which the metric has the form (7.33), are geodesics — while the
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distances Rphys are growing — consequently, this bundle (congruence) of
geodesics is expanding. Other geodesic congruences in the same space-time
can contract; it depends on the initial data specified in Eq. (7.34).

One can present one more argument confirming the reality of spatial
expansion in the metric (7.33). Consider a set of test particles homoge-
neously distributed in the whole space and immovable in the coordinates
(7.33), i.e., those with the world lines xi = const. It is important that they
weakly interact with each other (e.g., gravitationally). If we discover that
their interaction is diminishing, then it indicates unambiguously that the
distances between them grow, i.e., the Universe is really expanding.

Recall that, in the same coordinates, the horizon size (7.31) is decreasing
in time by the law e−Ht while the coordinate distance between the particles
is fixed. Then, for any two particles there is a time instant at which the
horizon size will be smaller than the distance between them, which will
indicate the absence of a causal connection between the test particles. In
other words, the initially nonzero interaction between the particles must
tend to zero in time, hence the Universe (more precisely, the 3-space of this
particular RF) is expanding.

One could present a similar reasoning in terms of physical distances,
and naturally the result will be the same.

7.3 Inflation

The idea of inflation, i.e., extremely rapid expansion of the Universe at its
early stage, was advanced in the early 80s of the last century. The achieve-
ments of the inflationary paradigm in explaining the observable properties
of the Universe made these ideas generally accepted. A great number of
inflationary scenarios are known today, and it is a hard problem to single
out among them the one that was realized in the past. The number of
inflationary models is continually growing. In what follows, we discuss the
properties of the inflationary models based on the idea of so-called chaotic
inflation.

Decades have passed since the moment when it became clear that the
well-known expansion of the Universe, beginning with the “hot” (radiation-
dominated) stage, leaves many questions, and it became evident that there
was a nontrivial development of the Universe before the hot stage. A full list
of problems can be found in [272] and in most of cosmological textbooks.
The basic ones are discussed in Sec. 7.6.
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The way to a solution of this set of problems was outlined in the papers
[173, 191, 382].

Some time later it became clear that inflation is able to explain the basic
set of observational data. The advances of the inflationary scenario were
so impressive that it was included into the standard cosmological model as
its main component.

The simplest and the most widespread method of describing the infla-
tionary period is as follows. Let us assume the existence of a scalar field
(inflaton) which evolves together with the gravitational field created by it.
Under certain conditions, to be discussed later on, there emerges a situation
resembling the de Sitter one. Thus the size of space under the horizon is
growing exponentially, and it is the main feature of the inflationary period.

The Lagrangian density of a system consisting of a scalar field and
gravity is written in the form

L =
√−g

{
1

16πG
R +

1
2
gµν∂µϕ∂νϕ − V (ϕ)

}
, (7.35)

where g = det(gµν) and G is the gravitational constant.
We can say in advance that the inflationary process is effective with

a large energy density of the scalar field. The latter can emerge due to
quantum fluctuations. Let us estimate the size of a fluctuation using the
uncertainty relation

∆E∆t ∼ 1(= �), (7.36)

and that ∆E ≃ ǫ(∆L)3 . We are interested in regions where there is enough
time to establish causal connections. Therefore the lifetime of such a fluctu-
ation should not be too short. Let us suppose ∆t ∼ ∆L , i.e., a light signal
has time to fly through the whole region. Then the size of such a region
and the energy density of the quantum fluctuation are simply related by

∆L ∼ ǫ−1/4.

By modern views, for the beginning of inflation, the energy density must be
of order of 10−12 in Planck units. The size of the region ∆L must be about
103 in Planck units, or ∼ 10−30 cm. We are coming to an understanding
of the fact that quantum fluctuations of fields in the space that surrounds
us permanently create regions with an increased energy density. From the
viewpoint of an observer from outside, the lifetime of such a fluctuation is
small. In the example under consideration it is of the order of 10−40 s. The
spatial size of a region occupied by a fluctuation is ∼10−30 cm. Despite
being so small, it is still larger than the Planck size, which allows for
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using the Einstein equations in their standard form in order to describe
the processes inside such a region.

In general, a region of an increased energy density can be created arti-
ficially, for example, in heavy ion accelerators. Creation of such regions of
arbitrary size, able to exist for a finite time, may become real in the future.
Let such a region be formed with a size much larger than the horizon size.
Let us ask ourselves: can external and internal observers make a coordi-
nated decision on (non)expansion of this region? The answer is negative
because light launched into such a region (or from it) can only cover a
distance within the horizon size.

Further on, the viewpoint of an internal observer is considered.
The scalar field equation follows from (7.35):

∂µ(
√
−ggµν∂νϕ) +

√
−gV ′(ϕ) = 0. (7.37)

The metric is assumed in the form (7.4). Due to spatial homogeneity, we
also assume the homogeneity of the scalar field ϕ , i.e., ϕ = ϕ(t). Eq. (7.37)
simplifies:

ϕ̈ + 3Hϕ̇ + V ′(ϕ) = 0, H ≡ ȧ/a. (7.38)

One more equation is obtained if one takes into account that the energy
density of the scalar field is ρ = 1

2 ϕ̇2 + V (ϕ). Then Eq. (7.8) in the form

H2 =
8πG

3

(
1
2
ϕ̇2 + V (ϕ)

)
, (7.39)

is the second equation for the set of dynamic variables ϕ(t), a(t). In this
case we can assume that the term Λ/3 in (7.8) is either zero or is already
included in the definition of the potential V .

A key point for the inflationary process is a “slow” evolution of the
scalar field ϕ (the inflaton). In this case, the behaviour of the system (7.38),
(7.39) takes place effectively in de Sitter space even if Λ = 0. Indeed, by
analogy with ordinary material point mechanics, a slow motion takes place
if the term responsible for friction, 3Hϕ̇ , is large enough, i.e.,

3H |ϕ̇| ≫ |ϕ̈|. (7.40)

This simplifies the set of equations even more. Indeed, using (7.40), we can
write Eq. (7.38) as

3Hϕ̇ + V ′(ϕ) ≃ 0. (7.41)

Hence we arrive at the inequality

V ′(ϕ) ∼ 3Hϕ̇ ≫ ϕ̈.
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Multiplying the equation by ϕ̇ and integrating, we obtain the desired
inequality

ϕ̇2 ≪ V (ϕ). (7.42)

This inequality means that the kinetic energy is small as compared to
the potential energy, and the latter therefore changes very little during the
inflation V ≃ const, and moreover, due to Eq. (7.39), the Hubble parameter
is also almost constant:

H ≡ ȧ

a
≃

√
8πG

3
V (ϕ). (7.43)

The solution to (7.43), a(t) ∝ exp(Ht), means an (approximately) expo-
nential growth of the scale factor and hence of physical distances, similar
to de Sitter space. It is not surprising because an (approximately) constant
potential of the inflaton ϕ can be interpreted as a cosmological constant.

The dynamics of a scalar field coupled to gravity is much more
interesting than the dynamics of de Sitter space. In particular, the inequal-
ity (7.42) is eventually necessarily violated since the field ϕ , though slowly,
moves towards a minimum of the potential. As soon as the potential
becomes sufficiently small, the Hubble parameter H will be small as well.
As a result, one can neglect the “friction” in Eq. (7.38), which means that
the inflaton begins to move rapidly to the minimum of the potential, and
the inflationary stage is over. Let us, however, now follow the processes at
the inflationary stage. The dynamics of the inflaton ϕ is determined by
Eq. (7.41) and that of the scale factor a by Eq. (7.43). The latter is solved
in a general form:

a(t) = a(tin) exp
[∫ t

tin

H(ϕ)dt

]
. (7.44)

If the inflation began at t = 0 and has ended by t = te , then the
initial spatial region has grown by a factor of a(te). Conventionally, the
Hubble parameter value He ∼ 1013 GeV, is used, which is in agreement
with the observational data. For the overwhelming majority of estimates,
it is sufficient to put H(ϕ) ≈ He = const. In this case, the scale factor at
the inflationary stage looks as follows:

a(t) ≃ a(tin) exp[Hend(tend − tin)]. (7.45)

Here Hend is the Hubble parameter value at the end of the inflationary
period, and tend is the inflation ending time.
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It is also useful to introduce the notion of e-folding number, N ,
defined as

N ≡ ln
[

a(t)
a(tin)

]
. (7.46)

In other words, if we know the number N , it means that by the present
time the Universe has expanded by a factor of eN .

If the inflation began when the scalar field had the value ϕin , then the
number N is calculated as follows:

N ≡ ln
[

a(t)
a(tin)

]
=

t∫
tin

Hdt =

ϕ∫
ϕin

H
dϕ

ϕ̇
= −

ϕ∫
ϕin

3H(ϕ)2dϕ

V ′(ϕ)
. (7.47)

Let us discuss the slow-rolling condition (7.40) in more detail. To deter-
mine more explicitly under which conditions it is possible, let us do the
following. From Eq. (7.41) written in the form

ϕ̇ = − V ′(ϕ)
3H(ϕ)

,

we express the second-order derivative:

ϕ̈ =
V ′(ϕ)

3H2(ϕ)
H ′(ϕ)ϕ̇ − V ′′(ϕ)

3H(ϕ)
ϕ̇.

For the slow-rolling condition to hold, both terms in the right-hand side
should be small as compared to 3Hϕ̇ . Recalling the expression (7.43) for
the Hubble parameter, we obtain the following conditions:

ε ≡ M2
Pl

16π

V ′(ϕ)2

V (ϕ)2
≪ 1; η ≡ M2

Pl

8π

∣∣∣∣V
′′(ϕ)

V (ϕ)

∣∣∣∣ ≪ 1. (7.48)

The stress-energy tensor (SET) of the scalar field ϕ(t) in the met-
ric (7.4), as follows from the symmetry of the problem, coincides with
the SET of a perfect fluid in its comoving RF (see Sec. 5.1), T ν

µ =
diag(ρ,−p,−p,−p), and for the scalar field the energy density ρ and the
pressure p are expressed as

ρ =
1
2
ϕ̇2 + V (ϕ) (7.49)

p =
1
2
ϕ̇2 − V (ϕ). (7.50)

In the inflationary period, 1
2 ϕ̇2 ≪ V (ϕ) , and this means an approx-

imately de Sitter space with the corresponding behaviour of the scale
factor.
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7.4 Post-inflationary stages

7.4.1 Post-inflationary reheating of the Universe

The stage right after inflation is probably the most difficult for analysis.
Even its name (reheating) is not quite correct since there has not been
any primary heating. It is this stage during which active high-energy par-
ticle production and their thermalization occurs, which, in the language of
statistical physics, means heating of the plasma just born.

The inflationary period terminates when the “friction” becomes small,
i.e., at Hend � minfl (minfl is the inflaton mass). The inflaton field begins to
rapidly oscillate near the minimum of the potential according to Eq. (7.38).
It is this motion, alternating with time, that creates the particles. The
oscillation energy gradually passes over to the energy of particles. Using
the expressions for the pressure, p = 1

2 ϕ̇2 − V (ϕ), and for the energy
density, ρ = 1

2 ϕ̇2 + V (ϕ), it is easy to transform this equation to the
familiar form

dρ

dt
= −3H(t)(p + ρ). (7.51)

The additional condition (the equation of state) ρ + p = γρ , holds only
approximately, after averaging over the oscillation period. Meanwhile, the
parameter γ depends on the model:

γ ≃

T∫
0

(ρ + p)dt

T∫
0

ρdt

=

T∫
0

ϕ̇2dt

T∫
0

[
1
2 ϕ̇2 + V (ϕ)

]
dt

=

ϕmax∫
0

ϕ̇dϕ

ϕmax∫
0

dϕ
[

1
2 ϕ̇2 + V (ϕ)

]
/ϕ̇

.

(7.52)

This expression can be further simplified if one assumes that, during a
single oscillation period, the Universe expands very little, which is quite
realistic. Then, according to the energy conservation law, we have ϕ̇ =√

2[V (ϕmax) − V (ϕ)] . Near its minimum, the potential is approximated
by the parabola V (ϕ) ∼= λϕ2 , Eq. (7.52) is strongly simplified, and the
quantity γ at the reheating stage turns out to be equal to unity,

γ ∼= 1. (7.53)

Let us determine the time dependence of the scale factor. Its initial
value at the reheating stage coincides with that at the end of inflation,
a(tin) = ainfl(tend) = H(ϕU )−1 eNU . It is assumed that the visible part
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of the Universe has formed at NU e-foldings before the end of inflation.
The initial size of the Universe was equal to the inverse Hubble param-
eter, H(ϕU )−1 , while the inflaton value was ϕU . The energy density
at the beginning of reheating was the same as at the end of inflation,
ρ(tin) = ρinfl(tend) = V (ϕend). Then Eq. (7.23) is written as

areh(t) =
(

2
3
Hend

)2/3

H(ϕU )−1 eNU t2/3. (7.54)

Recall that it is usually assumed that Hend ≃ H(ϕU ) ≃ 1013 GeV.
During the rapid oscillations, the inflaton field produces particles, giving

them a part of its energy. Suppose that the interaction energy density of
the inflaton (ϕ) with fermions ψ and other scalar particles χ has the usual
form,

Lint = hϕψ̄ψ + gϕχ2,

where g and h are coupling constants. Then the rate of change of inflaton
energy density is

ρ̇ =
d

dt

[
1
2
ϕ̇2 + V (ϕ) + ∆L

]
= ϕ̇ϕ̈ + ϕ̇V ′(ϕ) + ∆L̇,

where ∆L is a term responsible for diminishing the inflaton energy density
at its decay into other, secondary particles.

Suppose that the back reaction of the radiation on the inflaton dynamics
is small [141]. Then, in the first approximation, according to the equations
of motion, we obtain

ϕ̈ ≃ −3Hϕ̇ − V ′.

Substituting into the previous expression, we find the changing rate of the
inflaton energy density

ρ̇ ≃ −3H(ρ + p) + ∆L̇.

Now the meaning of the last term is clear: it is the changing rate of inflaton
energy density due to decay into other particles,

∆L̇ = −∆ρ̇,

where ∆ρ̇ is the secondary particles’ energy density changing rate due to
the inflaton decay. Expanding it in a Taylor series by the derivative of the
field ϕ , we have

∆ρ̇(ϕ̇) = ∆ρ̇(0) + Aϕ̇ + Γϕ̇2 + . . . ≃ Γϕ̇2.

The first term of the expansion is zero because a static field does not
radiate, and the second one is zero because at oscillations of the inflaton
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the mean value of its derivative is (approximately) zero. Let us also take
into account that the pressure and energy density of the oscillating inflaton
field satisfy the usual relation p = wρ . Then,

ρ̇ ≃ −(3H + Γ)ϕ̇2 = −(3H + Γ)(p + ρ) ≃ −(3H + Γ)(w + 1)ρ.

Recalling that H = ȧ/a , we obtain the time dependence of the inflaton
energy density as

ρ = ρend

(
a(t)

a(tend)

)−3(w+1)

exp{−Γ(w + 1)(t − tend)}, (7.55)

where the subscript “end” refers to the inflation ending time. This expres-
sion is quite understandable physically. The second factor means that the
inflaton energy density is decreasing due to expansion of space, and the
third one due to its decay into particles.

What is now happening to the energy density of the created particles
of matter? The changing rate of the energy density of relativistic particles
ρm is written as follows:

ρ̇m = −3H(pm + ρm) + Γϕ̇2

= −3H(wm + 1)ρm + Γ(w + 1)ρ

= 4Hρm + Γ(w + 1)ρ. (7.56)

Here it has been taken into account that wm = 1/3 for relativistic particles.
It is evident that two terms are competing: the density decrease due to
expansion of space (the first term) and its increase due to inflaton decay.

The relativistic particles rapidly thermalize. When the oscillations
begin, the energy inflow into the particle plasma is predominant, and the
temperature is growing. As time passes, the oscillation intensity decreases,
and the space expansion effect that cools the plasma becomes more
important. Let us estimate the temperature of the plasma at which its
density is the highest. Assuming ρm ∼ ρ , we obtain from the previous
equation H ∼ Γ. Since the Hubble parameter and the cosmological time
are related by t ∼ 1/H (see (7.24)), while the temperature is related to
time as T ∼

√
MPl/t (see Sec. 7.4.2 and Eq. (7.63) for more detailed

consideration), we arrive at the following estimate:

Treh ∼
√

MPl/t ∼
√

MPlH ∼
√

MPlΓ.

A large uncertainty in the calculation of the quantity Γ prevents us from
determining the heating temperature unambiguously. It is usually supposed
that it varies in a wide range between 104 and 1012 GeV.
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7.4.2 The radiation-dominated stage

Up to now, we succeeded in expressing the energy density in terms of fields,
and this allowed us to solve Eq. (7.41) and find the time dependence of the
scale factor. But, by the end of the reheating stage, the inflaton oscilla-
tions have decayed, having created high-energy particles. The existence of
the particle plasma indicate that it is desirable to introduce the notion of
temperature, to use the standard tools of statistical physics and thermo-
dynamics. The notion of temperature is only rigorous if the system is in
equilibrium. It our case it is evidently not true because the Universe is
expanding.

Nevertheless, the relaxation processes occur so rapidly that at each time
instant the state of the Universe is close to equilibrium. To verify that, let
us assume that it is the case and check if we come to a contradiction. We
introduce the plasma temperature T at the time t . It will be shown below
that the cosmological time and the temperature are related by t ∼ MPl/T 2

(see Eq. (7.63)). An equilibrium is established due to particle collisions. The
characteristic time of a collision between an electron and a photon, tγe ,
is tγe ∼ 1/(nσv), where n ∼ T 3 is the electron density, σ ∼ α2/T 2 is
the Compton cross-section, and v ≃ 1 is the electron velocity. We can
use the notion of temperature only if tγe ≪ t . Substituting the estimates
presented in this paragraph, we obtain the applicability condition of the
notion of temperature in the expanding Universe in the form T ≪ α2MPl ∼
1017 GeV. It is known that the temperature at the end of inflation can
hardly exceed 109 GeV. Thus an equilibrium in the medium is established
very rapidly, at least due to Compton scattering, which justifies introducing
the notion of temperature.

To find an explicit form of the scale factor aRD(t) at the radiation-
dominated stage, we use the general relation (7.22) with γ = 4/3. This
value follows from the pressure-density relation p = ρ/3 for a medium
consisting of relativistic particles and Eq. (7.20).

The initial conditions for this stage are tin = treh , ρin = ρ(treh) and
ain = a(treh), where the subscript ‘reh’ refers to the end of the previous
stage, reheating . The final expression for the scale factor is

a(t) ≡ aRD(t) = areh(treh)
[
1
2
H(treh)

]1/2

(t − treh)1/2. (7.57)

Let us look how the temperature evolves with time. First of all, we
recall that the energy density of the ultrarelativistic particles is related to
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the temperature T by

ρ =
π2

30
g∗T

4, (7.58)

where g∗ is the number of types of particles, taking into account their
statistical weight.

Let us further establish the important relationship between the tem-
perature and the scale factor. On the one hand, at this stage γ = 4/3,
and according to (7.21) we have ρ ∼ a−4 . On the other hand, ρ ∼ T 4 .
Therefore,

a(t) = const/T (t). (7.59)

The temperature decreases inversely proportionally to the scale factor.
Let us show that the entropy after the reheating stage (when the par-

ticles were created and hence the entropy grew) remains constant. Indeed,
using the known relationship between the entropy density and the temper-
ature

s =
2π2

45
g∗T

3, (7.60)

it is easy to obtain

S ∼ sa3(t) = const. (7.61)

Another useful relation, following from (7.59), is also important for
making estimates in cosmological models:

T (t) =
a(treh)
a(t)

Treh. (7.62)

Lastly, combining Eqs. (7.57), (7.58) and (7.59), it is easy to obtain the
explicit time dependence for the temperature of the medium filling the
Universe:

T =
(

45
32π2g∗

)1/4
√

MPl

t
. (7.63)

Let us stress that this relation is valid in the radiation-dominated stage
only.

7.4.3 The matter-dominated stage

As the Universe expands, the medium temperature falls, massive particles
become nonrelativistic, and the photon wavelengths grow. There comes
a moment when the particles’ rest energy becomes equal to their kinetic
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energy. Beginning with this moment, there begins the matter-dominated
stage. From that time on, the pressure p becomes so small that it can be put
equal to zero, and accordingly the parameter γ is equal to 1 in Eq. (7.20).
By full analogy with the previous stages, the scale factor aMD(t) can be
found from Eq. (7.22) with γ = 1. The initial conditions for this stage are

tin = tRD, ρin = ρ(tRD) =
π2

30
g∗T

4
RD, ain = aRD(tRD),

where tRD corresponds to the end of the radiation-dominated stage.
It is of interest that Eq. (7.59) remains valid at this stage as well, with

one reservation: now T is the photon temperature. The latter are called
relic photons.

Before beginning to prove (7.59), let us discuss one more period of
utmost importance in the life of the Universe, the so-called recombination
period. The point is that at high temperatures electrons and protons can-
not form hydrogen atoms because of their small binding energy. The Uni-
verse is filled with a plasma of charged particles which actively interact
with photons. It means, by the way, that the emitted photons performed
something like Brownian motion. The Universe was not transparent to
electromagnetic radiation. But at a certain moment, when the tempera-
ture became low enough, hydrogen atoms began to form. Being neutral,
they weakly interacted with photons allowing them to propagate to large
distances. The time interval during which the atoms recombined and the
medium was becoming transparent is called the recombination period. All
the existing data say that the two periods, that of recombination and that
of equality between the energy densities of matter and radiation, roughly
coincided in time. In what follows, we will neglect their difference, which
is small from the cosmological viewpoint.

Thus we suppose that the photons do not interact with matter after
reaching the temperature Trec . Before this time, the photon distribution
by energies was a Bose-Einstein distribution, which, by the recombination
time, had the form

dN(trec) = Vrec
E2

rec

π2

dErec

exp(Erec/Trec) − 1
. (7.64)

Here, dN is the number of photons with energies between Erec and
Erec+dErec inside the volume Vrec . Since after recombination the photons’
interaction with the ambient medium is regarded to be small, the photon
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energy decreases only due to the common expansion of space,

E(t) = p(t) =
2π

λ(t)
=

2π

a(t)
a(trec)

λ(trec)
=

a(trec)
a(t)

Erec. (7.65)

The number of photons is a conserved quantity, so that

dN(t) = dN(trec),

while the volume V containing these particles grows by the law

V (t) =
(

a(t)
a(trec)

)3

Vrec.

As a result, we obtain the photon distribution at arbitrary time t :

dN(t) = V (t)
E(t)2

π2

dE

exp
[
E(t)

a(t)
a(trec)

/
Trec

]
− 1

. (7.66)

The distribution preserves its Bose-Einstein form, and

T (t) =
a(trec)
a(t)

Trec. (7.67)

Our statement has been proved: the law (7.59) really holds at both the
radiation-dominated stage and the matter-dominated stage. The unknown
constant in (7.59) can be determined from normalization for the present
time: const = a0T0 , or for the recombination time, as has been done before.

7.4.4 The modern stage of accelerated expansion
(secondary inflation)

More and more confidently, the observational data show that the density
of dark energy, a substance uniformly distributed in space, contributes to
the modern total energy density at about 70 per cent. The most natural
assumption is that this quantity is time-independent and is related to the
cosmological constant Λ. This means in turn that in the present epoch
the Universe is approximately described by a de Sitter model but with the
energy density much smaller than in the inflationary period. More than
that, with further expansion of space, the matter density decreases while
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the energy density related to the cosmological constant remains constant.
Consequently, the Hubble parameter also tends to a constant value,19

HΛ →
√

8π

3
ρΛ

M2
Pl

, (7.68)

and the scale factor to the function

a(t) = H−1
Λ eHΛ(t−t0). (7.69)

The Hubble parameter characterizes the rate of expansion, and to
describe the change of this rate, i.e., the acceleration, one more dimen-
sionless parameter is used, the deceleration parameter q(t) := −aä/ȧ2 .
The parameter q was introduced when it was believed that the Universe is
expanding with deceleration. Accelerated expansion corresponds to values
q < 0.

The modern observational estimates of these parameters are different
as given by different authors but are approximately in the following limits:

H0 ≈ 0.71 ± 0.04
km

c · Mpc
, q0 ≈ −1 ± 0.4, (7.70)

where the subscript “0” corresponds to the modern epoch. In the case
(7.69) we obtain q(t) = q0 = −1.

The inverse Hubble parameter characterizes the size of a causally con-
nected region. An estimate on the basis of the observational data gives

H−1 ≈ 1028 cm ≈ 1062MPl.

It is this quantity that gives the size of the visible part of the Universe. If
the Hubble parameter is really constant, then information on more remote
parts of the Universe will never be available to us.

When using relations like (7.22) [such as Eqs. (7.77), (7.78), (7.57),
(7.80) given below] for obtaining numerical estimates, there emerges a
question connected with the particular value of the scale factor ain at
the beginning of each stage. Besides, the value of the coordinate distance r

is not evident. Therefore a problem appears when calculating, e.g., the

19The cosmological constant corresponds to a density to pressure ratio w equal to
negative unity. The modern cosmological observations admit a certain interval of w
values including −1. Let us present, as examples, two recent estimates: w = −1.10 ±
0.14(1σ) [245] (according to the 7-year WMAP data), and w = −1.069+0.091

−0.092 [389]
(mainly from data on type Ia supernovae from the SNLS3 sample). Noteworthy, the
central values of w in these estimates belong to the phantom range, w < −1.
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scale factor a(t0) at a given time instant t0 and consequently the physical
distance between two objects, equal to

R0 = a(t0)r. (7.71)

It is this quantity that is measured by observers. The problem can be
circumvented if one considers the expression (7.71) as a way to get rid of
the comoving coordinate r by normalizing the scale factor to its present
value a0 = a(t0). Then the distance between two point objects at arbitrary
time is expressed as

R(t) =
a(t)
a0

R0.

For example, the distance during the matter-dominated stage is

R(t) =
(

t − tRD

t0 − tRD

)2/3

R0 ≃
(

t

t0

)2/3

R0.

The lifetime of the Universe t0 and its size a0 are already well defined.
The dimensionless scale factor is also frequently introduced:

a(t) ≡ a(t)
a0

, 0 < a(t) ≤ 1.

7.4.5 Future of the Universe: Is a Big Rip expected?

The description of dark energy with the aid of the cosmological constant in
the Einstein equations well agrees with observations in the modern epoch.
However, the same observations leave quite a wide range of admissible
values of the parameter w if one describes dark energy as a perfect fluid
with the equation of state p = wρ . For such a description, in general, the
parameter w is time-dependent, while for w = const the conservation law
leads to Eq. (7.21), ρ ∼ a−3(w+1) .

It is easy to verify that an accelerated expansion, q < 0, requires a
negative pressure, w < −1/3. Then, for a large scale factor a , the term
with k in Eq. (7.82) is small relative to the other terms, so that the late-
time behaviour of the scale factor does not depend on the spatial curvature,
and the dependence a(t) can be described as follows:

(a) For −1/3 > w > −1, so that ρ > |p| (the dominant energy condition
holds), the so-called power-law inflation occurs:

a ∼ t2/[3(w+1)], q = −1 +
3
2
(w + 1) > −1; (7.72)
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(b) at w = −1, which corresponds to the cosmological constant Λ > 0,
ρ = const > 0, exponential inflation is obtained:

a ∼ eHt, H = const, q = −1; (7.73)

(c) for w < −1 with the so-called phantom matter, hyperinflation takes
place, ending with a singularity due to growth of the scale factor:

a ∼ (t∗ − t)−2/[3|w+1|], q = −1 − 3
2
|w + 1| < −1, (7.74)

where t∗ is the time of a singularity called the Big Rip.

As is clear from the estimates (7.70), from the observational viewpoint,
all three variants are admissible. However, since the acceleration not only
exists but increases, there is some preference for (b), and many papers
discuss cosmological models where the dark energy “overcomes the phan-
tom barrier”, i.e., at some instant (3 − 4 ·109 years ago) passes over from
w > −1 to w < −1.

In case (c) matter behaves quite exotically: unlike usual matter, its
density does not decrease as the volume grows, but even grows, and at the
singular time both a and ρ blow up simultaneously.

The catastrophic growth of a(t) makes all distances grow, beginning
with extragalactic ones, then also interstellar, interplanetary, and finally
intra-atomic ones, i.e., right before the singularity all kinds of matter should
decay and even all composite particles.

Is such a sad fate of our Universe inevitable if a modern value w < −1
is after all confirmed? Fortunately, the answer is negative.

Indeed, if w = p/ρ is time-dependent, one can assume that the dark
energy is represented by a scalar field φ with the Lagrangian

Ls =
1
2
εgµνφ,µφ,ν − V (φ), (7.75)

where ε = ±1 and V (φ) is the self-interaction potential of the field φ .
These are the same normal and phantom scalar fields that we met in the
previous chapters. At φ = φ(t),

ρ =
1
2
εφ̇2 + V, p =

1
2
εφ̇2 − V, w =

p

ρ
= −1 +

2εφ̇2

2V + εφ̇2
. (7.76)

Thus a normal scalar field (ε = +1) with a positive potential V gives
w > −1 while a phantom scalar field (ε = −1) with V > 0 leads to w < −1.
However, if at large t the scalar field tends to an extremum of the potential
Vext > 0 sufficiently rapidly, then φ̇ → 0 and w → −1 as t → ∞ ; Vext
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behaves as an effective cosmological constant, and accordingly we obtain a
de Sitter asymptotic (7.73) for the Universe evolution.

It is well known that a normal scalar field tends to a minimum of its
potential (“rolls down” along the curve V (φ)), whereas a phantom one,
on the contrary, tends to a maximum of V (“climbs up” along the curve
V (φ)). If V (φ) has a maximum, then a phantom scalar field will tend to
it in the course of the cosmological evolution. For this case, an exact result
is known [160]: i f the potential V (φ) is bounded above, then its maximum
represents a global attractor for cosmological solutions to the gravitational
and scalar field equations.

7.5 The scale factor in the general case

It is useful to put together the basic expressions for the scale factor at
different stages. Since each stage is much longer than the previous ones,
i.e., t ≫ tin , we use the more compact but approximate equation (7.23).

The inflationary stage:

a(t) ≡ aI(t) = H−1
U exp

(∫
H dt

)
≈ H−1

e eNU t. (7.77)

The numerical values NU ≈ 60, He ≈ 1013 GeV agree with observations
for the majority of models.

The reheating stage:

a(t) ≡ areh(t) = aI(te)
(

2
3
He

)2/3

(t − te)2/3. (7.78)

The radiation-dominated stage:

a(t) ≡ aRD(t) = areh(treh)
[
1
2
H(treh)

]1/2

(t − treh)1/2. (7.79)

The matter-dominated stage:

a(t) ≡ aMD(t) = aRD(tRD)
[
2
3
H(tRD)

]2/3

(t − tRD)2/3. (7.80)

The modern accelerated expansion (secondary inflation), assuming that
the dark energy is described by the cosmological constant Λ in the Einstein
equations:

a(t) = H−1
Λ eHΛ(t−t0), HΛ = 3/Λ. (7.81)

All these expressions are approximate because they take into account
only one predominant source of the gravitational field at each stage.
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The real content of the Universe is a mixture of radiation, matter and
dark energy which is rather probably described by the cosmological con-
stant. Let us obtain a general expression for the scale factor, using Eq. (7.8):

ȧ2

a2
+

k

a2
=

8πG

3
ρ +

Λ
3

. (7.82)

The contribution from the dark energy density ρΛ is written separately
as the Λ-term, Λ/3 = (8πG/3)ρΛ . The remaining part of the energy den-
sity consists of the matter density ρm and the radiation density ρr ,

ρ = ρm + ρr. (7.83)

Their dependence on the scale factor has already been discussed,

ρm(t) = ρm(t0)/a3(t), ρr(t) = ρr(t0)/a4(t).

Substituting these quantities into (7.82), we obtain the equation for the
scale factor

ȧ2

a2
=

8πG

3

[
ρm(t0)
a3(t)

+
ρr(t0)
a4(t)

+ ρΛ

]
− k

a2
. (7.84)

Let us choose the additional condition in the form a(t0) = 1. Numerical
solution of this equation does not represent any problem. Let us transform
it, introducing some definitions often used in practice.

First of all, we define the critical density at the modern epoch:

ρc ≡ 3H2
0

8πG
. (7.85)

where H0 is the modern value of the Hubble parameter. At such a value of
the energy density the Universe should be flat (k = 0) provided Λ = 0. In
general, the mean density of the Universe ρ �= ρc , therefore it is convenient
to introduce the dimensionless density parameter

Ωtot = ρ/ρc. (7.86)

Let us also introduce the partial density parameters Ω for the present time.
Thus, for matter, radiation and the cosmological constant we have

Ωm =
ρm(t0)

ρc
, Ωr =

ρr(t0)
ρc

, ΩΛ =
ρΛ(t0)

ρc
.

An expression for Ωk , the density parameter related to the spatial curva-
ture is constructed in a different way:

Ωk = − k

H 0
2
.
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Now Eq. (7.84) looks as follows:

ȧ2(t)
a2(t)

≡ H2(t) = H2
0 [Ωka−2(t) + Ωma−3(t) + Ωra

−4(t) + ΩΛ], (7.87)

where H0 = H(t0). Choosing t = t0 in equation (7.87), we obtain the sum
rule

Ωr + Ωm + ΩΛ + Ωk = 1.

Lastly, let us present the time dependence of the horizon size (in the
present case, it means the distance to which a light signal can get for the
time t):

Rhor(t) = a(t)
∫ t

0

dt′

a(t′)
.

At the inflationary stage, a(t) = const eHt , where H is the Hubble
parameter expressed in terms of energy density and assuming a constant
value with good accuracy. The horizon size is Rhor = H−1(1 − e−Ht),
and at large times it tends to the inverse Hubble parameter, i.e., also a
constant.

At other stages, we have the approximation a(t) = const · tβ , where the
constant β < 1. Then the Hubble parameter has the form H(t) = βt−1 ,
and the horizon size is Rhor = t/(1− β). Thus H−1 = Rhor(1− β)/β , i.e.,
the inverse Hubble parameter coincides with the horizon size by order of
magnitude.

7.6 Why do we need an inflationary period?

In scenarios of the Universe’s birth studied before the inflationary idea
was put forward, the first stage was that of a “hot” radiation-dominated
Universe. All of them face some unsolvable problems. Let us enumerate the
most significant ones.

1. The initial singularity. A study of the classical equations of GR applied
to the Universe as a whole leads to the conclusion that its initial state
was characterized by an infinite density. The inflationary idea does not
completely solve this problem though indicates a way of its solution.
Very probably, our Universe has originated from quantum fluctuations
where the classical equations, and, the more so, the conclusions that
rest on them, were unapplicable.
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2. Our space is described with high accuracy by Euclidean geometry. Its
causes are not evident.

3. Our Universe contains about 1022 stars. How could an object of such
mass and volume emerge? Why does it exist for such a long time?

4. The cosmic microwave background (CMB) is highly isotropic. Why are
its energy density deflections so small?

5. How did the energy density inhomogeneities that have led to galaxy
formation appear?

6. Why does matter dominate in our Universe while the laws of Nature are
almost symmetric with respect to changing particles to antiparticles?

7. At the early stage, at large energy densities, topologically stable states
like magnetic monopoles should form. Their number and mass are large
enough to be noticeable [436]. But such objects have not yet been
discovered.

Let us discuss the main problems. The first of them is the Universe
flatness problem.

7.6.1 The flatness problem

Let us recall the notion of the critical density defined as the density of
matter such that the curvature parameter is k = 0 at Λ = 0. From Eq. (7.8)
it directly follows

ρcrit(t) ≡
3
8π

M2
PlH

2(t). (7.88)

(Keep in mind that G = 1/M2
Pl and ȧ/a = H .) Since the constant Λ is

small at least at the radiation-dominated stage, let us neglect it in Eq. (7.8),
which results in ∣∣∣∣ρcrit(t) − ρ(t)

ρcrit(t)

∣∣∣∣ = ȧ−2(t), (7.89)

for k = ±1. The modern value of the energy density is very close to the
critical value, [379], so that the inequality∣∣∣∣ρcrit(t0) − ρ(t0)

ρcrit(t0)

∣∣∣∣ = ȧ−2(t0) < 1, (7.90)

is established confidently. From Eqs. (7.89) and (7.90) we obtain∣∣∣∣ρcrit(t) − ρ(t)
ρcrit(t)

∣∣∣∣ =
∣∣∣∣ρcrit(t0) − ρ(t0)

ρcrit(t0)

∣∣∣∣ ȧ2(t0)
ȧ2(t)

<
ȧ2(t0)
ȧ2(t)

.
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In the absence of inflation, there are only two stages, the radiation- and
matter dominated ones. The time dependence of the scale factor at both
stages can be presented in the form

a(t) = const · tn, n = 1/2 or 2/3 < 1. (7.91)

Consequently,
∣∣∣∣ρcrit(t) − ρ(t)

ρcrit(t)

∣∣∣∣ <
ȧ2(t0)
ȧ2(t)

∼
(

t

t0

)2(1−n)

≪ 1. (7.92)

Then, if the dependence (7.91) is correct, at birth of the Universe, i.e.,
at t ≪ t0 , the matter density must be equal to the critical one with
inexplicable accuracy. The only way out from this situation is a violation
of the law (7.91), at least at the initial stage. It is this way out that is
provided by inflation.

Let the Universe pass an inflationary stage with the scale factor (7.44)
a(t) = H−1 cosh(Ht). The Hubble parameter at inflation is almost con-
stant, H ≃ const. Then the time dependence of the ratio (7.89) is∣∣∣∣ρcrit(t) − ρ(t)

ρcrit(t)

∣∣∣∣ = sinh−2(Ht).

This function exponentially decreases at the inflationary stage, and this
explains its smallness in the post-inflationary period, see (7.92).

7.6.2 The initial size of the Universe

If now the Universe has the size LU ∼ 1028 cm, at any t its size is

L(t) =
a(t)
a(t0)

LU =
T0

T
LU . (7.93)

Let us estimate the smallest size of the Universe. From Eq. (7.93) it
follows that it took place at the greatest temperature. The classical descrip-
tion is valid at energies, hence temperatures smaller than the Planckian
energy, T ≤ MPl ∼ 1032 K. Substituting this value into (7.93) and taking
into account the modern CMB temperature T0 ∼ 2.7 K, we obtain the
minimum size of the Universe at birth:

Lmin ∼ 10−4 cm.

It remains an enigma why was the Universe born with such a large size as
compared to the Planckian one.
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The inflationary mechanism just allows the Universe to rapidly expand
to the above size.

Moreover, if the Universe was born with the size ∼ 10−4 cm at the
Planckian energy scale, then, at the same moment, the size of a causally
connected region is about 10−33 cm. It means that the Universe consisted
of ∼1087 causally disconnected regions. It is absolutely unclear why the
energy density is the same in all these regions up to about 10−5 . It is the
essence of the horizon problem.

The assumption of the existence of an inflationary period solves this
and other problems, such as the monopole problem [436].

7.6.3 Causal connections at inflation and after it

The inflationary stage has a feature of great interest, distinguishing it from
all other stages. Since an understanding of this feature is necessary for
understanding the majority of subsequent processes, let us dwell upon it
in more detail.

Consider two spatial points at rest in the cosmological RF. Suppose
that at the initial moment tin the distance between them is equal to l(tin),
and both are located in the same causally connected region, “under the
horizon”. Since the size of a causally connected region is determined by
the inverse of the Hubble parameter H , at the first moment there holds
the inequality

l(tin) < H−1(tin).

Further on, the distance between the particles grow along with the scale
factor a(t)

l(t) = a(t)r, (7.94)

where the coordinate distance r does not change with time, and the Hubble
parameter is by definition H(t) ≡ ȧ(t)/a(t). Using these relations, it is
easy to find the time dependence of the ratio l(t)/H(t)−1 . This ratio of
the distance between the particles and the horizon size as a function of
time is the subject of our interest:

l(t)
H−1(t)

= ȧ(t)r. (7.95)

In the inflationary period, the scale factor is a(t) ∝ eH0t , while
the Hubble parameter is approximately constant, H(t) ≃ H0 = const.
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Eq. (7.95) acquires the form(
l(t)

H(t)−1

)
infl

∝ eH0t,

so that the distance between two particles grows exponentially as compared
to the horizon size. Even if these particle were born in a causally connected
region, there will be an instant t1 when they will turn out to be in causally
disconnected regions, for which l(t1) > H−1(t1). It is said that at this
moment the distance between the particles “has crossed the horizon”.

Thus the previously close particles turn out to be far from each other,
in causally disconnected regions, at the expense of the properties of space
during inflation.

What happens when the inflation is over? The scale factor behaves as

a(t) ∝ tβ,

where the parameter β is in the interval 0 < β < 1 at any post-
inflationary stage [see (7.57), (7.80)]. Let us calculate the ratio of interest
using Eq. (7.95): (

l(t)
H(t)−1

)
power

∝ tβ−1, 0 < β < 1.

We see that the horizon size H(t)−1 grows more rapidly than the distance
between the two particles. At some time t2 the horizon size becomes equal
to the distance between these particles and later exceeds it. The particles
are then again in a single causally connected region. All the above-said
certainly refers not only to distances between particles but also to any other
phenomena which do not strongly affect the metric, e.g., field fluctuations.

7.7 Basic properties of expanding space

7.7.1 The redshift

Here and henceforth the scale factor is normalized so that a(t0) = 1.
Let a source emit a light signal with the wavelength λ(t) at a time t ,

which is received on Earth with the wavelength λ . At emission, the scale
factor is equal to a(t), and at the moment of absorption it is naturally
equal to unity.

The redshift is defined as

z =
∆λ

λ
=

λ − λ(t)
λ

. (7.96)
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Evidently

z =
1 − a(t)

a(t)
⇒ a(t) =

1
1 + z

. (7.97)

Let us suppose that the Universe is flat, k = 0. The coordinate distance
r(t) and the physical distance R(t) to the source are

r(t)=
∫ t0

t

dt′

a(t′)
, (7.98)

R(t)=a(t)r(t) =
1

1 + z
r(t). (7.99)

We are interested in the physical distance (7.99). To find it, we will need
an expression for a(t) or the related H(z). In more detail,

R(t) = a(t)
∫ t0

t

dt′

a(t′)
=

1
1 + z(t)

∫ t0

t

[1 + z(t′)]dt′.

The substitution t′ → z leads to the expression

dz = − ȧ

a(t′)2
dt′ = −H(t′)

a(t′)
dt′ = −H(z)[1 + z(t′)]dt′.

The dependence H(z) is known: according to (7.87),

H(z) = H0

√
Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ.

The quantity Ωk = 0 since we are considering a flat Universe with k = 0.
Finally, the distance to the object that has emitted the light signal is

R(t) =
1

1 + z

∫ z

0

dz′

H(z′)
.

And the redshift z is determined from observations by the frequency shift
between the emitted and absorbed signals according to (7.96).

Thus, in the expanding Universe, we can find the distance to the emit-
ting object. We can also find the velocity of its separation from the observer
due to cosmological expansion:

v(t) = Ṙ(t) = ȧ(t)r(t) = H(z)R(t) =
H(z)
1 + z

∫ z

0

dz

H(z)
.

The emission time t is also unambiguously related to the redshift z .
This relationship can be easily found for any of the main periods using the
expressions (7.78), (7.57), (7.80) and the relation (7.97).
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Problem. Observers have detected radiation from a quasar with z = 6.41.
Find: when and at what distance from the Earth was this light emitted?
What is the speed of the quasar measured from the Earth?

Let us note that, apart from the cosmological redshift, another, gravi-
tational redshift is also well known, and it is one of the classical observable
effects of relativistic gravity; it is closely related to the time slowing-down
near gravitating masses. It has no direct relationship with cosmology but
must be taken into account for interpretation of astronomical observations.

7.7.2 The luminosity distance

An important role in observations is played by the notion of luminosity
distance dL . Let an object emit an energy E per unit time in the form of
photons or gravitational waves. An observer on Earth detects the energy
flux F . Since in the expanding Universe the wavelength is changing as the
signal moves from the source to the observer, the seeming luminosity of
the object is L = E/a(t). It is simply the effect of photon energy decrease
due to increased wavelength. It is natural to define the luminosity distance
through the relation

F =
L

4πd2
L

.

Then the relationship between the energy emitted by the source and that
absorbed by the receiver on Earth at t = t0 is

Fdt0 · 4πr2 = E dt = L a(t) dt. (7.100)

Let us prove the relationship

dt

dt0
= a(t). (7.101)

For a signal emitted at t and received at present, t0 , by an observer at the
coordinate distance r , we have

∫ t0

t

dt′

a(t′)
= r.

The same after the time interval dt :∫ t0+dt0

t+dt

dt′

a(t′)
= r.
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Comparing the two expressions for r , we obtain (7.101) and hence

F =
La2(t)
4πr2

.

Returning to (7.100) and (7.101), we obtain

dL =

√
L

4πF
=

√
L

4πLa2(t)/(4πr2)
=

r

a(t)
=

Rphys

a2(t)
,

and finally we obtain a relationship between the luminosity distance and
the redshift in the form

dL =
Rphys

(1 + z)2
. (7.102)

7.7.3 The velocity of particles in FRW space-time

The properties of matter, its density and its equation of state, affect the
global properties of the space itself and, in particular, its expansion dynam-
ics, i.e., the time dependence of its scale factor. But the opposite is also
true: it turns out that the expansion of space diminishes the velocities of
particles. Let us prove it, for example, for massive nonrelativistic particles.

Let us first prove the Hubble law for arbitrary times and distances. Let
there be two observers located at a coordinate distance r from each other,
both at rest in the comoving RF, i.e., r = const. The physical distance
varies in time, R(t) = a(t)r . Thus the physical velocity of one observer
with respect to the other is also variable. Indeed,

v = Ṙ = a(t)r = H(t)a(t)r = H(t)R. (7.103)

Evidently, the Hubble parameter H(t) can be considered to be approxi-
mately constant only at the present epoch.

Consider the motion of a particle from one observer to the other, located
at the coordinate distance dr , under the same conditions, so that dr =
const. Physically, according to the Hubble law, the second observer moves
away from the first one with the velocity

dvobs = H(t)dR,

where dR is the physical distance between them. A particle having the
velocity V (t) with respect to the first observer and passing near him at
the time t = t0 will reach the second observer in the time

dt = dR/V (t).
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If the space were not expanding, the particle velocity V (t) would be con-
stant. In the expanding Universe it is not the case. In the time interval dt ,
the particle velocity is measured by the second observer who moves relative
to the first one with the velocity dvobs . He will find that the velocity of
the particle passing by him is

V (t + dt) = V (t) − dvobs = V (t) − H(t)dR.

This equality shows that

dV

dt
= −H(t)

dR

dt
= −H(t)V = −V

a

da

dt
.

The last equality is simply substituting the definition of the Hubble param-
eter. Finally, we have the following trivial equation:

dV/V = −da/a,

whose solution is

V (t) = const/a(t). (7.104)

The constant is, as usual, determined by the initial conditions.
Thus in the expanding Universe the velocity of a free particle decreases

with time. The Newton laws hold only in Minkowski space in which
a(t)= 1. Moreover, unlike both Newtonian mechanics and special relativ-
ity, there is a distinguished RF in nature: it is the one in which the CMB
is isotropic.



Chapter 8

Field dynamics in the
inflationary period

The inflationary paradigm has been developed for about 30 years, begin-
ning with the papers [191, 382, 383]. It has allowed for successfully solving
the basic cosmological problems, beginning with the earliest stages at which
our Universe was formed and ending with the galaxy formation stage. The
existence of an inflationary period in the history of our Universe seems
inevitable since it explains a great number of observational facts [232, 272].
The first inflationary mechanisms [191, 383] were based on self-consistent
equations of the scalar and gravitational fields. They solved in the most
economic manner the key problems of the Big Bang theory: the horizon
problem, the flatness problem etc. The key point is that, under certain
conditions, the interacting gravitational and scalar fields lead to an expo-
nential growth of initially small spatial regions. The scalar “inflaton” field
ultimately decays into fermions, thus heating the Universe [275].

Nevertheless, the simplest inflationary models usually require substan-
tial improvement. For instance, their predictions concerning the CMB
temperature fluctuations agree with reality only with unnaturally small
parameters of the potential for the inflaton field which is responsible for
the very opportunity of the inflationary process. On the other hand, its
interaction with the matter fields must be sufficient for creating, in the
post-inflationary period, the observed baryon and lepton numbers.

A further development of the theory has led to emergence of a
large number of inflationary models containing additional fields, such
as, for example, hybrid inflation [274] and inflation with pseudo-Nambu-
Goldstone field [139]. Most of these models are based on interactions
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between the classical components of different fields. Meanwhile, their
nature contains numerous kinds of fields whose interactions must lead to
new phenomena during inflation. Thus, for instance, dissipation effects
lower the probabilities of phase transitions. Some inflationary models
include as one of their basic elements an interaction between the classi-
cal inflaton field with various sorts of particles it has created. This effect
is a basis for the model of “warm inflation”; back reaction of the created
particles on the dynamics of the inflaton field has been discussed in [141].

8.1 Quadratic inflation

Consider inflation with a quadratic potential as one of the most promis-
ing models. The general equations have been presented in the previous
chapter. It is well known that the inflaton field, as a number of other
scalar fields, emerges in multidimensional theories in a natural way. The
shape of the potential can be quite complicated and strongly depends on
the theory chosen. However, our interest is in the shape of the poten-
tial near its minimum since our Universe was formed at the last stage of
inflation, in the process of its completion. But near a minimum, any rea-
sonable potential can be expanded in a Taylor series and approximated by
its quadratic term. Thus we choose as an example the simplest, quadratic
potential

V (ϕ) =
1
2
m2ϕ2. (8.1)

Now the general equations of Sec. 7.3 can be given in a specific form.
In particular, the set of Eqs. (7.38) and (7.39) is solved analytically. The
solution has the form

ϕ(t) = ϕin − mMPl√
12π

t. (8.2)

Recall that this solution is valid as long as the inequality (7.40) holds.
For the quadratic potential it reduces to the inequality

ϕ ≫ MPl

2
√

3π
. (8.3)

It is useful to know the field value at which the slow-rolling conditions
are violated, i.e., when ǫ ≃ 1, η ≃ 1, and therefore inflation terminates.
It can be easily found that for the quadratic potential we are considering
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this happens at

ϕend ≈ 1
2
√

π
MPl. (8.4)

Thus the ϕ field (the inflaton) should be at the Planck scale to make the
conditions for an inflationary stage.

Let us estimate the growth of the spatial size of the filed fluctuation.
To do that, one should find the number of e-folds N, since the size of the
Universe grows by a factor of eN. This number is easily obtained from
Eq. (7.47) in our special case of a quadratic potential:

N =
2π

M2
Pl

(ϕ2
in − ϕ2

end). (8.5)

It is known from observations that N ≈ 60. Now we can estimate the infla-
ton value at the moment when the modern horizon was created, i.e., at
creation of the spatial region that we call the observable Universe:

ϕin ≈ MPl

√
N

2π
∼ 3MPl. (8.6)

It has been taken into account here that ϕend ≪ ϕin and that the number
of e-folds known from observations is N ≈ 60. It is now easy to estimate
the value of the potential (8.1) at the creation of the modern horizon:

V (ϕin) =
1
2
m2ϕ2

in ≈ 4.5m2M2
Pl ≈ 4.5 · 10−12M4

Pl.

The last equality has been obtained for the usually-supposed value of the
inflaton mass, m ≈ 10−6MPl . Thus the modern horizon of our Universe
appeared at energies much smaller than the Planck one.

Let us see what is the size of the horizon that appeared at the
Planck energy scale, at V ∼M4

Pl . In this case, the initial field value is
ϕPlanck ∼M2

Pl/m∼106MPl . Substituting this value to the expression (8.5),
we obtain

N ∼ 2π · 1012.

So the linear size of the spatial region that emerged at the Planck energy
scale has increased by a factor of exp (2π · 1012). Its initial size was of the
Planck order. Right after the end of inflation, the spatial size of such a
region is

L ∼ exp(2π · 1012) · 10−33 cm ∼ 102·1012
cm.
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8.2 Quantum fluctuations during inflation

A brief analysis

As is known, the classical evolution of systems is slightly changed by
quantum fluctuations. In Minkowski space their role is insignificant in
many cases because the quantum corrections are proportional to a small
parameter, the Planck constant � . In addition, according to Heisenberg’s
uncertainty principle, the larger a fluctuation, the smaller its existence
time. The situation is radically different at the inflationary stage which is
approximately described in terms of de Sitter space. The main property
of inflation is that any spatial inhomogeneity is stretched along with the
expansion of space. Field fluctuations are also inhomogeneities, and their
behaviour is quite unlike the behaviour of fluctuations in Minkowski space.
In de Sitter space, their size rapidly grows and exceeds the horizon size.
This process resembles particle creation in a strong field. After creation,
virtual particles fly apart instead of annihilating, as happens in Minkowski
space. The additional energy is created by the work of the external field,
the gravitational field in our case.

The hypothetic field that makes the inflationary stage possible is gener-
ally assumed to be scalar. One of the Einstein equations where this scalar
field ϕ is a source has the form

ϕ̈ + 3Hϕ̇ − H−2 e−2Ht∆ϕ + V ′(ϕ) = 0. (8.7)

Eq. (8.7) follows from Eqs. (7.37) and (7.4) after simple calculations. Here,
we have neglected the weak change of the Hubble parameter H = ȧ/a at
the inflationary stage, so that the scale factor is a(t) = H−1 eHt .

Now we divide the field into “classical” (Φ) and “quantum” (q ) parts:

ϕ(x, t) = Φ(x, t) + q(x, t). (8.8)

The term q(x, t) ≡ δφ(x, t), representing small fluctuations, must be quan-
tized, and to do so, we employ, as usual, the Fourier expansion

δϕ(x, t) =
∫

d3k

(2π)3
[
akfk(t) eikx + h.c.

]
,

where ak is the annihilation operator for the mode k . Note that in this
analysis we are using the comoving RF with a dimensionless coordinate
x , and the wave vector k is also dimensionless. From the basic Eq. (8.7),
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putting H ≃ const, we obtain

f̈k + 3Hḟk +
k2

(H eHt)2
fk + V ′′(Φ)fk = 0. (8.9)

During inflation the field is changing slowly, therefore we neglect the last
term, which allows for finding a suitable solution to this equation

fk(t) =
H√
2k3

(i + k e−Ht) eik e−Ht

. (8.10)

The behavior of the solution is extremely curious. At large wave numbers it
rapidly oscillates while at small wave numbers it tends to a constant. A crit-
ical wave number that separates the two regimes is kH = a(t)H(t)= eHt.
This wave number is inversely proportional to the characteristic size of the
region, which is in this case a fluctuation emerging at a certain instant at
the inflationary stage.

The following picture is appearing. Quantum effects create a fluctuation
of the ϕ field whose spatial size, l , is naturally smaller than the horizon
size because a fluctuation can only appear in a causally connected region.
The condition l < 1 means k > 1 (recall that we are using dimensionless
coordinates and momenta).

Let us suppose that there initially emerged a small-scale field con-
figuration with the size l0 ≪ 1 and the characteristic momentum
k0 ≫ 1. The function fk describing this configuration, (8.10), rapidly oscil-
lates. The limiting momentum kH(t)= eHt grows exponentially rapidly,
and there must occur such an instant, tH , that the characteristic momen-
tum of the system will be comparable with the limiting momentum,
k0 ∼ kH(tH). Beginning with this time, the function fk stops to oscillate
and tends to a constant. It is clear that the values of this constant are ran-
domly distributed. The distribution law is considered in the next section.

So far we have been dealing with comoving coordinates. Let us now look
at these processes from the viewpoint of physical distances Rphys = a(t)r =
H−1 eHtr and the corresponding physical momenta Pphys = p/a(t) =
He−Htk . The limiting physical momentum at which the magnitude of a
certain fluctuation is “frozen” is PH

phys = He−HtkH = H. The character-
istic size is then L phys = 1/PH

phys = 1/H. Thus a fluctuation emerging at
the inflationary stage due to quantum effects develops in the following way:
the field value fluctuates very rapidly while its spatial size exponentially
grows until it becomes the inverse value of the Hubble parameter.
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A detailed consideration

Let us return to the expansion (8.8). The classical part of Φ is associated
with smooth and slow changes of the field. The following expansion on the
basis of the Fourier transformation is often used:

ϕ(x, t) =
∫

d3k
(2π)3/2

[ak(t) e−i(kx) + a†
k(t) ei(kx)];

Φ(x, t) =
∫
|k|<k∗

d3k
(2π)3/2

[ak(t) e−i(kx) + a†
k(t) ei(kx)],

q(x, t) =
∫
|k|>k∗

d3k
(2π)3/2

[ak(t) e−i(kx) + a†
k(t) ei(kx)], (8.11)

where the critical momentum k∗ separates the “rapid” subsystem from
the “slow”, classical one. This choice is not unique and depends on the
problem under consideration. In Minkowski space, the most convenient is
the choice of basis functions of the form ak(t) ∼ eik0t, which are solutions
of the d’Alembert equation

�g(x, t) = 0.

In de Sitter space it is also convenient to choose the solutions of this equa-
tion as basis functions. After the Fourier transformation

g̃p(t) =
∫

d3x ei(px)g(x, t),

the equation acquires the form

∂2g̃p(t)
∂t2

+ 3H
∂g̃p(t)

∂t
+ (Hp)2 e−2Htg̃p(t) = 0, (8.12)

where H is the Hubble parameter. Let us note that the momentum p is
dimensionless as well as the comoving coordinate x . One often uses the
momentum P ≡ Hp , having the correct dimensionality. Then the set of
solutions of Eq. (8.12) is expressed in terms of Hankel functions:

H
(2)
3/2(y) = [H(1)

3/2(y)]∗ = −
√

2
πy

e−iy

(
1 +

1
iy

)
.

The solution can be presented in the form

g̃p(t) =
√

π

2
Hη3/2[c1(p)H(1)

3/2(ηP ) + c2(p)H(2)
3/2(ηP )].
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Here, the so-called conformal time has been introduced:

η ≡ −H−1 e−Ht. (8.13)

This quantity simplifies the equations when analyzing processes in de Sit-
ter space. The two constants are determined from additional conditions.
More precisely, it is natural to suppose that at distances much smaller
than the horizon size, i.e., as p→∞ , the solution must coincide with that
in Minkowski space. It is possible if c1 = 0, c2 = −1. Thus the set of
orthonormalized solutions has the form [272]

g̃p(t) =
iH

P 3/2
√

2

(
1 +

P

iH
e−Ht

)
exp

(
iP

H
e−Ht

)
. (8.14)

An analysis of the behaviour of g̃p(t) indicates the existence of the thresh-
old value of the momentum,

P ∗(t) ≡ H eHt. (8.15)

At each time t , the solution oscillates at P ≫ P ∗ and tends to a constant
at P ≪ P ∗ :

g̃p(t) ≃ iH

P 3/2
√

2
, P ≪ P ∗. (8.16)

To make clear the physical meaning of the result obtained, let us pass on
to physical distances, Rphys = a(t)r , and momenta. Evidently, the physical
momentum Pphys is connected with the coordinate one, p , in the follow-
ing way: Pphys =p/a(t)=P/(a(t)H). At the inflationary stage, the scale
factor is related to the Hubble parameter, a(t) ≃ H−1 eHt. Consequently,
the threshold value of the physical momentum P ∗

phys is

P ∗
phys ≡

P ∗

a(t)H
= H.

The characteristic value of a fluctuation is L phys ∼ P−1
phys . If this size is

larger than the horizon size H−1 , the magnitude of the fluctuation tends
to a constant. Note that the physical size Lphys of the fluctuation grows
exponentially:

Lphys ∼ P−1
phys =

a(t)H
P

=
1
P

eHt. (8.17)

This behaviour is just characteristic of de Sitter space. In Minkowski space,
the lifetime of a quantum fluctuation is of the order 1/∆E (∆E is the
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fluctuation energy). In de Sitter space, a quantum fluctuation, having been
born, increases its size exponentially according to the expression (8.17). At
the same time, its magnitude is determined by the expression (8.16).

Now we can return to the problem of splitting the scalar field ϕ into
classical and quantum parts. The quantum part, see (8.11), can be written
in the form

q(x, t) ≡
∫

d3p
(2π)3/2

W (P, t)
[
âpg̃p(t) e−i(px) + â†

pg̃∗p(t) ei(px)
]
. (8.18)

Here we have introduced the creation and annihilation operators â†
p and

âp , according to the standard manner of field quantization. Instead of
roughly cutting off the momentum by the condition P > P ∗ , we use the
function W (P, t) with the properties W (P → 0, t)→ 0, W (P → ∞, t) → 1
[385]. This can be, e.g., the function

W (P, t) = θ(P − εH eHt), ε ≪ 1. (8.19)

As will be seen later, the final result does not depend on the small but
otherwise arbitrary parameter ε . Substituting the expressions (8.8) and
(8.18) to Eq. (8.7), we obtain

∂Φ
∂t

− 1
3H

[
e−2Ht∆Φ − ∂V (Φ)

∂Φ

]
= y(x, t),

y(x, t) ≡
(

1
3H

∂2

∂t2
− ∂

∂t
+

1
3H

e−2Ht∆
)

q(x, t). (8.20)

In this equation we have made an approximation: taking into account
the slow change of the field during inflation, we omit the second-order
derivative and neglect the higher powers of the function y(x, t). Eq. (8.20)
describes the dynamics of the Φ field subject to the random “force” y .
The latter is assumed to be small, so that we can seek the solution in the
form [342]

Φ = Φdet + φ. (8.21)

The main part of classical field Φdet obeys the equation

∂Φdet

∂t
− 1

3H

[
e−2Ht∆Φdet −

∂V (Φdet)
∂Φdet

]
= 0, (8.22)
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whereas the random part φ entirely depends on quantum fluctuations
according to the linear equation

∂φ

∂t
− 1

3H
[ e−2Ht∆φ − V ′′(Φdet)φ] = y(x, t). (8.23)

(We consider the limit Φdet ≫ φ , which is justified if the random “force”
y(x, t) is small). Calculating the random “force” appearing due to quantum
fluctuations, we obtain (see details in [342])

y(x, t) ≡
(

1
3H

∂2

∂t2
− ∂

∂t
+

1
3H

e−2Ht∆
)

q(x, t)

=
(

1
3H

∂2

∂t2
− ∂

∂t
+

1
3H

e−2Ht∆
) ∫

d3p
(2π)3/2

θ
(
P − εH eHt

)

× [âpg̃p(t) e−i(px) + â†
pg̃∗p(t) ei(px)]

≃ H3ε√
2

eHt

∫
d3p

(2πp)3/2
δ(P − εH eHt)[âp e−i(px) − â†

p ei(px)].

(8.24)

Here we have used Eq. (8.12), which substantially simplifies the calcula-
tions; omitted is the second-order derivative, proportional to the small
parameter ε2 . We also have P =

√
P2 =

√
(pH)2 . In the last line we use

the approximation (8.16). The validity of this assumption follows from
smallness of the momentum that enters into the argument of the delta
function.

Consider the correlator

D(x, t,x′, t′) ≡ 〈0 |y(x, t), y(x′, t′)| 0〉 .

Using the expression (8.24) obtained above and the properties of the cre-
ation and annihilation operators a† and a , we can obtain an analytic
expression for this quantity:

D(x, t,x′, t′) =
H3

4π2
δ(t − t′)

sin ε|x − x′| eHt

ε|x − x′| eHt
,

ε ≪ 1. (8.25)

Homogeneous fluctuations

According to the expression (8.25), the correlator D(x, t,x′, t′) turns out
to be an abrupt function of the distance |x − x′| . For the same reasons,
one can neglect the spatial derivatives in Eq. (8.23), which greatly simplifies
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the equations. So there is a reason to consider a homogeneous distribution
Φ = Φ(t) obeying the simple equation

∂Φ
∂t

+
1

3H

∂V (Φ)
∂Φ

=0, (8.26)

∂φ

∂t
+

m2

3H
φ=y(t). (8.27)

Here we have introduced the notation

m2 ≡ V ′′(Φdet).

For the quadratic potential

V (φ) = V0 +
1
2
m2φ2,

this quantity is a constant, while in the general case of an arbitrary poten-
tial it is almost constant during inflation. The correlator (8.25) of the
random function y(t) in the limit ε ≪ 1 can be approximated as follows:

〈y(t1)y(t2)〉 = D(x, t,x, t′) =
H

4π2
δ(t1 − t2).

The emergence of a delta function in the right-hand side of the equation
means the Gaussian distribution law of the random function y(t) with the
energy

W (y) = const · exp
[
− 1

2σ2

∫
y(t)2dt

]
, σ =

H3/2

2π
.

Due to a linear relation between the functions φ and y(t), see (8.27), their
probability distributions are proportional to each other. It means that the
probability of finding the value of the function φ(t) inside a certain small
interval is equal to (see [162])

dP (φ) = const · Dφ exp

[
− 1

2σ2

∫ [
∂φ

∂t
+

m2

3H
φ

]2

dt

]
.

The measure has the form Dφ ≡ ∏N
i=1 dφ(ti), N → ∞ .

It is now easy to obtain the probability of finding the field value φ2 at
the moment t2 under the condition that the quantity φ1 at t1 is known.
Evidently, it is necessary to integrate over all field values in the interval
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(t1, t2), except for the boundary points φ1 ≡ φ(t1), φ2 ≡ φ(t2), which
leads to the expression

dP (φ2, t2; φ1, t1) = const · dφ2

∫ φ2

φ1

Dφ exp

[
− 1

2σ2

∫ t2

t1

[
∂φ

∂t
+

m2

3H
φ

]2

dt

]
.

(8.28)

The unknown constant is found from the normalization condition∫ ∞

−∞
dφ2P (φ2, t2; φ1, t1) = 1.

The functional integral (8.28) can be calculated exactly [162] using the
saddle point method, which implies a search for an extremum of the action

φ̈ − µ2φ = 0, µ ≡ m2

3H
,

with the boundary condition

φ(t1) = φ1, φ(t2) = φ2.

A solution of this equation reads

φ(t) = A eµt + B e−µt,

A =
φ2 − φ1 e−µT

2 sinh(µT )
, B =

−φ2 + φ1 eµT

2 sinh(µT )
; T = t2 − t1.

Substituting it into the integral in the exponential in the expression (8.28),
we find the required probability as

dP (φ2, t1 + T ; φ1, t1) = dφ2 ·
√

r

π
exp[−r(φ2 − φ1 e−µT )2],

r ≡ µ

σ2

1
1 − e−2µT

,

µ =
m2

3H
≃ const, σ =

H3/2

2π
≃ const. (8.29)

In the massless field limit we arrive at a simpler expression

dP (φ2, t1 + T ; φ1, t1) = dφ2

√
2π

H3T
exp

[
− 2π2

H3T
(φ2 − φ1)2

]
. (8.30)

This formula is widely used in different inflationary scenarios where the
field evolution should be small and therefore the second-order derivative of
the potential and hence the mass can be neglected.
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The field evolution picture looks as follows. The field is assumed to con-
sist of two components, the classical (deterministic) one and the quantum
one, see the expression (8.21). The classical part Φdet obeys the equations
of motion (8.26) with a random “force” y . As shown above, the influence
of this force is included in the random component φ and has the proba-
bility density (8.29). It is easy to calculate 〈φ2 〉 for estimating the time-
depending deflections from the classical value Φdet . Using the expression
for the probability (8.29), we obtain

〈φ(t)2 〉 =
∫ ∞

−∞
φ2 dP (φ, t1 + t; φ1, t1)

=
1
2r

=
σ2

2µ

(
1 − e2µt

)
. (8.31)

This expression can be substantially simplified in the case of a massless
field. As already said, the field can be regarded as approximately mass-
less during inflation, when the condition m ≪ H holds. Expanding the
exponential in the Eq. (8.31), we obtain

√
〈φ(t)2 〉 = σ =

H

2π

√
Ht. (8.32)

In terms of e-folds, N ≡ Ht , we obtain a formula to be widely used in
what follows:

√
〈φ(t)2 〉 = σ =

H

2π

√
N. (8.33)

In particular, one can conclude that fluctuations with the magnitude
∼H/2π are formed in the time interval t ∼ H−1 (N = 1). The expres-
sions (8.15), (8.17) indicate that its spatial size becomes fixed at the scale
Lphys ∼ H−1.

The spatial size of the fluctuation can also be estimated. To that end, let
us note that the correlator (8.25) is not small at t ∼ H−1 if the comoving
distance |x − x′| � 1. It means that those fluctuations with comoving size
of the order of unity are significant. Their size in physical coordinates grows
in the usual way,

Lfluct = a(t)|x − x′| ≈ H−1 eHt, (8.34)

and is equal to H−1 at t ∼ H−1 . This remark is very important for what
follows. By the way, the results (8.33) and (8.34) can be easily reproduced
even in Minkowski space. Indeed, choosing the Lagrangian for a massless
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scalar field, let us make order-of-magnitude estimates for the action

S =
∫

d4x
√−g

1
2
gµν∂µϕ∂νϕ.

As a result, we obtain

S ∼ (∆ϕ)2

H−2
H−4.

Here ∆ϕ is the magnitude of a fluctuation emerging by the time t ∼ H−1.
It has also been taken into account that the fluctuation size is of the order
H−1, which is true for a massless field propagating with the speed of light.
The probability of such a fluctuation is of the order of unity under the
condition that the action S ∼ 1. Accordingly, we get the estimate

∆ϕ ∼ H,

which coincides by order of magnitude with the result (8.33) obtained more
rigourously.

There also exists another way of studying fluctuations, based on the
fact that Eq. (8.27) is nothing else than the Langevin equation. Then one
can at once make the statement that the probability density satisfies the
Fokker–Planck equation

∂P

∂t
=

H3

8π2

∂2P

∂φ2
+

m2

3H2

∂2(φP )
∂φ2

. (8.35)

The expression (8.29) for the probability obtained above is a solution of
this equation (dP = Pdφ in our notations).

8.3 Hybrid inflation

The main shortcoming of the simplest model with a quadratic potential
is the small value of the inflaton mass as compared to the Planck mass,
m/MPl ≃ 10−6 . There are different opportunities to improve the situation,
such as, for instance, introduction of one more hypothetic scalar field. One
of the most well-known attempts of this kind is hybrid inflation [274, 281].

The potential of hybrid inflation depends on two scalar fields σ and χ

and is usually written as

V (χ, σ) = κ
2

(
M2 − χ2

4

)2

+
λ2

4
χ2σ2 +

1
2
m2σ2, (8.36)

where κ , λ and m are parameters of the theory.
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Such a form allows for obtaining in a natural way a slow rolling along
the valley χ =0, σ >σc and rapid fluctuations of both fields after the end
of inflation. The slow rolling is necessary for carrying out the inflationary
stage while rapid oscillations are necessary for effective production matter
particles and heating the Universe.

The inflation is going on until the fields reach the critical point

σc =
√

2
κ

λ
M.

After the field σ passes this value, the motion along the line χ =0, σ < σc

becomes unstable, and the field χ rapidly reaches one of the minima
χ± =± 2M , σ =0. The fate of the Universe depends on the initial data,
χin , σin .

Nevertheless, even this well-studied picture has a serious shortcoming.
During the inflationary stage, when the fields σ and χ “move” along
the line χ = 0, the space splits into a number of causally disconnected
regions. Due to quantum fluctuations, the scalar fields in these regions
slightly differ from each other. Evidently, the overwhelming majority of
regions contain the field χ �=0. So, at the end of inflation, after the field
σ reaches its critical value σc , there emerges an enormous number (of
the order of exp(3 · NU )∼ 1078 ) of domains. In half of them, those con-
taining the field χ < 0, the rolling proceeds to the minimum χ− = − 2M ,
whereas in the other half it goes to the minimum χ+ = + 2M . After infla-
tion, there appears a Universe consisting of chaotically distributed domains
with the field values χ+ or χ− inside. Adjacent domains are separated by
domain walls because in moving from χ+ to χ− it is necessary to visit
the point (χ = 0, σ = 0), representing an extremum of the potential.
Such a period of “wall domination” in the Universe evolution is unaccept-
able because it makes the existence of the Universe in its present form
impossible. Accordingly, the assumed motion “on the average” along the
line χ = 0 is also excluded. It is a very strong restriction imposed on
the model of hybrid inflation by taking into account quantum fluctuations.
But it can be circumvented both in the framework of this model and in
its modifications. Addition of a small slope to the potential substantially
eases the situation. A change in the shape of the potential leads to a non-
trivial scalar field dynamics and, in particular, to a new mechanism of a
transition from the inflationary stage to usual cosmological expansion in
FRW space-time with effective production of matter particles. A formation
mechanism of massive primordial BHs [354] also exists in the framework
of hybrid inflation.
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8.4 Influence of massive fields on the process

of inflation

In this section we will discuss the influence of quantum fluctuations on
the classical evolution of the inflaton field. Our purpose will be a study of
the back reaction of the cloud of virtual particles created by the inflaton
field on the evolution of the field itself. Let us stress that here we are only
considering interaction with virtual particles which are in no way related
to the ambient temperature. It is known that such a cloud, possessing
inertial properties, can appreciably slow down the system evolution. This
phenomenon has been well studied in solid state physics (the polaron effect
[259]). The whole analysis is conducted in Minkowski space, i.e., without
taking into account gravitational effects.

The inertial properties of the virtual cloud depend not so much on the
shape of the interaction potential or on the kinds of particles as on the value
of the coupling constant and on the mass of the virtual particles, because
it is these parameters that determine the richness of space in particles of
different kinds. It is also clear that inclusion of new fields only strength-
ens the “braking” effect in the classical field evolution. Therefore in what
follows we consider the simplest form of interaction allowing for obtaining
analytical results. Specifically, we consider, apart from the inflaton field ϕ ,
an additional scalar field χ and write the action in the form

S =
∫

d4x
√−g

[
1
2
ϕ,µϕ,µ − V (ϕ) +

1
2
χ,µχ,µ − 1

2
m2

χχ2 − κχu(ϕ)
]
.

(8.37)

Here u(ϕ) is a polynomial with respect to ϕ with the power not higher
than three for renormalizable theories. The linear term in the additional
field χ is only needed in the interaction for finally obtaining observable
analytical results, valid for an arbitrary coupling constant κ . An interac-
tion of this kind emerges in supersymmetric theories and is discussed in
hybrid inflation models [281]. In the paper [141], such a form of interac-
tion is used in a study of the back reaction of the created particles on the
classical motion of the inflaton field. As indicated above, the inclusion of
real opportunities, e.g., with fermions, will only enhance the braking effect.
Since our interest is in the interaction with virtual χ-particles, consider the
transition amplitude

A(ϕi, χi = 0; ϕf , χf = 0) =
∫ ϕf

ϕi

Dϕ

∫ 0

0

Dχ exp[iS]. (8.38)
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We here assume that the χ field is sufficiently massive and, by the relevant
time, is located near a minimum of its effective potential. Integrating in
the field variable χ , we obtain an amplitude of the form (8.38) with the
effective action

Seff =
∫

d4x
√−g

[
1
2
ϕ,µϕ,µ − V (ϕ)

]

+
κ

2

2

∫
d4x

∫
d4x′√−gu(ϕ(x))G(x, x′)u(ϕ(x′)), (8.39)

where G(x, x′) is the Green fluctuation of the scalar field χ . This expres-
sion is exact but, due to the presence of a nonlocal term, which is physi-
cally interpreted as a contribution from a cloud of virtual χ-particles, exact
analytical transformations are impossible. Therefore, as in the method of
effective action [214], we expand the nonlocal term in (8.39) in powers of
x−x′ . Then the first several terms renormalize the initial parameters of the
potential and the field variable ϕ (the wave function). Since the parameters
of the potential are determined by the physical conditions at some energy
scale, we will be interested in new terms which cannot be incorporated in
renormalizations.

An explicit expansion of the expression (8.39) in a power series in x−x′

requires integration of the Green function, which, if we take into account
gravitational effects, is a hard problem. Instead, let us use the Green func-
tion equation [38] written as

G(x, x′) =
1

m2
χ

δ(x − x′) − 1
m2

χ

1√−g
∂µ

√−g∂µG(x, x′). (8.40)

Substituting this expression into (8.39) and neglecting higher derivatives
in ϕ , we obtain

Seff =
∫

d4x
√−g

[
1
2
ϕ,µϕ,µ − Vren(ϕ) − 1√−g

κ
2

2m4
χ

u(ϕ)∂µ

√−g∂µu(ϕ)
]
,

(8.41)

with the corresponding equation of motion

∂µ

√−g∂µϕ +
√−gV ′

ren(ϕ) +
α2

m2
χ

u′
ϕ(ϕ)∂µ

√−g∂µu(ϕ) = 0, (8.42)
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and energy density

E = T00 =
1
2
(∂0ϕ)2 + Vren(ϕ) +

α2

2m2
χ

(∂0u)2, (8.43)

where we have introduced the dimensionless parameter α ≡ κ/mχ .
The renormalized effective potential Vren(ϕ) contains a sum of con-

tributions from interactions with all possible fields. A contribution from
interaction with the χ field is easily found explicitly:

Vren(ϕ) = V (ϕ) + δVϕ = V (ϕ) − (α2/2)u(ϕ)2.

A shortcoming of the first model of chaotic inflation with the potential
λrenϕ4 is the small value of the coupling constant, λren(∼10−13), at which
there is agreement with the observational data. It means that all terms
in the expression for λren , including δVχ , should cancel with high accu-
racy. It is further proved that taking into account a renormalization of the
kinetic term makes it possible, in particular, to substantially weaken the
restrictions on the parameters of the theory due to observational data.

The terms similar to the last term in the expression (8.41) emerge at
renormalization of any theory and are usually interpreted as “quantum
corrections to the parameters of the theory depending on the value of the
field itself” [214]. In weak fields, a contribution from this term is negligibly
small. But at the inflationary stage, at large field values, the last term in
Eq. (8.41) can be quite significant.

The classical Eq. (8.42) can also be obtained in another way, using the
classical equations that minimize the initial action (8.37),

1√−g
∂µ

(√−g∂µχ
)

+ m2
χχ + κϕ2 =0,

1√−g
∂µ

(√−g∂µϕ
)

+ V ′(ϕ) + 2κϕχ=0. (8.44)

We here consider the case u(ϕ) = ϕ2 . The first Eq. (8.44) can be trans-
formed to

χ(x) = −κ

∫
G(x, x′)ϕ2(x′)dx′. (8.45)

Substituting (8.40) and (8.45) to the second Eq. (8.44), we arrive, in the
same slow motion approximation, at Eq. (8.42).

Let us note that the correction δV = − (α2/2)ϕ4 to the potential has
emerged from an analysis of the classical Eq. (8.44). On the other hand,
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quite the same answer can be obtained by calculating the first quantum
correction to the potential of the ϕ field due to interaction with the χ field
at zero 4-momenta of the external lines corresponding to a quanta of the ϕ

field. The last term in the expression (8.42) is usually interpreted as “back
reaction of radiation” [141].

During inflation, the field is regarded as homogeneous, ϕ = ϕ(t), and
Eq. (8.42) is greatly simplified. Let us write it for the specific case u(ϕ) =
ϕ2 , also taking into account that the scale factor a is expressed in the
usual way in terms of the Hubble parameter H , a = exp(

∫
Hdt):

d2ϕ

dt2
+ 3H

dϕ

dt
+ V ′(ϕ) +

4α2

m2
χ

[
3Hϕ2 dϕ

dt
+ ϕ2 d2ϕ

dt2
+ ϕ

(
dϕ

dt

)2
]

= 0.

Due to a slow change of the ϕ field in time, we discard the terms
proportional to d2ϕ/dt2 and (dϕ/dt)2 , which is justified by the final result,
and after that we arrive at the easily integrable equation

(
3H +

12Hα2

m2
χ

ϕ2

)
ϕ̇ + V ′(ϕ) = 0. (8.46)

Solving this equation for the potential V (ϕ) = λϕn , taking into account
the usual relationship between the Hubble parameter and the potential,

H =
√

8πV (ϕ)/3/MPl,

we arrive at an expression for the implicit time dependence of the field
variable ϕ :

t =
√

24π

MPlλ1/2

[
1

n(2 − n/2)

(
ϕ

2−n/2
0 − ϕ2−n/2

)

+
4

n(4 − n/2)
α2

m2
χ

(
ϕ

4−n/2
0 − ϕ4−n/2

)]
. (8.47)

Here the first term reproduces the result of the standard inflationary
model while the second one takes into account the interaction with vir-
tual χ-particles.

It is necessary to note that according to Eq. (8.46) there is an intermedi-
ate inflationary stage at which one already cannot neglect the second-order
derivative in the ϕ field in the square brackets. Nevertheless, of greater
interest is the first stage, and it is this stage that is studied below. The
further consideration is performed under the assumption that the second
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term dominates in Eqs. (8.46) and (8.47), i.e., under the condition

2αϕ/mχ ≫ 1. (8.48)

For what follows, it is convenient to introduce the quantity

ϕc ≡ mχ

2α
, (8.49)

which represents a boundary field value and separates the first stage of
superslow motion of the ϕ field from the second stage of ordinary infla-
tion. In both cases the field dynamics is described by simple analytical
expressions.

In the case ϕ > ϕc , the time dependence of the field is

ϕ(t) =
[
ϕ

4−n/2
0 − t/fn

]1/(4−n/2)

,

fn =
8
√

6π

n(4 − n/2)
κ

2

m4
χMPlλ1/2

. (8.50)

This expression is obtained under the “superslow-rolling” condition, which,
according to Eq. (8.43), has a somewhat unusual form

ϕ̈ ≪ 12Hϕ2ϕ̇
α2

m2
χ

. (8.51)

It is important to note that, as expected, the field changing rate

ϕ̇ =
m2

12α2ϕ2
· V ′

H
,

obtained from (8.46) with (8.48), turns out to be much smaller than the
usual value ϕ̇ = V ′/3H . The first stage of inflation terminates when the
condition (8.51) does not hold any more. Further on follows a period of
ordinary inflation which lasts as long as the condition ϕ̈ ≪ 3Hϕ̇ holds.
As estimates show, the second stage turns out to be very short.

Let us determine the values of quantum fluctuations emerging at the
inflationary stage. The fluctuations of noninteracting fields have been stud-
ied well enough [272]. Meanwhile, for fields with self-interaction, only order-
of-magnitude estimates are known [138].

Let us address the fluctuations emerging at the first stage of inflation
for the potential λϕ4 . It can be done most simply if we introduce the
auxiliary field ϕ̃ and, by substituting ϕ̃ = (α/mχ)ϕ2 , bring the action
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(8.41) to the form

S =
∫

dx
√−g

[
∂µϕ̃∂µϕ̃ − 1

2
m̃2ϕ̃2

]
, (8.52)

corresponding to a free field with the mass m̃ ≡ mχ

√
2λ/α . Such a sub-

stitution is admissible at this stage of inflation where the field values are
manifestly greater than zero. For a massive field, the fluctuation value is
known [90], ∆ϕ̃ =

√
3/(8π2)H2/m̃ . Also known is the restriction on the

mass of the field ϕ̃ , obtained by comparison with the measurements of
energy density fluctuations by COBE [32], δρ/ρ ≈ 6 · 10−5 on the mod-
ern horizon scale: m̃ ∼ 10−6MPl . Expressing m̃ in terms of the initial
parameters, we obtain a relationship between them:

mχ

MPl

√
λ

α
∼ 10−6. (8.53)

Since it is natural to suppose mχ ≪MPl , the inequality (8.53), obtained
from the observational data, is not burdensome and holds in a wide range
of the parameters.

Let us determine the field value ϕU which gave rise to the causally
connected region that created the visible part of the Universe. It is known
that the number of e-folds necessary for explaining the observational data is
NU ≃ 60. Then, using, as always, the relationship NU =

∫ ϕend

ϕU
Hdt , we get

NU =
∫ ϕc

ϕU

H(ϕ)
ϕ̇

dϕ +
∫ ϕend

ϕc

H(ϕ)
ϕ̇

dϕ

=
2πα2

M2
Plm

2
χ

(
ϕ4

U
− ϕ4

c

)
+

π

M2
Pl

(ϕ2
c − ϕ2

end). (8.54)

Taking into account the different time dependencies of the ϕ field at
the first and the second stages of inflation, and also using the smallness of
the field value ϕend right after the end of inflation as compared with its
initial value ϕU , we obtain the desired expression

ϕU ≃
(

NU

2π

)1/4
√

MPlmχ

α
. (8.55)

We note that the visible part of the Universe in this case can form at ϕ <

MPl , at lower energies as compared to quadratic inflation. It is explained
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by the “superslow” field motion at the first stage of inflation, allowing the
Universe to expand to a necessary size.

All the above reasoning is correct if the field χ has a sufficiently large
mass, so that, at inflation, it can be considered as being located at the min-
imum of its potential. It is known that a field begins to roll rapidly to a
minimum if the Hubble parameter becomes smaller than its mass, H < m .
The Hubble parameter is time-dependent, therefore let us give the neces-
sary estimates for the initial moment of emergence of the visible Universe
(ϕ= ϕU ) and at termination of the first stage of inflation (ϕ= ϕc ). Simple
calculations lead to the following result:

mχ > H(ϕU ) →
√

λ

α
≤ 0.1,

mχ > H(ϕc) → mχ ≤ MPl

√
λ

α2
. (8.56)

These inequalities hold in a wide range of the parameter, at least near
the termination time of the first stage of inflation. Quantum corrections to
the mass mχ of the χ field bound the mass from below, therefore we will
further assume that mχ ≥ κ , or, which is the same, α ≤ 1.

Thus the interaction between the inflaton field and the quantum fluc-
tuations of a massive field of another sort created by the inflaton makes it
possible to explain, in particular, the smallness of energy density fluctua-
tions under sufficiently soft conditions on the parameters of the potential.

8.5 Suppression of vacuum decay
by virtual particles

There have probably been a few phase transitions in the early Universe. To
such transitions one can attribute the one at the Grand Unification scale
of ∼1017 GeV and the one at the electroweak interaction scale, ∼100 GeV.
So far we have been considering the class of models on the basis of chaotic
inflation. However, there also exists an inflationary scenario on the basis
of a first-order phase transition from which the Universe evolution begins
[244]. In field theory, first-order phase transitions happen by means of a
decay of a metastable (false) vacuum into spherically symmetric domains
filled by a true vacuum. These domains begin to expand and occupy more
and more volume. A calculation of the probability of such a decay repre-
sents a nontrivial problem.
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This problem was repeatedly discussed in the literature in different
areas of physics, such as field theory, solid state physics and the physics
of phase transitions. Theoretical aspects of this phenomenon have been
studied from a quantum-mechanical viewpoint for quite a long time [262].
Significant progress in these studies in quantum field theory began in the
70s, see [116], and these works laid the basis of the instanton approach to
the calculations of vacuum decay. The same method is also applicable for
calculating the probability of quantum-mechanical tunneling. The basic
idea is that the integration contour is deformed in such a way that the
basic contribution to the integral representing the transition amplitude be
given by a single trajectory, the “instanton” xinst(tE), where tE is time in
Euclidean space. The subbarrier transition amplitude obtained in this way
contains the necessary suppressing factor exp(−S[xinst]) .

Further progress in the subbarrier transition theory revealed the exis-
tence of numerous additional factors affecting the transition dynamics.
These factors can appreciably change the physical picture of the transi-
tion and particular conclusions of one or other cosmological models.

One of the main factors is the temperature at which the subbarrier
transition takes place. In cosmological phase transitions, the temperature
corrections to the effective potential strongly distort its shape, so that at
high temperatures such a transition can simply be absent [272]. As the
temperature decreases, there emerge additional minima of the potential,
and a phase transition becomes possible, though the parameters of the
effective potential are different from those observed at present.

Another fundamental factor is the ambient medium. An interaction
with it usually diminishes the tunnelling probability. When studying phase
transitions due to false vacuum decay, it is necessary to take into account
energy dissipation during the phase transition itself, at the motion of the
wall that separates the true vacuum from the false one. It is of particular
importance in studying the electroweak transition at the early stage of
the Universe evolution [277], when the density of the ambient medium
is high.

A third factor is interaction of a particle or a classical field with virtual
particles of another sort, see [352]. The “heavy nucleon” model also con-
firms the conclusion that a cloud of scalar particles interacting with the
nucleus affects the renormalizations of both its wave function and its mass.

A separate question is the calculation of quantum corrections to the
vacuum decay probability in field theory. It turns out that the correc-
tions, being small as compared with the main contribution, still lead to
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an appreciable change in the magnitude of the main effect, the subbarrier
transition probability. The papers [252, 253] describe a method of summing
the low levels which allows for a correct determination of the contribution
of quantum corrections. In what follows, we consider the influence of a
cloud of virtual particles on the classical evolution of a scalar field and the
false vacuum decay probability.

We consider a first-order phase transition, where the scalar field making
this transition is surrounded by a cloud of virtual particles of another
sort. As will be shown below, such a cloud diminishes the probability of
a subbarrier transition even at zero temperature, and the suppression can
be strong enough to completely change the picture of the transition. It is
sufficiently clear from a physical viewpoint because the cloud of virtual
particles needs time for its state restructuring.

Consider a system with the action (8.37) in Euclidean space. Acting in
full analogy with the previous sections, we obtain the effective Euclidean
action for the main field ϕ :

SE
eff =

∫
d4x

[
−1

2
ϕ,µϕ,µ − V (ϕ)

]

+
κ

2

2

∫
d4x

∫
d4x′u(ϕ(x))GE(x, x′)u(ϕ(x′)). (8.57)

(Here and henceforth the gravitational effects are ignored). For what follows
it is convenient to transform this expression to

SE =
∫

d4x

[
1
2
(∂ϕ)2 + V (ϕ) − α2

2
u(ϕ)2

]

+
α2

2

∫
d4x

∂u(ϕ(x))
∂xµ

∂u(ϕ(x))
∂xµ

. (8.58)

The third term in this expression must be included in renormalization of
the potential,

Vren(ϕ) = V (ϕ) − α2

2
u(ϕ(x))2, α := κ/mχ,

while the last term can substantially affect the system behaviour. It is this
nonlocal term that reflects the influence of the cloud of virtual particles of
the sort χ on the dynamics of the field φ . Here we also take into account
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that for the Green function GE(x − x′) the inequality
∫

dxGE(x − x′) = 1/m2
χ. (8.59)

is valid.
Let the potential Vren have two minima and the initial field value

ϕF correspond to a metastable state. In this case, the metastable state
decays by formation and expansion of true vacuum bubbles with the
field value ϕT . This process is described by the O (4)-invariant solu-
tion ϕB(r) of the classical field equation with the boundary conditions
ϕB(0) = ϕT ,ϕB(∞) = ϕF . The decay probability density was found for
the first time in the paper [116]:

Γ/V =
(

SE(ϕB)
2π

)2
∣∣∣∣∣
Det′ D̂(ϕB)
Det D̂(ϕF )

∣∣∣∣∣
−1/2

e−SE(ϕB), (8.60)

where the core K of the operator D̂(ϕ) is

K(x, y) ≡ δ2SE(ϕ)
δϕ(x) δϕ(y)

. (8.61)

The calculation of the normalizing determinant in the denominator is
usually not difficult. Since ϕF = const, everything is reduced to a cal-
culation of the well-known determinant like Det(−∂2 + const). However,
in the case under consideration, the effective action is nonlocal, and the
calculation of the normalizing determinant is a problem. If we introduce
the definitions

Ω2 ≡ V ′′(ϕF ) + α2

(
du

dϕF

)2

,

M4 ≡ κ
2

(
du

dϕF

)2

, (8.62)

then the problem reduces to calculating the determinant of the operator
D̂(ϕF ), whose core has the form

KF (x, y) = {δ(x − y)(−∂2
x + Ω2) − M4GE(x − y)}. (8.63)

This core is not diagonal, but, due to its particular features, can be diago-
nalized and after that is easily calculated (see [259]). Let us introduce the
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operator Ĝ−1
E ≡ (−∂2

x + m2
χ). Then,

Det D̂(ϕF ) = DetG−1
E D̂(ϕF )/ DetG−1

E

= Det[(−∂2
x + Ω2)(−∂2

x + m2
χ) − M4]/ DetG−1

E

= Det(−∂2
x + ω2

1) · Det(−∂2
x + ω2

2)/ DetG−1
E , (8.64)

where we have introduced the parameters

ω2
1,2 =

1
2

[
Ω2 + m2

χ −
√

(Ω2 − m2
χ)2 + 4M4

]
. (8.65)

The problem of calculating the normalizing factor in the pre-
exponential of the expression (8.60) has been reduced to calculations of
known determinants of oscillator-type operators.

As a matter of fact, quantum corrections at high energies lead to serious
alteration in the effective action and substantially affects the vacuum decay
rate. Let us show that using as an example a potential with two minima,
a local one and an absolute one,

Vren =
λ

8
(ϕ2 − a2)2 +

ε

2a
(ϕ − a). (8.66)

The instantonic solution to the Euclidean equation of motion can be char-
acterized as follows:

ϕ(x) = ϕinst(r) = A tanh
(

M

2
(r − R)

)
− B, (8.67)

where r2 ≡ ∑4
α=1 x2

α , and the parameters R and M are arbitrary quanti-
ties determined by minimization of the action. The parameters A and B

are found from the boundary conditions

ϕinst(r → ∞) = ϕ+, ϕinst(r → 0) = ϕ−. (8.68)

Here ϕ+ corresponds the right local minimum of the potential (8.66) (the
false vacuum) and ϕ− to the left, absolute minimum (the true vacuum).

The action (8.58) is written with neglected high-order derivatives in the
field ϕ . This approximation is correct under the condition ∂ϕB/mχϕB ≪ 1
(mχ is the mass of χ particles that form the cloud). On the instanton
trajectory, the derivative ∂ϕB is proportional to the mass of a quantum
of the main field, mϕ . Thus a validity criterion for the approximation is

mϕ/mχ ≪ 1. (8.69)
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In fact, the transition domain from false to true vacuum is strongly widened
by retarded effects due the cloud of virtual χ-particles. Therefore the above
condition manifestly holds and is even too strict.

For making a numerical analysis, let us write down the classical equa-
tions whose solution is the O(4)-symmetric instantonic trajectory:

∂2
rϕ +

3
r
∂rϕ − V ′

ren(ϕ)

+
α2

m2
χ

u′(ϕ)
[
3
r
u′(ϕ)∂rϕ + u′′(ϕ)(∂rϕ)2 + u′(ϕ)∂2

r ϕ

]
= 0. (8.70)

A solution to this equation is sought in the form (8.67) with the unknown
parameters M and R . The parameters A and B are determined by the
boundary conditions.

The results of the numerical calculations are shown in Fig. 8.1. The
abscissa axis is chosen to coincide with the known result [116, 117], obtained
without taking into account the cloud of virtual particles. It is seen from
the plot that the action can increase by orders of magnitude and hence the
phase transition probability turns out to be exponentially suppressed as
compared with the usual predictions.

For a more specific estimate we assume that the action on the instan-
tonic trajectory, without interaction with an additional field, is S0 , and
that taking into account this interaction is ρS0 . Evidently, if this interac-
tion is taken into account, the lifetime of the metastable state increases by

Figure 8.1 The dependence of the Euclidean effective action on the parameter
F = κ2/m4

χ . The parameter values are a =1; λ = 0.1; ε= 0.01 in units of mχ =1.
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a factor of q ≈ exp[(ρ − 1)S0] . Using the plot of Fig. 8.1, we choose the
intermediate value ρ = 10. The probability of a subbarrier transition is
usually calculated in the quasiclassical approximation, such that S0 ≫ 1.
Let us choose the minimally possible reasonable value of the action,
S0 = 10, which yields the estimate q = e90 ∼ 1040 . Such an abrupt increase
in the lifetime of the metastable state is able to change the conclusions
obtainable on the basis of a specific model. The action is usually much
larger than the value chosen, and the suppression is still much stronger.

Evidently, the false vacuum decay probability is quite an uneasy prob-
lem, requiring the inclusion of first-order quantum corrections. The latter
can drastically change the estimated lifetime of a metastable state and, in
particular, affect the rate at which our Universe was formed if that hap-
pened due to a first-order phase transition, or the rate of the electroweak
transition.
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Chapter 9

The large-scale structure

In the first two sections of this chapter we briefly describe the modern
views of galaxy formation. The subsequent sections are devoted to studying
the new opportunities arising due to a correct consideration of quantum
fluctuations during inflation.

9.1 The cosmic microwave background

In 1964, Arno Penzias and Robert Wilson decided to carry out some
research in radioastronomy and satellite communication. For testing the
antenna, they chose the wavelength of 7.35 cm. Very soon it became clear
that the antenna permanently detected an unexplained additional noise
of unclear origin, and no way was found to get rid of it. The isotropy
of the noise and its constancy in time meant that its source was located
somewhere outside the Solar system. Even if its origin were related to our
Galaxy, its intensity would vary due to the Earth’s rotation and orbital
motion around the Sun, which change the antenna’s direction in space. So
it was clear that the noise was of extragalactic origin. On measurement,
the intensity of this radio signal corresponded to the radiation intensity of
an absolutely black body with a temperature near 3K. That is how the
Cosmic Microwave Background (CMB), also called the relic radiation, was
discovered.

What is the CMB? According the Big Bang theory, the Universe
emerged approximately 14 billion years ago as a result of an enormous
“bang” that created our space and time and the whole existing matter and
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energy of our Universe. Up to an age of about 300 thousand years, the
young Universe consisted of a hot plasma of elementary particles and, cer-
tainly, photons. The common expansion of the Universe gradually cooled
this medium, and as soon as the temperature fell down to a value of a few
thousand degrees, the free protons and electrons formed neutral atoms.
After that, the existing radiation in the form of photons propagated freely
since they almost do not interact with neutral atoms. Due to further cosmic
expansion, the wavelengths of this radiation continually increased. It is this
radiation that was detected by Pensias and Wilson as an unknown noise.

The CMB has a spectrum corresponding to the temperature
T = 2.73 K. CMB investigations at different angles have revealed surpris-
ingly small values of its temperature fluctuations, about 10−5 in relative
units. Nevertheless, these fluctuations bear valuable information on the
early Universe.

Let us discuss at a qualitative level the effects leading to the tem-
perature fluctuations ∆T (θ, ϕ). For convenience, the perturbations are
expanded in spherical harmonics

∆T (θ, ϕ)
T

=
∑
l,m

almYlm(θ, ϕ), (9.1)

and the plot of the quantity l(l + 1)Cl , where Cl = 〈 |alm|2 〉 is studied.

Figure 9.1 CMB temperature fluctuations.
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This plot contains information of utmost importance. For example, we
are now catching photons which were located near the horizon lrec at
recombination time, after which the Universe became transparent. (Recall
that the horizon is the distance to which a light signal escapes in the
expanding Universe from a certain time up to now.) While the Universe
was opaque, the motion of massive particles was also hindered by friction
due to interaction with photons.

On the other hand, in the same period of time there were fluctua-
tions of the particle density and the gravitational potential. Subject to
the gravitational field, the density fluctuations could have grown, but that
did not happen because, as was said above, the motion of charged parti-
cles was strongly hindered. At recombination time, two events happened:
(a) the friction disappeared, and particles began to move to the “cen-
tre” of the density fluctuation; in doing so, they are accelerated, which
raises the local temperature; (b) photons from these heated regions move
freely.

How does the size of the region of a density fluctuation affect further
events?

1. Regions comparable with the horizon size at the recombination time,
Lrec = 2H−1

rec , are causally connected regions of the largest size at that
time. These are regions having the largest gravitational well and hence
the largest temperature contrast. Photons from such heated regions are
now reaching us, and we must see a temperature peak in the plot. Let
us estimate the size of these heated regions L0 at present:

L0 =
1

a(t)
Lrec =

T

T0
Lrec ≈ 300 Mpc.

Since H−1
rec ≈ 3

2 trec , we have Trec ≈ 3000 K.
The angle at which we see such a region is

θ =
L0

LU
≈ 300

9000
= 0.03 rad ≈ 2◦ .

Consequently, a peak must be observed at about 2◦ . This acoustic, or
Doppler peak, is clearly seen in the plot.

2. Regions much larger than the horizon size Lrec at recombination evolve
insignificantly. Their mean temperature weakly depends on the size,
and there is an evident plateau in the plot (the Sachs–Wolfe plateau)
at large angles.
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3. Regions much smaller than Lrec . After recombination, these regions
had enough time not only to contract but also to expand due to internal
pressure. Therefore they are cooled a little, and we must see a minimum
in the plot at smaller angles.

Classical evolution of quantum fluctuations

One of the most important results of the previous section is the following.
At the inflationary stage, the density fluctuations created by quantum fluc-
tuations rapidly increase their spatial size. At some instant, they become
larger than the horizon size — the fluctuation crosses the horizon for the
first time. By the end of inflation, the fluctuation scale can greatly exceed
the horizon. The fluctuation magnitude is changing until the fluctuation
scale crosses the horizon for the second time, now after the end of inflation.
It turns out that in the period between two horizon crossings, there holds
a simple relationship

δρ

p + ρ
≃ const, (9.2)

which we shall need in what follows. Let us first of all prove this relationship
using Eq. (7.10) written in the form

dρ

p + ρ
= −3da

a
.

Suppose there is a one-to-one correspondence between matter density
and pressure, ρ ↔ p . Hence the pressure is a certain function of the density,
p(ρ), and the previous expression can be formally integrated:

∫ ρ(t)

ρ(t0)

dρ

p(ρ) + ρ
= −3

∫ a(t)

a(t0)

da

a
, (9.3)

where t0 is a time instant at the inflationary stage, and t is an arbitrary
time satisfying the condition t− t0 ≫ 1/He , and He is the Hubble param-
eter at the end of inflation. If a quantum fluctuation creates a perturbation
of the energy density δρ(t0), then Eq. (9.3) should read

∫ ρ(t)+δρ(t)

ρ(t0)+δρ(t0)

dρ

p(ρ) + ρ
= −3

∫ a(t)+δa(t)

a(t0)+δa(t0)

da

a
, (9.4)

which holds for the spatial region occupied by the fluctuation.
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Let t0 and t denote the times of the first and second horizon crossings
by the fluctuation in question. Let us split both parts of Eq. (9.4) into a
sum of integrals:

∫ ρ(t0)

ρ(t0)+δρ(t0)

dρ

p(ρ) + ρ
+

∫ ρ(t)+δρ(t)

ρ(t)

dρ

p(ρ) + ρ

= −3
∫ a(t0)

a(t0)+δa(t0)

da

a
− 3

∫ a(t)+δa(t)

a(t)

da

a
.

Here, Eq. (9.3), which is valid for a volume including the volume occupied
by the fluctuation, is used in order to cancel the main terms in both parts
of the equality. The remaining integrals can be easily estimated taking into
account the smallness of the fluctuations:(

δρ

p + ρ
+ 3

da

a

)
t0

≃
(

δρ

p + ρ
+ 3

da

a

)
t

.

The scale factor a grows exponentially since the beginning of the inflation-
ary stage, so that we can neglect the second terms in both parts of the
equation to obtain the required equality (9.2).

Equation (9.2), rewritten in the form
(

δρ

p + ρ

)
tf

≃
(

δρ

p + ρ

)
tin

, (9.5)

can be used for obtaining the spectrum of large-scale fluctuations. Here,
tin = t0 is the fluctuation emergence time at the inflationary stage, before
the first horizon crossing, and tf is the second horizon crossing time after
the end of inflation at the matter-dominated stage. The left-hand side
of this equality can be expressed in terms of the scalar field (inflaton)
ϕ = ϕ(tin). The right-hand side of the equality is especially simple at the
matter-dominated stage because the pressure is zero, p = 0. Let us write
down the expression for δρ and p + ρ at the inflationary stage:

δρ = V ′(ϕ)δϕ, p + ρ = ϕ̇2.

Now, the quantity δρ/ρ|tf to be estimated is also expressed in terms of the
inflaton field: (

δρ

ρ

)
tf

≃
(

V ′(ϕ)δϕ
ϕ̇2

)
tin

.
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In the slow-rolling approximation we have δϕ ≈ H(ϕ)/2π . Using the infla-
ton field equation, we obtain(

δρ

ρ

)
tf

=
(

9H(ϕ)3

2πV ′(ϕ)

)
tin

. (9.6)

At the inflationary stage, the Hubble parameter H is expressed in terms of
the potential V (ϕ), and we arrive at a formula for calculating the density
fluctuation magnitude: (

δρ

ρ

)
tf

=
9
5

(
4
3

)3/2
mϕ2

M3
Pl

. (9.7)

The fluctuations are characterized by values of the ϕ field at first horizon
crossing. This formula includes, for completeness, the factor 2/5, which
emerges when taking into account matter domination at the second horizon
crossing. For what follows this factor is not very significant.

Another important parameter of the fluctuation is its characteristic
size l . It depends on the times tin and tf of the first and the second
horizon crossings, respectively. The fluctuation size at the time t such that
tin < t < tf can be estimated using a normalization to the size of the visible
part of the Universe, LU :

l = LU exp(N − NU ), (9.8)

where N is the number of e-folds at which the scale l of this fluctuation is
formed at the inflationary stage, and LU denotes the size of our Universe,
LU ≈ 104Mpc ≈ 1028 cm.

On the other hand, the number of e-folds is expressed in terms of the
inflaton value ϕ according to the expression (8.5):

N ≈ 2π

M2
Pl

ϕ2,

where the potential is chosen in the form V (ϕ) = (m/2)ϕ2 , and the
inequality ϕ ≡ ϕin ≫ ϕf is assumed. Substituting this expression and
Eq. (9.8) into the expression (9.6), we arrive at a relationship between the
fluctuation magnitude (δρ/ρ)tf and its size l [264]:(

δρ

ρ

)
tf

=
(

δρ

ρ

)
tU

[
1 +

1
NU

ln
(

l

LU

)]

≃
(

δρ

ρ

)
tU

(
1 + ln

l

LU

)1/NU

≃
(

δρ

ρ

)
tU

(
l

LU

)1/NU

. (9.9)

Here it is taken into consideration that the second term in the brackets is
much smaller than unity at large scales, such that l/LU ≥ 0.01.
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Consequently, the magnitudes of large-scale fluctuations very weakly
depend on their spatial size. In this case, one speaks of an almost flat
fluctuation spectrum. The above series expansion in l ≈ LU leads to a
power-law spectrum with the spectral index n ≡ 1 − 2/NU < 1. Let us
note that one can judge on the perspective of a specific model of inflation
by the observed value of the spectral index.

9.2 The development of density fluctuations

9.2.1 Density fluctuations in Minkowski space

Let us follow the development of energy density fluctuations. We will sup-
pose that the substance which is the carrier of energy can be considered as
a perfect fluid with the stress-energy tensor

Tµν = pgµν + (p + ρ)UµUν .

Here Uµ are the velocity components of an elementary volume of the fluid.
In the comoving reference frame,

U t = 1, U i = 0.

The hydrodynamic equations of motion have the form
∂ρ

∂t
+ ∇(ρv̄) = 0,

∂v̄

∂t
+ (v̄∇)v̄ +

1
ρ
∇p + ∇ϕ = 0,

∆ϕ = 4πGρ, (9.10)
where ϕ is the Newtonian gravitational potential. The solution of this
equation in the zero-order approximation is elementary:

v̄0 = 0, ρ0 = const, p0 = const.
In general, it is just an approximate solution, satisfactory when the

influence of the gravitational field potential is small. Consider the behaviour
of small fluctuations, marked with the subscript 1. Equations (9.10) are
simplified:

∂ρ1

∂t
+ ∇(ρ0v̄1) = 0,

∂v̄1

∂t
+

v2
s

ρ0
∇ρ1 + ∇ϕ1 = 0,

∆ϕ1 = 4πGρ1. (9.11)
The velocity of sound is v2

s ≡ (∂p/∂ρ)adiabat ≃ p1/ρ1 .
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From Eqs. (9.11) it is easy to obtain the wave equation

∂2ρ1

∂t2
− v2

s∇ρ1 = 4πGρ0ρ1,

whose stability must be investigated. To this end we seek a solution in the
form of plane waves

ρ1(r̄, t) = Aρ0 e−ik̄r̄+iωt.

From the expression for the frequency

ω = ±
√

k2v2
s − 4πGρ0

it is evident that at small frequencies, such that

k < kJ ≡
√

4πGρ0/v2
s ,

the solution is unstable.
The theory of gravitational instability was discussed for the first time

by James Jeans in his paper “Stability of a spherical nebula” (1902), which
considered quantitatively the gravitational instability of a gas cloud. The
index “J” appearing in this section is related to Jeans’s name.

The growing modes destroy the zero-order approximation in the form
of a homogeneous energy density distribution. Under the impact of gravity,
the structures become more dense. There occurs an exponential growth of
fluctuations, ending with the formation of stars and stellar clusters. The
size of an unstable region is, by order of magnitude,

l ≡ lJ > 2π/kJ .

One can also estimate the Jeans mass of matter MJ , above which the
structure turns out to be unstable:

MJ ≡ 4π

3

(
π

kJ

)3

ρ0 =
π5/2

6
v2

s

G3/2ρ
1/2
0

.

9.2.2 Density perturbations in the expanding Universe

In the previous section, the cosmological expansion was not taken into
account. Therefore the conclusions are correct only in a limited number of
situations, for instance, for intragalactic gas condensation.

In a homogeneous Universe, the expansion is described by the time
dependence of the scale factor a(t). Then Eqs. (9.10) preserve their form,
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but their solution changes drastically. As a zero-order approximation, we
will choose a solution in the form

ρ0(t) = a−3(t)ρ0(t0), �v0(t) = H(t)�r, ∇ϕ0 =
4πG

3
ρ0(t)�r.

We introduce small perturbations marking them by the subscript 1. Acting
as above, we obtain

δ̈k + 2Hδ̇k +
(

v2
sk2

a2(t)
− 4πGρ0(t)

)
δk = 0,

where δk is the Fourier image of the relative density δρ/ρ ≃ ρ1/ρ0 . The
velocity of sound vs is proportional to the velocity of particles, therefore
vs ∼ 1/a(t). An unstable regime emerges at large wavelengths, i.e., at

k < kJ ≡ a(t)
√

4πGρ0(t)/v2
s(t).

Consider the growth of long-wave fluctuations, such that k ≪ kJ . Recalling
that at the matter-dominated stage we have the relationships

H(t) =
ȧ

a
=

2
3t

, ρ0(t) =
1

6πGt2
,

we obtain from the original equation that

δ̈k +
4
3t

δ̇k − 2
3t

δk = 0,

which leads to growing solutions:

δk(t) = δk(tin)
(

t

tin

)2/3

.

The long-wave fluctuations, having been formed, grow much slower than
in a stationary Universe. Further on, these density fluctuations lead to the
formation of galaxies and clusters of galaxies.

9.3 The baryonic asymmetry of the Universe

It is well known that, despite the symmetry between particles and antipar-
ticles, baryons dominate in our Universe. It is one of the most impor-
tant ingredients of the modern cosmological picture. At which moment did
such an essential symmetry breakdown occur? What is the mechanism of
baryosynthesis? A great number of reviews are devoted to this problem,
see, e.g., [138, 232]), where quite various opportunities are discussed.

The whole previous presentation assumed homogeneity (on the average)
of energy density and entropy fluctuations. In this chapter we will show
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that, under certain conditions, large-scale fluctuations of different kinds are
also possible. This leads to new phenomena, such as macroscopically large
antimatter regions and massive primordial black holes. The conditions for
such phenomena originate in the course of inflation and develop in the
post-inflationary period. The possible formation of antimatter regions has
also been discussed earlier [110].

Since antimatter islands (regions) have not yet been found experimen-
tally, the number of antibaryons in the whole Universe must be much
smaller than the number of baryons. For the same reason, antimatter
islands cannot be too large — otherwise we would observe annihilation
photons at the edges of the corresponding regions.

On the other hand, if the size of antimatter regions is not sufficiently
large, then annihilation at their boundaries should lead to their rapid
evaporation, and it is just what happens in the majority of models of
baryosynthesis . The processes of spontaneous CP symmetry breaking usu-
ally manifest themselves in the course of first- and second-order phase tran-
sitions that took place in the early Universe. In this case, the antimatter
regions turn out to be too small to be preserved until the present [138].
As has been shown in [233], a boundary separating an antimatter region
from its baryonic environment moves due to annihilation not farther than
by 0.5 pc by the termination of the radiation-dominated epoch. Thus, to
be preserved up to the present time, the antimatter regions should be large
enough. This in turn means that the future antimatter regions should have
begun their formation at the inflationary stage, because the main property
of this stage is the ability to effectively “stretch” the spatial lengths.

9.3.1 Baryogenesis

From the large number of models of baryosynthesis, we would like to choose
the one [138, 139] where the inflationary period plays a substantial role.

This model postulates the existence of a complex scalar field χ , possess-
ing a baryonic charge. Since at present the baryonic charge is concentrated
in fermions (quarks), it is necessary to provide a transition of the baryonic
charge from the χ field to the quarks. To this end, one introduces the
interaction Lagrangian of the χ field with heavy quarks Q and leptons L ,
so that the full Lagrangian has the form

L = −∂µχ∗∂µχ − V (χ) + iQ̄γµ∂µQ + iL̄γµ∂µL

−mQQ̄Q − mLL̄L + (gχQ̄L + h.c.). (9.12)
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It is supposed that the heavy quarks Q and leptons L are connected
with the ordinary quarks and leptons of matter fields. The fields χ and Q

possess a baryon number but not a lepton number. On the contrary, the
field L possesses the lepton number only. Consequently, the term in the
Lagrangian (9.12), determining their interaction, leads to lepton number
nonconservation [139]. The baryon number conservation follows from the
U (1) symmetry of the Lagrangian with respect to the transformations

χ → exp (iβ)χ, Q → exp (iβ)Q, L → L. (9.13)

Let us return to studying the dynamics of the scalar field χ that creates
the baryon asymmetry. We choose the potential in the first-order approxi-
mation in the form

V (χ) = −m2
χχ∗χ + λχ(χ∗χ)2 + V0 = λ(|χ|2 − f/

√
2)2 + V0, (9.14)

where the constant V0 is added for the minimum of the potential to be
equal to zero. The “Mexican hat” potential (9.14) is the first, basic approx-
imation. In what follows we will need quantum corrections to it.

The χ field can be presented in the form

χ(ϑ) =
f√
2

exp
(

iϑ

f

)
. (9.15)

A violation of the U(1) symmetry means that the radial component of
the χ field takes the fixed value

f = mχ/
√

λχ,

and the variable ϑ in Eq. (9.15) now has the meaning of a massless scalar
field since V (ϑ) = const. The minimum of the potential is located on a
circle of radius f . Further on we work with the dimensionless variable
θ = ϑ/f .

The quantum corrections change the shape of the potential, so that
its symmetry (9.13) is violated, and a small tilt of the “Mexican hat” is
observed:

V (θ) = Λ4(1 − cos θ); Λ ≪ f. (9.16)

This potential has a countable number of minima at θ = 2πN ,
N =0, 1, 2, . . . . Note that the potential (9.16) is a convenient approxima-
tion of a more involved expression, see, e.g., [4]. The final form of our
potential is

Vb(χ) = λ(|χ|2 − f/
√

2)2 + Λ4(1 − cos θ) + V0. (9.17)
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For baryogenesis, of importance is the tilt of the potential (9.16) near
the minimum which fixes the mass of the θ field:

m2
θ =

Λ4

f2
. (9.18)

Since the tilt is caused by quantum corrections, it is natural to assume a
small value of the parameter Λ. It means that the contribution of the field
θ to the energy density is small as compared with the full energy density
at the inflationary stage. For this reason, the field θ is effectively massless,
so that

mθ ≪ H, (9.19)

where H is the Hubble parameter at inflation. After the end of inflation,
when the condition (9.19) is violated, the field θ oscillates near the min-
imum of the potential (9.16), and the energy ρθ ≃ θ2

i m2
θf

2 of the field θ

passes on to the energy of created baryons and antibaryons [114, 139]. The
sign of the baryonic charge in the final state depends on the initial value
of phase at the time of symmetry breaking.

As a result of the symmetry breaking, the phase β of the χ field
acquires the random value θ , and the effective Lagrangian has the form

L = −f2

2
∂µθ∂µθ + iQ̄γµ∂µQ + iL̄γµ∂µL

−mQQ̄Q − mLL̄L +
(

g√
2
fQ̄L + h.c.

)
+ ∂µθQ̄γµQ. (9.20)

For a spatially homogeneous field χ = (f/
√

2) eiθ , we have the following
expression for the formed baryonic charge:

Q = i[χ∗dχ/dt − (dχ∗/dt)χ] = −fdθ/dt. (9.21)

It is clear that Q > 0 if θ̇ < 0 in the process of classical motion to the
zero of the phase θ . Consequently, a clockwise motion leads to a baryon
excess, and a counterclockwise motion to an antibaryon excess.

Let us estimate the number of baryons and antibaryons created at oscil-
lations of the phase θ with an arbitrary initial phase θi . An expression for
the concentration of the baryons formed, nB(B) , in the limit of a small
phase θi has the form [139]

n(Q, L) =
1
V

∑
sQ,sL

∫
d3p

(2π)32p0

d3q

(2π)32q0
|〈Q(p, sQ)L(q, sL)|0〉|2. (9.22)
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After standard calculations using the last term in (9.12) as an interac-
tion Lagrangian, we obtain the density of created baryons

nB(B) =
g2

π2

∫ ∞

mQ+mL

ωdω

∣∣∣∣
∫ ∞

−∞
dtχ(t) e±2iωt

∣∣∣∣
2

, (9.23)

which is correct in the case χ(t → −∞) = χ(t → +∞) = 0.
For the more general case χ(t → −∞) �= 0, χ(t → +∞) = 0 a result

can be obtained by partial integration of the expression (9.23), which leads
to

NB(B̄) =
g2

4π2
Ωθi

∫
dω

∣∣∣∣
∫ ∞

−∞
dτχ̇(τ)e±2iωτ

∣∣∣∣
2

, (9.24)

where Ωθi
is a volume containing the initial phase θi . In obtaining

Eq. (9.24), the surface term is equal to zero at t = ∞ due to Feynman
conditions on radiation of the χ field at t = −∞ .

A numerical result can be approximately found by assuming the time
dependence of the phase in the form

θ(t) ≈ θi(1 − mθt), (9.25)

during the first period of oscillations. Substituting (9.25) and (9.15) into
(9.24), we obtain after simple calculations:

NB(B̄) ≈
g2f2mθ

8π2
Ωθi

k(θi), k(θi) = θ2
i

∫ ∞

∓ θi
2

dω
sin2 ω

ω2
, (9.26)

where the sign at the lower limit of the integral corresponds to a baryonic
or antibaryonic excess.

At the reheating time, the inflaton energy density is transformed to the
energy density of relativistic particles. It is then assumed that the inflaton
decays into light particles rather rapidly as compared with the oscillation
period near a minimum (recall that due to the tilt of the potential the mini-
mum is located at the point θ = 0). Thus we have Γtot ≫ mθ . Oscillations
of the field θ begin when friction in the medium can be neglected, i.e.,
at H ≈ mθ . The phase change with time leads to baryon and antibaryon
creation as discussed above. The entropy density after thermalization is

s =
2π2

45
g∗T

3, (9.27)

where g∗ is the total effective number of degrees of freedom. It is assumed
that the temperature exceeds the electroweak symmetry violation scale.
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At this temperature all degrees of freedom of the Standard Model are
in equilibrium and g∗ ≃ 106.75. The temperature is connected with the
expansion rate as follows:

T =

√
MPlH

1.66g
1/2
∗

≈
√

MPlmθ

g
1/4
∗

. (9.28)

In the last expression (9.28) it is assumed that relaxation processes begin
when the condition H ≈ mθ holds. Using Eqs. (9.26), (9.27) and (9.28),
we obtain different expressions for baryon and antibaryon concentrations:

nB(B̄)

s
=

45g2

16π4g
1/4
∗

(
f

MPl

)3/2
f

Λ
k(θi). (9.29)

The function k(θi) includes the dependence of the magnitude and sign
of the baryon asymmetry on the initial phase which is different in differ-
ent spatial regions. The behaviour of this function can be easily analyzed
numerically with the aid of the expression (9.26).

The expression (9.29) makes it possible to obtain the observed average
baryonic asymmetry in the Universe, nB/s ≈ 3 ·10−10 . In this model it has
been assumed that f ≥ H ≃ 10−6MPl . A natural value of the coupling
constant is g ≤ 10−2 , which leads to the observable baryon asymmetry
under the reasonable requirement f/Λ ≥ 105 [4].

9.3.2 Large-scale fluctuations of the baryonic charge

There appears an opportunity of interest if one takes into account the
effect of phase fluctuations during inflation. To do so, let us consider in
more detail the motion of the phase along the valley |χ| = f/

√
2, having

the shape of a circle. Let the phase θ = 0 correspond to the north pole and
θ = π to the south pole. The minimum of the potential is located at the
north pole. Using Eq. (9.21), it is easy to show that preferred antibaryon
production takes place if the field is moving to the north pole counterclock-
wise, while baryon production occurs if the field is moving clockwise.

Let us calculate the volume distribution of antimatter domains. The
total volume of all antimatter domains formed by the end of the Nt -th
e-folding before the end of inflation may be calculated using the recursive
procedure: suppose the total volume of all the domains with the average
phase θ̄ formed by that time is V (θ̄, Nt). Then their total volume at the



The large-scale structure 285

(Nt − 1)-th e-folding before the end of inflation is given by

V (θ̄, Nt − 1) = e3 V (θ̄, Nt) + [VU (Nt) − e3 V (θ̄, Nt)] · P (θ̄, Nt − 1) · h,

(9.30)

where VU (Nt) is the volume of the Universe VU (Nt) ≈ e3·(NU−Nt)H−3

at Nt e-folds before the end of inflation, NU ≈ 60 is the total number of
e-folds during inflation, and h = H/(2πf). P (θ̄, Nt − 1) gives the phase
distribution, which is Gaussian, see (8.33), (8.30):

P (θ̄, Nt)=
1√

2πσNt

· exp
(
− (θU − θ̄)2

2σ2
Nt

)
, (9.31)

σNt
=

H

2π · |χ(Nt)|
·
√

NU − Nt. (9.32)

Here θU is the initial phase of the field.
Note that here Nt is the number of e-folds before the end of inflation,

so it decreases with time; so if the moment (t = 0) corresponds to the
beginning of inflation, then N0 ≡ NU ≈ 60, while at the end of inflation
Nτ = 0. Accordingly, the volume of antimatter domains at the beginning
of inflation is V (θ̄, NU ) = 0.

The first term in Eq. (9.30), e3V (θ̄, Nt), is the total volume of anti-
matter domains formed before the Nt -th e-folding. The second term

v(θ̄, Nt) = [VU (Nt) − e3 V (θ̄, Nt)] · P (θ̄, Nt − 1) · h, (9.33)

is the total volume of antimatter domains formed during the Nt -th
e-folding. Since the initial volume of each domain is H−3 , the number
of domains formed during a given e-folding is

n =
v(θ̄, Nt)

H−3
. (9.34)

Domains grow in size during inflation, so the earliest domains to form
become the biggest at the end of inflation. Their linear sizes at present are
determined by the equation

L(Nt) = 6 · 103e−(NU−Nt). (9.35)

Here L(Nt) is the size (in Mpc) of the antimatter domain formed at the
Nt -th e-folding.

Using the relations obtained, one can calculate the size distribution of
matter and antimatter domains. However, to be realistic, our model should
suppress in a consistent way the large-scale fluctuations of the baryonic
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charge. Otherwise such fluctuation would contribute to the CMB spectrum
and would be observed. Indeed, according to the mechanism we are dis-
cussing, the CMB temperature fluctuations are proportional to the energy
density of matter, δρ/ρ ≃ δθΩB/Ωtot . Here δθ = H/(2πf), see above, ΩB

is the relative baryonic energy density, and Ωtot is the total relative energy
density. Consequently, we have the restriction δθ ≤ 10−3 , at least at large
scales. But in this case, for 60 e-folds during inflation, the phase will move
by an angle of at most ∆θ ∼ 60 · 10−3 ∼ 0.1 rad to zero, and a transition
through the zero value is very unlikely.

Let us discuss how this difficulty could be overcome.

The first method is to take into account the interaction of χ with the
inflaton ϕ , with a certain coupling constant g [234]. Then the potential
(9.14) takes the form

V (ϕ, χ) = λ(|χ|2 − f2/2)2 − g|χ|2(ϕ − cMPl)2, (9.36)

where λ , g and c are parameters of the potential. This potential also has
the shape of a Mexican hat with a maximum at

|χ| ≡ feff(ϕ) =
√

f2 +
g

λ
(ϕ − cMPl)2. (9.37)

Now, evidently, the position of the minimum is not constant. On the con-
trary, it strongly depends on the classical field ϕ , which changes in the
course of inflation,

ϕ(t) = ϕU − mϕMPl

2
√

3π
t, (9.38)

for the quadratic potential U(ϕ) = m2
ϕϕ2/2. Recall that the fluctuation

magnitude of the phase θ of the field χ is inversely proportional to the
quantity feff(ϕ). It is not hard to obtain the dependence of the inflaton
value on the number of e-folds N :

ϕ = ϕN = ϕU − MPl

2
√

3π
N. (9.39)

Here it is taken into account that mϕ
∼= H and N = Ht . Thus in N e-folds

after Universe formation the effective scale feff (9.37) looks as follows:

feff(N) = f

√
1 +

g

λ

M2
Pl

f2

[(
ϕU

Mpl
− c

)
− N

2
√

3π

]2

. (9.40)
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Denoting (ϕU/Mpl − c) ≡ Nf/(2
√

3π), we arrive at the final expression of
the form

feff(N) = f

√
1 +

g

12πλ

M2
Pl

f2
(Nf − N)2. (9.41)

This expression has an important property: there is from the very begin-
ning the large parameter M2

Pl/f2 ∼ 1010 , and the function feff(N) has a
sharp minimum at feff(Nf ) = f at a reasonable relationship between the
parameters. Hence it immediately follows that the fluctuation magnitude
of the phase θ

〈 δθ 〉 =
H

2πfeff(N)
, (9.42)

abruptly increases near the e-folding N = Nf .
Let us estimate the possible range of the parameters g and λ . The

first inequality follows from the requirement that fluctuations should be
sufficiently strongly suppressed, i.e., feff ≫ f , and from the expressions
(9.37):

〈χ 〉 ∼
√

g/λMPl ≫ f. (9.43)

The second inequality is connected with the fact that the additional
term inserted into the potential also renormalizes the inflaton mass,

m2
ren = m2 − g〈χ2 〉.

The requirement that the renormalization should be small leads to the
inequality m2 ≫ g〈χ2 〉 ∼ g2M2

Pl/λ . Thus the second inequality reads

m ≫ gMPl/
√

λ. (9.44)

Choosing the numerical values of the parameters

f = 10−5MPl, m = 10−6MPl, (9.45)

and substituting them into the expressions (9.43), (9.44), we arrive at con-
straints on the parameters g and λ :√

g/λ ≫ 10−5, g/
√

λ ≪ 10−6. (9.46)

This set of inequalities is not very burdensome. Thus, if λ ∼ 1, then
10−10 ≪ g ≪ 10−6 . The smallness of the parameters is related to the
choice of small parameters in (9.45), which is conventional for inflation-
ary models. Under such restrictions on the parameters, the phase fluctua-
tions have a sharp peak at some e-folding number, which we have denoted
by Nf .
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The second method of suppressing large-scale fluctuations is more car-
dinal and consists of the following. Recall that the Mexican hat potential
has been postulated from the beginning. Its shape has no other foundation
than convenience and effectiveness. But let us also recall the notion of a
“landscape” that appears in string theory as well as in the mechanisms of
cascade reduction and random potentials, to be discussed further in this
book. As a whole, the landscape implies that the shape of the scalar field
potential depends on a number of random circumstances such as the initial
values of the field. Then the shape of the potential may be arbitrary. Let
us employ this and slightly change the shape of the potential (9.14). Using
the landscape ideas, we consider one of the possible forms of the potential

V (χ) = Vb(χ) · F (χ),

F (χ) =
C2

(|χ|a + C)2
, C, a = const. (9.47)

The function F (χ) −−−→
χ→0

1, so that V (χ) −−−→
χ→0

Vb(χ), and the modified

potential is close to the original form Vb from (9.17) while χ is small.
Since the modified potential may be made less steep by varying the

parameters a and C , the time required for the field to reach its minimum
may be accordingly increased.

The χ field dynamics is governed by the equation of motion

∂2χ(t)
∂t2

+ 3H
∂χ(t)

∂t
+

∂V (χ)
∂χ

= 0 (9.48)

where H is the Hubble parameter. This differential equation can be solved
numerically.

The number of e-folds since the beginning of inflation is N = H · t . It
can be seen that in the modified potential the field reaches its minimum
( |χ|min = |f |/

√
2) slower.

The magnitude of the baryon fluctuation is proportional to the fluctu-
ation ∆θ of the phase θ which depends on time as

∆θ(t) =
H

2π · |χ(t)|
(9.49)

each e-folding, where |χ(t)| is the mean absolute value of the field χ dur-
ing that e-folding. Figure 9.2 shows the evolution of ∆θ in the modified
potential. Due to the inverse relation between ∆θ and χ , the modified
potential allows the value of ∆θ to be significantly smaller during the first
e-foldings as compared to its value after ∼ 10th e-foldings. This is exactly
what is needed to suppress large scale baryon fluctuations.
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Figure 9.2 Computed values of ∆θ as a function of N , the number of e-folds, N = H ·t .
Parameter values: H = 1, λ = 0.05, f = 10, a = 1.1, C = 10.

So, in this chapter we have considered an example of an inflationary
model with inhomogeneous baryogenesis: islands of antimatter, sufficiently
spatially extended, emerge here in a natural way. Their number and size
and the antimatter density inside them are controlled by a few parameters
of the model.

Besides the model of baryogenesis, there exist a number of other possi-
bilities, see, e.g., [6, 138]. It would be of interest to apply to them the ideas
outlined here.

9.4 Massive primordial black holes

In the previous sections we have seen that quantum fluctuations during
inflation can lead to such nontrivial phenomena as cosmologically large
antimatter regions. Besides, while discussing the hybrid inflation model, it
has been observed that inclusion of quantum fluctuations is able to cardi-
nally change the picture of the system’s further evolution.

Now we would like to discuss the role of quantum fluctuations in pri-
mordial black hole (PBH) formation. It is conventionally believed that
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the PBH mass is bounded above by a quantity of the order of a single
solar mass. The suggested mechanism is of interest in that it allows for
formation of massive and supermassive black holes long before the first
stars appeared. Let us mention here in advance that this becomes possible
because there appear closed domain walls whose size is much larger than
that of the horizon right after inflation. While contracting, they deliver to
the horizon an energy proportional to their surface area. We will consider
a formation mechanism of such walls.

9.4.1 Field fluctuations near an extremum
of the potential

Some inflationary models suppose creation of our Universe either near a
maximum of the inflaton field potential or near its saddle point(s) to supply
slow rolling during a sufficient number of e-folds. As will be shown below,
these models include the possibility of formation of macroscopically large
closed walls from a scalar field. After the end of inflation, these closed walls
collapse to black holes if these walls are large and heavy enough [234, 356].
This mechanism is realized in well-known models like Hybrid Inflation [274]
and Natural Inflation [139]. A scalar field could be the inflaton itself or some
additional field.

First of all, we consider a general mechanism of closed wall formation
based on quantum fluctuations near unstable point(s) like a saddle point
or a maximum of the scalar field potential. An evolving scalar field may
be split into a classical part, governed by the classical equation of motion,
and quantum fluctuations [385].

Let us choose a positive value for the initial field, φin > 0, as illustrated
in Fig. 9.3. Then the mean field value will increase with time, ultimately
reaching a minimum of the potential at some value φ+ > 0. It means that
a greater part of space will be finally filled with the field value φ = φ+ .
Meanwhile, the field in some (small) spatial domain could jump over the
maximum due to quantum fluctuations. Later on, the mean value of the
field representing this fluctuation tends to another minimum of the poten-
tial, φ− < 0. As a result, the space at the final stage will be filled with
the vacuum φ+ while some spatial domains will be characterized by the
field value φ = φ− < 0. If one starts to move from inside the domain to
the outside, the path will begin from a spatial point with φ− and end at
a point with φ+ . Hence, the spatial path must contain a point with the
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Figure 9.3 Quantum creation of walls during inflation. A right black point relates to

the initial field value, φin .

maximum value of the potential. It means that a wall is inevitably formed
between such spatial domain and the “outer” space with φ = φ+ .

So the “dangerous” values of fluctuations are those with φ ≤ 0. Such
spatial domains will be surrounded by closed walls, and if their number is
too large, it will strongly affect the dynamics of the early Universe. It is
useful to calculate the probability of nucleation of these fluctuations. The
latter depends on the initial field value φin at the moment of creation of
our Universe. The corresponding probability

P0(φin, T ) =
∫ φ=0

φ=−∞
dP (φ, T ; φin, 0), (9.50)

to find the field value φ ≤ 0 at some spatial point, for reasonable values
of the parameters, is presented in Fig. 9.4. This probability determines the
ratio of spatial volumes with different signs of the field.

To facilitate the analysis, let us approximate the potential near its max-
imum by

V = V0 −
m2

2
φ2, (9.51)

where the maximum is assumed at φ = 0 without loss of generality. Then
the probability density to find a certain field value φ has the form [234]
(adapted to the case under consideration):

dP (φ, T ; φin, 0) = dφ

√
a

π(e2µT − 1)
exp

[
−a

(φ − φineµT )2

e2µT − 1

]
. (9.52)

Here a = µ/σ2 , µ ≡ m2/(3H), and σ = H3/2/(2π), with the Hubble
parameter H ≃

√
8πV0/(3MPl).
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Figure 9.4 The part of space occupied by another vacuum state, depending on the time
measured in e-folds. The initial field value is φin = φmax + 3H , where φmax is the field
value at a maximum of the potential. The parameter m is chosen to be m = 0.3H ,
where H is the Hubble parameter at the top of the potential.

This probability is highly sensitive to the initial field value φin : the
closer the nucleation to the maximum of the potential, the greater the part
of the Universe that is covered with walls at the final stage.

If the fraction of space surrounded by the walls is not very large, the
resulting massive black holes, formed from the walls, could explain the
early formation of quasars.

The mass and space distribution of the resulting black holes strongly
depends on the specific model and the parameters of the corresponding
Lagrangian as well as on the initial conditions.

9.4.2 A specific example

Let us choose a specific form of the potential and study the possible PBH
mass spectra. We start with a complex scalar field ϕ with the Lagrangian

Lϕ =
1
2
|∂ϕ|2 − V (|ϕ|), (9.53)

where ϕ = r eiϑ . The potential is chosen in the form (9.17)

V (|ϕ|) = λ(|ϕ|2 − f2/2)2 + Λ4(1 − cosϑ), Λ ≪ f. (9.54)
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Here λ and f are parameters of the Lagrangian. This potential has already
been used in this chapter, see Sec. 9.3. It has a countable set of saddle points
at θ = π and is quite suitable for our goals.

We assume the mass of the radial field component r , i.e., the value

m2
r ≡ d2V/dr2|r=f/

√
2,

to be sufficiently large, so that the complex magnitude of the field acquires
a value somewhere in the circular valley |ϕ| ∼= f/

√
2 before the end of

inflation. Since the minimum of the potential (9.54) is almost degenerate,
the field has the form

ϕ ≃ f/
√

2 · eiϑ(x). (9.55)

In the framework of this model, the PBH spectra have been obtained and
studied in detail in the book [234] and the article [357] where we refer the
reader for details. The resulting spectra have a peculiar feature: an expo-
nential growth of BH number as their mass decreases. A physical reason is
evident: closer to the end of the inflationary period, more closed walls are
formed and they are less “stretched” for the time remaining by the end of
inflation. Recall that the mass of a wall is proportional to its area.

We see that this scenario, in addition to supermassive BH (SMBH)
formation, also predicts the existence of intermediate-mass BHs (IMBHs)
in galactic halos at significant distances from their centres. A distinguish-
ing feature of this scenario is black hole formation even at the radiation-
dominated stage as well as their spatial distribution in stellar clusters.
While “astrophysical” black holes are formed in potential wells at centres
of dark matter halos [133], the PBHs are, on the contrary, able to form
around themselves an induced dark matter halo which looks like a dwarf
galaxy [134, 135] with a sharp density growth towards the centre.

It would be wrong to imagine that absolutely all IMBHs merge to form
central SMBHs in modern galaxies. It is more likely that among them only
some fraction will merge while others should form an IMBH population
in galactic halos. A similar situation emerges in many models with pri-
mordial SMBHs. Indeed, if a certain mechanism predicts the formation of
a single SMBH in the volume of a galaxy, it is hard to avoid the pres-
ence of multiple less massive IMBHs in the same volume. Besides, even if
the origin of SMBHs in galactic nuclei is not connected with IMBHs, the
IMBH mass distribution function usually grows in the direction of small
masses.

Thus a sufficiently common feature of the above-mentioned SMBH for-
mation mechanisms is the predicted high abundance of IMBHs. However,
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the observational data substantially restrict the possible number of IMBHs
in galaxies. Only a small number of objects might be attributed to IMBHs
with a certain probability, e.g., IMBHs in some globular clusters, but there
is so far no unambiguous proof of IMBH presence at their centres.

One has to state that the present observational data do not give a clear
answer to the question of IMBH existence and abundance in the Universe.
There are only particular examples and indications as well as theoretical
arguments for their existence. In what follows we will modify the previ-
ous model in order to suppress IMBH formation in galaxies but preserve
the effective SMBH formation in galactic nuclei. This variant can become
topical if future observations substantially restrict the IMBH number.

9.4.3 Suppressed intermediate-mass black hole
formation

Up to now we neglected the classical field evolution during inflation. Let
us look what happens if we take it into account. For simplicity we will first
assume that the field is moving along the valley of the potential V (ϑ). The
latter means that Eq. (9.55) holds. Then the equation of motion for the
field ϑ with the potential (9.54) reads

θ̈ + 3Hθ̇ +
Λ4

f2
sin θ = 0. (9.56)

The Hubble parameter H remains constant during inflation since the field
θ is not an inflaton. During inflation the quantity θ changes slowly, and
only after its termination does θ rapidly oscillate near the minima, which is
necessary for effective particle production and for heating of the Universe.
Depending on the initial conditions, θ can roll down to one of the minima
θmin = 0 or θmin = 2π .

The number and mass of PBHs which have formed as a final result
strongly depend on the slope of the potential Λ and on the symmetry
breaking scale f at the beginning of the inflation. In [136] such model
parameters were chosen at which there form clusters initially consisting of
massive PBHs, of which the largest ones reach the mass of ∼ 4 · 107M⊙ .
Such massive PBHs can eventually serve as protogalaxy cores, further
increasing their mass up to ∼109M⊙ due to accretion.

We are interested in the phase evolution with time due to both quantum
fluctuations and classical motion. The suitable mathematical formalism
was developed in [342, 385], where it was suggested to split the field into
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a sum of the classical component Θ and the fluctuations ϑ around it:

θ = Θ(t) + ϑ, ϑ ≪ Θ. (9.57)

The probability density Pf (ϑ) of finding the fluctuation part of the
phase ϑ satisfies the Fokker–Planck equation whose solution has the form
of a Gaussian distribution [385]. The phase distribution which is of interest
for us is evidently found by the elementary substitution P (θ) = Pf (Θ−θ).

With the parameters chosen, Λ = 1.75H , f = 10H , the tilt of the
potential (9.54) is small, and we will take it into account only when cal-
culating the main, classical contribution Θ(t) in (9.57). Small corrections
due to the fluctuations ϑ in (9.57) will be taken into account neglecting
the slope of the potential in order not to exceed the required accuracy of
the calculations. Meanwhile, in addition, for the spatial distribution of the
phase, see analytical results, e.g., in [342, 385].

In terms of e-folds, the probability to find the phase in the interval
(θ, θ + δθ) at a given spatial point is [234, 357]

δP (θ) =
1√

2π (Nr − N)
exp

[
− (θr(N) − θ)2

2δθ2(Nr − N)

]
; δθ =

H

2πf
. (9.58)

Here, as already mentioned, we have neglected the slope of the potential.
The classical part of the phase Θ(t) is presented in the form θr(N), where
the number of e-folds is N = Ht .

The condition that one and only one SMBH will appear at the instant
N0 ,

δP (π) · e3(Nr−N0) = 1, (9.59)

indicates that the BH is formed at crossing of the extremum point of the
potential θ = π . Now, from the equation

e3(Nr−N0) =
√

2π(Nr − N0) exp
[

(θr(N0) − π)2

2δθ2(Nr − N0)

]
, (9.60)

we find the phase θr(N0) with which the spatial region should be created
such that at N0 e-folds before the end of inflation the conditions for SMBH
formation emerge:

θr(N0) = π − δθ
√

(Nr − N0)[6(Nr − N0) − ln 2π(Nr − N0)]. (9.61)

Let us now determine the probability of smaller-mass BH formation
which takes place at the e-folding N , such that N < N0 < Nr . Fig. 9.5
depicts the time dependence of the phase θ (where time is expressed in
e-folds), obtained by numerically solving Eq. (9.56) and in the slow-rolling
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Figure 9.5 The dependence of θ on the number of e-folds at the values Λ = 1.75H , f =
10H . The solid line corresponds to a numerical calculation, dots (which almost merge
with the line) denote the result of analytic calculation in the slow-rolling approximation.
The approximating straight line is dashed, its slope coefficient is α = 0.028.

approximation. The fine agreement shows that the system is indeed in
a slow-rolling mode. In the subsequent calculation of the probability of
quantum fluctuations of the field θ , it is expedient to use not the numerical
solution of Eq. (9.56) but rather the linear dependence that approximates
it. Taking into account that the primordial IMBHs are formed from large
domains emerging at a small number of e-folds, the approximation of the
solution to (9.56) is carried out in the initial part (N < 20). It is convenient
to approximate the needed dependence by the linear function

θr(N) ≃ θr(N0) − α · (N − N0). (9.62)

Then the probability of the conditions for IMBH formation emerging during
the e-folding number N is

δP (π) =
1√

2π(Nr − N)
exp

[
− (θr(N0) − α · (N − N0) − π)2

2δθ2(Nr − N)

]
. (9.63)
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Figure 9.6 The PBH mass distribution. The solid line corresponds to the distribution
for Λ = 1.75H , f = 10H (the crosses mark the results of calculations), the dashed line
to the distribution for α = 0 (the calculated results are marked with circles).

Knowing the number of causally disconnected regions, exp[3(N −Nr)] ,
which have formed since the formation time of the spatial region Nr , one
can find the total IMBH number in this region. A detailed description has
been given in [234], where, unlike our case, the classical field motion is not
taken into account, i.e., α = 0.

Figure 9.6 presents the PBH mass distribution for the parameters
Λ =1.75H , f =10H. It is clear that the IMBH formation turns out to
be really suppressed.

Thus the resulting BH mass spectrum is sensitive to the details of the
classical motion and, in particular, to the initial field value. The logic and
the relations obtained above will be useful in the next section.

9.4.4 PBH mass spectra and the scalar field dynamics

Let us look which results can be obtained in the general case assuming
that the modern horizon has formed at ϕ > f/

√
2. For simplicity, we split

the classical motion of the field Φ = ϕ(t)eiθ(t) in the potential (9.54) into
two parts: the radial motion describing changes in the field magnitude,

ϕ(t), θ = const,
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when approaching the minimum ϕ = f/
√

2, and the transverse motion
describing the evolution of the field phase in the valley of the potential:

ϕ = f/
√

2, θ = θ(t).

During inflation, the space splits into a great number of mutually causally
disconnected regions (but causally connected inside!), in which, due to
quantum fluctuations, the field values are different. As described in [234],
along the boundaries of regions with the phase θ = π there form closed
field walls and, after their collapse, PBHs. The fluctuations of the field
magnitude take place at radial motion of the field, which leads to changes
in the BH mass spectrum.

As has been done above, the field is considered as a sum of the classical
term Θ and the fluctuation ϑ around it,

θ = Θ(t) + ϑ, ϑ ≪ Θ. (9.64)

The probability to find the phase in the interval (π, π + δθ) by the end of
inflation, under the condition that at some time the phase was θ = θ(z), is

dP =
1√

2π(zu − z)
exp

[
− (π − θ)2

2δθ2(zu − z)

]
. (9.65)

Here δθ is the mean value of the phase fluctuation magnitude for a single
e-folding, δθ = H

2πf , zu is the duration of the inflationary stage in which the
observable Universe has formed, and z is the number of e-folds remaining
to the end of inflation. In Eq. (9.65) it has been taken into account that the
mean value Θ(t) of the phase θ is also time-dependent due to the classical
motion. To include the field magnitude fluctuations during the separate
motion, a similar formula is used:

dP (ϕr) =
1√

2π(zu − z)
exp

[
− (ϕr − ϕ)2

2δϕ2(zu − z)

]
. (9.66)

Here δϕ = H/(2π) is the mean value of the fluctuation magnitude of the
radial field component. The radial motion of the average field is described
by the equation

∂2ϕ

∂t2
+ 3H

∂ϕ

∂t
+ V ′

ϕ = 0. (9.67)

The form of the solution to (9.67) is mainly determined by the initial field
value ϕin �= f/

√
2 (ϕ̇in = 0).
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When the field magnitude reaches the value ϕ ∼ f/
√

2, it is necessary
to take into consideration the change in the field phase θ which, in this
case, is described by the equation

∂2θ

∂t2
+ 3H

∂θ

∂t
+ V ′

θ = 0. (9.68)

The next step is to find the spatial size distribution of the domains with
the phase θ > π , taking into account the classical motion (9.67), (9.68).
Such domains emerge due to quantum fluctuations of the scalar field.

The number of domains δN , filled with the phase θ > π , emerging
during a single e-folding at z e-folds before the end of inflation and creating
a black hole in the future, is determined by the probability (9.65):

δN = N dP, (9.69)

where the total number of domains N is N = e3z . By the end of infla-
tion, these domains turn out to be surrounded by closed field walls. As a
result of a collapse, almost the whole energy of such a closed wall can be
concentrated in a small volume inside the gravitational radius, which is a
necessary condition for BH formation.

The forming BH masses depend on the characteristic size of the closed
wall, which is larger if a spatial domain surrounded by a given wall appeared
earlier. The analytic dependence of the PBH mass on the wall size is dis-
cussed in [233, 234, 357]. Following these references and using the formulas
of the present section for calculating the size distribution of the walls, we
obtain the PBH mass spectrum.

Figure 9.7 shows the PBH spectrum in the observable Universe obtained
from the above considerations. The initial field values ϕin = 28H , θin = 2.5
lead to a sufficiently narrow spectrum. The maximum of this distribution is
located at the BH mass of ∼ 105−6M⊙ . Later on they can become SMBHs
in galactic nuclei, having increased their mass due to matter accretion and
merging with other BHs.

Less massive IMBHs form BH populations in galactic halos. It is also
seen from Fig. 9.7 that, for instance, the number of IMBHs with the
mass ∼103M⊙ is suppressed by two orders of magnitude. That is, if the
probability of SMBH formation in a certain galaxy is of order unity, then
the probability of finding an IMBH is of the order of 1%. It can explain the
difficulty of their search. The obtained PBH mass spectra are very sensitive
to the initial values ϕin and θin .



300 Black Holes, Cosmology and Extra Dimensions

Figure 9.7 Primordial black hole mass distribution with the model parameters λ =
0.005, Λ = 2.5H , f = 10H , ϕin = 28H , θin = 2.5.

9.4.5 Discussion

The galaxy formation process includes quantum creation of energy density
fluctuations and their spatial growth at the inflationary stage, growth of the
density after the fluctuation comes under the horizon, and the subsequent
star formation. In the standard picture, the stars gradually accumulate near
the centre and merge, thus forming a massive black hole whose mass grows
with time. However, the possibility of galaxy formation with supermassive
BHs at the centre is becoming more and more intriguing and unclear,
especially in connection with the discovery of distant quasars with redshifts
z > 6. Such an early formation of black holes with masses ∼ 109M⊙ can
become a serious problem for the standard models of BH formation [131].
Thus the scenarios with primordial massive BH formation [28, 100, 356,
435] attract attention as a possible alternative to the standard scenario.
Such PBHs can be condensation centres for baryons and dark matter [131,
132] with subsequent protogalaxy formation.

In this chapter, we have described a PBH formation mechanism as a
result of collapse of closed field walls as well as a formation mechanism of
these walls themselves. It has been shown that the shape of the BH mass
spectra strongly depends both on the parameters of the potential and on
the initial conditions.
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A further evolution of a closed wall goes on as follows. The wall pos-
sessing an energy excess tends to the most energetically favourable state.
Like a soap bubble, it acquires a spherical shape and contracts. (If there
were no air in a soap bubble, it would do the same). The fate of a small
wall is of minor interest: it contracts to its centre, different parts of the wall
collide with each other, and as a result all its energy passes on to expand-
ing waves of the field which had formed the wall. The situation with large
walls is quite different. Their contraction delivers enormous energy to a
small spatial volume. This energy is held by the gravitational field, and
a compact object is formed. A more detailed analysis shows that such
objects, black holes, are formed in whole families, or clusters. It is evident
that no stars are required to form these massive primordial black holes!
On the contrary, it is such a BH cluster that can create a gravitational
potential well and collect there a sufficient number of baryons from which
stars can later form. There already exist observational data on solitary
supermassive black holes, whose environment is free of luminous matter.
This can be considered as an indirect confirmation of the above-described
mechanism of massive PBH formation.

A particular realization of this mechanism has been developed in the
papers [132, 234, 235, 354, 356]. In [132] such model parameters have been
chosen that from the very beginning there form large clusters of massive
PBHs with central BH masses of ∼ 4 · 107M⊙ , which grow by accretion up
to values ∼ 109M⊙ and thus describe the observed activity of the distant
quasars.

In this scenario, there are several stages of BH and galaxy formation:

1. Formation of closed walls of a scalar field immediately after the end of
inflation and their collapse to a PBH cluster according to [235, 356, 357].
The most massive PBH is formed at the centre of the cluster after
crossing the cosmological horizon.

2. Separation of the central dense region of the cluster from the cosmologi-
cal expansion and its virialization. A large number of less massive PBHs
that surround the central one merge with it and increase its mass.

3. Separation of the external regions of the cluster, dominated by dark
matter, from the cosmological expansion, and growth of a protogalaxy.
End of protogalaxy growth due to interaction with ordinary fluctuations
of dark matter.

4. Gas cooling and star formation, merging of protogalaxies and formation
of modern galaxies.
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One cannot exclude the possibility that both galaxy formation scenar-
ios, the standard one and the one with PBHs, are realized simultaneously.
With all that, since at the initial stage the galaxies often merge, it is suf-
ficient that a small fraction of protogalaxies possess massive black holes
at their centres to explain the observed abundance of supermassive black
holes at galactic centres.



Part III

Extra Dimensions
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The idea of extra dimensions, tracing back to the pioneering works of
Thomas Kaluza [222] and Oscar Klein [241], became in the last decades
a necessary component of almost all attempts to unify the four physical
interactions. The most popular are models with dimensions D = 10 (super-
strings) and 11 (M-theory), but there are quite a number of still higher-
dimensional models. The bosonic sector of such theories usually contains,
apart from the metric, different kinds of scalar and vector fields as well as
antisymmetric form fields; meanwhile, it is well known that, in the extra
(with respect to the usual four) dimensions, the D -dimensional metric
components naturally create scalar and vector fields when reduced to the
four-dimensional space-time (see, e.g., [407] and references therein).

It is the simplest case of such a reduction, leading to Einstein’s gravity
and Maxwell’s electromagnetic field, that has been described in Kaluza’s
paper [222]. More complex unified multidimensional theories, providing the
advent of boson fields that appear in the Standard Model of particle physics
from multidimensional gravity, have been described in the book [407] (see
there also references to other works in this area, including numerous papers
by members of Yu.S. Vladimirov’s group). A separate problem to be solved
is geometrization of fermion fields.

Of special interest are multidimensional theories with a gravitational
action containing terms nonlinear with respect to curvature. Their emer-
gence directly follows from quantum field theory in curved space-time
[38, 178], and therefore it may not even be considered as an independent
postulate.

According to [77, 83], multidimensional gravity with curvature-
nonlinear Lagrangians leads to a diversity of low-energy theories owing to
arbitrariness of the input parameters of the gravitational action and differ-
ent variants of the initial data. The latter can include both the metric and
the topology of extra dimensions that can emerge from quantum fluctua-
tions at high energies. Thus even at fixed parameters of the initial effective
Lagrangian, one can expect the emergence of many kinds of Universes with
drastically different properties. Even under comparatively simple assump-
tions on the nature of multidimensional geometry, after reduction to the
four observed dimensions there appear effective scalar fields with compli-
cated potentials, whose properties to a large extent determine the physical
properties of one or another universe.

Such a viewpoint is close to the concept of chaotic inflation, according to
which there permanently emerge indefinitely many universes at fluctuations
of a scalar field (inflaton). With a sufficiently sophisticated shape of the
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potential, the situation resembles the so-called landscape concept in string
theory: the number of different vacua in heterotic string theory reaches
101500 [269], the number of more realistic de Sitter vacua [220] is also huge
though finite. We try to make a next step, explaining the origin of such
potentials from the standpoint of multidimensional gravity.

Obtaining particular results in multidimensional gravity is substantially
simplified by using the slow-change approximation [77, 83] that assumes
small values of all derivatives (in a sense to be discussed below) and small-
ness of all energy densities as compared to Planck scales. Such assumptions
turn out to hold even in early cosmology characterized by Grand Unifica-
tion energies, to say nothing about processes at lower energies and in the
realm of modern cosmology. This method allows for considering quite dif-
ferent kinds of gravitational actions and the wide ranges of parameters they
contain.

In the Kaluza–Klein concept, the extra spatial dimensions remain invis-
ible due to their extreme smallness. In the recent years, however, an alter-
native concept became a subject of active studies, namely, the brane-world
concept, which considers our Universe as a distinguished three-dimensional
(or four-dimensional if time is included) surface or layer, called the brane,
in a multidimensional space-time where the extra dimensions have large or
even infinite size. They remain invisible because the Standard Model fields
(and hence the observers) are assumed to be concentrated on the brane
while gravity (and as a rule only gravity) is allowed to propagate in the
surrounding space, called the bulk. The history of such models is traced
back to the early 80s, with papers by Akama [9], Rubakov and Shaposh-
nikov [351] and others. The outburst of interest in such models is basically
related to some achievements of string theory and M-theory, in particular,
with the well-known Hořava–Witten 11-dimensional model [208, 429], in
which one of the extra dimensions has a much larger size than others. This
approach was shown to be able to suggest a natural mechanism of solving
the hierarchy problem in particle physics ([336] and others), while in weak
fields the Newtonian law of gravity is preserved as required by modern
experiments. Other unsolved basic problems of particle physics as well as
cosmology have received significant progress in brane-world models.

A separate problem is the very number of extra dimensions which varies
from zero to infinity in works by different authors. Introducing the notion
of “extended superspace”, we will arbitrarily vary this number. Originally,
the concept of superspace meant the set of various geometries [423]; subse-
quently, the set of all possible topologies was included in it. Let us take one
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more step and extend the superspace to include spaces of various dimen-
sionalities. To be more precise, let us define the extended superspace E as
a direct product of superspaces M of various dimensionalities:

E = M1×M2 ×M3 × · · · ×MD . . .

Here, Mn is a superspace of dimension n = 1, 2, . . . , D, which is the set of
all possible geometries (up to diffeomorphisms) and topologies.

Quantum fluctuations generate various geometries in each of the super-
spaces (space-time foam) [423]. The probability of a quantum birth of
“long-lived” 3-geometries and the conditions under which this occurs are
discussed below. In this chapter, we consider the corollaries of the hypoth-
esis on the existence of an extended superspace.
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Chapter 10

Multidimensional gravity

In this chapter, we will describe a few classes of model universes originating
in nonlinear multidimensional gravity, without invoking any fields other
than the metric one in the initial action. Among them are cosmological
models able to describe both inflation in the early Universe and the modern
stage of accelerated expansion.

10.1 Compact extra dimensions. A brief review

The idea that our world can have a dimensionality greater than four has
appeared at the beginning of last century. The idea has turned out to be
both simple and deep. Simple because it is rather simple to imagine, at
least using two- and three-dimensional analogues. Thus, a sheet of paper
is perceived (and used) as a two-dimensional object, but for microbes it
is unambiguously three-dimensional. Evidently, due to a small size of, say,
the fifth dimension it can avoid our perception. The idea is deep owing to
its numerous and unexpected consequences. To obtain significant results,
it is necessary to master the corresponding mathematical tools. Therefore
in what follows we briefly present the necessary information.

Consider a D -dimensional differentiable manifold MD , which can be
presented as a direct product,

MD = M4 × Md. (10.1)

The extra-dimensional space Md is supposed to be compact and
have a volume Vd < ∞ . Let us introduce some coordinates in MD :

309
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{X} = ({x}, {y}), where the set xµ, µ = 1, 2, 3, 4 describes the four-
dimensional space-time M4 and the set ya, a = 1, 2, . . . , d the extra space
Md . The interval is written in terms of the metric tensor as usual:

ds2 = GMNdXMdXN , (10.2)

where the indices M, N run over the values 1, 2, . . . , d + 4. The volume
of the extra space is expressed in terms of the positive-definite “internal”
metric γab :

Vd = V (Md) =
∫

ddy
√

γ < ∞, (10.3)

where γ = det(γab). The latter inequality is a necessary condition of com-
pactness of this subspace.

Scalar fields and extra spaces

To demonstrate the opportunities, let us consider the behaviour of a scalar
field Φ defined in the full space MD , with the action

S =
∫

MD

dDX
√

|G|
[
1
2
(∂MΦ∂MΦ) − U(Φ)

]
. (10.4)

Varying the action in Φ with a fixed metric, we obtain the equation of
motion

�DΦ + dU/dΦ = 0.

Here, the D -dimensional d’Alembert operator is defined as follows:

�DΦ ≡ ∇M∇MΦ =
1√
|G|

∂M (
√

|G|∂MΦ), (10.5)

where G = det(GMN ). If we restrict ourselves to small deflections from an
equilibrium position (a minimum of the potential), we can approximate the
potential with a quadratic expression U(Φ) ≃ M2Φ2/2. Then the equation
of motion simplifies to take the form

(�D + M2)Φ = (�4 + �d + M2)Φ = 0,

where �4 and �d are d’Alembertian operators in the corresponding sub-
spaces.
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Let us introduce an orthonormal set of functions Yn(y), such that
�dYn(y) = λnYn(y). (10.6)

Since Md is a compact space, the eigenvalues of the d’Alembert operator
λn are discrete. The orthonormality condition is written as follows:∫

Md

ddy
√
|γ|Yn(y)∗Ym(y) = δnm (10.7)

Expanding Φ in a series in the eigenfunctions Yn(y),

Φ(X) =
∑

n

Yn(y)Φn(x), (10.8)

and taking into account the expressions (10.6) and (10.7), it is easy to write
the Φ field equation in the space M4 :

(�4 + λn + M2)Φn(x) = 0. (10.9)
The fields Φn(x) are perceived by an observer as scalar fields with masses
Mn = M2 + λn . The nonobservability of scalar particles appearing from
extra dimensions is usually explained by their large masses.

Let us consider a widespread example of extra space. Suppose that
the extra space Md has the geometry of a d-dimensional torus, Md =
T

d × S
1 × S1 × S1 × . . . × S1 , ym ∈ [0, 2πR] . Then the explicit form of

the eigenvalues (10.6) is well known:

λn ≡ λ{n1,n2,...,nd} =
d∑

j=1

n2
j

R2
. (10.10)

The eigenfunctions then have the form

Y{n1,n2,...,nd}(y) =
1√
VT

exp
[
i
∑

njy
j

R

]
, VT = (2πR)d. (10.11)

If the radius R of the torus, characterizing the size of the extra space, is
small, then all excitations with j ≥ 1 correspond to supermassive particles.

10.1.1 A Kaluza–Klein model with a single
extra dimension

A closed one-dimensional manifold (a closed curve) is, from the viewpoint
of its internal geometry, a circle S

1 . Therefore the structure (10.1) in the
case d = 1 is

M5 = M4 × S
1. (10.12)

It is convenient to represent the metric of the full space M5 as a matrix:

GAB =
(

Gµν Gµ5

G5µ G55

)
, (10.13)
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where G55, G5µ, Gµν are the scalar, vector and tensor in the 4-dimensional
space M4 .

How to extract gauge symmetry from extra dimensions

To understand the idea, let us make the restriction G55 = const = −1.
Then transformations of the form

x′µ = xµ,

y′ = y + ε(x), ε(x) ≪ 1 (10.14)

affect the metric in the following way:

G′
µν =

∂xA

∂x′µ
∂xB

∂x′ν GAB , G′
µ5 =

∂xA

∂x′µ GA5,

while the coefficient G55 remains invariable. In our case of infinitesimal
shifts,

G′
µν = Gµν − Gν5∂µε − Gµ5∂νε + O(ε2),

G′
µ5 = Gµ5 − G55∂µε = Gµ5 + ∂µε. (10.15)

The very idea of extra dimensions has emerged from a wish to describe
the gravitational field and the electromagnetic (gauge) field in a unified
form. As components of the latter, one can take the off-diagonal elements
of the metric tensor Gµ5 , because, as is seen from (10.15), their trans-
formations strongly resemble gauge ones. The situation is somewhat more
complex with the choice of the four-dimensional metric. A choice of Gµν as
the metric tensor in the main subspace M4 does not seem good because it
depends on the choice of the extra-space coordinate, (10.15). On the other
hand, it is not hard to understand that

gµν = Gµν + Gµ5Gν5,

is invariant under the infinitesimal transformations (10.14). It is this tensor
that is convenient as a choice of the metric tensor in the main subspace
M4 . Denoting Bµ = −Gµ5 , we write the metric tensor in the form

GAB (x) =
(

gµν − BµBν −Bµ

−Bν −1

)
. (10.16)

The inverse matrix of GAB is

GAB (x) =
(

gµν −Bµ

−Bν −1 + BλBλ

)
. (10.17)
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The quantity Bµ , under the transformation (10.14), is transformed as

B′
µ = Bµ − ∂µε, (10.18)

which is of particular interest: it is in this way that the vector potential of
the electromagnetic field transforms under the action of the group U(1) on
the wave function of a charged particle. The greatest advantage of Kaluza–
Klein theories is that gauge symmetries follow from the symmetry of a
compact extra space instead of being additionally postulated.

The invariance of the action (10.4) under the transformations (10.14)
causes the emergence of gauge invariance of this action under the transfor-
mations (10.18).

Let us look how the transformation (10.14) affects a real scalar field
Φ(x, y). It can be represented by the Fourier series (10.8)

Φ(x, y) =
∑

n

Φn(x)Yn(y),

where Yn(y) is an orthonormalized set of eigenfunctions of the operator
∂2

y acting in the extra space M1 . Since in our case it is a circle of a certain
radius r , we have

Yn(y) =
1√
2πr

e−iny/r.

The symmetry of the extra space (circle) manifests itself in the invariance
of the functions Yn(y) under the shifts y → y + 2πr . The scalar field is
transformed by the substitution y → y + ε in the following way:

Φ′(x, y) = Φ(x, y + ε).

Comparing the Fourier transforms of both parts of the equality, we obtain

Φ′
n(x) = Φn(x)ei(n/r)ε.

It is in this way that a charged scalar field transforms at gauge transfor-
mations. It means that the Fourier component Φn(x) can be perceived as
a scalar field with the charge qn ≡ n/r .

We see that U(1) symmetry of the extra space implies the existence of
the gauge 4-vector Bµ and charged particles in the space M4 . It is clear
that the Lagrangian in four dimensions that we are going to obtain will
be invariant under gauge transformations since they are created by the
transformations (10.14), under which the initial Lagrangian is manifestly
invariant. Nevertheless, to obtain an explicit form of the low-energy action,
some further reasoning is necessary.
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Let the action of an arbitrary scalar field Φ have the form

S =
∫

d5z
√

G

(
−1

2
Φ�GΦ − 1

2
m2Φ2

)
.

The purely kinetic term in the action is written as

1
2

∂Φ
∂xA

∂Φ
∂xA

.

The two expressions differ by a total derivative that does not affect the
classical equations of motion for the field Φ. We choose the five-dimensional
metric in the simplest form and approximate it as follows, see (10.16):

GAB (x) =
(

ηµν − BµBν −Bµ

−Bν −1

)
. (10.19)

We here neglect the dependence of the gauge field Bµ(x) on the coordinate
y of the extra space and the dynamics of the metric coefficient G55 . It
means physically that, by assumption, all relaxation processes in the fifth
dimension have finished. The d’Alembert operator is presented as

�G = ηµν(∂µ − Bµ∂y)(∂ν − Bν∂y) + �y.

Substituting this expression into the action, we obtain

S =
1
2

∑
n

∫
d4x

√−gΦ∗
n(−�n + m2

n)Φn,

where

�n = gµν(∂µ − iqnAµ)(∂ν − iqnAν), Aµ ≡ −1√
2κ

Bµ,

qn = n(
√

2κ/R), m2
n = m2 + n2/R2.

In the language of field theory, the resulting effective action describes a set
of scalar fields with masses m2

n and charges qn , interacting with the gauge
field Aµ in Minkowski space.

Generalization: G55 �=const

Up to now we have been considering the simplest version of a 5D theory
where the metric coefficient G55 is coordinate-independent. Let us extend
the boundaries of what was presented by assuming G55 
= const.
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It is convenient to introduce the field Bµ , generalizing the one intro-
duced previously in the following way:

Gµ5 = −
√
|G55|Bµ. (10.20)

As will be shown a little later, the 5-metric can be written as
(

gµν − e2φBµBν − eφBµ

− eφBµ −e2φ

)
, (10.21)

where we have introduced the scalar field φ :

G55 ≡ −e2φ. (10.22)

This result makes it possible to single out the gauge symmetry in the
5-dimensional Hilbert–Einstein action. Indeed, the Ricci scalar R5 of the
5D space is expressed in terms of the corresponding scalar R4 of the 4D
space as follows:

R5 = R4 − 2e−φ�eφ − 1
4
e2φFµνFµν ; (10.23)

Fµν = ∂µBν − ∂νBµ. (10.24)

Then the 5D Einstein-Hilbert action, after some calculation, takes the form

S =
1

16πG5

∫
M5

d5X
√

|G|(R5 − 2Λ)

=
1

16πG4

∫
M4

d4x
√

|g|
(

R4 − 2Λ′ − 3
2
∂µφ∂µφ − 1

4
e3φFµνFµν

)
.

(10.25)

The derivation of this formula is omitted due to its lengthiness. During the
calculation, the following conformal transformation was done:

gµν → g̃µν = eφgµν

and we have denoted G4 = G5/(2πR), Λ′ = 4
3Λ. In (10.25) the metric g̃

is used.
Thus, having assumed the existence of a single extra dimension, we have

obtained 4D gravity with a massless scalar field interacting with an Abelian
gauge (electromagnetic) field. The theory with such an interaction is often
called dilaton gravity, and the field φ is called the dilaton. If φ = const,
it is the usual Einstein–Maxwell theory.
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The geometric meaning of gµν

The extra space in the form of a circle has the symmetry (isometry group)
U(1), whose transformations are rotations by an arbitrary angle. The met-
ric tensor gµν of the main (i.e., our) space is invariant under such transfor-
mations. It is this group that acts as a gauge group for the gauge field Bµ

obtained from the geometry and interpreted as the electromagnetic field.
Owing to the simplicity of the extra space we were able to easily con-

struct a suitable combination from the quantities Gµν , Gµ5 and G55 . In
more involved cases this procedure is not so obvious. It is therefore neces-
sary to come to a clearer understanding of the meaning of the quantities
introduced.

Since the metric tensor GAB has off-diagonal elements, the space M4

with the metric Gµν is not orthogonal to M1 . Let us find a space U4

orthogonal to M1 . We will seek a small displacement vector, orthogonal to
M1 , in the form

	δ ≡ dxµ	eµ + dy	e5, (10.26)

where 	eµ , 	e5 are a set of five unit vectors, and 	e5 is tangent to M1 . For
the orthogonality condition written as

(dxµ	eµ + dgy	e5) · 	e5 = 0,

we find the displacement dy :

dy = −G−1
55 G5µdxµ.

The absolute value of the displacement vector is

	δ2 = δMGMNδN = (Gµν − G−1
55 Gµ5Gν5)dxµdxν ≡ gµνdxµdxν . (10.27)

Here we have used the equalities δµ = dxµ, δ5 = dy , see (10.26). Now
the meaning of the tensor gµν is clear: it determines the interval in a space
orthogonal to M1 .

Vielbeins

Let us introduce the vielbein formalism which is convenient for extension
of the above results to compact extra spaces of d spatial dimensions.

It is well known that gravity can be described by a full set (basis) of
linearly independent vielbein vectors eA instead of the metric tensor. The
index A is the number of the vector in M5 , A = 1, 2, . . . , 5. The metric
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tensor components gAB are defined in terms of the vectors eA using their
scalar product:

gAB = eA · eB.

The basis vectors can be chosen in such a way that the metric tensor defined
with their aid have the canonical form ηAB = diag(1,−1,−1, . . . ,−1). The
vielbein consisting of the vectors eĀ such that eĀeB̄ = ηAB is called the
Lorentz basis. One basis can be expanded by another:

eA = bĀ
AeĀ = bµ̄

Aeµ̄ + b5̄
Ae5̄. (10.28)

We assume summing over repeated indices. The vectors e5 and e5̄ are
chosen to be collinear, e5 = b5̄

5e5̄ . Then Eq. (10.28) immediately implies
that bµ̄

5 = 0. The expansion (10.28) can be presented in a matrix form,
with the matrix (

bµ̄
µ 0

b5̄
µ b5̄

5

)
,

acting on the columns (eµ̄, e5̄),eµ, e5 . The inverse matrix(
hµ

µ̄ h5
µ̄

hµ
5̄

h5
5̄

)

has an important property that

h5
5̄b

5̄
5 = 1.

The components of the metric tensor in M4 are expressed as follows:

Gµν ≡ eµ · eν = bĀ
µ bB̄

ν eĀeB̄ = bµ̄
µbν̄

νeµ̄eν̄ + b5̄
µb5̄

νe5̄e5̄

= bµ̄
µbν̄

νηµ̄ν̄ + b5̄
µb5̄

νη5̄5̄ = gµν − b5̄
µb5̄

ν , (10.29)

where we have introduced the tensor gµν ≡ bµ̄
µbν̄

νeµ̄eν̄ = bµ̄
µbν̄

νηµ̄ν̄ , which is
obviously invariant under coordinate transformations in the extra space.
Besides,

Gµ5 ≡ eµ · e5 = bĀ
µ bB̄

5 eĀeB̄ = b5̄
µb5̄

5e5̄e5̄ = −b5̄
µb5̄

5,

G55 ≡ e5 · e5 = b5̄
5b

5̄
5e5̄e5̄ = −b5̄

5b
5̄
5.

Defining the field Bµ by

Bµ ≡ B5
µ ≡ h5

5̄b
5̄
µ,

we arrive at the expressions obtained above (see (10.21), (10.22), where
b5̄
5 = eφ ):

Gµν = gµν − b5̄
5b

5̄
5BµBν ;

Gµ5 = −b5̄
5Bµ;

G55 = −b5̄
5b

5̄
5.
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10.1.2 Kaluza–Klein models. The general case

There is no reason for which it would be necessary to restrict oneself to a
single extra dimension. As will be seen, an increased number of dimensions
yields rich opportunities. Let us therefore consider a Riemannian space
with an arbitrary number of dimensions, singling out, for evident reasons,
the four-dimensional physical subspace.

In the previous section, we have considered splitting of the metric tensor
using the vielbein method. This metric is readily extended to an arbitrary
number of extra dimensions. In what follows we do things quite similar to
the 5D variant.

We introduce the basis vectors: the coordinate basis eA for splitting
M4×Md , and eĀ , the Lorentz basis of the same space-time. One basis can
be expanded by the other:

eA = bĀ
AeĀ = bµ̄

Aeµ̄ + bā
Aeā, (10.30)

where again summing is assumed. The indices µ, ν refer to the space M4

while a, b, . . . to the space Md .
The expansion (10.30), by full analogy with the previous case, can be

represented in a matrix form with the transition matrix(
bµ̄
µ bµ̄

a

bā
µ bā

a

)
.

In the Lorentz basis, the scalar product eµ̄ · eā = 0 by definition. Conse-
quently, bµ̄

a = 0, while the matrix(
hµ

µ̄ ha
µ̄

hµ
ā ha

ā

)
,

is the most general form of the inverse matrix.
The components of the metric tensor G in M4 can be expressed in

terms of the expansion coefficients of one basis with respect to the other:

Gµν ≡ eµ · eν = bĀ
µ bC̄

ν eĀeC̄ = bµ̄
µbν̄

νeµ̄eν̄ + bā
µbc̄

νeāec̄

= bµ̄
µbν̄

νηµ̄ν̄ + bā
µbc̄

νηāc̄ = gµν − bā
µbā

ν . (10.31)

Besides,

Gµa ≡ eµ · ea = bĀ
µ bC̄

a eĀeC̄ = bā
µbc̄

aeāec̄ = −bā
µbā

a, (10.32)

and

Gac ≡ ea · ec = bā
ab

c̄
ceāec̄ = −bā

ab
ā
c . (10.33)
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Here we have used the basic property of the Lorentzian basis that eĀeC̄ =
ηĀC̄ . Let us define the field Bµ as follows:

bā
µ = bā

aBa
µ,

or explicitly

Bµ ≡ Ba
µ ≡ ha

ābā
µ.

It addition, it is useful to denote

Gac ≡ φac,

thus reminding the reader that this expression is a scalar with respect to
transformations in M4 , Substituting this definition into (10.31), (10.32),
(10.33), we obtain the desired formulae for splitting the metric tensor of
multidimensional space:

Gµν = gµν + φacB
a
µBc

ν , (10.34)

Gµa = φacB
c
µ. (10.35)

Let us give an explicit form of coordinate transformations for these
quantities. Thus, a transformation similar to the 5D case

x′ = x′(x), y′ = y′(x, y),

leads to the following relations:

g′µν =
∂xλ

∂x′µ
∂xρ

∂x′ν gµν , G′
ac =

∂yd

∂y′a
∂yf

∂y′c Gdf , (10.36)

B′
µ =

∂xν

∂x′µ
∂y′a

∂yc
Bc

ν +
∂y′a

∂yc

∂yc

∂xν
. (10.37)

All these relations are valid without taking into account the symmetry
of the extra space. Previously, when studying the 5D model, one could
ignore the issue of form invariance of the extra space with respect to the
transformation (10.14). Due to the simple geometry of the space M1 , the
form of its extra-space metric did not change under the transformations
(10.14). If, however, the extra space is multidimensional, then arbitrary
coordinate transformations, in general, affect the metric. For this reason,
in the low-energy limit, the Lagrangian will not have the standard gauge-
invariant form, although the off-diagonal components of the metric will be
associated with vector gauge fields.

To obtain a gauge-invariant theory at low energies, it is necessary that
the extra space possess the corresponding symmetry. Then the more narrow
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class of transformations applied to the metric of this space, the one that
leaves the metric form-invariant, creates a gauge-invariant theory. We will
see what are the consequences of this situation.

Kil ling vectors

As was previously shown, local transformations of the extra space Md only,

ya → y′a = ya + ǫa(x),

can be considered as transformations of a gauge field, at least in the 5D
case. In general, this affects both the metric GAB of the main space M4

and that of the extra space Md . While in the main space it is possible to
single out the invariant part gµν , transformations of the extra space metric
is an undesirable feature. Therefore it makes sense to address coordinate
transformations that leave the extra space metric invariable.

A coordinate transformation y → y′ is called an isometry if it leaves
the metric form-invariant:

Gab(y) → G′
ab(y

′) = Gab(y′). (10.38)

If such coordinate transformations form a group, it is called an isometry
group G(Md) of the space Md . We will be interested in infinitesimal trans-
formations.

Let there be a set of vectors km
i (y), i = 1, 2, . . . , r such that small

shifts along them

ym → y′m = ym + km
i (y)εi(x), ε ≪ 1 (10.39)

leave the metric of Md invariable. The vectors km
i (y) are called Killing

vectors and are generators of the isometry of this space. It can be shown
that these vectors satisfy the commutation relations

ka
i ∂akb

j − ka
j ∂akb

i = f l
ijk

b
l . (10.40)

The structure constants f l
ij are determined by the specific isometry group.

The maximum possible number of independent Killing vectors is related
to the dimension of space in the following way:

maxA =
d(d + 1)

2
. (10.41)
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The equations for determining the Killing vectors can be obtained from
(10.38) and read

∇akib + ∇bkia = 0, kia ≡ Gabk
b
i (y). (10.42)

They are called the Killing equations.

A non-Abelian gauge group as an isometry group of the extra space

Let us apply the above equations for studying a relationship between the
symmetry of the extra space and gauge invariance of a low-energy theory
in four dimensions. We choose the following coordinate dependence of the
metric:

gµν = gµν(x), Gmn = Gmn(y). (10.43)

Furthermore, we expand the vector Bm
µ in a basis of Killing vectors kn

i :

Bm
µ = km

i (y)Bi
µ(x). (10.44)

This can be done because Bm
µ is a vector in the space Md , possessing the

corresponding symmetry.
Now we can show that the isometry group in Md is realized in M4

as a non-Abelian gauge group. To this end we consider the infinitesimal
transformations

x′µ = xµ, y′α = yα + kα
i (y)εi(x).

After some calculations, from the transformations (10.36) follows the
transformation law for the object Bi

µ :

δBi
µ = −∂µεi + f i

jlB
j
µεl.

It is precisely what is called a gauge transformation of the group G . The
extra space metric Gab(y) is invariant under these transformations because
ki

α are Killing vectors of the extra space.
The standard gravitational action in D -dimensional space is

SG =
1

2κD

∫
dDX

√
G(RD − 2Λ). (10.45)

Lengthy calculations lead to the following expression for the Ricci scalar:

RD = R4 + Rd − 1
4
Gabk

a
i kb

jF
i
µνF jµν , (10.46)

F i
µν = ∂µBi

ν − ∂νBi
µ − f i

jlB
j
µBl

ν , F jµν = gµλgνρF i
λρ. (10.47)
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Substituting this expression into the action, we find

SG =
1

2κ

∫
d4xdDy

√−g
√

Gd

(
R4 + Rd − 1

4
Gabk

a
i kb

jF
i
µνF jµν − 2Λ

)
.

Let us now use our assumption that the extra space metric Gab(y) does
not depend on x . For that reason, one can normalize the Killing vectors
as follows:

1
2κ

∫
ddy

√
GGabk

a
i (y)kb

j(y) = δij .

Thus the purely gravitational action in D -dimensional space describes
gravity and a gauge field in 4D space:

S =
∫

d4x
√−g

[
− 1

2κ
R4 −

1
4
F i

µν(x)F iµν (x) − 2Λ′
]
. (10.48)

10.2 Multidimensional gravity with higher-order

derivatives. Basic equations

In what follows we develop an approach, suggested by the authors, which
allows for reducing multidimensional models with higher-order derivatives
to the 4D Einstein–Hilbert action with scalar fields.

10.2.1 F (R)-theory

The Einstein–Hilbert action for a gravitational field, linear in curvature
R , completely describes the physical phenomena at low energies where
gravity is important. However, it is clear that quantum effects inevitably
lead to nonlinear corrections in the expression for the action [143]. In this
case, the action should contain terms with higher derivatives in the form
of polynomials of various degrees in the Ricci scalar and other invariants.
Thus, whatever gravitational action we take as the basis, after applying
quantum corrections it takes the form

S =
∫

dNx(R + ε1R
2 + ε2R

3 + ε3R
4 + · · · + α1RABRAB + · · · ),

with a set of unknown coefficients depending on the topology of space
[95, 345, 387]. However, the problem is not that acute, since the nonlinear
(in Ricci scalar) theories can be reduced to a linear theory by a confor-
mal transformation. Moreover, in our papers [77, 83], we have suggested a
more general method for reducing arbitrary Lagrangians to the standard
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Einstein–Hilbert form in the low-energy limit. In this case, the problem
of stabilizing the size of the extra dimensions [101] turns out to be quite
solvable.

Consider a (D = d0+d1)-dimensional manifold M , having the simplest
geometric structure of a direct product, M = M0 × M1 , with the metric

ds2 = gµνdxµdxν + e2β(x)babdxadxb, (10.49)

where the extra-space metric components bab do not depend on xµ , the
observable space-time coordinates. For realistic models d0 = 4, but in
Eqs. (10.49)–(10.53) we leave an arbitrary d0 for generality.

The D -dimensional Riemann tensor has the following nonzero com-
ponents:

Rµν
ρσ = R

µν
ρσ,

Rµa
νb = δa

b Bµ
ν , Bµ

ν := e−β∇ν( eββµ),

Rab
cd = e−2βR

ab
cd + δab

cdβµβµ, (10.50)

where capital Latin indices run over all D values, an overbar marks quan-
tities obtained separately from gµν and bab , βµ ≡ ∂µβ , and δab

cd ≡
δa
c δb

d − δa
dδb

c . The nonzero components of the Ricci tensor and the scalar
curvature read

Rν
µ = R

ν

µ + d1 Bν
µ,

Rb
a = e−2βR

b

a + δb
a[�β + d1(∂β)2],

R = R[g] + e−2βR[b] + 2d1�β + d1(d1 + 1)(∂β)2, (10.51)

where (∂β)2 ≡ βµβµ , � = gµν∇µ∇ν is the d0 -dimensional d’Alembert
operator, and R[g] and R[b] are the Ricci scalars obtained from gµν and
bab , respectively.

Suppose that bab describes a compact d1 -dimensional space of nonzero
constant curvature, i.e., a sphere (k = 1) or a compact d1 -dimensional
hyperbolic space20 (k = −1) with a fixed curvature radius r0 normalized
to the D -dimensional analogue mD of the Planck mass, i.e., r0 = 1/mD

20Compact hyperbolic spaces of constant curvature on the basis of the conventional
Lobachevsky space H

d are isometric to H
d/Γ, where Γ is a nontrivial discrete subgroup

of the isometry group of H
d , see, e.g.., [146]. On possible applications of such (3D) spaces

in cosmology see, e.g., [305] and references therein.
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(here, as everywhere, we use the natural units, with the speed of light c

and Planck’s constant � equal to unity). We have

R
ab

cd = k m2
D

δab
cd,

R
b

a = k m2
D

(d1 − 1)δb
a,

R[b] = k m2
D

d1(d1 − 1) = Rb. (10.52)

The scale factor b(x) ≡ eβ in (10.49) is thus kept dimensionless; Rb has
the meaning of a characteristic curvature scale of the extra dimensions.

Consider, in the above geometry, a sufficiently general curvature-
nonlinear theory of gravity with the action

S =
1
2
mD−2

D

∫ √
Dg dDx [F (R) + Lm], (10.53)

where F (R) is an arbitrary smooth function, Lm is a matter Lagrangian
and Dg = | det(gMN )| . The extra coordinates are easily integrated out,
and the action is reduced to d0 = 4 dimensions:

S =
1
2
V [d1] m2

D

∫ √
4g d4x ed1β [F (R) + Lm], (10.54)

where 4g = | det(gµν)| and V [d1] is the volume of a compact d1 -dimensional
space of unit curvature.

10.2.2 Slow-change approximation. The Einstein
frame

Equation (10.54) describes a 4D theory which is nonlinear in curvature and,
moreover, contains a nonminimal coupling between the effective scalar field
β and the curvature. A significant progress can be achieved by using an
expansion in the smallness parameter Ld/LD ≪ 1, where Ld and LD are
the characteristic sizes of the extra and basic spaces. We will also consider
only such geometries whose Ricci scalars satisfy the condition

Rd ≫ RD. (10.55)

These two conditions do not contradict each other for such widely used
geometries as, e.g., a d-dimensional sphere.
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Let us simplify the theory in the following manner:

(a) Express everything in terms of 4-dimensional variables and β(x); note
that now

R = R4 + φ + f1,

R4 = R[g], f1 = 2d1�β + d1(d1 + 1)(∂β)2, (10.56)

and we have introduced the effective scalar field

φ(x) = Rb e−2β(x) = kd1(d1 − 1)m2
D

e−2β(x). (10.57)

Recall that we have k = ±1 for positive and negative curvature in d1

extra dimensions, respectively, so that φ has different signs in these cases
by definition.

(b) Suppose that all quantities are slowly varying, i.e., consider each deriva-
tive ∂µ (including those in the definition of R) as an expression containing
a small parameter ε ; neglect all quantities of orders higher than O(ε2) (see
[143]).

(c) Perform a conformal mapping leading to the Einstein conformal frame,
where the 4-curvature appears to be minimally coupled to the scalar φ .

In the decomposition (10.56), both terms f1 and R4 are regarded small
in our approach, which actually means that all quantities, including the 4D
curvature, are small as compared to the D -dimensional Planck scale. So the
only term which is not small is φ , and we can use a Taylor decomposition
of the function F (R) = F (φ + R4 + f1):

F (R) = F (φ + R4 + f1) ≃ F (φ) + F ′(φ) · (R4 + f1) + · · · , (10.58)

with F ′(φ) ≡ dF/dφ . Substituting it into Eq. (10.54), we obtain up to
O(ε2)

S =
1
2
V [d1] m2

D

∫ √
4g d4x ed1β[F ′(φ)R4 + F (φ) + F ′(φ)f1 + Lm],

(10.59)

where β is related to φ according to (10.57). The expression (10.59) is
typical of a scalar-tensor theory (STT) of gravity in a Jordan frame.

For an analysis of the scalar field dynamics and, in particular, for finding
stationary points, it is helpful to pass on to the Einstein frame where φ is
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minimally coupled to gravity. After the conformal mapping

gµν �→ g̃µν = |f(φ)|gµν , f(φ) = ed1βF ′(φ), (10.60)

with the corresponding transformation of the scalar curvature

R4 = |f |
(

R̃4 +
3
f

�̃f − 3
2f2

(∂̃f)2
)

, (10.61)

(the tilde marks quantities obtained from or with g̃µν ) the action (10.59)
acquires the form

S =
1
2
V [d1] m2

D

∫ √
g̃ d4x

{
[sign F ′(φ)] [R̃4 + K(φ)]

−V (φ) +
e−d1β

F ′(φ)2
Lm

}
, (10.62)

with the kinetic (K ) and potential (V ) terms

K(φ) =
3
2

(∂f)2

f2
− 2d1

f ,µβµ

f
+ (∂β)2,

V (φ) = − e−d1β F (φ)/F ′(φ)2. (10.63)

It remains to express everything in terms of a single scalar variable, say,
φ . We can write the action (10.62) in the form

S =
V [d1]

2
m2

D

∫
d4x

√
g̃ (signF ′)L,

L = R̃4 +
1
2
KEin(φ)(∂φ)2 − VEin(φ) + L̃m, (10.64)

L̃m = (sign F ′)
e−d1β

F ′(φ)2
Lm; (10.65)

KEin(φ) =
1

2φ2

[
6φ2

(
F ′′

F ′

)2

− 2d1φ
F ′′

F ′ +
1
2
d1(d1+2)

]
, (10.66)

VEin(φ) = −(signF ′)
[ |φ|m−2

D

d1(d1 − 1)

]d1/2
F (φ)

F ′(φ)2
. (10.67)

In (10.61)–(10.64), the indices are raised and lowered with the metric g̃µν ;
everywhere F = F (φ) and F ′ = dF/dφ .

Equations (10.64)–(10.67) are valid for both positive (φ > 0) and neg-
ative (φ < 0) curvature of the extra dimensions. Minima of the potential
VEin , defined in the Einstein frame, determine stationary points of the
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scalar field, and they remain stationary points after a transition to any
other conformal frame, including the original Jordan frame. It is the Ein-
stein frame that determines the scalar field behavior since its dynamics
near an extremum is governed directly by the potential V (φ) and only
implicitly by the metric.

If φ resides at a minimum of the potential VEin , this potential turns
into an effective cosmological constant. Being applied to the present cos-
mological epoch, it can determine the observable dark energy density that
drives the accelerated expansion of the Universe. Alternatively, in principle,
it may drive inflation in the early Universe.

The potential (10.67) valid for any function F (R) looks quite complex
to have some nontrivial extrema. In addition, we have obtained rather a
complex form of the kinetic term (10.66). Its properties are known to be as
important for the field dynamics as the shape of the potential. For example,
as shown in Ref. [260], zeros and singular points of the kinetic term may
describe stable states of a scalar field.

In our expressions, both the effective potential (10.67) and the kinetic
term (10.66) are singular at the values of φ where f(φ) ∼ F ′(R) [the factor
before R4 in the Jordan-frame action (10.59)] is zero. Unlike many papers
restricted to F ′(R) > 0, we also include models with F ′(R) < 0. As will
be seen below, this opens new promising possibilities such as new minima
of the effective potential at which the extra dimensions may be stabilized.

In (10.64)–(10.67) we have changed the sign of the Lagrangian in the
case F ′ < 0; to preserve the attractive nature of gravity for ordinary
matter, the matter Lagrangian density should appear with an unusual sign
from the beginning. As a result, the sign of the whole action of gravity and
matter will be unusual. However, there is no effect on the matter equations
of motion, and the conventional form of the effective Einstein equations at
a stationary value of φ will also be preserved. Only the action of the φ field
itself can be unusual, according to Eqs. (10.66) and (10.67). It should also
be noted that the common sign of the total action does not affect quantum
transitions as well. Indeed, the transition amplitude is expressed in the
path integral technique as

∫
exp (iS[q])Dq where q(t) is some dynamic

variable. The transition probability
∫∫

exp (iS[q1] − iS[q2])Dq1Dq2,

is invariant under the substitution i → −i (with interchanging the inte-
gration variables q1 and q2 ).
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The following remark is in order here. There is a well-known conformal
transformation [25, 26, 148, 156, 228, 285, 287, 428] that leads the action
(10.53) to a form characteristic of the Einstein theory with a minimally
coupled scalar field χ (instead of an additional degree of freedom connected
with R), whose potential is expressed in terms of the function F (R). This is
a D -dimensional Einstein picture. The theory thus obtained can be further
reduced by one more conformal transformation, now depending on β(x),
to the 4D Einstein picture. This has been done, in particular, in the papers
[189, 190] for quadratic gravity. Our method is technically simpler and is
more universal since (see below) it is able to work with other invariants as
well, not only F (R). In cases where our approximation works, the results
of the two approaches coincide, as shown in [83].

Some estimates

To confront the theory with reality, it is necessary to choose a physical
(observational) conformal picture. Let us suppose that the original Jordan
frame in which the theory has been formulated coincides with the obser-
vational frame in which measurement standards do not change in space
and time. A general discussion of the problem of choosing the physical
conformal frame can be found in [82].

Thus we use the Einstein frame only as a convenient tool for finding
stationary states.

In any observational frame, in the expected stationary state, the grav-
itational action has the approximate Einstein–Hilbert form

SGR =
1
2
m2

4

∫ √
4g d4x (R∗

4 − 2Λeff), (10.68)

where m4 = (8πGN )−1/2 is the 4D Planck mass, GN is the effective
Newtonian constant and R∗

4 is the observable 4D curvature (for our choice,
R∗

4 = R4 ). To be consistent with our approach and with observational
constraints, this stationary state should satisfy the following requirements:

(i) A classical space-time description should be admissible, i.e., the true
size of the extra dimensions should exceed the true D -dimensional
Planck length 1/mD , the fundamental length scale of the theory:

mDb0 = eβ0 ≫ 1, ⇔ φ/m2
D
≪ d1(d1 − 1). (10.69)

(ii) The slow-change approximation should work, which, for φ = const,
reduces to the requirement R4 ≪ m2

D .
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(iii) The observed size b∗ of the extra dimensions can be much larger
than the Planck length l4 = 1/m4 ≈ 8 ·10−33 cm, but not larger
than about 10−17 cm, which corresponds to the TeV energy scale.

(iv) The predicted effective cosmological constant Λeff should be very
small to conform to the observations:

Λeff/m2
4 ∼ 10−120. (10.70)

Obtaining such a small value as (10.70) is one of the well-known prob-
lems of theoretical cosmology since it is hard to explain without fine tuning
why Λm2

4 , generally associated with vacuum energy density, is so many
orders of magnitude smaller than the characteristic energy densities inher-
ent to the known physical interactions (e.g., the Planck density m4

4 for
gravity).

Thus we assume that observations are performed in the Jordan frame.
The corresponding action (10.59) is approximated by (10.68) with the effec-
tive constants

1
8πGN

= m2
4 = V [d1] mD−2

D
bd1
0 F ′

0, Λeff = −F (φ0)
2F ′

0

, (10.71)

where b0 = eβ(φ0)/mD = b∗ is the observable size of the extra dimensions
and F ′

0 = F ′(φ0).
Eq. (10.71) leads to the following relation between the dimensionless

quantities b0mD and b0m4 :

b2
0m

2
4 = V [d1] F ′

0 (b0mD)d1+2. (10.72)

The factor V [d1] is of order unity; the same may be expected from
the dimensionless quantity F ′

0 . By item (iii) above, b2
0m

2
4

<∼ 1030 , and
Eq. (10.72) gives

b0mD � 1030/(d1+2),

m4/mD ∼ (b0mD)d1 � 1015d1/(d1+2). (10.73)

Thus mD does not too much differ from m4 . It means, in particular, that
our slow-change approximation (item (ii) above) works manifestly well in
almost all thinkable circumstances since R4 is the observable curvature.
If m4/mD is sufficiently close to unity, this approximation is even valid for
the curvature characteristic of primordial inflation at the Grand Unification
scale, such that R4/m2

4 ∼ 10−6 [83]. In particular models this inequality
is strengthened, to say nothing of the modern stage of the evolution.
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Let us return to the inequalities (10.73) and the estimate of Λeff . The
ratio Λeff/m2

4 can be expressed as follows:

−Λeff

m2
4

=
F (φ0)

2 m2
D
F ′

0

m2
D
b2
0

m2
4b

2
0

=
1

2F ′
0

F (φ0)
m2

D

(F ′
0V [d1])

−2
d1+2 (m4b0)

−2d1
d1+2 . (10.74)

If we try to make this ratio small, the last factor in (10.74) can give at
best about 10−30 (for sufficiently large d1 ). The remaining 90 orders of
magnitude must be gained due to unnatural smallness of the dimensionless
quantity F (φ0)/m2

D
(actually, of the initial cosmological constant) and/or

greatness of F ′
0 . The latter variant is, however, unsuitable since it will

make b0mD ≫ 1 impossible, see (10.72).
As a result, the problem of fine tuning remains topical, though it should

be noted that the very small value of 10−30 appears in this approach
without any artificial effort.

10.2.3 The first generalization: A more general form
of the Lagrangian

The method described above allows for considering wider classes of
Lagrangians. Let us demonstrate that by adding terms proportional to
the Ricci tensor squared RABRAB and the Kretschmann scalar K =
RABCDRABCD . By common views, these and other high-order curvature
terms appear due to quantum corrections, and it seems natural to include
them on equal footing with cR2 . Now the action has the form

S =
V [d1]
2κ2

∫
d4x

√
4g ed1β(R + cR2 + c1RABRAB + c2K − 2Λ),

(10.75)

where the internal variables have been integrated out in full analogy with
Eq. (10.53). For the metric (10.49), it is easy to obtain expressions for
RABRAB and K :

RABRAB = RµνR
µν

+ 2d1RµνBµν + e−4βRabR
ab

+ 2 e−2βR[h][�β + d1(∂β)2] + d1[�β + d1(∂β)2]2, (10.76)

K = K[g] + 4d1BµνBµν + e−4βK[h]

+ 4 e−2βR[h](∂β)2 + 2d1(d1 − 1)[(∂β)2]2. (10.77)
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In the slow-change approximation, in the same manner as before, we
obtain the 4D effective Lagrangian

√
4gL =

√
4g ed1β[R4(1 + 2cφ) + φ + ctotφ

2 − 2Λ + (1 + 2cφ)f1

+ 2c1φ�β + 2(c1d1 + 2c2)(∂β)2], (10.78)

where

ctot = c +
c1

d1
+

2c2

d1(d1 − 1)
.

The conformal mapping (10.60) leads to the Einstein-frame Lagrangian
(10.64) with the kinetic and potential terms

KEin(φ) = K
(2)
Ein(φ) +

c1 + c2

2φ(1 + 2cφ)
, (10.79)

VEin(φ) = − sign(1 + 2cφ)

×
[ |φ|
d1(d1 − 1)

]d1/2
ctotφ

2 + φ − 2Λ
(1 + 2cφ)2

, (10.80)

where the term K
(2)
Ein(φ) is taken from (10.66).

The presence of the parameters c1 and c2 adds freedom in choosing
the shape of the potential. The kinetic term also acquires a more complex
form which can significantly affect the scalar field dynamics [260]: zeros
of the kinetic term can represent stationary values of φ . The φ field can
be captured in the vicinity of such points in addition to minima of the
potential.

In particular, as shown in [76], cosmological models with φ → 0 as
t → ∞ , like those discussed in Sec. 10.3.1, become viable. As a result, we
obtain a class of spatially flat cosmologies where both the observable scale
factor a(τ) and the extra-dimensional one, b(τ) grow exponentially at late
times, but b(τ) grows sufficiently slowly to leave variations of the effective
gravitational constant G in the limits compatible with observations. Such
models predict substantial changes in the physical laws in the remote future
due to further growth of the extra dimensions.

To satisfy the tight experimental constraints on the temporal variation
of the effective gravitational constant G , the parameters of the theory
(10.75) should satisfy the condition [76]

12
[
d1 + 2

d1
+

8(c1 + c2)
d2
1

]
� 100. (10.81)
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Thus, if we leave only F (R) in the initial theory, it is impossible to
satisfy the constraint (10.81): to do so, it is necessary to invoke the Ricci
tensor squared or/and the Kretschmann scalar with the initial constants
c1 and c2 such that

c1 + c2 � d2
1. (10.82)

Under the condition (10.82), the model is potentially viable since it
combines a de Sitter expansion of the observable Universe with sufficiently
slow variations of the gravitational constant.

10.2.4 The second generalization: Several extra
factor spaces

Let us consider nonlinear multidimensional gravity in more general spaces,
admitting a reduction to smaller dimensions, namely, in a D -dimensional
space-time M with the structure

M = M0 × M1 × · · · × Mn, (10.83)

where dim Mi = di , and the metric

ds2
D = gab(x)dxadxb +

n∑
i=1

e2βi(x)g(i), (10.84)

where (x) denotes the dependence on the first d0 coordinates xa ; gab =
gab(x) is the metric in M0 , and g(i) are x-independent di -dimensional
metrics of the factor spaces Mi , i = 1, n .

The initial action is taken in the form

S =
1
2
mD−2

D

∫ √
Dg[F (R) + c1RABRAB + c2K + Lm], (10.85)

where F (R) is an arbitrary function of the scalar curvature R of the
space M ; c1, c2 are constants; RAB and K = RABCDRABCD are the
Ricci tensor and the Kretschmann scalar of the space M , respectively;
and Lm is the matter Lagrangian. Capital Latin indices encompass all D

coordinates, small Latin ones (a, b, . . .) the coordinates of the factor space
M0 , and ai, bi, . . . the coordinates of the spaces Mi .

We will suppose that the “Kaluza–Klein” (KK) factor spaces Mi are
compact and small in size, to exclude their observability by modern exper-
imental tools.
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The D -dimensional Riemann tensor has the nonzero components

Rab
cd = R

ab
cd,

Raai
bbi

= δai

bi
Ba

b (i), Ba
b (i) := e−βi∇b( eβiβ,a

i ),

Raibi
cidi

= e−2βiR
aibi

cidi
+ δaibi

cidi
βi,aβ,a

i ,

Raibk

cidk
= δai

ci
δbk

dk
βi,aβ,a

k , i 
= k. (10.86)

The overbar marks quantities obtained from the factor space metrics gab

and g(i) taken separately, β,a ≡ ∂aβ ; it is denoted, as before, δab
cd ≡

δa
c δb

d − δa
dδb

c and similarly for other kinds of indices.
The nonzero components of the Ricci tensor and the scalar curvature are

Rb
a = R

b

a +
∑

i

di Bb
a(i),

Rbi
ai

= e−2βiR
bi

ai
+ δbi

ai
[�βi + βi,aσ,a], σ :=

∑
i

diβi,

R = R[g] +
∑

i

e−2βRi + 2�σ + (∂σ)2 +
∑

i

di(∂βi)2, (10.87)

where
∑

i means
∑n

i=1 ; σ :=
∑

i diβi ; (∂σ)2 ≡ σ,aσ,a and similarly for
other functions; � = gab∇a∇b is the d0 -dimensional d’Alembert oper-
ator; R[g] and Ri are the Ricci scalars corresponding to gab and g(i) ,
respectively.

Let us assume that the factor spaces Mi are di -dimensional compact
spaces of constant nonzero curvature Ki = ±1, i.e., spheres (Ki = 1)
or compact di -dimensional hyperbolic spaces (Ki = −1) with a fixed
curvature radius r0 , normalized to the D -dimensional analogue mD of
the Planck mass, i.e., r0 = 1/mD (recall that we use the natural units
c = � = 1). Then we have

R
aibi

cidi
= Ki m2

D
δaibi

cidi
,

R
bi

ai
= Ki m2

D
(di − 1)δbi

ai
, Ri = Ki m2

D
di(di − 1). (10.88)

The scale factors ri(x) ≡ eβi in (10.84) are dimensionless.

10.2.5 Slow-change approximation. Reduction
to d0 dimensions

Suppose that all quantities are slowly varying, i.e., consider each derivative
∂a (including those in the definition of R) as an expression containing a
small parameter ε , and neglect all quantities of orders higher than O(ε2).
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Then we have the following decompositions:

R = φ + R[g] + f1 f1 := 2�σ + (∂σ)2 +
∑

i

di(∂βi)2;

F (R) = F (φ) + F ′(φ)(R[g] + f1) + O(ε4);

RABRAB =
∑

i

1
di

φ2
i + 2

∑
i

diφi[�βi + (∂βi, ∂σ)] + O(ε4);

K = 2
∑

i

φ2
i

d1(d1 − 1)
+ 4

∑
i

diφi(∂βi)2 + O(ε4), (10.89)

where

φi := Kim
2
D(di − 1) e−2βi , φ :=

∑
i

diφi. (10.90)

The symbol (∂α, ∂β) means gabα,aβ,b , and F ′(φ) = dF/dφ .
As a result, neglecting O(ε2) and integrating out all Mi , we obtain the

action reduced to d0 dimensions:

S =
1
2
V md0−2

D

∫ √
g0 dd0x { eσF ′(φ)R0 + K − 2V (φi) + eσLm},

K = F ′(φ) eσf1 + 2 eσ
∑

i

diφi[c1�βi + c1(∂βi, ∂σ) + 2c2(∂βi)2],

− 2V (φi) = eσ

[
F (φ) +

∑
i

diφ
2
i

(
c1 +

2c2

di − 1

)]
, (10.91)

where g0 = | det(gµν)| and V is a product of volumes of n compact
di -dimensional spaces Mi of unit curvature. The expression (10.91) is typ-
ical of a (multi)scalar-tensor theory (STT) of gravity in a Jordan frame.

Subtracting a full divergence, we get rid of second-order derivatives in
(10.91), and the resulting kinetic term takes the form

K = F ′ eσ

[
−(∂σ)2 +

∑
i

di(∂βi)2
]
− 2F ′′ eσ(∂φ, ∂σ)

+ 4 eσ(c1 + c2)
∑

i

diφi(∂βi)2, (10.92)

where F ′′ = d2F/dφ2 .
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Transition to the Einstein frame

For further analysis, it is helpful to pass on to the Einstein frame using
the conformal mapping (10.60). The expression with the scalar curvature
in (10.91) transforms as follows:

√
g0 eσR0 =

√
g0fR0 = (sign f)

√
g̃

[
R̃ +

d0 − 1
d0 − 2

(∂̃f)2

f2

]
+ div, (10.93)

where the tilde marks quantities obtained from or with g̃µν and div denotes
a full divergence which does not contribute to the field equations. The
action (10.91) acquires the form

S =
1
2
V md0−2

D

∫ √
g̃ dd0x{[signF ′(φ)][R̃ + KE] − 2VE(φi) + Lm(E)},

(10.94)

with the kinetic and potential terms

KE =
1

d0 − 2

(
∂σ +

F ′′

F ′ ∂φ

)2

+
(

F ′′

F ′

)2

(∂φ)2

+
∑

i

[
1 +

4
F ′ (c1 + c2)φi

]
(∂βi)2, (10.95)

−2VE(φi) = e−2σ/(d0−2)|F ′|−d0/(d0−2)

[
F (φ) +

∑
i

diφ
2
i

(
c1 +

2c2

di − 1

)]
,

(10.96)

where the tildes are omitted though the metric g̃µν is used, and the indices
are raised and lowered with g̃µν . The matter Lagrangian is

Lm(E) = e−2σ/(d0−2)|F ′|−d0/(d0−2)Lm. (10.97)

The quantities βi and σ are expressed in terms of the n fields φi , whose
number coincides with the number of factor spaces.

10.3 Extra dimensions and low-energy physics

The introduction of extra dimensions is justified by the fact that their
existence explains a great number of observed effects in the most economic
way. In what follows we will present different applications of the general
results of mathematical nature described above. In all our constructions we
do not use any fields other than gravity. It should be noted that, although
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the idea of extra dimensions is often connected and even identified with
string theory, in our consideration the idea of strings is not employed. We
should also warn the reader that we are not building any final and complete
theory here. Our goal is to demonstrate the wealth of opportunities that
follow from the idea of extra dimensions. We therefore, at the present stage,
do not fix a particular form of the initial Lagrangian and the number of
extra dimensions. This allows us to explain one or another phenomenon in
the most economic way.

It is assumed that a D -dimensional space-time is born as a result of
quantum fluctuations from space-time foam. Thus there can appear spaces
with different topologies, geometry and dimensionality. A calculation of
probabilities of such processes does not seem productive at the present
stage, and we simply use the assumption that these probabilities are not
zero.

10.3.1 Self-stabilization of an extra space

One of the shortcomings of the idea of extra dimensions is the difficulty in
explaining why they are stable. The reasons why the size of extra dimen-
sions remains small and finite instead of collapsing to the Planck value or
expanding to visible values remain vague. We will show how this problem
can be solved in the framework of our approach.

In what follows we consider pure gravity (Lm = 0) and use the units
mD = 1, thus dealing with dimensionless quantities.

As the first example we consider the action (10.53) with the function

F (φ) = φ + cφ2 − 2Λ, c, Λ = const. (10.98)

Then (10.66) and (10.67) give the effective potential (10.80)

V
(2)
Ein(φ) = − sign(1 + 2cφ)

[d1(d1 − 1)]d1/2
|φ|d1/2 cφ2 + φ − 2Λ

(1 + 2cφ)2
, (10.99)

and the coefficient KEin of the kinetic term

K
(2)
Ein(φ) =

1
(1 + 2cφ)2φ2

+
[
c2φ2(d2

1 − 2d1 + 12) + d2
1cφ +

1
4
d1(d1 + 2)

]
. (10.100)

The potential is plotted in Figs. 10.1 and 10.2.
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Figure 10.1 The potential VEin(φ) for d1 = 3, c = 0.3 in the range φ > −5/3, where
F ′(R) > 0, for a few values of Λ (indicated near the curves). The dashed line (Λ = 1)
shows a minimum at φ = 0. The values of φ are expressed in the units mD = 1.

Figure 10.2 The same as in Fig. 10.1, but with c = 1.5. Minima of V (φ) are located
in the range φ < −1/3, where F ′ < 0.

The existence of minima of the potential indicates possible stabilization
of the size of extra dimensions. Indeed, if a field is in a minimum of the
effective potential, there is a solution of the form φ(t) = const. And since
the size of the extra space is L = b ∼ 1/

√
φ , it means that this size is

fixed.
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There is one more minimum of the potential VEin with F ′ > 0, existing
in the range Λ > 0 and located at the point φ = 0. The asymptotic
φ → 0 corresponds to growing rather than stabilized extra dimensions:
b = eβ ∼ 1/

√
|φ| → ∞ . A model with such an asymptotic growth at late

times may still be of interest if the growth is sufficiently slow and the size
b does not reach detectable values by now.

Potentials with Λ < 0 (Fig 10.2) show minima with Vmin > 0, so that
Λeff > 0, which should lead to cosmological models with de Sitter external
space and stable extra dimensions. Such models again correspond to φ < 0,
i.e., hyperbolic extra dimensions. By fine tuning of the initial constants c

and Λ we can obtain the present-day values of the cosmological parameters.
As in Fig. 10.1, we also find a minimum at φ = 0, whose properties have
already been discussed.

Thus the behavior of the system is drastically different in different
ranges of φ and depends on the numerical values of the initial parameters.
We also confirm that gravity alone can stabilize the size of extra dimen-
sions, without the need for introducing other fields with specific forms of
potentials. Positive values of Λeff (vacuum energy density) were found in
the range where F ′ < 0. As will be seen below, it is a feature of quadratic
gravity only.

10.3.2 On the influence of the number of extra
dimensions on low-energy physics

We have discussed some low-energy theories corresponding to special cases
of the metric (10.84) at different choices of the initial action. It is not
surprising that some values of the parameters are suitable for describing
some properties of our Universe. More opportunities emerge if we vary
the structure of extra dimensions, including the number of extra factor
spaces, their dimension and curvature. In such cases it is possible to obtain
a set of substantially different low-energy theories even with a fixed initial
Lagrangian.

Let us recall once again the well-known shortcoming of chaotic inflation
in its simplest, quadratic form. According to the observable temperature
fluctuations of the CMB, the inflaton mass should be of the order 10−6 MPl .
Its smallness requires an explanation which so far does not exist. Consider
the effective potential (10.96), created by the initial action (10.64) and
(10.98). Its shape is presented in Fig. 10.3 for some values of the number
of extra dimensions d . It is evident that the values of d can be chosen in
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Figure 10.3 Effective potential V (φ) for the theory (10.64) with F (R) of the
form (10.98) for different numbers d of extra dimensions. The parameter values:
c = 1, Λ = −0.4 .

such a way as to obtain the required inflaton mass. Numerical estimates
lead to the following results: the second-order derivative of the potential at
its minimum (which determines the inflaton mass) is ∼ 0.2mD for d = 3,
∼ 1.5 · 10−3mD for d = 5 and ∼ 0.8 · 0−5mD for d = 7. The initial
Lagrangian does not contain small parameters. Nevertheless the required
value of the inflaton mass emerges at a classical level at a suitable choice
of the parameter d .

The strong influence of the number d on the form of the low-energy
Lagrangian is not surprising because the potential (10.96) contains the fac-
tor ∼ d−d . Thus, if the stationary state is φ = φ0 , and the dimensionless
parameters |φ0|m−2

D
and F ′(φ0) are of the order of unity, then the effec-

tive cosmological constant Λeff = VEin(φ0) is connected with the function
F (φ0) (which can be close to m2

D
) as follows:

Λeff/F (φ0) ∼ [d(d − 1)]−d/2. (10.101)

It is of interest that d−d ≈ 10−123 for d = 67. It means that space-time
fluctuations creating a (67+4)-dimensional space can cause the creation of
space with the observable vacuum energy density 10−123 m4 . The extreme
smallness of Λeff is thus related to the number of extra dimensions of a
space randomly created by quantum fluctuations at the Planck level.

Figure 10.4 shows another example of d-dependence on the effective
potential shape. It is evident that the very existence of a minimum of
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Figure 10.4 Potentials at different numbers d of extra dimensions, obtained from the
Lagrangian (10.64) with F (R) = R + cR2 + w1R3 + w2R4 − 2Λ. The parameters:
c = 0, w1 = 0, w2 = −1, Λ = −0.25. The curves are adjusted to a single scale.

the potential, indicating a possible stable configuration, is d-dependent.
Thus, if the Universe was born with a single extra factor space of negative
curvature, then φ < 0, see Fig. 10.4. It is clear that with the initial field
value φ < −1 its mean value in such a Universe tends to infinity if d = 2,
to a constant if d = 4 and to zero if d = 6. If the Universe was born with
−1 < φ < 0, then the mean value of the field is localized at a minimum of
the potential, and the size of the extra space remains fixed.

It is known that the existence of local minima of the potential corre-
sponds to a possible false vacuum decay . As an example, Fig. 10.5 shows
the effective potential (10.80), emerging under the condition that the extra
space has the topology of a sphere. It is evident that the field located at a
metastable minimum will eventually pass on to the basic state with φ = 0.
It means that after the phase transition the size of the extra space will
grow infinitely. Nevertheless, the Universe existing in a metastable state
can survive for quite a long time if the probability of tunneling to the
lower minimum is small.

10.3.3 Extra dimensions and inflation

A single extra factor space

Now, our program is as follows:
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Figure 10.5 The effective potential (10.132). The parameter values: c = −0.5, Λ = 0.2,
c′ = −0.626, and d = 2.

1. Choose the parameters of the original action (10.85) to obtain a behav-
ior of the potential (10.96) providing primordial inflation.

2. Additionally vary the parameters to satisfy the inflationary conditions
conforming to observations.

3. Try to describe the modern acceleration stage, providing the ratio of
the effective cosmological constant to the Planck density Λeff/m4

4 of
the order 10−123 .

We begin with the case of one factor space. Then Eqs. (10.95) and
(10.96) simplify to give

S =
V
2

∫
d4x

√
g̃ (signF ′)L,

L = R̃4 + K
(1)
E (φ)(∂φ)2 − 2V

(1)
E (φ), (10.102)

K
(1)
E (φ) =

1
4φ2

[
6φ2

(
F ′′

F ′

)2

− 2d1φ
F ′′

F ′ +
1
2
d1(d1 + 2)

]
c1 + c2

F ′φ
,

(10.103)

V
(1)
E (φ) = − signF ′

2F ′2

[ |φ|
d1(d1−1)

]d1/2 [
F (φ) + cV

φ2

d1

]
,

cV ≡ c1 +
2c2

d1 − 1
. (10.104)
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Here we take

F = F (φ) = φ + cφ2 − 2Λ, c, Λ = const, (10.105)

and φ = d1φ1 .
In (10.102)–(10.104) we have actually changed the sign of the

Lagrangian in case F ′ < 0; to preserve the attractive nature of gravity
for ordinary matter, the matter Lagrangian density should appear with an
unusual sign from the beginning. As a result, the sign of the whole action
of gravity and matter will be unusual, without any effect on the equations
of motion. As was discussed above, one can show that quantum transitions
are then unaffected as well.

The presence of the parameters c1 and c2 adds freedom in choosing
the shape of the potential. The kinetic term also has a complex form which
can substantially affect the field dynamics. An analysis of kinetic terms like
(10.103) of variable sign can lead to interesting possibilities, and we hope
to return to this point in our future work.

Let us employ the fact that chaotic inflation with a quadratic potential
and the inflaton mass mϕ ≈ 10−6m4 well conforms to the observational
data. Therefore our task is simplified and reduced to finding such parame-
ters c, c1 and c2 that the potential (10.104) near its minimum is approx-
imated by a quadratic function with the above inflaton mass. It turns out
to be possible with the following parameter values:

d1 = 4; c = 2.5 · 104; c1 + c2 = 0.6;

cV = −2.48, Λ = 0.2. (10.106)

With these parameter values, all basic requirements to inflation are
satisfied. Thus, the duration of the inflationary period exceeds 60 e-folds,
the temperature fluctuations are ∼6 · 10−5 , and the spectral index is ns =
0.943, within observational bounds, ns = 0.958 ± 0.016. Thus a single
factor space is sufficient for obtaining a fairly good inflationary scenario.

Since the constant c has actually the dimension of length squared, it is√
c ∼ 100 that should be compared with the Planck length. So this model

does not contain unnaturally large or small parameters.
A serious shortcoming of this model is that it is unable to solve the

problem of modern acceleration, including the smallness of dark energy
density. Indeed, it is easy to prove that slight variations of the parameters
c , c1 and c2 could give rise to an arbitrarily small potential value at
the minimum. However, though the values of these parameters are quite
moderate, they need to be extremely “fine-tuned” to fit the modern value
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of vacuum energy density. An attempt to solve this problem in a slightly
more complex model is undertaken in the next section.

10.3.4 Two factor spaces: Inflation and modern
acceleration

Inflation

Additional opportunities emerge if the extra space is a product of two
factor spaces, Md1 × Md2 of dimensions d1 and d2 . For further analysis,
let us make the situation more specific by putting K1 = K2 , d1 = d2 and
choosing the function

F (R) = R2. (10.107)

(Note that one of the coefficients in the initial Lagrangian can be chosen
at will, e.g., equal to unity, without affecting the field equations; it simply
specifies the scale for other coefficients.)

Figure 10.6 presents the potential of the effective scalar fields for this
model with the following choice of the parameter values:

d1 = d2 = 5, cV = −10.001, c1 + c2 = 1.25 · 103. (10.108)

All further numerical estimates will be obtained with these values. As fol-
lows from the above, at low energies (as compared to the Planck scale mD )
this model is equivalent to Einstein gravity with two scalar fields. In full
similarity with the previous section, the constants c1 and c2 have actually
the dimension of length squared, and their square roots are not unnaturally
large or small.

Note that, with the cV value chosen, a positive potential V (hence a
positive effective cosmological constant ) is obtained with K1 = 1, i.e., a
spherical extra factor spaces. For other values of cV , e.g., cV > 0 we would
need hyperbolic factor spaces.

The inflationary period is characterized by moving down one of the
steep slopes of the valley. The inflaton mass squared is proportional to the
second-order derivative of the potential in the direction perpendicular to
the valley (its bottom is located at φ1 = φ2 = φ0 ). It is this direction in
which the field moves during inflation and oscillates during reheating at
the post-inflationary stage. The specific value of φ0 depends on the initial
value of the inflaton field at which the classical universe was born.

Figure 10.7 shows the dependence of the effective inflaton mass on the
parameter φ0 . In the framework of chaotic inflation, universes are created
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Figure 10.6 Potential of the effective scalar fields for the model (10.85) and (10.107)
with the parameter values given in (10.108).

with different inflaton values under the horizon, leading to different values
of φ0 and hence different inflaton masses. This is how this model solves the
problem of smallness of the inflaton mass in Planck units. It is a point of
importance: instead of introducing a small parameter (the inflaton mass)
and wondering why it is small, we have obtained a self-fitting mechanism.
We live in a particular Universe, among many, with the appropriate inflaton
mass.

Post-inflationary particle production is a result of oscillations in the
direction across the valley. The conditions suitable for our Universe cor-
respond to the value φ0 ≃ 0.5. It is just such a value that, according
to Fig. 10.7, the inflaton mass, related to the second-order derivative
of the potential in the direction across the valley, is ∼ 10−6−1013 GeV,
which satisfactorily explains the observational data on CMB temperature
fluctuations.

It is of interest to what extent the values of c1 and c2 (or, more conve-
niently, their combinations cV and cK = c1+c2 ) in (10.108) are fine-tuned.
An inspection shows that with cV in the range (−10.2,−10) the potential
provides all three necessary stages of evolution: inflation, reheating and the
present expansion, in agreement with the observational data under proper
initial conditions. Larger deviations destroy the valley of the potential sur-
face thus drastically changing the whole picture.
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Figure 10.7 φ0 dependence of the effective inflaton mass (Planck units).

The admissible range of cK is wider: its value may vary by an order of
magnitude with respect to the one given in (10.108). Within this area, the
predictions are actually the same, within uncertainties in the observational
data.

Matter-dominated stage

The inflationary stage ends with rapid field oscillations across the valley
in Fig. 10.6, on whose bottom, by our assumptions, φ1 = φ2 = φ/(2d1).
These oscillations are accompanied by effective particle production in full
agreement with the standard version of chaotic inflation with a quadratic
potential. In the model under discussion, the energy density of the produced
particles makes the material content of the Universe and affects not only
the cosmological expansion rate but also the scalar field dynamics. The
latter now corresponds to slowly rolling down along the bottom of the
potential valley.

We assume a spatially flat cosmology in 4 dimensions, with the Einstein-
frame metric ds̃2

4 = dt2−a2(t)d	x2 . So, with the choice (10.107), the action
(10.94) leads to the Lagrangian

LE = R4 + K(φ)(dφ)2 − 2V (φ), (10.109)
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and

K(φ)(∂φ)2 = K0(∂φ)2/φ2 = 4K0(∂β)2,

2K0 = d2
1 − d1 + 3 + 4(c1 + c2), (10.110)

V (φ) = V0|φ|d1 = V1 e−2d1β ,

V1 = −K1

8

(
1 +

cV

2d1

)
, V0 = V1[2d1(d1−1)]−d1 , (10.111)

where K1 = signφ = signF ′(φ) andβ(t) = β1(t) is, as before, the loga-
rithm of the extra-dimension scale factor (which is in the present case the
same for all extra dimensions), such that dφ/φ = −2dβ , and cV has been
defined in (10.104). One can also notice that a usual form of the Lagrangian
with a scalar field Φ and a potential VΦ is obtained if we substitute

2
√

K0β =
√

8πGΦ, VE = 8πGVΦ.

With (10.109), we can write two independent components of the
Einstein-scalar equations for β(t) and a(t) as follows:

3H2 = 2K0β̇
2 + V1 e−2d1β + 8πρm, (10.112)

2K0[β̈ + 3Hβ̇] = d1V1 e−2d1β , (10.113)

where H = ȧ/a is the Hubble parameter.
Let us begin with considering the matter-dominated stage, which is

the longest. The subsequent dark energy (DE) dominated stage will be
discussed in the next subsection. The following simplifying assumptions
will be used: (i) we neglect the pressure of matter, treating it as dust from
the very beginning (t = t1 ) thus ignoring a radiation-dominated stage;
(ii) we neglect a possible direct interaction between matter and the scalar
field; (iii) we neglect the scalar field contribution to the dynamics of a(t)
at the matter dominated stage t1 < t < t2 ≃ 1010 years and, vice versa,
we neglect the contribution of matter at the DE dominated stage t > t2 .

So, neglecting the contribution of β in (10.112), we obtain for times
t1 < t < t2 , as in the usual Big Bang scenario,

H = 2/(3t) at t1 < t < t2. (10.114)

To solve Eq. (10.113) numerically, we take the following initial data corre-
sponding to the end of the post-inflationary epoch:

φ1(t1) = φ2(t1) =
φ(t1)
2d1

= 0.05;
dφ

dt
(t1) = 0

⇒ eβ(t1) = 4
√

5, β̇(t1) = 0. (10.115)

The initial time t1 is chosen to be t1 = 9 ·109 for definiteness.
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Numerical solution of Eq. (10.113) then gives the following value of β

at t = t2 :

eβ(t2) ≃ 5.5·1011 ⇒ φ(t2) ≃ 1.3·10−22. (10.116)

This value of β will be used in analyzing its dynamics at the modern stage
for which the equations simplify and can be solved analytically.

Modern stage

The modern epoch t > t2 is DE dominated. In the present approach, the
DE is represented by the scalar field φ (or equivalently β or b = eβ )
with the potential (10.110), and the Universe dynamics is described by
Eqs. (10.112) and (10.113). In (10.112) we now neglect the matter contri-
bution.

It is hard to solve this set of equations exactly. However, as the φ field
decreases (which corresponds to a growing size of the extra dimensions)
along with a decreasing value of the potential (related to the effective
cosmological constant), at some stage it becomes possible to treat this
process as secondary slow rolling, for which the field dynamics is sufficiently
simple and may be described analytically. Indeed, let us suppose

|β̈| ≪ 3(ȧ/a)β̇, K0β̇
2 ≪ 3(ȧ/a)2, (10.117)

and drop the corresponding terms in Eqs. (10.112) and (10.113). Then we
can express ȧ/a from (10.112) and insert it to (10.113), getting

d1β̇ ed1β = B0 :=
d2
1

√
V1

2
√

3K0

, (10.118)

whence we find the evolution law for the extra-dimension scale factor

eβ = [B0(t − t∗)]1/d1 , (10.119)

where t∗ is an integration constant (t∗ = t2 − B−1
0 [b(t2)]d1 ). Substituting

this result to (10.112), we find the evolution law for a(t):

a(t) = a∗(t − t∗)p, p := 2K0/d2
1, (10.120)

where a∗ is an integration constant.
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With the parameters (10.108), some relevant constants are

V1 = 1.25·10−4, 2K0 = 5023,

p =
5023
25

≈ 201, B0 ≈ 3.2·10−5 (10.121)

Eq. (10.119) with the initial value (10.116) gives the present size of the
extra dimensions, at t = t0 = 13.7 ·109 yr:

b(t0) ≃ 5.5 · 1011 ≈ 9 ·10−22 cm, (10.122)

well within the observational limits. From (10.120) we find the Hubble
constant H0 = ȧ(t0)/a(t0) and the Hubble time tH = 1/H0 :

H0 ≈ 1.25 ·10−61 , tH ≈ 8 ·1060 ≈ 13.8 ·109 yr, (10.123)

in agreement with observations. The potential energy density V , coinciding
with the DE density,

VE(φ(t0)) ≃ 5.1 ·10−123 , (10.124)

also well agrees with observations.
One can notice that in our model with d1 = 5 the function (10.119)

grows extremely slowly. The present value in (10.122) differs from that
in (10.116) only in the fifth decimal digit, so that the change is actually
indistinguishable. The same is true for the DE density which thus behaves
like a cosmological constant. The expansion law (10.120) with the exponent
p = 201 is really almost exponential, i.e., de Sitter, and the DE equation-
of-state factor w = pDE/ρDE is very close to minus unity. Indeed, in the
DE epoch, a(t) ∼ t2/(3+3w) , hence

2/(3 + 3w) = 201 ⇒ w ≈ −0.9967.

Lastly, one can verify that this solution fairly well satisfies the slow-
rolling conditions (10.117), which hold as long as p ≫ 1, or, in terms of
the input parameters of the theory, if c1 + c2 ≫ d2

1 .
It is of interest that models of gravity (10.85) where F (R) contains a

linear term do not lead to similar attractive results in the present approach.

Discussion

In the framework of pure curvature-nonlinear gravity with extra dimen-
sions, it has been possible to describe (though only in a rough approxima-
tion) the entire evolution of the Universe beginning with an inflationary
stage and ending with the modern accelerated stage with sufficiently small
dark energy density. In doing so, it has been possible to avoid unnaturally
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small or large parameter values in the initial Lagrangian. The small val-
ues of the inflaton mass and especially that of DE density agreeing with
observations have been obtained from a Lagrangian whose dimensionless
parameters differ from unity by no more than two orders of magnitude.

Using a single extra factor space, it appears possible to explain the
emergence of an inflaton, and choosing proper values of the parameter, it
is possible to fulfil all requirements applicable to inflationary models and
achieve an agreement with the observational data. However, to solve the
problem of small DE density, it is necessary to invoke (at least) two extra
factor spaces.

The inflationary stage with an appropriate inflaton mass is again well
described. Indeed, field fluctuations create universes with different initial
field values. The potential in Fig. 10.6 (i.e., at fixed values of the initial
Lagrangian parameters) has different curvatures at different points of the
valley, which correspond to different inflaton masses. We live in a universe
created by a suitable field fluctuation whose evolution leads to the observ-
able inflaton mass.

As to late-time evolution, it becomes possible to obtain in a natural
way a small current value of the effective potential which plays the role
of DE density (effective cosmological constant), Λeff ∼ 10−123 m4

4 . The
form of our late-time solution shows that the size of the extra dimensions
is slowly growing in the modern epoch. In the remote future, this size,
which is so far invisible to modern instruments, will grow to such values
that will lead to drastic changes in the physical laws of our Universe. Let
us stress, however, that such a model is only one particular possibility con-
tained in our approach. There are other models where the extra dimensions
are stable at late times [83] making the effective physical constants also
invariable.

Our model with two factor spaces has the following advantages:

(a) Its low-energy limit represents the Hilbert–Einstein action with appro-
priate accuracy.

(b) It describes inflaton with an inflation mass that agrees with
observations.

(c) The size of the extra dimensions b(t) never exceeded the experimental
threshold ∼ 10−17 cm (though it should in the remote future).

(d) At the modern stage, the scalar field density (actually, the potential
V (φ) in proper units) describes the modern DE density ∼ 10−123m4

4 ;
(e) The DE equation-of-state parameter w satisfies the observational con-

straint w < −0.8.
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This model has a somewhat unusual total dimension D = d0 + 2d1 = 14.
With such a choice, it is clear that we do not use the ideas of string theory in
this study, which makes our model less restrictive in the choice of the dimen-
sionality. We believe that other choices of parameter sets, including dimen-
sionality, can also lead to goodpotentials in the low-energy limit, and this can
be a subject of future work. However, the particular values d1 + d2 = 3 + 3,
leading to D = 10 (the “string” dimension), are probably unsuitable in our
case since then cV = cK = c1 + c2 (see the notations above), which leaves
one independent parameter instead of two thus substantially restricting the
choice of effective potentials.

Since we have been working in the Einstein conformal frame, the
problem of varying physical constants (above all, the effective Newto-
nian constant of gravity Geff ) did not emerge. One should note that even
remaining in the Einstein frame, we could assume mD 
= m4 , which would
affect the estimated boundary between the classical and quantum worlds.
In a more general framework, interpreting another conformal frame (pos-
sibly but not necessarily the original Jordan frame) as the observational
one, we obtain a dependence of the constant Geff (hence the current Planck
mass m4 = G

−1/2
eff ) on the size of extra dimensions, which in general can

not only be time-dependent but also vary from point to point in space.
In the cosmological context, models with variable Geff should not only
satisfy the observational bounds on the variation rate Ġeff/Geff (� 10−13)
but also take into account the effect of G(t) on stellar evolution and pro-
cesses in the early Universe. (Therefore, models with self-stabilizing extra
dimensions like those discussed in [77, 83] can be more attractive.) In still
more general models of this sort even the Planck constant � can be vari-
able. A discussion of these problems can be found, e.g., in [147, 358, 411].

10.3.5 Rapid particle creation in the post-inflationary
period

Let us address one more problem that can be successfully solved in the
class of theories under consideration.

According to [137], rapid oscillations of the inflaton field immediately
after inflation create the particles which form the matter content of the
modern Universe. It is known [243, 372] that the particle and entropy pro-
duction mechanism as well as heating of the Universe can be ineffective
if the coupling constant of the inflaton and matter fields is too small. On
the other hand, a strong coupling leads to significant quantum corrections
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of the inflaton potential parameters, which casts doubt on their smallness
that follows from the observational data on CMB temperature fluctuations.
This problem is solved, for instance, by hybrid inflation which includes one
more hypothetic scalar field (see Chapter 8). During inflation, the energy
density changes slowly until the classical field value reaches a bifurcation
point, after which the field begins to rapidly oscillate near a minimum of
the potential, producing the required particle number. Unfortunately, this
model also leads to black hole over-production, which is a serious shortcom-
ing [354]. Another promising mechanism of effective particle production
(parametric resonance) is described in [243]. One more mechanism, con-
nected with quantum production of supermassive (GUT scale) particles,
sufficient for explaining the observed wealth of matter, has been considered
by Grib and Pavlov [179–182]

Nonlinear multidimensional gravity provides one more opportunity.
Consider the potential and kinetic terms of the effective Lagrangian

(10.64) with the function F (R) of the form

F (R) = R + cR2 − 2Λ. (10.125)

These functions are plotted in Fig. 10.8. The nontrivial φ dependence of
the kinetic term strongly affects the scalar field dynamics. The effect is
especially evident if a minimum of the kinetic term coefficient coincides
with a minimum of the potential, as in Fig. 10.8.

For illustration, consider a simplified scalar field model with the poten-
tial and a coefficient in the kinetic terms of the form

V (φ) =
1
2
m2φ2

K(φ) = K1 · (φ − φmin)2 + Kmin, K1, Kmin > 0. (10.126)

(The function K(φ) is positive and can be reduced to unity by a field
redefinition φ → φ̃ , but this equivalent formulation is more convenient in
the present case.)

A numerical solution of the corresponding classical equations for a spa-
tially flat universe,

H2 =
κ

2

3

[
1
2
K(φ)φ̇2 + V (φ)

]
,

K(φ)(φ̈ + 3Hφ̇) +
1
2
Kφ(φ)φ̇2 + Vφ(φ) = 0, (10.127)

(the subscript φ denotes d/dφ , and H is the Hubble parameter) is pre-
sented in Fig. 10.9 for the quadratic potential (10.126) and two different
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Figure 10.8 The potential and kinetic terms of the effective 4D theory (10.53) with the
function F (R) of the form (10.125) with the parameters d = 3, c = 6.0, w1Λ = 2.

kinetic terms, with K = 1/2 and the one given in (10.126). The parameter
values are given in the figure caption. Each curve describes the inflaton
behaviour before and after the end of inflation. In the nonstandard kinetic
term, K(φ) = 1/2 at the end of the inflationary stage (the first point of
curves’ intersection in Fig. 10.9). It is clear that in the model with a vari-
able kinetic term inflation begins at smaller energies as compared to the
conventional case.

Let us also note the difference in the oscillation frequency of the inflaton
field. The number of created particles is proportional to this frequency, see
the review [139] and an additional discussion in [234]. This conclusion can
also be grounded as follows.

After the end of inflation, the inflaton oscillation amplitude is small
compared with the Planck scale, and the coefficient Keff ∼ Kmin in the
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Figure 10.9 The inflaton behaviour at the end of inflation for two models: 1. The
standard kinetic term, K = 1/2, 2. The kinetic term of the form (10.126). The parameter
values K0 = 0.1, φmin = 0.1, Kmin = 0.005 are given in Planck units, and time is
measured in inverse inflaton field masses.

effective kinetic term is small due to the choice of the parameters. The
effective Lagrangian containing an interaction of the inflaton with a certain
scalar field χ

Leff ≃ 1
2
Kminφ̇

2 + gφχχ, (10.128)

can be transformed to the standard form by redefining the inflaton field:

Leff ≃ 1
2
φ̇2 +

g√
Kmin

φχχ. (10.129)

A small value of Kmin increases the coupling constant (by orders of mag-
nitude for the chosen parameter values) and consequently leads to intense
particle creation. In this way one overcomes the difficulty discussed above:
a weak interaction constant at the inflationary stage does not contradict a
rapid particle production immediately after the end of inflation.

The field behavior near K = 0

The function K(φ), the coefficient of the kinetic term in the scalar field
Lagrangian, can in general possess both zeros and poles, and their neigh-
borhood is of special interest. Let us discuss the possible state of the system
near a zero value of K(φ) [260]. If it is a simple zero, then the kinetic term
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changes its sign when crossing it. The case K(φ) = KEin > 0 corresponds
to a normal scalar field while the case K(φ) < 0 corresponds to a phantom
field with negative kinetic energy.

In general, F (R) theories lead only to positive values of K(φ). Indeed,
it is easy to see that the expression in square brackets in Eq. (10.66) is
always positive, with a minimum equal to d(d + 3)/3.

In more general theories containing other curvature invariants, this is
not the case. Let us consider as an example the simplest nonlinear theory
with

F (R) = R + cR2 − 2Λ, (10.130)

including second-order nonlinear terms: the Ricci tensor squared RABRAB

and the Kretschmann scalar K = RABCDRABCD , so that

S =
∫

dDx
√

Dg[F (R) + c1RABRAB + c2K]. (10.131)

Calculations in the model (10.131) with the function (10.130) and the
metric (10.49), similar to those made above, lead to an effective scalar-
tensor theory (10.64) with kinetic (10.79) and potential (10.80) terms

VEin(φ) = − sign(1 + 2cφ)[d(d − 1)]−d/2 · |φ|d/2 c′φ2 + φ − 2Λ
(1 + 2cφ)2

,

c′ = c +
c1

d
+

2c2

d(d − 1)
, (10.132)

KEin(φ) =
1

φ2(1 + 2cφ)2

[
c2φ2(d2 − 2d + 12) + d2cφ +

1
4
d(d + 2)

]

+
c1 + c2

2φ(1 + 2cφ)
. (10.133)

The dashed lines A and B in Fig. 10.10 mark zeros of the kinetic term
for the quadratic gravity (10.130). If a field fluctuation has emerged to the
left of point A, the field tends to a minimum of potential at the point φ = 0,
which corresponds to a growing size of the extra space. Some fluctuations
are created in the range between points A and B, where the kinetic term
is negative. Then the field φ , being phantom, moves towards a growing
potential, to point B. Evidently, point B is an attractor without being a
minimum of the potential. A universe for which this situation takes place
has a nontrivial basic state, which should be discussed in more detail. To
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Figure 10.10 The potential (10.132) and the coefficient in the kinetic term (10.133) for
the theory (10.131) and F (R) from (10.130). The parameter values: d = 3, c = −0.12,
Λ = 2, c1 + c2 = −5.5, c′ = −0.626.

this end, consider a simplified situation:

S =
∫

d4x

[
1
2
K(φ)(∂φ)2 − V (φ)

]
, (10.134)

with K(φcrit) = 0 and, without loss of generality, put φcrit = 0. Then
the behavior of K(φ) and V (φ) at small φ is K(φ) = kφ + o(φ), and
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V (φ) = V (0) + hφ + o(φ), where it is assumed that k > 0,h > 0, referring
to point B in Fig. 10.10. Evidently, near the critical point the field tends
to it irrespective of where its initial value is chosen, to the left or to the
right of it. Nevertheless, a classical motion near the critical point φ = 0 is
absent. Indeed, the classical equation for φ in curved space-time has the
form

K(φ)�φ +
1
2
Kφ(∂φ)2 = −Vφ, (10.135)

or, according to the above expressions for K and V at small φ ,

kφ�φ = −
(

h +
1
2
k(∂φ)2

)
+ o(φ). (10.136)

Let (∂φ)2 > 0 (as in the cosmological case where φ = φ(t)). Then the
right-hand side of Eq. (10.136) is smaller than −h < 0 and does not tend
to zero as φ → 0. Hence the second-order derivative in �φ tends to infinity
because φ → φcrit = 0. Introduction of additional terms with higher-order
derivatives into the Lagrangian does not improve the situation. Indeed,
in a stationary state, where all derivatives are equal to zero, the classical
equation (10.136) with h > 0 has no solution. It means that the kinetic
energy of a homogeneous basic state cannot be equal to zero.

Multiple factor spaces and a spatial ly varying size of the
extra dimensions

Recall that a priori we do not assume a fixed number of extra dimensions,
their geometry, and topology. All this emerges at the Planck scale due to
quantum fluctuations. The more complex the emerging structure of the
extra space, the richer the possibilities.

Consider a space with the metric (10.84) and two extra factor spaces:
M = M4 × Md1 × Md2 . Using the same action (10.131), we must now
introduce two scalar fields in order to describe the low-energy limit of the
theory. The effective potential in the Einstein picture has the form

VEin(φ1, φ2) = −1
2

sign(F ′(d1φ1 + d2φ2))
|φ1|d1/2

[(d1 − 1)]d1/2

|φ2|d2/2

[(d2 − 1)]d2/2

×
F (d1φ1+ d2φ2) + d1φ

2
1

[
c1+

2c2

d1 − 1

]
+ d2φ

2
2

[
c1+

2c2

d2 − 1

]

[F ′(d1φ1+d2φ2)]2
,

(10.137)
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Figure 10.11 The effective potential for a model with the extra space Md1 ×Md2 ,d1 =
d2 = 3, with the parameters c = −0.5, Λ = 0.2, c1 = c2 = −0.38. View from above,
lower levels look darker. A local minimum is marked by a long arrow.

Figure 10.11 presents a potential with two valleys along the mutually
perpendicular directions φ1 = 0 and φ2 = 0, each of them corresponding
to an infinitely large size of one of the factor spaces Md1 or Md2 . Of greater
interest is the local minimum, where both factor spaces have a finite size.
The Universe can be located for a sufficiently long time in this metastable
state, as in the case with one extra space with a simpler structure discussed
above.

An opportunity of interest emerges if we suppose that the Universe was
born at point B in Fig. 10.11. During inflation, the field moves from point
B along the arrow, and quantum fluctuations create different field values in
causally disconnected domains. The fate of a domain depends on the field
value inside it. Even if the majority of domains get into the metastable
minimum at the end of inflation, some part of them rushes to one of the
valleys. In this case our Universe must contain a certain number of domains
with a macroscopically large extra space. Their number and sizes strongly
depend on the initial conditions.

If in our Universe there are domains with a large extra space, then the
laws of low-energy physics in such domains are different from those we
know. Thus, if a star flies into such a domain, the balance of forces inside
it will be violated, and the star will either collapse or explode.

Thus we have shown that the same basic theory can lead to drastically
different low-energy theories, depending on the structure of extra dimen-
sions and the initial data.
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10.3.6 Conclusions

It is clear that pure multidimensional gravity, without invoking any fields
of nongeometric origin, and even with a very simple choice of the geom-
etry, can be an arena for quite complicated phenomena. It is a result of
the curvature-nonlinearity of gravity, but such a nonlinearity inevitably
emerges due to quantum corrections to the Einstein theory and must in
principle be included in the theory of gravity.

The slow-change approximation, introduced here for multidimensional
gravity, substantially simplifies the analysis. This approximation turns
out to be valid in a wide range of phenomena at which the curvature
and the energy scale are far from Planckian ones (though, Planckian in
the multidimensional sense, these scales can appreciably differ from the
four-dimensional ones).

On reduction to four dimensions, nonlinear multidimensional gravity
leads to a sophisticated scalar field dynamics, with stable and metastable
minima of the potential and a nontrivial form of the kinetic term. Some
such minima look promising in the sense of describing the modern Universe
evolution, with an accelerated expansion of the external space and stable
extra dimensions. The latter leads to constant values of the fundamental
constants or their extremely slow drift as is the case if the system is only
approaching its stable state. In other viable models the extra dimensions
are variable, but the variations are small and do not leave the bounds of
modern experimental constraints.

Among the unsolved problems are the choice of the physical conformal
frame and the necessity of a fine tuning of the parameters for obtaining
the observed small value of the cosmological constant.

10.4 The origin of gauge symmetries

and fundamental constants

Despite the advances made in fundamental physics, the existence of a large
number of theories and approaches suggests that there are problems in
describing observational and experimental data. The idea of compact extra
dimensions allows one to effectively explain a considerable number of phe-
nomena and indicates the direction of further development in the theory in
spite of the absence of direct experimental confirmation of their existence.

Here we will study the problems associated with emergence of gauge
symmetries and fundamental constants at the early stage of the evolution of
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the Universe using the approach proposed in our previous works [83, 358].
This approach is based on the assumption that there are extra dimensions
forming a compact space with the properties determining the observed
low-energy physics. A solution to the first problem within the Kaluza–
Klein approach is well known: gauge symmetries arise as a consequence
of the corresponding symmetries of the extra space (see, e.g, [39]). There-
fore, the problem is reduced to justification of the choice of symmetric
spaces among a set of extra spaces with an arbitrary geometry. More pre-
cisely, we assume that, at some instant of time on the Planck scale, the
four-dimensional Riemannian space M4 [196, 402, 427] arises as a result
of quantum fluctuations. Simultaneously, there appears a compact extra
d-dimensional space Md . The set of possible geometries of the extra space
Md is at least a continuum. However, a geometry with a high degree of
symmetry is observed because the existence of gauge symmetries is beyond
question. The probability of its emergence is negligible, and hence there
should exist a selection mechanism that separates the appropriate geome-
tries. One of possible variants based on statistical considerations will be
analyzed below.

The second problem discussed in our work is related to the fundamen-
tality of the parameters � and G [147] and consists in the following. The
geometric approach to the theory implies the presence of only one scale of
the dimension of length ℓ . The parameters of the initial Lagrangian con-
structed only from the metric tensor are proportional to ℓn , where n is
an integer. The question arises on the instant of time at which the Planck
and gravitational constants appear as independent fundamental parame-
ters and on their relationship with the initial parameters of the theory. An
answer to this question for the gravitational constant is well known and,
as a rule, is presented in the form

M2
P = mD−2

D
Vd. (10.138)

Here, MP is the Planck mass, mD is a parameter with the dimension of
mass or, more precisely, inverse length, and Vd < ∞ is the volume of the
extra space Md . The similar problem of fundamentality of the Planck con-
stant � is less well understood, even though some interesting works have
appeared in this direction. In particular, Volovik [411] discussed the place
of the Planck constant in modern theory, analyzed different methods of
including this constant in the field equations, and considered the conse-
quences of a hypothetic spatial dependence of the Planck constant. How-
ever, a specific implementation of these hypothetical variants was not given.
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Below, we propose a mechanism of emergence of the Planck constant
together with the gravitational constant without a detailed discussion of
the possibilities this entails. As a result, we can reveal the relationships of
the constants � and G determined from low-energy experiments with the
parameters of the initial Lagrangian describing multidimensional gravity
with higher derivatives.

Continuing the ideology developed in [358], we assume that spaces with
an appropriate geometry arise in space-time foam with some (maybe small)
probability. We are interested in spaces with the geometry of a direct
product

MD = MD1 × Md1 , D1 ≥ 4, d1 ≥ 2 (10.139)

and the volumes V (D1) ≫ V (d1). Transitions with changes in the geom-
etry are conveniently described in terms of the path integral technique
[196, 402]. For this purpose, the superspace MD = (MD; gij) is defined as
a set of metrics gij in the space MD up to diffeomorphisms. On a spacelike
section Σ we introduce the metric hij (for details, see [427]) and define
the space of all Riemannian (D − 1)-metrics in the form

Riem (Σ) = {hij(x)
∣∣x ∈ Σ}.

The transition amplitude from the section Σin to the section Σf is an
integral over all geometries allowable by the boundary conditions:

Af,in = 〈hf , Σf |hin, Σin 〉 =
∫ hf

hin

Dg exp[iS(g)]. (10.140)

The absence of the Planck constant in the exponential function is a
result of choosing the appropriate units of measurement. Nonetheless, it
will be shown below that the Planck constant naturally emerges after the
definition of the dimensional units simultaneously with the gravitational
constant G .

10.4.1 Why is the extra space symmetric?

The transition amplitude (10.140) generating a four-dimensional space is,
as a rule, calculated under the assumption of a special form of the metric
hf on the hypersurface Σf with an interval of the type [403, 427]

ds2 = σ2[N(t)2dt2 − a(t)2dΩ2
3], σ2 =

1
12π2M2

Pl

. (10.141)

The transition amplitude (10.140) describes the birth of a space of type
(10.139), where D1 = 4 and there is no preferred geometry for the subspace
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Md1 . In this section, we propose a symmetrization mechanism for compact
spaces. It was shown that the space with a metric that weakly differs from
the metric written above asymptotically tends to (10.141) in the course of
cosmological expansion.

Let us postulate that the evolution of any closed system is accompanied
by an increase in its entropy. It should be noted that the entropy of a
subsystem can decrease. In particular, the Hawking evaporation of a black
hole decreases its entropy but increases the entropy of the Universe as a
whole. Below, we will consider a space with the symmetry (10.139) under
the assumption that the subspace volume is considerably larger than the
volume of the compact subspace Md1 .

Entropy of a compact space

First and foremost, we will demonstrate that the entropy of a compact
space reaches a minimum on a class of maximally symmetric spaces. The
initial definition of the entropy in our work coincides with the known def-
inition by Boltzmann, who related the entropy to the number Ω of states
of a system: s = kB ln Ω. A discussion of other possibilities can be found,
for example, in [89, 223]. The notion of the number of states is correctly
defined at a quantum level, where the set of energy levels and the degree of
their degeneracy are known. However, quantization of the space Md means
quantization of a gravitational field, which by itself remains an unsolved
problem. In this respect, we will restrict ourselves to calculating the number
of states from a classical viewpoint. It is sufficient because we are interested
in relative quantities (see also [381]).

The entropy of an arbitrary compact space Md , in which matter fields
are absent, is a functional s[G] of the metric tensor G . The number of
states is determined by an observer outside the system. It is intuitively
clear that the higher the symmetry of an object (in our case, a compact
space), the smaller the statistical weight of the object. Let us prove this
statement. To calculate the statistical weight Ω, the space Md is embedded
in the space R

N , which can be done if Md is sufficiently smooth and N is
sufficiently large [149]. It is assumed that the external observer is located
in the space R

N . Each point of the space Md is described by the internal
coordinate y ∈ Md and the external coordinate x ∈ R

N . We choose a
specific point P ∈ Md and fix its coordinate xP ∈ R

N . Then, we choose
the set of basis vectors ek, k = 1, 2, . . . , N in R

N . We require that all d

tangent linearly independent vectors at the point P , e
(P )
a , a = 1, 2, . . . , d ,

which form the coordinate basis in Md , should be included in this
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set. Using this basis, we calculate the components of the metric tensor
G

(P )
ab (xP ) of the space Md . We fix the tangent space T (P ) spanned by the

vectors e
(P )
a .

Then we choose another point Q ∈ Md , with the coordinates xQ ∈ R
N

and the tangent space T(Q). By moving along the curve lPQ ⊂ Md , the
point Q is displaced to the point with the coordinates xP , so that the
tangent space T(Q) coincides with the tangent space T(P ).

The new components of the metric tensor G
(Q)
ab (xP ) of the space Md

are calculated at the same point xP ∈ R
N . If the metric tensors do not

coincide, G
(Q)
ab (xP ) 
= G

(P )
ab (xP ), the observer in the space R

N will fix a
new “microstate” and increase the statistical weight of the space Md by
unity. If the equality

G
(Q)
ab (xP ) = G

(P )
ab (xP ), (10.142)

is valid, the number of microstates remains unchanged. It should be noted
that the condition (10.142) corresponds to the existence condition of a
Killing vector along the curve PQ . Therefore, the presence of Killing
vectors decreases the statistical weight of a compact space. Maximally sym-
metric spaces have a minimum entropy.

Decay of excitations of a compact space

The compact subspace Md1 can be considered as a subsystem of the space
MD . Now, we show that, if the subspace volumes satisfy the inequality
VD1 ≫ Vd1 , there is an entropy flow from the subspace Md1 to the subspace
MD1 , the entropy of Md1 tends to a minimum, and its geometry tends to a
maximally symmetric one. Furthermore, the entropy of the entire system,
i.e., the space MD increases.

As a rule, the entropy of a closed system changes along with conser-
vation of the system energy. Since gravitational energy depends on the
space topology, we will restrict our consideration to transitions without its
changes. In [83, 190], it has been demonstrated that, in the framework of
gravity nonlinear in the Ricci scalar, at least local minima of the energy
density exist. In this case, there is a set of energy levels, and each geometry
of the extra space can be represented in the form of an expansion in eigen-
functions of the d’Alembert operator of the background metric. In terms
of the Kaluza-Klein theory, the eigenvalues of this operator contribute to
the mass of excitations, which are interpreted as particles in the space M4 .
For a compact space with the geometry of a circle of radius r , the mass of
the lightest particle is m1 = 1/r , and it is experimentally bounded below
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by a value of several TeV. It is evident that its decay into light particles
propagating in our space should be accompanied by an entropy increase.
In the process, the geometry of the extra space relaxes to a state that has
a minimum entropy and is characterized by the absence of excitations.

As an illustration, we consider a space of the type (10.139), where
MD1 = M4 × Md2 , Md2 = S1, Md1 = S1 with the metric gMN , which
differs from the diagonal metric ηMN = diag(1,−1,−1,−1,−r1,−r2) only
slightly, so that gMN = ηMN + hMN (x, y1, y2). The size of one of the
extra spaces is considerably larger than the size of the other extra space:
r2 = βr1, β ≫ 1. The dynamic equation for the field hMN can be written
in the form [39]

ηAB∂A∂BhMN (x, y1, y2) = 0.

By substituting the field h in the form of the expansion in eigenfunc-
tions of the d’Alembert operators Yn(y1), Yn(y2) of both subspaces
(in our case, circles),

hMN (x, y1, y2) =
∑

n1,n2

h
(n1,n2)
MN (x)Yn1(y1), Yn2(y2),

we obtain the equation for the components(
�x +

n2
1

r2
1

+
n2

2

r2
2

)
h

(n1,n2)
MN (x) = 0. (10.143)

The microstates of the subspaces Md1 and Md2 are characterized by the
integers n1 and n2 . The first excited state of the subspace Md1 has a mass
m1 = 1/r1 . A decay of this state into two excited states of the subspace
Md2 with masses m2 = n2/r2 and m′

2 = n′
2/r2 , n2, n

′
2 = 0, 1, 2, . . . , [β]

and zero momenta occurs with energy conservation,

m1 = m2 + m′
2 (10.144)

and an increase in the entropy of the entire system. This increase is associ-
ated with the fact that the number of different microstates of the space Md2

that satisfy the condition (10.144) is of the order of Ω2 = β/2 ∼ r2/r1 .
In this case, the geometry of the subspace Md1 tends to a maximally sym-
metric geometry because the number of excitations in the subspace tends
to zero and the entropy tends to a minimum.

It is obvious that the number of microstates increases with an increase
in the volume of the subspace Md2 . Inclusion of states with different four-
momenta in the Minkowski space M4 substantially enhances the effect.

Let us increase the dimension of the compact space with a
large volume and consider a manifold of the type (10.139) where
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MD1 = M4 × Md2 , Md2 = S2, Md1 = S1 . It is known that the excitation
mass in S2 is m(l) =

√
l(l + 1)/r2 , and the degeneracy factor is 2l + 1.

The decay of an excitation of the space S1 into two excited states of the
space S2 also proceeds with energy conservation: m1 = m(l) + m(l′). It is
easy to see that the number of allowed energy states with zero momentum
is also proportional to the volume of the large space: Ω2 ≃ β2 = r2

2/r2
1 .

Therefore, if quantum fluctuations generate a space of the

type Ma ×Mb , the entropy flow is directed toward the subspace of

larger size. The geometry of the subspace of smaller size tends

to a maximally symmetric geometry compatible with its topology.

The existence of gauge symmetries in the main space appears to

be a purely statistical effect.

The transition rate to a symmetric state

The entropy of the entire system consisting of two subspaces (10.139)
increases as a result of transformations of particles (excitations) of the
compact subspace Md1 to particles propagating in the subspace MD1 .
The compact extra space that, at the initial time instant, had an arbi-
trary geometry, acquires a maximally symmetric shape during the entropy
transfer to the main space. In this case, the entropy of the entire sys-
tem (including the extra and main spaces) increases while the entropy
of a subsystem (the compact extra space) tends to a minimum. The sit-
uation resembles the third law of thermodynamics, according to which
the entropy of a body tends to zero with a decrease in the thermostat
temperature.

The subspace MD1 in (10.139) does not necessarily have a direct-
product structure. The main requirement to this subspace is the presence
of a large number of energy levels that contribute to the statistical weight
of the system at fixed temperature. The Minkowski space M4 itself exhibits
this property to a full extent.

Let us estimate the “symmetrization” rate of the extra space. Weak
deviations of the geometry from an equilibrium configuration can be inter-
preted as excited states of mass m1 (see, e.g.,[12]). Since it is the only scale,
it should be expected that the probability of decay will satisfy the relation
Γ ∼ m1 ∼ 1/Ld , where Ld is the characteristic size of the extra space.
Setting Ld ≤ 10−17 cm, we find that the lifetime of the excited state is
t1 ∼ Ld ≤ 10−27 s. Therefore, the extra space transformed into the most
symmetric state long before the onset of the primordial nucleosynthesis
but maybe after completion of the inflationary stage. However, states that
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correspond to the first excited level of the Kaluza-Klein tower with a life-
time of the order of 105 s or more are also considered [345]. Under these
conditions, the theory acquires gauge invariance well after the nucleosyn-
thesis stage, which creates new possibilities and problems. In order that a
Kaluza-Klein particle be stable, it is necessary to make additional assump-
tions that complicate the structure of the extra space [341].

10.4.2 Fundamental constants and the properties
of an extra space

Now we will discuss the problem associated with the emergence of phys-
ical parameters in the modern Universe. A more detailed discussion is
presented in Sec. 11.2. In a consistent implementation of the Kaluza-
Klein idea, boson fields represent individual metric components of the
extra space. The only scale possible in this situation is the length scale
ℓ ; however, it is hard to use even this unit because quantum fluctua-
tions in the space-time foam continually renormalize any parameters in
an unpredictable manner. The situation becomes better as soon as a clas-
sical spacetime region arises due to the same quantum fluctuations. It is
also accompanied by the appearance of independent stationary quanti-
ties that can be chosen as measurement units, for example, the volume
of the compact space Vd1 and the vacuum energy density Um . Only in
this case can dimensional physical constants, including fundamental con-
stants, be fixed. A possible variant of this scenario will be considered
below.

The action is chosen in the form (see, e.g., [310, 377, 386]),

S = N0

∫
dDy

√
−GF (R; an). (10.145)

The parameters an, N0 take on specific values in the birth of this spatial
region [358] after the choice of the length unit. The appropriate choice of
the parameters an can provide boundedness of the effective action from
below [77, 83]. The dimensionality of the arbitrary function F (R) is con-
veniently chosen to coincide with the dimension of R , i.e., it is l−2 . Then,
the dimension of N0 is l2−D . Note that the normalization constant N0

equals 1/(16πG) only in the low-energy limit.
The metric of the space MD is written in the form [83, 101]

ds2 = GABdXAdXB = gab(x)dxadxb − e2β(x)γij(y)dyidyj

= Ndt2 − gµν(x)dxµdxν − e2β(x)γij(y)dyidyj . (10.146)
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Here gab is the metric of the subspace M4 = R × M3 with the signature
(+−−−), e2β(x) is the curvature radius of the compact subspace Md , and
γij(y) is its positive-definite metric. For a specified foliation of space by
spacelike surfaces, we can always choose the normal Gaussian coordinates
which are used in the last equality in the expression (10.146). We assume
that the coordinates x, y have the dimension l , time is measured in seconds,
and the lapse function N is an unknown parameter with the dimension of
(ℓ/s)2 . The metrics gab and γij are dimensionless.

According to [77, 83], the topology and metric on the spacelike section
Σf of amplitude (10.140) are determined by imposing the following
conditions:

(i) The topology of MD has the form of a direct product,

MD = M4 × Md, (10.147)

where d is the dimension of a compact extra space.
(ii) The curvature of the subspace Md satisfies the condition

R4(gab) ≪ Rd(γij). (10.148)

(iii) As shown above, the extra space with an arbitrary geometry evolves
to a space with a maximum number of Killing vectors possible for the
topology under consideration. In this respect, in the set of subspaces
Md we choose maximally symmetric spaces of constant curvature Rd ,
related to the curvature parameter k in a typical manner,

Rd(γij) = e−2β(x)kd(d − 1)ℓ−2. (10.149)

Owing to the special form of the chosen metric (10.146), the following
relations hold, see Sec. 10.2.2:

R = R4 + φ + fder,

φ = kd(d − 1) e−2β(x)l−2,

fder = 2dgµν∇µ∇νβ + d(d + 1)gµν∂µβ∂νβ, (10.150)

where the field φ is defined by explicitly introducing its dimension l−2 .
The covariant derivative ∇ acts in the space M4 . The volume Vd of the
internal space of unit curvature depends on its geometry, being expressed
in terms of its own metric:

Vd =
∫

ddy
√

γ. (10.151)

In what follows, we will use the slow-change approximation (see
Sec. 10.2.2)

|φ| ≫ |R4|, |fder|, (10.152)
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which is valid even at the onset of the inflationary stage. Then, by expand-
ing the expression F (R; an) = F (φ + R4 + fder; an) in a Taylor series and
integrating over the extra-space coordinates we obtain the expression

S ≃ Vd N0

∫ √
4g d4x edβ

+ [F ′(φ; an)R4 + F (φ; an) + F ′(φ; an)fder], (10.153)

which is typical of a scalar-tensor theory of gravity in the Jordan frame.
Using the conformal transformation

gµν �→ g̃µν = |f(φ)|gµν , f(φ) = edβF ′(φ; an), (10.154)

we pass on to the Einstein frame:

S = Vd N0

∫
d4x

√
g̃ (signF ′)L, (10.155)

L = RI +
1
2
K(φ)(∂φ)2 − U(φ), (10.156)

K(φ) =
1

2φ2

[
6φ2

(
F (φ; an)′′

F (φ; an)′

)2

− 2dφ
F (φ; an)′′

F (φ; an)′
+

1
2
d(d + 2)

]
,

(10.157)

U(φ) = −(signF (φ; an)′)
[ |φ| · I2

d(d − 1)

]d/2
F (φ; an)

F ′(φ; an)2
, (10.158)

where F (φ; an)′ = dF/dφ .
Assuming the existence of a minimum of the potential (10.158) at φ =

φm and using the slow-change approximation, the action (10.155) can be
presented near this minimum in the form

S ≃ N0VdcI

∫
dtd3xI

[
RI +

1
2
K(φm)(∂Iφ)2 − U(φm)

− 1
2
U ′′(φm)(φ − φm)2

]
, (10.159)

where

(∂Iφ)2 = (∂φ/cI∂t)2 − (∂φ/∂xI)2.

Here, we have taken into account that
√

g = cI in four-dimensional
Minkowski space. The index l designates the used unit of length, and cI

is the speed of light in the chosen units.
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The measurement units are related by the expression

l = α · cm. (10.160)

where α is an as yet unknown parameter. In Eq. (10.159), we pass over to
the standard units of length:

S = N0Vdcα
2

∫
dtd3x

[
R4 +

1
2
K(φm)(∂φ)2 − α2U(φm)

−α2 1
2
U ′′(φm)(φ − φm)2

]
. (10.161)

Here, xI = αx , cI = αc , RI = R4/α2 , and (∂Iφ)2 = (∂φ)2/α2 .
Since the expression (10.145) is a low-energy limit of the action (10.161),

it should adequately describe purely gravitational phenomena. Moreover,
the expression (10.161) makes it possible to explain the origin of the infla-
ton potential and the cosmological constant. The effective action (10.161)
contains the initial parameters of the theory without using fundamental
parameters, such as the Planck constant � and the gravitational constant
G . However, from practical and historical viewpoints, it is more conve-
nient to explicitly introduce these parameters. In terms of the developed
approach, this can be done by imposing the constraints

N0Vdcα
2 =

c4

16πG�
, (10.162)

α2U(φm) =
16πG

c4
Λ. (10.163)

Here Λ is the observable vacuum energy (dark energy) density. It is impor-
tant that such quantities as the volume of the extra space Vd and the
minimum value of the potential U(φm) acquire specific values only at
φ = const. If the field φ is identified with the inflaton, a nontrivial sit-
uation arises. The inflationary stage is completed before the scalar field
(inflaton) reaches a potential minimum. Consequently, at the inflationary
stage, when the Universe formed and the field φ varied with time, the
quantities G and� should also have been time-dependent. In this case, the
theory of gravity is an effective theory valid at low energies (see also [410]).

Let us introduce the definition

mΦ ≡ α

√
U ′′(φm)
K(φm)

, (10.164)
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and, under the assumption K(φm) > 0, change the variables:

√
c4

16πG
K(φm)(φ − φm) = Φ.

As a result, we arrive at the conventional form of the action for a scalar
field Φ interacting with gravity, that is,

S =
1
�

∫
dt d3x

(
c4

16πG
R4 +

1
2
(∂Φ)2 − Λ − 1

2
m2

ΦΦ2

)
. (10.165)

Now, it becomes clear that the parameter mΦ has the meaning of the
scalar field mass.

Equations (10.162) and (10.163) allow us to solve the problem of sepa-
rate emergence of the gravitational and Planck constants, which appear to
be functions of the parameters of the theory N0, {an} . The set of param-
eters {an} is also implicitly included in the expressions for the quantities
Vd, U(φm). We do not consider here the origin of the lapse function and
hence the speed of light. Eliminating the insignificant parameter α from
Eqs. (10.162), (10.163) and (10.164), we obtain

U(φm)K(φm)
U ′′(φm)

=
16πG

c4

Λ
m2

Φ

, (10.166)

N0Vd(φm)
K(φm)
U ′′(φm)

=
c3

16πG�m2
Φ

. (10.167)

Here, the right-hand sides contain measurable quantities whereas the left-
hand sides involve quantities depending on the initial parameters of the
theory. At energies on the Planck scale, when the field φ did not reach the
potential minimum, the use of the modern values of the fundamental con-
stants G and � requires some care. Moreover, assuming that the vacuum
energies Λ are different in different regions of the Universe [142, 170, 358],
the fundamental constants G and � are also different according to the
expressions (10.166), (10.167). A discussion of this problem and references
can be found in [411].

At the inflationary stage, when φ varied, the quantities G and �

also varied. The dependence of these quantities on the field can be
determined from (10.166) and (10.167) through the change φm → φ , which
are true for small deviations of the field from the equilibrium position.
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As a result, we have

G = G(φ) ≃ c4m2
Φ

16πΛ
U(φ)K(φ)

U ′′(φ)
,

� = �(φ) ≃ c3

16πG(φ)Vd(φ)N0
. (10.168)

The time dependence of the inflaton field φ in different inflationary models
is well understood [282], hence the dynamics of the fundamental parameters
can be described by choosing a specific inflationary model.

The conversion factor between the units of length α = l/cm can also
be found by another method. Indeed, the characteristic size of the extra
space is determined to be V1/d

d in units of l . Moreover, by designating
the size of the hypothetical extra space as Ld , expressed in terms of cm,
we obtain α = Ld/V1/d

d . The values of Ld ≤ 10−17 do not contradict the
experimental data. With due regard for Eq. (10.164), we find the constraint
on the initial parameters

mΦV1/d
d

√
K(φm)
U ′′(φm)

= Ld < 10−17. (10.169)

Equations (10.166), (10.167) and (10.169) allow us to determine the
parameters of the theory N0an (see Eq. (10.145)) from the known constants
c, �, G and the energy density Λ, the mass of the scalar field mΦ , and
the volume of the extra space Vd . Implementation of this program is a
matter for the future. Actually, the fundamental constants are measured
with high accuracy, whereas the vacuum energy density is determined with
a considerably lower accuracy. It is especially true regarding the mass of the
hypothetic scalar field, even though this field is identified with the inflaton.
The greatest uncertainty is associated with the volume of the extra space,
which is yet to be revealed.



Chapter 11

The emergence of physical
laws

11.1 Fine tuning of the Universe parameters

One of the impressing observational facts is the fine tuning of the Uni-
verse parameters. This means that all microscopic parameters, the particle
masses and coupling constants, not only have the values at which an intel-
ligent life can appear in the Universe, but the admissible values of these
parameters are confined to very narrow ranges. Tiny deflections from their
real values would lead to catastrophic consequences for the existence of
complicated structures. Before proceeding with the discussion, let us con-
sider a few examples.

The electron and the properties of the Universe

The characteristic masses of fermions are of the order of 1GeV. Only the
electron has a mass three orders of magnitude smaller. Imagine that its
mass became a few times larger. It could seem that nothing significant
should happen, all the same it is still a very light particle. However, an
electron mass increase by a factor of three would lead to catastrophic con-
sequences for the Universe. Indeed, the mass difference between the neutron
and the proton is ∆m = mn−mp = 1.28 MeV, whereas the mass of a “new
electron” amounts to mE = 3me = 1.53 MeV. It means that the neutron
becomes stable because its decay via weak interaction

n → p + e + ν̄e
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is energetically forbidden. Moreover, the allowed reaction

p + e → n + νe,

will destroy the stability of hydrogen atoms. Consequently, immediately
after the recombination period, practically all protons and electrons are
converted to neutral particles. Charged particles simply disappear long
before the formation of the first stars. In this case stars will not be formed
at all since the gravitational contraction of clouds is efficient only if there
is an energy dissipation process.

Thus, an insignificant growth of the electron mass leads to the absence
of stars in the Universe and consequently the absence of any, to say nothing
of intelligent, life.

The carbon level

Fine tuning works so unconditionally that with its aid one can even esti-
mate unknown parameters. The most well-known example is Fred Hoyle’s
prediction.

Carbon in stars is formed in two stages. At first two alpha particles
merge, forming the unstable isotope beryllium-8. Then a third alpha parti-
cle joins this beryllium, forming a carbon nucleus. But beryllium-8 rapidly
decays. Therefore, in forming the Universe, it would be reasonable to pro-
vide a resonant interaction between beryllium-8 and an alpha particle.
Nature did precisely that: the energy level equal to 7.65MeV is remark-
able in that the energy of an excited state of the carbon nucleus is only
0.3MeV higher than than the summed mass of the alpha particle and the
beryllium nucleus. This 0.3MeV is compensated by the kinetic energy of
colliding particles, resonantly increasing the efficiency of the reaction. It is
these considerations that led Fred Hoyle to his theoretical prediction of the
energy of this level in 1953. When our Universe was only forming, Nature
must have already “known” about the future necessity of this level for the
existence of carbon life.

Slow reactions in stars

Let us mention one more interesting example of fine tuning of the Universe
parameters. Consider the question: what should the Fermi constant GF be
for the emergence of our type of intelligent life? Experience tells us that
it requires about five billion years for that. It is the time — not less than
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that — for which nuclear reactions should last in a star like the Sun. Thus
the time of the first reaction in the proton-proton cycle,

p + p →2 H + e+ + νe (11.1)

should be t = 1/(σvn) ∼ 5 − 10 billion years, where v ∼
√

2T/mp is the
mean proton velocity in a star, while the mean concentration of protons
inside a star is n ∼ 1.5 g/cm3 . Nuclear reactions begin at temperatures
T ≈ 107 . The cross-section of the first reaction of the proton-proton cycle,
occurring due to the weak interaction, is σ ∼ G2

F E2 ∼ G2
F T 2 .

Collecting all that, we obtain an expression for the Fermi constant

GF ∼ m1/4

(nt)1/2T 5/4
, (11.2)

connecting it with such parameters as the mean stellar concentration of pro-
tons and temperature, the proton mass and the intelligent life emergence
time, or, more precisely, the stellar lifetime. Substituting the numerical val-
ues, we obtain GF ∼ 10−5 GeV−2 , which coincides by order of magnitude
with the experimental value.

Let us note that nuclear reactions usually occur rapidly. The small value
of the Fermi constant makes it possible to slow down the stellar nuclear
processes, beginning with the reaction (11.1). Let us look how efficient
this slowing-down is. The solar luminosity is known: the energy per second
released by the Sun is L⊙ = 3 ·1026 J/s. Consequently, 1 kg of solar matter
emits

ε⊙ ∼ L⊙/M⊙ ∼ 10−7 J/(s · kg).

Compare this with the specific energy release of a human being of 80 kg:

εhomo ∼ 2000 · 103 · 0.01 · 4.18
24 · 3600 · 80

∼ 0.02 J/(s · kg).

Here, for the estimation, it is assumed that only 1% of the energy absorbed
by man, 2000kcal, passes over to heat. Owing to the smallness of the
Fermi constant, stellar nuclear reactions turn out to be by many orders of
magnitude less efficient as compared with chemical reactions.

Question. I f chemical reactions inside a human being occur much more
rapidly than nuclear reactions in stars, why is the temperature of a human
body so much lower than the solar temperature?

The weak interaction should be really very weak in order that the neu-
tron live long enough. In addition, during Supernova explosions, neutrinos,
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owing to the weak interaction, are able to carry away the main part of
energy from the central part of the star, allowing its inner layers to rapidly
contract. But on the other hand, the weak interaction constant cannot be
too small. Otherwise, first, the number of neutrinos created in an exploding
star would be too small, and second, the outer layers of such a star would
not receive sufficient energy from the neutrinos to fly away in space.

Stellar li fetime

Heavy elements are formed in the stars but they must be eventually ejected
to space, in order that future stellar generations with planetary systems
could form. Therefore the parameters of the theory should be selected in
such a way that at least a certain part of the first stellar generation have
a short lifetime ending with an explosion. But the next stellar generations
should live for a long time (ten billion years) to make possible the emer-
gence of intelligent life. Nature has been able to satisfy these contradictory
requirements.

The long life of the next stellar generation rests on the slow proton-
proton cycle (here is where the weak interaction is necessary). The short
lifetime of the first stars takes place due to large masses plus primordial
helium burning. But how to create the primordial helium?

Passage through a needle’ s eye

To create helium, neutrons are necessary. The latter, created when the
Universe was hot, should eventually decay. How to preserve them? Can we
preserve neutrons inside deuterium?

p + n → D + γ.

But the inverse reaction prevents:

D + γ → p + n,

it is efficient at high temperatures. The binding energy of deuterium is
not large, 2.234MeV, and at temperatures higher than 109K deuterium
is rapidly destroyed. The threshold temperature 109K of the Universe is
achieved in 300 s after the Beginning. If the neutrons had the “usual” life-
time like 10−6 s, their concentration by that time would be vanishingly
small.

A way out is a long-lived neutron (900 s)! After this time, the temper-
ature decreases enough, so that the energy of photons becomes insufficient
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to destroy the deuterium nuclei. The remaining 24 per cent of neutrons
turn out to be sufficient.

I t is good time to ask a question: what should an Ultimate
Theory look like?

It seems that there are two possible answers to this question:

A. The laws of Nature are strictly derived from an initial postulate and
simply cannot be different. The whole history of science can be viewed as
an approach to this postulate.

B. There are many universes with different laws, and we live in one of them.
This approach is gaining more and more adherents, but is it constructive?
Suppose that somebody wishes to create a universe like ours, at least purely
theoretically. The above examples are designed to convince the reader that
it is not a simple task. Indeed, the number of problems to be encountered
by the brave creator is immense. Starting from the beginning she (he) must
choose properties of all particles and their interactions keeping in mind the
future evolution. The sketch looks as follows.

Choosing particles and interactions

The basic components of complex structures are protons and electrons,
which already give rise to the simplest of the atoms, the hydrogen atom.
More massive nuclei are also necessary, for instance, carbon, the base of
organic compounds. But massive nuclei consisting of only protons will
immediately decay because of the protons’ electromagnetic repulsion. One
will have to introduce a new interaction providing attraction. We call it
the strong interaction. But then too large nuclei will form, which is also
bad, as the matter density formed will be too large. Therefore we make the
strong interaction short-range.

The situation has become much better, but the nuclei, though slowly,
still decay. If, due to fluctuations, one of the protons flies a little farther
from the others, the strong interaction cannot withstand the electric repul-
sion, the proton escapes, and the nucleus decays. It is evident that the goal
is close, only a little is needed to make nuclei heavy enough and stable. The
last stroke: we introduce the neutron, having no charge but taking part in
the strong interaction. Now the nuclei consist of protons and neutrons and
are stable up to the nucleus of iron. All that should have been provided by
Nature from the very beginning.
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To create complex structures, one needs a large volume, and the expan-
sion solves this problem. But the expansion rate cannot be arbitrary, for
too many effects depend on it. The most basic is apparently star formation.

The expansion of space leads to such cooling of the medium at which
no intelligence could live. The contradiction can be avoided by creating a
locally warmed medium. This function is performed by the stars. Besides,
the stars are factories of heavy elements. The long-term existence of the
stars is one more problem that the nature had to solve.

It seems evident that the idea of a “multiverse” is a good basis
for solving the fine-tuning problem, be it “science” or not.

More examples of fine tuning of the Universe — briefly

We further enumerate the parameters that need to be in a narrow range
to make complex structure creation in the Universe possible.

1. The strong interaction constant.
Larger: no hydrogen and light nuclei, e.g., carbon.
Smaller: nuclei heavier than hydrogen are unstable.

2. The weak interaction constant.
Larger: (a) too much primordial helium in the first stars ⇒ too large
amounts of heavy elements are created in the stars; (b) supernova
explosions are absent. The nuclei remain in stellar remnants.
Smaller: (a) too little primordial helium in the first stars; (b) super-
nova explosions are absent. The nuclei remain in stellar remnants.

3. The gravitational constant.
Larger: the stars are too hot and therefore burn too rapidly (while
five billion years are needed to create intelligence).
Smaller: cold stars. Consequently, no nuclear reactions and their
product, heavy elements.

4. The electromagnetic interaction constant.
Larger: the atoms are smaller (all structures become more dense).
The nuclei are unstable.
Smaller: too weak chemical bonds.

5. The ratio of the electromagnetic interaction constant to the gravita-
tional constant.
Larger: stellar masses are high and therefore their lifetimes are small.
Smaller: no massive stars and therefore no heavy elements.

6. me/mp .
Larger: weak chemical bonds.
Smaller: weak chemical bonds.
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7. The Universe expansion rate.
Larger: galaxies have no time to form.
Smaller: the Universe collapses before the stars can form.

8. The mean baryonic energy density.
Larger: too much primordial helium, the stars burn too rapidly.
Smaller: too little primordial helium, hence too little amounts of
heavy elements.

9. Primordial density fluctuations.
Larger: the Universe would consist of black holes.
Smaller: the stellar formation process is suppressed.

10. Mean interstellar distance.
Larger: the heavy element density is insufficient for making solid
planets.
Smaller: unstable planetary orbits.

11. Beryllium-8 decay rate.
Larger: absence of elements heavier than beryllium.
Smaller: the nuclear reaction rate increases, leading to small stellar
lifetimes.

12. The initial excess of nucleons vs. antinucleons.
Larger: too large baryon density. Mostly black holes form.
Smaller: baryonic matter insufficient for stellar formation.

13. Frequency of Supernova explosions.
Larger: life on the planets is destroyed.
Smaller: heavy elements insufficient for making solid planets.

14. Dark matter density.
Larger: an early collapse of the Universe.
Smaller: galaxy formation suppressed.

15. The neutron–proton mass difference.
Larger: smaller neutron lifetime, hence too little primordial helium.
Smaller: rapid neutron decay. Heavy elements are absent.

16. The number of spatial dimensions(3)
Larger: planets are not kept near stars, no stationary orbits.
Smaller: hard to provide the viability of complex structures.

11.2 Fine tuning mechanisms

All the above considerations were aimed at convincing the reader that
choosing the parameters for forming complex structures in the Universe
is a task of formidable difficulty. Admissible ranges of their variation are
extremely narrow. Whatever the future theory, the latter statement will
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refer to it and its parameter set. All that means that the probability of
a random implementation of such a parameter set is close to zero. From
this viewpoint, the idea of multiple universes with different properties is
more attractive. The question is “only” the mechanism of their formation.
Multidimensional gravity gives such an opportunity, and that is what is
discussed in what follows.

11.2.1 Cascade birth of universes in multidimensional
spaces

In this section, the formation mechanism of universes with distinctly dif-
ferent properties is considered in the framework of pure gravity in a space
of D > 4 dimensions. We also discuss the emergence of the Planck scale
and its relationship with the inflaton mass.

The dynamics of our Universe is well described by a modern theory
containing 30 to 40 parameters. This number, whose value is determined
experimentally, is too large for a theory to be considered as an ultimate
one. In addition, it is well known that the range of admissible parame-
ter values is extremely narrow (fine tuning of parameters) for the birth
and existence of such complex structures as our Universe, which is hard
to explain. Extensive literature is devoted to a discussion of this problem,
see e.g. [7]. One way of solving it is based on the assumption of multi-
ple universes with different properties [220, 269, 353]. Rich opportunities
of justifying this assumption are contained in the idea of multidimension-
ality of our space itself. The number of extra dimensions has long been
a subject of debate. Thus, the Kaluza-Klein model originally contained
one extra dimension. At present, for example, infinite-dimensional spaces
[106] and even variable-dimensional spaces [40] are being discussed. The
concept of superspace is extended to a set of superspaces with different,
unbounded from above numbers of dimensions [358]. Based on the intro-
duced extended superspace, we suggest a formation mechanism of universes
with distinctly different properties and the emergence mechanism for the
Planck scale. We discuss the probability of quantum transitions that pro-
duce lower-dimensional subspaces.

Let us define according to [358] the superspace MD = (MD, gij) as a
set of metrics gij in the space MD up to diffeomorphisms. On a spacelike
section Σ, let us introduce a metric hij (see, e.g., [427] for details) and
define the space of all Riemannian (D − 1)-metrics:

Riem(Σ) = {hij(x) |x ∈ Σ}. (11.3)
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The transition amplitude from one arbitrarily chosen section Σin with the
corresponding metric hin to another section Σf with a metric hf is written
above, (10.140).

The topologies of the sections Σin and Σf can be different. We will be
concerned with quantum transitions in which the topology of the hyper-
surface Σf is a direct product of subspaces, MD−1−d ×Md . The space Md

is assumed to be compact.
The entire analysis is performed in the framework of nonlinear grav-

ity in a space of D > 4 dimensions without including any matter fields.
We discuss the emergence of the Planck scale and its relationship with
the inflaton mass. The reduction to a lower-dimensional space is made in
several steps to produce a cascade. Different cascades give rise to four-
dimensional spaces with different effective theories and different numbers
of extra dimensions.

The parameters of the low-energy theory turn out to depend on the
topology of the extra spaces and vary in a wide range (see also [118, 165]),
though the parameters of the original theory are fixed. This also applies
to such fundamental concepts as, for example, the Planck mass and the
topology of the extra space. The absence of matter fields postulated here
at the outset is a fundamental point. It is suggested that the metric tensor
components of the extra (super)space at low energies will be interpreted
as matter fields in the spirit of Kaluza–Klein theories.

11.2.2 Simultaneous formation of space-time
and the parameters of the theory

In this section we investigate the problems of emergence of the fundamental
constants as well as other parameters at an early stage of the Universe’s
evolution on the basis of the idea of multiple universes. This idea generally
implies the existence of an initial Lagrangian with specific parameters and
a potential density with numerous local minima. Each of these minima
corresponds to a certain low-energy effective theory with its own unique
set of parameters. Which of the minima will be ours depends on the initial
conditions. Therefore, the observed low-energy physics depends not only
on the initial parameters of the Lagrangian but also on the initial metric
tensor of the created space-time.

This idea is usually developed in the framework of string theory
[391], which incorporates, among other assumptions, the existence of extra
dimensions. Here we develop a purely geometric approach [83], postulating
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only the existence of extra dimensions. We use the cascade reduction mech-
anism, introduced in [358], to explain the fine tuning of the parameters in
our Universe without invoking any string theory assumptions other than
the existence of extra dimensions.

The essence of our idea is as follows. Consider a certain multidimen-
sional space. Due to quantum fluctuations, in some of its regions, the geom-
etry of a direct product of two subspaces can arise. Suppose the curvature
of one of these subspaces significantly exceeds that of the other; let us refer
to the former as the extra subspace and to the latter as the main one.
Quantum fluctuations in some region of a newly formed main subspace
similarly divide it into a direct product of two subspaces. Considering fur-
ther divisions, we arrive at a “chain” of space partitions. We will call every
such partition a reduction of space. Multiple consecutive reductions will be
called a reduction cascade.

Thus a reduction cascade consists of several steps reducing the effec-
tive dimensionality of space. It will be shown that every step of a cascade
changes the parameters of the Lagrangian. Therefore, by choosing differ-
ent cascades we can obtain different final Lagrangians starting from fixed
initial parameters. Each Lagrangian corresponds to universes with distinct
properties. It is this possibility that is usually associated with the concepts
of a landscape, i.e., numerous low-energy vacua. Our goal is, in a sense, the
opposite: we try to assess the set of all parameters of the initial Lagrangian
leading to the observed fundamental constants.

We will show that there are numerous initial Lagrangians leading to the
observable physics, and the low-energy physics depends not only on the ini-
tial parameters, but also on the properties of compact spaces in a particular
cascade. Therefore a variation of the initial parameters may be compen-
sated by an appropriate variation of the properties of the cascade, leaving
the low-energy physics almost unchanged. This diminishes the importance
of a search for the “unique” Lagrangian of the Theory of Everything.

We also discuss the relationships between the parameters of the initial
Lagrangian and the fundamental constants � and G determined in low-
energy experiments.

11.2.3 Reduction cascades

Let us discuss the main idea in detail. Consider a D -dimensional
space MD . Due to its metric fluctuations, new spatial regions with var-
ious geometries are continually born within it. We will be interested in
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regions with a direct product geometry of the form

U1 = T × Md1 × MD1 , U1 ⊂ MD. (11.4)

Here T is the timelike direction, Md1 is a compact space of d1 dimen-
sions, and MD1 is the main space whose metric fluctuations are studied
at the next step of the cascade. We emphasize that the geometry changes
not in the whole space MD but only in its small region U1 . All physical
processes are considered from the viewpoint of an observer located inside
the subspace MD1 .

Let us restrict our consideration to quantum fluctuations satisfying the
following relation for Ricci scalars in the subspaces Md1 and MD1 :

Rd1 ≫ RD1 . (11.5)

For the simplest geometries, the larger the curvature of space, the
smaller its volume. This is the type of geometries we will be studying.
But the smaller the system volume, the faster the relaxation processes in
it (see a discussion in [358]). Therefore, due to the condition (11.5), the
processes in Md1 advance much faster than those in MD1 . We will discuss
the conditions needed to stabilize the volume of Md1 and its geometry. The
theory then becomes effectively D1 -dimensional, with d1 compact extra
dimensions. The parameters of the initial D -dimensional Lagrangian are
renormalized, with their new values depending on the properties of the
compact extra space Md1 .

What is described above is the first step of the cascade. The following
steps are similar: due to the metric fluctuations in some volume of the
newly formed space MD1 , there arises a new geometry

U2 = T × Md2 × MD2 , U2 ⊂ T × MD1 , (11.6)

resulting in segregation of another compact space Md2 . We choose those
spaces among many for which the relation

Rd2 ≫ RD2 , (11.7)

is satisfied similar to (11.5). The parameters of the reduced Lagrangian are
renormalized once more; their values become dependent on the properties
of the compact extra space Md2 as well.

The succeeding steps form a cascade:

MD1 → MD2 × Md2 ;

MD2 → MD3 × Md3 → · · · → M3 × Mdfinal . (11.8)

Cascades differ from each other by the properties of their compact sub-
spaces: their volume, topology, and geometry.
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Each reduction consists of two stages: the first is the quantum formation
of space of the form (11.4); the second is the classical evolution of this space,
which results in stabilization of the compact extra space Mdi

.

11.2.4 A step of the cascade in detail

Quantum formation of space

In this section we discuss the probability of quantum formation of geome-
tries we are interested in. Consider a D -dimensional space. Quantum fluc-
tuations in its small regions create subspaces of the form Md1 × MD1 .

The absence of the Planck constant in the exponential function, see
(10.140), may be thought of as a result of choosing the appropriate mea-
surement units. It will be shown below that the Planck constant � naturally
emerges simultaneously with the gravitational constant G after introduc-
tion of dimensional units. However, the statement on a unification of gravity
and quantum theory would be premature. The essence of quantum mechan-
ics is based on the summing rule for transition amplitudes (10.140), which
is postulated originally.

What is the probability of such a process? The answer is far from clear
even for the birth of a 4-dimensional space in the standard theory of gravity,
linear in scalar curvature [196, 402]. Since we need only to verify that
this probability is nonzero, let us approximate the Lagrangian by a linear
theory. This is ensured by the condition (11.5).

The action in the space MD is chosen in the form (10.145),

SD = N0

∫
dDX

√
|G(D)|F (R; an),

F (R; an) =
∑

n

anRn, a1 = 1, (11.9)

where G(D) ≡ det(GAB), R is the Ricci scalar, N0 and {ai} are constants.
Let us refer to SD as the first generation action. The standard form is
F (R; an) = R − 2Λ, i.e., a1 = 1, a0 = −2Λ.

The first step of a cascade begins in a region of small volume by forming
a subspace (11.4) with a metric of the form

ds2 = GABdXAdXB = Ndt2 − gab(x)dxadxb − e2β(x)γij(y)dyidyj ,

(11.10)

where gab(x) is the spatial part of the metric in MD1 , γij(y) is a positive-
definite metric of the extra space Md1 and e2β(x) is a scaling factor (see
[77, 101]).
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Let us find the probability of producing such a space, approximating it
by a linear dependence on R . Recall that owing to the form of the chosen
metric (11.10), the relations (10.150) are valid.

As shown in [359], an extra space with an arbitrary geometry evolves
into a space with a maximum number of Killing vectors for a given topology.
So we can choose a maximally symmetric space with a constant Ricci scalar
Rd1 and a curvature k = ±1.

The volume Vd1 of an internal space of unit curvature depends on its
geometry since it is expressed in terms of its internal metric:

Vd1 =
∫

dd1y
√∣∣G(d1)

∣∣. (11.11)

Let us emphasize that it sufficies to demand that only a small fraction of
the volume of the initial space MD has the geometry (11.10). The following
discussion is concerned with the point of view of an internal observer in
MD1 , who cannot get any information from outside.

We will use the slow-change approximation suggested in [83]:

|Rd1 | ≫ |RD1 |, |Rd1 | ≫ |fder|. (11.12)

Substitution of Eq. (10.150) into Eq. (11.9) yields

F (RD) = F (RD1 + Rd1 + fder)

≃ F (Rd1) + F ′(Rd1)RD1 + F ′(Rd1)fder. (11.13)

Also, the determinants satisfy the relation

|G(D)| = e2β(x) · |G(D1)| · |G(d1)|. (11.14)

Substituting these expressions into the action (11.9) and carrying out cer-
tain computations given explicitly in [83], we obtain a Lagrangian of a
scalar-tensor theory of gravity in D1 dimensions:

SD1 = N ′
0

∫
dD1x

√
|G(D1)| (signF ′)[RD1 +

K

2
(∂φ)2 − U ], (11.15)

K(φ) = 3
(

F (φ; an)′′

F (φ; an)′

)2

− d1

φ

F (φ; an)′′

F (φ; an)′
+

d1

4φ2
(d1 + 2), (11.16)

U(φ) = −(signF (φ; an)′)
[ |φ|
d1(d1 − 1)

]d1/2
F (φ; an)

F ′(φ; an)2
. (11.17)

In accordance with (11.12), we have kept only terms linear in the Ricci
scalar.

The quantum birth of the Universe in linear theory has been studied
by many authors. It is usually examined in the minisuperspace framework,
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where the interval is written in the form (11.20). The probability of quan-
tum birth of a D1 -dimensional space was calculated in [99]. A lot of papers
devoted to creation of universes in the presence of a scalar field has also
appeared.

In our case, the situation is complicated by the fact that we consider
nonlinear gravity and, in addition, there are extra dimensions whose stabil-
ity should also be taken into account. The birth of an n-dimensional space
with extra dimensions in the framework of standard gravity was consid-
ered in [103, 317], where stability regions of a compact subspace were also
studied. The possibility of inflation in the presence of extra dimensions was
explored in [103, 190]. Quadratic (in the Ricci scalar) gravity was investi-
gated in this aspect in [388].

The Universe birth probabilities calculated in different approaches differ
radically from one another [403]. This may be indicative of both an imper-
fection of modern theories and the complexity of the subject. The ultimate
goal of such calculations is to determine the probability of appearance of a
universe like ours. It would be unreasonable to expect this probability to
be high, given that the parameters of the Universe are fine-tuned. In this
case, calculating the probability is of purely academic interest, because
there are no causal relationships between the universes. At present, to jus-
tify the promising study, it is probably necessary and sufficient to prove
that the fraction of the universes like ours is nonzero in the framework of
a specific approach. In our case, this means that the probability of each
transition (11.8) in the cascade is nonzero.

The classical trajectories on which the action is stationary make a major
contribution to the transition amplitude (10.140). Their shape depends on
the boundary conditions and, in particular, on the properties of the mani-
fold Σf . In our case, the metric on the hypersurface Σf is determined by
the conditions (10.147), (10.148), (10.149). Therefore, we will seek classi-
cal trajectories subject to the same conditions on any section Σ between
the sections Σin andΣf . The initial hypersurface Σin can either be absent
altogether (the Hartle–Hawking approach) or have a “zero geometry” (the
interval between any two points of this hypersurface is zero in Vilenkin’s
approach). We will show that the transition probability weakly depends on
the properties of the hypersurface Σin in these cases. As an example, let
us consider the formation probability of the structure

Σf = M3 × Mdfinal , (11.18)
that emerges at the last step of the cascade. Classical trajectories make a
major contribution to the transition amplitude. A topology change in the
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case of classical motion is unlikely. Therefore, classical trajectories con-
sisting of hypersurfaces that also satisfy the condition (11.18) will be of
importance for us. The topology of the D-dimensional Riemannian space
between the sections Σin and Σf is then

R × M3 × Mdfinal . (11.19)

As above (see (10.148)), the inequality R3 ≪ Rdfinal , which allows the
results of the previous section to be used, is assumed. Indeed, in the
approximation used, the action (11.29) transforms into a theory of the form
(10.155) and then into the conventional Einstein–Hilbert action (10.165).

The action (10.165) has been repeatedly used to study the quantum
birth of the Universe (see, e.g., [153, 196, 271, 402, 403, 421]). However, in
such papers the presence of a scalar field is usually postulated, while in our
approach this field constitutes the metric tensor components of the extra
space. Therefore, we can use the results of numerous studies by briefly
reproducing their main results. The quantum birth of the Universe is gen-
erally studied within the framework of minisuperspace in which the interval
is written as [403]

ds2 = σ2
[
N(t)2dt2 − a(t)2dΩ2

3

]
,

σ2 =
1

12π2M2
Pl

, (11.20)

where N(t) is the lapse function and a(t) is the scale factor. The wave
function ψ(a) satisfies the Wheeler–DeWitt equation[

∂2

∂a2
− W (a)

]
ψ(a) = 0, (11.21)

with the potential

W (a) = a2(1 − H2a2), a > 0, H =

√
U(χ)

6πM2
Pl

.

The birth of the Universe is described as a tunnelling transition with the
forbidden region

0 < a < H−1. (11.22)

The wave function in this region is [403]

ψ(a) ≃ exp

[∫ H−1

a

√
−2W (a′)da′

]
. (11.23)
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The integral in this expression is ill-defined at the lower limit, where a → 0.
The approximation R3 ≪ Rdfinal does not work in this region since R3 =
k/a2 → ∞ , and no explicit expression is defined for the potential. The same
problem also takes place in other models of a quantum birth of the Universe
[295]. Nevertheless, the integral calculated in this way is meaningful in the
limit

H ≪ MPl, (11.24)

if the region a ∼ 0 is small as compared to the entire integration domain.
Since our Universe was formed at H ∼ 10−6MPl , the inequality (11.24)
holds even in the inflationary phase. The conclusion that the result weakly
depends on the behaviour of the function near the singularity is also con-
firmed in papers by other authors. Thus, for example, an initial wave
function of the form δ(a − ain) was suggested in [388], while the decay
of a metastable vacuum from a state with fixed energy was studied in
[153, 421]. In both cases, the initial conditions were shown to weakly affect
the transition probability. The quantum birth of universes in multidimen-
sional gravity is discussed in detail in [103, 157].

In Vilenkin’s approach, the probability of the birth of the Universe is
dP ∝ exp[+2/(3U(χ))] , while the Hartle–Hawking approximation yields
dP ∝ exp[−2/(3U(χ))] . Since the scalar field χ is uniquely related to
the size of the extra space, the probability of birth of extra dimensions
depends on their linear size. For all their differences, the main thing in
both approaches is that the probability of the event is nonzero and hence
the fraction of universes with given properties produced by a cascade of
reductions is nonzero.

The classical evolution stage

To estimate the probability of the quantum birth of a space consisting
of two subspaces, the main one and the extra one, we restricted the dis-
cussion in the previous Sec. 11.2.4 to an approximation linear in scalar
curvature.

Let us confine ourselves to those initial parameters which lead to poten-
tials having minima. Our numerical calculations indicate that such param-
eters do exist.

After nucleation, classical dynamics of these subspaces implies that the
compact extra subspace evolves so that the field φ approaches the value
φm , corresponding to a minimum of the potential U(φ).
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As follows from the definition of the field φ (10.150) and the expres-
sion for the interval (11.10), the characteristic size of the space Md1 is
proportional to eβ ∝ 1/

√
φ . Therefore, the size of a compact extra space

quickly stabilizes when the field reaches the value φ = φm . This corre-
sponds to Rd1 → const, fder → 0. Thus in the following discussion we can
use the conditions

Rd1 = const, fder = 0, (11.25)

which greatly simplify the calculations.
The equation for the scaling factor of the main subspace during a de

Sitter stage has the form [101]

D1(D1 − 1)
2

(
ȧ

a

)2

= Λ − D1(D1 − 1)
2

k. (11.26)

We assume that the size of an extra space Md1 has stabilized and U(φ) ≃
U(φm) ≡ Λ. Consequently, the scaling factor depends on time as

a(t) ∝ eHt, H =
2Λ

D1(D1 − 1)
,

at large t . The size of the main subspace rapidly increases.
Thus, we have a D1 -dimensional quickly expanding space and a d1 -

dimensional compact extra space. The curvature-linear approximation is
sufficient to obtain this result, but to advance further we will need a more
accurate expression for the reduced action. The latter could be derived
using the conditions (11.25). Expanding the relation F (R; an) = F (Rd1 +
RD1 ; an) into a Taylor series and integrating over the extra-dimensional
coordinates, we obtain

SD1 = N ′
0

∫
dD1X

√
|G(D1)|F (RD1 ; ãn). (11.27)

Here the new parameters ãn are functions of Rd1 , n > 0.
We arrive at the second generation of the action (11.27), which is similar

to the first generation of the action (11.9) with changed numerical values of
the parameters ãn . The dimensionality of the main space has been reduced,
D1 < D , and a new compact extra space of d1 = D − D1 dimensions has
been formed.

The size of the space MD1 is much larger than the size of Md1 . In this
discussion we are concerned only with quantum fluctuations creating spaces
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satisfying such a relation. The subsequent dynamics further increases their
disparity.

The second step of a cascade is analogous to the first one with
substitution SD → SD1 : in a small region of the space MD1 there
occurs a quantum fluctuation which creates a subspace with the topol-
ogy MD2 × Md2 ; D2 + d2 = D1 . As a result of classical dynamics, the size
of the space Md2 is stabilized while the space MD2 expands.

If we do not want to be concerned with excitations of the compact
space Md1 , we should only consider such quantum fluctuations in MD1

that satisfy Rd2 ≪ Rd1 .

11.3 Quadratic gravity as an explicit example

In this section we will be guided by the formulas derived in Chapter 9.4.5.
The initial gravitational field action includes all powers of the Ricci scalar
and other invariants. A vast majority of the works on the subject uses some
finite polynomial in the Ricci scalar. The choice of a particular polynomial
may be justified as follows. Consider a quantum fluctuation that produces
a geometry with a characteristic value R0 of the scalar curvature. Then
the initial Lagrangian (11.9) may be approximated by a finite polynomial:

F (R, an) ≃
K′∑

k=−K

b(R0)k(R − R0)k. (11.28)

The specific values of K and K ′ are chosen according to the author’s
purposes. The coefficients bk(R0) depend on the location of the expansion
(11.28) and vary in a wide range.

Consider quadratic gravity in the space MD with the action of the form

SD =
N0

2

∫
dDX

√∣∣G(D)
∣∣ [RD(GAB) + CR2

D(GAB)

+ C1RABRAB + C2K − 2Λ
]
+

∫
∂MD

KdD−1Σ, (11.29)

where we have also included the Ricci tensor squared and the Kretschmann
scalar K = RABCDRABCD . The boundary term (∂MD) introduced by
Hawking and Gibbons does not affect the classical dynamics and can be
ignored in what follows [99].
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Let us try to find the values of the parameters that allow the forma-
tion of a universe similar to ours. In this case a set of parameters of the
Lagrangian {an} (see (11.9)) is {C, C1, C2, Λ} .

Following the steps outlined above, we will find the form of the action
(11.29) reduced to the space MD1 . An action pertaining to only MD1 can
be recovered by integrating the action in MD (11.29) over Md1 .

The Ricci scalar can be expressed using Eqs. (10.150):

RD(GAB) = RD1(gab) + φ(x), (11.30)

where we have set fder = 0, see (11.25). The decompositions of RABRAB

and K are given by (see [83])

RABRAB = RabR
ab + e−4β(x) · RµνRµν ,

K = K(gab) + e−4β(x) · K(γij), (11.31)

where variables with the indices A, B correspond to the metric GAB , those
with the indices a, b to gab , and with µ, ν to the metric γij , (i.e., they
correspond to the spaces MD , MD1 and Md1 , respectively).

To advance further, recall that we are considering the d1 -dimensional
metric γij of a constant curvature k , so that we can express the Riemann
tensor, the Ricci tensor, and the Ricci scalar in Md1 space in terms of its
curvature:

Rµν
ρη = k δµν

ρη, Rν
µ = k (d1 − 1)δν

µ, R′
d1

≡ k d1(d1 − 1), (11.32)

where δµν
ρη = δµ

ρ δν
η − δµ

η δν
ρ . R′

d1
represents the characteristic curvature

scale of the extra dimensions. The expressions for the squared Riemann
and Ricci tensors are derived from (11.32); the former is by definition the
Kretschmann scalar:

RµνRµν =d1[k(d1 − 1)]2,

K(γij)≡RµνρηRµνρη = 2d1(d1 − 1)k2. (11.33)

Now we can rewrite (11.31) substituting eβ(x) from (10.150) and
using (11.33):

RABRAB = RabR
ab +

1
d1

φ(x),

K = K(gab) +
2

d1(d1 − 1)
φ(x). (11.34)
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After plugging (11.30) and (11.34) into the action (11.29) and grouping
the terms we obtain

SD =
N0

2

∫
dDx

√
|G(D)|

{
RD1(gab)(1 + 2Cφ) + CR2

D1
(gab) − 2Λ

+ C1RabR
ab + C2K(gab) + φ +

(
C +

C1

d1
+

2C2

d1(d1 − 1)

)
φ2

}

=
N0

2

∫
dDx

√
|G(D)| · L(gab). (11.35)

The expression in brackets has been denoted L(gab) for convenience; it
does not depend on the coordinates of the extra space Md1 .

To find the action in MD1 we have to integrate (11.35) over the
space Md1 using the appropriate volume definition (11.11). Substitution
of Eq. (11.14) for

√
|G(D)| , Eq. (10.150) and (11.32) for e2β(x) yields:

SD =
N0

2

∫
dDx

√
|G(D)| · L(gab)

=
N0

2

∫
dD1x e2β(x)d1

√
|G(D1)| · L(gab)

∫
dd1x

√
|G(d1)|

=
N0Vd1

2

∫
dD1x

√
|G(D1)|

(
R′

d1
(G(d1))
φ(x)

)d1/2

· L(gab). (11.36)

Suppose that there exists a minimum of the potential U(φ). The field
φ(x) rapidly relaxes to it and stays fixed during the low-energy processes
(see [359] for a discussion). This case is the most natural since the relaxation
time is proportional to the scale of the extra space Md1 , which is small as
compared to the scale of the space MD1 .

Assuming that these conditions are satisfied, let us make a conformal
transformation of the form (see, e.g., [60])

gab = |f(φm)|−2/(D1−2) g̃ab,

f(φ) ≡ φ−d1/2(x)[1 + 2Cφ(x)],

RD1 = |f(φm)|2/(D1−2)R̃D1 ,

RabR
ab = |f(φm)|4/(D1−2)R̃abR̃

ab,

K = |f(φm)|8/(D1−2)K̃,√
|G(D1)| = |f(φm)|−D1/(D1−2)

√
|G̃(D1)|, (11.37)
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which, being applied to Eq. (11.36), brings us to the initial form of the
action (compare with (11.29)):

SD1 =
N1

0

2

∫
dD1x

√
|G(D1)|

{
RD1(gab) + C(D1)RD1(gab)2

+ C
(D1)
1 RabR

ab(gab) + C
(D1)
2 K(gab) − 2Λ(D1)

}
, (11.38)

where N1
0 = N0Vd1 and the tildes were omitted for short. The new param-

eters are expressed in terms of the old ones as follows:

C(D1) = sign(f(φm)) |f(φm)|(4−D1)/(D1−2)φ−d1/2
m C, (11.39)

Λ(D1) = sign(f(φm))|f(φm)|−D1/(D1−2)φ−d1/2
m

×
[
Λ − 1/2

(
φm+

(
C +

C1

d1
+

2C2

d1(d1 − 1)

)
φ2

m

)]
, (11.40)

C
(D1)
1 = sign(f(φm)) |f(φm)|(4−D1)/(D1−2)φ−d1/2

m C1, (11.41)

C
(D1)
2 = sign(f(φm)) |f(φm)|(8−D1)/(D1−2)φ−d1/2

m C2. (11.42)

where f(φ) is defined in (11.37). Recall that we are considering the case
where the field φ is already at its minimum, φ = φm , so the kinetic terms
are neglected. Eqs. (11.39)–(11.42) connect the old and new parameters
after a single reduction.

Thus a single step of reduction to a space of smaller dimension only
changes the numerical values of the initial parameters. Meanwhile, the
form of the action remains invariable.

The next reduction leads to similar relations for the parameters C(D2) ,
C

(D2)
1 , C

(D2)
2 , Λ(D2) with the substitutions C → C(D1) , C1 → C

(D1)
1 ,

C2 → C
(D1)
2 , Λ → Λ(D1) . Thus we have obtained recurrence formulas for

the parameters.
Again, the action (11.38) for a subspace MD1 coincides in its form with

the initial action (11.29) for MD , but with renormalized parameters C(D1) ,
C

(D1)
1 , C

(D1)
2 , Λ(D1) .

11.3.1 Formation of low-energy physics

Here we use the results of Sec. 10.4.2.
It was shown in the previous section that the form of the action (11.29)

does not change after the reductions (11.10). Now we will consider the
final reduction of an arbitrary cascade of (n+1) reductions, the reduction
leading to four-dimensional space-time.
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As was shown in [83], the action (11.29) may be reduced to the four-
dimensional form

S ≃ N0Vd

2

∫
d4x

√
|G(4)|[R4 + K(φ)(∂φ)2 − 2U(φ)], (11.43)

U(φ) =
− sign(1 + 2C(Dn)φ)

2
· C

(Dn)
tot φ2 + φ − 2Λ
(1 + 2C(Dn)φ)2

[ |φ|
d1(d1 − 1)

] d1
2

,

(11.44)

K(φ) =
(C(Dn))2φ2(d2

1 − 2d1 + 12) + C(Dn)d2
1φ + 1

4d1(d1 + 2)
(1 + 2C(Dn)φ)2φ2

+
C

(Dn)
1 + C

(Dn)
2

2φ(1 + 2C(Dn)φ)
, (11.45)

where C
(Dn)
tot ≡ C(Dn) + C

(Dn)
1
d1

+ 2C
(Dn)
2

d1(d1−1) (compare with (11.16), (11.17),

which are written for the case C
(D)
1 = C

(D)
2 = 0). These equations, though

derived for the action (11.29), are still applicable after any number of reduc-
tions since the reductions do not change the form of the action, as was
shown in the previous section.

In the vicinity of a minimum, U(φm) ≡ min(U(φ)), the potential can
be expanded in a Taylor series, so that the action (11.43) becomes

S ≃ N0Vd

2

∫
d4x

√
|G(4)|

[
R4 + K(φm)(∂φ)2 − 2U(φm)

− U ′′(φm)(φ − φm)2 − 1
3
U ′′′(φm)(φ − φm)3 − · · ·

]
. (11.46)

The measurement unit I is still arbitrary. Let the units be related by the
expressions (10.160),

I = α · cm,

where α is a yet unknown parameter. We now turn on to the standard
units of length (10.161):

S = N0Vdcα2

∫
dtd3x

[
R4 +

1
2
K(φm)(∂φ)2 − α2U(φm)

− α2 1
2
U ′′(φm)(φ − φm)2 − α2 1

6
U ′′′(φm)(φ − φm)3

]
. (11.47)

Here, x → αx ,
√
|G(4)| = cI = αc , R4 → R4/α2 , and (∂φ)2 → (∂φ)2/α2 .
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Since the expression (10.161) is the low-energy limit of the action
(11.29), it should adequately describe purely gravitational phenomena.
Moreover, the expression (10.161) makes it possible to explain the origin of
the inflaton potential and the cosmological constant. The effective action
(10.161) contains the initial parameters of the theory without involving
fundamental constants, such as the Planck constant � and the gravita-
tional constant G . Now we will find relations between those values.

Recall that

mΦ ≡ α

√
U ′′(φm)
K(φm)

,

(see (10.164)) and, under the assumption K(φm) > 0, we introduce the
variable

Φ =

√
c4

16πG
K(φm)(φ − φm).

The action (10.161) in terms of Φ is

S =
16πG

c4
N0Vdcα

2

∫
dtd3x

[
c4

16πG
R4 +

1
2
(∂Φ)2 − c4

16πG
α2U(φm)

− 1
2
m2

ΦΦ2 − 1
6

√
16πG

c4
m2

Φ

U ′′′(φm)
U ′′(φm)

√
K(φm)

Φ3

]
. (11.48)

We arrive at the conventional form of the action for the scalar field Φ
interacting with gravity, see (10.165):

S =
1
�

∫
dtd3x

(
c4

16πG
R4 +

1
2
(∂Φ)2 − Λ − 1

2
m2

ΦΦ2 + λ3Φ3

)
.

Comparing (10.165) with (11.48), we obtain the relations

1
�

=
16πG

c3
N0Vdα

2, (11.49)

Λ=
c4

16πG
α2U(φm), (11.50)

λ3 =−1
6

√
16πG

c4
m2

Φ

U ′′′(φm)
U ′′(φm)

√
K(φm)

. (11.51)
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Eliminating the parameter α from Eqs. (11.49), (11.50), (11.51) and
(10.164), we obtain

U(φm)K(φm)
U ′′(φm)

=
16πG

c4

Λ
m2

Φ

, (11.52)

N0Vd
K(φm)
U ′′(φm)

=
c3

16πG�m2
Φ

, (11.53)

U ′′′(φm)
U ′′(φm)

√
K(φm)

=−6

√
c4

16πG

λ3

m2
Φ

. (11.54)

The right-hand sides of (11.52)–(11.53) contain fundamental constants
while the left-hand sides depend on the initial parameters. If the field Φ is
associated with the inflaton, its mass is about 1013 GeV. The parameter λ3

defined in (11.51) is not yet measured and may be considered as a prediction
of our approach. In numerical calculations we kept in mind that λ3 <

10−12MPl . It provides inflation which does not contradict the observational
data.

As was discussed in Sec. 10.4.2, the conversion factor between the units
of length α = I/cm can also be found by comparison with the characteristic
size of the extra space Vd

1/d in the units of I , α = Ld/Vd
1/d . Here Ld

is the size of the hypothetic extra space expressed in cm. The values of
Ld ≤ 10−17 do not contradict the experimental data. Taking into account
Eq. (10.164), we find the constraint on the initial parameters

Ld = mΦV
1/d
d

√
K(φm)
U ′′(φm)

< 10−17. (11.55)

The relations (11.52)–(11.55) allow us to relate the initial parameters
of the theory N0, C, C1, C2, Λ from the action (11.29) with the observed
constants c, �, G, Λ, mΦ and to predict the value of inflaton coupling con-
stant λ3 . The question is whether or not we can find the initial parameters
satisfying the constraints (10.166) and (11.55). We have proved the exis-
tence of such parameters by numerical simulations of reduction cascades.
As is shown in the next section, there are numerous sets of initial param-
eters satisfying those conditions.

11.3.2 Numerical computations

We generate the random initial parameter set {C, C1, C2, Λ} and try to find
the cascade that leads to the 4-dimensional space-time and satisfies all the
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constraints laid out in Sec. 11.3.1. The cascade is completely specified by
the dimensions of the spaces that undergo reductions. For instance, we take
a 14-dimensional space as our starting point and consider the reduction
to an 11-dimensional one, which stabilizes when the field φ reaches its
minimum. This new space is in turn reduced to an 8-dimensional one, and
finally to the 4-dimensional one. Thus, we have a cascade that could be
designated as 〈15 → 11 → 8 → 4〉 .

We have carried out numerical simulations to assess the density of
the initial parameters {C, C1, C2, Λ} that can lead to the observable
4-dimensional space-time. The greater this density, the less precisely one
has to specify the set of initial parameters of the theory. In the event that
every set of parameters {C, C1, C2, Λ} leads to the observable 4D space-
time, there is no need to specify the initial parameters at all, because all
of them can lead to our space-time. If this could be done for the initial
space-time of any dimensionality, then dimensionality also does not have
to be specified.

These reduced space-times have their own sets of parameters {C, C1,

C2, Λ} . After each reduction the parameters are transformed according to
(11.39)–(11.42). Using these recurrence formulas we can obtain the last
set of parameters before the final reduction. Plugged into (11.44) and
(11.45) they give the potential and kinetic energies at the last step of reduc-
tions. Finally, if this parameter set satisfies the conditions (11.52)–(11.55),
we can conclude that they correspond to the observable 4-dimensional
space-time.

A set of initial parameters
{
C, C1, C2, Λ

}
is represented by a point in

the parametric hyperspace
(
C, C1, C2, Λ

)
. We shall refer to those param-

eter sets that lead to observable constants (i.e. satisfy (11.52)–(11.55)) as
the solutions. We are interested in the density of solutions in the para-
metric hyperspace. To assess the density visually we have to use its plane
projections — for instance, projections onto planes (C1, C2) or (C, Λ).
Figure 11.1 presents the results of numerical computation — projections
of a four-dimensional solution image onto planes (C, C1) and (C, Λ).

It can be seen that there are numerous solutions. This means that
the observed low-energy physics is reproduced by a wide range of initial
parameters of our theory.

Recall that we took into account only the simplest geometries of
the hyperspaces undergoing reductions — only the maximally symmet-
rical ones. Including other geometries into consideration would yield addi-
tional solutions. If these solutions form a continuum in the parametric
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(a) (b)

Figure 11.1 Results of numerical computation: plane projections of the points in the
hyperspace (C, C1, C2, Λ) corresponding to solutions: (a) a projection onto the plane
(C, C1) (b) a projection onto the plane (C, Λ).

space, any point in that space (i.e. any set of initial parameters) would
lead to the observable physics.

11.4 Discussion

The prospective theory, called a “Theory of Everything” (TOE), should
solve the problem of fine tuning in the Universe. How are the initial param-
eters of TOE chosen and why do they allow very complex structures to
arise? A way to approach this problem was found by proposing the exis-
tence of numerous vacua with different properties — a “landscape” in the
modern terminology. The landscape derived in the scope of string theory
is an important advance, but the questions to be answered still remain. Is
the concept of “strings” indispensable or will the assumption of multiple
dimensions alone suffice? How crucial are the values of the initial param-
eters? What is the probability of getting to a particular vacuum? Which
additional values besides the metric do we need to include?

In the framework of the theory described in this chapter, these questions
can be answered as follows:

— For a low-energy “landscape” to exist, we only need to assume the
existence of multiple dimensions. The rest of the string theory tools as
well as incorporation of additional fields are unnecessary. The cascade
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reduction mechanism effectively produces the low-energy physics with
various parameters.

— Changes in the initial parameters do not substantially affect the prob-
ability of universe formation.

— The values of the Plank constant and the gravitational constant, being
expressed in the same units I — see discussion in Sec. 10.4.2 — differ
in different universes and depend on the choice of a reduction cascade
for a given set of initial parameters. Those constants change with time
during the early stages of the universe formation.

It has been shown that there are numerous values of initial parameters
of the theory which can be “connected by a cascade” with observed fun-
damental constants. Particular numerical values of the initial parameters
are therefore not as important as was previously thought.

The “landscape” concept implies that numerous low-energy theories
with various properties originate from a theory with unique initial param-
eters. Here we are concerned with the opposite scenario that the observed
physics is derived from numerous initial theories. This “inverse landscape”
model puts to doubt the significance of a search for the unique Lagrangian
of a TOE.

A set of all such values is rather large although it does not constitute
a continuum in the parametric hyperspace. This may be attributed to the
limited subset of all possible cascades that we have studied — only those
consisting of absolutely symmetric compact spaces. Evidently, an extension
of this subset to include all possible geometries will increase the number of
acceptable parameters.

Conjecture

For any given set of initial parameters, there exists a cascade of reductions
leading from a multidimensional space to a universe of our type.

The credibility of this hypothesis should be fully examined in future
research.

We have already studied the conditions making it possible to create
universes with different properties. Extra dimensions and quantum fluctu-
ations are necessary attributes. Let us pose a question: are extra dimensions
really so necessary in the present case?

We will show that already the existence of quantum fluctuations is
sufficient for making certain inferences.
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Random potential

When creating a theory, one usually postulates some specific form of the
Lagrangian. The interaction constants are assumed to be small, so that
quantum corrections to the originally chosen Lagrangian are also small.
In the present case, it is important that quantum corrections lead to
emergence of an infinite number of additional terms in an initially sim-
ple Lagrangian. The corrections are really small for weak fields, but for
strong fields it is far from being so.

On renormalizabili ty

A widespread viewpoit is that there are “good”, renormalizable theories
and “bad”, nonrenormalizable ones. Briefly, a theory is called renormal-
izable if quantum corrections do not lead to a necessity of inserting an
infinite number of new terms into the initial Lagrangian. Strictly speaking,
ALL theories are nonrenormalizable. Indeed, if one recalls that all
fields are supposed to be coupled to gravity, which is a nonrenormalizable
theory, this statement becomes almost trivial. From this viewpoint, the
only “good” — renormalizable theory is the one containing all possible
terms.

As an example, consider the Lagrangian of a scalar field with self-
interaction

L =
1
2
(∂µϕ)2 − m2

2
ϕ2 − λ

4
ϕ4. (11.56)

One-loop quantum corrections to the potential have the form [272]

δV =
(3λϕ2 + m2)2

64π2
ln

(3λϕ2 + m2)
2m2

− aϕ2 − bϕ4. (11.57)

The last two terms renormalize the mass and the coupling constant in the
initial potential and depend on the way of renormalization. But the first
term changes the very form of the potential. Many-loop corrections add
new terms to the potential.

It is easy to see, comparing the expressions (11.56) and (11.57), that
the new terms are small relative to the initial ones in the range ϕ ≪
m · exp(1/λ). If one chooses for estimates the values of m = 100 GeV,
λ = 0.1 (we mean here that the field is not an inflaton), then the quantum
corrections to the potential become large at ϕ ∼ 106 GeV. It is quite
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a large value if we study the interactions with accelerators, but at the
early inflationary stage of our Universe’s evolution the fields reached values
at the level ϕ > 1019 GeV, and at chosen values of the parameters it is
necessary to take into account the whole infinite series of additional terms
in the Lagrangian (11.56). Even more than that, restrictions on the scalar
field magnitude are still stronger. Indeed, the logarithm in the expression
(11.57) is a result of the summing of an infinite series that converges only
at ϕ < m/

√
3λ . Besides, even from the form of the Lagrangian (11.56) it is

seen that the interaction potential becomes comparable with the mass term
at ϕ ∼ m

√
2/λ. The latter two estimates agree well with each other and

give a much smaller field magnitude at which one could call the quantum
corrections small.

Thus when considering strong-field phenomena, such that ϕ > m/
√

λ ,
it is necessary to include all additional terms that inevitably emerge when
taking into account the quantum corrections. The shape of the potential
becomes much more complicated than could be imagined on the basis of
the low-energy limit of the theory. Thus, in a mountain country one can
speak of smooth surfaces with a small curvature only in valleys, i.e., at
minima of the potential energy, but having ascended to a certain height, it
becomes evident that the relief is much more complex.

The interaction potential of a scalar field is usually postulated in the
simplest form suitable for the purposes of a specific study. Then the renor-
malizability requirement is not compulsory because it is assumed that
inclusion of gravitational effects at the Planck scale will lead to regular-
ization of the integrals. In conventional field theories the fields are weak
indeed, and quantum corrections are reduced to renormalizations of the
Lagrangian parameters and an assumption that the finite corrections are
small. From the above arguments it follows that at the birth of our Uni-
verse, at large field magnitudes, the quantum corrections were most prob-
ably of the same order as the basic terms, and the form of the Lagrangian
was much more involved than could be assumed at the outset. Therefore,
instead of postulating a simple form of the Lagrangian and trying to prove
that it is valid at high energies as well, let us do just the opposite. Namely,
let us accept as a fact that the potential is a polynomial containing all
powers of the field ϕ [353, 355]. The contribution of each term into the
renormalization is a result of a complex interference of contributions from
interactions with all sorts of fields. This reasoning leads to the idea that
the specific numerical values of different polynomial coefficients are weakly
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related to each other. We suggest to accept the following statement as a
postulate:

The only correlation among the polynomial coeffi cients of
(⋆)

the potential is the condition |V (ϕ)| ≤ M4
Pl.

The latter inequality allows one to avoid complications related to quan-
tization of gravity at the Planck scale. We will show that this postulate
leads to consequences of interest and is intrinsically noncontradictory. As
a working example, consider a scalar field Lagrangian of the form

L =
1
2
(∂µϕ)2 − V (ϕ), V (ϕ) =

∞∑
n=0

an
ϕn

Mn−4
Pl

. (11.58)

Potentials with an arbitrary but finite polynomial order are used in the
model of Λ inflation [280]. The field ϕ is defined in the range (−∞, +∞).
The factors at powers of ϕ in the polynomial V (ϕ) are random numbers.
The random number distribution law is irrelevant.

Figure 11.2 presents a characteristic plot of the potential in some range
of the ϕ field.

At each minimum, the potential V (ϕ) is approximated in a natural
way: V (ϕ) ≈ V (ϕm) + aφ2 + bφ3 + cφ4 , φ = ϕ − ϕm . Usually such a
potential is postulated from the very beginning with certain constants a

and b , and the constant a is connected with the mass of the ϕ field,
a = m2

ϕ/2, if a > 0. Our Universe is situated at one of such minima. Let
us also note that the Lagrangian (11.57) is a special case of a more general
Lagrangian which should contain quantum corrections to the kinetic term.

Figure 11.2 A possible shape of the effective potential.
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In the next section, we discuss cosmological consequences of the introduced
postulates.

Quantum fluctuations as a generator of universes

All (quasi-)stationary states are located at minima of the potential, and our
Universe, not being an exception, is located in one of them. Since there is
a countable number of minima, each being characterized by its own energy
density, it seems unlikely that our Universe has gotten into a particular
minimum with a small energy density. To estimate this probability, let us
assume that the probability of finding a minimum of the potential with the
energy density ρ

(m)
V = V (ϕm) in the range dρ

(m)
V is

dP (ρ(m)
V ) = dρ

(m)
V /M4

Pl, (11.59)

i.e., we assume a homogeneous distribution of ρ
(m)
V in the whole range

(0, M4
Pl). The expected vacuum energy density value in our Universe is

ρV ≈ 10−123M4
Pl . Consequently, the fraction of universes with vacuum

energy densities like ours is ∼ 10−123 . Still the number of such universes is
countable because such is the number of all minima. Quantum fluctuations
that emerge, in particular, near these minima, create a countable number
of universes of our type in the course of inflation.

A causally connected region, having emerged, eventually splits into
more and more causally disconnected regions, and some of them, due to
field fluctuations, move to the closest maximum of the potential. Consider

Figure 11.3 Fractal structure formation due to quantum fluctuations of a scalar field
near a maximum of the potential.
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a fluctuation close to a maximum (point C in Fig. 11.3). In a time equal to
1/H , this spatial region will split into e3 causally disconnected regions,
each with its own field value inside. The mean value of the ϕ field in
some of these regions will get into another side of the maximum (point C′

in Fig. 11.3). Each of the regions will in turn, in a time of 1/H , consist
of e3 causally disconnected regions, and some of them will pass through
the maximum in the opposite direction. Such a process is self-reproducing,
and already after a few steps there will be a fractal-type picture in the
neighborhood of the maximum.

It is known that adjacent regions located at different sides of a maxi-
mum of the potential are separated by a wall [335]. Fields in these regions
roll down to different (neighboring) minima, while the wall energy density
grows. Thus neighboring universes turn out to be separated by field walls
with large energy densities.

Thus from a consistent application of the postulate (⋆) it follows that
our Universe has formed from a single region bounded by a closed wall. The
inflationary mechanism has provided an exponential growth of its size (from
the viewpoint of an internal observer), so that the modern size of the visible
part of the Universe of ∼1028 cm turns out to be many orders of magnitude
smaller than the characteristic size of the closed region, ∼101012

cm [275].
Consequently, such walls are unobservable.

This mechanism also makes it possible to select universes according
to other parameters, for instance, by particle masses. An interaction of a
scalar field with fermions is usually postulated in the form of a Yukawa
coupling,

VF = gϕψ̄ψ. (11.60)

In this case we are facing a serious difficulty. The point is that the suitable
minimum of the potential may turn out to be quite far from the value ϕ =
0. Consequently, the contribution to the fermion mass µF = gϕm due
to interaction with the inflaton will be anomalously large. Even if a direct
interaction of the form (11.60) is absent from the beginning, it emerges due
to quantum corrections. The problem is solved if one takes into account
that the quantum corrections, in full analogy with the above, modify the
interaction potential and bring it to the form

VF = G(ϕ)ψ̄ψ, (11.61)

which is a natural generalization of the expression (11.60). The function
G(ϕ) is a polynomial with random coefficients, by analogy with the basic
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potential V (ϕ). Under such a choice, the fermion mass µF and the constant
g of its interaction with the field φ = ϕ − ϕm turn out to depend on the
number of the Universe (or, more precisely, on the position of the m-th
minimum of the potential of ϕm ):

µF = G(ϕm); g = G′
ϕ(ϕm)(ϕ − ϕm) + · · · (11.62)

Evidently, for any given fermion mass range (µF , µF +δ) and any function
G(ϕ), from the countable number of universes one can select a universe
with such a potential at the minimum V (ϕm), that the equality µF

∼=
G(ϕm) holds. This allows for using the same mechanism for a fine tuning
of the Universe parameters, not only the vacuum energy density. Indeed,
let it be necessary that the mass of a given fermion belong to the range
(µF , µF + δµF ). Then, in the countable number of universes with suitable
vacuum energy densities we will always find a universe with a suitable
value of G(ϕm), such that the fermion mass will be inside the given range.
Moreover, there is a countable number of such universes; among them
we can select those suitable for life by other parameters. There occurs
an automated “search” for universes admitting life by all parameters. The
formation process of each of them is unique since the shape of the potential
near each minimum is unique. Consequently, the formation processes of
different universes should be described by different inflationary theories.
A great number of realistic inflationary models are known by now. Very
probably, all of them describe a certain subset of universes of our type.

Let us introduce a finite set of physical parameters ℓk, k = 1, 2, . . .,
Nlife , necessary for creating our sort of life in the Universe. Let ℜ({ℓ}n)
denote the set of universes possessing a certain subset of n such parameters
ℓ1, ℓ2, . . . , ℓn . Then the selection process for finding a universe suitable for
life can be presented as follows:

ℜ({ℓ}0) �→ ℜ({ℓ}1) �→ ℜ({ℓ}2) �→ · · · �→ ℜ({ℓ}Nlife). (11.63)

Each next set is a subset of the previous one but is nevertheless a
countable number. If the number of parameters whose numerical values
are important for the emergence of life is finite, Nlife < ∞ , then the pro-
cess (11.63) leads us to a countable number of universes where life can
emerge.

Lastly, let us discuss the Higgs mechanism of light fermion mass cre-
ation. Since the Higgs field interacts with the inflaton field (not necessarily
to the first order in �), it is obvious that the Higgs field potential should
also contain an infinite series of powers of this field, a unique one for every
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universe. It is clear that there is a countable number of universes where
the Higgs field potential has two close minima separated by a maximum
of suitable height. It is also clear that the masses of fermions, emerging
due to their interaction with the Higgs field in any two universes, are
uncorrelated quantities. It means in turn that the quantum corrections to
the initial potential (9.65) due to interaction with these fermions are also
uncorrelated. Thus the postulate (⋆) is free of contradictions.

The suggested approach also makes it possible to formulate some quan-
titative predictions. The main point is that the measure of the set of uni-
verses with an exact value of any of the parameters is zero. Therefore, for
instance, an exact equality of the cosmological constant to zero is excluded.
For the same reason there should not exist real scalar fields having poten-
tials withe degenerate minima. The latter statement is true for any other
sorts of fields in the absence of symmetries prescribed at the outset.
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A.1 A controversy between adherents of multiple

universes (M) and an ultimate unified
theory (U)

Where: a gravitational conference

When: coffee break

Who: two scientists

U: The whole development of science tends to unify the postulates.
A success is obvious (the Standard Model, for instance). Do you want
to entirely abandon all that?

M: But why do you think that this trend will always be successful? A wish
to create a “theory of everything” — isn’t it like a wish to make a theory
of mass of the planet Earth? Well, by the way, the Standard Model has
been created tens of years ago, and there is not much progress since then.

U: Well, the development of the inflationary idea is quite a significant
progress. At least, we are moving in a positive direction by unifying the
theories and testing their predictions experimentally. But how can you
verify that there are many worlds? If, as you admit yourself, it is impossible
to get to another universe, there cannot be any proof of your truth. So it
does not sound better than creating a theory of the Earth’s mass.

M: It should be recognized that it seems a weak point of the idea of multiple
universes. But in this case, for instance, the photoelectric effect theory also
has no right to exist: indeed, you cannot get into a solid body and make
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sure that the photon is really absorbed by the electron. In both cases one
should accept indirect experimental proofs. On the other hand, your way of
creating a unified theory will never lead to a final result. The next question
will be: why does your Theory of Everything contain these parameter and
not others? For example, if M-theory explains all the existing phenomena,
the next question will be: why there are eleven or ten dimensions?

U: But who told you that the cognition process is finite? An asymptotic
approximation to the Unified theory is also not the worst perspective. At
least as compared with what you suggest. If all theories are possible, what
is the reason to study anything?

M: Not quite so. The wealth of stars does not prevent us from studying the
Sun. There are a lot of things to be understood in our own Universe. An
asymptotic tendency to a unified theory is quite a worthy undertaking. But
it does not promise an answer to an experimental fact: the finest selection
of the unified theory parameters as though specially to provide conditions
for emergence of the intelligence.

U: The unified theory must answer this question as well, although it looks
trivial in the many-world concept. But still, to end with: where are all these
universes situated?

M: It’s really a difficult, almost philosophical question. We’ll be able to
answer it next to understanding where is our Universe.

A.2 Why do correct theories look elegant?

The idea of multiple universes with different properties also enables us to
come to an understanding of such questions, quite far from physics, as
the title of this section. Certainly, there cannot be a rigorous proof, not
least because the notion of “elegance” is not strictly defined. Therefore
let us begin with filling this gap. A criterion of elegance is the degree of
economy of the means needed to achieve the goal: explanation of a certain
set of phenomena and prediction of new ones. Let us express it by a simple
formula:

R = N/P,

where R is the quality factor of a theory: the higher it is, the more elegant
the theory as we see it; N is the number of explained phenomena, and P
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is the amount of information (in bits) used to formulate the first principles
of the theory.

Now the question can be formulated in another form: why do theories
with large values of R turn out to be correct? Accepting the multiple-
universe theory, we can reduce the problem of elegance to the following
question: why is the fraction of universes with a large R -factor large as
compared with the fraction of other universes? In this case it would be not
surprising that our civilization has just emerged in such a universe.

It is reasonable to suppose that the more complex the structure of a
given universe, the more rarely such universes appear (the complexity of
a universe is determined by the number of bits necessary to describe it).
Yes, certainly intelligent life cannot appear in quite simple universes, which
make a majority. There is some complexity threshold, such that intelligence
cannot emerge below it. Their number is much smaller than that of simple
universes, but only these ones are of interest. In other words, if the whole
set of universes is classified by complexity levels, we obtain the sequence

K1, K2, K3, . . . , KU , KU+1, . . .

The index denotes the complexity level: K1 is the number of the simplest
universes (described by a smallest number of bits), K2 is the number of
those slightly more involved, etc. The number of the simplest universes
where intelligence is possible is denoted by KU ; KU+1 is the number of
more complex universes which can be inhabited by intelligence. It has been
supposed that the more complex are universes, the smaller is their fraction.
This means that

K1 � K2 � K3 � · · · � KU � KU+1 � · · ·
Thus the probability of an intelligent civilization to find itself in a rel-

atively simple universe is higher (and most probably much higher) than
in a more complex one. And it is this circumstance that means that our
Universe must be described by an elegant theory.

The assumption of the existence of extra dimensions turns out to be
amazingly fruitful. On its basis, the many-worlds idea finds quite a natural
explanation, as well as the fact of utmost importance, the fine tuning of the
parameters of our Universe. Extra dimensions are a source of physical fields.
It seems probable that a source of all phenomena and theories presented
in the book is in the extra dimensions, and even such a vague fact as the
elegance of correct physical theories becomes if not explained then at least
more understandable. Unfortunately, the extra dimensions can be very hard
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to observe, for instance, due to their small size, so that their convincing
experimental discovery can be a concern for the remote future.
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[22] C. Barceló and M. Visser, Class. Quantum Grav. 17, 3843 (2000); gr-qc/

0003025.
[23] J.M. Bardeen, Non-singular general-relativistic gravitational collapse.

Proc. Int. Conf. GR5, Tbilisi, 1968, p. 174.

409



August 17, 2012 9:5 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-bib

410 Black Holes, Cosmology and Extra Dimensions

[24] J.M. Bardeen, B. Carter, and S.W. Hawking, Commun. Math. Phys. 31,
161 (1973).

[25] J.D. Barrow and S. Cotsakis, Phys. Lett. B 214 515 (1988).
[26] J.D. Barrow and A.C. Ottewill, J. Phys. A 10, 2757 (1983).
[27] D. Bazeia, F.A. Brito, and J.R. Nascimento, Phys. Rev. D 68, 085007

(2003).
[28] R. Bean and J. Magueijo, Phys. Rev. D 66, 063505 (2002).
[29] J.D. Bekenstein, Phys. Rev. D 7, 949 (1973).
[30] J.D. Bekenstein, Ann. Phys. (N.Y.) 82, 535 (1974).
[31] J.D. Bekenstein, in: Cosmology and Gravitation, ed. M. Novello, Atlanti-

sciences, France, 2000, pp. 1-85.
[32] C.L. Bennett, Astrophys. J. Lett. 464 L1 (1996).
[33] W. Berej, J. Matyjasek, D. Tryniecki, and M. Woronowicz, Gen. Rel. Grav.

38, 885 (2006).
[34] J.C. Berengut and V.V. Flambaum, Astronomical and laboratory searches

for space-time variation of fundamental constants. arXiv: 1009.3693.
[35] O. Bergmann and R. Leipnik, Phys. Rev. 107, 1157 (1957).
[36] P.G. Bergmann, Int. J. Theor. Phys. 1, 25 (1968).
[37] G.D. Birkhoff and R. Langer, Relativity and Modern Physics. Harvard

Univ. Press, Harvard, 1923.
[38] N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space. Cam-

bridge UP, Cambridge et al., 1982.
[39] M. Blagojevic, Gravitation and gauge symmetries (Institute of Physics,

Bristol, 2002).
[40] U. Bleyer, M. Mohazzab, and M. Rainer, gr-qc/9508035.
[41] N.M. Bocharova, K.A. Bronnikov, and V.N. Melnikov, Vestnik MGU Fiz.,

Astron. No.6, 706 (1970).
[42] Christian G. Boehmer and Kevin Vandersloot, Phys. Rev. D 78, 067501

(2008); arXiv: 0807.3042; Phys. Rev. D 76, 104030 (2007); arXiv:
0709.2129.

[43] A. Bogojevic and D. Stojkovic, Phys. Rev. D 61, 084011 (2000); gr-qc/
9804070.

[44] N. Bostrom, Anthropic Bias: Observation Selection Effects in Science and
Philosophy (Routledge, New York, 2002).

[45] R.H. Boyer and R.W. Lindquist, J. Math. Phys. 8,, 265 (1967).
[46] V.B. Braginsky and V.I. Panov, Zh. Eksp. Teor. Fiz. 61, 873 (1971).
[47] R.H. Brandenberger, H.A. Feldman, and V.F. Mukhanov, Phys. Rep. 215,

203 (1992).
[48] C.H. Brans, Phys. Rev. 125, 2194 (1961).
[49] C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961).
[50] K.A. Bronnikov, Acta Phys. Pol. B 4, 251 (1973).
[51] K.A. Bronnikov, Grav. Cosmol. 2, 221 (1996); gr-qc/9703020.
[52] K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001); gr-qc/0006014.
[53] K.A. Bronnikov, Phys. Rev. D 64, 064013 (2001); gr-qc/0104092.



August 17, 2012 9:5 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-bib

Bibliography 411

[54] K.A. Bronnikov, J. Math. Phys. 43, 6096 (2002); gr-qc/0204001.
[55] K.A. Bronnikov and M.S. Chernakova, Izv. Vuzov, Fiz. No. 9, 46 (2005);

Russ. Phys. J. 48, 940 (2005); gr-qc/0503025.
[56] K.A. Bronnikov and M.S. Chernakova, Grav. Cosmol. 13, 1 (49), 51

(2007).
[57] K.A. Bronnikov, M.S. Chernakova, J.C. Fabris, N. Pinto-Neto, and

M.E. Rodrigues, Int. J. Mod. Phys. D 17, 25 (2008); gr-qc/0609084.
[58] K.A. Bronnikov, G. Clément, C.P. Constantindis, and J.C. Fabris, Grav.

Cosmol. 4, 128 (1998); Phys. Lett. A 243, 121 (1998).
[59] K.A. Bronnikov, C.P. Constantinidis, R.L. Evangelista, and J.C. Fabris,

Int. J. Mod. Phys. D 8, 481 (1999).
[60] K.A. Bronnikov, H. Dehnen, and V.N. Melnikov, Phys. Rev. D 68, 024025

(2003).
[61] K.A. Bronnikov, H. Dehnen, and V.N. Melnikov, Gen. Rel. Grav. 39, 973

(2007).
[62] K.A. Bronnikov, A. Dobosz, and I.G. Dymnikova, Class. Quantum Grav.

20, 3797 (2003).
[63] K.A. Bronnikov and E.V. Donskoy, Grav. Cosmol. 16, 42 (2010); arXiv:

0910.4930.
[64] K.A. Bronnikov and E.V. Donskoy, Grav. Cosmol. 17, 31 (2011); arXiv:

1110.6030.
[65] K.A. Bronnikov and E. Elizalde, Phys. Rev. D 81, 044032 (2010); arXiv:

0910.3929.
[66] K.A. Bronnikov and J.C. Fabris, Phys. Rev. Lett. 96, 251101 (2006).
[67] K.A. Bronnikov, J.C. Fabris, and A. Zhidenko, Eur. Phys. J. C 71, 1791

(2011).
[68] K.A. Bronnikov, S.B. Fadeev, and A.V. Michtchenko, Gen. Rel. Grav. 35,

505 (2003).
[69] K.A. Bronnikov and S.V Grinyok, in: Inquiring the Universe. Essays to

celebrate Prof. Mario Novello’s jubilee (Frontier Group, Rio de Janeiro,
2003); gr-qc/0205131.

[70] K.A. Bronnikov and S.V. Grinyok, Grav. Cosmol. 10, 237 (2004); gr-qc/
0411063.

[71] K.A. Bronnikov and S.V. Grinyok, Grav. Cosmol. 11, 75 (2005); gr-qc/
0509062.

[72] K.A. Bronnikov and A.V. Khodunov, Gen. Rel. Grav. 11, 13 (1979).
[73] K.A. Bronnikov and Yu.N. Kireyev, Phys. Lett. A 67, 95 (1978).
[74] K.A. Bronnikov and S.A. Kononogov, Metrologia 43, R1 (2006).
[75] K.A. Bronnikov, S.A. Kononogov, and V.N. Melnikov, Gen. Rel. Grav. 38,

1215 (2006).
[76] K.A. Bronnikov, S.A. Kononogov, V.N. Melnikov, and S.G. Rubin, Grav.

Cosmol. 14, 230 (2008).
[77] K.A. Bronnikov, R.V. Konoplich, and S.G. Rubin, Class. Quantum Grav.

24, 1261 (2007).



August 17, 2012 9:5 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-bib

412 Black Holes, Cosmology and Extra Dimensions

[78] K.A. Bronnikov and M.A. Kovalchuk, in: Problems of Gravitation Theory
and Particle Theory ed. by K.P. Staniukovich, 10th issue, Atomizdat, M.,
1979; J. Phys. A: Math. Gen. 13, 187 (1980).

[79] K.A. Bronnikov and B.E. Meierovich, Grav. Cosmol. 9, 313 (2003).
[80] K.A. Bronnikov and V.N. Melnikov, Gen. Rel. Grav. 27, 465 (1995); gr-qc/

9406064.
[81] K.A. Bronnikov and V.N. Melnikov, Nucl. Phys. B 584, 434 (2000); hep-

th/0002200.
[82] K.A. Bronnikov and V.N. Melnikov, in: Proceedings of the 18th Course of

the School on Cosmology and Gravitation: The Gravitational Constant,
Generalized Gravitational Theories and Experiments (30 April–10 May
2003, Erice). Ed. G.T. Gillies, V.N. Melnikov and V. de Sabbata, Kluwer,
Dordrecht/Boston/London, 2004, pp. 39–64; gr-qc/0310112.

[83] K.A. Bronnikov and S.G. Rubin, Phys. Rev. D 73, 124019 (2006); Grav.
Cosmol. 13, 191 (2007).

[84] K.A. Bronnikov and G.N. Shikin, Grav. Cosmol. 8, 107 (2002), gr-qc/
0109027.

[85] K.A. Bronnikov, M.V. Skvortsova, and A.A. Starobinsky, Grav. Cosmol.
16, 216 (2010); arXiv: 1005.3262.

[86] K.A. Bronnikov and A.A. Starobinsky, Pis’ma v ZhETF 85, 1, 3-8 (2007);
JETP Lett. 85, 1, 1-5 (2007).

[87] K.A. Bronnikov and Sung-Won Kim, Phys. Rev. D 67, 064027 (2003).
[88] K.A. Bronnikov and S.V. Sushkov, Class. Quantum Grav. 27, 095022

(2010); arXiv: 1001.3511.
[89] T.A. Brun and J.B. Hartle, Phys.Rev. E 59, 6370 (1999); quant-

ph/9808024.
[90] T. Bunch and P. Davies, Proc. R. Soc. A 360, 117 (1978).
[91] R.V. Buniy and S.D.H. Hsu, Phys. Lett. B 632, 127 (2006); hep-

th/0504003.
[92] Alexander Burinskii, The Dirac–Kerr–Newman electron. Grav. Cosmol.

14, 109 (2008); hep-th/0507109.
[93] Alexander Burinskii, Gravity versus Quantum theory: Is electron really

pointlike? arXiv: 1109.3872 (essay for GRF 2011 competition).
[94] A. Burinskii and S.R. Hildebrandt, Phys. Rev. D 65, 104017 (2002); Grav.

Cosmol. 9, 20 (2003); Czech. J. Phys. 53 B283 (2003).
[95] Rong-Gen Cai and N. Ohta, Phys. Rev. D 74, 064001 (2006); hep-

th/0604088.
[96] P. Callin and F. Ravndall, Phys. Rev. D 70, 104009 (2004).
[97] M. Campanelli and C.O. Lousto, Int. J. Mod. Phys. D 2, 451 (1993).
[98] J. Campbell, A Course of Differential Geometry (Clarendon, Oxford,

1926).
[99] S. Carlip, gr-qc/0508072.

[100] B.J. Carr, Astrophys. J. 201, 1 (1975).
[101] S.M. Carroll et al., Phys. Rev. D 66, 024036 (2002); hep-th/0110149.
[102] S.M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D 68, 023509

(2003).



August 17, 2012 9:5 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-bib

Bibliography 413

[103] E. Carugno et al., Phys. Rev. D 53, 6863 (1996).
[104] R. Casadio, A. Fabbri, and L. Mazzacurati, Phys. Rev. D 65, 084040

(2002).
[105] R. Casadio and L. Mazzacurati, Mod. Phys. Lett. A 18, 651 (2003); gr-qc/

0205129.
[106] C. Castro, A. Granik, and M.S. El Naschie, hep-th/0004152.
[107] A. Chamblin, H.S. Reall, H. Shinkai, and T. Shiromizu, Phys. Rev. D 63,

064015 (2001); hep-th/0008177.
[108] K.C.K. Chan, J.H. Horne, and R.B. Mann, Nucl. Phys. B 447, 441 (1995).
[109] S. Chandrasekhar, Mathematical Theory of black holes (Clarendon Press,

Oxford, 2006).
[110] V.M. Chechetkin, M.Yu. Khlopov, M.G. Sapozhnikov, and Ya.B. Zeldo-

vich, Phys. Lett. B 118, 329 (1982).
[111] T. Chiba and M. Yamaguchi, Runaway domain wall and space-time varying

α . arXiv: 1102.0105.
[112] T. Chiba, The constancy of the constants of Nature: updates. arXiv:

1111.0092.
[113] J.M. Cline, S. Geon, and G.D. Moore, Phys. Rev. D 70, 043543 (2004).
[114] A.G. Cohen and D.B. Kaplan, Phys. Lett. B 199, 251 (1987).
[115] A.G. Cohen and D.B. Kaplan, Nucl. Phys. B 308, 913 (1988).
[116] S. Coleman, Phys. Rev. D 15, 2929 (1977).
[117] S. Coleman, Phys. Rev. D 16, 1762 (1977).
[118] S. Coleman, Nucl. Phys. B 307, 867 (1988).
[119] A.A. Coley, Einstein Centennial Review Article, astro-ph/0504226.
[120] E.J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753

(2006); hep-th/0603057.
[121] J.G. Cramer, R.L. Forward, M.S. Morris, M. Visser, G. Benford, and

G.A. Landis, Natural Wormholes as Gravitational Lenses. Phys. Rev. D
51, 3117 (1995).

[122] C. Csaki, J. Erlich, T.J. Hollowood, and Y. Shirman, Nucl. Phys. B 581,
309 (2000).

[123] N. Dadhich, S. Kar, S. Mukherjee, and M. Visser, Phys. Rev. D 65, 064004
(2002).

[124] Sergio Dain, Geometric inequalities for axially symmetric black holes,
arXiv: 1111.3615.

[125] P. Danies, Mod. Phys. Lett. A 19, 727 (2004).
[126] H. Dennhardt and O. Lechtenfeld, Int. J. Mod. Phys. A 13, 741 (1998);

gr-qc/9612062.
[127] N. Deruelle and M. Sasaki, Progr. Theor. Phys. 110, 441 (2003).
[128] B.S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach,

NY, 1965.
[129] B.S. DeWitt and N. Graham, eds., The Many-Worlds Interpretation of

Quantum Mechanics. Princeton U, Princeton, 1973.
[130] Tushar Kanti Dey and Surajit Sen, Gravitational lensing by wormholes

Mod. Phys. Lett. A 23, 953 (2008); arXiv: 0806.4059.
[131] V.I. Dokuchaev, Phys. Usp. 34, 447 (1991).



August 17, 2012 9:5 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-bib

414 Black Holes, Cosmology and Extra Dimensions

[132] V. Dokuchaev, Yu. Eroshenko, and S. Rubin, Grav. Cosmol. 11, 99 (2005).
[133] V. Dokuchaev, Yu. Eroshenko, and S. Rubin, arXiv: 0709.0070.
[134] V.I. Dokuchaev and Yu.N. Eroshenko, Astron. Lett. 27, 759 (2001); astro-

ph/0202019.
[135] V.I. Dokuchaev, Yu.N. Eroshenko, and S.G. Rubin, Astron. Rep. 52,

779–789 (2008); arXiv: 0801.0885.
[136] V.I. Dokuchaev, Yu.N. Eroshenko, S.G.Rubin, and D. A. Samarchenko,

Astron. Letters 36, 773–779 (2010); arXiv: 1010.5325.
[137] A.D. Dolgov and A.D. Linde, Phys. Lett. B 116, 329 (1982).
[138] A. Dolgov, Phys. Rep. 222, 309 (1992).
[139] A. Dolgov, K. Freese, R. Rangarajan, and M. Srednicki, Phys. Rev. D 56,

6155 (1997).
[140] A. Dolgov and L. Silk, Phys. Rev. D 47, 4244 (1993).
[141] A.D. Dolgov and S.H. Hansen, Nucl. Phys. B 54, 408 (1999).
[142] A. D. Dolgov, F. R. Urban, Phys. Rev. D 77, 083503 (2008); arXiv:

0801.3090.
[143] J.F. Donoghue, Phys. Rev. D 50, 3874 (1994).
[144] A.G. Doroshkevich, N.S. Kardashev, D.I. Novikov, and I.D. Novikov,

Passage of Radiation through a Wormhole. Astronomy Reports 52, 616
(2008).

[145] A. Doroshkevich, J. Hansen, I. Novikov, and A. Shatskiy, Passage of radi-
ation through wormholes. IJMPD 18, 1665 (2009).

[146] B.A. Dubrovin, S.P. Novikov, and A.T. Fomenko, Modern Geometry. Meth-
ods and Applications (URSS, Moscow, 1988).

[147] M.J. Duff, L.B. Okun, and G. Veneziano, JHEP 03, 023, 023 (2002),
physics/0110060.

[148] J.P. Duruisseu and R. Kerner, Gen. Rel. and Grav. 15 797 (1983).
[149] B.A. Dubrovin, A.T. Fomenko, and S. P. Novikov, Modern Geometry:

Methods and Applications (Nauka, Moscow, 1979; Springer, New York,
1985).

[150] G.R. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 484, 112
(2000).

[151] I. Dymnikova, Gen. Rel. Grav. 24, 235 (1992).
[152] I.G. Dymnikova, A. Dobozh, M.L. Filchenkov, and A. Gromov, Phys. Lett.

B 506, 351 (2001).
[153] I. Dymnikova and M. Fil’chenkov, gr-qc/0209065.
[154] D.A. Easson and R.H. Brandenberger, JHEP 0106, 024 (2001).
[155] H. Ellis, J. Math. Phys. 14, 104 (1973).
[156] J. Ellis, N. Kaloper, K.A. Olive, and J. Yokoyama, Phys. Rev. D 59, 103503

(1999).
[157] H. van Elst, J.E. Lidsey, and R. Tavakol, Class. Quantum Grav. 11, 2483

(1994).
[158] H. Everett, Rev. Mod. Phys. 29, 454 (1957).
[159] C.W.F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011); arXiv:

1105.3456.
[160] V. Faraoni, Class. Quantum Grav. 22, 3235 (2005).



August 17, 2012 9:5 9in x 6in Black Holes, Cosmology and Extra Dimensions b1381-bib

Bibliography 415

[161] Juan Fernandez-Gracia and Bartomeu Fiol, JHEP 0911, 054 (2009);
arXiv: 0906.2353.

[162] R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals.
MacGraw-Hill, NY, 1965.

[163] L. Flamm, Phys. Z. 17, 48 (1916).
[164] I.Z. Fisher, Zh. Eksp. Teor. Fiz. 18, 636 (1948); gr-qc/9911008.
[165] H. Firouzjahi, S. Sarangi, and S.-H. Henry Tye, hep-th/0406107.
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