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Foreword 

The all-inclusive treatise on "Astrodynamics" by Richard H. Battin clearly must be 
counted among the great classics in scientific literature. This text documents the 
fundamental theoretical developments in astrodynamics and space navigation that 
eventually led to man's ventures into space. It includes all the essential elements of 
celestial mechanics, spacecraft trajectories, and space navigation as well as the his
tory of the underlying mathematical developments over the past three centuries 
culminating finally with the 20th century space exploration. The author has now 
updated this text as the revised edition by including new materials in Chapters 1, 
3,6, and 11. 

The first half of his text deals with the necessary mathematical preliminaries of 
hypergeometric functions, analytical dynamics, the two-body problem leading to 
the solution of two-body orbits, Kepler's equation, and Lambert's problem. The sec
ond half includes non-Keplerian motion, patched-conic orbits and perturbation 
methods, variation of parameters, two-body orbital transfer, numerical integration 
of the equations of motion in orbital mechanics, the celestial position fix for space
craft, and space navigation. All the mathematical concepts are fully explained so 
that there is no need for additional reference materials. The most abstruse mathe
matical derivations are made simple through clarity of style, logical exposition, and 
attention to details. 

Dr. Battin has produced a textbook that will be used by the present and future 
generations of aerospace engineers as they venture beyond the Apollo program to 
conquer the "high frontier." This text is a great testimony of Dr. Battin's exception
al pioneering work as a scientist and engineer and his outstanding personal contri
butions to the U.S. space program. 

The Education Series of textbooks and monographs published by the American 
Institute of Aeronautics and Astronautics embraces a broad spectrum of theory and 
application of different disciplines in aeronautics and astronautics, including aero
space design practice. The series includes also texts on defense science, engineer
ing, and management. The series serves as teaching texts as well as reference mate
rials for practicing engineers, scientists, and managers. The complete list of text
books published in the series (over sixty titles) can be found on the end pages of this 
volume. 

J.S. Przemieniecki 
Editor-in-Chief 
AIAA Education Series 



Prologue 

This article appeared in the New York Times on the eve of 
the Apollo 8 mission. It was reprinted in a special Look 
magazine issue titled: Apollo 8-Voyage to the Moon. 

The Apollo voyage to the moon represents a new and exciting plateau in 
the ancient art of navigation. 

By applying principles as old as the planetary theories of Kepler and 
technologies as new as the high-speed electronic digital computer, an astro
naut can determine the position and course of his craft in the vastness of 
outer space with an accuracy that Columbus or Prince Henry the Navigator 
would have deemed impossible in their time. 

Ever since man first went to sea, the need to navigate accurately has 
been a constant challenge. For many centuries only the brave or foolhardy 
dared to venture out of sight of land except for short distances. Progress 
in navigation was extremely slow, and not until just 200 years ago could a 
ship's location at sea be determined with anything approaching precision. 

The ability to determine latitude-the distance north or south of the 
Equator-by observing the angle that the North Star makes with the 
horizon was known in early times. The instrument used for this purpose, 
the astrolabe, was invented by the Greeks more than 2,000 years ago and 
well may be the oldest scientific instrument in the world. 

The mariner's compass was introduced much later, in the 12th or 
13 th century. With it, a seaman could set a course and, by estimating the 
speed of the ship, obtain a crude approximation of his position. However, 
only the ship'S latitude could be verified by direct observation. 

It was not until the 18 th century that east-west distances, called lon
gitude, could be measured accurately. In fact, it was quite recently in 
history before it was even recognized that the essential element required to 
obtain longitude was a reliable and transportable clock. 

During the 16th and 17th centuries, the longitude problem assumed 
enormous proportions to each of the maritime powers. Fantastic rewards 
were offered for the solution as each nation vied to become the first to 
develop the important capability of accurate navigation at sea. 

The world's leading scientists devoted their attention to the problem. 
Economic, political, and military considerations were at stake, and the 

vii 



viii Astrodynamics 

struggle for supremacy may, in some sense, be likened to the modern day 
race for the moon. 

The first successful seaborne clock, or chronometer, was finally 
invented by John Harrison, a carpenter from Yorkshire, England. It took 
30 years to develop and it was first demonstrated in 1761. With this instru
ment the problem of navigation at sea was solved, and during succeeding 
years the science of navigation was perfected through the development of 
more accurate instruments. 

Each of the navigation instruments carried aboard the Apollo 8 space
craft has its counterpart in these earlier devices. The astrolabe has evolved 
into a space sextant with which the astronaut can sight simultaneously on 
stars and landmarks on the surface of the earth or moon. 

The purpose of the instrument is to measure angles between the lines
of-sight to celestial objects. The data gathered from such measurements 
would aid the Apollo navigator in determining the position and speed of 
the spacecraft. 

The mariner's compass with its north-seeking magnetic needle would 
find little utility in outer space. However, the function performed by the 
compass of providing a constant reference direction is as important in nav
igating a spacecraft as it is for a ship or an aircraft. Moreover, the problem 
of direction in space is three-dimensional, rather than two, and the accuracy 
requirements are more severe. 

In Apollo a reference direction is maintained by means of a device 
called an inertial measuring unit. The instrument is basically a small 
platform supported and pivoted so that the spacecraft is free to rotate 
about it just as a compass needle is pivoted to indicate always a northerly 
direction independent of the orientation of the ship. 

On this small platform are mounted three gyroscopes that sense and 
prevent any rotation of the platform from occurring. Thus, as the orienta
tion of the Apollo spacecraft changes during flight, the direction in which 
it is pointing can always be measured with respect to this platform, which 
unerringly maintains a fixed direction in space. 

The need for accurate timekeeping also is as essential for the Apollo 
navigator as for the ship at sea. Indeed, this point can be appreciated by 
noting that a spacecraft on the way to the moon travels at speeds as high 
as seven miles a second. The moon also is moving, at a rate of one-half 
mile a second, with respect to the earth. Thus, a small error in the clock 
can result directly in significant errors in position. 

In the Apollo spacecraft, the clock is a part of the onboard digital 
computer. Just as the navigator at sea is required to perform mathematical 
calculations using charts and tables, so is the problem of navigating a space
craft largely a mathematical one. A small but versatile digital computer is 
provided for this purpose and the precision-timing circuits in the computer 
serve as a clock. 
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Some of the similarities in instruments used to navigate in orbit and 
in a ship at sea have been noted. There exist, however, fundamental differ
ences that are apparent when one contrasts the environment through which 
each vehicle moves, the speed of travel, and the selection of an appropriate 
route to the destination. 

In navigating at sea or in the air, the effects of wind and water currents 
must be taken into account even though they cannot be directly measured. 
By using two successive position fixes and the time elapsed between them, 
the navigator can estimate the currents and compensate for them. Even if 
he is unable to do this very accurately, the resulting errors are usually not 
serious and can be corrected ultimately by whatever changes in course and 
speed are required. 

On the other hand, the spacecraft navigator enjoys the advantage of 
not having his vehicle subject to substantial unknown and unpredictable 
forces such as air or sea currents. Motion in space is much more certain 
since the forces involved are well understood. 

Despite this important advantage, the high speeds characteristic of 
space travel present serious problems not encountered on earth. When the 
Apollo spacecraft is hurtled toward the moon, it must travel many times 
faster than a rifle bullet if it is to coast to the moon without falling back 
to earth. Because of these tremendous speeds, coupled with the limited 
amount of fuel that can be transported, significant changes in direction 
and speed are limited. 

The command pilot cannot freely order a "hard right rudder" as a 
sea captain might to correct for a mistake in course. With such severe 
restrictions on maneuverability, it is mandatory that each phase of the 
Apollo mission be carefully planned in advance. 

Finally, there are the problems of charting a proper route to the desti
nation. In planning a sea or air voyage, fuel considerations generally dictate 
that the shortest path be followed. 

The selection of an appropriate trajectory to the moon also is influ
enced by the need for fuel economy, but in a much more esoteric way. 

For example, the efficient use of propulsion requires that the moon's 
gravitational field be exploited so as to deflect the trajectory of the Apollo 
vehicle when it passes behind the moon to place it on proper course back 
to earth should the decision be made not to enter lunar orbit. To accom
plish this task successfully demands highly accurate navigation so that the 
spacecraft will pass the moon with the correct speed, altitude, and direction 
of Bight. 

The moon appears in the sky to be a rather substantial target. There
fore, we might reasonably wonder if guiding a spacecraft to its vicinity is 
really very difficult. To answer this question we should consider briefly the 
effect on the Apollo lunar trajectory of errors incurred at the instant of 
departure from an earth parking orbit. 
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For simplicity, suppose that Apollo were, indeed, a projectile fired at 
the moon with the only requirement being to strike the lunar surface. Even 
for this relatively more elementary task, an error of only one-tenth of 1% 
in the speed of projection, or an error of only a small fraction of a degree 
in the direction of aim, would result in missing the moon. 

The accuracy requirements of Apollo 8 are far more stringent. The 
object is not simply to hit a target 2,000 miles in diameter. On the contrary, 
the Apollo vehicle must miss the moon by a carefully controlled amount. 

It is entirely unrealistic to suppose that such precision can be achieved 
without the need for at least some small changes in direction and speed as 
the spacecraft approaches the moon. 

Granted that corrections will be required, they can be accurately made 
only when the position, speed, and direction of motion of the spacecraft 
are accurately known. Since trajectory errors mean wasted fuel, a precise 
knowledge of these quantities is of the utmost importance to a spacecraft 
navigator. 

Having looked at some of the characteristics of space navigation and 
the basic instruments required, we should now examine in more detail how 
the Apollo navigation task is actually performed. There are, fundamentally, 
two phases of flight to consider-the coasting phase and the accelerated 
phase. 

The periods of time of coasting flight-when the course of the vehicle 
is affected only by gravity-are measured in hours and days. On the other 
hand, accelerated flight times-when the main engine is firing-are of only 
a few minutes duration. As might be suspected, the techniques involved 
are quite different in the two cases. 

Navigating the Apollo spacecraft during the long coast to the moon 
involves two processes. First, frequent navigation measurements are made 
to improve the estimate of the spacecraft's position and velocity. Second, a 
prediction is made periodically of the position and velocity of the spacecraft 
at the expected time of rendezvous with the moon. 

If these predictions indicate that the spacecraft is not following the 
intended course, then small corrections to the speed and direction of motion 
can be applied using the rocket engine. 

Predicting the course of Apollo during prolonged periods of coasting 
flight is the same as the astronomer's problems of predicting the position of 
the moon and planets. The motion of the spacecraft, as well as the planets, 
is caused by the interaction of the various gravitational fields of the bodies 
that make up the solar system. 

The basic physical principles governing this motion were discovered 
by Sir Isaac Newton. He was the first to describe the solar system as 
consisting of many bodies each attracting all the others in accord with his 
law of gravitation. As a consequence of Newton's work, the possibility of 
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accurate predictions of the positions of the planets by mathematical means 
was finally at hand. 

There are several considerations influencing the ability to make long
range predictions. First of all are the mathematical techniques used for 
solving the equations formulated by Newton. These equations cannot be 
solved exactly, and the resulting errors will rapidly degrade the solution 
unless elaborate computational techniques are employed. Without the 
availability of modern high speed digital computers the required calcula
tions could not be performed rapidly enough to keep pace with the Apollo 
voyage. 

Second, the accuracy of predicting position and velocity also is subject 
to man's knowledge of the planets themselves, such as size, shape, density, 
and mass, all of which play an important role in the mathematics. 

Finally, and most important of all, there are the problems that mathe
maticians refer to as "initial conditions" -the values of position and 
velocity at the time from which the prediction is made. Unless,'tbese initial 
values are accurately known, it is obvious that they cannot. 'be accurately 
predicted. 

In order to ensure accurate initial conditions, it is necessary periodi
cally to correct the estimate of spacecraft position and velocity using data 
gathered from optical or radar measurements made either with the on
board space sextant or with the extensive earth-based worldwide tracking 
network. 

Earth-based radar installations are capable of measuring the distance, 
the direction, and rate of change of the distance from the radar site to the 
spacecraft. 

Use of the space sextant allows the astronaut, for example, to measure 
the apparent elevation of a star above the earth's horizon to a landmark on 
the moon. These measurements are utilized much as a ship's navigator uses 
compass bearings from lighthouses or radio beacons to correct his estimate 
of position. 

At the time a measurement is made, the best estimate of the space
craft's position and velocity is contained in the digital computer. Then, 
since the directions of the stars and the locations of landmarks and tracking 
stations are known, it is possible to calculate the expected value of the 
quantity to be measured-such as .an angle or distance from a tracking 
station. 

When the expected value of this measurement is compared with the 
value actually measured, the difference can be used to correct the estimate 
of the spacecraft's position and velocity. A sequence of such measurements 
separated in time, together with an accurate mathematical description of 
the solar system, will eventually produce estimates with sufficient precision 
to permit corrective maneuvers to be made with confidence. 



xii Astrodynamics 

The other major navigation phase to be discussed is the task of nav
igating and steering the Apollo vehicle when the main engine is firing. 
With the thrust provided by the service propulsion system, it is possible 
to make rather substantial changes in the speed and direction of motion of 
the spacecraft. 

This capability was provided to the Apollo 8 flight for three possible 
maneuvers: (1) slowing the vehicle down as it passes the moon, which is 
necessary to achieve a lunar orbit; (2) acquiring the necessary speed while 
in lunar orbit to escape the moon and be on a proper course back to earth; 
and (3) to return to earth before reaching the moon should it be necessary 
to abort the mission. 

As a specific example, consider the phase of the mission called trans
earth injection, of accelerating the spacecraft out of lunar orbit for the trip 
back to earth. At any location in lunar orbit, a velocity can be calculated 
that would be the correct velocity required by the vehicle to coast back to 
earth from that position. 

The spacecraft, of course, does not have that velocity but is instead 
moving at a speed and in a direction appropriate for orbiting the moon. 
However, if it were possible to make a sudden and instantaneous change 
in its speed and direction of motion of the required amounts, the vehicle 
would immediately begin on its return voyage. 

The difference between the velocity that the spacecraft actually has 
and the velocity it should have for return to earth is called the velocity-to
be-gained. If the velocity-to-be-gained were zero or could be made so, the 
desired objective would be accomplished and the long coast home would 
be under way. 

Of course, the speed and direction of motion cannot be suddenly 
altered. In fact, it requires about 2! minutes of thrusting to change the 
velocity by the necessary amount. However, by pointing the spacecraft 
engine and thrusting in the direction in which the additional speed must 
be added, the velocity-to-be-gained will gradually decrease to zero. When 
this condition is achieved, the engine is turned off and coasting flight begins. 

During an accelerated maneuver, the Apollo navigation system must 
steer the vehicle in the proper direction, measure the thrust acceleration 
imparted by the engine, repeatedly compute the velocity still to be gained, 
and provide an engine-off signal when the maneuver is completed. 

The orientation of the spacecraft when the rockets are firing is mea
sured with respect to the inertial platform, as described earlier. The 
direction is controlled both by firing clusters of small jets and swiveling 
the engine causing the vehicle to rotate in the proper direction to eliminate 
pointing errors. The thrust acceleration is measured by small instruments 
called accelerometers mounted on the inertial platform. 
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No instrument is capable of directly measuring the forces of gravity. 
However, since the gravitational forces depend only on the position of the 
spacecraft with respect to the earth, the sun, and the moon, they can be 
accurately computed mathematically. These gravity calculations are made 
in the Apollo computer and are combined with the thrust acceleration 
measurements for computing the additional velocity needed before engine 
cutoff is commanded. 

The navigation task of Apollo during the return trip again consists 
of measuring, predicting, and correcting the trajectory of the spacecraft. 
However, the margin for error is much more critical than for the outbound 
flight. The vehicle is required to enter the earth's atmosphere along a path 
that must not deviate by more than 1 degree to either side of the planned 
entry direction. 

If the path is too steep, the deceleration forces might be too great 
for the structure or crew to withstand. On the other hand, too shallow 
an entry could result in the spacecraft's skipping out of the atmosphere. 
Accurate midcourse navigation is, therefore, essential to the final success 
of the mission. 

Will the moon prove to be the limit of man's ventures into space? 
To assume so would ignore one of his most basic drives-to explore, to 
understand, and to conquer his environment. On the contrary, man is now 
embarking on a new Age of Discovery, which, like the first, will provide 
new challenges for the science of navigation. 

Richard H. Battin 
December 21, 1968 
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Preface 

In the three centuries following Kepler and Newton, the world's greatest 
mathematicians brought celestial mechanics to such an elegant state of 
maturity that, for several decades preceding the USSR's Sputnik in 1957, 
it all but disappeared from the university curriculum. Of course, celestial 
mechanics to the classical astronomer was confined to the prediction of the 
paths followed by celestial bodies existing naturally in the solar system. 
Not until recently did the problem exist of designing orbits subject to 
elaborate constraints to accomplish sophisticated mission objectives at a 
target planet-except possibly in the fantasy of the boldest imaginations. 

The feasibility of space flight by man-made vehicles became apparent 
in the early 1950's with the rapid development of rockets capable of in
tercontinental ranges, and gradually serious space-mission planning began. 
The term "Astrodynamics," attributed to the late Sam Herrick,t came into 
common usage at that time to categorize aspects of celestial mechanics 
relevant to a new breed-the aerospace engineer. 

One class of imaginative proposals for space missions exploited the 
gravity fields of planets to achieve mUltiple planetary flybys. Apparently, 
the first such study was presented in 1956 at the Seventh International 
Astronautical Congress in Rome by the Italian General Gaetano Arturo 
Crocco. His subject-a "One Year Exploration Trip Earth-Mars-Venus
Earth." Although his results were based on a solar system modelled by 
coplanar, concentric circular planetary orbits and pieced-conic spacecraft 
trajectories, the germ of an important idea was born. The exotic mission 
planned for Project Galileo involving dozens or more close encounter flybys 
of the Jovian moons will be a dramatic highlight of both space exploration 
and the field of Astrodynamics. 

Another Astrodynamics milestone had its origin in 1772 when Joseph
Louis Lagrange submitted his prize memoir "Essai sur Ie Probleme des 
Trois Corps" to the Paris academy. In it he described particular solutions 
to the problem of three bodies today known as the "Lagrangian libration 
points." Lagrange showed that if two bodies of finite mass circularly orbit 
their common center of mass, then there will be (a) two points in space 
forming equilateral triangles with the two masses plus (b) three points 

t Samuel Herrick (1911-1974) was educated at Williams College and the University 
of California at Berkeley. He served on the Faculty of UCLA from 1937 as a Professor 
of Astronomy until his untimely death on March 20, 1974. 
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on the straight line connecting the two masses, where, placing a third 
mass, will conserve the configuration with respect to the rotating frame of 
reference. 

The equilateral points are known to be stable in many cases. As if in 
tribute to Lagrange's monumental work, it was early in the Twentieth Cen
tury that the so-called "Trojan asteroids" were discovered in the vicinity 
of the Jupiter-sun equilateral lib ration points. The collinear points, on the 
other hand, are unstable points of equilibrium, as was first demonstrated 
by the mathematician Joseph Liouville in 1845. 

The earth-moon equilateral points have been the subject of much 
popular interest recently as potential sites for space colonies. In fact, one 
of the sun-earth collinear points was exploited (in 1978) by a spacecraft 
known as the International Sun-Earth Explorer.t 

Libration points, we expect, will play an increasingly important role 
in spaceflight. In addition to possible scientific applications, these orbits 
are advantageous for lunar-farside communications, staging sites for lunar 
and interplanetary transportation systems, and locales for possible space 
colonies. 

The purpose of this book is to provide the engineer and scientist as 
well as the student with the background for understanding and contributing 
to the field of Astrodynamics. The material presented is the outgrowth 
of a course given by the author in the Department of Aeronautics and 
Astronautics at MIT which he has taught and developed over a period of 25 
years. (Three of the astronauts:t: who walked on the moon were students in 
this course.) It should be considered as a major revision and extension of his 
first book on this subject titled "Astronautical Guidance" and published in 
1964. The text was "typeset" by the author using the typesetting computer 
program called 'IF){ which was designed by Professor Donald E. Knuth of 
Stanford University specifically for mathematically oriented texts. 

Hypergeometric functions, continued fractions, elliptic integrals, and 
certain basic topics in analytical dynamics are dealt with in the first two 
chapters for logical reasons only. It is not required or expected that the 

t More recently, Bob Farquhar of the Goddard Space Flight Center renamed. that 
spacecraft; the International Cometary Explorer and retargeted it, including a close pass 
of the moon on December 22, 1983 to attain sufficient energy, to pass through the tail 
of the comet Giacobini-Zinner in September of 1985. Along the way the spacecraft 
also explored, for the first time ever, the geomagnetic tail, a region downstream from 
the earth where the planet's magnetic field is swept into a long tail by the solar wind. 
According to Dr. Farquhar, "It's the most complicated thing that's ever been done, I 
think, in the way of orbital dynamics in moving a spacecraft around." 

t Edwin E. IIBuzz" Aldrin, Jr., 1961, Apollo 11j Edgar D. Mitchell, 1963, Apollo 14j 
and David R. Scott, 1962, Apollo 15. 
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reader or student begin at the beginning. Chapter 3 is a good place to 
start-indeed, Chapters 3 through 7, with references to Chapters 1 and 2 
as needed, constitute most of the first term material in the author's course 
in Astrodynamics. The chapters in Part II are largely independent of each 
other and may be read or taught in any order. By picking and choosing, an 
undergraduate or graduate course may be organized to meet the needs of 
students having various levels of background and preparation. A textbook 
containing more subject matter than is covered in a course of instruction 
is, generally, of benefit to the student. The motivated ones are, thereby, 
tempted to stray from the beaten path of the classroom. 

The Introduction to this book is not an "Introduction" in the generally 
accepted sense of the word. Instead, it is a reprinting of an AIAA History 
of Key Technologies paper presenting a personal history of the author's 
involvement with Astrodynamics since the early 1950's. The intent is that 
it motivate an interest in the subject matter to follow. Although it is 
not easy reading for the technically unsophisticated, every reader with any 
interest at all in the history of space guidance and navigation should find 
something worthwhile there. 

The Prologue and Epilogue are a tribute to the flight of Apollo 8. This 
was the first manned spaceflight beyond the confines of an earth orbit and 
the first demonstration of the feasibility of onboard, self-contained space 
navigation. To many of us who were involved in the Apollo program it was 
the most exciting of all of the flights. The New York Times commissioned 
this author to write a popular article for its readers describing how we 
intended to navigate the Apollo spacecraft to the moon. That article was 
published on the eve of the Apollo 8 mission and appears here as the 
Prologue to this book. 

The Epilogue begins with a detailed description of just how well the on
board navigation system actually did function during the flight of Apollo 8. 
The evidence presented is conclusive that the astronauts could have 
performed successfully on their own without ground contact. Then, in 
the spirit of the Prologue (which was, of course, originally written for the 
layman), a fairly complete technical description of the onboard guidance 
and navigation system of the command and lunar modules is given. The 
Epilogue also was originally for another purpose-a chapter in a book on 
the theory and application of Kalman filtering which was commissioned by 
the Guidance and Control Panel of AGARD-NATO early in 1969. Then, 
the Epilogue ends appropriately with a digest of an article by Sam Phillips, 
the Apollo Program Director at NASA Headquarters, on the flight of 
Apollo 8-what it meant to America and to the history of the world. 
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A wide variety of problems is a distinctive characteristic of this book. 
Many of the problems consist of statements or equations to be proved or 
derived even though no such instruction appears in the text. The student 
is expected to verify everything which is either stated or implied. Some 
are simple exercises intended to test the reader's knowledge of the more 
important concepts. However, many of the problems extend the scope 
of the text and provide the reader with ample opportunity to develop 
considerable facility with the subject. These problems are labeled with 
the "dangerous bend in the road" sign 

~ 
used in Knuth's book on '!EX and possibly originated by Nicolas Bourbaki 
-the mysterious nom de plume of the collective authors of the classical 
books "Elements de Mathematique." 

A few remarks relevant to notational conventions are appropriate. 
Vectors of various dimensions are dealt with generally. A column vec
tor of any dimension is represented by a lowercase boldface letter. The 
corresponding italic letter usually denotes the magnitude of the vector. 
Matrices are represented by uppercase boldface and can be either square 
or rectangular arrays. The transpose of a vector or a matrix is denoted by 
the superscript T • Thus, the scalar product of two vectors a and b may be 
written either as a· b or aT b. In like manner, a quadratic form associated 
with a square matrix A is written x T Ax. Further, the notation M- T is 
used in place of the more awkward (M-1

) T which is, of course, equivalent 
to (MT )-1. 

Differentiation of a scalar with respect to a vector results, by definition, 
in a row vector. Thus, suppose f(x) is a scalar function of a vector x which 
is itself a function of t. Then, we have 

df af dx 
= dt ax dt 

as a compact form of the chain rule-to be regarded as either the scalar 
product of two vectors or the matrix product of a row matrix by a column 
matrix. For example, if x( t) has three components x 1 (t), x2 (t), and x3 (t) , 
then 

df = a f dx 1 + a f dX2 + a f dX3 
dt aX1 dt aX2 dt aX3 dt 

Likewise, when a vector function of a vector f(x) is differentiated, we 
write 

df af dx 
dt = ax dt 
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The factor 8r/8x is a matrix whose rows are the row vectors resulting from 
the differentiation of each of the scalar components of r with respect to the 
vector x. For example, if 

f= [~~] and 
x = [:~] 

then 
811 8/1 8/1 
8xl 8x2 8x3 

8r 8/2 8/2 812 
-= ax. 8xl 8x2 8x3 

813 813 813 
8xl 8x2 8x3 

Specific references are included in the text where appropriate. How
ever, certain books of general value to the author are listed here: 

• Abramowitz, M. and Stegun, I. A., Handbook of Mathematical FUnctions, 
Dover Publications, New York, 1965. 

• Baker, R. M. L., Jr. and Makemson, M.W., An Introduction to Astrody
namics, Academic Press, New York, 1960. 

• Chrystal, G., Textbook of Algebra, Parts 1 & 2, Dover Publications, New 
York, 1961. 

• Coolidge, J. L., A History of the Conic Sections and Quadric Surfaces, 
Oxford University Press, England, 1945. 

• Cramer, H., Mathematical Methods of Statistics, Princeton University Press, 
Princeton, New Jersey, 1946. 

• Danby, J. M. A., FUndamentals of Celestial Mechanics, The Macmillan 
Company, New York, 1962. 
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No. 556, Mathematics Research Laboratory, Boeing Scientific Research 
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I ntrod uction 

Originally published as "Space Guidance Evolution -
A Personal Narrative" by the present author in the Journal 
of Guidance, Control, and Dynamics for March-April, 1982. 
It was invited as a History of Key Technologies paper as 
part of the AIAA's Fiftieth Anniversary celebration. 

The prospect of preparing a comprehensive history of space guidance and 
navigation was, initially, a delight to contemplate. But, as the unproductive 
weeks went by, the original euphoria was gradually replaced by a sense of 
pragmatism. I reasoned that the historical papers which had the greatest 
appeal were written by "old timers" telling of their personal experiences. 
Since I had lived through the entire space age, and had the good fortune 
of being involved in many of the nation's important aerospace programs, I 
decided to narrow the scope to encompass only that of which I had personal 
knowledge. (It is, however, a sobering thought that you might qualify as 
an "old timer.") 

The story begins in the early 1950's when the MIT Instrumentation 
Laboratory (later to become The Charles Stark Draper Laboratory, Inc.) 
was chosen by the Air Force Western Development Division to provide a 
self-contained guidance system backup to Convair in San Diego for the new 
Atlas intercontinental ballistic missile. The work was contracted through 
the Ramo-Wooldridge Corporation, and the technical monitor for the MIT 
task was a young engineer named Jim Fletcher who later served as the 
NASA Administrator. 

The Atlas guidance system was to be a combination of an onboard 
autonomous system, and a ground-based tracking and command system. 
This was the beginning of a philosophic controversy, which, in some areas, 
remains unresolved. The self-contained system finally prevailed in ballistic 
missile applications for obvious reasons. In space exploration, a mixture of 
the two remains. 

The electronic digital computer industry was in its infancy then, so 
that an onboard guidance system could be mechanized only with analog 
components. Likewise, the design and analysis tools were highly primitive 
by today's standards. It is difficult to appreciate the development problems 
without considering the available computational aids. 

1 
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Computing in the Fifties 

When I joined the MIT Instrumentation Lab in 1951, digital computation 
was performed with electrically driven mechanical desk calculators by a 
battery of young female operators. For analog computation, an electronic 
analog computer marketed by the Reeves Instrument Company, called 
the REAC, was used. The big innovation, which signalled the demise of 
the desk computers, was the IBM Card Programmed Calculator (CPC) 
acquired in 1952. Floating point calculations could now be made at the 
fantastic rate of one hundred per minute. But read-write memory was at 
a premium, and consisted of 27 mechanical counters each holding a ten 
decimal digit number with sign and housed in bulky units known as "ice 
boxes." 

Development of the all-electronic digital computer was well underway 
at MIT in the early 1950's. Project Whirlwind produced an enormous 
machine, completely filling a large building off-campus, which boasted 1024 
sixteen-bit words electrostatically stored on cathode-ray tubes. We were 
fortunate to have access (albeit somewhat limited) to this marvel of the 
electronic age. (Today, of course, that same capability can be had on a 
single silicon chip.) 

In the summer of 1952, following about six months experience as a user 
of Whirlwind, my boss, Dr. J. Halcombe Laning, Jr., became enamored of 
the idea that computers should be capable of accepting conventional math
ematical language directly, without the time-consuming intermediate step 
of recasting engineering problems in an awkward, and all too error-prone, 
logic that was far removed from the engineer's daily experiences. Over 
the next few months he personally brought this idea to fruition with the 
successful development of the first algebraic compiler called, affectionately, 
"George"-from the old saw "Let George do it." 

Of some interest are the first compiler statements successfully executed 
by "George": 

x = 1, 

Print x. 

Unfortunately, this is not as well-known as 

"Mr. Watson, come here, I want you." 

since few programmers are aware of this bit of folklore. 
The first nontrivial program executed by George was a set of six non

linear differential equations describing the lead-pursuit dynamics of an air
to-air fire-control problem. The power of this grandfather of all compilers 
was aptly demonstrated-the equations were programmed in less than one 
hour, and successfully executed on the very first trial. 

When "peripherals" were added to the Whirlwind computer, Hal 
Laning encouraged Neal Zierler to collaborate in extending, perfecting, and 
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documenting l George. In June of 1954, almost two years after Hal had 
begun his work, John Backus and a team of programming researchers from 
IBM came to MIT for a demonstration of George. They were beginning 
work on a programming system for IBM's newly announced 704 calculator. 
As a result of this visit, algebraic expressions found their way into the 
Fortran language. 2 

For historical interest, a program I wrote in March 1954 using the 
George compiler to compute the Atlas missile trajectory is reproduced in 
Fig. 1. The notation was constrained by the symbol availability on a Flex
owriter, a specially designed typewriter that produced a coded pattern of 
holes in a paper tape. Since only superscripts were available, subscripts 
were indicated with a vertical slash prefix. The upper case letter D in the 
program denotes d/dt. The symbols F2 and F3 designate the sine and 
cosine functions. 

Fig. 1: Atlas trajectory program illustrating the "George" compiler. 

The use of and interest in George began to wane when our labora
tory acquired its own stored program digital computer-an IBM type 650 
Magnetic Drum Data Processing Machine-in the fall of 1954. But three 
years later, when tapes were available, Hal, with the help of Phil Hankins 
and Charlie Werner, initiated work on MAC-an algebraic programming 
language for the IBM 650, which was completed by early spring of 1958. 
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Over the years MAC became the work-horse of the laboratory, and many 
versions were written to be hosted on the IBM 650, 704, 7090, and 360, as 
well as the Honeywell H800, H1800, and the CDC 3600. 

MAC is an extremely readable language having a three-line format, 
vector-matrix notations, and mnemonic and indexed subscripts. 3 (I had 
left the laboratory for "greener pastures" during the period of MAC's cre
ation, and will always regret not participating in its development. But I 
take some solace in having originated the three-line format, which permits 
exponents and subscripts to assume their proper position in an equation. 
The idea was offered to IBM to use in Fortran but was dismissed as 
being "too hard to keypunch.") Unfortunately, after all these years of 
yeoman service, MAC seems destined to share the fate of Sanskrit, Baby
Ionic cuneiform and other ancient but dead languages. 

The high-order language called HAL, developed by Intermetrics, Inc. 
and used to program the NASA space shuttle avionics computers, is a direct 
offshoot of MAC. Since the principal architect of HAL was Jim Miller, 
who co-authored with Hal Laning a report 3 on the MAC system, it is a 
reasonable speculation that the space shuttle language is named for Jim's 
old mentor, and not, as some have suggested, for the electronic superstar 
of the Arthur Clarke movie "2001-A Space Odyssey." 

Since MAC was not then available on our IBM 650, some of the 
early analysis of the Atlas guidance system was made using a program, 
which Bob O'Keefe, Mary Petrick, and I developed, known as the MIT 
Instrumentation Laboratory Automatic Coding 650 Program or, simply, 
MITILAC. 4 We modeled the coding format to resemble that used for the 
CPC to minimize the transitional shock to those laboratory engineers who, 
though still uncomfortable with the digital computer, were beginning to 
wean themselves away from their more familiar analog devices. 

MITILAC was soon superceded by BALITAC,5 a mnemonic for Basic 
Literal Automatic Coding, because MITILAC programs were inefficient 
consumers of machine time. Besides, laboratory problems like Atlas guid
ance generally involved three-dimensional dynamics so that direct codes 
were provided (for the first time ever) to perform vector and matrix oper
ations. (The coding format was alpha-numeric, which was no easy trick to 
implement without an "alphabetic device" -obtainable from IBM for an 
additional monthly rental of $350 but too expensive for our budget.) 

Delta Guidance 

Initially, Hal Laning and I were the only ones at the laboratory involved in 
the analytical work for the Atlas guidance system. With no vast literature 
to search on "standard" methods of guiding ballistic missiles, we "invented" 
one. 
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Suppose r and v are the position and velocity vectors of a vehicle, and 
r T is the position vector of the target. Then along any free-fall, target
intersecting trajectory there is a functional relation among the vectors r, 
v, and r T' Call it 

F{r, v,rT ) = 0 (1) 

At the end of the powered or thrusting portion of the flight, this relationship 
must be satisfied if the missile is to hit the target. 

A reference powered-flight trajectory is chosen for which the "cut-off 
criterion" of Eq. (1) will be satisfied. Let the function F be expanded in 
a Taylor series about the reference cut-off values ro , vo' Thus, 

BFI BFI F{ro+~r,vO+~v,rT)=F{ro,vO,rT)+ a; 0 ~r+ Bv o~v+ ... (2) 

where the function and its derivatives on the right-hand side are all eval
uated on the reference path. (For each value of r along the reference 
trajectory there is a value of v for which F will vanish. Thus, each point 
is a potential cut-off point.) 

In essence, then, the zero th -order term on the right of Eq. (2) is zero 
by definition of the reference path, and the linear terms are driven to zero 
by an autopilot. Thus, the function F, with off-nominal arguments, will 
eventually vanish (assuming second- and higher-order terms are negligible). 
There are, of course, complications of detail, which shall be ignored in this 
discussion. 

The particular function F chosen for this purpose was 

F{r, v, rT ) = (v X r) . [v X (rT - r)] + J.lrT • (rT - ~) (3) 
TT T 

where J.l is the earth's gravitation constant. It is not a difficult exercise to 
show that F = 0 is necessary and sufficient for a target intercept. However, 
I am unable to recall from whence the expression came. Since at that time 
neither Hal nor I were celestial mechanists (nor acquainted with any), the 
mystery is all the more puzzling. 

Though simple in concept, the Delta guidance method (as it came to 
be called) is not easy to mechanize especially with analog hardware. First, 
considerable reference data must be stored; second, a complete navigation 
system is required; and third, time-of-flight errors are uncompensated, 
which will most certainly compromise system accuracy unless separately 
handled (with additional hardware, of course). Nevertheless, this is the 
system we were determined to make work, despite all of its deficiencies, 
until I made my first trip to Convair San Diego in the summer of 1955. 
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The Convair Legacy 

The key figures at Convair were Charlie Bossart, the Chief Engineer, and 
Walter Schweidetzky, head of the guidance group. Walter had worked with 
Wernher von Braun at Peenemuende during World War II, and had a most 
delightful Spanish wife who served as our interpreter during the inevitable 
evening adventure in Tijuana. 

I returned to Cambridge spouting a new vocabulary: "correlated flight 
path" and "correlated velocity" - "velocity-to-be-gained" and "distance
to-be-gained." The correlated flight path was a predetermined, free-fall 
reference trajectory designed to intercept the target. The nominal missile 
flight path would intersect the correlated path at the nominal cut-off point. 
To each point in time on the missile trajectory corresponded a point on the 
reference trajectory so that the missile velocity vector v m was related in a 
one-to-one manner to a corresponding reference velocity v c -the correlated 
velocity. The velocity-to-be-gained vector was the difference v 9 = v c -v m; 

distance-to-be-gained was the time integral of v g' A page from myoId 
notebook illustrating these concepts is reproduced as Fig. 2. 

5g = DISTANCE TO BE GAINED 

Fig. 2: Early concept of the correlated trajectory. 

As nearly as I can recall, the Convair mechanization proposal went 
something like this: If r is the position vector of the missile, and r + Ar is 
the position of the correlated point on the reference path, then the corre
lated velocity would be obtained by a polynomial approximation utilizing a 
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family of constant-momentum (or constant-energy) trajectories all passing 
through the target. In addition, a functional relationship between v g and 
~r could be determined since v g was well-approximated by the integral of 
the thrust acceleration aT. (Near the cut-off point, the difference between 
the gravity terms along the actual and reference paths rapidly approach 
zero.) In short, ~r could be represented as 

S 
~r= ....!.v v g 

g 
(4) 

where Sg = J v g dt. An iteration loop was implied since v c is computed 
from a polynomial function of r + ~r while v g is determined as v c - V m • 

The Convair engineers recognized that the velocity-to-be-gained 
vector eventually remains essentially parallel to a fixed direction in inertial 
space, and proposed a number of control schemes to drive the velocity-to
be-gained to zero. 

The immediate outcome of my trip to San Diego, and subsequent 
debriefing by Hal Laning, was his total abandonment of the Delta system. 
From that moment, the Delta guidance development was my millstone to 
bear. - Hal no longer appeared interested in guiding the Atlas missile, or 
in anything else for that matter. But after what seemed like an eternity 
(several weeks at least), Hal reappeared with an idea and needed a sym
pathetic ear. It had to do with a redefinition of the concept of correlated 
velocity, and a simple differential equation for velocity-to-be-gained. In a 
few days, Delta guidance would be an orphan. 

The Q-System 

If r is the radius vector representing the position of the missile at an 
arbitrary time t after launch, the correlated velocity vector v c was now 
to be defined as the velocity required by the missile at the position r(t) in 
order that it might travel thereafter by free-fall in a vacuum to a desired 
terminal condition (here considered to be coincidence of the missile and a 
target on the earth's surface although other applications to be discussed 
later are possible). For the definition of veto be unique, a further condition 
must be stipulated, such as the time at which the missile and target shall 
coincide. (This requirement would alleviate one of the deficiencies of Delta 
guidance.) 

The point M in Fig. 3 represents the missile position at time t; the 
heavy line through M is the powered-flight path terminating at the cut
off point (CO) in the elliptical free-fall trajectory shown as a dashed line 
to the target position T. Tangent to the correlated velocity vector v c is 
a second ellipse, which would be followed by the missile in free-fall if it, 
indeed, possessed the velocity v c at the point M. 
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Fig. 3: Correlated trajectory and velocity-to-be-gained (from Ref. 6). 

Suppose, now, that when the missile is at the point M at time t, a 
"correlated missile" is simultaneously located at the same position. The 
correlated missile is assumed to experience only gravity acceleration g and 
moves with velocity v c' The actual missile has velocity v m and is affected 
by both gravity g and engine thrust acceleration aT' During a time in
terval At, the two missiles are allowed to move "naturally" with the result 
that they will diverge in position by the amount 

Ar = (vm - vc ) At 

Each experiences a velocity change given by 

(5) 

(6) 

At the end of this time interval, imagine that the correlated missile 
is brought back into coincidence with the actual missile. This change in 
position must be accompanied by a corresponding change in velocity if ter
minal conditions imposed on the correlated missile are to remain satisfied. 
The appropriate change may be expressed as 

(7) 

where the elements of the matrix Q are the partial derivatives of the com
ponents of the velocity v c with respect to the components of the position 
vector r. It is understood, in carrying out the differentiations, that the 
target location r T and the time-of-free flight t f f remaining (as well as t 
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itself) are held fixed in the process. Thus, we have 

Q = aVe I 
ar rT,tlJ 

(8) 

The total change in ve as a result of these two steps is then 

~ve = g~t + Q(vm - vJ ~t 
= g~t - QVg~t (9) 

Finally, the change in velocity-to-be-gained ~v g is simply the difference 
between ~ v e and ~ v m so that 

~Vg = -aT~t - QVg ~t (10) 

Division by ~t, and letting ~t approach zero, produces the fundamental 
differential equation for velocity-to-be-gained 

dVg 
dt = -aT - QVg (11) 

Behold the absence of the gravity vector! The necessity to compute 
earth's gravity, an implied feature of Delta guidance, had vanished. In 
effect, almost all of the difficulties of the guidance problem were now bound 
up in the matrix Q. (Hal had a marvelous blackboard derivation of the 
fundamental equation utilizing block diagrams and an eraser. The au
dience never failed to be impressed when the block labeled g magically 
disappeared. ) 

To say that calculating the elements of the Q matrix was not a simple 
exercise would be a gross understatement. In our final report 6 on the Q
system it took fourteen pages of an appendix just to describe the necessary 
equations. Of what possible use could the v g differential equation be if the 
coefficient matrix was that complex? (Had Delta guidance been abandoned 
too cavalierly?) We were encouraged to proceed because the Q matrix was 
so simple in the hypothetical case of a flat earth with constant gravity. 

With the vector g a constant, it is not difficult to show that 

(12) 

is the appropriate relation for the problem variables. Therefore, it follows 
at once that 

Q= __ 1 I 
til 

where I is the identity matrix, and the v g equation is simply 

dVg 1 
-=-V -aT 
dt til g 

(13) 

(14) 

(This differential equation is technically unstable, so that errors in v g will 
increase with time. But the "time constant" associated with this instability 
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Fig. 4: Q coefficients for 5500 mile ICBM trajectory (from Ref. 6). 

is the missile time-of-free flight. Since no more than one fourth of the flight 
time is spent in the powered mode, the magnification of any errors will not 
exceed t in any case.) 

The general nature of the Q's for ICBM applications is illustrated in 
Fig. 4. They correspond to a range of 5500 n.mi. and a coordinate system 
for which the x, z plane is approximately directed toward the target with 
the x-axis elevated 20 deg above the local horizontal at the launch point. 
(The matrix Q is symmetrical-more about this later.) It is seen from the 
figure that the Q's are slowly varying functions of time suggesting that 
they may be adequately approximated by simple polynomials. t Indeed, 
for IRBM (intermediate-range ballistic missile) applications, for which 
the range is 1500 miles or less, the Q's could be taken as constants with 
acceptable accuracy (less than a nautical mile). 

The computation of the velocity-to-be-gained vector is only one 
element of the Q-guidance scheme. Of equal importance is a method to 
control the missile in pitch and yaw, in order that the thrust acceleration 
will cause all three components of v g to vanish simultaneously. 

The elegant solution to this control problem came as a brilliant burst 
of insight. It was all so simple and obvious! If you want to drive a vector 

t For a single reference trajectory, the Q's may be regarded as functions only of 
time. However, for an actual missile trajectory with missile parameters different from 
nominal values, the mathematically correct Q's depend also on missile position. It is 
only an engineering approximation to regard the Q's as time-programmable. 
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to zero, it is sufficient to align the time rate of change of the vector with 
the vector itself. Therefore, the components of the vector cross product 
v g x dv gldt could be used as the basic autopilot rate signals-a technique 
that became known as "cross-product steering." 

With this control method, it was clear that the v g vector would even
tually vanish. However, the effect on fuel economy was not so obvious. 
Therefore, an optimization program was constructed utilizing the calculus 
of variations to study optimum fuel trajectories 7 (one of the earliest such 
applications made on a digital computer). The upshot was a confirmation 
of our suspicion that a good approximation to optimum fuel usage was, 
indeed, provided by cross-product steering. 

Almost ten years later, Fred Martin reconsidered this problem in his 
MIT doctoral thesis. 8 One interesting little tidbit bears repeating here. 
Fred was able to show, using elementary methods only, that cross-product 
steering is optimum for the Bat-earth hypothesis. His argument went as 
follows: 

Form the scalar product of Eq. (14) and the vector v g to obtain 

d d 2 2 2 
dt (v g . v g) = dt v g = T _ t v g - 2aT . v g 

where T is the time of impact at the target (t f f = T - t). Then integrate 
from the present time t to the time of engine cut-off teo. After integrating 
by parts we have 

[

te:o 

t [2(T - t)aT • v g - v;] dt = (T - t)v; (15) 

Now, for any particular time t, the right-hand side of Eq. (15) is deter
mined. Therefore, to minimize the integration interval teo - t, we should 
maximize aT·v g -i.e., align the thrust direction with the v g vector. In the 
special case of a Bat earth, [check Eq. (14)] this requirement is equivalent 
to cross-product steering. 

The vector block diagram of Fig. 5 shows the basic simplicity of an 
analog mechanization of the Q-system for an IRBM application. By use 
of the Qv g signals as a torque feedback to the pendulous integrating gyro 
(PIG) units, the output of the latter can be made available as shaft rota
tions proportional to the components of v g. Voltage signals can, therefore, 
be obtained, which are proportional to the v g components by exciting 
potentiometers on the v g shafts. These signals can, in turn, be fed into 
constant gains at the torquing amplifier inputs to provide the necessary 
multiplications and summations that constitute the matrix-vector product 
Qv g. The thrust acceleration sensed by the PIG's varies from approxi
mately 50 to 200 ft/sec 2 , while the product Qv g is of the general order of 
magnitude of 20 ftlsec 2 at launch, and decreases to zero at cut-off. Thus, 
the Qv g product is of the nature of a correction term, which, although 
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Fig. 5: Vector schematic of IRBM guidance computer (from Ref. 6). 

far from negligible, does not have to be instrumented with the same preci
sion as the integral of the thrust acceleration itself. As a result, accuracy 
requirements on each component in the computation of Qv g is about one
quarter of one percent for a one mile miss at the target-well within the 
range of analog technology available at the time. 

Control signals for pitch and yaw are obtained simply using tachome
ters mounted on the follow-up servos, which produce signals proportional 
to the derivative of v g' These are used as excitation for potentiometers 
mounted on the v g shafts. The resulting signals are combined to give 
the appropriate components of the vector cross product, which are then 
transmitted to the autopilot as appropriate command rates in pitch and 
yaw. 

A report 6 on the Q -system was presented at the first Technical Sym
posium on Ballistic Missiles held at the Ramo-Wooldridge Corporation in 
Los Angeles on June 21 and 22, 1956. In the afternoon of the second day 
came the only session on Inertial Guidance, and all of the papers except 
ours dealt with inertial instruments-the Q-system had no competition! 
We could easily have returned to Boston by walking on the clouds. 

The Q -system was first implemented on the Thor IRBM and then on 
the Polaris fleet ballistic missile, but not the Atlas for which it had been 
designed. What system was used for Atlas? Some form of Delta guidance, 
I've been told. 
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Symmetry of the Q Matrix 

In 1955, the program output from the IBM 650 was a stack of punched cards 
that had to be printed separately using a Type 418 accounting machine. 
Hal and I watched the 418 type bars rise and fall, with their characteristic 
noisy clank, as the first set of Q matrix elements was being tabulated in 
a neat array format. At the pace of 150 lines per minute, plenty of time 
was available for a surprising, and totally unexpected, observation. The Q 
matrix was symmetric! In fact, the off-diagonal elements were asymmetric 
only in the last decimal place. 

Considering the enormous complexity of the program, the phenomenon 
could not be happenstance. Two conclusions were immediate: 1) the 
symmetry of the Q matrix must be analytically demonstrable, and 
2) our computer program must be correct. It was only much later that the 
mathematical proof was supplied. Meanwhile, an instant check was always 
available on the complicated numerical procedures required to produce the 
Q matrix. 

In an appendix to our report,6 two different proofs of the symmetry 
property were given. The first utilized a special coordinate system for which 
it could be shown that four of the off-diagonal elements of the Q matrix 
were identically zero. The two remaining corner elements were then shown 
to be equal by a rather messy, nonintuitive argument requiring five pages 
of uninspiring and tedious mathematics. 

The second proof provided greater physical insight, and involved a 
hydrodynamical analogy. Correlated velocity was to be visualized as a 
vector-velocity field describing the motion of an inviscid, compressible fluid. 
The symmetry of the Q matrix was then equivalent to the velocity field 
having a zero curl '\1 X ve = O. The equation of motion 

dVe 
Yt=g 

is the same as that for an inviscid fluid moving under the action of conser
vative body forces throughout which the internal pressure gradient is zero. 
Together with the equation describing the variation in fluid density p 

dp +p'\1.v = 0 
dt c 

it follows (with just a little exercise in ingenuity) that 

1 
-'\1 X Vc = constant 
p 

The demonstration concludes with an argument that the fluid is converging 
on the target point rT so that the density in the vicinity of rT is becoming 
infinite. Hence, the constant is zero, implying that the curl is everywhere 
zero. 
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The distribution of the Q-system report to those individuals having 
both a secret clearance and a "need to know" triggered an informal com
petition. Who would be first with the shortest and most elegant proof of 
Q matrix symmetry? (Among the contestants, the only one I recall vividly 
supplied a carefully detailed but erroneous demonstration of nonsymmetry.) 

In 1960, the original Q-system report 6 was reprinted in a shortened 
form 9 with a new appendix describing my own most recent proof. The key 
was to establish Q-l as a solution of the matrix Ricatti equation 

~Q-l + Q-1GQ-l = I 
dt 

where G is the gravity-gradient matrix 

G= 8g 
8r 

(16) 

(17) 

The symmetry of Q-l follows at once from the differential equation 
and the terminal condition for Q-l. The matrix G is necessarily sym
metric since g is the gradient of a scalar potential function. Hence, Eq. 
(16) and its transpose are identical. Also Q-l = 0 at the terminal point 
is symmetric. Therefore, Q-l (hence also Q) is everywhere symmetric. 

A by-product of this symmetry proof was an alternate computational 
procedure for determining Q, which is independent of the assumption that 
the gravity field through which the missile moves is inverse square. Hence, 
a more precise modeling of earth gravity could be incorporated when com
puting the Q matrix. 

Five years later, Fred Martin published an explicit expression for the 
Q matrix as an appendix to his doctoral thesis. 8 The symmetry was now 
obvious from inspection. 

The latest bulletin on the subject is a recent recognition that no elab
orate proof is really necessary! The property follows from the inherent 
nature of symplectic matrices. 

It has been known for years that the Q matrix can be formed alge
braically from partitions of the state transition matrix for the linearized 
equations describing a missile in free fall. It has also been known (since 1962 
when Jim Potter first called attention to the fact 10) that the transition 
matrix is an example of a class of so-called "symplectic" matrices. The 
virtue of a symplectic matrix is that the inverse is easily obtained by a 
simple rearrangement of its elements. 

One day last year while preparing a lecture for my class, I noticed that 
the product of the transition matrix, and its inverse, produced a number 
of symmetric matrices-one of which was Q. The interested reader may 
wish to verify this for himself. 



Introduction 15 

October 4, 1957 and the Aftermath 

Like so many other Americans, the first half of October 1957 found me 
standing in my yard in the cold but clear early morning hours watching 
and waiting for the Russian Sputnik to pass overhead. I had been away 
from MIT for just one year exploring new and different career opportunities 
in the alleged greener pastures of industry. A few months later during one 
of my infrequent telephone conversations with Hal Laning, I learned that 
he had a simulation of the solar system running on the IBM 650 and was 
"flying" round trips to Mars. 

It didn't take long to wind up my affairs and head back to the 
Instrumentation Lab. My return practically coincided with the publica
tion of a laboratory report lIon the technical feasibility of an unmanned 
photographic reconnaissance flight to the planet Mars. It was asserted by 
the authors that a research and development program to that end could 
reasonably be expected to lead to the launching of such a vehicle within 
the next five to seven years. (It is interesting that the study and report 
had been sponsored by the Ballistic Missile Division of the U.S. Air Force.) 

A small group was forming to flesh out the system proposal for the 
Mars mission. Hal and I were responsible for the trajectory determination, 
as well as the mathematical development of a suitable navigation and guid
ance technique. The project culminated a year or so later in a three volume 
report,12 and a full-scale model of the spacecraft. 

To my surprise, it quickly became evident that we did not really know 
how to compute trajectories for the simple two-body, two-point boundary
value problem! How could that be possible after all the work on ballistic 
missile trajectories only a few years earlier? As I reviewed those equations 
in the Q-system report, the difficulty (but not the solution) was apparent. 
We had, indeed, developed expressions involving the correlated velocity 
vector but they were all implicit-v c never appeared explicitly. These 
equations were fine for calculating the Q matrix by implicit differentiation 
but in no way did it seem possible to isolate the velocity vector. (Hal 
had been calculating round-trip Martian trajectories by "trial and error"
adjusting and readjusting the spacecraft initial conditions and determining 
the orbit by numerically solving the equations of motion. There had to be 
a better way!) 

I found the clue in the classical treatise on dynamics by Whittaker 13 : 

"Lambert in 1761 shewed (sic) that in elliptic motion under the 
Newtonian law, the time occupied in describing any arc depends 
only on the major axis, the sum of the distances from the center 
of force to the initial and final points, and the length of the chord 
joining these points: so that if these three elements are given, the 
time is determinate, whatever the form of the ellipse." 
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The proof followed, and the section ended with a neat analytical expression 
for time of flight as an explicit function of the problem geometry and the 
semimajor axis a of the orbit. Given the geometry and the time of flight, 
then a could be determined-not directly but by iteration. 

It was the footnote that gave me pause: 

"It will be noticed that owing to the presence of the radicals, 
Lambert's theorem is not free from ambiguity of sign. The reader 
will be able to determine without difficulty the interpretation of 
sign corresponding to any given position of the initial and final 
points." 

By no means was it obvious to me how to resolve the ambiguity or, 
more to the point, how to instruct a computer to choose unerringly from 
among the several alternatives. Whittaker's only reference was to Lagrange 
(Oeuvres de Lagrange, IV, p. 559) who also failed to address my concerns; 
but going to the original source did pay dividends. Instead of proceed
ing immediately to his proof of Lambert's theorem, Lagrange first chatted 
about the problem from different perspectivest -one of which led me to 
transform the problem to rectilinear motion. The ambiguity then ceased 
to exist. 

A nontrivial problem remained-to obtain the initial velocity vector 
in terms of the semimajor axis a. An intense effort produced finally a de
lightfully elegant expression. We were now able to generate interplanetary 
trajectories with great aplomb. (My first trajectory program suffered from 
an annoying deficiency. Time of flight is a double-valued function of the 
semimajor axis a with infinite slope for the minimum-energy trajectory
far from ideal for a Newton-Raphson iteration. The difficulty was resolved 
by a different choice of independent variable against which the time of 
flight is a monotonic function. This small, but necessary, wrinkle was first 
reported in an appendix to Ref. 9, and practically eliminated the audible 
vulgarisms that so frequently accompanied the use of the original program.) 

With some trepidation, I presented this method 14 of trajectory deter
mination in New York on January 28, 1959 at the annual meeting of the 
Institute of the Aeronautical Sciences. My scant background in celestial 
mechanics did little to inspire self-confidence in the novelty of the tech
nique. But, as I later learned, Rollin Gillespie and Stan Ross were in the 
audience, and had carried a preprint back home to their associate John 
Breakwell at the Lockheed Missiles and Space Division. They, too, had 
been grappling with the trajectory problem and (according to Rollin) this 
was the "breakthrough" they also needed. 

t Lagrange's paper would never appear in the Journal of Guidance, Control, and Dy
namics, or in any other modern archival publication, without strong protestations from 
the editor-UNeeds at least a 50% reduction!" 
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The method became the basis of the major orbit-determination 
programs of the Jet Propulsion Laboratory for its series of unmanned in
terplanetary probes, and of the Navy and Air Force for targeting ballistic 
missiles. Indeed, in the early sixties, JPL used this technique to generate 
an enormous set of volumes-similar to the Airline Guide-in which were 
tabulated daily launch conditions for Venus and Mars missions extending 
many years into the future. 

To support the Mars reconnaissance study project, we confined our 
attention to trajectories whose flight times were of the order of three years, 
and which had launch dates in the years 1962-1963. These missions, for 
which the space vehicle makes two circuits about the sun while the earth 
makes three, seemed to provide the greatest flexibility in launch window 
and passing distance at Mars without placing unreasonable requirements 
on launch system capabilities. Later we investigated round-trip missions 
to Venus, which could be accomplished with flight times of only a year and 
a quarter. 

One day, when plotting a few of these Venusian reconnaissance 
trajectories, I was impressed by the proximity of the spacecraft orbit and 
the Martian orbit resulting from the increased velocity induced during the 
Venusian flyby. The interesting possibility of a dual contact with both 
planets seemed feasible-a kind of celestial game of billiards. The infre
quency of proper planetary configurations would, of course, severely limit 
the practicality of such a mission if, indeed, one existed at all. 

Using trusty "cut and try" methods, I found that ideal circumstances 
did prevail on June 9, 1972. On that date, a vehicle in a parking orbit 
launched from Cape Canaveral on a 110 0 launch azimuth course could be 
injected into just such a trajectory at the geographical location of 50 W 
and 18 0 S and with an injection velocity relative to the earth of 15,000 
ft/sec. The first planet encountered would be Venus after 0.4308 year. The 
vehicle would pass 4426 miles above the surface of the planet and would, 
thereby, receive from the Venusian gravity field alone a velocity impulse 
sending it in the direction of Mars. The second leg of the journey would 
consume 0.3949 year and the spacecraft would then contact Mars, passing 
1538 miles above the surface. The trip from Mars back to earth would last 
0.4348 year so that the vehicle would return on September 13, 1973. This 
truly remarkable orbit is illustrated in Fig. 6. (At the time, the launch date 
seemed incredibly far off-twelve whole years! But the day finally came 
and, sad though it may seem, passed without fanfare or even a comment.) 

Although this was the first realistic multiple flyby mission ever de
signed, it was not the first ever conceived. That distinction goes to General 
Gaetano Arturo Crocco who was Director of Research of the Air Min
istry and a Professor of Aeronautics at the University of Rome, Italy. His 
paper 15 described an earth to Mars to Venus to earth mission of one year 
duration. The orbits were all coplanar; the velocity requirements were 
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Fig. 6: Double-reconnaissance trajectory (from Ref. 10). 

enormous; and the reversed itinerary prevented the best utilization of the 
gravity assist maneuvers. But it was published in 1956-one year before 
Sputnik. (AIAA members might appreciate knowing that General Crocco 
was a founding member of the Institute of the Aeronautical Sciences-one 
of our parent organizations.) 

The Mars reconnaissance preliminary design was ready for customer 
review in the summer of 1959. The Air Force had been our sponsor, and 
it was there that we expected to turn for authorization to proceed. We 
were ready to go-"Mars or bust!" -with an enthusiasm that was exceeded 
only by our naivete. While we had been busy nailing down the myriad of 
technical problems one by one, the political climate was changing. A new 
government agency called the "National Aeronautics and Space Adminis
tration," not the Air Force, would control the destiny of the Mars probe. 

With view-graphs, reports, and a wooden spacecraft model, we headed 
for Washington instead of Los Angeles, and arrived there on the same day 
as Chairman Khrushchev. Although our presentation was well received, the 
high-level NASA audience we had expected (including Hugh Dryden, the 
Deputy Administrator) was attending to the necessary protocol mandated 
by the Russian visit. We were sent home with a pat on the head and the 
promise of some future study money. As our dreams of instant glory in 
interplanetary space began to fade, we secretly took perverted pleasure 
in having Nikita Khrushchev himself as a ready-made scapegoat. The 
Russians were formidable opponents indeed! 
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The NASA study contract allowed our small team to continue the work 
that had begun under Air Force auspices. For this we were most grateful; 
but the absence of a specific goal diminished much of the enthusiasm. Now 
we were simply doing "interplanetary navigation system studies." There 
certainly was no reason to expect that a new goal lay just over the horizon, 
which would challenge and excite us beyond our wildest imaginations. 

Prelude to Apollo 

The general method of navigation that Hal and I had created for the Mars 
probe mission 16 was based on perturbation theory, so that only devia
tions in position and velocity from a reference path were used. Data was 
to be gathered by an optical angle-measuring device, and processed by 
a spacecraft digital computer. Periodic small changes in the spacecraft 
velocity were to be implemented by a propulsion system as directed by the 
computer. 

The appropriate velocity changes were calculated from a pair of 
matrices obtained as solutions of the differential equations 

dR* = V* dV* = GR* (18) 
dt dt 

where G is the gravity-gradient matrix evaluated along the reference path. 
Boundary conditions were specified at the reference time of arrival t A at 
the target as 

(19) 

Then if 6r( t) is the position deviation from the reference path at time t, 
the required velocity deviation 6v(t) was found to be 

6v(t) = V*(t)R*-1 (t) 6r(t) (20) 

It is a trifle embarrassing to admit that we did not immediately rec
ognize our old friend the Q matrix in Eq. (20). When the dawn came, we 
were truly nonplused. Here we were now working in an unclassified area 
with every intent to freely publish the results-but the Q-system was still 
classified! That last point had been dramatically emphasized only a year or 
so earlier. An author, who shall remain nameless, wrote a book on guidance 
containing a section that made full disclosure of the Q -system. When the 
U.S. Navy was finally ready to act, the books were on the publisher's 
loading dock awaiting shipment. All copies-several thousand at least
were seized and burned. 

Then and there the matrix product V*R *-1 was christened C*. We 
reasoned that the Q matrix by itself was just a mathematical collection 
of partial derivatives. The security classification derived from its use in 
the velocity-to-be-gained differential equation as applied to ballistic missile 
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guidance. Since the letter "Q" signified absolutely nothing, it would have 
been pointless to persist in its use in an entirely different context. 

The velocity correction, as calculated from Eq. (20), was perfectly 
adequate for interplanetary missions, except when the spacecraft was in 
proximity to the destination planet. With a relatively short time of flight 
remaining, the constraint imposed on the vehicle by the C* matrix to 
reach the target at a predetermined time caused an inordinate expenditure 
of rocket fuel. 

The deficiency was later corrected during our NASA studies with the 
invention of variable-time-of-arrival guidance. 17 Equation (20) could now 
be replaced by 

(21) 

where v r(t A) is the velocity of the spacecraft relative to the target planet 
at the nominal time of arrival t A and 8t is the change in arrival time. The 
increment 8t is chosen to minimize the magnitude of the required velocity 
correction. 

To navigate the Mars probe, a sequence of measurements of angles 
between selected pairs of celestial bodies, together with the measurement 
of the angular diameter of a nearby planet, was to be made on board the 
spacecraft (automatically, of course, under computer control) to obtain a 
celestial fix. For specificity, the measured angles, illustrated in Fig. 7, were 
chosen as follows: 1) from the sun to the nearest visible planet P; 2) from 
Alpha Centauri to P; 3) from that one of Sirius or Arcturus to P such 
that the plane of measurement is most nearly orthogonal to the plane of the 
angle measured in 2; 4) from the sun to the same star selected in 3; 5) from 
the sun to the second closest planet provided that more than one planet is 
"visible" (at least 15 0 away from the line-of-sight to the sun); and 6) the 
angular diameter of P, provided that it exceeds 1 mrad. This strategy for 
observations ensured that a minimum of four angles would be measured, 
provided at least one planet was visible. (The three particular stars were 
selected because they are among the brightest and form roughly an orthog
onal triad.) The intended result of these observations was a determination 
of the coordinates of spaceship position together with a correction to the 
spaceship clock. 

Although the terminology was not yet in vogue, we were in fact dealing 
with an estimation problem involving a four-dimensional "state vector." 
We linearized the measurements about a reference point, and developed a 
weighted least-squares procedure to obtain the celestial fix. 16 

So much for the Mars probe, which was now, at best, in a state of 
limbo. We began working for NASA, and the close technical collaboration 
that had existed between Hal and myself gradually subsided. 

Hal Laning renewed his old love affair with the digital computer
however, it was basic computer architecture, and not software, that 
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Fig. 7: Mars probe navigation fix (from Ref. 16). 

attracted his interest this time. He joined forces with Ramon Alonzo to 
develop a design for a small control computer with some unique character
istics for space and airborne applications. 18 Some of those features were 
variable speed with power consumption proportional to speed, relatively 
few transistors, parallel word transfer, automatic incrementing of counters, 
and automatic interruption of normal computer processes upon receipt of 
inputs. The program and constants were stored in a wired-in form of 
memory called a "core rope," which permitted unusually high bit densities 
for that time. Such a computer would have been ideally suited for the Mars 
probe but, in fact, Hal and Ray were unknowingly designing the computer 
whose technical offspring would take man to the moon. 

Meanwhile, I continued alone on the guidance and navigation analysis. 
There were some annoying problems with our interplanetary navigation 
algorithm having to do with numerical difficulties encountered in the re
quired matrix inversion associated with the method of least squares. 

In the notation used at that time,19 the least-squares method resulted 
in the following expressiont 

(B-IO) 

Here m is the total number of measurements for any particular fix; U m4 

is the m x 4 measurement geometry matrix; ~ mm is the diagonal moment 

t Equations with the prefix B are taken from, and numbered in accordance with, the 
appendix of Ref. 19. 
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matrix of measurement errors; cAm is the vector of measurements; Cf4 is 
the least-squares estimate of the four-dimensional state vector. Four mea
surements are sufficient to determine the spaceship position and the clock 
correction, so that r = m - 4 is the number of redundant measurements. 

To cope with the numerical difficulties of Eq. (B-IO), I was deter
mined to obtain, if at all possible, an explicit inverse of the matrix product 
U 4m 4t~!n U m4 . The task became an obsession and the derivation was 
so involved that only the final expression appeared 19 in an unclassified 
appendix to an otherwise classifiedt report. The result was recorded as 
follows: 

"Now if we define the two square matrices 
-1 T -1 

P 44 = U 44 4t 44 U 44 
Qrr = Wrr + Ur4P 44 U4r 

it can be verified directly that 

(B-12) 

(B-13) 

(U4mW~!n Um4 )-1 = P 44 - P 44 U4rQ;/Ur4P44 (B-14) 

Then, by substituting (B-14) into Eq. (B-1 0), we obtain, after a 
little manipulation, 

Cf4 = U"il {III44 04rll + B 4rQrr ll- Ar4 Irrll} cAm (B-15) 

where we have defined the two rectangular matrices 

Ar4 = Ur4 U"il 
B 4r = W44 A 4r 

(B-16) 

(B-17) 

The matrix Qrr may be expressed in terms of Ar4 and B 4r by 

(B-18) 

Equation (B-15) displays explicitly the effect of adding redundant 
measurements. " 

Those familiar with the Kalman filter will recognize Eq. (B-14) at once 
as the covariance matrix update formula. Although the expression (B-15) 
for the state vector update is not in the customary form, it is evident that 
the first term on the right is the state estimate using four measurements. 
The second term may be rewritten as 

-U"ilB 4rQ;/ A r4cA4 + U"il B 4rQ;/cAr 

with cA4 and cAr denoting the two partitions of the vector of measure
ments cAm. Then, substituting from Eqs. (B-12), (B-16), and (B-17), 

t The report was classified because it quoted some confidential Centaur missile data. 
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and introducing the matrix 

W 4r = P44U4rQ;-r1 

called the ''weighting matrix" in the current vernacular, the term in 
question becomes 

- -1 -W 4r(6Ar - U r4 U 44 6A4) 

Since this is precisely the weighted difference between the actual redundant 
measurements and the predicted values of those measurements, Eq. (B-15) 
is then exactly equivalent to the now conventional state vector update 
formula. 

Unbeknownst to me at the time, Rudolf Kalman was also addressing 
the estimation problem, albeit with greater generality and from a more 
esoteric standpoint. His now classical paper20 was published almost si
multaneously with Ref. 19. About a year later, I learned of Kalman's work 
from Stan Schmidt at the Ames Research Center. 

The Race to the Moon 

After the publication of our studies for NASA in the three volume report 
R-273,19 a hiatus in further navigation work resulted from an unexpected 
invitation by the Research and Advanced Development Division of A vco 
Corporation. They enlisted the support of the Instrumentation Laboratory 
to design a system for guiding a vehicle propelled electrically by a low
thrust arc-jet engine from an earth-satellite orbit into a lunar orbit. We 
were so eager to work on a real space program that we fairly leaped at 
this opportunity. A bright and amiable young engineer, Mike Yarymovych 
(who served as the AIAA president for the 1982-83 term), was our principal 
contact. 

At that time a great deal of work had already been accomplished in 
optimizing low-thrust escape trajectories utilizing variational techniques, 
but virtually no attention had been directed to the guidance problem. 
We succeeded in designing a multiphased guidance scheme-one aspect of 
which relied heavily on the concepts of velocity-to-be-gained and steering 
developed for the Q-system. Preliminary results were first published 21 in 
January of 1961, and Jim Miller carried through the complete development 
as his doctoral dissertation,22 which he presented on August 29, 1961 in 
Los Angeles at the Sixth Symposium on Ballistic Missile and Aerospace 
Technology. 

Meanwhile, in February of that same year, NASA came through with 
another six-month contract-this time for a preliminary design study of a 
guidance and navigation system for Apollo to be sponsored by the Space 
Task Group of NASA. It was time to dust off and re-examine the navigation 
problem once again. 
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I learned from Gerald Smith that the Ames Research Center's Dy
namic Analysis Branch was working on midcourse navigation and guidance 
for a circumlunar mission. 23 The Branch Chief, Stanley Schmidt, and his 
associates were most hospitable during my visit, and gave me a private 
blackboard lecture describing the filter equations taken from Kalman's year 
old paper 20 which they were using for their own navigation studies. I also 
received a copy of Kalman's paper, along with the admonition that it would 
not be easy reading. 

The key idea gleaned from the meeting at Ames was the possibility of 
eliminating the notion of the navigation fix. I learned that the covariance 
matrix could be easily extrapolated using the state transition matrix. Nav
igation measurements could be spaced in time and the update equations 
could be applied recursively to a full six-dimensional state vector. Indeed, if 
only one scalar measurement was processed at anyone time, the matrix Qrr 
of Eq. (B-13) would be simply a positive scalar with no matrix inversion 
required at all! 

Kalman's paper was to me so abstruse that it was not clear whether his 
equations were equivalent to those obtained using the maximum-likelihood 
method. (Indeed, Stan told me during our visit that this question had not 
yet been resolved to everyone's complete satisfaction.) To settle this in my 
own mind, I wrote down a linear state-vector update equation to process 
a single measurement and left the weighting vector to be determined so as 
to minimize the variance of the estimation error. The result agreed with 
Kalman's. 

As a second check, I applied the equations (with the state transition 
matrix replaced by the identity matrix) to one of the Mars mission position 
fixes, and processed the measurements one at a time. Again the result was 
the same. 

The recursive navigation algorithm was clearly the best formulation 
for an onboard computer. But a number of questions still remained. When 
a single measurement is to be made, which star and planet combination 
provides the "best" available observation? Does the best observation give a 
sufficient reduction in the predicted target error to warrant its being made 
at all? Is the uncertainty in the computer velocity correction a small enough 
percentage of the correction itself to justify an engine restart and propellant 
expenditure? Can a statistical simulation of a space-flight mission be made 
without resorting to Monte Carlo techniques? How would cross-correlation 
effects of random measurement errors affect the estimator? These questions 
were all addressed in a paper 24 presented in October of 1961, on Friday 
the thirteenth, at the American Rocket Society's Space Flight Report to 
the Nation held in the New York Coliseum. 

During the preparation of that paper, political events provided a new 
urgency to our work. On May 25, 1961, President John F. Kennedy in his 
Special Message to Congress on Urgent National Needs said: 
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"1 believe that this nation should commit itself to achieve the goal, 
before this decade is out, of landing a man on the moon and 
returning him safely to earth." 

25 

Less than three months later on August 10, NASA contracted with our 
Laboratory for the development of the Apollo guidance and navigation 
system-the first major Apollo contract awarded by the space agency. 

The history of the Apollo onboard guidance, navigation, and control 
system was well told 25 by Dave Hoag at the International Space Hall of 
Fame Dedication Conference in Alamogordo, N.M., during October 1976. 
With that as background, a description of the Apollo system and its devel
opment will not be necessary here. However, a few items require emphasis 
to provide a proper perspective for the rest of this narrative. 

Initially, the specifications were for a completely self-contained system 
-there would be absolutely no ground communications either verbally or 
by telemetry with the vehicle. This requirement, which was presumably 
to prevent an over enthusiastic competitor in the race to the moon from 
intentionally interfering with an Apollo flight, gradually eroded away-but 
not before computer algorithms had been designed and implemented which 
would permit completely autonomous missions. 

Several fundamental characteristics of the Apollo guidance computer 
(AGC) made the implementation of self-contained algorithms a definite 
challenge: 1) a short word length, 16 bits, necessitating double precision 
for most calculations; 2) a modest memory size-36,864 read-only, and 2048 
read-write registers; and 3) moderate speed-23.4 Jisec add time. Small 
as that may seem, it was a major improvement in speed and capacity over 
that which was available in the fall of 1961. Then the AGC had 4096 
words of fixed memory, 256 words of erasable memory, and twice the cycle 
time. (Over the years technology advances permitted the expansion in 
capacity while maintaining the original size of one cubic foot. The physical 
dimensions could change only at great cost-that was all the space provided 
for in the spacecraft.) 

The first mission programming for the AGe was to implement the 
recursive navigation algorithm. That, at least, we knew how to do! Of 
course, the program changed many times during the ensuing years but not 
the concept. A complete description, including all the nitty-gritty, of the 
final implementation for Apollo is found in Ref. 26.t A diagram which we 
used countless times for customer briefings is reproduced as Fig. 8. Note 
from the figure that the reference trajectory has been replaced by the inte
grated vehicle state. The necessity for this important change was obvious 
when we first addressed the implementation problem. The modification is 
generally referred to as the "extended" Kalman filter. 

t That reference comprises the Epilogue of this book. 
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Fig. 8: Apollo coasting-flight navigation. 

Guiding the Apollo vehicle during its many and varied powered 
maneuvers was another matter. The idea of using the original Q-system 
for these purposes was soon rejected. Its principal virtue was the ease 
of mechanization on board the vehicle. But this advantage had to be 
traded off against the burden placed on ground facilities. (Consider the 
significant staff and computers of the Dahlgren Naval Weapons Laboratory 
devoted solely to the task of supplying the necessary targeting data, and 
the curve-fitted elements of the Q matrix for the fleet ballistic missiles of 
'the U.S. Navy.) With the AGC we had at our disposal for the first time 
ever a powerful general purpose digital computer as the key ingredient of 
a vehicle-borne guidance system. Why not use it? 

In fact, the Q matrix could be avoided altogether in the v g differential 
equation by simply differentiating the defining equation for velocity-to-be
gained v g = V r - V to obtain 

dv dVr _ g _ aT g--
dt - dt (22) 

(The terminology "correlated velocity" v c was replaced by "required 
impulse velocity" v r; missile velocity v m became vehicle velocity v.) If 
the vector v r could be expressed in analytical form, then the vector 

_ dVr _ g 
P - dt (23) 
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could be calculated so that the rate of change of v 9 is determined from 

dVg 
-=p-aT dt 

(24) 

(We were no longer concerned about computing gravity-it posed no 
problem for the AGO). We had an expression for v r when the target vector 
and the time of flight are specified. It remained to be seen how many of the 
major orbital transfer maneuvers could be accomplished conceptually by a 
single impulsive velocity change, and if simple formulas could be obtained 
for the corresponding required velocities. 

One by one, we accumulated suitable required velocity expressions for 
a variety of possible Apollo maneuvers. For example, when the Apollo 
command module returned to earth, it had to impact the atmosphere 
at a specified flight-path angle-otherwise it might either skip out of the 
atmosphere or be destroyed by overheating. A simple formula for v r was 
obtained (see problem 3.11 in Ref. 10). 

Braking into a circular lunar orbit was another mission requirement. 
We used for vr the velocity the vehicle should have in order to be in 
a circular orbit at its present position and in a specified plane. In this 
manner, we were able to control the shape and orientation of the final 
orbit but not its radius. However, it turned out that an empirical relation 
could be found between the final radius and the peri center of the approach 
trajectory so that the desired radius could be established by an appropriate 
selection of the approach orbit. (This technique was based on an idea 
developed during our low-thrust guidance work for Avco.) 

On the first unmanned guided Apollo flight in August 1966, the 
required velocity vector was defined so as to achieve an orbit of specified 
eccentricity and semimajor axis. The list goes on, but does not include, 
for example, the lunar landing since this maneuver cannot be performed 
conceptually with a single impulsive burn. 

We experimented with a variety of guidance laws to drive v 9 to zero: 
1) align the thrust acceleration aT with the v 9 direction; 2) direct aT to 
cause v 9 to be aligned with its derivative-cross-product steering; and 3) a 
combination of both as illustrated in Fig. 9. The scalar mixing parameter I 
was chosen empirically to maximize fuel economy. A constant I was usually 
sufficient for a particular mission phase; however, I could be allowed to 
vary as a function of some convenient system variable. Fred Martin found 
that this third method gave a highly efficient steering law that compared 
favorably with calculus of variations optimum solutions. 27 

A functional diagram illustrating the computation of the error signal 
required for control purposes is shown in Fig. 10. Numerical differentiation 
of the required velocity was simpler than programming the analytically 
obtained derivative. Near the end of the maneuver, when Vg is small, 
cross-product steering is terminated, the vehicle holds a constant attitude, 
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Fig. 9: Velocity-to-be-gained guidance laws (from Ref. 28). 
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and engine cut-off is made on the basis of the magnitude of the vector v g • 

A detailed description of just how this guidance scheme was mechanized in 
the AGC is provided in Ref. 28. 

Steering to intercept a given target at a specified time came to be 
known as Lambert guidance after Johann Heinrich Lambert, the famous 
eighteenth century Alsatian scholar who discovered the theorem that bears 
his name. Since v r had to be calculated cyclically in real time, Lam
bert guidance (which also required an iterative solution of Lambert's time 
equation) placed one of the heaviest burdens on the AGC. The task of 
completing all the necessary calculations in the time available became a 
programmer's nightmare. Ever since, the problem has fascinated me, and 
I am always on the lookout for new and better solutions of Lambert's 
equation. 29-32 

As the years went by, more and more of the guidance and navigation 
responsibilities were transferred from the onboard system to the Real Time 
Control Center (RTCC) in Houston. Much of the capability remained and 
was used in the AGC as a backup, but the RTCC was primary. Tar
geting calculations were made in the ground-based computers and Apollo 
performed most of its maneuvers in the so-called "external ~v" mode. 

The Circle Closes 

The intense pressure under which we all worked began to ease somewhat 
after the first landing on the moon. Timothy Brand, who played an active 
role in mechanizing the powered-flight AGC algorithms, had time now to 
reflect on Lambert guidance performance. Was it possible to avoid the 
frequent solutions of Lambert's problem, which were necessary to main
tain an accurate value of the vector v g? What could be done about the 
small yet persistent error in cutoff when estimating the time to go until 
thrust termination? How can a more nearly constant attitude maneuver 
be attained that would avoid any relatively large turning rates? 

Perhaps all of these difficulties had to do with the definition of the 
vector v g itself. What if we defined a single coasting trajectory, which 
coincides with the powered trajectory at thrust termination, and used it as 
the basis of the velocity-to-be-gained computation? We would have then 
v g = V r - v, but now v r is the velocity along the single coasting path. If 
the corresponding position vector on the coasting trajectory is r', then 

dv r ( ') ( ) --;It=gr 25 

would describe the rate of change of v r' The v g equation would be 

dVg , 
--;It = g(r ) - g(r) - aT = ~g - aT (26) 

with ~g replacing the term -Qv g in the older version. 
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The advantages of the new formulation became evident. An easy cal
culation showed that the contribution of the term Ag is generally much 
smaller than that of Qv 9 • Furthermore, Ag approaches zero at a rate 
proportional to v~, while the Qv 9 term, on the other hand, vanishes 
like v 9 to the first power. Simulations verified that Ag is so small for 
short maneuvers that a nearly constant attitude can be obtained by merely 
steering the vehicle so as to align the thrust vector along vg • Velocity-to
be-gained, under these circumstances, is particularly easy to compute-the 
accelerometer-sensed velocity change is subtracted from the previous value 
of v 9 on each computer guidance cycle. 

Tim's technique33 works well, even for long duration maneuvers, if we 
periodically create a new coasting-flight trajectory. A suitable approxima
tion for Ar = r' - r is found to be 

v 
Ar= --g-v 

2aT 9 
(27) 

which, when added to current vehicle position, produces the position vector 
r'. Knowing r' and the target r T , together with the time of flight, permits 
a new Lambert solution-hence a new v r and a new coasting trajectory. 
Subtracting the current vehicle velocity provides an updated value of v 9 

with which to begin anew. 
If none of these ideas seem familiar, you have forgotten the Convair 

legacy. What has just been described is essentially what the Convair en
gineers were advocating those many years ago. I must confess that I did 
not make the connection between Tim's new technique and the old Convair 
proposal until I began rummaging through my memorabilia in preparation 
for this paper. Obviously, Tim knew nothing of this-he was only about 
ten years old at the time. 

Of course, the Tim Brand or the Convair scheme would have been 
impractical for an onboard implementation to guide the early ballistic mis
siles. It was feasible only after the small airborne digital computer replaced 
all those servos, amplifiers, potentiometers, and other analog devices of the 
good old days. 
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PART I 

Chapter 1 

Hypergeometric Functions 

and Elliptic Integrals 

REGRETFULLY, HYPERGEOMETRIC FUNCTIONS, CONTINUED FRACTION 

expansions, and elliptic integrals have received minor, if any, atten
tion in the education of the modem engineer. They do, however, play an 
important role in many aspects of Astrodynamics. As examples: Gauss' 
classical solution to the two-body, two-point, time-constrained boundary
value problem relies heavily on a particular continued fraction expansion 
of the ratio of two contiguous hypergeometric functions; and, the gravita
tional attraction of a solid homogeneous ellipsoid upon an exterior particle 
is represented in terms of elliptic integrals. 

Continued fraction expansions are, also, not given the prominence they 
deserve in the university curricula despite the fact that they are, generally, 
far more efficient tools for evaluating the classical functions than the more 
familiar infinite power series. Their convergence is typically faster and 
more extensive than the series and, ironically, they were in use centuries 
before the invention of the power series. 

We shall have a number of occasions throughout this book to utilize 
these mathematical entities. It seems, therefore, appropriate to devote this 
first chapter to their development and application. Both have a long and 
fascinating history with contributions made by many of the world's best 
mathematicians. Here, we develop some of the properties of hypergeometric 
functions, their transformations, and continued fraction expansions. Later, 
as the occasions arise, we provide appropriate continued fraction represen
tations of the special functions needed in Astrodynamics. 

In this chapter, we also derive several of the convergence tests for 
infinite continued fractions and consider, as well, several algorithms for 
their evaluation-one of which is quite recent in development. 

The elementary problem in analytical mechanics-the motion of the 
simple pendulum-cannot be accurately described without resorting to 
elliptic integrals. The small amplitude assumption is introduced so subtly 
that the student easily forgets that the simple formula for the period is 
only approximately correct. Our treatment of elliptic integrals is far from 
complete and concentrates primarily on the truly delightful algorithms, 
devised by Gauss, by which they can be evaluated. 

33 
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1.1 Hypergeometric Functions 

The term hypergeometric series was first given by the famous English math
ematician John Wallist in 1655 to the series whose nth term is 

a(a + b)(a + 2b) ... [a + (n - 1)b] 

in an effort to generalize the familiar geometric series 

1 + x + x2 + x3 + ... 

The modern use of the term applies to the series 

1 + 0'.{3 ~ + a(O'. + 1){3({3 + 1) x2 + a(a + l)(a + 2){3({3 + 1)({3 + 2) x3 + ... 
, I! ,(,+1) 2! ,(-)/+1)(1'+2) 3! 

which is easily seen by the ratio test to be absolutely convergent for Ixl < 1. 
Within this interval, the series defines a function denoted by F( a, /3; ,; x) 
which was called the hypergeometric function by Johann Friedrich Pfaff 
(1765-1825), a friend and teacher of Carl Friedrich Gauss. 

Examples of Hypergeometric Functions 

The hypergeometric function is of great importance because it is a gen
eralization of many of the familiar (and not so familiar) mathematical 
functions. By comparing the Taylor series expansion of a function with the 
hypergeometric series, we can frequently identify specific values of 0'., (3, 
and , for which the two series will be identical. For example, the geometric 
series 

1 
-1- = 1 + x + x2 + ... = F(1,{3;/3;x) 
-x 

is so represented. More generally, 

x2 x3 
(I-x)-a = 1 +ax+a(O'.+ 1) 2! +a(a+ 1)(0'.+2)31 + ... 

= F(O'.,{3;/3;x) (1.1) 

and 

x2 x3 
(1 + X)-a = 1 - O'.X + a(a + 1) 2! - a(O'. + 1)(0'. + 2)31 + ... 

= F(O'., (3; P; -x) (1.2) 

t John Wallis (1616-1703), Savilian professor of geometry at Oxford for 50 years and 
a contemporary of Sir Isaac Newton, ranks next to Newton as the ablest British mathe
matician of the seventeenth century. One of his notable contributions is the remarkable 
expression for 7r known as Wallis'theorem: 

7r 2·2·4·4·6·6·8·8··· 
2'= 1·3·3·5·5·7·7·9··· 
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By adding and subtracting, we also obtain 

1 x 2 

2[(1 - xl-a + (1 + xl-a] = 1 + a(a + 1) 2! 
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X4 (a a + 1 1 2) + a(a + l)(a + 2)(a + 3) 4! + ... = F 2' -2-; 2; x (1.3) 

1 x 2 

-2 -[(1 - x)-a - (1 + x)-a] = 1 + (a + l)(a + 2)-3
1 ax . 

X4 (a + 1 a + 2 3 2) 
+ (a + l)(a + 2)(a + 3)(a + 4) 5! + ... = F -2-' -2-; 2; x (1.4) 

The logarithm and inverse trigonometric functions can be similarly 
represented. Specifically, 

1 x x2 x3 x log(1 + x) = 1 - 2 + "3 - 4" + ... 

= F(I, 1; 2; -x) (1.5) 

1 x2 X4 x6 

- arctan x = 1 - - + - - - + ... 
x 357 

= F(!, 1;~; _x2
) (1.6) 

1 1 x 2 1 . 3 X4 1 . 3 . 5 x6 

-arcsinx = 1+ -- + -- + --- + ... 
x 23 2·45 2·4·67 

- F(! !.~. x2 ) 
- 2' 2' 2' (1.7) 

The inverse hyperbolic functions are closely related to the inverse trigono
metric functions. Indeed, we have 

¢ Problem 1-1 
Define 

1 
- arctanhx - F(! 1'~' x2

) (1.8) x - 2" 2' 

!. arcsinhx = F(!, !; ~; _x2
) (1.9) 

x 

so that 1 - X -2iq, 
--=e 
1+x 

Then use Eqs. (1.3) and (1.4) to obtain 

F (1 - k 2 - k. ~. _ tan2 .I.) 
tan k¢ 2 ' 2 ' 2 ' 'P 

k tan ¢ = ( 1 - k k 1 2) 
F -2-'-2'i2'i-tan ¢ 

which we shall need later to develop a beautiful continued fraction found by 
Leonhard Euler. 
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Gauss' Relations for Contiguous Functions 

The six functions 

F Ot± = F(a± 1,,8;'Y;x) 

FfJ± = F(a,,8 ± 1; 'Y; x) 

F-r± = F(a,,8;'Y± l;x) 

[Chap. 1 

are called contiguous to F = F( a,,8; 'Y; x). Gaussf discovered that a linear 
relationship exists between F and any pair of contiguous functions. There 
are fifteen such linear relations whose coefficients are rational functions of 
a, ,8, 'Y. They are as follows: 

(1) 0 = [2a - 'Y + (,8 - a)x]F - a(l - x)FOt+ + (a - 'Y)FOt-
(2) 0 = ({3 - a)F - ,8FfJ+ + aFOt+ 

(3) 0 = ('Y - a - ,8)F - ('Y - ,8)FfJ- + a(l - x)FOt+ 

(4) 0 = 'Y[a - ('Y - ,8)xJF - Q'Y(l - x)FOt+ + ('Y - a)('Y - ,8)xF-r+ 
(5) 0 = ('Y - a -l)F - ('Y -l)F-r- + aFOt+ 
(6) 0 = ('Y - a - (3)F - ('Y - a)FOt- + ,8(1 - x)FfJ+ 

(7) 0 = (,8 - a)(l - x)F - ('Y - a)FOt- + ('Y - ,8)FfJ

(8) 0 = 'Y(1 - x)F - 'YFOt- + ('Y - ,8)xp-r+ 

(9) 0 = [a - 1 - ('Y -,8 -l)x]F - ('Y -1)(1 - x)p-r- + ('Y - a)FOt-
(10) 0 = h - 2,8 + (,8 - a)xJF - ('Y - (3)FfJ- + ,8(1 - x)FfJ+ 

(11) 0 = 'Y[,8 - ('Y - a)x]F - ,8'Y(1 - x)FfJ+ + ('Y - a)('Y - ,8)xp-r+ 
(12) 0 = ('Y - {3 - l)F - ('Y -1)F-r- + ,8FfJ+ 

(13) 0 = 'Y(1 - x)F - 'YFfJ- + ('Y - a)xp-r+ 

(14) 0 = [.B - 1 - ('Y - a -l)x]F - ('Y -1)(1 - x)p-r- + ('Y 7" ,8)FfJ

(15) 0 = 'Yh - 1 - (2'Y - a - {3 - l)x]F - 'Y('Y - 1)(1 - x)F-r-
+ ('Y - a)('Y - (3)xJn+ 

To verify these identities, it is convenient to define 

K (k) = ...;....( a_+_1...;...)(.;.-.a_+_2.;..-) ._ .. ....;,.( a_+---,.-k _----:;1 ).,;-,8....:;...(,8~+_1...;....) _ .. ---:;' (.;.....,8 _+_k_-~2) 
1 . 2 . 3 ... k . 'Y( 'Y + 1) ... ('Y + k - 1) 

t Gauss' paper Disquisitiones Generales Circa Seriem Infinitam on the hypergeo
metric function in 1812 was also the first important and strictly rigorous study of the 
convergence of infinite series. He is generally regarded as the first to recognize the need. 
to restrict the use of series to their regions of convergence, and, for the hypergeometric 
series, showed that it converges for Ixl < 1 and diverges for Ixl > 1. At the endpoints 
x = 1 and x = -1 he found that the series converges if and only if Q + f3 < 'Y and 
Q + fJ < 'Y + I, respectively. 
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Then, in terms of K we have 

F = 1 + 0.f3 X + ... + 0.(f3 + k - 1) K x" + ... 
'Y 

FfJ- = 1 + 0.(f3 -1) x + ... + 0.(f3 -1)Kx" + ... 
'Y 

F Ol+ = 1 + (a. + 1 ),8 x + ... + (a. + k )(,8 + k - l)K x" + ... 
'Y 

F"Y- = 1 + 0.f3 X + ... + 0.(f3 + k -1)('Y + k - 1) Kx" + ... 
'Y- 1 'Y- 1 

xFOt+ = x + (a. + 1 )f3 x2 + ... + k( 'Y + k - 1) K x" + ... 
'Y 
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(1.10) 

Formulas (5) and (3) follow immediately from Eq. (1.10). By exchanging 
a. with f3 formula (12) arises from (5); subtract (12) from (5) to obtain 
(2). In like manner, through the same permutation, (6) arises from (3). 
Formula (9) obtains from a combination of (6) and (12); from here through 
permutation follows (14). Subtract (9) and (14) to obtain (7). At last (1) 
is derived from (2) and (6) and from here by permutation (10) is obtained. 

By replacing in formula (5) the element a. by a. - 1 and 'Y by 'Y + 1, 
we have: 

0= ('Y - a. + I)F(o. -I,f3,'Y + 1) + (a. -1)F"Y+ - 'Ypat

Next, by replacing 'Y by 'Y + 1 in formula (9), we have 

0= [a. - 1 - ('Y - f3)x]F"Y+ + ('Y - a. + I)F(o. - 1,,8, 'Y + 1) - 'Y(I - x)F 

By subtracting these last two formulas, (8) immediately obtains; from here 
using permutation we have (13). From (1) and (8) formula (4) follows and 
from this, by permutation, (11). Finally, from (8) and (9), formula (15) is 
deduced. 

The importance of these relationships is that through repeated appli
cation, any function F( a. + l, f3 + m; 'Y + n; x) for integral l, m, n can be 
expressed as a linear combination of F( a., f3; 'Y; x) and one of its contiguous 
functions. 

¢ Problem 1-2 
Later in this section, when we derive Gauss' differential equation for hyper

geometric functions, we will require the following relations: 

dF af3 
d:J; = -;yF(a+ 1,f3+ 1;"1+ l;x) 

d2F af3 (a+l)fR+l) - = - x V' F(a+2 f3+2'''V+2'x) 
d:J;2 "1 "1+1 "" 

which continues for repeated differentiations. 
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Gauss' Differential Equation 

Gauss derived his differential equation for F( a, (3i "Yi x) by first defining 

Fl = F(a + 1, (3, "Y) 

F2 = F(a+ 1,,8+ 1,"Y) 

F3 = F(a+ 1,{3+ 1,"Y+ 1) 

F4 = F(a + 2,{3 + 1,"Y+ 1) 
Fs = F(a+2,{3+2,"Y+ 1) 

F6 = F( a + 2, (3 + 2, l' + 2) 

(1.11) 

Then from the basic relations for contiguous hypergeometric functions (6), 
(13), (5) we obtain the following five linear equations: 

From formula (6) with a + 1 --+ a we have 

I. 0 = ("Y - a - l)F - (1' - a-I - ,8)Fl - {3(1 - x)F2 

From (13) with a + 1 --+ a and {3 + 1 --+ {3 

II. 0 = 1'Fl - "Y(1 - x)F2 - ("Y - a - 1)xF3 

From (5) with a + 1 --+ a, {3 + 1 --+ {3 and "Y + 1 --+ "Y 

III. 0 = "YF2 - ("Y - a -1)F3 - (a + 1)F4 

From (5) with a + 2 --+ a, {3 + 1 --+ {3 and "Y + 1 --+ "Y 

IV. 0 = ("Y - a - 1)F3 - (1' - a - 2 - (3)F4 - ({3 + 1)(1 - x)Fs 

From (13) with a + 2 --+ a, {3 + 2 --+ {3 and "Y + 1 --+ "Y 

V. 0 = (1' + 1)F4 - ("Y + 1)(1 - x)Fs - ("Y - a -1)xF6 

From (I) and (II), by eliminating F1, 

VI. O=F-"Y(1-x)F2-("Y-a-{3-l)xF3 

From here and from (III), by eliminating F2 , 

VII. 0 = "YF - ("Y - a-I - {3x)F3 - (a + 1)(1 - x)F4 

Further from (IV) and (V), by eliminating Fs, 

VIII.O = ("Y + 1)F3 - ("Y + 1)F4 + ({3 + 1)xF6 

From here and from (VII), by eliminating F4 , 

IX. 0 = "Y("Y + l)F - ("Y + 1)["Y - (a + {3 + 1)x]F3 

- (a + 1)({3 + l)x{l - X)F6 

Then from the results of Prob. 1-2, we have from (IX) 

d2y dy 
x(l - x) dx2 + h - {a +,B + l)x] dx - a{3y = 0 (1.12) 

as the desired differential equation. Although Euler treated this equation 
and its series solution much earlier, it is, nevertheless, named for Gauss. 
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¢ Problem 1-3 
The following two identities are fundamental in developing Gauss' continued 

fraction expansion theorem: 

F(o:,p+ 1i'"'(+ 1iX) - F(o:,f3i 'Yi x) = ~~~~~?xF(a+ 1,P+ li'Y+ 2i X) 

and 

F(a + 1,P + 1i'Y+ 2iX) - F(a,p + 1i'Y+ 1i X) = 
(P + 1)('Y + 1 - 0:) 

("'( + 1)("'( + 2) xF(o: + 1,,8 + 2; 'Y + 3; x) 

Gauss' equation has regular singular points at 0, 1, and 00. Since it 
is of second order, there are two linearly independent solutions of the form 

y = x P (Co + C1 X + ~x2 + ... ) 
Using the so-called method of I+obenius,t we substitute in Eq. (1.12) and 
require that the coefficients of all powers of x must vanish. We find that 
the exponent p must satisfy the so-called indicial equation 

p(p -1 +,) = 0 

whose roots are p = 0 and p = 1 -,. The first corresponds to the 
hypergeometric series F( 0:, p; ,; x) from which the differential equation 
was derived. The second corresponds to the solution 

y = x 1--, F(o: -, + 1, p -, + 1; 2 -,; x) 

unless , is a positive integer. If, = 1, the two solutions are identical. If 
, is a negative integer, then the first solution F(o:, p;,; x) does not exist. 

As an example of the use of Gauss' equation, consider the equation 

~~ +n2
y= 0 

satisfied by both sin nx and cos nx. We transform the equation by chang
ing the independent variable x to q where 

Then 

q = sin2 x 

dy . dy 
-=sm2x-
dx dq 

d2y dy. 2 ~y 
dx2 = 2cos2x dq + sm 2x dq2 

t Georg Ferdinand Frobenius (1849-1917), professor at the UniveI1!ity of Berlin, is 
noted, chiefly, for the modern concept of abstract structures in mathematics developed 
during his major achievements in Group Theory. 
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But 
sin2 2x = 4q(1 - q) and cos2x = 1- 2q 

so that y as a function of q satisfies 

)
d2y 1 dy 1 2 

q(1 - q dq2 + (2 - q) dq + in y = 0 

-a special case of Gauss' equation with 

Q= ~n ,B=-~n 

for which the general solution is 

"'- ! 1-2 

[Chap. 1 

F(
n n 1 . 2) . F(1 + n 1- n 3 . 2 ) 

y=c1 2"-2';2;sm x +c2smx -2-'-2-;2;sm x 

Now, y = sin nx is a solution so that C1 must be zero since y = 0 
when x = O. Hence 

sin nx _ F ( 1 + n 1 - n. 3. . 2 ) 
-,--c2 -2-'-2-'-2,sm x smx 

To determine c2 ' let x tend to zero and we find that c2 = n. 
Again y = cos nx is also a solution. Setting x = 0, we obtain c1 = 1. 

By differentiating and setting x = 0, we find that c2 = O. 
In summary, then, we have obtained 

. . F(1 + n 1 - n 3 . 2 ) smnx=nsmx -2-'-2-;2;sm x (1.13) 

(
n n 1 . 2 ) 

cosnx=F 2"-2';2;sm x (1.14) 

which are valid for - ~ 7r ~ X ~ ~ 7r, and will prove of great value in 
developing continued fraction solutions of those cubic equations which are 
important in orbital mechanics. 

Bilinear Transformation Formulas 

In this and the next subsection, we shall develop transformations of the 
hypergeometric functions which replace the argument x with bilinear and 
quadratic functions of x. Among the possible applications, this will allow 
an extension of the interval of convergence of the power series representa
tion of these functions. 

The simple bilinear transformation 

x 
q=-

x-I 

has properties such as 

1 
l-x=-

l-q 
and 

or 

dx 
dq = 

x=-q
q-l 

1 2 
(1 _ q)2 = -(1 - x) 
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which motivate a transformation of Gauss' equation. Specifically, we ask 
for what values, if any, of the constant c will the function 

z = (1 - x)Cy 

be a hypergeometric function of q if y = F( a, (3; ,; x) ? 
For this investigation, we calculate 

y = (1 - q)Cz 

dy = (1 _ q)c+l [cz - (1 - q) dzl 
dx dq 

d
2
y [ dz d2zl dx2 = (1 - q)c+2 c(c + l)z - 2(c + 1)(1 - q) dq + (1 - q)2 dq2 

and substitute into Gauss' equation (1.12) to obtain, thereby, 

q( 1 - q) 2 d
2 

Z + (1 _ q)[, _ (, + 2c - a - ,8 + l)q] dz - Rz = 0 
dq2 dq 

where 
R = (c,- a(3) - cq(c + , - a - (3) 

Now, the differential equation for z as a function of q will be of the 
form of Gauss' equation provided R, the coefficient of z, has 1 - q as a 
factor. This occurs for exactly two values of c-namely, 

c=a: 

c = (3: 

R=a(,-,8)(I-q) 

R = ,8(,- a)(l - q) 

The corresponding solutions for z(q) are then 

c = a: z = F(a,,- (3;,;q) 

c =,8: z = F(,- a,(3;,;q) 

As a consequence, we have derived the following two transformations 
of the hypergeometric function: 

F(a, (3;,; x) = (1 - xl-a F( a,,- ,8;,; x: 1) (1.15) 

F(a, (3;,; x) = (1 - x)-p F(,- a, (3;,; x: 1) (1.16) 

Finally, there is an important consequence of these last two results. 
The right-hand sides of Eqs. (1.15) and (1.16) are equal so that 

(1 - q)a F(a,,- ,8;,; q) = (1 - q)p F(,- a, (3;,; q) 

Therefore, if we replace (3 by , - (3 and q by x, we have 

F(a;,8; "1; x) = (1 - xp-a-P F(,- a,,- (3;,; x) (1.17) 

-a fundamental relation first discovered by Euler. 
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Quadratic Transformation Formulas 

The transformation 

q = 4x(1 - x) or 1 - q = (1 - 2x)2 

applied to Gauss' equation leads to other useful identities for hypergeomet
ric functions. Since 

dy = dq dy = 4JI=Q dy 
dx dx dq dq 

then Gauss' equation becomes 

d2y 1 r;--: dy 
q(1 - q)- + [,- -(a +,8 + 1)] vi - q-dq2 2 dq 

+ [!(a +,8 + 1) - !(a +,8 + 2)q] :: - ~a,8y = 0 

If the term containing vr=q as a factor were missing, the differential 
equation for y(q) would also be Gauss' equation with different parameters. 
Thus, by requiring 

,= !(a+,8+1) 

the differential equation for y as a function of q becomes 

( ) d2y [ ( 1 1 ) ] dy 1 1 q 1 - q dq2 + , - 2 a + 2,8 + 1 q dq - 2 a 2,8 Y = 0 

Therefore, we have 

y(q) = F[ !a, !,8; ! (a +,8 + 1); q] 

provided that 

y(x) = F[a,,8; ! (a +,8 + 1); x] 

Finally, then, two equivalent identities are obtained-namely 

F[a,,8; !(a +,8 + 1); x] = F[!a, !,8; !(a +,8 + 1); 4x(1 - x)] (1.18) 

F(a,,8;a +,8+ !;x) = F[2a, 2,8; a + ,8+!; !(1- v'1=X)] (1.19) 

¢ Problem 1-4 
Obtain the identity 

F(o.,{Jjo.+{J- !jx) = (1- x)-iF[2o.-1,2{J -ljo.+{J - !j !(1- Jf=X)] 

by first using Eq. (1.17) and then Eq. (1.19). 
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Confluent Hypergeometric Functions 

The function 
M({3, ",{, x) = lim F(a, (3i "'{i x/a) 

Q-OO 
(1.20) 

is called a confluent hypergeometric function and the series representation 

(1.21) 

is convergent for all values of x. The same limiting process applied to 
Gauss' equation results in 

d2 y dy 
x dx2 + ("'{ - x) dx - (3y = 0 (1.22) 

as the differential equation for the confluent hypergeometric function. The 
equation has a regular singular point at x = O. The singularity of Gauss' 
equation at x = 1 has come into confluence with the singularity at x = 00. 

The word "confluence" implies a flowing together or a coming together of 
the two regular singular points at one and infinity. However, the singularity 
of Eq. (1.22) at x = 00 is now an irregular singular point. Using the method 
of Frobenius, the general solution is found to be 

y = C1 M({3, "'{, x) + C2X1-'Y M({3 - "'{ + 1,2 - "'{, x) 

Linear relations between M({3, "'{, x) and pairs of the four contiguous 
functions M({3 ± 1, ",{, x), M({3, "'{ ± 1, x) can be obtained by the limiting 
process applied to an appropriate subset of the fifteen corresponding iden
tities of Gauss. There will, of course, be only six such relationships for the 
confluent hypergeometric functions. 

¢ Problem 1-5 
Verify that the function 

Nb,x) = lim M({3,1,X/{3) 
p ..... oo 

1 x 1 x2 1 x3 

= 1 +:Yli + 1h + 1) 2! + 1h + 1)h + 2) 3! + ... 

converges for all x and satisfies the differential equation 
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1.2 Continued Fraction Expansions 

The Fibonacci series 

[Chap. 1 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... , Fn , Fn +1 , ••• 

which was first obtained by Leonardo of Pisat in the thirteenth century 
as the solution of a certain rabbit-breeding problem, provides an excellent 
introduction to the Gauss continued fraction expansion theorem. Each 
term in the series is the sum of the two previous terms-or, equivalently, 
each term is the difference between the two terms on either side. Thus, 

where Fo = 0 and Fl = 1 (1.23) 

Equation ( 1. 23) is a linear constant coefficient difference equation 
which can be solved by seeking solutions of the form Fn = cf3n . Sub
stituting this into the difference equation, we obtain an algebraic equation 
for f3 

or 
{32 - f3 - 1 = 0 

which has two solutions: {3 = ! (1 ± J5). The general solution of (1.23) 
is, consequently, of the form 

. Fn = c1 C +2
VS )" +c.C -2

VS )" 

The constants c1 and c2 are obtained from the conditions Fo = 0 and 
Fl = 1; hence, c1 = -c2 = 1/J5' Therefore, the general term in the 
Fibonacci series is 

(1.24 ) 

N ow let G n be the ratio of two successive terms in the series so that 

G = Fn+l 
n Fn 

Then, from Eq. (1.23), we have 

Fn+l Fn = 1 + Fn 
Fn Fn- 1 Fn- 1 

for n = 1,2,3, ... (1.25) 

or 

t Leonardo of Pisa, better known as Fibonacci (literally meaning "son of Bonaccio") 
was the greatest mathematician of the Middle Ages. His best known work, Liber abaci 
completed in Pisa in the year 1202, defended the merits of the Hindu-Arabic decimal 
system of numbers over the clumsy Roman system still in use in Italy at the time. Al
though he made many valuable contributions to mathematics, he is mainly remembered 
today because of the number sequence which bears his name. 
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which provides the recursive relation 

G =1+_1_ 
n Gn - 1 

for n = 2,3,4, ... 

Therefore, 

1 
G2 = 1 + - = 2 

1 
1 3 

G3 = 1+--=-
1 2 

1 +-
1 

1 5 
G4 = 1+--1- = 3 etc. 

1+--
1 

1 + 1 

From the definition of Gn and Eq. (1.24), we have 

= 1 + /5 (1 - xn+l) 
Gn 2 1- xn where 

1- /5 
x=---

1+/5 

and, since Ixl < 1, 

lim G = 1 + /5 
n-oo n 2 

45 

The number ! (1 + /5) is called the Golden Section and has a fasci
nating historyt which, unfortunately, we cannot afford the space to develop 
here. 

Suffice it to say that the Golden Section can be expressed as the sim
plest possible of all continued fractions: 

. 1+ J5 
Golden SectIOn = --2- = 1 + 

1 

1 
1+------

1 
1+----

1 
1+---

1 + '. 

(1.26) 

t If a line segment is divided into two parts of lengths x and y such that the ratio 
of the whole to the greater part x is the same as the ratio of the greater to the lesser 
part, i.e., (x + y)/x = x/y, then x/y = ! (1 + J5). This was called the "sacred ratio" 
in the Papyrus of Ahmes, which gives an account of the building of the Great Pyramid 
of Gizeh about 3070 B.C., and the Golden Section by the ancient Greeks. Most books 
on recreational mathematics (for example, Martin Gardner's book MathematicoJ Circus 
published in 1979 by Alfred A. Knopf) will provide the reader with many fascinating 
properties of Fibonacci numbers and the Golden Section. 
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¢ Problem 1-6 
Although continued fractions were familiar to the Hindu mathematicians as 

early as the fifth century, it was not until the sixteenth century that they were 
used to approximate irrational numbers. Besides Eq. (1.26), other interesting 
continued fractions can be obtained. For example, 

V2=1+(V2-1)=1+_1_=1+ 1 
v'2+1 2+(v'2-1) 

111 
=1+ =1+------=1+-------

1 1 1 
2+------

1 2+ v'2+1 2+---1-

2 + -y'2-2 -+-1 2+----
1 

2+--
2+·. 

In the same manner derive the following continued fractions: 

v3 = 1 + ____ 1 __ _ 
1 

1+------

¢ Problem 1-7 

1 
2+----

1 
1+--

2+ '. 

v'5 = 2 + ____ 1 __ _ 
1 

4+-----
·1 

4+----
1 

4+--
4+ '. 

Raphael Bombelli t 1572 

For any real number x, the system of equations 

x = ao + ~o (0 :5 ~o < 1) 
1 
~o = al +~l (0:5 ~1 < 1) 

1 

etc. 

with ao, al, ... as integers, is known as the continued fraction algorithm. The 
algorithm continues so long as ~n :f= 0 and provides a continued fraction repre
sentation of x of the form 

1 
x = ao + -------

1 
al+-----

1 
a2+--

a3 +~3 

Use this algorithm to obtain the rational approximation 1r ~ ~~: which 
gives 7r correctly to six decimal places. 

t Among the early important writers on the new algebra in the sixteen century, 
Raphael Bombelli (c. 1530-after 1572) introduced operations with imaginary numbers 
and made significant improvements in algebraic notation. 
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¢ Problem 1-8 
The positive root of the quadratic equation 

can be obtained as 

x 2 
- bx - c = 0 where b = ac 

1 
x = b + ---------

1 
a+-------

1 
b+------

1 
a+----

1 
b+--

a+ .. 

assuming that a and b are both positive. 

Gauss' Continued Fraction Expansion Theorem 

47 

Consider the following sequence of hypergeometric functions defined for 
n = 0,1,2, ... 

F2n = F(a + n,,B + n;1 + 2n; x) 

F2n+1 = F(a + n,,B + n + 1;, + 2n + 1; x) 

From the identities of Prob. 1-3, we have 

F2n+ 1 - F2n = 6'2n+ 1 xF2n+2 

F2n - F2n- 1 = 6'2n xF2n+l 

where the odd- and even-labelled 6' 's are determined from 

6' _ (a+n)(,-,8+n) 
2n+l - (, + 2n)(, + 2n + 1) 

6' _ (,8 + n)( 1 - a + n) 
2n - (, + 2n - 1)(, + 2n) 

(1.27) 

Equations (1.27) are linear difference equations analogous to Eq. (1.23) for 
Fibonacci numbers; moreover, the development to follow exactly parallels 
the steps used there. 

Divide the first identity by F2n , the second by F2n- 1 , and define 

We obtain, thereby, 

or 

G = F2n+ 1 

2n F. 
2n 

G F2n 
2n-l =~ 

2n-l 

G2n -1 = 6'2n+lxG2n+lG2n 

G2n- 1 - 1 = 6'2nxG2nG2n-l 
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If we put successively n = 0, n = 1, etc., we derive a continued 
fraction expansion for Go = Fd Fo. Thus: 

F(0,,8+1;'Y+ 1jx) 1 =-------------------F(o,,8i 'Yi x) 51x 
1 - ------=-----

52x 
1·-------

53x 
1---~--

1- 52nxG2n 

(1.28) 

and letting n become infinite results in an infinite continued fraction, The 
question of convergence of such an expansion will be addressed in the 
following section. 

It is important to note that if ,8 = 0, the denominator of Eq. (1.28) 
F( 0, 0; 'Yi x) = 1 so that the continued fraction then represents not the 
ratio of two associated hypergeometric functions but rather the function t 
F( a, 1; 'Y + 1; x), Therefore, if we replace '1 + 1 by '1, we have 

o 0(0+ 1) 2 
F(o l' "Y' x) = 1 + -x + x + ... , ,,, '1 'Y( '1 + 1) 

1 

1 ____ ,8_1_x __ _ 

1 _ _ f3._2_x_ 

(1.29) =-------

1- " 

where 

(o+n)('Y+n -1) 
,82n+l = ('1 + 2n - 1)('1 + 2n) 

n( '1 - 0 + n - 1) 
,82n = ('1 + 2n - 2)('1 + 2n -1) 

The corresponding continued fractions for the confluent functions 

M (,8 + 1, '1 + 1, x) 
=------

M({3, '1, x) 
1 

(1.30) 
1 ___ 'Y_l_x __ 

1 _ 'Y2x 

1- " 

where 
'Y-,8+n ,8+n 

'Y2n+l = ('1 + 2n)('Y + 2n + 1) 'Y2n = ('1 + 2n -1)('1 + 2n) 

are obtained from Gauss' expansion by replacing x by x/a in Eq, (1.28) 
and letting 0 become infinite. 

t Examples of such functions have already been encountered. in Eqs. (1.5), (1.6), and 
(1.8) for the logarithm, the inverse tangent, and the inverse hyperbolic tangent. 
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In some of the examples which follow, the notion of equivalent fractions 
is used. Specifically, if co' c 1 , • .• is a sequence of non-zero constants, then 

¢ Problem 1-9 
Develop the expansion 

x 
log(1 + x) = -------:12~x-----

¢ Problem 1-10 

1 + -----~-----
12 x 

2 + -------::,..-----
22x 

3+----",.....---
22X 

4+---....",......--
32 x 

5+ 2 
3 x 

6+--
7+ '. 

Derive and compare the expansions 

x 
arctan x = ------=--

x 2 

x 
arctanh x = ----....",......-

x 2 

1 + (2X)2 
1-----",.....--

(2X)2 
3- ----=-

(3X)2 
5---

3 + (3X)2 
5+--

7+ " 

¢ Problem 1-11 
Use the results of Prob. 1-1 to obtain 

k tan 4> 
tan k4> = ------::,..----",.....---

(k 2 
- 1) tan2 4> 

1-----..,;...-",.....-~-....",...._-

(k2 
- 4) tan2 4> 

3--~....".-.....;.....--~-
(k2 

- 9) tan2 4> 
5-~-~--

7- " 

which terminates if k is an integer, 

7- " 

Leonhard Euler 1744 
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¢ Problem 1-12 
Derive the continued fraction expansion of the confluent hypergeometric 

function 

X x 2 

M(1, I, x) = 1 + - + ( 1) + ... 
I 11+ 

1 
= ----------------------------------------x 

1-------------------------------------
x 

I + ------------------------------,x ,+ 1 - ----------------
2x ,+ 2 + --------
h+1}x ,+ 3 - -------------

3x 
,+ 4+---

,+ 5 - .. 

¢ Problem 1-13 
Obtain the continued fraction expansion of the exponential function 

1 eX = ______________ __ 

x 
1 - --------------------

x 
1 + -----------------

x 
2 - ---------------

x 
3 + -----------

x 
2- -------

x 
5+--

2- .. 

¢ Problem 1-14 
Obtain the continued fraction expansion 

Nh+l,x) _ 
Nh,x) -

I ----------------------------------------x 
1+---------------------------------------

x ,+ 1 + -----------------
x 

I + 2 + -------------------------
x 

I + 3 + ------------------
x ,+ 4 + --------

x 
1+ 5+---

,+ 6 + .. 

where Nh,x) is defined in Prob. 1-5. 
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Continued Fractions Versus Power Series 

One of the advantages of continued fraction expansions over the power se
ries is dramatically illustrated by the function tan x whose series expansion 
is given by 

1 2 (_I)n-122n(22n - I)B 
tan x = x + _X3 + _X5 + ... + 2n X 2n- 1 + ... 

3 15 (2n)! 

Here, B2n are Bernoulli numbers, named for James Bernoulli (1655-1705) 
who introduced them in Ars Conjectandi in connection with a problem in 
probability. It was Eulert who found that t(et - 1)-1 is the generating 
function for the Bernoulli numbers in the sense that 

t ~ BIc II: 
et _ 1 = L.J kf t 

1c=0 

They vanish for all odd indicies other than k = 1. The first few are 

Bo = 1 Bl = -! B2 = 1 B4 = - 3~ B6 = i2 B8 = - 3~ 
and the reader is forgiven if he does not immediately see the pattern. 

Not only are the series coefficients for tan x quite complicated, but 
the series converges only in the interval -! 1r ~ X ~ ! 1r. Compare this 
with the simple continued fraction developed in the next problem which 
converges for all x not equal to ! 1r ± n1r. Convergence criteria are the 
subject of the next section of this chapter. 

¢ Problem 1-15 
For the functions N (1', x) of Prob. 1-5, verify that 

N( -21 , - -41 x 2 ) = cosx and N(~ _ 1x2 ) = sinx 
2' 4 x 

(with similar expressions obtaining for the hyperbolic functions) and then use 
Prob. 1-14 to derive the expansions 

x 
tan x = -------=--

x2 

1--------:::---
x2 

3- ------=
x 2 

5---
7- '. 

tanh x = ____ x---:' __ _ 
x 2 

1 + -----:--
x 2 

3+ 2 
x 

5+--
7+ '. 

t One of Euler's finest triumphs involved the Bernoulli numbers when, in 1750, he 
obtained the summation formula 

1 1 1 1 _~wrnIB I 
12n + 22n + 32n + 42n + ... - 2(2n) I 2n 

The series, denoted by C(2n), is now called the Riemann Zeta function after Georg 
Friedrich Bernhard Riemann (1826-66) who was a student of GauS9. Both he and Euler 
made extensive use of this series in their research in prime number theory. 
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NOTE: Johann Heinrich Lambert (1728-1777) actually proved the convergence 
of the continued fraction expansion for tan x. He also used such fractions to 
prove the irrationality of integral powers of 1(' and e which he reported to the 
Berlin Academy of Sciences in 1761. 

¢ Problem 1-16 
We are unable to derive directly a continued fraction expansion of the inverse 

sine since a = {3 = ~ in Eq. (1.7). However, by using Euler's identity (1.17), we 
obtain 

arcsin x = x~ F(I, 1; ~ ;x2
) and arcsinhx = x~ F(1, 1; ~; _x2

) 

where 
1 

F(1,1; ~;x) = ----------
1·2x 

1---------
1· 2x 

3-------
3 ·4x 

5-----
3·4x 

7---
9- '. 

¢ Problem 1-17 
Develop the expansion 

• 1 sin x F ( ~, ~; ~; sin 2 
x) 

sm -x = -- -~"""'7-"""'7--...---:-
3 3 F(~, i; ~;sin2 x) 

sinx 

4·1 sin2 x 
3 - ------------::-------

5· 8sin2 x 
9 - ----------::-----

10· 7sin2 x 
15--------~---

11 ·14 sin2 x 
21 - ------~--

16· 13sin2 x 
27------~ 

17· 20sin2 x 
33-----

39- '. 

as well as the corresponding one for hyperbolic functions by replacing x by ix 
and using the relation sin ix = i sinh x. These are needed for the representation 
of the solution of the algebraic cubic equation as a continued fraction. 

HINT: Use Eq. (1.17) to transform Eq. (1.13) and set n = ~. In a similar 
manner, transform Eq. (1.14) and set n = - ~ . 
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Continued Fraction Solutions of the Cubic Equation 

The idea of using trigonometric identities and tables to solve cubic equa
tions originated with Fran~ois Viete. t By including hyperbolic identities as 
well, we can obtain an elegant and useful expression for the positive root 
of a large class of cubic equations. 

The general cubic equation 

w3 + Aw2 + Bw = C 

may be reduced, by the substitution w = z - I A, to the normal form 

z3 ± pz = q (1.31) 

where p is positive. A further substitution z = ffp y results in the 
canonical form 

y3 ± 3y = 2b (1.32) 

If we assume that b is positive, then Eq. (1.32) will have only one positive 
real root according to Descartes' rule of signs. 

Consider first the equation y3 + 3y = 2b. By writing 

y = 2 sinh ix 
the cubic equation becomes 

and b = sinh x 

4sinh3 Ix + 3 sinh ix = sinh x 
which we recognize as a standard identity for the hyperbolic sine. There
fore, using the results of Prob. 1-17, we can write the solution of the cubic 
equation as 

2bF{a i. ~'_b2) 2b _ 3' 3' 2' _ 
Y - "3 F{ a !.!. -b2) - ----4-.-1-b=-2--

3'3'2' 3+-----",.....--
5·8b2 

9+-----=-
10·7b2 

15+---
21 + '. 

(1.33) 

t Franciscus Vieta (1540-1603) was a lawyer by profession but is recognized as 
the foremost mathematician of the sixteenth century and the father of modern alge
braic notation. His Canon Mathematicus seu ad 'Inangula in 1579 was the first of his 
many works on plane and spherical trigonometry and contained for the first time many 
of the now familiar trigonometric identities. De Aequationum Recognitione et Emenda
none, which was written in 1591 but not published until 1615, contains his method of 
solving the irreducible cubic by using a trigonometric identity. Like Wallis, he too had 
a remarkable infinite product representation of 7r: 

;=v'T·h+!v'T·b+hh+hff ... 
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If the cubic equation has the form y3 - 3y = 2b, we must initially 
address the cases b ~ 1 and b ~ 1 separately. For the former, we write 

y = 2 cos 1 x = 2{ 1 - 2 sin 2 i x) 

and obtain 

and b = cos 2x = 1 - 2 sin 2 x 

4 cos3 1 x - 3 cos 1 x = cos 2x 

which is an appropriate identity for the cosine function. Therefore, 

(
sin !X)2 

Y = 2 - 4sin2 x -. _3_ 
smx 

= 2 _ 2{1 - b) (F[l, t; ~; !{l - b)])2 
9 F[l, i; !; !(l - b)] 

If b ~ 1, we write 

(1.34) 

y = 2 cosh 1 x = 2 (1 + 2 sinh 2 i x) and b = cosh 2x = 1 + 2 sinh 2 x 

Then, the cubic is transformed to 

4 cosh 3 1 x - 3 cosh 1 x = cosh 2x 

Hence, 

(
sinh !X)2 

Y = 2 + 4 sinh2 x . h 3 
sm x 

But, when y is expressed in terms of b, the result is the same as Eq. 
{1.34)-exactly! Therefore, (1.34) is the solution of (1.32) regardless of the 
size of b. 

1.3 Convergence of Continued Fractions 

The criteria for convergence of continued fractions are not nearly so com
plete as for power series. Of course, by convergence of the general continued 
fraction 

(1.35) 



Sect. 1.3] Convergence of Continued Fractions 55 

we mean convergence of the infinite sequence of partial convergents Po/qo, 
Pl/ql' ... defined as 

Po ao 
qo = bo 

b 
al 

0+--
a2 

b1 +-
b2 

(1.36) 

etc. 

Therefore, the value of the infinite continued fraction is the limit of the 
infini te sequence. 

Recursive Properties of the Convergents 

John Wallis became interested in continued fractions when Lord William 
Brouncker (1620-1684), the first president of the Royal Society, trans
formed Wallis' infinite product representation of 7r to the continued fraction 

4 3·3·5·5·7 12 
7r = 2· 4 . 4 . 6 . 6 ... = 1 + 32 

2 + ------=---52 
2+-----=-

72 

2+---
2+ '. 

In his Opera Mathematica, in which he also introduced the term "continued 
fraction", Wallis gave the general rule for calculating the convergents which 
we shall now prove. However, he gave no definitive results on the subject 
of convergence. 

We observe from Eqs. (1.36) that 

P2 = b2Pl + a2Po 

q2 = b2ql + a2qo 

which suggests the possibility of a general recurrence relation of the form 

Pn = bnPn-l + anPn-2 
(1.37) 

with initial conditions 

Po =ao 
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We can most easily prove Wallis' rule using mathematical induction. 
Equations (1.37) are certainly true for n = 2. Applying mathematical 
induction, we assume that they are true for all integers up to and including 
n and attempt to show that they are true for n + 1. For this purpose, 
we first note that Pn+l/qn+l is generated from pn/qn by replacing bn by 
bn + an+l/bn+1. Hence 

Pn+l (bn+1bn + an+1)Pn-l + bn+1anPn-2 

qn+l = (bn+1bn + an+1)qn-l + bn+1anqn-2 

But the proposition (1.37) is true for n by hypothesis so that we have 

Pn+l bn+1Pn + an+1Pn-l 
qn+l = bn+1 qn + an +1 qn-l 

Therefore, the proposition is true for all n. 

There are two other important recurrence relations that we shall also 
require for the discussion of convergence. For the first, define 

In = pnqn-l - Pn-lqn 

and use Eqs. (1.37) to write 

so that 

Hence 

pnqn-l = bnPn-l qn-l + anPn-2qn-l 

Pn-l qn = bnPn-l qn-l + anPn-l qn-2 

In = -anln- 1 = (-an )( -an- 1)ln- 2 = (-an )( -an-I) ... (-a2)/1 

or, alternately, 

In == pnqn-l - Pn-lqn = (-1)naOa1 " .an 

For the second, we define 

gn = pnqn-2 - Pn-2qn 

and again use Eqs. (1.37) to write 

Hence 

pnqn-2 = bnPn-l qn-2 + anPn-2qn-2 

Pn-2qn = bnPn-2qn-l + anPn-2qn-2 

gn = bn(Pn-lqn-2 - Pn-2qn-l) = bnln- 1 

and, using Eq. (1.37), we obtain 

gn == Pn qn-2 - Pn-2qn = (-1 )n-l aOa1 •.. an- 1 bn 

(1.38) 

(1.39) 
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With these results, we can derive sufficient conditions for the convergence 
of continued fractions of two different kinds or classes. 

Convergence of Class I Continued Fractions 

The general continued fraction (1.35) is said to be of the first class if an 
and bn are all positive. Now, from Eq. (1.38), we have 

P2n+1 _ P2n = _ aOa l .•. a2n+ 1 

q2n+ 1 q2n q2n+ I q2n 
P2n _ P2n-1 = aoa l ··· a2n 

q2n q2n-1 q2nq2n-1 

which demonstrates that every even convergent is greater than every odd 
convergent. Furthermore, from Eq. (1.39), we have 

P2n+1 _ P2n-1 = aOa l · .. a2nb2n+l 

q2n+ I q2n-1 q2n+ 1 q2n-1 

P2n _ P2n-2 = _ aOal ·· .a2n-Ib2n 

q2n q2n-2 q2nq2n-2 

so that the odd convergents continually increase while the even convergents 
decrease. In summary, 

PI < P2 > P3 < P4 > P5 < P6 > P7 < ... 
ql q2 q3 q4 q5 q6 q7 

Clearly, the odd and even convergents could each have a separate limit. 
Hence, the fraction will either converge or oscillate between two different 
values. 

There is a sufficient condition for convergence of Class I fractions which 
we can now derive. From the second of Eqs. (1.37) we have 

so that 

Therefore, 

qn = bnqn-l + anqn-2 

= bn (bn- 1qn-2 + an- Iqn-3) + anqn-2 

> (bnbn- l + an )qn-2 

qnqn-l > (bnbn_ l + an)qn-l qn-2 

> (bnbn- l + an)(bn- l bn- 2 + an- l )qn-2qn-3 

> (bnbn- 1 + an)··· (b2bl + a2)qlqo 

> (bnbn- l + an)··· (blbo + al)bo 
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Clearly, the infinite product diverges if 

b b lim n-l n > 0 
n-+oo an 

(1.40) 

Hence 
Pn _ Pn-l = (_l)n aOal ... an 
qn qn-l qnqn-l 

will approach zero as n becomes infinite provided that the inequality (1.40) 
is satisfied. Thus, (1.40) is a sufficient condition for the convergence of the 
infinite continued fraction. 

¢ Problem 1-18 
Show that 

2 
2+-------

3 
3+------

4 
4+----

5 
5+--

6+ '. 

is a convergent continued fraction. 

¢ Problem 1-19 
When x is negative, the continued fraction representation of the ratio of 

two contiguous hypergeometric functions will eventually be of Class I -that is, 
after no more than a finite number of levels of the fraction, the a's and b's will 
become and remain positive. Prove that the fraction will always converge. 

¢ Problem 1-20 
The class I fraction 

x 

x2 

a + ------=----
x3 

a+-----:~
X4 

a+ 5 
x 

a+---
a+ '. 

has a fascinating property unlike what we might encounter with infinite series. 
If x ~ 1, then the fraction converges. On the other hand, if x > 1, the fraction 
will oscillate. 

Verify these statements and illustrate the oscillation process with a numer
ical example. 
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Convergence of Class II Continued Fractions 

The continued fraction of the form 

59 

(1.41) 

is said to be of the second class if 4 n and bn are all positive. The recursion 
formulas of Eqs. (1.37) take the form 

Pn = bnPn-l - anPn-2 

qn = bnqn-l - anqn-2 

with the initial conditions 

Po = 40 Pi = aOb1 qo = bo 

We can establish the relation 

In == pnqn-l - Pn-lqn = a041" .4n 

(1.42) 

in exactly the same manner that was used to derive Eq. (1.38). Hence, 

Pn _ Pn-l = 404 1'" 4 n 

qn qn-l qnqn-l 

and we see immediately that the partial convergents form an increasing 
sequence. The infinite continued fraction will then either converge or 
diverge to infinity. 

Convergence of a Class II fraction will be assured if the inequality 

(1.43) 

becomes and remains true as n increases. To validate this sufficient con
dition, there are two inequalities which we must establish. First, since 

Pn - Pn-l = (bn - 1 )Pn-l - 4 nPn -2 

qn - qn-l = (bn - l)qn-l - 4 nqn-2 

then the inequality (1.43) will insure that 

Pn - Pn-l ~ 4 n (Pn-l - Pn-2) 

~ an 4 n _l •.. a2(Pl - Po) = 4 n 4 n _l .•. 424o(b1 - 1) 

~ 404 1" .an 

From this, and the telescoping series 

Pn - Po = (Pn - Pn-d + (Pn-l - Pn-2) + ... + (Pi - Po) 
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it follows that 

(1.44) 

Of course, qn satisfies the same inequality; however, an even stronger in
equality for qn exists and will be needed. 

For this purpose, we first observe that 

qn - Pn = bn(qn-l - Pn-l) - an (qn-2 - Pn-2) 

2:: (qn-l - Pn-l) + an [(qn-l - Pn-l) - (qn-2 - Pn-2)] (1.45) 

provided qn-l - Pn-l ~ o. That this requirement is true follows from 

and 

Hence 

(ql - PI) - (qo - Po) = (bob l - a l - aOb l ) - (bo - ao) 

= (bo - ao)(b l - 1) - a l 

~ 1· a l - a l = 0 

q2 - P2 2:: ql - PI 2:: qo - Po = bo - ao 2:: 1 

Continuing this process recursively, Eq. (1.45) is established in general. We 
have, therefore, 

qn - Pn ~ qn-l - Pn-l ~ ... ~ qo - Po 2:: 1 

from which we establish the second inequality 

qn 2:: Pn + 1 (1.46) 

Now, since Pn and qn are both positive and qn 2:: 1, it follows from 
(1.46) that 

Pn < 1 - ~ (1.47) 
qn - qn 

Therefore, the infinite continued fraction converges to a finite limit not 
greater than one and the sufficiency of the inequality (1.43) is verified. 

The inequality bn ~ an + 1 need not be satisfied for all n but only 
for n greater than some N. In this case, the infinite continued fraction 
converges but the limit is not necessarily less than or equal to one. For 
example, consider the expansion for the tanx obtained in Probe 1-15 which 
is Class II. We have ao = x, an = x2 for n = 1, 2, ... and bn = 2n + 1 
for n = 0, 1, .... Clearly, bn ~ an + 1 holds for n > N for any value of 
x and a detenninistic value of N. Therefore, the fraction converges. (Of 
course, x must not coincide with a singularity of the function tan x .) 
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~ Problem 1-21 
Y Another sufficient condition for the convergence of the Class II fraction 

(1.41) is 

for all values of n. 

¢ Problem 1-22 
For positive x the fraction 

x 

x 
x + 1 - -------

x 
x+1----

x+ 1-·. 

is of Class II. Can you demonstrate the fascinating property that the value of 
this fraction is equal either to x or 1 according as x < 1 or x ~ 1, respectively? 

HINT: Recall the continued fraction development for the Golden Section. 

Equivalent Continued Fractions 

The convergence tests given for Class I and Class II fractions cannot always 
be applied directly. The tests may fail and yet the fraction could still 
converge. This is because an equivalent form of the fraction may pass the 
test. 

We have already introduced the subject of equivalent continued frac
tions in the previous section of this chapter. But there are two cases which 
are worthy of special consideration. In general, we have 

ao aoco 
---~---- -------~~-------

N ow if we choose 

etc. 

we convert the fraction to the form 

(1.48) 
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On the other hand, if we choose 

etc. 

then we have the equivalent fraction 

(1.49) 

If these alternate or other equivalent forms of the fraction satisfy the 
convergence criteria, then the original fraction will, indeed, converge. 

For example, when x is positive, the continued fraction expansion of 
the hypergeometric function F(3, 1; ~; x), encountered in Chapter 7, is of 
Class II for positive x after the first two stages since 

3 
F(3, 1; ~; x) = ----------------

18x 
3 - --------------

6x 
5 + ------------

40x 
7 - -----------

4x 
9 - ---------

70x 
11--------

18x 
13------

108x 
15----

17 - .. 

Suppose that 0 < x ~ 1 and consider the following fraction which is 
equivalent to the tail of the fraction in question with x = 1: 
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By requiring that bn = an + I, the constants ci can be determined recur
sively. We have 

Ilc} = 4c} + I 
13c2 = 70c 1 c2 + I 
15c3 = 18c2c3 + I 
17c4 = I08c3 C4 + I 
19c5 = 40c4 c5 + I 
21c6 = 154c5c6 + I 

which give 

Therefore, the tail of the fraction is equivalent to 

4 
7 

10 
11 "'3 
1" - 2 

13 3 
"'3 - 12 

5 5" 
3 - 8 

17 IT 
5" - 19 

C - 1 
1 - 7 

C - 1 2-3 
C - 1 3-9 
C - 1 4-5' 

C - 1 
5 - IT 

C - 1 6-7 

IT - . 

which is convergent by the Class II sufficiency test. 

1.4 Evaluating Continued Fractions 

The continued fraction (assumed to be convergent) 

etc. 

may be evaluated by any of several methods. Three are considered here, 
the last of which has none of the disadvantages of the first two. 

Wallis' Method 

The numerator and denominator of the partial convergents Pn / qn may be 
obtained recursively for n = 2, 3, ... from Wallis' formulas (1.42) until 
convergence within the required tolerance is achieved. The principal dis
advantage of this method is that Pn and qn are likely to grow rapidly with 
n. When implemented on a computer, repeated scaling may be necessary. 
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The Bottom-Up Method 

The necessity for scaling can be avoided by calculating the finite fraction 
pn/qn from the bottom to the top by successive division. Thus, if we set 

fkn ) = ___ a.....;,k~ __ 

ak+l b
k

--......;.;....:.....;;...-

bk +1 - ". 

for 

and generate these quantities recursively from 

fen) _ ak 
k - b _ fen) 

k k+l 

for k = n - 1, n - 2, ... ,0 

starting with fAn) = OJ then fJn) = pn/qn' To obtain the value of the 
continued fraction, the process must be repeated for increasing values of n 
until fJn) converges to within the desired accuracy. 

Although the method is simple and easily programmed, the obvious 
disadvantage is the required iteration on n which can necessitate an inor
dinate number of arithmetic operations. 

Euler's Transformation 

The foundation of a theory of continued fractions was laid by Leonhard 
Euler through a series of papers. In 1785 his memoir De Transformatione 
Serierum in Fractiones Continuas appeared showing how to convert infinite 
series into continued fractions which is the basis of an efficient method for 
evaluating continued fractions. 

Assume that bn = an + 1 in the continued fraction of the form (1.41). 
Then all of the inequalities derived in the subsection on Class II fractions 
in Sect. 1.3 become equalities. Indeed, 

and 

so that 

1 
q =-n 

1- Pn 

qn 
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Therefore, from Eq. (1.41), we have 

1 
qn= ----------------------------------------ao 1 - ------------------~---------------

a 1 ao + 1 - --------------~------------
a2 

a 1 + 1 - ------------=-----------
a3 

a2 + 1 - --------=----

an 
an - 1 + 1- --1 

an + 
An equivalent representation of qn is clearly possible. We have 

1 
qn= ----------------------------------------------

coao 
1-----------------------~-------------------

Cn-1cnan 
cn-1an - 1 +cn - 1 - --'----'

cnan + cn 

where co' c1 ' ... can be arbitrarily selected. In particular, if we define 

and, further, write 

Uo = ao 

we obtain 

1 

etc. 

etc. 

-------------------------------------------------
Uo 

l-----------------------~---------------------
U 1 1 + Uo - ------------------......;;....----------------

uOu2 
Uo + u 1 - ----------''------------

u 1u3 
u 1 + u2 - -----=--=-----

Finally, since 
_____ 1 ______ 1 = _u_o_ 
1 _ __ u-,-o __ 

1 +uo - P 

I-P 

65 
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we have 

Uo 
- --------------------~-------------------- (1.50) 

u 1 1 - ----------..::.......--------

Un -2Un 
un -2 + un - 1 - + 

U n - 1 un 

This is Euler's famous transformation of a series into a continued 
fraction which we shall use to derive a most convenient algorithm for 
the efficient evaluation of a continued fraction. It is important to realize 
that Eq. (1.50) is, in fact, merely an algebraic identity and should not be 
confused with the powerful expansion developed by Gauss in the previous 
section. Euler's continued fraction will converge or not under the exact 
same circumstances as the power series and at the same rate. On the other 
hand, Gauss' expansion generally broadens the range and increases the 
speed of convergence when compared to the corresponding series. 

¢ Problem 1-23 
By transforming the power series for arctan x into a continued fraction, de

rive Brouncker's "formula for the quadrature of the circle" given at the beginning 
of Sect. 1.3. 

¢ Problem 1-24 
Euler's continued fraction for sin x is 

x 
sin x = --------------------:::--------------

x 2 

1 + --------------::~-----
2·3x2 

2.3 - x2 + -----------:---
2 4· 5x2 

4·5-x + 2 

6·7-x +'. 

¢ Problem 1-25 
Euler's continued fraction for eX is 

1 eX = __________________________ _ 

x 
1 - ---------------------

x 
1 + x - -----------------

2x 
2 + x - --------

3x 
3+x- ------

4+x- '. 
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The Top-Down Method 

Euler's transformation also permits a continued fraction to be converted 
into an equivalent series such that the nth convergents of both the fraction 
and the series are identical. If, in Eq. (1.50), we define 

and 

Uo = Po u l = POPl etc. 

we obtain the alternate form 

Po En=--------------------------------------------------------
PI 

Now let 

so that 

1 - --------------~-----------------------
P2 

1 + PI - -----------=--------------------
1 + P2 - ______ P..;;;.,3 -----------

for 

1+ Pn 
Pn-l-~+ Pn 

k = 1,2, ... ,n 

1 - (On - l)/On_IOn 

Finally, by making the identifications, 

ao 
Po=-, bo 

we obtain 

for k = 1,2, ... ,n 

1 - an/bn- l bn 

which is equivalent to the nth convergent pn/qn of the original continued 
fraction. 
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These relations provide the basis for a recursive algorithmt to generate 
the convergents of the continued fraction. For n = 1, 2, ... , we have 

where 

1 
6 = a n n 1: 

1- bbun-1 
n-l n 

60 = 1 Uo = Eo = ao 
bo 

The iteration continues until that value of n is reached for which 
Pn Pn-l u =----

n qn qn-l 

is within a specified tolerance. 

1.5 Elliptic Integrals 

(1.51) 

Although problems involving elliptic integrals had been pursued for almost 
a century by such notables as the Bernoullis, Leibnitz, Fagnano,:f: and Euler, 
the definitive work was done by Adrien-Marie Legendre (1752-1833) over 
a period spanning four decades. Legendre's chief result, recorded in Traite 
des fonctions elliptiques in 1825-26, may be stated as: 

If P(x) is a polynomial of at most fourth degree with real co
efficients and if R is a rational function of two variables with 
real coefficients, while x is restricted to a range in which P( x) is 
positive, the integral 

f R[x, ';P(x) 1 dx 

can be expressed as a linear combination of terms, each of which 
is either an elementary function, or an elliptic integral of the first, 
second, or third kind.§ 

t This algorithm was published by W. Gautschi in a paper entitled "Computational 
Aspects of Three-Term Recurrence Relations" which appeared in SIAM Review, Vol. 9, 
Jan. 1967. 

* Count Giulio Carlo de' Fagnano (1682-1766), an amateur mathematician, was led 
to the general elliptic integral of the first kind through his treatment of the difference 
of two lemniscate arcs. 

§ It was not until the year of Legendre's death that Joseph Liouville (1809-1882) 
showed that elliptic integrals could not be expressed with a finite number of algebraic, 
circular, logarithmic, or exponential functions-the so-called elementary functi,on,. 
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The normal forms of the elliptic integrals F and E of the first and 
second kind, respectively, are 

(1.52) 

(1.53) 

which are functions of the amplitude </>, where 0 < </> ~ ~ 7r, and of the 
modulus k, where 0 ~ k ~ 1. (The symbol m, called the parameter, is also 
used in place of the square of the modulus, i.e., m == k2 ). The first form 
of these special functions, which were originally tabulated by Legendre, is 
called Legendre's form. The alternate, obtained from the first by setting 
x = sin</>, is called Jacobi's form. 

When the amplitude </> = ~ 7r, the integrals are then complete elliptic 
integrals and denoted by K(k) and E(k). Thus, 

F(k, ! 7r} == K(k) and E(k, ~ 7r) == E(k) (1.54) 

Otherwise, they are referred to as incomplete elliptic integrals. 
The elliptic integral of the third kind is 

/I(n, k, </>} = l tP d</> 

o (1 - n sin 2 </» v'1 - k 2 sin 2 </> 

l
sintP dx 

= 0 (1 - nx2 )v'(1 - x2 )(1 - k2x2 ) 
(1.55) 

where n is the characteristic and can range in value from -00 to 00. 

The properties of the integral depend on the location of the characteristic 
in this interval. It is interesting to note that, for </> = ~ 7r, the complete 
elliptic integrals of the third kind can be represented in terms of incomplete 
integrals of the first and second kind together with elementary functions. 

¢ Problem 1-26 
For fixed amplitude, we have 

4> ::; F( k, 4» ::; log( tan 4> + sec 4» 
and 

¢ Problem 1-21 
The identities 

sin 4> ::; E( k, 4» ::; 4> 

F(k, -4» = -F(k, 4» 
F(k, n1t' + 4» = 2nK(k) + F(k, 4» 

E(k, -¢) = -E(k, ¢) 

E(k, mr + ¢) = 2nE(k) + E(k, ¢) 

where n is any integer, are useful in computations. 
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Elliptic Integral of the First Kind 

The oscillating pendulum provides a simple physical model, the accurate 
description of which involves the elliptic integral of the first kind. Let l 
be the length of a light rod to which is attached a heavy bob and let g be 
the constant gravitation acceleration. Then, if the angle () measures the 
displacement of the bob from the vertical, the equation of motion is 

d2 (} 
l dt2 + gsin(} = 0 

A first integral can be obtained by writing the differential equation in the 
equivalent form 

~~ (d(})2 + gsin() = 0 
2 d(} dt 

Then, by integrating and determining the constant of integration so that 
d(}/dt = 0 when () = (}o we have 

(~~)2 = 2: (cos() _ cos(}o) = i (sin2 ~(}o - sin 2 ~()) 
Introduce a new variable if> defined by 

sin ! () = sin ~ (}o sin if> 

so that, in terms of if>, the equation of motion is 

( ~~ ) 2 = l (1 - sin 2 ! (}o sin 2 if» 

Hence, the period of the pendulum is 

Period = 4· ff.l;1r dif> = 4 ff. K(sin ! (}o) 
V g 0 J1- sin 2 !(}osin2 if> V g 

(1.56) 

The first mathematician to deal with elliptic functions as opposed to 
elliptic integrals was Gauss but the first results were published by Niels 
Henrik Abel (1802-1829) and Carl Gustav Jacob Jacobi (1804-1851). 
Jacobi regarded the inverse of the elliptic integral 

u = f -/1 _ :~ sin 2 '" 

as fundamental and denoted the amplitude if> as am u. Then he defined 

cos if> = cosamu == cnu 

sin if> = sin am u == sn u 
and 

~if> = V1- k2 sin2 if> 
=~amu==dnu 

called Jacobian elliptic functions about which there exists an extensive 
literature which is beyond the scope of this chapter. Suffice it to say that 
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elliptic functions are periodic since 

sn(u + 4K) = snu cn(u+4K) = cnu dn(u + 2K) = dnu 

which can be demonstrated as some of the many important properties of 
these functions. Indeed, it is for this reason that the complete elliptic 
integral of the first kind K is frequently referred to as the quarter period. 

Landen's Transformation 

An interesting and important transformation of elliptic integals was discov
ered and reported in the Philosophical Transactions of the Royal Society of 
1775 by the English mathematician John Landen (1719-1790). Landen's 
transformation can be based on trigonometric identities associated with the 
triangle one of whose angles is (J with opposite side unity, and the other, 
24> - (J with opposite side (3 where 0 ~ (3 ~ 1. The law of tangents and 
the law of sines for this triangle are 

1-{3 
tan((J - 4» = 1 + (3 tan ¢ (1.57) 

and 

(3 sin (J = sin(24) - (J) 

The law of sines can also be written as 

from which 

and 

(J 
sin 24> 

tan =---
{3 + cos 24> 

. 2 _ tan 2 (J sin 2 24> 
sm (J - 1 + tan 2 (J = 1 + (32 + 2(3 cos 24> 

d(tanO) = (1 + tan" 0) dO = 2(~: :o~o;:)~) de/> 

Therefore, we obtain 

1 _ (32 sin 2 (J = (1 + {3 cos 24»
2 

1 + {32 + 2(3 cos 24> 

and 
d(J = 2(1 + (3 cos 24» d4> 

1 + (32 + 2(3 cos 24> 

Then, by writing 

1 + (32 + 2(3 cos 24> = (1 + (3) 2 (1 - k 2 sin 2 4» 

with k2 defined as 

2 4(3 
k = (1 + (3)2 so that 

1- V1- k2 

(3 = 1 + vT=7C2 

(1.58) 

(1.59) 

(1.60) 
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we have 
dO 2 d¢ 

---,:=:::::;:=::;:= = -:----:--;=:=;:==;:::= 
VI - {32 sin 2 0 (I + f3) VI - k2 sin 2 ¢ 

As a consequence, we obtain the following identity for elliptic integrals of 
the first kind: 

F{k, ¢) = ! {I + (3)F({3, 0) (1.61) 

The effect of the transformation from (k, ¢) to ({3,O) is to decrease 
the modulus and increase the amplitude-the latter assertion being verified 
from Eq. (1.57). It is precisely for this reason that Landen's transforma
tion leads to clever and efficient algorithms for the numerical evaluation of 
elliptic integrals. 

Gauss' Method of the Arithmetic-Geometric Mean 

The identity (1.61) can, of course, be used recursively. For this purpose, 
we write 

F{kn' ¢n) = !(l + kn+l)F{kn+l' ¢n+l) 

1-~ k - n 
n+l - 1 + VI - k~ (1.62) 

1 - kn+l 
tan{¢n+l - ¢n) = 1 k tan ¢n 

+ n+l 
with ko = k and ¢o = ¢. Since the modulus kn is steadily decreasing, 
let N be the value of n for which k N is essentially zero (to a specified 
tolerance). Then, since F{O, ¢N) = ¢N' we have 

F (k, ¢) = ! (l + k 1) . ! (I + k2 ) ... ! (I + k N -1) . ! . 1 . ¢ N 

as a method for evaluating F{k, ¢). 
Gauss converted this process into a beautifully simple algorithm which 

is based on the two sequences ao ' aI' ... and bo , b1 , ... generated as 
follows: 

an+1 = ! (an + bn) bn+1 = vanbn (1.63) 

with ao = 1 and bo = ~. Thus, each new a and b is, respectively, 
the arithmetic mean and the geometric mean between the previous a and 
b. (See Appendix A.) It is not difficult to verify that 

k - an - bn 
n+l - a + b 

n n 

1 + kn+ 1 _ an an 

2 - an + bn = 2an+ 1 
(1.64) 

1 - kn+l bn 
1 + kn+l = an 
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Thus, when N is the value of n for which aN - bN is essentially zero, we 
have 

F(k, 4» ~ 2!N (1.65) 
aN 

It is important to remember that 4>n+l > 4>n when using the recursion 
formula 

tan(4)n+l - 4>n) = bn tan4>n 
an 

to generate the sequence 4>0' 4>1' ... , 4> N • 

¢ Problem 1-28 

(1.66) 

For the pendulum problem with an amplitude of (Jo = 4 1r, calculate the 
time required for the bob to travel from the position for which (J = 47r to 
(J= t1r. 

Elliptic Integral of the Second Kind 

The simplest example of an elliptic integral of the second kind occurs in the 
calculation of the arc length of an ellipse-indeed, it is for this reason that 
the terminology "elliptic" has been used to describe these special integrals. 

Write the equations of the ellipse in parametric form as 

x = acosO y = bsinO 

Then the differential of arc length ds is 

ds2 = dx2 + dy2 = (a2 sin 2 0 + b2 cos2 0) d02 = [a2 
- (a2 - b2 ) cos2 0] d02 

Since a2 - b2 = a2e2 , where e is the eccentricity of the ellipse, then 

ds = av'I - e2 cos2 0 dO 

Therefore, if we define 4> = ~ 7r - 0, in order to put the integral into the 
normal form of Eq. (1.53), the perimeter of the ellipse is 

(!7r 
Perimeter = 4a J

o 
VI - e2 sin 2 4>d4> = 4aE(e) (1.67) 

Landen's transformation for elliptic integrals of the second kind is 
somewhat more involved than for the first kind. Proceeding as before, we 
can establish 

VI - {32 sin 2 0 dO = 2(1 + {3 cos 24»2 d4> 
(1 + ,8) 3 (1 - k2 sin 2 4» ~ 

which, after some modest algebra, yields 

E({3, 0) = (1 - (3)F(k, 4» + ~ (1 + (3) [E(k, 4» + (1 - k2 )II(k2
, k, 4»] 
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Fortunately, the elliptic integral of the third kind in this equation is 
rather special (the characteristic n is equal to the parameter m = k 2 ) and 
can be expressed as 

(1 - k2 )II(k2 k </» = E(k </» _ k
2 

sin 2</> (1.68) 
, , '2Vl - k2 sin 2 </> 

Now, since 
. 0 sin 2</> 

SID = ~----:::--;===;::;:=~= 
(I + (3)Vl - k 2 sin 2 </> 

we obtain 

E({J, 0) = (1 - {j)F(k, </» + {I + {j)E(k, </» - {J sin 0 

By rearranging and using Eq. (1.61), we obtain 

1 1-{J {j. 
E(k, </» = 1 + (JE({J, 0) - -2-F{{J,0) + 1 + (J SID 0 (1.69) 

as the identity for elliptic integrals of the second kind corresponding to 
that for F(k,</» in Eq. (1.61). 

¢ Problem 1-29 
Derive the expression for the special case of the elliptic integral of the third 

kind Il(k2
, k, q,) given in Eq. (1.68). 

HINT: First show that 

.!!:..- VI - k2 sin2 q, = k
2 

sin 2q, 
dq, 2VI - k2 sin2 q, 
d2 I _k2 

-2 VI - k2 sin2 q, = - VI - k2 sin2 q, 
dq, (l-k2sin2q,)~ 

Evaluating Complete Elliptic Integrals 

Recursion formulas for the complete elliptic integrals of the first and second 
kind can also be developed. 

First, from the triangle defining Landen's transformation, we note that 
</> = ! 7r corresponds to 0 = 7r. Then, using the identities derived in Prob. 
1-27, we have F(k,7r) = 2K(k) so that Eq. (1.61) becomes 

K(kn) = (1 + kn+1)K(kn+1) (1.70) 

or, in terms of the Gaussian sequences ao ' aI' ... and bo' b1 , ••• , 

K(kn) = ..5L.K(kn+1) (1.71) 
an +1 

This equation, applied recursively, gives 
7r 

K(k) ~ - (1.72) 
2aN 
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and should be compared to Eq. (1.65). 
In a similar manner, since E(k,1r) = 2E(k) , Eq. (1.69) becomes 

2 
E(kn) = 1 k E(kn+l) - (1 - kn+1 )K(kn+1 ) (1.73) 

+ n+l 
or 

(1.74) 

However, rather than work directly with E(k), the function Q(k), defined 
as 

Q(k) = K(k) - E(k) 
K(k) 

(1.75) 

is more convenient because it has such a simple recursion formula. Using 
Landen's transformation, it is readily seen that 

2 
Q(k) = (1 + f3)2 [Q(f3) - f3] 

or, in terms of the Gaussian sequences, 

where Cn+ 1 is determined from 

cn+1 = ! (an - bn) 

and generates a third sequence to be appended to the other two. 
By successive application of this recursion formula, t we obtain 

N 

Q(k) ~ L 2iaici 
i=l 

Finally, from the definition of Q( k), we have 

E(k) ~ 2: (1-E 2i ai ci ) 
N i=l 

(1.76) 

(1.77) 

(1.78) 

(1.79) 

(1.80) 

as a convenient algorithm for calculating E(k)-the complete elliptic inte
gral of the second kind. 

t Note that Q(O) = O. 
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¢ Problem 1-30 
By differentiating under the integral sign with respect to the parameter 

m == k2
, show that K(m) and E(m), the complete elliptic integrals of the first 

and second kind, satisfy the following first order differential equations: 

2m(1-m):~ =E-(l-m)K 

2m
dE 

=E-K 
dm 

Differentiate a second time and obtain 

d2 K dK 1 
m(l- m) dm2 + (1 - 2m) dm - i K = 0 

d2E dE 1 
m(l- m) dm2 + (1- m) dm + i E = 0 

each of which is a special case of Gauss' equation for hypergeometric functions. 
Therefore, 

2 
-K(m) = F(! ! ·l·m) 
7r 2' 2' , and 

2 
-E(m) =F(-!, !j1jm) 
7r 

HINT: Use the equations in the "hint" of Prob. 1-29. 

¢ Problem 1-31 
Use the results of Prob. 1-30 and the Gauss identity (8) from Sect. 1.1 to 

derive 
(1 _ m) K(m) = 1 _ m F(!,!; 2j m) 

E(m) 2 F(!,-~;l;m) 

Then, obtain the continued fraction expansion 

E(m) = ____ (l_-_m_)K_(_m_) ___ _ 
m 

1 - -------------
3m 

2 - -----------
m 

4 - ----------
5m 

2---------
3m 

8-------
7m 

2------
5m 

12---
2- .. 

NOTE: This continued fraction can be used to determine E(m) after K(m) has 
been calculated from Eq. (1.72). 
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¢ Problem 1-32 
Calculate 

Elliptic Integrals 

(a) the period of the pendulum whose amplitude is 00 = ! 7r 

and 
(b) the perimeter of the ellipse for which a = 1 and e = 4 . 

77 

In the latter case, use the series approximation of Eq. (1.80) as well as the 
continued fraction of Prob. 1-31 and compare the two results. 

ANSWER: 

(a) 

(b) 

¢ Problem 1-33 
For the sine curve 

Period = 7.4162987.J! 

Perimeter = 5.8698488 

y = asinx 

the perimeter of one arch is given by 

Determine a numerical value for the perimeter when the amplitude a is unity. 

Jacobi's Zeta Function 

Finally, we shall obtain a formula for approximating the value of an 
incomplete elliptic integral of the second kind analogous to Eq. (1.65) for 
integrals of the first kind. For this purpose, we follow a similar pattern of 
argument, which proved to be useful for the complete elliptic integral of 
the second kind, by introducing 

E(k) 
Z(k,4» = E(k,4» - K(k)F(k,4» (1.81) 

called Jacobi's Zeta function. 
The Zeta function Z(k,4» is appropriate because it has a simpler 

form, after application of Landen's transformation, than the elliptic integral 
E(k, 4». In this respect, it is similar to the function Q(k) defined in the 
previous subsection. Indeed, we have 

Z(k,4» = 1~,BZ(,B,O)+ 1!,Bsino (1.82) 

or, in recursive form, 

(1.83) 

and should be compared to Eqs. (1.69) and (1.73). 
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In terms of the Gaussian sequences, Eqs. (1.63) and (1.78), we have 

(1.84) 

Therefore, since ZeD, </» = D, then Jacobi's Zeta function is approximated 
by 

N 

Z(k,</» ~ Lcisin</>i (1.85) 
i=l 

Hence, using Eqs. (1.65), (1.79), and (1.85), we obtain 

E(k,t/l) "" 2~:N (1- ~2iaiCi) + ~CiSint/li (1.86) 

as an appropriate algorithm for calculating the incomplete elliptic integral 
of the second kind. 

¢ Problem 1-34 
For the ellipse with a = 1 and e = ~,calculate the length of the arc from 

(x = 1, Y = 0) to (x = ! V2, y = ~ V6) . 



Chapter 2 

Some Basic Topics 

in Analytical Dynamics 

I NTERACTIONS OF MATERIAL BODIES AND THEIR RESULTING MOTIONS 

due to their mutual attractions is the subject of Analytical Dynamics. 
Leonhard Euler (1707-1783) was the first to use mathematical rather than 
geometrical methods for addressing problems in dynamics and, therefore, is 
considered the father of analytical dynamics. Indeed, Euler applied mathe
matics to study the entire realm of physics. For example, he calculated the 
perturbative effects of other celestial bodies on the motion of a planet as 
well as the motion of a projectile subject to atmospheric drag. He studied 
the bending of beams, the compression of columns, and the propagation 
of sound. The basic equation of motion of the flow of an ideal fluid is 
his and he even applied it to study the flow of blood through the human 
body. He wrote three volumes on optical instruments and made important 
contributions to the refraction and dispersion of light waves. He gave the 
first significant treatment of the calculus of variations-the list is almost 
endless. As a measure of the dauntless spirit of the man, several of his 
books and approximately four hundred of his papers where written during 
the last seventeen years of his life when he was totally blind. 

Leonhard Euler ranks with Archimedes, Newton, and Gauss, and was 
the key mathematician and theoretical physicist of the eighteenth century. 
Although his father was a preacher and wanted him to study theology, he 
decided instead to pursue mathematics and completed his work at the Swiss 
University of Basel, near his birth place, at the age of fifteen. He studied 
there under John Bernoulli and, except for the period 1741-1766 when he 
was in Berlin at the request of Frederick the Great, his brilliant career 
of mathematical research was centered in Russia at the St. Petersburg 
Academy under the auspices of Catherine the Great. 

Despite his enonnous contribution to mathematics, Euler was a 
devoted family man with thirteen children and many grandchildren. They 
benefited from the many hours he spent instructing them, playing scientific 
games and reading to them from the Bible in the evenings. He also had a 
prodigious memory and could carry out difficult mathematical calculations 
in his head without having to resort to tables. Euler enjoyed universal 

79 
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respect from his colleagues and at the end of his life he could regard all 
of the European mathematicians as his pupils. His name is everywhere 
in mathematics: Euler's constants, Eulerian integrals, Euler's formulas, 
Euler's theorems, Euler angles, Euler parameters, Euler axes, ... 

Joseph-Louis Lagrange (1736-1813) contributed much to mathematics 
in such diverse fields as the theory of numbers, algebraic equations, the 
calculus, differential equations, and the calculus of variations but his chief 
interest was celestial mechanics. He was born in Thrin Italy of both French 
and Italian lineage. As a boy he had little interest in mathematics until 
he read an essay by Sir Edmond Halley extolling the merits of Newton's 
calculus. From this inspiration his career found direction and, when but 
nineteen years old, he became a professor of mathematics at the Royal 
Artillery School of Thrin. All of his life, however, he envied Sir Isaac 
Newton since there was, indeed, only one universe and Newton had already 
discovered its mathematical laws. 

Curiously, Lagrange's most famous work Mecanique Analytique, which 
was essentially complete in 1782, did not appear until 1788 for lack of 
a publisher. Indeed, a friend of his had to agree to purchase all copies 
remaining unsold after a certain date before the printer would risk the 
expense of publication. 

Lagrange's name is often linked with Euler's since they shared many 
interests. For example, the Euler-Lagrange equation is fundamental in the 
calculus of variations. To some extent, Euler was a mentor of Lagrange 
being the first to give him encouragement at the tender age of nineteen. 
They remained friendly rivals for life. 

In this chapter, we develop certain fundamentals of analytical dynam
ics-much of which is attributed to Euler-the transformation of coor
dinates and rotation of vectors. Because of its current interest in the 
attitude control of space vehicles, we also discuss Sir William Hamilton's 
quaternions. The last two sections treat the important relations of the 
n-body problem and various forms of certain kinematical relations. All of 
this is basic to the rest of our work. 

Although vector-matrix notation is used throughout, the reader should 
remember that these tools came into being much later in history. Neither 
Euler nor Lagrange would recognize the notation but both would have been 
impressed with the elegance and convenience of the expressions. 

2.1 Transformation of Coordinates 

The vectors with which we are concerned, such as position and velocity 
vectors, are usually expressed as components in an orthogonal coordinate 
system. Occasions arise when skewed coordinate axes are more natural for 
special purposes, but these cases are exceptional. Changes in coordinate 
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systems will be desired both in translation and rotation. Translation of co
ordinates, in which the origin is moved to a new location without changing 
the direction of the axes, is straight-forward and needs no elaboration here. 
In this section, we concentrate on the rotation of coordinate systems. 

Euler's Theorem 

Consider two rectangular cartesian coordinate systems with a common 
origin and call them 81(x,y,z) and 82(e,11,~). Let the 81 axes be fixed 
in space while the 82 axes are free to turn in any manner about the origin. 
Now, if the 82 axes are initially aligned with the 81 axes, we will show 
that any other configuration can be attained by a simple rotation of the 82 
triad about some definite line through the common origin. This is Euler's 
fundamental theorem on rigid body rotation-that a rotation about a point 
is always equivalent to a rotation about a line through the point. 

For the proof, consider an arbitrary configuration of the 82 frame with 
respect to 81 , The x, e axes determine a plane as do also the Y,11 axes. 
Now construct two planes: one perpendicular to the x, e plane, the other 
perpendicular to the Y,11 plane-oriented so that each bisects, respectively, 
the angles between the axes x, e and Y,11. The line of intersection of these 
two planes makes equal angles with the x and e axes. It also makes equal 
angles with the y and 11 axes. Therefore, if this line of intersection were 
considered to be rigidly attached to the 82 reference frame, its direction 
would be the same after the new configuration was established as it was 
initially. Thus, a rotation about this direction will bring the 82 axes from 
an initial alignment with the 8 1 axes to the specified configuration. 

The Rotation Matrix 

Let ix, iy , iz and i~, i", i~ be two sets of orthogonal unit vectors parallel 
to their respective coordinate axes for some particular configuration of the 
x, y, z system. Then we may write 

i~ = II ix + m l iy + n l iz 

i'1 = L2 ix + m2 iy + n2 iz 

i~ = L3 ix + m3 iy + n3 iz 

(2.1) 

where ll' m l , ... , n3 are called direction cosines. They are cosines of the 
nine angles determined by the axes of one triad and the axes of the other. 

Consider an arbitrary vector r expressed in terms of components along 
the x, y, z axes as well as the e, 11, ~ axes. Thus we have two equivalent 
representations 
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To obtain any coordinate in one system in terms of those of the other 
system, we simply take the scalar product of the above identity with the 
corresponding unit vector. In this manner, we may obtain two sets of three 
linear equations which may be written in vector-matrix form as 

or 

The matrix R, called the rotation matrix, is then 

R = [::::: ;:: ;: ;:: ;:] = [~I 
iz • ie Iz • I,., Iz ' I~ n l 

From Eq. (2.2) it is clear that 

RRT =RTR=I 

where I is the three-dimensional identity matrix, so that 

RT=R- I 

(2.2) 

(2.3) 

(2.4) 

Thus, R is an orthogonal matrix and the two sets of vectors, formed from 
the rows and columns of R, each constitute an orthonormal set. Specifi
cally, then we have 

lr + l~ + l~ = 1 

mr +m~ +m~= 1 

nr +n~ +n~= 1 

lr + m~ +nr = 1 
l~ +m~ +n~ = 1 
l~ +m~ +n~ = 1 

Ilml + 12m 2 + 13m3 = 0 

lint + 12n2 + 13n3 = 0 

mini + m 2n2 + m3n3 = 0 

1112 + m 1m 2 + n l n2 = 0 

1113 + m l m3 + n l n3 = 0 

'213 + m2m 3 + n2n3 = 0 

Furthermore, it is useful to note that each element of R is its own cofactor; 
that is, 

II = m 2n3 - m3n2 

m l = l3n2 - 12n3 

nl = 12m 3 -lam 2 

l2 = manl - m1na 
m2 = Ilna -lanl 

n 2 = laml -lima 

la = m 1n2 - m2n l 

ma = 12n l -lln2 

na = 11m 2 -l2m l 

These expressions will prove useful in some of the problems which follow. 
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¢ Problem 2-1 
If I( - Ix and I" - III are not parallel, the rotation axis of Euler's theorem 

has the direction of the vector 

w = (I( - Iz) X (i" - ill) 

= (nl + 13)lz + (n2 + rn3)ill + (n3 - rn2 -11 + 1)iz 

= (nl + ia)i( + (n2 + rn3)i" + (n3 - ffl2 -11 + 1)i~ 
Also, w is the characteristic vector of the rotation matrix R corresponding 

to the characteristic value of unity. By direct calculation, verify that 

Rw=w 

In other words, the Euler axis w is unaltered by the rotation defined by the 
rotation matrix R. 

¢ Problem 2-2 
For the spherical coordinate system illustrated in Fig. 2.1, the unit vectors, 

141, 18, Ir are related to Iz, ill' Iz by 

141 = i8 X ir 

where 

i8 = - sin () iz + cos () ill 

and 

Ir = sintPcos()iz + sin tPsin () ill + costPiz 

The associated rotation matrix is 

Fig. 2.1: Spherical 
coordinate system. 

[

COS tPcos () 
R = costPsin() 

-sintP 

- sin () sin tP cos () ] 
cos () sin tP sin () 
o costP 
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Euler Angles 

In celestial mechanics, as well as in the study of rigid body dynamics, Euler 
angles are frequently used to relate two coordinate systems. As illustrated 
in Fig. 2.2, the ie' i", i) axes are the final orientation of an orthogonal 
triad, which originally coincided with ix, iy , iz , after undergoing three 
successive rotations described as follows: 

1. A positive rotation about i z through an angle 0 which establishes the 
direction of the unit vector in as 

in = cos 0 i x + sin 0 i y (2.5) 

2. A positive rotation about in through an angle i which establishes the 
direction of i) as 

or, using Eq. (2.5), 

i) = sin 0 sin i i x - cos 0 sin i i y + cos i i z (2.6) 

3. A positive rotation about i) through an angle w which establishes the 
direction of ie as 

ie = cosw in + sin w im (2.7) 

where im = i) X in' Then, from Eqs. (2.5) and (2.6), we obtain 

im = -sinOcosi ix +cosOcosi iy +sini i z (2.8) 

Fig. 2.2: 
Euler angles. 

The components of the unit vectors ie and i) are now determined in 
the x, y, z reference frame. We have also i" = i) x ie so that all of the 
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direction cosine elements of the rotation matrix R in Eq. (2.3) are obtained 
in terms of the three Euler angles 0, i, w as follows: 

¢ Problem 2-3 

11 = cosOcosw - sinOsinwcosi 

12 = - cos 0 sin w - sin 0 cos w cos i 

La = sin 0 sin i 

m l = sinOcosw + cosOsinwcosi 

m2 = - sin 0 sin w + cos 0 cos w cos i 

ma = - cos 0 sin i 
n l = sinwsini 

n2 = cos w sin i 

na = cosi 

(2.9) 

The direction cosines appearing as elements of the rotation matrix may be 
determined by using the cosine law of spherical trigonometry. For example, the 
angle between ix and i{ forms one side of a spherical triangle whose other two 
sides are 0 and w. The included angle between these sides is 7r - i. Therefore, 
from the cosine law, derived in Appendix B on vector algebra, we have 

11 = ix • i{ = cos 0 cos w + sin 0 sin wcos(7r - i) 

= cosOcosw - sinOsinwcosi 

Derive the other direction cosines in a similar fashion. 

Elementary Rotation Matrices 

If the Euler axis coincides with a coordinate axis, the associated rotation 
matrix is called an elementary rotation matrix. For example, if the Euler 
axis of rotation is aligned with ix = i~ and the rotation angle is 0, then 
from Eq. (2.3) we have 

[

1 0 
Rx(O) = 0 cosO 

o sinO 

Similarly, for a rotation about the y axis: 
iz = i~, the elementary matrices are 

[

cosO 
Ry(O) = 0 

-sinO 

o SinO] 
1 0 
o cosO 

and 

-s~no] 
cosO 

iy = i'7' and about the z axis: 

[

COS 0 - sin 0 0] 
Rz(O) = sin 0 cos 0 0 

001 

Consider again the two rectangular coordinate systems 8 1 (x, y, z) and 
82 (e, 71,~) initially aligned. Suppose, for example, that the 82 triad is first 
rotated about the x axis through an angle 0 to establish an intermediate 
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coordinate system Si(U' v, w). Then it is rotated about the v axis through 
an angle 4>. The equations analogous to (2.2) are 

and 

or 

¢ Problem 2-4 
As an example of elementary matrices, the rotation matrix for the spherical 

coordinate system of Prob. 2-2 is the product of two separate rotation matrices, 
i.e., 

R = [~:: ~~~noO ~] [ co~ e/> ~ si~ e/> ] 

o 0 1 - sine/> 0 cose/> 
Interpret this result geometrically. 

Also, the rotation matrix, whose elements are given in Eq. (2.9), may be 
obtained as the product of three separate rotation matrices 

R = [:~g ~~oO ~] [~ ::: ~~~i] [:~: ~~: ~] 

2.2 Rotation of a Vector 

We have seen that a transformation of the form Eq. (2.2) can be regarded as 
a rotation of coordinate system axes in that the quantities x, y, z and e, 
1/, ~ are the coordinates of the same vector r referred to different systems 
of coordinates. However, this equation can be interpreted from a different 
point of view. It may also be regarded as the rotation of a vector, whose 
coordinates are e, 1/, ~, to produce a new vector, whose coordinates are 
x, y, z both re/erred to the same coordinate system. 

In order to substantiate this interpretation, consider a vector r to 
be rigidly attached to the triad i(, i'1' is' so that it will have constant 
projections e, 1/, ~ on these axes 

r = e i( + 77 1'1 + ~ IS' 

despite the orientation of the moving frame. Initially, when the two coor
dinate frames are aligned, the components of r along ix, Iy , iz will also 
be e, 1/, ~. Let this be the vector ro with 

ro = e Ix + 1/ Iy + ~ i z 
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After the rotation, the components of the vector r along ix' iy ' Iz will be 

r = (ell + l1l2 + ~l3) Ix + (em l + 11m 2 + ~m3) Iy + (en l + l1n2 + ~n3) i z 

which are obtained using Eqs. (2.1). This equation is equivalent to 

r=Rro (2.10) 

and expresses the relationship between two vectors ro and r-one obtained 
from the other by a rotation about a fixed axis. 

Kinematic Form of the Rotation Matrix 

It is useful to explore the concept of the rotation of a vector from a different 
and, perhaps, more direct approach. Consider a vector r rotating with a 
constant vector angular velocity w so that 

dr 
dt = w X r 

Let l, m, n be the direction cosines of w and 
d1/J / dt, the constant angular speed. Then 

d1/J (l I · .) d1/J. w = dt x + m Iy + n I z = dt Iw 

If we define a skew-symmetric matrix S as 

s=[_: T ?] (2.11) 

then the vector iw X r may be replaced by the matrix-vector product Sr. 
We have 

dr 
-=Sr 
d1/J 

as a linear vector differential equation for r with constant coefficients. The 
solution, t as a function of 1/J for which r(O} = r o ' may be written as 

( 
122 1 33) r(1/J} = 1+ 1/JS + 2! 1/J S + 3! 1/J S + ... ro 

The matrix coefficient of ro is the rotation matrix R expressed as an 
infinite matrix series. To obtain a more useful expression, we recall that 

Sro = iw X ro 

Therefore, 

t If the quantities involved in the differential equation were scalars only, we could, 
correctly, write the solution as r = et/lSro. For the case at hand, and in general, if we 
define the exponential function of a matrix by the infinite series, the formal operation 
implied by et/lS will be valid. 
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and 

S3ro = iw x [iw x (iw X ro)] = -iw x ro = -Sro 

from which we conclude that 

S3 =-S 

[Chap. 2 

Thus, all powers of the matrix S are either ±S or ±S2 and we have 

R = 1+ ("p - '!""p3 + ... ) S + (.!.."p2 _ .!.."p4 + ... ) S2 
3! 2! 4! 

or 
R = I + sin "p S + (1 - cos"p) S 2 (2.12) 

This form of the rotation matrixt shows the explicit dependence on the 
kinematical quantities-the direction cosines l, m, n of the rotation axis 
(as elements of S) and the rotation angle "p. 

Euler Parameters 

Suppose that we express the trigonometric relations in Eq. (2.12) in terms 
of half angles, i.e., 

sin "p = 2 sin !"p cos !"p 1 - cos"p = 2 sin 2 !"p 

Then it is reasonable to combine the term sin!"p with the direction cosines 
of the rotation axis l, m, n by defining the matrix 

E = sin!"pS = [ nSi~!t,b 
-msin !"p 

so that Eq. (2.12) may be written as 

-nsin !"p 
o 

1 sin !"p 

R = I + 2 cos! "p E + 2E2 

Now, for convenience, define 

m sin !"p ] 
-l s~!"p 

Ct = 1 sin !"p [3 = m sin !"p 1 = n sin !"p fJ = cos !"p 

so that 

E=[~ -[3 
-1 [3] 
o -(} 
Ct 0 

(2.13) 

(2.14) 

(2.15) 

These quantities are called the Euler parameters and clearly they satisfy 
the identity 

(2.16) 

t The reader will find it instructive to show that this form of R is an orthogonal 
matrix. Remember that 8 T = -8 since 8 is skew-symmetric. 
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By expanding the new expression for R and using this identity, we can 
express the rotation matrix in terms of the Euler parameters as 

[

1 - 2(,82 + ,2) 2(a,8 - ,0) 2(a, + ,80) ] 
R = 2(a,8 + ,0) 1 - 2(a2 + ,2) 2(,8, - ao) 

2(a, - ,80) 2(,8, + ao) 1 - 2(a2 + ,82) 
(2.17) 

Finally, we note the ease with which the Euler parameters may be 
recovered from the rotation matrix; that is, if we are given an arbitrary 
rotation matrix, the Euler parameters are readily calculated from the 
matrix elements. The parameter 0 can be determined from the trace of 
the matrix R as 

82 = ! (1 + trR) 

which, from Eq. (2.3), gives 

02 = ! (1 + II + m 2 + n3 ) (2.18) 

Similarly, the quantities 4,0, 4,88, 4ao can be obtained by successively 
calculating the differences of the three pairs of off-diagonal elements of R. 
Thus, 

,8 = l3 - n l 

40 
(2.19) 

Since a, ,8, , are proportional to the direction cosines of the rotation axis, 
we may write 

where 
A = yI(1 + trR)(3 - trR) 

is the normalizing factor. 

¢ Problem 2-5 

(2.20) 

We have now two different expressions for the Euler rotation axis: iw ob
tained from Eq. (2.20) as well as the vector w determined in Probe 2-1. Verify 
by direct calculation that these two vectors are, indeed, parallel. 

¢ Problem 2-6 
The rotation matrix R has the characteristic equation 

IR - ,xII = _,x3 + (trR),\2 - (trR)'\ + 1 = 0 

and the roots or characteristic values of R are 

where i = J=I. Furthermore, observe that if tr R = 3, the root ,\ = 1 is thrice 
repeated and if tr R = -1, there is a double root at ,\ = -1. [Note that the 
roots of the characteristic equation are also the zeros of the normalizing factor A 
in Eq. (2.20).] 
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In calculating {) from Eq. (2.18), there are, of course, two possible 
solutions. This ambiguity is easily resolved since the choice of a positive 
value for {) corresponds to a rotation angle 1/J of less than 1800 while a 
negative value is interpreted as a rotation of 360 0 minus t/J in the opposite 
sense. 

The above equations are not appropriate for either vanishingly small 
values of 1/J or values near 180 0 

, i.e., tr R near 3 or -1. (See Prob. 2-6.) 
A singularity free computation is the subject of the next problem. 

~ Problem 2-7 
Y Let the element in the i th row and i th column of the rotation matrix R 

be defined as Tij and introduce the notation 

Po = 26 PI = 2a P2 = 2f3 

TOO = trR = TIl + T22 + T33 

(a) The p's may be calculated from 

p~ = 1 + 2Tjj - trR for i =0,1,2,3 

so that the maximum Tjj is seen to coincide with the maximum PJ. 

(b) The largest value of the PJ's lies in the closed interval (1,4) and the lower 
bound is attained only if all diagonal elements of R are zero. 
( c) Derive the relations 

POPI = T32 - T23 

POP2 = T13 - T31 

POP3 = T21 - Tl2 

P2P3 = T32 + T23 

P3Pl = Tl3 + T31 

PIP2 = T21 + T12 

and observe that there always exists a subset of three equations for determining 
the other p's once Pj has been established. (Note that if Po happens to be 
negative, the signs of all p's may be changed if so desired.) 

Stanley W. Shepperdt 1978 

¢ Problem 2-8 
The Euler parameters may be expressed in terms of the spherical coordinate 

angles as 
a = - sin ~4> sin ~8 

f3 = sin ~4> cos ~8 

and in terms of the Euler angles as 

Q = sin ~i cos ~ (n - w) 

f3 = sin !i sin !(O - w) 

"( = cos!4> sin ~8 

6 = cos!4> cos ~8 

"( = cos! i sin! (n + w) 

6 = cos! i cos! (0 + w) 

t "Quaternion from Rotation Matrix," JoumaJ of Guidance and Control, Vol. 1, May
June, 1978, pp. 223-224. 



Sect. 2.3] Multiple Rotations of a Vector 91 

¢ Problem 2-9 
Instead of using the rotation matrix R to effect the rotation of a vector ro, 

the same result can be obtained with vector operations. If we define the vector 

q=ai:&+.Bill+;iz=[a .B ;JT 
then Eq. (2.10) may be written as 

r = ro + 26 (q X ro) + 2q X (q X ro) 

where a, .B, ;, 6 are the Euler parameters. 

2.3 Multiple Rotations of a Vector 

Let R3 and et3' /33 ' 13' 03 be the rotation matrix and the associated Euler 
parameters corresponding to the resultant of two successive rotations-the 
first defined by the matrix Rl and the parameters etl' /31 ' '''11, 01 , and 
the second by ~ and et2' /32 ' 12' O2 , Clearly, the rotation matrices are 
related byt 

(2.21) 

Not so obvious are the following relationships for the Euler parameters 

a 3 = 02a l - 12/31 + /3211 + a 201 

/33 = 12a l + O2/31 - a211 + /3201 

13 = -/32a l + a 2/31 + 0211 + 1201 

03 = -a2a l - /32/31 - 1211 + 0201 

(2.22) 

These remarkable equations were obtained independently and at different 
times by Gauss, Rodrigues, Hamilton, and Cayley. We shall present an 
elegant original derivation in the following subsection.t 

Relations Among the Euler Parameters 

As a first step in the derivation of Eq. (2.22), we develop an exceedingly 
beautiful factorization of the rotation matrix. For this purpose, note that 

E2 = [-':{; /3

2 

_1f~ a 2 ~~] = (0 2 -1)1 + qqT 
a , /3, _/32 - a 2 

from Eq. (2.15) and by using the identity (2.16). The vector q is defined 
in Prob. 2-9. 

t Note that the order of the matrix product is the reverse of that used to create a 
rotation matrix from elementary matrices. 

* From the author's paper "New Properties of the Rotation Matrix" presented at the 
Thirty-Eighth Congress of the International Astronautical Federation held in Brighton, 
England in 1987. 
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The so-called dyadic product qq T is the product of a matrix hav
ing three rows and one column with a matrix having one row and three 
columns-resulting in a three-dimensional square matrix. Specifically, 

[
a] [a (3 ')'] [ a

2 
a/3 a')' ] 

qqT = /3 = /3a /32 (3"1 ')' "Ia ')'{3 ')'2 

As a consequence, the expression for the rotation matrix given in Eq. (2.13) 
may be written as 

R = 1 + 20E + 2E2 = 1 + E2 + 20E + E2 

= qqT + 021 + 20E + E2 = qqT + [01 + E] [01 + E] 

or, since E is skew-symmetric, 

Hence 

R = qqT + [01 + E][61 - E] T = [q 01 + E] [ qT ] 
61+E 

[

a 0 
R= /3 ')' "I -(3 

_')' /3] [ a 6 -a 6 
a 6 "I 

-/3 

(3 
-')' 

6 
a 

~a ] 
gives R in factored form. 

N ext we define two matrices P and Q 

[

6 -a 
6 _qT _ a 6 p = [q iiI + E ]- (3 1 

')' -{3 

-(3 -')'] -"I /3 o -a 
a 6 

[ 

0 a 
o qT _ -a 6 

Q = [-q iiI + E ]- - (3 1 
-')' -/3 

(3 "I] -')' /3 
6 -a 
a 6 

(2.23) 

(2.24) 

(2.25) 

obtained by augmenting a row and column to the first and second matrix 
factors, respectively, of the rotation matrix R. It is interesting and easy to 
verify that P and Q are both orthogonal matrices. But also, remarkably, 
they are commutative; that is PQ = QP. Indeed, it is readily seen that 

[lOT] 
PQ=QP= 0 R (2.26) 

where 0 is the three-dimensional zero vector. 
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The matrix product R3 = R 2R I , representing two successive rota
tions, can, therefore, be written as 

[
lOT 1 [ 1 OT 1 [lOT 1 P 3Q3 = 0 R3 = 0 R2 0 Rl = P 2Q2P IQl 

Not only do the matrices P and Q commute, but it is also easy to verify 
that 

Hence 
P 3Q 3 =P2Q2P IQl =P2P 1Q2QI 

which leads to the following identifications 

P 3 = P 2P I Q3 = Q 2Q 1 

Finally, by defining the four-dimensional vector q* as 

q'=[!l=[~] 

(2.27) 

(2.28) 

it is readily shown that the expressions for P 3 and Q3 are equivalent to 

q; = P2q~ q; = Qi q2 (2.29) 

When written out in component form, these equations are seen to be iden
tical with Eqs. (2.22). The derivation is now complete. 

Quaternions 

The Euler parameters (}, {3, 1, () may be regarded as the components of 
a quaternion 

(2.30) 

where i, j, k have some of the properties of a right-handed, orthogonal 
triad of unit vectors. The parameter () is called the scalar part and q is 
called the vector part. When multiplied pairwise, we define 

ij = -j i = k jk = -kj = i 

but when each is multiplied by itself, we define 

ii=jj=kk=-l 

ki = -ik =j (2.31) 

(2.32) 

By means of the symbols i, j, k, invented by Sir William Hamilton, t 
the result of two successive rotations defined by the quatemions (it and 

t Sir William Rowan Hamilton (1805-1865), one of the greatest of the English 
mathematicians and physicists, announced his invention of quaternions and the unusual 
properties of his I, J, K creations in 1843 at a meeting of the Royal Irish Academy. 
He spent the remainder of his life developing the subject and mistakenly regarded it as 
his greatest contribution-comparable in importance to Newton's calculus. 
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q2 is equivalent to the single rotation defined by <ia where 

<ia = q2ql 

[Chap. 2 

(2.33) 

It is readily seen that this equation is equivalent to Eqs. (2.22). Actually, 
the algebra of quaternions is exactly the same as the algebra of vectors 
with the exception of multiplication. But the product of two quaternions 
can be represented vectorially as 

q2ql = 6261 - q2 . ql + 6lq2 + 62ql + q2 X ql 

the proof of which is a good exercise for the reader. 
The conjugate or inverse of a quaternion is defined as 

q-l = 6 - a i - ,B j - ')' k = 6 - q 

and it is not difficult to verify that 

qq-l = q-Iq = 1 and 

(2.34) 

(2.35) 

(2.36) 

In the same manner in which we defined elementary rotation matrices, 
we may also define elementary quaternions. The quaternion representing 
a rotation about the x axis through an angle 'l/J is 

q:z; ( 'l/J) = cos ! 'l/J + sin ! 'l/J i 
Similarly, for rotations about the y and z axes, we have 

qy ( t/J) = cos ! 1/J + sin ! 'l/J j and qz ( 'l/J) = cos ! 'l/J + sin ! 'l/J k 

In this way, for example, a rigid body rotation about the x axis through 
an angle 0 followed by a rotation about the new y axis through an angle 
4> is equivalent to the quaternion 

q = q:z;((J)qy{4» 

[Again, notice the reverse order of the factors from that of Eq. (2.33).] 
Some examples of quaternions are to be found as problems in this and 

the following section. 

¢ Problem 2-10 
By regarding the position vector ro as the vector part of a quaternion whose 

scalar part is zero, show that the rotation of ro can be obtained by 

- -- --1 r = qroq 

where 
ro = O+ro and 
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¢ Problem 2-11 
The quaternion equivalent of the spherical coordinate system rotation ma

trix of Prob. 2-2 is 

q = qz(O)q,,(4» = (cos!O + sin !Ok)(cos!4> + sin !4>J) 

= cos !O cos !4> - sin !O sin !4> i + cos !O sin !4>j + sin !O cos !4> k 

2.4 The n-Body Problem 

According to Newton's law of gravitation, two particles attract each other 
with a force, acting along the line joining them, which is proportional to 
the product of their masses and inversely proportional to the square of the 
distance between them. 

Equations of Motion 

For the purpose of providing an analytical description of the interactions 
and resulting motion of a system of n particles whose masses are m 1 , m2 , 

... , mn , let 

r i = Xi ix + Yi iy + Zi iz 

. = dr i = dXi i dYi i dZi i 
V, dt dt x + dt y + dt z 

be the position and velocity vectors of the ith particle expressed with 
respect to unaccelerated coordinate axes. The coordinate system is right
handed and orthogonal with ix, iy , i z as unit vectors parallel to the 
reference axes. Alternately, using matrix notation, we may write r and 
v as column vectors 

FUrthermore, let 

rij = Irj - ril = v(rj - r i ) . (rj - r i ) 

denote the distance between mi and mj so that the magnitude of the force 
of attraction between the ith and jth particles is Gmimj/rlj where the 
proportionality factor G is called the universal gravitation constant. 

The directions of the forces are conveniently expressed in terms of 
unit vectors. Thus, the force acting on mi due to mj has the direction 
of (rj - ri)/rij while the force on mj due to mi is oppositely directed. 
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Hence, the total force fi affecting mi' due to the presence of the other 
n - 1 masses, is 

(2.37) 

where the prime on the summation symbol indicates that the term for 
which i = i is to be omitted. 

In accordance with Newton's second law of motion, 

d2 r. dv· 
f -m '-m ' 
i - i dt2 = idI 

so that the n vector differential equations 

(2.38) 

(2.39) 

together with appropriate initial conditions, constitute a complete mathe
matical description of the motion of the system of n mass particles. 

For a complete solution of the n-body problem, a total of 6n integrals 
is required. Although only 10 are obtainable in general, the known integrals 
have important physical interpretations. We shall now derive those 10 
integrals and, as a consequence, show that, when no external forces are 
acting on the system, the total linear and angular momenta as well as the 
total energy are conserved. 

Conservation of Total Linear Momentum 

It is readily seen from Eq. (2.37) that the sum of the force vectors fl' f2' 
... , fn has a zero resultant. Thus, we have 

d2 

dt 2 (mlrl + m2r2 + ... + mnrn) = 0 

which demonstrates that the center of maS8 of the n-body system 

mlr l + m2r 2 + ... + mnrn 
rem = ~~--~~------~-= 

m l +m2 +···+mn 
(2.40) 

is unaccelerated. Therefore, the linear momentum of the system is con
served and 

rem = Cit + c2 (2.41) 

where c i and c2 are the vector constants of integration. 
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Conservation of Total Angular Momentum 

Again from Eq. (2.37), we may verify that the sum of all the vector moments 
r i X fi for i = 1, 2, ... , n also has a zero resultant so that 

d ( dr 1 dr 2 dr n ) 
dt mlrlXTt+m2r2XTt+···+mnrnXTt =0 

By performing the integration 

m1r 1 X vI + m2r 2 X v2 + ... + mnrn X vn = c3 (2.42) 

we see that the total angular momentum vector is constant in magnitude 
and direction. 

The invariable plane of the system is the terminology frequently 
applied to that plane which contains the center of mass rem and whose 
normal is parallel to the total angular momentum vector c3 • 

Potential Functions 

The gravitational potential Vi at the point (xi' Yi' zi) is defined as 

n ,m. 
Vi=GE-' r· . 

j=1 '3 

(2.43) 

Since the potential function depends only on the distances to the other 
particles, it is, consequently, independent of the choice of coordinate axes. 
The importance of the gravitational potential derives from the property 
that the gradient of lIi gives the force of attraction on a particle of unit 
mass at the point (Xi' Yi' zi). Thus, we havet 

T avo 
f· =m·-' , 'ari (2.44) 

where 
alii = [alii alii alii 1 
ari aXi aYi aZi 

is defined to be a row vector. The superscript T indicates the matrix 
transpose and is required so that f'{ will be a row vector. 

For some purposes it is convenient to introduce the function U, defined 
by 

n 

U=! EmiVi (2.45) 
i=1 

t The idea that a force can be derived from a potential function, and even the term 
''potential function," were used by Daniel Bernoulli in Hydrodynamica (1738). In vector 
analysis, 8Vi/8rj is called the gradient of Vj with respect to the vector rj and is written 
VVj. For our purposes, the alternate notation is preferred since we can then apply the 
chain rule of partial differentiation using vectors as well as scalars. This is illustrated 
later in this section when we demonstrate the property of conservation of energy. 
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and called the force function, which is equal to the total work done by 
the gravitational forces in assembling the system of n point masses from 
a state of infinite dispersion to a given configuration. The potential energy 
of the system is then -U. In terms of U, the force vector fi is simplyt 

r! = au (2.46) 
t ar

i 

For many purposes, expressing the force vector as the gradient of the 
force function rather than the gravitational potential will be more conve
nient since U is independent of the coordinates of any particular point. 

Conservation of Total Energy 

The force function U is a function of the components Xl' YI' Zl' X2' 

... , Yn , zn of the position vectors r l , r 2 , ... , rn' Since each component 
is, in turn, a function of t, the total derivative of U is simply 

dU = au dXl + au dYI + ... + au dZn 
dt aXI dt aYl dt aZn dt 

Now au /ari is a row vector and drddt is a column vector, so that 

au dri = au dXi + au dYi + au dZi 

ari dt aXi dt aYi dt aZi dt 

Hence, we may write the total derivative of U as 

dU = au dr1 + au dr2 + ... + au drn 
dt arl dt ar2 dt arn dt 

Then, using Eq. (2.46), we have 

dU fT fT T (it = I V I + 2 V 2 + ... + fn v n 

or, in vector notation, 

dU 
(it = fl - V I + f2 -V 2 + ... + fn -v n 

Finally, from Eq. (2.38), we may write 

dU dV I dV2 dVn 
(it = m 1 (ft -VI + m2(ft -v2 + ... + mnTt -vn 

dT 
=Tt 

where 
(2.47) 

t It is suggested that the reader write out the terms in these various equations for, 
say, n = 3 and, in particular, see why the ~ is needed in Eq. (2.45). 
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is the kinetic energy of the system. Thus 

T-U=c (2.48) 

verifying that the sum of the kinetic and potential energies is a constant. 
It is known that no further integrals are obtainable in general for the 

n-body problem. The 10 constants of integration consist of the components 
of the three vectors c l' c2 , c3 together with the scalar constant c. 

~ Problem 2-12 
Y Let ql, q2, ... , q3n be independent geometrical quantities specifying the 

configuration of the n masses. They are frequently referred to as the gener
alized coordinates of the system and can be regarded as the components of a 
3n-dimensional vector q. Thus, in general, we have 

ri = ri[t, q(t)] 

and 
dri 8ri 8ri . ( ) Vi = - = -+ -q=Vi t,q,q 
dt 8t 8q 

where q = dq/dt and the symbol 8ri/8q denotes the 3 by 3n-dimensional 
matrix 

8Xi 8Xi 8Xi 
8ql 8q2 8q3n 

8r i 8Yi 8Yi 8Yi 
-= 
8q 8ql 8q2 8q3n 

8zi 8Zi 8Zi 
8ql 8q2 8q3n 

(a) Verify that 

and obtain 

(b) Further, verify 

dv'{ 8r i d [ T 8v i 1 T 8v i d 8 (1 T ) 8 (1 T ) 
(it 8q = dt Vi 8q - Vi 8q = dt 8q 2 Vi Vi - 8q 2 vi Vi 

and derive, therefrom, Lagrange's form of the equations of motion of n bodies 

d 8L 8L 
dt 8q = 8q 

where the Lagrangian function L, is defined as 

L=T+U 

and sometimes called the kinetic potential. 

Joseph-Louis Lagrange 1788 
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~ Problem 2-13 
Y Let PI, P2, ... , P3n be the components of a 3n-dimensional vector p 

defined by 
T aT 

p = aq 

and referred to as the generalized momenta of the system. 
(a) The kinetic energy T(t, q, 4) is the sum of 

( 1 ) To (a function of t and q only) 
(2) Tl = w T 4 (a linear form in q) 
(3) T2 = qT W4 (a quadratic form in q) 

where 

To = ! ~m.ariT ari 
2 ~ • at at 

i=l 

and the row vector w T and the symmetric matrix W are the following functions 
of t and q: 

n T 
T L ari ari w = mi----at aq 

W - 1 En . [ari 1 T ari -- m. - -
2 . aq aq 

i=1 .=1 
Hence, obtain 

p=2W4+w 

so that 
4 = ~ W- 1 (p - w) = 4(t,q,p) 

provided that the transformation ri = ri(t,q) is nonsingular. 
(b) Consider the equation 

2T2 +Tl = p T 4 
and let the vectors q and 4 receive small independent variations 6q and 64 so 
that 

and 

Hence, obtain 

aT aT 
6T= -64+ -6q aq aq 

6(T2 - To) = it T 6p - aT 6q 
aq 

(c) By regarding T2 - To as a function of t, q, and p, i.e., 

T2 - To = T*(t,q,p) 

obtain 

Therefore, show that 
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and derive Hamilton's canonical form of the equations of motion 

dqT 8H 
(it = 8p 

dpT 8H 
(it = - 8q 

where the Hamiltonian function H(t, q, p) is defined as 

H(t,q,p) = T* - U 

101 

(d) If the transformation ri = ri(q) does not involve the time t, show that 

H(q, p) = T - U = constant 

by calculating dH / dt and using the canonic equations. 

NOTE: Such a system is called scleronomic. The more general case, for which the 
transformation ri = ri(t, q) is an explicit function of time, is called rheonomic. 

Sir William Rowan Hamilton 1834 

2.5 Kinematics in Rotating Coordinates 

In the previous section we considered the motion of particles for which 
the reference coordinate axes were regarded as fixed. The components of 
the velocity and acceleration vectors could then be computed as the time 
derivatives of the components of the position vector. 

For some problems, however, it is more convenient to express the 
motion of bodies relative to a rotating coordinate frame. The components 
of velocity and acceleration, under such circumstances, will include several 
additional terms arising solely from the motion of the coordinate system 
in addition to the time derivatives of the position vector components. 

In order to obtain the appropriate forms for the velocity and accelera
tion vectors, we introduce the time dependent rotation matrix R which will 
effect an orthogonal transformation of vector components from the moving 
axes to the reference axes. Furthermore, to avoid any possible confusion, 
we will use an asterisk to distinguish a vector resolved along fixed axes 
from the same vector resolved along the rotating axes. Thus, we write 

r* =Rr v* =Rv a* =Ra (2.49) 

where r, v, a are the position, velocity, and acceleration vectors whose 
components are understood to be projections along the moving axes. 

To obtain the required expressions for the velocity v, we calculate 

v· = d;t· = R [: + or] = Rv 

where the matrix 0 is defined as 

O=R
TdR 

dt 

(2.50) 

(2.51) 
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By differentiating the identity R T R = I, it is readily seen that 0, called 
the angular velocity matrix, is a skew-symmetric matrix, OT = -0, and 
as such may be written in the form 

O-[~ - ~ 

-w" 

-w~ 

o 
w~ 

w" ] 
-~~ 

Therefore, we can define a vector w, whose components along the moving 
axes are we' w", w~, so that the relationship between the velocity vector 
components in the two frames of reference may be alternately expressed as 

v· = R [~; + '" X r] = Rv (2.52) 

The angular velocity vector w is identified as the angular velocity of the 
moving coordinate system with respect to the fixed system. 

For the acceleration vector, we differentiate Eq. (2.50) to obtain 

d
2
r* [d2r dr dO ] 

a* = dt2 =R dt2 +20 dt + Ttr + OOr =Ra (2.53) 

or, in terms of the angular velocity vector w, 

[
d2r dr dw ] 

a* = R dt2 + 2w x dt + dt x r + w X (w X r) = Ra (2.54) 

The four terms which comprise the acceleration referred to rotating axes are 
called the observed, the Coriolis,t the Euler, and the centripetal 
accelerations, respectively. (The observed velocity and acceleration vectors 
dr / dt and d2r / dt2 will sometimes be denoted by v rei and arel since they 
are quantities measured relative to the rotating axes. The symbols v and 
a will be reserved for the total velocity and acceleration vectors which 
include the effects of the moving axes relative to the fixed axes.) 

¢ Problem 2-14 
For motion referred to a rotating spherical coordinate system, as defined in 

Prob. 2-2, the angular velocity vector of the moving system with respect to the 
fixed axes is 

• dO dtP dO 
w = - sm tP dt il/l + dt is + cos tP dt lr 

or 

• . 0 dtP • 0 dtP i dO i w = - sm - 1% + cos - 1/ + - z dt dt dt 

t Besides his contributions to relative motion, Gaspard Gustave de Coriolis (1792-
1843) gave the first modern definitions of "work" and "kinetic energy" in mechanics. 
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The position, velocity, and acceleration vectors referred to the moving axes are 

r = rir 
d¢> • . A. dO i dr . 

v = r dt I~ + r sm If' dt 0 + dt Ir 

a = [r d
2

¢> + 2 dr d¢> _ r sin ¢>cos ljJ (dO) 2] i~ 
dt2 dt dt dt 

[ 
1 d ( 2 • 2 dO ) ] + r sin ¢> dt r sm ¢> dt io + - - r - - r sin2 ljJ - ir [ 

d2 r ( d¢> ) 2 ( dO ) 2] 
dt2 dt dt 

¢ Problem 2-15 
If the motion is confined to the x, y plane (¢> = 90°), the position, velocity, 

and acceleration vectors, referred to rotating polar coordinates, are given by 

r = rir 

dr dO . 
v = -ir +r-Io 

dt dt 

[ 
d2r (dO) 2] [1 d ( 2 dO)]. 

a = dt2 - r dt ir + ;: dt r dt 10 

where the angular velocity vector of the moving system with respect to the fixed 
axes is 

¢ Problem 2-16 
For motion confined to the x, y plane in which the acceleration vector is 

directed along the radius vector, the rate at which the radius vector sweeps out 
area is a constant. That is, the so-called areal velocity is 

dA = !r2dO = ! (xdY _ ydx) 
dt 2 dt 2 dt dt 

and is constant. Such motion is said to obey the law of areas. 

~ Problem 2-17 
Y The matrices 0 and O· T are similar, i.e., 

RORT = O·T 

where the elements of 0 and O· are the appropriate components of w and 
w • -the angular velocity vector resolved along rotating axes and fixed axes, 
respectively. 

NOTE: It is important to remember that w = - w • . 
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~ Problem 2-18 
Y The characteristic equation of the matrix 0, the angular velocity matrix, is 

10 - All = A 3 + w 2 A = 0 

where w is the magnitude of the angular velocity vector w. Furthermore, w is 
the characteristic vector of the matrix dR./ dt corresponding to the zero charac
teristic value. 

~ Problem 2-19 
Y For motion confined to a plane, let it and in be orthogonal unit vectors 

directed along the velocity vector and normal to it, respectively, as shown in Fig. 
2.3. The velocity vector v makes an angle ¢ with the reference x axis and the 
radius of curvature p of the path is defined as 

ds 
p=-

d¢ 

where s denotes the arc length of the path described in time t. 

v 

~---~~---------~4----~~~------------~x 

Fig. 2.3: Tangential and 
normal coordinates. 

(a) Derive the equations for velocity and acceleration in tangential and normal 
components in the form 

ds 
v = vit = -it 

dt 
dv v 2 dv v2 

a = v- it + - in = - it + - in 
ds p dt p 

(b) Derive the following expressions for the curvature 1/ p : 

(1) 

(2) 

if the equation of the path is y = y(x) ; 
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! = (dx d2y _ dy d
2
:r:) [(dx)2 (dY) 2] -i 

(3) p dt dt2 dt dt2 dt + dt 

if the equation of the path is:r: = :r:(t), y = y(t); 

(4) ~ = [r' + 2 (:;f -r~] [r' + e;)'t 
if the equation of the path is expressed in polar coordinates; and 

(5) ~ = HI -(:f -r~~] [1 - (:ft 
if the equation of the path is expressed in terms of the arc length as r(s). 

NOTE: In 1691 both James and John Bernoulli gave the formula for the radius of 
curvature of a plane curve. James, who also gave the result in polar coordinates, 
called it his "golden theorem." 

~ Problem 2-20 
Y The kinematic expressions for rotating coordinates can also be obtained 
using quaternions. As before, let r· , v· and r, v be the position and velocity 
vectors whose components are resolved along fixed and rotating axes, respectively. 
Let q be the time dependent quaternion which effects the transformation from 
the moving axes to the reference axes. Then we have 

where the quaternions 

and 

F' = O+r· 
v· =O+v· 

all have zero scalar parts. 
(a) The first step in the derivation is 

(b) Then, verify that 

_ dr --1 dq __ dq-l_ 
V = dt +q Ttr+rc.u- q 

--1 dq dq d6 dq 
q dt = 6 dt - dt q - q X dt 

which is, therefore, a quaternion whose scalar part is zero. 
(c) Define 

and show that 

or, alternately, 

- --1 dq w=2q -=O+w 
dt 

dr 
v=-+w Xr 

dt 
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where w is the angular velocity vector of the moving coordinate system with 
respect to the fixed system whose components are along the moving axes. 
(d) Finally, derive the components of w in the form 

( 
da dP d~ dO) w=2 o-+~--p--a- Ie 
dt dt dt dt 

( 
da dP d~ dO). (da dP d~ d6) + 2 -~di + 0 dt + a dt - P dt 1" + 2 Pdt - adi + 0 dt - ~ dt I, 

NOTE: This result can also be obtained directly using Eqs. (2.51) and (2.17). 
(e) Using the Euler parameters for the spherical coordinate system (prob. 2-8), 

derive the angular velocity vector w obtained in Prob. 2-14. 



Chapter 3 

The Problem of Two Bodies 

CURIOUSLY, THE ANALYTIC SOLUTION OF THE TWO-BODY PROBLEM 

for spheres of finite size was not accomplished until many years after 
Newton's geometrical solution (given in his Principia, Book I, Section 11) 
which he obtained about 1685. Although the methods of the calculus were 
enthusiastically developed in continental Europe at the beginning of the 
eighteenth century, Newton's system of mechanics did not find immedi
ate acceptance. Indeed, the French preferred the vortex theory of Rene 
Descartes (1596-1650) until Voltaire, after his London visit in 1727, vig
orously supported the Newtonian theory. This, coupled with the fact that 
the English continued to employ the geometrical methods of the Principia, 
delayed the analytical solution of the problem. It was probably first given 
by Daniel Bernoulli in the memoir for which he received the prize from the 
French Academy in 1734. It was certainly solved in detail by Euler in 1744 
in his Theoria motuum planetarum et cometarum. 

Sir Isaac Newton (1642-1727) was educated at local schools of low 
educational standards near the hamlet of Woolsthrope, England where he 
was born. He was not a particularly distinguished student and entered the 
'Iiinity College of Cambridge University in 1661 with a deficiency, from 
the entrance examinations, in Euclidean geometry. Just after graduation, 
the university was closed because the plague was then rampant in the 
London area. He left school for the family home where he began his work 
in mechanics, mathematics, and optics. Others had advanced the concept 
of the inverse square law of gravitation-including Kepler-but Newton 
recognized it as the key to celestial mechanics. He also developed general 
methods for treating problems of the calculus and discovered that white 
light is really composed of all colors. 

"All this was in the two plague years of 1665 and 1666, for 
in those days I was in the prime of my age for invention, 
and minded mathematics and philosophy [science] more 
than at any other time since." 

Having an abnormal fear of criticism, he neither published nor even 
discussed his discoveries. They only came to light after Isaac Barrow (1630-
1677), Newton's friend, teacher, and predecessor in the Lucasian chair of 
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mathematics at Cambridge, and later Edmond Halley (1656-1742), the 
astronomer for whom Halley's comet is named, recognized his greatness 
and encouraged him. The first edition of the Philosophiae Naturalis Prin
cipia Mathematica appeared in 1687. He purposely made it difficult to 
Wlderstand "to avoid being bated by little smatterers in mathematics." 

In this chapter, we develop the vector equation of two-body motion 
and solve it first by power series, then by vector methods of analysis. In 
the former, we encoWlter Lagrange's fundamental invariants and, in the 
latter, we are led to the basic integrals called orbital elements. We also 
consider several methods of two-body orbit determination-both exact and 
approximate-for illustrative purposes only. It is not within the scope of 
this book to examine the practical details of concern to the astronomer. 

3.1 Equation of Relative Motion 

The equations of motion of two mass particles governed solely by their 
mutual gravitational attraction are obtained immediately from Sect. 2.4 
by setting n = 2. Thus, the motion of two bodies is fully described by the 
following pair of nonlinear vector differential equations 

d
2
rl Gm1 m2 ( ) m 1 -d2 = 3 r 2 -r1 t r12 

d2r2 Gm2m 1 ( 
m2 -d 2 = 3 r 1 - r 2) t r 21 

(3.1) 

together with a set of initial conditions such as the position vectors r 1 (t), 
r2(t) and the velocity vectors Vl(t), V2(t) specified at some particular 
instant of time. Finding the positions and velocities at future times is the 
famous two-body problem which was solved by Newton. 

In most instances, we are concerned with either the motion of one 
mass relative to the other or, alternatively, the motion of each with respect 
to their common center of mass. Seldom are we interested in the absolute 
motion referred to an arbitrary fixed reference system. 

The equation describing the motion of m2 relative to ml is readily 
obtained by differencing Eqs. (3.1) after first cancelling the common mass 
factors. Thus, we have 

(3.2) 

where 
r = r 2 - r 1 (3.3) 

is the vector position of m2 relative to ml and 

JJ = G(ml + m2) (3.4) 

This is the fundamental differential equation of the two-body problem. 
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It is worth emphasizing that Eq. (3.2) is actually the vector form of 
three simultaneous second-order, nonlinear, scalar differential equations in 
the components of the vector 

Specifically, 

d2x x 
-+Jl- =0 
dt2 r3 

~y y 
-+Jl- =0 
dt2 r3 

~z Z 

dt2 + Jl r3 = 0 

where 
r = V x2 + y2 + z2 

A somewhat more intuitive appreciation for the equation of relative 
motion can be had from the following heuristic argument. Let a 1 and 
a2 be the acceleration vectors associated with m 1 and m 2 , respectively. 
Then, since the forces acting on the two masses are equal in magnitude 
and oppositely directed, we may write 

and 

Let the same acceleration -a1 be applied to each mass. Their relative mo
tion will be unaltered and, in addition, the mass m 1 will be unaccelerated. 
The acceleration of m2 is then 

m 2 m 1 +m2 
a 2 - a 1 = a2 + -a2 = a 2 m 1 m 1 

and the net force acting on m2 is now 

( ) ml +m2 Gm1m2 ( r) m 2 a2 - a1 = x 2 --
m 1 r r 

with the unit vector -r/r specifying the direction of the force from m2 
toward mI. Finally, since 

d2r 
m2 dt2 = m2(a2 - ad 

the equation of relative motion (3.2) is again obtained. 
One final remark is worthwhile. Remember that the body whose mass 

is m 1 is not fixed in space. t It would be an inappropriate application of 
Newton's law of gravitation to assume that it was and to do so would lead 
the unwary to a different and erroneous result. 

t Equation (3.2) may be regarded as describing the motion of a body of mass m 
about a fi:r:ed center of attraction for which the force magnitude is Gm(ml + m2)/r2 . 
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¢ Problem 3-1 
Derive the differential equations 

d2r _ r (dO)2 = _l!:.. 
dt2 dt r2 

!!: (r2 dO) = 0 
dt dt 

which describe the relative motion of two bodies in polar coordinates. 

¢ Problem 3-2 

[Chap. 3 

Derive the equation of motion of a body of mass ml with respect to the 
center of mass of m 1 and m2 

in the form 
d

2
r + Gm~ r = 0 

dt2 (ml + m2)2 r 3 

where r = rl-rcm • A similar equation for the motion of m2 obtains by reversing 
the subscripts. 

NOTE: The equation of motion is the same as Eq. (3.2) with a different value 
for the constant p.. 

~ Problem 3-3 
Jr The Lagrangian function for the motion of ml with respect to the centroid 

of ml and m2 is 

1 ml ( ) T Gmlm~ L=--ml+m2v v+..,....--.;;..........=...,...-
2 m2 (ml + m2)r 

Use Lagrange's form of the equations of motion [see Probe 2-121 to provide an 
alternate solution to Probe 3-2. 

3.2 Solution by Power Series 
The basic equations governing the relative motion of two bodies are non
linear so that, a priori, we should not expect closed form expressions for 
the position and velocity vectors r and v to exist as time dependent quan
tities. Under any circumstances, though, power series developments may 
be obtained. Indeed, the coefficients in a Taylor series expansiont 

_ dr I (t - to)2 d2r I (t - to)3 d3r I 
r(t) - ro + (t - to) dt 0 + 2! dt2 0 + 3! dt3 0 + ... 

can be found from the equation of motion (3.2) and its higher derivatives. 

t Brook Taylor (1685-1731) was the secretary of the Royal Society from 1714-1718. 
During this period, his Metlwdus lncrementorom Directa et invefsa was published in which 
he derived the theorem that still bears his name and which he had stated in 1712. 
John Bernoulli had published practically the same result in the Acta Enulitorum of 1694. 
Taylor knew the result but did not mention it since his own "proof' was different. 
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Lagrange's Fundamental Invariants 

Successive differentiation of Eq. (3.2) involves higher derivatives of the 
quantity p,/r3 , a calculation that, fortunately, can be expedited in a 
convenient and quite interesting manner. For, if we define 

then 

Now, define 

A_I dr _ r·v 
- -;: dt -""T2 

(using Prob. 2-15 to obtain the alternate form) so that 

dA 1 ( dv ) 1 dr v 2 
2 

dt = r2 V· v + r· dt - 2{r· v) r3 dt = r2 - f - 2A 

Finally, we define 

and calculate 

d¢ 2 dv 2 1 dr 
- = -v· - -2v -- = -2A{f+¢) 
dt r2 dt r3 dt 

The term fundamental invariants has been used for f, A, ¢-they are 
"invariant" because they are independent of the selected coordinate system 
and "fundamental" because they form a closed set under the operation 
of time differentiation. Thus, to calculate the various derivatives of the 
position vector r, we successively differentiate 

using the relations 

df 
- = -3fA 
dt 

dr 
-=v 
dt 

dv 
-=-fr 
dt 

dA 2 - =¢-f-2A 
dt 

d¢ 
- = -2A{f+¢) 
dt 

where the quantities f, A, ¢ are defined as 

r·v 
A=

r2 

v·v 
¢=

r2 

{3.5} 

(3.6) 

(3.7) 
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In this manner, we obtain 

dr 
-=v 
dt 

d2r 
dt2 = -fr 

d3r 
- = 3fAr - fV 
dt3 

d4r 
dt4 = (-15fA2 + 3erP - 2f2)r + 6fAV 

[Chap. 3 

d5r 
dt5 = {105€A3 

- 45er/JA + 30f2 A)r + (-45fA2 + ger/J - Bf2)V etc. 

indicating that the position vector r at any time t can be represented in 
terms of the position and velocity vectors ro and Vo at time to in the 
formt 

r{t) = F{t)ro + G{t)vo 
where F and G have series representations in powers of t - to . 

~ Problem 3-4 
Y Define two functions "y and 6 as 

"y = 2E-"p 

where E, ..\, 1/J are the fundamental invariants of the two-body problem. Show 
that 

1 do 4 dr 
"6 dt = -r dt 

and, by integration, prove that the energy and angular momentum are constant. 

Karl Stumpff 1959 

Recursion Equations for the Coefficients 

The calculation rapidly becomes complex and tedious so that it is desirable 
to have a more orderly and formal procedure. To this end, let us first note 
that the functions F and G each satisfy the differential equation 

d2Q 
dt2 + fQ = 0 (3.8) 

and, for Q = F, the initial conditions are 

and dQI _ dFI -0 
dt to - dt to -

t The functions F and G are the s~called Llgrangian coefficients or the liJgmnge F 
and G functions to be discussed further in Sect. 3.6. 
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while, for Q = G, we have 

and dQI _ dGI -1 
dt to - dt to -

We may utilize the standard technique of determining the coefficients of a 
power series solution of Eq. (3.8), coupled with Eqs. (3.6), in the form 

00 

Q = L: Qn{t - to)n (3.9) 
n=O 

where we also write 
00 00 00 

€ = L: €n{t - to)n A = L: An{t - to)n 1/J = L: 1/Jn {t - to)n 
n=O n=O n=O 

By substituting these power series into the relevant differential equations 
and requiring coefficients of like powers of t - to to be the same, we obtain 
recursive expressions for the coefficients which can be easily solved. 

In developing these recursion equations, it is essential to deal properly 
with the operation of multiplying two power series. (Refer to Appendix C.) 
It is easy to show that, for example, 

00 00 

€Q = L: €n{t - to)n L: Qm{t - to)m 
n=O m=O 

= ~I:o lnQm(t - tojR+m = ~ (~l;Qn-;)(t _to)n 

with similar relations obtaining for the products in Eqs. (3.6). 
The coefficients in the power series are then obtained successively by 

evaluating the following recursion equations for n = 0, 1, 2, ... : 

{n + 1){n + 2)Qn+2 = -(€oQn + €lQn-l + ... + €nQO) 

(n + 1)€n+l = -3{€OAn + €l An-l + ... + €nAO) 

(n + l)An+l = 1/Jn - €n - 2{AoAn + Al An- 1 + ... + AnAO) (3.10) 

(n + 1)1/Jn+1 = -2[AO{€n + 1/Jn) + Al (€n-l + 1/Jn-l) 

+ ... + An{€O + 1/Jo)] 

In this way, the series coefficients for the Lagrange F and G functions are 
found to be 

Fo = 1 

Fl =0 

F2 = -!€o 

F3 = !€OAO 

F4 = -i€OA~ + k€o1/Jo - 112€~ 

Fs = ~€OA~ - i€o1/JoAo + i€~AO etc. 
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G3 = -tfo 

G4 = t€OAO 

GS = -i€OA~ + lOfOtPO - 11Sf~ 

[Chap. 3 

etc. 

The higher-order coefficients are considerably more complex. Clearly, 
for numerical work, it is easier to use the recursion formulas (3.10) directly 
rather than, first, to develop literal expressions for these coefficients. 

¢ Problem 3-5 
The position and velocity vectors of a spacecraft in interplanetary space at 

time t = 0.010576712 year are: 

[

0.159321004] 
r = 0.579266185 a.u. 

0.052359607 [

-9.303603251 ] 
v = 3.018641330 a.u./year 

1.536362143 

Determine the position vector at time t = 0.021370777 year. Compare this with 
the exact value 

[

0.057594337] 
r(0.021370777 year) = 0.605750797 a.u. 

0.068345246 

NOTE: The unit of length used here is the astronomical unit which is abbreviated 
as "a.u." and defined in the next section. Also, for the gravitation constant, use 
/J = 411'2, the justification for which is given, also, in the following section. 

3.3 Integrals of the Two-Body Problem 

Even though the second-order vector differential equation governing the 
relative motion of two bodies is nonlinear, the equation is capable of a 
completely general analytical solution. This is expedited by some ad hoc 
vector operations applied to the equation of motion written in the form 

dv J.l 
-=--r 
dt ,3 

(3.11) 

In each case, the vector manipulations result in transformed versions of Eq. 
(3.11) which are perfect differentials and, hence, immediately integrable. 
The constants of integration, called integralst of the motion, are of profound 
importance in conveying the properties of the solution. 

t The "constants of integration" or "integrals" are also called orbital eiements-a term 
introduced in the next section. 
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Angular Momentum Vector 

By taking the vector product of Eq. (3.11) with the position vector r, we 
have 

dv d 
r X - = -(r X v) = 0 

dt dt 
and, by integrating, obtain 

h=rxv (3.12) 

where h is the integration constant. The vector h is interpreted as a 
massless angular momentum. Hence, the angular momentum is constant 
and the motion takes place in the plane h· r = O. 

Using the polar coordinate expression for r and v given in Prob. 2-15, 
we find that 

h = r2dO i 
dt Z 

and since ! r 2dO / dt is the rate at which the radius vector sweeps out area, 
we have a verification of Kepler's second law of planetary motion. Thus, h 
is twice the areal velocity and we may write 

dO 
r2_ = h (3.13) 

dt 

If h = 0, the position and velocity vectors are parallel, and the result
ing motion is said to be rectilinear. 

Eccentricity Vector 

The vector product of Eq. (3.11) with the angular momentum vector h 
yields 

dv h P, h p,h. • p,h • dO • dir 
dt X = - r3 r X = --;rlr X Iz = r2 10 = I-' dt 10 = P,di 

using Eq. (3.13) and also 

dv d 
dt X h = dt (v X h) 

since h is a constant vector. Therefore, 

~(v X h) = p,~ (~) 
dt dt r 

which may be integrated to obtain 

p,e= v X h-!!:'r 
r 

(3.14) 

The vector constant of integration p,e is sometimes called the Laplace 
vector. We shall, instead, use the terminology eccentricity vector for the 
constant vector e since its magnitude e is the eccentricity of the orbit. 
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The Parameter and Energy Integral 

An important relationship is revealed by calculating the magnitude of the 
eccentricity vector from Eq. (3.14). There results 

e2 = e • e = ~(v X h) . (v X h) - ~r . v X h + 1 
~2 ~r 

But 
(v X h) . (v X h) = v . h X (v X h) = h2v2 

since h and v are orthogonal and 

r . v X h = r X v . h = h2 

Hence, 

The first factor 

(3.15) 

has the dimension of length and is known as the parameter. The second 
factor must be a constant of the motion. Thus, we define 

a= (~- ~r (3.16) 

which has also the dimension of length. When expressed in the form 

.!.v2 - !!:. = constant = -..!!:.... 
2 r 2a 

we can identify ! v2 as the kinetic energy and -~/r as the potential energy. 
It follows that the total energy is constant which was demonstrated Cor the 
general case in Sect. 2.4. The quantity -~/2a is called the total energy 
constant. 

When Eq. (3.16) is expressed in the equivalent form 

(3.17) 

the resulting relation is the energy integral, sometimes called the vis-viva 
integral·t 

t Historically, in the field of mechanics, two types of forces were recognized called 
vis viva and vis mortua, living force and dead force. In general, the forces resulting in 
equilibrium were dead forces while those causing motion were living forces. Hence, the 
distinct branches of mechanics-statics and dynamics. 
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Clearly, the quantities p, a, and e are related by 

p = a{1- e2
) 

117 

(3.18) 

Since p is never negative, we see that e must be less than or greater than 
one according as a is positive or negative. Furthermore, the eccentricity e 
will be unity either for rectilinear motion (h = 0) or for zero total energy 
(v2 = 2/1,/r). 

Equation of Orbit 

By calculating the scalar product of Eq. (3.14) and the position vector r, 
we obtain 

p=r+e·r (3.19) 

N ow let !, called the true anomaly, be the angle between the vectors r 
and e so that we have 

r= p 
1 + ecos! 

(3.20) 

as the equation 01 orbit in polar coordinates. Clearly, the orbit is symmet
rical about the axis defined by the eccentricity vector e. Furthermore, the 
orbit is bounded if e < 1 and unbounded if e ~ 1. 

To convert the equation of orbit to rectangular cartesian coordinates, 
let the x, y plane be the plane of motion with the x axis directed along 
the eccentricity vector. Then if x, yare the coordinates of a point on the 
orbit, we have x = r cos! and r = p - ex from Eq. (3.19). Therefore, for 
the case e :/= 1, we may use Eq. (3.18) to write 

y2 = r2 _ x2 = {p _ ex)2 - x2 = {1 - e2)[a2 - {x + ea)2] 

or 
(x + ea)2 y2 
"'""'"""-----=-~ + = 1 

a2 a2(1 -e2) 
(3.21) 

On the other hand, for the case e = 1, we have 

y2 = r2 _ x2 = (p _ x) 2 _ x2 

or simply 
(3.22) 

Equation (3.21) represents a circle, ellipse, or hyperbola according as 
the eccentricity is zero, less than one, or greater than one, while Eq. (3.22) 
is that of a parabola. In each case the locus F is at the origin. For the 
circle, ellipse, and hyperbola, the center C has the coordinates (-ea, 0) 
while the vertex A for the parabola is at (! p, 0). The various cases are 
illustrated in Figs. 3.1, 3.2, and 3.3. 

The point A in the figure, corresponding to f = 0, at which r is a 
minimum is called pericenter or periapse-an apse being that point in an 
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y 

~-r------------~--------~~~A--~X 

Fig. 3.1: Ellipse. 

Fig. 3.2: Hyperbola. 

------------~~~----~x 
A 

Fig. 3.3: Parabola. 

orbit where the motion is at right angles to the radius vector. The ellipse 
has a second apse called apocenter or apoapse where r has its maximum 
value. (Of course, all points on a circle are apses.) 

Because of its geometrical significance, the energy constant a is termed 
the semimajor axis and is positive for ellipses, negative for hyperbolas, and 
infinite for parabolas. Historically, the semimajor axis of an ellipse is called 
the mean distance, although it is not the average length of the radius vector 
with respect to time. In astronomy, the semimajor axis of the earth's orbit 
is frequently chosen as the unit of length called the astronomical unit . 
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The semiminor axis b of an orbit is defined as the positive square root 
of 

(3.23) 

The circle is, of course, the special case of an ellipse for which a and bare 
equal. The corresponding case for a hyperbola is called an equilateral or 
rectangular hyperbola. 

Finally, we remark that the chord through the focus and perpendicular 
to the major axis is called the latus rectum and has length 2p so that pis, 
sometimes, referred to as the semilatus rectum. 

Period and Mean Motion 

The period of elliptic motion may be obtained from a simple application 
of Kepler's second law since it is the time required for the radius vector 
to sweep over the entire enclosed area. Denoting the period by P and 
recalling that the area of an ellipse is 1rab, we have 

21rab = h 
P 

Then, using Eqs. (3.15), (3.18), and (3.23), we readily obtain 

{3.24} 

If the masses of the planets are considered negligible when compared with 
the mass of the sun, then Eq. (3.24) is a verification of Kepler's third law 
of planetary motion. 

The term mean angular motion or simply mean motion is frequently 
given to the quantity n defined by 

n=~=f§ 
Thus, Kepler's third law of motion may be stated simply as 

Jl=n2a3 

(3.25) 

(3.26) 

For approximate numerical calculations, it is sometimes convenient to 
use the semimajor axis (or mean distance) of the earth's orbit for the unit 
of length and the earth's period as the unit of time. In this case, from Eq. 
(3.24), we conclude that Jl must then be taken as 41r2. 
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Time of Pericenter Passage 

The vectors h and e together determine the size, shape, and orientation of 
the orbit with respect to the frame of reference. Their components provide 
six scalar constants of integration of the two-body equation of motion, 
but these constants are not independent since we always have h· e = O. 
Therefore, an additional integration constant will be required to complete 
the solution. What is missing, of course, is the location of the body in orbit 
at some particular instant of time. 

By combining Kepler's second law, as expressed by Eq. (3.13), and the 
equation of orbit Eq. (3.20), we may write 

!Edt = dl V p3 (1 + ecos/)2 
(3.27) 

Integration of this equation provides the necessary relationship between the 
true anomaly 1 and the time t, and yields as well the remaining integration 
constant. The classical choice for this constant of integration is the time T 

at which the bodies are at their closest point of approach, i.e., pericenter. 
Thus, the constant T is known as the time 01 pericenter passage. 

The integrated form of Eq. (3.27) for elliptic orbits is the famous 
transcendental equation of Kepler which has played a major role in the 
development of many branches of mathematics. Indeed, solving Kepler's 
equation has occupied the attention of many of the world's foremost math
ematicians and is the subject of Chapter 5. 

¢ Problem 3-6 
Kepler's second law, Eq. (3.13), provides a transformation of independent 

variable from t to 0 as given by 

d h d 
dt = r2 dO 

Use the polar coordinate form of the equation of motion (Prob. 3-1) to derive 

1 d2r 2 (dr) 2 1 1 
r2 d02 - r3 dO - ;:- = - p 

or, equivalently, 

!:... (!) +! =! 
d02 r r p 

as a linear, constant-coefficient, second-order differential equation for 1/ r. This 
will provide an independent derivation of the equation of orbit. 
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¢ Problem 3-7 
Derive the following differential equations 

(1) 

(2) 

(3) 

d2r p. 
dt2 =r3 (p-r) 

( dr)2 = p. (! _ .e. _ !) 
dt r r2 a 

~(r2) = 2Jl (! - !) 
dt2 r a 
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which are vital to a class of orbit-determination problems to be considered later 
in this chapter. 

¢ Problem 3-8 
From the first part of the previous problem, it is clear that 

Q = r-p= -r·e 

satisfies the differential equation (3.8). Use the technique of Sect. 3.2 to develop 
a Taylor series expansion for r. 

¢ Problem 3-9 
Develop power series solutions for the set of differential equations 

d2Q d2r df dr 
dt2 + fQ = 0 dt2 + f(r - p) = 0 r dt + 3f dt = 0 

and obtain, thereby, the following set of recursion equations, as an alternate to 
those developed in Sect. 3.2, for obtaining the coefficients Q2, Q3, ... : 

(n + l)(n + 2)Qn+2 = -(fOQn + f1Qn-1 + ... + fnQo) 

(n + l)(n + 2)dn+2 = -(fodn + f 1dn- 1 + ... + fndo) 

ro(n + l)fn+l = -[(3n + 3)fOdn+1 + (3n + l)f 1dn + ... + (n + 3)fndd 

where we have used d for r - p. The initial conditions are 

do = ro - p d
1 

= ro· vo 
ro 

NOTE: This algorithm is independent of the Lagrange invariants and, as such, 
illustrates the utility of the method for nonlinear (but not singular) differential 
equations in general. 

Victor Bondt 1966 

~ Problem 3-10 
Y Consider two bodies of masses ml and m2 in orbit about their common 

center of mass. If each is moving in an elliptical orbit, then the semimajor axes 
of the two orbits are in inverse ratio to their masses and their eccentricities are 
the same. 

t "A Recursive Formulation for Computing the Coefficients of the Time-Dependent f 
and g Series Solution to the Two-Body Problem," in The Astronomical Journal, 
Vol. 71, February 1966, pp. 8-9. 
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¢ Problem 3-11 
The magnitude of the velocity vector v for the motion of m2 with respect 

to m 1 is inversely proportional to the length of the perpendicular from m 1 to 
the orbital tangent. 

¢ Problem 3-12 
Derive the relation 

¢ Problem 3-13 
Let Tp and Ta be the pericenter and apocenter radii, respectively. Then, 

b = JTpTa 
2TpTa 

p=-
Tp +Ta 

That is, the semimajor axis of an ellipse is the arithmetic mean between the 
pericenter and apocenter radii, while the semiminor axis and the parameter are 
the corresponding geometric and harmonic means, respectively. 

NOTE: For a discussion of the various properties of mathematical means refer 
to Appendix A. 

¢ Problem 3-14 
Consider the hypothetical problem for which the force of attraction is pro

portional to the distance separating ml and m2 rather than inversely propor
tional to the square of the distance. Develop the properties of the relative motion 
of two bodies and, in particular, show that the orbit is a conic. Is one of the bodies 
at the focus of the conic? If not, where is it? Is hyperbolic motion possible? Is 
rectilinear motion possible? 

¢ Problem 3-15 
Let vp and Va be the velocity magnitudes of a vehicle at pericenter and 

apocenter, respectively. Then 

(1 - e)vp = (1 + e)Va 

¢ Problem 3-16 
The period P of an elliptic orbit with velocity v at a given point can be 

expressed in the form 

[ 2l-~ P = Pc 2 - (~) 

where Pc and Vc are, respectively, the period and velocity associated with a 
circular orbit through the same point. 
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¢ Problem 3-17 
Neglecting the mass of the first satellite of Jupiter, calculate the mass of 

this planet in terms of the earth from the following data: 
Period of first satellite: 1 day, 18 hours, 28 minutes 
Mean distance of first satellite from Jupiter's center: 267,000 miles 
Radius of earth: 3,960 miles 
Acceleration of gravity at earth's surface: 32.2 fps 2 

¢ Problem 3-18 
H q is the pericenter distance, the equation of orbit may be written as 

l+tan2 !f l-e 
r = q 2 where,\ = --

I + ,\ tan2 ~ f 1 + e 

a form which will be particularly useful for studying near-parabolic orbits. 

~ Problem 3-19 
Y A vehicle is in a two-body orbit with position and velocity vectors r and v. 

H the vehicle is to intercept a target position rT, the following relation 

(r X v) . [(rT - r) X v] + ILrT • (rT - ~) = ° 
rT r 

among the three vectors must hold true. 

NOTE: This is the expression first used by the author for the so-called "delta 
guidance" algorithm discussed in the Introduction to this book. 

3.4 Orbital Elements and Coordinate Systems 

In celestial mechanics the six integration constants of the two-body orbit, 
or various functions thereof, are referred to as the elements of the orbit. For 
example, p, e, T are three possible orbital elements. They define the conic 
irrespective of its relation to the frame of reference. Three other quantities 
are required for the spatial orientation of the orbit. The classical choices 
for the remaining three elements are the Euler angles defined in Sect. 2.1. 

Typically the coordinates for bodies in the solar system are either 
heliocentric (sun-centered) or geocentric (earth-centered), although occa
sionally the origin may be taken at the center of a planet or the moon. In 
the latter two cases the phraseology is planetocentric and selenocentric. 

The two fundamental coordinate systems are the so-called ecliptic sys
tem and equatorial system. The fundamental plane in the ecliptic system is 
the plane of the earth's orbit; in the equatorial system it is the plane of the 
earth's equator. The inclination of the ecliptic to the equator is referred 
to as the obliquity 0/ the ecliptic. In both systems the reference direction 
is toward the vernal equinox, which is the point of intersection of the two 
fundamental planes where the sun crosses the equator from south to north 
in its apparent annual motion along the ecliptic. The spherical coordinates 



124 The Problem of Two Bodies [Chap. 3 

() and ! 1r - 4> of Fig. 2.1 are called longitude and latitude in the ecliptic 
system and right ascension and declination in the equatorial system. In a 
rectangular coordinate reference system, the x axis is the direction of the 
vernal equinox, the z axis is normal to the fundamental plane and positive 
toward the north, and the y axis then completes a right-handed system. 
Unit vectors in these directions will be denoted by ix, iy , iz . 

Consider now a body moving under solar gravitation. The line of 
intersection of the plane in which it moves and the plane of the ecliptic is 
called the line 0/ nodes. The ascending node is the point at which the body 
crosses the ecliptic with a positive component of velocity in the z direction. 
The longitude 0/ the ascending node, as measured from the vernal equinox, 
is denoted by n. The angle of inclination of the orbital plane of the body 
to the ecliptic is symbolized by i. 

To specify the location of the body, a different set of heliocentric co
ordinate axes will be used. The unit vectors ie and ip are selected in the 
body's own orbital plane with ie in the direction of perihelion, the point of 
closest approach of the body to the sun. The line from the origin through 
perihelion is frequently referred to as the line of apsides or the apsidalline. 
The unit vectors ip and ih are then chosen as shown in Fig. 3.4 to make 
the coordinate system right-handed. The apsidal line makes an angle w, 
called the argument 0/ perihelion, with the direction of the ascending node. 
The three angles n, i, w are the Euler angles. 

Fig. 3.4: Coordinate 
system geometry. 

It is customary to denote the sum n + w by tv, called the longitude 
of perihelion. It should be noted, however, that this is not a longitude in 
the ordinary sense because it is measured in two different planes. 

Obviously, similar quantities can be defined for the equatorial reference 
system. In this case, the point of closest approach to the earth is called 
perigee. For an arbitrary coordinate system the terminology is pericenter. 
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Also, in the case of an elliptic orbit, the point of greatest separation is 
called, correspondingly, aphelion, apogee, and apocenter. 

When specifying the position of a body in orbit the following termi
nology has common usage: the argument of latitude () = w + f and the 
true longitude L = tv + f. We shall also have occasion to use the eccentric 
longitude K = tv + E, where E is the eccentric anomaly defined in the 
next chapter. 

A transformation of coordinates between the orbital plane and either 
the ecliptic or equatorial system is affected by means of the rotation matrix 
developed in Sect. 2.1. 

~ Problem 3-20 
Let the origin of coordinates be the center of the earth. Denote by A and f3 

the longitude and latitude of a point in the ecliptic system of coordinates, and by 
Q and 6, the right ascension and declination of the same point in the equatorial 
system. Then 

cos 6 cos Q = cos f3 cos A 

cos 6 sin Q = cos f3 sin A cos { - sin f3 sin ( 

sin 6 = cos f3 sin A sin ( + sin f3 cos ( 

where ( is the obliquity of the ecliptic. 

~ Problem 3-21 
The position and velocity vectors, expressed as components along the refer

ence axes x, y, z, are 

and 

where 

r = r(cos 0 cos 0 - sinOsinOcosi)Ix 

+ r(sin 0 cos 0 + cos 0 sin 0 cos i) ilf 

+ rsinOsinilz 

v = - x [cos O(sin 0 + esinw) + sin O(cosO + e cos w) cosi] ix 

- X[sinO(sinO + esinw) - cosO(cosO + ecosw) cos i) iy 

+ * (cos 0 + e cos w) sin i Iz 

~ Problem 3-22 
The position and velocity vectors of a spacecraft in interplanetary space are 

the same as those given in Prob. 3-5. Determine the orbital elements a, e, p, 
n, i, w, and the true anomaly,. Express all angles in degrees. 

ANSWER: a = 1.2, e = 0.5, p = 0.9, 0 = 45° , i = 10° , w = 20° , ,= 10° . 
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3.5 The Hodograph Plane 

Consider a body in orbit and imagine a vector with a fixed point as origin 
to represent its velocity. As the body moves in its orbit, the velocity vector 
changes its length and direction so that the terminus describes a curve 
which is called the hodograph. 

By taking the vector product of the angular momentum vector h and 
the expression (3.14) for the eccentricity vector e, we can derive an equa
tion for the velocity vector suitable for hodograph representation. Thus, 

J.lh X e = h x (v x h) - ~ h x r 
r 

But 
h X (v X h) = h2v - (h. v)h = h2v 

since h and v are orthogonal. Therefore, we have 

v=~hx(e+;) (3.28) 

Equation (3.28) provides an elegant equation for the velocity vector v 
in terms of the radius vector r for any orbit with known angular momentum 
and eccentricity vectors h and e. Indeed, since the radius appears as r/r, 
only the direction of the radius vector is required to determine the velocity 
vector. 

Two-Body Orbits in the Hodograph Plane 

The hodograph representation for two-body motion is based on a graphical 
interpretation of Eq. (3.28) which we may write as 

Then, since 

hv • (. .) - = Ih X e Ie + lr 
J.l 

= e ih X ie + ih X ir 

= eip + i(l 

ip = sin fir + cos f i (I 

we may express the normalized velocity vector hv / J.l in polar coordinate 
form 

hv = esinf ir + (1 + e cos f) i(l 
J.l 

(3.29) 

The dimensionless variables of Eq. (3.29) will be convenient to describe 
the components of the velocity vector in the hodograph plane. Thus, if we 
plot 

hVr • f -=esm 
J.l 

and 
hV(I 
-=I+ecosf 

J.l 
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along the ordinate and abscissa, respectively, as shown in Fig. 3.5, we see 
that the hodograph is a circle of radius e which is centered at (1,0). The 
vector of length hv I J.l from the origin of coordinates terminates on the 
circumference of the circle. The terminus of this scaled-velocity vector 
moves along the circle in the hodograph plane in direct correspondence 
with the motion of the position vector r along the orbit in the physical 
plane. 

For a circular orbit, the hodograph is simply the point (1,0). For 
elliptic orbits, the circle is confined to the right-half plane. For a parabola, 
the circle is tangent to the hVrl J.l axis, and for hyperbolas, the circle in
tersects this axis. Of course, the hodograph is then that part of the circle 
in the right-half plane. 

Several applications to orbital transfer problems, using the geometrical 
interpretations made possible through the use of the hodograph plane, are 
discussed in Chapter 11. 
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The Flight-Direction Angle 

The angle "y between the position vector r and the velocity vector v will be 
referred to as the flight-direction angle. This name distinguishes it from the 
more traditional flight-path angle which is the complement of "y. Clearly, 
from the figure we have 

sin"Y = :v (1 + e cos f) 

cos "Y = ::v e sin f 

which relate the flight-direction angle and the true anomaly. 

¢ Problem 3-23 
Derive the expressions 

r· v JJiresinf rvcos"'( . t;;:; u== -- = = --- = vpcot"'( 
JJi h JJi 

h = rvsin"'( 

¢ Problem 3-24 

(3.30) 

From the results of Prob. 3-23 and the vis-viva integral, derive the following 
expressions for the parameter p and the velocity vector v in terms of the flight
direction angle "'(: 

¢ Problem 3-25 
The quantity Q == u = y'Pcot"'( is a solution of Eq. {3.8}. Use the method 

of Sect. 3.2 to expand cot"'( in a Taylor series. 

3.6 The Lagrangian Coefficients 

The components of the position and velocity vectors ro and Vo at a given 
instant of time to serve to describe completely the motion of one body rel
ative to another. In fact, these components can be used as orbital elements 
and, indeed, for some applications may be the most natural choice. When 
such is the case, we will require equations for ret) and vet) in terms of ro 
and v o' For this purpose, we note that the position and velocity vectors 
may be expressed in terms of orbital plane coordinates as 

r = r cos f ie + r sin f ip 

v = -* sin f ie + * (e + cos f) ip 
(3.31) 
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(The equation for v follows at once from Eq. (3.28) with e = e Ie and 
h = h i h .) These equations, of course, are valid at the initial point for 
which the position and velocity are ro and vo' When they are inverted, 
the coordinate unit vectors are obtained in terms of these initial vectors. 

The inversion is readily accomplished by first observing that the 
determinant of the two-dimensional matrix of coefficients in Eqs. (3.31) 
is simply h. Hence, 

• J.L ( r ) TO' r 
Ie = h 2 e + COS J 0 r 0 - h sm J 0 V 0 

• J.L. r TO r 
II' = h2 sm J 0 r 0 + h COS J 0 Vo 

and substitution into Eq. (3.31) gives the desired result in the form 

r = Fro +Gvo 
v = FtrO + GtvO 

The two-dimensional matrix of coefficients 

.= [:. ~] 

(3.32) 

(3.33) 

(3.34) 

acts as a transition matrix and the matrix elements are the Lagrangian 
coefficients. Clearly, the coefficients Ft and G t are simply the respective 
time derivatives of F and G. 

Two basic properties of <t are readily established: 

1. The value of the determinant 

l<tl = FGt - GFt = 1 

follows from the conservation of angular momentum 

r X v = (FGt - GFt)ro x Vo = ro X Vo 

The inverse of <t is simply 

.-1 = [:f, -;] 
so that <t is a symplectic matrix. t 

2. For any three points on an orbit ro, r 1 , r 2 

<t2•O = <t2•1 <t1•O 

which is proved by successive applications of Eqs. (3.33). 

(3.35) 

(3.36) 

(3.37) 

Closed-form equations for the elements of <t do not generally exist in 
terms of the times t, to' However, they are readily obtained as functions 

t The symplectic matrix is defined in Chapter 9. It is shown there that any two
dimensional matrix, whose determinant is equal to one, is symplectic. 
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of the true anomalies I, 10 by multiplying the two matrices composed of 
the coefficients of Eqs. (3.31) and (3.32). 

It is more convenient to express the Lagrangian coefficients in terms 
of the true anomaly difference 

0= 1-/0 (3.38) 

For this purpose, write 

cos I = cos( 0 + lo} = cos 0 cos 10 - sin 0 sin 10 

Then, obtain cos 10 from the equation of orbit and sin 10 by calculating 
the scalar product of the two equations in (3.31). Thus, 

ecos/o = ~ -1 and esin/o = ..;puo (3.39) 
TO TO 

where uo ' which occurs frequently in other contexts, is defined by 

uo == ro . Vo (3.40) 
VIi 

Then the polar form of the equation of orbit, Eq. (3.20), may be written 
as 

T = pro 
TO + (p - TO) cos 0 - ..;p uo sin 0 

and the Lagrangian coefficients as 
T 

F =l--(l-cosO) 
P 

Ft = VIi [uo(1- cos 0) - JPsin OJ 
TOP 

G = TTO sin 0 
.;JiP 

TO 
G t = 1 - - (1 - cos 0) 

P 

(3.41) 

(3.42) 

Equations (3.41) and (3.42) are of major importance in our later work. 

¢ Problem 3-26 
Let the skew-symmetric matrix H be defined as 

H =vr T -rv T 

where the individual matrices vr T and rv T are dyadic products. Then, the 
product Hw is the vector product of the angular momentum h and a vector w. 

¢ Problem 3-27 
Derive the following expressions for the reference unit vectors of the orbital 

plane: 
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¢ Problem 3-28 
Derive the following expressions for the eccentricity: 

(1) 

(2) 

¢ Problem 3-29 

e2 = 1 + ~ (p - 2r + (72) r2 

2 rv
2 

(rv2 ). 2 e = 1 + ---;- ---;- - 2 sm i 
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If Vr and Ve are the radial and circumferential components of the velocity 
at a distance r from the center of attraction, then the eccentricity e may be 
computed from 

2 [ ( Ve ) 2 ] 2 ( Ve ) 2 (vr ) 2 e = - -1 + - -
Vc Vc Vc 

where Vc is the velocity of a body in a circular orbit at distance r. 

3.7 Preliminary Orbit Determination 

The problem of orbit determination from the point of view of the as
tronomer is one of calculating the orbital elements of a celestial body from a 
given set of observations made from the surface of the earth. Several closely 
related problems will be considered in this section. For each we show how 
to derive the conventional set of orbital elements from certain postulated 
geometric and dynamic conditions-one example, Laplace's method, uses 
exclusively observational data. The techniques described are illustrative 
only in that they contain the essential ingredients but are devoid of many 
of the practical details. 

Orbit from Three Coplanar Positions 

Assume that we are given three measurements: T1 , °1 , T2 , °2 , and T3 ,03 
specified in polar coordinates, and we wish to determine the parameter 
p, the eccentricity e, and the argument of perihelion w of an orbit which 
passes through these three points. Using the equation of orbit in the form 

T= P 
1 + ecos(O - w) 

where O=w+! 

we have directly three equations in the three unknowns which are, of course, 
nonlinear. 

They can be linearized with a simple change of variable. By defining 

P = ecosw and Q = esinw (3.43) 
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we then have the following three equations in the three unknowns p, P, 
and Q: 

.!!.- - P cos 01 - QsinOI = 1 
TI 

.!!.- - Pcos02 - Qsin02 = 1 
T2 

.!!.- - Pcos03 - Qsin03 = 1 
T3 

Hence, according to Cramer's rule, t 
1 -cosOI - sin 01 
1 -cos02 -sin O2 

p= 
1 -cos03 - sin 03 

1/TI - cos 01 - sinOI 
1/T2 - cos 02 - sin O2 
1/T3 - cos 03 - sin 03 

(3.44) 

By evaluating the determinants and using obvious trigonometric identities, 
we obtain 

_ TI T2T3[sin(03 - 02) + Sin(OI - 03) + sin(02 - 01)J 
P - T2T3 sin(03 - 02) + TIT3 sin(OI - 03) + TI T2 sin(02 - °1) 

Similarly, 

P = TI (T2 - T3) sin 01 + T2(T3 - TI) sin 02 + T3(T I - T2) sin 03 
T2T3 sin(03 - 02) + TI T3 sin(OI - 03) + TI T2 sin(02 - 0tl 

Q = TI (T3 - T2) cos 01 + T2(TI - T3) cos 02 + T3(T2 - TI ) cos 03 
T2T3 sin(03 - 02) + TI T3 sin(OI - 03) + TI T2 sin(02 - °1) 

from which we can calculate e and w using the equations 

e = Jp2 +Q2 and tanw = ~ 

(3.45) 

(3.46) 

This problem is solved in the next subsection using vector algebra 
as was done by Willard Gibbs+ who, it is interesting to note, was the first 

t Gabriel Cramer (1704-1752) published the rule in his Introduction d l'analyse de8lignes 
courbes alglbriqua in 1750 in connection with the problem of determining the coefficients 
of the general conic, A + By + Ox + Dy2 + Exy + x2 = 0, passing through five given 
points. However, for simultaneous linear equations in two, three, and four unknowns, the 
solution by the method of determinants was created by Colin Maclaurin (1698-1746), 
probably in 1729, and published in his posthumous 7reatise 0/ Algebra in 1748. 

* Josiah Willard Gibbs (1839-1903), professor of mathematical physics at Yale Col
lege, made the formal break with quaternions and inaugurated the new subject-three
dimensional vector analysis. He had printed for private distribution to his students a 
small pamphlet on the Elements 0/ Vector Analym in 1881 and 1884. Gibbs' pamphlet 
became widely known and was finally incorporated in the book Vector Analysis, authored 
by J. W. Gibbs and E. B. Wilson, and published in 1901. 
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recipient of our country's engineering degree and the first American scholar 
to contribute to the field of celestial mechanics. 

Orbit from Three Position Vectors 

Given three successive position vectors r l , r 2, r3 assumed to be coplanar, 
that is, r 1 X r 2 • r3 = 0, the elements of the two-body orbit which includes 
these positions can be determined using vector algebra. Gibbs' method for 
this purpose is to apply vector operations to an equation, which expresses 
one of the position vectors as a linear combination of the other two 

r 2 = arl + {jr3 (3.47) 

The constants a and (j are found by calculating (1) the vector product 
of Eq. (3.47) with r3 and r 1, respectively, and (2) the scalar product of 
the resulting equations with r 1 X r 3 . Thus, we have 

(3.48) 

where 
n = r l X r3 (3.49) 

To obtain the parameter, take the scalar product of Eq. (3.47) with 
the eccentricity vector e. Since e· ri = P - ri for i = 1,2,3, we have a 
scalar equation involving p as the only unknown. Hence 

arl - r 2 + {jr3 (3.50) 
p= a-1+{j 

The vector e is determined by first observing that 

n X e = (rl X r3) X e = {e· r 1)r3 - {e· r3)rl = (p - rdr 3 - (p - r3)rl 

Then, since e is normal to n, we have 

(n X e) X n = n2e 

so that 
(3.51) 

The size, shape, and orientation of the orbit are now completely deter
mined. The velocity vector at any of the three positions may, of course, be 
calculated using Eq. (3.28). 

¢ Problem 3-30 
Derive the following alternate expression for the eccentricity vector: 

e = ~ [(.E. -1) - (.E. - 1) cosO]r1 
Tl sm2 0 Tl T2 

+ ~ [(.E. -1) - (.E. -1) coso]r2 
T2 sm2 0 T2 Tl 

where 0 is the angle between the position vectors rl and r2. 
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Approximate Orbit from Three Position Fixes 

Although the orbit-determination equations, as developed above for three 
specified position vectors, are exact, it is clear that numerical accuracy is 
impaired if the angles between the vectors are small. As an alternative, an 
approximate orbit can be obtained if the times associated with the vector 
positions are known. We may then use the dynamic properties of the orbit 
to determine the orbital elements rather than relying solely on geometry. 

Specifically, let r 1 , r 2 , r3 be the position vectors of a body in orbit 
at the times t1 , t2 , t 3 , respectively. These data comprise three so-called 
position fixes and can be related by means of appropriate power series 
expansions. Thus, if we neglect powers of t beyond the fifth, we may write 

r = ao + t a1 + t2 a2 + t3 a3 + t4 a4 + tS as 

v = a1 + 2t a2 + 3t2a3 + 4t3a4 + 5t4as 
-f r = 2a2 + 6t a3 + 12t2a4 + 20t3as 

In the last series we have used the equation of motion to replace d2r/dt2 

by -f r where, as before, we have defined 

J.l 
f = - (3.52) 

r3 

N ext, define a sequence of time intervalst 

(3.53) 

and replace t in the power series successively by -r3' 0, r1. Thus, we 
have 

r 1 = ao - r3a 1 + ria2 - rla3 + rta4 - rias 
r 2 = ao 
r3 = ao + rIal + r?a2 + rfa3 + rta4 + rfas 
V2 =a1 

-f1r 1 = 2a2 - 6r3a3 + 12ria4 - 20rlas 

-€2r 2 = 2a2 

-f3r 3 = 2a2 + 6r1a3 + 12r?a4 + 20rfas 

(3.54) 

as seven equations for the seven unknowns ao' ... , as, v 2' But ao' aI' 
and a 2 are eliminated immediately so that Eqs. (3.54) reduce to a system 
of just four equations for the four vectors a3 , a4 , as, v 2 • 

Using Cramer's rule to solve for V2' we obtain the following formula 
for v2 as a function of the three position fixes r 1 , r2' r3: 

(3.55) 

t Note that T2 = Tl + T3 • 
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where 

Ao = 12TIT2T3{T3 - T1 )(2T; + 5TIT3 + 2T;) 

Al = Tt[12{ 2T2 + 3T3) + {ITj(TI + 3T2)] 

A2 = {2T;T2Tj (8Ti + 3TI T3) - 12T2 [2Ti - 5T1 T3 (Ti + TI T3)] 

A3 = T:[12{3Tl + 2T2) + {3T;(3T2 + T3)] 

Unfortunately, when Tl = T3 = T, Eq. (3.55) reduces to 

{12 + {I T2)rl + (10{2r2 - 24)r2 + (12 + {3T2)r3 = 0 
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(3.56) 

which does not involve the velocity vector but represents instead a condi
tion imposed on the three position vectors. Thus, the value of Eq. (3.55) 
for numerical calculation is somewhat questionable even when the time 
intervals of the position fixes are not equal. 

An alternative expression for v 2' which is free of this difficulty, was 
developed by Samuel Herrick. When the power series are truncated beyond 
the fourth order, we then have only five coefficients to eliminate from seven 
equations, and this degree of freedom can be effectively exploited. 

To this end, we first eliminate a 2 between the first and third equations 
of (3.54) by multiplying them by T; and Tj, respectively, and subtracting. 
The resulting equation 

T;rl - Tff r 3 = (TI - T3)T2 aO - TI T2T3a l - T;T2Tffa3 + T;T2Tff(T3 - T1 )a4 

is then used in place of the two equations from which it was derived. We 
now have six equations for ao ' aI' a 2, a 3, a 4 , v 2' Solving for v 2' we 
obtain 

V2 = -T, (T2
1T3 + ~~) r, 

- tra - T,l C'~3 + ~~) r 2 + T3 C'~2 + ~~) r3 
(3.57) 

which is valid to fourth order in the time intervals. 
With r 2 and v 2 determined, we are able to calculate the more 

conventional orbital elements in the usual manner. 

¢ Problem 3-31 
From two position fixes r I (t I) and r2 (t2) , develop the approximate formula 

for the velocity vector VI at time tl 

VI = - (~ - ~ T) rl + (; + ~ T) r2 

valid to third order in the time interval T = t2 - t 1 • 
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¢ Problem 3-32 
Two position fixes of a spacecraft in interplanetary space at times 

h = 0.010576712 year 

are found to be 

[

0.159321004] 
r(tt) = 0.579266185 

0.052359607 
a.u. 

f2 = 0.021370777 year 

[

0.057594337 ] 
r(t2) = 0.605750797 a.u. 

0.068345246 

[Chap. 3 

Determine the velocity vector at the location corresponding to the earlier time. 
If the third position fix at time t3 = 0.005274926 year is included in the 

data, where 

[

0.208200171 ] 
r( t3) = 0.561804188 a. u. 

0.044088057 

calculate the velocity vector at the same location as determined above. 
Compare the two results with the exact value given by 

[

-9.303603251 ] 
v(0.010576712 year) = 3.018641330 a.u./year 

1.536362143 

Approximate Orbit from Three Range Measurements 

If r l , r2' r3 are the distances of a body in orbit from the center of attrac
tion at the times t l , t2, t3 , respectively, we can determine an approximate 
orbit using a method also attributed to Willard Gibbs. As before we neglect 
powers of t beyond the fourth and write 

T = ao + alt + a2 t2 + a3t3 + a4t4 

~r 2 
dt2 = €(p - r) = 2a2 + 6a3 t + 12a4t 

In the second series we have used an equation developed in Prob. 3-7 to 
replace d2r/dt2 by €(p - r) where € is defined in Eq. (3.52). Again, we 
define the sequence of time intervals as in Eq. (3.53) and generate three 
pairs of equations by replacing t by -T3 , 0, and TI. These provide six 
equations in the six unknowns ao' a l , a2' a3' a4, p. 

Rather than use Cramer's rule, it is convenient to regard this system 
of equations as six linear equations in five unknowns with the parameter 
p to be determined to make the system consistent. Then, according to 
Prob. D-l in Appendix D on linear algebraic systems, the determinantal 
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equation 
1 -T3 

~2 3 -Tl ~4 3 TI 
1 0 0 0 0 T2 
1 TI T2 T3 T4 T3 I I I =0 0 0 2 - 6T3 12~2 fl(p - TI ) 3 

(3.58) 

0 0 2 0 0 f2(P - T2 ) 

0 0 2 6TI 12Tl f3(P - T3 ) 

which expresses the necessary and sufficient condition for the consistency 
of our set of linear equations, can be used directly to calculate p. 

The determinant may be evaluated most readily using the result of 
Prob. B-20, part b of Appendix B. We obtain 

144Tl T2 Ta[Tl Al fl (p - TI ) + T2A2f2(P - T2) 

+ T3A3f3(P - T3 ) - TI TI + T2T2 - T3T3] = 0 

where, for convenience, we have defined 

12Al = T2 Ta - Tf 12A2 = TITa + Ti 12A3 = TIT2 - T~ (3.59) 

Thus, we have the parameter P of the orbit obtained from 

P = TITI (1 + flA l ) - T2T2(1- f 2A 2 ) + T3Ta(1 + fa A3) (3.60) 
Tl fl Al + T2f2A2 + Taf3A3 

which is valid provided that we may neglect terms of fifth order in the time 
intervals. 

The semimajor axis a of the orbit is similarly obtained using another 
equation developed in Prob. 3-7. From the series expansions 

T2 = bo + bIt + b2t2 + b3t3 + b4 t 4 

tP (1 1) 
dt2 (T2) = 2/J ;:- -;; = 2b2 + 6bat + 12b4t

2 

and following the same procedure as used for the parameter, we find 

/J ~ ~ ~ - = __ 1 (1- 2€IAI) + _2_(1 + 2€2 A 2) - _3_(1 - 2€3A 3) (3.61) 
a T2T3 TI Ta TI T2 

¢ Problem 3-33 
Three range measurements are available for a spacecraft in interplanetary 

space as follows: 

rl = 0.600762027 a.u. tl = 0.005274926 year 

r2 = 0.603053915 a.u. h = 0.010576712 year 

r3 = 0.612308916 a.u. ta = 0.021370777 year 

Determine the semimajor axis a, the eccentricity e, and the parameter p of the 
orbit as well as the true anomalies at the three measurement points. 
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¢ Problem 3-34 
Use an equation developed in Prob. 3-7 to invent an orbit-determination 

method using two distinct pairs of range and range-rate measurements made at 
two different times. 

NOTE: Knowledge of the measurement times is not required to calculate the 
orbital elements. 

¢ Problem 3-35 
A pair of range and range-rate measurements is available for a spacecraft in 

interplanetary space as follows: 

Tl = 0.600762027 a.u. 

drl -cit = 0.288618834 a.u./year 

T2 = 0.603053915 a.u. 

dT2 -cit = 0.575041077 a.u./year 

Determine the elements a, e, and p of the orbit. 

Approximate Orbit from Three Observations 

Let ip1 , ip2 , iP3 be unit vectors corresponding to three observed line-of
sight directions between two bodies in orbit-the observations occurring at 
times t l' t 2 , t3' We desire an approximate orbit for the observed body, 
assuming that its mass is negligible in comparison to the masses of the 
other two. The method we describe for the determination of a preliminary 
orbit of a celestial object in solar orbit as observed from the earth is named 
for Laplace. t It was developed in 178Q-the year before the discovery of 
the planet Uranus. 

We define three position vectors r, p, d with 

r= p+d (3.62) 

where r and d are, respectively, the positions, relative to the center of 
force, of the observed body and the body from which the observations are 
made. The vector d is known, r is to be determined, and p has known 
directions at the times of the three observations. Furthermore, if m1 and 
m2 are masses of the finite bodies, we have 

t Pierre-Simon de Laplace (1749-1827), mathematician and French politician dur
ing the Napoleonic era, made many important discoveries in mathematical physics 
and chemistry but most of his life was devoted to celestial mechanics. His Micanique 
caestl, consisting of five volumes published between 1799 and 1825, was so complete 
that his immediate successors found little to add. Unfortunately, his vanity kept him 
from sufficiently crediting the works of those whom he considered rivals. Laplace was 
the originator of that most troublesome phrase, which continues to plague students of 
mathematics: "It is easy to see that ... II when, in fact, the missing details are anything 
but obvious. 
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where 

PI = Gm i 

Therefore, if we write 
p = pip 

and calculate the second derivative of Eq. (3.63), we obtain 

(
d

2 
p PI). dp dip d

2
ip _ (P2 PI) 

dt2 + r3 Pip + 2 dt dt + P dt2 - d3 - r3 d 
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(3.63) 

Next, we calculate the scalar product of this last vector equation, first with 
ip X dip/ dt and second with ip x d2 ip/ dt2. There results 

(3.64) 

(3.65) 

together with 
(3.66) 

obtained by squaring Eq. (3.62). 
As shown in the first problem at the end of this section, each of the 

triple-scalar products in Eqs. (3.64) and (3.65) can be calculated approxi
mately at the intermediate time t2 from the observational data. Therefore, 
the last three equations serve to determine r, p, and dp/dt at time t2. 

First, we may solve Eqs. (3.64) and (3.66) for T2 and P2 using some 
appropriate iteration technique. On the other hand, however, the conven
ient formulation of Eq. (3.64) as a successive substitution algorithm is an 
attractive alternative.t Either way, with T2 obtained, dp/dt at time t2 is 
computed from Eq. (3.65). 

Finally, the position and velocity vectors at time t2 may be calculated 
from 

r 2 = P2 iP2 + d2 

dp2 dip2 dd2 
V2 = dt iP2 + P2dt + dt 

which can then be used to obtain the other orbital elements. 

(3.67) 

(3.68) 

t This method was developed by Gauss and the basic idea is the subject of a problem 
at the end of this section. 
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¢ Problem 3-36 
Using appropriate Taylor series expansions, show that 

dip I - Tl I Tl - TS i TS I 
- ---Pl+---P2+--P3 
dt t2 T2TS Tt Ts Tl T2 

d
2

lp I - 2 i 2 2 
dt2 - .,., T: PI - -lp2 + -ip3 

t2 '2 S Tl TS Tt T2 

[Chap. 3 

are valid to second order in the time intervals where the T'S are defined in 
Eq. (3.53). More accurate values for these derivatives can be obtained if more 
than three sets of observational data are available. 

NOTE: The determination of the derivatives of the observational data is the 
greatest weakness in Laplace's method of orbit determination. In fact, it is 
necessary to use additional observations to obtain any reasonable accuracy at 
all. 

Joseph-Louis Lagrange 1778 

~ Problem 3-37 
Jr Let Dl and D2 denote the triple-scalar products appearing, respectively, 

on the left and right sides of Eq. (3.64). Further, let 7r - t/J be the angle between 
d and p (t/J is known from the observations), and let 4J be the angle between 
r and p. 

Equations, from which p and r can be determined, are given by 

= d sin(1J1 + 4J) 
p sin 4J 

where 4J is the solution of 

and r = d sint/J 
sin 4J 

sin(4J -,8) = msin4 4J 

The quantities m and ,8 are determined from 

mo sin,8 = dsin 1J1 

D2J.L2 
mo cos,8 = -dcos1J1 + D1ds 

D2J.Ll mmo = --~;:--
D1ds sins t/J 

The sign of mo, which is at our disposal, can be chosen so that m will be positive. 

NOTE: The equation for the determination of 4J is transcendental and may be 
solved using the methods developed in Chapter 5. However, in general, there will 
be multiple roots which must be reconciled. 

Carl Friedrich Gauss 1809 



Chapter 4 

Two-Body Orbits 
and the Initial-Value Problem 

H AD IT NOT BEEN FOR KEPLER, THE DESTINY OF THE HELIOCENTRIC 

theory of Nicholas Copernicus (1473-1543) would have been consider
ably in doubt. Johanness Kepler (1571-1630) was fascinated by the beauty 
and harmony of the Copernican system of the world and devoted his life 
to uncover whatsoever additional geometric harmonies might also exist. It 
is truly amazing that he managed to pursue his scientific work with such 
extraordinary enthusiasm and diligence considering the vicissitudes of his 
life. His hands were crippled and his eyesight impaired from smallpox as 
a boy. He suffered from religious persecution for his protestant beliefs. 
He lost his first wife and several children. Often in desperate financial 
difficulties, he endured a bare subsistence livelihood. He even had to defend 
his mother who was accused of witchcraft. 

Kepler's initial efforts to use the five regular geometric solids to account 
for the placement of the planets were both extensive and unproductive. 
Indeed, it was not until he was expelled from his professorship in Graz, 
Austria, when that city fell under Catholic dominance, and he became an 
assistant to the astronomer Tycho Brahe in the observatory at Prague, that 
his research finally bore fruit. Tycho Brahe's observations of the planet 
Mars, whose orbital eccentricity, fortunately, was pronounced, provided 
Kepler with the means of testing his theories of planetary motion. They 
were of the proper order of accuracy for this purpose, being sufficiently 
accurate to discriminate between true and false hypotheses and yet not so 
refined as to involve the problem in a maze of unmanageable detail. 

Kepler's most important work, Astronomia Nova De Motibus Stellae 
Martis, was published in 1609 and contained the first valid approximations 
to the kinematical relations of the solar system. His first result was that 
the heliocentric motions of the planets take place in fixed planes passing 
through the actual position of the sun. Before this, reference had always 
been made to the ''mean position" of the sun so that no astronomer prior 
to Kepler had been able to represent the latitudes of the planets with even 
tolerable success. Next, he discovered the law of areas-that the area of the 
sector traced by the radius vector from the sun, between any two positions 
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of a planet in its orbit, is proportional to the time occupied in passing from 
one position to the other-known today as Kepler's second law. 

His third major result was surprisingly difficult to obtain since it re
quired that he abandon the concept of a circular orbit, or any combination 
of moving circles called epicycles, as well as various oval-like curves, to 
describe a planetary orbit. (Curiously, the hypothesis of an eccentric cir
cular orbit plays an important role in the theory of ellipses as we shall see.) 
Almost in desperation did he try to fit the data with the little known "el
lipse" which had been recorded in the Alexandrian Library by the ancient 
greek mathematician Apollonius of Perga. It was a perfect match with the 
observations! The form of a planetary orbit is an ellipse with the sun at 
one focus-familiar now to almost everyone as Kepler's first law. 

It required ten more years of extraordinary effort before he announced 
Kepler's third law: that the square of the periodic time is proportional to 
the cube of the mean distance (or the semimajor axis). This was published 
in 1619 in Harmonices Mundi, "The Harmony of the World", and succeeded 
in uniting the planets in a way that Kepler could scarcely have anticipated 
when he first began his work. 

A direct consequence of the law of areas is Kepler's equation which 
relates position in orbit with time. Although it is easily derived using 
calculus, we include, in this chapter, a geometrical derivation along those 
lines used by Kepler himself. Since Kepler's equation is transcendental, the 
determination of position for a given time cannot be expressed in a finite 
number of terms. 

This chapter treats the initial-value problem of two-body mechanics
given appropriate initial conditions, such as position and velocity at a 
specific instant of time, to determine those quantities at a later time. After 
a general discussion of many of the fascinating properties of conic sections, 
the various kinds of orbits are dealt with separately. As we will see, each 
has a different form of Kepler's equation. Finally, we derive all of the 
relevant two-body equations using universal/unctions so that the initial
value problem will be free of the troubles which arise with the classical 
equations when transition from one kind of orbit to another occurs. 

4.1 Geometrical Properties 

Two-body orbits are plane curves shown in Chapter 3 to be the locus of 
points whose position vectors r satisfy 

r=p-e·r (4.1) 

The constant eccentricity vector e of magnitude e ~ 0 lies in the orbital 
plane and the parameter p is a nonnegative constant. The parameter and 
the eccentricity can be conveniently related via the semimajor axis a or 
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the pericenter distance q. Thus 

p = a(1 - e2
) = q(1 + e) (4.2) 

where a may have any real value between plus or minus infinity and q may 
be positive or zero. 

The vectors r and e originate at the focus F, and if this point is 
also chosen as the origin of an x, y cartesian coordinate system with the 
positive x axis in the direction of e, then Eq. (4.1) is simply 

Origin at focus: r = p - ex (4.3) 

As noted in the discussion following Eq. (3.21), the center of the orbit 
is the point x = -ea, Y = 0 provided e:F 1. Now translate the origin of 
coordinates from the focus F to the center C, i.e., replace x by x - ea, 
and we have 

r = p - e(x - ea) = a(l- e2
) - ex + e2a 

so that 
Origin at center: r = a - ex (4.4) 

On the other hand, if the origin is translated from the focus F to the 
pericenter A(x = q, Y = 0), then 

r = p - e(x + q) = q(1 + e) - ex - eq 

Hence 
Origin at pericenter: r = q - ex (4.5) 

(We emphasize, in each of the three cases, that the radial distance r is 
always measured from F while the abscissa x is referenced to the origin 
of coordinates F, C, or A.) 

We can exploit to advantage the various representations. For example, 
with the origin at pericenter, the cartesian equation of orbit is found from 

r2 = (q + x) 2 + y2 = (q _ ex) 2 

Hence 
y2 = -(1 + e)[2qx + (1 - e)x2] (4.6) 

provides an equation, due to Euler, valid for all orbits. It is universal in 
that no difficulty is encountered for a transition from ellipse to parabola to 
hyperbola by holding q constant and allowing e to increase continuously 
from e < 1 to e > 1. This is not the case when the center of the orbit is 
the origin of coordinates. [See Eqs. (3.21) and (3.22).] 

The other two forms of the equation of orbit can be used to demon
strate three basic and well-known geometric properties. In the usual 
systematic development of analytic geometry, one of these properties is 
generally chosen as the definition of this special class of plane curves. 
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Focus-Directrix Property 

If the eccentricity e = 0, the focus F and the center C coincide and the 
orbit is the circle r = p. Otherwise, for e ;f; 0, Eq. (4.3) may be written as 

!!.=x+: 
e e 

Refer now to Fig. 4.1 which shows the orbit drawn in the x, y plane with 
the origin at F. The straight line parallel to and at a distance pie from 
the y axis is called the directrix. Now if P is any point in the orbit and 
the line P N is perpendicular to the directrix, we observe that 

PF 
-=e PN (4.7) 

Hence, the orbit is the locus of points whose distances from a fixed point 
and a fixed straight line are in constant ratio. 

Although Apollonius made no mention of the directrix in his writings, 
there is some evidence that Euclid was familiar with the focus-directrix
eccentricity theorem. 

Directrix 

,Ie 
k-----tN 

------~~-----+~A--~~------~x 

Focal-Radii Property 

Fig. 4.1: Illustration 
of the focus-directrix 
property. 

In orbital mechanics, the focus F is frequently called the occupied focus 
referring, of course, to the body located at F when the relative motion of 
two bodies is under consideration. With the origin of coordinates at the 
center of the orbit, the coordinates of Fare (ea, 0). The point F* ( -ea, 0) , 
symmetrically placed on the x axis, is called the unoccupied or vacant 
focus. The distances to a point P on the orbit from the two foci are called 
the focal-radii. 
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Clearly, the squares of the focal-radii are 

P F2 = (x - ea)2 + y2 and P F* 2 = (x + ea) 2 + y2 

so that 
PF*2 = PF2 +4aex 

But, from Eq. (4.4), 
PF=r=a-ex 

Hence, 
PF*2 = (a - ex)2 + 4aex = (a + ex)2 

Remembering that P F* is positive, we have 

Thus, 

a>O PF* = { a + ex ellipse 
-(a + ex) hyperbola a < 0, x < 0 

PF*+PF= 2a 
PF* -PF= -2a 

ellipse 

hyperbola 
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(4.8) 

and we have the property that an ellipse (hyperbola) is the locus of points 
for which the sum (difference) of the focal-radii is constant.t 

Orbital Tangents 

Another important and useful property of orbits is that the focal-radii to a 
point on an orbit make equal angles with the orbital tangent at that point. 
An elegant demonstration is possible which includes, as an extra bonus, 
a simple geometric construction of the orbital tangent together with an 
alternate definition of an ellipse and a hyperbola. 

Consider first an ellipse of semimajor axis a. Construct a circle of 
radius 2a centered at the focus F. Through an arbitrary point P on 
the ellipse draw the radius of this circle and label Q the point where this 
radius meets the circle as shown in Fig. 4.2. Therefore, P F + PQ = 2a. 
But PF + PF* = 2a by the focal-radii property already established so 

t Philippe de La Hire (1640--1718), a painter turned mathematician and astronomer, 
first gave this property. Indeed, his greatest work Sectiones Conia1.e published in 1685 
contained all of the now familiar properties of conic sections. 

The usual development, found in most books on analytic geometry, is to introduce 
two radicals for P F and P F·. Then the focal-radii property is used to derive the 
equation of the conic. The ingenious proof given here is by Guillaume Antoine Fran(,;ois 
L'Hospital (1661-1704), a pupil of John Bernoulli, in his Thlite des sections coniques pub
lished in Paris in 1707. 

Despite the fact that he was active in introducing the methods of the calculus and 
published, in 1696, an influential book on the subject-Analyse des infiniement petits, the 
Marquis de I'Hospital made no application of the calculus to the conics. All students 
are familiar with "L'Hospital's rule" but not too many know that it was really John 
Bernoulli who produced that famous theorem for obtaining the limit approached by a 
fraction whose numerator and denominator approach zero. 
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that P F* = PQ. It follows that a circle centered at P of radius P F* will 
be tangent to the circle centered at F of radius 2a. In this way we are 
led to the following property or alternate definition: An ellipse is the locus 
of centers of circles which are tangent to a fixed circle and pass through a 
fixed point. 

o 

Fig. 4.2: Construction of the orbital tangent of an ellipse. 

Since QP F* is an isosceles triangle, the perpendicular bisector of QF* 
passes through the point P and, indeed, coincides with the tangent to the 
ellipse at point P. For the proof, assume that it was not tangent at P. 
Then it would intersect the ellipse at a second point P' to which would 
correspond a second point Q' on the large circle. Now, P' F* = P'Q' 
since P' is a point on the ellipse. Also P' F* = P'Q since P' lies on 
the perpendicular bisector of F* Q. Thus, the triangle P' Q' Q is isosceles; 
but the triangle FQ' Q is also isosceles with the equal sides of length 2a. 
Therefore, these two isosceles triangles have a common base Q' Q and a 
common base angle LP'Q'Q which is clearly impossible unless P and P' 
(also Q and Q') coincide. 

Finally, the original assertion that P F and P F* make equal angles 
with the orbital tangent at P is readily verified from the figure. The entire 
argument applies equally well to the hyperbola by reversing the roles of the 
two foci. A circle of radius - 2a centered at F* is constructed. Then if P 
is an arbitrary point on the hyperbola, a circle centered at P of radius P F 
will be tangent to the first circle. The construction of the orbital tangent, 
together with its properties, is the same as for the ellipse. 
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¢ Problem 4-1 
If PI(XI,yI) is a point on the ellipse (hyperbola) 

X2 y2 
-±-=1 
a2 b2 

then the equation of the tangent line at PI is 

XXI ± YYI = 1 
a2 b2 
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If PI is not on the ellipse (hyperbola), this line connects the two points of contact 
of tangents to the curve which pass through PI. 

Sections of a Cone 

The circle, ellipse, parabola, and hyperbola are often called conic sections 
because they can all be obtained as sections cut from a right circular cone 
by a plane. The type of conic depends on the dihedral angle between the 
cutting plane and the base of the cone. Thus, if the plane section is parallel 
to the base, the conic is a circle. If the plane is inclined to the base, but at 
an angle less than that between the generators of the cone and its base, the 
section is an ellipse. If the cutting plane is parallel to one of the generators, 
the section is a parabola. Finally, if the plane is inclined to the base at a 
still greater angle, the plane will also cut the cone formed by the extension 
of the generators. The section consisting of these two parts is a hyperbola. 
These cases are illustrated in Fig. 4.3. 

It is interesting to note that the very words "ellipse," "hyperbola," 
and "parabola" have their origin in connection with the property of being 
sections of a cone. Ellipse is from the greek word "elleipsis" meaning to 
fall short or to leave out. Thus, our word ellipsis is the omission of words 
in a sentence-replacing them by a series of dots or asterisks. Extreme 
economy of speech or writing is called elliptic. Therefore, when the cutting 
plane is inclined to the base of the cone at an angle which is less than or 
"falls short of" the angle between the generators and the base, the section 
is called an ellipse. 

Similarly, the greek word "hyperbole" means excess. Our word hyper
bole means excessive or extravagant exaggeration. Thus, when the angle 
of the cutting plane is "excessive" or in excess of the angle between the 
generators and the base, the section is a hyperbola. 

Finally, the greek word ''parabole'' literally means comparison and is 
the origin of our words parable and parallel. Therefore, when the cutting 
plane is parallel to the generator, the section is a parabola. From a different 
point of view, to distinguish the ellipse and the hyperbola we "compare" 
the cutting plane angles with the angle that the generator makes with the 
base. 
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Fig. 4.3: Sections of 
a right circular cone. 

Although the conic sections were known to the ancient greeks, the 
simplest proof which relates the geometrical property to the focal defi
nition of the ellipse was supplied in 1822 by the Belgian mathematician 
Germinal P. Dandelin {1794-1847}. To show that the ellipse is a section of 
a cone, introduce two spheres within the cone-one above and one below 
the cutting plane. The spheres each touch the cone in parallel circles and 
each is tangent to the cutting plane at one of two points, which we label 
F and F*, as seen in Fig. 4.4. If P is any point on the curve, found by 
the intersection of the cone and the cutting plane, and if Q, Q* are the 
points at which the generator through P intersects the two parallel circles, 
then the lines P F, PQ, and P F* , PQ* are tangent, respectively, to the 
two spheres. Since all tangents from a given point to a given sphere are of 
equal length, then 

PF=PQ PF* = PQ* 

Hence, 
PF + PF* = PQ + PQ* = QQ* 

so that the sum of the focal-radii is equal to the distance along the generator 
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Fig. 4.4: Ellipse as a 
section of a cone. 
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between the two circles. But this distance is the same for all points P on 
the section. Therefore, the curve is an ellipse. 

~ Problem 4-2 
Jr' If the cutting plane has the same inclination to the base of the cone as the 

generators, there is a single sphere tangent to the cone along a circle and tangent 
to the plane at a point. Show that this point is the focus of the parabola and 
that the directrix is the line in which the plane of the circle cuts the plane of the 
parabola. 

Furthermore, show that when the plane cuts both portions of the cone, the 
curve of intersection is a hyperbola. Note that one sphere is in each portion of 
the cone. 

4.2 Parabolic Orbits and Barker's Equation 
Except for the circle, for which the true anomaly is proportional to the 
time, the position of a body in orbit at a given time is simplest for the 
parabola. The polar equation of a parabola is 

r= 1 P f = 'f..
2

(1+tan2 ~f) (4.9) 
+ cos 
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so that from the law of areas 

dl r2_ = h =..fiiP 
dt 

it follows that 

4/fo dJ. = sec4 itdj 

Performing the integration, we obtain 

tan3 ! f + 3 tan! 1 = 2B where 

and T is the time of pericenter passage. 

[Chap. 4 

( 4.10) 

This relation between the true anomaly 1 and the time t is called 
Barker's equation.t The solution for 1 when t is given requires the root 
of a cubic equation in tan i 1 and it is easy to show that one and only one 
real root exists. To obtain it, we substitute 

1 1 
tan 2/= z-z 

and derive, thereby, a quadratic equation in z3 

z6 - 2Bz3 - 1 = 0 

for which 

z = (B ± V B2 + 1 ) 1 

Either sign produces the same solution for tan i I. Therefore, 

tan i 1 = (B + VI + B2 ) i - (B + VI + B2 ) -1 

which is in accord with the classic formula of Jerome Cardan.:f: 

(4.11) 

(4.12) 

Many variations of the solution of Barker's equation are considered in 
the following subsections which are both interesting and useful. 

t The parabolic form of Kepler's equation is called Barker's equation after Thomas 
Barker (1722-1809) who published extensive tables for its solution in 1757. It contained 
values of the expression 75 tan ! f + 25 tan3 ! f for the true anomalies at intervals of 
five minutes of arc from 0 0 to 180 0

• Although, Halley (1705) and Euler (17 44) did 
essentially the same thing; nevertheless, it is still referred to as Barker's equation. 

t Gerolamo Cardano (1501-1576) published the method for solving cubic equations 
which he obtained from Niccolo Fontana of Brescia {1499?-1557}. Fontana is better 
known as Tartaglia, which means "Stammeret'-an unfortunate name he acquired be
cause of a speech defect. Tartaglia had a method for solving the cubic which he revealed 
to Cardan in 1539 after a pledge from Cardan to keep it secret. Despite the pledge, 
Cardan published his version of the method in his Ars Magna in 1545. 
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Trigonometric Solution 

If we write z = cot{3 in Eq. (4.11), then 

tan ~ f = cot {3 - tan {3 = 2 cot 2{3 

But, from Eqs. (4.10) and (4.11), we have 

( z - ; r + 3 (z -D = Z3 - :3 = cot3 
{3 - tan3 {3 = 2B 

Now, if we define 

tan{3 = tan! 0 

then 

B = ~ (cot 0 - tan 0) = cot 20 
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{4.13} 

{4.14} 

{ 4.15} 

Therefore, the solution of Barker's equation can be had by first, computing 
o and {3 from Eqs. (4.15) and (4.14); then, tan ~ f from Eq. (4.13). 

Improved Algebraic Solution 

If the time interval t - T is small, neither of the solutions so far consid
ered is suitable. This is readily seen from Eq. (4.12) which would require 
calculating the difference of two almost equal quantities. However, we may 
write 

and since 

1 2 cot6 {3 - 1 
tan '2 f = tan {3{cot {3 - 1) = tan{31 2 {3 4 {3 + cot + cot 

tan {3{ cot6 {3 - 1) = cot2 {3{ cot3 {3 - tan3 {3) 

= cot2 {3(cot a - tan 0) 

= 2 cot2 {3 cot 2a 

we may define A = cot2 {3 or, equivalently, from Eqs. (4.12) and (4.13), 

( 4.16) 

to obtain 
1 2AB 

tan '2 f = 1 + A + A2 {4.17} 

Equations (4.16) and (4.17) are a variation of the form of solution suggested 
by Karl Stumpff. 
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Graphical Solution 

An interesting interpretation of the quantities 0 and (3 is possible which 
leads to a simple graphical solution of Barker's equation. For this purpose, 
we first observe that 

since 

20: + 2{3 + f = 7r 

( If) tan 0 + tan ~ f tan 0 + - = -----=:--
2 1 - tan a tan ~ f 

tan4 {3 - tan2 {3 + 1 
= tan5 {3 - tan3 {3 + tan {3 

= cot (3 = tan( i 7r - (3) 

Then, from Eqs. (4.18) and (4.13), 

so that 

sin 20 = sin(f + 2(3) 

= sin 2{3( cos f + cot 2{3 sin f) 

= sin 2{3 cos2 if 
!p = L sin2{3 
r 

sin20 = ip 
sin 2{3 r 

(4.18) 

(4.19) 

Equations (4.18) and (4.19) permit the geometrical representation of 
the quantities 20 and 2{3 shown in Fig. 4.5. The angles f, 20, 2{3 are 
the interior angles of the triangle F PAw hose sides are F P = r and 
FA = i p. The center of the circumscribed circle of this triangle lies on 
the perpendicular bisector of the line F A and at a distance i pB from FA 
since cot 20 = B. 

The graphical solution of Barker's equation follows at once from the 
figure. Given the parabola and a time interval t - T , the center of the circle 
is located. The position of the body in orbit at time t is then found as the 
intersection of the circle and the parabola. 

From a different point of view, we have just shown that there is a one
to-one correspondence between the position of a body moving in a parabolic 
orbit and the position of a fictitious body moving along a straight line with 
constant linear velocity ~ vi Itl p. t 

t This observation was made by one of the author's students Adel A. M. Saleh in 
\966. 
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Fig. 4.5: Graphical solu
tion of Barker's equation. 

Continued Fraction Solution 
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--T 
3 fTi - V7 (t- T) 
4 P 

The solution of Barker's equation may also be expressed as the following 
infinite continued fraction: 

IB 
tan ! f = -------=4":"'".":""I-B-,2=------

1 + ____ --=3:..::.9~-~---
~B2 

1 + ___ ---.;:9;...:.1=.:=:5::-::-_~-_ 
10·7 B2 

1 + __ ---=1:.:::;5-:::.2:=-1~___::~-
11·14 B2 

1 + _--=2=1-?-,.2:::-7":""::"""----=_ 
16·13 B2 

1 + 27·33 
17·20 B2 

1 + 33·39 

1+ '. 

{4.20} 

which is obtained using the method described at the end of Sect. 1.2. In
deed, Barker's equation is exactly of the form of Eq. {1.32} whose continued 
fraction solution is given by Eq. (1.33). Here we have written the continued 
fraction in its "equivalent form" (4.20) so that the convenient top-down 
evaluation algorithm of Eqs. (1.51) can be utilized directly.t 

t Be careful of signs! The algorithm (1.51) applies to the continued fraction of the 
form given at the beginning of Sect. 1.4 in which all of the signs on the diagonal are 
negative. 
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Descartes' Method 

A geometrical method of solving cubic and quartic equations, which is 
applicable to Barker's equation, was devised by Rene Descartes. t 

Consider the reduced quartic equation (with the x3 term missing) 

x4 + px2 + qx + r = 0 

which can be obtained from the general quartic by a simple linear change 
of variable. The same equation form results by eliminating y from the 
following equations of a circle and a parabola: 

Specifically, we have 

(x - XO)2 + (y - YO)2 = R2 

y = x2 

X4 + (1 - 2Yo)x2 - 2xox + x6 + Y5 - R2 = 0 

which can be identified with the original quartic by defining the coordinates 
of the circle's center and its radius as 

Yo = !(1- p) 

R = !J(1- p)2 + q2 - 4r 

Thus, the real solutions of the reduced quartic are obtained as the inter
sections of the circle and the parabola. 

For the reduced cubic equation 

x3 +px+q = 0 

we need only multiply by x to obtain the original quartic with r = 0 and 
the result is the same. In this case, the circle will always pass through the 
origin. 

By applying this idea to Barker's equation, we find that tan ! f is 
obtained as the intersection of the parabola Y = x2 and a circle centered 
at (B, -1) of radius R = VI + B2 as shown in Fig. 4.6. 

t Rene Descartes (1596-1650), the famous French philosopher whose scientific ideas 
came to dominate the seventeenth century, made basic contributions in philosophy, bi
ology, physics, and mathematics. UJ. G~omitrie, published in 1637, was his only book on 
mathematics and contained his ideas on Analytic Geometry-the concept of coordinates 
and the concept of representing any algebraic equation with two unknowns in the form of 
a curve in the plane. He investigated the kinds of curves represented by the second order 
equation and showed that such equations describe an ellipse, hyperbola, or parabola. He 
also investigated the equations of other geometric loci, the transformations of algebraic 
equations, and gave without proof his famous law of signs for the number of positive 
roots of an algebraic equation. It has been said that Descartes did not simply revise 
geometry-he created itl Descartes understood the significance of what he had accom
plished and boasted that he had so far surpassed all geometry before him as Cicero's 
rhetoric surpasses the ABC's. 
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y 

----~'-----~----_r----------~x 

Fig. 4.6: Descartes solu
tion of Barker's equation. 

¢ Problem 4-3 

------- .. 

If the pericenter distance of a parabolic orbit is q, then the time interval 
At spent within a sphere of radius rs centered at the focus is 

vpAt = j V2(rs - q) (rs + 2q) 

where I-' is the gravitational constant. 

Lagrangian Coefficients 

The position and velocity vectors in orbital-plane coordinates are given 
in Eqs. (3.31) with e = 1. However, since tan! f is obtained directly 
as the solution of Barker's equation, it is more convenient to express all 
trigonometric functions in terms of this function of the true anomaly. There 
results 

r = ~ (1 - tan 2 ! f) ie + p tan ! f ip 

v = - ViiP tan ! f i + ..JiiP i r 2 e r p 

with r determined from Eq. (4.9). 

( 4.21) 

Now, let ro, Vo be the position and velocity vectors at time to' The 
Lagrangian coefficients for parabolic orbits are most conveniently expressed 
in terms of the variable 

x = u-uo 

The quantity u is determined from Eqs. (4.21) as 

r·v 
u = - = y'Ptan ! f 
~ 

and Uo is, of course, the value of u at time to' 

(4.22) 

(4.23) 
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From Eq. (4.9) we can easily establish 

p = 2T - u2 = 2T 0 - u~ 

so that Barker's equation and the equation of orbit may be written as 

6.jji(t - to) = 6ToX + 3uOX2 + X3 

T = TO + uoX + !X2 

(4.24 ) 

( 4.25) 

The Lagrangian coefficients are computed as described in Sect. 3.6 and we 
obtain 

(4.26) 

¢ Problem 4-4 
The solution of the generalized form of Barker's equation (4.24) is 

X = JPz - Uo 

where z is the solution of 
Z3 + 3z = 2B 

and 
1 

B = p! [uo(ro + p) + 3y'P. (t - to)] 

NOTE: The equation for z is exactly Eq. (4.10) so that all solution methods 
developed for Barker's equation are applicable without modification provided 
that B > o. 

Orbital Tangents 

We can use Eq. (4.23) to demonstrate a simple relationship between the 
true anomaly / and the flight direction angle , between the position and 
velocity vectors for a parabolic orbit. By comparing Eq. (4.23) with 

u = .;pcot, 

obtained in Prob. 3-23, we see that! / and , are complementary angles. 
A simple construction of the parabola and its tangents then follows at 

once. Let N be a point on the directrix of a parabola whose focus is at 
F. The perpendicular bisector of the line F N meets the line through N 
parallel to the axis at the point P as shown in Fig. 4.7. Clearly, P is a 
point on the parabola and the perpendicular bisector is the tangent to the 
parabola at P. 
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Fig. 4.7: Construction 
of the parabola and its 
tangents. 

¢ Problem 4-5 

.---------------------~N 

F~~~--------~----~~----~ 
A 

A series of circles centered on the x axis and passing through the point 
x = 4q, Y = 0 with radii equal to and greater than 2q is shown in Fig. 4.8. The 
x and y intercepts of these circles are the coordinates of points on the parabola 

y2 = -4qx 

Gregory St. Vincentt 1647 

--~--~--~----+---~~------~----~x 

Fig. 4.8: St. Vincent's 
construction of a parabola. 

t One of those who awakened interest in conic sections, after a period of twelve 
centuries of no progress at all, was Gregorius a San Vincento (1584-1667). His great 
work Opus quadraturae circuli et sectionum coni was published in 1647. 
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4.3 Elliptic Orbits and Kepler's Equation 

A direct integration of Eq. (3.27), which expresses the law of areas relating 
time and angular position in orbit, does not result in a useful expression 
except for a circle or parabola. A new angle to replace the true anomaly 
! is customary for elliptic motion, and the following construction provides 
the geometrical significance of this auxiliary variable. 

Let C be the center and F the focus of an ellipse as shown in Fig. 
4.9. Construct a circle of radius a and center C. Let P be the position of 
a body on the ellipse, and let Q be the point where the perpendicular to 
the major axis cuts this auxiliary circle. The angle LQCA was called the 
eccentric anomaly by Kepler and is denoted by E, while the angle LP F A 
is, of course, the true anomaly ! of the point P. 

A 

Fig. 4.9: Orbital anomalies 
for elliptic motion. 

In terms of E, the equation of the ellipse can be expressed in para
metric form as 

x = acosE y = bsinE (4.27) 

in an x, y cartesian coordinate system centered at C. Indeed, if E is 
eliminated between these two equations, the standard form of the ellipse 
results. The radial position of the point P is easily expressed in terms of 
E using Eq. (4.4). Thus 

r = a (l - e cos E) 

and if this is compared with the polar equation of the ellipse 

a(l - e2 ) 
r = ----'---"'-:-

1 + ecos! 

we obtain the identities 
cosE - e 

cos!=---= 
1 - ecosE 

E 
e+cos! 

cos =---~ 
1 + ecos! 

(4.28) 

(4.29) 
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Further, since 

y = bsinE = a~sinE = Tsinf 

we also obtain 

y'l - e2 sin E 
sinf= -----

1- ecosE 
. ~sinf 
smE=----~ 

1 + ecosf 

Finally, from the first of Eqs. (4.29), 

• 2 1 f a{1 + e) . 2 1 E sm - = sm -
2 T 2 

a{1 - e) 
cos2 ! f = cos2 !E 

T 
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( 4.30) 

(4.31) 

By dividing the two equations and taking the square root, it follows that 

1 (f+e 1 
tan 2 f = V t=e tan 2 E (4.32) 

This last identity is a most useful relation between f and E, since ! f 
and ! E are always in the same quadrant. 

¢ Problem 4-6 
Greater elegance is attainable in many of the classical formulas for the 

ellipse by introducing in place of e the angle cJ> where e = sin cJ>. Illustrate 
cJ> geometrically and verify that 

~ = coscJ> ~ = v'2cos(:}7r - ~cJ» JI-=e = v'2cos(:}7r + ~cJ» 
~ + JI-=e = 2 cos ~cJ> ~ - JI-=e = 2sin ~cJ> 

VI 
- e = tan(!" - !.p) 

1 + e 4 2 

Carl Friedrich Gauss 1809 

¢ Problem 4-7 
Derive 

tan ! (f - E) - /3sinf 
2 - 1 + /3cosf 

as an alternate identity to Eq. (4.32), where 

1 - y1- e2 e 
/3= e = 1+~ 

/3 sin E 
1- /3cosE 

sincJ> 1 ~ 
----.,;~ = tan - 'I' 
1 + coscJ> 2 

and ¢ is defined in Prob. 4-6. Further, demonstrate that ~ (f - E) is always less 
than 90 0 for all elliptic orbits which makes this equation particularly convenient 
to use. [See Sect. 5.3 for further properties of the parameter /3.] 

Roger A. Broucke and Paul J. Ce/olat 1973 

t "A Note on the Relations Between True and Eccentric Anomalies in the Two-Body 
Problem," Celestial Mecfw.nics, Vol. 7, April 1973, pp. 388-389. 
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¢ Problem 4-8 
The polar equation of an ellipse with the origin of coordinates at the center 

of the ellipse is 
b 

r = -v'r=:1=-=e:::;;2=co=s~2:::;:fJ 

where r is the radius from the center to a point on the ellipse. 

HINT: PF = a - ex = a - ercosfJ, CF = ae, and CP = r. 

Analytic Derivation of Kepler's Equation 

Returning now to the problem of determining position in orbit as a function 
of time, we calculate the differential of Eq. (4.32) 

2 I§+e sec ! f df = -- sec2 ! E dE 
2 1- e 2 

and use the second of the identities (4.31) to obtain 

rdf = bdE (4.33) 

Hence, from the law of areas, we have 

r2df = hdt = brdE = ab(l- e cos E) dE 

The integration is now trivial and the result is traditionally expressed as 

M = E - esinE (4.34) 

The quantity M , called the mean anomaly by Kepler, includes the constant 
of integration. Thus, 

M = f?a(t -T) = n(t - T) (4.35) 

where n is the mean motion and T is, of course, the time of passage through 
pericenter. 

One may interpret M as the angular position of a body moving with 
constant angular velocity along the auxiliary circle. The relation between 
the mean anomaly and the eccentric anomaly, as expressed by Eq. (4.34), 
is called Kepler's equation.t 

As noted in Sect. 3.4, the integration constant T may be regarded as 
one of the six orbital elements. However, another quantity related to T is 
frequently used instead. In the same section of Chapter 3 the true longitude 
of a body in orbit was defined as 

L=tv+f (4.36) 

t During the period from 1618 to 1621 Kepler published a seven volume work entitled 
Epitome Astronomiae Copemicanae. It is in Book V that Kepler's equation appears for the 
first time. 
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Correspondingly, the mean longitude is defined by 

l=w+M 

At time t = 0, referred to as the epoch, the mean longitude is 

€ = W - nT 
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(4.37) 

(4.38) 

The quantity €, termed the mean longitude at the epoch, is then an orbital 
element which may be used instead of T. With this choice, the mean 
anomaly is determined from 

M = nt +€ - w (4.39) 

Geometric Derivation of Kepler's Equation 

Kepler's original derivation of the equation which bears his name was 
geometrical and follows at once from his second law in its geometrical form 
as the law of areas. The area P F A in Fig. 4.9, bounded by the arc of the 
ellipse and the focal-radii F P and FA, is proportional to the time interval 
t - T. Thus, 

Area PFA = !h(t - T) = !nab(t - T) 

and it remains to determine this area in terms of the eccentric anomaly. 
First, we note that the area of the circular sector QC A is simply 

! a2 E and the area of the triangle QC R is ! a cos E multiplied by a sin E . 
Therefore, the area bounded by the circular arc and the lines RQ and RA 
is 

Area QRA = Area QCA - Area QCR 

= !a2 (E - sin EcosE) 

Next, we invoke a property, easily verified from the parametric equa
tions (4.27), that an ellipse is obtained from a circle by deforming the latter 
in such a way that the distances of its points from a fixed diameter are all 
changed in the same ratio-specifically b/a. Archimedes may have been 
the first to show that the areas of the circle and ellipse are also in this ratio. 
Applying this to the case at hand, we have 

b 
Area P RA = - Area QRA 

a 
The desired area P F A is then found by subtracting the area of the 

triangle P RF 

Area PRF = ! (ae - x)y = !ab(e - cos E) sinE 

from the area P RA. Hence 

Area PFA = !ab(E - esinE) 

which is then equated to ! nab( t - T) and the derivation is complete. 



162 Two-Body Orbits and the Initial-Value Problem [Chap. 4 

¢ Problem 4-9 
In Fig. 4.10, the points H, K, L are determined so that F H K L is a 

rectangle. Show that the angle LACH is an approximation of the mean anomaly, 
i.e., 

M ~ LACH = E - arcsin(esin E) 

Robert G. Stern 1963 

¢ Problem 4-10 
A circle of radius a centered at F is shown in Fig. 4.11. Let P be an 

arbitrary point on the ellipse. The line joining P and F meets the circle at R 
and the angle LCSR is a right angle. The magnitude v of the velocity vector 
and the Hight-direction angle '1 at P are 

h 
v = - C R and '1 = LSC R 

ap 

Show that 

v = ~(CS ir + SR ie) = ~(-CD ie + CB i p ) 
ap ap 

Robert G. Stern t 1963 

Lagrangian Coefficients 

The position and velocity vectors in orbital-plane coordinates in Eqs. (3.31) 
may be written directly in terms of the eccentric anomaly by using the 
identities established at the beginning of this section. Thus, 

r = a(cosE - e) ie + .j'iiPsinEip 
r;;n r;;;n (4.40) 

yJ1.a . E" yJ1.P E" v = - -- sm Ie + -- cos Ip 
r r 

Let Eo be the eccentric anomaly associated with the position vector 
ro' Then, following the development in Sect. 3.6, we may express the 
Lagrangian coefficients in terms of the eccentric anomaly difference as 

a 
F = 1- -[1- cos(E - Eo)] 

ro 

al10 [ ] ~ . ( G= ..fo 1-cos(E-Eo) +roV-p,sm E-Eo) 

.jjia . 
Ft = --- sm(E - Eo) 

rro 
a 

Gt = 1- -[1 - cos(E - Eo)] 
r 

(4.41) 

t Problems 4-9 and 4-10, attributed to Robert Stern, are from his MIT Ph.D. Thesis 
"Interplanetary Midcourse Guidance Analysis." 
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~----------------~~~~----~~--~A 

Fig. 4.10: Approximation of the mean anomaly. 

Fig. 4.11: Construction of velocity-vector components. 

where 

T = a + (TO - a) cos(E - Eo) + O'oVasin(E - Eo) (4.42) 

In deriving these expressions, use has been made of the readily established 
relations 

TO ecosEo = 1-
a 

esinE = 0'0 Ova 
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Finally, Kepler's equation may be rewritten to relate the eccentric 
anomaly difference E - Eo to the time interval t - to where to is the time 
corresponding to the position vector ro' We have 

M - Mo = E - Eo - e{sinE - sin Eo) 

which has the equivalent form 

M - Mo = E - Eo + 0'0 [1- cos{E - Eo)] - (1- TO) sin{E - Eo) (4.43) Va a 

To find r, v at time t from r 0' v 0 at time to' we must first solve the 
generalized form of Kepler's equation for E - Eo. Then, the elements of 
the transition matrix are obtained from Eqs. (4.41) and the desired result 
follows from Eqs. (3.33). 

¢ Problem 4-11 
By equating Eqs. (3.42) and (4.41), derive the relation 

1 (/ t) JiiPtan 4 (E - Eo) tan - - JO = -....:....--=--.:...;....,....--~-
2 TO + uovatan 4 (E - Eo) 

and compare with Eq. (4.32). 

NOTE: For a generalization of this identity see the last subsection of Sect. 4.6. 

¢ Problem 4-12 
The average value of the radius T in elliptic motion is 

with respect to time 

and 

with respect to the true anomaly. 

NOTE: We call a the "mean distance," but it is not the average value of r. 

¢ Problem 4-13 
The difference between the eccentric and mean anomalies satisfies the 

differential equation 

d2 Jt 
dt 2 (E-M)+ r3 (E-M) =0 

Use Eqs. (3.10) to develop a solution of Kepler's equation in powers of M. 

NOTE: See also Probs. 3-8 and 3-25. 
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4.4 Hyperbolic Orbits and the Gudermannian 

An analogous procedure for hyperbolic orbits can be formulated which 
parallels the discussion presented for elliptic orbits. We begin with the 
equation of the hyperbola expressed in parametric form as 

x = asec~ y = btan~ (4.44) 

in an x, y cartesian coordinate system with origin at the center. Clearly, 
if ~ is eliminated, the standard form of the hyperbola results. 

To express the radius to a point P in terms of the parameter ~, we 
again use Eq. (4.4) to obtaint 

r = a( 1 - e sec ~ ) 

Now, if in the equation of orbit 

r + re cos f = P = a( 1 - e2
) 

we express the first r in terms of ~ using Eq. (4.45), it follows that 

-asec~ + rcosf = -ae 

(4.45) 

Thus, the angle ~ and the true anomaly f are related as shown in Fig. 
4.12. Therefore, when ~ is used in the analytical description of hyperbolic 
orbits it has a direct geometric analogy with the eccentric anomaly of the 
ellipse. In both cases auxiliary circles, whose centers are at the center of 
the orbit and whose radii are the semimajor axes of the orbits, play similar 
roles in the analysis. y 

--~~--------~~+-~------~--~------------+----x 

Fig. 4.12: Geometrical representation of the Gudermannian ~. 

t It is important to remember that a is a negative number and e is greater than 
one. 
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The identities relating ~ and the true anomaly follow as before: 

Then since 

we have 

/ 
e - sec~ 

cos =---
esec~ -1 

. ve2 -1 tan~ 
sm/=----

esec~-1 

aCe + 1) . 2 1 
-T"';"C-O-S-~"';" sm 2' ~ 

e+cos/ 
sec~= -----.,;...-

1 + ecos/ 

ve2 -lsin/ 
tan ~ = ----"'-

1 + ecos/ 

aCe - 1) 
cos2 ! / = - cos2 ! ~ 

2 TCOS~ 2 

1 f§+1 1 tan -I = -- tan - ~ 
2 e -1 2 

(4.46) 

(4.47) 

(4.48) 

To derive the analog of Kepler's equation for hyperbolic motion, we 
calculate the differential of Eq. (4.48) to obtain 

T dl = b sec ~ d~ 

Hence, in the same manner as for the ellipse, we have 

N = e tan ~ - log tan( ! ~ + ~ 1r) 

(4.49) 

(4.50) 

where the quantity N is analogous to the mean anomaly of elliptic motion 
and is defined as 

¢ Problem 4-14 
The two straight lines 

N = J ( :')3 (t - T) 

b 
Y = ±-x = ±(tan 1/.I)x 

a 

(4.51) 

through the center C are the asymptotes of the hyperbola where 1/.1 is related to 
the eccentricity as 

tan 1/.1 = #=1 or sec 1/.1 = e 

The equation of orbit can then be written as 

p pcos 1/.1 
r = = ---,,........,....--=--~~---

1 + e cos f 2 cos ! (f + 1/.1) cos ~ (f - 1/.1) 

which clearly displays the behaviour of the hyperbola in the vicinity of the asymp
totes. Indeed, this equation defines the asymptotes. 

Carl Friedrich Gauss 1809 
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¢ Problem 4-15 
Define the quantity u as 

u = tan ( ~ ~ + t 1r ) 

Equation (4.50) can then be written as 

N = ~ (u - ~) - log u 

with the radius and true anomaly expressible in terms of u as 

ae ( 1) r=a-2" u+~ and tan ! f = J e + 1 u - 1 
2 e-1 u+1 
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~ Problem 4-16 
Y With the angle 1/J defined in Prob. 4-14, the quantity u, defined in Prob. 

4-15, can be expressed in terms of the angles f and 1/J as 

cos! (f -1/J) 
u= 2 

cos ~ (f + 1/J) 
where 1 ~ u < 00 for f > 0 

Carl Friedrich Gauss 1809 

The Gudermannian Transformation 

The analysis for hyperbolic orbits may be accomplished in terms of hyper
bolic, rather than trigonometric, functions. Because of the familiar identity 

cosh2 H - sinh2 H = 1 

the parametric equations of the hyperbola can be written as 

x = a cosh H y = bsinhH (4.52) 

and the radius vector magnitude becomes 

r = a(l - ecosh H) ( 4.53) 

The identities between H and the true anomaly are found simply by 
substituting 

tan~ = sinhH sec~ = coshH 

in Eqs. (4.46). We can also show that 

tan !~ = tanh!H 

so that Eq. (4.48) becomes 

1 ~+1 1 tan - f = -- tanh - H 
2 e -1 2 

(4.54) 

(4.55) 

(4.56) 
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Applying the definition of the hyperbolic functions in terms of the 
exponential function, it follows from Eqs. (4.54) that 

H = log(tan ~ + sec~) = logtan(! ~ + !7r) (4.57) 

Hence, the relation between time and the quantity H is obtained from Eq. 
(4.50) as 

N=esinhH-H (4.58) 

The inverse function, expressing ~ in terms of H and written symbol
ically as ~ = gd H, is called the Gudermannian of H. Explicitly, 

~ = gdH = 2arctan(eH
) - !7r (4.59) 

This name was given by Arthur Cayleyt in honor of the German mathe
matician Christof Gudermann (1798-1852) who was largely responsible for 
the introduction of the hyperbolic functions into modern analysis. 

¢ Problem 4-17 
The hyperbolic form of Kepler's equation can be obtained formally from 

Kepler's equation by writing 

E=-iH and M=iN 

where i = r-r. 

Geometrical Representation of H 

If A is the area swept out by the radius vector, then, from Prob. 2-16, 

dA = ! (xdy - ydx) 

Hence, for the unit circle 

x2 +y2 = 1 or x = cosE, y = sinE 

and for the unit equilateral hyperbola 

we have 
dA = !dE 
dA= !dH 2 

or x = coshH, y = sinhH 

(unit circle) 

(unit equilateral hyperbola) 

Furthermore, as shown in Fig. 4.13, with AQ an arc of the circle and the 
shaded area equal to ! E, there obtains 

CR = cosE RQ = sinE AD = tanE 

t Although Sir Arthur Cayley (1821-1895) contributed much to mathematics, he is 
is generally remembered as the creator of the theory of matrices. Logically, the idea of 
a matrix should precede that of a determinant but historically the order was the reverse. 
Cayley was the first to recognize the matrix as an entity in its own right and the first 
to publish a series of papers on the subject. 
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y 
y 

Fig. 4.13: Geometrical significance of E and H. 

Similarly, with AQ an arc of the hyperbola and the shaded area equal to 
iH, then 

OR = coshH RQ = sinhH AD = tanhH 

Trigonometric functions are frequently called circular functions and this 
analogy between circular and hyperbolic functions is the reason for the 
designation of the latter as hyperbolic. 

From this discussion, it is clear that the analog of the auxiliary circle, 
used in the analysis of the ellipse, should be the equilateral hyperbola 
having the same major axis as the hyperbolic orbit under consideration. 

Refer to Fig. 4.14 where the points 0 and F are the center and focus 
of the hyperbola. The point A is the vertex or pericenter position. The axis 
through F and A is called the transverse axis. The other axis through 
the center, called the conjugate axis, does not intersect the curve. Let 
P be the position of a body on the hyperbola and let Q be the point 
where the perpendicular to the transverse axis through P cuts the auxiliary 
equilateral hyperbola. Then the area C AQ, bounded by the two straight 
lines OA, CQ, and the arc AQ, is 

Area CAQ= ia2H (4.60) 

~ Problem 4-18 
Y Derive the hyperbolic form of Kepler's equation geometrically, using the 

same pattern of argument as for elliptic orbits. Further, show that if a fictitious 
body starts from C when the real body is at A and moves along the asymptote 
of the equilateral hyperbola with a constant speed equal to the ultimate speed of 
the real body, then 

2 , 
N = ""2 Area FoCP 

a 

where FoCP' is a triangle whose vertices are Fo, the focus of the equilateral 
hyperbola, C, the center, and pi, the position of the fictitious body. 
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Fig. 4.14: Orbital relations 
for hyperbolic motion. 

Lagrangian Coefficients 

The position and velocity vectors in orbital-plane coordinates are readily 
obtained as 

r = a(coshH - e) Ie + v-apsinhHip 

V = - V - pa sinh H ie + ..[iiP cosh H ip 
T T 

For the Lagrangian coefficients, we first establish 

h TO • hH 0'0 e cos Ho = 1 - - e sm 0 = ~ 
a v-a 

and then determine 
a 

F = 1- -[1- cosh(H - Ho)] 
TO 

where 

aO'o Fa . 
G = fo [1 - cosh(H - Ho)] + TOV -; smh(H - Ho) 

V-pa . 
Ft = - -- smh(H - Ho) 

TTO 

a 
Gt = 1- -[1- cosh(H - Ho)] 

T 

(4.61) 

(4.62) 

T = -a + (TO + a)cosh(H - Ho) + O'o~sinh(H - Ho) (4.63) 

with the quantity H - Ho obtained as the solution of 

N - No = -(H - Ho) + . ~[cosh(H - Ho) - 1] 
v-a 

+ (1- ;) sinh(H - Ho) (4.64) 
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Asym ptotic Coord i nates 

For some purposes it is convenient to represent the hyperbola in a coordi
nate system whose axes coincide with the hyperbolic asymptotes. This, of 
course, is not a cartesian system since the coordinate axes will be skewed 
in all cases except for the equilateral hyperbola. 

Refer to Fig. 4.15 where we have labeled the asymptotic coordinate 
axes as X, Y. The coordinates of a point P(X, Y) in this system are 
obtained as follows. The value of X is the distance of P from the Y axis 
measured parallel to the X axis. Similarly, Y is the distance of P from 
the X axis measured parallel to the Y axis. As seen from the figure 

x = (Y + X) cos t/J y = (Y - X)sint/J (4.65) 

Now since b2 = a2 tan2 t/J, the cartesian equation of the hyperbola with 
center at the origin is 

x2 _ y2 cot2 t/J = a2 

Substituting from Eqs. (4.65), we have 

XY = !a2e2 = !(a2 + b2) 

as the desired result first obtained by Euler. 

(4.66) 

Let a: be the angle between the tangent to the hyperbola and the 
x-axis. Then the slope of the curve at point P is 

dy b2 
X X 2 

tan a: = - = - x - = - tan t/J 
dx a2 y y 

Substituting from Eqs. (4.65) gives 

Y+X 
tan a: = --- tan t/J 

V-X 

(4.67) 

(4.68) 

Now a: +,p is the angle between the tangent to the hyperbola and its 
asymptote so that 

tan a: + tan,p 2Y tan t/J 
tan( a: + t/J) = 1 _ tan a: tan t/J = -(Y---X-)---(Y-+-X-)-tan-='2-,p 

_ 2Y sin t/J cos t/J _ Y sin 2t/J 
- (cos2 t/J - sin2 t/J)Y - X - Y cos 2t/J - X 

(4.69) 

With this last expression we can demonstrate a fascinating property 
of the hyperbola. Let P be a point on the hyperbola, and let Q and 
R be the two points on the asymptotes obtained by projecting P on the 
asymptotes as shown in Fig. 4.16. Then the straight line connecting Q and 
R is parallel to the slope of the hyperbola at point P. We have, thereby a 
simple and convenient method for constructing the tangent of a hyperbola. 
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y 
y 

~~~-L--------------~x 

Fig. 4.16: Construction of 
the tangent to a hyperbola. 

x 

Fig. 4.15: Hyperbola in 
asymptotic coordinates. 

~ Problem 4-19 
Y Let P(x, y) or P(r,8) be a point on a hyperbola, and let A and B be the 

lengths of the perpendiculars from P to each of the asymptotes as shown in Fig. 
4.17. Then 

A = r sin( tP + 8) = r sin tP cos 8 +. r cos tP sin 8 = x sin tP + y cos tP 

B = r sin( tP - 8) = r sin tP cos 8 - r cos tP sin 8 = x sin tP - y cos tP 

and the product of A and B is a constant, i.e., 

Further, since x sin tP = t (A + B) and y cos tP = t (A - B), then the angle a 
between the tangent to the hyperbola and the x-axis is found from 

x 2 A+B 
tana = -tan tP = --tantP 

y A-B 

Conclude, therefrom, that the lengths A and B can be used in place of the 
coordinates Y and X, respectively, to construct the tangent to a hyperbola. 

Leonhard Euler 1748 
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Fig. 4.17: Euler's method 
for the tangent to a hyper
bola. 

y 

~'-'---I-----------I~ X 

~ Problem 4-20 
"'Sr An interesting construction of a hyperbola is possible using asymptotic coor

dinates. If a and e are specified, the asymptotes of the hyperbola and its vertex 
A may be located. The line through A perpendicular to the x axis intersects 
the X axis at B. Points Q and R are selected on the X axis between C and 
B such that QR = 4 CB but are otherwise arbitrary. Denote by P the point of 
intersection of a line through Q parallel to the Y axis and a line connecting R 
and A, as shown in Fig. 4.18. Show that P lies on the hyperbola. 

y y 

~'::::""""-f----------"x 

x Fig. 4.18: Geometric con
struction of a hyperbola. 
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4.5 Universal Formulas for Conic Orbits 

Thus far we have been obliged to use different formulations to describe the 
motion of a body in each of the various possible orbits. However, a gen
eralization of the problem is possible using a new family of transcendental 
functions. With these functions, universally applicable formulas can be 
developed which are simultaneously valid for the parabola, the ellipse, and 
the hyperbola. 

To motivate the development, the key differential relationships, de
rived in the previous three sections, can be summarized as 

1 {Pd(tan !f) h 
df = - b dE = 2 dt r r 

bdH 

Since, for the three kinds of orbits, we have, respectively, 

~=l 
then we may write 

{ 

d(.;ptan !f) 

JP,dt = r d(..;aE) = rdX 

d(FO,H) 

(4.70) 

where X is to be regarded as a new independent variable-a kind of gen
eralized anomaly. It is remarkable that when X is used as the independent 
variable instead of the time t, then the nonlinear equations of motion can 
be converted into linear constant-coefficient differential equations. 

The transformation defined by 

dt 
JP,-=r 

dX 
(4.71) 

is called a Sundman trans/ormationt and we shall now demonstrate that r, 
r, (J, and t can all be obtained as solutions of simple differential equations. 

To begin, we differentiate the identity 

r2 = r· r 

and obtain 
dr dr dt dr r 

r- = r· - = -r' - = - r . v = ru 
dX dX dX dt Vii 

t Karl Frithiof Sundman (1873-1949), professor of astronomy at the University of 
Helsinki and director of the Helsinki Observatory, introduced this transformation in 
his paper "Memoire sur Ie Probl~me des Trois Corps" published in Acta Mathematika, 
Vol. 36, 1912. 
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Cancelling the factor r and differentiating a second time, we have 

d
2
r = du = ~~(r. v) = ~ (v2 + r. dV) = ~ (2P, - !!:. _ !!:.) = 1- ~ 

dX2 dX P, dt p, dt p, r a r a 

It is convenient here and in the sequel to write a for the reciprocal of 
a so that a is defined as 

1 2 v2 

a=-=--
a r p, 

and may be positive, negative, or zero. 
In summary, then 

dr d2t 
dX = u = fo dX2 

d2r du d3 t 
dX2 = dX = fo dX3 = 1 - ar 

d3r d2u d4t dr ~t 
dX3 = dX2 = fo dX4 = -a dX = -a,u = -afo dX2 

so that u, r, and t are solutions of the equations 

d2u d3r dr d4t d2t 
dX2 + au = 0 dX3 + a, dX = 0 dX4 + a dX2 = 0 

The derivatives of the position vector r 

dr r d2r u 1 
-=-v -=-v--r 
dX fo dX2 fo r 

lead to 

in a similar manner. 

(4.72) 

(4.73) 

(4.74) 

Linear differential equations with constant coefficients present no 
particular difficulty in their solution. Nevertheless, it is advantageous in 
this case to develop the solutions in a form utilizing a family of special 
functions defined solely for this purpose. 

The Universal Functions Un (Xi a) 

To construct the family of special functions, we begin by determining the 
power series solution of 

by substituting 
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and equating coefficients of like powers of X. We are led to 

ak+2 = (k + l)(k + 2) ak 
for k = 0,1, ... 

as a recursion formula for the coefficients. Hence 

(1 = a [1- ax2 + (ax2)2 _ ... J +a X [1- ax
2 

+ (ax
2

)2 _ ... J 
o 2! 4! 1 3! 5! 

where ao and a l are two arbitrary constants. We shall designate the two 
series expansions by Uo(X; a) and Ul (X; a) so that 

(j = aoUo(Xi a) + al Ul (X; a) 

The function Ul is simply the integral of Uo so that we are motivated 
to define a sequence of functions 

U, = foX Uo dX U2 = foX u, dX U3 = foX U2 dX etc. 

The nth function of such a sequence is easily seen to be 

n [ 1 ax2 (ax
2

)2 J 
Un(Xi a ) =X n! - (n+2)! + (n+4)! - ... (4.75) 

A basic identity for the U functions is at once apparent from the series 
definition of Un (Xi a). Since Eq. (4.75) may be written as 

Xn n 2 [1 ax
2 

( ax2) 
2 J 

Un (Xi a) = nf -ax + (n+2)! - (n+4)! + (n+6)! _ ... 

we have 
(4.76) 

It is clear, from the manner in which the family of functions was con
structed, that 

for n= 1,2, ... (4.77) 

and, by differentiating the series for Uo, we can easily show that 

dUo 
dX = -aUl (4.78) 

Now, if we differentiate the identity (4.76) m+1 times, where m > n, 
and use Eq. (4.77), we obtain 

c:rn+lU c:rn-lU 
__ ~n +a n =0 for n=O,l, ... ,m (479) 
dXm +l dXm - l . 

It follows that Uo and Ul are each solutions of the second-order differential 
equation satisfied by (j, and we recall that (1 was, indeed, found to be a 
linear combination of Uo and Ul . 
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Finally, by applying the identity (4.79) to the other two differential 
equations in (4.73), we conclude that r is a linear combination of Uo, UI . 
U2 while t is a linear combination of Uo' UI , U2, Ua. These will be 
the general solutions provided, of course, that the U functions are linearly 
independent. 

Linear Independence of Un(X; a) 

The functions Uo, UI , ... , Un will be linearly independent if no one of 
the functions can be expressed as a linear combination of the others, or, 
equivalently, if no linear combination of the functions is identically zero 
over any interval of X under consideration. 

It is known that the functions will be linearly independent if the as
sociated Wronskian determinantt is not identically zero. The elements of 
the first row of this determinant are the functions U 0' U I' ... , Un. The 
second row consists of the first derivatives of these functions, the third 
row, the second derivatives, and so forth with the last or (n + 1) th row 
containing the nth derivatives. 

For example, if n = 3, the Wronskian is 

Uo UI U2 Ua 
W = -o:UI Uo UI U2 

-aUo -aUI Uo UI 
0:2UI -aUo -o:UI Uo 

where we have used the identities (4.77) and (4.78) to replace the derivatives 
by the appropriate U functions. 

To evaluate the determinant, we multiply the first row by a and add 
to the third row. Then, the second row is multiplied by 0: and added to the 
fourth row. Where appropriate, we utilize the identity (4.76) and obtain 

Uo UI U2 Ua 
W = -o:UI Uo UI U2 

o 0 1 X 
o 0 0 1-

Hence, the value of W is simply UJ + o:ul. Indeed, it is easy to see that 
W will have this value for any n > O. Therefore, the question of linear 
independence will be resolved when we show that 

uJ+auf = 1 (4.80) 

for all values of x. 

t The name was given by Thomas Muir in 1882 to honor the Polish mathematician 
and philosopher J6zefMaria HOen~Wronski (177~1853) who first used this determinant 
in his studies of differential equations. 
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To this end, we multiply the identity [Eq. (4.76) with n = 0] 

Uo +aU2 = 1 

by Ul and integrate with respect to X. We have 

U; +aU~ = 2U2 

or 

Hence 
U2 = U; - UOU2 

Substituting this, for U2 in the equation Uo + aU2 = 1, yields 

Uo + o:U2 = 1 = Uo + o:(U; - UOU2 ) 

= Uo + aU; - Uo{1 - Uo) 

=UJ+aU; 

and the identity (4.80) is established. 

Lagrangian Coefficients and Other Orbital Quantities 

Since the U functions are linearly independent, the general solution of the 
differential equation for t may be written as 

fo(t - to) = aoUo + a l Ul + a2U2 + a3U3 

If we require t = to when X = 0, then we find that ao must be zero. The 
derivative of this expression, according to Eq. (4.71), yields 

T = alUO +a2Ul +a3U2 

Setting X = 0, gives a l = TO' Differentiating again produces 

u = -O:TOUl + a2UO + a3U1 

so that a2 = uo' Finally, calculating one more derivative, we have 

1 - O:T = -O:TOUo - aUOU1 + a3UO 

from which a3 = 1. 
In this manner, we obtain the generalized form of Kepler's equation 

fo(t - to) = ToUl(x;a) + UOU2 (X; a) + U3(x;a) 

together with 

T = TOUO(X; 0:) + uOUl (X; a) + U2 (X; 0:) 
u = UOUO(X; 0:) + (1 - O:TO)Ul (X; a) 

(4.81) 

(4.82) 

(4.83) 
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In a similar fashion, we write 

r = Uoao + U1a1 + U2a2 
r VP v = -aU1 ao + UOa1 + U1 a2 

u 1 
Ii"i V - -r = -aUoao - aU1 a 1 + UOa2 

vI-' r 
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and determine the vectors 80, aI' a2 by setting X = O. Thus, we obtain 
the following expressions for the Lagrangian coefficients 

(4.84) 

These equations are "universal" in the sense that they are valid for all 
conic orbitst and are void of singularities. For this reason the U functions 
are referred to as universal functions. As we indicated at the beginning of 
this section, X is a generalized anomaly and is related to the classical ones 
by 

{ 

/p(tan!f - tan !fo) = u - uo 
X = ..;a(E - Eo) 

FQ.(H -Ho) 

(4.85) 

Finally, an important relation for X can be derived. If we multiply 
Eq. (4.81) by a and add Eq. (4.83), we have 

a~(t - to) + u = U1 + aU3 + uo(Uo + aU2 ) 

Hence, using Eq. (4.76), 

(4.86) 

is obtained as an explicit expression for X which does not involve any of 
the U functions.+ 

t The case of the parabola was considered separately in Sect. 4.2. 

* Equation (4.86) was discovered in August of 1967 by Charles M. Newman-a staff 
member of the MIT Instrumentation Laboratory during the era of Apollo. His derivation 
was more involved than the one presented here. 
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¢ Problem 4-21 
The U functions are, of course, related to the elementary functions but the 

particular relations depend on whether the orbit is a parabola a = 0, an ellipse 
a > 0, or a hyperbola a < O. The first four of the U functions are given by 

Uo(x;a) = 

1 

cos(VaX) 

cosh(~X) 

X2 

2 

1 - cos( ..jQ X) 
a 

cosh ( r-o. X) - 1 
-a 

U3(x;a) = 

~ Problem 4-22 
Jr If we define a new universal anomaly t/J as 

t/J= rox 
..fo(t - to) 

X 

sin(..jQ X) 
..jQ 

sinh( ..j=Q X) 
..j=Q 

X3 

6 
..jQ X - sin( ..jQ X) 

a..jQ 
sinh( v-o. X) - v-o. X 

-av-o. 

then the universal form of Kepler's equation may be written either as 

where 
.jii(t - to)a-o e= 2 ro 

or as 

where 

Observe that for parabolic orbits the second form of Kepler's equation 
becomes 

1 = t/J + ~ et/J2 + ! At/J3 

the solution of which provides a good initial approximation for the near parabolic 
case. 

Also, for circular orbits, the solution is simply t/J = 1, providing a good 
approximation for near circular orbits. 

Karl Stumpff 1958 
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¢ Problem 4-23 
Introduce the quantity 

1/J = ax2 

181 

so that a family of functions Cn ( 1/J) can be defined in terms of the U functions 
by 

XnCn(1/J) = Un(:)(; a) 

Indeed, the entire subject of universal functions can be developed in terms of 
these alternate functions Cn (1/J) • 
(a) Derive the series representation 

1 1/J 1/J2 
cn(1/J) = n! - (n + 2)! + (n + 4)! 

together with the recursion formula 

and the identity 

1 
Cn + 1/Jcn+2 = , n. 

C~ + 1/Jc~ = 1 

(b) Derive the following derivative formulas 

dco Cl 

d1/J =-2" 
dCn 1 ( ) 
d1/J = 21/J Cn-l - nCn for n = 1,2, ... 

= !(nCn+2 - Cn+d for n = 0, 1, ... 

( c) The first four C functionst are related to the elementary functions as follows 

co(1/J) = 

1 

cosfo 

coshH 

1 
2 

l-cos# 

1/J 
cosh V=iP -1 

-1/J 

C3(t/J) = 

1 

sin # 

7tr 
sinhV=iP 

V=iP 
1 
6 
#-sin# 

t/J# 
sinh V=iP - V=iP 

-t/JV=iP 

where the alternate representations depend upon the sign of t/J. 

t The functions C2(1/J) and C3(1/J) are identical with the functions O(x) and 8(x) 
originally defined by the author in his book Astronautical Guidance. Their use in the 
Apollo program is documented in the Epilogue of this book. 
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¢ Problem 4-24 
Consider another form of the Sundman transformation 

dt 
-=r 
dX 

( a) If ,fii u is replaced by u (that is, u is defined as u = r . v ), then t, r, and 
u are given by 

t - to = rOUI (Xi #La) + UOU2(X; #La) + #LU3(Xi #La) 

r = roUo(X; #La) + UOUI (X; #La) + #LU2(X; #La) 

u = uoUo(Xi #La) + #L{1 - aro)UdXi #La) 

(b) Further obtain the Lagrangian coefficients 

F = 1- .!!:..U2(X;#La) G = roUI {Xi #La) +uoU2(X;#La ) 
ro 

Ft = -~Ul (X; #La) Gt = 1 - ~U2{X; #La) 
rro r 

NOTE: In this form, the solutions of the two-body equations of motion do not 
require that #L be positive so that they are equally valid for repulsive as well as 
attractive forces. 

William H. Goodyeart 1965 

~ Problem 4-25 
Y Parabolic coordinates ~,t'/ are defined by the transformation 

which provides a mapping of the ~,t'/ plane onto the x, y plane. The inverse 
transformation is most conveniently expressed in terms of polar coordinates r, (J 

in the x, y plane. 
(a) Show that 

~ = Vr cos ~ (J t'/ = Vrsin ~ (J 

is the appropriate mapping of the x, y plane onto the ~,t'/ plane. 
(b) The two-body equations of motion in the x, y plane are transformed into 

in the e, t'/ plane, where a = 1/a is the reciprocal of the semimajor axis and X 
is defined by the Sundman or regularization transformation 

dt 
yip, dx = r 

Thus, we see that the two-body motion in parabolic coordinates consists of 
two independent harmonic oscillators of the same frequency. 

Andre Deprit 1968 

t "Completely General Closed-Form Solution for Coordinates and Partial Derivatives 
of the Two-Body Problem," The Astronomical Journal, Vol. 70, April 1965, pp. 189-192. 
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4.6 Identities for the Universal Functions 
There are a variety of identities involving the functions Un (X; a), many of 
which will be required in further applications. These will be developed and 
collected in this section to serve as a ready reference when needed. 

Because of the direct relationship between Uo' U1 and the circular and 
hyperbolic functions, as seen in Prob. 4-21, we can immediately recognize 

ug + aUf = 1 (4.87) 

as the best known identity between sines and cosines or hyperbolic sines 
and cosines. Similarly, we can write 

and 

Uo{x ± t/J) = Uo(X)Uo(t/J) =F aUI (X)U1 (t/J) 
U1(X ± t/J) = U1(X)UO(t/J) ± UO(X)U1(t/J) 

Uo(2X) = ug(X) - aUf(x) = 2Ug(X) - 1 = 1 - 2aUf(x) 
U1 (2X) = 2UO(X)U1 (X) 

(4.88) 

(4.89) 

as counterparts of other familiar identities. Just as Eq. (4.87) was derived 
earlier, without resort to its relation with the elementary functions, so also 
could these and all identities involving just Uo and U1 • 

For the higher order U functions, the analogy with the elementary 
functions is not convenient to exploit and other techniques will have to be 
employed. 

Identities Involving Compound Arguments 

The basic equation, from which all the identities will evolve, is 
Xn 

Un + aUn+2 = -, n. 
For n = 0, we have 

(4.90) 

aU2 (x ± t/J) = 1 - Uo(X ± t/J) = 1 - Uo(X)Uo(t/J) ± aUI (X)U1 (t/J) 

but this equation is not useful to calculate U2 (X ± t/J) since division by a 
would be required. (It will be a cardinal rule that we must never divide by 
a in any calculation involving universal functions.) 

To obtain a proper identity, we write 

aU2 (x ± t/J) = 1 - [1 - aU2 (x)][I- aU2 (t/J)] ± aUI (X)U1 (t/J) 

so that a may be cancelled as a common factor. There results 

U2 (X ± t/J) = U2 (X)[1 - aU2 (t/J)] + U2 (t/J) ± U1(X)U1(t/J) 

Hence, finally, 

U2 (X ± t/J) = U2 (X)UO(t/J) + U2 (t/J) ± U1 (X)U1 (t/J) (4.91) 
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¢ Problem 4-26 
A generalization of the well-known Euler identity for trigonometric functions 

is 
eiVoX = Uo(XjQ) +iJ(iU1(XjQ) 

where i = v'-I. Use this relation to derive Eqs. (4.88). 

¢ Problem 4-27 
Derive the following identities for the universal functions of the sum and 

difference of two arguments: 

U3(X ± 1/J) = U3(X) ± U3(1/J) + UI(X)U2(1/J) ± U2(X)Ul (1/J) 

U4(X ± 1/J) = U2(X)U2(1/J) + U4(X) + U4(1/J) ± 1/JU3(X) ± Ul(X)U3(1/J) 

Identities for U~ (Xi Q) 

The method used to establish the identity 

U: = U2(1 + Uo) 

which was derived in the previous section as a part of the calculation of the 
Wronskian of the U functions, can be generalized to produc.e a sequence 
of identities. For this purpose, multiply Eq. (4.90) by Un+ l and rewrite as 

d 2 2 Xn 
-d (Un+l + aUn+2) = 2-, Un+l X n. 

Hence 

2 2 [xn X
n

-
l 1 Un+l + aUn+2 = 2 n! Un+2 - (n _ I)! Un+3 + ... ± U2n+2 

is obtained by integrating the right-hand side by parts. Then, using Eq. 
(4.90) again, we have 

2 (xn) [xn
-

l 
X
n-2 1 Un+ l = Un+2 n! + Un -2 (n _1)!Un+3 - (n _ 2)!Un+4 + ... (4.92) 

Therefore, by setting n = 0, 1, 2, ... , we may establish successively 

U: = U2 (1 + Uo) 
U~ = U3 (X + UI ) - 2U4 (4.93) 

U~ = U4(lx2 + U2 ) - 2(XUs - U6 ) etc. 

These equations are particularly useful to calculate U4 , U6 , Us, ... in 
terms of the U functions with lower subscripts. Similar explicit relations 
for the odd-ordered functions do not seem to exist. Of course, Eq. (4.90) 
permits a simple solution to the reverse problem, i.e., calculating lower
order functions from higher-order ones. 
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Identities for Un+lUn+l-m - Un+2Un- m 

For any integer m ~ n, the identity (4.90) may be written as 

xn - m 

Un- m + aUn+2- m = (n - m)! 
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Now multiply this by Un +1 and multiply Eq. (4.90) by Un +1- m . Adding 
the resulting two equations gives 

d Xn - m Xn 
-d (Un+1 Un+1- m + aUn+2Un+2-m) = ( _ )' Un+1 + -, Un+1- m X n m. n. 

Hence 

xn - 1 

(n - I)! Un+3- m + ... ± U2n+2- m 

or 

Un+1 Un+1- m - Un+2Un- m = 
Xn Xn- 1 

-, Un+2- m (_ 1)' Un+3- m + ... ± U2n+2- m n. n. 
Xn - m - 1 Xn - m - 2 

(n - m _1)!Un+3 + (n _ m _ 2)!Un+4 -"'1= U2n+2- m (4.94) 

which agrees with Eq. (4.92) for m = O. The following identities result for 
(m,n) = (1,1), (1,2), (2,2): 

U2U1 - U3UO = XU2 - U3 
U3U2 - U4U1 = ~X2U3 - XU4 

U3U1 - U4UO = ~X2U2 - XU3 + U4 

¢ Problem 4-28 
Derive the identity 

Un(mx) + aUn+2(mx) = mn[Un(X) + aUn+2(X)] 

where m is an integer. 

¢ Problem 4-29 
Show that 

Un(kX; a) = knUn(x; k2a) 

obtains for any value of the parameter k. 

(4.95) 
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~ Problem 4-30 
Y Derive the identity 

¢ Problem 4-31 

[Chap. 4 

Derive the following double argument identities for the universal functions: 

U2(2X) = 2U;(X) U4(2X) = 2Ui(x) + 4U4(X) 

U3(2X) = 2U3(X) + 2Ul(X)U2(X) = 2U3(X)[X + Ul(X)! 

= 2UO(X)U3(X) + 2XU2(X) Us(2X) = 2Ul(X)U4(X) + X2U3(X) + 2Us(X) 

Identities Involving the True Anomaly Difference 

Important relationships between the functions Un (X; a) and trigonometric 
functions of the true anomaly difference 0 = 1 - 10 can be obtained by 
comparing Eqs. (3.42) and (4.84). Thus, 

U1 (X; a) = : [JP sin 0 - 0"0(1 - cos 0)) 
p 
rro U2 (X; a) = -(1 - cosO) 
p 

Also, by using the identities 

U1 (X) = 2Uo( ! X)U1 ( ! X) 

we find that 

In particular, we obtain 

and 

tan10= JPU1(!x;a) 
2 roUo(! Xi a) + 0"0U1 (! X; a) 

as a convenient formula for determining 0 from X. 

(4.96) 

(4.97) 

(4.98) 

(4.99) 
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¢ Problem 4-32 
Using Eq. (4.82), derive the identity 

U2(X; a) = T + TO - 2yrro cos! 8 Uo(! x; a) 

from which the parameter p may be expressed in the form 

~ Problem 4-33 
Y For the family of functions Cn (,p) defined in Prob. 4-23, derive the following 

identities involving quadruple arguments 

co(4,p) = c~(,p) -,pc~(,p) 
= 2c~(,p) - 1 

c2(4,p) = !c~(,p) = !ll -,pC3(,p)]2 

c3(4,p) = ilc3(,p) + CI(,p)C2(,p)] 

cd 4,p) = co(,p )CI (,p) = ilc2(,p) + C3(,p) -,pC2(,p)C3(,p)] 

together with the identity set 

C~ - COC2 = C2 

c~ -CIC3 = C3 -2C4 

C~ - C2C4 = !C4 - 2(C5 - C6) 

CIC2 - COC3 = C2 - C3 

4.7 Continued Fractions for Universal Functions 

Continued fraction representations of the sine and cosine functions are not 
possible using the Gauss expansion theorem of Chapter 1. Therefore, we 
should not expect such expansions for the functions Uo(X; a) and U1 (X; a). 
The Euler transformation of a series to a continued fraction is always pos
sible, but no computational advantage will ensue since both the series and 
the fraction have identical convergence properties. 

However, the tangent function does have a Gaussian expansion as we 
have seen in Prob. 1-15. By recalling their relationship to the elementary 
functions, we can obtain a continued fraction for the ratio of U1 and Uo. 
Denoting this ratio by u, we have 

U1(!x;a) !X 
u= Uo(!x;a) = 1- a(!x)2 

3- a(!x)2 
5 _ a(! X)2 

(4.100) 

7- .. 
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Now, using some of the basic identities for the universal functions, we can 
express Uo, U1, and U2 as 

Uo(X) = 2Ug(!X) - 1 

U1 (X) = 2UO(!X)U1 (!X) 

U2 (X) = 2U;(!X) 

Hence, Uo(X), U1 (X), and U2 (X) are determined from 

(4.101) 

1- au2 2u 2u2 

Uo(Xi a ) = 1 2 U1(Xi a ) = 1 2 U2 (x;a) = 1 2 (4.102) +au +au +au 
As a consequence, values of the first three U -functions can be calculated 
using only a single continued-fraction evaluation. 

Continued Fraction Determination of U3 and U4 

As we shall see in Chapter 7, it is fundamental to Gauss' method of solving 
the two-body, two-point, boundary-value problem that 

21/J - sin 21/J . h . fun· f . 2 1 "I. 
• 3 IS a ypergeometnc ctlOn 0 sm 2 0/ 

sm 1/J 
We generalize this result to apply to the universal functions by obtaining 
a differential equation for 

(4.103) 

regarded as a function of 

au2 

q = aU2
( lx-a) = --~ 

1 2' 1 + au2 
(4.104) 

By differentiating q with respect to x, we obtain 

~! = aU, ( h)UoU X) = ! aU, (X) 

Then, differentiating U:(X)Q = U3 (2X) with respect to q, gives 

3 dQ 2 dx dX 
U1 dq + 3U1 (X)Uo(X)Q dq = 2U2 (2X) dq 

which reduces to 

Now, 
aU;(x) = 4aUg( ! X)U;( ! X) = 4q(1 - q) 

and 
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so that an appropriate form for the differential equation is 

q(1 - q) ~~ + ~ (1 - 2q)Q = 2 

Differentiating a second time produces Gauss' equation (1.12) 

q( 1 - q) d
2
Q + (~ _ 5q) dQ - 3Q = 0 

dq2 2 dq 
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(4.105) 

with a = 3, {3 = 1, and I = ~. The function Q is, therefore, a hyperge
ometric function of q. 

Indeed, since lim Q = ~, we have 
x-O 

Q = ~F(3, 1; ~ ;q) (4.106) 

which, according to Eq. (1.29), admits of a continued fraction expansion. 
Therefore, U3 (2X) may be obtained fromt 

t U:(X) 
U3 (2X) = s (4.107) 

1- sq 
2 

1 + s:7q 
1- '. 

The final result follows from the identities of Probe 4-31 and Eqs. 
(4.93). We see that the universal functions U3 and U4 can be calculated 
from 

U3 (x) = !U3(2X) - U1 (X)U2 (X) 

U4 (X) = !U3 (X)[X + U1 (X)] - !Ui(x) 

= U1 (X)U3 (X) - !lUi(x) - aUi(x)] 

with U3 (2X) evaluated using the continued fraction (4.107). 

Continued Fraction Determination of Us and Us 

(4.108) 

Recently, Stanley W. Shepperdt was able to extend this technique to 
permit the function Us(X) to be evaluated by a continued fraction. For 
this purpose, define 

(4.109) 

t In Sect. 7.2 the general expression for this continued fraction is given and methods 
of improving its convergence are explored. 

i "Universal Keplerian State Transition Matrix," in Celestial MechaniaJ, Vol. 35, 
Feb. 1985,pp. 129-144. 
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In the same manner as before, we can obtain Gauss' differential equa
tion in the form 

q( 1 - q) d
2 
R + (1. _ 7 q) dR - 5R = 0 

dq2 2 dq 

for which a = 5, (3 = 1, and '1 = ~. Thus, we have 

R = Is6 F(5,lj ~jq) 

( 4.110) 

( 4.111) 

In the course of the derivation, which we leave to the reader, the following 
identity is required: 

U~(2X) + 2U4(2X) = 2XU3(2X) + U1(2X)U3(2X) 

which is obtained from the equations of Prob. 4-31. 
Therefore, 

Us(2X) = ~[Ul(X)U3(X) + U:(X)U2(X) + XU~(X)] + ~XU4(X) 
!: Uf(x) 

10·5 
1 _ ""5-7q 

2·3 

and the final result 

1 + 7·9 q 
12·7 

1- 9·11 q 
4·1 

1 + 11·13 q 
14·9 

1- 13.1S
q 

6·1 
1- m7q 

16·11 
1 - 'i'77i9 q 

1-· 

Us(X) = ~Us(2X) - U1(X)U4(X) - ~X2U3(X) 

U6 (X) = ~[Ui(x) - U2(X)U4(X)] - !X2U4(X) + XUs(X) 

follows as before with Us(2X) calculated from Eq. (4.112). 

¢ Problem 4-34 

( 4.112) 

( 4.113) 

Use the Gauss identities for contiguous hyper geometric functions from Sect. 
1.1 to derive the identity 

F(3, 1; ~; q) = 1 - 2q + ¥ q(1 - q)F(5, 1; ~; q) 

Therefore, the continued fraction of Eq. (4.107) can be obtained from the con
tinued fraction of Eq. (4.112). As a consequence, if the function Us(X) is to be 
calculated, no extra continued-fraction evaluation is necessary to obtain U3 (X) • 



Chapter 5 

Solving Kepler's Equation 

A LGORITHMS FOR THE SOLUTION OF KEPLER'S EQUATION ABOUND. 

The first such was, of course, by Kepler himself. The next solution 
was Newton's in his Principia. A very large number of analytical and 
graphical solutions have been discovered-nearly every prominent mathe
matician from Newton until the middle of the last century having given 
the subject more or less attention. Since the advent of the modern era of 
spaceflight, interest has revived and new algorithms are being published 
quite regularly. Indeed, this chapter contains a recent one by the present 
author. 

Kepler's equation, the most famous of all transcendental equations, 
both spawned and motivated a number of significant developments in math
ematics. Lagrange's expansion theorem, Bessel functions, Fourier series, 
some aspects of complex function theory, and various techniques of numer
ical analysis are but some of these which we will consider in this chapter. 

One of the more interesting is the discovery of Bessel functions. In 
1770, Lagrange developed his expansion theorem to produce a solution of 
Kepler's equation as a power series in the eccentricity e with coefficients 
which turned out to be linear combinations of trigonometric functions of 
integral multiples of the mean anomaly. Later Laplace demonstrated that 
Lagrange's series would diverge if e exceeded some critical value. The 
proof required analysis in the complex plane and, perhaps, provided added 
impetus for development of the then new field-functions of a complex 
variable. 

Lagrange rearranged the terms in the series to obtain a form which we 
would now call a Fourier sine series. The Fourier coefficients were infinite 
power series in e which converged for all elliptic orbits. Indeed, the effect 
of altering the order of the terms changed the convergence properties of 
Lagrange's expansion-which must have excited great interest. 

In 1824, Friedrich Wilhelm Bessel (1784-1846), a mathematician and 
director of the astronomical observatory in Konigsburg, attempted the 
direct solution of Kepler's equation as a Fourier series and obtained the 
coefficients in an integral form. The power series expansions of these 
integrals produced, of course, the same collection of series that Lagrange 
had obtained almost fifty years earlier-but, because Bessel made such an 
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extensive study of these functions for many years, they bear his name and 
not that of Lagrange. 

The question of priority in mathematics is always a difficult one. Spe
cial cases of Bessel functions occurred as early as 1703 in a letter by James 
Bernoulli to Gottfried Wilhelm Leibnitz. Then in 1733, Daniel Bernoulli 
wrote a paper on the modes of oscillation of a heavy chain in which the 
solution, for the case in which the chain was uniform, is Jo-the zero th 

order Bessel function of the first kind. For the nonuniform chain, the 
solution involved first-order Bessel functions of the second kind. Then, in 
1736, Euler followed up on Bernoulli with his paper "On the Oscillations 
of a Flexible Thread Loaded with Arbitrarily Many Weights" in which he 
encountered the functions In (x) known today as modified Bessel functions. 
We, too, will have need for these special functions in Chapter 10 when we 
study the effects of atmospheric drag on satellite orbits. 

5.1 Elementary Me.thods 

Kepler's equation 
M = E - esinE 

is transcendental in E, so that the solution for this quantity when M is 
given cannot be expressed in a finite number of terms. However, there is 
one and only one solution as can be seen from the following argument. 

Define the function 

Fe(E) = E - esinE - M (5.1) 

and suppose that k1r ::; M < (k + 1)1r, where k is an integer. Then since 

Fe(k1r) = k1r - M ::; 0 

Fe[(k + 1)1r] = (k + 1)1r - M > 0 

it follows that Fe (E) vanishes at least once in the stated interval. However, 
the derivative F:(E) is always positive, so that Fe(E) is zero for only one 
value of E. Furthermore, since any value of the mean anomaly can be 
written as 2k1r ± M, where k is an integer (positive, negative, or zero), 
with a corresponding value of the eccentric anomaly given by 2k1r ± E, 
there is no loss in generality by assuming that E and M are restricted to 
the interval (0, 1r). 

The hyperbolic form of Kepler's equation 

N = esinhH-H 

where N corresponds in form to the mean anomaly, has also one and only 
one solution. For if we define 

Fh(H) = esinhH - H - N (5.2) 
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then we readily observe that 

Fh(O)=-N~O 

Fh (~) = e['!' (~)3 +.!. (~)5 + ... j ~ 0 e - 1 3! e - 1 5! e - 1 
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(We are assuming that N and H are both positive which is clearly justi
fiable by symmetry.) Since Fh (H) is always positive, it again follows that 
Fh(H) vanishes just once in the interval 0 ~ H ~ N/(e -1). 

Graphical Methods 

Simple graphical solutions of Kepler's equation are possible. In a rectan
gular system of coordinates, we can construct a sine curve and a straight 
line whose equations are 

y = sinE and 
1 

y= -(E-M) 
e 

and observe that their point of intersection determines the value of E for 
which Fe(E) = O. Since the sine curve can be constructed once for all, 
only the slope and y intercept of the straight line are problem dependent. 

Obviously, a similar technique applies to the hyperbolic form by finding 
the intersection of the hyperbolic sine curve and the straight line 

y = sinhH and 
1 

y= -(H +N) 
e 

¢ Problem 5-1 
Consider a circle of unit radius rolling without slipping along a straight line. 

Consider a point P fixed on the radius of the circle at a distance e from the 
center and invent a graphical method of solving Kepler's equation. 

NOTE: The locus of P as the circle rolls is called a trochoid or a curtate cycloid. 

Sir Isaac Newton 1687 

Inverse Linear Interpolation (Regula Falsi) 

An extremely simple iteration technique, whose convergence is guaranteed, 
is the so-called regula falsi method which has obvious general applicability. 
Regula falsi, or the method of false position, is equivalent to inverse linear 
interpolation as is easily understood from its development. 

Assume we are given a function y = F(x) and seek a value e such 
that F(e) = o. If we choose Xo and Xl so that 

and 
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have opposite signs, then the straight linet 

x y 1 
Xo Fo 1 = 0 
xl FI 1 

[Chap. 5 

connecting the two points xo' Fo and Xl' FI in the x, y plane, intersects 
the X axis to provide an approximate value x2 for the root €. We have 

(5.3) 

and can repeat the process with x2' and either Xo or X I -the choice de
pending on whether F(xo) or F(x l ) is of opposite sign to F(x2). Clearly, 
each step in the iteration process gives a value of X which is an ever closer 
approximation to €. 

As an example, consider the function Fe (E). Since 

for 

and 

Fe(M + e) = e[l- sin(M + e)] ~ 0 

then we can choose Xo = M and Xl = M + e. Hence, 

E 0 1 
e M -sinM 1 = 0 

M + e 1 - sin(M + e) 1 

and, by expanding the determinant, we obtain 

E=M esinM 
+ 1 - sin( M + e) + sin M 

(5.4) 

which provides an approximate root of Kepler's equation. 
Similarly, with Xo = 0 and xl = N/(e -1), we have 

1 HOI 
-- 0 -N 1 =0 
e - 1 N e(e - 1) sinh[N/(e - 1)] - eN e - 1 

or, in expanded form, 

N2 
H= N 

e(e - 1) sinh e=I - N 
(5.5) 

as an approximate root of the hyperbolic form of Kepler's equation. 

t See Prob. D-3 in Appendix D. 
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~ Problem 5-2 
j( If M is such that 0 ~ M ~ ! 1r - e, then E lies in the range 

!1r 
-1_2_-M ~ E ~ M + e 
'21r - e 
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Also, if M satisfies the inequalities ! 7r - e ~ M ~ 7r, then E is in the range 

~(!M+e)~E~M+e 
'27r + e 

HINT: Use Jordan's inequalityt 

2 sin x - <--
7r x 

sin x 
cosx < -- < 1 - x -

¢ Problem 5-3 

for 

for 

7r 7r 
-'2 < x < '2 

O~X~7r 

Gary R. Smitht 1979 

For positive N, the hyperbolic anomaly H is bounded according to 

or 

¢ Problem 5-4 
If terms of order e2 are ignored, then 

O<H<~ 
- - e-1 

E = M + esinM + O(e2
) 

is a solution of Kepler's equation. 

¢ Problem 5-5 
In Prob. 4-9 there was developed a graphical approximation to the mean 

anomaly. This approximation is a solution of Kepler's equation if terms of order 
e3 are omitted, Le., 

M = E - arcsin(esinE) + O(e3
) 

Use this relation to develop the solution 

1 
tanE= ~tan2A 

1- e2 
where \ {1"+'; 1 

tan" = v~tan '2M 

which gives E to second order in the eccentricity. 

t Published in 1894 in COUTS d'analyse de l'Ecole Polytechnique. Camille Jordan (1838-
1921) had widespread influence and set new standards for what was to constitute a 
rigorous proof in mathematics. 

* "A Simple, Efficient Starting Value for the Iterative Solution of Kepler's Equation," 
Celestial Mechanics, Vol. 19, February 1979, pp. 163-166. 
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<> Problem 5-6 
By defining z = E - M, Kepler's equation can be written as 

z = esin(M + z) 

Expand the right-hand side as a power series in z. Then, reverse the series, using 
the results of Prob. C-5 in Appendix a, to obtain 

E=M+ esinM _!. ( esinM )3 +O(e4 ) 
1- ecosM 2 1- ecosM 

as a solution of Kepler's equation to within third order in the eccentricity. 

Successive Substitutions 

Another simple iterative solution to Kepler's equation is also possible using 
the method of successive substitutions. The infinite sequence 

Eo =0 
El = M +esinEo 

(5.6) 

etc. 

will have a limiting value, according to Cauchy's theorem,t provided that 
for any given positive number f, however small, it is possible to find a 
number k such that 

(5.7) 

for all positive integral values of n. 
To show that this condition is satisfied for the sequence Eo, E1 , ••• , 

we first observe that 

lI:+n-l 

EII:+n - Ell: = L (Em+l - Em) 
m=1I: 

t The eighteenth century mathematicians used infinite series and sequences in a 
cavalier manner. (At one period, even Gauss thought that a series would converge if 
the size of the terms tended to zero.) By the end of the century, there were so many 
plainly absurd results that some began to question the validity of operations with infinite 
processes. Cours d'analyse alg~brique, written in 1821 by Augustin-Louis Cauchy (1789-
1857), was the first extensive and significant treatment of the subject of convergence. 
Cauchy defined convergence and divergence and then stated the Cauchy contleryence 
criterion-a sequence SI!: converges to a limit S if and only if SI!:+n - SI!: can be made 
less in absolute value than any assignable quantity for all n and sufficiently large k. He 
proved the condition to be necessary but, strangely, ignored the sufficiency proof. 
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Then, since 

Em+1 - Em = e(sinEm - sin Em_I) 

= 2esin !(Em - Em-I) cos !(Em + Em-I) 

_ sin !(Em - Em-I) I 
- e(Em - Em-tl !(E _ E ) cos 2 (Em + Em-I) 

2 m m-I 

we have 

IEm+1 - Eml ::; elEm - Em-II::; ... ::; emlEI - Eol = Mem 

Therefore 
k+n-l 1 n 
~ k -e 

IEk+n - Ek I ::; M ~ em = Me 1 _ e 
m=k 

so that if e is numerically less than one, 

ek 

IEk+n - Ekl ::; M-
1

-
-e 

Thus, the condition of Cauchy's theorem is met by choosing the integer k 
such that 

log €(\W- e) 
k>--...:.;.:.

loge 
(5.8) 

An alternate proof of convergence, which also can be adapted to the 
hyperbolic form of Kepler's equation, uses the mean value theorem of 
differential calculus. We write 

so that 

Em+l - Em = f{Em) - f{Em- 1) 

= {Em - Em-1)!'[Em- 1 + {3m{Em - Em-I}] 

where Pm is a constant in the interval (O, 1). Hence 

m 

Em+l - Em = M II f'[Ej- 1 + (3j{Ej - Ej_ I )] 
j=l 

Then since J' (E) = e cos E, we have 

IEm+l - Eml ::; Mem 

and the remainder of the proof is the same as before. 
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¢ Problem 5-7 
By writing 

Solving Kepler's Equation 

x = 2 ~(t -r) YiJ3 and Y = tan ~f 

[Chap. 5 

Barker's equation takes the form Y = x - l y3. This can be reformatted as a 
successive substitutions algorithm 

1 3 
Yk+l = X - 3 Yk 

Prove analytically that the algorithm does converge provided that x does not 
exceed unity and k is chosen so that 

HINT: If x and Y are both positive, then, clearly, Y is less than x. Also, the 
factorization 

y~ - Y~-l = (Ym - Ym-d(y~ + YmYm-l + y~-d 

will be useful for the proof. 

~ Problem 5-8 
Y The successive substitutions technique for the hyperbolic form of Kepler's 

equation cannot be applied directly. (The reader should verify this by a numerical 
example.) However, the sequence 

Ho =0 
. N+Ho 

HI = arcsmh --
e 

. N+Hk 
Hk+l = arcsmh etc. 

e 

does converge to the solution of the hyperbolic form of Kepler's equation if e > 1. 
Further, to achieve a given accuracy tolerance f, it is sufficient that 

I Ne 
og f(e _ 1)2 

k>-~-~ 
loge 

NOTE: It may be convenient for computation to recall that 

arc sinh x = log{x + J x 2 + 1) 
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5.2 Lagrange's Expansion Theorem 

Lagrange's approach to solving Kepler's equation in 1770 led to a generally 
useful expansion theorem. Consider the functional equation (for which 
Kepler's equation is, clearly, a special case) 

y = x + a4>(y) (5.9) 

where a is to be considered a small parameter-originally identified with a 
planetary eccentricity. Then y, as a function of x and a, may be expanded 
in a Taylor series about a = 0: 

8y I a
2 

8
2
y I y(x, a) = y(x, 0) + a 8a 0 + 2f 8a2 0 + ... 

Lagrange's contribution was to obtain an elegant expression for the coeffi
cients of the powers of a. 

Clearly, 

y(x,O) = x 

and 
8 d4> 8y 

8aY(x, a) = 4>(Y) + a dy 8a 

so that 

8
8Y I = 4>[x + 0 . 4>(Y)] = 4>(x) 

a a=O 

Calculating the second derivative, we obtain 

8
2
y = d4> 8y + da d4> 8y + a [d

2
4> (8Y ) 2 + d4> 82y ] 

8a2 dy 8a da dy aa dy2 8a dy 8a2 

Hence 

a2~ I = 24>(Y) d4>1 = 24>(x) d4> = .!!:..-4>(X)2 
8a a=O dy y=x dx dx 

Again, for the third derivative 

83y d4> 82y d24> (ay ) 2 
8a3 = 3 dy aa2 + 3 dy2 8a + a[ ... ] 

and setting a = 0, gives 

8
3
y I = 3 d4> .!!:..-4>2 + 3 d

2
4> 4>2 = d

2 
4>(x)3 

8a3 a=O dx dx dx2 dx2 

The calculation of higher derivatives becomes more and more complex; 
but, as will be proved later in this section, the nth derivative is simply 

anYI dn
-

1 

8an 0 = dxn_ l 4>(x)n (5.10) 
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so that 

Solving Kepler's Equation 

00 n dn - 1 
y = x + '"' ~ __ q,(X)n 

~ n! dxn - 1 
n=l 

is the power series expansion formula of Lagrange. 

[Chap. 5 

(5.11) 

Applying this result to Kepler's equation, we immediately obtain 

. e2 d . 2 e3 d2 
• 3 

E=M+esmM+ 2!dMsm M+ 3!dM2sm M+··· (5.12) 

The question of convergence will be addressed at the end of this section. 
For now, it is sufficient to say that when e is small the series is rapidly 
convergent. 

¢ Problem 5-9 
Using the notation of Prob. 5-7, the solution of Barker's equation can be 

expressed as the power series 

y = x + ~(-lt (3n)! X2n+1 

~ 3nn! (2n + I)! 
n=1 

Determine the range of values of x = 2VJ.L/p3(t - T) for which the series will 
converge as well as the values of the true anomaly for which the series is valid. 

~ Problem 5-10 
)t By writing the hyperbolic form of Kepler's equation as 

. hH N+H sm =--
e 

derive an expansion for sinh H in inverse powers of e. Then show that 

H=A+ A +~(2- AN) +~(6-A2- 9AN + 3A
2
N

2
) + ... 

B 2B2 B 6B3 B B2 

where 
. N N+B 

A = arcsmh - = log --
e e 

and B = VN2+e2 

Euler's Trigonometric Series 

In 1760 Leonhard Euler published some important trigonometric series 
which we can put to effective use. Using Euler's identity 

x = eir/> = cos q, + i sin q, 

it is apparent that 

cos q, = ~ ( x + ~) 
cosnq, = ~(xn +~) 

2 xn 

where i=V-1 

sin q, = ~ (x - .!.) 
21 X 

• A. 1(n 1) sm n'P = --: X --21 xn 
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Then, we can use the binomial theorem 

(a + b)n = t (n)an-kbk 

k=O k 
where (n) n! 

k = k! (n - k)! 

to expand, for m = 0, 1, 2, ... , the function 

(_l)m+l ( 1)2m+2 
sin2m+2 4> = x - -22m+2 X 

Indeed, with very little difficulty, we obtain 

(_l)m+l m (2m + 2) 
sin2m+2 4> = 22m+l £;( _1)k k cos(2m + 2 - 2k)4> 

1 (2m+2) 
+ 22m+2 m+ 1 

(5.13) 

In a similar manner, we can produce the corresponding expression for 
the odd powers of sin 4>. We have 

sin2m+l4> = (;:~m ~(_I)k emk+ 1) sin(2m + 1- 2k)4> (5.14) 

Next, we differentiate Eq. (5.13) 2m+l times and Eq. (5.14) 2m times 
with the result that 

,pm+l 
~~~ sin2m+2 4> = d4>2m+l 

~(_l)k Cm+: - 2k) 2m+l e mk+2) sin(2m+2 - 2k)4> 

,pm 
--sin2m+l 4> = 
d4>2m 

~(_l)k Cm+ ~ -2k) 2m emk+ 1) sin (2m + 1- 2k)4> 

If, in the first equation, we replace 2m + 1 by n and, in the second 
equation, replace 2m by n, then the two equations are identical. The 
combined result may be expressed as 

::;'n sinn +I 4> = ~(-1)k (n+; - 2k r (n! 1) sin(n+1-2k)4> (5.15) 
k=O 

where the notation [m1 indicates the greatest integer contained in m. Thus 

[
! n] = { ! (n - 1) n odd 
2 !n n even 

2 
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By substituting the expression (5.15) in Eq. (5.12), we obtain 

00 [!n-;] (!n-k)n-l 
E = M + Len L (_l)k ~! (n _ k)! sin(n - 2k)M 

n=1 k=O 

Then, by regrouping the terms, the Lagrange series takes the form 

00 2. 00 (-1)k(lme)m+2k 
E=M+ L -smmML k'( k)' (5.16) m . m+ . 

m=1 k=O 

In particular, if terms of order e 7 and higher are neglected, we have 

E = M + (e - ie3 + 1~2e5)sinM + (le2 - te4 + l8e6) sin 2M 

+ (ie3 - 122
7
8 e5) sin 3M + (le4 - 1~ e6) sin 4M 

+ ~~~e5 sin 5M + ~~e6 sin6M + O(e7
) (5.17) 

¢ Problem 5-11 
Obtain the following expansions for the powers of cos tP : 

2m+2 _ 1 2m + 212m + 2 
m ( ) ( ) cos tP - 22m+ 1 ~ k cos (2m + 2 - 2k)tP + 22m+2 m + 1 

1 2m+ 1 
m ( ) COS

2
m+

1 
tP = 22m ~ k cos (2m + 1- 2k)tP 

with m = 0, 1, 2, ... 

Generalized Expansion Theorem 

Lagrange generalized his expansion theorem so that any function F(y), 
rather than simply y, can be expanded as a power series in a. With y 
defined in Eq. (5.9), then 

F( ) = F(x) + ~ an cf'-1 [4>(x)n dF(X)] 
y ~ n! dxn- 1 dx 

n=1 
(5.18) 

will follow immediately if we can prove that 

8
n 

F = 8
n

-
1 

[4>(x)n 8F(X)] 
8an 8xn- 1 8x 

(5.19) 

Our strategy will be to establish Eq. (5.19) by mathematical induction. 
Thus, for n = 1, we must prove that 

8F = 4>8F 
80: ax (5.20) 
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For this purpose, we first calculate 

ay(x, a) = t/>(y) + a dt/> ay 
aa dyaa 

ay(x,a) = 1 + adt/>ay 
ax dyax 

and then, from the first equation subtract t/>(y) times the second. Thus, 
we obtain 

( 1 - a dt/» (ay _ t/> ay ) = 0 
dy aa ax 

and since the first factor can vanish only if at/> = y + constant, then we 
must have 

ay = t/>ay 
aa ax 

Equation (5.20) follows immediately from this result since 

aF dF ay 
aa = dyaa and 

aF dF ay 
ax = dyax 

To complete the proof, we assume that Eq. (5.19) is true for n and 
show that is also true for n + 1. Differentiating with respect to a, we have 

But Eq. (5.20) is true for all functions F(y); in particular, then it is true 
for t/>n (y). Hence 

so that Eq. (5.19) is, indeed, true for n + 1. Therefore, by the principle of 
mathematical induction, the assertion is true for all n. 

¢ Problem 5-12 
Use the generalized expansion theorem to obtain 

!:. = 1 + !.e2 - (e - ~e3 + ~e5) eosM - (!.e2 - !.e4 + ~e6) eos2M 
a 2 8 192 2 3 16 

- (~e3 - ~e5) eos3M - (!.e4 - ~e6) eos4M 
8 128 3 5 

125 5 27 6 7 
- 384 e eos5M - 80 e eos6M + O(e ) 
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Convergence of the lagrange Series 

Lagrange's series is, of course, the Taylor series representation of the root 
of the functional equation 

y - x - o:t/>(y) = 0 

which, until now, we have assumed to be unique. Sufficient conditions for 
a unique root are obtained by a direct application of Rouche's theorem for 
analytic functions of a complex variable. t 

The French mathematician Eugene Rouche (1832-1910) proved in 1862 
that if 11 (z) and 12(z) are analytic functions of the complex variable z 
throughout a singly-connected bounded region of the complex z-plane and 
on its boundary C, and if 

1/2 (z)1 < III (z)1 -:F 0 

on C, then 11 (z) and 11 (z) + 12(z) have the same number of zeros inside 
the contour. 

In our case, consider y to be a complex variable, x a point in the 
complex plane within the boundary C, and t/>(y) an analytic function. 
The two functions of Rouche's theorem are selected as 

and 

Clearly, 11 (y) has only one zero, namely, y = x. Hence, 

11 (y) + 12(y) = y - x - o:t/>(y) 

will have only one root provided that 

Io:t/>(y)I < Iy - xl (5.21) 

is satisfied at all points y on the contour C. Within this contour the Taylor 
series representation of the root is known to converge. 

We can readily apply the criterion to the expansion of E as the power 
series in e expressed in Eq. (5.12). Consider E to be a complex variable 
and let C be a circular contour of radius p centered at the point M on 
the real axis. Along the perimeter of the contour the values of E are given 
by 

E = M + pcosO+ ipsinO 

t Augustin-Louis Cauchy, whom we have already encountered in connection with 
convergence criteria, was a man of universal interests. In mathematics, he wrote over 
700 papers-second only to Euler in number. For twenty-five years, from 1824, Cauchy 
developed complex function theory almost singlehandedly and many of the significant 
results in this field bear his name. The fundamental theorem of the subject, that the 
integral of an analytic function around a closed contour in the complex plane is zero, is 
called Cauchy's integral theorem even though Gauss first stated. that proposition, albeit 
without proof, in a letter to Bessel in 1811. 
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and the problem is to determine the largest value of e for which 

lesinEI < IE - MI = p 

will hold true at each point of C . 
Now, since 

sinE = sin(M + pcosO) cosh(psinO) + icos(M + pcosO) sinh(psinO) 

we have 

I sinEI2 = cosh2 (p sin 0) - cos2 (M + pcosO) 

The maximum value of the magnitude of sin E occurs when 

cos(M + pcosO) = 0 and sinO = ±1 

or, equivalently, when 

and 

Thus, the largest value of Isin EI is cosh p so that the convergence criterion 
is 

e<-P
coshp 

As yet the radius of the contour C has been unspecified and is at our 
disposal. Clearly, the best choice of p is that which maximizes pi cosh p 
and it is easy to see that this desired value is the solution of 

coshp = psinhp 

Hence, solving numerically for p (using, for example, Newton's method 
described in Sect. 5.4), we find that 

e < 0.6627434194 ... 

is the requirement that the Lagrange series for E represents the unique 
root of Kepler's equation for all values of the mean anomaly M. Laplace 
was the first to show that if e exceeds this critical value, then the series 
will diverge for some values of M. 



206 Solving Kepler's Equation [Chap. 5 

5.3 Fourier-Bessel Series Expansion 

The Lagrange expansion of the solution of Kepler's equation gives the 
eccentric anomaly as a power series in the eccentricity. As such the 
series was found to converge for all values of the mean anomaly only if 
e was less than approximately i. In the previous section, we saw that 
the series can be reordered as a Fouriert sine series with coefficients which 
are infinite power series in the eccentricity. A remarkable fact emerges 
in this analysis. The coefficients are absolutely convergent for all values 
of e and the periodic series in M satisfies the necessary conditions to be 
a convergent Fourier expansion. Thus, the convergence properties of the 
Lagrange expansion are altered when the series elements are reordered. 

The coefficients of the Fourier sine series are Bessel functions. In this 
section we shall obtain directly the Fourier expansion of the solution of 
Kepler's equation. The Fourier coefficients are the integral form of the 
Bessel functions-the form first obtained by Bessel. 

Series Expansion of the Eccentric Anomaly 

To obtain the Fourier expansion we observe that 

dE 1 
dM - 1- ecosE 

is an even periodic function of M with period 271' so that we may write 

1 00 

1 E =Ao+ 2: Ak cos kM 
- ecos k=l 

where Ao, AI' A2 , ••• are the Fourier coefficients. Thus, 

1111' dM 1111' Ao=- =- dE=l 
271' -11' 1 - ecosE 271'_11' 

1111' coskM 1111' Ak = - dM = - cos kM dE 
71' -11' 1 - ecosE 71' -11' 

t Joseph Fourier (1768-1830) was chiefly concerned with heat flow problems and his 
book 'J'Morie analytique de la chaleur, published in 1822, is one of the classics of math
ematics. By solving the partial differential equation of heat flow using the method of 
separation of variables, he was led to the development of the Fourier series. Leonhard 
Euler and Alexis-Claude Clairaut (1713-1765) had already expanded some functions in 
such series and had obtained the general integral representations of the coefficients, but 
Fourier made the remarkable observation that every function could be so represented 
even if it were not periodic or even continuous. This possibility had been rejected 
by the eighteenth-century masters with the single exception of Daniel Bernoulli, and 
Fourier's work was not well received by the Academy of Sciences in Paris. In spite of 
their objections, Fourier persisted and was responsible for initiating a broadening of the 
concept of ''function.'' No longer would mathematics be restricted to analytic functions 
or functions with Taylor series representations. 
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To evaluate the last integral, we write cos kM as the real part of 
exp( ikM). Then 

exp( ikM) = exp[ik( E - e sin E) ] = exp( ikE) exp [~ (x - ~) ] 
where 

v = -ke and x = exp(iE) 

The second exponential factor has an infinite Laurent expansiont in x 
whose coefficients are power series in v. Thus, 

[V( 1)] (VX) (V) 00 00 . (!v)i+
j 

. exp - x - - = exp - exp -- = 2::I)-1)' 2 ,., x i - J 

2 x 2 2x i=Oj=O f .J. 

n=-oo 

where the coefficients 

00 . ( ! v)n+2j 
In(v) = 2::(-1)' .,2( + ')' 

j=O J. n J. 
(5.22) 

are Bessel/unctions 0/ the first kind 0/ order n. 
It follows that 

00 

exp(ikM) = 2:: In(v) exp[i(n + k)EJ 
n=-oo 

so that the Fourier coefficient Ak is 

1 00 (IT 
Ak = - 2:: In(-ke) 1- cos(n + k)EdE 

1r n=-oo -11' 

The integrals vanish for all values of n except for n = -k. Hence, we have 

or, alternately, 

according to one of the identities involving Bessel functions considered in 
the next subsection. 

t For two decades Cauchy worked singlehandedly developing complex function the
ory. Then, in 1843, Pierre-Alphonse Laurent (1813-1854) published a major result in 
the Journal de l'Ecole Polytechnique which was an extension of the Taylor series expansion. 
He showed that if a function has a singularity at a point, then the function may be 
expanded in a series about that point which includes decreasing as well as increasing 
powers of the variable. 
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Finally, therefore, by integrating the differential form of Kepler's 
equation with the right-hand side expressed as a cosine series, we have 

00 1 
E = M + 2 L "kJk(ke) sin kM (5.23) 

k=l 

as the desired result. This expansion is identical with the one obtained in 
Eq. (5.16) using the Lagrange expansion theorem and reordering the terms. 

¢ Problem 5-13 
Derive the Fourier cosine expansion 

00 

~ = 1 + 2 L Jk(ke) cos kM 
k=l 

Bessel Functions 

The function J(x, v), where 

(5.24) 

is known as the generating function for the Bessel functions J n (v) and can 
be used to develop many of the properties of these functions. For example, 
by writing -l/x for x in Eq. (5.24), we can show that 

J_n(v) = (-l)nJn(v) (5.25) 

In a similar manner, we also obtain 

(5.26) 

Differentiating the generating function with respect to x yields 

aJ = ~(l + .!.)J 
ax 2 x2 

Then, by substituting the series for J in this equation and equating coef
ficients of like powers of x, we can derive the recurrence formula 

(5.27) 

Likewise, the derivative of the generating function with respect to v 
gives 

aJ = ~(x- .!:.)J av 2 x 
from which we obtain 

J~ (v) = ! [In- 1 (v) - I n+1 (v)] (5.28) 

as a fonnula for calculating the derivative of the Bessel functions. 
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We have already seen earlier in this section that the integral form of 
the Bessel function can be written as 

1171' Jk(v) = - cos(kx - vsinx) dx 
1r 0 

(5.29) 

from which follows the inequality 

IJn(v) I :5 1 (5.30) 

Other properties and applications of Bessel functions are developed in 
the problems which follow. 

¢ Problem 5-14 
Bessers differential equation 

d2 y dy 
v2

_ + v- + (v2 
- n2 )y = 0 

dv2 dv 

is satisfied by y = In{v). 

¢ Problem 5-15 
Derive the expression 

¢ Problem 5-16 
Derive the following two identities for the derivative of the Bessel function 

vJ~(v) = nJn(v) - vJn+1 (v) 

= -nJn(v) + vJn-l (v) 

which are analogous to Eq. (5.28). 

¢ Problem 5-17 
The Bessel function In(x) can be expressed as 

T () (lx)n N( 1 2) 
In X = --,- n+l'-4x n. 

where the function N('Y,x) is defined in Prob. 1-5. Derive the continued fraction 
expansion 

In(x) _ ~x 
In-1(x) - ---------=.(-:-~-X--::)2:-------

n - ---------:'---:--"""':""----
( ~X)2 

n + 1 - -----=-~--=,....---
{~X)2 

n + 2 - -----=--..,;....( _."....~ X-)"""2-
n+3--...o::o--

n+4- '. 
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¢ Problem 5-18 
Derive the expansions 

00 

sinE = L ~[Jk+l(ke) + Jk-l(ke)]sinkM 
k=l 

00 

= ~ E ~Jk(ke) sin kM 
k=l 

:. = 1 + e2 
_ 2e ~ ..!.. dJk(ke) coskM 

a 2 L..J k2 de 
k=l 

NOTE: Compare the expansion of ria with the result of Prob. 5-12. 

[Chap. 5 

~ Problem 5-19 
Y Obtain the Fourier-Bessel expansions of cos f and sin f in terms of the 

mean anomaly 

. f 2 r;-----:;1 2 EOO 

1 dJk(ke) . kM 
SID = V 1 - e* - SID 

k de 
k=l 

directly from the expansions for air and ria given in Probs. 5-13 and 5-18. 

Series Expansion of the True Anomaly 

The true anomaly f, as a Fourier expansion in terms of the mean anomaly 
M, is similar to Eq. (5.23) but the coefficients are considerably more com
plex. The derivation parallels the previous development for the eccentric 
anomaly. 

It is readily seen that 

df Jr=e2 =....,....----....,......".. 
dM (1- ecosE)2 

and is an even periodic function of M, so that 

1 00 

(1 E)2 =Bo+ EBkcoskM 
- ecos k=l 
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where 

1 l1r dM 1 111' dE 
Bo = 211" -11' (1 - ecosE)2 = 211" -1r 1 - ecosE 

1 l1r df 1 
=211" -11'~=~ 

B = .!.11r cos kM dM = .!.111' cos kM dE 
k 11" -11' (1 - ecosE)2 11" -11' 1 - ecosE 

=.!. f I n(-ke)ll1' cos(n+k)E dE 
11" -1r 1 - e cos E 

n=-oo 

To evaluate the integral portion of Bk we make a complex change of 
variable 

so that 

i 
dE = --dz 

z 

l
1r _exp....;;....:...[i..:.,.( n_+_k~)E~] dE = 2i 1 zn+k dz 

-1r 1 - ecosE e fc (z - a)(z - P) 

2i 1 (1 1) n+k d 
= e( a - P) fo z - a - z _ P z z 

where 

a= 
1+~ 

and 
1- "'1- e2 

P=----
e e 

The contour C is the unit circle in the complex z-plane. 
The integrals are evaluated using the Cauchy residue theorem. 

ap = 1, then a > 1 and {3 < 1. Therefore, 
Since 

1 zn+k dz = _1 zn+k('!' + ~ + ... ) dz = {-211"ia
n
+

k 
n + k < 0 

fc z - a fc a a2 0 n + k 2: 0 

i zn+k 
--dz= 

c z -{3 

Now, since a = liP, we have 

l
1r cos(k + n)E dE = 211" plk+nl 

-11' 1 - ecosE "'1- e2 

so that 



212 Solving Kepler's Equation [Chap. 5 

The desired expression for f 

! = M + 2 ~ I L~oo JnC-kelPlk+nl] sinkM (5.31) 

where 
1-~ 

f3 = = tan!4> 
e 

(5.32) 

is obtained by integrating the original cosine series expansion. (The second 
equation for f3 is from Prob. 4-7.) 

To the astronomer f - M is the equation of the center and plays a 
fundamental role in astronomical time computations. 

¢ Problem 5-20 
The quantity (3, defined in Eq. (5.32), satisfies 

(3 = ! e + ! e,B2 

Use Lagrange's generalized expansion theorem to obtain 

am _ (e)m[l m 2 m(m+3) 4 m(m+4)(m+5) 6 ] 
I-' - 2 + '4e + 42 21 e + 43 31 e + ... 

Since the functional equation for (3 is a quadratic, there are two different 
roots. Which of the two roots does this expansion represent and for what values 
of e does the series converge? 

¢ Problem 5-21 
As far as terms of order e6

, the equation of the center is 

/ - M = (2e - le3 + .E....e
5

) sin M + (~e2 - lle4 + .J..1.. e6
) sin2M 4 96 4 24 192 

+ (13e3 _ 43 e5) sin 3M + (103 e4 _ 451 e6)sin4M 
12 64 96 480 

+ 1097e5sin5M + 1223 e6 sin 6M +O(e7 ) 
960 960 

5.4 Series Reversion and Newton's Method 

Formulas for reversing a power series are to be found in Appendix C. Ex
pressions for the coefficients in that appendix are obtained by the formal 
process of substituting one series into another and equating terms of like 
powers of the variable. In this section, we take a different approach using 
the Lagrange expansion theorem developed earlier in this chapter. 

Let y(x) be a function which can be expanded in a Taylor series in 
the neighborhood of x = Xo' Thus 

b2 2 b3 3 
y(x) = Yo + b1(x - xo) + 2! (x - Xo) + 3! (x - Xo) +... (5.33) 
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where 
b = cFy(x) I 

n d n 
x %=%0 

In the following, we assume that b1 is different from zero and write Eq. 
(5.33) in the form 

x = Xo + (y - yo)<fJ(x) (5.34) 

where <fJ(x) is defined by 

1 
<fJ(x) = b b 

b1 + 2~ (x - xo) + 3~ (x - xO)2 + ... 
(5.35) 

Equation (5.34) is precisely the same form as Eq. (5.9). Therefore, we 
may use the Lagrange expansion theorem to express x as a power series in 
a = y - Yo' Thus, 

x(y) = Xo + Cl (y - Yo) + ~ (y - YO)2 + ~~ (y - YO)3 + . . . (5.36) 

with the coefficients determined from 

cF-
1 I cn = d n-l <fJ(x)n 

X %=%0 
(5.37) 

where <fJ(x) is defined in Eq. (5.35). The series for x(y) is said to be the 
reverse of the series for y(x) and is sometimes called Biirmann's series 
after Heinrich Biirmann who published the result in 1799. 

Series Reversion Algorithm 

Here we develop an original algorithm which will permit us to express the 
coefficients C1 , C2 , ••• of the reversed series in terms of the coefficients b1 , 

b2 , ••• of the original series. For this purpose, it is expedient to utilize 
Leibnitz's rule for differentiating productst 

cF(uv) = ~ (n) dku dn-kv 
dxn L k dxk dxn- k 

k=O 

t Though his contributions were quite different, Gottfried Wilhelm Leibnitz (1646-
1716) ranks with Newton as a builder of the calculus. Leibnitz was a philosopher, 
lawyer, diplomat, historian, philologist, and geologist. His interests included logic, me
chanics, optics, mathematics, hydrostatics, pneumatics, nautical science, and calculating 
machines. He first gave the rules for differentiating sums, products, and quotients; 
indeed, most the manipulations taught in freshman calculus are his. In a manuscript, 
dated Nov. 1, 1675, he had difficulty with d(uv) and d(u/v) and, at first, thought that 
d(uv) = du dv-not unlike some students today. He spent considerable effort in devising 
an appropriate notation and it is interesting to remember that d%, dy, and dy/dx are 
his original symbols. 
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First, we define 

and note that 

dk 
Dn = _e/>{x)n 

k dxk for k = 0,1, ... , n - 1 

Dn di Dn 
k = dxj k-j 

Then, since D8 = e/>n , we have 

Dn _ e/>n-l de/> _ Dn-1 de/> 
1 - n dx - n 0 dx 

from which follows 

dk- 1 dk-l d~ 
Dn = _Dn =n_(Dn-l..:!:..) 

k dXk-1 1 dXk-1 0 dx 

Applying Leibnitz's rule, we obtain 

[Chap. 5 

(5.38) 

DI: = n I: (k ~ 1)D'J-le/>~k-i) 
j=O J 

for k = 1,2, ... , n - 1 (5.39) 

where, for convenience, we adopt the notation 

e/>(k) (x) = dke/>(x) 
dxk 

The coefficients in the reversed series are obtained from 

en = D~-llx=xo (5.40) 

which can be generated recursively from Eq. (5.39) in terms of the quanti
ties e/>(k) (xo) = 4>~k) . 

There remains the problem of determining e/>~k) in terms of the coeffi
cients bl , b2 , ••• To this end, we apply Leibnitz's rule to Eq. (5.35) written 
in the form 4>{ x ) [ ... ] = 1, noting that the k th derivative of the bracketed 
quantity evaluated at x = Xo is simply bk+l/(k + 1). Therefore, 

Solving for 4>~k) gives 

k 

'" _1_ (k)b. ~(k-i) = 0 L." . + 1 . ,+11f'0 
i=O t t 

k 
~(k) = _~ '" _1_ (k)b. ~(k-i) 
1f'0 b L." i + 1 i ,+ lif'O 

I i=l 

(5.41) 

as a formula for generating 4>~k) recursively. Repeated evaluations of the 
equations (5.39) and (5.41), starting with the initial values 

DII _ ~(O) _ 1 
o X=Xo -1f'0 - b 

I 
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will produce as many of the coefficients C1 , C2 , ••• as may be desired. 
Finally, it is useful to remark that since 

b = cFy(x) I and C = cFx(y) I 
n dn n d n 

x X=Xo y Y=Yo 

as seen from Eqs. (5.33) and (5.36), the algorithm also provides a convenient 
method for determining the derivatives of x with respect to y explicitly in 
terms of the derivatives of y with respect to x. 

¢ Problem 5-22 
Use the algorithm, consisting of Eqs. (5.39) and (5.41), to obtain 

1 
Cl =

b1 

b3 b~ 
C3 = - b4 + 3 bS 

1 1 

and compare with the formulas given in Appendix C. 

NOTE: This algorithm was mechanized using MACSYMA, a symbol manipulat
ing digital computer program, which produced formulas for the following addi
tional coefficients: 

= _ bs 15b2b4 + 10b~ _ 105 b~b3 + 105 b~ 
Cs b6 + b7 b8 b9 

1 1 1 1 

51,975b~b4 + 138,600b~b~ 270 270b~b3 -135 135 b~ 
b13 +, b14 'b1S 

1 1 1 

Many more coefficients were obtained but these are all that will be recorded. 

John R. Spofford 1983 
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¢ Problem 5-23 
Kepler's equation, referenced to an arbitrary epoch, can be written as 

M = Mo + E - Eo - ecosEo sin(E - Eo) - esin Eo [cos(E - Eo) - 11 
By series reversion, develop the expansion 

E = Eo + e - 4 "e2 + ft (3,,2 - ~)e + 214 (1 + 1O~ - 15"2),,e4 + ... 
where 

e = M - (Eo - esinEo) 
1- ecosEo 

and compare with Prob. 5-6. 

Newton's Method 

esinEo ,,= 1- ecosEo 
ecosEo 

~= ----=-1- ecosEo 

Series reversion can be used to obtain an approximate root of the equation 

y(x) = 0 (5.42) 

If e is such a root, then Eq. (5.36), with x = e and y = 0, gives 

C2 2 c3 3 e = Xo - C1 Yo + 2! Yo - 3! Yo + ... (5.43) 

Therefore, if Yo is a relatively small quantity (or, equivalently, Xo is rea
sonably close to e) and the coefficients c1 ' c2 ' c3 ' ••• are ''well behaved," 
then the first several terms of Eq. (5.43) will provide an approximation to 
the true value of the root e. 

Of course, Eq. (5.43) can be used recursively in the form 

for k = 0,1,2,.. . (5.44) 

Whether or not the sequence xo' xl' X2' ••• will converge to the root 
e of y(x) = 0 depends both on the specific function y(x) and the initial 
approximation xo' 

The first two terms of Eq. (5.44) written as 

Yk 
xk+l = xk ----, 

Yk 
(5.45) 

is recognized as the familiar root-finding algorithm of Sir Isaac Newton.t 
In celestial mechanics, it is frequently called the method of differential 
corrections. 

t In his De Analysi and Method of Fluxions, Newton gave a general method for aJr 
proximating the roots of y(x) = 0 which was published in John Wallis's Algebra in 1685. 
Joseph Raphson (1648-1715) made improvements in the method which he applied only 
to polynomial equations. His method was published in Analysis Aequationum Universalis 
in 169O-it is this which we call Newton's method or the Newton-Raphson method. 
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To assess the behavior of the error Xk - { at the kth step in the 
iteration cycle, we use the Taylor series expansion with remainder in the 
form 

where 

y"{a) = rPy~x) I 
dx x=a 

and 

Hence 
y y"{a) 
~ = xk - {- --{Xk - {)2 
y~ 2y~ 

so that, from Eq. (5.45), 

y"{a) 
xk+l - {= 2y~ {xk - {)2 (5.46) 

Thus, if xk - { is small, then a ~ xk and Eq. (5.46) demonstrates that 
the error in the (k + 1) th approximation is proportional to the square of 
the error in the k th approximation. The process is said to have quadratic 
convergence properties. 

¢ Problem 5-24 
Newton's iteration for solving Kepler's equation can be written as 

M-Mk 
Ek+l = Ek + 1 E - ecos k 

where 
Mk = Ek - e sin Ek 

[An excellent choice for Eo is provided by Eq. (5.4)1. 
Further, derive the inequality 

e 2 
IEk+l - EI :::; 2(1 _ e) IEk - EI 

Also, derive the corresponding algorithm for the hyperbolic form of Kepler's 
equation as well as the inequality 

. h( N/e ) 
sm l-l/e 2 

IH k+l - HI :::; 2(1 _ lie) IHk - HI 

with Ho obtained, for example, from Eq. (5.5). 

NOTE: This method for solving Kepler's equation was recommended by Johann 
Franz Encke in Berliner Astronomisches Jahrbuch in 1848. 
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¢ Problem 5-25 
Derive the algorithm 

Yk ( 1 YkY~) 
Xk+1 = Xk - Yk 1 + '2 (Yk)2 

Furthermore, obtain the expression 

Xk+l - e = - Yk - -- (Xk - e)3 + O(Xk - e)4 1 [( ") 2 Y'" ( a ) 1 
2 Yk 3Yk 

which displays the cubic convergence properties of the algorithm. 

[Chap. 5 

Specialize this higher order method to provide the following iterative solu-
tion of Kepler's equation: 

E E M-Mk esinEk (M-Mk)2 
k+l = k + - ~--~='"7 

1- ecosEk 2(1- ecosEk) 1- ecosEk 

NOTE: Compare this result with that of Prob. 5-23. 

Power Series for the Generalized Anomaly X 

The universal form of Kepler's equation 

.Jii.(t - to) = TOUI (X; 0) + uOU2 (X; 0) + U3 (X; 0) 

developed in Sect. 4.5, is simply a closed form representation of the power 
series 

) 
uo 2 1 - OTO 3 OUo 4 

.Jii.(t - to = TOX + 2fX + 3! X -"4!X 

0(1 - OTO) 5 02uo 6 ) 
- 5! X + 6!X +... (5.47 

To reverse the series we can, of course, utilize Eq. (5.36) with the expres
sions for the coefficients given in Prob. 5-22. 

On the other hand, we can make use of the explicit expression for X, 
given in Eq. (4.86), 

X = o.Jii.(t - to) + U - Uo 
and recall from Prob. 3-25 that the algorithm developed in Sect. 3.2 can 
be used to expand u - Uo as a power series in t - to' 

In either case, we obtain 

1/J = T-! tpOT2- ~ (1-1o-3tp~)T3+ l4 tpo(10-91o-15tp~)T4+ ... (5.48) 

w here we have defined 

T = ~(t - to) V T3 
1/J= ~ vro 

T 
p=

TO 
"" _ ruT _ TO 
10-~O-

a 
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To affect a practical solution to the universal fonn of Kepler's equation, 
we can use the series expansion of 1/J as an initial value 1/Jo for a simple 
Newton iteration 

T-Tk 
1/Jk+1 = 1/Jk + -

Pk 
or the higher-order algorithm of Probe 5-25 

where 

T - Tk 'Pk 2 1/Jk+1 = 1/Jk + -- - 3(T - Tk) 
Pk Pk 

Tk = UI (1/Jk; 10) + 'POU2(1/Jk; 10) + U3 (1/Jk; 10) 

Pk = UO(1/Jk; 10) + 'POUI (1/Jk; 10) + U2(1/Jk; 10) 

'Pk = 'POUO(1/Jk; 10) + (1 -10)UI (1/Jk; 10) 
The continued fraction algorithms developed in Sect. 4.7 can be used to 
evaluate the universal functions. 

An Alternate Form of Kepler's Equation 

Using the notation of the previous subsection, the universal fonn of Kepler's 
equation can be expressed in tenns of the single variablet 

UI ( ! 1/J; 10) 
W= I 

UOLi 1/J; 10) 

and then solved by a Newton iteration. If we also define 

~ w2 

Z = 10Uf( !1/J; 10) = 1 +0 2 
10W 

then, since 

Uo(!1/J) = 1- 210Uf(!1/J) = 1- 2z 
and 

t This algorithm originated with the author using 

w = Uo( i1Pia) and z = 2UI( iXia) 

as the variables with w and z related by 

w2 + iaz2 = 1 

(5.49) 

(5.50) 

Recently, Stanley W. Shepperd redeveloped the method with, essentially, the variables 
we are using here. His choice of w is preferable because an initial value of w can be 
found as a continued fraction of i 1P with 1P determined from Eq. (5.48), although 
Shepperd did not use this fact himself. 
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we have 

Solving Kepler's Equation 

Uo('l/J) = 2U~(!'l/J) - 1 = 1- 8z(l- z) 
Ut('l/J) = 2Uo(!'l/J)Ut (!'l/J) = 4(1- 2z)(l- z)w 

U2('l/J) = 2Uf(!'l/J) = 8(1- z)2w2 

U3('l/J) = ~Uf(!'l/J)F(3, 1;~; z) = 33
2 (1 - z)3w3 F(3, 1;~; z) 

[Chap. 5 

[The last equation is obtained from Eqs. (4.103), (4.104), and (4.106).] 
Therefore, the universal form of Kepler's equation can be written in 

terms of w as 

T = (1 + ~:W2)2 [(1- low2) + 2<pow 

+ ~ x 1+~W2F(3.1;~; 1 ~O~~2)] (5.51) 

The hypergeometric function F(3, 1; ~; z) is best calculated, with q 
replaced by z, from the continued fraction of Eq. (4.107). 

A Newton iteration requires also the derivative of T with respect to 
w. For this purpose, we calculate 

and 

dT dTd'l/J d'l/J 
dw = d'l/J dw = P dw 

dw iug( i'l/J) + i1oUl( i'l/J) _ 1 Ul( i'l/J) _ 1 + 1ow2 
d'l/J = ug( i'l/J) - 4Ul( i'l/J) ug( i'l/J) - 4 

Hence, 
dT 4p 
=-~~ 

dw 1 +10W 2 (5.52) 

An initial, or starting value, for w can be obtained using Eq. (5.48) 
to determine an approximate value of 'l/J. Then, w is calculated from the 
continued fraction of Eq. (4.100) with an appropriate value for the variable. 

5.5 Near-Parabolic Orbits 

Both the elliptic and hyperbolic forms of Kepler's equation tend to be
come indeterminate when the orbit is nearly parabolic. As the semimajor 
axis increases, both the mean anomaly and the eccentric anomaly become 
vanishingly small. 

In this section we develop two of the classical methods for dealing 
with near-parabolic orbits-the first by series expansion using a small 
parameter, and the second by an elegant and practical method of successive 
substitutions devised by Gauss. 
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Method of Successive Approximations 

The efficacy of this first method depends on expressing Kepler's equation 
in terms of a parameter, which is small for orbits that are nearly parabolic, 
and representing the solution as a power series in that parameter with each 
term providing a higher order of approximation to the exact solution. 

An appropriate parameter for this purpose is 

I-e 
A=

I+e 
(5.53) 

which is zero for e = 1 and also appears naturally in the relationship 
between the true and eccentric anomalies. Furthermore, since tan ! f is 
the key variable in Barker's equation, we define 

w = tan!f 

and seek a solution of Kepler's equation as a power series in A 

w = ao + a 1 A + a2 A2 + a3A3 + ... 

(5.54) 

(5.55) 

The desired form of Kepler's equation is obtained using the equation 
of orbit, derived in Prob. 3-18, 

I+w2 
r-q--~ 

- 1 + Aw2 

so that, from the law of areas, we have 

..jiiP 1 + w2 

2q2 dt = (1 + AW2)2 dw 

(5.56) 

Then, expanding the right-hand side by polynomial division to produce a 
power series in A and integrating term by term, yields 

..jiiP w
3 

( w
3 

w
5 

) 
2q2 (t - or) = w + 3 - 2A 3 + 5 

(
W5 W7) (W7 W9 ) 

+3A
2 5+7 -4A

3 7+9 + ... 

which, for A = 0 and p = 2q, is recognized at once as Barker's equation. 
Finally, we substitutet for w from Eq. (5.55) and equate coefficients 

of corresponding powers of A. The zero th -order term ao is the one and 
only real root of 

t One might suspect that direct series reversion could be used here. It can, of course, 
be so applied but does not yield a useful result. 
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The first-order term is then computed from 

2~ (1 ~) 
al=I+~ 3+5 

and the higher-order terms, successively, from 

3ag (1 a~) ( a l ) 
~ = -1 + a~ 5 + 1"" + aoal 2ao - 1 + ~ 

4% ( 1 a~) 2 ( a~) 
<l:J = 1 + a~ "1 + 9 + 2aoal 1 + 1 + ~ 

4 1 ( a~) 2 2aoal a2 
- 3aoal - 3 1 + ~ + 2aoa2 - 1 + ~ etc. 

It is hardly necessary to remark that these equations apply equally 
well to both elliptic and hyperbolic orbits with A positive in the Cormer 
case and negative in the latter. 

Motivating Gauss' Method 

In his Theoria Motus Gauss gave an extremely efficient technique Cor solv
ing Kepler's equation Cor near-parabolic orbits. He was apparently quite 
impressed with the ingenuity of his method-so much so that he laboriously 
prepared extensive tables, which are required to implement the algorithm, 
and included them in an appendix to his book. 

The essence of Gauss' method is a clever transformation of Kepler's 
equation to a form resembling an algebraic expression of third order. The 
transformed equation is exactly a cubic for parabolic motion and nearly 
so for elliptic and hyperbolic orbits whose eccentricities are Close to unity. 
The solution is obtained by successive substitutions. At each stage (1) the 
equation is solved as though it were a cubic and (2) the tables are consulted 
to revise an algebraic coefficient. Convergence is remarkably rapid, with 
typically two iteration steps sufficing for seven decimal places of accuracy. 

To provide some motivation for the derivation of Gauss' method, we 
note that, although Kepler's equation bears little resemblance to Barker's 
equation, they must coincide in the limit as the elliptic orbit approaches 
the parabolic orbit with the peri center radius q held fixed. 

Recall that Barker's equation 

V ~(t -T) = tan ~f(l + ~tan2 ~f) 
is valid for the parabola while, Cor the ellipse, we have 

~(t - T) = E -esinE = (l-e)sinE + E - sinE 
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with 

tan! f = Jl + e tan !E 
2 1- e 2 

relating the true and eccentric anomalies. Now, when the orbit is nearly 
parabolic, we have e ~ 1 and E ~ 0 so that 

E 
tan ! f -- ----;:::=:==~ 

2 - v'2(I-e) 

If we substitute this for tan ~ f in Barker's equation, we are provided 
with a possible clue to the form that Kepler's equation must take when the 
orbit is nearly a parabola. Barker's equation becomes, approximately, 

and since 

V /1(1 - e)3 (t - r) "" E[(1 - e) + ! E2] 
q3 6 

sin E = E - ! E3 + ... 
6 

E - sin E _ 1 E2 7 E4 
sin E - 6 + 360 + ... 

we are led to write Kepler's equation in the form 

V/1(I-e)3( _)=' E[(I-) E-sinEj 
3 t r mn e + . E q ~ 

where the semimajor axis a has been replaced by q/(1 - e). 

(5.57) 

(5.58) 

When we compare Eqs. (5.57) and (5.58), it is clear that we must have 

. E V6(E - sinE) 
sm:::::: . E sm 

Therefore, we replace sin E by 

sin 3 E 6(E - sinE) 
6(E - sin E) sin E 

sinE = 

If B is used to denote the first of these two factors, then 

B2 = sin
3 

E = E3 - !E5 + ... = 1- ~E2 + 237 E4 + ... 
6(E - sinE) E3 - 2~ E5 +... 20 2800 

is a quantity nearly equal to one for small E. 
With this substitution, Kepler's equation takes the form 

JL(I- e)3 (t _ r) = B 3(E -:- sinE) [(1- e) + E ~ SinE] (5.59) 
2q3 smE smE 
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Then, if we define a quantity A as 

A = 3{E - sinE) = !E2 ~E4 ~E6 ... 
2sinE 4 + 240 + 10,080 + 

Eq. (5.59) may be written as 

(5.60) 

The factor 1- e (which, of course, does not appear in Barker's equa
tion) may be eliminated by replacing A by a quantity w defined as 

A = ! {1 - e)w2 (5.61) 

and the final form of Kepler's equation is 

(5.62) 

The transformed equation is very nearly Barker's equation and is 
exactly so for E = 0. (For the parabola w == tan ! f and B == 1.) The 
difference is the presence of the factor B which is a function of the eccentric 
anomaly. Since A is also a function of E, we may reverse the series for A 
to obtain 

! E2 = A - 1
7
5 A 2 + 131765 A 3 + ... 

and substitute in the series for B2. Taking the square root, we have 

B=1- 1
9
0 A + 194~oA2+ ... 

so that B may be calculated directly as a power series in A. 
The algorithm is simple to implement. First, assume B = 1 and solve 

the cubic equation for w. Next, calculate A from w and then a new value 
of B from the power series in A. Repeat the process until A ceases to 
change to within a specified tolerance. 

Gauss' Method 

Unfortunately, the algorithm just derived is useful only for very small values 
of E. The convergence properties of the process will be adversely effected 
if B changes substantially during the iteration. To render the algorithm 
practical, Gauss invented a technique to make B as insensitive as possible 
to changes in E. 

To develop the Gauss algorithm, we begin the derivation anew by 
writing Kepler's equation as 

J ,..(1 q~ e)3 (t - T) = Q [(1 - e) + [IH (1 - .8)e[ ~l 
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where we have defined 

P=E-sinE 

Near-Parabolic Orbits 225 

and Q = E - fj( E - sin E} 

and f3 is a constant at our disposal. (Observe that fj = 1 gives Kepler's 
equation in its usual form.) The manipulations are the same as before. We 
write 

and 
~3 6P 

Q = - x - = 2Bv'A 
6P Q 

where A= 3P 
2Q 

2 Q3 E3 - ~ fjE5 + . .. ( 1 1) 2 
B =-= =1+ ---f3 E + ... 

6P E3 - ~ E5 + .. . 20 2 

Therefore, choosing fj = 1~ will eliminate the quadratic dependence of B 
on the eccentric anomaly. 

With this choice of fj, the transformed equation of Kepler is 

i"(! -e)3 rn-; [ ( 1 9) 2A] 2q3 (t-r}=Bv2A (l-e)+ 10+10e "3 

where 
A = 15(E - sinE) 

9E+sinE 
and 

Finally, we replace A by w where 

and we have 

A= 5(I-e}w2 

1 +ge 

B = 9E+sinE 
20JA 

as can be readily verified following the steps outlined previously. 

(5.63) 

(5.64) 

The following expansions of A and B in powers of E were found using 
the symbol manipulating computer program MACSYMA: 

A = !E2 - 1~oE4 - ~E6 + 144~O()()~ - ••• 

B =1 + + 2~E4 - 84:m E6 + 258~~O()()~ - ... . . . 
(Observe that even when E is as large as 60 degrees, the quantity B differs 
from unity by only one part in a thousand.) 

Gauss tabulated B as a function of A for 0 ~ A ~ 0.3. However, we 
can, instead, reverse the series for A (E) and substitute into the series for 
B to obtain 

B 1 3 A2 2 A3 471 A4 = + 175 + 525 + 336,875 

+ 21~~~~:75A5 + 2.~~~i~1~875A6 '+ ... (5.65) 
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The mechanics of the algorithm are simple as before. First, assume 
B = 1 and solve Eq. (5.64) for w. Next, calculate A from Eq. (5.63) and 
then a new value of B from the power series in A. Finally, repeat the 
process until A ceases to change to within a specified tolerance. 

To obtain the true anomaly and radius vector, Gauss again displayed 
his ingenuity. First, we observe that 

! sin E = tan ! E 1 E ( 2 3 ) 2 1 + tan2 ! E = tan 2 1 - r + r - r + ... 
2 

where, for brevity, we have writtent r for tan2 ~ E. Also, using the series 
for the arctangent, 

~ E = tan ~ E (1 - l r + ! r2 - t r3 + ... ) 
Then, we have 

15{E - sinE) r - ft r 2 + 2 r3 - llr4 + M r 5 - ... A -- -- 5 7 9 11 
-- 9E + sin E -- 1 - ..§... r + ~ r2 - ~ r3 + Jl r4 - ... 

15 25 35 45 

in which the law of progression for the coefficients is obvious. Now, dividing 
the numerator by the denominator 

A -- r - .1 r2 + 24 r3 _ 1,592 r4 + 78,856 r5 _ 10,899,688 r6 + ... 
-- 5 35 2,625 144,375 21,896,875 

and reversing the series, gives 

r -- A + .1A2 + 104 A3 + 1,112 A4 + 297,032 A5 + 875,944 A6 + ... 
-- 5 175 2,625 1,010,625 4,379,375 

Finally, inverting the last series produces 

A=l-.1A+C 
r 5 

(5.66) 

where 

C = 1~5 A2+ 5~5 A3
+ 3;6~:~5 A4+ 13~~3~~:25 A5

+ 29~:5~~:75 A6
+ ... (5.67) 

is a quantity of fourth order in E which Gauss also tabulated.+ 
Now, to compute the true anomaly, we write 

tan 2 ! f = 1 + e tan2 ! E = 1 + e x r = 1 + e x A 
2 1-e 2 1-e 1-e 1- ~A+C 

and, substituting from Eq. (5.63) for the A in the numerator, obtain 

(5.68) 

t Not to be confused with the time of pericenter passage. 

t In his Themia Motus Gauss gave the series for C in powers of A up to and including 
A 5 -a truly impressive numerical feat! 
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In this way, we also gain a very oonvenient computation of the radius. It 
beoomes, in fact, from Probe (3.18), 

1 + tan2 ! f 1 - ~ A + C 2 1 
r = q 2 1 E = q 1 A C (1 + tan 7. f) (5.69) 

1 + tan ~ 1 + 5 + 
Gauss' method, as presented here in its original form, is efficient for 

those values of A which correspond to values of E not exceeding about 60 
degrees. For large values of A, it may not oonverge at all. 

~ Problem 5-26 
"Y" Show that Gauss' equations are equally valid for hyperbolic orbits-the 
difference being only that A is negative. 

¢ Problem 5-27 
The perihelion of Halley's comet, which moves in a retrograde orbit of the 

sun, last occurred on February 9.43867, 1986. If 

q = 0.587099 a.u. and e = 0.96727 

find the true anomaly and radius on February 1.0, 1986. 

NOTE: VP- = 0.01720209895 if distance is measured in astronomical units, time 
in mean solar days, and the unit of mass is that of the sun. This is the Gaussian 
gravitational constant. 

ANSWER: f = 334 0 .88527 and r = 0.615720 a.u. 

Donald K. Yeomanst 1985 

5.6 Extending Gauss' Method 

The purpose of this section is to explore the possibility of extending Gauss' 
methodt: to the general case for which the time interval is not reckoned from 
pericenter and the orbital eccentricity is arbitrary. The resulting algorithm 
is necessarily more oomplex than the original both because of the arbitrary 
epoch and the annoying fact that the more general quasicubic equation 
can have multiple real roots which must be reoonciled. Nevertheless, the 
overall program logic is simple and oonvergence is relatively fast. 

t Author of the book Comets published by John Wiley & Sons in 1991 and a member 
of the staff of the Jet Propulsion Laboratory. 

t This section is based on the paper "Extension of Gauss' Method for the Solution 
of Kepler's Equation" by R. H. Battin and T. J. Fill which was published in the AIAA 
Journal of Guidance and Control, Vol. 2, No.3, May-June 1979, pp. 190-195. Some 
changes have been made here which, hopefully, improve the analysis. 
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Transformation of Kepler's Equation 

Let ro and Vo be the position and velocity vectors corresponding to an 
epoch time to for a Keplerian orbit. Then Kepler's equation (4.43) for an 
arbitrary epoch may be expressed as 

M - Mo = z - sinz + TO sinz + u~(1- cosz) (5.70) 
a va 

where 

z=E-Eo 

First, multiply by .J a3 /T3 and introduce the notation 

and (5.71) 

to obtain 

T = ~ [~(Z - sinz) + sinz] + ~~0(1- cosz) 
"TO TO TO 

Then, paralleling the arguments of the previous section, we write 

with the constant {3 introduced for the same purpose as before and 

P= z-sinz Q = z - {3P R = 1- cosz (5.73) 

With the motivation provided by the earlier analysis, the next step in 
the transformation is to define 

and write 

2 
'Yo = TO = 2 _ To Vo 

a Il 
Xo = ! [1 - (1 - (3)'Yo) (5.74) 
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where, in the last step, we have used the notationt 

A= 3P 
2Q 

B=[Q3 V6fi 

229 

(5.75) 

Finally, to eliminate 10 from the denominator, we introduce w as before 
by defining 

A = 110w
2 (5.76) 

so that the original form of Kepler's equation (5.70) becomes 

T = B( l Xo w3 + ! CPoDw2 + w) (5.77) 

The quantities B and D, defined in Eqs. (5.75), may be expressed as 
power series expansions 

B = 1 + 1 (110 - ,8)z2 + .. . 
D = 1 + l2 (,8 - 1

7
0 )z2 + .. . 

(5.78) 

(5.79) 

In his development, Gauss chose ,8 to be 1~ so that the factor B in Eq. 
(5.77) would be as insensitive as possible to changes in the anomaly. If we, 
too, make this choice, (justification for which is provided later) then 

B 1 + 34 16 
= 2800 Z - 84,000 Z + 

D = 1 - 2
1
0 z2 + 42

1
00 z4 + 50':,100 z6 -

The quantity A, defined in Eq. (5.76), may also be expanded as a 
power series in z. Thus, we have, for ,8 = 110 , 

A = ! z2 (1 - 3~ Z2 - 50
1
40 Z4 + 36,100 z6 + ... ) 

Again, by series reversion and substitution, we obtain B and D as series 
representations in powers of A: 

B=l + -LA2 + ....LA3 + ... 
175 525 

D = 1 - !A - ....!...A2 - ....LA3 - ... 
5 175 375 

(5.80) 

(5.81) 

Equations (5.77), (5.80), and (5.81) are the essence of the extended 
method of Gauss. From an initial approximation for A, values of B and 
D are calculated from the series expansions. Equation (5.77) is then solved 
as an algebraic cubic for w resulting in a new, improved value for A 
determined from Eq. (5.76). 

As for the original method of Gauss, the fundamental relations in
volved are universal-one set of equations is valid for all orbits including 
even the rectilinear. The sign of 10 determines the sign of A: i.e., positive 

t The first two quantities are from the original method of Gauss. However, since 
Gauss considered only the elementary version of Kepler's equation, the pericenter 
distance was TO and the last term was missing (soo = 0). Hence, there was no need for 
the D function. 
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for the ellipse and negative for the hyperbola. The parabola corresponds 
to the case A = 0 for which also "Yo = 0 and Xo = !. It is easy to 
demonstrate for this case that Eq. (5.77) is, indeed, the generalized form 
of Barker's equation (4.24) with 

w = . fE (tan! f - tan ! fo) VTo 

Solution of the Cubic Equation 

The solution of the transformed elementary version of Kepler's equation 
considered by Gauss presents no problem except for rectilinear orbits with 
which he was not concerned. In his case, with TO corresponding to peri
center, the factor Xo' appearing as the coefficient of w3 in Eq. (5.77), is 
easily shown to be 

Xo = 2
1
0 + io e 

where e is the orbital eccentricity. Clearly, Xo is positive nonzero for all 
orbits. Furthermore, the resulting cubic equation for w has one and only 
one positive real root. 

In the more general case, however, two difficulties arise which must be 
addressed. First, we observe from Eqs. (5.74) that Xo will vanish at any 
point in an orbit for which 

or, equivalently, 
11 

TO =-a 
9 

Second, due to the presence of CPo in the coefficient of w2 , which may be 
either positive or negative, the cubic equation can possess three real roots. 

The first of these problems may be successfully countered by a simple 
change of variable which, at the same time, will also convert the cubic 
equation to its normal form. For this purpose, we substitute x for w in 
Eq. (5.77), where 

3T 
w=.........-o:'--~ 

B{1 + x/d) 
(5.82) 

and d is an arbitrary constant at our disposal. The resulting cubic equation 
for x is simply 

x3 
- 3fX - 2b = 0 (5.83) 

where 

£ = cP ( 1 + 3'P;%T) (5.84) 

2b=d3 [2+9T(~~ + ~nl (5.85) 
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By choosing d as either plus or minus one, we can assure that b will never 
be negative. Then, although f can still have either sign, Eq. (5.83) will 
have exactly one nonnegative real root. 

To show that this nonnegative real root is the proper one under all 
circumstances, we first observe that, for T = 0, Eq. (5.83) has three real 
roots-one at x = 2 and a double root at x = -1. Only the positive root 
is appropriate for calculating w from Eq. (5.82). Now, by allowing T to 
increase or decrease, a simple continuity argument using Descartes method 
of representing the solution of a cubic, which is described in Sect. 4.2, will 
suffice to prove that the nonnegative real root of Eq. (5.83) is always the 
correct choice. 

Finally, the possibility of a singularity arising in Eq. (5.82) must be 
considered. Indeed, x = 1 is the root of Eq. (5.83) if and only if both 
Xo = 0 and /(JoT is negative with a magnitude sufficiently large to require 
d to be -1. This singularity is a direct result of the use of d as an artifice 
to force the desired root to be always positive. Since the problem does not 
arise if T is small enough, we can always reduce the size of T if we find 
that x is too close to unity when d = -1. This minor bit of awkwardness 
is a small price to pay for the assurance of only one positive real root as 
the required solution of the cubic. 

Equation (5.83) is of the same form as Eq. (1.31) of Sect. 1.2 so that 
the solution can be had with continued fractions. However, a simple New
ton iteration seems more suitable for an efficient computer mechanization, 
especially since the accuracy with which x must be obtained is considerably 
less than that required for A. 

¢ Problem 5-28 
A sequence of approximations Xo, Xl, X2, .•• to the appropriate root of 

Eq. (5.83) is generated recursively using the Newton iteration 

xn+l=~(X!+b) 
3 X~-l 

where Xo = 1 + III 

With the initial value for x = Xo as given, demonstrate that convergence of the 
Newton algorithm to the appropriate root is inevitable. 

Series Representations 

Gauss' original method depended, for its efficiency, on the relative insensi
tivity of the function B to changes in the anomaly. His choice of {J = lo 
insured that B would differ from unity by a quantity of fourth order in the 
anomaly. In the more general case, with two functions, B and D, of the 
anomaly with which to contend, the choice of {3 is not so obvious. 
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Referring to Eqs. (5.78) and (5.79), we observe several possibilities: 

1. Choose {3 = 110 to render B as nearly constant as possible; 

2. Choose {3 = 170 so that D will have this characteristic; or 

3. Choose (3 = ! so that the behavior of B and D will be identical for 
second order variations in the anomaly. 

Tom Fillt exercised the algorithm for each of these cases, and substantiated 
that the value originally assigned by Gauss to enhance convergence is also 
a good choice for the general problem. 

Fortunately, it is possible to determine both B and D from a single 
series expansion as we now demonstrate. For this purpose, Eqs. (5.73) and 
(5.75), with (3 = 110 , are first used to establish 

sinz = Q - 1
9
0 P = Q(I- iA) = 2BVA (1- iA) 

With this result, together with the expression for D in Eqs. (5.75), we have 

D2 = (1- COSZ)2 = sin
2 

ztan
2 ~z =!..-( _ ~A)2 

2AB 4A2B2 A 1 5 (5.86) 

where, for brevity, we have written T for tan2 ~ z. 
Again, from Eqs. (5.73) and (5.75), we obtain 

1 2A 2A Asec2 !z A - - = 2 = _ + A (5.87) 
BD - If - 1 - cos z tan2 ~ z T 

Hence, both B and D can be calculated in terms of the quantities A and 
AI T. The final task is to obtain the expansion of the latter as a power 
series in A. 

To this end, we write the first of Eqs. (5.73) as 

P . (Z ) . 2 1 (~Z 1) = smz -.- -1 = smzsec -z --- - --
sm z 2 tan ~ z 1 + T 

and expand the terms in parenthesis as a power series in T. Thus, 

(1 -iT + !T2 - ... ) - (1 - T + T2 - ... ) 

= aCT - ~T2 + !!T3 _ 12T4 + ... ) 
3 S 7 9 

Similarly, for Q, using Eqs. (5.73), we have 

Q . (9P 1) . 2 1 (9P 1 ) = smz + = smzsec -z +--
10sinz 2 10 sin zsec2 ~z 1 + T 

= sinzsec2 ~z (1 - ~ST + iST2 - :ST3 + ... ) 

t "Extension of Gauss' Method for the Solution of Kepler's Equation," MIT M.S. 
Thesis, May 1976. 
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Then, since A = 3P 12Q, we have A represented as the ratio of two power 
series in T which is identical to the corresponding expression in Gauss' 
original method. Therefore, 

A 4 -=I--A+C 
T 5 

(5.88) 

where the expansion of C as a power series in A is given in Eq. (5.67). 
As a consequence, we may write 

D = D2 = 1 + kA + C(I _ ~A)2 
B BD 1-~A+C 5 

5 

(5.89) 

and 
1 D2 D 

B2 = (BD)2 = (1 + kA + C) B (5.90) 

which are the forms required for the coefficients in Eq. (5.83). 
In retrospect, it appears that Gauss undoubtedly knew of the relation 

Jl-~A+C 
B = 3 1 

(1 - 5 A)( 1 + 5 A + C) 
(5.91) 

by which B could be computed from C. In the development of his original 
method, he gave explicitly only two terms in the expansion of B and six 
in the expansion of AIT; yet both functions to the same accuracy are to 
be found in his tables. 

¢ Problem 5-29 
The Lagrangian coefficients, needed to extrapolate r, v from ro, vo, are 

calculated from 

Ft = - - wE 1 - - A -~ ( 
3 )ro 

rg 5 r 

where 
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Algorithm for the Kepler Problem 

The complete algorithm for the solution of Kepler's problem is elegant in 
its simplicity. The relevant equations are summarized below in a form 
designed to minimize the arithmetic operations required in a computer 
mechanization. Certain auxiliary quantities are introduced for this purpose 
solely to effect a more efficient and compact algorithm. 

Given the vectors ro ' vo at time to, we desire the corresponding vec
tors r, v at some other time t. We then begin the solution by calculating 
the preliminary quantities 

Po =/fg T' = 3T = 3{jo(t - to) - 3 TO 
2 

°0 
= TOVO Ih = !,o = ! - !oo xb - IX 

p, = 2' 0 (5.92) 

1rJ = 1 - 10 = °0 - 1 - 9 8, 1 
- 40 0 - 5 

<Po 
= ro· vo <P' _ 1 <P <p~ - 1 <P' 

VP,TO 
0=2' 0 = 2' 0 

The iteration to determine A starts with the initial value A = 0, 
corresponding to a parabolic orbit. Hence, the initial values of 

a=I+!A+C 

are both unity whilet 

and a' = 1- ~A 

C = 1~5A2 + 5~5A3 + 3~:'~~5A4 + 13~~3~~:25A5 + 29~:5~~:75A6 
+ 134.584 A7 + 129.802.986.344 A8 + 55,082,676.856 A9 

372,246,875 857,740,555,546,875 857,740,555,546,875 

+ 687.061.097.149.992 A 10 + 8.033.038.585,237,352 A 11 
24,934,041,427,216,796,875 673,219,118,534,853,515,625 

(5.93) 

+ 2.892.031.498.456,202.296 A 12 + 4.093,458.329,892,811,912 A 13 
555,405,772,791,254,150,390,625 1,789,640,823,438,485,595,703,125 

+ 10.507,274.811.793,509,548,037,032 A14 
10,398,126,371,321,703,046,014,404,296,875 

+ 25.259,289,756,593,760,965,336 A15 + ... 
56,299,726,292,037,542,523,193,359,375 

is initially zero. Next, we calculate 

'l/l=aT' and a'a''l/l 
TJ=-

a-A 

(5.94) 

(5.95) 

t Sufficient accuracy is obtained for most applications using the truncated power 
series for C given here even though more terms were actually determined using the 
MACSYMA program. Economization of this series is possible using Tschebycheff 
polynomials as developed in Appendix F. 
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from which the coefficients in the cubic equation (5.83) for x are 

€ = 1 + 71'P~ and b = If + 71('P~ + x~tP)1 (5.96) 

The solution of the cubic is obtained either using the Newton iteration 
derived in Probe 5-28, continued fractions, or otherwise. After convergence, 
a new value of A is computed from 

e=l±x and then A =1~O (5.97) 

The choice of sign in the equation for e depends on the sign of the quantity 
within the absolute value symbols in the equation for b, i.e., the plus sign is 
chosen if that quantity is nonnegative and the minus sign otherwise. Also, 
if e is dangerously small, reduce the size of T and begin again. 

Repeat the computation, beginning with Eqs. (5.93), until A ceases 
to change by a preassigned amount. (During the second and subsequent 
cycles through these equations it is, of course, more efficient to select for 
Xo the last value of x determined from the previous Newton iteration.) 

The elements of the transition matrix Cb, needed to extrapolate r, 
v from ro ' vo, are most conveniently obtained in terms of the auxiliary 
quantities 

and 
ciT' "'= --e (5.98) 

Then, from the results of Probe 5-29, the magnitude of the new position 
vector r is obtained from 

T" ( P = - = 1 + 10 A + 'Po'" 5.99) 
TO 

and the transition matrix is 

[

1- A 

Cb= 
_ Po'" 

p 

'" + 'POA 1 Po 
A 

1- -
p 

(5.100) 

The description of the basic algorithm is now complete. We note 
that no square or cube roots and only one polynomial are involved in the 
calculations. However, we must recall that the efficiency and practicality 
of the method require that values of A (hence, values of t - to) be kept 
within reasonable bounds. For example, following Gauss, we might require 
that IAI ~ 1

3
0' 

In order to deal with the general problem, for which the time interval is 
unrestricted, let us define Am (and, correspondingly, T m) as the maximum 
permissible values of A and T. Then, the algorithm is easily modified, as 
will now be described. 
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Each time a new value of A is computed in Eqs. (5.97), a test is made 
to determine if IAI ::; Am' If the test fails, we set the magnitude of A to 
the value of Am' leaving the sign unchanged, and then compute 

o = ~ A = Om B = aot' 
m Ib m 2a v' a - A 

T:" = BJo: (3 + XoOm) + 3'PoAm 
(5.101) 

where a and a' are calculatedt using the extreme value of A. This is fol
lowed by Eqs. (5.98), (5.99), and (5.100). (Division by "YO does not present 
a problem. If "YO were zero, as it is for parabolic orbits, the test in question 
would not have failed.) Corresponding values of the other quantities are 
obtained from 

Tm = Pm TO 'Pm 
'Po(l -lOAm) + 1~K.m 
~ (5.102) 

Pm = Po 8m = 2 - Pm/o 
Pm.jii;; 

Then, by replacing T' by T' - T:n and TO' Po, 'PO' 80 by T m' Pm' 'Pm' 
8m , we are prepared to restart the algorithm anew, beginning with the 
appropriate ones of Eqs. (5.92). 

If the time difference t - to is sufficiently large, we may have to repeat 
this process of decrementing T several times. The transition matrices thus 
sequentially generated are, of course, multiplied together to produce the 
final desired matrix. 

The algorithm described here has been exercised for a variety of repre
sentative orbits. Some of the results are documented in the paper by Battin 
and Fill to which reference has already been made. When compared with 
a fairly standard Newton-Raphson iteration on a form of Kepler's equation 
utilizing universal variables, the computer memory utilization was almost 
exactly the same. Further, if the time difference t - to is small enough 
so that no decrement in T is necessary, the new algorithm uses only 40% 
to 85% of the time required by the more standard method. The lowest 
percentages are typical of the near parabolic and near rectilinear orbits 
while the largest percentages are characteristic of the hyperbolic cases. If 
several time increments are required, this computational advantage tends 
to diminish. 

¢ Problem 5-30 
From the initial condition data of Prob. 3-5, extrapolate the position and 

velocity vectors through the given time interval using the extension of Gauss' 
method for the solution of Kepler's equation. 

t Of course, values of B and a for A = ±Am may be precomputed and stored for 
use at this point in the algorithm. 



Chapter 6 

Two-Body Orbital 
Boundary-Value Problem 

REMARKABLE AND ELEGANT PROPERTIES ARE CHARACTERISTIC OF 

the two-body orbital boundary-value problem. Carl Friedrich Gauss 
must have been aware of the potential of this subject but, for some reason, 
chose not to develop it. In the Theoria Motus he remarks that 

"The discussion of the relations of two or more places of a 
heavenly body in its orbit as well as in space, furnishes an 
abundance of elegant propositions, such as might easily 
fill an entire volume. But our plan does not extend so 
far as to exhaust this fruitful subject, ... " 

The author has been fascinated by this subject for many years and has 
collected (almost as a hobby as others would collect stamps) a number of 
delightful and often useful properties of the two-body, two-point, boundary
value problem. They constitute the subject matter of the current chapter. 
Some are original; but, of course, we do not know whether or not Gauss 
anticipated any of the "new" results. 

Many of the properties of the boundary-value problem have been doc
umented only recently.t Where memory serves, their source is given. Some 
came as sudden inspirations in the course of a lecture, others from con
centrated effort to understand a particular phenomena. Some are from 
published papers and some resulted from conversations with students. 

Perhaps many of these geometric properties remained so long undis
covered because of the tendency to adhere strictly to mathematical analysis 
and to avoid geometric arguments. For example, Lagrange took pride in 
the fact that his great work Mecanique Analytique contained not a single 
diagram. Theoria Motus is also devoid of any figures and, indeed, most ad
vanced mathematical treatises today have this unfortunate characteristic. 
Although the great geometer Newton had extensively employed geometric 

t The most recent publication is the author's paper "Elegant Propositions of the 
Boundary-Value Problem" presented at the Thirty-Seventh Congress of the International 
Astronautical Federation held in Innsbruck, Austria in 1986. It appears in Astronautica 
Acta Vol. 15, No. 12, pp. 965-971, 1987. 
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proofs, it was felt by some that progress in analysis did not really begin 
until his methods were abandoned in favor of more analytic ones. 

Johann Heinrich Lambert (1728-1779), often referred to as the great 
Alsatian scholar, deduced the theorem which bears his name in a geometric 
fashion. His ideas were ingenious but he was restricted, very much as Kepler 
was, to purely geometrical methods. It took men like Lagrange and Gauss 
to supply the missing proofs and turn his ideas into effective tools. 

Transforming the boundary-value problem, as we do in this chapter, 
was the method Lambert used to obtain a series expansion of the transfer 
time as a function of the transformation invariants. That certain quantities 
were considered invariant, Lambert deduced from the forms of the energy 
integral and the transfer-time formula for the parabola which he and Euler 
had each independently derived using totally different arguments. 

Lambert would certainly have appreciated the invariant property of 
the mean point which is introduced in Sect. 6.4 and is original with the 
author. As we shall see in Chapter 7, it is of great importance in extending 
the region of validity and improving the convergence of Gauss' classical 
method of orbit determination. Had Gauss or his followers been aware of 
this property of orbits, they, most assuredly, would have used it for the 
same purpose. 

Lambert was highly respected in his lifetime and was ranked with Jean
Jacques Rousseau and Voltaire as one of the most famous philosophers 
of his century. Although forced to leave school at the age of twelve to 
assist his father in the tailoring business, he continued his studies with an 
excellent teacher and became extraordinarily successful in the sciences of 
philosophy, mathematics, astronomy, and physics. In Chapter 1 we have 
already mentioned his contributions to continued fractions and number 
theory. In astronomy, he contributed to the foundations of photometry 
and to the orbit determination of planets and comets which culminated in 
"Lambert's Theorem." 

6.1 Terminal Velocity Vectors 

Consider two position vectors r l and r 2 which locate the points PI and 
P2 relative to a center of force fixed at a point F as shown in Fig. 6.1. 
The angle 0 between the position vectors is called the transfer angle and 
the line PI P2 , called the chord, is of length c = Ir2 - rII. Let VI at PI 
and V 2 at P2 be the velocity vectors for an orbit connecting PI and P2 
with a focus at F. 

We shall utilize the terminal velocity vectors expressed in polar coor
dinates as 

(6.1) 
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Fig. 6.1: Geometry of 
the boundary-value 
problem. 
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The radial component vr of the velocity vector v can be written in a 
variety of forms. For example, from the hodograph plane analysis of Sect. 
3.5, we have 

dr r . v .;p, (j h he . 
v =-=-=--=-cot,=-sml (6.2) 

r dt r r r p 

Also, for the circumferential component vo, 

dl h v'JiP 
vo=r- = - =--

dt r r 
(6.3) 

A relationship between the terminal circumferential components of the 
velocity vectors is an immediate consequence of Kepler's second law. Thus, 

(6.4) 

A corresponding relation for the radial components is determined from the 
following argument. 

Let 11 and 12 = 11 + () be the true anomalies of the points PI and 
P2 , so that 

v
r1 

+ v
r2 

= he [sin 11 + sin(/1 + ())] 
p 

In the special case for which the transfer angle () is 180 degrees, we see at 
once that 

for (6.5) 
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Otherwise, we may write 

2he . (I I fJ) . I fJ I fJ vrl + vr2 = p sm I + '2 sm '2 cot '2 

h = -[ecos II - ecos(/1 + fJ)] cot!fJ 
p 

Then, using the equation of orbit in the form 

we have the desired result 

ecosl = ~ -1 
T 

[Chap. 6 

vrl +vr2 = (VOl -vo2 )cot!fJ (6.6) 

Two corollaries of this last relationship follow at once. Using Eqs. 
(6.2) and (6.3), we may rewrite Eq. (6.6) either as 

(6.7) 

or as 
(6.8) 

The second form is particularly interesting since it is entirely geometric 
and is independent of the orbital elements. (It is not difficult to show that 
this last result reduces to 11 - 12 = ! fJ when the orbit is a parabola.) 

Minimum-Energy Orbit 

As seen in Sect. 3.3, the total energy of a two-body orbit is -p,/2a so that 
the minimum-energy OTbit would be an ellipse (a > 0) corresponding to 
the smallest possible value of the semimajor axis a. If PI and P2 both lie 
on an orbit whose major axis is 2a, then 

where F* is the vacant focus of the orbit. Since 

then 
4a = PIF* +P2F* +r l +T2 

Clearly, the minimum value for PI F* + P2F* is the chord length c. There
fore, the vacant focus F:" lies on the chord PI P2 and the corresponding 
value of a is 

(6.9) 

or one half the perimeter of the triangle flF PI P2 • For convenience, we 
introduce the notation 

(6.10) 
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so that 8 is the semiperimeter of the triangle and am = ~ 8. The point 
F:'" divides the chord PI P2 in such a way that 

(6.11) 

A useful set of trigonometric formulas involving the semiperimeter of 
the triangle is given in Appendix G. 

Locus of Velocity Vectors 

Consider first the case for which the transfer angle 0 is 180 degrees or, 
equivalently, r1 + r2 = c. It is surprising indeed to find that the orbital 
parameter is the same for all orbits. This result is obtained directly from 
the equation of orbit-for, if between 

e cos 11 is eliminated, there obtains 

p = r2[1 + ecos(/l + 1T)] 

= r 2 (1 - ecos 11) 

p = 2rl r2 = 2rl r2 for 0 = 1T (6.12) 
r 1 + r 2 c 

Thus, the parameter 0/ all orbits connecting two terminals separated by 180 
degrees is the harmonic meant between the terminal radii. 

Using this result in Eq. (6.3), we have, from the vis-viva integral, 

v2 = 2J.lr2 v2 = 2J.lrl v2 = v2 = J.l (~ -!) for 0 = 1T (6.13) 
6 1 r

1 
c 62 r

2
c rl r2 C a 

Hence, the circumferential components of the velocity vectors at each 
terminal are the same for all orbits and, in this case, are also equal to 
the minimum-energy velocities. Indeed, these velocities may be written as 

for 0 = 1T 

The locus of velocity vectors at PI (and at P2 ) for all possible orbits 
connecting PI and P2 with a transfer angle of 180 degrees is, clearly, a 
straight line as shown in Fig. 6.2. Velocity vectors occur in pairs vIand 
v 1 for the same value of a and make equal angles with the vector v mI. 

There are two parabolic orbits with velocities v PI and v PI but V PI 

corresponds to motion from P2 to PI in the counterclockwise direction. 
Likewise, the hyperbolic velocity vectors Vhl correspond to orbits traversed 
from P2 and PI. 

t We have already seen in Sect. 3.3 that, for the ellipse, the parameter is the harmonic 
mean between the pericenter and apocenter radii. Equation (6.12) is a generalization of 
this property. 
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v, V,m v, 

F r, P, 

Fig. 6.2: Velocity vector locus for 180 0 transfer. 

When the transfer angle is different from 180 degrees, the end result 
is similar but the analysis is quite different. Expressions for the terminal 
velocity vectors are obtained from Sect. 3.6 in which were introduced the 
Lagrangian coefficients. With our present notation, we have 

where 
F = 1- T2 (1- cosO) G = TIT2 sinO 

p .jiiP 

Gt = 1 - TI (1 - cos 0) 
p 

Therefore, 

VI = ~ 0 [(r2 - r l ) + T2 (1- COSo)r l ] 
TIT2 sm p 

v2 = ~ 0 [(r2 - r l ) - TI (1 - cos o)r2] 
TIT2 sm p 

provided, of course, that 0 is not equal to 180 degrees. 
From the form of these expressions, we are led to replace the usual 

radial and circumferential components of orbital velocity by components 
along the skewed axes 

Hence, 
(6.14) 

where 

and v = rg 1 - cos 0 
p V P sinO 

(6.15) 
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Thus, when the terminal velocity vectors vIand v 2 are resolved into 
components parallel to the chord connecting the end points and parallel to 
their respective radius vectors, as shown in Fig. 6.3, we have the surprising 
result that the magnitudes of components of the velocity vectors along these 
skewed axes at the two terminals are, respectively, equal.t 

Perhaps even more astonishing is the property displayed by multiply
ing Vc and vp' From Eqs. (6.15), we have the important result that the 
product 

JlC 2 1 ( 
vcvp = -2 - sec 2 () 6.16) 

rIr2 
depends solely on the geometry of the boundary-value problem not on the 
orbit connecting the terminals. 

Equation (6.16) is recognized as a hyperbola in asymptotic coordinates 
of the type considered in Sect. 4.4. At PI the asymptotes are the chord 
PI P2 and the radius F PI extended. 

The angle <PI between the asymptotes is the exterior angle at PI of 
the triangle t::..F PI P2 • Similarly, at P2 they are the radius F P2 and the 
chord PI P2 extended. Again the angle between the asymptotes <P2 is the 
exterior angle at P2 of the triangle t::..F PI P2 • 

t The reader should remember that vp is not the same as the usual radial component 
Vr of velocity. Velocity components along skewed axes were introduced by Thore Go
dal of the Norwegian Naval Academy in a paper entitled "Conditions of Compatibility 
of Terminal Positions and Velocities" and published in the Proceedings 01 the Eleventh 
International Astronautical C0ngre88 which was held in Stockholm, Sweden in 1960. 
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Clearly, at both terminals, the minimum-energy velocity vectors bisect 
the angle 4> between the asymptotes and have equal velocity components 
along the skewed axes. By simple geometry, 

vmc = vmp = ~ vm sec ~ 4> 

Therefore, Eq. (6.16) may be written as either 
_ 1 2 2 1..1.. 

VcVp - iVml sec 2'1'1 

which is the locus of velocity vectors at PI shown in Fig. 6.4, or 

which is the corresponding locus at P2 • 

(6.17) 

(6.18) 

The other branch of the hyperbolic locus described in Fig. 6.4 (but not 
shown in the illustration) corresponds to orbits from PI to P2 traversed 
in the clockwise direction. In this case the transfer angle is 27r - () rather 
than (). 

As seen in the diagram, velocity vectors occur in pairs, v and v, cor
responding to two different orbits having the same value of the semimajor 
axis. Such pairs are called conjugate orbits. 

~ Problem 6-1 
Y From the results of Sect. 4.4, specifically, Eq. (4.66), the hyperbolic locus of 

velocity vectors is 
1 2 2 

VcVp = 4' aheh 

Calculate directly, using Eq. (6.16), the eccentricity eh and semimajor axis ah 

of the hyperbola. 
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¢ Problem 6-2 
Use the results of Prob. 4-19 to derive the equation of the hyperbolic locus 

of velocity vectors at PI in the form 

rlv~ sin "Yl sin ( <PI - 11) = #" sin <PI tan !O 

¢ Problem 6-3 
Show that 

rl 
r2=-~-----

cos 0 - cot <PI sin 0 

Then, by eliminating <PI between this and the result of Prob. 6-2, obtain the 
relation 

r = #,,(1 - cos 0) - rl v~ sin 11 sin(O -11) 

where the subscript on r2 has been dropped. Thus, r as a function of the true 
anomaly difference 0, with the initial conditions at PI corresponding to 0 = 0, 
is explicitly displayed. 

In a similar manner, derive the corresponding relations 

r2 
rl = ---~---cos 0 - cot <P2 sin 0 

and 

¢ Problem 6-4 
The velocity components along skewed axes are related to ordinary polar 

coordinate components as 

c 
Vc: = VOl CSC <PI = -VOl CSC 0 

r2 
r2 cosO - rl 

Vp = Vrl - VOl cot <PI = Vrl - • 0 VOl 
T2 SID 

Derive the equation of the hyperbolic locus of velocity vectors in the form 

Vq VOl sin 0 - vii (cos 0 - rl) = 1: (1 - cos 0) 
r2 Tl 

This equation exhibits no difficulties as 0 approaches 180 degrees. Indeed, 
in the limit, show that the first of Eqs. (6.13) obtains. 
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Parameter in Terms of Velocity-Components Ratio 

By forming the ratio of the two equations in (6.15), we obtain 
r r v 

P = ...!..l. (1 - cos 0) ...£ 
C vp 

Hence, the parameter is a linear function of the ratio vc/vp for a fixed 
geometry of the triangle AF P1 P2 • As we trace the locus of velocity vectors 
in Fig. 6.4 from right to left, this ratio (and, hence, the orbital parameter) 
increases monotonically from zero to infinity. 

Clearly, the velocity component ratio is unity for the minimum-energy 
orbit. Therefore, the parameter Pm of this special orbit is seen to be 

P = r1 r2 (I - cos 0) {6.19} 
m c 

so that the general expressiont for the parameter is simply 

L= Vc {6.20} 
Pm vp 

Conjugate orbits are characterized as having the magnitudes of their 
velocity components along skewed axes reversed. Therefore, if P and pare 
the parameters of a pair of conjugate orbits, then 

Pm = vPP {6.21} 

Thus, the parameter of the minimum-energy orbit is the geometric mean 
between the parameters of any pair of conjugate orbits. 

Furthermore, the flight-direction angles of conjugate orbits are also 
simply related. From Fig. 6.4 we see that 

'"'11 + 11 = 4>1 and, similarly, 12 + 12 = 27r - 4>2 {6.22} 

For 0 = 7r, Eq. {6.19} gives a value for Pm which agrees with Eq. 
{6.12}. On the other hand, when 0 is different from 7r, Eq. (6.19) may be 
written in the alternate form 

Pm = dtan!O {6.23} 

where d is the perpendicular distance from the focus F to the chord. 
This last expression permits the simple geometric construction of Pm as 
illustrated in Fig. 6.5. 

There is yet another interpretation of the parameter of the minimum
energy orbit. Since Eq. (6.19) can be written as 

2r 1 r 2 • 2 1 2 ( ) ( ) 
Pm = -c- sm 2 0 = C 8 - r1 s - r2 {6.24} 

t Although Thore Godal introduced and made extensive use of the concept of velocity 
vectors resolved along skewed axes, he, apparently, overlooked the elegant formula for 
the orbital parameter in terms of the ratio of these velocity components. 
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-----r 
Pm 

Fig. 6.5: Construction of the 
parameter for the minimum
energy orbit. ~ __ L 

P, 

it follows from Eq. (6.11) that 

1 1( 1 1) 
Pm = 2 PIF~ + P2F~ (6.25) 

Hence, the parameter 01 the minimum-energy orbit is the harmonic mean 
between the segments 01 the chord separated by the vacant locus F:n 01 the 
minimum-energy orbit. 

¢ Problem 6-5 
The hyperbolic locus of velocity vectors can be written as 

It I(J 
VcVp = d tan 2 where d = rl r2 sin (J 

c 

and the chordal and radial components can be expressed in terms of the angular 
momentum h as 

¢ Problem 6-6 

h 
Vc = d and It I (J Vp = - tan -h 2 

The position and velocity vectors r and v for a conic may be expressed in 
terms of the initial values rl, VI, and the central angle (J by 

r2 
r = rl + I Vc 

h cot (J - r I • V c 

v = Vc - Vp ir 

where 

Vp = X tan ~(J and 
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~ Problem 6-7 
Y The hyperbolic locus of velocity vectors can be described in terms of the 

Gudermannian ~ defined in Sect. 4.3. Specifically, 

v 2 = v~(l + e~ tan2~) 
where eh is the eccentricity of the hyperbolic locus and v is the magnitude of 
the velocity vector corresponding to the value ~. Also, the value of ~ for the 
parabolic orbit, is obtained from 

2 8(8 - T2) 
tan ~ - ~--+ P - C(8 - TI) 

Parameter in Terms of Flight-Direction Angle 

According to the last subsection of Sect. 4.4, the vector v c - V p is parallel 
to the tangent of the hyperbolic locus of velocity vectors. Also, at the 
terminal PI we have A = VI sin "Yl and B = VI sin( 4>1 - "Yl)' where A and 
B are defined in Prob. 4-19. From the result of that problem and the use 
of similar triangles, 

Vc _ sin"Yl 
vp sin(4)1 -11) 

Therefore, the parameter of the orbit can be expressed in terms of the 
flight-direction angle "Yl as 

P sin"Yl 
Pm = sin(4)1 - "Yl) 

(6.26) 

Similarly, A = V2 sin(1r -12) and B = V2 sin(4)2 + "Y2 -1r) at the terminal 
P2 , so that the parameter can also be written as 

P -= 
sin(4)2 + "Y2) 

(6.27) 
Pm 

Finally, replace 4>1 and 4>2 with (), using the law of sines for the 
triangle l::.P1 F P2 , and obtain the alternate equations 

J!.... = c sin "Yl 
Pm r 1sin 11 + r2 sin«() -11) 

(6.28) 

P csin "Y2 
Pm = r

2 
sin "Y2 - r

1 
sin«() + "Y2) (6.29) 

Note that for () = 1r, Eqs. (6.28) and (6.29) both reduce to P = Pm which 
is consistent with our earlier results. Furthermore, by equating these two 
expressions for p, we have an alternate derivation of Eq. (6.8). 

As a practical application of these results, Eq. (6.29) provides an 
explicit solution to the problem of a spacecraft arriving at a target planet 
or returning to earth. Control of the atmospheric-entry angle is essential. 
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If the vehicle is at position r 1 and the desire is to enter the atmosphere 
at position r2 with a specified value of 12' Eq. (6.29) determines the 
parameter of the required orbit. 

¢ Problem 6-8 
Use the form of the hyperbolic locus of velocity vectors from Probe 6-4 to 

derive the expression 

PT2 sinO 
tan 11 = ----:---~~---:----::------:

TIT2(1 - cos 0) + p(T2 cos 0 - Tl) 

for the Bight-direction angle and verify that this is equivalent to Eq. (6.28). 

Relation Between Velocity and Eccentricity Vectors 

Equation (3.28) for the velocity vector, obtained in Sect. 3.5, can be used 
for an interesting geometric determination of the velocity vector from the 
eccentricity vector. Since 

VI = !h X (e + ir ) p 1 

the vector V I must be perpendicular to the vector sum of the eccentricity 
vector e and the unit vector iT, = rlfTI . 

Refer to Fig. 6.6 in which are shown the vectors -ir, and e. A 
perpendicular from the point PI to the line connecting the termini of these 
two vectors is constructed. The direction of this perpendicular coincides 
with the direction of the velocity corresponding to the particular choice 
for e. The extension of the perpendicular to the intersection with the 
hyperbolic locus determines both the magnitude and direction of v I . 

A similar construction applies at the point P2 • 

Fig. 6.6: Geometry of veloc
ity and eccentricity vectors. 



250 Two-Body Orbital Boundary-Value Problem [Chap. 6 

6.2 Orbit Tangents and the Transfer-Angle Bisector 

A fundamental relationship exists between the tangents of an orbit at the 
terminals PI' P2 and the bisector of the transfer angle (). As shown in 
Fig. 6.7, the line connecting the focus and the point of intersection of the 
orbital tangents at the terminals bisects the transfer angle. This statement 
is certainly self-evident when rl = r 2 • 

~~~~----------

F Fig. 6.7: Tangent
bisector property. 

Before addressing the general proposition, it is instructive first to con
sider the 180 degree transfer for which PI' P2 , and Fare colinear. From 
Eqs. (6.2) and (6.5) we have 

cot 'l + cot 12 = 0 
r l r2 

for (6.30) 

or, equivalently, 

r l tan(1r -'1) = r 2 tan 12 = FN 

where N is the point of intersection of the orbital tangents at PI and P2 • 

Here F N is perpendicular to the line connecting PI and P2 so that F N 
does, indeed, bisect the transfer angle () = 1r as illustrated in Fig. 6.8. 

Furthermore, from Sect. 4.2, we know that ! f + I = ! 1r obtains for 
the parabola. Therefore, 

parabola (6.31) 

or, in the special case being considered, 11 = 12 + ! 1r. Thus, the angle 
LPI NpP2 = ! 1r for the parabolic orbit connecting PI and P2 as shown in 
Fig. 6.8. It follows that FNp is the geometric mean between the radii rl 

and r2' i.e., 

FN = Jrlr2 parabola (6.32) 

We shall see that this result holds also for arbitrary values of (). 
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Fig. 6.8: Geometry for 180 0 transfer. 

Ellipse and Hyperbola 

The demonstration of the tangent-bisector property is easily made for the 
ellipse using the geometry of orbital tangents developed in Sect. 4.1 and 
illustrated in Fig. 4.2. 

As before, let PI and P2 be points on the ellipse whose focus is at F 
as shown in Fig. 6.9. The radii FP1 and FP2 are extended and intersect 
the circle (centered at F and of radius equal to the major axis 2a of the 
ellipse) at the two points Q1 and Q2' Now, the perpendicular bisectors of 
F*Q 1 and F*Q2 are the orbital tangents at PI and P2' respectively, and 
intersect at N. Therefore, the point N is the center of the circle through 
the three points F* , Ql' Q2' 

We have now two circles, one centered at F and the other at N, each 
of which pass through Q1 and Q2' Hence, both F and N must lie on 
the perpendicular bisector of the line Q1 Q2 which, of course, is also the 
bisector of the transfer angle LQ1 FQ2 == LP1 F P2 • 

A similar argument applies to the hyperbola using the construction 
described at the end of the subsection on orbital tangents in Sect. 4.1. 

A relationship involving the length of the line segment F N , analogous 
to Eq. (6.32), exists also for the ellipse and hyperbola. Apply the law of 
sines to the triangle !)'F PI N 

FN _ Tl 

sin{1r -11) - sin{11 - !O) 

so that 

(6.33) 
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Fig. 6.9: Tangent-bisector property for elliptic orbits. 

Next, adapt the analysis of the last subsection of Sect. 4.6 to the current 
situation so that Eqs. (4.98) may be written as 

Jrlr2 cos ~O = r l cos ~(E2 - E I ) + y'aPcot'l sin ~(E2 - E I ) 

Jrl r2 sin ~O = y'aPsin ~(E2 - Ed 

When these are used in Eq. (6.33), we obtain 

FN cos ~ (E2 - E I ) = Jrl r2 

(6.34) 

(6.35) 

as the desired result to be compared with Eq. (6.32) for the parabola. 
In a similar manner, using hyperbolic functions, 

FN cosh! (H2 - HI) = Jrl r2 

is the corresponding relation for the hyperbola. 

¢ Problem 6-9 

(6.36) 

To establish analytically the concurrency of the orbital tangents and the 
bisector of the transfer angle, assume that the tangents at PI and P2 intersect 
the bisector at Nl and N2, respectively. Then derive 

rl esc 40 
F Nl = ---:1~--=--

cot 20 - cot1l 

and use Eq. (6.8) to demonstrate that 

F N 2 = T2 csc 4 0 

cot 4 0 + cot 12 

FNl = FN2 = FN = (r2 -r.)csc 40 
cot 11 + cot 12 
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Parabola 

It is not without some benefit to establish the result of this section geomet
rically for the parabola. The geometric properties of the orbital tangents 
of a parabola are discussed in Sect. 4.2 and illustrated in Fig. 4.7. For 
the boundary-value problem geometry, refer to Fig. 6.10. Let NI and 
N2 be points on the directrix of the parabola corresponding to points on 
the orbit PI and P2 • The orbital tangents at PI and P2 intersect the 
axis of the parabola at QI and Q2' They also intersect the line, through 
the pericenter A and normal to the axis, at Al and A2 • The point of 
intersection of the two orbital tangents is N. Finally, two other points of 
intersection are denoted by Sand T: (1) S is the intersection of the line 
F N2 and the tangent at PI' while (2) T is the intersection of the line 
PI NI and the tangent at P2 • 

~------~--------------~N2 

lr----+-----------r-----+--I N' 

F 

Fig. 6.10: Tangent-bisector property for parabolic orbits. 

To prove the assertion that the line F N bisects the angle L PI F P2 = (), 
we first define two angles 

Then, by summing the interior angles of the quadrilateral F PI N P2 and 
using Eq. (6.31), we establish that 

{3 - a = II -/2 

Next, we apply the law of sines to the two triangles Il.F PI N and Il.N P2F 
to obtain 

FN = TI sin 11 = T2 sin 12 

sin a sin{3 
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Then, from the equation of orbit for a parabola 

T = !psec2 ! J = !pcsc2 "Y 

we find that a and {3 are further related by 

sin "Yl sin a = sin "Y2 sin (3 

Solving for a and f3 produces 

Finally, 

tan a = tan"Y2 

tan {3 = tan "Yl 
or, simply, 

a="Y2 

{3 = "Yl 

LP1FN = "Yl - "Y2 = LP2FN = !O 

which completes the proof. 

[Chap. 6 

The fact that the length of the line segment F N is the geometric 
mean between the terminal radii follows from the similarity of the triangles 
l:J.F PI N and l:J.N P2F. Thus, 

FP2 FN 
FN = FP1 

and the generality of Eq. (6.32) is established. 
One final result is of interest. Consider the triangle l:J.NQl Q2 and 

note that the base angles are 

and 

Hence, 

LQ I NQ2 = "YI - "Y2 = !O 

It follows that all three of the triangles l:J.N PI T, l:J.F P2N, l:J.F PI N are 
similar. Therefore, 

so that 

NT FN FN 
NPI = FPI =~ 

and 

NT = . f5. N PI = N P2 V TI 

If N' is the intersection of the directrix and a line through N parallel to 
the axis of the parabola, then 

NIN' = N2N' 

Hence, the line N N' is equidistant from and parallel to the two lines PI NI 
and P2N2 • 
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~ Problem 6-10 
Y' The equations of the orbital tangents at PI and P2 for a parabola are 

x + y tan ~ h = TI and x + y tan ~ h = T2 

where x, y are cartesian coordinates centered at the focus F. 
Consider a third straight line 

y=mx 

and show that the three straight lines have a common point of intersection if 

m = tan ~ (/1 + h) 

This provides an alternate proof that the orbital tangents and the bisector of the 
transfer angle intersect at a common point. 

Finally, give an analytic demonstration of Eq. (6.32). 

HINT: It will be convenient to use the determinantal equation of a straight line 
given in Prob. D-3 of Appendix D. 

Parameter in Terms of Eccentric-Anomaly Difference 

Equation (6.28), for the parameter as a function of the flight-direction 
angle, may be written 

Pmc = Tl + T2(sin ° cot '11 - cos 0) 
P 

= Tl + T2 - 2T2 cos !O(cos!O - cot '11 sin !O) 

But, from Prob. 6-9 and Eq. (6.35) 

Tl JT1 T2 
F N = 1 1 = ----:-1 ~;;.....::-----:-

cos 20 - cot '11 sin 20 cos 2 (E2 - E 1) 

so that 

can be eliminated from the equation for p. We obtain 
P C 

= 1 1 ( ) Pm Tl +T2 - 2JT1T2COS 'lOCOS 2 E2 - El 
(6.37) 

which expresses the parameter of an ellipse in terms of the difference 
between the eccentric anomalies of the two terminals. 

Had we used Eq. (6.36) instead of (6.35), the equivalent expression 

P C 

Pm = Tl +T2 -2JT1T2COS !Ocosh !(H2 -HI) 
(6.38) 

for the hyperbola would have resulted. t 

t These equations for the parameter are special cases of the expression given in Prob. 
4-32 using universal functions. Also, the derivation here is quite different from that used 
in Chapter 4. 
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For the parabola, using Eq. (6.32), we have 

Pp c -= I 
Pm TI + T2 - 2v'TI T2 cos "2 () 

and, by rationalizing the denominator, 

Pp 1 ( I ) - = - TI +T2 +2v'TIT2cos"2(} 
Pm C 

An interesting alternative is also possible. Since 

TI + T2 = 2s - c and TIT2 cos2 ! () = s(s _·c) 

where s is the semi perimeter of the triangle ll.P1 F P2 , then 

Pp = c 2 = ! ( Vs + VS=C) 2 

Pm ( JS - v's - c) c 

6.3 The Fundamental Ellipse 

[Chap. 6 

(6.39) 

(6.40) 

Each orbit connecting PI and P2 with focus at F can be characterized 
by its associated eccentricity vector e which is directed from F toward 
pericenter and whose length is the eccentricity of the orbit. The set of 
eccentricity vectors for the family of orbits connecting the two terminals 
possesses an extraordinary property that was told to the author by Eric 
Bender of the Jet Propulsion Laboratory. It is easily demonstrated. 

From the equation of orbit at PI and P2 we have 

eo r l = P - TI and eo r2 = P - T2 

and by subtracting these two equations, obtain 

eo (r2 - rl) = TI - T2 

In terms of the unit vector ie' directed along the chord from PI to P2 and 
introduced in Sect. 6.1, this may be written as 

o T2 - TI 
-e 01 = -- (6.41) 

c c 

Thus, the set of eccentricity vectors has a constant projection on the chord 
PI P2· In other words, the locus of the termini of the eccentricity vectors is 
a straight line perpendicular to the chord, as illustrated in Fig. 6.11. The 
distance from the focus F to that line is e F, where 

eF = IT2 - Ttl (6.42) 
c 

The orbit with eccentricity e F has, of course, the minimum eccentricity 
of all possible orbits connecting PI and P2 • Its eccentricity vector is 

Tl - T2 0 

eF=---1 c c 
(6.43) 
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Fig. 6.11: Locus 
of the eccentricity 
vectors. 
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For any other orbit with eccentricity vector e, we have 

e = e F + tanw i h X eF (6.44) 

where w is the angle between e and eF' and ih is the unitized angular 
momentum vector. When 0 is different from 180 degrees, 

(6.45) 

(Of course, if 0 = 7r, the orbital plane is not determined by r 1 and r 2 so 
that the direction of i h must be made using other considerations.) 

¢ Problem 6-11 
At the end of Sect. 6.1, an interesting scheme was developed for determining 

the velocity vector from the eccentricity vector. Solve the reverse problem-that 
is, given a terminal velocity vector at either P l or P2, show how the orbital 
eccentricity vector can be obtained geometrically. 

¢ Problem 6-12 
For small transfer angles, the minimum possible eccentricity can be accu

rately computed as 

where E is defined from 
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The Fundamental (Minimum-Eccentricity) Ellipse 

The orbit of minimum eccentricity will be called the fundamental ellipse. 
Since PI bears the same relation to the occupied focus F as P2 does to 
the vacant focus F*, there is a certain symmetry which is apparent from 
the illustration of Fig. 6.12. 

, . . . , . , , , 
\ , , 

\ " 
- - - -¥~ - - - - - -

F; F 

1----- ----2al -------1 Fig. 6.12: Funda
mental ellipse. 

From the figure note that PI P2 F;'F is an isosceles trapezoid and, 
using the focal-radii property of the ellipse, it is clear that the semimajor 
axis a F is simply the arithmetic mean between the radii. That is, 

aF = ! (TI + T2 ) (6.46) 

To obtain the parameter it is convenient to use the notation 

eF = sin4>F 

recommended in Prob. 4-6. Then, since 

PF = aF(l - e}) = aF cos2 4>F 

4 ( )( ) 4TI T2 • 2 I 2Pm = 2" S - TI 8 - T2 = -2- sm 2(} = --
C C C 

to obtain 

Pm C 

(6.47) 

(6.48) 

(6.49) 

where Pm is the parameter of the minimum-energy orbit given in Eq. (6.19). 
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The two parabolas connecting PI and P2 are conjugate orbits with 
eccentricity vectors ep and ep which bear a fascinating relationship to the 
fundamental ellipse. If wI' and -wI' are the correspondin~ angles that 
these vectors make with the chord, then it follows from the definition of 
tP F that wI' + tP F = ! 1r. Therefore, the axes of the conjugate parabolic 
orbits coincide with the lines through the focus F and the extremities of 
the minor axis of the fundamental ellipse as shown in Fig. 6.13. 

Fig. 6.13: Parabolic eccentricity vectors and the fundamental ellipse. 

A geometric construction of the important elements of the fundamental 
ellipse directly from the triangle of the boundary-value problem is possible. 
To obtain the axes of the conjugate parabolas, refer to Fig. 6.14 and use 
the focus-directrix property of the parabola. The directrices Dl D~ and 
D2D~ are the common tangents to the two circles centered at PI and P2 
of radii r1 and r2 • The axes AIA~ and A2A~ of the two parabolas are 
the normals to these directrices through the focus F. The vertices VI and 
V2 are the midpoints of the axes included between the focus F and the 
directrices. 

From this construction, the center and, therefore, the vertices of the 
fundamental ellipse are readily obtained. First, the extremities of the minor 
axis are located along the axes of the parabolas at a distance from F equal 
to the arithmetic mean between the radii r 1 and r 2. The straight line 
connecting these points is the minor axis and intersects the major axis (the 
line through F and parallel to the chord) at the center of the fundamental 
ellipse. 
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Fig. 6.14: Construction of the axes of the conjugate parabolas. 

~ Problem 6-13 
J( The coniugate of the fundamental ellipse is that ellipse whose vacant focus 

F; is the mirror image of F; with respect to the chord PI P2. The quadrilateral 
FP1F;P2 is then a parallelogram and, of course, the semimajor axes of the 
fundamental ellipse and its conjugate are the same. Also, the orbital parameter 
and the semiminor axis are 

PF C -=--- and 
Pm rl + r2 

By simple geometry show that this orbit is characterized by the property 
that the orbital tangents at the terminals are parallel to each other and to the 
bisector of the transfer angle 8. Finally, discuss the case for 8 = 180 0 

• 

~ Problem 6-14 
J( The vacant focus F; divides the major axis of the fundamental ellipse in the 

same proportion as the vacant focus F:" of the minimum-energy ellipse divides 
the chord PI P2 . 

¢ Problem 6-15 
If PI and P2 are any two points on an ellipse such that the straight line 

connecting them is parallel to the major axis, then the ratio of the focal-radii 
difference and the distance separating PI and P2 is the eccentricity. 
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¢ Problem 6-16 
The flight-direction angle of the fundamental ellipse at the terminal point 

PI is 

t 
eF sin 4>1 

co 11=-----...:....-
1 - eF cos 4>1 

HINT: Argue geometrically from Fig. 6.6. 

Intersection of the Transfer-Angle Bisector and the Chord 

Let R be the point of intersection of the chord and the bisector of the 
transfer angle 0 with € used to denote the angle LF RPI' Then the distance 
from R to the focus is either 

or FR = P2Rcos{1r - €) + T2 cos!O 

= -P2Rcos€ + T2 cos!O 

Hence, by subtraction, 

T - T 
cos € = _2 __ 1 cos! 0 = sin Q>F cos! 0 

c 
(6.50) 

On the other hand, using the law of tangents for the triangle flP1 F P2 , 

T +T tan 1 [1r-(€+10)+(€_10)] tan 1 (1r-0) cot 10 
21= ~ ~ ~ = 12 = __ 2_ 

T2 -T1 tan2'[1r-(€+2'0)-(€-2'(J)] tan2'{1r-2€) cot€ 

Therefore, 

tan € = T 2 + TItan 1 (J (6.51) 
T2 - Tl 2 

and, combining with Eq. (6.50), gives 

sin€ = Tl +T2 sin 10 = PF sin 10 (6.52) 
c 2 Pm 2 

Finally, using the law of sines, 

. 10 . 10 
PR=sm2' T =~ P.R= sm2' T =~ 

1 sin€ 1 Tl + T2 2 sin(1r - €) 2 Tl + T2 (6.53) 

so that 

T C [T (T2 - T ) 1 F R = __ 1_ cos € + T cos 10 = 1 1 + T cos 10 
T +T 1 2 T +T 1 2 1 2 1 2 

Hence, the distance Irom R to the locus is the product 01 the harmonic 
mean between the terminal radii and the cosine 01 hall the transleT angle, 
i.e., 

2r r2 FR = __ I-COS 10 
r 1 + r2 2 

(6.54) 
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There are also two interesting corollaries of this analysis. First, since 

P1R rl 
P2R = r2 

(6.55) 

the transfer-angle bisector divides the chord in the same ratio as that of the 
terminal radii. Second, from 

PF r 1 r2 

Pm = P1R = P2R 
(6.56) 

we see that the ratio of the parameters of the fundamental and minimum
energy ellipses is the same as the ratio of either terminal radius to its 
corresponding fraction of the chord as cut by the transfer-angle bisector. 

Parameter in Terms of Eccentricity 

Consider now the problem of obtaining a functional relationship between 
the parameter and the eccentricity of an orbit. As a first step, note that 
the eccentricity vector may be expressed as a linear combination of r 1 and 
r 2 provided that r 1 X r 2 f:. O. Thus, we write 

e = A i r1 + B ir2 

and determine the coefficients A and B from 

Hence, 

e . i =.!!..- - 1 = A + B cos (} 
rl r

1 

e . i =.!!..- - 1 = A cos (} + B r2 r
2 

Asin
2

0 = (:. -1) - (~ -1) cosO 
B sin

2 
0 = (~ - 1) - (:. -1 ) cos 0 

(6.57) 

(6.58) 

Next, calculate the magnitude of the vector product of e and ic 

esinw = eF tanw = AsinlPl + BsinlP2 

where lPl and lP2 are exterior angles of the triangle IlF PI P2 as defined in 
Sect. 6.1. Then, using the law of sines to replace lPl and lP2 by (}, we have 

cesinw = ceFtanw = (Ar2 + Br1)sin(} 

Finally, substitute for A and B from Eqs. (6.58). When solving for p, 
note that the coefficient of P (according to the law of cosines) is simply c2 • 

Thus, 

(6.59) 
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is an expression for the parameter. The factor esinw = eF tanw is simply 
the projection of the eccentricity vector e on the straight-line locus so that 
the parameter is seen to be a linear function of this projection. 

An alternate form of Eq. (6.59) is also useful. Substituting for PF and 
eF from Eqs. (6.42) and (6.49) yields 

~ = r2 +r1 + r2 -r1 tanwcot 10 
Pm C C 2 

or, using Eq. (6.51), 

~ = eF(tan€ + tanw) cot !O 
Pm 

(6.60) 

Therefore, we see that the parameter is zero when the eccentricity vector is 
colinear with the bisector of the transfer angle O. This vector corresponds 
to an orbit whose eccentricity is e = sec! 0 and whose semimajor axis 
is zero. The orbit is the singular hyperbola consisting of the two straight 
lines P2 F and F PI and, therefore, the orbit coincides with its asymptotes. 
Furthermore, since the parameter of an orbit cannot be negative, a lower 
limit on the straight-line locus of eccentricity vectors is established below 
which no such vector can extend. 

¢ Problem 6-17 
The eccentricity vector of the minimum-energy orbit is 

T2 - S TI - S 
em = --rl + --r2 

se sc 

HINT: Use the results of Prob. B-2 in Appendix B. 

Tangent Ellipses 

Let the point PI be the pericenter of the ellipse whose apsidalline coincides 
with the line F PI' Since this orbit is tangent at PI to a circle of radius r 1 

and centered at F, we use the term tangent ellipse when referring to this 
orbit. 

To obtain the eccentricity eh ' note that 

etl = eFsec LFP1P2 

with the angle LFP1P2 determined from 

r 1 = ccos LFP1P2 - r2 cos(1r - 0) 

Hence, 
r 2 - r 

etl = 1 0 = eF sec(1r - 4>1) 
r 1 - r2 cos 

The semimajor axis is found from 

at I (1 - et I) = r 1 

(6.61) 
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so that the parameter is 

Ptl = C () = cos(1I" - 4>1) 
Pm Tl - T2 COS 

(6.62) 

Of course, the parameter can also be obtained from Eq. (6.28) with the 
value 11 = ! 11" • 

In a similar manner, 

(6.63) 

obtain for the tangent ellipse at P2 • 

6.4 A Mean Value Theorem 

The mean value theorem of the differential calculus states that on any 
smooth arc of a curve joining the points PI and P2 , there is at least one 
intermediate point Po such that the tangent to the curve at Po is parallel 
to the chord joining PI and P2 • This property is trivially evident for the 
orbital boundary-value problem but here there exist several rather dramatic 
consequences not readily anticipated. 

We are concerned with determining that point in an orbit connecting 
PI and P2 for which the orbital tangent, i.e., the velocity vector, is parallel 
to the chord PI P2 • For this purpose, calculate the scalar product of the 
eccentricity vector and the vector r 2 - r 1 in the form 

J.le • (r 2 - r I) = (r 2 - r I) X V . h - ~ r . (r 2 - r 1 ) 
T 

where we have permuted the factors in the triple scalar product. The 
particular value of r desired (call it r 0) corresponds to a value v = v 0 for 
which 

(r2 - r I) X Vo = 0 

We also know that the eccentricity vector has the property 

e· (r2 - r 1) = TI - T2 

as demonstrated in Sect. 6.3. Therefore, 

or, simply, 

1 
e· (r2 - r I) = --ro • (r2 - r I) = Tl - T2 

TO 

(6.64) 

(6.65) 
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Fig. 6.15: Locus of 
the mean points. 
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-a relationship which is independent of the particular orbit in questiont 
and is, consequently, valid for all orbits. 

From this equation we see that the direction of ro is constant and 
depends only on the geometry of the boundary-value problem. Call the 
point Po, where the parallelism occurs, the mean point of the orbit so that 
ro is the position vector of the mean point as shown in Fig. 6.15. The fact 
that all mean-point position vectors are colinear is remarkable. 

What is even more remarkable is seen by formally replacing r 0 by 
either -ep or -ep in Eq. (6.65). The result is identical with Eq. (6.64) if 
e is the eccentricity vector of the parabolic orbits. Therefore, the straight
line locus of mean points for all orbits coincides with the line connecting 
the focus and the extremities of the minor axis of the fundamental ellipse. 

The Hight-direction angle 10 at the mean point is the angle between 
the orbital tangent and the radius to the mean point. Clearly, 10 is the 
same for all orbits of the boundary-value problem and, indeed, is identical 
to the angle wp' Thus, 

10 = wp = !11' - tPF (6.66) 

The trigonometric relations of tPF are recorded as Eqs. (6.47) and (6.48). 

t This was discovered by Gerald M. Levine in connection with an optical-sighting 
problem for orbital navigation. He showed that the true anomaly of the point in an 
orbit where the velocity vector is parallel to the line of sight from the initial point to 
the terminal point is independent of the orbit. Levine's paper , "A Method of Orbital 
Navigation Using Optical Sightings to Unknown Landmarks," appeared in the AIAA 
Joumal, Vol. 4, Nov. 1966, pp. 1928-1931. For many years the result had only academic 
interest. 
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Geometry of the Mean-Point Locus 

Again, refer to Fig. 6.13 and let 8 be the angle between r l and the axis 
of the parabola whose eccentricity vector is ep • FUrther, let S denote the 
point of intersection of this axis and the chord PI P2 • Our objective will be 
to determine 8 and F S in terms of the geometry of the triangle t:::..F PI P2 • 

Equation (6.65) can be written as 

or, equivalently, 
. 2 I .t' • 2 I «() .t') r l sm 2 u = r2 sm 2 - u 

From this last expression, we derive 

. I () 
I .t' _ sm 2 

tan 2 u - ---::=----=--

~ + cos !() V r 2 2 

or 

as more convenient formulas for computing the angles 8 or () - 8 . 
Next, apply the law of sines to the triangle t:::..F PI S 

FS = sinh'o + 8) r 
sin 10 I 

Then, from the triangle t:::..F PI P2 , 

so that 

sin( 10 + 8) = r2 sin () 
c 

F S = v'r I r 2 cos ! () 

(6.67) 

(6.68) 

(6.70) 

The length FS, which is the mean-point radius of the singular hyper
bola consisting of the straight line connecting the terminals PI and P2 , is 
determined as the product 01 the geometric mean between the terminal radii 
and the cosine 01 hall the transler angle. It is an important quantity which 
will be frequently encountered. 

The two line segments F S and F R, introduced in the previous section, 
are beautifully related. They are the distances from the focus to the chord 
measured, respectively, along the mean-point locus and along the transfer
angle bisector. The first involves the geometric mean between the terminal 
radii and the second, the harmonic mean. FUrthermore, 

FR Jflf2 
FS = ! (rl + r2) < 1 

(6.71) 

so that the ratio 01 F Rand F S is the same as the ratio 01 the geometric 
and arithmetic means between r I and r 2 • 



Sect. 6.4] A Mean Value Theorem 267 

Finally, consider the ratio of the segments of the chord divided by the 
locus of mean points. Since, 

p S = r l sin 8 
I sin 10 

and P. S = r 2 sin( 0 - 8) 
2 sin( 1f - 10) 

we have 
PIS r l sin8 
P2 S = r2 sin(O - 8) 

But, from Eq. (6.68), 
r I sin 2 ! (0 - 8) 
r 2 = sin2 !8 

so that 
P S sin !(O - 8) cos !8 tan !(O - 8) 
_1_ = ~ I 2 = 2 I 
P2 S sin 28cos 2(0-8) tan 28 

Then, since the expressions for the tangents of 8 and 0 - 8 in Eqs. (6.69) 
may also be written as 

I Jrl r2 sin !O 
tan 2 8 = FS r l + 

the ratio is simply 

The Mean-Point Radius 

and ! (0 _ ) _ Jr I r 2 sin ! 0 
tan 2 8 - FS r 2 + 

PIS _ r l +FS 
P2S - r2 +FS 

(6.72) 

For an arbitrary ellipse connecting PI and P2 we can determine the eccen
tric anomaly of the mean point Po. To this end, refer to Fig. 6.16, where 
we have constructed the locus of mean points together with the two angle 
bisectors-one bisecting the angle 8 and the other bisecting 0 - 8. Also 
shown in the figure is an arbitrary elliptic orbit as well as the parabolic orbit 
connecting PI and P2 • Tangents to each of these orbits are constructed 
at PI and P2 as well as those parallel to PI P2 • The various points of 
intersection of these lines are labeled in the figure. 

Let EI and E2 be the eccentric anomalies of the ellipse corresponding 
to the points PI and P2 • Further, let ro and Eo denote, respectively, the 
radius and eccentric anomaly of the mean point on the elliptic orbit. The 
corresponding radius for the parabola is rop' Then, by suitably adapting 
Eqs. (6.32) and (6.35) to the purpose, we may write for the ellipse 

FNI cos! (Eo - E I) = Jrlro FN2 cos! (E2 - Eo) = J rOr2 

and for the parabola 
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Fig. 6.16: Geometry for eccentric 
anomaly of the mean point. 

Since triangle !:l.F N1pN2p is similar to triangle !:l.F NI N2 , then 

FN1p FNI 
FN2p = FN2 

or, simply, 

Hence, 
{6.73} 

so that 
{6.74} 

where a and e are the semimajor axis and eccentricity of the ellipse. Thus, 
we obtain the fundamental resultt that the eccentric anomaly of the mean 
point of an orbit connecting two termini is the arithmetic mean between the 
eccentric anomalies of those termini. 

For elliptic orbits there are, of course, two mean points-the second 
for that portion of the orbit traversed from P2 to PI as seen in the figure. 

t This is an important corollary to Lambert's Theorem (to be developed in Sect. 6.6) 
which first appeared in a paper entitled "A New Transformation Invariant in the Or
bital Boundary-Value Problem" by Richard H. Battin, Thomas J. Fill, & Stanley W. 
Shepperd. It was published in the first issue of the Journal 0/ Guidance and Control, Vol. 
1, Jan.-Feb., 1978, pp. 50-55. 
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It is not difficult to see that the eccentric anomaly of the second mean point 
is just Eo + 7r • 

Clearly, an analogous result holds for hyperbolic orbits. In a manner 
similar to that used for the ellipse, we can derive 

Ho = ~(Hl + H2) 
ro = a[l - ecosh !(Ht + H2 )] 

where Ho, HI' and H2 have the obvious meanings. 

Elegant Expressions for the Mean-Point Radii 

(6.75) 

(6.76) 

The true anomaly of the mean point of the parabola connecting PI and 
P2 is 2l/JF' Therefore, the mean point radius of the parabola is simply 

Pp Pp Ppc 
r - - ---op - 1 + cos2l/JF - 2cos2l/JF - 4Pm 

-the last step following from Eq. (6.48). Finally, substituting from Eq. 
(6.39), we obtain 

rop = ! (rt + r2 + 2y'rtr2 cos ~8) = ! (aF + FS) 

as the mean-point radius of the parabola whose eccentricity vector is ep ' In 
other words, the mean-point radius of the parabola is the arithmetic mean 
between the semimajor axis of the fundamental ellipse and the line segment 
F S. Alternately, the mean point radius of the parabola is half way between 
the chord and the extremity of the minor axis of the fundamental ellipse. 

It turns out that the mean-point radius for the parabolic orbit char
acterized by ep is the same equation with the plus sign preceding the last 
term replaced by a minus sign. This is shown most easily using Eq. (6.21). 
Thus, we have 

(6.77) 

It may also be of interest to record the parameter of the parabolic 
orbits in the form 

4PmrOp 2 ( ) Pp = c = 2rop cos </>F 6.78 

which is a direct consequence of the equation of orbit used at the beginning 
of this subsection. 

A remarkable relation exists for the mean-point radius of any orbit in 
terms of the mean-point radius of the parabola. From the derivation of the 
eccentric anomaly of the mean point, we have 

FN2cos!(E2 -Eo) = FN2cos~(E2 - Et ) = y'rOr2 

F N2p = JrOpr2 
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so that 

FN2 I {t!0 
FN 

cos 4 (E2 - E I ) = -
2p TOp 

But, from similar triangles, 

FN2 _ TO 

FN2p - TOp 

Therefore, we have the truly elegant expression 

TO = TOp sec2 i (E2 - E I ) 

and, as we might expect, 

TO = TOp sech2 i (H2 - HI) 

[Chap. 6 

(6.79) 

(6.80) 

obtains also for hyperbolic orbits. Equations (6.79) and (6.80) will prove 
essential in an important orbit determination scheme to be considered in 
the next chapter. 

Parameter in Terms of Mean-Point Radius 

We can determine a simple functional relation between the parameter of an 
orbit and the radius to the associated mean point. By adapting Eq. (6.29) 
to our purpose, we have 

2 . . 2 I 1: 
_ ToTlsm'osm 2'U 

p -. . ( 1:) 
TO sm 10 - T I sm 10 + u 

(6.81) 

But, in an earlier subsection of this section, we found that 

sin(,o +6) _ _ I 
. TI - FS - ";TI T2 cos 2' () 

sml0 

Therefore, Eq. (6.81) can be written as 

2 . 2 I 1: 
TOTI sm 2'U 

p= I 
TO - ";TI T2 cos 2' () 

(6.82) 

which expresses the parameter p as a bilinear function of TO' (Note that 
for an elliptic orbit, the value of TO to be used in this equation corresponds 
only to the mean point on that portion of the orbit traversed from PI to 
P2 in the counterclockwise direction.) 

Using Eq. (6.82), it is easy to see that dp/dTo is always negative. 
Further, p is infinite for the singular hyperbola whose mean-point radius 
is F S = ";T IT 2 cos ! () . 
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An alternate and somewhat simpler expression for the parameter is 
possible. From the first of Eqs. (6.69), 

211: .21f) 
• 2 1 _ tan - u _ T 2 sm 2' _ T 2 • 2 ! f) 

sm 2' 8 - ~ 1 - 1 - -- sm 
1 + tan 2'8 TI + T2 + 2JT1T2 cos 2'f) 4Top 2 

so that Eq. (6.82) may be written as 

{6.83} 

since 
Pp c 
Pm = 4Top 

-a relation which follows from the expression for the parameter of the 
parabola and Eq. {6.21}. 

¢ Problem 6-18 
The limiting value of p, as TO becomes infinite, is the parameter of the 

parabolic orbit transcribed in the counterclockwise direction from P2 to Pl. 
Explain this result geometrically. 

¢ Problem 6-19 
For any orbit the parameter is 

p= FR 
1-

FN 

PF 

where PF is the parameter of the conjugate of the fundamental ellipse. Also, 
F R and F N are distances, measured along the transfer-angle bisector, from the 
focus to the chord and to the intersection of the orbital tangents at the terminal 
points, respectively. 

NOTE: The two expressions for the parameter-the one here and the similar one 
of Eq. {6.83)-are truly delightful and worthy of a few moments contemplation. 
Gauss was right-there are "an abundance of elegant propositions." 

6.5 Locus of the Vacant Focus 

We explore now a different characterization of the orbital boundary-value 
problem based on the fact that an orbit is uniquely determined when the 
second focus, the vacant focus, F* is specified. Since F* cannot be placed 
arbitrarily, it will be of interest to find the locus of the vacant foci for all 
orbits that satisfy the conditions of the problem. 
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Elliptic Orbits 

The points PI and P2 both lie on the ellipse so that the point F* must 
be selected such that 

PIF + PIF* = P2 F + P2F* = 2a 

or, equivalently, 

PIF* = 2a - TI P2F* = 2a - T2 (6.84) 

Thus, for an ellipse of major axis 2a, the point F* is determined as the 
point of intersection of two circles centered at PI and P2 with respective 
radii 2a - T I and 2a - T 2' A number of such circles have been constructed 
in Fig. 6.17 for different values of the major axis 2a. 

Fig. 6.17: Locus of the vacant foci for elliptic orbits. 

If the selected value of 2a is too small, the circles will not intersect. 
The circles will be tangent for the minimum-energy ellipse, as defined in 
Sect. 6.1, with 

a = a =!8 m 2 

and the point of tangency F:" lying on the chord PI P2 • 

When a > am' the circle pairs intersect in two points F* and F*. 
Thus, there are in general a pair of conjugate elliptic orbits connecting PI 
and P2 -orbits with the same major axis but with vacant foci equidistant 
from and on opposite sides of the chord. t 

t An example, already considered in Sect. 6.3, is the fundamental ellipse and its 
conjugate for which the vacant foci are F;, F; and aF = ~(Tl + T2)' 
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By subtracting the equations in (6.84), we have 

P2F* - P1F* = -(r2 - r 1) 

273 

(6.85) 

indicating that the locus of F* is a hyperbola whose major axis is -(r2 -r1) 
and whose foci are PI and P2 • The distance between the foci is the chord 
length c so that 

where a* and e* are the the semimajor axis and eccentricity of the hyper
bolic locus. It follows that 

* c 1 e =---=-
r2 - r 1 eF 

(6.86) 

Thus, the eccentricity of the hyperbolic locus of vacant foci is the reciprocal 
of the eccentricity of the fundamental ellipse. 

The slope of the asymptotes of the hyperbolic locus is 

b* ~ 
-- = Ve*2 -1 = F = cot<PF = tan/o = tanw 
-a* eF P 

which shows that these asymptotes are parallel to the axes of the two 
parabolic orbits connecting PI and P2 • They may be constructed following 
the argument in Sect. 6.3 centered around Fig. 6.14. We see that the 
asymptotes of the hyperbolic locus of vacant foci are the normals to the 
directrices which pass through the midpoint of the chord PI P2 • 

Hyperbolic Orbits 

As before, we argue that PI and P2 must both lie on the hyperbolic orbit 
so that 

or, equivalently, 

(6.87) 

Again, F* is determined as the intersection of two circles centered at PI 
and P2 of respective radii r l - 2a and r2 - 2a shown in Fig. 6.18. 

The semimajor axis a of the hyperbolic orbit is, of course, negative 
with -00 < a ~ O. All points of intersection of the circle pairs fall outside 
the circle centered at PI and of radius r l' One may easily verify that, for 
hyperbolic paths from PI to P2 that are convex with respect to the focus 
F, the vacant foci all lie within this circle. 

By subtracting the equations in (6.87), we have 

(6.88) 
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Fig. 6.18: Locus of the vacant foci for hyperbolic orbits. 

which shows that the locus of these foci is the conjugate branch of the 
hyperbolic locus of the foci for the elliptic orbits. 

The foci Fa and Fa, corresponding to a = 0, are extreme cases in 
that infinite velocities are required to describe the associated paths. The 
orbit whose vacant focus is at Fa is the straight line connecting PI and 
P2 , Le., the hyperbola for which a = 0 and e = 00. Corresponding to 
the focus Fa' the orbit is composed of the two straight-line segments from 
P2 to F and from F to PI' This is the hyperbola for which a = 0 and 
e = sec !O. 

Parameter in Terms of Semimajor Axis 

We can determine an equation for the parameter as a function of the semi
major axist a by starting with the expression for the eccentricity vector 
given in Eq. (6.57). We calculate 

e . e = e2 = 1 - !!. = A 2 + 2AB cos 0 + B2 
a 

t Specifying a is, of course, equivalent to specifying the velocity magnitudes at 
the end points. This form of the equation for the orbital parameter was originally 
presented by the author at the Nineteenth International Astronautical Congress held 
in New York City in October, 1968 as a part of a paper entitled "A New Solution for 
Lambert's Problem." It appeared in Volume 2 of Astrodynamics and Astrionics published 
by Pergamon Press in 1970. The more conventional form of the parameter, as a function 
of the semimajor axis, is treated at the end of the next section. Some of the material 
covered in the next chapter is also based on the contents of that paper. 
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and, using the expressions for A and B in Eqs. (6.58), obtain 

e: -If - 2(;' -1) (~ -1) cosH (~ -If = (1-~) sin
2

0 

If we now collect terms in powers of P (noting that the coefficient of p2 is 
simply ail) and make further obvious simplifications, we find 

p2 _ 2DpmP+p!. = 0 

as a quadratic equation for the parameter p where 

acD = a(Tl + T2) - TlT2 cos2lO = a(2s - c) - s(s - c) 

The coefficient D can be written in the form 

D = ~ (1 _ ~) + .! (1 _ s - C) 
c 2a c 2a 

where each of the two terms is positive and the second is just one plus 
the first. Since these terms may have any value from zero to infinity, it is 
convenient to write 

D = cot2 v + csc2 v for 

Then, the solution of the quadratic is 

where 

l!...- = (cscv ± cotv)2 
Pm 

cot v=-- 1-- csc v=- 1---2 S - C ( S ) 2 S ( S - C) 
c 2a c 2a 

(6.89) 

(6.90) 

Finally, if the definition of v is extended to the second as well as the first 
quadrant, both solutions for p are contained in the single equation 

L = tan2 !v for 0 ~ v ~ 1r (6.91) 
Pm 2 

Unlike the semimajor axis, the parameter is unique for each orbit of the 
boundary-value problem and increases monotonically with v. The values 
v = 0, ~ 1r, and 7r correspond, respectively, to the orbits whose vacant 

foci are at Fa, F:n, and Fa. The foci marked with a tilde are associated 
with values of v in the first quadrant while those without correspond to v 
in the second quadrant. For cot v = ±v'(s - c)/c the vacant foci are at 
infinity and the orbits are parabolic. 

~ Problem 6-20 
Y The chordal and the extended radial components of the velocity vectors at 
PI and P2 can be expressed in terms of the angle v as follows: 

Vc = ~Vml sec ~tPI tan ~v = ~Vm2 sec ~t/>2 tan ~v 

vp = ~Vml sec ~tPI cot ~v = iVm2 sec itP2 cot ~v 
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6.6 Lambert's Theorem 

Among the many surprising properties of conics is the lack of dependence 
on eccentricity for certain of the key orbital quantities. For example, one 
would scarcely anticipate that the period of elliptic motion depends only 
on the semimajor axis of the ellipse. The fact that a body moving in a 
conic orbit has a velocity magnitude or speed that is a function only of 
the distance from the center of force and the semimajor axis is another 
example. 

Perhaps the most remarkable theorem in this connection is the one 
discovered by Lambert having to do with the time to traverse an elliptic 
arc. t Lambert conjectured that the orbital transfer time depends only upon 
the semimajor axis, the sum of the distances of the initial and final points 
of the arc from the center of force, and the length of the chord joining these 
points. If t2 - tl is the time to describe the arc from PI to P2 , then 
Lambert's theorem states that 

..fo,(t2 - t l ) = F(a, r l + r2' c) 

and again the eccentricity is not involved. 

Euler's Equation for Parabolic Orbits 

(6.92) 

Euler developed the special case of Lambert's theorem for the parabola but 
subsequently neglected it and did not extend it to the ellipse and hyperbola. 
Therefore, Lambert deserves full credit for independently obtaining the 
result when it was otherwise "buried in oblivion" (as Gauss expressed it) 
and extending it to the remaining conic sections. 

As a preliminary to the general case, we begin by deriving Euler's 
equation which Euler published in 1743 in an article on the determination 
of comet orbits. 

Barker's equation (4.10) is written in the form 

6..fo,(t - T) = 3pO" + 0"3 

where 
0" = JPtan! f 

With subscripts distinguishing quantities at PI and P2 , we derive 

6..fo,(t2 - t l ) = (0"2 - 0"1)[3(p + 0"10"2) + (0"2 - 0"1)2] (6.93) 

either directly or from Eq. (4.24) using the equation of orbit 

r= !psec2 !f= !(p+0"2) 

t Actually, the theorem is true for a general conic. It is important that the transfer
time relation depend only on a single orbital element since the solution of the boundary
value problem will, necessarily, require an iterative process. 
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Next, from the definition of (7 and the equation of orbit, 

p + (71(72 = psec !/I sec !/2 cos !(/2 - II) = 2v'rl r 2 cos!(1 

= ±2v's(s - c) (6.94) 

so that one of the factors in the time equation is expressed in terms of 
r I + r 2 and c. The choice of the upper or lower sign depends, respectively, 
on whether the transfer angle (I is less than or greater than 180 degrees. 

To obtain the second factor (72 - 0'1' we use the equation of orbit to 
write 

so that 
(0'2 - (71)2 = 2[(rl + r2) - {p + 0'1(72)J 

= 4{ Vs =f .;s=c)2 

Then, since (72 is never smaller than (71 , we have 

(72 - (71 = 2( Vs =f .;s=c) 
Thus, 0'2 - (71 also depends only on r I + r 2 and c. 

The special case of Lambert's theorem for the parabola 

.JP,(t2 - tl ) = F{rl + r2, c) 

is the immediate consequence of Eqs. (6.93), (6.94), and (6.95). 

(6.95) 

(6.96) 

The explicit form of Eq. (6.96) is Euler's equation. It is readily 
obtained by substituting Eqs. (6.94) and (6.95) in Eq. (6.93). Therefore, 

6.JP,(t2 - tl ) = (rl + r2 + c)~ =f (rl + r2 - c)~ (6.97) 

with the upper or lower sign taking effect according as (I is less or more 
than 180 degrees. 

It is interesting that Lambert not only rediscovered this result on his 
own but he also skillfully applied it to the problem of comet-orbit determi
nation which Euler failed to do. 

Lagrange's Equation for Elliptic Orbits 

Lagrange was first to supply the analytic proof of Lambert's theorem for 
elliptic orbits just one year before Lambert died. Lagrange wrote three 
memoirs on the theory of orbits, two in 1778 and one in 1783. His deriva
tion, which was subsequently repeated by Gauss in his Theoria Motus but 
without acknowledgement, proceeded essentially along the following lines. 

Let EI and E2 be the respective eccentric anomalies associated with 
the end points PI and P2. Then, from Kepler's equation, the time t2 - tl 
to traverse the arc from PI to P2 may be written as 

.JP,(t2 - t l ) = 2a~[! (E2 - E I ) - esin ! (E2 - EI) cos! {EI + E2)J 
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Since the eccentric anomalies appear only in combination as the sum or 
difference, it is convenient to define two quantities 1/1 and t/> by 

1/1 = ! (E2 - E1 ) cost/> = ecos ! (El + E2) (6.98) 

so that the time equation becomes 

..fo(t2 - t1 ) = 2a~(1/1 - sin 1/1 cost/» (6.99) 

The other parameters of Lambert's theorem, Tl + T2 and c, can also 
be expressed simply in terms of 1/1 and t/>. Thus, from the equation of orbit, 

Tl + T2 = a(l- ecosE1) + a(l - ecosE2) 

= 2a(l - cos 1/1 cos t/» 

and, using the relations 

(6.100) 

v'Tcos ! f = va(l - e) cos !E 
from Eqs. (4.31), we obtain 

v'T sin ! f = V a( 1 + e) sin ! E 

v'TI T2 cos! 0 = a(cos 1/1 - cos t/» (6.101) 

which we can use to derive 

c2 = (Tl + T2)2 - 4Tl T2 cos2 ! 0 = 4a2 sin2 1/1 sin2 t/> 

Hence, 
c = 2a sin 1/1 sin t/> (6.102) 

The proof of Lambert's theorem follows at once since 1/1 and t/> can 
be determined in terms of a, Tl + T2 , and c from Eqs. (6.100) and (6.102) 
and the results substituted into Eq. (6.99). A similar argument shows the 
theorem to be true for the hyperbola as well. 

Lagrange's fonn of the time equation is obtained using two quantities 
a and {3 defined as 

{3=t/>-1/1 (6.103) 

so that 
1/1 = ! (a - (3) (6.104) 

Thus, we have 

28 = Tl + T2 + c = 2a[l- cos(t/> + 1/1)] = 2a(l- cos a) 

2(8 - c) = Tl + T2 - C = 2a[l- cos(t/> -1/1)] = 2a{l- cos{3) 

or, simply, 
21 8 .21a s-c () 

sin 2 a = 2a sm 2fJ = 2a 6.105 

The time equation is expressed in terms of a and (3 by substituting 
Eqs. (6.104) into (6.99). Therefore, 

..fo{t2 - t1 ) = a! [(a - sin a) - {{3 - sin {3)} (6.106) 
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exactly as obtained by Lagrange in 1778. There is, of course, an ambiguity 
in quadrant for a and f3; but this will be resolved in an elegant manner in 
the following section. 

¢ Problem 6-21 
For hyperbolic orbits, tP and tP are defined as 

tP = ! (H2 - HI) coshtP = ecosh ! (HI + H2) 

and the basic equations are 

~(t2 - h) = 2(-a)~ (sinh tPcosh tP - tP) 

Tl + T2 = 2a(1- cosh tPcosh tP) 
c = - 2a sinh tP sinh tP 

VTIT2 cos!O = a(cosh tP - cosh tP) 

The Lagrange parameters are defined, as for the ellipse, by Eqs. (6.103). 
Then 

~(t2 - ttl = (-a)~[(sinha - a) - (sinhfj - fj)] 

is the time equation for the hyperbola analogous to the one for the ellipse given 
in Eq. (6.106) where 

sinh2 la =-~ 
2 2a 

.21a s-c smh -JJ = ---
2 2a 

The Orbital Parameter 

In Sect. 6.2 we developed the following equation for the parameter of an 
elliptic orbit 

2 . 2 10 
P = TIT2 sm 2 I (6.107) 

TI + T2 - 2JTI T2 cos 20cos1/J 

which was labeled (6.37) with 1/J written out as one-half the difference 
of the eccentric anomalies at PI and P2 • Two different and, for some 
purposes, more convenient equations result when Eqs. (6.100) and (6.101) 
are substituted in Eq. (6.107). They are 

• 2 10 
TIT2 sm 2 

P = asin 21/J 

which can also be written 

and 

P = c = 2a sin 2 4> (6.108) 
Pm 2asin 2 1/J c 

Equations for the hyperbola are obtained when the trigonometric func
tions of 1/J and 4> are replaced by hyperbolic functions. Specifically, 

P c _ 2a. 2 () 
- = - 2 . h21/J - -- smh 4> 6.109 
Pm asm c 
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These last equations are basic to the topic developed in Sect. 6.8. In 
the present context they provide the following convenient expressions for 
the orbital parameter in terms of the Lagrange parameters a and {3: 

P c sm 2' a -}J 

( 

2a. 2 1 ( a) _ sin! (a + (3) 
- sm 2' a +}J - • 1 ( a) 

- - (6.110) 
Pm - 2a. h2 1 ( a) _ sinh! (a + (3) 

- - sm 2' a +}J - • h 1 ( a) c sm 2' a -}J 

with the alternate form obtained using Eq. (6.102). 

¢ Problem 6-22 
Euler's time equation for the parabola can be obtained from Lagrange's 

equation for the ellipse by allowing the semimajor axis a to become infinite. The 
same limiting process applied to Eq. (6.110) will produce the parameter of the 
parabola given in Eq. (6.39). 

~ Problem 6-23 
Y If the Gudermannian ~ is used to represent the hyperbolic locus of vacant 

foci, then 

Derive the expressions 

tan
2 

-2
1 ~ = 

¢ Problem 6-24 
The formula 

[ 

COS2 !a sin a 
---=-COSl/-
cos2 ! {3 sin {3 

h2 I • h cos 2a sm a 
----:::-7-- = -COSl/--
cosh 2 ! {3 sinh {3 

FN= 
1- TI + T2 

2a 
where N is the point of intersection of the two orbital tangents at PI and P2, 
is valid for all orbits when the transfer angle (J is 180 degrees. 

HINT: Use Eqs. (6.108) and (6.12). 

NOTE: Consider a = aF. 

¢ Problem 6-25 
The eccentricity of the family of elliptic orbits connecting PI and P2 can 

be written as 

e2 = 1 - cos2 4JF sin2 ! {a + {3) = sin2 4JF sin2 ! {a + {3) + cos2 ! {a + {3) 

Use this equation to calculate the eccentricities of the fundamental ellipse and 
its conjugate. 
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~ Problem 6-26 
Y The distance between the vacant foci of any pair of conjugate orbits is 

4asin'Yocos i QCOS i,8 

where 'Yo is the flight-direction angle at the orbital mean point. Use this expres
sion to calculate the distance between the vacant foci F; of the fundamental 
ellipse and F;' of its conjugate. 

~ Problem 6-27 
Y The radius, ro, of the mean point and the velocity vector, Vo, at the mean 
point may be expressed in terms of the Lagrange parameters Q and ,8 as 

ro= { 

asin2 ~(Q +,8) = ia[l- cos i(Q + ,8)] 

-asinh2 ~(Q +,8) = ia[l - cosh i(Q + ,8)] 

Vo = { I¥. cot ~(Q +,8) Ie 

~ cothH"'+P)ic 

Furthennore, 

{ 
2asin ~Qsin i,8 

FS = v'rlr2cos i O = . 1 • 1 
-2asmh 2QS1nh 2,8 

where F S is the distance from the focus to the point of intersection of the chord 
and the locus of mean points. 

6.7 Transforming the Bou ndary-Value Problem 

Lambert's theorem permits interesting and important geometric transfor
mations of the boundary-value problem. For example, consider an elliptic 
arc from P l and P2 • Then, according to Lambert's theorem, if P l and P2 
are held fixed, the shape of the ellipse may be altered by moving the foci F 
and F* without altering the transfer time, provided, of course, that r l +r2 
and a are unchanged. The locus of permissible locations for the focus F 
is an ellipse with foci at P l and P2 whose major axis is rl + r2' For the 
minimum-energy orbit, am = ! s SO that the geometric constraints (namely 
rl +r2 and c being unchanged) automatically constrain the semimajor axis. 
Thus, as F moves along its elliptic locus with major axis r l +r2' the locus 
of the vacant focus F:n is the rectilinear ellipse with major axis c. Clearly 
then, the transfer orbit is the minimum-energy ellipse for all intermediate 
orbits encountered during the transformation. 

A similar situation prevails for the fundamental ellipse. Indeed, since 
aF = ! (rl + r2)' the semimajor axis is also implicitly constrained by the 
conditions imposed on the transformation. FUrthermore, F and Fj;. move 
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along the same elliptic locus with major axis Tl + T2 , and all intermediate 
orbits encountered are also the corresponding fundamental ellipses. 

For an arbitrary ellipse, the locus of the focus F* is an ellipse with 
major axis 4a - (Tl + T2 ) and confocal with the elliptic locus of F. Thus, 
referring to the left-hand part of Fig. 6.19, the focus F may be moved to 
an intermediate point Fi and the focus F* to Ft -the time to traverse 
the new arc from PI and P2 will be unchanged. 
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Fig. 6.19: Transformation of a pair of conjugate ellipses. 

For the hyperbolic arc connecting PI and P2 , the locus of F* is again 
an ellipse confocal with the elliptic locus of F. However, the major axis of 
the locus is TI +T2 -4a. In the special case of the straight-line hyperbola, 
whose vacant focus is at Fa , the foci F and Fa share the same locus. 

Certain important quantities besides the transfer time will be un
changed by the transformations just described. The Lagrange parameters 
Cl and f3 are explicit functions of 8, c, and a so they too are invariants. The 
quantities TO' Vo' FS considered in Prob. 6-27, which are functions of a, 
f3, and a, are invariant. The anomaly differences E2 - El and H 2 - HI are 
invariant under the transformations even though the individual anomalies 
are not. 
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Transforming to a Rectilinear Ellipse 

Consider an elliptic arc connecting PI and P2 -more specifically, one 
whose vacant focus lies along the lower branch of the hyperbolic locus 
shown in Fig. 6.17. By moving F counterclockwise and F* clockwise 
on their respective loci illustrated in the left-half of Fig. 6.19, the ellipse 
becomes very Bat. Ultimately, the limiting case is obtained, with the foci 
at Fr and F; , and the entire curve Battens out to coincide with the major 
axis. The orbit is then a rectilinear ellipse (e = 1), the arc in question 
coincides with the chord c, and the time interval to traverse the straight
line path from PI and P2 is the same as the original value t2 - t l • 

The end points of the rectilinear path are so located that 

Therefore, the radial distances from the focus Fr are 

(6.111) 

Now, from Kepler's equation with e = 1, the transfer time for the 
rectilinear ellipse is 

..fo(t2 - t l ) = at [(E2 - sinE2) - (EI - sin EI )] (6.112) 

Also, from the equation of orbit for an ellipse with unit eccentricity, 

PFr = r = a(l- cos E) = 2asin2 ~E 

Thus, the radial distances from the focus Fr are 

(6.113) 

Therefore, when Eqs. (6.112) and (6.113) are compared with Eqs. (6.106) 
and (6.105), we see that the Lagrange parameters a and {3 are simply 
the eccentric anomaliest of the respective end points P2 and PI of the 
rectilinear orbit as illustrated in the first part of Fig. 6.20. 

The situation is somewhat different when the elliptic arc from PI to 
P2 has its vacant focus F* along the upper part of the branch of the 
hyperbolic locus in Fig. 6.17. The transformation is illustrated in the right 
half of Fig. 6.19 for various stages as the focus F moves to Fr and F* 
moves to F;. Since the orbit from PI and P2 must always encircle the 
vacant focus, then, in the limit, the rectilinear ellipse is traversed from PI 
to 'F; and back to P2 • The corresponding eccentric anomalies are shown 
in the second part of Fig. 6.20. 

t This interpretation of the Lagrange parameters was made by John E. Prussing of 
the University of Illinois in a paper entitled "Geometrical Interpretation of the Angles 
a and Ii in Lambert's Problem" which appeared in the Journal 0/ Guidance and Control, 
Vol. 2, Sept.-Oct. 1979. 
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Fig. 6.20: Transformations of the four basic ellipses. 

In the case for which the transfer angle () exceeds 180 degrees, the 
quadrants for a and {3 are determined as illustrated in the third and fourth 
parts of Fig. 6.20. In the first instance, the path from PI to P2 must 
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encircle the occupied focus Fr as well as F:. For the orbit corresponding 
to F* , the point Fr is encircled but not Fr* . 

It is clear, from the above consideration of all the possibilities, that we 
may adopt the following convention for assigning quadrants to the Lagrange 
parameters a and /3 

o ~ a ~ 211" 

o ~ a ~ 211" 

which will include all elliptic orbits. 

¢ Problem 6-28 

for 
for 

(6.114 ) 

The Lagrange parameters Qm and {3m for the minimum-energy orbit are 

Qm=7I" 
3c - r. - r2 cos {3m = --..;;........~ 
r. + r2 + c 

and the transfer time is 

. ~(t2 - t.) = 71" - ({3m - sin{3m) 
V~ 

¢ Problem 6-29 
The Lagrange parameters QF and {3F for the fundamental ellipse are 

and the transfer time is 

~(t2 - tt) = 71" - 2{3F 
Va} 

Obtain a corresponding expression for the transfer time for the conjugate of the 
fundamental ellipse. 

Transforming to a Rectilinear Hyperbola 

Consider the hyperbola connecting PI and P2 whose vacant focus F* lies 
along the upper part of the hyperbolic locus shown in Fig. 6.18. We again 
allow the eccentricity to approach unity in such a way that a, r I + r 2 , and 
c remain unchanged. The vacant focus F* moves clockwise on its locus 
while the occupied focus F moves counterclockwise as before. In the limit, 
the orbit is a rectilinear hyperbola and the time to traverse the straight-line 
path from PI to P2 is the same as for the original hyperbolic arc. 

Just as in the case of the ellipse, the radial distances from the focus of 
the rectilinear hyperbola are again those given in Eq. (6.111). The equation 
of orbit, however, is 

PFr = r = a(l- cosh H) 

so that H2 and HI are identified with the parameters a and /3 defined in 
Prob.6-21. 
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p.~--------~--~--~~~------~f; 
2 

Fig. 6.21: Transformation of the two conjugate hyperbolas. 

The Gudermannian of H provides an appropriate geometrical rep
resentation in terms of an auxiliary circle. From Sect. 4.4 we recall the 
transformation 

sinhH = tan~ coshH = sec~ 
so that a and {3 correspond to the angles ~2 and ~I illustrated in the first 
part of Fig. 6.21. 

If we repeat the argument for the hyperbolic arc connecting PI and 
P2 with focus at F*, we find that the path from PI to P2 along the 
rectilinear path must encircle the focus Fr' Therefore, the angles ~I and 
~2 are as shown in the second part of Fig. 6.21. Since the orbit is traversed 
in the clockwise direction, the situation is identical to the problem of a 
counterclockwise orbit from PI to P2 through a transfer angle of 211" - O. 

We may then adopt the following convention for values of a and {3 
(since H and ~ have the same signs) 

O~a O~/3 for 
(6.115) o ~ a {3 ~ 0 for 

which will encompass all hyperbolic orbits. 
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~ Problem 6-30 
Y The transfer time for an elliptic arc with vacant focus F* connecting points 

PI and P2, after it has been transformed to a rectilinear ellipse, can be calculated 
from the one-dimensional form of the vis-viva integral 

v
2 = (::) 2 = ~ (~ _ ~) 

(a) Derive the equation 

.,ffi(h - h) = 18 rdr 

8-C ..j2r - r2 /a 

and carry out the integration using the following change of variable 

r = a(l-cosx) 

to obtain Lagrange's equation 

.,ffi( t2 - t I) = a! [( 0 - sin 0) - (f3 - sin (3)] 

where 0 and f3 are angles in the upper half-plane. 
(b) If the vacant focus of the elliptic arc is 'F* , the transfer time is increased by 

the amount 

2/f; I" - (a - sin all 

(c) If the original orbit is hyperbolic with vacant focus F* , then the appropriate 
change of variable to evaluate the integral is 

r = a(l- cosh x) 

Hence, derive the hyperbolic form of Lagrange's equation 

.,ffi(t2 - t.) = (-a)! [(sinh 0 - 0) - (sinh f3 - (3)] 

(d) In the integral of part (a), let the semimajor axis of the orbit become infinite 
and evaluate the integral to obtain Euler's equation for the parabola. 

6.8 Terminal Velocity Vector Diagrams 

An elegant geometric' interpretation of the invariants of Lambert's theo
rem is possible in the form of hodograph representations. By means of 
conventional compass and straight-edge techniques, the terminal velocity 
vectors can be readily constructed in a manner which explicitly displays 
these invariants. t 

t These results were presented by the author at the American Astronautical Society 
Symposium on Unmanned Exploration of the Solar System held at Denver, Colorado in 
February 1965. They were published in Advances in the Astronautical Sciences, Vol. 19 as 
a paper entitled "Orbital Boundary-Value Problems." 
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Two expressions for the orbital parameter in tenns of 1/1 and ¢ are 
given in Sect. 6.6 as Eqs. (6.108) and (6.109). From them we obtain the 
following relations for the skewed velocity components 

~ sin¢ ~ sin 1/1 
Vc = y -;, cos 1/1 - cos ¢ vp = y -;, cos 1/1 _ cos ¢ (6.116) 

when substitution into Eqs. (6.15) is made. Furthermore, if 1/1 and ¢ are 
replaced by a and (3, according to Eqs. (6.104), we obtain 

Vc = I¥a<cot !.B+ cot !a) v =. fiL(cot!(3 - cot !a) (6.117) 
p y;r;, 2 2 

Similar relations exist, of course, for hyperbolic orbits in tenns of hyperbolic 
functions. 

In the following, we shall, for convenience, restrict our discussion to 
the case for which the transfer angle () does not exceed 180 degrees. Then 
we have, from Eq. (6.114), 

o<!a<!7r 
- 2 P - 2 

so that cot ! {3 is always positive, and cot ! a will be positive for those 
orbits with vacant focus F* and negative for those with vacant focus 'F*. 
Thus, from the definition of a and (3, we may write 

(6.118) 

where 

p-v JJ -~ 
- r1 + r2 - c 4a 

Q - ±v JJ JJ 
- r 1 + r2 + c 4a 

(6.119) 

with the choice of sign, plus or minus, depending, respectively, on whether 
the vacant focus is at F* or 'F* . 

Elliptic Orbits 

We consider first the construction of the terminal velocity vectors when 
the vacant focus is F*. The technique is illustrated in Fig. 6.22 where all 
lengths indicated have the dimension of velocity. 

1. Two parallel lines are constructed with a separation of VJJ/4a. 
2. A compass is set to a radius of V JJ/(rl + r2 + c) and, with the point 

at A, the point R is determined. 
3. With the same radius, the compass point is set at R and the point D 

detennined. 
4. With a radius of VJJ/(r1 +r2 -c), and the compass point at R, the 

point B is located. 
5. Two lines are drawn through point B making angles ¢l and ¢2 (see 

Fig. 6.3 ) with the line AB. 
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Fig. 6.22: Construction of elliptic (F* ) velocity vectors. 

6. Finally, with the compass point at B, and radius equal to the distance 
from B to D, the points X and Yare determined. 

It is readily verified that the vectors from A to X and from A to Y 
are the velocity vectors vIand v 2 relative to the line AB which itself is 
to be regarded as parallel to the chord connecting PI and P2 • 

Several interesting by-products of the construction are the angles i a 
and i {3, which are fundamental in the Lambert time equation, together 
with the angles 1/J = i (E2 - E I ) and ¢, which is the angle whose cosine 
is ecos i (E2 + E1 )· 

For the orbit having the same value of a but with vacant focus P* , the 
construction is identical with the exception that the point R is determined 
to the right of point A instead of to the left. For this case, the construction 
of the terminal velocity vectors V I and v 2 is detailed in Fig. 6.23. 

A few important observations can now be made. The lengths of the 
lines RA, RD, and RB depend only on the dimensions of the triangle 
6.F PI P2 and not on the specific orbit. Therefore, if point A is kept 
fixed and the semimajor axis allowed to vary, thereby altering the distance 
between the parallel lines, the motion of the points R, D, and B can be 
readily visualized. When a attains its minimum value am , the parallel lines 
are at their maximum separation, the points A and D coincide, and i a 
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Fig. 6.23: Construction of elliptic (F* ) velocity vectors. 

becomes a right angle. This special case is illustrated in Fig. 6.24 and the 
resulting velocity vectors v ml and v m2 are those for the minimum-energy 
path. 

When the transfer angle 0 is 180 degrees, none of the formulas for the 
velocity vectors given above is valid. In this case, we have 

s = C = Tl + T2 and iT, = -ic = -iT2 

so that the equations for v 1 and v 2 are meaningless. However, if we recall 
the appropriate equations (6.13), then the construction illustrated in Fig. 
6.25 is readily validated. 
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Fig. 6.24: Construction of minimum-energy velocity vectors. 
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Fig. 6.25: Construction of elliptic ((J = 180 0 
) velocity vectors. 
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Parabolic Orbit 

The construction technique for the velocity vectors v PI and v P2 for the 
single parabolic orbit connecting the points PI and P2 for counterclockwise 
motion is illustrated in Fig. 6.26. The method is the same as described for 
elliptic orbits but, since a is infinite for the parabola, the two parallel lines 
coincide. Clearly, the straight-edge and compass procedure is unaffected. 

A 

Fig. 6.26: Construction of parabolic velocity vectors. 

Hyperbolic Orbits 

The expressions for P and Q given in Eqs. (6.119) are the same for the 
hyperbola connecting PI and P2 except that Q is always positive and the 
semimajor axis a is negative. However, the construction technique must be 
altered. The method is outlined below and the operations are illustrated 
in Fig. 6.27. 

1. Two parallel lines are drawn separated by V J.L/( -4a). 
2. The compass is set to a radius of VJ.L/(rl + r2 + c) and, with the point 

set at R, the point A' is determined. 
3. With a new radius of V J.L/(rl + r2 - c) and with the point again set 

at R, the point B' is located. 
4. A perpendicular from R, and intersecting the line AB, determines 

the point R'. 
5. With the compass point at R', points A, D, and B are located such 

that R' A' = R' A = R'D and R' B' = R' B . 
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Fig. 6.27: Construction of hyperbolic velocity vectors. 

6. Two lines are drawn through point B making angles 4>1 and 4>2 with 
line AB. 

7. With compass point at B, and radius equal to the distance from B 
to D, the points X and Yare determined. 

Finally, as before, the vectors from A to X and from A to Yare 
the velocity vectors v I and v 2 relative to the line AB and, hence, to the 
chord connecting PI and P2 • 

Again we note that the lengths of lines RA' and RB' do not depend 
on the orbit and, thus, R, R', A', and B' remain fixed as the semimajor 
axis a is varied. The variation of the other quantities can be visualized 
as before. In particular, we observe that there is no restriction on the size 
of a which may vary from zero to minus infinity. In the limit, the same 
parabolic orbit is obtained as before. 

In the construction diagram, the Lagrange parameters a and {3 do 
not appear directly as by-products as they did for elliptic orbits. However, 
if we introduce the two auxiliary angles 'h and 172 defined as 

tan ! 171 = sinh ! {3 

then !171 and !172 have the geometrical significance indicated in Fig. 6.27. 
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Furthermore, the alternate form of the Lambert time equation, as a 
function of these new variables, is readily shown to be 

";p(t2 - t l ) = 2v'( -a)3{[tan !112 sec !112 + log i(7r - 112)] 
- [tan !111 sec !111 + log i(7r - 111)]} (6.120) 

Boundary Conditions at Infinity 

An important orbital boundary-value problem is one for which a hyperbolic 
orbit is desired having a given velocity magnitude and direction at infinity. 
More specifically, let it be required to determine a velocity v I correspond
ing to a given position vector r l which will permit the attainment of a 
specified asymptotic hyperbolic velocity vector v 00 • 

The equation for VI can be derived as a limiting form of Eqs. (6.118) 
with P and Q defined by Eqs. (6.119). In particular, if we keep the transfer 
angle fJ fixed and let T2 become infinite, we readily see that 

lim Ie = 100 and lim! = 0 
(J= const. (J= const. 8 
~-oo ~-oo 

where 100 is a unit vector in the direction of the asymptote. Furthermore, 
since lim 8/T2 = 1, we have 

1· ( ) l' TI T2 (1 + cos fJ) TI (1 fJ) 1m 8 - C = 1m = - + cos 
(J= const. (J= CODst. 28 2 

Finally, from energy considerations, the magnitude of the asymptotic 
velocity is related to the semimajor axis a according to 

J!:.... =v2 
-a 00 

Therefore, the formula for the velocity vector v I is found to be 

VI = (D + !voo ) 100 + (D - !voo ) 1rl (6.121) 

where 

D= (6.122) 

The graphical construction of the velocity vector v I is the same as 
that for the general hyperbolic velocity vector with suitable account taken 
of the limiting processes described above. Referring to Fig. 6.27, we see 
that points R and A' coincide in the limit while the distance between 
R and B' becomes simply oj I'/TI (1 + cos fJ). The reader should have no 
difficulty constructing the velocity vector diagram. 



Chapter 7 

Solving Lambert's Problem 

DETERMINATION OF AN ORBIT, HAVING A SPECIFIED TRANSFER TIME 

and connecting two position vectors, is called Lambert's Problem. It is 
fundamental today as a means of targeting spacecraft and missiles. In the 
past, from the time of Euler and Lambert, it's solution was essential for ob
taining the elements of the orbits of planets and comets from observations. 
Over the years a variety of techniques for solving this problem has been 
developed. Each is characterized by a particular form of the transfer-time 
equation and a particular choice of independent variable to be used in an 
iterative algorithm to determine the orbital elements. Some of these are 
the subject of the present chapter. 

The first real progress in the solution of Lambert's Problem was made 
by Carl Friedrich Gauss in his book Theoria Motus Corporum Coelestium 
in Sectionibus Conicis Solem Ambientium-Theory of the Motion of the 
Heavenly Bodies Moving about the Sun in Conic Sections-which we have, 
heretofore, referred to simply as Theoria Motus. The story behind this 
book is a fascinating one and we allow Gauss to tell it in his own words by 
quoting from the Preface. t 

"To determine the orbit of a heavenly body, without hypothetical 
assumption, from observations not embracing a great period of 
time, and not allowing a selection with a view to the application of 
special methods, was almost wholly neglected up to the beginning 
of the present century; or, at least, not treated by anyone in a 
manner worthy of its importance; since it assuredly commended 
itself to mathematicians by its difficulty and elegance, even if 
its great utility in practice were not apparent. An opinion had 
universally prevailed that a complete determination from obser
vations embracing a short interval of time was impossible,-an 
ill-founded opinion,-for it is now clearly shown that the orbit 
of a heavenly body may be determined quite nearly from good 

t Written in Gottingen on March 28, 1809. This work earned him the appointment 
as professor of astronomy and director of the observatory at Gottingen. Except for one 
trip to Berlin to attend a scientific meeting he remained at Gottingen for the remainder 
of his life. 
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observations embracing only a few days; and this without any 
hypothetical assumption. 

"Some ideas occurred to me in the month of September of the 
year 1801, engaged at the time on a very different subject, which 
seemed to point to the solution of the great problem of which I 
have spoken. Under such circumstances we not unfrequently, for 
fear of being too much led away by an attractive investigation, suf
fer the associations of ideas, which, more attentively considered, 
might have proved most fruitful in results, to be lost from neglect. 
And the same fate might have befallen these conceptions, had they 
not happily occurred at the most propitious moment for their 
preservation and encouragement that could have been selected. 
For just about this time the report of the new planet, discovered 
on the first day of January of that year with the telescope at 
Palermo, was the subject of universal conversation; and soon af
terwards the observations made by that distinguished astronomer 
Piazzit from the above date to the eleventh of February were 
published. Nowhere in the annals of astronomy do we meet with 
so great an opportunity, and a greater one could hardly be imag
ined, for showing most strikingly, the value of this problem, than 
in this crisis and urgent necessity, when all hope of discovering in 
the heavens this planetary atom, among innumerable small stars 
after the lapse of nearly a year, rested solely upon a sufficiently 
approximate knowledge of its orbit to be based upon these very 
few' observations. Could I ever have found a more seasonable 
opportunity to test the practical value of my conceptions, than 
now in employing them for the determination of the orbit of the 
planet Ceres, which during these forty-one days had described a 
geocentric arc of only three degrees, and after the lapse of a year 
must be looked for in a region of the heavens very remote from 
that in which it was last seen? This first application of the method 
was made in the month of October, 1801, and the first clear night, 
when the planet was sought for {by Baron Franz Xaver von Zach 
on December 7, 1801] as directed by the numbers deduced from 
it, restored the fugitive to observation. Three other new planets, 
subsequently discovered, furnished new opportunities for examin
ing and verifying the efficiency and generality of the method." 

Carl Friedrich Gauss (1777-1855) was born in Brunswick, Germany 
and seemed destined by tradition to a life of manual work with his father 
who was a mason. He taught himself to read and to calculate before he 
was three years old. In elementary school he displayed such extraordinary 

t Giuseppe Piazzi (1746-1826). 
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intellect that Carl Wilhelm Ferdinand, the Duke of Brunswick, took a 
personal interest in his education-sending him in 1795 to the University of 
Gottingen where his research began in earnest. By the time he was eighteen 
he had invented the method of least squares and at nineteen he had made 
the first significant progress in Euclidean geometry in two thousand years 
by stating and proving the conditions which allow a regular polygon to 
be constructed with straightedge and compass. U ntH then he had been 
undecided on a career choice, philology or mathematics. Fortunately, his 
early successes in mathematics made the decision relatively easy. He often 
said later that such an overwhelming horde of new ideas stormed his mind 
before he was twenty that he could but record only a small fraction of them. 

He transferred to the University of Helmstadt in 1798 and attracted 
the attention of Johann Friedrich Pfaff (1765-1825) who became both his 
teacher and friend. It was there in 1798 that he wrote his doctoral dis
sertation in which he gave the first proof of the fundamental theorem of 
algebra, that every nth degree polynomial has exactly n roots. In 1801 
he published his classic work in number theory Disquisitiones A rithmeticae 
just in time to tackle the problem of determining the orbital elements of 
Ceres, the largest of the asteroids. 

Over seven years elapsed before Gauss published his method and he 
did not regret the delay. 

"For, the methods first employed have undergone so many 
and such great changes, that scarcely any trace of resem
blance remains between the method in which the orbit 
of Ceres was first computed, and the form given in this 
work." 

Indeed, thereafter, he was always slow to publish and preferred to 
polish his relatively few masterpieces rather than rush to print everything 
as was Euler's custom. His seal, a tree with but few fruits, bore the motto 
Pauca sed matura (Few, but ripe). 

A list of Gauss' contributions to mathematics and to mathematical 
physics is almost endless and we cannot begin to enumerate them here. By 
the time of his death at the age of 78 he was hailed by his contemporaries 
as the "Prince of Mathematicians." 

7.1 Formulations of the Transfer-Time Equation 

We derive in this section two separate transfer-time relationships, the first 
utilizing Lagrange's equations from his proof of Lambert's theorem and 
the second from an adaptation of one of Gauss' equations from the Theoria 
M otus. Then, we combine the best features of the two formulations to 
derive a third. 
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For convenience, we summarize the relevant equations from Sect. 6.6 
which are needed for this purpose. Theyaret 

...ffi(t2 - t l ) = 2a~(1/1 - sin 1/1 cos 4» 
TI + T2 = 2a(l - cos 1/1 cos 4» 

c = 2a sin 1/1 sin 4> 
AS = a( cos 1/1 - cos 4» 

For brevity, we have introduced the parameter A defined as 

AS = FS = JTI T2 cos !O 

Then, since 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

2 S - c 
A = - (7.6) 

S 

we see that A has a range (-1, 1) and, of course, depends only on the 
geometric configuration of PI and P2 with respect to the occupied focus. 

Lagrange's Equation 

Recall from Sect. 6.6 that Lagrange defined two parameters 

0:=4>+1/1 

so that 
1/1 = ! (a - ,8) 

Then, from Eqs. (7.2) and (7.3), he obtained 

• 2 I S sm -a=-
2 2a 

.2 I s-c sm -,8=--
2 2a (7.7) 

Since Eq. (7.4) may be written as 

AS = 2asin ! asin !,8 

we may combine this with the first of Eqs. (7.7) and obtain the following 
relation between a and ,8 

sin !,8 = A sin ! a (7.8) 

Lagrange's form of the transfer-time equation for elliptic orbits is 
expressed in terms of the parameters a and ,8 as 

...ffi(t2 - t l ) = a! [(a - sin a) - (,8 - sin,8)] (7.9) 

t Recall that"" = ! (E2 - Ed and cos t/> = e cos ~ (E2 + Ed for elliptic orbits with 
similar relations for hyperbolic orbits. 
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and, for fixed geometry, is a function only of the semimajor axis a. How
ever, a is not a convenient variablet for two important reasons: (1) the 
transfer time is a double-valued function of a-remember that each pair 
of conjugate orbits has the same semimajor axis-and (2) the derivative of 
the transfer time with respect to a, 

yIP, :a (t2 - t l ) = ia![(a - sin a) - (,8 - sin,8)] 

- a- i [stan!a - (s - c) tan !,8] 

is infinite for that value of a = am = ! s corresponding to the minimum
energy orbit for which am = 1r. 

Fortunately, we can transform Lagrange's equation to a much more 
convenient formt by using Eqs. (7.6) and (7.7) to write 

/f( ) -a - sin a ,3,8 - sin,8 
- t2 - t1 - - 1\ 

a~ sin3 ! a sin3 !,8 

Similarly, for hyperbolic orbits, we obtain 

J ,.. (t - t l = sinh '" - '" - A 3 sinh P - P 
a~ 2 I sinh3 ! a sinh3 !,8 

with a and ,8 given by 

sinh2 ! a = _s_ 
2 -2a inh2 1,8- s-c 

S - --
2 - -2a 

and related according to 

sinh !,8 = ,\ sinh ! a 

By defining a function Q Q as 

I 
a - sin a 
sin3 !a 

Q = 2 
Q sinha - a 

sinh3 !a 2 

then both equations, (7.10) and (7.11), are identical. Hence, 

J ~ (t2 - til = QQ - A3Q~ 
am 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

t Some authors have developed algorithms using the parameter p as the iterated 
variable without mentioning that all orbits have the same parameter for a 180 degree 
transfer. 

* This transformation is from the author's book Astronautical Guidance published by 
McGraw-Hill Book Co. in 1964 and first appeared in his MIT Inatrumentation 
UJbomtory Report R-989 in Sept. 1962. The material comprising the present section 
and the next are from the author's paper "Lambert's Problem Revisited" which was 
published in the AIAA Journal, Vol. 15, May 1977, pp. 707-713. 
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As we shall see in the next section, Qat is a hypergeometric function. 
Specifically, 

(7.16) 

Therefore, if we define 

{

COS !a 
x-

- cosh!a 
and 

{

COS !f3 
y-

- cosh!f3 
(7.17) 

then Eq. (7.15) becomes 

. f{.{t 2 - t I ) = ~F[3, 1; ~; ! (1- x)] - ~,\3 F[3, 1; ~; ! (1 - y)] (7.18) 
Va~ 

with the positive quantity y related to x according to 

y = v'1 - ,\2(1 - x2 ) 

which is derived from Eqs. (7.8) and (7.13). 

(7.19) 

There is great advantage in regarding the transfer time as a function 
of the variable x, defined in the first of Eqs. (7.17) but also expressible as 

x2 = 1 _ am (7.20) 
a 

All of the problems anticipated with the semimajor axis a used for this 
purpose have vanished. The graph of the transfer time as a function of x 
for various values of '\, shown in Fig. 7.1, is single-valued, monotonic, and 
readily adapted to a Newton method of iterative solution. Further, we note 
that the variable x has the following range and significance: 

-1 < x < 1 

x=1 

l<x<oo 

elliptic orbits 

parabolic orbit 

hyperbolic orbits 

and also that x = 0 corresponds to the transfer time for the minimum
energy path from PI to P2 • 

Gauss' Equation 

Another form of the transfer-time equation for an elliptic orbit may be 
obtained by eliminating cos¢ between Eqs. (7.1) and (7.4). We have then, 

fo,(t 2 - t I ) = a!(21/J - sin21/J) + 2'\sat sin1/J 

as first obtained by Gauss in his Theoria Motus. Similarly, for hyperbolic 
orbits, 
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Fig. 7.1: Transfer time as a function of x. 

We now depart from Gauss and define a positive quantity TJ by 

2 { 2a sin
2 t/J 

BTJ = 
- 2a sinh 2 t/J 

(7.21) 

and write the transfer-time equation, in either case, in universal form 

if(t2 - t,l = r/Q2'" + 4A'1 

where Q2 'I/J is defined by Eq. (7.14) with a replaced by 2t/J. 
Finally, by eliminating ¢ between Eqs. (7.2) and (7.4), 

2 { cos t/J 
Tl + T2 = BTJ + 2AB cosh t/J 

so that, for fixed geometry, TJ is a function only of t/J. Indeed, since 

T 1 + T 2 = 2B - C = B (1 + A 2 ) 

we have 

TJ2 = { (1 - A)2 + 4Asin
2 ~t/J 

(1 - A)2 - 4A sinh2 ~t/J 

(7.22) 

(7.23) 
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The transfer time is thus a function only of the anomaly difference 
E2 - EI (or H 2 - HI ). However, since (~shown in the following section) 

{ 

1F(3 l' §.·sin2 1../.) 
Q _ 3 "2' 20/ 

21/J -
~F(3, 1; ~; - sinh2 !1/J) 

we may define 

81 = { 

sin2 !1/J 

- sinh2 ~1/J 

and express t2 - tl more compactly as a function of 8 1 , Therefore, 

where 

and 

0<81 < 1 

81 = 0 
-00 < 81 < 0 

with 

elliptic orbits 

parabolic orbit 

hyperbolic orbits 

(7.24 ) 

(7.25) 

{7.26} 

(7.27) 

A graph of the transfer time as a function of -81 for various values of A 
is given in Fig. 7.2. The curves are, indeed, monotonic but have little else 
to recommend them for a Newton method of iteration. 

Combined Equations 

When we compare the two transfer-time formulations, as summarized in 
Figs. 7.1 and 7.2, it appears that the graph of t2 - tl as a function of 
x is more amenable to a mechanized iterative solution than is its graph 
as a function of 8 1 , The two sets of curves are identical for ,\ = 0, 
corresponding to a 180 degree transfer, but otherwise differ significantly in 
important characteristics. 

On the other hand, if the basis of comparison is computation efficiency, 
then Gauss' equation is to be preferred since the evaluation of only one 
hypergeometric function is required rather than two. In both cases, one 
square root function is necessary. 

It is possible to relate the independent variables 8 1 and x in a simple 
way so that the advantages of both formulations can be realized in a single 
expression. For this purpose, using Eq. (7.25) together with the relation 
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Fig. 7.2: Transfer time as a function of -81 . 

between 1/J and the Lagrange parameters a and {3, we write 

{
I - cos 1/J = 1 - cos -21 {a - {3} 

28 -
1 - 1 - cosh 1/J = 1 - cosh! {a - {3} 

{ 
I lIa • 1 . la _ - cos 2'acos 2'1-' - sm 2'asm 2'1-' 

- 1- cosh !acosh!{3 + sinh !asinh!{3 

Next, we employ Eqs. {7.8} and {7.13} to eliminate sin! {3 and sinh! {3. 
There results 

28
1 

= 2 2 2 {I lIa \·21 - cos -acos -I-' - Asm -a 

1 - cosh !acosh!{3 +;\ sinh2 !a 

= 1 - xy - ;\{ 1 - x2
} {7.28} 

Furthermore, the quantity ",2, as given in Eq. (7.27), is a much simpler 
expression in terms of x and y. Thus, 

2 { 1 + ;\2 - 2;\ cos! (a - {3} 
'fJ = 1 + ;\2 - 2;\ cosh! (a - {3} 
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which we expand, using Eqs. (7.8) and (7.13) as before, to obtain 

",2 _ 2 2 2 
{

I - A2 - 2A cos 1acos 1{3 + 2A2 cos2 !a 

- 1 - A2 - 2A cosh!a cosh 1 R + 2A2 cosh2 !a 2 2P 2 

= 1 - A2 - 2AXY + 2A2X2 

Then, from Eq. (7.19), 

so that 
",2 = (y _ AX)2 

Finally, since y and ", are both positive and 

y2 _ A2X2 ~ 0 

it follows that 

", = y - AX 

[Chap. 7 

(7.29) 

Therefore, the transfer-time fonnulation which seems more appropri
ate than either Gauss' or Lagrange's alone, can be summarized. From the 
geometry of the problem, we first calculate 

and AS = y'T 1 T 2 cos ! 0 

Then, starting with a suitable trial value of x, we compute 

y = VI - A2(1 - x2) 

'fJ =y-AX 

81 = !(1- A - x",) 

Q = ~F(3, 1;~; 81) 

which are then used to obtain the transfer time from 

. f{.(t 2 - t l ) = ",3Q + 4A", 
Va~ 

(7.30) 

(7.31) 

The process continues by systematically altering the value of x until the 
required convergence is obtained. Note that only one square root and one 
hypergeometric function are required for each computation cycle. 

In the next section, convenient derivative formulas for the transfer 
time are developed in the event that Newton's method is to be used for the 
iterative calculation of x. 



Sect. 7.1] Formulations of the Transfer-Time Equation 305 

~ Problem 7-1 
Y In Lambert's paper Insigniores orbitae Cometarum proprietates, published 

in Augsburg in 1761, he derived the series 

~ v'2 (2n - 1)1 (n+~ n+~] 1 
+ L.J 2n + 3 23n-1nl (n _ 1)1 8 1= (8 - c) an 

n=1 

from the integral of Prob. 6-30 by expanding the integrand as a power series in 
r and integrating term by term. This result can be obtained more easily from 
Eq. (7.18) by using the identity (1.18) derived in Sect. 1.1. 

Determine the range of convergence of this series. 

NOTE: The first term in the series is Euler's equation for the transfer time of a 
parabola. 

Johann Heinrich Lambert 1761 

Multiple-Revolution Transfer Orbits 

For elliptic orbits, we may wish to include the possibility of a number N 
of complete orbits before termination at the point P2 • In this case, the 
transfer-time equation (7.26) is modified, using Eq. (7.20), as follows: 

{!i:( - 21T N 4 3 . 5. 3'" t2 - t l ) - 3 + 311 F(3,1, 2,81) +4~11 
am (1 - x2)~ 

(7.32) 

When the transfer angle () is less than 360 degrees (N = 0), the orbit 
connecting points PI and P2 for a given transfer time is unique. However, 
if () is greater than 360 degrees but less than 720 degrees (N = 1), x is a 
double-valued function of the transfer time. Thus, corresponding to each 
value of t2 - tl that is sufficiently large to ensure a solution, two orbits 
are obtainable. As N increases so does the number of possible orbits for 
sufficiently large values of t2 - t I . 

In Fig. 7.3 the complete family of solutions is illustrated for N = 0 and 
N = 1. Two interesting characteristics of these curves deserve comment: 
(1) The curve for ~ = 1 and N = 0 terminates for x = O. Since ~ = 1 
corresponds to a transfer angle of zero, the portion of the curve for negative 
x corresponds, simply, to rectilinear orbits. (2) For ~ = -1, that is a 
transfer angle of exactly 360 degrees, there is a discontinuity in the slope 
at that point on the curve corresponding to the minimum-energy orbit. 
However, ~ = -1 for N = 0 is the same as ~ = 1 for the case of a single 
multiple-revolution orbit (N = 1). Viewed from this perspective, the curve 
has a continuous derivative. This feature does suggest that, for ~ quite 
close in value to minus one, there will be a change in curvature. 
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Fig. 7.3: Transfer time for multiple-revolution orbits. 

The Velocity Vector 

The final step in the solution of the Lambert problem will, in many cases, 
be the calculation of the velocity vector v I at the point PI in terms of 
that value of x found to satisfy the transfer-time equation (7.31). 

From Eqs. (6.2) and (6.3), the vector VI may be written as 

(7.33) 

where i r1 is the unit vector defining the direction of PI from the force 
center, i h is the unit vector normal to the orbital plane, p is the parameter 
of the orbit, and 

r l • VI 

Ul = .Jii 
To complete the task, we must find convenient expressions for p and U I . 

First, from Eq. (6.108), in the previous chapter, we can derive 
. 2 I () 

TIT2 sm '2 
p = .....;....----:::---=--

a sin2 1/J 
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and, substituting from Eq. (7.21), obtain 

p = TIT 2 sin 2 1 0 
amTJ2 2 

(7.34) 

Thus, the parameter of the orbit is inversely proportional to TJ2. 
Second, by adapting Eq. (4.98), derived in Chapter 4 as an identity 

for the universal functions, we arrive at the following equation for u 1 : 

~ sin 10 = cos 10 _ f5. {cos.,p 
vp 2 2 V T 2 cosh .,p 

which, using Eqs. (7.34), (7.5), and (7.28), becomes 

1 
u 1 = -- [2'\am - Tl (,\ + XTJ)] (7.35) 

TJ.;o:; 

Finally, Eq. (7.33) may be expressed as 

v 1 = !-J J.I {[2'\ am - (,\ + XTJ)] i r1 + f!1. sin! 0 i h X i r1 } (7.36) 
TJ am Tl V Tl 

which is a most convenient form for computational purposes. 
A different expression for the velocity vector v 1 can be had which 

gives some geometric significance to the variables x and y. This is the 
subject of the next problem. 

~ Problem 7-2 
Y Define the unit vectors j 1 and j2 in the directions of the minimum-energy 

velocity vectors at the initial and terminal points. Let h and h be defined to 
make the coordinate pairs h, jl and i2, j2 right-handed and orthogonal. Then, 
the velocity vectors at the two terminals may be written as 

v, =!1f [-X(h olr.)h +y/,!;(12 0Ir2ll,] 

V2 = !1f [ x(12 01.,)" + Y~(h olr,lJ.] 

7.2 The Q Function 

The function Qa' or simply, Q, defined in Eq. (7.14) as 

Q = a-sina 
sin3 1a 2 

for elliptic orbits can be shown to be a hypergeometric function of 

z = sin2 ia 

(7.37) 

(7.38) 
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To this end, t we differentiate Q with respect to z 

sin 2 ! a dQ + 6 cos! a Q = 8 
2 dz 2 

by using the chain rule and noting that 

:~ = ~ sin lacos la = l sin ~a 
Now, substituting for a from 

we obtain 

sin2 ~a = 4z(l- z) and cos ~a = 1- 2z 

z(1 - z) dQ + (~ - 3z)Q = 2 
dz 2 

Finally, differentiating a second time produces 

z(1 - z) d
2
Q + (~ _ 5z) dQ - 3Q = 0 

dz2 2 dz 

which is Gauss' equation (1.12) with parameters 3, 1, and ~. Since 

lim Q = lim Q = 1 
%-0 Ct-O 3 

(7.39) 

(7.40) 

then the first part of Eq. (7.16) of the previous section is established. In a 
similar manner, we can verify the second part. 

Improving the Convergence 

Since hypergeometric functions admit a wide variety of transformations, 
we are tempted to explore the possibility of improving their computational 
efficiency. In fact, we can develop a convenient recursion formula for this 
purpose which is a direct consequence of 

1. Gauss' relation for contiguous functionst 

(,- a - {J)F(a, (J;,; z) 
+ a(1 - z)F(a + 1, (J;,; z) - (,- {J)F(a, (J - 1;,; z) = 0 

2. Quadratic transformation formula-Eq. (1.19) 

F(a,{J;a+{J- ~;z) = (l-z)-CtF(2a-l,2.B-l;o+{J-~; ~ - ~vr=z) 

From the relation for contiguous functions, with the parameters 0, {J, 
and , chosen as a = 2, (J = 1, and , = ~,we obtain 

2(1 - z)F(3, 1; ~; z) = i + ~ F(2, 1; ~; z) 

t The derivation is the same as was used in Sect. 4.7 for the same quantity expressed 
in terms of universal functions. * This is identity number (3) in the subsection on contiguous functions in Sect. 1.1. 
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Then, with the same choice of parameters, the quadratic transformation 
gives 

F(2, 1; ~;z) = (l-z)-2F(3,1;~; i - iv'f=Z) 
By combining the two, we derive the recursive expression 

F(3, 1; ~;S .. ) = 4~ .. [3+ }c:-F(3, 1; ~;S"+l)] 
where 

(7.41) 

(7.42) 

and for which, with n = 0,1,2, ... , the following recursive relations hold: 

and (7.43) 

Since convergence of either the hypergeometric series or the continued 
fraction is enhanced when the argument is small, we may recursively use 
Eq. (7.41) to advantage in order to obtain for given'" as rapid convergence 
as might be desired. There is, of course, a penalty in that the expression 
for Q becomes algebraically more complex. For example, if we apply the 
recursive identities successively, we generate the following sequence for Q: 

4 
Q = aF (3, 1; ~; 8 1) 

Q = ~, [1 + 3Jc;.F(3, Q;S2)] 

Q = ~, {I + 4C2~ [1 + 3Jc;F(3, 1; ~;S3)]} etc. 

where 
8 1 = i(1 - >. - Xl1) 

8 2 = i(1 - VG;) 
83 = i (1 - VC;) etc. 

C1 = !(1 + >. + Xl1) 

C2 = !(1 + VG;) 
C3 = !(1 + VC;) etc. 

(7.44) 

Note that each time the recursion is applied an additional square root 
is required in the calculation of Q while, at the same time, the magnitude 
of the argument of the hypergeometric function decreases as indicated in 
Eq. (7.42). A comparison of the number of levels necessary for evaluation 
of the continued fraction representations of the successive hypergeometric 
functions can be found in the previously cited paper "Lambert's Problem 
Revisited" and will not be repeated here. 
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¢ Problem 7-3 
Establish the identity 

F(3,1; ~;Sn) = ~n F(-4,1; ~;Tn) 

[Chap. 7 

from the linear transformation formula (1.15). By combining this with Eq. (7.41), 
derive the recursive expression 

F( - ~ ,I; i; Tn) = ~ [3+ Cn+:.,;c.F( - ~ ,I; i; Tn+l)] 

where 

Develop the following sequence for Q: 

4 
Q= 3CIF(-!,I;~;Td 

Q= ~l [1+ 3C2~F(-~,q;T2)] 

Q = ~l { I + 4C2~ [1 + 3C3~F(-!.I; Pa)]} etc. 
where 

etc. 

Continued Fraction Representation 

The hypergeometric function F(3, 1; ~; z) satisfies the requirement neces
sary for expansion as a continued fraction. Therefore, according to the 
developments in Sect. 1.2 of Chapter 1, we have 

where 

1 
F(3,1; ~;z) = -------

liz 1-------:;;...---
1- 12z 

1- 13z 

( 

(n + 2)(n + 5) 
"y = (2n + 1)(2n + 3) 

n n(n - 3) 
(2n + 1)(2n + 3) 

1- '. 

n odd 

n even 

(7.45) 

(7.46) 
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By using the continued fraction rather than the power series represen
tation of the hypergeometric function, not only is the speed of convergence 
improved, for a given argument z, but the range of convergence is also 
expanded from Izl < 1 for the power series to z < 1 for the contin
ued fraction-a range that encompasses the entire spectrum of arguments 
for Lambert's problem. (The convergence of this particular fraction was 
demonstrated in Chapter 1 in Prob. 1-19 for negative values of z and, as 
an example in a subsection of Sect. 1.3 for positive z.) 

A convenient technique for evaluating continued fractions from the 
top to the bottom was developed in Sect. 1.4 of Chapter 1. Applying this 
to the case at hand, the algorithm for determining F(3, 1; !; z) can be 
summarized as follows. 

Initialize: 

Calculate: 
f> _ 1 
n+l - 1 -1 zf> 

n n 

Un+1 = un(f>n+l - 1) 

En+l = En + un+1 

(7.47) 

where 1n is given in Eq. (7.46). Repeated calculations, for n = 1,2, ... , of 
these equations produces F(3, 1; !; z) since 

F(3, 1; !; z) = lim En 
n-oo 

provided, of course, that z < 1. 

¢ Problem 7-4 
The continued fraction expansion of F( -!, Ij i j z) is 

where 

1 
F(-!,lj ijz) = -------

WIZ 
1-------

1 _ __ W_2_Z __ 

(2n + 1)(2n + 3) 
( 

(n-2)(n+2) 

Wn = (2n + 1)(2n + 3) 
n(n + 4) 

1- _W_3_Z _ 

1- .. 

n odd 

n even 

Determine the range of convergence of this continued fraction. 
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Derivative Formulas 

When Newton's method is used to solve the transfer-time equation for x, 
the derivative ofEq. (7.31) is required. For this purpose, we use Eqs. (7.19) 
and (7.29) to obtain 

so that 

(7.48) 

The derivative of the Q function implies differentiation of the hyper
geometric function F(3, 1; ~; z) which is obtained from Eq. (7.39) as 

~F(3 .2. )=3+3(2z-1)F(3,1;~;Z) 
dz ,1, 2' z 2z(1 - z) 

Unfortunately, this expression is indeterminate for z = 0, corresponding 
to the case of the parabolic orbit. 

To resolve the indeterminacy, we write 

1 
F(3, 1; ~;z) = 1 G( ) 

-1'lz z 

from the continued fraction representation given in Eq. (7.45), with 

Then, we have 

1 
G(z)=-----

1 _ __ "'I_2_Z __ 

1 _ 1'3z 

1- .. 

d . 5. _ 6 - 3-ylG(z) 
dz F(3, 1, "2' z) - 2(1 _ z)[1 - 1'tzG(z)] (7.49) 

The function G(z) [instead of F(3, 1; ~; z)] may be evaluated by a trivial 
modification of the algorithm summarized in Eqs. (7.47). 

Finally, the derivative of z with respect to x, where z = 8"" is easily 
obtained by noting that 

(7.50) 

When applying Newton's iteration, a note of caution is necessary. In 
the vicinity of the minimum energy orbit (x = 0) and for A in the range 
-1.0 ~ A ~ -0.97 (close to a 360 0 transfer), the second derivative of the 
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transfer-time function versus x is negative.t Under these very specialized 
circumstances, a different iteration technique will be required. 

¢ Problem 7-5 
Demonstrate that 

d 
dz F( - ~ , 1; ~; z) = 

1 + 3wl H(z) 
2(1 - z)[1 - wlzH(z)] 

where 

A1so, verify that 

1 
H(z)=-----

1 _ __ W_2_Z __ 

l __ w_3z_ 

1- '. 

dTl 1 dOl 112 
--;I;' = 0 2 dx = 2y02 

1 1 

NOTE: The formulas for the coefficients of this continued fraction are given in 
Prob.7-4. 

7.3 Gauss' Method 

The insight and ingenuity of Gauss are aptly demonstrated in his approach 
to the orbit-determination problem. One of his goals was to formulate the 
transfer-time equation in such a manner as to render it totally insensitive 
to computational errors when the transfer angle 0 is small-of the order 
of two or three degrees. 

Consider first his treatment of the expression 

Tl + T2 - 2v'T IT2 cos !Ocos1/1 
a = 2sin21/1 (7.51) 

for the semimajor axis, obtained by eliminating cos</> between Eqs. (7.2) 
and (7.4). In this form the equation is not suitable for his use. The radii 
Tl and T2 are nearly equal and both 8 and 1/1 are small angles. Therefore, 
to compute a from Eq. (7.51) requires calculating the small difference of 
two almost equal quantities and then dividing by a small quantity-totally 
unacceptable to be sure. 

Instead, Gauss writes 

2v'TIT2 cos ~O (i + sin2 !1/1) 
a = sin2 1/1 (7.52) 

t This was first reported by E. R. Lancaster and R. C. Blanchard in a NASA TN 
D-5368 titled CIA Unified Form of Lambert's Theorem" and published in Sept. 1969. This 
change in curvature was discussed in connection with Fig. 7.3 in the previous section. 
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where i is defined by 

0_ TI + T2 1 
(. - I 

4v'TI T2 cos '2 () 2 
(7.53) 

If i can be accurately determined, Eq. (7.52) presents no problem when 
used to calculate a. But, of course, the equation for i is also completely 
inappropriate for the same reasons as before. 

However, suppose we define a quantity w by 

(7.54) 

so that 

Then, since Eq. (7.53) can be written as 

~ ~ 
i= y;:; + y;:; -~ 

4cos !() 2 

we have 
sin2 ! () + tan2 2w 

i = 4 
cos! () 

(7.55) 

which is entirely insensitive to computational errors and is positive for () 
less than 180 degrees. 

From a different point of view, let us write 

(7.56) 

so that € is simply the fractional part of the quotient of T2 and TI . Then, 
since 

tan( i 7r + w) = (1 + €) t 

according to Eq. (7.54), we obtain 

(7.57) 

to be used in Eq. (7.55). This alternative seems much more useful for 
computational purposes. 
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The Classical Equations of Gauss 

Thrning now to the transfer-time equation in the form 

I¥a 2~cos !f) 
a{t2 - t1) = 21/1 - sin 21/1 + 1 2 sin 1/1 
a a 

which is obtained by eliminating cos 4> between Eqs. (7.1) and (7.4), we 
substitute for a from Eq. (7.52) and introduce a quantity m defined by 

.Jii{t2 - td 
m= 3 

(2JT1T2 cos !f))~ 
(7.58) 

There results 
. 3 ,,/. . 3 ,,/. 

± sm 'Y 2"/" 2"/' Sln 'Y m = 'Y - sm 'Y + --~"......-
(l + sin 2 ! 1/1 ) ! l + sin 2 ! 1/1 

(7.59) 

where the choice of sign depends on whether sin 1/1 is positive or negative. t 
Finally, we observe that, for the case we are treating, f) < 1r, the upper 
sign of Eq. (7.59) is to be adopted and by introducing a quantity y defined 
by 

m2 
y2= __ ~~ 

l + sin2 !1/1 

the transfer-time equation takes the form 

3 2 2 21/1 - sin 21/1 
y -y =m .3 

sm 1/1 

(7.60) 

(7.61) 

These equations, (7.60) and (7.61), are the classical equations of Gauss 
which are to be solved simultaneously for the variables y and 1/1. The 
quantities l and m are constants which depend only on the geometry, the 
transfer time t2 - t1, and the gravitational constant p.. When y and 1/1 
are found, Eq. (7.52) provides an error-free computation of the semimajor 
axis a. The orbital parameter could then be obtained from Eq. (6.108). 

Before considering the solution of Gauss' equations, we will demon
strate that Gauss' quantity y has a significant geometrical interpretation. 
From Eqs. (7.52), (6.108), and (7.60) we find that 

p = Tl T2 sin
2 

! f) Jt.... = T~T~y2 sin2 f) 
2JT1T2 cos !f) m2 P.(t2 - tl)2 

t Observe that Eq. (7.58) implies that cos ! (J is to be positive and non-zero. Later 
we shall modify the equations to account for the case of a negative value for cos ! (J but 
the 180 degree transfer is excluded-a significant limitation of Gauss' method which we 
shall address in the last section of this chapter. 
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Then, since p = h2 / J.l, we have 

1 h(t2 - t l ) 
Y = -=:21:------

2TI T2 sin 0 
(7.62) 

the denominator of which is the area of the triangle fj.F PI P2 ; the 
numerator, by Kepler's second law, is the area of the sector bounded by 
the radii T I , T2 and the arc of the orbit included between PI and P2 • 

Thus, y is the ratio 0/ the areas 0/ the sector and the triangle. (All too 
frequently, Gauss' equations are developed by postulating this area ratio 
as an essential variable. In so doing, the fundamental motivation of Gauss 
tends to be obscured.) 

It is also interesting to observe that m and l are invariant under the 
transformation described in Sect. 6.7. Therefore, from either Eq. (7.60) or 
(7.61), the area-ratio y must also be an invariant. 

Solving Gauss' Equations 

The classical memoir by Gauss on hypergeometric functions and their con
tinued fraction expansions was published some four years after Theoria 
Motus so his development of the right-hand side of Eq. (7.61) appeared to 
be ad hoc and somewhat enigmatic. Later, he would have written 

2'ljJ - sin 2'ljJ _ i F (3 l' ~ .. 2 1,,1.) 
• 3 - 3 " 2 ' SIn 2 'f/ sm 'ljJ 

which we called Q in the previous section and developed in a continued 
fraction expansion. As a consequence of this relation, the quantity 

x = sin2 ~ 'ljJ (7.63) 

can replace 'ljJ as one of the two unknowns in Gauss' equations. 
In the orbit-determination problem which Gauss was originally 

addressing, the transfer angle 0 (and, therefore, 'ljJ) was small. It is reason
able, then, to assume as a first approximation, that 'ljJ (and x = sin2 ! 'ljJ) 
are zero. With Q(O) = ~, a corresponding value of y is determined by 
solving the cubic equation 

(7.64) 

for y (there being only one positive real root) and then obtaining a new 
value of x from 

m2 
x=--l y2 (7.65) 

The calculation is repeated until x ceases to change within tolerable limits. 
To improve the convergence, Gauss in typical fashion displayed 

remarkable ingenuity. The idea, similar to the one he used for Kepler's 



Sect. 7.3] Gauss' Method 317 

equation described in Sect. 5.5, is to replace the cubic equation (7.64) by 
one that is less sensitive to changes in the variable x. 

We have already seen that Q( x) admits of a continued fraction 
expansion. Clearly, from Eqs. (7.45) and (7.46), it can be written as 

and 

1 
Q= 3 9 

4 - lOxX 
where 

1 
X= 2 

1 + 35 xZ 

1 
Z=---.,........--

40 X 
1- 63 

4 
1- ggX 

1- '. 

Now, define a quantity e as 

e = x(1- X) 

so that xX = x - e and, therefore, 

1 
Q= 3 9 

4' - lO (x - e) 

The continued fraction representation for e is found by noting that 

Hence, 

~xZ 2 X 
1- X = 35 = 35 

1 + i5xZ 2 + 1 
35

x Z 

~X2 e = _____ --::3=5_--:-:::---___ _ 
40 X 

1 + 325 X - -------:::6;.:.3"'74----

99 x 
1 - ----==70=----

143 X 1 - --='A"6--

65 x 
1--~~-

36 X 
1 _ 85 

1- '. 

(7.66) 

(7.67) 

so that if x is, indeed, small, then e, which is of the order of 3
2
5 x 2 

, will 
be considerably smaller. 

The next step is to write the cubic equation for y as 

m 2 

y - 1 = y2 [~ _ 190 (x - e}l 
by substituting Eq. (7.66) into (7.64). The explicit dependence on x is 
eliminated by using Eq. (7.65) to replace y2 x by m2 - y2i. A minor 
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rearrangement of this result produces a cubic equation for y in the form 

y3 _ y2 _ hy - ~ = 0 (7.68) 

where the coefficient h, defined as 

m 2 
h = (7.69) i +l+e 

depends only on e which we have already found to be of the order of 
sin4 ~ (E2 - E l ). Since l is positive [as is evident from Eq. (7.55)] and 
e is small, then h is positive. Hence, the cubic equation for y admits of 
exactly one positive real root. 

In this way, his objective of designing a rapidly convergent algorithm 
was neatly accomplished. For a reasonably small transfer angle () (and, 
hence, a correspondingly small value of x) we may first assume that x = 
e = O. Then h is determined from Eq. (7.69) and y obtained as the 
positive real root of the cubic equation (7.68). Having now a trial value for 
y, a new value of x is obtained from Eq. (7.65) with which an improved 
value of h is found. The process is repeated until y ceases to change by a 
preassigned amount-usually two or three iterations being sufficient. The 
method of successive substitutions, which he also used for solving Kepler's 
equation, obviously was a favorite technique of Gauss. 

After x and y are determined, the semimajor axis a and the orbital 
parameter p are determined from the formulas 

1 4rl r2y2 sin2"p cos2 ! () 
a = J.t(t2 - t1)2 

and (7.70) 

which involve only products and quotients, and as such are themselves 
error-free. 

To determine the eccentricity which Gauss wrote in the form 

. 2 tan !l/J 
e = sml/J = 2 1 

1 + tan '2l/J 
he also proceeded carefully and cleverly. Writing the parameter as 

r r sin2 ! () 
P = a(l - e2

) = acos2 l/J = 1 2 . 2 
a sm2 "p 

[using Eq. (6.108) for this purpose], we have 

_ Jr 1 r 2 sin ! () 
cosl/J - . "I. 

aSlllcp 

Now, substituting for a from Eq. (7.52), gives 

sin "p tan -21 
(} 

cos</> = ---~-
2(l + sin2 !"p) 
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Finally, by replacing f. with its equivalent from Eq. (7.55), we obtain 

2 1 1 - cos tjJ sin2( -!8 - !,p) + tan2 2w 
tan 2<P= 1+costjJ = sin2(-!8+ !,p)+tan22w (7.71) 

or, alternately, 

tan2 !tjJ = sin
2 

B = 1 + cot
2 

A 
2 sin2 A 1 + cot2 B 

(7.72) 

where 

sin2(! 8 - !,p) 
cot2 A = 4 2 

tan22w 
and 

The equations comprising the algorithm are universal as Gauss also 
demonstrated. By extending the definition of x so that 

{ 

sin2 i(E2 - E l ) ellipse 

x = 0 parabola 

- sinh2 i(H2 - H l ) hyperbola 

(7.73) 

and allowing, thereby, values of x to range from -00 to + 1, all types of 
orbits are included. Furthermore, and fortunately, the continued fraction 
(7.67) converges over this range. 

For the two cases 0 < 8 < 'Tr and 'Tr < 8 < 2'Tr Gauss developed separate 
equations as will be shown through Problems 7-8 and 7-10. Obviously, 
Gauss knew that his method was singular for 8 = 'Tr but he judiciously 
avoided ever mentioning it, as if it were just a minor annoyance -a small 
flaw in an otherwise beautiful scheme. Indeed, he said "The equations ... 
possess so much neatness, that there may seem nothing more to be desired." 
This flaw, however, coupled with convergence difficulties when 8 is not very 
small, has rendered the method impractical to the modern Astrodynam
icist who is concerned with a more general range of orbit-determination 
problems than Gauss could have imagined. 

¢ Problem 7-6 
Derive the appropriate equations of Gauss' method for the case of hyperbolic 

orbits and verify that Gauss' equations are universal. 

¢ Problem 7-7 
The equation of the velocity vector Vl at Pl , using Gauss' parameters, is 

4m2 ~s - y2rl y 
Vl = rl+--r2 

yrl (t2 - t l ) t2 - tl 
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~ Problem 5-8 
Y When the transfer angle () is between 180 and 360 degrees (or, more gener
ally, when cos ~() is negative), Gauss defined the appropriate quantities 

L=.!. _ rl +r2 
2 4y'hr2 cos ~() 

M = ...Jji.(t2 - t 1) 

( - 2,jrl r2 cos ~()) i 

Y= M 
J L - sin2 ~t/J 

sin2 ~() + tan2 2w 

cos ~() 

The orbit-determination problem can then be solved iteratively using 

M2 H M2 
H = 5 y3 + y2 - HY + - = 0 x = L - -

L- '6 -e 9 y2 

Further, the semimajor axis and the orbital parameter are obtained from 

Solving Gauss' Cubic Equation 

When the transfer angle 8 is small, Hansent devised a convenient method 
of solving Gauss' cubic equation (7.68) using continued fractions. For this 
purpose, we write the cubic in the form 

y2(y -1) - ~h(9y+ 1) = 0 

and, replacing y by z where y = 1 + 10z, obtain 

z(l + 10z)2 - ~h(l + 9z) = z(l + 9z)(1 + lIz) + z3 - ~h(l + 9z) = 0 

Hence 
h z3 

z(l + 11z) = 9' - 1 + 9z 

If the z3 term is neglected (and it will be small for small 8), then 

i h 
z=--~=== 

1 + VI + ~4h 
(5.74) 

t Peter Andreas Hansen (1795-1874) was the leading German theoretical astronomer 
of the mid-nineteenth century. In 1825 he was invited to succeed Johann Franz Encke 
as the director of the private observatory of the Duke of Mecklenburg at Seeberg, near 
Gotha. From then until the end of his life, Hansen's contributions to astronomy and 
celestial mechanics were 80 numerous and enriched 80 many branches of those fields that 
he was considered among the foremost astronomers of his time. 
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or, alternately, 

Gauss' Method 

lh }h z = 9 = __ --=--;-;-__ 

1 + lIz ~ h 
1 + ---=-:-:-ilh 

1 + ----=9:..-_ 

1+ '. 

321 

(7.75) 

If necessary, we can replace the h by h - 9,ii/(1 + 9z) and recalculate z 
from either the quadratic or the continued fraction. Each time the process 
is repeated, the original value of h is corrected using the latest value of z. 
When z no longer changes, then the root of the original cubic is 

y = 1 + 10z (7.76) 

In general, Eq. (7.68) can be reduced, first, to the canonical form 

z3 - 3(3h + l)z = 2(6h + 1) 

by the substitution 3y = z + 1, and next, to the form of Eq. (1.32) 

w3 _ 3w = 2 1 + 6h 
(1 + 3h)4 

(7.77) 

with the substitution z = VI + 3hw. Then, according to the discussion 
in the last subsection of Sect. 1.2, w may be obtained using continued 
fractions. With w known, the solution of the original cubic equation is 

y = ~ (1 + VI + 3h w) (7.78) 

¢ Problem 7-9 
During a time interval of 0.008840956 year, the planet Mars moved through 

a central angle of 9 = 2° from a radial distance of 1.397414 a.u. to a radial 
distance of 1.399588 a.u. from the sun. Use Gauss' method to determine the 
semimajor axis a, the mean daily motion n, and the eccentricity e of the Martian 
orbit. 

ANSWER: The exact values are a = 1.523691, n = 0.524033 deg/day, and e = 
0.093368. 

~ Problem 7-10 
Y The solution of the cubic equation in Prob. 7-8 for Y can be expressed as 

Y= i(Jl+3HW-l) where W 3 -3W+2 1+6H 3 =0 
(1 +3H)~ 

By substituting 

obtain 

1 
W=Z+

Z 

where B= 1+6H 
(1 +3H)i 
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as a quadratic equation in Z3. Show that the discriminant D of the quadratic 
is 

D= (1+6H)2 -1=- 27H (H- v's+I) (H+ v's-I) 
(1 + 3H)3 (1 + 3H)3 6 6 

Therefore, Gauss' cubic equation can have more than one real root. In fact, 

0< H < ~(J5 + 1) 

H = ~(J5+ 1) 

H>~(J5+1) 

one real root 

three real roots (two are equal) 

three real roots (unequal) 

For a positive value of H, show that Gauss' cubic equation (if it has any 
positive real root) has one negative and two positive roots, and that the two 
positive roots will either be equal to ~ (v's - 1) or one will be greater and the 
other less than this limit. Furthermore, show that the largest of the three roots 
is always the desired one. 

7.4 An Alternate Geometric Transformation 

The geometric transformation of the orbital boundary-value problem 
described in Sect. 6.7 resulted in the coincidence of the major axis and 
the chord-hence, a rectilinear orbit. The algorithm developed in the 
next section requires a different transformation resulting in an orbit whose 
major axis is perpendicular to the chord. The geometry of this new orbit 
is illustrated in Fig. 7.4. 

Transforming the Mean Point to an Apse 

It is not difficult to see that the fundamental ellipse becomes a circle 
under this transformation. For all other elliptic orbits, the transformed 
mean point will either coincide with pericenter or apocenter, depending on 
whether the original ellipse had its vacant focus F*, respectively, either 
below or above F; on the hyperbolic locus illustrated in Fig. 6.17. 

For discussion, consider an ellipse for which the mean point is the 
pericenter of the transformed orbit. The transfer time from pericenter of 
the new orbit to the point P2 is just one-half of the transfer time of the 
original orbit from PI to P2 • The pericenter radius is ro ' the mean point of 
the original orbit, the terminal radius is ! (rl + r2), and the true anomaly 
f is related to the original central angle 0 according to 

and (7.79) 

The transfer-time equation is now the elementary form of Kepler's 
equation 

(7.80) 
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Fig. 7.4: Transformed ellipse 
with major axis perpendicular 
to the chord. 

F' o 
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where eo is the eccentricity of the transformed orbit and E is the eccentric 
anomaly corresponding to the true anomaly f. These quantities are simply 
related to the invariants 1/J and ¢J or a and {3. Clearly, 

E = !(E2 - E1 ) = 1/J = !(a - (3) (7.81) 

Also, in general, from Eq. (6.74), 

TO = a[l- ecos ! (EI + E2 )] = a(l- cos¢J) 

But, for the transformed orbit, 

TO = a(l- eo) 

so that 
eo = cos ¢J = cos ! (a + (3) (7.82) 

Although the eccentricity is not an invariant, eo can, nevertheless, be 
expressed in terms of three of the basic length invariants of the boundary
value problem. Since 

p = q(l + e) = T(l + ecosf) 

then 
T-q 

e= ----:-
q - Tcosf 

Therefore, in the present context, we have 

!(T1+T2)-TO 
eo = 1 

TO - v'TIT2COS 2() 
(7.83) 

If the vacant focus is above the vacant focus of the fundamental ellipse 
on the hyperbolic locus, then TO will be the apocenter distance. Equations 
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(7.82) and (7.83) would produce a negative value for eo. Indeed, this 
case (r 0 being the apocenter radius) may be accounted for analytically by 
allowing the eccentricity eo to be negative. 

For hyperbolic orbits traversed from PI to P2 , the above analysis is 
essentially the same. The expression for the eccentricity of the transformed 
hyperbolic orbit is exactly Eq. (7.83) and, of course, the problem of a 
negative value for eo will not arise. 

Relating hand U to the Original Orbit 

The angular momentum h and the quantity U = r . v / Vii of the original 
orbit, each computed at the mean point, are 

h = rovo sin 10 and ~ Uo = rovo cos 10 

where 10 is the flight-direction angle which, from Eq. (6.66), is 

cos'o = eF 

where eF is the eccentricity of the fundamental ellipse. 
The angular momentum ho of the transformed orbit is 

ho = rovo 

because of the invariance of r 0 and vo' Thus, if Po is the parameter of the 
transformed orbit, we have 

and 

The quantities u and u 1 , corresponding respectively to the mean point 
and the initial point PI of the original orbit, are related according to Eq. 
(6.7). Therefore, 

(rOul + rluO) tan ~o = v'P(ro - r l ) 

where 0, the transfer angle separating the mean point and the initial point, 
is determined from Eq. (6.69). Hence, 

ul = (Po {rllro - ~ (rl + r2)] + (ro - rl )",r l r2 cos iO} (7.84) 
2'cro 

Further, since P = Po sin2 10 = Po cos2l/JF' we have, from Eq. (6.48), 

P 2po -=-
Pm C 

(7.85) 

The quantities uland .jP are precisely those needed to compute the ve
locity vector vI at the initial point PI of the original orbit using Eq. 
(7.33). 
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7.S Improving Gauss' Method 

The simplicity of Gauss' method would certainly have been attractive to 
the modern Astrodynamicist except for two major flaws-the method is 
singular for a transfer angle of 180 degrees and the convergence rate is 
extremely slow when that angle is not very small. In this section, an 
algorithm is developed which represents a major improvement over Gauss' 
method and is made possible by exploiting a new principle, of which Gauss 
and his followers were probably not aware (even though it is a fundamental 
property of two-body orbits), together with a new wrinkle on an idea 
that Gauss himself invented in developing the iterative solution of Kepler's 
equation described in Sect. 5.5. The new principle is the invariance of the 
mean point (discussed in Sect. 6.4) used in conjunction with the geometric 
transformation of the boundary-value problem to bring the mean-point 
radius into coincidence with an orbital apse as described in the previous 
section. The result is that the transformed problem can then be simply 
described using the elementary form of Kepler's equation. 

The second innovation is introducing a free parameter in Kepler's equa
tion. The new twist is to choose this parameter, not to be a constant as 
Gauss did in his application, but rather to insure rapid convergence over 
the entire range of problems. Indeed, it is truly startling to observe just 
how rapid the convergence is when the iterated variable is anywhere near 
the solution value. It is not uncommon for this quantity to improve by as 
many as four or more significant decimal places in a single iteration step. 

In this section, we derive an algorithmt which parallels exactly the 
elegant simplicity of the classical one but is completely devoid of the two 
basic faults of the original. In the process, we shall separately (1) remove 
the singularity at () = 7C' and (2) drastically improve the convergence for 
the entire range of transfer angles 0 < () < 27C'. 

Removing the Singularity 

The singularity at () = 7C' in Gauss' method is removed using the trans
formation described in the previous section and the transfer-time equation 
is the elementary form of Kepler's equation (7.80). There are a number 
of invariants of this orbital transformation. The mean-point radius-the 
radius to that point in the orbit at which the tangent is parallel to the 
chord PI P2 -is one such invariant and is precisely the pericenter radius of 
the transformed orbit. The difference between the eccentric anomalies at 
PI and P2 is also an invariant-half of this difference is just the eccentric 

t The material in this section is from the paper "An Elegant Lambert Algorithm" 
by Richard H. Battin and Robin M. Vaughan published in the Nov.-Dec., 1984 issue 
of the Journal 0/ Guidance, Control, and Dynamics. Several improvements have since been 
made which are incorporated here. 
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anomalyt E in Kepler's equation (7.BO). Obviously, the eccentricity eo, 
given in Eq. (7.B3), is not invariant even though the terms in that formula 
are each invariant. 

Our objective is to convert Kepler's equation to a form resembling 
Gauss' equations (7.60) and (7.61). To this end, write (7.BO) as 

~1?a(t2 - t1) = E - sinE + (1- .0) sinE (7.86) 

and replace 1 - eo by 

where we have used Eq. (6.79) for the second step. [Recall that rop is the 
mean point radius (now, the pericenter radius) of the parabola connecting 
the terminals.] Then, we have 

1 (sfi (2r
op)! . (

2r
op) 1 2 Br 3 (t2 -t1) a =E-smE+ a tan'2 E 

Op 

which involves only a and E. We can eliminate the semimajor axis by 
using the formula (4.32) which relates the true and eccentric anomalies. 
From 

we obtain 
2tan2 !E 

1- e = 2 
o tan2 ! f + tan 2 ! E 2 2 

(7.87) 

Hence, 

2rop _ 2(1- eo) _ 4tan2 !E 
a-I + tan2 !E - (1 + tan2 !E)(tan2 ! f + tan2 !E) 

(7.88) 

and, as a consequence, Kepler's equation takes the form 

J ~ (t2 - t1) 4tan
3 !E = 

Brop [(tan2 !f + tan2 !E)(1 + tan2 !E)]! 

E . E 4tan3 !E - sm + -:--~-:----~~~----:::--:--~ 
(tan2 !f + tan2 !E)(1 + tan2 !E) 

The analogy with Gauss' equations is now readily made. At the possi
ble risk of confusing the reader, we will use the same notation as in Gauss' 

t Recall that E == ",,-the symbol used in the development of Gauss' method. 
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method but the symbols will have different meanings. The advantage will 
be the ease of comparison of the two. Thus, if we definet 

2 1 2 1 P,(t2 - tl)2 
X = tan 2 E i = tan 'If m = 3 (7.89) 

Brop 

the analog of the first equation of Gauss is had by defining y ast 

2 m 
y = (i+x)(l+x) (7.90) 

Substituting into Kepler's equation, we obtain the analog of the second of 
G~'~~~~ . 

3 2 E - sinE 
y - y = m 4 tan3 ! E 

2 
(7.91) 

Just as in Gauss' method, the right-hand side of the second equation 
can be expressed using hypergeometric functions. Since, 

E - sinE 1 (!E 1) 
4tan3 ~E = 2tan2 ~E tan ~E - 1 + tan2 ~E 

= ~ (arctan..;x __ 1_) = _.!!... (arctan .;x) 
2x .;x 1 + x dx .;x 

we have, from Eq. (1.6), 

E-sinE _ d (1 .3. 
4tan3 !E - - dx F 2,1, 2' -x) 

2 

(7.92) 

so that Eqs. (7.90) and (7.91) are also functions of x and y as was the case 
in Gauss' equations. The hypergeometric function satisfies the necessary 
requirement to be expanded as a continued fraction. Specifically, 

1 
F(i,I;~;-x)=--------

x 
1+------

4x 
3+----

9x 
5+---

7+ '. 

which should be compared with the results of Prob. 1-10. 

(7.93) 

Since we cannot, explicitly, differentiate continued fractio~, an 
alternate form of Eq. (7.92) will be required. From the derivation of that 

t If we wished an exactly parallel comparison with the original Gauss method, we 
should write m 2 instead of m in the definition. However, there would be no other need 
for that notation and it will not be used in the following discussion. 

* Note that in this case y is not the sector-triangle area ratio. 
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equation, we see that 

dF = -.!.. (_1 __ F) 
dx 2x l+x 

(7.94) 

However, since x can vanish, we must eliminate the indeterminacy some
how. For this purpose, define 

F= 1 
l+xG 

where 

and obtain, therefrom, 

1 
G=---------

4x 
3+--------

9x 
5+------

16x 
7+-----

25x 
9+---11 + '. 

dF (1- G)F 
dx = 2(1 +x) 

(7.95) 

In the interest of simplifying the final result, it happens that we should 
also define e by 

1 
G= 4x 

3+ T 

so that 
dF 
d:r;= 

where 
9x e = 5+ -------

16x 
7+------

25x 
9+-----

36x 
11+---

13+ '. 

(2x+ e)FG 
= 

e(1 + x) (1 + x)[4x + e(3 + x)] 

(7.96) 

(7.97) 

Therefore, the analog of the second of Gauss' equations (7.91) can also be 
written as 

3 2 m(2x+e) 
y -y = (l+x)[4x+e(3+x)] 

(7.98) 

The reader should verify that these equations are also universal when 
the definition of x is extended to include the other conics: 

{ 

tan21(E2 - EI ) ellipse 

x = 0 parabola 

-tanh21(H2 - HI) hyperbola 

(7.99) 

with its values ranging now from -1 to +00. Here again we should 
emphasize the importance of the continued fraction formulation. Unlike, 
any power series representation, the continued fraction converges over the 
entire range of interest. 
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Computing i, m, and the Orbital Elements 

From Eqs. (7.89) and (7.79), we have 

i 
- 2 1 I _ 1 - cos I _ Tl + T2 - 2JT1 T2 cos! (J - tan "2 - - ~-..;;......-.!.....-::......::.----;.-

1 + cos I Tl + T2 + 2JT1T2 cos !(J 

329 

(7.100) 

However, just as was the case for Gauss' definition of i, this equation is 
not appropriate when f) is small; nor should it be used when f) is near 
360 degrees. The same technique that Gauss employed is applicable here. 
Indeed, we easily deduce that 

! 
sin2 !(J + tan2 2w 

4 for 0 < (J < 7r 
sin2 !(J + tan2 2w + cos!f) 

i= 4 2 

cos2 i(J + tan2 2w - cos !(J 
for 7r < (J < 27r 

cos2 i(J + tan2 2w 

(7.101) 

with tan2 2w calculated from Eq. (7.57). 
In like fashion, an error-free formula for computing the mean point 

radius of the parabola is possible. From Eq. (6.77), we have 

TOp = i (Tl + T2 + 2JT1T2 cos !(J) = JT1T2 (cos2 
i(J + tan2 2w) (7.102) 

to be used in determining m from the third of Eqs. (7.89).t 
The orbital elements are as easily calculated and as error-free as they 

were in Gauss' method. Since 

we have 

a(1 - eo) = TOp(1 + x) and 
2x 

l-eo=-
i+x 

1 2x 2xy2 
-= =--
a TOp(i + x)(1 + x) Topm 

so that we may compute the semimajor axis from 

1 16T~pxy2 16T1T2(COS2 i(J+tan22w)2xy2 
-= 2= 2 
a J.t(t2 - td J.L(t2 - td 

For the parameter, we first obtain 

(
1 2) J.L(t2 - tl)2 4ix 

Po = a - eo = 16T~pxy2 x (i + x)2 

using Eq. (7.87) to derive the second factor. But, from Eq. (7.90), 

2 i 2 m2 J.t2(t2 - tl)4 Y ( +x) - -~,....;....:::,....,.........:..;......,~ 
- y2(1 + X)2 - 64T8py2(1 + x)2 

(7.103) 

t As can be seen from the new definitions of l and m, we have eliminated the 
singularity at (J = 7r. However, there is now a singularity at (J = 27r, which is more 
tolerable. 
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so that we have 
_ 161r~py2(1 + X)2 

Po - P.(t2 - tl)2 

Now recall, from the discussion of the last subsection of Sect. 7.4, that 

2 2p 4r r2 . 2 
P=POCOS2¢F where cos ¢F = em = Tsm !O 

Next, we show that e2 can be expressed in terms of l and rop' For this 
purpose, from Eq. (7.100), 

1 + l = 2(rl + r2) = rl + r2 
r I + r 2 + 2v'r I r 2 cos ! 0 2r Op 

Also, from the first of Eqs. (7.79), 

• 2 _ 4 tan 2 ! 1 41 e2 

sm 1 - (1 + tan2 ! 1)2 = (1 + l)2 = (rl + r2)2 

Then, from these last two equations, we obtain 

e2 = 161r~p (7.104) 

to be used in the expression for cos2 ¢ F' Finally, then, the parameter may 
be calculated from 

4r3prlr2y2(1 + x)2 sin2 !O 
P = -..:..--~-~-=---~ 

P.(t2 - tIP 

= [2rlr2 (COS2 ~O + tan2 2w)y(1 + x) sin !O]2 
v'P(t2 - t l ) 

(7.105) 

For an accurate determination of the eccentricity, we use the by now 
familiar notation 

e = sin¢ and eo = sin¢o 

so that the equation 

P = Po cos2 
¢F becomes 

or 

Hence, 

sin2 ¢ = sin2 ¢o + sin2 ¢F - sin2 ¢o sin2 ¢F = sin2 ¢F cos2 ¢o + sin2 ¢o 

Now, substitute for sin2 ¢F from 

2 (r - r ) 2 r2£2 sin ¢F = e} = _2 __ 1 = _I_ 
e e2 
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where ( was defined in Eq. (7.56) as 

T2 = Tl (1 + () 
Further, since, 

c2 = T~ + T~ - 2T 1 T 2 cos () = T~ [2 + 2( + (2 - 2( 1 + () cos ()] 

we have 

Finally, using Eq. (7.87), 

• 2 2 (f._x)2 
sm 4>0 = eo = f. + x 

and, as a result, the eccentricity is accurately computed from 

(2 + 4 r 2 sin 2 ! () (f. - x) 2 
2 r 1 2 f. + x 

e = T 
(2 + 4...l sin2 ! () 

r
1 

2 

(7.106) 

In short, all of the precision-preserving techniques that Gauss so care
fully crafted for his method exist also with the new formulation. 

¢ Problem 7-11 
Formulas for i, m, the semimajor axis, and the parameter can be expressed 

in terms of .\ defined in Eqs. (7.5) and (7.6). Specifically, 

i= (~)2 
1+.\ 

and 
1 8xy2 

a m8(1 + .\)2 

2TIT2y2(1 + X)2 sin2 ~ (J 

p = m8(1 + .\)2 

where 

~ {8; 
.\8 = FS = ..jTIT2 cos ~ (J or .\ = ±y ---;--8- and T = Y -;a(t2 - t.) 

NOTE: This was the basis of the formulation used in the paper (previously cited) 
"An Elegant Lambert Algorithm." If (J is defined implicitly by the vectors rl and 
r2 , experiencet has shown that these equations are preferred for computation. 

t Allan Klumpp of the Jet Propulsion Laboratory made an extensive study of this 
algorithm in 1986-exploring the envelope of applicability and stress-testing it for all 
reasonable cases. He concluded that it "offers the required compactness, speed, and 
reliability for manned and unmanned onboard guidance. Tbe algoritbm offers the ac
curacy and application range required for planetary orbit determination and tbeoretical 
astronomy. " 



332 Solving Lambert's Problem [Chap. 7 

Improving the Convergence 

In his Theoria M otus, Gauss developed an extremely efficient technique 
for solving the elementary form of Kepler's equation in the case of near 
parabolic orbits which was described in Sect. 5.5. The key was the intro
duction of a parameter specifically selected to accelerate the convergence 
of his successive substitution algorithm. Since our time equation is also 
the simple form of Kepler's equation, we are tempted to introduce a free 
parameter in this instance too. 

For this purpose, with {3 as yet unspecified, write Eq. (7.86) as 

where 
P = E - sin E and Q = sin E - {jP 

Now, from Eqs. (7.87) and (7.92) together with a trigonometric identity 
for the sine function, we have 

2x 
1- eo=-

l+x 
dF 

P = -4tan3 !E-
2 dx 

2 tan !E 
sinE = 2 

1+x 

which are used to develop the expressions 

[ ( )] - 3 I [dF hI 1 1 + {j 1 - eo P - -4 tan ijE dx + (l + x)(1 + x) 

4tan3 !E 4y2 
(1 - eo)Q = (l + x)(1

2+ x) (1 + hI) = ~(1 + hd tan
3 ~E 

with the quantity hI defined as 

dF 
hI = 2{3x(1 + x) dx (7.107) 

Then, by combining the third of Eqs. (7.89) with Eq. (7.103), we also have 

; /?a(t2 - t.) = 4y3 tan3 !E 

so that Kepler's equation can be written as 

(7.108) 

Clearly, if {j = 0, then hI = 0 and Eq. (7.108) reduces to (7.91). Otherwise, 
(j can have any value whatsoever-not necessarily constant. 

N ow that we have this extra degree of freedom, how can we best use 
it? To decide, consider the general problem of the simultaneous solution 
of two equations by successive substitutions. In the top part of Fig. 7.5 we 
have plotted two arbitrary functions YI (x) and Y2(X); the intersection of 
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these two curves is the solution point. To find the solution by successive 
substitution, we start by choosing an initial value Xo and then calculate 
the corresponding value of Yl (xo). Next, Yl (xo) is used to obtain a new 
value of x by locating the point where Y2(x) = Yl (xo). The new value of x 
is again used to calculate Yl which, in tum, is used to find a new value for 
x. This process is represented in the figure by the horizontal and vertical 
dotted lines. Clearly, the curvature of the two functions greatly influences 
the number of iterations required to reach the solution. In the extreme, 
suppose that Yl (x) is a constant as shown in the bottom part of the figure. 
Then the solution would be attained in just one iteration step since, for 
any xo' we have Yl (xo) exactly equal to Y2(X) at the solution point. 

la) 

fb) 

Fig. 7.5: Graphics of a successive-substitutions algorithm. 

Using this argument, it appears that we should choose our free 
parameter f3 so that dy / dx will be zero at the solution point. Of course, 
we don't know the location of this point-if we did, no problem would exist 
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at all. For the moment, we ignore this seemingly crucial matter, calculate 
the derivative of Eq. (7.108), 

2dy dy 2dhl d2F 
3y dx - 2(1 + hl)y dx - y dx + m dx2 

m dhl h d 1 0 + +m = (i + x)( 1 + x) dx I dx (i + x)( 1 + x) 

and examine the terms one by one. 
At the solution point, we know that Eq. (7.90) is satisfied so that the 

terms involving dhl/dx cancel. Hence, for dy/dx to be zero at this point, 
the sum of the fourth and sixth terms must vanish. Thus, 

d2 F 
(i + x)2(1 + X)2 dx2 - hI (1 + 2x + i) = 0 (7.109) 

and this is the equation we shall use to determine {3. This parameter will 
be a function of x which, of course, should be evaluated at the solution 
point wherever it may be. Since we don't know its location, we will use 
the function instead of its value-knowing full well that this is the right 
value at the solution point. It will be almost correct near that point and, 
hopefully, won't cause serious problems otherwise.t 

To evaluate the free parameter (3 from Eq. (7.109), we first note that 
since F = F(!, 1; ~; -x) is a hypergeometric function, it must satisfy 
Gauss' differential equation (1.12) 

d2F dF 
2x(1 + x) dx2 + (3 + 5x) dx + F = 0 

This can be used to eliminate the second derivative from Eq. (7.109). As 
a consequence, we obtain 

(7.110) 

When we substitute for dF /dx from Eq. (7.97) and make the appropriate 
reductions, we obtain the following equationt for hI: 

h _ (i + x)2(1 + 3x + e) 
I - (1 + 2x + i)[ 4x + e (3 + x)] 

(7.111) 

Finally, we have no difficulty in also deriving 

h - m(x-i+ e) 
2 - (1 + 2x + i)[4x + e (3 + x)] 

(7.112) 

t Gauss achieved a similar Battening of bis cubic equation (7.68) for values of x near 
x = 0 since he was able to insure that bis coefficient h had only a second-order variation 
with x. 

* Since hi is proportional to P, we bave, in fact, determined the free parameter. 
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where we have introduced the notation -h2 for the last term in Eq. (7.108). 
In summary, then, the two analogs of Gauss' equations (7.60) and 

(7.61) are 

X=J(~)2 + m_~ 
2 y2 2 

(7.113) 

and 
y3 _ y2 - hly2 - h2 = 0 (7.114) 

with the coefficients determined from Eqs. (7.111) and (7.112).t The 
function e(x) is calculated from the continued fraction 

~x e = 5 + ______ 7~,....._----
16 X 

1 + ____ ----::6::::,3=-___ _ 
25 X 

1 + 99 
36 

1 + 143 X 
49 

1 + 195 X 
64 

1 + 255 X 
81 

1 + mX 

for - 1 ~ x < 00 (7.115) 

1+ .. 

which is equivalent to Eq. (7.96). 
The mechanics of the algorithm are the same as for Gauss' method. 

From a trial value of x, the coefficients hI and h2 are calculated. Then 
the cubic equation is solved for y and a new value of x determined from 
Eq. (7.113). The steps are repeated until convergence to an acceptable 
accuracy is obtained. 

Transforming the Function ~ (x) 

In both Gauss' method and in the algorithm described here, the two 
operations which consume the most time are: (1) evaluating the continued 
fraction and (2) solving the cubic equation. In Theoria Motus, Gauss pre
pared tables for this purpose which span the region over which his method 
is useful and valid. In lieu of tables, we shall derive efficient computation 
techniques for these two aspects of our algorithm. 

In Sect. 1.4 a top-down method is described for evaluating continued 
fractions which can be used to determine e(x). It will not be considered fur
ther here. However, we must remark that, although the continued fraction 
representation of e(x) in Eq. (7.115) converges rapidly for small values of 
x, the number of levels required increases significantly as x becomes large. 

t Equation (7.113) is obtained from Eq. (7.90) by solving for x using the quadratic 
formula. The specified range -1 < x < 00 governs the choice of sign for the radical. 
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A substantial improvement in the rate of convergence can be had at 
the expense of a little extra preliminary computation. For this purpose, we 
establish, using Prob. 1-10, 

!E 
t 2 1 E = F(I, !; ~; - tan2 ! E) 
an 2 

from which is deduced 
!E 
4 = F(1 !. 2. - tan2 ! E) 

tan ! E ' 2' 2 , 4 
4 

Then, since 

2 1 E sec ! E - 1 VI + x-I _ 
tan - = = - TJ 

4 sec! E + 1 Jf+X + 1 -

it follows that 

1 3 2 tan ~E 1 3 2F(7J) 
F(x) == F(I, 2; 2; -x) = 1 E F(I, 2; 2; -TJ) = Jf+X 

tan 2 1 + x + 1 

Therefore, 

F(x) _ 1 _ 2 ( 1 ) 
- 1 + xG(x) - VI + x + 1 1 + 7JG(TJ) 

(7.116) 

To solve for G(x), this last equation is written as 

2[1 + xG(x)] = VI + x + 1 + (VI + x - I)G(TJ) 

=Vl+X+l+~ G(7J) 
l+x+l 

leading to 

2xG(x) - (VI + x-I) = 2xG(x) -~ = ~ G(7J) 
l+x+l l+x+l 

Now x may be cancelled as a common factor and we have 

Gx- I+G(7J) 
( ) - 2(Jf+X+ 1) 

Furthermore, 

Gx - - 1+ 1 1 [ 1] 
( ) - 3 + 4xle(x) - 2( Jf+X + 1) 3 + 47Jle(7J) 

and, in a similar manner, we determine 

e{x) = 8{ Jf+X + 1) 
1 

3+--
TJ+e{TJ) 

(7.117) 

(7.118) 

(7.119) 
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Continued Fraction Levels [e(x), e(l1 )] 

A\T 0.3 0.5 0.7 0.9 1.0 3.0 5.0 7.0 

-0.9 81,19 50, 15 36, 13 27, 11 24, 10 12, 6 46, 9 81, 9 
-0.7 60, 17 37, 13 26, 10 19, 9 17, 8 16, 7 29, 8 38, 9 
-0.5 44, 14 26,11 18, 9 13, 7 11, 6 15, 7 22, 8 26, 8 
-0.3 31,12 19, 9 13, 7 10, 6 8, 5 12, 6 17, 7 20, 7 
-0.1 20, 9 13, 7 10, 6 8, 5 7, 5 11, 6 14, 7 17, 7 

0.0 15, 8 11, 6 9, 6 7, 5 6, 5 10, 6 13, 6 15, 7 

0.1 11, 6 9, 6 8, 5 7, 5 6, 4 9, 5 12, 6 14, 7 

0.3 7, 5 7, 5 6, 4 5, 4 5, 4 8, 5 10, 6 12, 6 

0.5 5, 4 5, 4 5, 4 4, 3 4, 3 7, 5 9, 5 11, 6 

0.7 4, 3 4, 3 3, 3 3, 2 3, 3 6, 4 8, 5 9, 5 

0.9 2, 2 3, 2 3, 3 3, 3 4, 3 6, 4 7, 5 8, 5 

In summary, then, if we define 

x 
where -1<11<1 (7.120) 

'f/ = (VI + x + 1)2 

we have shown that 

e(x) = 
8(V1 + x + 1) 

(7.121) 
1 

3+ 
~11 

5+11+ 16 11 
1+ 63 

25
11 

1+ 99 
36 

1+ 143 11 
49 

1+ 195 11 

1 +'. 

In the tablet at the top of the page a comparison is made of the number 
of continued fraction levels required to compute e(x) to eight significant 
digits for various values of 

>.=±J8~C and fi T = s3 (t2 - t 1) (7.122) 

using both Eqs. (7.115) and (7.121). 

t The tables in this section are from the paper "An Elegant Lambert Algorithm." 
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Solving the Cubic 

Turning our attention now to solving the cubic equation (7.114), observe 
that Eq. (7.91) has only one positive real root since the right-hand side of 
that equation is positive for all orbits. Furthermore, that root must exceed 
unity in magnitude. This is the solution to our problem and, of course, 
must be a root of Eq. (7.114) also. 

It is not difficult to show that hI (x), defined in Eq. (7.111), is always 
positive, but h2 {x) , defined in Eq. (7.112), can have either sign. Hence, 
there can be more than one positive real root ofEq. (7.114) and the question 
of which is the proper choice must be resolved. 

It is easy to verify, for parabolic orbits with 

1- v'5 
A>--

1 + v'5 
that h2 is positive and, consequently, for that case Eq. (7.114) has exactly 
one positive real root. Therefore, if A and T vary continuously, a simple 
continuity argument will suffice to prove that, when multiple roots appear, 
the largest is always the correct choice. 

The classical explicit formulas for obtaining the roots of a cubic can, 
of course, be used for solving Eq. (7.114). However, there is an extremely 
attractive formula, utilizing continued fractions, which is guaranteed to 
produce always the correct root. 

The transformation 

where 

b= 
27h2 

4(1+h I )3+
1 

will convert the cubic equation for y to the canonical form 

Z3 - 3z = 2b 

which is just the one considered at the end of Sect. 1.2. The solution as a 
continued fraction is developed in that section. 

In summary, to solve the cubic, we first calculate 

B 
u=--===---

2{"'1 + B + 1) 
where {7.123} 

Then, the largest positive real root of Eq. (7.114) is 

1 + hI ( v'I+B) 
y= -3- 2+ 1+2uK2{u} {7.124} 
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where K (u) is calculated from the continued fraction 

1 

K(u) = ----.......:::;3~4----
27 U 

(7.125) 

1 + -------'::.:.....,,8,....----
27 U 1 + ---.::..:.......;:----au 

1 + __ --'9~:___-
22 U 

1 + _.....;8=1===_ 
208 U 

1 + 891 

1 + '. 

In general, the odd- and even-numbered coefficients of u in the continued 
fraction, which we call 12n+l and 12n' can be obtained from 

2(3n + 2)(6n + 1) 
12n+l = 9(4n + 1)(4n + 3) and 

2(3n + 1)(6n - 1) 
12n = 9(4n - 1)(4n + 1) 

The quantity 1 + B can be shown to be always positive so that no 
difficulty is encountered in the square root. Indeed, unless this term is 
positive, there will not exist a positive real root of Eq. (7.114). 

Of course, we can always resort to Newton's method for finding the 
root but we must be careful that we converge to the correct one. A little 
analysis confirms that an appropriate starting value Yo is either zero or 
i (1 + hI) depending on whether h2/(1 + hl)3 is or is not less than - 2~ , 

respectively. On each subsequent cycle in the iteration it makes sense to 
use the value of y calculated during the previous cycle. 

Finally, a few programming hints are appropriate. In calculating the 
coefficients of the cubic equation, hI (x) and h2 (x), note that from Eq. 
(7.113), we can write 

l+x= JL2+ ~ +L 

so that 

and ~ m 
i + x = V L2 + Y2 - L = y2 (1 + x) 

1 + 2x + i = 2J £2 + ~ 
where 

I 
1 cos l(J 
2 2 for 0 < (J < 7r 

1 - i sin2 ~(J + tan2 2w + cos!O 
L----

- 2 - 1 cos 10 
2 2 

cos2 10 + tan2 2w 4 

for 7r < 0 < 27r 
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Comparing the Two Methods 

While the derivations of Gauss' method and the new method for solving 
Lambert's problem are different, the final equations and mechanics of the 
algorithms are quite similar. The dimensionless parameters A and Tare 
the inputs to both methods. The new method requires somewhat more 
algebra for each iteration since there are two coefficients to be found for 
the cubic equation and Eq. (7.90) is quadratic in x. There is no need, 
however, to test the value of A as in Gauss' method since the new equations 
are valid for -1 < A ~ 1. The efficiency of either procedure is measured 
by the number of iterations necessary to compute x to a given accuracy. 

In the table on the opposite page, the two methods are compared to 
contrast the number of iterations required to compute x to eight significant 
digits. For Gauss' method, the initial values of x selected to generate this 
table were 

{ 

0 parabola, hyperbola, i.e., T ~ Tp = ~ (1 - A 3 ) 

xo= _l 
1 + 21 ellipse, Le., T > Tp 

(For the ellipse, Xo defines a circular orbit.) Note the rapid convergence of 
Gauss' method in the lower left-hand corner of the table. In this region, x 
is nearly zero and the transfer angle () is small. Gauss designed his method 
for problems of this type. The quantity c;(x) was ingeniously constructed 
to be of order x2 so that it would be very small for small x-the result 
being that h, the coefficient in the cubic, is nearly independent of x so 
that y is almost constant. 

The two major disadvantages are the singularity at A = 0 and the 
convergence properties over the range of A and T considered. Although, 
Gauss' method converged for all elliptic cases considered, it sometimes 
required more than 100 iterations to do so. For most of the hyperbolic 
cases, it did not converge at all. 

On the other hand, the new method was designed to converge rapidly 
for any case independent of the value of x. The nearly uniform convergence 
behaviour of the new method is seen in the table. The initial value strategy 
chosen for x was identical to that used for Gauss' method. In this case, 
those values are 

x = {O parabola, hyperbola 
o l ellipse 

The rapid convergence in the lower left-hand corner of the table is retained 
using the new method and there is no significant difference in the rate of 
convergence for positive or negative values of A. Although not shown in 
the table, a striking advantage of the new method is that only one more 
iteration step is necessary to obtain lour more significant figures in all the 
cases considered. 
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Number of Iterations (Gauss' Method, New Method) 

~\T 0.3 0.5 0.7 0.9 1.0 3.0 5.0 7.0 

-0.9 t,4 t,4 t,5 t,5 t,5 67, 8 210,7 190,6 
-0.7 t,4 t,5 t,5 t,5 t,5 44,5 52, 5 52, 4 
-0.5 t,4 t,4 t,4 t,4 t,5 24,4 26, 4 19,3 
-0.3 t,4 t,4 t,4 29,4 17, 4 14,4 14,3 19,4 

-0.1 t,4 16,4 10, 4 9, 4 8,4 10, 4 12,4 14,5 

0.0 t,4 t,4 t,4 t,4 t,4 t,4 t,4 t,5 
0.1 5, 4 6,4 6, 4 5,4 5,4 7, 4 9, 4 11,5 

0.3 3,4 4, 4 4, 4 4,4 4, 4 6, 4 8, 5 10,5 

0.5 3, 3 3, 3 3, 3 3, 3 3, 3 5,4 6, 5 8,5 

0.7 3, 3 3, 3 3, 3 3, 3 3, 3 4,4 5,4 7,5, 

0.9 2,2 2,2 2,3 2, 3 3, 3 4,4 5, 4 6, 5 
t Gauss' method does not converge. * Gauss' method is singular for (J = 180 degrees. 

¢ Problem 7-12 
A vehicle in interplanetary space moves from r I to r2 in a time interval of 

0.010794065 year where 

[0.159321004 ] [0.057594337 ] 
rl = 0.579266185 a.u. and r2 = 0.605750797 a.u. 

0.052359607 0.068345246 

Use both Gauss's method and the new method to determine the velocity vector 
VI at the position rl. 

ANSWER: 

[

-9.303603251 ] 
VI = 3.018641330 a.u./year 

1.536362143 

Behaviour Near the Singularity 

Because the new method is singular, it is instructive to investigate its be
haviour for values of ~ approaching -1. The last table shows the required 
number of iterations as A varies from -0.90 to -0.99. The uniformity of 
convergence persists except for a narrow region near T = 5. The increase 
in iteration steps is not the result of a poor initial guess for xo; indeed, 
it turns out that the number of steps approaches a maximum when the 
solution of the problem approaches the minimum-energy orbit-that orbit 
for which the semimajor axis is 

am = ~ s = 1 (r 1 + r 2 + c) 
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Number of Iterations for New Method near 360 degrees 

A\T 0.3 0.5 0.7 0.9 1.0 3.0 5.0 7.0 9.0 11.0 

-0.99 4 4 5 5 5 10 14 8 6 5 

-0.98 4 4 5 5 5 9 12 8 6 5 

-0.97 4 4 4 5 5 9 11 7 6 5 

-0.96 4 4 5 5 5 9 10 7 6 5 

-0.95 4 4 5 5 5 9 9 7 5 5 

-0.94 4 4 5 5 5 8 9 6 5 5 

-0.92 4 4 5 5 5 8 8 6 5 5 

-0.90 4 4 5 5 5 8 7 6 5 5 

-when the transfer angle is close to 360 degrees. This same region also 
causes difficulties for Newton's method as noted at the end of Sect. 7.2. 
The transfer-time graph experiences a change in curvature, necessitating 
abandonment of the Newton iteration technique, when A is near -1. The 
new method takes a little longer than usual but it still converges without 
modification. 
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Mathematical Progressions 

In Gauss' algorithm for evaluating elliptic integrals, the arithmetic and 
geometric means play a fundamental role. Since these, as well as the 
harmonic mean, continually appear throughout our studies-sometimes in 
quite unexpected and surprising ways-we shall record here their precise 
definitions as well as some properties which the interested reader should 
be able to substantiate on his own. -

A.I Arithmetic Progression 

A series in which each term exceeds the preceding by a fixed quantity, called 
the common difference, is an arithmetic series or an arithmetic progression. 

¢ Problem A-I 
The sum of n terms of an arithmetic progression is n times the average of 

the first and last terms. 

¢ Problem A-2 
IT a, b, c are in arithmetic progression, then 

b= ~(a+c) 

The quantity b is called the arithmetic mean between a and c. 

A.2 Geometric Progression 

A series in which the ratio of each term to the preceding is a constant is 
called a geometric series or a geometric progression and the constant ratio 
is called the common ratio. 

¢ Problem A-3 
The sum of n terms of a geometric progression is 

a-rl 
l-r 

where a and I are the first and last terms and r is the common ratio. 
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¢ Problem A-4 
If a, b, c are positive quantities in geometric progression, then 

Here, b is referred to as the geometric mean between a and c. 

¢ Problem A-5 
A point P divides the diameter of a circle into two parts of lengths a and c. 

The length of the line, drawn perpendicular to the diameter from P to the point 
of intersection with the circle, is the geometric mean between a and c. 

A.3 Harmonic Progression 

A series of quantities, whose reciprocals form an arithmetic progression, is 
called a harmonic series or a harmonic progression. 

¢ Problem A-6 
If a, b, c are three consecutive terms of a harmonic progression, then 

! = ! (! + !) or b = 2ac 
b 2 a c a+c 

In this case, b is called the harmonic mean between a and c. 

¢ Problem A-7 
The geometric mean between two positive quantities a and c is the geomet

ric mean between the arithmetic and harmonic means between a and c. 

¢ Problem A-a 
The arithmetic, geometric, and harmonic means are in descending order of 

magnitude. 



Appendix B 

Vector and Matrix Algebra 

We assume that the reader is basically familiar with the techniques of 
vector and matrix algebra. Therefore, the following set of problems should 
be regarded as both a review and a ready reference of various identities 
and properties which will be used throughout this book. 

B.1 Vector Algebra 

¢ Problem 8-1 
Derive the following identities 

(a X b) X c = (a· c) b - (b . c)a 

a X (b X c) = (a· c)b - (a· b)c 

(a X b) . (c X d) = (a· c)(b· d) - (b· c)(a' d) 

(a X b) X (c X d) = (a· b X d)c - (a· b X c)d 

¢ Problem 8-2 
If a, b, p are vectors from the origin to the points A, B, P and 

p = la+mb 
where 

l=l+m 

then the point P lies on the line connecting points A and B. 

¢ Problem 8-3 
If a I b, c, p are vectors from the origin to the points A I B, C I P and 

p = la+mb+nc 
where 

l=l+m+n 

then the point P lies in the plane determined by A I B, and C. 
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~ Problem 8-4 
Jr Consider four points in space A, B, C, D so located that the line segments 

AB and CD are parallel. Let a, b, e, d be vectors from the origin to the points 
A, B, C, D. If m is the ratio of the lengths of AB and CD, then 

b-md a-me 
p= I-m = I-m 

is the vector from the origin to the intersection of AC and B D . 

¢ Problem 8-5 
If the vectors a, b, e are not parallel to a plane, then the solution of the 

equations 

can be written as 

¢ Problem 8-6 

p·a=l p·b=m p·e =n 

ibxe+mexa+naxb 
p= -------a--·~b-x--c-------

If the vectors a and b are perpendicular, then the solution of the equations 

can be written as 

pXa=b p·a=i 

a X b + ia 
p = ---a-·-a---

~ Problem 8-7 
Jr Consider four points in space A, B, C, D so located that the line segments 

AB and CD are not parallel. Let a, b, e, d be vectors from the origin to the 
points A, B, C, D. Then 

I(e - a) • (b - a) X (d - c)1 
I (b - a) X (d - c) I 

is the perpendicular distance between the lines AB and CD. 

¢ Problem 8-8 
By means of products express the condition that three vectors be parallel 

to a plane. 

¢ Problem 8-9 
By means of products express the condition that the plane containing the 

vectors a and b be perpendicular to the plane containing e and d. 

¢ Problem 8-10 
By means of products find a vector which is in the plane of b and e and is 

perpendicular to a. 
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¢ Problem 8-11 
Consider a sphere of unit radius and three unit vectors lA, Is, Ie, directed 

from its center to the three vertices of a spherical triangle on its surface. Let the 
vertex angles be A, B, C and the opposite sides a, b, c, respectively. Then by 
properly interpreting the two sides of the vector identity 

(IA X Is) • (IA X Ie) = (is ·Ie) - (iA ·le)(iA . is) 

deduce the law 0/ cosines for spherical trigonometry 

cos a = cosbcosc + sinbsinccosA 

B.2 Matrix Algebra 

¢ Problem 8-12 
For any square matrix A, show that the products AA T and A T A are 

always symmetric. 

¢ Problem 8-13 
If A is skew-symmetric, prove that A 2 is symmetric. 

¢ Problem 8-14 
If A and B are symmetric, then the product AB is symmetric if and only 

if AB = BA. 

¢ Problem 8-15 
Determine the symmetry or skew-symmetry of AB - BA in the cases for 

which 
(a) both A and B are symmetric, 
(b) both are skew-symmetric, and 
(c) one is symmetric and the other is skew-symmetric. 

¢ Problem 8-16 
Any square matrix M can be represented as the sum of a symmetric matrix 

and a skew-symmetric matrix. That is, 

M = 4(M+MT) + 4(M - MT) 

~ Problem 8-17 
Y If the matrix B is skew-symmetric and 1 is the identity matrix, show that 

the matrix 1 + B is nonsingular. Then, demonstrate that 

A = (I - B)(I + B)-1 

is an orthogonal matrix. 

Georg Ferdinand Frobenius 1894 
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¢ Problem 8-18 
Let the vectors a, b, c be the column vectors of a three-dimensional matrix 

M, i.e., 
M=[a b c) 

Then, 

¢ Problem 8-19 
Verify the following identities for block partitioned matrices where the sub

scripts on the sub matrices indicate the number of rows and the number of 
columns, respectively. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

[
Ann Bnm] = [Ann Onm] [Inn A;;~ Bnm ] 
C mn Dmm Omn Imm Cmn Dmm 

[
Ann Bnm] = [Ann BnmD;!n] [Inn Onm ] 
C mn Dmm C mn Imm Omn Dmm 

[
Inn Anm] [Inn Onm] [ Inn Anm ] 

Bmn C mm = Bmn Imm Omn Cmm - BmnAnm 

[~:: ~::] = [~:: ~;:][ ~:n ~:: ] 
[l:n ~::] = [l:n ~;:][ ~:n ~:: ] 
[~:n :::] = [~:n ~:: ][ ~:n ~;:] 

[~:n ~::r = [~:n ~;~] 
[

Inn 
Amn 

Onm]-l = [Inn Onm] 
Imm -Amn Imm 

[
Inn 

Omn 
Anm]-l = [Inn -Anm] 
Imm Omn Imm 

I 
Inn Onm 1= 1 

Amn Imm I 
Inn 

Omn 
Anm 1= 1 
Imm 

I ~:n t: I = IAmml I Ann Onm I = IAnni 
Omn Imm 
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¢ Problem 8-20 
Let M be a square matrix of dimension n + m and partitioned as 

M = [Ann Bnm] 
C mn Dmm 

where Ann is an n-dimensional square matrix, Bnm is a rectangular matrix 
having n rows and m columns, etc. Utilize the identities established in the 
preceding problem to derive the following relationships. 
(a) The matrix M can be expressed as 

M= [
Ann Onm] [Inn Onm] [ Inn 
Omn Imm C mn Imm Omn 

A;;-~Bnm] 
Emm 

where 
Emm = Dmm - CmnA;;~Bnm 

with I and 0 the identity and zero matrices, respectively. 
(b) The determinant of M is given by 

IMI = IAnnllEmml 

(c) The inverse of M can be obtained from 

Onm] 
E- 1 mm 

[
Inn 

-Cmn 
Onm] [A;;-~ 
Imm Omn 

provided that Emm is nonsingular. 
(d) An alternate factorization of M is 

M = [Fnn 
Omn 

BnmD~!n] [Inn Onm] [Inn Onm ] 
Imm C mn Imm Omn Dmm 

where 
F nn = Ann - BnmD~!n Cmn 

(e) The determinant of M is then 

IMI = IDmmllFnnl 

(f) The inverse of M is then 

O~r] [ Inn 
Dmm -Cmn 

Onm] 
Imm 

Onm] [ Inn 
Imm Omn 

provided that F nn is nonsingular. 

Onm] 
Imm 
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¢ Problem 8-21 
Use the results of the previous problem to evaluate the determinant and to 

calculate the inverse of the matrix 

[

21 
-2 3 

M= 1-2 
-4 -3 

¢ Problem 8-22 

-1 4] 2 -5 
-3 2 

2 -2 

As an exercise in quadratic forms, characteristic values, and characteristic 
vectors, consider the quadratic form 

Q = 5x~ - 2x~ - 3x~ + 12xlx2 - 8xlxs + 20X2XS 

(a) Find the matrix A such that Q = x TAx. 
(b) Find the characteristic values and characteristic vectors of A. 
(c) Find the modal matrix B for which B- 1 = B T and having the property 

that the transformation 
x=By 

will reduce the quadratic form Q to canonical form, i.e., a sum of squares with 
no cross product terms. 
(d) Write out the new quadratic form. 

ANSWER: 

A= [ ~ 
6 -4] (a) -2 10 

-4 10 -3 

(b) 6,9, -15 and 1 [-n · 1 m· 1 [ -~] 3 3 3 

[-I 
2 

-I] 3 
(c) B= 2 

3 
1 
3 

(d) Q = 6y; +9y~ -15yi 
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Power Series Manipulations 

The formal manipulation of power series was a favorite tool of Newton 
and many of his followers. We summarize here some of the convenient 
algorithms for multiplying, dividing, extracting roots, and reversing power 
series. The reader should have little difficulty in verifying these for himself. 

Consider the power series 
00 00 00 

A= Lanx
n B= Lbnx

n C= Lcnx
n 

n=O n=O n=O 

with ao = bo = Co = 1. 

¢ Problem C-l 
If C = AB, then 

n 

Cn = Lakbn-k 
k=O 

¢ Problem C-2 
If C = AlB, then 

n 

Cn = an - L bkCn-k 
k=l 

¢ Problem C-3 
If C = A! , then 

2Cl = al 

2C2 = a2 - c~ 
2C3 = a3 - 2CIC2 

2C4 = a4 - 2CIC3 - c~ etc. 
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¢ Problem C-4 
If C = A! , then 

3Cl = al 

3C2 = a2 - 3c~ 

Appendix C 

3C3 = a3 - 6CIC2 - c~ 

¢ Problem C-5 
If 

3C4 = a4 - 3C~C2 - 6CIC3 - 3c~ etc. 

y = x + bx2 + cx3 + dx4 + exs + Ix6 + ... 
then the formal reversion 01 the series 

x = y + By2 + Cy3 + Dy4 + E y 5 + F y 6 + ... 
obtains if B, C, . .. are determined from 

B=-b 

C = -c+2b2 

D = -d + 5bc - 5b3 

E = -e + 6bd - 21b2c + 3c2 + 14b4 

F = -1+ tbe - 28b2d - 28bc2 + 84b3c - 42bs + tcd etc. 
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Linear Algebraic Systems 

In the section on orbit detennination-Sect. 3.7-we had occasion to use 
a fundamental property of linear algebraic equations. There are others, in 
addition, which we shall need from time to time. They are all stated here 
in the fonn of problems for the student. 

¢ Problem 0-1 
Consider the system 

aUXl + a12X2 + ... + aInXn + Cl = 0 

a2IXl + a22X2 + ... + a2nXn + C2 = 0 

consisting of n equations to be used to determine the n variables Xl, X2, ••• , 

Xn. If, in addition to these equations, another, namely, 

is also specified, the system of n + 1 equations thus obtained will, in general, be 
inconsistent. A necessary and sufficient condition for consistency is that 

au al2 aln Cl 

a21 a22 a2n C2 

=0 
anI an2 ann Cn 

an+l,l an+l,2 an+l,n Cn+l 

Etienne Bezoutt 1764 

t Etienne Bezout (1739-1783) published this result at the beginning of his paper 
Sur Ie degre des equatiom risultantes de l'evanouwement des inconnues in 1764. He also 
systematized the process of determining the signs of the terms of a determinant and 
made other significant contributions to the theory of equations. 
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~ Problem 0-2 
Y Consider the nth order system of the previous problem with all of the c's 

equal to zero. Then, we have n homogeneous equations of the first degree in n 
variables. The system can have a non-trivial solution, i.e., not all of the variables 
equal to zero, only if the determinant of the coefficients vanishes. Furthermore, 
in this case, we have 

XI : X2 : ... : Xn = Arl : Ar2 : ... : Arn 

where T = I, 2, ... , n and Aij is the cofactor of the element aij. 

Thus, the ratios of the variables can be determined but their actual values 
are indeterminate. 

¢ Problem 0-3 
The equation of a straight line passing through the points X I, YI and X2, 

Y2 may be written as a determinantal equation 

1

: 1 

X2 

¢ Problem 0-4 

Y 
YI 
Y2 ! 1= 0 

As discussed in Appendix E, the general second-degree equation in rectan
gular coordinates 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 

represents an ellipse, parabola, or hyperbola. The equation of such a curve 
passing through the five points XI, YI, ... , Xs, Ys may be written in determinant 
form as 

x2 y2 xy X Y 1 
x~ xlYI y~ XI YI 1 
x~ X2Y2 y~ X2 Y2 1 

=0 
x~ X3Y3 yi X3 Y3 1 
x~ X4Y4 y~ X4 Y4 1 
x~ xsYs yg Xs Ys 1 
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Conic Sections 

An equation of the second degree in rectangular coordinates has the form 

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 

By a rotation and translation of the coordinate axes, this equation can be 
reduced to one of the following forms: 

Al x 2 + Bly2 + C1 = 0 

y2 +2D1x =0 

If C1 is not zero and if AI' B1 , C1 do not have the same algebraic sign, 
then the locus defined by the first form is a circle, ellipse, or hyperbola. The 
origin of coordinates is called the center of the conic, and the coordinate 
axes are called the axes 0/ symmetry. On the other hand, if Dl is not 
zero, the locus defined by the second form is a parabola. The origin of 
coordinates is called the vertex, and the x axis is the axis of the parabola. 

The set of problems, which constitute this Appendix, develop some of 
the many properties of the conic sectionst and are entertaining exercises 
for the serious reader. 

~ Problem E-l 
Y The three quantities 

A+C 
J

A B DJ 
.6= BeE 

D E F 

are invariant under a translation or rotation of coordinates. 
For the parabola, y2 + 2DIX = 0, we have 

t Menaechmus, who lived about 350 B.C., is the reputed discoverer of conic sections 
and the best Greek geometers, until the time of Pappus of Alexandria, devoted much 
attention to them. There followed a period of over a thousand years when they were 
almost completely forgotten. Then, in the seventeenth century, Kepler's work motivated 
a new interest in these important curves. 
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For the ellipse or hyperbola, A'X2 + B.y2 + C. = 0, the quantities 

A. and B. 
- C. - C. 

are obtainable as the roots of the quadratic equation 

).? _ (B2 - AC)(A + C) .x (B2 - AC)3 = 0 
A + A2 

~ Problem E-2 
Y The sides of a triangle AA.A2A3 are represented by the equations 

L. = alX + blY + CI = 0 

L2 = a2X + b2Y + C2 = 0 

L3 = a3X + b3y + C3 = 0 

If kl' k2, k3 are constants, then 

klL2L3 + k2L3LI + k3LIL2 = 0 

represents a conic section circumscribing the triangle. 

¢ Problem E-3 
When expanded, the equation of the preceding problem takes the form 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 

If k 1, k2, k3 are so chosen that B = 0 and A = C, then the curve is the 
circle circumscribing the triangle A 1A2A3. In this way, determine the circle 
circumscribed about the triangle with sides 

¢ Problem E-4 

y-x=o 

x+y=2 

x+3y+4 = 0 

The parametric equations of the ellipse and hyperbola can be written in 
algebraic form as 

a(l - w2) 2bw 
ellipse X= 

1+w2 y = 1 +w2 

a(l + w2) 2bw 
hyperbola X= 

l-w2 y = l-w2 

where 

{
tan ! E ellipse 

w-
- tanh! H hyperbola 
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~ Problem E-5 
"Y An interesting construction of an ellipse 4 :! 

~--~~--~r---~----~ is possible. Consider a rectangle of sides 2a 
and 2b. Three sides of the rectangle are 
divided into an equal number of parts and 
the points of division connected to the oppo
site corners by straight lines as illustrated in 
the accompanying figure. The intersections :! 

of lines through like numbered points deter
mine points on the ellipse whose semi axes are 
a and b. 

~ Problem E-6 
"Y Two circles are represented by the equations 

x2 + y2 + Al X + B I Y + 0 1 = 0 

x2 + y2 + A2x + B2Y + 02 = 0 

By subtracting these, the equation 

(AI - A2)x + (BI - B2)y + 0 1 - 02 = 0 

of a line is obtained. How is this line related to the two circles? 

¢ Problem E-7 
A circle is the locus of points the ratio of whose distances from two fixed 

points is a constant different from unity. 

¢ Problem E-8 
If P(Xl' yI) is a point outside the circle 

X2 + y2 + Ax + By + 0 = 0 

then 
X~ + y~ + AXI + BYI + 0 

is the square of the length of the tangent from PI to the circle. 

¢ Problem E-9 
If a point moves so that the ratio of the lengths of the tangents from it to 

two fixed circles is constant, its locus is a circle or a straight line. 

¢ Problem E-I0 
If the length of the tangent from a point P to a fixed circle is equal to the 

distance from P to a fixed straight line, the locus of P is a parabola. 

~ Problem E-ll 
Y The locus of centers of all parallel chords of a parabola is a straight line. 



358 Appendix E 

~ Problem E-12 
Y If the normal to a parabola at point P intersects the axis of the parabola 

at N, the projection of P N on the axis is constant. 

¢ Problem E-13 
If the ends of a bar move on perpendicular lines, then a point P on the bar 

at distances a and b from its ends describes an ellipse with semi axes a and b. 

¢ Problem E-14 
If a circle is deformed in such a way that the distances of its points from a 

fixed diameter are all changed in the sa~e ratio, the resulting curve is an ellipse. 

¢ Problem E-15 
If the sum of the lengths of the tangents from a point P to two fixed circles 

is constant, the locus of P is an ellipse. 

¢ Problem E-16 
If a circle rolls without slipping so that it is always tangent to a fixed circle 

of twice its radius, then the locus of a point P rigidly attached to the interior of 
the rolling circle is an ellipse. Further, the eccentricity of the ellipse is 

2JX 
e=1+A 

where A is the ratio of the distance of P from the center of the rolling circle to 
its radius. 

Philippe de La Hire 1707 

¢ Problem E-17 
On a level plane find the locus of points where the crack of a rifle and the 

thud of the bullet against the target are heard simultaneously. 

¢ Problem E-18 
The two vertices of a triangle A and B are fixed while the vertex C is 

allowed to vary. Find the locus of C if LABC = 2LBAC . 

~ Problem E-19 
Y The ellipses and hyperbolas obtained by assigning values to the constant A 

in the equation 
x2 y2 

--+--=1 
a2 - A b2 - A 

are confocal, that is, all have the same foci. Two of these curves (an ellipse and a 
hyperbola) pass through each point P(x, y), not on either axis, and their slopes 
m at P satisfy the equation 

m 2xy + m(x2 - y2 _ a2 + b2) - xy = 0 

Hence, they intersect at right angles so that the system of confocal curves is 
called self-orthogonal. 
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T schebycheff Approxi mations 

One of the many uses to which Tschebycheff polynomials can be put is for 
the economization of power series. In particular, they can be employed to 
produce an efficient method for evaluating the function C(A) needed in 
the extension of Gauss' method for solving Kepler's equation in the last 
section of Chapter 5.t 

F.l Tschebycheff Polynomials 

The geometric series 
n 1- zn+l 

""" Zk = __ _ 
L.J 1-z 
k=O 

with 
z = yeirP = y( cos </> + i sin </> ) 

can be used to develop the expansion 

~ k kA. 1 - Y cos </> - yn+l cos(n + 1)</> + yn+2 cos n</> 
~y cos ~= ----------------~--~=_----------
k=O 1- 2ycos¢ + y2 

as Leonhard Euler found in 1760.+ If y < 1, then we obtain the infinite 
expansion 

1- ycos</> 2:00 

k kA. ---------= = Y cos ~ 
1 - 2y cos </> + y2 

k=O 

(F.1) 

The functions cos k</> can be expanded by recursively applying the 
standard trigonometric identity 

cos( k + I)</> = cos k</> cos </> - sin k</> sin </> 

to obtain cos k</> as a k th order polynomial in cos </>. These polynomials 

Tk(cos </» = cos k¢ (F.2) 

t An example of such an economized series for a function related to C(A) is given in 
the author's paper "Extension of Gauss' Method for the Solution of Kepler's Equation" 
coauthored with Tom Fill and referenced in Sect. 5.6. 

t We have already encountered some of Euler's trigonometric series in Sect. 5.2 which 
were used in Lagrange's solution of Kepler's equation. 
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are called Tschebycheff polynomials after the mant who first discovered 
the various laws of approximations of functions by polynomials. Indeed, 
Tschebycheff discovered that these polynomials are the best possible choice 
in approximating a function over the interval (-1, 1) to minimize the max
imum error. 

Now, if we define 

x = cos if> so that 

then the function T(x, y), where 

1-xy ~ 
T{x,y) = 1- 2xy + y2 = ~ Tn{x)yn (F.3) 

is called the generating function for the Tschebycheff polynomials. Clearly, 
ITn{x)1 ~ 1 for -1 ~ x ~ 1 since I cosnif>1 ~ 1 for -7r ~ if> ~ 7r. 

We can derive the following recursion formula for the Tschebycheff 
polynomials: 

Tn+l (x) - 2xTn (x) + Tn- 1 (x) = 0 (F.4) 

with 
and 

from the trigonometric identity used earlier. 
It is also easy to verify that Tn(x) satisfies the differential equation 

d2T dT (1- x2) __ n - x--1!. + n2T = 0 (F.5) 
dx2 dx n 

known as Tschebycheff's equation. 

¢ Problem F-l 
Tschebycheff polynomials can be expressed as hypergeometric functions. In 

particular, we have 
Tn(X) = FIn, -nj ~ j ~ (1 - x)] 

HINT: Use Eq. (1.14) of Sect.!.!. 

Of great importance is the fact that a function f(x) can be expanded 
in the series 

00 

f(x) = L anTn{x) 
n=O 

t Pafnuti L. Tschebycheff (1821-1894), a professor at the University of Petrograd, 
was one of the great Russian mathematicians and a leading engineer of the last cen
tury. He was led to the idea of the best uniform approximation from a purely practical 
problem-that of the construction of mechanisms producing a given trajectory of motion. 
Details of his calculations for mechanisms of this sort may be found in the publication 
"The Scientific Heritage of P. L. Tschebycheff," Volume II, Academy of Sciences of the 
USSR, 1945. 
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over the range -1 ~ x ~ 1 where 

_ 1 11 To (x) f( ) d ao - - x X 
1r -1 v'1 - x 2 

and 211 T (x) 
an = - n f( x) dx 

1r -1 v'1_x2 

This property follows from the fact that the Tschebycheff polynomials are 
orthogonal over the interval -1 ~ x ~ 1 relative to the weighting function 
(1 - x2 )! ; that is 

n~m 

Using the recursion formula (F.4), we list the first ten Tschebycheff 
polynomials: 

To(x) = 1 

T1(X) = X 

Ts(x) = 16xs - 20xs + 5x 

T2(X) = 2X2 - 1 

T6(X) = 32x6 - 48x4 + 18x2 - 1 

T7(X) = 64x7 - 112xs + 56x3 - 7x 

T3(X) = 4x3 - 3x 

T4(X) = 8x4 - 8X2 + 1 

Ts(x) = 128xs - 256x6 + 160x4 - 32x2 + 1 

T9(X) = 256x9 - 576x7 + 432xs - 120x3 + 9x 

and, by reversing these series, obtain the Tschebycheff expansion of the 
first ten powers of x in the form: 

1 = To X
S = 116 (lOTI + 5Ts + Ts) 

x = Tl x6 = 3
1
2 (lOTo + 15T2 + 6T4 + T6) 

x
2 = i(To + T2) x7 = 61

4 (35Tl + 21Ts + 7Ts + T7) 

x
3 = ~(3Tl + T3) X

S = l~S (35To + 56T2 + 28T4 + 8T6 + Ts) 

X4 = j(3To + 4T2 + T4) x9 = 2~6 (126Tl + 84T3 + 36Ts + 9T7 + T9) 

which we shall use for economizing power series. 

~ Problem F-2 
"Y" Euler derived other expansions similar to Eq. (F.1). The following are of 

some interest: 

ysint/J ~ k • kA.. 
1 - 2y cos t/J + y2 = L..J y sm 'P 

k=1 

coso - ycos(o - t/J) ~ k ( kA..) 
-1---2:-y"';"'c-o-s t/J-:'-+-y-=2"";" = L..J y cos 0 + 'P 

k=O 

sin 0 - y sin (0 - t/J) Loo 
k· ( kA..) 

--~---'-~ = y sm 0 + 'P 
1 - 2ycost/J + y2 

k=O 
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F.2 Economization of Power Series 

We conclude this appendix with an application to the economization of 
power series. If minimizing the maximum error is the governing criterion, 
then a satisfactory approximation may be afforded by fewer terms of the 
Tschebycheff series than by an ordinary power series in x. 

As an example, suppose that sin x is represented by its series expansion 

x3 xS x7 

sinx=x--+---+··· 
3! 5! 7! 

and it is decided to use the truncated series 

x3 xS 

f(x) = x - 3! + 5! 

to represent sin x over the interval -1 ::; x ::; 1. 
The function f(x) can be expressed in terms of Tschebycheff polyno

mials as 

f(x) = Tl - 2
1
4 (3Tl + T3) + 19

1
20 (lOTI + 5T3 + Ts) 

= ~~~Tl - 1~8 T3 + li20 Ts 

Then, since ITn (x) I ~ 1 in the interval (-1, 1), the function 

g(x) = ~~~Tl - 1~8T3 
- 383 x _ ...Q..x3 
- 384 32 

will represent the function sin x with an error of less than 1 i20 in the 
interval -1 ~ x ::; 1. 

However, if we had simply dropped the xS term in f(x), the error 
could have been as large as 1~0' 

¢ Problem F-3 
Economize the power series 

X x2 x3 X4 x5 

!(x) = 1 + "2 + "3 + "4 + 5" + "6 
if the desired accuracy requires the error to be less than 0.05. 

NOTE: In the economized series, the highest power of x will be the third. 
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Plane Trigonometry 

Many of the key results of Chapter 6 require trigonometric expressions in 
terms of the semiperimeter of a triangle. In a typical course in trigonom
etry, these formulas do not generally arise. Even if taught, they are, more 
than likely, rapidly forgotten through lack of use. In this appendix, the nec
essary formulas for the requirements of Chapter 6, and some other chapters 
as well, are presented in the form of problems for the reader. 

Let a, b, c denote the sides and a, {3, I the corresponding opposite 
angles of the plane triangle shown in the accompanying figure. 

¢ Problem G-l 
By inspection derive the law of sines 

¢ Problem G-2 

abc 
sin a = sin f3 = sin "'( 

From the law of sines derive the law of tangents 

a + b tan ~ (a + f3) 
a - b = tan ~ (a - f3) 
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¢ Problem G-3 
By inspection, show that 

a = bcos,,/ + ecos/3 

¢ Problem G-4 
From the result of the last problem, or using vector algebra, derive the law 

0/ cosines 

¢ Problem G-5 
With s denoting the semiperimeter of the triangle 

8 = 4(a+b+e) 

use the law of cosines to derive 

• 1 . / (s - b)(8 - e) 
sm 2 a = V be ~(s-a) cos !a = 

2 be 

and obtain 

sina = b~ V8 (8 - a)(s - b)(s - c) 

~ Problem G-6 
Y Using the fact that the bisectors of the interior angles of a triangle meet at 

a point, which is the center of the inscribed circle whose radius we shall call T, 

show that v(s -a)(s - b)(s - e) 
T = (8 - a) tan 4 a = s 

~ Problem G-7 
Y Show that the area of the triangle is T s and that the altitude on side a is 

2Ts/a. 

¢ Problem G-8 
Derive the identities 

sin a + sin /3 = 2 sin 4 (a + /3) cos 4 (a - /3) 

sin a - sin /3 = 2 cos 4 (a + /3) sin 4 (a - /3) 

cos a + cos /3 = 2 cos 4 (a + /3) cos 4 (a - /3) 

cos a - cos/3 = -2sin 4(a + /3) sin 4(a - /3) 

¢ Problem G-9 
Derive the identities 

sin a sin /3 = 4 cos( a - /3) - 4 cos( a + /3) 

cos a cos /3 = 4 cos( a - /3) + 4 cos( a + /3) 

sin acos/3 = 4 sin(a - /3) + 4 sin(a + /3) 



PART II 

Chapter 8 

Non-Keplerian Motion 

H ARMONICES MUNDI, WHICH WAS THE CULMINATION OF KEPLER'S 

revolutionary contribution to science and contained his third law of 
planetary motion, failed to account for the masses of the planets. Indeed, 
when we refer to Keplerian orbits, we are implicitly assuming that these 
masses are truly negligible, and that Kepler's so-called "laws" are exact. 
In fact, however, with the exception of two-body motion, the problems 
of celestial mechanics are, generally, incapable of exact mathematical 
solution. In many ways, this was fortunate for the development of science 
and engineering. (Indeed, if even the solution of Kepler's equation in the 
two-body problem had been simple to obtain in closed form, the history of 
mathematics might have been considerably altered.) 

Celestial mechanics became the driving force which spurred the great 
mathematicians to incredible efforts to find useful methods of analyzing 
planetary motion. The elegant tools which they invented for this purpose 
had astonishing applicability in many diverse fields. 

Sir Isaac Newton was the first to consider the attraction exerted by 
spheres and spheroids of uniform and varying density on a particle. In 
the Principia, Proposition 74, he showed that the attraction of a homoge
neous sphere on a particle is the same as if the mass of the sphere were 
concentrated at its center. This was not an easy problem even for Newton. 
In 1684, almost 20 years after he began to apply his law of gravitation 
to planetary motion, his friend Edmund Halley urged him to publish his 
results. However, Newton lacked the proof that would eventually become 
Proposition 74. In a letter to Halley on June 20, 1686, he stated that until 
1685 he suspected that the proposition was false. Then came the proof and 
the agreement to publish. Halley assisted Newton with the editorial work 
and even paid for the publication. 

Newton also studied and obtained some approximate results for the 
general problem of three bodies which continues to be a major area of 
activity in Celestial Mechanics. He devoted so much time to the moon's 
motion-an important effort needed to improve the method of determining 
latitude-that he frequently complained it made his head ache. 

The first particular solutions of the three-body problem were obtained 
by Lagrange in his prize memoir, Essai sur Ie Probleme des Trois Corps, 
which was submitted to the Paris Academy in 1772. The solutions which 
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found are precisely those given in this chapter. Referring to the collinear 
libration points of the Lagrange solution in 1 'Exposition du Systeme du 
Monde, Laplace remarked that if the moon had been given to the earth 
by Providence to illuminate the night, as some have maintained, the end 
sought has been only imperfectly attained; for if the moon were properly 
started in opposition to the sun, it would always remain there relatively, 
and the whole earth would have either the full moon or the sun always in 
view. (Actually, the configuration is unstable as was later proved by Joseph 
Liouville in the Journal de Mathematiques in 1845.) 

We conclude this chapter with a spacecraft thrusting problem based on 
a paper by Hsue-shen Tsien written six years before the Russians launched 
their Sputnik. It is one of the very few such problems which has an exact 
solution-even though somewhat complex and involving elliptic integrals. 
At the time, Tsien was the Robert H. Goddard Professor of Jet Propulsion 
at the California Institute of Technology. He had been an extraordinarily 
talented engineering student from Shanghai who studied with Theodore 
von Karman and taught at MIT. He had the misfortune of falling under 
false suspicion during the anti-Communist crusades led by Senator Joseph 
McCarthy. Tsien returned to the land of his birth where he has contributed 
much to its technological development. 

8.1 Lagrange's Solution of the Three-Body Problem 
Analytic solutions of the n-body problem do not exist in complete general
ity except for the case of n = 2. However, for the problem of three bodies, 
Lagrange discovered some particular solutions which merit our attention 
not only for the paucity of such results but also because they can be ex
ploited for strategic location of earth satellites. In addition, they provide 
excellent examples of the advantages that often accrue when a problem is 
viewed from the perspective of a rotating coordinate system. 

IC the n bodies are moving in coplanar circles around a common origin 
with a constant angular velocity w, then the position vectors r i will all 
be constant in the rotating reference plane. From Eq. (2.54) we see that 
only the centripetal acceleration term will be nonzero and the equations of 
motion reduce to a set of algebraic equations 

for i = 1,2, .. . ,n (8.1) 

where the force fi is given by Eq. (2.37). We have already seen that the 
totality of these forces has a zero resultant so that by adding the n vector 
equations, we have 

w2(mlrl + m2r2 + ... + mnrn) = 0 (8.2) 

Thus, the center of mass of the system must coincide with the axis of 
rotation if such motion is possible. Assuming this to be the case and noting 
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that the position vectors are confined to a plane, then Eqs. (8.1) provide 
2n nonlinear algebraic equations to be satisfied by the 2n components of 
the vectors rl' r2, ... , rn' For n = 3, the relevant equations are 

(2) W m2fna m2 m3 
- - 3 - 3 rl + -r2 + -r3 = 0 
G TI2 TI3 r12 r13 

(8.3) 

mir l + m2r 2 + m3r3 = 0 

where, for simplicity, we use the center of mass equation (8.2) instead of 
the third equation in (8.1). 

Equilateral Triangle Solution 

There is a solution of these equations if the masses ml' m2' m3 are located 
at the vertices of an equilateral triangle. To demonstrate, let p be the 
constant length of the sides of the triangle so that 

TI2 = TI3 = T21 = T23 = P 

The equations are then linear and homogeneous in the components of r I , 

r 2 , r3 and will have a solution provided that the determinant of coefficients 
vanishes. It is easily seen that this condition is fulfilled if 

2 G 
w = p'3 (ml + ~ + m3) (8.4) 

and, further, that all three of the equations in (8.3) are identical. Therefore, 
the equilateral triangle configuration, with appropriate initial conditions, 
is a particular solution of the three-body problem and any two of the three 
position vectors are arbitrary. 

Straight line Solutions 

There are also solutions of Eqs. (8.3) if the masses are collinear. Without 
loss of generality, the three masses are assumed to lie on the € axis and 
are distributed so that €3 > €2 > €l' Then we may write 

r l = €l i~ 

r2 = (€l + T12) i~ 

r3 = (€l + Tl2 + T23) i~ 

and the relations to be satisfied may be regarded as three scalar equations 
in the three unknowns w2 , €1' and T23 with T12 as a parameter. Thus, we 
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have 

where X is defined as the ratio 

T23 x=
T12 

[Chap. 8 

The third and first equations give the coordinate of the mass m 1 relative 
to the center of rotation and the angular velocity in terms of X as 

e - -T m2 + (I + x)m3 
1- 12 m +m +m 123 

(8.5) 

2 G{ml + m2 + m3) m2{1 + X)2 + m3 
W = 3 ()2 () T12 1 + X m2 + 1 + X m3 

(8.6) 

Substituting into the second equation, we obtain the quintic equation of 
Lagrange to be satisfied by X 

(m1 + m2)x5 + (3m 1 + 2m2)X4 + (3ml + m2)x3 

- {m2 + 3m3)X2 - {2m2 + 3m3)X - (m2 + m3) = 0 (8.7) 

as the condition for the existence of collinear solutions of the three-body 
problem. 

The condition equation has one and only one positive root as can be 
seen from the fact that the coefficients change sign only once. However, a 
total of three different straight line solutions exist since two more can be 
obtained by a cyclic permutation of the order of the masses. 

¢ Problem 8-1 
Approximate solutions to Lagrange's quintic equation can be obtained when 

one of the three masses is of negligible size and the two finite masses are of 
different orders of magnitude. 
(a) If rn3 = 0 and rn2 < ml, then 

3 _ m2 X3 (3+3X+X2
) _ 3 4 2 2 3 

(1 = 3m1 = 3(1-XJ)(1+X)2 -X (1-X+ 3X -3X + ... ) 

Obtain the cube root of this series as 

1 2 1 3 1 4 
(1 = X - '3 X + '3 X + 81 X + ... 
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and, by series reversion, verify that 

1 2 1 3 31 4 X=O'+ '30' - gO' - STO' + ... 

(b) If m2 = 0 and ml < m3, show that 

3 _ ml 1 + 3X + 3X2 
IP = 3m3 = 3X3 (3 + 3X + X2) 

Then, with 0 defined as 

obtain 

1 
0=--

I+X 
or 

1-0 
X=-

o 

3 0 3 (3 - 30 + 0 2) 3 4 2 8 3 
IP = 3(1 _ 03)(1 _ 0)2 = 0 (1 + 0 + aO + aO + ... ) 

Hence, derive the expansion 

1 1 2 1 3 23 4 
1 + X = IP - alP - glP - 811P + ... 

(c) If m 1 = 0 and m3 < m2 , we have 

m3 (X3 
- 1)(1 + X)2 

m2 = 3X2 + 3X + 1 

Then, with /3 defined as 

obtain 

I-X 
/3=

X 
or 

1 
X=I+f3 

6 == m3 = _/3(12 + 24/3 + 19/32 + 7/33 + /34) 
m2 + m3 7 + 14,8 + 13,82 + 6/33 + /34 

12 23 3 23 4 
= --/3+ -,8 - -/3 + ... 

7 49 49 
Hence, derive the expansion 

1- X = -2.6 _ 1,127 63 _ 7,889 64 ... 
X 12 20,736 248,832 + 

369 

(d) Obtain approximate numerical values for X in the case for which the finite 
masses are the earth and the moon while the infinitesimal mass is a spacecraft. 
Compare with the exact values obtained by solving Lagrange's quintic equation 
using an appropriate method of numerical iteration. 

NOTE: The ratio of the masses of the earth and the moon is 81.3007. 

HINT: The formulas of Appendix C will be helpful. 

¢ Problem 8-2 
Develop the solution of Lagrange's equations (8.5)-(8.7) for the case ml = 

m2 = m3 from basic principles. 
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Conic Section Solutions 

Lagrange was able to obtain still a third kind of solution of the three-body 
problem in which the orbits are conic sections and include the equilateral 
triangle and straight line solutions as special cases. Again we confine our
selves to planar motion and utilize rotating coordinates, but this time the 
angular velocity and the radial distances are not constant. 

Let ri(tO} for i = 1,2,3 be the (two-dimensional) position vectors of 
the three bodies at an initial time to and let 

(8.8) 

be the position vectors as a function of time in a rotating coordinate system 
defined by the rotation matrix 

R = [~sO -sinO] 
smO cosO 

Since p and 0 are the same for the three bodies, the ratios of their 
mutual distances and the shape of the figure formed by the three bodies 
are unaltered with time. 

From Eq. (2.37), the force vector acting on the i th mass is 

3,m.m. 
fi(t} = G L r~~(t) [r;(t) - ri(t)] 

;=1 'J 

1 
= -f.(to} 

p2 ' 

and from Eq. (2.51) the matrix n is determined ast 

n = R T dR = [0 -1] dO = -J dO 
dt 1 0 dt dt 

Then, according to Eq. (2.53), the equations of motion are 

m,{[ ~~ - p ( :r] I - [~! (p2:)] J } r,(to) = :2 f,(to) (8.9) 

where 

I = [~ ~] and J = [0 1] 
-1 0 

Now, from the previous cases considered, we know that configurations 
of the three bodies exist for which 

(8.10) 

t The J matrix is fundamental in the definition of symplectic matrices which are 
introduced in Sect. 9.5. 
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where k 2 is a proportionality constant. For any of these configurations, 
the net force on each body is directed toward their mutual center of mass, 
i.e., along the radius vectors, so that we have, from Prob. 2-16, 

2 dO 
ri dt = ci for i = 1,2,3 (8.11) 

where the ci'S are constants. Therefore, 

~ (p2~~) = 0 

and the equations of motion will be satisfied if 

d
2
p (dO)2 k

2 
dt2 - P dt = - p2 

(8.12) 

(8.13) 

These last two differential equations for p and 0 are exactly the equations 
of motion in polar coordinates for the relative motion of two bodies as 
derived in Prob. 3-1. 

8.2 The Restricted Problem of Three Bodies 

When all of the masses are finite, the three-body problem admits of certain 
exact solutions in which the ratios of the mutual distances of the bodies are 
constant. However, if one of the masses is infinitesimal so that it has no 
appreciable effect on the motion of the other two, then the possible motions 
of the small mass are considerably expanded. This is the famous restricted 
problem of three bodies examples of which are approximated by a spacecraft 
in the earth-moon system or a planetary satellite in the planet-sun system. 

Specifically, the problem is the description of the motion of an 
infinitesimal mass under the influence of two bodies of finite mass m 1 
and m2 which revolve around their common centroid in circular orbits. As 
before, let the origin of coordinates be at the center of mass of the system. 
The angular velocity of the finite masses 

w2 = G(mI3+ m2) (8.14) 
r 12 

is obtained from Eq. (8.4) where r12 denotes the constant separation of 
m 1 and m 2 • 

To simplify the notation, let r denote the position vector of the 
infinitesimal mass relative to the center of mass of m 1 and m 2 and define 

PI = r - r 1 P2 = r - r 2 

Then, the equation of motion of the small body in a coordinate system 
rotating with the constant angular velocity w = w i~ is 

d2r dr Gm1 Gm2 -d 2 +2w X -d + w X (w xr)+ -3- Pl + -3- P2 =0 (8.15) 
t t PI P2 
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Jacobi's Integral 

Let the coordinates along the rotating axes be denoted by €, TJ, and ~. 
In this system, the origin of coordinates will be at the center of mass of 
m l and m 2 • We may, for convenience, assume that the finite masses are 
positioned always on the €-axis in the orbital plane, i.e., the €, TJ plane. 
Then we have 

w = w i~ 

On the other hand, the infinitesimal mass has three degrees of freedom so 
that 

r = € i~ + TJ il1 + ~ i~ 
Therefore, the squares of its distance from m1 and m2 are given by 

and 

The vector products in Eq. (8.15) can be expressed in component form as 

dr dTJ • d€ • 
w X dt = -w dt l~ + w dt 111 

w X (w X r) = _w2 (€ i~ + TJ il1 ) 

Jacobit obtained an integral for the equation of motion by defining a 
scalar function 

J W2 (C2 2) Gml Gm2 =- ~ +TJ +--+--
2 PI P2 

(8.16) 

with properties similar to the force function introduced in Sect. 2.4. Then, 
in terms of the gradient of J, Eq. (8.15) is written 

d
2
r dr raJ] T 

dt2 + 2w X dt = ar 
from which is obtained 

d2r dr 1 d (dr dr) aJ dr dJ 
dt2 • dt = 2 dt dt' dt = ar dt = (it 

(8.17) 

t Carl Gustav Jacob Jacobi (1804-1851) studied at the University of Berlin and 
became a professor at Konigsberg in 1827, a post which he had to abandon fifteen 
years later because of ill health. The rest of his short life was spent in Berlin with a 
pension from the Prussian government. He was fortunate in that his fame was great 
in his lifetime and his students spread his ideas throughout Europe. Elliptic functions, 
functional determinants (called Jacobia1l8) , ordinary and partial differential equations, 
dynamics, celestial mechanics, fluid dynamics, and hyperelliptic integrals and functions 
were his major interests. His classic in dynamics, Vorlesungen uber DynamiJc, appeared 
posthumously in 1866. 
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This is a perfect differential and by integration we obtain the modified 
energy integral known as Jacobi's integral' 

2 2 2 2 2Gm 2Gm v I = W {e + '1 } + __ I + __ 2 - C (8.18) 
~ PI ~ 

where C is a constant and V;el is the square of the magnitude of the 
observed velocity dr/dt, i.e., the velocity relative to the rotating axes. 

~ Problem 8-3 
Jacobi's integral can also be expressed in the form 

2 2Gml 2Gm2 
Vrel = -r· w X (w X r) + -- + -- - C 

PI P2 

Rectilinear Oscillation of an Infinitesimal Mass 

As an example of the use of Jacobi's integral, consider the motion of the 
infinitesimal body along the straight line through the center of mass and 
perpendicular to the plane of rotation of the finite masses which, for sim
plicity, we assume to be equal, i.e., ml = m2 = m. Let D and P be the 
distances of each finite mass from the center and from the infinitesimal 
mass, respectively. Then, if ~ is the distance of the small body from the 
center, we have 

and 

Jacobi's integral, Eq. (8.18), is then 

2 Gm 
w = 4D3 

( d~)2 = 4Gm _ C 
dt P 

{8.19} 

since e = '1 = 0, and the motion of the small mass is confined to the ~ 
axis. If Vo is its velocity when ~ = 0, then the constant C is 

C= 4Gm -v~ 
D 

so that Jacobi's integral takes the form 

( d~ ) 2 2 2 2 ( D) dt = Vo - 16w D 1 - P {8.20} 

Introduce the angle (), for which ~ = D tan () and p = D sec () , together 
with the quantity B defined by 

V2 
B- 0 

- 16w2D2 
(8.21) 
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and Jacobi's integral becomes 

(
dO)2 dt = 16w2 cos4 O[B - (1 - cos 0)] (8.22) 

Now, dO/dt will vanish if and only if B ~ 1, in which case the motion 
of the small body will be oscillatory. Assume this to be the case and define 
Om to be that value of 0 for which dO/dt = O. Then, we have 

B = 1- cos Om 

and the equation of motion takes the form 

(
dO)2 dt = 16w2 cos4 O(cosO - cos Om) 

Finally, define x = cos 0 and xm = cos Om to obtain 

(~~) 2 = 1&h4(1- x2)(x - Xm) 

(8.23) 

(8.24) 

(8.25) 

as the required equation to be solved for x as a function of the time t. 
Let T be the quarter period of the motion. Then, 

4wT = /.1 dx 
Xm X2VP(x) 

with (8.26) 

which is recognized as an elliptic integral according to Sect. 1.5. 
Reducing this integral to the standard forms, which Legendre proved 

was always possible, involves some ad hoc techniques which are part of 
Legendre's proof. 

1. By using a modification of the standard method of integration by parts, 
observe that 

d y'P[X) _ !xP'(x) - P(x) _ x 
dx x - x2VP(x) - 2VP (x) 

which, when integrated, gives 

4wx T = y'P[X)ll + ~ /.1 xdx + ~ /.1 dx 
m x Xm 2 Xm VP(x) 2 Xm XVP(x) 

and note that the integrated part vanishes at both limits. 
2. Since P(x) is of third degree, convert it to a fourth-degree polynomial 

with the substitution x = 1 - z2. Hence, 

Io
Q (1- Z2) dz IoQ dz 

4wxmT= + 
o vQ(z) 0 (1 - Z2)VQ(z) 
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where 

and 

3. Then, write 

Q(z) = 2<>' (1- ~) (1- ::) == R(y) = (1- y')(1- k'y') 

where we have defined z = ay and k2 = ~ a 2 , to obtain 

11 (1 - 2k2y2) dy 11 dy 
4V2wxmT= + 

o v'R(y) 0 (1- 2k2y2)v'R(y) 

Observe that the second integral is a complete elliptic integral of the 
third kind while the first integral can be written 

11 (1 - 2k2y2) dy = 11 2(1 - k2y2) dy -11 dy 

o v'R(y) 0 v'R(y) 0 v'R(y) 

11 J1- k2
y2 11 dy =2 dy-

o 1 - y2 0 v' R(y) 

which are complete elliptic integrals of the second and first kinds, 
respectively. 

4. Finally, make the change of variable y = sinljJ to convert to Legendre's 
form [Eqs. (1.52) through (1.55)]. Hence, 

4V2 wXmT = 2E(k) - K(k) + JI(2k2
, k, ~ 7r) (8.27) 

so that the period 4T is expressed as a linear combination of complete 
elliptic integrals of the first, second, and third kinds. 

The complete elliptic integral of the third kind can be expressed in 
terms of complete and incomplete integrals of the first and second kinds. 
It would take us too far afield to prove this in general so we shall, instead, 
simply state the result. t In this instance, the characteristic is 

so that 

-just the requirement for the so-called "circular case." (Actually, four 
different cases are possible.) The formula for this one is 

JI(n, sin ~Om' ~7r) = K(sin ~Om) + ~7r82[l- AO(f, sin ~Om)] 

t See, for example, "Handbook of Mathematical Functions" published by Dover 
Publications, Inc. and edited by Milton Abramowitz and Irene A. Stegun. 
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where Ao is Heuman's Lambda functiont 

Ao(f, sin ~Om) = ~ K(sin iOm) [E(f, cos iOm) 
7r 

- Q(sin ~Om)F(f, cos ~Om)] (8.28) 

The function Q is defined in Eq. (1.75). The two parameters f, an angle 
in the first quadrant, and 62 are defined as 

and 

which, for the case at hand, are calculated from 

and 

The final result is then 

4wxmT = V2 E(sin !Om) + !7rv'secOm [1 - Ao(f,sin ~Om)] 

where cos f = tan i Om and Ao is obtained from Eq. (8.28). 

Surfaces of Zero Relative Velocity 

(8.29) 

For various values of the constant C, Eq. (8.18) defines surfaces in the e, 
1'/, , space on which the relative velocity vrel will be zero. Thus, with 
C determined by the position and velocity of the small body at some 
instant of time, its subsequent motion will be confined to one side of the 
corresponding surface of zero relative velocity. Clearly, these surfaces are 
symmetrical with respect to the e,1'/ and e, ( planes.* 

Of particular interest are the curves formed by the intersection of these 
surfaces with the e,1'/ plane, an example§ of which is illustrated in Fig. 
8.1. The equations for these curves are most conveniently represented by 
transforming to bipolar coordinates. 

For this purpose, we note that 

t C. Heuman, Tables of Complete Elliptic Integrals in the Journal of Mathematical 
Physics, Vol. 20, pp. 127-206, 1941. 

t Recently, John Lundberg, Victor Szebehely, R. Steven Nerem, and Byron Beal used 
computer graphics to generate these th~irnensional surfaces. They are illustrated in 
their paper "Surfaces of Zero Velocity in the Restricted Problem of Three Bodies" which 
was published in the June 1985 issue of Celestial Mechanics, Vol. 36, pp. 191-205. 

§ The curves marked C1, C2, ... , Cs are in the order of decreasing values of the 
constant C. They are reproduced from the classical text Celestial Mechanics by Forest 
Ray Moulton. These contours were not drawn from numerical calculations, but were 
intended only to show, qualitatively, the character of the curves. 
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Fig. 8.1: Surfaces of zero relative velocity. 

since ~ = 0 in the e, "., plane. The coordinates e1 and e2 are determined 
from the equation of the centroid and the definition of p == T12 : 

Hence, 

so that 

mlP~ + m2p~ = (ml + m 2)(e
2 + ".,2) + m 1 e~ + m2e~ 

= (m +m )(e2 +".,2) + m 1m 2 p2 
1 2 m 1 + m2 

c2 2 mlP~ + m2p~ m 1 m 2 2 
~ +"., = - P 

m 1 + m2 (ml + m2)2 

Since the second term on the right side of this last equation is a constant, 
we may use Eqs. (8.14) and (8.18) to express the zero relative velocity 
curves (8.16) as 

(8.30) 
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where the function J is defined by 

J{ } - Gm l (p~ ..:.) Gm2 (p~ ..:.) 
PI' P2 - 2 3 + + 2 3 + 

P PI P P2 
{8.31} 

and C· is a constant simply related to C. 

~ Problem 8-4 
Jr The problem of computing the locus of points in the ~,11 plane for which 

2J = C· is easily managed in bipolar coordinates PI, P2 • 

(a) Verify that 2J = C· may be written 

where 

with 

x~ - AXI + 2 = 0 

pC· m2 (2 2 ) A=---- X2+-
Gml ml X2 

XI = PI > 0 
P 

X2 = P2 > 0 
P 

and demonstrate that A is always positive. 
(b) The cubic equation for XI has always one negative root and either a pair 

of complex roots or a pair of real positive roots. Furthermore, no complex roots 
exist if A ;::: 3. 

(c) The requirement A ~ 3 is equivalent to 

where 

x~ - BX2 + 2::; 0 

B = 3 + -p_(C· - 3/w2
) 

Gm2 

and B must be positive if X2 is to be positive. 
(d) If C· = 3p2

W
2 

, the inequality for X2 is 

(X2 - 1)2(x2 + 2) ::; 0 

which is valid only for X2 = 1. Further, the X2 inequality is violated for any 
smaller value of C· if X2 is required to be positive. 
(e) The quantity X2 must lie between the two positive real roots of 

x3 - Bx+ 2 = 0 

if both XI and X2 are to be real and positive. 
(f) When C· = 3p2

W
2

, then PI = P2 = P obtains corresponding to the equilat
eral triangle solution of the three-body problem. 
(g) Finally, devise a computational procedure for determining the curves of zero 

relative velocity in the ~,11 plane. 



Sect. 8.2] The Restricted Problem of Three Bodies 379 

Lagrangian Points 

In terms of the J function, the equations of motion of the infinitesimal 
body in the e, 11 plane are, from Eq. (8.17), 

cPe _ 2 d11 _ aJ 
dt2 W dt - ae 
d2 11 2 de _ aJ 
dt2 + W dt - a11 

(8.32) 

N ow consider points in the plane for which a J 1 a e = a J 1 a11 = O. If the 
small body is placed at rest at one of these points, it follows from the 
equations of motion that its acceleration will be zero. Thus, the body will 
remain relatively at rest forever unless acted upon by externally applied 
disturbing forces. 

Just as in the case for which all three bodies have finite mass, we should 
expect five points of relative equilibrium corresponding to the vanishing of 
the gradient of the J function. These five points are the Lagrangian points 
(also called libration points) and are usually labelled L1 , L2 , ••• , L5. 
The points L 1 , L2 , L3 lie along the straight line joining the two large 
masses while L4 and L5 are points in the plane of rotation which form an 
equilateral triangle with the two masses. In each case the three bodies are 
at rest when viewed in a coordinate system which rotates at the appropriate 
constant angular velocity. 

Since 
aJ = aJ api + aJ ap2 
ae api ae ap2 ae 
aJ = aJ apl + aJ ap2 
a11 a PI a1] a P2 aTl 

(8.33) 

then, clearly, two points of relative equilibrium for the infinitesimal body 
can be determined from 

(8.34) 

which implies PI = P2 = p. These correspond to the L4 and L5 La
grangian points. Furthermore, since 

(8.35) 

we see that aJ la11 vanishes identically for all points whose 11 coordinate 
is zero. Hence, the L 1 , L2 , L3 points should correspond to those points 
on the e axis for which aJ lae = 0 or 

1 aJ 1 aJ --(e - el ) + --(e - e2 ) = 0 (8.36) PI apl P2 ap2 
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Consider the L t point for which the infinitesimal body lies between 
the two finite masses. Then 

and the point of relative equilibrium is determined from 

aJ aJ 
apt = ap2 

For the point L2 to the right of m2 

and 

so that the coordinate of L2 is found from 

aJ aJ 
apt = - ap2 

and 

Pt + P2 = P 

PI = P+P2 

Finally, for the point L3 to the left of mt, we have 

and, therefore, 

aJ aJ 
apt = - ap2 

serves to specify the coordinates. 

¢ Problem 8-5 

and 

(8.37) 

(8.38) 

(8.39) 

The coordinates of the collinear Lagrangian points are determined from 

Ll : 
m2 p~ (3p2 P2 - 3pp~ + p~) 
ml = (pS - p~)(p - P2)2 PI =p- P2 

L2: 
m2 ~(3p2p2 + 3pp~ + p~) 
ml = (pS - p~)(p + P2)2 PI = p+ P2 

L3: 
ml p~ (3p2 PI + 3pp~ + p~) 
m2 = (pl - p~)(p + Pl)2 P2 = P+pl 

By appropriately relabeling the symbols, show that the quintic equations 
obtained are special cases of Lagrange's quintic equation derived in Sect. 8.1. 
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~ Problem 8-6 
J(" For the restricted three-body problem, the force function U and the kinetic 

energy T are given by 

U = Gmlm2 + Gmlm + Gm2m 
P PI P2 

T = !mIT~w2 + !m2T~w2 + !m(:i:2 + il + Z2) 

where m is the mass of the infinitesimal body. 
Define the generalized coordinates ql, q2, q3 to be the rectangular coordi

nates e, .", ~ of the rotating coordinate frame, so that 

x = ql coswt - q2 sinwt 

y = ql sinwt + q2 coswt 

Z = ~ = q3 

In formulating the Lagrangian and Hamiltonian functions to be used in deriving 
the equations of motion, note that the constant terms in T and U may be 
omitted since they do not contribute when T and U are differentiated. Also 
note that m will be a factor of the equations of motion and may, therefore, be 
ignored. Under these circumstances, the Lagrangian and Hamiltonian functions 
are 

L I [.2 ·2 ·2 2 (. .) 2 (2 2)] U = 2' ql + q2 + q3 + W ql q2 - q2ql + W ql + q2 + 
H = !(P~ + P~ + P~ - 2W(q1P2 - q2P.)] - U 

where 

U = G (ml + m2) 
PI P2 

Finally, derive Lagrange's equations of motion 

and Hamilton's canonic equations 

dql Cit =PI +Wq2 

dq2 
Cit =P2 -wql 

dq3 
Cit =P3 
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8.3 Stability of the Lagrangian Points 

Five particular solutions of the equations of motion for the infinitesimal 
body in the restricted problem of three bodies have been found. For each, 
the three bodies are at rest when viewed in a coordinate system which 
rotates at constant angular velocity about their common center of mass. 
In this section we investigate the stability of these solutions. Specifically, 
if the infinitesimal body is displaced slightly from its equilibrium position 
and given a small velocity, will it remain in the vicinity of the libration 
point or move rapidly away? In the first case, the point is said to be stable 
and in the second case, unstable. 

The question of stability is resolved by studying the behavior of the 
linearized form of the equations of motion in the vicinity of each of the 
libration points. If ro is the position vector of a particular libration point, 
then we write 

r = ro + 6r 

d 
v = -(6r) = 6v 

dt 

(8.40) 

where 6r and 6v are to be regarded as small increments in position and 
velocity-so small that products and powers of their components may be 
disregarded in the analysis. 

As we shall see shortly, the linearized equations of motion will have 
the form 

dx=Mx 
dt 

where the six-component vector x is partitioned as 

x = [!~ 1 

(8.41) 

(8.42) 

and the six-dimensional matrix M is constant. The characteristic equa
tion of M is determined by setting to zero the determinant of the matrix 
difference M - AI, where I is the six-dimensional identity matrix and A is 
a parameter. Thus, the equation 

IM-AII=O (8.43) 

is the sixth-order polynomial equation in A whose roots are called the 
characteristic values or eigenvalues of the matrix M. It can be shown 
that the system defined by Eq. (8.41) is stable if none of the eigenvalues 
has a positive real part and if all multiple eigenvalues, i.e., repeated roots, 
have negative real parts. 
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The Equilateral Libration Points 
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We first examine the stability of the Lagrangian points L4 and L 5 • For 
this purpose, let f(r) represent the gravitational force vector in Eq. (8.15) 
so that 

( ) 
Gml Gm2 fr=---p---P2 pi I p~ 

and expand this vector function of position in a Taylor series about the 
point L4 • We have 

afl f(r) = f(ro) + - 8r+ ... = fo +Fo8r+ ... 
ar r=ro 

(8.44) 

and, as previously noted, higher-order terms in the expansion are to be 
neglected. The elements of the matrix F 0 are gradients of the various 
components of the force vector f with respect to the position vector r 
evaluated at the point L 4 • 

To calculate the matrix F 0' first note that 

api _ api -I and api _ api _~ T 

ar - a P I - ar - a P I - PI PI 

with identical results obtaining for P2. Therefore, 

af Gm l T 2 Gm2 T 2 
F = -a = -5-(3PIPI - Pll) + -5-(3P2P2 - P21) 

r PI P2 

Furthermore, since 

it follows that 

PI = ! p(ie + v'3 i,,) 
at the point L4 • Hence, 

[ -1 
3v'3 o ] [ -1 

-3v'3 

14] F = Gml 3v'3 5 o + G"'a2 -3v'3 5 
o 4p3 0 0 -4 4p 0 0 

or, alternately, 

2 [ -1 0 
o ] 2 ( ) [3[a 3v'3 

~] Fo=~ 0 5 
o w ml -m2 0 (8.45) 

4 0 0 -4 +4 ml +m2 0 

since 

w2 = ~(ml +m2) 
P 
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In terms of the quantities Dr, 6v, and F 0' the equations of motion 
(8.15) become 

d 
dt (6v) + 2w X DV + W X [w X (ro + Dr)] = fo + F 06r + ... 

However, ro is an equilibrium point so that w X (w x ro) on the left side 
exactly cancels fo on the right. Thus, we have 

d 
dt (6r) = 6v 

d 
dt (6v) + 2w X DV + w X (w X 6r) = F06r 

(8.46) 

as a pair of vector differential equations for 6r and DV valid in the vicinity 
of ro and correct to first-order terms in the small quantities 6r and DV. 

These equations can be written in the vector-matrix form of Eq. (8.41) 
by defining the matrix M as 

M-[ 0 I] 
- Fo-OO -20 (8.47) 

with 0 and I as the three-dimensional zero and identity matrices, and 

[
0 -w 0] 

0= wOO 
o 0 0 

(8.48) 

The determination of the characteristic equation of M, Eq. (8.43), is a 
routine and straightforward calculation. There results 

IM-AII=(A2+w2) [A4+w2A2+27w4 m1m2
2] 

4 (ml + m2) 

so that the eigenvalues will all be imaginary provided 

w4 _ 27w4 m 1m 2 > 0 
(ml +m2)2 -

(8.49) 

(8.50) 

Therefore, the L4 libration point (and, by symmetry, the L5 point) will 
be stable if m 1 and m 2 are so related that 

(8.51) 

The masses of the sun and Jupiter satisfy this inequality and one 
might expect planets to exist approximating the equilateral triangle con
figurations. Such planets have been discovered and are known as the Trojan 
asteroids. 
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The Collinear Libration Points 

In a similar manner we can show that the Lagrangian points L 1 , L2 , L3 
are unstable whatever might be the mass ratios. Since it is considerably 
easier to demonstrate this instability for motion in the e,1] plane rather 
than in three dimensions, we will utilize the equations of motion (8.32) for 
the infinitesimal body. 

As before, define 

where (eo,O) are the coordinates of one of the collinear libration points. 
Then expand the right sides of Eqs. (8.32) in a Taylor series as 

aJ 
ae = Jf. + Jf.f.6e + J'1f.6", + ... 

(8.52) 
aJ 
a", = J'1 + Jf.'16e + J'1'16", + ... 

with the subscript notation J~, J~f.' etc. indicating the various partial 
derivatives of J evaluated at the Lagrangian point. Again we neglect 
powers and products of 6e and 6",. 

The first derivatives of the J function vanish at a Lagrangian point so 
that the constant terms in the series expansion are zero. Thus the linearized 
equations of motion are readily seen to be of the form of (8.41) where the 
M matrix is now four dimensional. Indeed, it is easy to show that 

M _ AI = [~A ~A ~ ~ ] (8.53) 
Jef. J'1f. -A 2w 
Jf.'1 J'1'1 -2w -A 

from which the characteristic equation of the matrix M is found to be 

A4 + (4w2 
- Jf.f. - J'1'1)A2 + Jf.f.J'1'1 - Jl'1 = 0 (8.54) 

To resolve the question of stability, examine the signs of Jf.f. and J'1'1. 
Consider first 

a2J _ a2J (ap1)2 aJ a2p1 a2J (ap2)2 aJ a2p2 
ae2 - ap~ ae + ap1 ae2 + ap~ ae + ap2 ae2 

Then, since 

and 
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we have 

is a positive quantity at any point on the € axis. 
Similarly, since 

so that 

P oPI = 1'/ 
1 a1'/ 

a2J 1 aJ 1 aJ -=--+--
a1'/2 PI apl P2 ap2 

at all points on the € axis. 

[Chap. 8 

To address the question of the sign of J'I'I we must consider separately 
the three possibilities. For the Ll point we have already established, in 
the previous section, that this point of relative equilibrium is determined 
from 

aJ aJ 

apl = ap2 

Hence, at the point L1 , we have 

and 

a
2
; = (..!.. +..!..) aJ = GmlPI (..!.. +..!..) (..!.. _ ..!..) 

a1'/ PI P2 apl PI P2 p'3 Pf 
which is negative since PI < p. Similarly, for L2 we have 

a
2
; = (~ _~) aJ = GmlPI (..!.. _~) (~ _ ~) 

a1'/ PI P2 api PI P2 p'3 Pf 
which is again negative since P2 < PI and P < Pl' Finally, for L3 , 

a
2
; = (~_~) aJ =Gm2p2(~-~) (~_~) 

a1'/ P2 PI ap2 P2 PI p'3 ~ 
is also negative since PI < P2 and P < P2 . 

Thus, in all cases, the constant term in the characteristic equation for 
M is negative at the collinear points so that at least one eigenvalue is real 
and positive. The motion is, therefore, unstable. 
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8.4 The Disturbing Function 

The equations of motion of n mass particles, interacting through their 
gravitational forces, were developed in Sect. 2.4. These equations can be 
reformulated as the relative motion of two bodies with the remaining n - 2 
bodies acting as disturbances which cause the resulting motion to deviate 
from a two-body orbit. This mathematical description of the problem will 
be most effective if the disturbing forces are small, for then the relative 
motion of the two bodies will be well approximated by conic or K eplerian 
orbits as they are sometimes called. 

From Eqs. {2.37} and {2.38} with i = 1 and 2, we write 

d2
rI m2 ~ mj 

dt 2 = G'3{r2 - rd + G ~ T{rj - r I } 
r I 2 j=3 r Ij 

d
2
r2 mI{ } ~ mj 

dt2 = G'3 r 1 - r 2 + G ~ T {rj - r 2 } 
r 2I j=3 r 2j 

as the equations of motion of m I and m2 with respect to unaccelerated, 
i.e., inertial coordinate axes. The motion of m2 relative to mI is obtained 
by subtracting the two differential equations. We have 

d
2
r J.l ~ (1 1) 

dt2 + r3 r = -G ~ mj d~ dj + ~ P j 
j=3 J PJ 

{8.55} 

where, for convenience of notation, we have defined 

dj = r - Pj {8.56} 

and 
J.l = G{mI +m2} 

Equation {8.55} describes the relative motion of m I and m2 within a 
system of n bodies. If m3 , m4 , ••• , mn were nonexistent, the equation 
of motion would be exactly Eq. {3.2}. 

An alternate form of the right-hand side of the equation of relative 
motion is frequently convenient. It is readily verified that 

.!..d~ + .!..p~ = -~ (.!.. -'!"r. p.) 
d~ J P~ J 8r d . P~ J 

J J J J 

Therefore, if we define 

R· = Gm· (.!.. - '!"r. p .) 
:I J d. P~ J 

J J 

{8.57} 

we may write 

{8.58} 
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Fig. 8.2: Geometry of the disturbing acceleration. 
(a) Position-vector diagram; (b) acceleration-vector diagram. 

The scalar quantity R j is called the disturbing function associated with 
the disturbing body mj. 

Either Eq. (8.55) or (8.58) may be used to describe the motion of 
m2 with respect to mI. However, if r is small compared to Pj' neither 
form is suitable for either analytical study or numerical integration. This 
point is clearly illustrated in Fig. 8.2. The disturbing effect of mj on the 
motion of m2 relative to ml is seen to be calculated as the difference of 
two almost equal vectors. Several methods are available for circumventing 
this difficulty and preserving the significance of the results. Two of these 
are described below. 

Explicit Calculation of the Disturbing Acceleration 

The first method to be considered is a practical technique to alleviate the 
numerical troubles associated with the evaluation of the right-hand side of 
Eq. (8.55). We omit the identifier subscript i and write 

..!..d + ..!.. p = ..!.. [r + (d3 

- 1) Pj d3 p3 d3 p3 

Now it is clear that the potential difficulty arises in the evaluation of the 
quantity in parenthesis. Since 

d2 (r - p) . (r - p) 
p2 = p.p 
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this factor may be expressed as 

d3 

- - 1 = J (q) p3 

where q and J(q) a re defined by 

r. (r -2 p ) q= 
p.p 

, 
J(q) = (1 +q)"- 1 

389 

(8.59) 

A standard technique for evaluating J (q) is to expand (1 + q) ~ as a 
power series in q so that 

However, a closed-form calculation is also possible. To this end write 

Hence, 

(1 +q)3_1 
J(q) = 1+ (1+ q)~ 

3 + 3q + q' 
J (q) = q 1+ (l + q)~ (8.60) 

and the evaluation of J (q) is now clearly insensitive to the size of 'I no 
matter how small. 

Finally, then we have 

where 

d2r J.l. n m , 
dt' + r3 r=-G L d5Ir+ J(qj) P j] 

j=3 J 

qj = r. (r -2p j) =~(~-2COSaj) 
Pj · Pj Pj Pj 

(8 .61) 

(8.62) 

which describes the rel ative motion in a manner such that no loss of 
significance resul ts in the calculation of the disturbing acceleration. 

Expansion of the Disturbing Function 

The second method consists of expressing the disturbing function R j as 
a power series in r / Pj. For this purpose, we write Eq. (8.57) in the form 
(again, omitting t he identifier subscrip t j) 

where 

R = G; (~ _ vx ) 

r 
X=-

P 
and v = cosa 
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with a as the angle between the vectors r and p. It is also convenient to 
write q, previously defined in Eq. (8.59), as 

q = x2 
- 2vx 

Now, 

and, from the binomial theorem, 

Hence, 

_~ ~ ~ (-1)t(2i)! i+l i-l 
(1 + q) 2 = ~~ 2i+l i! (i _ £)!£!x v 

Since we are interested in the coefficients of the powers of x, we make 
a change in the summation indices by defining k = i + £ and replacing i 
by k - £. Therefore, we obtain 

00 [!k] ()l( ) ( )-!_"" -1 2k-2£! k-2l k 
1 + q - ~ ~ 2k £! (k _ £)! (k _ 2£)! v x 

k=Ol=O 

where the notation [m] indicates the greatest integer contained in m. 
Thus, 

[ 1] { ! k k even 
"2 k = ! (k - 1) k odd 

We see that the coefficients of xk are polynomials in v which we 
symbolize as Pk (v). Hence, we have shown that 

00 

(1- 2vx + x2 )-! = L Pk(V)Xk (8.63) 
k=O 

where 

_ [!k] (_1)l(2k - 2£)! k-2l 
Pk(v) - ~ 2k£! (k _ f)! (k _ 2£)!v (8.64) 

are known as Legendre polynomials. The first few Legendre polynomials 
are 

PO(v) = 1 

PI (v) = v 

P2 (v) = ! (3v 2 
- 1) 

P3(V) = !(5v3 
- 3v) 

P4 (v) = 1(35v4 
- 30v2 + 3) 

P5(v) = 1 (63v5 
- 70v3 + 15v) 
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From the subsection on Legendre polynomials later in this section, we 
have IPk{cosa)1 :5 1. Thus, it is clear that the series (8.63) converges 
absolutely if Ixl < 1. Therefore, the disturbing function may be expressed 
as the following convergent power series 

R; = G~j [1 + f(~)kpk(COSaj)] (8.65) 
PJ k=2 PJ 

When r / P; is small, the series converges quite rapidly so that in many 
cases only a few terms are required for satisfactory accuracy. Finally, by 
substituting in Eq. (8.58), we have 

cPr JL 
dt,2 + r3 r = 

Gt m~ f(~)k [~+1(COSl>i)ipj - ~(COSl>j)irl (8.66) 
;=3 PJ k=1 PJ 

where ir and ip; are unit vectors in the direction of rand Pj, respectively. 
The prime on the Legendre polynomial indicates the derivative with respect 
to the argument cos a j . 

¢ Problem 8-7 
Provide a detailed derivation of Eq. (8.66) by first showing that 

!PJc(COSQ) = P/c(COSQ)! COSQ = ;P/c(COSQ)(i; - COSQ I':) 

and then using the identity 

kPk(COSQ) = Pk(COSQ)COSQ- Pk-1 (cos Q) 

established in the subsection on Legendre polynomials later in this section. 

~ Problem ~ 
Y For the expansion 

00 

(1-2xcOSQ+x2)-l = LakCoskQ 
k=O 

the first two coefficients are 

ao = ~K(x) and a1 = 4 K(x) - E(x) 
7r 7r x 

where K and E are complete elliptic integrals of the first and second kinds, 
respectively. Derive Euler's recurrence formula 

k-l (1) k- ~ ak = --1 X + - ak-1 - -k 1 ak-2 
k- '2 x - '2 . 

for the coefficients. 
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Jacobi's Expansion and Rodrigues' Formula 

Jacobi invented a clever method of expanding the disturbing function, by 
using the Lagrange expansion theorem which also results in a derivation of 
Rodrigues' formula for Legendre polynomials. No motivation is provided 
but he might have reasoned as follows. 

Assume that (1 - 2vx + x2 )! is the radical portion of the solution to 
the quadratic equation 

ay2 +by+c = 0 

Then, of course, we must have 

b2 
- 4ac = 1 - 2vx + x2 

Choose b = 1 and select the plus sign in the solution of the quadratic so 
that we will be dealing with the smaller of the two roots. Then 

ay 2 1 

av = (1 - 2vx + X )-2 

results if we choose a = - ! x. Hence, we must have c = ! (x - 2v) . 
The quadratic equation for y can then be written 

y = v + x [ ~ (y2 - 1)] 

-exactly of the form of Eq. (5.9) with x replacing a as the parameter. 
Therefore, we can apply Lagrange's expansion theorem and obtain 

00 xk dk-1 
Y = v+ L kt d k-l [!(v2 _1)]k 

k=l . v 

which represents that root of the quadratic equation which is equal to v 
when x = O. Differentiating one more time with respect to v results in 

1 00 xk dk 
(1 - 2vx + X2

)-2 = 1 + L k! dvk [! (v2 _1)]k 
k=l 

When this is compared with Eq. (8.63), we establish the identity 

_ 1 dk 
2 k 

Pk(v) - 2kk! dvk (v - 1) (8.67) 

known as Rodrigues' formulat for the Legendre polynomials. 

t Olinde Rodrigues (1794-1851) published this basic formula in 1816. Other sets 
of orthogonal polynomials, such as the Tschebycheff polynomials, have similar formulas 
which are also called Rodrigues' formulas even though Rodrigues had absolutely nothing 
to do with them. For example, 

Tn(x) = (_l)n 2nnl ~~(1- x2 )n-! 
(2n)! dxn 

is the one for the Tschebycheff polynomials. 
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Legendre Polynomials 

The function .c{x, v), where 

00 

l{x, v) = (1- 2vx + x2 )-! = L Pn{v)xn (8.68) 
n=O 

is called the generating function for the Legendre polynomials Pn (v) and 
can be used to derive some basic identities for these functions just as the 
generating function for Bessel functions was similarly used in Chapter 5. 
For example, from the identity .c{x, -v) = .c{ -x, v) we can deduce the 
property 

Pn{-v) = (-1)npn(v) 

It is also easy to verify that 

and 

(8.69) 

(8.70) 

By differentiating the generating function, we develop the equation 

a.c 
(1 - 2vx + x2

) ax = (v - x).c 

Then, by substituting the power series for .c and equating coefficients of 
xn , we derive the recurrence formula 

nPn{v) - (2n - 1)vPn_ 1 (v) + (n - 1)Pn_2 (v) = 0 

Similarly, the differential equation 

a.c a.c 
x ax = (v-x) av 

leads to the recurrence formula 

vP~{v) - P~_l{V) = nPn{v) 

(8.71) 

(8.72) 

By differentiating the recurrence formula (8.71) with respect to v and 
using the formula Eq. (8.72) with n replaced by n - 1, we can also show 
that 

(8.73) 

Other properties of the Legendre polynomials are developed in the 
problems to follow. 

¢ Problem 8-9 
Derive the following recurrence formula for the derivatives of the Legendre 

polynomials 

(n - l)P~(II) - (2n - l)IIP~-dll) + nP~-2(1I) = 0 
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~ Problem 8-10 
Y Use the identity 

Non-Keplerian Motion 

1 - 2x cos Q + x2 = (I - xeiO)(1 - xe -io) 

to express Pn{COSQ) as the finite Fourier cosine series 

[~nl 

Pn(COSQ) = 4~ ~ e~=~) e:)2COS(n-2k)Q 
With this result and Eq. (8.68) demonstrate that 

IPn{cos Q)I ~ 1 

[Chap. 8 

HINT: All coefficients are positive and the maximum value occurs when Q = 0 
for which Pn {l) = 1. 

NOTE: Since cos nQ = Tn (cos Q) , we have also expressed Pn (cos Q) as a series of 
Tschebycheff polynomials. 

¢ Problem 8-11 
Calculate the nth derivative of the binomial expansion 

{ 
2 _ l)n = ~ (-I)kn! 2n-2k 

V ~ kl{n_k)!v 
k=O 

to provide an alternate derivation of Rodrigues' formula. 

¢ Problem 8-12 
Using Rodrigues' formula and integration by parts, show that 

11 Vkpn{v)dv=O for k=O,I,2, ... ,n-l 
-1 

From this, deduce the orthogonality property of Legendre polynomials 1: Pm (V)Pn (V) dv = 0 

which holds when the integers m and n are unequal. 

¢ Problem 8-13 
By writing 

v2 - 1 = 2{v - 1)[1 + ~ (v - 1)] 

and using the binomial theorem, obtain the expansion 

n 2n I 
{ 2 )n ~ n. { )n+k 
v-I = ~ 2k k! (n _ k)! v-I 

k=O 

Then, calculate the nth derivative, to verify that 

Pn{v) = F[-n, n + 1; 1; ~ (I - v)] 

where F denotes the hypergeometric function. 
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¢ Problem 8-14 
Let z = (v2 - 1)" so that 

2 dz 
(1 - v ) dv + 2nv z = 0 

Now differentiate n + 1 times, using Leibnitz's rule, to show that y = Pn(v) is 
a solution of Legendre's differential equation 

2 d2 y dy 
(1 - v ) dv2 - 2v dv + n( n + l)y = 0 

NOTE: For Leibnitz's rule see Sect. 5.4. 

8.5 The Sphere of Influence 

When considering the disturbed motion of one body m2 in the presence of 
two bodies m1 and m 3 , it is important for numerical computation to select 
the appropriate body to which the motion of m2 is to be referred. More 
specifically, the question arises as to which of the following two descriptions 
of the motion is preferable and when a change of origin of coordinates 
should be made. The motion of m2 relative to m1 is described by 

d
2
r G(ml + m2) _ G ( 1 d 1 ) 

dt2 + r3 r - - m3 d3 + p3 P 

while the motion of m 2 relative to m3 is determined from 

According to Laplace, the advantage of either form depends on the 
ratio of the disturbing force to the corresponding central attraction. Which
ever provides the smaller ratio is the one to be preferred. It happens 
that the surface boundary over which these two ratios are equal is almost 
spherical if r is considerably smaller than p. For this reason, the boundary 
surface has been called the sphere 0/ inftuence.t 

For convenience in the analysis, we define four acceleration vectors 
a~l' a~l' a~3' a~3 with superscript labels distinguishing primary and 
disturbing acceleration components while subscript labels refer to the de-

t The concept of the sphere oJ influence originated with Pierre-Simon de Laplace when 
he was studying the motion of a comet which was about to pass near the planet Jupiter. 
In his orbit determination calculations he searched for a logical criterion to choose the 
origin of his coordinate system during various phases of the motion. 
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script ions of motion-m2 with respect to m1 or m3' Then we have 

p G(ml + m 2 ) • 
821 = - 2 Ir 

T 

d Gm3 ~ k [PI () • pI ( ). ] 821 = -2-~ X k+1 v Ip - k V Ir 
p k=1 

p _ G(m2 +m3)' 
823 - - d2 Id 

d Gml ( 2· .) 823 = -2- X Ip - Ir r 
using the notation of Sect. 8.4. 

The ratio of disturbing to primary acceleration for m2 relative to m3 
is then exactly 

ad m 1 
;3 = 1 2 (1 - 2vx + x 2

) VI - 2vx2 + X4 
a23 m2 + m3 x 

while the corresponding ratio (m2 relative to m1) is 

ad m ;1 = 3 x3Vl + 3v2 + O(X4) 
a21 m1 +m2 

if terms of order X4 and higher are ignored. 
We now equate these two ratios and assume that x is small compared 

with unity. In this way, we obtain 
~ 

x = [m1(m1 + m2)]5 (1 + 3v2 )-f6 
m3(m2 +m3) 

Also we note that (1 + 3v2 )fo- is at most equal to 1.15 and that, in many 
cases of interest, m2 may be neglected in comparison with m1 and m3 . 
Thus, we have approximately 

!: = (ml) i (8.74) 
p m3 

as a valid result provided m1 is much smaller than m3. 
Equation (8.74) defines a sphere about m1 on the boundary of which 

the ratio of disturbing to primary accelerations is the same for either of the 
two descriptions of the relative motion of m2. Inside this sphere, called the 
sphere of influence of m1 with respect to m3, it is appropriate to determine 
the motion of m2 relative to m1 as the origin, while outside we should use 
m3 as the origin of coordinates. 

A tabulation of the radii of the spheres of influence for the various 
planets of the solar system is given in the accompanying table. Here, of 
course, m 1 is the mass of the planet and m3 is the mass of the sun. 
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Spheres of Influence of the Planets 

Planet Mean distance Mass ratio Radius of sphere 
a.u. planet/sun miles 

Mercury 0.387099 0.00000017 70,000 

Venus 0.723322 0.00000245 383,000 

Earth 1.000000 0.000002999 574,000 

Mars 1.523691 0.00000032 357,000 

Jupiter 5.202803 0.000954786 29,937,000 

Saturn 9.538843 0.000285584 33,869,000 

Uranus 19.181951 0.000043727 32,152,000 

Neptune 30.057779 0.000051776 53,904,000 

¢ Problem 8-15 
For the disturbed motion of m2 with respect to ml in the presence of m3 

!: = (ml + m2)! (1 + 3cos2 a)-i 
p m3 

defines a surface about ml on the boundary of which the disturbing and primary 
accelerations are equal-assuming that ml + m2 is much smaller than m3. 

~ Problem 8-16 
Y When the three bodies ml, m2, and m3 are, respectively, the moon, a 

spacecraft, and the earth, the mass ratio of the moon and earth is not small 
enough for Eq. (8.74) to be a good approximation of the boundary surface. Derive 
a better one by the following steps: 
(a) Develop the following approximations for the two ratios: 

a~3 = ml 1 [1 _ 2vx + O(x2 )] 
a~3 m2 + m3 x 2 

a!l = m3 x 3 J1 + 3v2 [1 + 1 6v
3

3 

2 X + O(X2)] 
a21 ml + m2 + v 

(b) By equating the two ratios, obtain 

m3(m2 + m3) x5 J1 + 3v2 = 1- 2v (1 + ~) x + O(x2) 
mI(ml + m2) 1 + 3v2 

(c) By extracting the fifth root of both sides of the last equation and solving 
for x, show that 

T [(m1(ml+m2))-*(1 3 2)...L 2 (1+6cos
2
a)]-1 - = + cos a TO + - cos a 

p m3(m2 + m3) 5 1 + 3cos2 a 

is the desired equation for the boundary surface. 
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(d) Considering this surface to be centered in the moon, the surface radius varies 
from about 32,400 miles in the earth direction to 41,000 miles at 90 degrees from 
the earth-moon line, to about 40,000 miles in the direction away from the earth. 
Further, the values of the acceleration ratios at these points are approximately 
0.5, 0.4, and 0.6, respectively. 

(e) For the sake of comparison, the radii of the corresponding surface about the 
earth for the sun-earth system are 499,000, 575,000, and 502,000 miles and the 
acceleration ratios are 0.1, 0.08, and 0.1, respectively. 

James S. Miller 1962 

8.6 The Canonical Coordinates of Jacobi 
An alternate and symmetric form for the equations of relative motion of n 
bodies is also possible using what are sometimes called Jacobi coordinates.t 
The n mass particles m 1 , m 2 , ••• , mn are ordered in any convenient 
sequence. Then the position of each body in the sequence is measured 
with respect to the center of mass of all bodies preceding it. 

Specifically, define the position vectors PI' P2' ... , Pn as 

PI = r 1 

P2 = r 2 - r 1 

m1r1 + m 2r 2 P3 = r 3 - ---=:........:.-----';;.......:;;. 

m1 +m2 

m1r1 + m 2r 2 + ... + mn-1rn - 1 P = r - ---.;~--;;,...",.::...-----....:..:.....~..;,;,.,.-=-

n n m 1 + m 2 + ... + m n - 1 

or in a more compact notation with k = 2, 3, ... , n, as 

1 k-l 

Pk = rk - -;;-- L mjrj 
k-l j=l 

Uk = m 1 + m 2 + ... + mk 

The problem is then to rewrite the equations of motion 

d2r~ au 
m·-'-=- for J'-12 n , dt2 ar . - , , ... , , 

in terms of the vectors Pj' [Refer to Sect. 2.4.J 

(8.75) 

(8.76) 

(8.77) 

t In the winter semester of 1842-43 Jacobi gave a course of lectures at the University 
of Konigsberg on Dynamics which included some very important investigations on the 
integration of the differential equations which arise in Mechanics. His symmetric form 
for the equations of motion was published the following year in a memoir entitled Sur 
/'elimination des fUEuds dans Ie probteme des trois corps. Henri Poincare (1854-1912) made 
general use of this system in his research in the problem of three bodies which appeared 
in his greatest work Le8 Methodes Nouvelles de fa Mecanique Celeste published in three 
volumes during the period 1892-1899. 
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Substituting from Eqs. (8.75) into (8.77), produces 

d2 pl au mk k-l au 

mk~ = ark - <1k_1 ~ arj 

and, using the property 

t au =OT 
ar· j=1 3 

derived in Sect. 2.4, we write the equations of motion as 

mk d
2 
pl = -..!!.JL au + mk I: au + mk au 

dt2 O'k-l ark O'k-l j=k+l arj O'k-l arn 

for k = 2, 3, ... , n. 
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(8.78) 

To transform the gradients of the force function U, we note that vari
ations in rk' holding all the other r's constant, produce changes only in 
Pk' Pk+l' ... , Pn and not in PI' P2' ... , Pk-l' Hence, 

au au apk au apk+l au apn 
- = --+ ----+ ... +--
ark apk ark apk+l ark apn ark 

au mk au mk au mk au 
= apk - Uk apk+l - O'k+l apk+2 - ... - O'n-l apn 

or 

au = au _ mk t _1_ au 
ark apk j=k+l O'j_l apj 

for k = 1,2, ... , n - 1 

(8.79) 
au au 

= 
arn apn 

Substitute these in the equations of motion to obtain 

d2 pl Uk au n ( Uk) au n-l n 1 au 
O'k-1-2- = ---+ L 1- - -- L mj L --

dt mk a P k i=k+2 O'i-l a Pi j=k+l i=j+l O'i-l a Pi 

after some obvious simplifications. Then, reverse the order of the double 
summation 

n-l n 1 au n 1 au i-I 
L mj L --= L -- L mj 

. k .. 0'. 1 a p. . k 0'. 1 a p • . k 3= +1 '=3+1.- . ,= +2·- • 3= +1 

and note that 
i-I 

L mj = O'i-l - Uk 
j=k+l 

As a result, only the first term on the right-hand side remains. 
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Therefore, the equations of relative motion in the Jacobian coordinates 
are simply 

d?- pl uk au 
mk-- = ---- for k = 2,3, ... , n (8.80) 

dt,2 uk-l apk 

which should be compared with the equivalent ones in Eqs. (8.58). 

~ Problem 8-17 
Y In the lunar problem, the main concern is with the three bodies earth, 
moon, and sun. Let their respective masses be mE, mM, ms and let the point 
B denote the center of gravity or barycenter of the earth and moon. Define the 
vector rEM as the position vector of the moon relative to the earth with similar 
definitions for rES, rMS, and rBS. 
(a) Derive the equations of motion of the moon relative to the earth and the 

sun relative to the barycenter in the form 

d2r~M G(mE+mM) T Gms(mE+mM) 8F --- + rEM = --.:-...---~ 
dt2 r~M mEmM ar EM 

d2ris G(mE+mM+ms) 8F 
~= mE+mM arBS 

where 
F= mM + mE 

rMS rES 
(b) Obtain the expansion 

00 Ie ()Ie Ie' 
F mE+mM 1 2:mEmM+ -mM mE(rEM) D( ) = +- -- rlecosa 

rBS rBS (mE +mM)1e rBS 

where 

Ie=l 

rEM· rBS cosa=----
rEMrBS 

(c) The ratio of the second term to the first in the expansion of F is approx
imately 8 x 10-8

• Hence, the motion of the sun relative to the earth-moon 
barycenter is essentially elliptic; i.e., 

d2
rBs G(mE +mM +ms) 0 
~+ ~ rBS= 

BS 

¢ Problem 8-18 
In Jacobi coordinates, the energy integral is 

1 dPl dPl 1 2:n 
mleO'Ie-l dPIe dPIe U 

-ml-- • -- + - . -- - = constant 
2 ~ ~ 2 ~ ~ ~ 

1e=2 
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8.7 Potential of Distributed Mass 

Jacobi's canonical equations provide a simple heuristic means of developing 
the equations of motion of a mass particle in the gravitational field of a 
continuous distribution of mass. From Eq. (8.80), the motion of the nth 

particle of an n-body system is described by 

d2rT mn + O'n-l oU m --=---.;..;..........---.,;..;;~ 

n dt2 O'n-l or 
where 

r == P n = r n - rem 

and rem is the center of mass of the first n - 1 bodies. The force function, 
from Eq. (2.45), is 

_ G~~' mimi 
U--LL --2 r"" i=1 j=1 'I., 

and since we are calculating the gradient of U with respect to r, only the 
terms for which i or j are equal to n will contribute to the acceleration. 
As a consequence, 

d2 T + 0 n-l G 
m _r_ = mn O"n-l _ L mimn 

n dt 2 
O"n-l or i=1 rjn 

Suppose now that mn is small compared to 0" n-l which is the total 
mass of the other bodies. Then the equation of motion of mn is simply 

d2rT 0 n-l Gm" 
- = - L -' (8.81) 

dt2 or" r,"n ,=1 
Finally, imagine that n is a very large number and that the n - 1 masses 
are densely clustered in some region of space apart from the nth mass 
particle. Then the summation is well approximated by an integration over 
the mass volume. 

Therefore, if the mass particle is at the point P(x, y, z) referenced to 
the center of mass of the aggregate, then 

d2 r T 0 /f' r r G dm 
dt,2 = or J J [(x - ~)2 + (y - ,,)2 + (z - ~)2Jt 

(8.82) 

where ~, ", ~ are the coordinates of the mass element dm. The integral 
is the gravitational potential of the mass distribution at the point P and 
is denoted by V . 

An alternate expression for V is more useful; namely, 

V = f!! (r2 + p2 ~~:COS,)t (8.83) 
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Fig. 8.3: Geometry of 
the potential function. 

where r and p represent the radial distances of P and dm from the center 
of mass with , as the angle between the two radii illustrated in Fig. 8.3. 

In calculating the potential function V at point P we assume that P 
is at a greater radial distance from the origin of coordinates than is any 
part of the distributed mass. Furthermore, we will represent the reciprocal 
of the distance between P and dm as a series of Legendre polynomials and 
integrate this series term by term. Therefore, 

v = ~ t III (~t Pk (cos1)dm 
k=O 

(8.84) 

where the integration is taken over the mass volume. The components of 
force per unit mass at P(x, y, z) are then obtained as the partial derivatives 
of V with respect to the coordinates x, y, z. 

MacCullagh IS Approxi mation 

The first three terms in the power series expansion of the gravitational 
potential are directly related to the inertia properties of the attracting 
body. Indeed, if the distance between the point P and the center of mass 
is large compared with the dimensions of the body, these terms 

V = G; +~ III pcosldm+ 2~3111 p2(3cos
2
,-1}dm 

can serve as an adequate approximation to the true potential. 
In the first term, m is the total mass of the body. Because the origin of 

coordinates coincides with the center of mass, the second term will vanish 
since it is proportional to the first moment of mass with respect to a plane 
normal to the line joining the point P and the center of mass. The third 
term involves the various inertia moments of the body. 
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Specifically, let A, B, C be the moments of inertia about axes which 
are assumed to coincide with the rectangular coordinate axes. Then 

so that 
A+B+C=2JJJp2 dm 

Further, define 1 as the moment of inertia of the body about the line 
connecting the center of mass and the point P at which the potential is 
computed. Therefore, 

1 = III p2
sin

2
,dm 

Thus, we find that the relevant terms in the expansion of the potential 
are simply 

Gm G 
V = - + -2 3 (A + B + C - 31) (8.85) 

r r 
This form of the gravitation potential is MacOullagh'8 approximation. t 

The attracting force acting on a unit of mass located at P is deter
mined as the gradient of V. However, since 1 depends on the location of 
P, it is necessary first to obtain an appropriate analytic form. For this 
purpose, write 

Then, if the coordinate axes coincide with the principal axes of inertia, we 
have 

(8.86) 

since the products of inertia will then be zero. 
The gradient is now readily calculated by employing the two vector 

identities 

:: = i~ and :r (;) = ~ (i: - ; i ~ ) 
The final result is expressed in the form 

[ 
BV 1 T = _ Gm i _ 3G (A + B + C - 51) i 
Br r2 r 2r4 r 

- 3~ (Ax ix + By iy + Cz i z ) (8.87) 
r 

t James MacCullagh (1809-1847) was a professor of mathematics and natural 
philosophy at 'frinity College, Dublin, Ireland. His many contributions during his short 
life were recognized by the Royal Irish Academy with the award of its first gold medal. 
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The shape of the moon is often approximated by the triaxial ellipsoid 
and the experimentally determined values of the moments of inertia are 

C ~ A = 0.0006313 

B ~ A = 0.0002278 

C = 0.392 (moon mass) x (moon radius)2 

¢ Problem 8-19 
Because of the particular form in which the moment of inertia data for the 

moon is presented, a more convenient expression is generally used. Show that 

V = Gm + 2G3 {(B - A)[l - 3(ir • ill)2] + (C - A)[l - 3(ir • iz)2J) 
r r 

and calculate the gradient BV / Br . 

Expansion as a Series of Legendre Functions 

The higher-order terms in the series expansion of the potential function 
cannot be interpreted in a simple fashion. In order to further the analysis, 
it is convenient to utilize spherical coordinates with r, fjJ, 0 specifying the 
location of P and p, (3, -X similarly used for the mass element dm as 
illustrated in Fig. 8.4. Let D(p, /3, -X) denote the mass density so that the 

P(r. t/J. 0) 

x 

element of mass dm can be expressed as 

dm = D(p,{3,-X)p2 sin{3dpd{3d-X 

Fig. 8.4: Spherical 
coordinates. 

Finally, the angle I is related to the spherical coordinates through the 
cosine law of spherical trigonometry 

cos "I = cos fjJ cos /3 + sin fjJ sin /3 cos( 0 - -X) (8.88) 
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The further development of the potential function is expedited by 
means of the so-called addition theorem lor Legendre polynomialst which 
involves the associated Legendre functions as well as the Legendre polyno
mials. The former are defined as 

. .1. dj 

Pl (v) = (1 - v2)~3-d . Pk(v) 
V1 

(8.89) 

and called the associated Legendre lunctions 01 the first kind 01 degree k 
and order j. For example, 

pf (cos t/J) = sint/J pi (cos t/J) = 3 sin t/J cos t/J 

If the cosine law (8.88) is rewritten as 

PI (cos,) = PI (cos t/J)PI (cos{3) + pf (cos t/J)pf (cos {3) cos(o - A) 

the result is precisely the addition theorem for Legendre polynomials of the 
first degree. For the second degree, recall that 

P2 ( cos,) = ! (3 cos2 1 - 1) 

into which we substitute for cos 1 from Eq. (8.88) and proceed to derive 

P2(cos,) = P2 (COSt/J)P2 (cos{3) + !pi(cost/J)pi(cos{3)cos(O - A) 

+ 112Pi(cost/J)pi(cos{3) cos 2(0 - A) 

In this way, the plausibility of the general result 

Pk(cos,) = Pk(cost/J)Pk(cos{3) 

+ 2 t ~: - j~: Pi (cos q,JPt (cos P) cosj(O - A) (8.90) 
. +3 . 

3=1 

is established. 
With the use of the addition theorem, the expansion of the potential 

function V given in Eq. (8.84) may be written 

Gm 00 1 { 
V(r, t/J, 0) = -r- + ~ rk+1 AkPk(cost/J) 

+ t[BtPt(coSq,) cosj8+ ctpt(cosq,) sinjO) } (8.91) 
j=1 

t The reader is acquainted with "addition theorems" for the more familiar functions. 
For example, we have 

sin (A + B) = sin A cos B + cos A sin B and exp(A + B) = exp(A) exp(B) 
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where the constant coefficients are obtained from 

Ak = G I I I pk+2 D(p, /3, A)Pk( cos /3) sin f3 dp d/3 dA 

Bt = 2G ~: ~ ~~: Iff pk+2 D(p, p, >')p/. (cos fi) cos j>. sin Pdp dP d>' 

cl = 2G~: ~ :~: II I pk+2 D(p, p, >')p/. (cosfi) sinj>. sin P dpdP d>' 

As before, the quantity m in the first term of Eq. (8.91) is simply the total 
mass of the attracting matter, i.e., 

m = III D(p,/3, A)p2 sin/3dpd/3dA 

A tremendous simplification occurs if the mass distribution is symmet
ric about the z axis. In this important case the density is a function only 
of p and /3, so that the integration with respect to A may be performed 
independently. Since 

10
2
" sin j>. d>' = 10

2
" cos j>. d>' = 0 

for i = 1, 2, ... , the coefficients B~ and C~ vanish identically. 
With both axial symmetry and the fact that the origin of coordinates 

coincides with the center of mass, the constant Al is identically zero. For 
a proof observe that 

Al = Gill pcos/3dm 

and thus is proportional to the first moment of mass m with respect to the 
X,Y plane. 

Finally, if the mass is distributed in homogeneous concentric layers, 
then Ak vanishes identically for all k. For this case the density is a function 
of p only and 

Ak = 211"G loR l+2D(p)dp 10" Pk(cosP) sin PdP 

where R is the radius of the spherical-shaped mass. The second integral is 
zero as can be deduced from the results of Prob. 8-12. Only the first term 
remains in Eq. (8.91) for the potential, and we conclude that the net effect 
at point P is the same as if all the mass were acting from a point at the 
center of the body. 
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For many practical applications the assumption of axial symmetry for 
a body in the solar system is reasonable. With r eq denoting the equatorial 
radius of the body, the conventional form of the external potential is then 

G [ 00 r k ] V(r, 4» = ~ 1-L Jk (~) Pk(cos4» 
r k=2 r 

(8.92) 

The coefficients Jk are readily identified with A k ; however, an explicit 
numerical determination by integration is clearly impossible. Their values 
must instead be empirically obtained using suitable experiments such as 
observations of satellite orbits. The odd-order terms are antisymmetric 
about the equatorial plane and will be zero for a symmetrically shaped 
body. 

Values of these coefficients for the earth are 

¢ Problem 8-20 

J2 = 0.00108263 

J 3 = -0.00000254 

J4 = -0.00000161 

The force per unit mass at a point external to an axially symmetric mass 
distribution is given by 

-~':' {i' -t. Jk (';-) k [Pk+1 (cos 4» I, - Pk(cos4» iz 1 } 
(a) The radial component of this force is 

- ~':' [1 -t. Jk (r;_) k (k + l)Pk(cOS4»] 

(b) The circumferential component (perpendicular to the radius and in the plane 
containing the axis of symmetry) is 

G 00 k - r:n I: Jk (r;q) p1 (cos 4» 
k=2 

(c) The axial component is 

- ~':' [cos 4> - t. Jk c-r (k+ l)Pk+1(cos 4»] 

NOTE: Deriving an expression for the axial component of force was the original 
problem which led Adrien-Marie Legendre to the discovery of his polynomials. It 
appeared in his paper Recherches sur l'attraction des spheroids written in 1782 
but not published until 1785. Legendre was a professor at the Ecole Militaire 
and until his death in 1833 at the age of 81 he worked diligently in many areas 
of mathematics. His name lives on in a great number of theorems. 
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¢ Problem 8-21 
An oblate spheroid is an axially symmetric body whose meridian section is 

an ellipse. Show that the gravitational potential of a solid homogeneous oblate 
spheroid at a point P(x, y, z), remote compared to the dimensions of the body, 
may be calculated as a power series in e of the form 

Gm [ b
2 

2 2 2 2 1 V=- 1+-(x +y -2z)e + ... 
r 10r4 

where 
m = ~7rDa2b 

is the mass of the spheroid, D is the constant density, and a, b, e are the 
semimajor axis, semi minor axis, and eccentricity of the elliptical cross section. 

HINT: Use the polar equation of the ellipse with the origin of coordinates at the 
center developed in Prob. 4-8. 

¢ Problem 8-22 
The associated Legendre function of the first kind of degree On and order m 

is defined by 

where Pn(X) is the nth order Legendre polynomial. Using the result of Prob. 
8-13, which expresses Pn(x) as a hypergeometric function, show that 

P::'(coscp) = ~:~:~: tan
m ~cpF(-n,n+1;m+l;sin2 ~cp) 

8.8 Spacecraft Motion Under Continuous Thrust 

One of the possible disturbing accelerations affecting a spacecraft is the 
thrust acceleration produced by the vehicle's engines. Trajectory determi
nation under these circumstances, as in almost all problems of disturbed 
motion, generally requires the application of special numerical techniques. 
However, there are several examples of some practical inter'est for which 
considerable analysis can be made. Specifically, if the thrust acceleration 
is constant in magnitude and directed radially, tangentially, or circumferen
tially, then it is possible to obtain, at least partially, some quite interesting 
mathematical results. t 

Constant thrust acceleration is, of course, somewhat of a fiction. Nev
ertheless, the scarcity of mathematically tractable examples in this field 

t The key results of this section are from two papers by Hsue-shen Tsien and David 
J. Benney, now professor of mathematics at MIT. The first, by Tsien, is from the Journal 
a/the American Rocket Society, vol. 23, July-August, 1953, pp. 233-236 titled 'Take-off 
from Satellite Orbit" and the second, by Benney, from Jet Propulsion, vol. 28, March, 
1958, pp. 167-169 titled "Escape from a Circular Orbit Using Tangential Thrust." 
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motivates us to consider the idealized models to be exploited in this sec
tion. The methods of solution are also illustrative of a body of analytic 
techniques of general utility. 

Constant Radial Acceleration 

A vehicle is initially in a circular orbit of radius r 0 and at time t = to 
a constant radial thrust acceleration is applied until the vehicle attains 
parabolic velocity-frequently called escape velocity. If a Tr is the rocket 
thrust acceleration per unit mass in the radial direction, then the equations 
of motion in polar coordinates are 

d
2
r _ r (dO) 2 + .!!:... = aT 

dt2 dt r2 r 

~ ( r2 dO) = 0 
dt dt 

The second equation is integrated at once to give 

2 dO 
r - = JJ.l.ro dt 

(8.93) 

with the constant determined from the initial value of the circumferen
tial velocity which is simply J J.I./ro' An integral of the first equation is 
obtained by substituting for dO / dt and observing that 

1 d (dr)2 d
2
r 

'2 dr dt = dt2 

Therefore, if the thrust acceleration is constant, the radial velocity as a 
function of the radius is found to be 

( dr)2 = (r - ro) [2aT r - ~(r - ro)] (8.94) 
& ~r 

The vehicle will reach escape velocity when 

which occurs when the radial distance becomes 

Te = TO (1 + -2: ) (8.95) 
rOaTr 

Then, by combining Eqs. (8.94) and (8.95), we may write the expression 
for the radial velocity as 

(:;) 2 = 2~;r (r _ ro)[r2 _ (r. - ro)(r - ro)1 (8.96) 
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From this last equation we find that the radial velocity will vanish if 
the thrust acceleration is not sufficiently large so that escape conditions 
can be attained before the radial distance exceeds five times the radius of 
the initial circular orbit. For if Te > 5TO' then the second factor on the 
right side of Eq. (8.96) will vanish when 

T = ! (Te - TO) - ! V(Te - ToHTe - 5To) 

This distance is easily seen to be less than the escape radius T e' Therefore, 
we conclude from Eq. (8.95) that aTr > J.l/8T~ must obtain if the vehicle 
is to attain escape velocity under a constant radial acceleration. 

It is convenient to introduce the dimensionless parameter {3 defined 
by 

(8.97) 

Then the condition for escape is {3 < 1. 
Assuming that aTr exceeds ,the critical value, i.e., {3 < 1, then the 

time required to reach escape velocity, denoted by te - to' is computed 
from 

where 
Te = To(l + 4{32) 

According to Sect. 1.5, this is an elliptic integral. 

Transforming the Integral to Normal Form 

(8.98) 

(8.99) 

The reduction of the integral of Eq. (8.98) is neither simple nor straight
forward and depends on a number of ad hoc substitutions, contained in 
Legendre's proof, t which are outlined below. 

1. The radicand of Eq. (8.98) is of the third degree and has one real root 
T = TO' Make the change of variable 

T = TO + z2 

so that the new radicand will be of the fourth degree and involve no 
odd powers of the variable z. Using the notation I for the right-side 
of Eq. (8.98), we obtain 

4{3 {Zl T + Z2 

I = ..;ro 10 ./Pw dz 

t Refer, for example, to Philip Franklin's book A nmtise on Advanced Calculus 
published by John Wiley & Sons, Inc. in 1940. 
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where we have defined 

P(z) = (Z2 - ZIZ + ro){z2 + zlZ + ro) and 

2. The radicand P(z) is next reduced to a form with no linear terms in 
the two quadratic factors. This is accomplished by a linear fractional 
transformation, also called a bilinear or Mobiust trans/ormation. 
Let 

iffO - z 
y = J1O+z or 

1-y 
z=--y'TO 

1+y 

and obtain 
4r2 

P(z) = (1 + ~)4 Q(y) 

where 

Q(y) = [(1 + (3)y2 + (1 - (3)][(1 - (3)y2 + (1 + (3)] 

The integral then becomes 

I = 8{31
1 

1 + y2 X dy 
Yo (1 + y)2 JQ(y) 

and the lower limit of integration 

1- 2{3 
Yo = 1 + 2{3 is such that -1 < Yo < 1 

3. The rational part of the new integrand can be decomposed into a 
number of partial fractions resulting in 

1= 8{31
1 [1 - _2_ + 2 1 dy 

Yo 1 + Y (1 + y)2 JQ(y) 

To reduce these integrals, observe that 

d v'Q(Y) ! Q'(y){1 + y) - Q(y) R(y) 

dy 1 + Y = (1 + y)2JQ(y) = (1 + y)2JQ(y) 

and expand R(y) as a fourth-order polynomial in 1 + y. Thus, 

R(y) = (1 - (32)(1 + y)4 - 2(1 - (32)(1 + y)3 + 4(1 + y) - 4 

and we have 

4 [1 1 1 d v'Q(Y) (1 - (32)(y2 - 1) 
JQ(y) 1 + y - (1 + y)2 = dy 1 + y - JQ(y) 

t August Ferdinand Mobius (1790-1868), Professor of Astronomy at Leipzig Univer
sity, studied theoretical astronomy with Gauss and mathematics with Pfaff. He is most 
frequently remembered for his discovery of the one-sided surface called the Mobius strip 
in September, 1858. Johann Benedict Listing (1806-1882) discovered the same surface 
in July, 1858 but published in 1861. Therefore, both Listing and Mobius should share 
the credit for this delightful mathematical oddity. 
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The integral is now 

1= 4,8(1 + ,82) /.1 k + 4P{1- ( 2
) /.1 kdY + 4PC1 

Yo Q(y) Yo Q(y) 

with the integrated part 

c = _ /.1 ~ y'Q[0 dy = v'Q(Yo) _ y'Q(I) = y'1 + 8,82 _ 1 
1 Yo dy 1 + y 1 + Yo 2 1 + 2,8 

4. Next develop real substitutions to transform the radicand Q(y) to the 
standard form 

where k < 1. For this purpose, write 

Then, the substitution 

1-{3 u2 = 1+ __ y2 
1+{3 

will result in 

dy du = -------,== 
y'Q(y) (1 + {J)y'U(u) 

and 

where 

and 

The integral now takes the form 

with the new limits of integration 

2 4{J 
k = (1 + {32) 

and "1 = Vl!P 
falling in the range 1 < Uo < u1 < .j2. 
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5. The final substitution 

gives 

and the radicand 

1 
x= -

u 

has the required form. The limits of integration 

and 

are such that 
1 

J2 < Xo < Xl < 1 

Then, since 

~ JX(X) = !xX'(x) - X(x) = k2 x2 
dx X x2VX(x) VX(x) 

= 

we have 

1-4 1 1- !k2 X [ 1
xl d 

- (3( + (3) ( 2) Xo V(I _ x2)(1 _ k2x2) 

1 

x2VX(x) 

413 

1Xl./I-k2x2 1 
- Xo V 1 _ x2 dx + 4{3CI + 4{3(I + (3)C2 

and the new integrated part is 

C - 1x1 
d JX(X) d _ 1- {3 [1 1- 2{3 1 1 

2 - - Xo dx X X - 1 + {3 - 1 + 2{3 VI + 8{32 

The two integral terms of I are the Jacobian forms of the elliptic 
integrals of the first and second kind. Transforming to the Legendre forms 
gives the following expression for the time interval te - to: 

fE 1 + {32 rtPl d4> 
V r~ (te - to) = 4{3 1 + (3 i tPo VI- k 2 sin2 4> 

- 4{3(1 + (3) rtPl 
VI - k2 sin2 4>d4> + 4{32 [ 3 - 1] (8.100) 

~o Vl+8~ 
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The modulus of the two elliptic integrals is 

k = 2.f/J 
1+,8 

and their amplitudes are the angles 

and 

A. . ~ 
'PO = arCSIn V ~-2-

A. . ( 1 + 2{3 . A.) 
'PI = arcsIn sm 'PO VI + S,82 

which are both in the first quadrant with 0 < 4>0 < 4>1 < ! 7r. 

[Chap. 8 

Landen's transformation of Sect. 1.5 will convert the result to a simpler 
and more symmetric form with the parameter {3 as the modulus of the 
elliptic integrals. The appropriate equations are (1.61) and (1.69), with 
the angles 4>0 and 4> 1 replaced by 

7r 
00 =-

2 
and ( 

11 - 4{321 ) ° = arcsin 
1 VI +S,82 

The angle 01 is in the second quadrant. 

and 

Using the identities of Prob. 1-27 in Sect. 1.5, we have 

F(,8, °1 ) = F[,8, 7r + (01 - 7r)] = 2K({3) + F(,8, °1 - 7r) 

= 2K(,8) - F({3,7r - °1 ) 

E(,8,OI) = 2E(,8) - E({3,7r - °1 ) 

so that the final form of Eq. (S.100) is expressed ast 

.[fi(te - tol = 4P{ [K(Pl- E(Pl]- [F(P,1/Jl - E(P, 1/Jl] 

+ 3,8 -{3Sin1/J} (8.101) VI + S,82 

where 1/J = 7r - °1 is an angle in the first quadrant determined from 

. 1/J 11 - 4,821 
sm = "';"v't=1=+=S::={3::;::2 

Values of the elliptic integrals can be numerically computed using the 
methods developed in Sect. 1.5. 

t In Tsien's paper, he credits Dr. Y. T. Wu for obtaining his result in terms of elliptic 
integrals but no details are supplied. Unfortunately, Dr. Wu's expression seems to differ 
from the one derived here by the present author. 
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~ Problem 8-23 
Y If the radial-thrust acceleration aTr is so small that {3 exceeds one, the 

vehicle, starting from a circular orbit of radius TO, cannot reach escape conditions. 
Instead, it will spiral out to a maximum altitude 

2{3 

in the time interval ta - to calculated from 

. ~(ta - to) = 4![(1 + k)K(k) - E(k)] \I Tg vk 

where 
Ta 1 

k = - - 1 = ----===-_=_ 
TO {{3+~)2 

If the radial-thrust acceleration suddenly ceases at the moment when the 
maximum altitude is achieved, the resulting orbit will be characterized by the 
orbital elements 

To(1 + k)2 
a = 1 + 2k 

k 
e=--

l+k 
P = TO 

NOTE: In 1985, one of the author's students Bill Kromydas made a careful 
analysis of this problem by solving the equations of motion and comparing the 
results with analytically determined values. From an initial radius TO = 8000 km 
and {3 = 1.1 the maximum altitude To = 11294.6668 km is achieved in the time 
6372.083 sec. using a value of J.I. = 398,600 km3 /sec2

• If the constant radial
thrust acceleration is maintained, the vehicle spirals back to the initial radius TO 

in the same time interval but the outbound and return orbits are quite different 
as seen from Fig. 8.5. 

Fig. 8.5: Constant radial
thrust acceleration orbit. 
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Constant Tangential Acceleration 

A vehicle is initially in a circular orbit of radius ro and at time t = to 
a constant tangential-thrust acceleration is applied. If a Tt is the rocket
thrust acceleration per unit mass in the direction tangent to the orbit, then 
the equations of motion, from Prob. 2-19, can be writtent 

dv • v2 • • J.l. 
-d 1 t + - 1 n = aTt 1 t - "2 1 r t p T 

In terms of components in the tangential and normal directions, we have 

dv J.l 
- = aTt - -cos, dt r2 

and 

where, is the flight-direction angle. 

v2 J.l. - = -sm, p r2 (8.102) 

With s used to denote the arc length of the orbit, i.e., the distance 
travelled by the vehicle, then, clearly, 

and 

(ds)2 = (dr)2 + (rdO)2 

and 
dr - = cos, 
ds 

so that the equations of motion can be expressed as 

dv J.l dr v--a ---ds - Tt r2 ds and = P T ds 
(8.103) 

Finally, substitute for the curvature 1/ p from Pro b. 2-19 part (5) to 
obtain the equations of motion in the form 

1 dv2 J.l dr --+---a 2 ds r2 ds - Tt 

2 d2 
r (2 J.l) [( dr ) 2 1 rv ds2 + v - -:;: ds - 1 = 0 

(8.104) 

with the initial conditions 

2() 2 J.l v to = Vo =-
ro 

The first of Eqs. (8.104) can be integrated exactly provided the thrust 
acceleration is constant. Indeed, we obtain 

2 (2 1 ) v = 2saTt + J.l - - -
T TO 

(8.105) 

t Recall that v is the magnitude of the velocity vector and p is the instantaneous 
radius of curvature of the orbit. 
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Also, if the thrust acceleration is quite small so that d2r I ds2 is essentially 
zero, then the second of Eqs. (8.104) requires that v2 - plr = O. In other 
words, the vehicle's orbit is always very nearly circular. Hence, replacing 
v2 by plr in Eq. (8.105) and solving for r produces 

r r - 0 
- 1- 2saTt 

v2 
o 

(8.106) 

When the vehicle attains escape velocity (v 2 = 2plr), the second of 
Eqs. (8.104) requires that 

2r
d2r 

= 1- (dr)2 
ds2 ds 

(8.107) 

must prevail. Then, by substituting for r from Eq. (8.106) and solving for 
s, we find 

v5 [ 1 2 2 ~l Sesc = -2- 1 - -(20aTt rO) 4 
aTt Vo 

(8.108) 

where sesc denotes the distance travelled by the vehicle before reaching 
escape speed. The corresponding radial distance is 

From Eqs. (8.105) and (8.106), it follows that 

2 _ 2 2 v - Vo - saTt 

Then, since v = ds I dt, we readily calculate the time 

(8.109) 

(8.110) 

to reach escape conditions. Furthermore, it is of interest to note that 

N = ~ {Se ds = v5 (1- J2QaTtro) 
esc 211'" J ° r 811'"aTt r ° vB (8.111) 

is the approximate number of revolutions of the planet before escape. 
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¢ Problem 8-24 
A vehicle is initially in a circular orbit of radius TO and at time t = to a 

constant circumferential-thrust acceleration is applied. The equations of motion 
are 

d
2
T _ T (dO)2 =_l!:.. 

dt2 dt T2 

~ (T2 dO) = TaT9 
dt dt 

For very small values of aT9, the radial acceleration will be quite small so 
that the centripetal acceleration will be approximately balanced by gravity. With 
this assumption, the radius as a function of time is 

TO 
T= 2 [1- (t - !:)aTB

] 

and the time to reach escape velocity is 

Vo [ (2aT/JTo)*] teac - to = - 1 - --2-
aT9 Vo 

Escape occurs at a radial distance of 

after, approximately, 

revolutions. 

TOVO 
Teac = ---",,== 

.j2aT9To 

Neac = v5 (1 - 2av
T

o
gTo) 

81raT9To 

Compare the efficiency of thrusting tangentially versus circumferentially. 



Chapter 9 

Patched-Conic Orbits 
and Perturbation Methods 

B ASIC TO THE DETERMINATION OF PRECISION SPACECRAFT ORBITS IS 

an appropriate first approximation by a sequence of two-body orbits. 
For example, the initial portion of the orbit for a free-return, flyby, inter
planetary voyage may be approximated by an ellipse whose focus is at the 
center of the sun. When the spacecraft is within the sphere of influence 
of the planet, the orbit is then essentially hyperbolic with the planet at 
the focus. Again for the return trip, the trajectory is approximated by an 
ellipse. For each of the three parts, the assumption is made that only one 
gravitational center is active at a time. The resulting orbit is an amazingly 
good representation of the actual motion and can be utilized for many 
important problems. 

Although the patched-conic approximation, as it is frequently called, 
is not adequate as a precise reference orbit, it does afford a convenient 
means of exploring a variety of initial and boundary conditions at earth 
and the target planet in an efficient manner. Indeed, one can expect to 
achieve significant economies in computation time without compromising 
the essential ingredients of the problem. 

When a precision orbit is obtained based on the conic approximations, 
certain quantities can be regarded as invariant: the total time of flight and 
the position vectors at the time of insertion into orbit and the return perigee 
are possible invariants. Thus, the approximate patched-conic solution can 
relate to the precise orbit in important and fundamental ways. Precision
orbit determination is accomplished by making slight adjustments in both 
the orbit insertion and the return velocities. 

Perturbation methods can be used for both the problem of determining 
precision orbits and the problem of insuring that a spacecraft in flight will 
meet certain specified boundary conditions. In celestial mechanics it is 
customary to distinguish between the two classes-general pertu.rbations 
and special pertu.rbations. In the first class are included methods of gener
alizing the expressions for simple two-body motion of a planet about the 
sun to include the disturbing effects of the other planets by utilizing infinite 
trigonometric series expansions and term-by-term integration; the resulting 
expressions are known as general perturbations. In the second class fall all 

419 
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numerical methods for deriving the disturbed orbit by direct integration of 
either the rectangular coordinates or a set of osculating orbital elements. 
The latter method, devised by and named for Johann Franz Encke, is the 
subject of Sect. 9.4. 

It is beyond our scope to consider all or even a significant number of 
the many techniques which have been developed for specialized application. 
Except for some examples in Chapter 10, we avoid the subject of general 
perturbations entirely. Specifically, the discussion here is limited to special 
perturbation techniques which have been found particularly useful in space 
trajectory calculations. 

In contrast to the perturbation methods of celestial mechanics, the 
method of linearized perturbations does not provide an exact description of 
the motion but is an enormously valuable tool for our purposes. Basically, 
the approach is to linearize the equations of motion by a series expansion 
about a nominal or reference orbit in which only first-order terms are re
tained. For the results to remain valid it is, of course, necessary to restrict 
the magnitude of the deviations from the nominal orbit. When applicable, 
many advantages accrue from the linearized method of analysis. First of 
all, the resulting equations are far simpler. Of even greater importance, 
however, is the fact that superposition techniques are possible. In fact, all 
the tools of linear analysis can be exploited to obtain solutions to a wide 
variety of problems. The material developed in this chapter does, indeed, 
form the basis of the navigation theories presented in Chapters 13 and 14. 

The so-called perturbation matrices introduced in Sects. 9.5 and 9.6 
are frequently referred to as sensitivity coefficients in that they provide 
a convenient description of the manner in which errors propagate along a 
reference orbit. Thus, these matrices are useful, not only for navigation in 
the vicinity of a reference orbit, but also to assist in the preparation of the 
reference orbit itself. 

Linear perturbation methods are particularly advantageous for design
ing spacecraft orbits to achieve certain boundary conditions. A specific 
application of the method is given in Sect. 9.8 to the problem of determining 
precise circumlunar trajectories. For this problem, as well as the guidance 
problems discussed in Chapter 11, the concept of the so-called method of 
adioints is fundamental. One set of perturbation equations describes the 
propagation of errors in the forward direction along the orbit. The adjoint 
equations, on the other hand, describe the propagation of errors in the 
backward direction, that is, corresponding to motion which would result if 
the orbit were traversed in the opposite direction. There exists an entire 
body of mathematics relative to the theory of adjoint differential equations, 
and we shall have occasion to draw upon this knowledge. 
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9.1 Approach Trajectories Near a Target Planet 

When in the vicinity of a planet, a vehicle in a solar orbit experiences 
velocity perturbations which depend on the relative velocity between the 
vehicle and the planet and the distance separating the two at the point 
of closest approach. If only the gravitational field of the planet affected 
the motion of the spacecraft, the vehicle would make its approach along 
a hyperbolic path. Actually, the period of time for which the planet's 
gravitation is significant is small when compared with the total time of the 
mission. Furthermore, during this time, the distance between the planet 
and the spacecraft is small when compared with its distance from the sun. 
As a consequence, for the brief period of contact, solar gravity affects both 
the planet and the vehicle in essentially the same way. Therefore, in the 
discussion of planetary approach, solar gravity may be ignored with the 
assurance that its effects would not alter the results significantly. In this 
section we shall consider separately the problems of a close pass and a 
surface impact. 

Close Pass of a Target Planet 

We can view the effect of a planetary contact as an impulsive change in the 
velocity of a vehicle in a solar orbit. At a sufficiently great distance the 
motion of the space vehicle with respect to a target planet is essentially 
along the asymptote of the approach hyperbola. Refer to Fig. 9.1 and 
define v as the angle between the asymptote and the conjugate axis of 
the hyperbolic path of approach. The vertex is, of course, the point of 
closest approach of the vehicle and the planet. Clearly, the total effect on 
the velocity of the spacecraft, after contact with the planet, is simply a 
rotation in the plane of motion of the inbound relative velocity vector v ooi 

by an amount 2v. The direction of rotation can increase or decrease the 
solar orbital velocity depending on the orientation of the plane of relative 
motion. But the magnitude of the outbound relative velocity vector v 000 

is the same as the inbound magnitude. 
Let e and a be the eccentricity and semimajor axis of the hyperbolic 

orbit with r m denoting the distance between the vertex and the focus. The 
vertex is, of course, the point of closest approach of the spacecraft to the 
planet, and we have the relationship 

r = a(1- e) = ..l:..(e - 1) 
m v~ 

where a is determined from the vis-viva integral and p. is the gravitational 
constant of the planet. Solving for e and noting that 

e = csc v 
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Outbound velocity 
of spacecraft 

'----Orbital velocity 
of planet 

( ---- Outbound relative velocity, vooo 

Inbound relative velocity, vooi 

[Chap. 9 

Fig. 9.1: Motion of spacecraft in the vicinity of a target planet. 

we obtain 
. 1 

smv = 2 / 
1 + TmVoo J.l 

(9.1) 

For navigation purposes, the vector ra shown in Fig. 9.1 has more 
significance than the minimum passing distance. It is a vector from the 
focus of the hyperbolic orbit and perpendicular to the velocity vector v ooi . 

One might think of the terminus of the vector r a as the point of aim for 
the approach. Since 

Ta = -aecosv = -acotv 

and is, therefore, equal to the semiminor axis of the hyperbola, we have 
the following alternate expression for the turn angle v in terms of the 
aim-point distance T a : 

tan v = _J.l_ 
TaV~ 

(9.2) 



Sect. 9.1] Approach Trajectories Near a Target Planet 

Also, by eliminating l/ between Eqs. (9.1) and (9.2), we obtain 

1 
2J.L +-

rmv~ 

423 

(9.3) 

as a means of determining the aim point for a specific passing distance. 

¢ Problem 9-1 
For the purpose of an error analysis it is desirable to determine the variations 

to be expected in the magnitude of the velocity change during planetary contact 
as a function of variations in the point of aim, T a. Assume for simplicity that 
the magnitude of the approach velocity Voo is unaffected by variations in Ta and 
derive the expression 

d Ivooo - vooil Voo (1 . ). 2 ---=----,;",,;.,...,.: = - - - sm v sm v 
dTa Tm 

Tisserand's Criterion 

When a comet passes close to a planet, the elements of its orbit can be so 
drastically altered that the identity of the comet can be questionable. To 
resolve this problem, Tisserandt established, in 1889, a relationship among 
the comet elements which remains essentially unaltered by the perturba
tions. This same relationship, which we now will derive, can be used to 
analyze the effect of planetary contact on a spacecraft. 

Tisserand's contribution is a particular interpretation of Jacobi's inte
gral derived in Sect. 8.2. The first step in the development is to rewrite that 
integral from the form given in Prob. 8-3 involving rotating coordinates to 
the corresponding one in fixed coordinates. For this purpose, using the 
notation of Sect. 2.5, we solve Eq. (2.50) 

v* = R(v + Or) = R(v + ORTr*) 

for v to obtain 

v = R T (v* - ROR T r*) = R T (v* + O*r*) 

The second form of this equation follows from Prob. 2-17. Next we 
calculate 

vTv = V*2 - rTOv + vTOr - rTOOr 

= v*2 + 2w • r X v - r . w X (w X r) 

= V*2 + 2w* . r* X v* + r*2w*2 - (w* • r*)2 

t Franc;ois Felix Tisserand (1845-1896) was a professor of astronomy at the 
University of Toulouse before he became the director of the Paris observatory in 1892. 
Publication of his greatest work 'ITaitt de Mecanique Celeste began in 1889 and was com
pleted a few months before his death. The four volumes constituted an updated version 
of LaPlace's Mecanique Celeste. 
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Recall that the product of the matrix O· and any vector is equivalent to 
the vector product of w and that vector. 

Then, since 

w· =-w 

we have 
v2 = v·2 - 2w . r· X v· - r . w X (w X r) 

which, when compared with the equation of Prob. 8-3, produces 

2Gm 2Gm v·2 = 2w . r· X v· + __ 1 + __ 2 - C 
PI P2 

as the desired result. 

(9.4) 

If m1 and m2 are the masses of the sun and a planet, respectively, 
then m2 « mI. Therefore, when the comet (or spacecraft) is not close to 
the planet, we may discard the term 2Gm2/ P2 in Jacobi's integral. Also, 
from Eq. (8.14), we have 

w2 = G(ml + m 2 } ~ Gm1 =.!!:..- where we have defined P = r 
p3 p3 p3 12 

Furthermore, r· X v· is just the angular momentum vector h of the small 
body with respect to the sun so that 

w . r· xv· = wh cosi = wJ J.La{l - e2 ) cosi 

where i is the inclination angle of the body's orbital plane with respect to 
the ecliptic; a and e are, of course, the semimajor axis and the eccentricity 
of the small body's orbit. In addition, v·2 may be replaced by its equivalent 
from the vis-viva integral 

v·2 = J.L (~-!) 
PI a 

When these are substituted in Jacobi's integral {9.4}, we obtain 

1 Va(l- 0
2

) - + 2 3 cos i = constant 
a p 

or, equivalently, 

(9.5) 

where aI' e1, il are the semimajor axis, eccentricity and orbital inclination 
prior to the planetary contact and a2 , e2 , i2 are the orbital elements after 
contact. As previously noted, the distance between the sun and the planet 
is p. Equation (9.5) is generally referred to as Tisserand's criterion lor the 
t"dentification of comets. 
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Fig. 9.2: Impact at 
a target planet. 

Surface Impact at a Target Planet 

425 

Consider now the problem of pointing a vehicle in a direction to impact a 
planetary surface at a specified point. For simplicity, the following analysis 
asswnes the point of impact to lie in the plane formed by the planet's 
polar axis and the direction of the relative velocity vector-i.e., we are 
addressing the problem of impacting at a specified latitude. Generally, 
small adjustments in the orbit can alter the time of arrival to accommodate 
a desired longitude of impact. 

Referring to Fig. 9.2 we see that the choice of latitude ¢ together with 
the inbound relative velocity vector v ooi serves to determine the angle 
(3 and the point of impact r 8 • If V ooi is expressed in a planetocentric 
equatorial system of coordinates, then 

i ·v . 
sin({3-¢)= z 00' 

Voo 
(9.6) 

where i z is the unit vector in the direction of the planet's north polar axis. 
In order to determine the point of aim, we first note that the parameter 

of the hyperbolic orbit is 

(1 2) Jl cot2 
II 

p=a -e = 2 
Voo 
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Thus, we have 

r = p 
s 1 + ecos(!1I" - f3 + v) 

JLcot2 v/v~ 
=---~----~-=~--

1 + cot v sin f3 - cos f3 

Using Eq. (9.2), we obtain the following quadratic equation for determining 
rain terms of f3 and vex): 

(9.7) 

The angle of incidence 'r/J, shown in Fig. 9.2, is important for the 
atmospheric entry problem and may be determined (using the results of 
Prob. 3-23) from 

tan'r/J = p 
rsesin f 

where the true anomaly f is ! 11" - {3 + v. Thus, we have 

r2 
tan'r/J = a 

r s ( r a cos f3 + JL sin (3 / v~) 

¢ Problem 9-2 

(9.8) 

The quantity Ta(d¢/dTa) can be interpreted as a linear miss ratio for a 
spacecraft entering a planet's atmosphere. It is, in effect, the magnification factor 
which must be applied to an error in the magnitude of the point of aim Ta to 
produce a corresponding error in the impact. Derive the expression 

d¢ 1 ( Ta. ) - = - 2 - - SID {3 tan 1/J 
dTa Ta Ta 

in which we assume that Vex> does not vary with Ta. 

¢ Problem 9-3 
A spacecraft is returning from Mars and the approach velocity relative to 

the earth is 

Vex> = 10,619 ix + 9,682 ill + 6,493 iz fps 

expressed in a geocentric ecliptic coordinate system. If it is desired to impact in 
the general area of the Gulf of Mexico, compute the magnitude of the point of 
aim Ta, the incidence angle t/J, and the linear miss ratio defined in Prob. 9-2. 
The latitude of the Gulf of Mexico may be taken as 28 0 

• 
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9.2 Interplanetary Orbits 

The path of an interplanetary spacecraft is, of course, completely deter
mined by the initial conditions, i.e., the velocity vector of the vehicle at the 
time of departure from earth. Prior to injection into orbit, the spacecraft 
has a velocity with respect to the sun of just under 100,000 fps, which is the 
same as the orbital velocity of the earth. The problem then is to determine 
the impulse in velocity needed to attain a suitable interplanetary orbit so 
that the spacecraft will intersect the orbit of the destination planet at a 
predetermined point in space and time. In order to stay within the realm 
of two-body analysis, it is necessary that the velocity impulse occur at a 
point sufficiently far removed from the gravitational field of the earth that 
only solar attraction is important. However, for simplicity, we shall assume 
that the impulse takes place at a point on the earth's orbit. Then, if the 
travel-time to the destination planet is specified, the two-body orbit may 
be determined using the methods of Chapter 7. 

It is possible to establish an orbit to the planets Mars or Venus with 
a departure or excess hyperbolic velocity from the earth which is only 
slightly larger than the minimum escape velocity. The greater part of the 
voyage is made in free flight under the action of solar gravity-the periods 
of acceleration and of proximity to planets being insignificant compared 
with the total duration of the flight. For the most part the influence of the 
various planets on the path of the spacecraft is almost negligible. Therefore, 
by far the more substantial portion of the trip is made in a nearly true 
elliptic orbit. 

The Hohmannt transfer orbit for a Martian voyage is an ellipse, with 
the sun at one focus, whose perihelion is the point of tangency with the 
Mars orbit as shown in Fig. 9.3. If the planetary orbits were coplanar 
circles, then this path would require the least expenditure of fuel for the 
transfer as shown in Sect. 11.3. However, the orbits of the planets are not 
coplanar, and although the angle between the orbital planes of earth and 
Mars is only 1.85 0

, the effect in terms of required velocity of departure 
is not a minor one. For a vehicle moving solely under the influence of 
solar gravity, the trajectory plane must include the position of earth at 
departure, the position of the destination planet at arrival, and the sun 
as the center of attraction. If the launch and arrival positions are nearly 
180 0 apart, as measured with the sun at the vertex, then the trajectory 
plane can and generally will be inclined at a large angle to the ecliptic. 
Such an orbit involves a relative velocity between the spacecraft and earth 
which is comparable to the earth's own velocity about the sun. These 

t Walter Hohmann (188~1945), a German engineer, first published this result in 
his paper Erreichbarkeit der Himmelskiirper in Munich, Germany in 1925. An English 
translation was, subsequently, published by NASA in 1960 when America first became 
interested in space travel. 
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orbits therefore involve an impractically large expenditure of energy at 
departure, despite the fact that in the simplified two-dimensional model 
they are optimum in this respect. 

Orbit of 
Mars 

, ... 

Orbit of eo rth 

G 
Sun 

Fig. 9.3: Earth-to-Mars 
Hohmann orbit. 

Apart from the three-dimensional effect described above, the cotan
gential transfer ellipse, if continued past the destination planet, would not 
provide a suitable return trajectory to earth. For a one-way trip this is 
not relevant; however, for a spacecraft which is to be recovered or for a 
manned mission, this consideration is important. The outbound trip to 
Mars along the Hohmann orbit consumes between 8 and 9 months. If the 
vehicle continued its flight with no extra propulsion, it would return to the 
original point of departure in space only to find the earth nearly on the 
opposite side of the sun. Therefore, either the vehicle must wait in the 
vicinity of Mars until the time is right for a return voyage or the original 
trajectory must be revised so that the vehicle will, indeed, encounter the 
earth when it returns to the earth's orbit. It requires a significant velocity 
change to enter an orbit about Mars and, subsequently, to depart from the 
planet for the return trip. However, if no stopover is required, the vehicle 
can, in principle, require no extra fuel for the round-trip mission. 
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Planetary Flyby Orbits 

For purpose of discussion, consider the problem of placing a spacecraft in 
an orbit that passes within a few thousand miles of another planet and 
subsequently returns to earth. Determining a suitable one-way trajectory 
is straightforward and the added complication of requiring the vehicle to 
return to earth without additional propulsion (except that needed to cor
rect for navigation inaccuracies) would not contribute significantly to the 
difficulty of obtaining a solution were it not for the orbital deflection caused 
by the gravitation field of the planet as the spacecraft passes. However, with 
the material developed in the preceding section as background, a computa
tion procedure needed to determine round-trip, flyby interplanetary orbits 
may be formulated as follows. 

The outbound portion of the round-trip trajectory is determined as 
for the one-way case. The spacecraft velocity vector can then be calcu
lated, and the velocity relative to the destination planet determined. Since 
the gravitation field of the planet can only rotate this velocity vector, the 
spacecraft must leave the planet for a return trip to earth with a known 
relative velocity and at a known time. The problem of establishing a return 
trajectory is solved basically by an iteration. The procedure consists of 
making, and systematically revising, an estimate of the time required for 
the return trip. For each such estimate a new trajectory is calculated until 
one is obtained which matches the relative velocity magnitude at the target 
planet. 

It is, of course, possible that no return path exists corresponding to 
the required departure time and the relative velocity magnitude. However, 
when a matching pair of trajectories, outbound and return, has been found, 
one final step remains. It is necessary to determine if the velocity change at 
the destination planet can be effected during the period of contact solely by 
the planet's gravitation. The required turn angle 2v is readily computed 
from the inbound and outbound relative velocity vectors. Thus 

. 2 Iv 000 x V ooi I sm v= 2 
Voo 

The minimum passing distance can then be determined from 

Jl.(csc v-I) 
Tm= 2 

Voo 

(9.9) 

(9.10) 

If T m is of reasonable magnitude, the solution is complete and a satisfactory 
round-trip path has been found. 

¢ Problem 9-4 
The vector point of aim r a can be determined from 

ra = 2 I-L. 2 iooi X (looi X looo) 
2voo sm v 
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Impulse Control of Flyby Altitude 

If V ooi and v 000 of equal magnitude have been determined but do not result 
in an acceptable passing distance of the planet, we can, in fact, select a 
specific value for r m and calculate an appropriate velocity impulse to be 
applied to achieve a desired altitude. 

For a given r m and v ooi we can determine the turn angle v from 
Eq. (9.1) and the point of aim radius from Eq. (9.3). The inbound and 
outbound hyperbolas will be identical in size and shape but one is rotated 
with respect to the other, about their common focus, through the angle 
219 which we must determine. The intersection of these two hyperbolas r s 

is the point at which the velocity impulse is to be applied. Clearly, from 
symmetry, the direction of the intersection point from the focus is simply 

• vooi - V 000 
1 = ~::::.:....--=~ 

re Iv ooi - v 0001 

so that the velocity impulse ~ v is calculated from 

where 

To determine {) and r s' we define the angle fJ such that 

cos( 1r + 28) = iooi • iooo 

and note that the angle {3, from Fig. 9.2, is 1r - fJ. Then, since 

fJ+v+{)= !1r 

we have 

{)= !1r-v-8 

Finally, from Eq. (9.7), we obtain the radius 

r2 
r = a 

s r a sin fJ + Jl{1 + cos 8)/v'tx, 

at which the velocity impulse 

flv = -2 cos(v + 6)V2
/J + v&, iT 

rs e 

is to be applied. 

(9.11) 

(9.12) 

(9.13) 

(9.14 ) 
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Examples of Free-Return, Flyby Orbits 

The simplest possible round-trip trajectory would be an orbit whose 
period is a multiple of the earth's period. Consider first the possibil
ities of a spacecraft orbit with a period of 1 year which intersects the 
orbits of both earth and the destination planet. It is shown in the first 
problem at the end of this section that the minimum required departure 
velocity for a Mars mission is more than 50,000 fps after the vehicle has 
escaped from the earth's gravitational field. However, for the Venus trip, 
the short outbound time of flight and the large gravitational pull together 
make possible conditions which more nearly approximate those required 
for a 1 year round-trip trajectory. Normally, the period of the outbound 
orbit will be slightly less than 0.8 year while the return path will have a 
period of approximately 1 year. A typical round trip requires roughly 1.2 
years, of which about 0.4 year is spent from earth to Venus and 0.8 year in 
return. 

With the severe propulsion requirements ruling out the I-year round
trip to Mars, an alternate possibility is a space vehicle orbit with a 2-year 
period. An examplet of such a trajectory is illustrated in Fig. 9.4. The 
departure velocity for the Mars mission is 18,200 fps after escape and 1.5293 
years are required for the outbound trip. After passing 7,892 miles from the 
surface with a relative excess hyperbolic velocity of 28,852 fps, the vehicle 
returns to earth 0.3673 year after contact. 

Unfortunately, the 2-year round-trip to Mars has a somewhat tight 
restriction with respect to times of launch. Although we may expect this 
class of trajectories approximately to recur with the Martian synodical 
period of 780 days, the duration of the time for favorable launch conditions 
with reasonable velocities and passing conditions at Mars is roughly one 
month. 

The tolerances on the I-year Venus and the 3-year Mars trajectories 
are much less severe. For the 3-year Martian reconnaissance trajectory, the 
space vehicle makes two circuits about the sun while the earth makes three. 
Thus, either the earth to Mars trajectory or the return trajectory, but not 
both, will be characterized by a heliocentric angle of travel which exceeds 
a full revolution. 

A typical round-trip Venusian reconnaissance trajectory is illustrated 
in Fig. 9.5. For the example shown, the vehicle velocity relative to earth 
after escape is 15,000 fps. After 0.3940 year the spacecraft passes 5,932 
miles from the surface of the planet with a relative approach velocity of 
25,100 fps and returns to earth 0.8635 year later, entering the atmosphere 
with a velocity of 50,738 fps. The motion of the space vehicle relative to 
Venus during the period of contact is illustrated in Fig. 9.6. The direction 

t The example trajectories used in this section are taken from the author's book 
Astronautical Guidance. 
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Fig. 9.4: Two-year Martian flyby trajectory. 
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of motion of the planet is shown, together with the hyperbolic contact 
trajectory of the spacecraft. 

The trajectory chosen to illustrate the 3-year round-trip Martian 
reconnaissance mission is in the next three figures. The earth-to-Mars 
orbit is diagrammed in Fig. 9.7 and the return path in Fig. 9.8. The 
departure velocity is 12,000 fps, and 1.1970 year is consumed to reach 
Mars. After passing 4,903 miles from the surface with a relative approach 
velocity of 21,567 fps, the vehicle makes one complete orbit of the sun and 
returns to earth 1.9131 years after contact with a reentry velocity of 39,921 
fps. The relative motion of the spacecraft during the planetary contact is 
diagrammed in Fig. 9.9. In this example, the Martian gravity field alone has 
the effect of quadrupling the out-of-plane component of the vehicle velocity 
and, thereby, causing a rotation of approximately 30° in the orbital line 
of nodes. 

Returning to the Venusian reconnaissance trajectory shown in Fig. 9.5, 
it is of interest to note that the increased velocity introduced at Venus is 
sufficient to carry the spacecraft on the return trip to a distance of about 
1.35 astronomical units from the sun. Since Mars at perihelion is only at 
a distance of 1.38 astronomical units, the interesting possibility arises of a 
dual contact with both planets and a total time of flight for the round trip 
just in excess of 1 year. This would clearly be an improvement over the 
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Fig. 9.6: Orientation during Venusian contact. 

Fig. 9.5: Venusian flyby 
trajectory. 

3.2-year round trip to Mars alone. The principal drawback to such a double 
reconnaissance is the infrequency of possible launch dates. The synodical 
periods for Venus and Mars are 584 and 780 days, respectively. Therefore, 
one can expect favorable conditions for round-trip missions to each planet 
individually to recur with the corresponding synodical frequency. On the 
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Feb. 15, 1964 

Fig. 9.9: Orientation during Martian contact. 

other hand, roughly 2,340 days are required before any particular configu
ration of the three planets, earth, Venus and Mars, will be approximately 
repeated. Even then the likelihood of a configuration existing at all which 
would admit of the dual mission seems, at first, to be remote. 

Nevertheless, on June 9, 1972, the ideal circumstances did prevail. 
On that date a vehicle in a parking orbit from Cape Canaveral on the 
110 0 launch azimuth course could have been injected into just such a 
trajectory at the geographical location of 50 west and 180 south and with 
an injection velocity of 39,122 fps. After escape the vehicle would have had 
a velocity relative to the earth of 15,000 fps. The first planet encountered 
is Venus after a trip lasting 0.4308 year. The vehicle passes 4,426 miles 
from the surface of the planet and receives, from the Venusian gravity field 
alone, a velocity impulse sending it in the direction of Mars. The second 
portion of the trip consumes 0.3949 year, and the spacecraft contacts Mars 
passing at a minimum distance of 1,538 miles from the surface. The trip 
from Mars to earth takes an additional 0.4348 year, and the vehicle returns 
on September 13, 1973. This truly remarkable trajectory is illustrated in 
Fig. 6 of the Introduction to this book. 

It might be expected from previous remarks that similar conditions 
would have existed approximately 6! years earlier. Indeed, the trajectory 
shown in Fig. 9.10 was possible on February 6, 1966, and is similar in 
all respects but one. With a departure velocity of 16,500 fps the vehicle 
contacts Venus after 0.4196 year and Mars 0.5454 year later with respective 
passing distances of 1,616 and 7,515 miles. Now, however, the encounter 
with Mars occurs quite far from the Martian perihelion. Thus, in order to 
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catch up with the earth, the vehicle must once again pass inside the earth's 
orbit with the result that the return trip from Mars requires 0.8950 year. 
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Fig. 9.10: Double flyby trajectory. 
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Determine the minimum departure velocity from earth for an orbit to Mars 
with a period of 1 year. Show that the orbit is an ellipse tangent to the orbit of 
Mars and that departure from earth occurs at an extremity of the minor axis of 
the transfer orbit. 

NOTE: In this problem and the next assume a simplified model of the solar 
system, i.e., circular, coplanar planetary orbits. 

¢ Problem 9-6 
A vehicle is in a circular orbit about the sun at a distance of one astronomical 

unit. A velocity impulse is applied to place the vehicle in a transfer orbit with 
a period of 1.5 years which will intersect the orbit of Mars after traversing a 
heliocentric angle of 140 0 • Assuming that the closest approach to the surface of 
Mars is 3,000 miles and that the vehicle passes ahead of the planet, determine 
the period of the new orbit. 
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9.3 Circumlunar Trajectories 

The motion of a spacecraft in cislunar space is governed primarily by the 
gravitational fields of the earth and the mOOD. The effects of solar gravity 
and the perturbations arising from the nonspherical shape of the attracting 
bodies are important in a final analysis but are neglected in obtaining the 
conic approximation. 

The calculation of circumlunar trajectories is more difficult than the 
corresponding interplanetary problem because the time spent within the 
lunar sphere of influence is a significant fraction of the total mission time. 
Thus, it would be out of the question to regard the effect of the moon 
as simply an impulsive change in the vehicle velocity as was done in the 
computations of the previous sections. 

An adequate approximate trajectory may be hadt by matching in both 
position and velocity at the junction points (1) an ellipse from earth to 
the sphere of influence of the moon whose focus is at the center of the 
earth, (2) a hyperbola around the moon, and (3) an ellipse from the 
sphere of influence back to earth. The simplified problem, though itself 
fairly complex, is tractable when the relevant parameters and independent 
variables are identified. Clearly, an analogous procedure could be used for 
interplanetary trajectories if it is desired to obtain a better approximation 
than would result from the simplified treatment described earlier. 

In our analysis the following parameters are found to be a convenient 
choice for the independent variables: 

1. r m' the perilune altitude or minimum passing distance. This param
eter is directly related to the total time of flight. 

2. t A' the time of arrival at the sphere of influence of the moon on the 
outbound trajectory. This is specified as a Julian date.+ It was decided 
to fix this time, rather than the time of injection, since the time of flight 
from injection to the sphere of influence is a parameter which will be 
varied during the iteration process. Thus, since the position of the 
moon does not change with time of flight, there is no need during that 
iteration for continual redetermination of the position of the moon. 

3. i L' the angle of inclination of the outbound trajectory plane with 
respect to the equatorial plane of the earth. This parameter cannot 

t The calculations described in this section were originally published in April, 1962 
as an MIT Instrumentation UJboratory Report R-959 entitled "Circumlunar Trajectory Cal
culations" authored by Richard H. Battin and James S. Miller. 

t It is conventional in astronomical calculations to number consecutively the astro
nomical days, beginning at Greenwich noon, from January 1 of the year 4713 B.C .. The 
number assigned to a day is called the Julian day number and denotes the number of days 
that have elapsed, at Greenwich noon on the day assigned, since the epoch. The Julian 
year consists of exactly 365.25 Julian days and the Julian century of 36,525 Julian days. 
In the nautical almanac the correspondence is made to relate the Julian day number to 
the ordinary calendar day. For example, the epoch 1960 Jan. 1.5 ET (meaning ephemeris 
time) corresponds to the Julian day number 2,436,935. 
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Fig. 9.11 Circumlunar trajectory. 

be freely chosen, since it depends somewhat on the latitude of the 
launch point. For example, if the parking orbit plane contains the 
latitude of Cape Canaveral, the inclination angle of the plane cannot 
be less than this latitude. 

4. i R' the angle of inclination of the return trajectory plane with respect 
to the equatorial plane of the earth. This parameter primarily affects 
the latitude of the re-entry point. 

5. r L' the perigee distance of the outbound trajectory. For these circum
lunar calculations, the injection is assumed to place the spacecraft at 
the perigee of the outbound ellipse. 

6. r R' the vacuum perigee distance of the return trajectory. This 
parameter, which is the perigee that the return ellipse would have in 
the absence of an atmosphere of the earth, affects the re-entry flight
path angle and, therefore, cannot be freely chosen. 

With these six quantities specified, the trajectory is completely deter
mined except for a fourfold ambiguity in the orientation of the outbound 
and return orbital planes. This problem will be discussed later in detail. 

In Fig. 9.11, a precise circumlunar trajectory is shown for which the 
independent variables in the conic approximation have the values:t 

r m = 1, 180 miles i R = 35.0° 

tA = 555.125 Julian days rL = 4,077 miles 

i L = 28.3° r R = 4, 008 miles 

t The time tA is given in Julian days from the midnight preceding December 31, 
1966, ET. 
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The trajectory is plotted to scale, projected into the plane of the moon's 
orbit in earth-centered nonrotating coordinates. Time measured in hours 
from launch and velocity relative to the earth measured in feet per second 
are indicated at several points along the path. Figure 9.12 shows a portion 
of the trajectory near the earth together with a portion of the hyperbolic 
path relative to the moon. In the latter case the velocities shown are 
measured relative to the moon. 

Trajectory relative to earth 

F Time from launch, hours 

Trajectory relative to 
the moon 

Velocity relative to moon. fps ---.. 

...---Velocity relative to earth, fps 

Fig. 9.12: Expanded views of trajectory near earth and moon. 

The general approach taken here in the development of a calculation 
technique is first to obtain two earth-centered elliptic orbits, one outbound 
and one returning, which satisfy the desired end conditions and which, 
at the sphere of influence, have relative-velocity vectors aligned with the 
center of the moon. By adjusting the times of flight on the two trajectories, 
it is possible to cause these vectors both to assume a given magnitude. 
According to the two-body assumptions concerning vehicle motion within 
the sphere of influence, the effect of lunar gravity is simply to rotate the 
inbound relative-velocity vector in the plane of relative motion. The two 
relative-velocity vectors determine the plane of this motion. Thus, the 
possibility exists of establishing a realistic hyperbolic pass at the moon 
by translating these vectors in their common plane to obtain the proper 
offset from the moon so that the vehicle will indeed pass the moon at a 
distance which is compatible with the magnitude and the angle between 
the relative-velocity vectors. 
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An outline of the overall computational procedure will now be given. 
Some of the more important mathematical details will be described in the 
following subsection. 

1. With t A' i L , and r L specified, a point on the sphere of influence of the 
moon and a time of flight t F L from injection to this point are selected. 
Let r T be the vector from the center of the earth to the selected point 
on the sphere. From these values an outbound elliptic trajectory may 
be calculated and the position and velocity vectors r TM and vTM 

relative to the moon at the sphere of influence are determined. 
2. The vectors r T M and v T M completely specify a hyperbolic trajectory 

with the moon at the focus. Thus, the perilune distance r m and the 
perpendicular distance r a measured from the center of the moon to the 
asymptote of the hyperbola are obtained. At the sphere of influence 
the motion of the vehicle relative to the moon is essentially along 
this asymptote, so that r a is the distance at which the vehicle would 
pass the moon's center if the lunar gravitation were not present. The 
detailed geometry is shown in Fig. 9.13. 

/- Lunar sphere 
of influence 

Fig. 9.13: Hyperbolic contact at the moon. 
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3. When rT is varied on the sphere of influence and steps 1 and 2 are 
repeated, a trajectory is obtained for which T a is zero and the relative
velocity vector v T M is directed at the center of the moon. The itera
tion is accomplished by first varying r T systematically over the sphere 
of influence until the calculated T m is less than some preassigned value. 
(20,000 miles is satisfactory to initiate the second phase of the itera
tion.) Then, since moving the position vector r T over the sphere of 
influence by a small amount does not essentially alter the magnitude 
or direction of v TM ' an improved value of r T may be obtained from 

VTM 
r T = rEM - TS--

vTM 

where rEM is the position vector of the moon relative to the earth 
and T S is the radius of the sphere of influence. Usually only four or 
five cycles are required to reduce T a to less than one mile. 

4. With the use of the calculated value of the magnitude vT M and the 
original specified passing distance T m' the time interval t s that the 
vehicle would spend within the sphere of influence if the direction and 
magnitude of v T M were compatible with T m may be calculated. Then 
t A + ts is the time at which the vehicle leaves the sphere of influence 
on the return trip. 

The time interval t s is most easily computed as follows: The 
semimajor axis ah of the hyperbola is determined from the vis-viva 
integral as 

ah = (VfM _ ~)-1 
11M TS 

where 11M is the gravitational constant of the moon. 
turn angle 2v may then be calculated from 

. 1 
sm v = -----:--

1 + Tm/ah 

(9.15) 

The required 

(9.16) 

as shown in Sect. 9.1. Then, since the eccentricity of the hyperbola is 
simply csc v, it follows from the hyperbolic form of Kepler's equation 
that 

ts = 2V a~ (csc II sinh H - H) 
11M 

where the argument H is determined from 

(9.17) 

cosh H = (1 + ::) sin II (9.18) 

5. Steps 1, 2, and 3 are repeated with tA + ts , in, and Tn specified and 
a selected value of the time of flight t F n from the sphere to the return 
perigee. 
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6. The value of t F R is systematically adjusted and step 5 is repeated 
until the magnitudes of the two vectors VTML and vTMR are equal. 
The angle 21.1 between the two vectors is computed from 

. 2 IVTML X VTMRI sm 1.1 = 2 
VTM 

(9.19) 

and the passing distance r m from t 

r m = ah (csc 1.1 - 1) (9.20) 

7. The value of t F L is systematically adjusted and steps 1 to 6 are re
peated until the calculated value of r m agrees with the desired value. 

8. The vectors rTML and rTMR are changed in the plane determined by 
VTML and vTMR to offset each relative-velocity vector by the amount 
ra where 

(9.21) 

This step also involves an iteration. Al though v T M L and v T M R 

change only slightly in direction as r T M L and r T M R are displaced, 
the effect on r a is greater than can be tolerated. However, the change 
in the relative-velocity magnitude is less than one foot per second. 

9. For each of the newly established velocity vectors, r m is recalculated 
as a final check on the validity of step 8. In every instance, experience 
has shown that the mismatch in r m is less than one mile. 

Calculating the Conic Arcs 

The details required to mechanize this procedure are, for the most part, 
straightforward. However, certain portions of the calculations are, perhaps, 
not immediately self-evident. 

The basic problem described in step 1 of the outline is to determine 
the position and velocity vectors r L and v L associated with an injection 
at perigee which will produce an elliptic arc whose plane is inclined at an 
angle i L to the equatorial plane, having a perigee distance r L and requiring 
a time t F L to reach a given position r T • 

In general, as seen in Fig. 9.14, there are two planes which satisfy the 
required conditions with two exceptions: (1) for a 90° inclination angle 
only one such plane is defined, and (2) no solution is possible if the desired 
inclination angle is smaller than the latitude of the target position relative 
to the earth's equatorial plane. Let L and A be the latitude and longitude 

t The reader should compare this result with Eq. (9.10). Although we are assuming, 
in the present case, that the motion takes place essentially along the asymptote of the 
approach hyperbola, the results would be grossly in error if the velocity at infinity were 
used to calculate Tm as was done for interplanetary orbits. 
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Fig. 9.14: Geometry of 
the trajectory planes. 
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Alternate 
trajectory planes ~~----~ __ 

T 

of rT • When two planes exist, the longitudes of their ascending nodes, 0 1 
and O2 , are determined from 

and 

where 
. tanL 

sma = --.-
tanl L 

Either plane may be suitable for an outbound trajectory. Since the same 
conditions hold for the return trajectory, there are potentially four different 
circumlunar orbits satisfying the conditions of the problem. 

In addition to the geometrical limitation imposed on the trajectory 
inclination, there is another constraint which must be examined. Since 
only the perigee radius r L is specified, the central angle (), through which 
the vehicle moves from r L to r T , must be selected to coincide with the 
given time of flight. The time t F L and the corresponding angle () cannot 
be freely chosen if the outbound and return orbits are to be elliptic. 

The trajectory from r L to r T was called a tangent ellipse in Sect. 6.3, 
and the semimajor axis a, obtained from the results of that section, is 

rL(rL - rT cosO) a = ---=::....;....=--~:..-..-~ 
2rL - rT(l + cosO) 

(9.22) 

in the current notation. Hence, for an elliptic orbit (0 < a < 00), the 
condition 

2r 
1 +cos() < -k 

rT 

must be fulfilled. 
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When the denominator of the equation for a vanishes, i.e., at (J = (Jp' 

where 

cos(J = 2TL - 1 
p TT 

the required conic is a parabola and the corresponding time of flight t F L(p) , 

as calculated from the formula derived in Prob. 4-3, is given by 

1 
tFL(p) = 3" 

The specified value of tFL must exceed tFL(p) if the trajectory is to be an 
ellipse. 

In summary, therefore, the outbound trajectory problem is solvable 
only if 

and 

Identical arguments apply for the return trajectory. 
With the orientation of the trajectory plane determined, there remains 

the problem of calculating the central angle (J, following which the orbital 
elements a and e are obtained from Eq. (9.22) and 

TL e= 1-
a 

(9.23) 

One method of procedure is to use Lagrange's form of the time of flight for 
an elliptic arc as given in Sect. 6.6 and written in the form 

where 

tFL = fa3 [(a - sin a) - ({3 - sin(3)] V;; 

sin!a = Is 
2 V"2a and . la ~-c sm -p = --

2 2a 

The semiperimeter s is 

s= ~(TL+TT+C) 

and C is the linear distance from perigee to r T ; that is, 

c2 = Ti + Tf - 2TLTT cos(J 

(9.24) 

From Eq. (9.22) a is given as a function of (J so that Eq. (9.24) expresses 
the time of Bight t F L in terms of the single variable (J. 

Because of the transcendental nature of Eq. (9.24) it is not possible 
to express (J in terms of t using a finite number of elementary functions. 
However, a simple Newton iteration will converge quite rapidly. 
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For this purpose, the following derivative dtFL/dO is required 

dt FL = ~ tFL da + ~ [tan!a (dS _ ~ da) 
dO 2 a dO V J.l E 2 dO a dO 

445 

1 (dS S - c da) 1 + tan 2.8 dO + -a-dO 

where 

and 

ds _ TLTT . 0 
dO - 2c sm 

1 da 2TT(a - TL) sin 0 
-;. dO = - it + c2 - Tf 

Unfortunately, the right side of the expression for the derivative is 
indeterminate for 0 = 7r. However, it can be shown that 

lm--= - +-I· sinO {£L (1 TL) 
0-1r sin a TT TT 

so that 

dtFL I = 
dO O=1r 

For step 2 of the procedural outline the position and velocity vectors 
r T M and v T M relative to the moon at the sphere of influence are required. 
These may be calculated in the following manner. 

Equation (2.6), with i = iL and 0 = 0 1 or O2 , provides the direction 
cosines of the normal i) to the elliptic trajectory plane. Thus 

[

sin 0 sin i L ] 

i) = - cos 0 ~in i L 

COS'lL 

Then the velocity vector at r T relative to the earth is 

1 (f:E . 0 VJIEP . ) VT=- -esm rT+--l)xrT 
rT P r T 

where p is the parameter of the trajectory. Note that the position vector 
at injection r L is easily obtained as 

r L = r L (cos 0 r T - sin 0 i) X r T ) 
TT 

Finally, if rEM and v EM are the position and velocity vectors of the moon 
relative to the earth at time t A , then 
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In order to determine the passing distance at the moon, it is sufficiently 
accurate for the purpose to assume that the velocity vector v T M lies along 
the asymptote of the approach hyperbola. Then the unit vector i a , lying 
in the plane of the hyperbola and normal to the asymptote, is computed 
from 

• vTM X (rTM X VTM) 
1 =~~--~~--~~~ 
a IVTM X (rTM X vTM)1 

and the offset or aiming point distance r a is 

The minimum passing distance r m is computed using Eq. (9.20) with the 
angle v determined from Eq. (9.21). The perilune position vector rm is 
then readily found to be 

¢ Problem 9-1 
For the calculation described in the subsection above, Kepler's rather than 

Lagrange's equation could have been used 

tFL = {g [E- (1- r:) sinE] 
where E is the eccentric anomaly of the target location rT. 

Verify the relation 
TT - TL cosE 

a=-----
1- cosE 

so that Kepler's equation can be written as 

TT - TLcosE . 
(1 E)

3 I(TT - TL cos E)E - (TT - TL) sm E] 
J.i.E - cos 

in terms of the single variable E. The appropriate derivative needed for the 
Newton iteration is then 

dtFL = tFL [! TL sin E 
dE 2 TT - T L cos E 

+ -----TT(1- cos E) + TLEsinE 3 sinE ] 
(TT - T L cos E)E - (TT - T L) sin E 2 1 - cos E 

¢ Problem 9-8 
The sign of the radial component of the velocity vector v 1 for a transfer 

orbit connecting rl and r2 through a central angle 0 is the same as the sign of 

sin 0 [ ( 1 - ~) - (1 - ~) rl • r2 ] 

where p is the parameter of the orbit. 
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9.4 The Osculating Orbit and Encke's Method 

The equation of the disturbed relative motion of two bodies, as developed 
in Sect. 8.4, is of the form 

(9.25) 

where r is the vector position of one mass with respect to the other and 
ad is the vector acceleration arising from the presence of the disturbing 
bodies. Actually, of course, the interpretation of ad can be more general 
and indeed may include all relevant forces which tend to prevent the relative 
motion from being precisely a Keplerian orbit. For example, consider the 
motion of a space vehicle in the vicinity of the earth. Then, apart from the 
inverse-square central gravitational force, the other forces which influence 
the motion to varying degrees will include: (1) the nonspherical shape of 
the earth, (2) atmospheric lift and drag, (3) the sun,· moon and other 
planets of the solar system, ( 4) solar radiation pressure', and (5) thrust 
acceleration from the vehicle's engines. 

The most straightforward method for determining the position and 
velocity, r(t) and v{t), when the orbit is not a conic is a direct numerical 
integration of the equations of motion in rectangular coordinates known 
in celestial mechanics as Cowell's method.t The integration formulas used 
in the Cowell method actually were first given by Carl Friedrich Gauss 
and were well adapted to the computation techniques available at the end 
of the last century. Today, when Eq. (9.25) is integrated numerically in 
rectangular coordinates by any technique whatsoever, the method is still 
referred to as Cowell's method. 

The choice of integrating the complete equations of motion (9.25) is 
reasonable if the disturbing acceleration magnitude ad is of the same or 
higher order as that due to the central force field. On the other hand, 
if ad is small, the method can be inefficient. Cowell's method may then 
require relatively small interval lengths independent of the size of ad to 
ensure a given accuracy. However, if only the differential accelerations 
instead of the total acceleration are integrated, considerable accuracy can 
be obtained with a larger interval when ad is small. This procedure, which 

t Philip Herbert Cowell (1870-1949) graduated from Trinity College, Cambridge, 
England after having displayed unusual ability in mathematics. His two positions, first 
as chief assistant at the Royal Observatory at Greenwich in 1896 and superintendent of 
the Nautical Almanac in 1910, did not really provide him with the scope for theoretical 
research as would have been possible with a Cambridge professorship. Nevertheless, 
Cowell made important contributions to the theory of the motion of the moon for which 
he was elected a fellow of the Royal Society in 1906. His name will be remembered 
for the step-by-step numerical integration method of the planetary equations of motion 
in rectangular coordinates. He first applied his method to the newly discovered eighth 
moon of Jupiter and then to predict the return of Halley's comet in 1910. 
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will now be described in detail, is known as Encke's methodt even though it 
was proposed two years earlier in 1849 by that famous Harvard University 
father-son team William Cranch Bond (1789-1859) and George Phillips 
Bond (1825-1865)-the latter often referred to as "the father of celestial 
photography. " 

If at a particular instant of time to' all the effects embodied in the 
vector ad ceased to exercise any influence on the motion, the resulting 
orbit would be a conic and the position and velocity vectors would be 
exactly computable from the two-body formulas. Expressed differently, 
at any instant of time to, the position and velocity vectors of the relative 
motion may be used to define a two-body orbit. The terminology osculating 
orbit is used to describe this instantaneous conic path associated with the 
time to' Of course, the true motion never actually takes place along the 
osculating orbit; however, if the disturbing forces are small compared with 
the central body force, then over short intervals of time, the actual position 
in orbit will differ from the associated position in the osculating orbit by a 
correspondingly small amount. 

The concept of the osculating orbit can be successfully exploited in 
the calculation of perturbed orbits. Specifically, let r{t), v{t) and rOBC{t) , 
v OBC{t) represent, respectively, the position and velocity in the true orbit 
and the osculating orbit as functions of time. At time to, we have 

so that at a later time t = to + Ilt, we can write 

r ( t) = r OBC (t) + c5 ( t) v{t) = v OBC{t) + v (t) 

The vector difference c5 (t) is easily seen to satisfy the following differential 
equation: 

d
2 

c5 J.I. ~ J.I. ( r~BC ) -+-v=- 1-- r+ad 
dt2 r~BC r~BC r3 

(9.26) 

subject to the initial conditions 

and dc51 - = v (to) = 0 
dt t=to 

t Johann Franz Encke {1791-1865}, the eighth child of a Lutheran preacher, studied 
mathematics and astronomy at the University of Gottingen. His education, though twice 
interrupted by military service during the Wars of Liberation, was guided by Gauss who 
procured for him in 1816 a post at the small Seeberg observatory near Gotha. As a 
result of his work on the computation of the orbit of a comet, which had the unusual 
period of scarcely four years, he was promoted, first to director of that observatory, and 
later in 1825, to a professorship at the Academy of Sciences in Berlin and the director 
of the Berlin observatory. The comet which brought him fame was later called Encke's 
comet. In Berlin, he also became editor of the Berliner astronomisches Jahrbuch in which 
many of his contributions to orbit determination and perturbation computations were 
published. 
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The numerical difficulties which would arise from the evaluation of the 
coefficient of r in Eq. (9.26) may be avoided by employing the technique 
described in Sect. 8.4. Since 

r ( t) = rose ( t) + «5 ( t) 

it follows that 
r3 

1 - ~ = - f(q) = 1- (1 + q)J r3 
where 

«5. (6 - 2r) 
q = r·r 

As before, the computation of f(q) is expedited by writing 

3 + 3q + q2 
f(q) = q 1 + (1 + q)J 

Encke's method may now be summarized as follows: 

1. Position and velocity in the osculating orbit are calculated using the 
Lagrangian coefficients 

rosc(t) = Fr(to) + Gv(to) 

vosc(t) = Ftr(to) + Gtv(to) 

The functions F, G, ... are calculated using any of the appropriate 
formulas developed in Chapters 3 and 4. Of course, the calculation of 
these coefficients can be accomplished only by first solving the appro
priate form of Kepler's equation. 

2. Deviations from the osculating orbit are then obtained by a numerical 
integration of 

d2 «5 ~ ~ 
-2 + -3- 6 = --3-f(q)r(t) + ad 
dt r osc rosc 

(9.27) 

where r = rOBC + 6. At any time the true position and velocity vectors 
are obtained by simply adding the computed deviations «5 and v to 
the osculating quantities r osc and v OBC . 

The various terms in Eq. (9.27) must remain small, i.e., of the same 
order as ait ) , if the method is to be efficient. As the deviation vector 6 
grows in magnitude, the various acceleration terms will eventually increase 
in size. Therefore, in order to maintain the efficiency, a new osculating orbit 
should then be defined using the computed values of the true position and 
velocity vectors. The process of selecting a new conic orbit from which to 
calculate deviations is called rectification. When rectification occurs, the 
initial conditions for the 6 differential equation are again zero and the 
only nonzero driving accelerations immediately following rectification are 
simply the disturbing accelerations ad' 
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It is worthwhile emphasizing the role that Encke's method plays in 
maintaining control of numerical errors. The determination of position 
and velocity in the osculating orbit is subject only to round-off errors and 
is independent of the particular numerical technique used to perform the 
integration. The accuracy in the computation of 6 and v, the deviations 
from the osculating orbit, is limited by both round-off and truncation-the 
effects of the latter will propagate from step to step along the integrated 
orbit. The integrated quantities themselves are small and, when added to 
the osculating quantities, will have little effect on the determination of the 
true orbit. Before the errors in the deviations can grow in size sufficient 
to have a detrimental effect, a new osculating orbit is selected through the 
process of rectification. 

¢ Problem 9-9 
Derive the appropriate differential equation for Encke's method when the 

universal anomaly X (defined in Chapter 4) rather than t is the independent 
variable. Discuss the possible advantage of such a formulation of the integration 
process. 

¢ Problem 9-10 
For Encke's method, 

1- r!tlc = 1 _ (1 + q)-! = q 3 + 3q + q2 
r3 (1 + q) ~ + (1 + q)3 

with 
(6 + 2r Otic) • 6 

q= 2 
r otlc 

provides an alternate means of calculating the coefficient of r in Eq. (9.26). 
Further, this coefficient may be expressed as a power series in q of the form 

1- r~tlc = 3 ~ [1- ~ (~) + ~ (~)2 _ :5·7· 9 (~)3 + ... J 
r3 2 2 2 2 . 3 2 2 . 3 . 4 2 

Determine the range of values of q for which the series will converge. 

NOTE: This power series expansion is the classical method used for calculating 
f(q) in Encke's method. 

9.5 Linearization and the State Transition Matrix 

The osculating orbit introduced by Encke may be regarded as a nominal or 
reference orbit against which deviations are computed to establish the true 
orbit in the problem of disturbed motion. The Encke perturbation equation 
is not an approximation since it contains exactly the same information 
as the original equations of motion. Approximations are introduced only 
when a particular numerical integration procedure is selected to produce 
numerical solutions. 
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In this section we are concerned with a somewhat different kind of 
perturbation problem. In contrast with Encke's method, the method of lin
earized perturbations does not provide an exact description of the 
motion. Basically, the approach is to linearize the equations of motion by a 
series expansion about a reference orbit in which only first-order terms are 
retained. For the results to remain valid it is, of course, necessary to restrict 
the magnitude of the deviations from the nominal path. When applicable, 
many advantages accrue from the linearized method of analysis-the prin
cipal one being, of course, that the process of superposition may be applied. 

Paralleling the development of Encke's method, let the vectors r(t), 
v(t) and r re/(t) , v re/(t) represent the position and velocity along the 
actual orbit and the corresponding quantities along a reference path which 
need not be a conic. We write 

r(t) = r re/(t) + 0 (t) v(t) = v re/(t) + v (t) (9.28) 

as before and note that both the actual and reference quantities satisfy the 
same basic equations of motion 

dr 
-=v 
dt 

dv 
dt = g(r) (9.29) 

The vector g includes all relevant gravitational effects under consideration. 
Since g is a function of r, we may expand g( r) in a Taylor series 

about the point r reI 

g(r) = g(rre/) + G(rre/) 0 + 0(02
) 

where 

(9.30) 

is referred to as the gravity gradient matrix. Then, substituting in the 
equations of motion, we have 

drrel dO_ 
-;It + dt - v reI + V 

if all terms of order {)2 and higher are neglected. But the reference quan
tities satisfy Eq. (9.29), so that 

do 
-=v 
dt 

and (9.31) 

are obtained as the linearized differential equations for the deviation vectors 
o and v. Since the G matrix depends only upon the reference orbit, it 
may be regarded as a known function of time. 

At this point it is convenient to introduce a six-dimensional deviation 
vector x called the state vector and defined by 

X= [!] (9.32) 
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so that the linearized equations of motion can be simply written 

dx 
dt = F(t)x 

The six-dimensional coefficient matrix F(t) is partitioned as 

F(t) = [G~t) 6] 

[Chap. 9 

(9.33) 

(9.34) 

where 0 and I are the three-dimensional zero and identity matrices. 
The sixth-order system of linear differential equations admits six lin

early independent solutions xl (t), x 2 (t), ... , ~(t) which may be regarded 
as the columns of a six-dimensional matrix ~. If the initial conditions are 
prescribed at a time to in such a manner that Xj(to) has all components 
zero except the jth which is unity, then the matrix ~(t, to) will be a 
function of both t and to satisfying the matrix differential equation 

d 
dt ~(t, to) = F(t)~(t, to) (9.35) 

subject to the initial conditions 

(9.36) 

where I is now the six-dimensional identity matrix. 
The matrix ~(t, to) is frequently referred to as the state transition 

matrix (or fundamental matrix). Indeed, if the deviation or state vector X 

is known at a time to, then its value at time t is obtained simply from the 
product 

(9.37) 

[Clearly, x(t) satisfies the system equation (9.33) since ~(t, to) satisfies 
Eq. (9.35) and has the proper value at time to according to Eq. (9.36}.J 

Solution of the Forced Linear System 

If the basic equations of motion (9.29) include an additive disturbing 
acceleration ad(t), then the system equations (9.33) will have the form 

dx 
dt = F(t)x + Kad(t) (9.38) 

where the 6 x 3 compatibility matrix K is defined by 

K= [~] 
The additional term is often referred to as the forcing function. 
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The solution of the inhomogeneous system (9.38) can be written ex
plicitly using the state transition matrix of the homogeneous system (9.33). 
Indeed, we have 

x(t) = ~(t, to)x(to) + ~(t, to) {t ~-I (r, to)Kad(r) dr ito (9.39) 

which is readily verified by direct substitution into Eq. (9.38) and using 
the fact that ~ satisfies Eq. (9.35). 

The inverse of the matrix ~ appearing in the integrand of Eq. (9.39) 
is easily seen to be 

~-I (t, to) = ~(to, t) 

By interchanging t and to in Eq. (9.37), we have 

x(to) = ~(to, t)x(t) 

and, therefore, 
x(t) = ~(t, to)~(to, t)x(t) 

Hence, ~(t, to)~(to, t) must be the identity matrix. 

Symplectic Property of the Transition Matrix 

(9.40) 

The transition matrix is an example of a class called symplectic matrices. 
An even-dimensional matrix A is said to be symplectic if 

ATJA =J (9.41) 

where 

J= [~I 6] 
Since J2 = - I, the J matrix is analogous to the pure imaginary v'=I in 
complex algebra. 

From the definition (9.41) it is seen that a symplectic matrix bears the 
same relationship to the matrix J that an orthogonal matrix bears to the 
identify matrix I. Thus, if P is an orthogonal matrix, then 

PTIP = I 

The importance of identifying the transition matrix as symplectic lies 
in the ease with which the inverse may be obtained. Postmultiply Eq. 
(9.41) by A -I and premultiply by J, to obtain 

A-I = -JA T J (9.42) 

so that the inverse of a symplectic matrix is found by a simple rearrange
ment of the elements. By comparison, the inverse of an orthogonal matrix 
is equal to its transpose-again, by rearrangement of the elements. 
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To show that .(t, to) is symplectic we first note that 

• T (to, to)J.(to, to) = J 

[Chap. 9 

since .(to, to) is just the identity matrix. Therefore, to complete the proof, 
we need show only that 

:t[.T(t,tO)J.(t,tO)] = 0 

For this purpose, we use Eq. (9.35) and write 

:t [4tT (t, to)J.(t, to)] = 4tT (t, toHFT (t)J + JF(t)].(t, to) 

- .T(t t ) [G(t) - GT(t) 0 ].(t t ) 
- , 0 0 I-I ' 0 

=0 

The last step follows from the fact that G(t) = G T (t) i that is, the gravity 
gradient is a symmetric matrix. 

Finally, if the transition matrix is partitioned as 

.(t, to) = [.1 (t, to) .2(t, to)] 
.3(t, to) .4(t, to) 

then the inverse is directly obtained from 

.-I(t t ) = .(t t) = 4' 0 [ 
.T(t t ) 

, 0 0' -.r(t, to) 

which can be demonstrated using Eq. (9.42). 

¢ Problem 9-11 
For two-body motion the vector g in Eq. (9.29) is simply 

g(r) = - :Sr 

(9.43) 

(9.44) 

For this case, the gravity gradient matrix along the reference orbit is 

3xz ] 
3yz 

3z2 
- r2 ref 

¢ Problem 9-12 
Verify that the determinant of a symplectic matrix is ±1 and use this result 

to deduce 
,.(t, to)' = 1 
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~ Problem 9-13 
Y A matrix A satisfies the matrix differential equation 

dA - = B(t)A 
dt 

455 

Demonstrate that the determinant IAI satisfies the scalar differential equation 

diAl = tr(B) IAI 
dt 

and use the result to give an alternate proof of the fact that the determinant of 
the transition matrix is unity. 

¢ Problem 9-14 
If ~(t) satisfies the differential equation 

then ~ -1 (t) satisfies 

Hence, deduce that 

d~ =F~ 
dt 

regardless of the initial conditions assigned to ~(t). 

¢ Problem 9-15 
If A and B are symplectic matrices, then C = AB is symplectic. Further, 

the inverse and transpose of a symplectic matrix are both symplectic. 

¢ Problem 9-16 
Any two-dimensional matrix whose determinant is unity is symplectic. 

¢ Problem 9-17 
A matrix A(t) of even dimension 2n satisfies the differential equation 

dA = B(t)A 
dt 

with A(O) = I 

If the coefficient matrix B is partitioned into n-dimensional blocks as 

find the necessary and sufficient conditions that these partitions must satisfy for 
A to be a symplectic matrix. 



456 Patched-Conic Orbits and Perturbation Methods [Chap. 9 

9.6 Fundamental Perturbation Matrices 

Consider a vehicle launched into orbit and moving under the influence of 
one or more gravity fields to reach a target point. Let r ref (t) and v ref (t) 
be the position and velocity vectors at time t for a vehicle in a reference 
orbit connecting the initial and terminal points. Because of errors from any 
of a number of sources, the vehicle will fail to follow the exact reference path 
so that the true position and velocity vectors r(t) and v(t) will deviate 
from the associated reference quantities. It will be assumed that these 
deviations from the reference path are always small so that linearization 
techniques are applicable. 

At any time t later than to, the position and velocity vectors will be 
a function, not only of time, but also of the position and velocity that the 
vehicle had at the earlier time to' Thus, we may expand r[t, r(to), v(to)] 
in a Taylor series about the reference quantities to obtain 

Similarly, for the velocity vector, 

These expansions may be written more briefly as 

Br I Br I r(t) = rref(t) + - oro + - oVo + ... 
BrO ref BvO ref 

Bv I Bv I v(t) = vref(t) + a oro + a oVo + ... 
ro ref Vo ref 

or, in vector-matrix notation, as 

Br Br 

where Cb(t, to) = 
Bro Bvo 
Bv Bv 

(9.45) 

Bro Bvo 
ref 

The matrix Cb(t, to) is the state transition matrix introduced in the previ
ous section. 
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Equation (9.45) can also be written in the form 

[ 

Bro Bro 1 
Br Bv 

where flJ(to, t) = B 
Vo Bvo 

Br Bv 
ref 

(9.46) 

so that 
<bet, to)<b(to, t) = I 

Here we shall explore other properties of flJ and its partitions. Later in 
Chapter 11, applications to the problems of midcourse velocity corrections 
needed to fulfill particular mission objectives will be developed. 

Partitions of the Transition Matrix 

Define the partitionst of the transition matrix to be 

flJ(t t ) = [~(t) R(t) 1 
' 0 Vet) Vet) 

and, since 

d<b(t,to) _ [0 I 1 
dt - G 0 <bet, to) with 

then 

dii -
(it=V 

R(to) = I 

dV = GR 
dt 

Veto) = 0 

dR=V 
dt 

R(to) = 0 

(9.47) 

(9.48) 

dV 
-=GR 
dt (9.49) 

Veto) = I 

Thus, the fundamental perturbation matrices can be generated as solutions 
of two pairs of uncoupled matrix differential equations. 

The elements of the R and V matrices represent deviations in 
position and velocity from the reference path as a result of certain specific 
deviations in the launch velocity from its reference value. For example, 

t The matrices R and V, together with their adjoints R* and V*, were first 
introduced in the paper "A Navigation Theory for Round-trip Reconnaissance Missions 
to Venus and Mars" authored by Richard H. Battin and J. Halcombe Laning, Jr. and 
presented at the Fourth Air Force Ballistic Missile Division and Space Technology 
lA.boratory Symposium held at the University of California Los Angeles in August 1959. 
It was subsequently published in Planetary Space Science, vol. 7 by Pergamon Press in 
1961. 

At that time, the concept of state space, state vectors, and the state transition 
matrix was in its infancy and certainly not familiar to the authors. It was only recently 
that the author introduced the matrices ii, Y, ii*, and Y* which add, significantly, 
to the elegance of the expressions. 
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the first columns of these matrices are the vector deviations at time t 
due to a unit change in the first component of the velocity at time to. 
Corresponding interpretations may be ascribed to the other columns as 
well. Similar interpretations, of course, apply to R and V also. 

Since 4>(t, to) is symplectic, we have 

- [VT _RT] 4> l(t,tO) = _VT RT 

Therefore, 

[~ ~] [_~T _~T] = [_~T tn [~ ~] = [~ ~] 
from which the following identities are readily obtained: 

RVT _RVT =1 

-RRT+RRT =\.. 

VVT_VVT=O 

_VRT+VRT=I 

VTR-RTV=I 
VTR-RTV= 0 

-VTR+RTV=O 

-VTR+RTV=I 

(9.50) 

These identities can be used to establish the symmetry of several 
products of the partitions of the transition matrix. Indeed, four of these 
relations show immediately that 

RiiT VV T RTV iiTv are symmetric. (9.51) 

Furthermore, the matrix VR -1 is also symmetric as can be seen from 

VR-1 = R-TRTVR-1 = R-TVTRR-1 = R-TVT 

= (VR-l)T 

Similarly, we can demonstrate the symmetry of three additional matrix 
products. In summary, 

VR-1 R-1ii V-IV vii-1 are symmetric (9.52) 

and, since the inverses of symmetric matrices are symmetric, then 

RV-1 ii-1R V-IV iiv-1 are symmetric. (9.53) 

From the set of eight identities derived above involving the identity 
matrix I, only one is unique as can be shown using the symmetry properties 
just developed. The first and last identities in each column of Eqs. (9.50) 
are obviously the same. The last equations in each column can be written 
as 

V = ii -T + VR T ii -T and 

But 
ii -TVTR = Vii-1R = VRTii-T 
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with the result that 
(9.54) 

is the only one of the four identities with which we need be concerned. 
Indeed, this identity shows that the partitions of the transition matrix are 
not independent. If any three are known, the fourth may be determined 
from Eq. (9.54). 

The two matrices C and C defined as 

and C =VR- 1 

are symmetric and have special significance. If Vo is constant, then 

CRoro = Yoro 
Similarly, if ro is constant, then 

CRovo = Vovo 
Therefore, 

C=-- avl 
ar Vo=CODstant 

and 

so that 

so that Cor = ov 

C- avl 
- ar ro =CODstant 

(9.55) 

(9.56) 

Further note, in terms of C and C, Eq. (9.54) may be written either as 

or (9.57) 

We can also show that the matrices C and C-1 saBsJy so-,Salled 
matrix Ricatti equations. t By differentiating the identity CR = V, we 
have 

dC- -dB. dV 
"dtR+C"dt = dt 

But dR./dt = Y and dV /dt = GR so that 

which can be written as 

dC - - - --R+CV=GR 
dt 

dC +C2 =G 
dt 

with 

t The nonlinear equation 

:: = ao(x) + al (x)y + a2(x)y2 

(9.58) 

was important to the early history of ordinary differential equations. It acquired its 
significance when it was introduced in 1724 by Jacopo Francesco, Count Ricatti of 
Venice (1676-1754), in his work in acoustics. 

Jean Le Rond D'Alembert (1717-1783) was the first to consider the general form 
of the equation and to use the term "Ricatti equation." 
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Similarly, 

with (9.59) 

These differential equations also provide independent demonstrations that 
the matrices C and a are symmetric. The initial condition 0 is a sym
metric matrix and since G and I are symmetric, the differential equations 
are also symmetric. Hence, C and a-I are initially symmetric and must 
remain so thereafter. 

¢ Problem 9-18 
Let orl and or2 be the deviations in position at two distinct times tl and 

t2. Then the position and velocity deviations from reference values at any time 
t are given by 

where 

or(t) = R(t)c + R(t)d 

ov(t) = V(t)c + V(t)d 

c = Rll(R2Rll - R2Rll)-l(or2 - R2Rll or.) 

d = Rll(R2Rll - R2Rll)-l(or2 - R2Rll or.) 

NOTE: For convenience, we are using the notation Rl == R( t.) , etc. 

¢ Problem 9-19 
By differentiating the identity 

~(t, to)~(to, t) = I 

and using Eq. (9.48), derive 

d~ T (to, t) = _ [0 G 1 T 
dt I 0 ~ ( to, t) 

which is called the adioint system of the system of equations (9.48). Since 

~ (to, t) = ~ -1 (t, to) 

then the matrix ~ -T (t, to) is the adjoint of the matrix ~(t, to). 

NOTE: In general, the adioint of the matrix system of differential equations 

dX - = F(t)X 
dt 

is the system 

and the matrix Y is the adioint of X. The system is called self-adioint if F is 
a skew-symmetric matrix, Le., F = _FT. 
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The Adjoint Matrices 

For a time tl later than time to let us define the partitions of the transition 
matrix ~(t, t l ) as 

- [R*(t) R*(t) 1 
~(t,tl) - V*(t) V*(t) 

Then, using the arguments of the last subsection, we have 

d:R* = V* 
dt 

dV* = GR* 
dt 

dR* = V* 
dt 

dV* = GR* 
dt 

R*(tl) = I V*(tl) = 0 R*(tl) = 0 V*(tl) = I 

(9.60) 

(9.61) 

Solutions of these differential equations for to ::; t ::; tl are generated by 
integrating backwards from tl to to. They are the same equations as (9.49) 
with initial conditions prescribed at time tl instead of to. The differential 
equations for the matrix partitions of the transition matrix ~ are, for this 
reason, said to be self-adioint even though the coefficient matrix F of the 
six-dimensional system is not skew-symmetric. 

Needless to say, all of the symmetry properties and other relations 
derived for the unstarred matrices in the previous subsection hold also for 
the starred matrices. In particular, the fundamental matrices C* and C* 
defined as 

and C* = V*R*-I (9.62) 

are readily seen to be symmetric. Furthermore, 

C* _ Bvl 
- Br v 1. =constant 

and C* _ Bvl 
- Br r1. =constant 

(9.63) 

Thus, for example, C* 6r = 6v which is the velocity deviation required at 
time t if the vehicle is to pass through the reference point at time t I. For 
this and other reasons, the matrices Cb(t, to) and ~(tl' t) are sometimes 
referred to as the navigation matrix and the guidance matrix, respectively. 

The guidance matrix at time to is simply related to the navigation 
matrix at time t I. Since 

~(t, t l ) It=to = ~-I (t, to)lt=tl 

we have the following matrix identityt 

[ 
~ * (to) R * (to) 1 = [ ~T (t I) -!l T (t I) 1 
V*(to) V*(to} _VT(tl) RT(tl) 

(9.64) 

t The relation R*(to) = -R T (t.) was first discovered accidently by William F. 
Marscher in 1961 from the print-out of a file of the fundamental perturbation matrices. 
It was not exactly obvious since the two matrices R*(to) and R(td appeared on the 
first and last sheets of a three-inch stack of paper. 
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There are yet other relations, but holding for all time t, which can be 
derived. From Eqs. (9.49) and (9.61), we have 

dV dV*T 
--GR=O and ___ R*TG=O 
dt dt 

Now, premultiply the first equation by R *T , postmultiply the second by 
R, and subtract to obtain 

R*T dV _ dV*T R=O 
dt dt 

which can be rewritten as 

Hence, 

.!!: (R*TV - V*TR) = 0 
dt 

R*T (t)V(t) - V*T (t)R(t) = K = constant (9.65) 

The constant matrix K can be determined from the initial conditions at 
either to or t l . Thus, 

In a similar manner, we obtain 

R*T(t)V(t) - V*T(t)R(t) = R*T(tO) = V(tl ) 

R*T(t)V(t) - V*T(t)R(t) = -V*(to) = ~(tl) 

RT(t)V*(t) - yT(t)R*(t) = V*(to) = RT(tl) 

¢ Problem 9-20 
The matrix A(t) satisfies the equation 

_R*T A = K where A = (C* - C)R 

with K defined in Eq. (9.65). Furthermore, A(t) is the solution of 

dA +C*A = 0 with A(to) =-1 
dt 

(9.66) 

(9.67) 

Demonstrate that the matrix A(t) relates the deviation in velocity at time 
to to the velocity change required at time t in order to intercept the reference 
point at time tl. 

¢ Problem 9-21 
The state transition matrix can be expressed as either 

[ I 0] [V*T(tO) -R*T(tO)] 
q;(t, to) = C(t) 1 R*-l(tO) 0 

or 
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¢ Problem 9-22 
The state transition matrix can also be expressed as 

[
R R*] [(C~-lVO - Ro)-l 0 ] [-I C~-l] 

+t.to = V V* 0 (C01~ - ~)-l -I COl 

using the notation R == R(t) and Ro == R(to) , etc. 

¢ Problem 9-23 
Let 6rl and 6Vl be the deviations in position and velocity at some time 

h -not necessarily the terminal time. Then, the position and velocity deviations 
at any other time t can be determined from 

where 

6r(t) = R(t)c + R*(t)c* 

6v(t) = V(t)c + V* (t)c* 

c = All(Ci 6rl - 6Vl) 

c* = Ai-l(Cl 6rl - 6Vl) 

NOTE: The matrix A is defined in Probe 9-20. The matrix A * is defined by 
interchanging the starred and unstarred matrices; specifically, 

A= (C* -C)R and A* = (C - C*)R* 

~ Problem 9-24 
Y Suppose that a reference trajectory, together with a complete set of pertur
bation matrices, has been established between launch and target points at times 
to and t 1 ,respectively. I t is desired to change the target point to an earlier time 
t~ along the same reference path. The R and V matrices will, of course, be 
unchanged, since they are related to time to. However, the new starred matrices 
R*' and V*' can be obtained from 

R*'(t) = -R(t)A -l(t~) - R*(t)A*-l(t~) 

V*'(t) = -V(t)A -l(t~) - V*(t)A*-l(tD 

NOTE: The matrices A and A * are defined in Probe 9-23. 

9.7 Calculating the Perturbation Matrices 
The fundamental perturbation matrices R, R*, V, V* were shown, in the 
previous section, to satisfy certain matrix differential equations. However, 
the initial conditions for the R and V matrices are given at the initial time 
to while those for the R* and V* matrices are given at the terminal time 
t1 • Therefore, if one wished to determine values of these matrices at some 
time t in the interval to < t < tl by solving differential equations, it would 
be necessary to solve 18 simultaneous equations for R and V starting 
from to and integrating forward to time t and then repeat the operation 
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for R * and V* starting from t I and integrating backward to time t. In 
addition, since values of the reference position and velocity vectors are 
needed in this computation, six more differential equations would have to 
be solved in both the forward and backward directions. This brings the 
total to 48 simultaneous differential equations which must be integrated to 
determine the required information. (Of course, the backward integration 
is unnecessary if the matrices R and V are used instead of R* and V*.) 
In this section explicit formulas are derived for the special case of two-body 
orbits which do not involve the solution of differential equations. 

For the two-body problem, the position and velocity vectors r, v at 
time t are related to their values ro, Vo at some epoch time to according 
to 

r = Fro +Gvo 
v = FtrO + GtvO 

ro = Gtr - Gv 
Vo = -Ftr+Fv 

(9.68) 

where the Lagrangian coefficients are expressed in terms of the universal 
functions Un (X; Q) ast 

F = 1- U2 = ~(TUO -O'UI ) 
TO TO 

.JP, G = TOUI + O'OU2 = rUI - O'U2 = .JP,(t - to) - U3 

F =_foUI 
t TTO 

where 
2 v2 2 v2 

.JP, 0' = r T v and Q = - - ....Q. = - - -
TO J.l T J.l 

or, in terms of the true anomaly difference between r 0 and r, as 

T 
F=I--{I-cosO) 

p 

fo Ft = -2 [roO'o(1 - F) - .JP, G] 
Tro 

.JP, G = Tro sin 0 
,;p 

TO ) G =1--(I-F 
t T 

and the magnitude of the position vector r from 

T = PTO 
TO + (p - TO) cos 0 - ,;p 0'0 sin 0 

(9.69) 

(9.70) 

(9.71) 

t The relevant equations of Sects. 4.5 and 4.6 are summarized here for reference. 
The variant forms of these equations, which also are needed, are easily obtained and left 
for the reader to verify. 
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The universal form of Kepler's equation is 

fo(t - to) = rOUI + uOU2 + U3 = rUI - uU2 + U3 

and the following relations for r and u also obtain: 

r = roUo + uOUI + U2 

U = uoUo + (1 - arO)UI 

ro = rUo - uUI + U2 

Uo = uUo - (1 - ar)U1 

Certain identities, which exist among the functions Un' are 

Xn 
Un + aUn+2 = -, n. 

ug + aUf = 1 uf - UOU2 = U2 

UOU3 - UIU2 = U3 - XU2 UIU3 - ui = 2U4 - XU3 

along with the differential relations 

~ = -aU, a:;; = Un-, for n = 1,2, ... 

and 
BUn I ( U ) Ba = 2' n n+2 - XUn+1 
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(9.72) 

(9.73) 

The derivation of the following differentials and resulting matrices is 
straightforward but tedious.t We report certain intermediate milestones as 
an aid to the serious reader. 

First we establish 

dUo = -aUI d~ - !uf da 

dUI = Uo d~ - !UIU2 da 

dU2 = Uld~- !ui da 

dU3 = U2 d~ - !(U2U3 - 3Us + XU4 ) da 

where d~ is defined by 
d~ = dX + ! U3 da 

Using these, we calculate the differentials for ro and v'Ji(t - to) as 

dro = -uo d~ - !(ro + r)U2 da - UI du + Uo dr 

fod(t - to) = 0 = ro d~ + !~C da - U2 du + UI dr 

t These results, in part, first appeared in the AIAA Professional Study Series book 
Space Guidance and Navigation used for a two day course conducted by the author and 
Donald C. Fraser at the University of California Santa Barbara in 1970. They were 
published in the Journal of Guidance and Control, Vol. I, September-October, 1978 as a 
part of the paper entitled "The Epoch State Navigation Filter" by Richard H. Battin, 
Steven R. Croopnick, and Joan E. Lenox. 
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where the symbol C, introduced for notational convenience, is defined byt 

(9.74) 

The differentials of the vectors ro and Vo are obtained after some 
extensive manipulation and can be expressed in the form 

TO 1 ( U2 dr 0 = - .jii v 0 d~ + '2 U2 r - r 0) da + .jii v du 

+ (U2 r - !!1..v) dT + G dr - G dv (9.75) T2.jii t 

dvo = Vf ro d~ - .!..(v - vo)( !TU2 da + U1 du) 
TO TO 

1 
+ -[Uo(v - yo) + Ftr] dT - Ft dr + F dv (9.76) 

T 

The matrices 

* *() Bro Ro == R to = Bv and 

are determined by first observing 

Ba 2 T 
-=--v 
Bv Jl 

Bu 1 T 
-=-r 
Bv .jii 

B~ 1 - = --(CvT + U. r T
) 

Bv .jiiTo 2 

and remembering that r is constant. Then, we have 

R~ = TO (1- F)[(v - vo)rT - (r - ro)vT] - C VOVT - GI 
Jl Jl 

V~ = ':'(v - vo)(v - VOlT + 13 [To(l - F)rorT + CrOVT] + FI 
Jl TO 

Explicit formulas for the matrices 

R~ == R*(to) = ~: and V~ == V*(to) = B:ro 

can also be derived. First, as the analog of Eqs. (9.77), we have 

Ba 2 T 
-=--r 
Br T3 

and 

Bu 1 T 
-=-v 
Br .jii 

BT 1 T 
-=-r 
8r T 

(9.77) 

(9.78) 

(9.79) 

(9.80) 

(9.81) 

t In Sect. 4.7, continued fraction evaluations of the U -functions through fifth order 
were given which can be conveniently used to calculate the quantity C. 
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Then, remembering that v is constant, use Eqs. (9.75) and (9.76) to obtain 

Ro = TO {v - vo)(v - VO)T + 13 [To(l - F)rorT - CvorT] + GtI (9.82) 
p T 

V- * 1 ( ) T 1 ( )T o = "2 v - vo r + 2" ro v - Vo 
T TO 

The matrices 

together with 

R=R(t) = ar 
avo 

and 

and 

av 
V=V(t) =

avo 

- - av 
V =V(t) =-a 

ro 

can be calculated in a similar manner. On the other hand, they may be 
obtained using the identities (9.64). We have 

R = TO (1 - F)[(r - ro)v~ - (v - vo)r~] + C vv~ + GI 
p p 

(9.84) 

v = TO (v - vo)(v - VO)T + 13 [TO (1 - F)rr~ - Crv~] + GtI 
p T 

(9.85) 

- T 1 R = -(v - vo)(v - VOlT + 3[To(1 - F)rr~ + Cvr~] + FI 
J.l TO 

(9.86) 

- 1 ( ) T 1 ( )T V = -- V-Yo ro - -r V-Yo 
T2 T2 o 

9.8 Precision Orbit Determination 

With the background established in the earlier sections of this chapter, we 
are prepared to complete the description of a method for determining exact 
interplanetary and circumlunar orbits. The patched-conic approximation 
provides the first step in an iteration procedure which will result in a precise 
orbit that takes into account all relevant disturbing forces. 
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Precision Orbits for Lambert's Problem 

Consider the now familiar problem of establishing an orbit between two 
position vectors r 1 and r 2 requiring a time t2 - t 1 to traverse the arc 
which we have called Lambert's problem. In absence of all except the 
single central force, the orbit will be a conic, the calculation of which has 
been throughly treated in Chapter 7. We may now start at position r 1 

with the computed conic velocity vector viand integrate the equations 
of motion, subject to all relevant perturbations, by any of the methods 
described earlier in this chapter. At the end of a time interval t2 - tl the 
position vector will, of course, fail to coincide with r 2 • However, if the 
perturbation forces are, indeed, small, we may expect the difference 8r~1) , 
that is, the new terminus minus the original position r 2 , to be small. 

The next step is to replace r 2 by r~l) = r 2 - 8r~1) and repeat the 
process. A conic arc requiring a time t2 - t 1 for traversal is computed 
to connect r 1 and the new location r~l). Using the new conic velocity 
at r 1 as an initial condition, we again integrate the complete equations of 
motion for a time interval t2 - t 1. This time the difference 8r~2) between 
the new terminus and the original r 2 should be smaller in magnitude. If it 
is still too large to be acceptable, we set r~2) = r~l) - 8r~2) and continue 
the procedure until acceptable accuracy is attained. Usually, three or four 
iteration steps are sufficient for most problems. 

Precision Free-Return Orbits 

The technique described above, together with the perturbation matrices 
introduced earlier in this chapter, can be exploited to great advantage 
for determining a precise circumlunar trajectory from the patched-conic 
approximation developed in Sect. 9.3. The following quantities will remain 
invariant during the course of the iteration process: (1) r L' the injection 
position vector; (2) t L , the time of launch; (3) t A , the time of arrival 
at the lunar sphere of influence; (4) t D = t A + t s, the time of departure 
from the lunar sphere of influence; (5) r R , the return-position vector; and 
(6) t R' the time of return. 

Let r T A and r T D be vectors from the center of the earth to the points 
on the lunar sphere of influence where the trajectory arrives and departs, 
respectively. During the course of the calculation, these vectors will be 
altered, but initially, they are taken from the patched-conics approxima
tion. Then, with r L and r T A fixed, a precise trajectory connecting these 
points in the time t F L = t A - t L is readily obtained using the procedure 
just described. In like manner, two additional precise arcs are determined 
connecting r R and r TD in the time interval tFR = tR -tD and connecting 
r TML and rTMR' the position vectors relative to the moon at the sphere 
of influence, in the time interval t s spent within the sphere. 
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As a result, a piecewise continuous precise circumlunar trajectory is 
obtained having velocity discontinuities at the sphere of influence. These 
two velocity mismatches can be eliminated, using perturbation matrices, 
in a manner now to be described. 

Suppose rTA and rTD are shifted by the amounts 8rA and 8rD' 
respectively. The velocity vectors at and exterior to the sphere must change 
by the amounts 

8VL(tA) = C L(t A)8rA 

8vR(t D) = CR(tD)8rD 
if rL' r R , and the times of flight are to remain invariant. Here, CL(tA) 
is the C matrix for the outbound trajectory leg evaluated at time t A. 

Similarly, C'R(tD ) is the C* matrix for the return trajectory leg at time 
t D. The velocity vectors at and interior to the sphere will also change. 
The problem is, of course, to determine 8r A and 8r D so that the resulting 
velocity changes will exactly cancel the original velocity differences at the 
points of discontinuity. 

For this purpose, consider the hyperbolic arc within the sphere of 
influence from t A to t D . Let R h , Rh, Ch , Ch be the perturbation 
matrices associated with this trajectory. Then the velocity vectors at and 
interior to the sphere will change by 

8vh(tA) = Rh"l(tD) 8rD + Ch(tA) 8rA 

8vh(tD) = Ch(tD)8rD +Rh- 1(tA )8r A 

if the time of flight is invariant. 
Initially, the velocity mismatch at r T A is 

6.v A = vTML - Vh(t A) 

and at r T D the mismatch is 

6.v D = Vh(t D) - vTMR 

Thus, 8r A and 8r D must be chosen such that 

8VL(tA) - 8Vh(tA) + 6.v A = 0 

8Vh(tD) - 8VR(tD) + 6.vD = 0 

The solution may be written as 

8r A = -Rh(tA)[B(tD) + Rh(tD)A -l(tA)Rh(tA)]-lRh(tD) 6.v A 

- A(t A)[A(t A) + Rh (t A)B- 1 (t D)Rh (t D)]-l Rh (t A) 6.v D (9.88) 

8rD = B(tD)[B(tD) + Rh(tD)A -l(tA)Rh(tA)]-lRh(tD) 6.v A 

- Rh(tD)[A(tA) + Rh(tA)B-l(tD)Rh(tD)]-lRh(tA) 6.vD (9.89) 
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where, for notational convenience, the matrices A(tA) and B(tD) are 
defined as 

A(tA) = C~-l(tA)[C~-l(tA) - CL1(tA)]-lCL1(tA) 

B(tD) = C~-l(tD)[C~-l(tD) - C;l(tD)]-lC;l(tD) 

With 6r A and 6rD calculated from Eqs. (9.88) and (9.89), the position 
vectors r T A and r T D are replaced by r T A + 6r A and r T D + 6r D' Three 
new precision trajectories connecting the terminus pairs 

(1) r L and rTA + 6rA 

(2) r TML + 6rA and r TMR + 6rD 

(3) rTD + 6rD and r R 

are then computed. Velocity mismatches at the sphere of influence will 
still exist but should be smaller in magnitude than those produced by the 
initial trial. The entire process can be repeated until satisfactory velocity 
continuity is obtained. 



Chapter 10 

Variation of Parameters 

A NALYTICAL DEVELOPMENT OF THE VARIATION OF PARAMETERS WAS 

first given by Leonhard Euler in a series of memoirs on the mutual 
perturbations of Jupiter and Saturn for which he received the prizes of 
the French Academy in the years 1748 and 1752. The method is also 
called the variation of orbital elements or the variation of constants-the 
latter referring to integration constants. Euler's treatment of the method of 
variation of parameters was not entirely general since he did not consider 
the orbital elements as being simultaneously variable. It is noteworthy, 
however, that the first steps in the expansion of the disturbing function 
were made by Euler in those papers. 

Joseph-Louis Lagrange wrote his first memoir on the perturbations 
of Jupiter and Saturn in 1766 in which he made further advances in the 
variation of parameters method. His final equations were still incorrect 
because he regarded the major axes and the times of perihelion passage 
as constants. However, his expressions for the angle of inclination, the 
longitude of the ascending node, and the argument of perihelion were all 
perfectly correct. Later, in 1782, he developed completely and for the first 
time the method of the variation of parameters in a prize memoir on the 
perturbations of comets moving in elliptical orbits. One of the objectives 
in this chapter is the derivation of Lagrange's planetary equations. 

The most dramatic application of the method was made indepen
dently and almost simultaneously by the Englishman John Couch Adams 
(1819-1892) and the Frenchman Urbain-Jean-Joseph Le Verrier (1811-
1877). Each predicted the existence and apparent position of the planet 
Neptune from the otherwise unexplained irregularities in the motion of 
Uranus. t The story is one of the most fascinating in the history of astron
omy and is an impressive example of the precision which can be achieved 
using variational methods. 

The planet Uranus was discovered on March 13, 1781 by Sir William 
Herschel shortly before Euler's death in 1783. The other planets had been 
known since ancient times and Herschel's findings opened the door to an 

t A mathematical account of the procedures used by Adams and Le Verrier is given 
in William Marshall Smart's book Celestial Mechanics published in 1953 by Longmans, 
Green and Co. 
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era of astronomical discoveries of major importance. Since Uranus is almost 
visible to the unaided eye, the German astronomer Johann Elbert Bodet 
(1747-1826) suspected that it might have been mistaken for a star in the 
past. When the orbital elements had been determined with sufficient accu
racy, a search of the old catalogs revealed that Uranus had been observed 
at least 19 different times-the earliest by the first Astronomer Royal, John 
Flamsteed, in the year 1690. 

When the French astronomer Alexis Bouvard attempted to reconcile 
the new observations with the old during his preparation of tables for 
Jupiter, Saturn, and Uranus which were published in 1821, he was forced to 
abandon the earlier data because of serious and unexplained discrepancies. 
Even so, the planet began to deviate more and more from Bouvard's predic
ted positions and, by 1846, the error in longitude was almost two minutes 
of arc. In 1842, Friedrich Wilhelm Bessel, suspecting the presence of an 
ultra-Uranian planet, announced his intention of investigating the motion 
of Uranus. Unfortunately, he died before much could be accomplished. 

On July 3, 1841, an undergraduate at St. John's College in Cambridge, 
England wrote in his journal 

"Formed a design in the beginning of this week of inves
tigating, as soon as possible after taking my degree, the 
irregularities in the motion of Uranus . .. in order to find 
out whether they may be attributed to the action of an 
undiscovered planet beyond it ... " 

True to his word, by 1845 John Couch Adams had obtained a solution 

t In 1766 the German astronomer Johann Daniel Titius (1729-1796) of Whittenberg 
found an empirical formula for the distances of the planets from the sun-a "solution" 
of the problem to which Kepler devoted so much misplaced energy. According to Titius, 
the formula for the mean distance 

an = 110 (4 + 3 X [2n- 2]) a.u. 

with n = 1,2,3,4 holds for the planets Mercury, Venus, earth, Mars and with n = 6, 7 
for Jupiter and Saturn. (The symbol [x] denotes the greatest integer contained in x.) 
The approximation is, indeed, remarkably good. When Uranus was found to conform 
to the rule for n = 8, the formula took on greater significance. The empty space, 
corresponding to n = 5, inspired Johann Bode, director of the Berlin Observatory, to 
declare 

"Is it not highly probable that a planet actually revolves in the orbit which 
the finger of the Almighty bas drawn for it? Can we believe tbe Creator of 
tbe world has left tbis space empty? Certainly notr' 

An association of European astronomers was formed to search for the mibSing planet. 
When Ceres was discovered by Giuseppe Piazzi on the first day of January, 1801 at 
approximately 2.8 a.u., Titius' rule became Bode's law. (It is, of course, not a law and, 
ironically, its association with Titius is almost forgotten.) It is, therefore, not surprising 
that both men, Adams and Le Verrier, used Bode's law to estimate the mean distance of 
Neptune as 38.8 a.u.-but it was, in fact, the first planet to violate the rule. (Neptune's 
mean distance is actually 30.1 astronomical units.) 
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and in September of that year he gave the results of his computations, on 
where the new planet could be found, to James Challis, director of the 
Cambridge observatory. Challis expressed little interest. The next month, 
Adams contacted the Astronomer Royal, Sir George Biddell Airy, who also 
reacted with a similar lack of enthusiasm. 

Meanwhile, in that same year, the French astronomer Urbain-Jean
Joseph Le Verrier turned his attention to the Uranus problem and published 
his results on June 1, 1846. When Airy saw the close agreement with 
Adams' calculations, he suggested to Challis on July 9, 1846 that he search 
for the planet. Indeed, Challis did observe Neptune on August 4 but failed 
to recognize it as the object of his quest. He had neglected to reconcile his 
observations with those of the previous night-an unforgivable blunder for 
a man of his experience. 

On September 18, 1846, Le Verrier requested the Gennan astronomer 
Johann Gottfried Galle to look for the planet with the hope that it could be 
distinguished from a star by its disk-like appearance. Then on September 
23, 1846, after only an hour, Galle found the planet Neptune within one 
degree of the position computed by Le Verrier. 

The reader can imagine the controversy between the English and the 
French over who deserved the credit. But justice prevailed and when the 
battle subsided, it was universally agreed that both Adams and Le Verrier 
would share equally in the glory. 

10.1 Variational Methods for Linear Equations 
The first application of the method of variation of parameters was made 
by John Bernoullit in 1697 to solve the linear differential equation of the 
first order. The most general such equation is 

~~ + f(t)y = g(t) (10.1) 

For the solution, consider first the homogeneous linear equation 

~~ + f(t)y = 0 (10.2) 

t After Newton and Leibnitz, the Bernoulli brothers, James and John, were the two 
most important founders of the calculus. James Bernoulli (1655-1705) trained for the 
ministry at the urging of his father but managed to teach himself mathematics. In 
1686 he turned to mathematics exclusively and became a professor at the University of 
Basle. His younger brother John (1667-1748) was steered into business by his father 
but turned, instead, to medicine and learned mathematics on the side from his brother. 
Mathematics again won out and he became a professor at Groningen in Holland and, 
later, succeeded his brother at Basle. His most famous student at the university was 
Leonhard Euler who completed his studies there at the age of fifteen. It was through 
the assistance of the younger Bernoullis, Nicholas (1695-1726) and Daniel (1700-1782), 
both sons of John and both accomplished mathematicians, that Euler in 1733 secured 
an appointment at the St. Petersburg Academy in Russia. 

The Bernoulli family was, indeed, a unique source of mathematical talent. 
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The variables are separable 

and we have 

where c is a constant. 

dy - = -/(t)dt 
y 

-fl(t) dt y = ce 

[Chap. 10 

(10.3) 

Suppose now that we allow c to be a function of t and determine 
the relation that c(t) must satisfy if Eq. (10.3) is to be a solution of the 
inhomogeneous equation (10.1). By direct substitution we find 

dCe-fl(t)dt = g(t) 
dt 

Hence 
c(t) = C + I g(t)ef I(t) dtdt 

where C is a constant. Thus, the general solution of Eq. (10.1) is 

y = Ce- fldt + e- fldt I gefldtdt (10.4) 

and involves two quadratures. 

¢ Problem 10-1 
Obtain the general solutions of 

(1) dy _ ay = eat 
dt 

(a = constant) 

(2) ~~ cos t + y sin t = 1 

using the method of variation of parameters. 

Lagrange, in 1774, extended the method to the general nth order 
linear differential equation 

L(y) = g(t) 

where the operator L(y) is defined by 

_ ~y dn-Iy dy 
L(y) = dtn + II (t) dtn- I + ... + In-I (t) dt + In (t)y 

(10.5) 

It is convenient to convert Eq. (10.5) to a system of n first-order 
equations written in vector-matrix form. For this purpose, define 

gT = [0 0 0 .. . 0 g) 
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[In 
1 0 0 

1] 
0 1 0 

F= 
0 0 0 

-/n-l -/n-2 -/2 
so that the scalar differential equation (10.5) is equivalent to 

dy 
- =Fy+g 
dt 
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(10.6) 

Suppose that n linearly independent solutions of the homogeneous 
equation 

L(y) = 0 (10.7) 

are known. Call them Yl (t), Y2(t), ... , Yn(t) and form a matrix with 
these vectors as the columns of the array. This is the Wronskian matrix 
W defined as 

W= [Yl Y2 ... Yn] 

Clearly then, W satisfies the matrix differential equation 

dW =FW 
dt 

(10.8) 

and the general solution of the homogeneous equation is 

Yh =We (10.9) 

where the components of the vector e are n arbitrary constants. 
As before we allow the elements of the vector e to be functions of t 

and require that 
Y = We(t) 

be a solution of Eq. (10.6). That is, 

dW de 
dte + W dt =FWe+g 

(10.10) 

But W is a solution of Eq. (10.8), so that the differential equation for e(t) 
is reduced to 

de 
W-=g 

dt 
(10.11) 

Now, the functions Y 1 (t), Y 2 (t), ... , Y n (t) were given as linearly 
independent so that the Wronskian determinant is not zero. Therefore, the 
matrix W is not singular so that 

de W- 1 -= g 
dt 

which is solved by quadratures for the elements of the vector e. 

(10.12) 
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¢ Problem 10-2 
Obtain the general solutions of 

(1) 
d2 y 
dt2 + y = sect 

(2) 
d3y dy - + 4- = 4 cot 2t 
dt3 dt 

(3) 
d2 y dy -t 
dt2 + 2 dt - 3y = te 

¢ Problem 10-3 
For the second-order linear differential operator 

d2 y 6 
L(y) = dt 2 - t 2 Y 

show that 

and 

are linearly independent solutions of L(y) = O. Then use the method of variation 
of paraineters to obtain the general solution of 

L(y) = t logt 

10.2 Lagrange's Planetary Equations 

The method of the variation of parameters, as originally developed by 
Lagrange, was to study the disturbed motion of two bodies in the form 

dv J.l faR] T 

dt + r3
r = ar 

dr 
-=V 
dt 

(10.13) 

where R is the disturbing function defined in Sect. 8.4. The solution 
of the undisturbed or two-body motion is known and may be expressed 
functionally in the form 

r=r(t,a) v = v(t, a) (10.14) 

where the components of the vector a are the six constants of integration 
(orbital elements). As in the previous section, we allow a to be a time 
dependent quantity and require that the two-body solution (10.14) exactly 
satisfy the equations (10.13) for the disturbed motion. 

A set of differential equations for a (t) will result as before; however, 
they will not be solvable by quadrature. The new set of equations will, in 
fact, be a transformation of the dependent variables of the problem from 
the original position and velocity vectors r(t) and v(t) to the time-varying 
orbital elements a (t). Although the differential equations for a (t) will 
be as complex as the original version, they will have advantages similar 
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to those encountered in Encke's method, i.e., only the disturbing and not 
the total acceleration will effect changes in a (t). Indeed, one may regard 
the method of variation of orbital elements as a form of Encke's method in 
which rectification of the osculating orbit is performed continuously rather 
than at discrete and widely separated instants of time. 

To obtain the variational equations, we substitute Eqs. (10.14) into 
Eqs. (10.13) and use the fact that 

8r 
-=v 
8t 

8v Jl 
-+-r=O 8t r3 

(10.15) 

Here, the partial derivatives serve to emphasize that when the vector a is 
considered to be constant, then Eqs. (10.14) are solutions of the equations 
which describe the undisturbed motion. 

For the disturbed motion 

dr 8r 8r da 
dt = 8t + 8a dt 

and, paralleling the arguments used in the previous section, we have 

(10.16) 

as the condition to be imposed on a (t). Physically, this means we are 
requiring the velocity vectors of both the disturbed and undisturbed motion 
to be identical. Similarly, 

dv 8v 8v da 
dt = m+ 8a dt 

and, using the second of Eqs. (10.15), we find that 

8v da _ [8R] T 

8a dt - 8r (10.17) 

must obtain if Eqs. (10.13) are to be satisfied. Equations (10.16) and 
(10.17) are the required six scalar differential equations to be satisfied by 
the vector of orbital elements a (t). 

The Lagrange Matrix and Lagrangian Brackets 

The two matrix-vector variational equations can be combined to produce 
a more convenient and compact form. For this purpose, we first multiply 
Eq. (10.16) by [8v/8a]T . Then, multiply Eq. (10.17) by [8r/8a]T and 
subtract the two. The result is expressed as 

(10.18) 
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where the matrix 

L = [~l T aV _ [av 1 T ~ 
aa aa aa aa 

(10.19) 

is six-dimensional and skew-symmetric. The form of the right-hand side of 
Eq. (10.18) follows from the chain rule of partial differentiation 

aR aR ar 
aa = ar aa 

The element in the ith row and jth column of the Lagrange matrix 
L is denoted by [ai' ai] and will be referred to as a Lagrangian bracket. 
From Eq. (10.19) we have 

ar av ar av [a. a.]=-·--_·-
"J aai aai aai aai 

arT av arT av avT ar avT ar (10.20) 

= aai aaj - aaj aai = aaj aai - aai aaj 

An important property of the Lagrange matrix L is displayed when 
we calculate the partial derivative of the Lagrangian bracket with respect 
to t. Thus, 

i.[a. a.] = ~ (avT) ar + avT av _ ~ (avT) ar _ avT av 
at z' J aaj at aai aaj aai aai at aaj aai aaj 

and, clearly, the second and fourth terms cancel immediately. Using the 
gravitational potential function V = /-lIT, the second one of Eqs. (10.15) 
becomes 

= at ar 
so that 

a a (av) ar a (av) ar 
at [ai' ai] = aai ar aai - aai ar aai 

a (av) ar a (av) ar 
= ar aaj aai - ar aai aaj 

a2v a2v 
= =0 

aajaai aaiaaj 

In view of this discussion, we can summarize the properties of the 
Lagrangian brackets as 

(1) 
(2) 

(3) 

[ai,ai] = 0 

[ai' aj] = -[ai' ail 
a 
at [ai' a j ] = 0 
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or, equivalently, for the Lagrange matrix, 

LT =-L and aL =0 
at 
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(10.21) 

The fact that the matrix L is not an explicit function of t will be exploited 
to great advantage in determining the elements of the Lagrange matrix. 

~ Problem 10-4 
Y Consider the case for which the position and velocity vectors ro and Vo at 

some instant of time to are used as orbital elements, i.e., 

aT = [r~ v~] 

Using the fact that the Lagrangian matrix L is independent of time, show that 

L=J 

where the matrix J is defined in Sect. 9.5. Then show that the variational 
equations are 

which are in the so-called canonical form and should be compared to Hamilton's 
canonical form of the equations of motion developed in Prob. 2-13. 

Computing the Lagrangian Brackets 

To compute the Lagrangian brackets we first select an appropriate set of 
orbital elements. The classical choice is 

aT = [0 i w a e ,x] (10.22) 

where 0, i, ware the three Euler angles, a is the semimajor axis, e is the 
eccentrici ty and 

where n is the mean motion 

,x = -nT 

n= (Ij v Oft 
and T is the time of pericenter passage. 

(10.23) 

The position and velocity vectors, expressed in reference coordinates 
as functions of the orbital elements, are then 

[ I, l2 13 ] [a(c~.E - e)] 
r= m 1 m 2 m3 bsmE (10.24) 

n 1 n2 n3 0 

[ I, l2 13 ] [-anSinE/(l- e COS E) ] 
V= m 1 m2 m3 bncosE/(l- ecosE) (10.25) 

n1 n2 n3 0 
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[The components of r and v in orbital plane coordinates are obtained from 
Eqs. (4.40) and the transformation to reference coordinates via the rotation 
matrix from Eq. (2.3).] Thus, r and v are functions of the Euler angles 
through the direction cosine elements of the rotation matrix as given in 
Eqs. (2.9). The elements a and e enter the relations explicitly through 
Eqs. (10.24) and (10.25), and implicitly through the mean motion n, the 
semi minor axis 

b=a~ 
and through the eccentric anomaly E in Kepler's equation 

E - e sin E = nt + A (10.26) 

We begin by calculating the partial derivatives of r and v with respect 
to each of the orbital elements. Since the Lagrangian brackets are not 
explicit functions of time, we may set t equal to any convenient value after 
the differentiation. The expressions will be simplest at pericenter for which 
t = T, T = q = a( 1 - e), and E = O. 

Consider first the partial derivative of r with respect to n. From Eq. 
(2.9), we have 

and, similarly, 

Now since, 

all a (n . n . .) an = an cos ll. cos W - sm ll. sm W cos Z 

= - sin n cos w - cos n sin w cos i 

=-ml 

am l _
l an - I 

anI = 0 
an 

[a(c:i;; e)] = m 
at pericenter, the derivatives of the other direction cosines do not enter in 
the calculation of ar / an. The result appears in the next equation set. 

The derivatives of r with respect to i and ware entirely similar and 
in exactly the same way we compute the derivatives of v. Therefore, at 
pericenter, 

ar [ l3 ] ai = qsinw :: 

av nabcosw 
q 

av nab 
aw=-q 

(10.27) 



Sect. 10.2] Lagrange's Planetary Equations 

To calculate Br / Ba, we first determine 

:a [a(cosE - e)] = cosE - e -asinE ~! 

:a(bsinE) = ~sinE+bcosE ~! 
Then, by differentiating Kepler's equation (10.26) 

we obtain 

BE BE Bn 3n 
- -ecosE- = -t = --t 
Ba Ba Ba 2a 

BE 3nt 
Ba =-~ 

so that at pericenter 

:a [a(cosE - e)] = ~ and 
B. 3bnr 

-(bsmE) = --
Ba 2q 

Therefore, 

and, similarly, 

481 

(10.28) 

(10.29) 

To calculate the derivatives with respect to e and A, note that 

BE. BE 
- - smE - ecosE- = 0 
Be Be 

and 
BE BE 
B A - e cos E B A = 1 

Hence, for E = 0, we have 

BE =0 
Be 

and 
BE a 
BA = q 

and the rest of the derivation is as before. There obtains 

:: = -a [~:] 
~:=n~3 [~:] 

all of which are, of course, valid only at pericenter. 

(10.30) 



482 Variation of Parameters [Chap. 10 

With all of the derivatives evaluated, it is a simple task to calculate 
the Lagrangian brackets defined in Eq. (10.20). For example, 

. ar av ar av 
[t,O] = ai . ao - an . ai 

= nab[(l2m3 -l3m2) sinw - (ll m3 -l3ml) cosw] 

= nab(nl sinw + n2 cosw) 

= nab sin i 

Because of the skew-symmetry of the matrix L, there are just 15 distinct 
brackets to evaluate and only six of these turn out to be different from 
zero. The results are summarized as follows: 

[i,O] = nab sin i 

[w,O] = 0 [w,i] = 0 

[a, 0] 1 b . = -2'n COSt [a, i) = 0 [a,w] = -!nb 2 

[e,O] 
na3e 

[e,i] = 0 [e,w] 
na3e 

[e,a] = 0 = --cosi =--
b b 

[A, 0] = 0 [A, i) = 0 [A, w] = 0 [A, a] = ! na [A, e] = 0 

With the elements of the Lagrange matrix determined, Eq. (10.18) 
may be written in component form as 

b
. .di nb .da na3e .de aR 

-na SlDt-+-COSt----COSt-=
dt 2 dt b dt an 

b 
.. dO aR 

na SlDtdj = 7ii 
nb da na3e de aR 
2 dt - -b- dt = aw 

nb .dO nb dw na dA aR 
-2 COSt Tt - 2& - 2dt = aa 

na3e .dO na3e dw aR 
--COSt-+--- =-

b dt b dt ae 
na da aR 

= 2 dt aA 
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These are easily solved for the derivatives of the orbital elements to produce 
the classical form of Lagrange's planetary equations: 

dn 1 oR 
dt = nabsini oi 
di 1 oR cosi oR 
dt = - nabsini on + nab sin i ow 

dw cosi oR b oR 
di = - nabsini oi + na3e Be 
da 2 oR 
dt = ~ oA 
de b oR b2 oR 
dt = - na3e ow + na4e oA 
dA 2 oR b2 oR 
dt = - na oa - na4e Fe 

(10.31) 

Equations (10.31) demonstrate explicitly that the matrix L is nonsin
gular so long as the eccentricity e is neither zero nor one and the inclination 
angle i is not zero. It should be remarked that a different choice of orbital 
elements will alleviate these annoying singularities as seen in a later section 
of this chapter. 

¢ Problem 10-5 
The Lagrangian brackets are the sum of three Jacobians 

where :i:, iJ, and z denote the time derivatives of x, y, and z. 

NOTE: The Jacobian is a determinant defined by 

811. 811. 
8(11., v) 80: 8{3 
8( 0:, (3) = 8v 8v 

80: 8{3 

~ Problem 10-6 
J(" Consider a new set of orbital elements [a T (3 T] where 

so that in Eqs. (10.31) the disturbing function R = R(n, i, w, a, e, A) is to be 
replaced by 

R = R*(a, (3) 
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First, verify the relations 

oR oR-
on = 0/33 

oR b' .0R-- = -na sml--
oi 003 
oR oR-
ow = 0/32 
oR n2a oR- nb oR- nb .0R- 30X oR
oa = 2 001 +"2 002 +"2 COSZ 003 + 2na 0/31 

oR na3e oR- na3e .0R-- = ----- - --cosz--
oe b 002 b 003 
oR loR-
OOX = ;; 0/31 

[Chap. 10 

and then show that Lagrange's planetary equations, in terms of the alternate set 
of orbital elements, are in canonical form; i.e., 

do: ToR
~= 0{3 and 

The partitioned vector elements 0: and {3 are said to be canonically conjugate. 

NOTE: The orbital elements 01, 02, 03 are, respectively, the total energy, the 
angular momentum, and the component of the angular momentum vector along 
the reference z axis. 

10.3 Gauss' Form of the Variational Equations 

Although Lagrange's variational equations were derived for the special case 
in which the disturbing acceleration was represented as the gradient of the 
disturbing function, this restriction is wholly unnecessary. If the disturbed 
relative motion of two bodies is formulated as in Sect. 9.4 according to 

d2r J.l 
dt2 + r3 r = ad (10.32) 

then it is readily seen that the derivation in the previous section leading to 
Eq. (10.18) is still valid with the result now expressed as 

L do: = [ 8r 1 T a (10.33) 
dt 80: d 

The elements of the Lagrange matrix, i.e., the Lagrangian brackets, 
are as calculated in the previous section. However, the matrix coefficient 
of the disturbing acceleration vector ad in Eq. (10.33) is needed to obtain 
the appropriate variational equations. (The reader should understand that 
although 8r / 80: was computed in the previous section as a part of the 
determination of the Lagrangian brackets, the derivatives so obtained were 
valid only at the instantaneous pericenter.) We now derive the variational 
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equations appropriate to various choices for component resolutions of the 
disturbing acceleration vector. 

All of the equations derived in the following subsection and attributed 
to Gauss can also be obtained more simply from the equations of Sect. 10.5. 
Because of the complexity of the results, it is useful that they be derived 
using two different methods. It is left for the reader to verify that the two 
sets of variational equations so obtained are, indeed, equivalent. 

Gauss' Equations in Polar Coordinates 

The rotation matrix 

will affect an orthogonal transformation of vector components from oscu
lating orbital plane coordinates ie' ip ' ih to the reference coordinates ix, 
iy , i z . The direction cosine elements of R are related to the Euler angles 
through Eqs. (2.9). 

Using the asterisk to distinguish a vector resolved along reference axes 
from the same vector resolved along osculating axes, we have 

r* = [~] r= m 
so that 

r· = RRfr 

The rotation matrix 

and 

[

COS f - sin f 0] [ (a I r )( cos E - e) 
R f = sin f cos f ° = (b I r) sin E 

001 ° 

(10.34 ) 

-(blr) sin E 0°

1

] 
(alr)(cosE - e) 

° 
provides the necessary transformation from local osculating polar coordi
nates ir , ie, i h to the orbital plane coordinates ie' ip ' ih . 

Let a be anyone of the six orbital elements. Then, to derive the 
variational equations in terms of the osculating polar components of the 
disturbing acceleration, we may calculate 

ar· T ar· 
--ad=ad T

-aCt aCt 
and replace the term aRlaCt with this quantity in the Lagrange planetary 
equations (10.31). 
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For the three Euler angle elements, we first obtain 

8R [ -rn] -m2 -rna] 
8n = II 12 13 

0 0 0 

8R [ la si~w 13 cosw sinOcosi ] 
-= m3 smw m3cos w -cos~c?si 8i n3 sinw n3 cosw -smt 

8R [ 12 
-II 

~] -= m2 -m1 8w n2 -nl 

Then, 
8R .T 8r· TRTRT aRR 8eY. = ad 8eY. = ad f 8a fr (10.35) 

is evaluated for a = n, i, w. We have 

[ 0] 8R T • 
- = ad rcost 
8n .. -rcosOsmt 

(10.36) 

8~ = aj [ ~ ] 
8t . 0 rsm 

8R =aj [~] 
8w 0 

where 

O=w+f 
is the argument of latitude defined in Sect. 3.4. 

The vector r· depends on the remaining three elements through the 
vector 

[

a(Cos.E - e)] 
Rfr = bsmE 

o 
The derivatives with respect to a, e, ,\ (following the arguments used in 
computing the Lagrangian brackets) are obtained as follows: 

8 [ cos E - e + (3ant/2r) SinE] 
8a (Rfr) = (b/a) sin E - ~ant/2r) cos E 

[ 

(r/a)cosf + (3ant/2b)sinf ] 
= (r/a)sinf - (3a;t/2b)(e + cos f) 
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Then, for II = a, e, ..x, we evaluate 

aR .T ar• RTRTR a (R) T a (R ) all = ad all = ad, all ,r = adR, all ,r (10.37) 

and obtain 

aR [(r fa) - (3ant/2b)e sin f] 
aa =aJ -(3ant/2b)ci1+ecosf) 

(10.38) 

aR [ -acosf ] 
7k = aJ [1 + (ar/~2)]asinf 

aR [(a2 
/b)e sin f ] 

a..x =aJ (a2/b)(1riecosf) 

Eliminating the Secular Term 

Before writing out the complete set of variational equations, let us address 
an undesirable complication caused by the presence of the linear function of 
time t in the expression for aR/aa. If we examine the Lagrange planetary 
equations (10.31), we see that aR/aa appears in, and only in, the equation 
for the time rate of change of the element ..x. An element exhibiting such 
behavior is clearly inconvenient at best when large values of t are to be 
considered and should, therefore, be avoided if at all possible. Fortunately, 
the difficulty can be overcome in the following manner. 

Differentiate the mean anomaly 

to obtain 

M=nt+..x 

dM 3nt da d..x 
(it = n - 2ii: dt + dt 

since the derivative of the mean motion n = ..j J.l/ a3 is simply 

dn 3n da 
dt = - 2a dt 
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Then, using Eqs. (10.31), we have 

dM 2 (3nt 8R 8R) b2 8R 
(it = n -;u; 2a" 8A + 8a - na4e 8e 

[Chap. 10 

It is apparent from Eqs. (10.38) that the parenthesized factor in this 
last equation does not contain t explicitly because of the cancellation. 
Therefore, an effective artifice for avoiding the difficulty associated with 
the choice of A as an orbital element is to replace the variational equation 
for A in Lagrange's equations by 

(10.39) 

where 
d{j 3t 8R 2 8R b2 8R 
dt = - a2 8A - na 8a - na4e 8e (10.40) 

The quantity {3 is then to be regarded as the sixth orbital element instead 
of A = -nT. 

Summary of Gauss' Equations 

Finally, we are ready to summarize the complete set of variational equa
tions. By substituting Eqs. (10.36) and (10.38) into Lagrange's planetary 
equations (noting that p = b21a and h = nab), we obtain 

dO r sin () 
dt = hsini adh 

di r cos () 
-=--adh 
dt h 

dw 1 . r sin () cos i 
-dt = -h [-pcos I adr + (p + r) sm I adO] - h' . adh e ~nt 

da 2a
2 

( • P) 
dt = h esm I adr + ;:adO 

(10.41) 

~; = * {psin I adr + [(p + r) cos 1+ re]adO} 

dd
M 

= n + h
b 

[(pcos 1- 2re)adr - (p + r) sin ladO] 
t a e 

(It should be noted that variational equations for either the eccentric or 
true anomaly may be used in place of the sixth equation above for the mean 
anomaly. The appropriate equations are the subject of a problem later in 
this section.) 

If initial conditions are specified for 0, i, W, a, e, M, these differ
ential equations may be integrated by any convenient numerical method. 
Needless to say, as a part of the integration process, Kepler's equation 
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must be solved for the osculating eccentric anomaly and the osculating 
true anomaly determined from an appropriate identity; specifically, 

M = E- esinE and ~+e 
tan!f= --tan!E 

2 1- e 2 

Generally, when the disturbing acceleration is small, a relatively large 
integration step can be employed. On the other hand, it is necessary to 
point out that, for this particular choice of orbital elements, the advantage 
of the variational method is lost for orbits of low inclination or small eccen
tricity. In these singular cases, the rates of change of n, w and/or {3 will be 
large despite the fact that the disturbing acceleration is small. Particular 
techniques for avoiding these difficulties are treated in later sections. 

¢ Problem 10-7 
Let adt and adn be the components of the disturbing acceleration in the 

plane of the osculating orbit along the velocity vector and perpendicular to it. 
Show that 

[
adr] = ~ [esin l -(1 +.ecOSf)] [adt ] 
adS pv 1 + ecos I esm I adn 

and then derive the variational equations in the form 

dO rsin (J 

Tt = hsin i adh 

di r cos (J 
dt = -h-adh 

dw 1 [ . (r)] r sin (J cos i -d = - 2 SID I adt + 2e + - cos I adn - h" adh t ev a SID t 
da 2a2v - = --adt 
dt p. 

:: = ~ [2(e + cos f)adt - ~ sin I adn] 

dM = n _ ~ [2(1 + e
2
r) sin I adt +.!:. COS I adn ] 

dt eav p a 

¢ Problem 10-8 
The variational equations for the eccentric and the true anomalies are, in 

polar coordinates, 

dd
E 

= na + _1_ [(cos 1- e) adr - (1 + .!:.) sin I adS] 
t r nae a 

dl hI. 
dt = r2 + eh [p cos I adr - (p + r) SID I ads] 

and, in tangential-normal coordinates, 

dE na 1 . 
-d = - - -bv[2asID / adt +r(e+cosf)adn] 

t r e 

: = ~ - ! [2 sin I adt + (2e + ~ cos I) adn] 
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¢ Problem 10-9 
The disturbing function for the constant radial thrust acceleration problem 

of Sect. 8.8 is simply 
R = raTr 

Derive the variational equations (10.41) for this case directly from the Lagrange 
planetary equations. 

10.4 Nonsingular Elements 

For orbits of zero inclination angle, the line of nodes does not exist. For 
orbits of zero eccentricity the line of apsides is meaningless. Therefore, it 
is not surprising to find singularities in the variational equations for those 
elements associated with the node or pericenter. These are the longitude 
of the node n, the argument of pericenter w, the time of pericenter pas
sage r (or A = -nr), and any of the anomalies which are measured from 
pericenter. 

To find variational equations which are nonsingular, we must search for 
combinations of the usual orbital elements which do not depend on either 
the line of nodes or the apsidalline. For example, if we add the variational 
equations for n and w, the resulting equation exhibits no singularity for 
vanishing inclination angle i. Specifically, from the first and third of Eqs. 
(10.41), we have 

dw 1 [ f ( ). f 1 r. 0 1 . dt = he -p cos adr + p + r sm adO + Ii sm tan 2 t adh 

where 
tv=n+w (10.42) 

is the longitude of pericenter as defined in Sect. 3.4. 
The singularity due to zero eccentricity is still present so that w itself 

is not a suitable nonsingular orbital element. However, by adding together 
the variational equations, for w and M, we obtain an equation devoid of 
either singularity. Since 

bIb - a b2 - a 2 ae 
ahe - he = ahe = ahe(a + b) = h(a + b) 

it follows that 

dl _ ae . 2br r sin 0 tan ! i 
dt -n- h(a+b)(Pcosfadr-(p+r)smfad01- ah adr+ h adh 

where 
l=tv+M (10.43) 

is the mean longitude defined in Sect. 4.3. 
Clearly, l should replace M in our set of nonsingular variables, but the 

equation just obtained is not yet suitable since it involves the true anomaly 
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f which is referenced to pericenter. To pursue the question further, let us 
examine the augmented form of Kepler's equation 

l = tv + M = tv + E - e sin E 

If we define 
K=TN+E (10.44) 

as the eccentric longitude, corresponding to the mean longitude l, then 
Kepler's equation becomes 

l = K + e sin tv cos K - e cos TN sin K 

Furthermore, the equation of orbit may be written either in terms of K or 
in terms of the true longitude 

L=TN+/ 

also defined in Sect. 4.3. We have 

r = a(l- e cos E) = a(l- esintv sin K - ecosTNcosK) 

or 
r- p - p 

- 1 + ecos/ - 1 + esintvsinL + ecosTNcosL 

(10.45) 

Observe that both in the equation of orbit and in Kepler's equation the 
eccentricity e and the longitude of pericenter TN appear only in the com
binations e sin tv and e cos tv. These functions are, therefore, promising 
candidates for new elements to replace e and TN. 

Therefore, define PI and P2 as orbital elements, where 

PI = e sin tv and P2 = e cos tv (10.46) 

and obtain variational equations by differentiating and using the variational 
equations already obtained for e and tv. Hence, 

dP dtv. de 
_I =eCOSTN-+smtv-
dt dt dt 

1 . rsinOtan!i 
= -/i(pcosLadr - (p+r)smLadO -rPladO] + h P2adh 

with a similar expression for P2 • 

Although these equations are nonsingular, the argument of latitude 0 
needs to be expressed in terms of the true longitude L. For this purpose, 
we write 

O=w+f=L-O 

so that 
sinO = sinL cos 0 - cosLsinO 

Now, we know that n is not itself a nonsingular element. However, sin 0 
appears in the variational equation for PI multiplied by tan ! i suggesting 
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that the functions tan ! i sin 0 and tan ! i cos 0 would be suitable candi
dates for new elements to replace 0 and i. 

Again, we are led to define Q1 and Q2 as orbital elements, where 

Q1 = tan !isinO and Q2 = tan !icosO (10.47) 

and obtain 

dQ 1 1 . 0 dO 1 2 l' • 0 di -- = tan -z cos - + - sec -z sm -
dt 2 dt 2 2 dt 

= ;h sec2 !i(sin 0 cos n + cos 0 sin O)adh 

= ;h (1 + Q~ + Q~) sin L adh 

with a similar result for Q2' The element set is now complete. 
Finally, we note that the classical elements are easily recoverable from 

the new elements. For example, 

e2 = pi +pi tan2 !i = Q~ + Q~ 

tan 0 = Q1 

Q2 

provided, of course, that P2 and Q2 are not zero. 
We now summarize the variational equations for the elements a, PI' 

P2 , Ql' Q2' I which have recently been named the equinoctial variables by 
Professor Roger A. Broucke of the University of Texas. They are, indeed, 
nonsingular except for the rectilinear orbit h = 0 and for the orbit whose 
inclination angle i = 7r. (These singularities can also be eliminated but we 
will not pursue the question further.) 

With PI' P2 , Ql' and Q 2 chosen to replace the classical elements e, 
0, i, and w and defined ast 

PI = esin tv Q1 = tan!i sin 0 

P2 = ecostv Q2 = tan!i cosO 

1. The equation for the semimajor axis is 

da 2a
2 

[ • p ] 
dt = h (P2 smL - PI cosL)adr + -:;adO (10.48) 

2. The equations for PI' P2 , Ql' and Q 2 are 

dP1 r { p [( P). ] (it = Ii - -:; cos L adr + PI + 1 + -:; sm L adO 

- P2(QI COS L - Q2 SinL)adh } (10.49) 

t Lagrange first introduced this element set (using i instead of ~ i) in 1774 for his 
study of secular variations. His notation for the four elements was h, l, p, and q. 
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d:2 
= H ~ sinLadr + [P2 + (1+~) COSLJ adS 

+ PI(QI cosL - Q2 sinL)adh } 

dQI r 2 2. lit = 2h (1 + Q 1 + Q2) smLadh 

dQ2 r ( 2 2 lit = 2h 1 +QI +Q2)cosLadh 

3. The equation for the mean longitude is 

~! = n - i{[a: b m (PI sinL + P2cosL) + ~] adr 

+ a: b ( 1 +~) (PI cosL - P2 sinL)ad8 

+ (QI cosL - Q2sinL)adh} 

where 

b =aVI-Pi-Pi h = nab 

r h 
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(10.50) 

(10.51) 

(10.52) 

(10.53) 

!!. = 1 + PI sin L + P2 cos L 
r h = J.l(1 + PI sinL + P2 cosL) 

4. The true longitude L is obtained from the mean longitude I by first 
solving Kepler's equation 

I = K + PI cos K - P2 sin K 

for the eccentric longitude K and determining r from the equation of 
orbit 

r = a( 1 - PI sin K - P2 cos K) 

Then, L is calculated from the eccentric longitude according to the 
easily derived relations 

where 

sin L = ~ [ ( 1 - a: bPi) sin K + a: bPI P2 cos K - PI] 

cos L = ~ [ ( 1 - a: b Pf) cos K + a: bPI P2 sin K - P2 ] 

a 1 1 

a + b = 1 + VI - e2 = 1 + Jl - Pi - pi 
or alternately expressed as 

a /3 
a+b = e 

in terms of the parameter /3 defined in Prob. 4-7. 
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Verification of the validity of these equations is left as an exercise for 
the reader. 

~ Problem 10-10 
Y The equinoctial coordinate axes are defined with respect to the reference 
axes as follows: 

(1) a positive rotation about the vector iz through an angle n to establish 
the direction of the ascending node in, 

(2) a positive rotation about the vector in through an angle i to establish 
the direction of ih, and 

(3) a negative rotation about the vector ih through an angle n. 
The position and velocity vectors are expressed in components along the 

equinoctial axes as 

[
COSL] 

r= r si~L and 
[

-PI - SinL] 
v = ~ P2 +OOO8L 

and the rotation matrix, to transform from equinoctial coordinates to reference 
coordinates, in terms of the equinoctial elements is 

1 [1 -Q~ + Q~ 2QI Q2 2QI] 
R= I+Q2+Q2 2QIQ2 I+Q~-Q~ -2Q2 

I 2 -2QI 2Q2 1 - Q~:- Q~ 

¢ Problem 10-11 
The equations of motion for the constant radial thrust problem of Sect. 8.8 

can be written as the following set of nonsingular variational equations: 

where 

dPI h - = --cos9aTr 
dt IJ 

dP2 h. - = -sm9aTr 
dt IJ 

da 2a2 

dt = T (P2 sin 9 - PI cos 9)aTr 

: = ~: (1 + PI sin 9 + P2 cos 9)2 

h = VJJa(1- Pf - P?) 

with the initial conditions at t = to obtained from 

PI = P2 = 9 = 0 

and 

a=ro 
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10.5 The Poisson Matrix and Vector Variations 
The Lagrange matrix L defined in Eq. (10.19) can be written in a more 
compact form which renders obvious the proper expression for its inverse. 
Define a six-dimensional state vector a whose partitions are the position 
and velocity vectors r and v: 

s = [~] (10.54) 

Then, we can readily show that 

L = [ 8s ] T J 8s (10.55) 
8a 8a 

where the 6 x 6 matrix J, introduced in Sect. 9.5, is defined by 

J = [~I ~] (10.56) 

The vector a is, of course, a function of both the time t and the orbital 
elements a. Therefore, 

s = s(t, a) (10.57) 

may be thought of as a transformation from element space to state space. 
The matrix 8a/8a is called the Jacobian matrix of the transformation. 

The inverse transformation 

a=a(t,s) (10.58) 

certainly exists and the associated Jacobian matrix 8 a 18s is the inverse 
of 8a/8a. Indeed, the matrix 8al8s is frequently called the matrizant 
of the two-body problem. Therefore, 

8s 8a = 1 and 
8a 8s 

8a 8s = 1 
8s 8a 

Since J2 = - I, it is now trivial to construct the inverse of the Lagrange 
matrix from the form given in Eq. (10.55). 

The Poisson Matrix 

The matrix 
P= 8a J [8a]T 

8s 8s 
is called the Poisson matrix.t Clearly, we have 

LP =PL=-I 

(10.59) 

t Simoon-Denis Poisson (1781-1840) was one of the greatest of the nineteenth century 
analysts and mathematical physicists. Although he was urged by his father to study 
medicine, he entered the Ecole Poly technique first as a student and then as a professor 
of mathematics. He was one of the founders of the mathematical theory of elasticity 
and a major contributor to the theories of heat conduction and water waves. 
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so that 
P = _L- 1 

Since L is skew-symmetric, so also is P and, further, the transpose of the 
Poisson matrix is the inverse of the Lagrange matrix 

p T = L -1 (10.60) 

The element in the i th row and j th column of the matrix P is denoted 
by (ai' aj) and called a Poisson bracket. Now, from the expanded form of 
Eq. (10.59) 

p= ~~ [~~r -~~ [~~r (10.61) 

it follows that the Poisson brackets are obtained from 

a. a. = 8ai [8aj ] T _ 8ai [8a j ] T 

( , , J) 8r 8y 8y 8r (10.62) 

Furthermore, they have properties identical to those demonstrated for the 
Lagrangian brackets in Sect. 10.2. 

Using the Poisson matrix, we may write Lagrange's variational equa
tion (10.18) as 

do. = p T [8R] T 

dt 80. 
(10.63) 

in terms of the disturbing function R or as 

do. = P T [ 8r ] T a 
dt 80. d 

(10.64) 

in terms of the disturbing acceleration vector ad' Now, substitute fotpT 
from Eq. (10.61), and in the first case, 

do. = 80. [8R] T _ 80. [8R] T 

dt 8y 8r 8r 8y 

But R is a function only of position, so that the result is simply 

In the second case, 

do. _ 80. [8R] T 

dt - 8y 8r 

do. 80. [8r] T 80. [8r] T 

dt = 8y 8r ad - 8r 8y ad 

(10.65) 

and since the state-vector components are to be regarded as independent 
variables, then 

8r = I 
8r 

and 8r =0 
8y 
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Hence, the result 
do: 80: 
-=-ad dt Bv 

(10.66) 

This last equation is particularly useful in that it provides a direct 
method for determining variational equations of vector orbital elements 
as well as scalar elements in vector form-as such they will be indepen
dent of the coordinate system in which the components of the disturbing 
acceleration vector ad might be expressed. 

Variation of the Semi major Axis 

We begin with the energy or vis-viva integral, defined in Eq. (3.17), which 
is written as 

IJU-D=v2 =V'V=VT

v 

Then, we calculate the partial derivative with respect to the vector v and 
obtain 

..!!:..- 8a = 2v T 

a2 8v 
According to Eq. (10.66), we have 

da Ba 
-=-ad dt Bv 

so that the variational equation for the semimajor axis a is simply 

da 2a2 

- = -v· ad (10.67) 
dt /J 

Variation of the Angular Momentum Vector 

According to Eq. (3.12), the angular momentum vector is defined as 

h=rxv 

Paralleling the arguments used in Sect. 2.2, we replace the vector product 
by the matrix-vector product 

h=Srv (10.68) 

where the skew-symmetric matrix Sr is defined as 

Then, we calculate 
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so that Eq. (10.66) gives 

dh 8h 
dt = 8v ad = Srad 

Thus, the variational equation for the vector angular momentum is 

dh 
-=rxad 
dt 

(10.69) 

There are two possible vector forms for the variation of the scalar 
angular momentum h. On the one hand, if we write 

then we have 

so that 

or, alternately, 

h2 = hoh = hTh 

dh • 
- = r 10 0 ad 
dt 

On the other hand, 

so that 

Hence, 

or, alternately, 

h2 = (r X v) 0 (r X v) 

= (r 0 r)(v 0 v) - (r 0 v)(r 0 v) 

= rTrvTv - rTvrTv 

dh 1 2 - = -[r (v 0 ad) - (r 0 v)(r 0 ad)] 
dt h 

(10.70) 

(10.71) 

(10.72) 

(10.73) 
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Variation of the Eccentricity Vector 

The eccentricity or Laplace vector was defined in Eq. (3.14) and can be 
written in any of the possible forms 

p,e = v X h - p,ir 

= -Sh v - p,ir = Svh - p,ir 

where the matrices Sh and Sv are constructed in the same manner as the 
matrix Sr used for the angular momentum derivation. Again we have 

ae Bv ah 
P,av = -Shay +Svav 

so that 
de db 

p, dt = - h x ad + v X dt 

Thus, the variation of the eccentricity vector can be expressed in any of 
the following forms: 

de 
p, dt = ad X (r X v) + (ad X r) X v (10.74) 

de 
p, dt = 2{v. ad)r - {r. ad)v - {r. v)ad (10.75) 

de 
p, dt = (2rvT - vrT - rTvI)ad (10.76) 

By now it should be apparent that each of the variational equations 
derived thus far can be obtained formally according to the rule: 

Apply the usual rules of differentiation to any two-body identity. 
'Treat r as constant, orbital elements as variables, and replace the 
time rate of change of v by ad' 

This convenient rule has general validity. 
For example, to obtain the variational equation for the eccentricity, 

begin with the expression 

defining the parameter. Then, 

2h dh = p,{1- e2 ) da _ 2p,ae de 
dt dt dt 

and, substituting from Eqs. (10.67) and (10.73), yields 

de = _1_[{r. v)(r. ad) + (pa - r2)(v. ad)] 
dt p,ae 

(10.77) 
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Variation of the Inclination and Longitude of the Node 

The angular momentum vector h is, of course, normal to the plane of 
the osculating orbit and may be expressed in terms of components along 
reference axes as 

h = h i h = h( sin 0 sin i i x - cos 0 sin i i y + cos i i z) 

since the unit vector ih is identical to the vector i~ of Eq. (2.6). Applying 
the formal rule, i.e., calculating the ordinary time derivative of this two
body identity, results in 

dh h.. dO ° h di ° dh ° 
dt = sm Z dt In - dt 1m + dt I h 

where in is a unit vector in the direction of the ascending node and im 
is in the plane of the osculating orbit and normal to in such that in' 

i m , i h form an orthogonal triad. Expressions for in and im in terms of 
components along the reference axes are given in Eqs. (2.5) and (2.8). 

The appropriate variational equations for the longitude of the node 0 
and the inclination angle i are obtained by calculating the scalar product 
of the last equation with in and im , respectively. We have 

dO 1 ° rsinO ° 
-dt = -h· . In X r . ad = -h· . Ih • ad smz smz 

(10.78) 

di 1 . rcosO ° - = - - I X r . ad = -- Ih • ad dt h m h (10.79) 

where 0 = w + f is the argument of latitude. Note that a third scalar 
product with i h produces the same variational equation for h as obtained 
previously in Eq. (10.70). 

Variation of the Argument of Pericenter 

The argument of latitude 0 is defined as the angle between the position 
vector and the ascending node. Thus, from 

in = cos 0 i x + sin 0 i y 

it follows that 

Hence, 
• 11 ao [ . n (0 0) n (0 .)] ao - sm 11 - = - sm l' I • I + cos l' I • I -av x T y T av 

Next, from the results of Probe 3-21, 

ix . ir = cos 0 cos 0 - sin 0 sin 0 cos i 

iy . iT = sin 0 cos 0 + cos 0 sin 0 cos i 
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so that, after substitution and cancellation, we obtain 

or 

80 .80 - = -cos~-
8v 8v 

80 .dO 
-ad = -cos~-
8v dt 

501 

(10.80) 

This last expression is the perturbative derivative of 0, Le., the change 
in 0 due to the change in in from which the angle 0 is measured. The 
total time rate of change of 0 is the sum 

dO 80 80 
dt = 8t + 8v ad 

where 801 8t represents the change in 0 due to ordinary two-body motion 
with constant orbital elements as specified by Kepler's second law. Thus, 

dO h .dO 
dt = r2 - cos~dt 

with 80ldt obtained from Eq. (10.78). 

(10.81) 

Finally, since 0 = w+ f, we can use Eq. (10.80) to write the variational 
equation for the argument of peri center as 

dw 8f . dO 
- = --ad -cos~-
dt Bv dt 

(10.82) 

which involves the perturbative derivative of the true anomaly f. This we 
calculate in the next subsection. 

Variations of the Anomalies 

By differentiating the equation of orbit 

obtain 

h2 

r{1 + ecosf) = -
J.L 

. 8f 8e 2h 8h 
resmf- = rcosf- ---

8v Bv J.L Bv 

Also, from Eq. (3.31), we establish 

J.L • f hresm = r·v 

which, when differentiated, yields 

Bf . 8e r· v 8h h T 
recosf- = -rsmf- + ---- +-r 

Bv 8v J.L 8v J.L 

(10.83) 

(10.84) 
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Now mUltiply Eq. (10.83) by sin I, Eq. (10.84) by cos I, and add the two. 
After some fairly straightforward reduction, we obtain 

reh:~ = pcos/rT - (p+ r)sin/~ 
Then, substitution for 8h/ av produces 

~ = h~e {[~ (ros f + e) + e;] r T - (p + r) sin f v T } (10.85) 

as the perturbative derivative of the true anomaly. 
This last expression for 81/av can be used in Eq. (10.82) to complete 

the variational equation for the argument of peri center w. It may also be 
used to obtain the total time rate of change of the true anomaly as 

dl h 81 -=-+-ad dt r2 8v 
(10.86) 

Thus far, the formulas in this section are equally valid for hyperbolic 
as well elliptic osculating orbits. In the remainder of this subsection, we 
consider the eccentric and mean anomalies which, of course, apply only to 
the ellipse and leave as an exercise the parallel arguments for the hyperbola. 

From the identity relating the eccentric and true anomalies 

cosE = cos 1 + e 
1 + ecosl 

we obtain, in the usual manner, 

8E 81 ra. 8e 
b 8v = r av - p SIn 1 av 

which, after substitution and reduction, results in 

8E r [h . ] 8v = J.tbe p(cos l +e)rT - (r+a)sm/vT (10.87) 

Similarly, from Kepler's equation 

M=E-esinE 

we obtain 

8M = ~8E _sinE8e 
av a 8v 8v 

or, in reduced form, 

(10.88) 
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The total time derivatives of the eccentric and mean anomalies are 
then 

dE na 8E 
-=-+-ad 
dt r 8v 

dM 8M 
-=n+-ad 
dt 8v 

10.6 Applications of the Variational Method 

(10.89) 

In this section we consider several interesting and important applications 
of the concepts thus far developed in this chapter. The first example 
utilizes the Lagrange planetary equations to study the average effect of 
the J2 term in the earth's gravitational potential on the motion of an 
earth orbiting satellite. The second example is an application of Gauss' 
form of the variational equations to analyze the effect of atmospheric drag 
on the orbital elements of a satellite in earth orbit. 

Effect of J2 on Satellite Orbits 

The disturbing function associated with the J2 term in the earth's gravi
tational field 

Gm (req )2 ( ) R = --r- J2 --;:- P2 cos4> (10.90) 

is obtained from Eq. (8.92). The colatitude angle 4> is related to the orbital 
elements and calculated from 

cos 4> = ir . i z = sinew + f) sin i 

using the results of Prob. 3-21. Hence, the Legendre polynomial P2 (cos 4» 
is expressed as 

P2{COS 4» = ! [3sin2 (w + f) sin2 i - 1] 

so that the disturbing function assumes the form 

R= 
GmJ2r2 

-~3-e~q (1 + ecos f)3[3sin2 (w + f) sin2 i - 1] 
2p 

where r has been replaced by the equation of orbit. 

(10.91) 

The disturbing function can be expanded as a Fourier series in the 
mean anomaly M using the technique of Sect. 5.3. The constant term in 
the series is simply the average value of R over one orbit, i.e., 

1 1211" R=- RdM 
27T 0 
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Since dM = n dt and r2 df = h dt, then clearly, 

R = ~ [21r ~Rr2df 
271" Jo h 

[Chap. 10 

Substituting from Eq. (10.91) and performing the integration yields 

n2J r2 
R = 2 eq (2 - 3 sin2 i) (10.92) 

4(1 - e2)~ 

Thus, the average value of the disturbing function depends only on the 
three orbital elements a, e, and i. 

When R is used for R in Lagrange's planetary equations (10.31), 
we have, immediately, expressions for the average rates of change of the 
satellite orbital elements during a single revolution. For example, since R 
is not a function of 0, W, or A, we see that 

da =0 
dt 

de =0 
dt 

On the other hand, we obtain for the longitude of the node 
- 2 
dO 3 (req ) • dt = -"2 J2 P ncost 

(10.93) 

(10.94) 

Thus, the plane of the orbit rotates about the earth's polar axis in a 
direction opposite to that of the motion of the satellite with a mean rate 
of rotation given by Eq. (10.94). This phenomenon is referred to as the 
regression of the node. 

In a similar manner, we obtain for the mean rate of rotation of the 
line of apsides 

dw 3 (r eq ) 2 ( 2 . ) - = - J2 - n 5 cos z - 1 
dt 4 p 

(10.95) 

It is apparent that there exists a critical inclination angle 

i crit = 63 0 26'.1 

such that, if i exceeds icrit' the line of apsides will regress while, if i is 
smaller than icrit ' the apsidalline will advance. 

¢ Problem 10-12 
For an earth orbiting satellite, show that 

dO 99S (req )3.S (1 2)-2 . degrees/day Tt = -. 7 - e cos~ 

~~ = 5.0 (T:q) 3.S (1- e2)-2(5cos2 i - 1) degrees/day 

using appropriate values for the physical data of the earth. 
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Effect of Atmospheric Drag on Satellite Orbits 

For a satellite in an elliptic orbit around a nonrotating spherical earth, 
consider the effect of atmospheric drag on the eccentricity of the orbit. If 
the drag acceleration is proportional to the product of the atmospheric 
density p and the square of the magnitude of the velocity vector and if it 
acts in a direction opposite to v, then the disturbing acceleration vector is 
given by 

(10.96) 

where the proportionality constant c is called the ballistic coefficient. 
Assume an isothermal atmosphere for which the atmospheric density 

at a distance r from the center of the earth may be approximated by 

( 
r - q) p(r) = poexp -'H (10.97) 

where Po is the density at the pericenter radius q and H is the density 
scale height of the atmosphere. 

The appropriate variational equation for our purpose is 

de 2 
-d = -(e + cosj)adt t v 

according to the results of Prob. 10-7. For the particular application, this 
equation becomes 

de 
dt = -2cpv(e + cos j) (10.98) 

Now, using Eqs. (4.29) and (4.40), the true anomaly and the velocity may 
be expressed in terms of the eccentric anomaly as 

e + cos j = e. cos E 
r 

and 
2 2 21 + ecosE 

v =n a ----= 
1- ecosE 

Also, the density model is written in terms of E as 

p = poexp[-lI(l- cos E)] 

w here the constant 1I is defined as 
ae 

1I= -
H 

In this way, Eq. (10.98) is written as 

de pna E 1 + ecosE - = -2cpo-e-le"cos cosE 
dt r 1- ecosE 

(10.99) 

The last two factors in Eq. (10.99) can be developed as a Fourier cosine 
series in E using (1) the series manipulations developed in Appendix C, 
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and (2) the trigonometric expansions developed in Sect. 5.2: As a result, 
we obtain 

cosE 1 +ecosE = fA coskE 
1 - ecosE 11:=0 II: 

where the coefficients AO' AI' ... are power series in the eccentricity. 
Through terms of order e4 , these coefficients are 

Ao = 4e(1 + ~e2) 
A-I + ~e2 + 15 e4 

I - 8 64 

A2 = 4e(1 + ~e2) 

A - !e2 (1 + 15 e2) 3 - 8 16 

A _I e3 
4 - 16 

A - 3 e4 
5 - 128 

(10.100) 

Suppose now that we are interested in the average value of del dt over 
one orbit. Then, 

so that 

(10.101) 

where 

(10.102) 

is the modified Bessel function of the first kind of order k. Methods for 
obtaining numerical values for these special functions are developed in the 
following subsection. 

A similar analysis can be used to study the average rate of change of 
the other orbital elements which are affected by atmospheric drag. 

¢ Problem 10-13 
Expand the coefficients Ao, Ai, '" as power series in the eccentricity e, 

analogous to Eqs. (10.100), through terms of order e5
• 

¢ Problem 10-14 
Determine an expression for the average value of the time rate of change of 

the semimajor axis a for a satellite due to atmospheric drag. 

¢ Problem 10-15 
Calculate the average change in eccentricity of an earth orbiting satellite 

during 30,000 orbits assuming that q = 4200 miles, H = 70 miles, e = ~, 
Po = 2 X 10-14 slugs/cu. ft. and c = 1.0 ft. 2 /slug. 
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Modified Bessel Functions 

The function I(x, v), where 

l(x, v) = exp [Hz+ D] = n~o/n(V)xn 
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(10.103) 

is called the generating function for the modified Bessel functions In (v) . 
By paralleling the arguments of Sect. 5.3, we can use the generating func
tion to develop In (v) as a power series in v 

00 (! v)n+2j 
In(v) = L .,2( + ')' (10.104) 

j=O J. n J. 

which, when compared with Eq. (5.22), shows that 

In(iv) = inIn(v) where i = J=I (10.105) 

This last identity, which is the basis for the alternate name, "Bessel 
functions with imaginary arguments," can be utilized for establishing the 
recurrence formula 

nIn(v) = !v[In_l(v) - In+l(v)] 

directly from the corresponding formula (5.27) for In(v). 
Similarly, the continued fraction 

Il(v) !v 
Io(v) = ( ! v)2 

1 + -----=(~!:-v-:-)~2--
2 + --...::.....::---~-

( !V)2 
3+ (!v)2 

4 + ----=2 __ 

5+ '. 

can be obtained directly from the results of Prob. 5-17. 

(10.106) 

(10.107) 

When the argument v of the modified Bessel function is small, the 
series expansion (10.104) is appropriate for calculating Io(v). However, 
for large v, the following asymptotic series can be used more effectively:t 

Io(v) ~ (211'v)-! eV S(v) (10.108) 

where 
12 12 . 32 12 . 32 . 52 

S(v) = 1 + I! 8v + 2! (8v)2 + 3! (8v)3 + ... 

t Here the symbol ~ means "equal with small percentage error when v is large and 
positive." The theory of asymptotic expansions is too extensive to be developed here. 
Suffice it to say that the series for S (v) is usually divergent. Such divergent expansions, 
with properties like this one, are known as asymptotic series. When v is large, the use 
of the asymptotic series involves less computation than the convergent series. 



508 Variation of Parameters [Chap. 10 

Knowing the value of 10(1.1), the function I} (1.1) can be calculated from 
the continued fraction expansion (10.107). The recursion formula (10.106) 
can then be used to calculate modified Bessel functions of higher order. 

¢ Problem 10-16 
By expanding 

00 

eV cos (J = Ao + L Ak cos k(J 

k=l 

in a Fourier cosine series, verify that Ik(v) = ! Ak. Hence, obtain the integral 
form of the modified Bessel function of the first kind of order n 

In (v) = - eV cos 0 cos n(J d(J 1 /.7T 
1r 0 

which is equivalent to Eq. (10.102). 

HINT: The derivation is identical to that used for In(v) in Sect. 5.3. 

¢ Problem 10-17 
The differential equation 

2 d2 y dy 2 2 
V dv2 + V dv - (V + n )y = 0 

is satisfied by y = In(v). 

¢ Problem 10-18 
Derive the identities 

d~ [vn In(v)1 = v n 
In- 1 (v) 

dIn 1( ) ~ = 2' In- 1 +In+l 

10.7 Variation of the Epoch State Vector 

A frequently useful set of orbital elements is the pair of position and velocity 
vectors ro and Vo at some epoch time to' Variational equations for these 
elements have the form 

dro Bro ---a 
dt - Bv d 

and (10.109) 

according to the general result in Eq. (10.66). (The alternate form of these 
equations, in terms of the disturbing function R, was the result of Prob. 
10-4.) By solving these equations numerically, the actual disturbed position 
and velocity r, v at time t for the orbit can be had from the standard 
closed-form, two-body equations. 
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Relation to the Perturbation Matrices 

We recognize that the coefficient matrices in Eqs. (10.109) are simply the 
adjoint perturbation matrices introduced in Sect. 9.6 and expressed ex
plicitly in Sect. 9.7 by Eqs. (9.78) and (9.79). Therefore, the variational 
equations for ro and Vo can be written as 

and (10.110) 

It is instructive to calculate directly the Lagrange and Poisson matrices 
for the case at hand-namely, aT = [reT veT]. Since 

8r [8r 
8a = 8ro ~] = [Ii R] 

8vo 

8v [8V 
8a = 8ro ~l = [V V] 8vo 

then, from Eq. (10.19), we have 

L = [::] [V V]_ [~:] [R R] 

= [iiTy IiTV]_ [VT~ VTR] RTV RTV VTR VTR 

Using the identities (9.50) from Sect. 9.6, we see that 

L= [~I b] =J 
which agrees with the result of Prob. 10-4. 

Therefore, the identities (9.50), which followed from the symplectic 
property of the state transition matrix ~, could also be established using 
the property that the Lagrange matrix L is not an explicit function of 
time. 

Similarly, since 

and [
8rO/8V] = [R~l 
8vo/8v V~ 

then, from Eq. (10.61), the Poisson matrix is obtained as 

p = [~] [RoT VOT]_ [~~] [RoT VOT] 

= [~OR~T ~OV~T]_ [R~~OT R~~OT] = [0 
VoR~ T VoV~ T V~Ro T V~Vo T - I b]=J 
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Hence, 

dd~ = pT [::r ad = JT [::] ad = [_~T] ad = [~] ad 

and is the same as Eqs. (10.110). 

Avoiding Secular Terms 

It is desirable from the point of view of numerical integration to avoid 
secular terms in the variational equations of motion. These arise due to 
the presence of the quantity 0, defined in Sect. 9.7 as 

(10.111) 

in the expressions for RO and ~ given in Eqs. (9.78) and (9.79). They 
can be eliminated by allowing the epoch time to to vary rather than remain 
constant. t In order to obtain the proper fonn of the matrix coefficients for 
Eqs. (10.109), we must modify the derivation of Sect. 9.7. 

For this purpose, the differential of Kepler's equation is now 

-Jlidto = TO d) + ! JliO da - U2 du + U1 dT 

so that 
a) 1 (0 T T ato ) - = -- v + U2r - p.-
av .fiiTo av 

(10.112) 

Then, we have 

aro = TO (1- F)[vrT - (r - ro)vT] - GI 
av p. 

- T~ro [p ~~ - To(1- F)r
T 

- CV
T

] (10.114) 

By electing to have to vary in such a manner that 

(10.115) 

t This was suggested to the author by George H. Born. The reader is referred to the 
paper "Special Perturbations Employing Osculating Reference States" by G. H. Born, 
E. J. Christensen, and L. K. Seversike published in Celestial Mechanics, Vol. 9, March 
1974, pp. 41-53. 
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then the matrix coefficients reduce tot 

ar 0 r 0 ( ) [ T ( ) T] - = - 1 - F vr - r - ro v - GI av J.l 

avo r T 
- = - (v - v o)( v - Yo) + FI av J.l 
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(10.116) 

Equation (10.115) implies an extra variational equation to be solved 
numerically in addition to Eqs. (10.109). Again the presence of the term 
involving C in Eq. (10.115) makes it undesirable to determine to using 
numerical integration. 

Variation of the True Anomaly Difference 

Although somewhat in violation of the spirit of the variational method, the 
problem can be avoided by solving, instead, the differential equation for 
the true anomaly difference () between r and ro. An additional advantage 
accrues in that the necessity of repeatedly solving Kepler's equation also 
is avoided. The penalty paid, however, is that the equations are not valid 
for rectilinear motion, since () is not defined for p = o. 

For the variation in the true anomaly difference, we first obtain the 
differential for Uo as 

duo = -(1- aro) d~ + ! (ro + r)U1 da + Uo du 

using the notation and equations of Sect. 9.7. Then, by comparing Eqs. 
(9.69) and (9.70), observe that 

PUl = rJPsin () - rO"o(1 - cos ()) 

pU2 = rTo(1 - cos 0) 

The variation with respect to v is calculated for each of these last two 
equations using the differentials of U1 and U2 obtained in Sect. 9.7. There 
result two expressions for a~ / av, the first having as its coefficient F and 
the second the coefficient G. 

Solve these two equations for a~/av by multiplying the first by Gt , 

the second by Ft , subtracting, and using the identity 

FGt - FtG = 1 

After considerable simplification, using, in particular, the relation 

2 2 2 P = r 0 - ar 0 - 0"0 

t It is no longer proper to label these matrices as Ro and vo. This was erroneously 
done in the paper "The Epoch State Navigation Filter" which was previously cited in 
Sect. 9.7. They are not partitions of a symplectic transition matrix so that the results 
in the section State TIunsition Matrix of the paper which exploit that property are not 
valid. Fortunately, the simulation results quoted in the paper are correct. They were 
taken from the thesis of Joan (Edwards) Lenox, the third author, who did not obtain 
her results in the manner described in that paper. 
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we obtain 

8~ TO 80 1 [1 1 ] 8p - = - - - - -Ut U2 + -(TOUt +O'oU2) -
8v vIP 8v 2T TO P 8v 

[Chap. 10 

T 8D; U2 80' 
- -Ut U2- - -(TO+O'Ut )-

2To 8v TTO 8v 

Finally, substituting from Eqs. (10.112) and applying the readily derived 
variational derivative for p, 

yields 

J.L 8p = 2rT (rv T - vr T) 
8v 

80 T (1 TIT) 
8v = JJiP ;r - TO r 0 

(10.117) 

It is interesting to note that the final forms of the variational equations 
do not involve the universal functions at all. 

Variational Equations of Motion 

We now summarize the complete set of equations describing the relative 
motion of two bodies under the influence of a disturbing acceleration vector 
ad' The two vector and one scalar differential equations are 

dro TTO [ )] TTO' - = -(1- cosO) (r· ad)v - (v· ad)(r - ro - - smOad (10.118) 
dt J.L JJiP 

d~O = ~[(V - vol . ad](v - vol + [1 - ~(1 - COSO)] ad 

dO = VJiP + _T_ [!(r. ad) - ~(ro· ad)] 
dt T2 VJiP T TO 

where 

r - ro = ~(1 - cosO)ro + T~ sinOvo 
p vJ.LP 

(10.119) 

(10.120) 

v - Vo = _1_[JjiO'o(l- cosO) - JilPsinO]ro - TO (1- cosO)vo 
PTO P 

and 

T = pro 
TO + (p - TO) cos 0 - JP 0'0 sin 0 

J.Lp = (ro X yo) . (ro X yo) 

JjiO'o = ro . Vo 
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~ Problem 10-19 
Y Five of the six orbital elements are contained in the vector expressions for 
angular momentum and eccentricity and variational equations have already been 
derived for these quantities. In order to compute r and v, we may use the 
instantaneous ascending node as a reference point. This is, frequently, to be 
preferred over the choice of peri center since the latter point does not exist for 
circular orbits. 
(a) From the vectors h and e show that the calculations 

iz X h 
in = liz X hi 

h2 

ro = . in 
p, + p.e. In 

vo = ;2 {p,h X in + p.e X [(h X in) X in]} 

will produce the initial position and velocity vectors ro and vo. 
(b) The vectors r and v can then be calculated using the Lagrange coefficients 

after first solving the universal form of Kepler's equation. The parameters in 
Kepler's equation 

can be obtained from 

h 2 

ro=---
p,+p,e.in 
ro· vo ro . 

Uo = -- = --p,e·ln X h 
Vii h 2Vii 

Q= ~(1- e2
) 

(c) The sixth orbital element is to and its variational equation is 

-= - cotlin+-h Xr+ 1+- -r+-v ·ad dto [r~ (. G) (ro) U2 C] 
dt h2 rro r p, p, 

or, alternately, 

dto = {r~ [ (i z • h)(iz X h) + .£ h] X r + (1 + rro) ~2 r + ~ v} • ad 
dt h2 (iz X h) • (iz X h) rro ,.. ,.. 

NOTE: These variational equations for to were first published in the AIAA 
Professional Study Series Space Guidance and Navigation previously referenced 
in Sect. 9.7. It was used in a two day AlAA short course presented by the author 
and Donald C. Fraser at the University of California Santa Barbara in 1970. 
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¢ Problem 10-20 
As noted earlier in this section, we may bypass the problem of the sixth 

orbital element if we are willing to compromise, somewhat, the spirit of the 
variational method. This is made possible by solving the following differential 
equation 

d(J h 1 
- = - - --.in Xr-ad 
dt r2 h tan ~ 

directly for (J. When coupled with the two vector differential equations 

db 
- = r X ad 
dt 

de 
J.I. dt = ad X (r X v) + (ad X r) X v 

and the algebraic equations 

- Ih-1m = h X In 

r = J.I. + J.l.e - in cos (J + J.l.e - im sin (J 

r = rcos(Jin + Tsin(Jim 

v = :2 h X J.l.e - * (sin (J in - cos (J im ) 

we have a complete system for propagating the orbital position and velocity 
vectors. 



Chapter 11 

Two-Body Orbital Transfer 

T HE ALTERATION OF A SPACE VEHICLE'S ORBIT BY ONE OR MORE 

discrete changes in velocity for the purpose of fulfilling certain mis
sion objectives forms the subject of the present chapter. We first consider 
ideal impulsive velocity changes which, although physically unrealizable, 
are, nevertheless, sufficiently good approximations for many purposes if 
the engine burn time is a small portion of the total mission time. Then, 
in the last two sections, attention is given to the more realistic problem 
of powered-flight guidance, i.e., directing the rocket engine thrust vector 
during the powered maneuver. First, a general-purpose guidance technique 
is developed, which is applicable to a variety of missions and is based 
on the velocity-to-be-gained concept. Then, for problems involving more 
general terminal constraints, some elementary optimal guidance laws are 
derived. 

Many orbital transfer problems involve a minimization criterion to be 
satisfied. Usually, the objective is to minimize the sum of the required 
velocity impulses, sometimes referred to as the characteristic velocity. For 
example, one might require the smallest velocity impulse at a given position 
in orbit to transfer to a new orbit which will intersect a fixed point. The 
problem might be expanded to include another velocity change at the target 
point to place the vehicle in still another orbit. The requirement would then 
be to choose the transfer orbit which minimizes the sum of the two velocity 
changes. Of some interest, also, is an original proof of the optimality of 
the Hohmann transfer-a surprisingly difficult result to prove. 

Problems of this nature often require solutions of algebraic equations of 
rather high degree which can be solved only by tedious numerical methods. 
However, in some cases, certain geometrical properties of the solution are 
readily perceived which enhance the interest of the subject and frequently 
lead to a better insight into the underlying mechanisms. In the selection 
of topics for this chapter, the author has been primarily attracted by those 
problems for which a geometrical description is possible. 

The first few sections of the chapter are devoted to one- and two
impulse transfer problems of the type just described. They find application 
in a variety of missions such as satellite rendezvous, satellite interception, 
ballistic missiles, and determination of interplanetary trajectories. Because 

515 
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certain of these problems are conveniently solved or interpreted in the 
hodograph plane, a section on hodograph analysis has been included. 

Injection from a circular coasting orbit is the subject of another section. 
Here the problem is to determine the velocity required at a point in orbit to 
achieve specified hyperbolic velocity conditions. The optimization problem 
reduces to finding the appropriate point in orbit to apply the injection 
impulse. In the present treatment full consideration is given to realistic 
constraints on the initial coasting orbit. 

11.1 The Envelope of Accessibility 

In Sect. 6.1 it was shown that an elliptic orbit connecting two points PI 
and P2 with focus at F is possible only if the semimajor axis a is not 
smaller than a minimum value am' The vacant focus F:n, corresponding 
to the orbit with minimum a, lies on the chord PI P2 and is located so 
that 

P2 F:n = 8 - T2 F:nPI = 8 - Tl 

where Tl and T2 are the respective lengths of the radii F PI and F P2 and 
8 is the semiperimeter of the triangle ~F PI P2 • The magnitude of the 
velocity vector at PI for the orbit is 

v2 = 2J.l (~ - ~) (11.1) 
1m T 8 

1 

If a body is projected from point PI with an initial speed VI which 
is less than VIm' then regardless of the direction in which it is projected, 
the body cannot reach the point P2 • An important problem, which we 
can now solve, is to determine the locus of the points P2 which are just 
accessible from PI with the fixed initial speed vI' 

For any point P2 to be barely accessible from the fixed point PI' 
the speed VI must correspond to the minimum energy path from PI to 
P2 • The implication of Eq. (11.1), is that P2 must be so located that the 
semiperimeter 8 is fixed. Obviously, then 

P2Pl + P2F = 28 - Tl = constant 

so that the locus of P2 is an ellipse, as shown in Fig. 11.1, with foci at the 
gravitational center F and the initial point PI' and with semimajor axis 
ai' eccentricity ei' and parameter Pi given by 

1+0' I-a 
2ai = --Tl ei = --

I-a 1+0' 
2aTI 

Pi = -1--2 -a 
in terms of the dimensionless quantity a defined by 

(11.2) 
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Fig. 11.1: Envelope of 
accessibility. 
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The tangent of the elliptical locus at P2 bisects the angle between 
PI P2 and F P2 extended according to the property of ellipses demonstrated 
in Sect. 4.1. On the other hand, from the discussion of Sect. 6.1, the orbital 
tangent of the minimum-energy ellipse bisects the same angle. Thus, the 
locus of the barely accessible points P2 and the associated minimum-energy 
orbits from PI to P2 are tangent at P2 • Hence, the elliptical locus is the 
envelope of all possible orbits from PI and its interior includes all points 
accessible from PI with an initial speed VI' t 

¢ Problem 11-1 
A ballistic missile launched from the surface of the earth has a velocity 

capability Vl. Assume that the earth is a nonrotating sphere of radius Tl and 
neglect the effects of atmospheric drag. Then the maximum range attainable, 
expressed as arc length along a great circle, is 

TlO = 2Tl arcsin (_0_) 
1-0 

where 
TlVr 

0=--
211 

Further, to attain this range, the angle, of the velocity vector measured from 
the vertical must be determined from 

, = :l (11" + 0) 

where 0 is the range angle and 11 is the gravitational constant of the earth. 

t The envelope of accessibility is well known in the field of exterior ballistics and 
the author F. L. Beckner has written at length on the subject in his paper "Regions 
Accessible to a Ballistic Weapon" in the Proceedings of the Fifth AFBMD/STL 
Aerospace Symposium, vol. III, pp. 317-366, Academic Press, New York, 1960. 
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11.2 Optimum Single-Impulse Transfer 

The notion of an envelope of accessibility, as discussed in the previous 
section, applies only if the initial point PI is not moving with respect to 
the center of attraction at F. However, in almost all problems in space
flight mechanics the vehicle or spacecraft does possess an initial velocity 
with respect to the center of attraction, and it is sensible, therefore, to 
confine our attention to the additional velocity which must be supplied to 
accomplish a given objective. 

The simplest problem of this kind is one for which the initial velocity is 
given with the requirement that a velocity increment be determined which 
will place the vehicle in a new orbit to intersect a fixed point in space. For 
an application one might postulate a simplified model of the solar system 
in which the planets describe coplanar elliptic orbits about the sun. A 
vehicle departing from the earth will have an initial velocity with respect 
to the sun that is the same as the earth's orbital velocity. Furthermore, 
in order to stay within the realm of two-body analysis, we need to assume 
that the velocity impulse occurs at a point sufficiently far removed from the 
gravitational field of the earth that only solar attraction is important. At 
first, this model may seem to be simplified to the point of being meaningless. 
However, many of the essential ingredients of interplanetary flight remain, 
and the results of the analysis, when properly interpreted, will provide 
insight to the more realistic problem. 

Let Vo be the initial velocity of the vehicle at PI so that 

(11.3) 

is the velocity impulse required. Then, the problem of determining the 
minimum impulsive velocity magnitude ~vI is one of selecting a point on 
the hyperbolic locus of Fig. 6.4 such that the corresponding vector ~ v I 
is perpendicular to the hyperbola. It should be remarked that the case 
for which the initial velocity vector Vo does not lie in the transfer orbital 
plane presents no difficulties. The out-of-plane component of the Vo vector 
must be canceled by an out-of-plane component of ~v I' The in-plane 
components can then be handled as just described. 

Let v I be resolved into chordal and radial components as described 
in Sect. 6.1 and write 

VI =V
Pl 

+VCl 

For this velocity vector, the tangent to the hyperbolic locus of velocity 
vectors is parallel to v Pl - V Cl according to the discussion on asymptotic 
coordinates at the end of Sect. 4.4. Therefore, since the shortest distance 
from a point to a curve is perpendicular to the tangent of the curve, the 
optimum v I is determined from 

(11.4) 
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which may be written 

( :PI)' - 1 - ,}- [:PI (VO • iTI ) - (VO • ic)] = 0 
CI CI CI 

(11.5) 

According to Sect. 6.1, the orbital parameter is related to the ratio of 
the chordal and radial velocity components. Therefore, 

v P 
X2 = ...1!.!. = ....m. 

VCI p 
where (11.6) 

Also we have, from Eq. (6.15) 

-.!... = T,T,sinO = J2T,T, x cos 10 
VCI CVfiP pc 2 

where x > 0, so that the orthogonality condition takes the form 

x· - J2T' T, cos 10(v .1 ) x3 + J2T,T, cos 10(v . i ) x -1 = 0 (11.7) pc 2 0 TI pc 2 0 C 

which is a quartic equation to be solved for a positive real x. 
Using Descartes' rule of signs,t we can easily see that, for 0 < () < 7r, 

1. If Vo • iTI :5 0, it follows that Vo • ic > 0 and the quartic has one 
positive real root. 

2. If vo· ic :5 0, it follows that vo· i rl > 0 and again the quartic has one 
positive real root. 

On the other hand, for 7r < () < 27r , 

1. If Vo • iTI ~ 0, it follows that Vo • ic < 0 and the quartic has one 
positive real root. 

2. If Vo • ic ~ 0, it follows that v 0 • i
Tl 

< 0 and again the quartic has one 
positive real root. 

There remains to be examined the pie-shaped region defined by the 
lines Vo • i Tl = 0 and Vo • ic = o. For () < 7r, we can writet 

• Jppo 
Vo ·Ir = VoCOS"'lo = -- cot "'10 

I T1 

Vo • ic = Vo cos( 4>1 - "'10) = Jppo (cos 4>1 cot "'10 + sin 4>1) 
T1 

t Descartes' rule states that the number of positive real roots of an equation with 
real coefficients is either equal to the number of its variations of sign or is less than that 
number by a positive even integer. A root of multiplicity m is here counted as m roots. 

t The same argument can be used when the transfer angle () > 7r with the same 
conclusions substantiated. 
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where Po and "to are the parameter and flight direction angle of the initial 
orbit at Pl. Then define 

p= ~2r2POcOS!8cot1 
TIC 2 0 

Q = ~2r2Po cos !8(cos4>, cot 10 + sin 4>,) 
TIC 

so that the quartic may be written as 

x4 - Px3 + Qx - 1 = 0 (11.8) 

Now, for the minimum-energy orbit, P = Q and the velocity vector 
divides the pie-shaped region exactly in half. Then, the quartic can be 
factored as 

(x - l)[x3 + (1 - P)x2 + (1 - P)x + 1] = 0 

Therefore, x = 1 is the only positive real root provided that P < 1. 
However, if P> 1 so that R = P - 1 > 0, then the cubic equation 

x3 
- Rx2 

- Rx + 1 = 0 

will have one negative real root and either two positive real roots or two 
conjugate complex roots depending on whether or not R ~ 1. Indeed, if 
R = 1, then the cubic has the roots -1, 1, 1. In short, if P exceeds 2, 
we will have extraneous positive roots of the quartic with which to deal. 
A general analysis of the pie-shaped region is not practical; however, since 
multiple positive roots are possible, our only course is to be wary when Vo 
lies within this region. 

~ Problem 11-2 
':Sr Consider a single-impulse transfer of a vehicle from a circular orbit to a 

new trajectory which will intercept a fixed point in space. Let the radius of the 
circular orbit be Tl and the radius of the target point be T2. Further, let 4> be 
the latitude of the target point above the original circular orbit plane. 
( a) Derive the relations 

(6V.)2 = 1 + viI - 2VBl cosi + V;1 

. . sin 4> 
sm ~ = sin (J 

1 vii 
R12 = 1 + (viI - 1) cos (J - VBl vrl sin 0 

where i is the angle of inclination between the circular orbit plane and the 
transfer orbit plane, 0 is the central transfer angle, 

and 
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Vrl 
Vr =-

1 Vo 
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(b) The three equations of part (a) define ~VI as a function of the two quantities 
V81 and O. Derive algebraic relations which define vS 1 and 0 corresponding to 
the minimum value of ~VI' 
(c) If fjJ = 90 0 

, then the optimum ~VI occurs for 0 = 90 0 with 

VS 1 = (1 + R~2)-! (~vd2 = 2(1 + R~2)! + 1- 2R12 

Wayne Tempelmant 1961 

¢ Problem 11-3 
A vehicle is in orbit about a point F and has a velocity Vo when at Pl. At 

this point the minimum velocity impulse LlVI is applied to place the vehicle on 
a transfer orbit to intersect the point P2 so located that F PI is perpendicular 
to PIP2. If the velocity immediately following the impulse is VI, then the sum 
of the direction angles that VI and ~VI make with the line F PI extended is 
90 0

• 

HINT: Interpret Eq. (11.4) geometrically. 

Optimum Transfer from a Circular Orbit 

When the initial orbit is circular, Eq. (11.8) reduces to 

x4 +Qx -1 = 0 

with 
Q2 = (T:) 3 (1 + cosO) sin2 0 

Completing the square on the quartic results in 

(x2 + e)2 -1](x + ~)2 = x4 + Qx - 1 

provided that 

Hence, we must have 

and ", as the solution of the cubic equation 

",3 +41] = Q2 
By writing ", = ~ V3 y, the cubic is transfonned to 

3V3 
y3 + 3y = -8-Q2 == 2B 

(11.9) 

(11.10) 

(11.11) 

(11.12) 

t "Minimum-energy Intercepts Originating from a Circular Orbit" published in the 
Journal of the Aerospace Scieru::es, vol. 28, December 1961, pp. 924-929. 
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which is exactly Barker's equation with B = 136 va Q2. Thus, we can 
express the solution of Eq. (11.12) as 

~AQ2 2 

", - 4 where A = (VI + B2 + B) ~ (11.13) 
- I+A+A2 

To obtain the solution of the quartic equation, factor the left side of 
Eq. (11.11) so that 

[x2 + J1i x - ! ( V",2 + 4 - ",)][ x2 - J1i x + ! ( V",2 + 4 + ",)] = 0 

Note that the cubic equation has been used to write 

..2.. = V",2 + 4 
.jff 

Hence, the only positive real root of the quartic equation is 

x = ! ( ,/2v,p +4 - Tf - "fii ) 

corresponding to a parameter value of 

2Pm P = ----""'#====== 
VT/2 + 4 - V2T/VT/2 + 4 - T/2 

(11.14) 

Alternately, following a little algebra, we derive 

P = Pm (T/
2 

+ 8 + T/#+4)2 (Tf + 2VTf2 +4) 
8 3T/2 + 16 

X [2Tf2 + 8 + TfVTf2 + 4 + V(3Tf2 + 16}(Tf2 + 2TfVTf2 + 4)] (11.15) 

which is free of numerical problems for all possible orbits and geometry. 

¢ Problem 11-4 
The necessary condition for an optimum single impulse transfer from a 

circular orbit can be expressed as 

. 4 4(c/r2)~ 
smv - tan v = - = ""'7"""7-~==~ 

Q sin OJl + cos 0 

where the angle I), introduced in Sect. 6.5, is given by 

2 Pm 2 1 
X = - = cot 21) 

P 

and 0 ::; I) ::; 7f'. In this form, the equation can be solved for I) almost by 
inspection using a table of trigonometric functions. 
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¢ Problem 11-5 
Using ordinary polar coordinates to represent the velocity vector VI together 

with the results of Prob. 4-19, the necessary condition for the optimum single 
impulse transfer from a circular orbit can be expressed as 

VI sin(211 - tPl) = {i sin tPl sin 11 V;:; 
With the findings of Prob. 6-2, write this necessary condition as 

sin2 (211 - tPd tan ~ 8 + sin3 11 sinbl - tPd sin tPl = 0 

-a form which depends only on the flight direction angle. 

Sufficient Condition for an Optimum Elliptic Transfer 

Consider again the problem of the optimum single-impulse transfer from 
a circular orbit with the objective of determining the conditions for which 
the transfer orbit will be an ellipse. For this analysis it is convenient to use 
the angle v defined in Sect. 6.5. 

Consider elliptical orbits whose vacant foci F* are below the chord 
and for which the transfer angle () is less than 180 degrees. In this case v, 
as defined in Sect. 6.5, will be an angle in the second quadrant and, from 
Eqs. (6.90), it is apparent that we must have 

- tan v ~ J C 
s-c 

.{C 
smv ~ y; and (11.16) 

with the equal signs obtaining for parabolic orbits. Then, according to the 
result of Prob. 11-4, a sufficient condition for the orbit to be an ellipse is 
that 

(11.17) 

Therefore, with the exercise of a little algebra, this can be converted to 

c _2~ VB + ~ < 2~ x -.-(} - -'-A,.-
T2 sm sm'P'l 

where <PI is an exterior angle of the triangle 6. PI F P2' But 

(VB + ~)2 = TI + T2 + 2TIT2 cos!() ~ (Ft + JT2)2 

so that it is sufficient to require 

(Ft + JT2)sin4>1 < 2~ 
or, even more conservatively, 

(11.18) 
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In the context of interplanetary voyages from the earth, according 
to Eq. (11.18) an optimum elliptic path to an inner planet always exists. 
Furthermore, this condition holds also for a trip from earth to Mars. On 
the other hand, for the remainder of the outer planets, the inequality does 
not hold and one might expect to find values of () for which the optimum 
trajectory is hyperbolic. As a matter of fact, this situation does prevail for 
Jupiter and the planets beyond. 

One should note, however, that the condition of Eq. (11.17) will always 
be satisfied if sin () is small enough. Thus, for the outer planets there are 
sectors near () = 0 and () = 7r for which optimum elliptic trajectories exist. 
However, the farther from the SUD, the smaller these sectors become. 

11.3 Two-Impulse Transfer between Coplanar Orbits 

The ideas presented in the previous section are particularly well suited 
for the analysis of the optimum two-impulse transfer between two given 
coplanar orbits. As before, at the point PI the velocity of the vehicle prior 
to the velocity impulse is vo' Immediately following the velocity change, 
the velocity is v I and the vehicle is now in orbit to intersect a point P2 • 

Upon arrival at P2 the vehicle velocity is v2 and it is now desired to make 
a second velocity change so that the velocity will then be v 3' The problem 
is to choose the transfer orbit in such a way that the sum of the magnitudes 
of the velocity increments is a minimum. 

If we resolve v 0 and v 3 into chordal and radial components as before, 
the velocity increment at PI will be 

~VI = lVI-vol = [(vc-vco)2+(vp-vpo)2+2(vc-vco)(vp-vpo)COS<PI]! 

and similarly at P2 

~v2 = IV 3 - v 2 1 = [(VC3 - vc)2 + (VP3 - vp)2 + 2(VC3 - VC)(vp3 - vp) cos <P2]! 

The advantage of this particular approach is immediately apparent. The 
only variables are Vc and vp and these in turn are simply related. The 
optimum transfer is then found by setting to zero the derivative of ~VI + 
~v2 with respect to either Vc or vp and again forming the quotient of Vc 
and v p' Unfortunately, the resulting algebraic equation is of the eighth 
degree. 

Complicated though the solution may be, nevertheless, the optimum 
transfer is again capable of simple geometric interpretation which could be 
a tremendous aid to assist in the necessary numerical work. The desired 
property results from the determination of a necessary condition for a given 
transfer to be optimum. 

Assume that Vc and vp are the chordal and radial components of the 
optimum transfer orbit. Let the optimum orbit be changed by a small 
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amount and denote the changes in the terminal velocity vectors by 6v 1 

and 6v 2' Then since 

6[{Avl . AV1)! + (Av2 · AV2)!] = 0 

it follows that 
(VI - Yo) ·6v1 (v3 - v2)' 6v2 

AV1 - AV2 (11.19) 

Hence, 6v 1 and 6v 2 must have equal projections on the directions of 
Av 1 and Av 2' respectively. On the other hand, for 6v 1 and 6v 2 to be 
admissiblet changes in the terminal velocities, we must have 6v 1 and 6v 2 
tangent to their respective hyperbolic loci of the possible transfer velocity 
vectors as well as 

6vC = _ 6vp 
Vc vp 

which is obtained from Eq. (6.16). The situation is illustrated in Fig. 11.2. 
The change 6v 1 , to be an admissible variation, must be parallel to V PI -V Cl 

or, alternately, parallel to sin{ 4>1 - "11) i rl - sin "11 i c ' Likewise, 6v 2 must 
be parallel to V P2 - V C2 as well as - sin (4)2 + "12) ir2 - sin "12 i c ' Thus, 

1: _ v PI - V Cl 1: 

UV1 -
1 

I UV1 
v PI - V

Cl 

and 

and, using similar triangle arguments, 

6v1 = 6vPl = _ 6vCl and 
IVPI - vC11 VPI VCl 

6v2 = 6vP2 = _ 6vC2 

IVP2 - vc2 1 V P2 V C2 

But, VCl = VC2 and 6vCl = 6vC2 ' so that 

with the consequence that the necessary condition (11.19) may be written 
as 

(11.20) 

The geometrical characteristic of the optimum transfer orbit is now 
readily perceived. The vector difference between the chordal and radial 
components of the terminal velocities for an optimum transfer must have 
equal projections on the corresponding velocity increment vectors. 

Since the chordal and radial components are meaningless for a transfer 
through 180 0

, an alternate form of the necessary condition is desirable. 
Refer to Fig. 11.2 and denote by A the side of the triangle whose other 

t Admissible changes in the orbit are, of course, required to satisfy the compatibility 
conditions of Sect. 6.1. 
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I 
sin (op, - ,._) 

Fig. 11.2: Admissible variations in terminal velocity vectors. 

sides are sin 1'1 and sine 4>1 - 1'1)' Similarly, let B be the third side of the 
corresponding triangle at P2' Then, 

oVI = ! [ sin(4)1 - 1'1) irl - sin 1'1 ic1 oVI 

ov 2 = ! [- sine 4>2 + 1'2) ir2 - sin 1'2 ic1 oV2 

By similar triangles, 

and 

so that we have 

sin 1'1 OVI OV1 

~A= IVPI -vcII 
and 

IVP2 - v c2 1 

Therefore, the necessary condition for the two-impulse transfer to be 
optimum can also be expressed as 

(11.21) 

if we recall, from Eqs. (6.20), (6.26) and (6.27), that 

Pm V P sine 4>1 - 1'1) sine 4>2 + 1'2) 
P = Vc = sin 1'1 = sin 1'2 
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Cotangential Transfer Orbits 

As a first guess it would seem reasonable to suppose that the optimum 
transfer orbit would be tangent to both the initial orbit through PI and the 
final orbit through P2 • When the transfer angle () is 180 0 and the initial 
and final orbits are circles, the optimum transfer orbit is, indeed, doubly 
cotangential as was originally shown by Walter Hohmann and considered 
in the next subsection. This characteristic of the optimum transfer prevails 
even if the orbits are noncircular provided that their apsidal lines coincide 
and that the transfer is between pericenter and apocenter. However, in 
general, for () #: 180 0 

, the doubly cotangential orbit is not optimum as can 
be readily demonstrated from the necessary condition just derived. 

For this purpose, assume that the optimum v I and v 0 are parallel and 
similarly for v 2 and v3' Then the projections of the vectors v PI -v CI and 
v P2 - V C2 on the velocity increment vectors are the same as the projections 
on the optimum transfer velocities Vl and V2' Therefore, we must have 

VI • (vpI -VCI) = V 2 • (VP2 -VC2 ) 
VI V2 

or simply 
V 2 - V 2 V 2 - V 2 

P C = P C 

VI V2 

It follows then that the doubly cotangential transfer can be optimum only 
if VI = v2 -that is, only if TI = T2 • 

The same conclusion holds if the transfer angle () = 180 0 provided that 
the axes of the initial and final orbits do not coincide. This follows from the 
basic form of the necessary condition (11.19). Under these circumstances, 
we have 

VI V2 -'OVl =-'OV2 
Vl v2 

for the cotangential transfer. But admissible variations are in the radial 
direction only since the circumferential components of all transfer orbit 
velocity vectors are the same. Furthermore, from Eq. (6.5) we must have 

oVrl = -ovr2 

so that the cotangential transfer is optimum only if v I and v 2 are parallel. 
Alternately, since ic = -irl = i r2 , then Eq. (11.19) takes the form 

~VI' ~V2' 
--'1 =--'1 
~Vl rl ~V2 rl 

or, simply, 

-+- '1 =0 (
VI V2)' 
Vl V2 rl 

and the conclusion is the same. 
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Even though the cotangential transfer orbit is rarely optimum, there 
may be mission objectives which make such transfers desirable. For exam
ple, during the final stages of a manned orbital rendezvous, it might be 
advantageous for the two vehicles involved in the maneuver to be moving 
in the same direction. Then the task of nulling the relative velocity would 
be dramatically simplified. In the following two problems we show how 
such orbits can be found. 

~ Problem 11-6 
Y Consider three coplanar, confocal ellipses with semimajor axes and distances 

from center to focus denoted, respectively, by ao, aI, a2 and Co, CI, C2. Let 
lij be the orientation angle between the axes of any pair of ellipses labeled i and 

i· 
(a) The distance between the centers of any pair of ellipses is 

dij = J c~ - 2CiCj cos lij + c~ 
(b) The ellipse pairs 0, 1 and 0,2 will each have a single point of tangency if 

and only if 
and 

HINT: Derive the condition that two ellipses have only one point in common. 
(c) The locus of the centers of all possible elliptic transfer orbits, which are 

tangent to ellipses 1 and 2 (assumed to be nonintersecting), is itself an ellipse 
whose foci are the centers of the two terminal ellipses and whose semimajor axis 
a and eccentricity e are given by 

and 

W. Li-Shu Went 1961 

~ Problem 11-7 
Y A vehicle is in an elliptic orbit with semimajor axis ao about a center of 

attraction at F with the vacant focus FO' . A target vehicle is in a nonintersect
ing elliptic orbit about the same center with its vacant focus at F; and with 
semimajor axis a2. A velocity impulse is initiated at point PIon the first orbit 
to intercept the target at point P2 • If the transfer orbit is an ellipse tangent to 
the initial orbit at PI and the final orbit at P2, show that its vacant focus Fi is 
located on an ellipse whose foci are at FO' and F; and whose semimajor axis is 
la2 - ao I. Develop a graphical construction technique for determining the point 
P2 when PI is given. 

Geza S. Gedeont 1958 

t "A Study of Cotangential Elliptical Transfer Orbits in Space Flight," Journal of the 
Aerospace Sciences, vol. 28, May, 1961, pp. 411-417. 

t "Orbital Mechanics of Satellites," in the Proceedings of the American Astronautical 
Society, paper 19, August, 1958. 
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The Hohmann Transfer Orbit 

Consider the problem of the two-impulse transfer between circular orbits. 
From Eqs. (6.2) and (6.3), the velocity increments can be written as 

~Vl = VI - Vo = ~ [cot 11 i r1 + (1- AI) i01 ] 
1 

~V2 = V3 - V 2 = - VJiP [cot 12 ir2 - (1 - A 2) i 02 ] 
r 2 

where, using Eqs. (6.28), (6.29), and (6.19), we have defined 

A 2 _ r 1 _ r 2 cot II sin 0 + r 1 - r 2 cos 0 
1 - P - r2(1- cosO) 

A2 _ r2 _ r2 - r1 cosO - r1 cot 12 sinO 
2 - P - r1(1- cosO) 

It will be convenient to write the trigonometric functions of 0 in terms 
of x = cot ! 8, so that 

. a 2x 
sin 11 = -1 2 

+x 

1- x 2 

cos 8 = --1 2 
+x 

2 
l-cos8=-1 2 

+x 

Indeed, all of the equations will be simpler if we further introduce symbols 
for the cotangents of the direction angles. Therefore, define 

x = cot 10 2 

so that A 1 and A2 can be expressed as 

2 2r2r1 2) 2 2r2AI = -- = r l (1 + x + r2(1 - x ) + 2r2x I x 
p 

2 2rl r2 (2) 2 2rIA 2 =--=r2 1 + x +rl (l-x )-2rlx2x 
p 

The minimization of ~vl + ~v2 can be formulated as a constrained 
optimization problem. Specifically, we desire to minimize the function 

(11.22) 

subject to two constraints-the first being the necessary condition, Eq. 
(11.21), for the optimum two-impulse transfer for fixed transfer angle 0 
written as 

F( ) 
xl[rl (1 + x2) + r2(1 - x2) + r2x I x] - r2(1 - AI)x x x x = .....:.;:....;:,..~-~-~=ii=::::::;:====;:~...:;....----';;;....;....----"'''--

, I' 2 v'xi + (1 - AlP 

+ x2[r2(1 + x2) + r l (1 - x
2

) - r l x2x] + r l (1 - A 2)x = 0 (11.23) 
v'x~ + (1 - A2)2 
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The second is the relation between the direction angles II and 12 from 
Eq. (6.8) which can be conveniently expressed as 

(11.24) 

With the introduction of the Lagrange multipliers Al and A2' the 
constrained optimization problem is equivalent to minimizing the function 

J(x, Xl' X2) - Al F(x, Xl' X2) - A2G(X, Xl' X2) 

when x, Xl and x2 are unrestricted. The appropriate necessary conditions 
for this minimum are 

aJ aF aG 
--AI--A2-=0 
ax ax ax 

aJ _ Al aF _ A2 aG = 0 aJ _ Al aF _ A2 aG = 0 
aXl aXl aXl aX2 aX2 aX2 

which, together with the two constraint equations F = G = 0, provide five 
equations to be solved for X, Xl' x2' Al and A2' 

It is easy to verify that all of the partial derivatives, as well as the 
constraints, vanish for X = Xl = X2 = 0 with the exception of a F / ax 
which is then equal to r l - r 2 • Therefore, the complete solution to the 
optimization problem is 

and A2 = arbitrary constant 

Thus, we have shown that the optimum two-impulse transfer between 
circular orbits is tangent to both the initial and final orbits with a transfer 
angle of 180 degrees. This was first recognized by Walter Hohmann in his 
paper published in Munich, Germany in the year 1925 and, ever after, such 
orbits have been known as Hohmann orbits. 

¢ Problem 11-8 
Consider the optimum transfer problem between two circular orbits of radii 

Tl and T2 with Tl < T2. 

(a) For the Hohmann transfer consisting of two velocity impulses .6Vl and .6V2 

applied tangentially to the initial and final orbits and separated by a central angle 
of 180 0 

, we have 

.6Vl + .6V2 = (1 __ 1_) 
Vo R21 

2R21 + _1 __ 1 
1 + R21 .Jli21 

where 

and Vo = (i V;:; 
(b) A bielliptical transfer consists of the three velocity impulses .6 VI, .6 Vi, .6 V2 

applied tangentially in the following order: (1) .6 v 1 applied at the initial orbit to 
attain, after a 180 0 transfer, an intermediate point located on a circle of radius 
Tj > T2 with zero radial velocity; (2) .6Vi applied to attain, again after a 180 0 
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transfer, a point located on the final orbit; and (3) .6.V2 applied to match the 
terminal velocities. Then 

where 

2Ril _ 1 
1 + Ril 

-R-2-1R_~_1 R-i-' - VI ~ R., ) + -";-~2-' ( 

ri 
Ril =

rl 

(c) If the ratio R21 is sufficiently large, it is always possible to select Ril such 
that the bielliptical transfer will be more economical than the Hohmann transfer. 

Rudolf F. Hoelker and Paul S. Silbert 1961 

11.4 Orbit Transfer in the Hodograph Plane 

Many orbital problems can be solved graphically by representing two-body 
motion in the hodograph plane-a concept which was introduced in Sect. 
3.5. Although clearly limited in numerical accuracy, nevertheless these 
graphical techniques not only serve as convenient checks on analytical 
computations but also can provide real insight as to the underlying princi
ples involved. We shall now discuss several applications of the hodograph 
method to orbital transfer problems. Then, at the end of the section, a 
number of exercises are provided for the reader to test his grasp of the 
technique. 

Single Velocity Impulse 

In order to develop a convenient graphical solution to the problem of 
trajectory modification following an impulsive velocity change, consider 
the following two vector identities: 

hI V = hI (ho v + ho ~ v ) 
P, 1 ho p, 0 P, 1 

hoVo = ho (hiVI _ hI ~VI) 
P, hI P, P, 

where Vo is the initial velocity and VI is the velocity immediately following 
the incremental change ~v l' The first identity shows that the vector 
hI VII p, is determined in two steps: an ordinary vector addition of ho Vol p, 
and ho~v II p, followed by a scalar multiplication of the resulting vector 

t "The Bi-elliptical Transfer between Coplanar Circular Orbits," in the Proceed
ings of the Fourth AFBMD/STL Symposium, vol. 3, Pergamon Press, New York, 1961, 
pp. 164-175. 
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c 

o~~--------------------------------~----~----~ h~ 
fl 

Fig. 11.3: Hodograph interpretation of velocity impulse. 

sum by the factor hI 1 ho . These two operations are interpreted graphically 
in Fig. 11.3. The initial velocity vector terminus is at point A; the vector 
addition places the vector terminus at point B; and the scale-factor change 
places it finally at point C. 

On the other hand, if we begin with the velocity v I and subtract the 
increment ll. v I' we are again back at v o' The second identity allows us 
to interpret this graphically as an ordinary vector subtraction of hlvl/p, 
and hIll. v lip" which carries the vector terminus from point C to point D, 
followed by a scale-factor change hoi hI , which places the terminus back 
at the point A. 

N ow since TVe = h, we have 

ho hohl 
-Ve =--
p, 1 p,TI 

and (11.25) 

so that the points Band D have the same abscissa. Furthermore, since 

h2 

Abscissa of A = Po = ~ 

it follows that 

TI p,TI 
h2 

Abscissa of C = PI = _I 
TI p,TI 

(11.26) 

Abscissa of B = abscissa of D = 
v(abscissa of A)(abscissa of C) (11.27) 

Thus, the abscissa of either B or D is seen to be the geometric mean 
between the abscissas of A and C. 

The following construction will produce the vector hI v lip, from the 
vectors ho v 01 p, and ll. v I : 

1. Perform the vector addition of hovolp, and holl.vl/p, to obtain the 
intermediate point B. 



Sect. 11.4] Orbit Transfer in the Hodograph Plane 533 

2. Drop a perpendicular from B to intersect the line OA extended at 
the point D. 

3. Draw a line through D and parallel to the line AB to intersect at C 
the line 0 B extended. 

The values of the new orbital elements are immediately evident. The 
new angular momentum is determined from 

h = h abscissa of B (11.28) 
1 0 abscissa of A 

and the rotation of the line of apsides is just the difference between the 
true anomalies 10 and 11' 

The construction must be modified for the case in which the increment 
~ v 1 takes place in the original direction of motion v o' The point B is 
determined as before; however, the scale change to locate the final point C 
must be made numerically using the angular momentum relation given in 
Eq. (11.28). 

Transfer to a Specified Orbit 

Consider now the problem of transferring at a given position P from an 
initial orbit with elements eo and ho to a new orbit with elements e1 and 
hI' In this case the point A is known and the point C is determined, since 
it must lie on the circle of radius el with an abscissa 

A bscissa of C = ~ ~ (abscissa of A) 
o 

(11.29) 

The points B and D are then determined from Eq. (11.27) as a geometric 
mean. With B determined, the velocity change ~ vI required for the 
transfer is obtained. 

Transfer from a Circular to a Hyperbolic Orbit 

Suppose that a vehicle is initially in a circular satellite orbit of a planet 
and that a tangential velocity impulse ~v 1 is applied of such a magnitude 
that the vehicle moves away from the planet along a hyperbolic path with 
an ultimate speed Voo attained asymptotically with increasing distance. 
The velocity Voo is frequently referred to as the excess hyperbolic velocity, 
that is, excess over the final value of zero velocity that would result from 
a parabolic escape from the planet. 

From the vis-viva integral, it follows that Voo is related to the semi
major axis of the hyperbola according to 

v2 =-!!:.. 
00 a 
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so that immediately following the velocity impulse D. VI we have 
2 2 

T 1V 1 = 2 + TI Voo 
J.l J.l 

Then since the original orbit was circular and the increment was applied 
tangentially, it follows that 

hl Vot _ 2 TIV;' --- +--
J.l J.l 

The solution of the problem can now be obtained graphically with the 
following construction: 

1. The terminus of the initial velocity vector ho vol J.l has an abscissa 
of unity. Thus, the point A coincides with the center of concentric 
circles of constant eccentricity as shown in Fig. 11.4. The terminus C 
of the velocity vector hI v II J.l has an abscissa of 2+Tl V;' I J.l and a zero 
ordinate. Since Tl and Voo are known, the point C is determined. 

2. Describe a circle with center at A and radius 1 +T1 V;' I J.l to determine 
the intercept with the vertical axis. The circle represents conditions 
along the hyperbolic orbit. 

3. The ordinate of the intercept is hI vool J.l, so that the angular momen
tum hI of the hyperbola is determined. The intermediate point B, 
which is the terminus of the vector hoD. vII J.l and lies on the horizontal 
axis, is determined as the geometric mean between the points A and 
C. We have 

Abscissa of B = 1 + t = 2 + ~ hoD.vo PfV2 
J.l J.l 

The required velocity increment D.vl is thus determined. The point 
PI at which the velocity impulse is applied is frequently referred to as the 
point 0/ iniection. The angle () through which the position vector turns 
from injection until asymptotic conditions are achieved is also immediately 
evident in the hodograph diagram. 

¢ Problem 11-9 
Discuss the solution in the hodograph plane of a single impulse transfer from 

an initial orbit with elements eo and ho to a new orbit with elements el and hI 
in such a manner that no rotation of the apsidal line occurs. In particular, show 
how the position is obtained at which the impulse is to be made. 

¢ Problem 11-10 
Use the hodograph plane to show that, for the two-point boundary-value 

problem, the bisector of the transfer angle is perpendicular to the difference 
V2 - VI of the terminal velocity vectors. 
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¢ Problem 11-11 
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B c 

ho~o, 1:'0' -fl- 2 fl 

------~------1----~ rl~ 
fl 

Consider the problem of the Hohmann transfer between two circular orbits 
of radii rl = 1 and r2 = 2 and assume the gravitational constant p. = 1 for 
simplicity. 
(a) What is the eccentricity el of the transfer orbit? 
(b) If the vehicle is initially in the circular orbit of radius rl , what is the angular 

momentum ho? What will be the angular momentum h2 when the maneuver is 
completed? 
(c) The first velocity impulse ~VI is applied tangentially. Using the hodo

graph method, calculate the angular momentum hi of the transfer orbit and the 
magnitude of the velocity impulse. 
(d) The second impulse ~V2 is applied tangentially when the radius r = r2 is 

attained. Again using the hodograph, calculate the magnitude ~V2. 

¢ Problem 11-12 
Determine the point in an elliptic orbit where a velocity impulse, made at 

right angles to the velocity vector and in the plane of motion, will result in the 
greatest instantaneous change in the eccentricity. 

¢ Problem 11-13 
A vehicle is in a circular orbit about a center of attraction when a velocity 

impulse is suddenly made resulting in a new orbit whose angular momentum is 
a factor of 1.5 times the original. If the new fiight path direction immediately 
following the impulse is 60 0 

, find the eccentricity of the new orbit. 

¢ Problem 11-14 
Illustrate the effect in the hodograph plane of a velocity impulse applied in 

the radial direction. Label carefully the points A, B, C, and D. At what point 
in an orbit will a velocity change made in the radial direction cause the greatest 
change in eccentricity and how will the true anomaly be effected? 
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¢ Problem 11-15 
A vehicle in a parabolic orbit with unit angular momentum is moving away 

from a planet whose gravitational constant JL is also unity. At a point 45 0 from 
pericenter, the radial component of velocity is suddenly decreased by 1/,;2 units. 
What is the eccentricity of the new orbit and where is the vehicle relative to the 
new pericenter? 

¢ Problem 11-16 
At a certain point in a circular orbit, an instantaneous change in the vehicle's 

course is made in such a fashion that the angular momentum is reduced by a factor 
of two but the period is unchanged. What is the eccentricity of the new orbit? 
What is the true anomaly f and flight direction angle "I immediately following 
the course change? 

¢ Problem 11-11 
A vehicle in an elliptic orbit is to transfer to a parabolic orbit by a single 

velocity impulse without a change in the angular momentum ho. 
(a) In what direction must the impulse be applied? 
(b) If the velocity impulse has a magnitude of ~VI = JL/hov'3, where in the 

orbit should it be applied to rotate the line of apsides clockwise by 30 0 ? 
(c) If no rotation of the line of apsides is to be permitted, where should the 

impulse be applied? 

¢ Problem 11-18 
A vehicle in a parabolic orbit moves from point PI to P2 through a central 

angle 8. Using the hodograph, find the angle between the velocity vectors at 
PI and P2, i.e., the angle through which the velocity vector rotates during the 
motion. 

HINT: Don't forget the rotation of i r . 

¢ Problem 11-19 
At a point in a hyperbolic orbit, a spacecraft's flight direction angle "I is 

30 0 
• If its speed is twice the ultimate speed Voo, what is the eccentricity of the 

orbit and through what central angle will it move before attaining asymptotic 
conditions? Assume that h is numerically equal to JL. 

11.5 Injection from Circular Orbits 

For a typical interplanetary mission, a spacecraft is launched from Cape 
Canaveral into a nearly circular earth satellite orbit. Then, at an appro
priate point on the trajectory, an engine restart is initiated and the vehicle 
moves away from the earth along an essentially hyperbolic path relative 
to the earth. The asymptotic value of the relative velocity vector is the 
departure velocity of the vehicle with respect to the earth. The sphere of 
influence of the earth extends to a distance of half a million miles, beyond 



Sect. 11.5] Injection from Circular Orbits 537 

30· 60· 90· 120· ISO· 180· 

Fig. 11.5: Loci of points of injection. 

which the effect of earth gravity diminishes rapidly. Then solar gravity 
provides the only significant force field to govern the flight of the vehicle. 

Figure 11.5 shows a map of the world upon which are plotted three 
permissible coasting orbits having azimuth directions of 45, 100, and 1100 . 
Completely arbitrary azimuths are restricted by range safety requirements 
and geographic restrictions might also limit the choice of injection points. 

Consider the problem of a vehicle in a circular coasting orbit estab
lished from a fixed launch point on the surface of the earth. Assume that an 
interplanetary orbit from earth to a destination planet has been determined 
and it is desired to find the point on the coasting orbit where the minimum 
impulsive change in velocity can be made so that the vehicle will move away 
from the earth along a hyperbola whose asymptotic velocity vector is v 00 • 

For simplicity, and as an excellent first approximation, it will be assumed 
that the nominal time of injection occurs when the interplanetary orbit 
intersects the orbit of the earth and that the velocity v 00 is the velocity of 
the spacecraft relative to the earth at this instant. 

We shall postulate that the coasting orbit is established by a launch 
from a point on the earth's surface having a latitude 4>L and that the 
azimuth of the firing angle measured from north is elL' These two quan-
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Hyperbolic 
orbit 

Fig. 11.6: Geometry of the coasting orbit. 

[Chap. 11 

tities determine the inclination angle io of the coasting orbit plane to the 
equatorial plane. The relation ist 

cos io = cos 4> L sin Q'L (11.30) 

as can be seen from Fig. 11.6. The time of launch determines the longitude 
of the node. We shall assume that the actual time of launch can vary by plus 
or minus 12 hours from its nominal value without seriously affecting the 
interplanetary orbit parameters. This assumption will permit the circular 
coasting orbit to be rotated arbitrarily about the earth's polar axis, thereby 
permitting an extra degree of freedom needed to optimize the injection 
velocity impulse. Once the point of injection along the coasting orbit has 
been located, it is then a simple matter to determine where this point lies 
geographically relative to a launch point fixed to the surface of the earth. 

With the preceding discussion as background, we shall now consider 
an analysis of the injection problem. If the radius of the circular coasting 
orbit is Tl and J.l is the gravitational constant of the earth, then the initial 
orbital speed is 

t Since io and 7r-CXL are the two interior angles of a spherical right triangle with the 
side opposite io being 4> L, this relation follows immediately from a standard identity 
of spherical trigonometry. 
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From the interplanetary orbit calculations the asymptotic relative velocity 
vector v 00 is determined. Hence, from the vis-viva integral, the magnitude 
of the velocity vector immediately following the injection impulse is 

VI = V2
J.l +v~ r l 

Since Vo and VI are fixed in magnitude, the velocity change AVI = vI-vo 
is minimized by making the angle 'IjJ between them as small as possible. 
Clearly, if a point on the coasting orbit can be found such that r I' V 0 , 

and V 00 are coplanar, then the optimum point of injection occurs at the 
perigee of the escape hyperbola-the point at which the angle 'IjJ will be 
zero. 

Optimum Injection 

The problem is more complex if no such point exists. In general, we 
assume that injection occurs at an arbitrary point r l = r l i T, ' so that 
the velocity vectors V 0 and v I just prior to and subsequent to the impulse 
are given by 

where 

D= 

as derived in Sect. 6.8. 
Also, we have 

[

COS n cos () - sin n sin () cos io] 
i
Tl 

= sin n cos () + cos n sin () cos io 
sin () sin io 

[

-cos n sin () - sin n cos () cos io ] 
i(h = - sin n sin () + c~s ~ cos () cos io 

cos(}sm 'to 
which are obtained from the results of Prob. 3-21. Then the quantity to 
be minimized is 

2 3J.L 2 ) lVI-vol =-+voo -{D+l Voo·Vo 
r l 

which is equivalent to maximizing J defined by 

J = (D + 1) ioo • io 1 (11.31) 
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For convenience, choose the direction of the x axis so that the ioo 
vector lies in the xz plane and let f3 be the angle it makes with the x axis. 
Then, the two scalar products, of which J is composed, are 

ioo • iT = sin 0 sin io cos {3 + (cos n cos 0 - sin n sin 0 cos io) sin f3 
• • 1 0.. R ( n· 0 . no· ) . R (11.32) 
100 • 10 1 = cos sm 'to cos JJ - cos ~ I. sm + sm l I. cos cos 'to sm JJ 

so that n and 0 are the quantities at our disposal for maximizing J. 
If r 1 , V 0 , and v 00 are not coplanar, we can still inject in the horizontal 

plane. The angle 1/J will not necessarily be zero of course, but will instead 
be the angle between the planes of the circular and hyperbolic orbits. 

For this case, let i!i be the unit vector normal to the coasting orbit 
plane and let v be the turn angle-Le., the angle between vIand v 00. 

Then, since 

we find that 

ioo • ir 1 = cos ( ~ 7r + v) = - sin v 

D = 1 +sinv 
1- sin v 

Therefore, the problem of maximizing J is accomplished by maximizing 

where 

i!i = [-"~:~ ~i~~~o ] ioo = [Si~ {3 ] 
cos 'to cos f3 

The triple scalar product is maximized if the three unit vectors ioo ' 
i!i' and iTl are as nearly orthogonal as possible. But 

i . i = - sinv 
00 rl and i . i = 0 !i rl 

so that, in fact, we want to make i!i • ioo as small as possible. 

Tangential Injection from Perigee ({3 + io ~ 90°) 

If 

then 

i!i • ioo = sin n sin io sin f3 + cos io cos {3 = 0 

sin n = _ cot f3 
tanio 

(11.33) 

which will not exceed unity in magnitude provided that {3 + io ~ ~ 7r. 

When this is the case, there are two distinct circular orbital planes which 
contain v 00 and are shown in Fig. 11.7. The longitudes of their respective 
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Fig. 11.7: Geometry 
of tangential injection. 

Injection from Circular Orbits 

Circular coasting 
orbits 
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ascending nodes, measured from the projection of v 00 onto the equatorial 
plane, are thent 

. (cot {3 ) . (cot {3 ) 0 1 1 = 7r + arcsIn --.- 0 12 = 27r - arCSIn --. 
, tan zo' tan Zo 

(11.34 ) 

To obtain the arguments of the injection points measured from their 
respective ascending nodes, we rewrite Eqs. (11.32) as 

sin 0 sin io cos f3 + (cos n cos 0 - sin n sin 0 cos io) sin {3 = - sin II 
(11.35) 

cos 0 sin io cos f3 - (cos n sin 0 + sin n cos 0 cos io) sin {3 = cos II 

Then, multiply the first by sin 0, the second by cos 0, and add to obtain 

sin io cos {3 - sin n cos io sin {3 = cos( 0 + II) 

Finally, with Eq. (11.33) used to eliminate sin n and with 0 replaced by 
wI) we have 

Hence 

cos{3 
cos{wI + II) = -.-. 

SInZo 

(
cOS{3 ) wI 1 = arccos -.-.- - II 

, SInZo 
(

COS {3) wI 2 = - arccos -.-.- - II 
, SInZo 

(11.36) 

t Here and in succeeding equations of this section, principal values of all inverse 
trigonometric functions are postulated. 



542 Two-Body Orbital Transfer [Chap. 11 

Fig. 11.8: Geometry of 
nonta ngentia I injection. 

Nontangential Injection from Perigee (f3 + io < 90 0
) 

When i~ • ioo cannot be zero, the angle between the planes of the circular 
and hyperbolic orbits is nonzero as illustrated in Fig. 11.8. This angle 1/1 
will be as small as possible if ip iz ' and ioo are coplanar. Under these 
circumstances, 

cos(f3 + io) = i~ • ioo 

= sin 0 sin io sin {3 + cos io cos (3 

so that sin 0 must equal -lor, equivalently, 

0 1 = 270 0 (11.37) 

Also, from the first of Eqs. (11.35), 

ioo • iT1 = sin 9 sin(f3 + io) = - sin v 

so that, replacing 9 by WI' we have the argument of the injection point 
measured from the ascending node in the plane of the coasting orbit 

. ( sin v ) 
wI = 21r - arcsm . ({3 .) 

sm +lO 
(11.38) 

Clearly, horizontal injection is not possible unless f3 + io ~ v. 
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Finally, since 1/J and {3 + io are the interior angles of a right spherical 
triangle with the side opposite {3 + io being v, then we can calculate the 
angle between the initial and final orbital planes from 

"I. . (COS({3 + io)) 
'P = arCSIn 

cos v 
(11.39) 

by using a standard identity for right spherical triangles. 

11.6 Midcourse Orbit Corrections 

Guidance and navigation techniques of spacecraft in interplanetary or 
cislunar space are often based on the method of linearized perturbations 
introduced in Sects. 9.5 and 9.6. In this case, it is assumed that the space
craft does not deviate substantially from a selected reference orbit. In 
interplanetary space, deviations as large as one percent of an astronomical 
unit are about the maximum which could be expected; generally, they 
would be much smaller. When in proximity to a planet, it is necessary to 
keep deviations from course to within a percent or so of the distance to the 
planet in order to avoid the use of unduly large velocity corrections. Under 
these circumstances, perturbation techniques can be used to calculate these 
deviations and associated velocity corrections. 

Explicit guidance techniques can also be employed using conic arcs 
suitably modified to account for small noncentral force field effects. In 
either case, both fixed- and variable-time-of-arrival velocity corrections can 
be calculated by methods which shall now be described. 

Fixed-Time-of-Arrival Orbit Corrections 

Suppose that at time t a vehicle is found to deviate from the reference path 
by an amount 8r(t) in position and 8v(t) in velocity. We wish to determine 
what the velocity deviation should be for that particular position deviation 
so that the vehicle will arrive at the target point at the predetermined or 
reference time t A. For this purpose we can use the matrices defined in 
Sect. 9.6 to write 

[ ~*(t) R*(t)] [ 0 ]_ [8r(t)] 
V*(t) V*(t) 8V(tA) - 8v(t) 

Therefore, we have 

8r(t) = R*(t) 8v(tA) and 8v(t) = V* (t) 8v(t A) 

and, eliminating 8v( t A)' we obtain 

8v(t) = V*(t)R * -1 (t) 8r(t) = C*(t) 8r(t) (11.40) 
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The velocity vector v, whose gradient with respect to r is C*, is that 
velocity required at r to reach the target point. 

If a velocity correction Av(t) is to be made at this time, it can be 
expressed as 

(11.41) 

where the superscripts - and + are used to distinguish the velocity just 
prior to a correction from the velocity immediately following the correction. 

For these calculations to remain valid, it is necessary, of course, to 
restrict the magnitude of the deviations from the corresponding nominal 
values. Alternately, we could target any intermediate point r T -such as 
the point on the planet's sphere of influence through which the reference 
orbit passes at the reference time tT • Then, if r and v are the position and 
velocity of the vehicle at the time the correction is to be made, these vectors 
can be extrapolated to the time tT , using an orbital integration technique 
such as Encke's method, in order to determine the point r~ at which the 
spacecraft would be found at the reference time if no corrective action were 
taken. By calculating the conic arc connecting the position vectors r and 
r~ with a transfer time of tT - t (i.e., solving Lambert's problem using the 
methods of Chapter 7) the conic velocity VOl at r is determined. The 
difference between the conic velocity and the vehicle's actual velocity is a 
good measure of the effect of the disturbing perturbations. A second conic 
arc connecting the spacecraft position vector r and the desired target point 
r T produces the conic velocity vector v 02' If this velocity is corrected 
for the effect of perturbations, the velocity necessary to reach the desired 
target from position r is obtained. Thus, an excellent approximation to 
the required velocity correction is just the difference between the two conic 
velocities; specifically, 

Av = v 02 - VO
l 

(11.42) 

The computation may, of course, be repeated iteratively to achieve any 
desired degree of convergence. However, in practice, one computation cycle 
is usually sufficient. 

Variable-Time-of-Arrival Orbit Corrections 

A reduction in fuel requirements can be accomplished if we permit the 
time of contact with the target planet to be a variable chosen in such a 
way that the velocity correction will have the smallest possible magnitude. 
Of course, we assume that the spacecraft is controlled in the vicinity of a 
reference interplanetary orbit just as for the linearized fixed-time-of-arrival 
guidance scheme. 

To calculate the variable-time-of-arrival velocity correction, consider 
the effect of changing the arrival time t A by a small amount 6 t. Let r p (t) 
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and vp(t) be, respectively, the position and velocity vectors of the target 
planet. Then the new point of contact will be 

rp(tA + ot) = rp(tA) + Vp(tA) ot 

if the linearization assumptions remain valid. At this time the spacecraft 
position will be 

r(tA + ot) = r(tA) + v(tA) ot 

Thus, if we require that r(tA + ot) = rp(tA + ot), then we have 

or(tA) = r(tA) - rp(tA) = -vr(tA) ot 

where 
(11.43) 

is the velocity of the spacecraft relative to the target planet at the nominal 
time of arrival. In this manner, the objective of nulling position errors 
would be ultimately attained but not at the reference arrival time. 

To determine the variable-time-of-arrival correction, we may write, as 
before, 

[ 
~*(t) R* (t) 1 [or(t A) 1 = [or(t) 1 
V*(t) V* (t) ov(t A) ov(t) 

which is multiplied by the matrix [-C*(t) I] to obtain 

(-C*(t)R*(t) + V*(t)] or(tA) = -C*(t) or(t) + ov(t) 

Then, using the starred form of the second of Eqs. (9.57), we have 

(11.44) 

as the required deviation in velocity at time t if we are to arrive at the 
new target point at the time t A + ot. 

If we define ~ v' (t) as the velocity correction to be applied at time t, 
we may write 

Llv'(t) = Llv(t) + w(t) ot (11.45) 

where Llv(t) is the fixed-time-of-arrival correction and w is defined by 

w(t) = R * -T (t)v r(t A) (11.46) 

With the objective of selecting ot so as to minimize the magnitude of Llv' , 
clearly the best choice is that which will render the velocity correction 
vector normal to w. Calling this value ot A' we have, from Eq. (11.45), 

Llv·w 
otA = --- (11.47) 

w·w 

As a consequence, the velocity correction Ll v' of smallest magnitude which 
will accomplish the mission is simply related to Ll v by 

MinLlv' = MLlv (11.48) 
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The matrix M is an example of a projection operator and is defined by 

M=I- ww
T 

wTw 
(11.49) 

Thus, the variable-time-of-arrival correction is only a component of the 
fixed-time-of-arrival correction. 

~ Problem 11-20 
jt' A vehicle is approaching a target planet whose gravitation constant is J.L. 

(a) The velocity vector may be expressed in the form 

v = J q(l~ e) (- sin f I, + (e + cos I) 1.1 

where q is the pericenter distance. 
(b) If it is desired to make small variations oe and 01 in the eccentricity e and 

the true anomaly I, use the equation of orbit in the form 

q(1 + e) 
r = ---"-''------''~ 

1 + ecosl 

to show that 0 e and 01 must be related by 

(1 - cos J) oe + e( 1 + e) sin 1 01 = 0 

in order that r and q remain unchanged. 
(c) The corresponding change ov in the velocity vector to insure the invariance 

of q is determined from 

OV = 2(1 _ecosl) J q(1 ~ e) (I - cos 1)2 I, - (2 + e - cos I) sin /i.( of 

Hence, to a first approximation, the direction along which a velocity change may 
be made without altering the altitude at pericenter is the same as the direction 
of the vector 

(1 - cos J) 2 i e - (2 + e - cos J) sin 1 i p 

HINT: To a first-order approximation 

and 

James E. Potter 1963 
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~ Problem 11-21 
Y For the final velocity correction it may be desirable to select a new time of 

arrival in such a way as to minimize the sum of the magnitudes of the correction 
and the velocity deviation at the time of arrival at the target. The change ot in 
the nominal time of arrival is then determined as the solution of 

wT(wot + ~v) 
J ~v' av + wT(w ot + 2av) ot 

oXT(oXot - R*-lor) 
+ =0 

JorTR*-TR*-lor + oXT(oXot - 2R*-lor) ot 

where 
oX = (VAA- 1 +A*-l)W 

and ~v is the fixed-time-of-arrival velocity correction. 

Pericenter Guidance 

When a velocity correction is made in the vicinity of a planet, the arrival 
time at pericenter may be permitted to vary thereby reducing substantially 
the required velocity correction as well as the terminal velocity deviation 
from its nominal value. Specifically, let the desired terminal conditions at 
the target planet be a specified altitude at pericenter and a fixed plane 
in which the pericenter vector is to lie. Again, as before, the orbit is 
extrapolated forward in time to locate the pericenter vector r" which would 
result in the absence of a velocity correction. A conic arc, with r~ as 
pericenter and connecting the position vector r, is then determined to 
obtain a measure of the gravitational perturbation. The desired pericenter 
vector r p is calculated from r~ by scaling its length to correspond to the 
required pericenter distance and then rotating it into the required plane 
while, at the same time, keeping the transfer angle 0 fixed. A second conic 
arc with r p as pericenter is calculated and the difference between the two 
conic velocities again provides an excellent approximation to the necessary 
velocity correction. 

Theoretically, the desired plane should not be fixed in space, but 
should rotate with the planet. However, the change in pericenter arrival 
time, combined with the planet's own rotation, generally leads to terminal 
deviations which are smaller than the navigation uncertainties. Hence, it is 
sufficiently accurate to aim for a fixed plane when approaching pericenter. 

Peri center guidance may be summarized as follows: 

1. The conic velocity v c. required at r to attain pericenter at 
computed from 

Vc = 'F! 0 {r~ - [1- Tp (1- COSO)] r} 
• TTpsm p 

r' is p 
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where () is the angle between r and r~. The parameter p of the conic, 
called a tangent ellipse in Sect. 6.3, is given by 

rr~(1 - cos (}) 
p = r' - r cos () 

p 

2. The pericenter vector r~ is rotated into the desired plane and scaled 
to the desired length r p by means of 

rp = rp [Jl- ,8 cos (}Unit(in x ir) -,8 in X (in X ir)] 

where 
,8 = cos () 

1 - (in . ir )2 

The unit vector in is normal to the desired plane in the direction of 
the angular momentum vector. 

3. The conic velocity v 02' required to attain pericenter at r p' is then 
calculated by repeating the first step with r p in place of r~. 

4. The magnitude of the required velocity correction may be further 
reduced by noting there is a direction along which a velocity change 
can be made without altering the altitude at pericenter according to 
the results of Prob. 11-20. If the component of velocity correction 
along this insensitive direction is deducted from the total correction, 
the effect will be simply a small rotation of the pericenter vector r p . 

This direction of insensitivity is computed from 

Id = Unit [-(1 - cos 0)2 iT. + sinO (1- cosO + :.) iT X in 1 
where i rp is a unit vector in the direction of r p • 

5. The velocity correction is then given by the component of the vector 
v 02 - VO

l 
in the plane perpendicular to id and is calculated from 

(11.50) 

It is not appropriate to aim for a fixed plane when making a veloc
ity correction if the desired terminal conditions are a vacuum pericenter 
distance (which is equivalent to an entry angle) and a landing site fixed to 
the planet. The plane must be determined so that the spacecraft will be 
directed to the desired landing site. 

¢ Problem 11-22 
Derive the formula given in Step 2 of the above summary for rotating and 

scaling the pericenter vector rp. 
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¢ Problem 11-23 
A vehicle is approaching a planet along a hyperbolic path. Let Voo and 

TO be the velocity at infinity and the minimum distance from the center of the 
planet, respectively. At the instant the vehicle is at the point of closest approach, 
a velocity impulse 6v is applied in the direction opposite to the motion in order 
to place the vehicle in an elliptic orbit of eccentricity e about the planet. Then 

/).V = vv&, + 2,. -~ 
TO V~ 

where J.L is the gravitational constant of the planet. 

¢ Problem 11-24 
If P is the orbital period of a spacecraft, then a small increase 6a in the 

semimajor axis a will produce an increase of (3P/2a) 6a in the period. 

¢ Problem 11-25 
A satellite is in an elliptic orbit about the earth with apogee and perigee 

denoted by Ta and Tp. If at apogee a small impulse 6v in velocity is suddenly 
made, then the perigee will be increased by the amount 

6T = - -6v 2Pfip 
p 7r Ta 

where P is the period of the satellite. 

¢ Problem 11-26 
A satellite is in an elliptic orbit. A small impulse 6v in velocity in the 

tangential direction is suddenly made. The eccentricity will be changed by the 
amount 

6e = 2p cosE6v 
TV 

so that the eccentricity is increased in the first and fourth quadrants and it is 
decreased in the second and third quadrants. 

The line of apsides will be rotated by the amount 

6w = ~sinf6v 
ev 

so that the rotation is in the forward direction when Vr is positive and backward 
when Vr is negative. 

HINT: Use the method of variation of parameters. 

¢ Problem 11-27 
At a certain point in an elliptic orbit a small error in the gravitation constant 

J.L has no effect on the accuracy of determining the orbital eccentricity. The point 
at which this can occur must necessarily be at an extremity of the minor axis. 

HINT: Use the vis-viva integral and the formula p = a(l - e2
). 
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11.7 Powered Orbital Transfer Maneuvers 

The orbit transfer maneuvers considered thus far in this chapter have been 
accomplished by ideal impulsive velocity changes. It was assumed that the 
velocity required to achieve certain mission objectives could be attained 
instantaneously. This assumption is frequently justified for preliminary 
mission analysis but is clearly inadequate to solve the general powered
flight guidance problem. However, the concept of an impulsive velocity 
change can be exploited to provide an excellent rocket engine steering law 
which is applicable for a wide variety of orbit transfers. 

The guidance and control problem, as it is considered in this section, 
is not directly concerned with the design or response characteristics of 
the physical components of the inflight guidance system. It is postulated 
that the system includes inertial instruments capable of measuring thrust 
acceleration along three mutually orthogonal axes which are nonrotating. 
The measured acceleration vector aT of the vehicle is defined to be the 
acceleration resulting from the sum of rocket thrust and aerodynamic 
forces, if any, and would be zero if the vehicle moved under the action 
of gravity alone. The sum of aT and g, the gravitation vector, represents 
the total vehicle acceleration with respect to an inertial frame of reference. 

Let a velocity vector v r be defined as the instantaneous velocity, 
corresponding to the present vehicle location r, required to satisfy a set of 
stated mission objectives. The velocity difference 

(11.51) 

where v is the present vehicle velocity, is then the instantaneous velocity
to-be-gained. Since 

dv 
dt = g(r) + aT 

the rate of change of the velocity-to-be-gained v g can be expressed as 

dVg dv 
(it = dt

r 
- g(r) - aT (11.52) 

The required velocity vr is a function of both time t and position r(t) 
so that 

(11.53) 
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following the motion of the vehicle. Substituting in Eq. (11.52), gives 

dVg BVr 
-=--v -aT dt Br 9 

Therefore, since C* = Bv r / Br , as defined in Sect. 9.6, we have the following 
differential equation for the velocity-to-be-gained vectort 

(11.54) 

Constant Gravity Field Example 

It is instructive to examine the velocity-to-be-gained equations for the 
special case in which the gravity vector g is a constant. The solution 
of the linearized equations of motion 

dr dv. 
dt = v and dt = g wIth r{to) = ro and v{to) = Vo 

is readily seen to be 

r{t) = ro + {t - to)vo + ! (t - to)2g 

To adapt this solution to our current notation, we replace ro by r{t), 
v 0 by v r (t), and r( t) by r( t 1) = r l' Thus, the required velocity is deter
mined to be 

Hence, 
C*(t) = BVr = __ 1_ I 

Br tl - t 

so that the equation for the velocity-to-be-gained, Eq. (11.54), is simply 

dVg 1 
- = --v - aT (11.55) 
dt tl - t 9 

Alternatively, we could have differentiated the equation for v r (t) to 
obtain 

or 

(t 1 - t) d~r - v r = -v + (t 1 - t) g 

dv 
( t 1 - t) d/ = v 9 + (t 1 - t) g 

Then, by subtracting the equation for the vehicle velocity written in the 
form 

t For an alternate derivation of this basic equation, see pps. 8-9 of the Introduction. 
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we have 
dVg 

(tl - t)dt = Vg - (tl - t)aT 

which is the same as Eq. (11.55). 
One of the advantages of exploring the constant gravity model is the 

ease with which an optimum control law for driving the velocity-to-be
gained vector to zero can be derived. For this purpose, form the scalar 
product of Eq. (11.55) and the vector v 9 to obtain 

or 

d d 2 2 2 
dt (v 9 • v g) = dt Vg = t=tVg - 2aT . v 9 

1 

d 2 2 
(tl - t) dt Vg = 2Vg - 2(tl - t)aT . v 9 

which can be integrated by parts from the present time t to the time of 
engine cutoff teo' Thus, 

Since the velocity-to-be-gained is zero at t = teo' the integrated part is 
simply -(tl - t)v~(t). Therefore, 

l
t co 

t [2(tl - t)aT . v 9 - v~] dt = (tl - t)v~(t) (11.56) 

Now, for any particular time t, the right-hand side of Eq. (11.56) is 
determined. Thus, to minimize the integration interval teo - t, the remain
ing engine bum time, we should maximize aT • v g' This is accomplished 
by aligning the thrust direction with the v 9 vector. The steering law thus 
obtained is optimum and, which is most important, independent of the 
time history of the thrust acceleration vector aT(t). 

Cross-Product Steering 

In the general case, for any gravity field, a convenient and, in fact, efficient 
guidance law can be developed by recognizing that an effective way to drive 
all three components of v 9 to zero simultaneously is to align the time rate of 
change of the v 9 vector with the vector itself. Mathematically, we require 
a direction of aT to be chosen such that 

dv 
-g Xv =0 
dt 9 

In particular, we can verify from Eq. (11.55) that, for the constant gravity 
example, this law, which is called cross-product steering, is the same as 
thrusting in the direction of the velocity-to-be-gained. 
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For convenience, we introduce the notation 

dv 
p(t) = -C*(t)v g(t) = dtT 

- g(r) 
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(11.57) 

so that cross-product steering is equivalent to choosing the direction of the 
thrust acceleration vector such that 

aT x Vg = P x Vg (11.58) 

Then a vector postmultiplication of Eq. (11.58) by v 9 yields 

{aT .vg)Vg - v;aT = (p .vg)Vg - v;p 

or 
aT = P + (q - iv . p) i v g g 

(11.59) 

where iVg is the unit vector in the direction of v g' The scalar quantity 

q = aT· iVg 

can be calculated by squaring both sides of Eq. (11.59). We find that 

(11.60) 

Since aT is measurable in the vehicle using, for example, inertially oriented 
accelerometers, the direction of aT may be calculated from Eq. (11.59). 

As can be seen from Eq. (11.60), if aT is not sufficiently large, it will 
not be possible to align the vector v 9 with its derivative. With typical 
chemical rockets, for which the burn time is relatively short, no difficulty 
is encountered with this guidance logic. When this is not the case, we can 
always resort to thrusting in the direction of the velocity-to-be-gained. 

Estimation of Burn Time 

A rough estimationt of the rocket burn time can be had if we consider C* 
to be a constant matrix. Writing the fundamental differential equation for 
velocity-to-be-gained in terms of the vector p defined in Eq. (11.57), we 
have 

dVg * Tt = -C v 9 - aT = P - aT 

For a steer law which renders v 9 irrotational, the vector p will have a fixed 
direction and will be proportional to v 9 assuming C* to be a constant. 
Let AVg and BVg be the components of p along and perpendicular to v g' 

respectively. Then 

and (11.61) 

t This analysis was made by Edward M. Copps in the midsixties during the Apollo 
days. 
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Now 

dVg dVg (dVg)2 2 2 2 dVg 2 
Tt·Tt= dt =P +aT- 2p.aT =aT +2p·Tt- p 

dv = a2 + 2Av -g - v2(A2 + B2) 
T g dt g 

so that 
dVg B2 
dt = -aT 1- a} v~ +Avg 

= -aT (1 - B2 v2 + ... ) + Av 
2a~ g g 

By neglecting the higher-order terms in this expansion, we obtain a Ricatti 
equation for Vg which can then be transformed into the linear second-order 
differential equation 

d
2
y + (~ daT _ A) dy _ ! B2y = 0 

dt2 aT dt dt 2 

using the change of variable 

1 dy B2 
--=--v 
y dt 2aT g 

Note that the thrust acceleration term is the only time-varying coefficient 
in the equation. 

Consider now a constant thrust rocket engine for which 

aT = . = - 1 + ~t + ~ t2 + ... F F [ . (.)2 1 
rna -rnt rna rna rna 

where we have used the notation m for the time rate of change of the rocket 
mass and F for the constant rocket force. Assume further that the ratio of 
the time rate of change of the thrust acceleration to the thrust acceleration 
has a constant value D so that we may write 

aT = aT(O)(1 + Dt + !D2t2 + ... ) 
Therefore, by comparison, we have 

1 daT 1 drn 

aT dt = rna dt 
so that the acceleration profile will match that expected from a rocket to 
the first order in time and the second-order differential equation in question 
will then have constant coefficients. The solution is simply 

y = C1 e)'lt + c
2

e>'2 t 
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where 

2AI' 2A2=_m +A±_fA2+2B2+ m (m -2A) 
mo V momo 

(11.62) 

In terms of the original variable 11
9

, we obtain 

B2 Al e'>'1 t + cA2e'>'2 t 
-11 = 
2~ 9 e'>'1t + ce'>'2t 

where the constant C is to be determined using the fact that t = 0 at the 
time of ignition. Thus, 

W + Al B2119 (0) 
C = - W + A2 if we define w = 2~(0) (11.63) 

Finally, the estimate of the burn time is calculated from the fact that the 
velocity-to-be-gained 119 vanishes at cutoff. Hence, 

. 1 Al(A2 +w) 
Burn time ~ A A log A (A) (11.64) 

2- I 2 I+W 

Hyperbolic Injection Guidance 

In the remainder of this section, we shall consider as examples several 
specific mission objectives and calculate the corresponding C* matrix for 
each. 

For example, the velocity required to establish a hyperbolic orbit from 
position r to attain, ultimately, a velocity v 00 is given by 

vr = ~11oo[(D + l)ioo + (D -1)ir1 

where 
11~(r + i!,r)(D2 - 1) = 4J.' 

which we have used several times before and was derived in Sect. 6.S. To 
obtain the C* matrix, we calculate 

aVr 1 (. • laD 1 (D ) air ar = 21100 100 + Ir 8r + 21100 -1 ar 
Now 

and 
aD _ (D2 _1)2(. . )T 
ar - SJ.'D 100 + Ir 
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Circular-Orbit Insertion Guidance 

Consider the problem of guiding a vehicle into a circular orbit of a planet 
by a rocket braking maneuver initiated on an approach trajectory. The 
velocity vector v r may be defined as the velocity the vehicle should have 
to be in a circular orbit at distance r from the planet and in a plane whose 
unit normal is in' Thus, if J.L is the gravitational constant of the planet 
and ir is the unit vector in the direction or r, then 

(11.66) 

By driving the v 9 vector to zero, we are able to control the shape and 
orientation of the final orbit, but no direct control of the radius of the orbit 
is possible. However, an empirical relationship between the final radius and 
the peri center of the approach trajectory can readily be determined, so that 
a desired radius can be established by proper selection of the peri center of 
the approach orbit and the ignition time. 

The corresponding C* matrix is readily calculated if we write the 
expression for the required velocity vector, Eq. (11.66), in the form 

with the matrix Sn defined as 

where n x ' ny, n z are the direction cosines of the unit vector in' Indeed, 
it is easy to obtain 

(11.67) 

Note that the C* ofEq. (11.67) is not symmetric while the one derived 
in the previous subsection is symmetric. Actually, the only C* matrix 
which we proved to be symmetric was that for the time-constrained, two
point, boundary-value problem-i.e., Lambert's problem. Indeed, we are 
taking some liberties in even using the notation C* for cases other than 
Lambert's problem. 
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¢ Problem 11-28 
The required velocity to achieve a specified flight direction angle 'YT at the 

target position rT is given by 

vr=B [~(rT-r)+Dir] 
where B and D are the positive roots of 

B2= p = p 
rrT(1 + cosO) 7"Tr + rtr 

and 
2 ~~+~ . D = rT - r. = rT - r(cosO+ cot'YTsmO) 

sm'YT 

.T t' 0 = rT - l"Tr - rco "YTsm 

with 0 as the transfer angle between the present position r and the target rT. 
(a) Derive the partial derivatives 

8r • T 8r 1 air 1 (I .. T) 
8r = lr 8r = 8r =;: - lrlr 

. 0 80 .T air sm - =-1 -8r rT 8r 

(b) Use these results to verify that 

and 

8B B 
8r = 2r(1 + cosO) (ir + irT ) T 

8D = cos(')'T + 0) iT _ cos')'T iT 
8r 2D sin 'YT sin 0 rT 2D sin 'YT sin 0 r 

(c) Calculate the C* matrix and determine if it is symmetric. 

¢ Problem 11-29 
The required velocity to attain an elliptic orbit of a specified semimajor axis 

and eccentricity can be determined from 

where in is the unit vector in the direction of the desired angular momentum 
vector and p is the parameter of the desired orbit. The matrix C* is obtained 
from 

1 

c* = ± ~ [(~)2 -1] -~ iri; 
r2 p-r 

±H~ [.2_ (~-lr]r (I-Irl~)- ~S.(I-2Irl~) 
where the matrix S" has the property that S"ir = i" X i r • 
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¢ Problem 11-30 
The required velocity to reach the target position rT with specified energy 

or, equivalently, fixed semimajor axis, is 

where P-y p. _.l!:.. 
- rl + r2 - c 4a 

Q-± --y p. P. 
- rl + r2 + c 4a 

according to the introductory material in Sect. 6.S. 
The associated C· matrix is 

C· = SP(:- C)2 (Ie + Ir)(Ie + Ir)T + SSS2 (Ie - ir)(ie - ir)T 

P+ Q(I .. T) + P - Q(I .. T) - -- - lele -- - Irlr 
C r 

~ Problem 11-31 
Y Repeat the derivation of the C* matrix using the expression for the required 

velocity given in Prob. 11-30 but constraining the transfer time tT - t instead 
of the semimajor axis. In other words, determine the C* for Lambert's problem 
in the form 

C* (P - Q P + Q) I ( p.Q p.) (. . )(. .)T = -r- - -c- + 16aP~ - SP(s _ C)2 Ir + Ie Ir + Ie 

( 
p.P p.) ( ) ( i ) T (P - Q p.) . . T + 16aQ~ + SQs2 Ie - Ir Ie - r - -r- + Sa~ Irlr 

+ ( P ; Q + S:~) iei~ 
where 

~ = 3PQ(tT - t) + (s - c)Q - sP 

Frederick H. Martint 1966 

11.8 Optimal Guidance Laws 

The velocity-to-be-gained guidance technique developed in the previous 
section, is workable if it is possible to define, at each instant of thrusting, 
a required velocity to meet mission objectives which is a function only of 
current position. However, for such missions as inserting a spacecraft into 
an orbit of a specified size and orientation, soft-landing a vehicle on the 
surface of the moon, and orbital rendezvous, this requirement cannot be 
met. 

t Fred Martin's derivation in his thesis had some errors. The corrected version is 
courtesy of William M. Robertson of the Charles Stark Draper Laboratory. 
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When the spacecraft is propelled by an engine whose thrust magnitude 
and direction can be controlled, a variety of terminal conditions can be met. 
However, to avoid excessive fuel expenditure, appropriate guidance laws 
must be developed which are optimum, or nearly so, using techniques of the 
Calculus of Variations. It is beyond the scope of this book to develop fully 
this field; nevertheless, we can design some practical guidance techniques 
using elementary variational principles. 

Terminal State Vector Control 

The development of an explicit steering equation for a controllable thrust 
engine, which will guide a vehicle to a desired set of terminal conditions, 
is based on the solution of a simple variational problem. Let it be required 
to find the acceleration program a(t) which will minimize the functional 

itt itt 
J = a(t)2 dt = aT (t)a(t) dt 

to to 
(11.68) 

If a(t) is the total acceleration vector, then the equations of motion are 

dr dv 
dt = v and dt = a (11.69) 

subject to 
r(to) = ro 

v(to) = Vo 
and 

r(tl) = r l 
v(t l ) = VI 

(11.70) 

This minimization problem is readily solved using the Calculus of 
Variations. In general, there exist infinitely many sets of functions which 
satisfy the differential equations and the boundary conditions. To each 
of these sets corresponds a particular value of J. Among these sets, we 
shall suppose that there is one which generates a minimum value for J. 
This minimal set will be denoted by rm(t) and vm(t) produced by the 
acceleration program am (t). 

Consider a set of functions 6 (t), v (t), and '( t) which satisfy 

d6 
-=V 
dt 

subject to the boundary conditions 

and dv =, 
dt 

(11.71) 

Then, form the one-parameter family of so-called admissible functions 

r(t, a) = rm(t) + a6(t) 

v(t, a) = vm(t) + av(t) 

a(t, a) = am(t) + a,(t) 

which includes the minimal set corresponding to a = O. 

(11.73) 
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The functional J will then be the following function of a: 

so that a necessary condition for J (a) to have a minimum is 

dJI itl - =0=2 a~dv 
da Q=O to 

The right side of Eq. (11.75) is integrated by parts 

i tl itl daT 
a~ dv = - ---1!!. V (t) dt 

to to dt 

and the integrated part vanishes since v (to) = v (t 1) = O. 
necessary condition for J(a) to have a minimum is that 

i tl daT d6 
---1!!. - dt = 0 

to dt dt 

(11.74) 

(11.75) 

Therefore, a 

(11. 76) 

for every admissible variation 6 (t) satisfying the boundary conditions. It 
follows from the Fundamental Lemma of the Calculus of Variations that 

where c1 is a vector constant. 
To prove the lemma, note that Eq. (11.76) can be written as 

f (d;;n - c, ) T ~~ dt = 0 

which must hold for all 6 (t). In particular, it must be true for 

6(t) = ft dam dt - c
1
(t - to) 

lto dt 

with c1 chosen so that 6 (tl) = O. Hence, 

f (d;;n -c,) T (d;;n -c,) dt = 0 

and this is possible only if dam/dt = c1 . Hence, 

am (t) = CIt + C2 (11.77) 

Therefore, the optimum acceleration program (if there is one) must 
be a linear function of time. The constants of integration C 1 and c2 can 
be chosen so that r m (t) and v m (t) satisfy the boundary conditions. The 
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final result is simply 

4 6 
am (t) = -t [v I - v(t)] + t2 {rl - [r(t) + v I tgOn 

go go 

where 
tgo = tl - t 

denotes the time-to-go before thrust termination. 
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(11.78) 

For a guidance maneuver, the total acceleration a(t) is the sum of the 
thrust acceleration aT(t) and the gravity acceleration g(r). If the gravity 
vector were, indeed, a constant, then the exact solution to the guidance 
problem would be 

4 6 
aT(t) = -[vI -v(t)] + T{r l - [r(t) +VItgOn -g[r(t)] (11.79) 

tgO tgo 

In problems of practical interest, the vector g is not constant and the 
integral-square criterion of Eq. (11.68) is not appropriate for fuel minimiza
tion. However, it happens that Eq. (11.79) does provide a nearly optimum 
steer law for a wide variety of problems and, in fact, was the basis of the 
lunar-landing guidance method for the Apollo missions. 

All of the quantities in the steer law can be either measured onboard 
the spacecraft or calculated in the spacecraft computer. As the terminal 
conditions are approached, time-to-go approaches zero and the computa
tion clearly becomes unstable. The difficulty is avoided, with only slight 
loss in potential performance, by holding the time-to-go factor constant in 
Eq. (11.79) when it is less than some preassigned amount. Engine cutoff 
can then be commanded when the actual time-to-go reaches zero. 

¢ Problem 11-32 
A more general functional to be minimized is 

i
tl 

J = F(t,x,x') dt 
to 

where the prime indicates differentiation with respect to time. By writing 

x(t, a) = xm(t) + a€(t) with €(to) = €(tt) = 0 

where € (t) is an admissible function, then J will be a function of a. A necessary 
condition for dJ Ida to be zero when a = 0 ist 

8F _!!:.. 8F = OT 
ax dt ax' 

t This famous differential equation is sometimes called the Euler-Lagrange equation 
but it should be mentioned that Lagrange was only eight years old when Euler first 
obtained the result. Its solutions have been named extremals because they are the only 
functions which can give J a maximum or a minimum value. 
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NOTE: An essential part of the derivation consists of proving that if 

l
tl 

y(t) • E(t) dt = 0 
to 

for all admissible functions E (t), then the vector y is identically zero. 

Leonhard Euler 1744 

~ Problem 11-33 
Y An integral of Euler's equation exists if t does not appear explicitly as an 
argument of F(t, x, x'). In particular, the extremals for 

l
tl 

J = to F(x, x') dt satisfy 
of , 

F - Ox' x = constant 

HINT: Verify the relation 

~ (F _ of x') = (oF _ ~ OF) x' 
dt Ox' Ox dt Ox' 

~ Problem 11-34 
Y The curve y = y(x) , connecting the two points Xl, Yl and X2, Y2, generates 
a surface of revolution when rotated about the X axis. If the surface area is to be 
a minimum, the curve must be a catenary; that is, y will be a hyperbolic cosine 
function of x. 

HINT: Find the extremals for the functional 

1
:1:2 

S = 21r yJ 1 + y'2 dx 
:1:1 

Then, to solve Euler's equation, try the substitution w = dy/dx so that 

d2y dw 
-=w-
dx2 dy 

The linear-Tangent Law 

Consider the problem of guiding a rocket launched from the surface of the 
earth in such a manner as to maximize its total energy per unit mass. 
For simplification, we shall ignore the small part of the trajectory within 
the sensible atmosphere and assume that no external forces other than 
gravity are influencing the course of the vehicle. FUrthermore, to keep the 
problem manageable, we presume a given time history of thrust acceleration 
magnitude and assume a flat-earth approximation so that the gravity vector 
will be a constant. The direction of the thrust vector is the quantity we 
are to control to solve the optimization problem. 
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Under these circumstances, the equations of motion of a vehicle in the 
x, y plane are 

~; =! [:.] = f[x(t), ,8(t)] = [ a~ ~~j9 ] 

Vy aT sm/3 - g 

(11.80) 

where x(t) is the four-dimensional state vector and ,8(t) is the control vari
able of the system. The initial conditions for the state are x(to) = 0 and 
the thrust acceleration aT(t) is a known function of time. [No initial value 
will be specified for the control variable ,8; in fact, ,8(0) will be determined 
as a part of the optimal solution.] The quantity to be maximized is 

J = gy(t1 ) + ! [V~(tl) + v;(t 1 )] = gX2(t1 ) + ! [X~(tl) + X~(tl)] (11.81) 

As before, we write 

x(t} = xm(t} + ae(t} 

,8(t} = ,8m (t) + Q"Y(t) 

with e(to} = 0 

so that a necessary condition for J to have a maximum is 

(11.82) 

(11.83) 

This is the so-called Mayer form of the general optimization problemt -so 
called because the specification of the optimum is entirely in terms of the 
end conditions. 

In order to include the dynamics of the rocket in the problem, we first 
derive the differential equation to be satisfied by the admissible functions 
e(t) and "Y(t). Since the state vector is a function of both t and Q, we 
differentiate the state equation (11.80) partially with respect to Q and 
obtain 

8 (dX) de 8fax af 8,8 8f 8f 
8a dt = dt = ax aa + 8,8 8a = ax e(t} + 8,8 "Y(t} 

Thus, the admissible variations must always be such that the equation 

de 8f af 
dt - ax e - a,8 "Y = 0 (11. 84 ) 

is satisfied. This condition still holds if the scalar product with an arbitrary 
function "x(t) is taken and the product integrated between the limits to 

t Christian Gustav Adolph Mayer (1839-1908) was born in Leipzig, Germany in a 
family of wealthy merchants. Mayer chose mathematics and physics as a way of life 
and his entire career was spent as a professor at the University of Heidelberg where he 
enjoyed great respect from his students and colleagues. He achieved important results 
in both partial differential equations and optimization criteria in variational calculus. 
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and t l' Therefore, 

1= ltl (~T (t) dE + 8F E + 8F'Y) dt = 0 
to dt ax. 8f3 

(11.85) 

where the function F is defined by 

F = -~ T (t) f[x(t), f3(t)] (11.86) 

This is the technique first used by Lagrange for finding the maximum or 
minimum of a function of several variables subject to certain constraints. 
The function F is called the Lagrange expression and the components of 
~ are the Lagrange multipliers. 

The second term in Eq. (11.85) can be integrated by parts 

l
t1 8F ltl dE 

to ax. E(t)dt = bT(t1)E(tt) - to bT(t) dt dt 

where we have defined 

bT(t) = lt 8F dt = -It ~ T(t) 8f dt 
to ax. to ax. (11.87) 

Hence, 

(11.88) 

When I, whose value must be identically zero since E and 'Yare admissible 
variations, is added to Eq. (11.83), the terminal values of the Lagrange mul
tipliers, which are still at our disposal, can be so chosen that the necessary 
condition for a maximum is simply 

dJI ltt 8f - - I = ~ T(t)-'Y(t)dt = 0 
do: 01=0 to 8f3 

(11.89) 

The appropriate values of the components of ~(tl) for this purpose are 

At (t1) = 0 

A2(t1) = 9 

A3(t1) = x3m(t1) = v:r:m(t1) 

A4(t 1) = x4m(t1) = vym(t1) 

(11.90) 
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The only circumstance under which the necessary condition (11.89) 
can be satisfied for all admissible variations ,( t) is that 

(11.91) 

which can be established using the variation of the Fundamental Lemma 
stated in the note of Prob. 11-32. This requirement is called the optimality 
condition and the vector ~ is, frequently, called the co-state. Furthermore, 
from Eq. (11.87) with ~ = h, we see that the vector-matrix differential 
equation for the co-state is 

d~ T _ ~ T ar 
~-- ax 

For the case at hand, the partial derivatives of r(x, /3) are 

so that 

ar [~~ ~ ~] ax= 0000 
o 0 0 0 

Al (t) = cI = 0 

A2(t) = C2 = g 

and 

A3(t) = CIt + c3 = Vxm(t I ) 
A4(t) = c2 t + C4 = g(tl - t) + Vym(tI) 

Also, from the optimality condition (11.91) 

-A3(t) sin 13m + A4 (t) cos 13m = 0 

Therefore, the optimum program for 13( t) is 

tan/3. (t) = A4(t) = g(tl - t) + Vym(tI) 
m A3(t) vxm (t I ) 

(11.92) 

(11.93) 

called the linear-tangent law. At the final time t I , the thrust direction is 
tangent to the vehicle's velocity vector. 

The two-dimensional vector 

~ (t) = [A 3 (t)] 
P A4(t) 

which has the direction of the optimal acceleration vector, was called the 
primer vector by Derek F. Lawden who authored the monograph Optimal 
Trajectories lor Space Navigation in 1963.t The tip of the primer vector 
describes a straight-line locus in the x, y plane during the time of thrusting. 

t Published in London by Butterworth & Co. Ltd. 
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The linear-tangent law can be used as an approximate steer law in a 
realistic gravity field. For even greater simplicity, one might represent the 
angle {3 itself as a linear function of time. This latter technique is the basis 
of the so-called "iterative guidance mode" which was used successfully to 
guide the Saturn launch vehicle as it carried the Apollo spacecraft into an 
earth parking orbit prior to its voyage to the moon. 

¢ Problem 11-35 
Show that the optimal control variable {i will be a constant if the problem 

is to maximize just the kinetic energy rather than the total energy of the rocket. 

In general, it is not a simple matter to obtain a solution of the complete 
set of variational equations. The equations of the state and the co-state, 
(11.80) and (11.92), together with any constraints on the variables, form 
a large set of nonlinear first-order differential equations with boundary 
conditions specified at each end. Special iterative methods, which form an 
entire subject in themselves, are required for most practical problems of 
performance optimization. 



Chapter 12 

Numerical Integration 

of Differential Eq uations 

T HE POPULAR METHODS BEFORE THE ADVENT OF MODERN DIGITAL 

computers for the step-by-step integration of differential equations had 
an essential feature in common. At each step of the process, use was made 
of the function values already obtained in the previous steps. Thus, if we 
had arrived at the value Yn' then to determine Yn+l these methods required 
the use of the values for Yn-l, Yn -2, ... , the number of which depended 
on the desired accuracy and on the particular method employed. They 
were based on simple finite-difference formulas which were easy to apply 
using manual methods. However, the disadvantages were that they required 
special start-up procedures and were not readily amenable to changing the 
size of the integration interval. 

The Runge-Kutta methods do not utilize preceding function values 
and so were frequently used by hand computers for starting an integration 
process. Then, the switch was made to finite-difference methods because 
the Runge-Kutta formulas were too difficult to continue by hand. However, 
in programming a method for the digital computer, it is inconvenient to 
use special instructions for a starting process. Furthermore, constant shift
ing of data is required which is difficult and time-consuming in a digital 
program-the manual computer operator does this simply by moving his 
eyes down the page. On the other hand, the more complicated formu
las of the Runge-Kutta methods are easily programmed and are, today, 
frequently preferred to the more complex logic required for classical finite
difference methods. Step-size changes are also easily implemented. For 
these reasons, and the fact that most books on numerical methods give 
much attention to finite differences, Runge-Kutta processes are treated 
exclusively in this chapter. 

The integration methods developed by Evert Johannes Nystrom in 
1925 are especially appropriate for Cowell's and Encke's formulation of 
the equations of motion in orbital mechanics. He adapted Runge-Kutta 
techniques to the special class of second-order differential equations whose 
right-hand side is not an explicit function of the derivative of the dependent 
variable. Nystrom found it possible to achieve a higher order of agreement 
with the Taylor series expansion of the solution for a given number of 

567 
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evaluations of the right-hand side than could be expected for the general 
case. Thus, with two evaluations he could achieve agreement with an error 
of fourth order, of fifth order with three evaluations, and of sixth order 
with four. Nystrom developed special algorithms for these three cases.t 

The interesting speculation as to whether or not this computational 
advantage persists for the higher-order methods remained unanswered for 
thirty years. Then, in 1955, Julius Albrecht published a special "symmet
ric" (i.e., equal subdivisions of the integration interval) algorithm for a 
sixth-order method with five evaluations.+ 

Much of this chapter is devoted to developing general solutions of the 
condition equations through eighth order using the fewest number of right
hand side evaluations or stages as possible.§ (To the author's knowledge, 
this task has not been previously undertaken in any systematic way.) The 
phenomenon, first observed by Nystrom, of m - 1 stages for m th -order 
accuracy, does not seem to prevail beyond m = 6. Indeed, an interesting 
proof of the nonexistence of a seventh-order, six-stage algorithm is given 
in the author's paper. However, general methods are achieved for seventh 
and eighth order by increasing the number of stages by one. 

In this chapter, we also develop explicit Runge-Kutta methods applied 
to general first-order differential equations which are appropriate for the 
variation of parameters formulation of the equations of motion. In this case, 
the number of stages required is the same as the order of the algorithm for 
m ~ 4. Furthermore, it has been shown by Butcher, that for m 2: 5, 
an order m algorithm of this type can be achieved only if the number of 
stages n is greater than m and for m ~ 7, we must have n > m + 1. The 
existence of particular methods shows that his are the best possible results 
up to order seven. For order eight, at least ten stages are necessary but no 
method has been published requiring fewer than eleven. 

The task of developing efficient higher-order algorithms iri either case
R-K or R-K-N-is complicated by the fact that the number of condition 
equations for the parameters, many of which are nonlinear, increases with 
increasing order considerably faster than the number of parameters to be 
determined. By increasing the number of stages, the set of parameters is 
also enlarged. The number of equations is unchanged but the efficiency of 
the algorithm is, of course, adversely affected. 

t Nystrom, E. J., nOber die Numerische Integration von Differentialgleichungen,n 
Acta Societatis Scientiarum FemC42, Vol. SO, No. 13, 1925, pp. 1-55. 

t Albrecht, J., IIBeitriige zum Runge-Kutta-Verfahren,n Zeitschrijt fur Angewandte 
Mathematik und Mechanik, Vol. 35, March 1955, pp. 100-110. 

§ From the author's paper "Resolution of Runge-Kutta-Nystrom Condition Equa
tions through Eighth Order," AJAA Journal, Vol. 14, August 1976, pp. 1012-1021. See 
also the author's comment in the AJAA Journal, Vol. 15, May 1977, p. 763. 

, Butcher, J. C., liOn the Attainable Order of Runge-Kutta Methods," Mathematics 
of Computation, Vol. 19, 1965, pp. 408-417. 
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12.1 Fundamental Considerations 

We consider a method of numerically integrating the special class of second
order vector differential equations 

~; = y t = f(x) (12.1) 

where f is not an explicit function of y. If we adopt the notation 

and let h denote the time interval 

h = t - to 

then a first-order Taylor series expansion 

x = Xo + hy 0 + O( h 2 ) 

Y = Yo + hfo + O( h 2 ) 

(12.2) 

{12.3} 

will give values for x and y at time t in terms of their values at time to 
with an error of order h2 as indicated by the notation O(h2). 

A second-order Taylor series 

x = Xo + hyo + !h2fO + O(h3) 

Y = Yo + hfo + !h2f~ + O(h3) 

has an error of order h3 • The derivative of the vector f(x) is obtained 
from 

f~ = FoYo where afl Fo= -ax t=to 

and, fortunately, the evaluation of the matrix F 0 can be avoided. 
Consider the Taylor series expansion 

f(Xo + hpyo) = fo + hpF oyo + O(h2) 

where p is a constant to be specified. It is clear that equivalent accuracy 
in the computation of y may be had if we replace 

hf~ = hFoYo by 

Thus, we have 

x = Xo + hyo + !h2fO + O(h3) 

Y = Yo + h (1- ;p) fo + 2~ hf("o + phyo) + O(h3) 

which is a much more convenient computation. 
It appears that two values of the vector f are required in the equations 

for x and y. However, by choosing p = ! and noting that fo differs from 
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f ("o + hpy 0) by terms of order h, we may write the integration formulas 
more simply as 

x = Xo + hyo + !h2f{xo + !hyo) + O{h3) 

y = Yo + hf{"o + !hyo) + O{h3) 

Thus, we have a second-order method requiring only one evaluation of the 
function f{x) for the value x = "0 + ! hyo' 

The derivation may be formalized in a manner which lends itself more 
readily to higher-order methods. Suppose we seek equations of the form 

where 

x = Xo + hyo + h2ak + O{h3) 

y=yo+hbk+O{h3) 
(12.4 ) 

(12.5) 

which, with appropriate values for a, b, and p, can be made to agree, 
through terms of order h2 , with the Taylor series expansions 

x = Xo + hyo + !h2a o + O{h3) 

y = Yo + h{ao + !ha1 ) + O(h3) 

where the vectors ao and a 1 are defined by 

a 0 == fo and a 1 == f~ = F oYo 

By expanding f("o + phyo) in a Taylor series, we have 

k = a o + hpa 1 + O(h2) 

Then, by substituting Eq. (12.7) into Eqs. (12.4), there results 

x = "0 + hyo + h2aao + O(h3) 

y = Yo + hb(o:o + hpa1 ) + O(h3) 

(12.6) 

(12.7) 

(12.8) 

The corresponding coefficients 0: 0 and 0: 1 in Eqs. (12.6) and (12.8) must 
be equal so that the following equations for a, b, and p are obtained: 

(a) a -! - 2 

Thus, we have a = p = !, b = 1, and the derivation is complete. 
In summary, then, the second-order integration algorithm is 

x = Xo + hyo + !h2 k + O{h3) 

y = Yo + hk + O(h3) 

where 

(12.9) 

(12.10) 
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¢ Problem 12-1 
For the differential equations 

dy 
dt = f(t,x) 

it is possible to dispense with the special role played by the independent variable 
t by augmenting the original system of equations (12.1). If we write 

then 

and 

:e [~] = [ f ( [J]) ] 

[ ~] = [,::] + h [~o ] + !h2
k + O(h3) 

[n = [~o] + hk+ O(h
3

) 

Therefore, for the differential equations having f as an explicit function of both 
t and x, the algorithm is the same as Eqs. (12.9) with k computed from 

k = f (to + ! h, Xo + ! hy 0) 

12.2 Third-Order R-K-N Algorithms 

For higher-order methods it is convenient to introduce an indicial notation 
for vectors and their derivatives. As an example, for three-dimensional 
vectors, we define 

and 

[
If IJ IJ] ali . 

-=r= Il Ii 132 
axj 3 

IP I~ Ii 
The differential equations (12.1) are then written as 

dx i . _=yl 
dt 
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and the higher-order derivatives of the vector Ii are as follows 

. 3 . . 3 

df' = '" a/~ dx
J = '" I~yi == tyi 

dt L" aXJ dt L" J J 
j=1 j=1 

d2 Ii 3 a Ii dyj 3 3 [a ( a Ji) dxk 1 . 
dt2 = E ax; Tt + (;E axk ax; dt 11' 

333 

= L Illj + L L Ilkyiyk == Illj + Ilkyjyk 
j=1 j=lk=1 

where, for convenience of notation, we are using the so-called summation 
convention, i.e., an index occurring both as a subscript and as a superscript 
in a single term implies summation on that index. It is important to realize 
that while Il is a matrix, the quantity 11k is a three-dimensional array 
which can not be represented as a matrix.t 

Adopting the formalism of the second-order method, we define the 
following vectors: 

(12.11) 

where it is understood that the function Ii and all of its derivatives are 
evaluated for xi = xi(tO)' Then we may express the third-order Taylor 
series as 

x = Xo + hyo + h2(~ao + khal) + O(h4) 

y = Yo + h[ao + ~hal + Ah2(a2 + ,82)] + O(h4) 

We seek solutions of the form 

where 

x = Xo + hyo + h2(aoko + a1 k 1 ) + O(h4) 

y = Yo + h(boko + b1k 1) + O(h4) 

ko = f(Xo + hpoyo) 

kl = f(Xo + hP1YO + h2q1ko) 

(12.12) 

(12.13) 

(12.14) 

which will agree with Eqs. (12.12) through terms of order h3 by proper 
choice of the constants ao, aI' bo, b1, Po' PI' and ql' 

t It is a useful exercise for the student to calculate these derivatives for the special 
case of two-body motion; that is, 

Jl. f(r) = --r 
r3 
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Taylor's Expansion of fi(xi + Oi) 

We also require the Taylor series for a vector function of a vector in order 
to expand the k vectors. For the derivation, we write 

x=xo+r6 

where the vectors Xo and 6 are to be regarded as constants. Then the 
function f(x) will be a function of the single variable r. Specifically, 

f(x) = f(xo + r 6) = g(r) 

The ordinary Taylor series for the function g( r) is 

r2 r3 
g(r) = g(O) + g'(O)r + gil (0) 2! + g"'(O) 3! + ... 

But we have 

, df af dx af ( [ a 1 T) g (r) = - = -- = -6 = 6· - f(x) 
dr axdr ax ax 

and, similarly, 

g"(r) = (6 0 [:xr) ;!6 = (6 0 [:xr) 2 f(x) 
g'"(r) = (6 0 [:xr)3 f(x) 

and so on for the higher derivatives, since each application of the operator 
6 . [a / ax] T on any function of x = Xo + r 6 is equivalent to differentiation 
with respect to r. 

Next, put r = 1 in the Taylor series for g(r) to obtain 

1 1 
g(l) = g(O) + g'(O) + g"(O) 2! + g"'(O) 3! + ... 

But when r = 0, we have x = xo. Also, with r = 1, then x = Xo + 6. 
Hence, the series for g( 1) gives the desired result 

f(x+6) = f("o) + (6 0 [:xr) f(x)L=xo 
+ ;! (6 0 [:xr) 2 f(X)lx=xo + 000 

In our indicial notation, this expansion can be written much more 
compactly as 

fi (xi + Oi) = fi + f}oj + ! f}kOj Ok + 1 f}ktOj okot + . . . (12.15) 

where it is understood that after the differentiations are carried out, we 
are to replace xi by xi(to}. 
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Deriving the Condition Equations 

The Taylor series expansions of Eqs. (12.14) are obtained from Eq. (12.15). 
First, with 

we have 

Then, with 

we obtain 

ki = fi + fl(hPlyi + h2qlfi) + ~ flk(hPlyi)(hPlyk) + O(h3) 

Finally, using the definitions (12.11), we write 

ko = 0 0 + hPOOl + ~h2p~02 + O(h3) 

kl = 0 0 + hp10 l + h2(~p~02 + qd~2) + O(h3) 
(12.16) 

Then, by substituting Eqs. (12.16) in Eqs. (12.13) and comparing the result 
with Eqs. (12.12), the required equations are found to be 

(a) [1 1] [ao] = [!] 
Po PI a 1 t 

U~) 

Equations (a) and (f3) are the condition equations for the algorithm 
of third order but their solution for the parameters is not unique. 

Solving the Condition Equations 

The first of the condition equations (a) consists of two sets of equations 
for the coefficients ao' a1 and bo, b1 in terms of Po and Pl. In the second 
set, if we subtract the second equation from the first and the third equation 
from the second, we have 

[ 
1 1] [( 1 - Po) bo ] - [~] 

Po PI (1 - Pl)b1 - t 
which is identical to the first set. Therefore, ao and a 1 can be calculated 
from 

and (12.17) 

after the other quantities have been determined. 
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The original set of equations for bo, bI in terms of Po, PI will be 
consistent, according to the results of Prob. D-l in Appendix D, if and 
only if the determinant 

1 1 1 

D3 = Po PI ! 
p~ p~ i 

vanishes. By simple row and column operations, we have 

1 o 1 

D3 = Po PI - Po ~ 
p~ p~ - p~ i 

= (PI - Po) I +1 
Po PI 

Therefore, 

1 o 
1 

o 
~ -Po 
! _p2 
3 0 

~ -Po I 
i - ~Po 

{12.18} 

{12.19} 

The first factor of D3 is a second-order Vandermonde determinant 

V2 = 11 1 I = (PI - Po) 
Po PI 

(12.20) 

and the second factor 

(12.21) 

is called the constraint function. An interesting interpretation of the con
straint function is possible using the identity for the determinant of block 
partitioned matrices given in Prob. B-20 in Appendix B: 

I ~nn ~nm I = IAnnllDmm - CmnA~~Bnml 
mn mm 

By choosing 

B21 = [! 1 
and noting that 

we have 
(12.22) 
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so that L3 is simply the residue of the third equation for bo, bl . Thus, a 
necessary and sufficient condition for the consistency of Eqs. (0) is that 

The complete solution of the condition equations is then 

1 - - Pl bo = -=2,---~ 
Po - Pl 

1 - -Po b 1 = -=2,-----,,-
Pl - Po 

(12.23) 

(12.24) 

We may choose Po and Pl arbitrarily, subject to the constraint L3 = 0, 
leaving us with one free parameter. The coefficients ao and a l are then 
calculated from Eqs. {12.17}. 

In his original paper, Nystrom chose Po = 0 and gave the algorithm 

wheret 

x = Xo + hyo + lh2(ko + kd + O(h4) 

y = Yo + lh(ko + 3k l ) + O(h4) 

ko = f(to, xo) 

kl = f(to + ~h,xo + ~hyo + ~h2ko) 

¢ Problem 12-2 

(12.25) 

(12.26) 

Construct a second-order algorithm from Eqs. (12.12)-(12.14) and (12.16) 
by deriving the condition equations 

(0) [1 1] lao] = ! 
al 2 

There are now three free parameters po, PI, and ao at our disposal. By 
choosing 

Po =0 PI = 1 ao = bo 

develop the second-order algorithm 

where 

x = Xo + hyo + ~h2ko + O(h3) 

y = Yo + ~h(ko + kd + O(h3) 

ko = f(to, xo) 

kl = f(to + h,Xo + hyo + ~h2ko) 
In this case, although there are apparently two stages, this is true for the 

first step only. Thereafter, the last computed value for kl is the same as the 
value of ko required for the next step. 

t Henceforth, we shall assume that f = f(t, x) with t being incremented in accord 
with the argument developed in Prob. 12-1. 
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12.3 Fourth-Order R-K-N Algorithms 

Paralleling the arguments of the preceding section, the vector fi and its 
first three derivatives may be expressed as 

where we have defined 

ab == fi 

ai == fJyi 

a~ == fJkyiyk 

a~ == fJkeyiykyl 

d2 Ji ' , 
dt 2 = a~ +,B~ 

d3 fi , , , 
dt3 = a3 + 3,83 + 73 

(12.27) 

,B~ == fJab 
(12.28) 

f3! == fJkabyk 

Therefore, the fourth-order Taylor series expansions can be written as 

x = "0 + hyo + h2[~OO + 1ho1 + 2~h2(02 + ,82)] + O(h5) 

y = Yo + h[oo + ~h01 + 1h2(02 + ,82) (12.29) 

with 

+ 214h3(03 + 3,83 + 1'3)] + O(h5) 

Again we seek solutions of the form 

x = Xo + hyo + h2(aoko + a1k1 + a2k2) + O(h5) 

y = Yo + h(boko + b1k1 + b2k 2) + O(h5) 

ko = f("o + hpoyo) 

k1 = f("o + hP1YO + h2clOko) 

k2 = f[xo + hp2YO + h2(c20kO + C21 kd] 
where, for notational convenience in our later equations, we define 

and 

As before, we set 8i = hpoyi in Eq. (12.15) and obtain 

(12.30) 

(12.31) 

, , , '1' , k l' , k e 4 
ko = r + fjhpoyJ + 2 fjkhPOyJ hpoY + 6 fjklhPOyJ hpoY hpoY + O(h ) 

Then, with 

8i = hp1yi + h2ClOkb = hp1yi + h2q1 a~ + h3poq1 ai + O(h4) 

we have 

kl = fi + f}(hP1yi + h2q1 ab + h3poQ1 a{) 
l' '2' k 2 k + 2 fjk(hP1yJ + h Q1 a'o)(hP1Y + h Q1 ao) 

l' ' k l 4 + 6fjklhP1yJ hp1Y hp1Y + O(h ) 
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Finally, with 

6i = hp2yi + h2(C20k~ + c21 kl) 

= hp2yi + h2[C20(0:~ + hpoo:l) + C21 (o:~ + hp10:1)] + O(h4) 
_ i 2 i 3 i 4 
- hP2Y + h q20:0 + h [POq2 + ~Pl - PO)C21]a1 + O(h ) 

we obtain 

k~ = fi + fJ{ hp2yi + h2q2ab + h3[pOq2 + (PI - PO)C21 ]a{} 
l' . 2' k 2 k + '2 flk(hp2yJ + h Q2%)(hP2Y + h Q2 a O) 

l' . k e 4 + sflklhp2yJ hp2Y hp2Y + O(h ) 

Hence, using the definitions (12.28), the following Taylor series expansions 
of Eqs. (12.31) result: 

ko = Qo + hpOQ1 + !h2p6Q2 + th3p~Q3 + O(h4) 

kl = Qo + hPI Ql + h2(!p~Q2 + Ql(32) 

+ h3(tpr Q3 + PIQl{33 + POQl1'3) + O(h4) 

k2 = Qo + hP2Ql + h2(!p~Q2 + Q2(32) 

+ h3 {tp~Q3 + P2q2{33 + [POQ2 + (PI - PO)C21 ]1'3} + O(h4) 

When these expressions for the k's are substituted in Eqs. (12.30) and 
the results compared with Eqs. (12.29), we obtain the following condition 
equations for the fourth-order method: 

(a) [:0 
1 

:~] [::] [1] 
[1 1 1] [bO

] [i] PI = P~ P~ P~ b1 = 
p~ p~ Po PI P2 b2 P2 a2 

P5 p~ p~ 4 

({3 ) [1 1] [q1a l ] = 1(J..) [1 1][ q1b l ] = ! [t] Q a 2 12 PI P2 Q2b2 2 2 

(1' ) (PI - PO)C21 b2 = t (~ - Po) 

Again, the equations for the coefficients ai are redundant with those 
for b· if a· = (1 - p.)b .. ,t t t 
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Vandermonde Matrices and Constraint Functions 

Equations (Q) contain four linear equations for the three coefficients bo, 
bI , b2 with the matrix of coefficients being a rectangular Vandermonde 
matrix. t These matrices are fundamental to our work in this chapter so 
that we now digress for the moment to explore some of their properties. 

Square Vandermonde matrices have simple explicit determinants and 
inverses. Consider, for example, the third-order matrix 

V3 = [:0 :, :2] 
P5 P~ P~ 

From the fundamental properties of determinants, we see that the 
determinant of V 3 is a second-order polynomial in P2 with roots Po and 
PI' Therefore, V3 is proportional to (P2 - PO)(P2 - PI)' Furthermore, the 
coefficient of p~ is the cofactor 

v.-llll 2 - Po PI 

so that we have 

V3 = (PI - PO)(P2 - PO)(P2 - pd 
Clearly, the scheme can be generalized-for if we consider the Vander

monde matrix of order e 
(i,j = 0, 1, ... ,e - 1) (12.32) 

then the determinant Vi is obtained either recursively from 

i-2 

or, explicitly, from 

Vi = Vi- I IT (Pi-I - Pj) 
j=o 

i-I i-2 

Vi = IT IT (Pi - Pj) 
i=j+I j=o 

(12.33) 

(12.34 ) 

t Alexandre-Theophile Vandermonde (1735-1796) was encouraged to pursue a mu
sical career by his physician father but a friend stimulated an interest in mathematics. 
He was elected to the Academie des Sciences in 1771 and during the next two years he 
presented four papers to the academy-his total mathematical production. It was his 
fourth paper in which he gave the first connected exposition of determinants. Thomas 
Muir, who wrote The Theory of Determinants in the Historirol order of their Development in 
1906, stated that Vandermonde was "the only one fit to be viewed as the founder of 
determinants." Curiously, Vandermonde is best remembered for the determinant which 
bears his name but which does not seem to occur in any of his works. 
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To construct the inverse of Y 3' we first define the three second-order 
polynomials 

P~(p) = (p - PI)(P - P2) = 138 + !3?p + {fdp2 

pi (p) = (p - po)(p - P2) = !3J + !3Ip + !3Jp2 
pi(p) = (p - po)(p - PI) = 135 + !3;p + !3~p2 

Then, the inverse can be formulated as 

138 !3? !3~ 
P~(po) P~(po) P~(po) 

y-l _ !3J !3I !3~ 
3 -

Pi(PI) Pi(PI) Pi(PI) 

!3~ !3~ (3~ 
P:j(P2) P:j(P2) P:j(P2) 

which is easily verified by computing the product 

P~(po) P~(PI) P~(P2) 
P~(po) P~(po) P~(po) 

= [~ ~] Pi (Po) Pi(PI) Pi (P2) 
0 

y;IY3 = 1 
Pi (PI) Pi(PI) Pi (PI) ° P:j(po) P:j(PI) P:j(P2) 
P:j(P2) P:j(P2) P:j(P2) 

Therefore, 

PIP2 PI +P2 1 

(Po - PI)(PO - P2) (Po - PI)(PO - P2) (Po - PI)(PO - P2) 

y-l_ POP2 Po +P2 1 
3 -

(PI - PO)(PI - P2) (PI - PO)(PI - P2) (PI - PO)(PI - P2) 

POPI Po + PI 1 

(P2 - PO)(P2 - PI) (P2 - PO)(P2 - PI) (P2 - PO)(P2 - PI) 

This scheme is also readily generalized for the fth -order matrix by 
defining the following f polynomials of order f - 1 

i-I i-I 

pl- 1 (p) = II' (p - Pj) = L !3;.pi (i=O,l, ... ,f-l) (12.35) 
j=O j=O 

where the prime on the product symbol indicates that the factor for which 
j = i is to be omitted. Then the inverse of the Vandermonde matrix is 
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given by 

V-I _II (3) II 
f. - pl-1 (Pi) 

(12.36) 

Return now to the main problem-namely, the consistency of the equa
tions in (0) for the coefficients bo, bl , b2 • The necessary and sufficient 
condition for these four equations in three unknowns to be consistent is 
that the determinant 

1 1 1 1 
I 

D4 = Po PI P2 2 
p~ p~ p~ ! 
pg P1 p~ ~ 

be identically zero. By simple row and column operations of the type used 
in the previous section for the reduction of the determinant D 3 , we may 
express D 4 in the form 

1 1 

D4 = (PI - PO)(P2 - Po) PI P2 
p~ p~ 

When this is compared with the expressions (12.19) and (12.21) for D3 
and L3 , we can easily deduce 

D4 = V3L4(Po,PI,P2) 

where L4 , called the constraint function for the fourth-order algorithm, is 
determined as 

L 4 (Po,PI,P2) = (~- !Po) - (! - !PO)(PI + P2) + (! - PO)PIP2 

= ~ - !(Po + PI + P2) + !(POPI + POP2 + PIP2) - POPIP2 

The equations will be consistent if and only if PO' PI , and P2 are so chosen 
that 

L4 (Po,PI,P2) = 0 

As in the previous section, we can also show that 

D4 = V3[ ~ - (pgbo + pib l + P~b2)] 
Hence again, L4 can be interpreted as the residue of the fourth equation 
for bo, bl , b2 • 

In general, when considering an algorithm for which the number of 
stages n is one less than the order m, i.e., n = m - 1, the (0) equations 

(0) 
m-2 . 1 

L pjbj = i + 1 
j=O 

(i=O,1, ... ,m-1) (12.37) 
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will be inconsistent unless the m x m augmented determinant 

(i = 0, 1, ... ,m - 1; j = 0, 1, ... ,m - 2) (12.38) 

vanishes. This determinant can always be expressed in the form 

Dm = Vm-1Lm(PO,PI"" ,Pm -2) 

and the constraint function obtained from 

with f30 , f31 , ••. , f3m - 1 defined by means of 

m-2 m-l 

II (p - Pj) = L f3j pm
-

j
-

1 

j=o j=o 

(12.39) 

(12.40) 

(12.41) 

It is important to note that the constraint functions are multilinear 
and symmetric in their arguments. 

~ Problem 12-3 
Y The {J's, which are needed to calculate the constraint function, can be 

generated by starting with 

{Jo = 1 

and calculating {JI, {J2, ••• , {Jm-l recursively from 

i-I 

{Ji = -} L {JjSi-j where 
;=0 

NOTE: This same algorithm, with proper attention given to signs, can be used 
to generate the coefficients of the characteristic equation of a matrix M. [See 
Sect. 13.3.] In that case Si would be determined as the trace of the ith -power 
of the matrix, i.e., Si = tr Mi . 

¢ Problem 12-4 
The constraint functions satisfy the recursive relation 

NOTE: Because the L functions are symmetrical in their arguments, there are, 
in fact, m - 1 such identities which can be generated by a cyclical permutation 
of the parameters Po, PI, ... , Pm-2. 
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Solution of the Condition Equations 

The solution of the condition equations (a), (13), and ("Y) are now 

ao = {1 - Po)bo bo = ~ - ! (PI + P2) + PIP2 
(Po -PI){PO -P2) 

a, = (1 - p,)b, b, = ! (" ~ (Po ~ P2) + POP2 (12.42) 
PI - Po (PI - P2) 

a2 = {1 - P2)b2 b2 = ~ - ! (Po + PI) + POPI 
(P2 - PO)(P2 - PI) 

I 
_ 4 -Po 

C2I - -6 (':""""P-=-I ---p""""'o:--) b-
2 

In his fundamental memoir, Nystrom chose 

Po = 0 PI = ! P2 = 1 

and gave the fourth-order algorithm 

where 

x = Xo + hyo + !h2{ko + 2k l ) + O{h5) 

y = Yo + !h{ko + 4kI + k 2 ) + O{h5) 

ko = f{to, x o) 

ki = f{to + !h,xo + !hyo + ih2kO) 

k2 = f(to + h, Xo + hyo + !h2
k l ) 

¢ Problem 12-5 

(12.43) 

(12.45) 

(12.46) 

Construct a third-order algorithm from Eqs. (12.29)-(12.31) by deriving the 
condition equations 

(a) [ 1 1 1 1 [ ao ] - [! 1 
Po PI P2 :: - ~ 

(13) 

With an appropriate choice for the free parameters, develop the third-order 
algorithm 

x = xo + hyo + h2(aoko + a1k.) + O(h4) 

y = Yo + h(boko + b1k l + b2k 2 ) + O(h4) 
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where 
ko = f(to,xo) 

kl = f(to + hp,Xo + hpyo + !h2p2ko) 

k2 = f[to + h,Xo + hyo + h2(aoko + a1kt}] 

and the coefficients are obtained as the following functions of p = PI : 

bo = _3p_-_l 
6p 

1 
bl = ~:---~ 

6p(1 - p) 
2- 3p 

b2 = 6(1 _ p) 

ao = bo 

1 
al =-

6p 

[Chap. 12 

This is the third-order version of the type of algorithm considered in Prob. 
12-2. There are three stages for the first step only. After that, the last k, Le., 
k2 , is the same as the ko of the next step. 

12.4 Fourth-Order R-K Algorithms 

In this section, we develop Runge-Kutta algorithms for the equationt 

dy 
"(it = f(t,y) (12.47) 

which is typical of those encountered in the method of variation of param
eters. We can parallel the arguments of the previous section, using the 
indicial notation to write the differential equation in the form 

and treating the explicit dependence of the function f on the independent 
variable t as was done in Prob. 12-1. 

The vector Ii and its first three derivatives are expressed as 

Ii - a i d2 Ii 
= a~ +,8~ - 0 dt2 

dji d3 Ii 
(12.48) 

- a i = Q~ + 3,B~ + I~ + 8~ 
dt 

- 1 dt3 

t Although the bulk of his publications were in spectroscopy, Carl David Tolme 
Runge (1856-1927) regarded himself as an applied mathematician-indeed, he was the 
first full Professor of Applied Mathematics in Germany at Gottingen. His interests 
were in the theory, practice, and instruction of numerical and graphical computations 
as typified by his fundamental paper "Ueber die numerische Aufiosung von Differential
gleichungen" published in 1895 in Mathematische Annalen, Vol. 46, pp. 167-178. 
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where we have defined 

f3~ == fja{ 
(12.49) 

f3A == fjka{ a~ lA == fj~ 

Therefore, the fourth-order Taylor series expansions may be written as 

y = Yo + h[oo + ~hOl + Ah2(02 + (32) 

+ 214h3(03 + 3{33 + 1'3 + 63)] + O(h5) (12.50) 

Again we seek solutions of the form 

(12.51) 

with 

ko = f(yo) 

kl = f(yo + hPl kO) 
k2 = f[yo + h(c20kO + c21 k 1)] 

(12.52) 

k3 = f[yo + h(c30kO + C31 kl + c32k2)] 

where, for notational convenience in our later equations, we define 

and 

The Taylor series expansions of Eqs. (12.52) are found to be 

ko =00 

kl = 00 + hPl o l + ~h2p~02 + th3p~03 + O(h4) 

k2 = 0 0 + hp20 1 + h2(~p~02 + Plc21(32) 

+ h3(Ap~03 + PIP2c21{33 + ~P~C211'3) + O(h4) 

k3 = 00 + hP30 1 + h2[~p~02 + (Pl c31 + P2 c32){32] 

+ h3[Apg03 + P3(PIC31 + P2 c32){33 

+ ~ (P~C31 + P~C32)1'3 + PI c21 c3263] + O(h4) 

which, when substituted in Eqs. (12.51) and the results compared with 
Eqs. (12.50), produce the following condition equations for the fourth-order 
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Runge-Kutta method: 

[! 

1 1 

:~] [::] [i] (a) PI P2 = 
p~ p~ P3 b2 
pi p~ p~ b3 4 

(,8) [:. :J [ b.p,c21 1 - ! [~l 
b3(PI C31 +P2C32) 

- 2 1 
4 

("Y) b2P~C21 + b3(P~c31 + P~C32) _1 
- 12 

(6) b3Pl c21 c32 
_ 1 
- 24 

Solving the Condition Equations 

The first of Eqs. (a) determines bo as a linear combination of b1, b2 , b3 . 
The remainder, together with Eqs. ({3), ("y), and (6), can be regrouped as 

[:, :. :3] [!:::] = [;] [:':3:3 ] 
P~ P~ p~ b3P3 4' PI PI P2 

(2C21 b2Pl) (2C32b3P2) = ~b2P2 

From the two vector-matrix equations, we obtain 

b - l-i(pl +P3) + !PIP3 
2P2 - (P2 - Pl)(P2 - P3) 

1 1 1 1 -P3 - - - --P 
2C21 b2Pl = 3 4 2C32b3P2 = 6 3 1 

P3 - P2 P2 - PI 

Therefore, substituting in the last equation, which is equivalent to Eq. (6), 
we find that 

(12.53) 

is required if the complete set of condition equations is to be consistent. 
Thus, there are two free parameters, PI and P2' and we have 

~P2 - 112 1 1 ( ) 1 
b1 = b - 4 - 3 PI + P2 + 2 PIP2 

PI (PI - P2)(PI - 1) 
3 -

(1 - Pl)(1 - P2) 
1 1 

(12.54) 

b2 = '6 PI - 12 bo = 1 - b1 - b2 - b3 P2{P2 - Pl)(P2 - 1) 
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together with 

(12.55) 

¢ Problem 12-6 
A symmetric fourth-order Runge-Kutta algorithm is possible, i.e., one which 

uses equally spaced increments in t for each stage. We have 

where 

y = Yo + ~h(ko + 3k1 + 3k2 + k3) + O(h5) 

ko = f(to, Yo) 

kl = f(to + kh,yo + khko) 

k2 = f[to + jh,yo - kh(ko - 3k.)] 

k3 = f[to + h, Yo + h(ko - kl + k2)] 

The Classical Runge-Kutta Algorithm 

The general solution of the condition equations just derived is, obviously, 
valid only in the case for which PI' P2' and P3 are all different. However, 
if we permit PI = P2 and divide Eq. ('Y) by the first of Eqs. «(3), we obtain 

P -P _ 1 
1 - 2 - 2' 

An additional benefit is that Eq. ('Y) can now be discarded. 
As before, the first of Eqs. (a) determines bo after the other b's have 

been found. The remaining equations are then 

[ t :~] [b
l ~ b2 

] = [~] 
i P~ ! 

which will be consistent if and only if 
1 1 
2' P3 2' 
! P~ ! = 2

1
4 P3 (P3 - 1)(! - P3) = 0 

i P~ ! 
By selecting P3 = 1 (actually, the only practical choice), we have 

bi + b2 = ! and b3 = 1 
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so that Eq. ((3) and (6) now become 

b2c21 + 1{c31 + C32) = ! 
b2c21 + i{C31 + c32) = ! 

c21 c32 = ! 
The first two of these provide the values 

b2c21 = 1 and c31 + c32 = 1 

[Chap. 12 

Kuttat chose P = C32 as the free parameter so that the solution of the 
condition equations could be written as 

PI = P2 = ! bo = b3 = 1 C21 = ! p-l 

Pa = 1 bl = i - ip cal = 1 - P (12.56) 

b2 = ip c32 = p 

The classical Runge-Kutta algorithm, corresponding to p = 1 and 
until recently almost universally used, is then 

y = Yo + 1 h{ko + 2kl + 2k2 + k3) + O{h5) (12.57) 

where 
ko = f{to, Yo) 

kl = f (to + ~h, Yo + ~hko) 
k2 = f{to + !h,yo + !hkd 

k3 = f{to + h, Yo + hk2 ) 

(12.58) 

The advantage of this form was that the independent variable assumes only 
values corresponding to the beginning, the midpoint, and end of each step. 
Therefore, it was particularly valuable in cases where the equations involve 
a function of t defined by a table with equal intervals. 

¢ Problem 12-7 
Derive the two second-order Runge-Kutta algorithms 

y = Yo + ih(ko + kI) + O(h3) Y = Yo + hkl + O(h3) 

ko = f (to, Yo) ko = f (to, Yo) 

kl = f(to + h,yo + hko) kl = f(to + ih,yo + ihko) 

t Wilhelm Martin Kutta (1867-1944) investigated processes of various orders of 
accuracy in his paper "Beitrag zur naherungsweisen Integration totaler Differentialgle
ichungen" published in 1901 in Zeitschrijtfii,r Mathematik und Physik, Vol. 46, pp. 435-453. 
He suggested five special cases for which the solution of the condition equations can be 
expressed in particularly simple forms with one free parameter retained. The most 
widely used is the one derived here. 

It is interesting to note that Kutta also shares the limelight with the Russian 
mathematician and aerodynamicist Nikolai Jeg6rowitch Joukowski (1847-1921) for both 
the Kutta-Joukowski theorem concerning aerodynamic lift and the Kutta-Joukowski 
airfoil which results from a particular conformal mapping in the complex plane. 
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¢ Problem 12-8 
Derive the two third-order Runge-Kutta algorithms 

Y = Yo + ~h(ko + 4kl + k2) + O(h4) 

ko = f(to, Yo) 

kl = f(to + 4h, Yo + 4hko) 

k2 = f[to + h,yo - h(ko - 2kd] 

y = Yo + ~h(ko + 3k2) + O(h4) 

ko = f(to, Yo) 

kl = f(to + !h,yo + !hko) 

k2 = f(to + ~h, Yo + ~hkl) 

~ Problem 12-9 
Jr A recursive formulation of a fourth-order Runge-Kutta algorithmt is possible 

which is designed to minimize the number of memory locations required in a 
digital computer mechanization. 

Let y, k, and q be three vector memory registers. Then, this algorithm is 
programmed as 

Step 1: Yo --+y Step 3: [2 - J2]k + [-2 + 3VI]q --+ q 

hf(to, y) --+k hf(to + 4 h, y) --+k 

y+4k--+y y + [1 + VI](k - q) --+y 

Step 2: k --+ q Step 4: [2 + J2]k + [-2 - 3VI]q --+ q 

hf(to + 4 h, y) --+ k hf(to + h, y) --+ k 

y + [1 - VI](k - q) --+ y 

S. Gill 1951 

HINT: This algorithm corresponds to Kutta's solution of the condition equations 
(12.56) with p = 1 - VI . Also, k is defined here as h times f. 

NOTE: The derivation of this algorithm appeared in the paper "A Process for 
the Step-by-Step Integration of Differential Equations in an Automatic Digital 
Computing Machine." It was published in 1951 in the Proceedings of the Cam
bridge Philosophical Society, Vol. 47, pp. 96-108. Gill's algorithm also included a 
clever method to minimize roundoff errors which the interested reader can find 
in the paper. 

t The author first programmed this algorithm in the early fifties on the IBM Card 
Programmed Calculator (CPC) which had an extremely limited random access memory. 
(These were the "ice boxes" alluded to in the Introduction of this book.) He remembers 
it with great affection because it made possible the solution of a set of differential 
equations which could not otherwise have been achieved with the classical Runge-Kutta 
method. 
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12.5 Fifth-Order R-K-N Algorithms 

The general Runge-Kutta-Nystrom algorithm of order m with n stages, 
i.e., n evaluations of f, has the form 

where 

n-I 

X = "0 + hyo + h2 L aiki + O(hm+l) 
i=O 

n-I 

y = Yo + h L biki + O(hm+l) 
i=O 

ko = f(to + hpo,xo + hpoyo) 

kl = f(to + hpI'xo + hPlYo + h2ql ko) 

i-I 

k i = f(to + hPi'xO + hPiYo + h2 L cijkj ) 
j=O 

(12.59) 

(12.60) 

Further, to simplify the structure of the condition equations, we define 

i-I 

CIO = ql and CiO = qi - L Cij for i = 2,3, ... , n - 1 
j=1 

The main problem is, of course, to determine the parameters Pi' qi' Cij' 
ai' bi so that there will be an m th -order agreement with the Taylor series 
expansion of x and Y for the smallest possible value of n. 

For a fifth-order algorithm, we need the fourth derivative of fi and 
must, therefore, define six more vectors in addition to those of Eqs. (12.28). 
In terms of these vectors 

ai = f~ yjykyiym 
4 - 3klm 

a i - fi aj ykyl 
JJ4 = jki 0 

'Vi = f~ ajyk 
14 - 3k I 

that derivative is expressed as 

d4 fi . . . . . . 
dt4 = a~ + 6,B~ + 41~ + 364 + c~ + ~4 

(12.61) 

(12.62) 

The condition equations are developed as for the lower-order cases. 
The (a) equations, given in general form in Eqs. (12.37), will be consistent 
provided that PO' PI' P2' P3 are chosen so that 

L S(PO,Pl,P2,P3) == ! - !(Po + PI + P2 + P3) 

+ 1 (POPI + POP2 + POP3 + PIP2 + PIP3 + P2P3) 

- !(POPIP2 + POPIP3 + POP2P3 + PIP2P3) + POPIP2P3 = 0 (12.63) 
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The remaining condition equations aret 

(,8) 

[ III [ (PI - po)b2C2I 1 - I [ ! - Po 1 
P2 P3 (PI - Po)b3C3I + (P2 - Po)b3C32 - 6 ! - iPo 

q~bI + q~b2 + q~b3 = ! (k) (6) 

(e) [1 1] [ (p~ - P5)b2C2I 1 = l2 (k - 2P5) 
(p~ - P5)b3c3I + (p~ - P5)b3c32 

(<") 

Equations (,8) determine qI' q2' Q3' Therefore, Eq. (6) provides an 
additional constraint on the choice of the Pi's. Similarly, Eqs. ('Y) and 
(e) determine b2c2I , b3c3I , b3c32 with still another constraint implied by 
Eq. (,). 

A Simple Solution of the Condition Equations 

If we put 

Po =0 and for i = 1,2,3 (12.64) 

then Eqs. (e), ('), and the last of Eqs. (,8) are identical. Furthermore, 
Eqs. (,8) and the last three of Eqs. (a) are also identical. Therefore, we 
may discard Eqs. (,8), (6), and (,). 

The equations in (a) for determining bI , b2 , b3 are 

[ 

1 III [PI b
I 

] [ ! 1 P~ P~ P~ P2b2 = I 
PI P2 P3 P3b3 4 

pi p~ p~ k 
with PI' P2' P3 chosen subject to the constraint 

L S (0,PI,P2,P3) = k - !(PI +P2 +P3) 

+ 1 (PIP2 + PIP3 + P2P3) - !PIP2P3 = 0 (12.65) 

t From now on we will not write out the condition equations for the coefficients ai 
since they are always redundant with those for bi provided that ai = (1 - Pi )bi . 
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Thus, we have 

b - ! - 1 (P2 + P3) + ~P2P3 
1-

PI (PI - P2)(Pl - P3) 

b - ! -l{Pl + P3) + ~PIP3 
2-

P2{P2 - Pl)(P2 - P3) 

b - i - i (PI + P2) + !PIP2 
3-

P3{P3 - Pl)(P3 - P2) 
after which bo is calculated from 

bo = 1 - bi - b2 - b3 

Finally, C2I' c3I' c32 are obtained from the equations 

[:2 :3 :3] [::!::::] = t [ i ] 
PI PI P2 P2b3c32 10 

¢ Problem 12-10 

[Chap. 12 

(12.66) 

(12.67) 

(12.68) 

Nystrom gave fifth-order algorithms for the following values of the Pi'S: 

PI = ~ P2 = i P3 = 1 

For the first set, the algorithm is 

and PI = ~ P2 = i P3 = ~ 

(1) 

where 

x = Xo + hyo + 3~6h2(14ko + lOOkl + 54k2) + O(h6
) 

y = Yo + 3~6h(14ko + 125kl + 162k2 + 35k3) + O(h6) 

ko = f(to,Xo) 

kl = f(to + ~h,Xo + ~hyo + 5~h2ko) 
k2 = f[to + jh,Xo + jhyo - t-rh2(ko - 7kdJ 

k3 = f[to + h, Xo + hyo + 7~ (21ko - 4kl + 18k2)J 

For the second set, 

(2) 
x = Xo + hyo + 1~2h2(23ko + 75kl - 27k2 + 25k3) + O(h6) 

y = Yo + 1~2h(23ko + 125k1 - 81k2 + 125k3) + O(h6
) 
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where 
ko = f(to,xo) 

kl = f(to + ~h,xo + ~hyo + 22Sh2ko) 

k2 = f(to + jh,xo + jhyo + ~h2ko) 
k3 = f[to + ~h,xo + ~hyo + 2~h2(ko + kdJ 

The General Solution of the Condition Equations 

We now address the solution of the condition equations without imposing 
any of the assumptions specified by Eqs. (12.64). Instead, we calculate the 
residues of Eqs. (6) and ('). For this purpose, we first form the four
dimensional determinant D I of the coefficients of the qi's in Eqs. ((3), (6) 
augmented by the right-hand sides 

bi b2 b3 1 
PI bi P2 b2 P3b3 i D I = 
pjbl P~b2 P~b3 I~ 
qi bi q2b2 qaba 2~ 

Solving Eqs. (Q) and ({3) for bi and qibi' givest 

(PI - PO)(PI - P2)(PI - Pa)bl = L4(po'P2,Pa) 

2(PI - P2)(PI - Pa)qIbl = LS (P2,Pa) 

(0,1,2,3) 

(1,2,3) 
(12.69) 

Substituting for the elements of the determinant and removing the common 
factors, produces 

where 

L 4 (Po, P2' P3) 

PI L4 (Po, P2' Pa) 

pj L4 (Po, P2' P3) 
(PI - PO)LS (P2,P3) 

L4 (Po, PI' P3) 

P2 L4 (Po, PI' P3) 
P~L4 (Po, PI' P3) 

(P2 - Po)Ls (PI' P3) 

L 4 (Po, PI' P2) i 
P3 L4(PO,PI,P2) ! 
p~ L 4 (Po, PI , P2) ! 

(Pa - Po)L5 (PI,P2) ! 

A = 4V4(Po)(PI - P2)(PI - P3)(P2 - P3) 

To evaluate the determinant, we use the constraint condition (12.63) 
and the recursion relation for the L functions given in Prob. 12-4 to derive 

t The equations for bo, b2, b3 are obtained by a cyclic permutation of the subscripts 
(0,1,2,3). Similarly, q2b2 and q3b3 are calculated by permuting the subscripts (1,2,3). 
We shall use this notation frequently for compactness in expressing our results. Also, 
for convenience, if any of the arguments of the constraint functions is zero, it will be 
suppressed in the notation. Thus, without confusion, we write 

LS(P2,P3) = Ls(0,0,P2,P3) 
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the following identities for the elements of the first column of D I : 

PI L4(PO,P2,P3) = L5 (PO,P2,P3) 

P~L4(PO,P2,P3) = L6 (PO,P2,P3) - L6 (PO,PI,P2,P3) 

(PI - PO)L5 (P2,P3) = L6 (PO,P2,P3) - L6 (PI,P2,P3) 

POL5 (PI,P2,P3) = piL4(PO,P2,P3) - (PI - Po)L5 (P2,P3) 

(12.70) 

Similar relations are established for the other columns of DI as well. 
Next we perform the following sequence of elementary row and column 

operations: 

1. Row 3 - Row 4 --+ Row 3 and factor POL5 (PI,P2,P3)' 
2. L6 (PI,P2,P3) x Row 3 + Row 4 --+ Row 4. 
3. Column 1 - Column 2 --+ Column 1 and factor PI - P2 . 
4. Column 2 - Column 3 --+ Column 2 and factor P2 - P3 . 

The determinant is now three dimensional: 

( ) L3 (Po, P3) L3 (Po, PI) l 
DI = :;~5 ~('P2'Pa) L.(Po,Pa) L.(Po,PI) I 

4 Po PI - P3 L () f 
5 PO,P3 L5 (Po,PI) 5 

To continue the reduction, the next sequence of operations is 

5. Column 1 - Column 2 --+ Column 1 and factor PI - P3 . 
6. PI x Column 1 + Column 2 --+ Column 2. 

and the determinant is now a function only of Po: 

Finally, 

7. Column 2 - Column 3 --+ Column 2 and factor -Po' 
8. Column 1 - Column 2 --+ Column 1 and factor -Po' 

and we have 
D - pgL5 (PllP2,P3) 

I - 8640V4(po) 

To determine the residue of Eq. (6), we use the arguments near the 
end of Sect. 12.2 and obtain 

Residue(c5) = pgL5 (PI,P2,P3) (12.71) 
8640V4(PO)V3(PI)bIb2b3 

The symbols V4 (Po) and V3 (PI) denote the Vandermonde determinants 

1 1 1 1 
1 1 1 

V4(po) = Po PI P2 P3 and V3(PI) = PI P2 
P6 pf p~ p~ P3 

pg pi p~ p~ 
pf p~ P5 
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To calculate the residue of Eq. (') we form the four-dimensional 
determinant D2 of the coefficients of b2c21' b3c31 , b3c32 in Eqs. ('Y), 
( e ), and ('Y) augmented by their right-hand sides. Then 

1. Column I-Column 2 -4 Column 1 and factor (P3-P2)(PI -Po)' 

The determinant is now three dimensional of the form 
I 

PI - Po P2 - Po 4' - Po 
D2 = - ~ (P3 - P2 )(PI - Po) p~ - p~ p~ - p~ lo - p~ 

I 
ql q2 20 

Substitute for ql and q2 from the second of Eqs. (12.70) and then 

2. Row 2 - Po x Row 1 -4 Row 2. 
3. bl x Column 1 -4 Column 1. 
4. b2 x Column 2 -4 Column 2. 

The result is 

where 

L4 (Po,P2,P3) L4 (Po,PI,P3) 
D2 = B L 5 (Po,P2,P3) L5 (Po,PI,P3) 

L5 (P2,P3) L5 (PI,P3) 

B= 

Next, 

5. Row 2 - Row 3 -4 Row 2 and factor -Po' 
6. Row 1 - Row 2 -4 Row 1 and factor -Po' 

and the determinant no longer contains Po. Thus, 

2) L3 (P2' P3) L3 (PI' P3) 1 
D - Po (PI - Po L ( ) L ( ) I 

2 - 12(PI - P2)(PI - P3)(P2 - pdb1b2 4 P2,P3 4 PI,P3 1 
L5 (P2,P3) L 5 (PI,P3) 10 

Finally, 

7. Column 1 - Column 2 -4 Column 1 and factor PI - P2 . 
8. PI x Column 1 + Column 2 -4 Column 2. 

and the determinant now involves only P3' Specifically, 

which reduces to 

! - !P3 1 

! - !P3 ! 
k - !P3 l~ 
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The residue of Eq. (<:) is found as before 

. () _ P5 (P3 - 1) 2 

Residue <: - - 8640V3(Po)V3(Pl)b
1 
b2 

(12.72) 

In summary, the condition equations are consistent if and only if the 
Pi's are selected subject to the following constraints: 

LS(PO,Pl,P2,P3) = 0 

pgLS(Pl,P2,P3) = 0 (12.73) 

pg(P3 - 1)2 = 0 

The third of Eqs. (12.73) requires that either Po = 0 or P3 = 1. In 
the first case, we may select the Pi's subject to 

Po = 0 and LS(Pl,P2,P3) = 0 (12.74) 

In the second case, the value of Po is arbitrary and we must have 

LS (PO,Pl,P2' 1) = 0 

LS(Pl,P2' 1) = 0 

But 
LS(PO,Pl' P2' 1) = LS(Pl' P2' 1) - POL4 (Pl' P2' 1) 

so that PI and P2 are determined subject to 

L4 (Pl,P2' 1) = 0 

LS(Pl' P2' 1) = 0 

As a consequence, 

Po = free parameter 

or, equivalently PIP2 = lo 

PI + P2 = ! 

PI = 1
10(4 - V6) 

P2 = 1~(4 + V6) 
P3 = 1 

In either of these two cases, it can be shown that 
_ 1 2 

qi - 2Pi 

For this purpose, write 

for i=1,2,3 

q _ !p2 (PI - PO)Ls(P2,P3) 
1 - 2 1 P~L4(PO,P2,P3) 

_ 1 2 L6 (po, P2' P3) - L6 (Pl' P2' P3) - -PI ----::--'-....:....--=--~~---:::-~---='---'~ 
2 L6 (Po,P2,P3) - L6 (Po,Pl,P2,P3) 

and the conclusion follows from the second of Eqs. (12.73) since 

L6 (Po,Pl,P2,P3) = L6 (Pl,P2,P3) - POLS(Pl,P2,P3) 

= L6 (Pl,P2,P3) 

(12.75) 

(12.76) 
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The arguments for q2 and q3 are the same. Therefore, it follows that 
qi = ! p~ is both necessary and sufficient for the condition equations to be 
consistent. 

¢ Problem 12-11 
For the fifth-order Runge-Kutta-Nystrom algorithm, where the Pi'S are 

given by Eqs. (12.75), show that 

bo = ° and b2, b3 -::fi ° 
The bi 's and the qi 's are calculated from 

b
3 

= L4(PO,PltP2) 
(P3 - PO)(P3 - P.)(P3 - P2) 
1 2 

qi = '2Pi for i=I,2,3 

with C21, C31, and C32 determined from 

POP3 - ~(3po + P3) + ~ 
C21 = -------:-----=--~----:=-

6b2(Pl - PO)(P2 - P3) 

POP2 - ~(po + P2) + 110 b2 
C31 = - -C21 

6b3(Pl - PO)(PI - P2) b3 

POPI - Hpo +p.) + to 
C32 = 

6b3(P2 - PO)(P2 - pI) 

¢ Problem 12-12 
Develop the fourth-order algorithm 

x = xo + hyo + h2(aoko + alkl + a2k2) + O(h5) 

y = Yo + h(boko + blkl + b2k2 + b3k3) + O(h5) 
ko = f(to,XQ) 

kl = f(to + hPl,XO + hplYO + !h2p~ko) 
k2 = f[to + hP2,XQ + hp2YO + !h2p~ko + h2c21(k l - ko)] 

k3 = f[to + h,xo + hyo + h2(aoko + alkl + a2k2)] 

(0,1,2,3) 

The coefficients are obtained as the following functions of the free parameters 
PI and P2: 

b3 = L4(PO,Pl,P2) 
(P3 - PO)(P3 - pt}(P3 - P2) 

(0,1,2,3) 

where 
Po =0 and P3 = 1 

and 

C3i = ai = (1 - pdbi for i = 0,1,2 

NOTE: There are four stages for the first step only since k3 is the same as the 
ko for the following step. 
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12.6 Sixth-Order R-K-N Algorithms 

The task of developing the condition equations for higher-order methods is 
quite laborious since the number of equations increases dramatically with 
increasing order. As we have seen, 13 equations [not counting those for the 
ai's since we always have ai = {I - Pi)bi ] evolve for m = 5. For m = 6, 
ten more are added; for m = 7, an additional 20; and for m = 8, the 
increase is 36 making 79 in all. For a ninth-order set, the number is 151. 

To develop a sixth-order algorithm, we require the fifth derivative of fi 
and must, for this purpose, define the following ten new vectors in addition 
to those of Eqs. (12.28) and (12.61): 

Oi = f~ yiykylymyn 
5 - Jklmn 

{3~ == f}klm%ykylym 
. . . k l 

1~ == fikla{y y 
. . . k l 

85 == fiklabaoY 
i _ i . k 

e5 = fik~y 

The fifth derivative may then be written as 

ri = f~ aiyk 
)5 - JkfJ2 

. . ' k 
71~ == fikabOl 

L~ == f;o~ 
It~ == f}{3~ 
A~ == f;~ 

(12.77) 

d5 fi . . . . . . .. . . 
dt5 = a~ + 10{3~ + 101~ + 1585 + 5e~ + 5S-s + 1071~ + L~ + 3K~ +..\~ (12.78) 

Although 23 condition equations result for the sixth-order case, they 
may be reduced immediately to 13 under the assumption that 

Po =0 and qi = ~ P; for i = 1,2,3,4 (12.79) 

as suggested by the analysis of the fifth-order algorithm. The six (Q) 
equations are handled as in the lower-order cases so that there remain 
seven equations to determine the six parameters cii' They are 

[:2 
1 

:4 ] [A~b2 ] 
= ~ [1] (1' ) P3 A!b3 3' 5 

p~ p~ p~ Alb4 
• 1 

6 

(e) [:2 1 
1 1 [A~b2] 1 [! 1 

P3 P4 A~b3 = 4! i 
A~b4 

(t) A3 A3 3 1 2b2 + 3b3 +A4b4 =,. 6. 

(;\) A33b + A33b 
1 

3 3 4 4 - 6! 
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where we have defined 

and 

i = 2, ... , n - 1; k = 1,2, ... 

A33 - C Al g - 32 2 A33 - Al Al 4 - C42 2 + C4g 3 

Reformulation of the Condition Equations 

599 

(12.80) 

(12.81) 

In the above format, the condition equations do not readily yield to further 
analysis. However, an alternate form of these equations is possible if we 
definet 

n-I 
~ p~b.c .. 
~ 3 3 3 t i = 1,2, ... , n - 2; k = 0,1, ... 

j=i+I 

Then, the condition equations can be written as 

('YO) HO+HO+Ho 1 
= 1 2 g 4·3! 

('YI) HI +HI +HI 1 
= 1 2 g 5·3! 

('Y2) H2+H2+H2 1 
= 1 2 g 6·3! 

(eO) 1 ° ° ° _ 1 2! (PIHI + P2H2 + PgH3) - 5· 4! 

(eI) 1 1 1 1 1 
2! (PI HI + P2 H2 + PgH3) = 6. 4! 

( ,'a) 1( 2 ° 2 ° 2 ° 1 3! P1HI + P2H2 + PgH3) = 6· 5! 

(AO) 3! (~AIHO ~AIHO) = _1_ 
3! P2 2 2 + Pg 3 g 6 . 5! 

(12.82) 

It is clear from the second form of the condition equations that ('YO), 
(eO), (LO), and (AO) provide four equations which must be satisfied by the 
three quantities H?, H~, and Hg. Specifically, we have 

t Successful resolution of the condition equations depends strongly on an appropriate 
arrangement of the terms. The grouping of the variables here, in particular the equations 
expressed in terms of the Hf 's, is the author's own. 
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which can be valid if and only if the four-dimensional augmented determi
nant of coefficients vanishes identically. This determinant 

1 1 1 1 

1 PI P2 P3 
2 

D= 4! 
5 

p~ P~ p~ I 
5 

0 A~/P2 A~/P3 I 
30 

is readily reduced to three dimensions by the following two elementary row 
operations: 

1. Row 3 - PI X Row 2 --+ Row 3. 
2. Row 2 - PI X Row 1 --+ Row 2. 

The result is 

after multiplying the first and second columns by the factors P2b2 and 
P3b3' respectively. 

Next, we obtain Al from Eqs. (Q) subject to the usual constraint 
equation L6 (PI,P2,P3,P4) = o. First, we find 

P (p _ p)b = L5(PI,P3,P4) 
2 2 I 2 (P2 - P3)(P2 - P4) 

P (p _ p)b = L5 (PI,P2,P4) 
3 3 I 3 (P3 - P2 )(P3 - P 4) 

and, from the results of Prob. 12-4, 

L 6 (PI,P2,P3,P4) = L6(PI1P31P4) - P2L5(PUP31P4) = 0 

= L6(PI,P2,P4) - P3L5(Pl,P2,P4) = 0 

we also have 

Then, from Eqs. ('Y) we obtain 

6A~b2 = L6(P3,P4) 
(P2 -P3)(P2 -P4) 

6A~b3 = L6 (P21P4) 
(P3 - P2)(P3 - P4) 

(12.83) 

(12.84) 

(12.85) 
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These are substituted for the elements of the determinant and all common 
factors removed to give 

The two column operations 

3. Column 1 - Column 2 --+ Column 1 and factor (P2 - P3) . 
4. Column 2 + P2 x Column 1 --+ Column 2. 

are next performed to obtain 

L4(PI,P4) L S (PI,P4) 

D = 144V3(P2~P2b2P3b3 Ls(p"p.) L6 (p"p.) 
L S (P4) L6 (P4) 

Finally, the two row operations 
5. Row 2 - Row 3 --+ Row 2 and factor Pl. 
6. Row 1 - Row 2 --+ Row 1 and factor PI . 

produce a determinant 

which depends only on P4. Hence, 

D = P~{P4 - 1)2 
7202lf3(P2)P2 b2P3b3 

so that the residue of Eq. (~) is simply 

Residue(~) _ pHp4 - 1)2 
- 7202lf3(PI)lf3{P2)P2b2P3b3 

(12.86) 

Thus, the condition equations can be consistent only if either PI = 0 
or P4 = 1. The first option would require all of the Pi's to be zero. For 
suppose that PI = 0; then, since 

Al - 1 (p P )p2 L6 (P3,P4) (12.87) 
2 - 6 2 - 1 2 L

6
(PI ,P3,P4) 

as obtained from the ratio of Eqs. (12.85) and (12.84), we have 

A~ = ~ p~ (12.88) 

But, from the definition A~ = C2IPI , it would then follow that P2 is also 
zero. A similar argument would lead to the conclusion P3 = P4 = 0 since 
it can be shown that 

AI = ~ p~ for i = 2, 3, 4 provided that PI = 0 



602 Numerical Integration of Differential Equations [Chap. 12 

Therefore, a necessary and sufficient condition for the consistency of 
the condition equations is that 

and (12.89) 

Solving the Condition Equations 

The solution of the (a) equations may be written compactly as 

b
4 

= L5(Po,PI,P2,P3) 
(P4 -PO){P4 -PI){P4 -P2)(P4 -P3) 

(0,1,2,3,4) (12.90) 

remembering, of course, that Po = 0 and P4 = 1. The qi's are calculated 
from Eq. (12.79) and, as usual, we also have ai = (1 - Pi)bi . 

To determine the Cij 's, we note that Eq. (A) may be discarded since its 
residue vanishes identically when P4 = 1 as we have already demonstrated. 
Therefore, Eqs. (,0), (cO), and (IP) provide unique solutions for HP, Hg, 
and Hg. In compact form, 

Ho _ ! P2P3 - k (P2 + P3) + to 
I -

12(p2 - PI)(P3 - PI) 
(1,2,3) (12.91) 

and also, from Eqs. (12.85), we have 

and 

Now, according to the definitions (12.80) and (12.82), 

A~ = P1C21 

A~ = PI C31 + P2c32 

HP = PI (b2c21 + b3c31 + b4c41 ) 

Hg = P2(b3c32 + b4C42) 

A~ = PI C41 + P2 c42 + P3c43 

which can be rewritten as 

Hg = P3b4C43 

PI b4c41 = H? - A~b2 - A~b3 + P2b3c32 

P2 b4C42 = Hg - P2b3c32 

P3b4C43 = Hg 
so that all of the Cij'S are expressed in terms of C32 . Finally, Eq. (c l ), 

written in the expanded form 

PIP2 (PI b2C21) + PIP3(PI b3c31) + P2P3(P2b3c32) 

+ PI (PI b4c41 ) + P2(P2b4c42) + P3 (P3 b4C43) = /2 

is used to determine c32 . 
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The equations needed to calculate the cij 's are summarized as 

_ 3P3 - 2 
PI b2c21 - 360(1 - P2)(P3 - P2) 

b - 3PIP3 - 3p~ - 2PI + 3P2 - P3 
PI 3

c
31 - 360(1 - P3)(P2 - PI)(P3 - P2) (12.92) 

and 

3PI -1 
P2

b
3
c

32 = 360(1 - P3)(PI - P2) 

PI b4c41 = H? - PI b2c2I - PI b3c31 

P2b4c42 = Hg - P2b3c32 

P3b4C43 = Hg 
where the Hf's are determined from Eqs. (12.91). 

¢ Problem 12-13 
Derive the symmetric sixth-order algorithm 

where 

x = Xo + hyo + glOh2(7ko + 24kl + 6k2 + 8k3) + O(h7) 

y = Yo + gloh(7ko + 32k1 + 12k2 + 32k3 + 7k4 ) + O(h7) 

ko = f(to,xo) 

kl = f(to + ih,xo + ihyo + f2h
2

ko) 

k2 = f[to + 4h,XQ + 4hyo - 214h2(ko - 4kd] 

k3 = f[to + ~h,xo + ~hyo + 312h2(3ko + 4kl + 2k2)] 

k4 = f[to + h,xo + hyo + 114h2(6kl - k2 + 2k3)] 

{12.93} 

Julius Albrecht 1955 

NOTE: In his paper, Albrecht did not provide general solutions of the condition 
equations. He apparently tried Po = 0, PI = i, P2 = 4 ' P3 = ~ , P4 = 1 and 
found that this choice led to a unique solution of these equations. 

12.7 Seventh-Order R-K-N Algorithms 

Erwin Fehlbergt derived the condition equations through order nine. The 
derivation is straightforward but tedious and, at this point, the reader 
should be capable of producing them for himself. Therefore, without 
further elaboration, we assume the condition equations and concentrate 
solely on their solution. 

t "Classical Eighth- and Lower-Order Runge-Kutta-Nystrom Formulas with Stepsize 
Control for Special Second-Order Differential Equations," NASA TR R-381, March 1972. 
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A seventh-order, six-stage Runge-Kutta-Nystrom algorithm does not 
exist. The author demonstrated this in his paper cited in the introduction 
to this chapter. It turns out that there are 15 equations to be satisfied by 
the ten cij parameters. However, if the number of stages is increased to 
seven, the number of parameters increases to 15 but the number of con
dition equations remains unchanged. Furthermore, the set of parameters 
in the (0) equations is also expanded to include P6 and b6 so that no 
constraint condition is required. 

With the same assumptions as for the sixth-order method, i.e., 

Po =0 and qi = ! p~ for i = 1,2, ... ,n - 1 

the condition equations for this case are 

where 

(0) 

(e) 

(t,) 

1 1 111 1 

PI P2 P3 P4 P5 P6 
p~ p~ P5 p~ p~ p~ 
p~ p~ p~ p~ p~ p~ 
p1 p~ p~ P: p~ p~ 
p~ p~ p~ p~ p~ pg 

[:. p~ 
p~ 

[:. 

111 

P3 P4 P5 
P5 p~ p~ 
p~ p~ p~ 

P1b l 

P2 b2 

P3 b3 

P4 b4 

P5 b5 

P6b6 

A~b2 
AAb3 

Alb4 

A~b5 
AAb6 

A~b2 
A5b3 

A~b4 
A~b5 
A~b6 

A~b2 
A~b3 
A~b4 
A~b5 
A~b6 

= 

I 
2 
I 
3 
I 
4 
I 
5 
I 
(3 
I 
"7 

1 ! [!] = 3! i 
7 

1 [! 1 
= 5! ; 

(12.94 ) 
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:J [~~::: 1 = ;! [t 1 
A~3b5 
A~3b6 

1 1 

which are the same as for the sixth order but expanded in an obvious 
manner. However, with the increase in order, four more equations are 
required which we write as 

(11") A~A~b2 + A~A~b3 + AlAlb4 + AAAAb5 + AAAAb6 = 31 3~ . 7 

(0') A~b2 + A~b3 + A:b4 + Agb5 + A~b6 = 61 ~ 7 

( 4> ) A~3b3 + A~3b4 + Ag3b5 + A~3b6 = 6! ~ 7 

(1/J) A44b + A44b + A44b + A44b = _1_ 
3 3 4 4 5 5 6 6 6! . 7 

where we have defined 

for i = 3, 4, ... , n - 1. [Refer to Eqs. (12.80) and (12.81) for the other 
definitions. ] 

As in the sixth-order case, it is convenient to formulate certain of these 
equations in terms of the functions Hf defined in Eq. (12.82). We have 

1 n-2. 1 n-2 
1 

(,i) (ui ) 1 L 3 i 
I! ~ Hj = 3! (i + 4) 4!. PjHj = 

6!(i + 7) 
J=1 J=1 

n-2 
1 I n-2 1 

(ci ) 1 L . (qi) 3. LA~H~ - p.H~ = = 2!. J J 4!(i + 5) 4!. J J 6!(i + 7) 
J=1 J=2 

n-2 
1 I n-2 1 

( l,i) 1 L 2 . (1/Ji) ~ L ~A~H~ - p·H~ = = 
3!. J J 5!(i + 6) 4!. p. J J 6!(i+7) 

J=1 J=2 J 

(Ai) 
3! n-2 Iii 1 
3! ~ p.AjHj = 5!(i + 6) 

J=2 J 
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Solving the Condition Equations 

Although we have a sufficient number of equations to determine the Cij 's, 
the task is far from elementary primarily because Eq. (1r) involves prod
ucts of these parameters. To circumvent this difficulty, we recall from the 
argument in the previous section leading to Eq. (12.88) that A! will equal 
t p~ if PI = o. With this form for At, Eq. (1r) would then be identical 
to Eq. (,3 ) and could, therefore, be discarded. Even though this is not an 
appropriate choice for PI' the same effect is possible by requiring that bl 
be zero. The (a) equations can then be consistent if and only if 

L7 (P2' P3' P4' P5' Ps) = 0 (12.95) 

Now, if we assume that 

i-I 

A~ = '"' C· .p. = !p~ , ~ ~ J S' for i = 2,3, ... , n - 1 (12.96) 
j=1 

then Eqs. ('Y) and (1r) are identical to certain of the (a) equations and 
can be discarded. However, by subtracting equations (t i ) and (Ai) we 
conclude that we must also have 

n-I 

HP = PI L bjcjl = 0 
j=2 

and 
n-I 

HI = PI L Pjbjcjl = 0 
j=2 

(12.97) 

as requirements. Equations (,,) and (A) will then be the same as will also 
Eqs. (u) and (cp). The total number of condition equations is now 14 to 
determine the 15 parameters Cij. 

It is also convenient, but clearly not necessary, to assume that 

i-I 

A2 - I '"' C p2 _ I p4 
i - 2 ~ ij j - 24 i 

j=1 
for i = 2,3, ... , n - 1 (12.98) 

so that Eq. (e) will then be identical to the last three of the (a) equations 
and Eq. (1/J) will be identical to (cp). However, in so doing, it follows from 
the definitions of A~ and A~ that 

P _Ip and C _lp2 
I - 2 2 21 - 3 2 (12.99) 

There are now 13 condition equations to determine the 14 parameters 
Cij. (Remember that c21 has already been established.) They are Eqs. 
(12.96) and (12.98) for i = 3,4,5,6 together with Eqs. (12.97), (A), and 
( cp ). These equations can be written as follows: 

bo = 1 - b2 - b3 - b4 - b5 - bs and (12.100) 

where b2 , ••• , bs are determined from 

b - LS(P3' P4' P5' Ps) 
2-

P2 (P2 - P3)(P2 - P4)(P2 - P5)(P2 - Ps) 
(2,3,4,5,6) (12.101) 
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[ tp~ - ~P2C41 1 
= 1 4 1 2 

T2P4 - 4'P2 C41 (12.102) 

[ 
1 1 1 1 [i b2P~ ] 

= - P2 P3 P4 b3c31 
b4c41 

where C41 is to be regarded as a free parameter. Next, the intermediate 
parameters A~3 and A~3 are calculated from 

where 
A33 _ 1 3 

3 - ijc32P2 

A~3 = t (C42P~ + C43P~) 
Then, CS2' cS3' and cS4 follow from 

[ 
1 1 1] [P2

C
S2] [ tp~ - ~P2CSl ] 

P~ P~ P~ P3cS3 = 112P~ - t:~CSl 
P2 P3 P4 P4cS4 6As 

Finally, we calculate another set of intermediate parameters 

A43 _ 1 4 
3 - 24 c32P2 

A:
3 = l4 (C42P~ + C43P~) 

A~3 = 2~ (CS2P~ + CS3P~ + cS4P:) 

b A 43 - 1 b A 43 b A43 b A 43 
6 6 - 5040 - 3 3 - 4 4 - 5 5 

which are used to determine c62' c63 ' C64 ' c65 according to 

[ 

1 1 1 1] [P2
C
62] [ tp~ - ~P2C61 ] 

P2 P3 P4 Ps P3C6,3 _ 112P3 - !P~C61 
P~ p~ P~ pg P4c64 - 6A~3 
P~ pg p~ p~ P5c65 24A33 

(12.103) 

(12.104) 

There are five free parameters-any four of the five quantities P2' P3' P4' 
PS' P6' subject to the constraint (12.95), together with C41 · 
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12.8 Eighth-Order R-K-N Algorithms 

For an eighth-order algorithm with eight stages the condition equations 
( 0 ), ('"Y), (e), (,,), and (~) are expanded, from the corresponding ones 
for the seventh-order, in an obvious manner to yield 22 equations. The 
additional equations (1r), (0'), (t/J), and (1/J), specific to the seventh-order, 
double in number. Finally, six new ones are required for the eighth-order 
giving a grand total of 36. Of these, 29 equations must be satisfied by the 
21 parameters Cij. 

To cope with this large overdetermined set of condition equations, we 
will as before, assume that 

A2 - ...!.. P~ £ . 2 3 7 i - 24' or z = , , ... , 

and, thereby, impose the constraints 

C - I p2 
21 - 3 2 

Again, Eqs. ('"Y) and (e) are identical to certain of the (0) equations which 
we record here for later use 

1 1 1 1 1 1 P2 b2 
1 
2 

P2 P3 P4 Ps P6 P7 P3 b3 
I 
3 

p~ p~ p~ p~ p~ p~ P4 b4 
I 
4 

(0) p~ p~ p~ p~ p~ p~ Psbs = I 
5 

p~ p~ P: pg p3 p~ P6b6 
I 
6 

p~ p~ p~ p~ pg p~ P7b7 
I 
'7 

p~ pg p~ pg pg p~ 1 
8' 

Therefore, they can be discarded. Furthermore, by subtracting Eqs. (/,i) 
and (Ai) for i = 0,1,2 we find that, in addition to Eqs. (12.97), we have 
alsot 

n-l 

Hl = PI L P~bjCjl = 0 (12.105) 
j=2 

As a consequence, Eq. (,,) can be dropped from the set. 
Next, we examine the equations (7r), (0'), (t/J), and (1/J) which, for 

the eighth-order algorithm with eight stages, are written in matrix form 

t The condition equations, expressed in terms of the Hf functions, were given in 
the previous section in a form which is valid for all higher-order algorithms. They are 
dependent on the number of stages n. 
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as 

(0' ) 

( ljJ ) 

( 1/J ) 

Eighth-Order R-K-N Algorithms 

1 111 

P3 P4 Ps P6 :J 

1 111 

P3 P4 Ps P6 

111 

111 

P4 Ps P6 p~] 

A~A~b2 
A1Alb3 
A1Alb4 
AAAAbs 
AAAAb6 
A?A?b7 

A~b2 
A~b3 
A~b4 
A~bs 
A~b6 
A~b7 
A~3b3 
A~3b4 
A~3bs 
A~3b6 
A~3b7 

A~4b3 
A~4b4 
A~4bs 
A~4b6 
A~4b7 

609 

1 [1] 
= 3!3! I 

__ 7 1 [1] 
- 6! i 

1 [1] 
= 6! i 

1 [1] 
= 6! i 

We see that Eqs. (1r) can also be discarded since they are identical to two 
of the (Q) equations. Further, Eqs. (ui ) , ( ¢>i), and ("pi), expressed in 
terms of H; as given in the previous section, are identical so that only 
( ljJ) need be retained. 

There are six additional equations specific to the eighth-order case: 

(el ) p2A~A~b2 + P3A~A~b3 + p4A~A~b4 + ... + p7A~A?b7 = 3! 4~' 8 

(e2p2A~b2 + P3 A3b3 + p4A~b4 + PsA~bs + P6A~b6 + p7A~b7 = 7!~ 8 

A S3b AS3b A S3b AS3b AS3b _ 1 
(e3) P3 3 3 + P4 4 4 + Ps S S + P6 6 6 + P7 7 7 - 7! . 8 

A S4b AS4b A54b AS4 b AS4b _ 1 (e4 ) P3 3 3 + P4 4 4 + Ps S S + P6 6 6 + P7 7 7 - 7! .8 

A 5Sb Assb Assb Assb A55b _ 1 (es) P3 3 3 + P4 4 4 + Ps S S + P6 6 6 + P7 7 7 - 7! .8 
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A 533b A533b A533b + A 533 b _ 1 
P4 4 4 + P5 5 5 + P6 6 6 P7 7 7 - 7! .8 

where we have defined, for i = 3,4, ... , n - 1, 

i-I 
55 5! L 3 A· = - c··A· , 5! 13 3 

;=2 

and 
i-I i-I 

533 5! L 33 33 3! L 1 A· = - cooA· with A· = - cooA· , 5! l3 3 I 3!. '3 3 
j=3 3=2 

These can also be written in terms of Hf functions as 

n-2 
1 

, n-2 
1 

(e~) 1 L 4 . (e~) 5. L ~A~H~ - p.H~ = = 7!(i + 8) 5!. 3 3 7!(i + 8) 5!. p. 3 3 
3=1 3=2 3 

, n-2 
1 

, n-2 
1 

(e~) 3. L AIHi (e~) 5. L ~A~3H~ 
5!. Pj j j = 7!(i + 8) = 7!(i + 8) 5! p. 3 J 

3=2 j=3 3 
, n-2 1 

(e~) 4. LA~H~ = 7!(i + 8) 5!. 3 3 
3=2 

We see that Eq. (e1 ) is equivalent to one of the (a) equations. Also, the 
three equations (e~), (e~), and (e~) are identical so that any two may be 
discarded. There are now 21 condition equations remaining to determine 
the 20 parameters cij -specifically, three from (A), two from (t:P), one 
each from Eqs. (e4 ), (e5 ), and (e6 ), three from Hi = 0, and five each 
from the assumptions A ~ = ! P~ and A ~ = ..1.. P~ , 6 t t 24 t' 

Eliminating Equations (w) and (z) 

Two of the condition equations, (e5 ) and (e6 ), still involve products of the 
Cij 'so It happens that they too may be discarded by the simple expediency 
of setting P7 = 1. To show this, we form the following five equations 
obtained by adding Eqs. (a i ) and (ai+2 ) and subtracting two times Eq. 
(ai +1 ) for i = 1, 2, ... ,5: 

1 1 1 1 1 1 P2(1 - P2)2 1 
12 

P2 P3 P4 P5 P6 P7 P3(1 - P3)2 1 
30 

p~ p~ p~ pg p~ p? P4(1 -P4)2 = 1 
60 

pg p~ p~ p~ p~ p~ P5(I - P5)2 1 
105 

p~ p! pl p~ p~ p~ P6(1 - P6)2 1 
168 

P7(I - P7)2 
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When these are compared to Eqs. (,0), (eO), ((,i), (O'i), and (e~), and we 
recall that HP = 0, it follows that 

for i = 2,3, ... ,6 

provided we set P7 = 1. 
Equations (es ) and (es ) can now be written as 

Equation (es ) is identical to the equation formed by adding Eqs. (/,0) and 
({,2) and subtracting two times Eq. ((,l). Therefore, it may be discarded 
if the three (,,) equations are satisfied by the Nystrom parameters. The 
same operations applied to Eqs. (AO), (AI), and (A2) show that Eq. (es ) 
may also be discarded. 

Solution of the Condition Equations 

The number of condition equations for the eighth-order method is now 
19 to determine the 20 parameters Cij subject to the constraints of Eqs. 
(12.94) and 

PI = !P2 

P7 = 1 
C - lp2 

21 - 3 2 (12.106) 

A recipe for the complete solution, which parallels the seventh-order case, 
is given in the following. For the bi coefficients, we have 

and (12.107) 

where b2 , ••• , b7 are determined from 

b - L7(P3,P4,P5,PS,P7) 
2-

P2(P2 - P3)(P2 - P4)'" (P2 - PS)(P2 - P7) 
(2,3,4,5,6,7) (12.108) 

Then the parameters c3l ' c32 and c42 ' c43 are obtained from the first 
two of Eqs. (12.102) while C5l ' cSl ' c71 follow from 

[ :~ :~ !] [!::::] = - [:~ :~ :~] [!::::] 
Ps Ps 1 b7c71 P2 Pa P4 b4c4l 

(12.109) 

with C4l again regarded as a free parameter. Next, the intermediate 
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quantities A~3, A~3, A~3 are calculated fromt 

1] [b A 33 ] [ ! ] [ 1 
1 b:Ai3 = 1~0 t - P3 
1 b A33 ! p2 

7 7 8 3 
[ 

1 1 

P5 P6 
p~ p~ 

Then, c52 , c53 , c54 follow from Eq. (12.103). 
The intermediate parameters A~3 and A~3 are determined from 

[:6 ~l [::~i:l = ~! m -[:3 :. :J [::~i:] 
b5A~3 

The first is used to determine c62 , c63 , C64 ' and c65 from Eqs. (12.104). 

and 

Finally, we calculate the intermediate quantities 

A53 _ 1 5 
3 - 120 c32P2 

A~3 = 1~0 (C42P~ + c43Pg) 

A~3 = 1~0 (C52P~ + c53Pg + C54P~) 
A~3 = 1~0 (C62P~ + c63 Pg + C64P~ + C65P~) 

b A 53 - 1 b A 53 b A 53 b A 53 b A 53 
7 7 - 5760 - 3 3 - 4 4 - 5 5 - 6 6 

which, together with A~3, are then used to obtain c72 through c76 from 

1 1 1 1 1 P2 c72 
1 1 
6 - "2P2C71 

P2 P3 P4 P5 P6 P3 c73 
1 1 2 

12 - '4P2 C71 

p~ p~ p~ p~ p~ P4C74 = 6A~3 (12.110) 

p~ p3 p~ p~ p~ P5C75 24A43 
7 

p~ p~ p~ p~ p~ P6C76 120A53 7 

There are again five free parameters-any four of the five parameters 
P2' P3' P4' P5' P6 subject to the constraint (12.106), together with C41 · 

A note of caution in obtaining the Cij 's from these equations (as well as 
those for the seventh-order case) is appropriate. High-order Vandermonde 
matrices can be ill-conditioned so that the explicit analytic inverse, given 
in Eq. (12.36), should be used rather than a general-purpose numerical 
matrix inversion algorithm. 

t The quantities Ai3 and A~3 as well as A~3, A:3 , and A~3 which appear shortly, 
are calculated as in the seventh-order case of the previous section. 
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12.9 Integration Step-Size Control 

In his 1972 report already cited, Erwin Fehlberg derived Runge-Kutta
Nystrom formulas with built-in, automatic step-size control based on the 
leading term in the truncation error of the x variable only. His formulas, 
which were created by expanding the number of stages, in fact, represent 
a pair of integration formulas for x which differ in order by one. Then, by 
requiring that the difference between these two expressions remain between 
preset limits, an automatic step-size control for the lower-order formulas is 
established. Fehlberg presented results for orders four through eight. 

Subsequently, Dale Bettis developed an algorithmt which utilizes an 
estimate of the local truncation error of both x and y for achieving step
size control. In his method, Bettis generated simultaneously two solutions, 
one of order four and the other of order five with the difference giving the 
desired control. 

In both the Fehlberg and Bettis formulas, step-size control is inherent 
in the method with the sacrifice of achieving a minimal stage algorithm. It 
would seem preferable if one could exercise such control when desired, say, 
periodically, rather than during each step in the cycle, if computational 
efficiency could be, thereby, enhanced. 

In this section the problem of step-size control is addressedt in the 
spirit of Fehlberg but with the control feature left to the discretion of the 
user. The algorithms derived, with the single exception of the sixth-order 
algorithm with seventh-order control, are equally efficient compared with 
the Fehlberg and Bettis formulas even when step-size control is exercised 
during each integration interval. Furthermore, the control check may be 
skipped at any time with the result that all of the advantages of a minimal
stage algorithm are still retained. 

Since many of the problems to which Runge-Kutta-Nystrom methods 
are applied are characterized by fairly complicated right-hand-side func
tions f(t, x), the overwhelming portion of the total computation time is 
spent in evaluating the ki functions. Therefore, if a higher-order algorithm 
is utilized to control the integration step size h for a lower-order algorithm, 
it would be desirable, to enhance efficiency, if as many of the corresponding 
ki's as possible were identical for a pair of such algorithms. In many 
cases, the free parameters at our disposal from the general solution of the 
condition equations can be chosen for the purpose of forcing certain of the 
ki's to be the same for algorithms of different order. 

t "A Runge-Kutta Nystrom Algorithm," Celestial Mechanics, Vol. 8, No.2, September, 
1973, pp. 229-233. 

t The material comprising this section is based on the author's paper "Minimal-Stage 
Step-Size Control of Runge-Kutta-Nystrom Integration Algorithms," Acta Astronautica, 
Vol. 13, No. 6/7, June/July, 1986, pp. 277-283. It was presented in Stockholm, Sweden 
in 1985 at the Thirty-Sixth Congress of the International Astronautical Federation. 
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Despite the fact that specific and useful Runge-Kutta-Nystrom algo
rithms are developed here, the author feels that the chief contribution of 
this section is to illustrate the practical applications which can result from 
the general solutions of the condition equations which constitute the main 
body of this chapter. 

Second-Order Algorithm with Third-Order x-Control 

As a simple example, consider the second-order, single-stage algorithm with 
third-order x-control. We have seen that the solution of the condition 
equations for the second-order case is 

and bo = 1 

while the corresponding solution for the third-order, two-stage method with 
one free parameter is 

L 3 (Po,PI) = l- ~(po + PI) + POPI = 0 

(Po - PI)bo = L2 (PI) 

(PI - Po)b l = L2 (Po) 

b1qI = t 
We see at once that the parameter Po cannot be the same for both m = 2 
and m = 3. Since we must have L2 (po) = 0, as required for the second
order method, this would make bi = 0 for the third-order case. Hence, 
the equation for ql would be rendered meaningless. Also, we wish to 
choose pi = 1 so that the coefficient ai = (1 - pi)bi will be zero, thereby 
avoiding the necessity of computing k~. Indeed, this will be our strategy 
for all higher-order methods-to set to unity the p parameter for the last 
stage of the x-control formula. 

As a result of this analysis, we find there is only one minimal-stage, 
second-order algorithm with third-order x-control. Using primes for those 
quantities required solely for control, the algorithm is 

x = Xo + hyo + !h2ko + O(h3) 

y = Yo + hko + O( h3
) 

ko = f(to + ~h,Xo + ~hyo) 
x' = Xo + hyo + !h2k~ + O(h4) 

k~ = f(to + lh, Xo + ihyo) 

Observe that two evaluations of the function f are required per integration 
step when x-control is desired and only one otherwise. 
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Third-Order Algorithm with Fourth-Order x-Control 

When the third- and fourth-order condition equations are compared, we 
again see a potential conflict. The constraint function L3 (po, PI) must 
vanish for the third-order method but cannot vanish for the fourth as the 
equation for q2 would then be violated. Hence, the parameters Po and PI 
cannot be the same for the two cases; however, we can have Po identical 
for both. 

As mentioned in the previous subsection, we shall choose p~ = 1 to 
optimize the control. Then, from the requirement that the two constraint 
functions L3 (Po,PI) and L4(PO'P~, 1) be zero, we find that 

2 
_ I PI - 3 

Po - 2 I 
PI - 2 

and 

For arbitrary values of PI (# !, of course) we have a one-parameter 
family of algorithms with three evaluations of f per step using fourth-order 
x-control. 

As an example, if we choose Po = 0, then a third-order algorithm with 
fourth-order x-control is 

x = Xo + hyo + !h2(ko + k I ) + O(h4) 

y = Yo + !h(ko + 3kI ) + O(h4) 

ko = f(to, Xo) 

kl = f(to + i h, Xo + ihyo + ~h2ko) 
and, for step-size control, we calculate 

x' = Xo + hyo + th2(ko + 2k~) + O(h5) 

k~ = f(to + !h,Xo + !hyo + kh2kO) 

which, incidentally, are the original Nystrom algorithms for the third- and 
fourth-order cases (if, of course, we include the formula for y'). 

Fourth-Order Algorithm with Fifth-Order x-Control 

With Po = 0, the constraint equation for the fourth-order algorithm is 
L4(PI,P2) = O. Since b3 , which is proportional to L4(PI,P2)' must not 
vanish for the fifth-order case, then PI and P2 cannot be the same for both. 
However, we may have PI = p~. Then, since we again wish to have P; = 1, 
the parameters P2 and p~ are obtained from 

3 

PI = i P2 - ~ and p~ (1 - P2) = ! (~ - P2) 
P2 - 3 

The number of evaluations per step is four including the fifth-order control 
and there is also a one-parameter family of these algorithms. 
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¢ Problem 12-14 
Derive the following fourth-order algorithm with fifth-order step-size control: 

where 

x = Xo + hyo + 310h2(3ko + lOki + 2k2) + O(h5) 

y = Yo + IIOh(ko + 5kl + 4k2) + O(h5) 

ko = f(to,xo) 

kl = f(to + jh,XQ + jhyo + /sh2ko) 

k2 = f[to + ~h,xo + ~hyo + 1!4h2(5ko + 45k.)] 

With step-size control activated, we compute 

x' = Xo + hyo + 3!6h2(35ko + 108kl + 25k~) + O(h6) 

k~ = f[to + ~h,xo + ~hyo - 1~5h2(ko - 21k.)] 

¢ Problem 12-15 
Derive the following fourth-order algorithm with fifth-order x-control: 

where 

x = Xo + hyo + l~oh2(13ko + 36kl + 9k2 + 2k3) + O(h5) 

y = Yo + ~h(ko + 3kl + 3k2 + k3) + O(h5) 

x' = Xo + hyo + l~oh2(13ko + 36kl + 9k2 + 2k4) + O(h6
) 

ko = f(to,XQ) 

kl = f(to + ih,xo + ihyo + fsh2ko) 

k2 = f(to + jh,XQ + jhyo + ~h2k.) 

ka = f[to + h,xo + hyo + ~h2(2ko + k2)] 

k4 = f[to + h,xo + hyo + l~oh2(13ko + 36k l + 9k2 + 2ks)] 

Erwin Fehlberg 1972 

NOTE: It should be remarked that there are five evaluations of f in this algo
rithm for the first step only since k4 is the same as ko for every step after the 
first. Even so, the algorithm of Prob. 12-14 has also four stages with step-size 
control but only three if the control feature is omitted. 
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¢ Problem 12-16 
Derive the following fourth-order algorithm with fifth-order x- and y-control: 

where 

x = Xo + hyo + fth2(ko + 2k3) + O(hs) 

y = Yo + ~h(2k2 - k3 + 2k4) + O(hs ) 

x' = Xo + hyo + iOh2(7ko + 24k2 + 6k3 + 8k4) + O(h6
) 

y' = Yo + ilo h(7ko + 32k2 + 12k3 + 32k4 + 7ks) + O(h6) 

ko = f(to, xo) 

kl = f(to + lh,xo + lhyo + 1~sh2ko) 
k2 = f[to + ~h,Xo + ~hyo + 916h2(ko + 2k.)] 

k3 = f[to + ~h,xo + ~hyo + /ih2(ko + 2k2)] 

k4 = f[to + ~h,xo + ~hyo + 1~sh2(9ko + 18k2 + 9k3)1 

ks = f[to + h,xo + hyo + 910h2(7ko + 24k2 + 6k3 + 8k4)] 

Dale Bettis 1973 

NOTE: Actually, Bettis suggests that this algorithm be regarded as fifth-order 
with fourth-order control. 

¢ Problem 12-17 
Show that, by one more evaluation, i.e., k~ in Prob. 12-14, the same control 

as used in Prob. 12-16 can be achieved at the same cost. Specifically, derive the 
expressions 

y = Yo + 3~6h2(35ko + 162k1 + 125k~ + 14k;) + O(h6) 

k; = f[to + h,xo + hyo + 21Sh2(21ko - 12k! + 5k~)1 

Fifth-Order Algorithm with Sixth-Order x-Control 

If PI and P2 are the same for a fifth- and sixth-order method, the parameter 
C21 cannot be the same for both. To show this, we first observe that 

L ( ) - P2 (P2 - PI) ( I I ) 
4 PI' P3 c21 - 6 4P3 - 5 

PI 

L ( I 1) I P2 (P2 - PI) (I I I ) 
5 PI,P3' c21 = 60PI 2P3 - 3 

Now, in order to have C21 = c~l' we must require that 

1 
P3L3(PI) + L4 (PI) i P3 - k 1- 0 

p;L4 (PI' 1) + L5 (1,PI) 210p~ -lo -
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w here we have used the properties 

L4(PI,P3) = P3L3(pd + L4(PI) 

L5 (PI ,p~, 1) = P~L4(PI' 1) + L5 (PI' 1) 

[Chap. 12 

The parameters P3 and p~ are determined from their respective constraint 
conditions 

L5 (PI,P2) 
L4(PI,P2) 

and p~ = L6 (PI' P2' 1) 
L5 (Pl , P2' 1) 

By direct calculation, it is readily shown that this determinant will vanish 
if and only if 

which is identical to 

L5 (PI' P2' 1) = 0 

But, this condition would make ba = 0 and, hence, would result in a viola
tion of the conditions for the existence of a sixth-order method. Therefore, 
only ko and kl can be identical for the two algorithms and six evaluations 
of f are required for a fifth-order method with sixth-order x-control. Even 
though this is equivalent to the Fehlberg algorithm of the same order, the 
number of stages is only four if the x-control is omitted. 

¢ Problem 12-18 

with 

Derive the following fifth-order algorithm with sixth-order x-control: 

x = Xo + hyo + 3~8h2(27ko + 112kl + 50k2) + O(h6) 

y = Yo + 11134 h(81ko + 448kl + 500k2 + 105k3) + O(h6) 

ko = f(to, xo) 

kl = f(to + !h,XQ + !hyo + f2h2ko) 

k2 = f[to + 170h,xo + 170hyo - 1010oh2(7ko - 252kI)) 

k3 = f[to + h,XQ + hyo + 114h2(4ko + 3k2)) 

Then, for step-size control, 

x' = Xo + hyo + glOh
2(7ko + 24kl + 6k~ + 8k~) + O(h7) 

k~ = f[to + ~h,xo + ~hyo - iih2(ko - 4kt)) 

k~ = f[to + ~h,xo + ~hyo + 312h2(3ko + 4kl + 2k~)) 
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Sixth-Order Algorithm with Seventh-Order x-Control 

If PI and P2 are identical for a sixth- and seventh-order method, then there 
exists a unique pair of values for PI' P2 for which C21 = c~I' To prove this 
assertion, we first note that 

L ( 1) P2 (P2 - PI) ( 1 1 ) 
5Pl,P3' C21= 60Pl '2P3-'3 and 

Therefore, if C21 = C~I' we must have 

10P2P3(P2 - 1) - 5p~ + 6P2 + 3P3 = 2 

Also, since we require PI = ! P2 , the constraint equation for the sixth-order 
method 

reduces to 

5P2P3(2P2 - 3) - 5p~ + 9P2 + 6P3 = 4 

Now, the two relations between P2 and P3 just derived are equivalent to 

and 

5p~ - 2P2 + 3P3 - 2 = 0 

Combining the two, we find that P2 and P3 must be the roots of the 
quadratic equation 

Therefore, we have 

P2 = 110 (5 - \"'5) 
P3 = 1~(5 + \"'5) 

so that 

In passing, we note that these values result in L5 (P2' P3' 1) = 0 which 
causes bl to be identically zero. 

As a result of this analysis, we conclude that ko, kl' and k2 can be the 
same for both a sixth- and a seventh-order method. Hence, the number of 
evaluations of f per step will be eight for a sixth-order method with seventh
order x-control. Fehlberg's algorithm requires only seven evaluations but, 
again, our algorithm has the minimum number of stages if the step-size 
control is omitted. 
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¢ Problem 12-19 
Since all of the p's are determined for m = 6, n = 5 in the above analysis, 

the sixth-order method is unique. Show that 

with 

x = Xo + hyo + 214h2[2ko + (5 + V5)k2 + (5 - v'5)k31 + O(h7) 

y = Yo + 112h(ko + 5k2 + 5k3 + k4) + O(h7) 

ko = f(to, Xo) 

kl = f[to + 210(5 - v'5)h,xo + 210(5 - V5)hyo + 8
10(3 - v'5)h2kOI 

k2 = f{to + 110(5 - v'5)h,Xo + 110(5 - v'5)hyo 

+ sloh2[(3 - v'5 )ko + (6 - 2v'5 )k l]) 

k3 = f {to + 110(5 + v'5)h,xo + 110(5 + v'5)hyo 

+ sloh2[(6 + 2v'5)ko - (8 + 4v'5)k l + (11 + 5v'5)k2]) 

k4 = f{to + h,xo + hyo - f2h2[(3 + v'5)ko 

- (2 + 6v'5)kl + (2 + 2v'5)k2 - (9 - 3v'5)k3]) 

NOTE: Again, to minimize the number of additional k's for the control feature, 
we set p~ = 1 so that two free parameters may be selected from among p~, p~, 
p~ together with a free choice for c~ I . 

Seventh-Order Algorithm with Eighth-Order x-Control 

Frank Hriadilt analyzed the seventh-order algorithm with eighth-order 
x-control of the step size. Such an algorithm is possible using nine evalua
tions of the function f(t, x) which is the same as that devised by Fehlberg. 
However, if step-size control is not exercised, the seventh-order method 
requires just seven function evaluations. 

For the first five k's to be the same, we must have Po' ... , P4 and C21 , 

... , c43 the same for both algorithms. For the eight-order control, Frank 
selected values for the free parameters P3' ... , p~ to provide approximate 
equal spacing from zero to one. Specifically, 

Po = p~ = 0 

PI = p~ = 0.0792766611 

P2 = p~ = 0.1585533223 

P3 = p~ = 0.4286000000 

P4 = p~ = 0.5714000000 

Ps = 0.8327915849 

P6 = 1 

p~ = 0.7143000000 

p~ = 0.8571000000 

P; = 1 

t "Solution of a Special Class of Second-Order Differential Equations through the 
use of Higher Order Runge-Kutta-Nystrom Techniques," MIT, M.S. Thesis, June 1975. 
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He also chose the other free parameters C41 and C~l to be zero. Then, the 
rest of the identical Cij'S are 

C21 = c~l = 0.008379719 

c31 = C~l = -0.116394789 

c32 = C~2 = 0.140959190 

C41 = C~l = 0 
c 42 = c~2 = 0.103773748 

c 43 = C~3 = 0.034157295 

The remaining Cij and cij parameters are 

CSI = 0.294810543 C~l = 1.415901519 

c S2 = 0.001974362 C~2 = -0.778773705 

c S3 = 0.053757319 c~3 = 0.142985941 

CS4 = 0.086695149 C~4 = 0.018704349 

C61 = -1.070725551 C~l = -0.838031914 

c62 = 0.770395923 
, 

C62 = 0.708867422 

c63 = 0.313053911 C~3 = 0.067707125 

c 64 = -0.114914297 C~4 = 0.017420055 

c6S = 0.073113735 
, 

c6S = 0.028014167 
, 

c 7l = 1.401311110 

The parameters C~2' ••• , c~6 are not calculated since p~ = 1 eliminates 
their need in the eighth-order algorithm. 

Finally, we list the bi and bi coefficients. (The qi 's, and ai's are not 
recorded since they are so easily determined.) 

bo = 0.0460182740 

bl = 0 

b2 = 0.2483385750 

b3 = 0.2172603598 

b4 = 0.1815261108 

bs = 0.2576030440 

b6 = 0.4925363631 

b~ = 0.0463900363 

b~ = 0 

b~ = 0.2464481173 

b; = 0.2330101312 

b~ = 0.1337579954 

b~ = 0.0939411688 

b~ = 0.2024308894 

b~ = 0.0440217028 

It would be better, of course, to have these coefficients and parameters 
expressed as rational fractions. This should be possible using the MAC
SYMA program which has proven to be such a valuable tool. Surprisingly, 
without any computing aids of that kind, Erwin Fehlberg was able to repre
sent his parameters as fractions; but in fairness to Frank Hriadil, Fehlberg 
did not have to satisfy the constraint equations L7 = L8 = o. 
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Higher-Order x-Control Algorithms 

In an earlier subsection, we produced a third-order algorithm with fourth
order x-control which required three evaluations of the function f. It is 
interesting to note that a fifth-order x-control is also possible with the 
same number of functional evaluations. 

Here the algorithm is unique if Po = p~ = o. With PI = p~ = i and 
p~ = 1, then p~ must be !. The third-order algorithm is the same as 
before and the fifth-order x-control is given by: 

x' = Xo + hyo + 6~2h2(733ko - 63k l + 200k~) + O(h6) 

k~ = f[to + !h,Xo + !hyo - 5~oh2(11ko - 21k l )] 

With this successful analysis, we are tempted to try an extension to 
the fourth-order case. If the first three stages of a fourth- and sixth-order 
algorithm were the same, a sixth-order x-control would be possible for a 
fourth-order method with just one additional function evaluation. U nfor
tunately, this is not possible as can be seen from the following argument. 

The simultaneous satisfaction of the constraint equations for m = 4 
and m = 6, namely, 

and 

would require that PI and P2 be the roots of 

2 6p~ - ~ 3p' - 1 
P - 5Pa - ~ P + 10;a - 2 = 0 

The parameters c21 for the fourth-order and C~I for the sixth-order 
methods are obtained from 

L (p)c = P2(P2 - PI) 
3 1 21 24PI 

and 

L ( I 1) I _ P2(P2 - PI) (I I I) 
5 Pl,P3' C21 - 60PI 2P3 - 3 

Now, if we require c21 = c~I' then PI and p~ must be related by 

PIP~ - ~ (PI + p~) + l2 = 0 

Solving this for PI in terms of p~ and substituting in the quadratic equation 
just obtained, we conclude that p~ must be 1. This is not possible, for 
then PI would have to be zero and, thus, equal to po. 

Hence, a fourth-order algorithm with sixth-order x-control requires 
five function evaluations which is two more than the minimal-stage fourth
order algorithm. 



Chapter 13 

The Celestial Position Fix 

I N MANY RESPECTS THE NAVIGATION POSITION FIX OBTAINED FROM 

celestial observations made aboard a spacecraft is similar to the prob
lem encountered by the seagoing and airborne navigators. The fundamental 
differences are (1) the spacecraft problem is truly three dimensional and 
(2) the forces governing the motion of the spacecraft are far better known 
than the motions of the terrestrial seas and air masses. Therefore, although 
the first difference noted tends to complicate the problem, the second makes 
the task somewhat easier and the resulting computations and extrapola
tions capable of greater precision. 

As the first step in the formulation of a navigation theory, we con
sider the processes involved in determining the position of a spacecraft 
by means of a celestial fix. For a completely onboard determination, the 
operation may comprise a sequence of any or all of the following types 
of measurements: (1) the angle between the lines of sight to selected 
pairs of celestial bodies, (2) the observation of star occultations, (3) the 
measurement of the apparent diameter of a planet, and (4) radar measure
ments. One further operation is implied in the fix, namely, the recording 
of time as indicated by the spacecraft clock. The intended result of these 
observations is the determination of the coordinates of spacecraft position 
together with, perhaps, a correction to the current clock reading. Here, we 
shall describe several possible forms of the required calculations and then 
relate the resultant errors in position and thne estimates to the errors in 
the primary measurements. 

In the first part of the analysis the celestial fix is studied primarily 
from a geometrical point of view. Later for computational advantage, it 
is assumed that approximations to spacecraft position and to time are 
already known, so that perturbation techniques may be employed. In many 
important applications, no real restriction is implied by this assumption, 
since deviations from a selected reference trajectory must be kept small in 
order to complete the mission with a reasonable fuel supply. Specifically, 
we assume the existence of a reference time t for the fix and a reference 
position vector r for the spacecraft at time t. We further assume exact 
knowledge of the position and velocity of all relevant astronomical objects 
at time t. 

623 
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Secondary effects arising from the finite speed of light, the finite 
distance of stars, etc., are ignored in this analysis. Such corrections can be 
lumped together for a particular reference point as a modification to the 
reference values for the various angles to be measured at that point. 

The celestial fix is first analyzed by assuming that only a sufficient 
number of measurements are made to establish the position unambiguously. 
Gauss' method of least squares is then employed to permit incorporation of 
redundant measurements to compensate for instrumentation inaccuracies. 
A number of specific examples is included to illustrate the effectiveness of 
the method. 

Finally, the method of processing the measurements for the celestial fix 
is recast in a recursive form which eliminates the need for the accumulation 
of large quantities of data and the inversion of correspondingly large order 
matrices. 

13.1 Geometry of the Navigation Fix 

The measurement of the angle subtended at the spacecraft between the 
line of sight to a near body, e.g., the sun or a planet, and the line of sight 
to a star establishes the position of the vehicle on the surface of a cone 
whose apex is the position of the near body. The axis of the cone has the 
direction of the line of sight to the star, and the angle of the cone is twice 
the supplement of the measured angle. The star is assumed to be at such a 
large distance that its direction is independent of the point of observation. 

A second angle measurement, involving the same near body and a 
different star, establishes a second cone of position with a different axis and 
apex angle. The two cones intersect in two straight lines one of which is a 
line of position for the spacecraft. Another star measurement made with 
respect to the same near body would serve merely to distinguish between 
the two lines of position already determined but would otherwise provide no 
new information. Actually, this possible ambiguity can easily be resolved, 
since the two lines of position are generally widely separated so that an 
approximate knowledge of the vehicle's position will suffice to determine 
the proper one. 

A third measurement is needed to determine the radial distance of the 
vehicle from the near body. For example, if a second near body is selected, 
the subtended angle between the lines of sight to it and the original body 
provide a surface of position which is generated by rotating the arc of a 
circle about a line connecting the two near bodies. The terminal points of 
the arc are the two bodies, the center lies on the perpendicular bisector 
of the connecting line, and the radius is a function of the magnitude of 
the measured angle and the distance between the two near bodies. The 
intersection of this third surface of position with the already obtained line 
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of position establishes the fix, and the vehicle's position relative to the near 
body is determined. This particular example is illustrated in Fig. 13.1. 

The numerical calculations associated with the geometrical construc
tion just described are easily formulated. Let r = r i r be the unknown 
position vector of the spacecraft, which, for definiteness, we assume to be 
expressed relative to the sun. Let r" be the known position of a planet, 
and let i l and i2 be two unit vectors in the direction of two selected stars. 
The three measurements produce three angles AI' A2 , A3 . Therefore, the 
position vector of the spacecraft must simultaneously satisfy the following 
three nonlinear equations: 

ir . i I = - cos A I 

ir . i2 = - cos A2 

ir ·r" = r -Ir" - ricosA3 

The solution of these equations for the components of r results in a fix for 
the spacecraft. 

An alternate method of determining the radial distance from the near 
body might employ a third cone of position established by measuring the 
angle between the lines of sight of a second near body and a star. The 
intersection of this cone with the previously established line of position 
locates the vehicle. 

Still another type of observation would be the measurement of the 
apparent angular diameter of a nearby planet. In this way a sphere of posi
tion is obtained. The observation of a star occultation by a nearby planet 
establishes a cylinder of position whose axis is in the direction of the star 
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and whose diameter is the diameter of the planet. The angular diameter 
measurement and the observance of a star occultation are practical only 
when the vehicle is relatively close to the celestial body involved. 

An exact determination of position by methods described in this 
section has some distinct disadvantages. True, the algebraic equations to 
be solved are nonlinear, but this is simply a nuisance and not necessarily 
a significant obstacle to onboard computation. However, the method im
plies simultaneous measurements which are almost certainly impractical. 
Finally, and perhaps most important of all, no satisfactory method of in
corporating redundant measurements to compensate for instrumentation 
inaccuracies is known. 

All these objections can be circumvented if the determination of space
craft position is made relative to a known and nearby reference position. 
When such is the case, the powerful tools of linear perturbation analysis 
can be brought to bear. Indeed, the rest of this chapter is devoted to an 
exploitation of linear theory in obtaining a navigation fix. 

¢ Problem 13-1 
The solution of the equations 

can be expressed as 

where 

and cos tp = h . b . 

¢ Problem 13-2 

ir • h = - cos Al 

i r • h = -COSA2 

ir = a i I + (3 b + , i I X h 

a sin2
tp = cos A2 cos I{) - cos Al 

{3 sin2 
tp = cos Al cos tp - cos A2 

,2 sin2
tp = 1 + acosA I + {3cos A2 

Carl Grubin 1976 

A spacecraft and two near celestial bodies are located at S, PI, P2, respec
tively. An x, y coordinate system is set up such that the origin is at PI, the x 
axis lies along the line connecting PI and P2, and the y axis lies in the plane 
established by S, PI, and P2. The equation of the locus of points in the x, y 
plane, for which the angle A = LPI SP2 is constant, is 

(x - C)2 + (y - ccotA)2 = (CCSCA)2 

where 2c is the distance between PI and P2. The surface generated by rotating 
this curve about the line connecting PI and P2 is the surface of position of a 
spacecraft for which A is the angle between the lines of sight to PI and P2. 
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13.2 Navigation Measurements 

The mathematical processes are considered here in some detail for deter
mining spacecraft position by means of both celestial observation and radar 
measurements. It is assumed throughout the analysis that approximations 
to spacecraft position and velocity are already known, so that perturbation 
techniques can be employed. 

As will be shown, each measurement establishes a component of space
craft position along some direction in space. If q is the quantity to be 
measured and 6q is the difference between the true and reference values, 
then it will be seen that the relation between 6q and the deviation in 
spacecraft position 6r from the reference position is, to first order, 

6q = h . 6r = h T 6r (13.1) 

regardless of the type of measurement. Thus, the h vector alone will 
characterize the measurement. 

Measuring the Angle between a Near Body and a Star 

The first type of measurement to be considered is that of the angle between 
the lines of sight to a near body (e.g., the sun or a planet) and a star. 
The angle A will be a function A(r) of the position vector r of the vehicle 
measured with respect to the near body. Then, A may be expanded in a 
Taylor series about the reference position ro at which point the angle to 
be measured is Ao. We have 

A(r) = A(ro) + aA 6r + ... = Ao + h T 6r + .. . (13.2) ar 
where the derivative is understood to be evaluated at the reference point. 

To calculate the coefficient of 6r, we differentiate the measurement 
equation 

TcosA = -i:r 

where is is the unit vector in the direction of the star, to obtain 

aT A . A a A 0 T ar -cos -TSlD - = -I -ar ar 8 ar 
or, equivalently, 

oT A . A aA oT 
I cos - TSlD - = -I 
r ar s 

Solving for the derivative of A with respect to the components of r gives 

The vector 

aA I ( AO O)T lOT 
-a = ---=---A cos Ir + Is = - In r Tsm T 

o I ( AO 0) 
In = -;--A cos Ir + Is 

sm 
(13.3) 
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is readily seen to be a unit vector which is in the plane of the measure
ment, (Le., the plane determined by the spacecraft, the near body, and the 
direction to the star), and is normal to the line of sight to the near body. 

The so-called measurement geometry vector h for a near body and 
star angle measurement is, therefore, 

h=~i (13.4) 
T n 

Measuring the Apparent Angular Diameter of a Planet 

Referring to Fig. 13.2, if D is the actual diameter of a planet, the apparent 
angular diameter A is found from 

Tsin !A = !D (13.5) 

Again we assume that the position vector r of the spacecraft is mea
sured relative to the planet. We have 

aT sin !A + !TCOS !A aA = OT ar 2 2 2 ar 
in the same manner as before. Hence, 

[
aA]T D 

h = ar = - T2 cos ! A iT (13.6) 

Star-Elevation Measurement 

Consider next the measurement of the angle between the lines of sight to 
a star and the edge of a planet disk. From Fig. 13.3 we have 

Tcos(A +,) = -i:r and Tsin, = !D 

where A is the angle to be measured and , is the angle between the lines 
of sight to the center of the planet and to the planet edge. Therefore, 

costA +,) 1; - rsin(A +,) (~: + ~n = -I; 
and 

sin, i~ + TCOS, :; = OT 

so that 
aA 1 (.. . )T -a = -- sm, IT + cos, In 

r TCOS, 

where 

(13.7) 
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Fig. 13.2: Measurement of 
the apparent diameter of a 
planet. * 

So 

Fig. 13.3: Measurement of 
star elevation angle. 

is a vector in the plane of the measurement and perpendicular to the line 
of sight to the planet. 

I t is easy to see that sin, in - cos, iris a unit vector in the direction 
from the spacecraft to the planet edge and that r cos, is the corresponding 
distance to that edge. Thus, the measurement geometry vector is simply 

h = _1_ i where ip = cos "V in + sin "V ir (138) rcos, p I I • 

The unit vector ip lies in the plane of the measurement and perpendicular 
to the line of sight to the planet edge. 

Star-Occultation Measurement 

The next type of measurement to be considered is that of noting the time 
at which a star is occulted by a planet. The analysis depends directly on 
the star-elevation measurement just considered. 

Let v p and v. be the respective velocity vectors of the planet and the 
spacecraft so that 

vr=v-vp 

is the velocity of the spacecraft relative to the planet. Clearly, the rate of 
change of the star-elevation angle A is 

dA T. 
rcos"V- = -v 1 

I dt r p 
or 
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Hence, 

so that 

To 8t 8A oT 
-v 1 - = r cos 1 - = 1 

r p 8r 8r p 

h= __ 1_i 
v . i P 

r P 

where the unit vector ip is defined as in the previous subsection. 

Measuring the Angle between Two Near Bodies 

For specificity, consider the two near bodies to be the sun and a planet. Let 
So and Po be, respectively, the reference positions of the spacecraft and 
the planet at the time of the measurement as shown in Fig. 13.4. Further, 
let r be the vector from the sun to So and z the vector from So to Po. 
With A denoting the angle from the sun line to the planet line, we have 

and 

Hence, 

A 8r A 8z . A 8A T 8z T 8r zcos -+rcos --rzsm -=-r --z -
8r 8r 8r 8r 8r 

To dispose of the various partial derivatives in this equation, we first 
differentiate the scalar relation 

and obtain 

2z
8z = -2r T + 2r iT = _2ZT 8r p r 

so that 
8z oT 
-=-1 8r % 

Then, from the vector relation between r and z, we have 

so that 8z =-1 
8r 

As a consequence, the measurement geometry vector h = [8Aj 8rJ T for 
this measurement is 

where 

h 1 ° 1 ° =-1 +-1 r n Z m 
(13.9) 

° 1 (0 A ° ) In = ~A 1% + cos Ir sm 
and ° 1 (0 A ° ) 1m = - ~A Ir + cos 1% 

sm 

are unit vectors, each lying in the plane of the measurement, i.e., the plane 
determined by the spacecraft and the two near bodies. The vector in is 
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Fig. 13.4: Measurement of the angle 
between the sun and a planet. 

im 

631 

normal to the line of sight to the sun whereas im is normal to the line of 
sight to the planet. 

The measurement of the angle between the lines of sight to a near body 
and to a star may be regarded as a special case of this measurement. If 
we allow the planet to recede to infinity, the measurement geometry vector 
becomes the same as that previously considered, i.e., Eq. (13.4). 

Radar-Range, Azimuth, and Elevation Measurements 

Assume a radar site on the surface of the earth to be the origin of the 
coordinate system, and let a cartesian coordinate system be chosen such 
that the z axis is radially out from the center of the earth through the radar 
site, the x axis is positive in the direction from which radar azimuths are 
to be measured, and the y axis completes the coordinate system. Then we 
may write 

[

COS fj cos 0] 
r = T cos~sinO 

smfj 
(13.10) 

where T, 0, fj are, respectively, the range, azimuth, and elevation of the 
vehicle as observed from the radar site. Hence, 

a [ cos fj cos 0] a [ - sin fj cos 0] a fj [ - sin 0] 
a~ = I = cos~sinO a: + - sin fj sin 0 T ar + cosO 

smfj cosfj 0 

The vector coefficients in these equations are recognized as orthogonal unit 
vectors in the directions of increasing r, {3, 0, respectively. Thus, we 
may solve for the partial derivatives by successively multiplying this last 
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equation by the transpose of these unit vectors to obtain 

8r 
8r = [cos,8 cos 0 cos /3 sin 0 sin /3] 

8/3 = ! [_ sin /3 cos 0 - sin /3 sin 0 cos /3] 
8r r 

80 = _1_ [_ sinO cosO 0] 
8r rcos,8 

[Chap. 13 

(13.11) 

Any three independent measurements can be used to define a naviga
tion fix. Then, since the governing equations for each of the various types 
of measurements are linear in 6q and 6r, we may express the results in the 
vector-matrix fonn 

(13.12) 

where H is a 3x3 matrix each of whose columns is composed of the compo
nents of the h vector for an individual measurement. The composite vector 
6q is the three-dimensional column vector composed of the deviations of 
observed quantities from their corresponding reference values. If the three 
measurements represented by the measurement geometry matrix Hare, 
indeed, independent, then the position deviation of the spacecraft at the 
time of the measurements may be computed from 

6r = H-T 6q (13.13) 

13.3 Error Analysis of the Navigation Fix 

Three independent and precise measurements made at a known instant of 
time suffice to determine uniquely the position of a spacecraft. Because of 
the presence of instrumentation errors, there will be an uncertainty asso
ciated with the position fix. The best choice of measurements at any time 
depends on the position of the spacecraft relative to the geometry of the 
solar system. In order to demonstrate explicitly the effect of different sets 
of measurements, we shall derive analytic expressions for the errors which 
result from different combinations of measurements. 

For this purpose, it will be necessary to distinguish between the 
measured and true values of the quantities 6q and the estimated and true 
values of the position deviation 6r. The notation 6q will represent the 
measured value of the deviation in q from its reference value, and 6q will 
be the true value of the deviation. Likewise the notation Or will be used 
for the estimated or inferred value of the deviation in r from its reference 
value and 6r will be the actual deviation. We may then write 

6ij = 6q + Q 

6r= 6r+ E 
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where a and E denote explicitly the errors in the measurements and the 
estimates. 

The true deviations 6q and 6r clearly satisfy Eq. (13.13). With just a 
sufficient number of measurements being considered, then, for an unbiased 
estimate, we must have 

6r= H-T 6ij 

Thus, the error vectors E and a are also related by 

E =H- T a 

(13.14) 

(13.15) 

The magnitude of the error vector E is simply the square root of the 
quantity 

£2 = ET E = a TH-1H-T a = a T(HTH)-la = a™-1a (13.16) 

where 

(13.17) 

Thus, £2 is a positive definite quadratic form in the components of the 
measurement error vector a. Bounds on £2 can be expressed in terms 
of the measurement geometry vectors hi' which constitute the columns of 
the matrix H, as we shall now demonstrate. 

Since the matrix M is positive definite, it is possible to rotate the 
system of coordinates in such a way as to diagonalize the matrix M and to 
transform the quadratic form to a sum of squares. Denote by B the modal 
matrix of M. Then B is an orthogonal matrix, i.e., B-1 = BT and 

[

AI 0 0 ] 
BTMB::D= 0 A2 0 

o 0 A3 
so that 

The characteristic equations of M and D are the same: 

1M - All = ID - All = -A3 + (31 A2 - (32 A + (33 

= (AI - A)(A2 - A)(A3 - A) 

and the coefficients of the characteristic equation are related to the roots 
as 

(31 = Al + A2 + A3 

(32 = Al A2 + A2 A3 + Al A3 

(33 = Al A2 A3 

Using Eq. (13.17), these coefficients can also be determined as 

(31 = trM = Ih112 + Ih212 + Ih312 

(32 = IhI X h212 + IhI X h312 + Ih2 X h312 

(33 = IMI = IHI2 = (hI X h2 . h3)2 

(13.18) 

(13.19) 
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If the coordinate system is rotated using the modal matrix B, then the 
error vector a' in the rotated coordinate system is related to the original 
error vector a by the linear transformation 

a =Ba' 

As a consequence, from Eq. (13.16) we have 
,2 ,2 ,2 

€2 = ET E = a,TBTM-1Ba' = a,Tn-l a , = a l + a2 + a 3 
Al A2 A3 

Now, if a 2 is the square of the magnitude of the error vector, then 

€2 < (~ + ~ + ~) a 2 = /32 a 2 (13.20) 
- Al A2 A3 {33 

according to the definitions (13.18). But, it is easy to see that 

/32 = ~ [(tr M)2 - (A~ + A~ + A~)] ~ ~ /3~ (13.21) 

Therefore, we have 

(13.22) 

and the {3 's involve only the measurement geometry vectors. 
We shall now consider several different combinations of measurements 

and calculate upper bounds for the error in each position estimate. 

Planet-Star, Planet-Star, Planet-Diameter Measurement 

For convenience, choose a coordinate system x, y, z centered in the space
craft with the z axis in the direction of the planet as shown in Fig. 13.5. 
Let i nl and in2 be unit vectors in the respective planes of the planet
star measurements and normal to the direction from the spacecraft to the 
planet. These vectors will lie in the x, y plane, and we may take inl to be 
along the positive x axis. Then, if () is the angle between inl and i n2 , we 
have 

h2 = -zl [~~nos:] h3 = D 
Z2 cos !A 

2 

Therefore, with Eqs. (13.19) to calculate the /3's, 
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Fig. 13.5: Planet-star, 
planet-star, planet
diameter measurement. 
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we substitute in (13.22) to obtain 
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z4 sin 2 0 cos2 ! A + 2D2 z2 {2z2 cos2 ! A + D2)2 
{2 < 2 0 2 < 2 (l2 (1323) 

- D2 sin 2 0 - 2D2 cos2 ! A sin 2 0 . 
2 

as upper bounds on the square of the position estimation error. Clearly, 
the error will be a minimum if two stars can be found such that in! and in2 
are orthogonal. We further note that the error is reduced as the distance 
between the spacecraft and the planet decreases. 

Planet-Star, Planet-Star, Sun-Star Measurement 

Choose a coordinate system oriented as described above and illustrated in 
Fig. 13.6. Let in! and in2 be unit vectors as previously defined, and let 
ina be a unit vector in the plane of the sun-star measurement and normal 
to the direction from the spacecraft to the sun. Then from the figure we 
have 

1 [ cos, cos ¢J ] 
ha = r cos: sin ¢J 

Sill, 
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2 1 
{31 = z2 + r2 
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{32 = 14 sin2 0 + 21 2 {2 - cos2 , [1 + cosO cos(2</> - O)]} 
z r z 

~ 1' 20 ·2 
P3 = r 2z4 sm sm, 

are obtained using Eqs. (13.19). 
One of the two possible upper bounds on the squared estimation error 

is 

(13.24) 

Clearly, the best star to choose for the sun-star measurement is one lying 
in the plane containing the spacecraft, sun, and planet, for then , will 
assume its maximum value, which is the angle A between the planet and 
the sun. Again the two best stars for the planet-star measurements are, 
apparently, those for which the angle between the planes of measurement 
is 0 = ~ 7r. However, with this analysis, the angle </> is unspecified. Indeed, 
</> appears only in the coefficient [32 which is the numerator of the more 
conservative bound [32/[33' 

To minimize [32' we have two choices, depending on the quadrant of 
O. First, if 0 ~ 0 < ~ 7r, then we want 2</> - 0 = 0 or </> = ! O. On the 
other hand, if ~ 7r < 0 ~ 7r, then we want 2</> - 0 = 7r or </> = f (7r + 0). In 
either case, 

where the choice of upper or lower sign depends on whether 0 is in the first 
or second quadrant, respectively. 

The ratio {32 / (33 as a function of , has the form 

[32 a - bcos2 , 

[33 = sin2, 

where a(O) > b(O). Hence, 

d~ (~:) = 2(b - a) csc· ')'cot')' < 0 

Thus, to minimize [32/[33 we should, as before, choose, to be as large as 
possible, namely, , = A. There results 

{32 _ 2 2 A 2 + cot2 A (1 =f cos 0) 2 
Ii"" - r csc + . 2 0 Z 
P3 sln 
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Fig. 13.6: Planet
star, planet-star, sun
star measurement. 
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Finally, to select the optimum value for 0 we set to zero the derivative 
of (32/(33 with respect to O. When 0 lies in the first quadrant, we obtain 

{1- cos 0)2 - 4tan2 AcosO = 0 or • 2 A ( 1 - cos 0) 2 sm = 
1 + cosO 

Therefore, 
1- sin A 

cosO = 1 . A +sm 
for 

On the other hand, if 0 is in the second quadrant, we have 

2 2 . 2 A ( 1 + cos 0 ) 2 (I + cos 0) + 4 tan A cos 0 = 0 or sm = 
1- cosO 

so that 

cosO = 1 - sin A 

1 + sin A 
for 

In either case, the squared-estimation error is 

r2 + ! z2(1 + sinA)2 
(2 < 2 (}2 

- sin 2 A 
(13.25) 

provided that (1) the star for the sun-star measurement lies in the plane 
containing the spacecraft, sun, and planet, (2) the two stars for the planet
star measurements are those for which the angle between the planes of 
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measurement is arccos[(1-sinA)/(1+sin A)], and (3) that angle is bisected 
by the plane of the sun-star measurement. 

Entirely, analogous results are obtained if the three measurements are 
sun-star, sun-star, and planet-star by simply interchanging r and z in the 
equations. 

Planet-Star, Planet-Star, Planet-Sun Measurement 

A particularly useful set of three observations consists of measuring the 
angles between the lines of sight to a nearby planet and (1) a star, (2) a 
different star, and (3) the sun. However, if the planet is much closer to 
the spacecraft than to the sun, the inverse of the H T matrix, as required 
for the estimation formula (13.14), cannot be obtained by straightforward 
means. 

Before analyzing the effectiveness of this measurement set, we devise 
a procedure to handle the matrix inversion problem. For this purpose, let 
unit vectors be defined as follows: 

inl : in the plane of the planet-star 1 measurement and normal to the 
direction from the spacecraft to the planet, 

in2 : in the plane of the planet-star 2 measurement and normal to the 
direction from the spacecraft to the planet, 

i n3 : in the plane of the planet-sun measurement and normal to the 
direction from the spacecraft to the planet, and 

i n4 : in the plane of the planet-sun measurement and normal to the 
direction from the spacecraft to the sun. 

Now if r and z are the distances to the sun and to the planet, respectively, 
then the H matrix is 

H = [I~l 

Since inl , in2 , and in3 are each perpendicular to the same direction, 
they cannot be independent. Therefore, if z « r, the matrix H will be 
ill-conditioned-having a determinant nearly equal to zero. 

To counter this difficulty, define two scalar quantities a and b such 
that 

in3 = a i nl + b in2 

so that the measurement matrix may be written as 
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with the coefficients a and b determined from 

_ inl . in3 - (inl • in2 )(in2 • in3 ) 
a - 1 (0 0)2 - lnl' In2 

b = in2 . in3 - (inl . in2 )(inl . in3 ) 
1 - (inl . in2)2 

Since the vectors inl , in2 , and in4 are independent, the inversion of the 
first matrix factor of H presents no problem. Since the inversion of the 
second factor can be obtained explicitly, then 

[

z 0 -ar] [inl 
H-l = 0 z -br 

o 0 r 
(13.26) 

which is free of numerical difficulties and may be used without compunction 
in the estimation formula (13.14). 

Refer now to Fig. 13.7 and choose a coordinate system as before. Then 
the matrix H may be written as 

where 

[ 
1 cos () - cos A cos 4>] [1 /~z 0 a / z ] 

H = 00 sin () - cos A sin 4> 1 I z biz 
o sin A 0 1/r 

sin(() - 4» 
a=-....:.....--~ 

sin () 
and b = sin 4> 

sin () 

The inverse matrix is 

[

z -zcot() azcotA - arCSCA] 
H-1 = 0 -zcsc() bz cot A - brcscA 

o 0 rcscA 

For the error analysis of this measurement set, it is more convenient 
to use Eq. (13.16) to write 

t 2 ~ tr (H-1H-T
) a 2 

since we already have an explicit expression for the inverse of the matrix 
H. Thus, the factor bounding the squared-estimation error is 

(
sin 2 

(() - </» + sin 2 </» 
2z2 csc2 () + r2 csc2 A + (z cot A - r csc A)2 --":"'--. -:----

sm2 
() 

Again the optimum choice of 4> is one-half (), so that the minimum value 
of the upper bound as a function of () is 

2 
2 2 () 2 2 A (z cot A - r csc A) 2 

Z CSC + r csc + 1 () + cos 
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Fig. 13.7: Planet-star, 
planet-star, planet-sun 
measurement. 

The optimum value of 0 = 00 is found as the solution of 

Thus, 

4Z2 cos 00 )2 
(1- cos 0

0
)2 = (zcotA - TcscA 

O 
)1- 2pcosA + p2 - sin A 

cos = ~=======::==~::-----:----:
o )1- 2pcosA + p2 + sin A 

where, for convenience, we have defined 

T 
p= -

Z 

With this value of 0 the optimum bound on the squared-estimation error 
is expressed as 

£2 :::; T2 csc2 A + ~z2 csc2 A (sin A + )1- 2pcosA + p2 )2a2 (13.27) 

Here again, by interchanging T and z, we obtain analogous results for 
the measurement set consisting of sun-star 1 , sun-star 2' and sun-planet. 
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¢ Problem 13-3 
A fix is made using a planet and two stars. One of the measurements is the 

apparent diameter of the planet. For the other two measurements we can use 
(1) the angles between the stars and the center of the planet or (2) the elevation 
angles of the stars above the planet horizon or (3) the angles between the stars 
and a planet landmark. Compare the effectiveness of each of the three choices. 

¢ Problem 13-4 
Analyze the effectiveness of a fix obtained by measuring the angles between 

two stars and a planet and observing a star occultation by the same planet. How 
should the stars be oriented to minimize the squared measurement error in the 
position fix? 

¢ Problem 13-5 
Determine the locus in the p-A plane for which the measurement sets 

planet-star, planet-star, sun-star and planet-star, planet-star, planet-sun give 
equal upper limits for the squared-measurement errors. In other words, determine 
the relationship between p and A for which the bounds on £2, as computed by 
Eqs. (13.25) and (13.27), are equal. In which section of the p-A plane is one set 
of measurements to be preferred over the other? 

13.4 A Method of Correcting Clock Errors 

Thus far, the navigation fix has comprised three measurements of the type 
previously described. However, with the addition of a fourth independent 
measurement, it is possible not only to determine the coordinates of the 
spacecraft position vector but also to infer other information such as, for 
example, a correction to the spacecraft clock. 

For this analysis, we assume that when the spacecraft clock indicates 
the reference time to the sighting process commences. Let the clock be in 
error at this time by the amount 6te so that the sighting actually begins 
at the time to - Me' We consider only one type of measurement, namely, 
the measurement of the angle between the lines of sight to the sun and to 
a planet. The other measurement types are left as exercises. 

As before, So and Po are the reference positions of the spacecraft 
and the planet at time to' The vectors r and z are again the position 
vectors of the vehicle with respect to the sun and the planet with respect 
to the vehicle. With A denoting the angle from the sun line to the planet 
line, as shown in Fig. 13.8, we shall derive an expression for the change 
in angle 6A arising from the motion of the planet during the interval 6te 
between the reference time and the actual time of measurement and the 
initial displacement 6r of the spacecraft position with respect to So at the 
time to - 6te when the sighting process begins. We note that the initial 
displacement 6r may arise in part from the motion of the spacecraft during 
the time interval 6te and in part from its deviation from the reference 
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So 

Fig. 13.8: Measurement 
of the angle between the 
sun and a planet. 

position So at time to' One of the significant tasks in analyzing the fix 
data is properly to separate these components. 

As before, the angle A is given in terms of the scalar product 

where r + z = rp 

Differentiate each with respect to time to obtain 

A 
dr dz. dA T dz T dr 

zcos -+rcosA--rzsmA-=-r --z -
dt dt dt dt dt 

and 
dr dz 
dt + dt = vp 

where v p is the velocity vector of the planet at time to' Then, noting that 

and 
dz oT dz 
-=1 -
dt Z dt 

the following expression for the time derivative of A results: 

dA = h T dr _ ~ i TV 

dt dt z m p 

where h and 1m are defined in Eq. (13.9). Thus, we have 

i . v oA = hT or+ ~ot z C 

For convenience of notation, it is advantageous to work with a four
dimensional deviation vector ox defined as 

Ox = [:;.] 
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so that we may express the measured deviation 6A in the form 

6A = b T 6x 

643 

Here, of course, the measurement vector, now denoted by b, is also four 
dimensional. For the particular type of measurement discussed we have 

b = [. h ] = [in./T + im/Z] 
1m· vp/Z 1m' vp/z 

Then, in matrix form, the expression analogous to Eq. (13.12) is simply 

6q=H T 6x 

where H is now a 4 x 4 matrix each of whose columns consists of the 
components of the four-dimensional b vectors for the four individual mea
surements. As before, the vector 6q is composed of the deviations of the 
observed quantities from their reference values and is also four dimensional. 
If the matrix H is nonsingular, Le., if the measurements provide indepen
dent information, then 

6x = H-T 6q 

We again distinguish measured, true, and estimated quantities with 
the same notational conventions of Sect. 13.3, so that 

6x=H-T 6q 

However, with the data available, a better estimate of 6r is possible. Once 
an estimate for 6te has been obtained, a correction may be applied to the 
position-deviation estimate to account for the fact that the time of starting 
the fix is in error. This may be accomplished by adding to the position 
estimate the vector distance traveled by the spacecraft with velocity v in 
the time 6te' Thus, the best estimate of the four-dimensional deviation 
vector is obtained from 

6x=XH-T 6q 

where X is a matrix defined by 

and I is the three-dimensional identity matrix. 

¢ Problem 13-6 

(13.28) 

For an angular diameter measurement in which 6tc is the clock error, then 

6A = 2 D 1 A 1; (6r + vp 6tc ) 
r cos 2 

where v p is the velocity vector of the planet relative to the sun. 
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13.5 Processing Redundant Measurements 

The procedure for determining position deviations is called deterministic if 
only a sufficient number of measurements to define the parameters uniquely 
is assumed. If the instrumentation is perfect, the computed deviations will 
be exact to within the assumptions inherent in a linear analysis. However, 
instrumentation inaccuracies do exist, so that it is advantageous to include 
redundant measurements in the fix to achieve a further reduction in the 
uncertainties in the quantities to be determined beyond that which can be 
had using only a minimum number of measurements. 

The Pseudo-Inverse of a Matrix 

Assume that a total of m (m > 3) measurements has been made for a single 
position fix. An example of a fix consisting of six angle measurements is 
illustrated on pages 21 and 22 in the Introduction of this book. The first 
three measurements involve the nearest planet, and the angles are from 
the sun and two stars. The fourth measurement is from the sun to a star, 
and the fifth from the sun to the second nearest planet. Finally, a sixth 
measurement is the subtended angle of the nearest planet. 

The linear equations in vector-matrix form relating the deviations in 
the measured quantities 6q and the deviation in the position vector 6r 
from the reference value is the same as Eq. (13.12), that is, 

(13.29) 

except that now the measurement geometry matrix H is 3 x m while the 
vector 6q is m x 1. Since H is not a square matrix, its inverse is not 
defined in the ordinary sense. However, if the three-dimensional matrix 
HHT is not singular, then the set of over-determined equations describing 
the position fix can be "solved" using the so-called pseudo-inverse of a 
matrix. 

For this purpose, we multiply Eq. (13.29), first by H and then by 
(HHT )-1, to obtain 

(13.30) 

It will soon be apparent what significance, if any, can be attached to this 
result and if it is ever proper in any sense to speak of Eq. (13.30) as the 
"solution" of Eq. (13.29). 

First, however, let us address a somewhat different but related issue. 
When we attempt to utilize more than a sufficient number of measurements 
for determining a position fix, we may also wish to attach different levels of 
importance to each of the various measurements. Some measurements in 
the set might, indeed, be more accurate than others in some quantifiable 
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way. Consider, for example, a position fix consisting of four measurements. 

(1) oql = hI or 
(2) oQ2 = h~ or 
(3) oQ3 = h~ or 
(4) oQ4 = hr or 

which, of course, is equivalent to 

where 

We assume that there is associated with each measurement a weighting 
factor l/ul such that the smaller the value of ui' the more significant will 
be the i th measurement. 

Multiply each Eq. (i) in the above set by hdul and add together the 
resulting four equations to obtain 

hI h2 h3 h4 
2" oQl + 2" oQ2 + 2" oQ3 + 2" oQ4 = 
u1 u2 u3 u4 

(
hI hI h2h~ h3h~ h4hr) ~ --+--+--+-- ur u2 u2 u2 ~2 1 2 3 V4 

This equation may be written in the form 

where A is the diagonal matrix 

Thus, we have 

o o 
o A= 0 u~ [

U~ 

o 0 u~ 
000 

1.] 
HA -1 oq = HA -IH T or 

(13.31) 

Regardless of what these manipulations and the end result really mean, 
we can certainly regard 

or = (HA -IH T )-IHA -1 oq (13.32) 

as an estimate of the position deviation vector. The matrix coefficient of 
oq is called an estimator and, clearly, this estimator is linear. 

The estimator is also unbiased in the sense that if the measurements 
are exact then the estimate will be error free. That is, if a = 0, then 

oq= oq= HT or 
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so that 
Or = (HA -lHT)-l(HA -lHT) 6r = 6r 

The estimator also reduces to the deterministic case 

6r= H-T 6q 
if there are no redundant measurements. For the proof, assume that H is 
a square matrix and nonsingular. Then 

Or = (HA -lHT )-IHA -1 6q = (H-T AH-1 )HA -1 6q = H-T 6q 
Finally, as we shall see in the next subsection, this estimator is identical 

to that obtained using Gauss' method of weighted least squares. When this 
assertion is validated, the somewhat bizarre manipulations which led to 
this form of the estimator will be better appreciated. 

Gauss' Method of Least Squares 

In its simplest form, the method of least squarest is applied to approximate 
the solution of an overdetermined set of linear algebraic equations of the 
form 

n 

L mijxj = ci with i = 1,2, ... ,N > n 

j=1 

where mij and ci are given quantities. The problem is to determine Xj so 
that these equations are "as nearly satisfied as possible." Specifically, we 
define a set of N residuals as the differences 

n 

ei = LmijXj - ci 
j=1 

and choose a set of weighting factors, denoted by WI' W2' ... , wN' Then 
we determine xl' X2' ••• , Xn so that the weighted sum R of squares of 
the residuals will be a minimum where 

R = w1e~ +w2e~ + ... +wNe~ 

t Carl Friedrich Gauss invented and first used the method of least squares in 1795 
when he was but 18 years of age. However, 14 years elapsed before publication in his 
book Theoria Motus which we have referred to many times. Meanwhile, Adrien-Marie 
Legendre independently invented the method and published his results in 1806. Gauss 
acknowledged Legendre's work in Theoria Motus by stating 

"Our principle, wbicb we bave made use of since tbe year 1795, bas lately been 
published by Legendre in tbe work Nouvelles methodes pour la detennination des 
orbites des cometes, Pam, 1806, wbere several otber properties of tbis principle 
bave been explained, wbich, for tbe sake of brevity, we bere omit." 

This served only to anger Legendre who wrote to Gauss saying "You, wbo are already 
so rich in discoveries, migbt bave bad tbe decency not to appropriate tbe metbod of 
least squares." Despite the evidence which substantiated Gauss' priority, he was indeed 
magnanimous in bowing apologetically to Legendre. 
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In vector-matrix form the basic set of equations is 

Mx=c 

where M is an N x n matrix. The vector of residuals is 

e=Mx-c 

and, in terms of the weighting matrix 

[

WI 0 
o W2 

W= .. 

o 0 JJ 
the weighted sum of squares of the residuals is 

R = eTWe = (xTMT - cT)W(Mx - c) 
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(13.33) 

= xTMTWMx - cTWMx - xTMTWc + cTWc 

To minimize R, we set to zero the derivative 

aR =2x™TWM-2cTWM=OT ax 
and develop, thereby, the equation 

MTWMx=MTWc 

to be solved for x. We have, then 

x= (MTWM)-IMTWc (13.34) 

which is identical in form to the expression (13.32) obtained using the 
pseudo-inverse matrix. Therefore, solving a set 0/ overdetermined linear 
algebraic equations using the pseudo-inverse method is /ormally equivalent 
to Gauss' method o/least squares. 

Furthermore, we observe that if the coefficient matrix M is a nonsin
gular square matrix, then Eq. (13.34) reduces to Cramer's rule 

x = M-Ic 

as, of course, must be the case. 
Finally, before closing this section, we note that when calculating the 

derivative of R, there is a quadratic term of the form 

y = xTBx = (xTBx)T = xTBTx 

whose derivative is 

ay = xTBI + xTBTI = xT (B + BT) ax 
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13.6 Recursive Formulations 

The formulation of the weighted least-squares estimator as a recursive 
operation, in which the current estimate is combined with newly acquired 
information to produce an improved estimate, is the subject of this section. 
Its importance is fundamental to the general problem of space navigation 
to be treated in the next chapter and is developed here with pedagogical 
motives. Significant advantages accrue from a recursive formulation of 
the navigation problem in that measurement data may be incorporated 
sequentially as they are obtained. The necessity of batch processing and 
matrix inversion with its associated numerical pitfalls are, thereby, avoided. 

The Matrix Inversion Lemma 

Basic to the development of recursive formulas is a certain matrix identity 
generally attributed to Georg Ferdinand Frobenius which can be derived 
most conveniently from the results of Prob. B-20 in Appendix B. There 
are given two expressions for the inversion of the block partitioned matrix 

M= [Ann Bnm 1 
Cmn Dmm 

The first of these is from part (c) of that problem 

[A
- I A-IB E-I C A-I M- I = nn + nn nm mm mn nn 

E - I C A-I - mm mn nn 

where 
Emm = Dmm - CmnA;;-~Bnm 

and the second is from part (f) 

where 
F nn = Ann - BnmD~!n Cmn 

Important identities ensue by equating corresponding blocks of these 
two forms of the inverse. In particular, we have 

(Ann - BnmD~!n Cmn)-I = 
A;;-~ + A;;-~Bnm(Dmm - CmnA;;-~Bnm)-ICmnA;;-~ (13.35) 

and 

(Dmm - CmnA;;-~Bnm)-1 = 
D~!n + D~!nCmn(Ann - BnmD~!nCmn)-IBnmD~!n (13.36) 
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There is also an important determinant identity which we will require 
that is obtained by equating parts (b) and (e) of that same problem. We 
obtain 

I Ann IIDmm - CmnA;"~Bnml = IDmmll~n - BnmD~!n Cmnl (13.37) 

~ Problem 13-7 
Another form of the matrix inversion lemma is 

(Inn +Xnm Ymn)-l = Inn - Xnm(Imm + YmnXnm)-lYmn 

NOTE: If m < n, there is a tradeoff between the inversion of an n x n matrix 
and the easier inversion of an m x m matrix. 

~ Problem 13-8 
Y Use the matrix inversion lemma to obtain 

[
A B] -1 _ [(A _ BD-10)-1 (0 _ DB-1 A)-I] 
o D - (B - AO-1D)-1 (D - OA -lB)-l 

provided that all block partitions are square and have the same dimension. 

~ Problem 13-9 
Y The matrix inversion lemma can be used to invert a matrix of the form 

M = 1+ [a bl [ :: ] 

to obtain 

where 

'Y = 1 + trN +detN and N= [bTd bTe] 
aTd aTe 

NOTE: The explicit forms of the fundamental perturbation matrices derived in 
Sect. 9.7 are precisely of the form of M in this problem. 
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The Information Matrix and its Inverse 

The matrix E defined as 

E == HA-1H T = t hi~r 
i=l ui 

(13.38) 

is sometimes called the information matrix. It is the sum of terms of the 
form hh T / u2 -one for each measurement. In effect, including another 
measurement adds information and "increases" the information matrix. 
The matrix 

(13.39) 

appears in Eq. (13.32) as a part of the weighted least-squares estimator 
which can be written as 

where F=PHA-1 (13.40) 

The information matrix can also be expressed recursively in the form 

(13.41) 

The asterisk denotes the new information matrix obtained by incorporating 
a new measurement, characterized by the measurement vector h and the 
associated weighting factor l/u2 , with the old information matrix. 

Actually, it is the inverse of the information matrix that is required in 
the estimator and it would be convenient to have a recursive formula for P 
in addition to the one for E. This is precisely the reason for introducing 
the matrix inversion lemma in the previous subsection. For with n = 3, 
m = 1, and 

we can use Eq. (13.35) to obtain 

p. = P _ Ph(u2 + h TPh)-lh Tp 

For convenience, here and in the sequel, we define 

a = u2 +hTPh 

Then we have 

and 
1 

w=-Ph 
a 

(13.42) 

(13.43) 

as the desired recursive formula for updating the inverse of the information 
matrix. 
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Recursive Form of the Estimator 

One form of the Gaussian least-squares estimator is given in Eqs. (13.40). 
The corresponding formulas, which include one additional measurement, 
are 

or* = F* oij* where F* = P*H* A * -1 (13.44) 

and the relations between the starred and unstarred quantities are readily 
seen to be 

oq" = [~:] A* = [A 0] OT (12 

P* = (I - WhT)P H* = [H h] 

A recursive form of the estimator can be obtained using the following 
sequence of steps with the block partitions of the factors of F* : 

F" = (I-whT)P[H h) [~:l 11~2] = (I-whT)P [HA-1 ~] 
= [(I-WhT)F Ph-:~hTPh)] = [(I-WhT)F aw-:~a-112)] 

Therefore, 
(13.45) 

so that 

or" =F"oq" = [(I-whT)F w) [!;] = (I-whT)Or+woq 

=or+w(oq-hTOr) (13.46) 

Since oq = h T or, then h T Or provides an estimate of the new 
measurement before it is actually made. As a consequence, if we denote 
this quantity by 

oq= hT or 

then the recursive estimation equation is 

or* = or + w(oq - off) 

with the vector 
1 

w = (12 + h T Ph Ph 

(13.47) 

(13.48) 

(13.49) 

playing the role of a weighting factor. To obtain the updated estimate Or* 
from the old estimate Or we simply add the weighted difference between 
what we actually measure and what we would expect to measure as antici
pated from the old estimate. (If that difference is zero, there is no necessity 
to change the estimate.) Finally, we must update the P matrix by using 
Eq. (13.43) in preparation for processing the next measurement. 
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¢ Problem 13-10 
A space vehicle is en route to Mars, and one-tenth year after departure from 

earth the vector positions in astronomical units of the vehicle and the two planets 
are as follows: 

r = 0.104 ix + 0.998 ill + 0.018 iz 

rE = 0.155 ix + 0.972 ill 

r M = -1.076 ix + 1.251 ill + 0.053 iz 

in a heliocentric, ecliptic oriented coordinate system. 
(a) A position fix is made by measuring the following angles: 

1. Angle between Mars and Sirius 
2. Angle between Mars and Beta Centauri 
3. Angle between earth and Beta Centauri 

Determine an upper bound on the squared position estimation error. For 
simplicity, assume that the measurements are all made simultaneously and at 
precisely the reference time. 
(b) If the additional measurement of the angle between the sun and Mars is 

made, determine the decrease in the upper bound on the squared estimation 
error. Assume that all four measurements have equal weight. 
NOTE: The lines of sight to the stars Sirius and Beta Centauri are given by the 
following sets of direction cosines: 

Sirius: (-0.180, 0.749, -0.637) 
Beta Centauri: (-0.430, -0.575, -0.696) 

The Characteristic Polynomial of the P Matrix 

The quadratic form associated with the information matrix is at least pos
itive semidefinite since 

T ~ _ ~ X T hihi
T 

X _ ~ (x. h i )2 
x .LJX-L 2 -L 2 

i=1 (Ji i=1 (Ji 

If N = 1 or N = 2, the quadratic form can be zero simply by choosing 
the x vector to be normal to hi or normal to hi and h2 as the case may 
be. On the other hand, if N ~ 3 and if hi' h2' h3 span the measurement 
space, then no x '¥E 0 can be chosen which is normal to all three h vectors. 
Hence, E (and, of course, also P = E-I

) will be positive definite for 
N ~ 3 if the scalar product of at least one set of three of the measurement 
vectors is not zero. 

The characteristic polynomial of P is 

det (P - ~I) = _~3 + /11 ~2 - {32~ + /13 (13.50) 

with the coefficients {31' {32' and f33 determined from 

f31 = trP 

f32 = ! [(tr p)2 - tr p 2] 

f33 = detP 

(13.51) 
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Recursion formulas for these coefficients can also be obtained which will be 
particularly useful in the next chapter. 

To develop the formula for PI' we require the identity 

tr(AmnBnm) = tr(BnmAmn) (13.52) 

The proof of (13.52) follows immediately from the fact that 
m n n m 

tr(AmnBnm) = LLaijbji and 
i=1 j=1 

tr(BnmAmn) = L L bjiaij 
j=1 i=1 

are, obviously, equal. 
Then, from the recursion formula (13.43) for P written in the form 

we have 

p. = (I - wh T)P = P - ! Phh T P 
a 

1 1 
trp· = trP - - tr(PhhTp) = trP - - tr(hTPPh) 

a a 
1 

= tr P - - tr(a2wTw) = tr P - aw2 

a 

Here, we have used the identity just derived and the fact that the trace of a 
scalar is simply the scalar itself. In this way, the desired recursion formula 

(3; = (31 - aw2 (13.53) 

is established. 

Next, we develop a corresponding formula for Pa by first writing the 
recursion formula (13.43) as 

p. = (I - WhT)P = P (I _ hpp:1 hTp) 

Then we employ the determinant identity (13.37) together with the first of 
Eqs. (13.42). The required steps are 

Hence,t 

lap·1 = laPIII-hpP:1 hTPI = 1IIIaP-hTPX-1hPI 

= (a - hTPh)IPI = u2 1PI 

2 

IP*I = ~IPI 
a 

(13.54) 

t This result was first published by James E. Potter and Donald C. Fraser in a 
note titled "A Formula for Updating the Determinant of the Covariance Matrix" which 
appeared in the July, 1967 issue of the AIAA JouTTllJl. Their derivation is considerably 
more involved than the one presented here. 
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or, equivalently, 
0'2 

/3; = 0'2 + h T Ph /33 (13.55) 

Finally, for /32 ' we first show that 

trE = /32 

/33 
(13.56) 

For this purpose, the Cayley-Hamilton theoremt can be put to good use. 
If we multiply the matrix form of the characteristic equation 

_p3 + /31 p2 - /32P + /331 = 0 

by p-3, we have the characteristic equation for the information matrix 

- E3 + /32 E2 - /31 E + ~ I = 0 
/33 /33 /33 

Then, from a kind of reverse application of the Cayley-Hamilton theorem, 
we conclude that the characteristic polynomial of E must be 

(13.57) 

Equation (13.56) is, therefore, substantiated. 
To obtain the recursion formula for /32' recall the recursive form of 

the information matrix 

Then, from Eq. (13.57), 

P* 1 P 1 
trE* = a: = trE + 2' tr(hhT) = a2 + 2' tr(hTh) 

"'3 0' "'3 0' 

{3 h2 
=2+_ 

/33 0'2 

Here again, we have used the identity (13.52) for the trace of a matrix 
product. As a consequence, 

so that 

{3* h2 0'2 h2 0'2 
/3; = /32....1. + -/3; = /32- + - X -/33 /33 0'2 a 0'2 a 

P* _ 0'2/32 + h2/33 
2 - 0'2 +hTPh 

results as the desired formula. 

(13.58) 

t The Cayley-Hamilton theorem asserts that every symmetric matrix satisfies its 
own characteristic equation. 
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13.7 Square-Root Formulation of the Estimator 

For any positive semidefinite matrix M there is a matrix B whose columns 
are the orthonormal characteristic unit vectors of M such that 

BTMB=D {13.59} 

The elements of the diagonal matrix D are the characteristic values of M. 
The square root of D, written D i , is a diagonal matrix with the square 
roots of the characteristic values on the main diagonal. Since there are 
no negative characteristic values, the matrix D' is guaranteed to be real. 
The square root matrix W of the matrix M is defined as that matrix for 
which 

WWT=M {13.60} 

It is apparent that one such square root matrix is 

W=BD4 {13.61} 

Symmetric Square Roots of a Matrix 

It is also possible to determine a symmetric square root matrix W = W T 

by noting that Eq. (13.59) can be written as 

BTMB = BTWWB = BTWBBTWB = D = D4D4 

Obviously, then, for a three-dimensional matrix as an example, we have 

[
±A 0 0] 

W=B 0 ±yIX; 0 BT 
o 0 ±JX; 

(13.62) 

With all the possible combinations of sign and permutations of elements 
on the main diagonal, the number of different square roots of this kind are 
large indeed. 

Since the calculation of characteristic values and characteristic vectors 
is not simple for large dimensional matrices, it is worthwhile exploring 
other possibilities for calculating a square root. Consider, as an example, 
the problem of determining the general square root of a two-dimensional 
matrix. Specifically, if 

WWT = [Wll 
W21 

then we must have 
W~l + W~2 = m ll 

wll W 21 + W 12W22 = m 12 

W~l + W~2 = m22 

(13.63) 
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These equations do not have a unique solution. Indeed, we obtain 

wll = ±V mll - W~2 
m l 2 1 ~ 

W21 = --wll ± --v det M Wl2 mll mll 
m l 2 1 ~ 

w22 = --wI2 1= --ydetMwll mll mll 
with wl2 as a free parameter. 

(13.64) 

Specializing to a symmetric square root requires Wl2 = W21 and, in 
this case, w21 must be determined as the solution of 

[{mil +m~2 - 2v'detM)w~1 - {mll +m22)mi2]2 

= 4m12 [mll m22 - {mll + m22)w~1 + W~l] (13.65) 

with wll and w22 calculated as before. Of course, higher-order matrices 
involve an even greater amount of algebra which tends to compromise the 
practicality of the method. 

¢ Problem 13-11 
Use the Cayley-Hamilton theorem to find a symmetric square root of a two

dimensional matrix M. Specifically, find scalar constants Cl and C2 such that 

W = Cl 1+ c2M with W 2 = M 

HINT: Derive the relations 

R _ 1 - 2Cl C2 - t M 
1-'1 - 2 - r 

C2 
and 

Test for a Positive Definite Matrix 

A necessary and sufficient condition for a real symmetric matrix to have a 
real square root is that it have no negative characteristic values. This is 
equivalent to requiring that the quadratic form associated with the matrix 
be either positive definite or at least positive semidefinite. Symbolically, 
this means 

Q = X T Mx ~ 0 for all x ~ 0 (13.66) 

Consider a two-dimensional symmetric matrix M and its associated 
quadratic form 

Q = [Xl X2] [mll m12] [Xl] = mllxi + 2ml2xlx2 + m22x~ (13.67) 
m l 2 m22 x 2 

which we write in the form 
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Therefore, if Q is to be positive for all values of Xl and x 2 (except, of 
course, X I = x2 = 0), then we must have 

m ll > 0 and I mIl ml21 > 0 
m l2 m22 

(13.68) 

For the three-dimensional quadratic form 

(13.69) 

we have 

Q = mllx~ + m22x~ + m33x~ + 2(ml 2x l x 2 + m l 3x l x 3 + m23x 2x 3) 

_ 1 ( )2 1 ( 2 2 
- -- m ll Xl + m l2 x2 + m l3 x 3 + -- m ll m22 - m 12 )x2 

m ll m ll 

2( ) 1( 22 + -- m ll m 23 - m l2m l3 X2 X3 + -- m ll m33 - m 13 )x3 
mIl mIl 

Provided that mIl > 0, the first term can never be negative. What remains 
is a quadratic form in X2 and x3 which will be always positive if 

I mll ml21 > 0 and I m ll m 22 - m~2 m ll m 23 - m12~131 > 0 
m l 2 m22 mll m 23 - m l2m l3 m ll m33 - m l3 

according to conditions (13.68) derived for the two-dimensional quadratic 
form. But this second condition is equivalent to requiring that the deter
minant of the matrix M be positive since it is easy to show that 

m ll m l2 m l3 1 1 m l 2 m l 3 

m l 2 m22 m23 = -- 0 m ll m 22 - m~2 m ll m 23 - m l2m l3 
m ll 0 2 

ml3 m23 m33 m ll m23 - ml 3 m l2 m ll m33 - m l 3 

Thus, for the quadratic form (13.69) to be always positive, we must have 

mIl m l2 m l3 
m ll > 0 m l2 m22 m 23 > 0 (13.70) 

m l 3 m23 m33 

This can be generalized to provide a test for positive definiteness of 
a matrix of any size-the principal minor test. The k th leading principal 
minor Ak is defined as the determinant of the array formed by deleting 
the last n - k rows and colunms of an n-dimensional matrix. As can be 
shown, a necessary and sufficient conditiont for an nth -order symmetric 

t John E. Prussing recently emphasized that the analogous statement, to wit, a 
necessary and sufficient condition that a matrix be positive semidefinite is that all n 
leading principal minors dk are nonnegative-is not true. The correct necessary and 
sufficient condition is that all possible principal minors be nonnegative. His paper titled 
"The Principal Minor Test for Semidefinite Matrices" appeared in the Journal of Guidance, 
Contro~ and Dynamics, Vol. 9, Jan.-Feb. 1986. 
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matrix to be positive definite is that all leading principal minors ~k are 
positive. 

Triangular Square Roots of a Matrix 

The simplest algebraic method of calculating a square root of a matrix is 
predicated on the assumption that the square root is to be a triangular 
matrix. For example, a three-dimensional triangular matrix would have 
the form 

w = [:~: W~2 ~] (13.71) 
w 31 W32 w33 

with obvious extensions to higher-order cases. 
If W is a square root of M, i.e., satisfying Eq. (13.60), then 

As a consequence, we must have 

w~ = mll 

W 1W 3 = m l2 

w1wa = m l3 

W~ +w; = m22 

W2 WS + w3w a = m 23 

w~ + w~ + w~ = m33 

It is because of the assumption of a triangular form for W that the solution 
of these equations is straightforward. Indeed, we readily obtain 

WI 

w2 

w3 

where 

=±~l w 4 =±[€ ~2 

=±[€ Ws 
_ m 23 - w3w a 

~l w 2 

= ml2 
wa 

= ml 3 

WI WI 

~l = m ll 

~2 = m ll m 22 - m~2 

~3 = detM 

(13.72) 

All of the radicals involve only the leading principal minors of the positive 
definite matrix M and are, therefore, guaranteed to be nonnegative. 
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~ Problem 13-12 
Y For an n x n positive semidefinite matrix M = /lmij /I, derive the following 

recursive algorithmt for computing the triangular square root matrix W = IIWij/l 

where 

Wij = 0 for i<i 
For i = 1, 2, ... , n, the elements of W are calculated from 

i-I 

Wii = mii - L W~j 
j=1 

Wji = {

o 
i-I 

~;; ( mji - ~ Wj.Wi, ) 

As an example, for 

[

1 2 
M= 2 8 

3 2 1~] we have 

for i < i 

for i = i + 1, i + 2, ... , n 

Cholesky and Banachiewicz 

Recursion Formula for the Square Root of the P Matrix 

For practical reasons which are discussed in the next chapter, it may be 
desirable to formulate the recursive estimator in terms of the square root of 
the P matrix.:!: Indeed, this is our sole motive for introducing the concept 
of the matrix square root. 

Let W be a square root of P and W* be the square root of the 
updated P* matrix. Then, since the recursion formula {13.43} for P may 
be written in the form 

t For a variety of other algorithms on this same subject, see the paper on "Discrete 
Square Root Filtering: A Survey of Current Techniques" by Paul G. Kaminski, Arthur 
E. Bryson, and Stanley F. Schmidt published in the IEEE Thlnsactions on Automatic 
Control, December 1971. It was reprinted in Kalman Filtering: Theory and Application, 
edited by H. W. Sorenson for the IEEE PRESS Selected Reprint Series, 1985. 

t The idea of the square-root estimator and its derivation originated with James E. 
Potter in 1962. It appeared in the author's book Astrorulutical Guidance as Prob. 9.11. 
The book was in galley proof form at the time or it would certainly have been given 
greater prominence. The square-root estimator was of the utmost importance in the 
Apollo navigation system. It also spawned a number of technical papers by various 
authors over the years since then. The previous footnote references one such paper. 
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we have 

W·W· T = W (I - ~ WThhTW) WT 

=W(I-~zzT)WT 
in terms of the square root matrices W and W·. For convenience, we 
have defined the vector z as 

z=WTh 

The problem of finding a recursion formula for W is equivalent to the 
problem of obtaining a square root of 1 - ZZ T / a . For this purpose, we 
attempt a factorization of the form 

1 
1 - - ZZ T = (I - KZZ T ) (I - KZZ T ) 

a 
suggested by a unique property of the matrix zz T • Specifically, powers of 
this matrix result in the same matrix multiplied by a scalar, i.e., 

(ZZT)(ZZT) = Z(ZTZ)ZT = Z2 ZZ T 

Therefore, 

Now, 
Z2 = ZT Z = hTWWTh = hTph = a - u2 

according to the first of Eqs. (13.42). Hence, K is a solution of the quadratic 
equation 

from which 
a ± vau2 1 

K= =--== 
a2 - au2 a =F vau2 

The choice of sign is at our disposal. Since a is never negative, we choose 
the plus sign in the denominator so that 

1 
K=--== 

a + vau2 

Thereby, any possibility of dividing by zero is avoided. 
Finally, then we have established the factorization 

W·W· T = W(I-KZZT)(I-KZZT)WT = [W(I-KZZT)][W(I-KZZT)]T 

so that 

W. = W (I _ zz T ) 

a + vau2 
where (13.73) 

is the recursion formula for the W matrix. 















































































Appendix H 

Probability Theory and Applications 

We assume that the reader has had some exposure to the basic principles of 
probability. In the first section of Chapter 14, a brief review of that topic 
was given to establish the concepts and notation relevant to our treatment 
of the space navigation problem. In this appendix we provide a more 
detailed account of probability theoryt for those readers whose background 
in this fundamental subject may be somewhat skimpy. 

H.l Sampling and Probabilities 

Consider an experiment whose outcome depends upon chance-tossing a 
coin, rolling a pair of dice, drawing a card from a bridge deck, or sampling 
a population. Basic to any analysis is the set of elements consisting of all 
possible distinct outcomes of the experiment. We call this set the sample 
space for the experiment, using the term space as a synonym for the word 
set in this connection. The individual elements or points of the sample 
space are often called sample points. 

Let S represent the sample space (for example, the 52 cards in a 
deck) and assume that the experiment in question (drawing a single card) 
is performed a large number of times N. Then for any event A (such as 
obtaining the ace of spades) let n A be the number of occurrences of A in 
the N trials and define 

PA = n; 
Clearly, 0 :5 n A :5 N, so that 0 :5 P A :5 1. Furthermore, let us assume 
that P A tends to a limit as N becomes infinite. This limit, which we shall 
denote by Prob(A) (intuitively, we anticipate the limit to be l2)' is a 
nonnegative real number and is defined for all sets of the sample space S. 
It is called a probability function of S. 

t The author borrowed heavily from the the second chapter of the book Random 
Processes in Automatic Control by J. H. Laning, Jr. and R. H. Battin published in 1956 by 
the McGraw-Hill Book Co. He also found the first volume of the second edition of An 
Introduction to Probability Theory and Its Applicatiom by William Feller published by John 
Wiley & Sons, Inc. in 1957 to be quite helpful. 
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For a more elaborate illustration, let N be the total number of people 
in a population, i.e., sample space, S under consideration and let 

N s: Number of people who smoke 

N M: Number of males 
NSM : Number of males who smoke 

The experiment consists of selecting a person at random and the events of 
interest to us are defined as 

S: The selected person is a smoker 

M: The selected person is a male 

S M: The selected person is a male smoker 

Then the probabilities of occurrence of these events are 

N 
Prob(S) =-2. 

N 
N 

Prob(M) = .J!.. 
N 

N 
Prob( Sand M) == Prob( S n M) == Prob( S M) = lv M 

The probability that the selected person is either a smoker or a male 
or both is 

Prob(S or M or both) == Prob(S U M) == Prob(S + M) 

_Ns+NM-NsM 
- N 
= Prob(S) + Prob(M) - Prob(SM) 

If SM = 0, Le., the null set or empty set, there are no male smokers and 
we have 

Prob( S + M) = Prob( S) + Prob( M) 

In this case, the events S and M are said to be mutually exclusive. 
In general, for any two mutually exclusive events A and B 

Prob(A or B) == Prob(A + B) = Prob(A) + Prob(B) (H.1) 

This is the additive property of probabilities and applies only to mutually 
exclusive events. 

Let the notation S I M represent the event that the person selected 
is a smoker when it is already known that the selected person is a male. 
Then the conditional probability of the occurrence of S I M is obtained 
from 

Prob(S 1M) = NSM = NSM/N = Prob(SM) 
NM NM/N Prob(M) 

Thus we have established that, for any two events A and B, 

Prob(AB) = Prob(A I B) Prob(B) = Prob(B I A) Prob(A) (H.2) 
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More generally, suppose that E l , E 2, ... , En are mutually exclusive 
events which exhaust the sample space; that is S = 2: Ei . Then the 
occurrence of any event E is equivalent to the occurrence of 

E = E and El or E and E2 or ... or E and En 

= EEl + EE2 + ... + EEn 

Since the sets EEj are disjoint, we obtain Bayes' rulet 

Prob(E) = Prob(E I Ed Prob(Ed + Prob(E I E2) Prob(E2) + ... 
+ Prob(E I En) Prob(En ) (H.3) 

If Prob(A I B) = Prob(A) or Prob(B I A) = Prob(B) , then the events 
A and B are said to be independent. In this case, we have 

Prob(A and B) == Prob(AB) = Prob(A) Prob(B) (H.4) 

called the multiplicative property of probabilities. 
In summary, 

• Probabilities are additive for mutually exclusive events. 
• Probabilities are multiplicative for independent events. 

¢ Problem H-l 
Consider a sample space S composed of four mutually exclusive events E 1 , 

E2, E3, and E4 , each occurring with probability ~. Define three compound 
events as follows: 

Then 

but 

ANSWER: 

and 

Prob(AB) = Prob(A) Prob(B) 

Prob(AC) = Prob(A) Prob(C) 

Prob(BC) = Prob(B) Prob(C) 

Prob(ABC) -=/: Prob(A) Prob(B) Prob(C) 

Prob(A) = Prob(B) = Prob(C) = ~ 

Prob(AB) = Prob(AC) = Prob(BC) = Prob(EI) = ~ 
NOTE: To avoid any absurdities as a consequence of the definition of indepen
dence for the three events A, B, C, it is necessary to require that all four of the 
above equations be satisfied. 

t Thomas Bayes (1702-1761) is remembered for his brief paper "Essay Towards 
Solving a Problem in the Doctrine of Chances." It was published in the Philosoph
ical ThJnsactions of the Royal Society of london in 1763 two years after his death. His 
only other mathematical publication was a defense of Newton's method of ftuxions
now called the calculus. 
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¢ Problem H-2 
Among a set of n people, determine the probability that at least two people 

will have the same birthday-assuming, of course, that all birthdays are equally 
likely. How small can n be if the probability is ! that at least two will have the 
same birthday? 

ANSWER: The number of ways in which n people can have distinct birthdays is 

[365][365 - 1][365 - 2] ... [365 - (n - 1)] 

while (365)n is the total number of possible birthdays. Hence, the probability 
that no two people have the same birthday is 

If this number is one half and if n is to be an integer, then it is easier to solve 
the equation by first writing 

n-l 

Llog (1- 3:5) ~ log! = -0.69 ... 
k=l 

Next, observe that log(1 - x) ~ -x for small x so that 

1 + 2 + 3 + ... + (n - 1) ! (n - 1)n 
365 = 365 ~ 0.69 

Therefore, if n = 23, the probability exceeds ! that at least two people will have a 
common birthday. 

H.2 Coin-tossing Experiment 

Consider the experiment which consists of tossing a coin two times with 
probability p of heads and q of tails such that p + q = 1. There are 22 = 4 
points in the sample space and they are, of course, not equally likely to 
occur. Then define the following sets of events: 

A I' A2 , A3, A4 = basic events 
B}, B2 = heads, tails on the first toss 

C} ,C2 = heads, tails on the second toss 

D k = exactly k heads in 2 tosses 

from which we can construct the table 

Sample Point Event A Event B Event C Event D 
HH Al B} C} D2 
HT A2 B} C2 D} 
TH A3 B2 C} D} 
TT A4 B2 C2 Do 

Prob. 

pp 

pq 

qp 

qq 
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For this experiment we see that the following are examples of mutually 
exclusive events: 

Al and A2 and A3 and A4 = Al A2A3A4 = 0 (Null set) 

Al and B2 = AIB2 = 0 

B2 and D2 = B2D2 = 0 

We also have 

so that 

Prob(B I ) = Prob(A I ) + Prob(A2) = pp + pq = p(p + q) = p 

Similarly, 

so that 

Prob(D I ) = Prob(A2) + Prob(A3) = pq + qp = 2pq 

The following are examples of events which are equally likely to occur, 
called events 0/ equal likelihood: 

Prob(A2) = Prob(A3) = pq 

Prob(BI ) = Prob(CI ) = p 

Prob(B2) = Prob(C2) = q 

We shall return to this example often as occasions arise. 

¢ Problem H-3 
Three urns are filled with a mixture of black and white balls. The first urn 

contains six black balls and three white ones. The second contains six black and 
nine white, while the third contains three black and three white. An urn is picked 
at random, and a ball is selected at random from this urn. 
(a) What is the probability that the chosen ball is black? 
(b) If it is known that the chosen ball is black, what is the probability that it 

came from the first urn? 

ANSWER: Let Ek be the event: "the kth urn is selected" and let B be the 
event: "the chosen ball is black." Then 

(a) 
3 47 

Prob(B) = L: Prob(B I Ek) Prob(Ek) = 90 
k=l 

(b) P b(E I B) = Prob(E1B) = ! . ~ = 20 
ro 1 Prob(B) ;~ 47 
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¢ Problem H-4 
A machine can fail if any of three independent parts fail. If the probabilities 

of failure during a year's operation of parts A, B, and C are 1, !, and ~, 
respectively, what is the probability of the machine failing during the year? 

ANSWER: Let EA be the event: ''part A fails during the year," etc. Then the 
complementary event EA, is the event: "part A does not fail." Let EF and Ej;. 
be the events that the machine does and does not fail during the year. Then 

Hence, 

Prob(Ej;.) = Prob(EA,EsEc) = Prob(EA,) Prob(Es) Prob(Ec ) 

= (1-1)(1- !)(1- ~) = ~ 

Prob(EF) = 1- Prob(Ej;.) = 1- ~ = ~ 

NOTE: The probability that the machine will fail is substantially greater than 
the probabilities that any of its independent parts will fail. 

¢ Problem H-5 
Consider the four dice A, B, C, D with faces numbered as shown in the 

table. t Prove that if pair A and B are rolled together, then A will beat B with 
probability i. Similarly, show that if the pair B and C are rolled together or 
the pair C and D are rolled together, then in each case, B will beat C and C 
will beat D each with probability i. BUT if A and D are rolled together, then 
D will beat A with probability i . In short, Die A beats B, B beats C, C beats 
D-and D beats A!! 

Die A Die B Die C Die D 

2 0 5 4 

3 1 5 4 

3 7 6 4 

9 8 6 4 

10 8 6 12 

11 8 6 12 

ANSWER: 

Prob(A beats B) = Prob(A beats B I A = 9,10,11) Prob(A = 9,10,11) 

+ Prob(A beats B I A = 2,3)Prob(A = 2,3) = 1 x ~ + 1 x ~ = i 

Prob(B beats C) = Prob(B beats C I B = 7,8) Prob(B = 7,8) 

+ Prob(B beats C I B = 0,1) Prob(B = 0,1) = 1 x i + 0 x 1 = i 

t These dice were invented by Bradley Efron, a statistician at Stanford Univer
sity, to dramatize some discoveries concerning a general class of probability paradoxes 
that violate transitivity. They were the subject of an article by Martin Gardner in his 
"Mathematical Games" section of the Scientific American for December 1970. 
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Prob(C beats D) = Prob(C beats D I C = 6) Prob(C = 6) 

+ Prob(C beats D I C = 5) Prob(C = 5) = i x i + i x 1 = i 
BUT 

Prob(D beats A) = Prob(D beats A I D = 12) Prob(D = 12) 

+ Prob(D beats A I D = 4) Prob(D = 4) = 1 x 1 + ~ x i = i 

¢ Problem H-6 
A game is played in which two men each toss a coin in turn, the one obtaining 

"heads" first being the winner. Find the probability that the man who plays first 
will win. 

ANSWER: Let Ek be the event: "the first player wins on his k th toss." Then 

• 00 1 1 1 2 
Prob(first player wms) = LProb(Ek) = 2 + 23 + 25 + ... = 3 

k=l 

NOTE: The purpose of this example is to show that even elementary problems 
can require consideration of infinite sample spaces. 

H.3 Combinatorial Analysis 

The number of subsets of k items in a set of n items, with the order of 
the items in the subsets disregarded, is given by the binomial coefficient 

(~) = k! (nn~ k)! (H.5) 

The classical terminology is "the number of combinations of n things taken 
k at a time." 

Euler's Gamma function defined by 

r(x) = [0 t%-l e-1 dt (H.6) 

is a generalization of the factorial function n!. More specifically, using 
integration by parts, we can establish the important property 

r(x + 1) = xr(x) 

from which, when x is an integer n, it follows that 

r(n+ 1) = n! 

(H.7) 

(H.8) 

When n is large the task of computing n! is formidable. However, 
the Gamma function can be used to derive a simple approximation which 
is useful even for moderate size values of n. For this purpose we write Eq. 
(H.6) as 
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Then, since the function 
y = -t + nlogt 

has a maximum at t = n, we are led to make the change of variable 

t=n+x 

so that the new integrand will have its maximum at x = o. Thus, 

n! = i: exp(-n-x+nlog(n+x))dx 

= e-"n" .C exp [-x + nlog (1+ ~)l dx 

But 

( X) x 1 x2 1 x3 
log 1 + n = n - "2 n 2 + 3 n3 - ... 

Hence, for large n, we have 

n! ~ e-nnn 100 

e-!x
2
/n dx = e-nnnJnl°O e-~e2 d€ 

-n -n 

and, replacing the lower limit by infinity, we obtain Stirling'8 formulat 

(H.9) 

Indeed, it can be shown that the ratio of the two sides of (H.9) approach 
unity as n becomes infinite. 

Stirling's asymptotic formula for the Gamma function is 

r() . tn= -x x- 1 ( 1 1 
x ~ v 27re x '2" 1 + 12x + 288x2 

139 571 ) 
- 51,840x3 - 2,488, 320x4 + ... (H.lD) 

which has the property that for any positive x each partial sum of terms on 
the right approximates the left member with an error numerically less than 
the last term retained. Regarded as an infinite series, the right member 
diverges for all x, so that it is, indeed, an asymptotic expansion as defined 
in Sect. 10.6. 

t James Stirling (1692-1770) was one of Scotland's best known mathematicians. 
His major work Methodw differentialia: sive tmctatus de summatione et interpolatione serierum 
infinitarum published in 1730 was reprinted twice in his lifetime, in 1753 and 1764. An 
English translation also appeared in 1749. The important thrust of the first part of 
this work was the transformation of series to improve convergence. Here he gave the 
logarithmic form of the asymptotic expansion of the Gamma function to five terms and 
the recurrence formula for determining the succeeding ones. In the interpolation portion 
of his book he also calculated r( 4) to ten decimal places. Its true value is Vi. 
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It is interesting that the logarithmic form of (H.10) involves the 
Bernoulli numbers which were defined in Sect. 1.2. Specifically, 

logr(x) = ! log(27f) + (x - ! )logx - x + f 2k(2k ~2;)x2k_l (H.ll) 
k=l 

¢ Problem H-7 
Three dice are rolled. Given that no two faces are the same, what is the 

probability that one of the faces is a four? 

ANSWER: Define the events 

A: One face is a four. 
B: No two faces are the same. 

and denote by nB and nAB the number of different ways in which the events B 
and AB can be realized. Clearly, 

so that 

¢ Problem H-8 

nB=m and nAB=G) 
nAB 1 

Prob(A I B) = - = -
nB 2 

From three dozen eggs one dozen is selected. If it is known that there are 
four bad eggs in the three dozen, what is the probability that the one dozen 
selected will all be good? 

ANSWER: 

G~) 46 

(~) = 255 '" 0.18 

¢ Problem H-9 
Determine the number of possible bridge hands and the number of different 

situations at the bridge table. 

ANSWER: The number of way of selecting 13 cards from 52 is 

(
52) 52! 
13 = 39! 13! = 635,013,559,600 

and the number of possible deals at the bridge table is 

(
52) (39) (26) 52! 39! 26! 52! 28 
13 13 13 = 39! 13! . 26! 13! . 13! 13! = (13!)4 = 5.3645 ... x 10 

NOTE: This is such a large number that if every living person played one game 
every second, day and night, it would require thousands of billions of years to 
exhaust all of the possible hands!! 
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¢ Problem H-I0 
Find the probability that 13 cards contain exactly k aces and that West is 

dealt exactly k aces in a game of bridge. 

ANSWER: The probabilities are the same: 

¢ Problem H-ll 
What is the probability of all of the aces falling in one hand in a game of 

bridge? 

ANSWER: 

(~) 44 

4 x G~) = 4165 "" om 

¢ Problem H-12 
Find the probability that each player at the bridge table is dealt one ace. 

ANSWER: 

¢ Problem H-13 

48! 

_ 4' {12!)4,... ~ 
- . x 52! ,..., 10 

{13!)4 

What is the probability that South has no ace when it is known that North 
has no ace? 

ANSWER: The number of hands for which North has no ace is 

and the number of hands for which North and South each have no ace is 

Hence, the probability in question is 

~ 0.18 
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¢ Problem H-14 
In a game of bridge, North and South have ten trumps between them. 

(a) Find the probability that all three remaining trumps are in the same hand. 
(b) If the king of trumps is among the three, what is the probability that it is 

unguarded? 

ANSWER: Let E and W be the events that East and West, respectively, have 
three trumps. Then 

(a) 
G~) 11 

Prob(E + W) = Prob(E) + Prob(W) = 2 x Gn = 50 

Let E and W be the events that East and West, respectively, have the king of 
trumps and no other. Then 

(b) 
(

23) 
12 13 

Prob(E + W) = Prob(E) + Prob(W) = 2 x Gn = 50 

¢ Problem H-15 
Find the probability for a poker hand to be 

(a) a royal flush (ten, jack, queen, king, ace in a single suit) 
(b) a straight flush (five cards of the same suit in a sequence) 
( c) four of a kind (four cards of equal face values) 
(d) a full house (one pair and one triple of cards with equal face values) 
(e) a flush (five cards of one suit) 
(f) a straight (five cards in a sequence regardless of suit) 
(g) three of a kind (three cards of equal face values plus two extra cards) 
(h) two pairs (two pairs of cards of equal face values plus one extra card) 
(i) a pair (one pair of cards of equal face values plus three different cards) 

ANSWER: Let N be the number of different poker hands, Le., 

N = e:) = 2,598,960 

Then 

(a) (4) 1 1 
1 . N = 649, 740 ~ 0.0000015 

(b) mG)· ~ = 649~740 '" 0.0000135 

(c) ( 13) (12) (4) . ~ = _1_ ~ 0.00024 
1 1 1 N 4165 
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(d) (13) (4) (12) (4) . -.!. = _6 ~ 0 00144 
1 3 1 2 N 4165 . 

(e) (4) (13) . -.!. = 429 ~ 0 002 1 5 N 216,580 . 

(f) (9) (4) 5 1 192 1 1 . N = 54, 145 ~ 0.0035 

(g) (13) (4) (12) (4) 2 • ..!.. = ~ ~ 0.02 
1 3 2 1 N 4165 

(h) (13) (4) 2 (11) (4) . ..!.. = ~ ~ 0.0475 
2 2 liN 4165 

(i) (13) (4) (12) (4) 3 • ..!.. = 1760 = 352 ~ 0 42 1 2 3 1 N 4165 833 . 

H.4 Random Variables 

Consider all of the possible outcomes of a random experiment and to each of 
these outcomes or events assign a real number. Then, when the experiment 
is performed, we may identify the outcome solely by the associated real 
number rather than by giving a physical description of the event which has 
occurred. For example, in the coin-tossing experiment the sample space 
for a single toss consists of the two mutually exclusive events "heads" and 
"tails." If we assign the number 1 to the event "heads" and 0 to the event 
"tails," then when we discuss the outcome of a single performance of this 
experiment we need no longer use the descriptive phrases "toss a coin" 
and "heads or tails," but may simply say that the result is the number 1 
or O. Pursuing this idea further, we may introduce a variable X and define 
its values to be one and zero corresponding to each of the two possible 
results of the experiment. The quantity X is commonly called a random 
variable in probability theory. Thus, the term random variable is used to 
denote a real number whose value is determined by the outcome of a random 
experiment. _ 

For example, in our coin-tossing experiment we might define three 
random variables as 

X = N umber of heads in the first toss 

Y = Number of heads in the second toss 
Z = Number of heads in both tosses 
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so that 

Basic Event Value of X = Xk Y=Yk Z=Zk Prob.= Pk 

Al = (HH) 1 1 2 pp 

A2 = (HT) 1 0 1 pq 

A3 = (TH) 0 1 1 qp 

A4 = (TT) 0 0 0 qq 

We can also extend the notion of random variable to the case of a 
continuous sample space. Consider the experiment of a random selection 
of a point on the real line from zero to one. The sample space is the 
unit interval itself and the events or sample points are the points on the 
line. The function which assigns a number to each of these points in the 
usual way is a random variable. Another random variable defined over the 
same sample space is the function which has the value zero if the point 
selected corresponds to a rational number and the value one if the number 
is irrational. 

When the sample space is continuous, the problem of assigning a 
probability distribution to a random variable is more complicated. In our 
example of randomly selecting a point on a line, the first random variable 
defined assumes a nondenumerable number of values so that the probability 
of selecting any particular point at random is certainly zero. Therefore, it 
makes sense to speak only of the probability that the random variable 
assumes a value lying in some subinterval of the unit interval. Thus, we 
could say the probability of a randomly selected point belonging to the 
interval ! :5 x :5 i is !. For the random variable defined in the second 
part of this example, the appropriate probability distribution to assign is 
zero when the value of the function is zero, and one when the value of the 
function is one. This follows because, although the rational numbers are 
everywhere dense in the real line, they constitute a set of zero length. 

H.5 Probability Distribution and Density Functions 

Let X be a random variable which assumes values in a set S of real num
bers. As we have seen, if S is not discrete it makes little sense to speak of 
the probability that X will have any particular value. Thus, we are obliged 
to consider the probability that X will assume a value lying in a subset of 
S. For this reason it is convenient to define the distribution function F(x) 
as 

F(x) = Prob(X :5 x) (H.12) 

If a and b are real numbers such that a < b, we have 

Prob(X:5 b) = Prob(X :5 a) + Prob(a < X :5 b) 
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so that 
Prob(a < X S b) = F(b) - F(a) (H.13) 

From this relation and the fact that the probability of any event is always 
nonnegative, we have 

if 

In other words, F(x) is a monotone nondecreasing function. [It is under
stood that F(x) is constant in any interval that contains no points of S.J 
Also it is always true that 

F(-oo) = 0 and F(+oo) = 1 

Thus F(x) is positive and has values between zero and one. 
One may interpret the distribution function physically in terms of the 

distribution of one unit of mass over the real line -00 < x < 00. If the mass 
allotted to any set of points represents the probability that X will assume 
a value lying in that set, then F(x) is the total mass associated with the 
point x and all points lying to the left of x. With this interpretation we 
may imagine concentrations of mass at certain points on the line in addition 
to or in place of the continuous mass distribution. The latter condition is 
described as a discrete distribution, while the former characterizes a mixed 
distribution, i.e., one that is both continuous and discrete. 

As an example of distribution functions of the discrete type, consider 
the random variable associated with the single toss of a coin 

X= {I t o 2 

and illustrated in Fig. H.I. The random selection of a point in the unit 
interval offers an illustration of a continuous distribution. For the random 
variable defined first in that example, the distribution function is shown in 
Fig. H.2. The second random variable described is defined over a continuous 
sample space but gives rise to a discrete distribution function. In fact, it 
is the unit step function with its jump at x = 1. 

If F( x) is differentiable, we define the frequency function or probability 
density function f(x) by 

f(x) = dF(x) 
dx 

Since F( x) is monotone nondecreasing, for all x we have 

f(x) ~ 0 

Also from the definitions we have the further properties 

F(x) = L~ I(u) du L: I(x)dx = 1 

(H.14) 

(H.15) 



Probability Theory and Applications 713 

F(x) 

1----.--------

1 "21-----..... 

Fig. H.l: Distribution 
function for a true coin. 

------------~------~------------x o 

F(x) 

------~~----------~--------x 

Fig. H.2: Distribution 
function for selecting a 
point on a line. 

and 

Prob(a < X ~ b) = t f(x)dx (H.16) 

If the random variable X takes on only discrete values, say Xl' X2' 

X3' ••• , then the distribution function F(x) is not differentiable in the 
ordinary sense. To handle this situation in a manner consistent with the 
previous discussion, we may assign to each point Xj a probability density 
given by Pj 6{x - Xj) where 6(x) is the Dirac 6 -functiont (or, in other 
applications, called the unit impulse function), defined by the properties 

6(x) = 0 

lb 6(x) dx = 1 

x;60 

a<O<b 

The delta function is not a mathematical function in the strict sense. 
In all legitimate applications, it is visualized as a result of a limiting process 

t Named for the English physicist Paul Adrien Maurice Dirac, born in Bristol in 
1902. He, as did Sir Isaac Newton and Sir Edmond Halley, held the Lucasian chair of 
mathematics at Cambridge University. 
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involving a function 8(x, f) defined, for example, by 

6(X,i) = { ii 
Then, we have 

8(x) = lim 8(x, f) 
E-O 

Thus, in terms of the delta function we define the probability density for 
the discrete case by 

J(x) = I: Pi 8(x - xi) (H.17) 
i 

The choice of the name "probability density function" is a consequence 
of our analogy between probability distribution functions and mass distri
butions. In the regions in which the mass distribution F(x) is continuous, 
the mass density J(x) is the mass per unit length. When discrete masses 
are attached to certain points, the mass density at these points is infinite. 
In any case the function F( x) specifies the total mass lying to the left of 
and including the point x. 

As another example of the discrete distribution, consider again the 
random variable Z whose value is the number of heads in two tosses of a 
coin. Then, 

so that 

{ 

2 p2 

Z = 1 2pq 
o q2 

where p2 + 2pq + q2 = (p + q)2 = 1 

J(z) = p2 8(z - 2) + 2pq8(z - 1) + q2 8(z). 

Therefore, the density function consists of three mass particles on the z 
axis at the points 2, 1, 0 with masses p2, 2pq, q2, respectively. 

¢ Problem H-16 
The random variable having a Cauchy distribution is defined as 

X = tanS 

where e is a random variable which is uniformly distributed over the interval 
- k 1r < 0 < k 1r. Compute the frequency function. 

NOTE: See Sect. H.6 for the definition of a uniform distribution. 

ANSWER: 

o + ! 1r arctan x + ! 1r 
Prob(X =5 x) = Prob(9 =5 0) = __ 2_ = 2 = F(x) 

1r 1r 

so that 
d 1 

J(x) = dx F(x) = 1r(1 + x2) 
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H.6 Expectation, Mean, and Variance 

Consider a random variable X, associated with the outcome of a certain 
experiment, which can assume anyone of the discrete values Xl' X2' ••• 

with respective probabilities PI' P2' ... Suppose that the experiment is 
repeated a large number N times and that the event X = Xi occurs mi 

times. Then the numerical average of X over the N trials is 

1 ) m l m 2 N(mlxl +m2 x2 + ... = N XI + N X2 + ... 

According to the empirical notion of probability, as N --+ 00 the ratio 
md N approaches the probability Pi' Therefore, we are led to define the 
average, mean, or mathematical expectation E(X) of the random variable 
X by the limiting expression 

(H.lS) 

The expectation of a random variable is a probability-weighted average of 
the values which the variable can take on, and represents the anticipated 
numerical average of the observed values of this variable in a very large 
number of trials. To calculate the mathematical expectation of a random 
variable X in the discrete case, we multiply each of the values which X 
can assume by the corresponding probabilities with which they are assumed 
and sum over all possible cases. 

We may extend this notion of mathematical expectation in a natural 
way to include continuous distributions. If f(x) is the frequency function 
of X, then the probability that X will assume a value in the interval 
(x, x + dx) is approximately given by 

Prob(x < X ~ x + dx) ::::: f(x) dx 

Thus, if we regard the continuous distribution function as the limit of a 
suitable discrete distribution, we are tempted to write x as the value ex
pected multiplied by the probability f(x) dx with which it is to be expected 
and to integrate (rather than sum) over all possible values. Accordingly, 
we define 

E(X) == X = i: xf(x) dx (H.19) 

Finally, we note that for any real-valued function g, such that g(X) is a 
random variable, it can be shown that 

E[g(X)] == g(X) = i: g(x)f(x) dx (H.20) 

For a given function g, E[g(X)] depends on f(x) and hence helps to 
characterize f(x). For this reason one sometimes refers to an expectation 
generated by a certain function of 9 as a statistical parameter. We now 
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define the most common of these parameters. (Similar definitions apply 
also to the discrete case.) 

• The mean or average of X (the center of gravity of the distributed 
mass) is defined as 

E(X) '" X = i: xl(x) dx 

• The mean-squared value of X is 

E(X2) '" X2 = i: x2/(x) dz 

(H.21) 

(H.22) 

• The variance of X (the moment of inertia of the distributed mass 
about its center of gravity) is defined as 

Var(X) '" E[(X - X)2) = i: (x - X)2 I(x) dx 

By expanding the integrand we obtain the convenient form 
- -2 

Var(X) = X2 - X 

(H.23) 

(H.24) 

• We also define the standard deviation (1 as the square root of the 
variance so that 

Var(X) = (12 (H.25) 

As an illustration, consider again the random variable X whose value 
is determined by the random selection of a point on the real line from zero 
to one. The probability density function f(x) is 

f(x) = {~ 
so that, for example, 

for 0 < x ~ 1 
otherwise 

I 

Prob( ~ < X ~ !) = h 2 f( x) dx = ~ 
'4 

The probability distribution is said to be uniform and the random variable 
X is, therefore, called uniformly distributed. 

For the statistical parameters, we have 

X = E(X) = 100 

xf(x) dx = (I xdx = ! 
-00 10 

u2 = Var(X) = 100 

(x - !)2 f(x) dx = {I (x - !)2 dx = l2 
-00 10 

As an example for the discrete case, consider again the random variable 
Z whose value is the number of heads in two tosses of the coin. In this 
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case, the statistical parameters are 

3 

E(Z) = Z = E ZkPk = 2· p2 + 1· 2pq + O. q2 
k=l 

= 2p(p + q) = 2p 
3 

E(Z2) = Z2 = L Z~Pk = 22 . p2 + 12. 2pq + 02 . q2 
k=l 

= (2p)2 + 2pq = 2p(1 + p) 
3 

Var(Z) = E[(Z - 2')2] = E(Zk - 2p)2pk 
k=l 

= (2 - 2p) 2 . p2 + (1 - 2p) 2 . 2pq + (0 - 2p) 2 • q2 

= 2pq 

H.7 Independence and Covariance of Random Variables 

717 

Again we reference the experiment of tossing a coin twice. Recall that the 
random variables X and Y represent the number of heads on the first and 
second tosses, respectively so that 

x=g: and y=g: 
The sum of X and Y is the total number of heads which we called Z and 
is determined as 

z=x+y= U !~ 
Then, since 

E(X) = p E(Y) = p E(Z) = 2p 

we see that 
E(X + Y) = E(X) + E(Y) 

The random variable Y + Z provides another example. To obtain its 
values and corresponding probabilities 

Y+Z= {~ :: 
2 qp 
o q2 

we can use the table developed in Sect. H.4. Hence, 

E(Y + Z) = 3 . p2 + 1 . pq + 2· qp + 0 . q2 = 3p = E(Y) + E(Z) 



718 Appendix H 

In general, it can be proved that the expectation of the sum of any 
two random variables X I and X2 is the sum of their separate expectations. 
Thus, 

(H.26) 

The analogous proposition for products of random variables requires 
that they be independent. We have already seen in Eq. (H.4) that the prob
ability of the simultaneous occurrence of independent events is the same 
as the product of their individual probabilities. To define independence of 
random variables, let X take on the values Xi with probabilities Pi and 
Y, the values Yj with probabilities qj. Then X and Yare said to be 
independent if 

Prob(X = Xi and Y = Yj) = Piqj for all i and i (H.27) 

For the coin-tossing experiment, the two random variables X and Y, 
representing "heads on the first toss" and "heads on the second toss," are 
certainly independent. Also, 

XY _ {I p2 
- 0 2pq+q2 

so that 
E(XY) = p2 = E(X)E(Y) = p . p 

On the other hand, the random variables Y and Z are not independent 
since Y is "heads on the second toss" while Z is the "total number of 
heads." In this case, 

but 

{ 

2 p2 
YZ = 0 pq+q2 

1 pq 

E(Y Z) = 2p2 + pq "I E(Y)E(Z) = p . 2p 

In general, it can be shown that if two random variables Xl and X2 
are independent, then 

(H.28) 

In Eq. (H.23) we defined the term ''variance'' of a random variable. For 
two random variables, the notion of correlation is of particular importance. 
To explore this concept, we define the covariance of two random variables 
X and Y as 

Cov(X, Y) == E[(X - X)(Y - Y)] (H.29) 

If variance may be considered to be the moment of inertia of the distributed 
mass about its center of gravity, then covariance plays the role of the product 
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of inertia. Also, from the expansion 

Cov(X, Y) = E(XY) - X E(Y) - Y E(X) + X Y 

= E(XY) - E(X)E(Y) 

719 

(H.30) 

we see that the covariance will be zero if X and Yare independent. 
The random variables Y and Z for the coin-tossing experiment are not 
independent so that 

Cov(Y, Z) = E(Y Z) - E(Y)E(Z) = 2p2 + pq - p(2p) = pq =F 0 

Furthermore, by calculating the variance of X + Y , we obtain 

Var(X + Y) = E{ [(X - X) + (Y _ y)]2} 
= Var(X) + Var(Y) + 2 Cov(X, Y) (H.31) 

Therefore, if X and Yare independent, then 

Var(X + Y} = Var(X) + Var(Y} (H.32) 

The normalized covariance, denoted by p, is called the correlation 
coefficient of X and Y and is defined by 

cov(X, Y} cov(X, Y) 
p= =-.....:....--~ 

- Jvar(X) var(Y) uxuy 
so that Ipi :5 1 (H.33) 

I t may be interpreted as a measure of the interdependence of X and Y. 
For example, suppose that we seek to determine that linear function 

aX + b of the random variable X which gives the best fit to the variable 
Y in the least-squares sense. To be more specific, we seek those values of 
a and b which minimize the expression E[(Y - aX - b}2]. We assume, for 
convenience, that X = Y = o. 

By a simple calculation we have 

For any value of a the best selection of b is clearly zero. To determine a, 
we set to zero the derivative with respect to a to obtain 

XY 
a== 

X2 

Therefore, the 

Minimum value of E{[Y - (aX + b)]2} = u~(l- p2) 

so that the correlation coefficient is directly related to the minimum mean
squared error in fitting Y by a linear function of X. 

Finally, note that if two random variables are uncorrelated (p = 0), 
it does not necessarily follow that they are independent. For example, 
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consider two random variables defined as 

X = { 1 t and 
-1 2' 

Y = IXI = {~ t 
2' 

so that X = 0, Y = 1, and 

XY = { 1 ! 
-1 ! 

Clearly, X and Y are not independent; but, 

Cov(X, Y) = E(XY) - E(X)E(Y) = (1 . ! - 1 . !) - 0 . 1 = 0 

Here, then, we have a case in which the covariance and hence the correlation 
coefficient are zero; yet Y is functionally related to X. Thus, a zero value 
for p does not of itself imply independence. 

In summary, 

• Expectations are additive for any random variables. 
• Expectations are multiplicative for independent random variables. 
• Variances are additive for independent random variables. 
• Covariances are zero for independent random variables. 

H.8 Applications to Coin-tossing and Card-matching 

To illustrate the basic concepts of the last two sections, we will develop two 
applications and, incidentally, show how statistical parameters can often 
be obtained without full knowledge of the probability distributions. 

First, for the experiment in which a coin is tossed with the events 
"heads" and "tails" occurring with probabilities p and q (p + q = 1), 
we wish to calculate the average number of heads and the variance if the 
coin is tossed n times. This problem may be easily solved by introducing 
a random variable X k to represent the outcome of the k th toss. To be 
precise, we define 

X = {I if "heads" occurs on kth toss 
k 0 if "tails" occurs on kth toss 

Then the variable X defined by 

X = Xl + X 2 + ... + Xn 

has the desirable property that its value for each experiment is the total 
number of heads occurring in the n tosses. The average of X k is 

E(Xk ) = 1 . Prob(Xk = 1) + 0 . Prob(Xk = 0) = p 

Therefore, 

k = 1,2, ... ,n 
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To compute Var(X) , note that 

n n-l n 

X2 = EX~+2E E XjXk 
k=l j=lk=j+l 

Now, 
E(X~) = 12 . Prob(Xk = 1) + 02 . Prob(Xk = 0) = p 

and Xj and X k are independent for j =F k so that 

Hence, 

E(XjXk) = E(Xj)E(Xk) = p2 

E(X2) = nE(X~) + n(n -l)E(XjXk) 

= np + n(n - 1)p2 = np(l - p) + n2p2 

= npq + n2p2 

and the variance in question is, therefore, 

Var(X) = q2 = E[(X _ X )2] = X2 _ X2 

= n2p2 + npq - (np)2 = npq 

721 

The next example goes back to Montmortt who posed it in 1708. The 
problem has many forms and was later generalized by Laplace and many 
others. 

Two identical decks of n different cards are put in random order and 
matched against each other. We say that a match has occurred if a card 
occupies the same place in both decks. Of course, matches can occur at 
any of the n places and at several places simultaneously. Our problem is 
to determine the average number of matches and the variance. 

For this purpose, let X k be a random variable whose value is one if 
card number k is in the correct location and zero otherwise. Thus, X k = 1 
with probability lIn if there are n cards in the experiment. 

t The book on probability by Pierre R~mond de Montmort (1678-1719), Essay 
d'analyse sur le8 jeu:z: de hazard, was published in 1708 after James Bernoulli's death in 
1705 but before the appearance of his Ars Conjectandi. The theory of games of chance 
had not been treated mathematically since Christiaan Huygens's monograph of 1657-
some 50 years earlier. Montmort's work aroused the interest of Nicholas Bernoulli and 
provided an incentive for Nicholas to publish his uncle's book. 

In his book, Montmort analyses a game he called "Treize" in which the thirteen 
cards of one suit are shuffled and then drawn one after the other. The player who is 
drawing cards wins the round if the nth card drawn is itself the card n. The chance 
of winning is shown to be 

13 
~ (_1)k-1 

L.-t kl 
k=1 

Leibnitz provided Montmort with a rough idea of the limit to which this tends as 
the number of cards increases, but Euler was first to give this limit as 1 - e- 1 • 
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Furthennore, if j 1= k, then 

Prob(Xj = 1 and X k = 1) 
1 1 

= Prob(Xj = 11 X k = I)Prob(Xk = 1) = n -1 .;; 

so that the product XjXk has unit value with probability l/n(n - 1) if 
cards numbered j and k are in their correct places and is zero otherwise. 

The random variable 

X = Xl +X2 + ... +Xn 

is the total number of cards in their correct places. Then, since 

- 1 
E(X) = E(XI ) + E(X2) + ... + E(Xn) = X = n . ;; = 1 

we have the surprising result that the average number of matches in a single 
performance of the experiment is precisely one-no matter how large n may 
be! 

The mean-squared value and the variance are computed as for the 
coin-tossing example. We have 

E (X2) = n . .!. + n( n - 1) . 1 = 2 
n n(n -1) 

and 
- -2 

Var(X) = X2 - X = 2 - 1 = 1 

which are again independent of n. Therefore, in one application of card 
matching, the average number of matches is one with a standard deviation 
of one. 

The probability of obtaining at least one match turns out to be 

1 1 1 1 
1 - 2! + 3! - 4! + ... ± n! 

Therefore, with good approximation, 

Prob(X ~ 1) ~ 1 - e- l = 0.63212 ... 

as Euler first demonstrated. 

¢ Problem H-17 
A die is rolled n times. Find the average number of occurrences of the event 

"a six is followed by a number no smaller than a three." 

ANSWER: Let Xk be a random variable whose value is one if the stated event 
occurs on the k th and following roll and zero otherwise. Then 

X k = {I ~. ~ = ~ so that X = XI + X2 + ... + Xn -1 = n - 1 
0-9 
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¢ Problem H-18 
A coin is tossed n times with equal probabilities for heads and tails. Find 

the average and the variance of the number of times a head is followed by a tail. 

ANSWER: As before, define 

X {
I 1.1=1 

k = 224 o - and X = Xl + X2 + ... + X n - 1 

There are n - 1 terms of the form XI and n 2 
- n - 2 (n - 1) terms of the form 

XjXk or XkXj where j < k + 1. Hence 

- n-l 
X=--

4 
and 

¢ Problem H-19 

n - 1 (n - 3)(n - 2) (n - 1)2 3(n - 1) 
Var(X) = -4-+ 16 - 16 = 16 

Two men decide to meet between 12 o'clock and 1 o'clock, each not waiting 
more than 10 minutes for the other. If alI times of arrival within the hour are 
equally likely for each person, and if their times of arrival are independent, find 
the probability that they will meet. 

ANSWER: The straight lines y = x ± ~ define a band within the unit square. 
The probability that the men will meet is the ratio of the area of the band to the 
total area which is ~!. 

¢ Problem H-20 
In the interval (0,1) n points are distributed uniformly and independently. 

Find: 
(a) The probability of the event A: "the point lying farthest to the right is to 

the right of the number x." 
(b) The probability of the event B: "the point lying farthest to the left is to 

the left of the number y." 
(c) The probability of the event C: "the point lying next farthest to the right 

is to the left of the number z. n 

ANSWER: The event A is the complement of the event that alI lie to the left of 
x. Since this probability is xn , then 

(a) Prob(A) = 1 - xn 

An alternate approach is to observe that the event A is the same as the 
event D: "at least one point is to the right of x." Then if Ei is the event: "the 
ith point is to the right of x ," we have 

(b) 

probeD) = Prob (LEi) = (~) (1- x) - (;) (1- X)2 + ... 

= 1 - [1 - (1 - x)]n = 1 - xn 

In the same manner, 

Prob(B) = 1 - (1 _ y)" 
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The event C is equivalent to the event E: "all points are to the left of z" 
or the event F: "one point is to the right of z." Hence, 

(c) Prob{C) = Prob{E + F) = Prob{E) + Prob{F) = zn + n(l - z)zn-l 

H.9 Characteristic Function of a Random Variable 

The characteristic function <f>(t) of a random variable X with probability 
density function I(x) is defined by 

rf>(t) = E(eitX
) = i: eit

% f(x)dx (H.34) 

where i = v=r. Equation (H.34) also defines <f>(t) as the inverse Fourier 
transform of I(x), but it is customary in probability theory to refer to 
it as the characteristic function. The characteristic function always ex
ists; that is, the integral defining <p(t) converges for every density function 
I(x). Furthermore, it is known that f(x) is uniquely determined by its 
characteristic function. 

The inversion formula corresponding to Eq. (H.34) follows at once from 
the theory of Fourier transforms, but it is interesting to derive this relation 
directly from a probabilistic point of view. 

For this purpose, we use the classical integral 

100 sint d 
- t=7r 

-00 t 

to show that 

- -- dt = 0 for a = 0 
1 100 sin at {I for a > 0 
7r -00 t -1 for a < 0 

The function (1- cos at)/t is an odd function of t so that its integral over 
a symmetric range vanishes. Using these facts, it is easy to establish the 
equation 

1 1 100 sin at + i(1 - cos at) {O for a> 0 
- - - dt = ! for a = 0 
2 27r -00 t 12 £ 0 or a < 

N ext, replace a by X - x and introduce complex exponentials for the sine 
and cosine functions to obtain 

1 i 100 1 _ ei(X -x)t {I X < x 
--- dt= ~ X=x 
2 27r -00 t 0 X > x 

(H.35) 

For a fixed value of x, the left side of Eq. (H.35) is a function of X 
which we call Y (X). If X is regarded as a random variable, then Y (X) 
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is also a random variable defined over the same sample space as the one 
associated with X. Hence, 

1 i 100 1 - E{ei(X-x)t) 1 i 100 1 - e-ixt 4>{t) 
E{Y) = - - - dt = - - - dt 

2 211" -00 t 2 211" -00 t 

using Eq. (H.34) to obtain the second form. 
Now, the random variable Y takes on the discrete values 0, ~,and 1 

so that 

E{Y) = 1· Prob{X < x) +! . Prob{X = x) + O· Prob{X > x) 

= Prob{X < x) 

(The probability is zero that X will exactly equal x if x is a point of 
continuity of the distribution function of X .) But the distribution function 
is by definition F{x) == Prob{X < x) which we have shown to be the same 
as E{Y). Therefore, by differentiating F{x) == E{Y) with respect to x, 
we obtain the desired inversion formula 

f{x) = - e-ixt4>{t) dt 1 100 

211" -00 

(H.36) 

For discrete distributions we apply these results in a formal manner 
using the delta-function concept introduced in Sect. H.5. Thus, the char
acteristic function of 6{x, £) 

A.. ( ) -IE 1 itx d _ sin £t 
'I' t - -e x---

E -E 2£ £t 

is found directly using Eq. (H.34). Hence, 

lim 4> E ( t) = 1 
E-O 

so that the characteristic function of 6 (x) is one. Similarly, we find the 
characteristic function of 6{x - xtl to be eitx1 . Therefore, if we wish to 
use the inversion formula (H.36), at least in a formal way, we must have 

6{x - xtl = ~ 100 

e-i(X-Xl)t dt (H.37) 
211" -00 

Consider, for example, the single toss of a coin with X defined as 

X= {I p o q 

The characteristic function is 

4>{t) = E{eitX ) = exp{it . 1) . P + exp{it ·0) . q = eitp + q 

and, from the inversion formula (H.36), the density function is 

f{x) = p6{x - 1) + q6{x) 
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One of the most important uses of characteristic functions follows from 
the inversion fonnula (H.36). In many problems when it is required to find 
the density function of a certain random variable, it is easier to compute 
the characteristic function first and from this find the density function. 

In particular, the importance of the characteristic function is evident 
when we consider the sum of two independent random variables. Suppose 
that Z = X + Y; then the characteristic function of Z is 

In general, 

¢>At) = E(eitZ ) = E(eit(x+Y») = E(eitXeitY) 

= E(eitX)E(eitY) (since X and Yare independent) 

= ¢>x(t)¢>y(t) 

• The characteristic function of the sum of independent random 
variables is equal to the product of the characteristic functions of 
the individual variables. 

Continuing the coin tossing example, let X and Y be the random 
variables representing the outcomes of two successive tosses of a coin. Each 
has the same characteristic function so that the characteristic function of 
the sum is the product of the characteristic functions: 

¢>At) = (eitp + q)2 = ei2tp2 + eit2pq + q2 

from which, using Eq. (H.36), 

J(z) = p2 c5(x - 2) + 2pqc5(x - 1) + q2 c5(x) 

H .10 The Binomial Distribution 

We are now in a position to generalize the coin-tossing experiment to 
include an arbitrary number n of tosses so that there are 2n points in 
the sample space. Let the random variable X be the total number of 
heads (also called "successes") in one performance of the experiment. It is 
the distribution function for X, called the binomial distribution function, 
which we shall derive. 

One aspect of this problem has already been considered-finding the 
average number of successes in n trials rather than the actual distribution 
of these successes. The latter problem in most practical instances is a 
rather formidable one and usually we must be satisfied with a computation 
of a few of the various statistical parameters such as the mean or standard 
deviation. However, for this simple problem the distribution function is 
relatively easy to determine. We carry through the computation in both a 
direct and indirect manner, the latter illustrating the use of characteristic 
functions. 
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The random variable X can assume the values 0, 1, 2, ... , n. The 
probability that X = k is precisely the probability of k successes and 
n - k failures in n trials. Now, since the trials are independent and the 
probability of success in each is the same, the probability of k successes 
and n - k failures occurring in a particularly prescribed order is pkqn-k. 
The number of distinct ways of obtaining precisely k successes is (~, and 
therefore the probability of k successes and n - k failures is (~)p qn-k. 
Then, from Eq. (H.17), 

f(x) = t (n)pkqn-k 6(x - k) (H.38) 
k=O k 

so that the distribution function is 

[xl 

F(x) = L (n)pkqn-k 
k=O k 

(H.39) 

where the symbol [x] denotes the greatest integer less than or equal to x. 
The same result can be obtained in a more routine fashion using 

characteristic functions. As we saw in the last section, the characteristic 
function of the random variable X k' denoting success or failure on the k th 

toss, is 
q,k(t) = peit + q 

Since the X k 's are mutually independent random variables, the character
istic function of their sum is 

n 

q,(t) = E[eitX] = II q,k(t) = (peit + q)n (H.40) 
k=l 

which may be expanded using the binomial theorem to give 

4>(t) = t (~)pkrkei'k 
k=O 

(H.41) 

Now apply the inversion formula (H.36) and the result is again Eq. (H.38). 
We can also write the random variable X in the form 

o qn 
1 npqn-l 
2 !n(n - 1)p2qn-2 

X= 
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Fig. H.3: The binomial probability density function. 

and derive 

E(X) = np Var(X) = npq 

For a specific example of the binomial distribution, we assign the values 
p = 1

3
0' q = 1

7
0' n = 5 and plot the density function of X 

o 0.16807 
1 0.36015 

X = 2 0.30870 
3 0.13230 
4 0.02835 
5 0.00243 

in Fig. H.3. Here, the mean and variance are 

E(X) = X = np = 1.5 and Var(X) = (J2 = npq = 1.05 

A convenient approximation to the binomial distribution may be had 
when we consider a certain limiting case. Specifically, suppose that we let 
p --+ 0 and n --+ 00 but maintain the average number of successes A = np 
as constant. Then for k = 0 we have 

lim Prob(X = 0) = lim (1 _ ~) n = e-~ 
11-0 n-oo n 
n-oo 

and for k = 1 

(A) n - n 

lim Prob(X = 1) = lim nA (1 -~) = Ae-~ l..:+! n-oo 1 _ _ n 
n 
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In general, we can show that 

Ak 
lim Prob(X = k) = -e-). 
1'-0 k! 
n-oo 

In summary, the binomial distribution' can be approximated by 

1
0 -). 

X= t ;e-~ 
k Ak

_). 

k!e 

729 

for large values of n and small values of p. This limiting form is called the 
Poisson distribution. t 

H.11 The Poisson Distribution 

The probability that an event will occur exactly k times when it is known 
to occur A times on the average is governed by the Poisson distribution. If 
the random variable X has this distribution, its density function is 

00 Ak 
f(x) = L k! e-). c5(x - k) (H.42) 

k=O 
In the preceding section we used the Poisson expression merely as a 

convenient approximation to the binomial distribution in the case of large n 
and small p. However, it should be remarked that the Poisson distribution, 
as well as the binomial distribution and the normal distribution (to be 
discussed shortly), occur in a surprisingly large variety of problems. 

Since 
00 00 Ak E Prob(x = k) = e-). L I" = e-).e). = 1 

k=O k=O k. 

it should be possible to conceive of an experiment for which Ake-)./k! 
would be the probability of exactly k successes. With X denoting the 
random variable, then 

00 Ak 00 Ak- 1 
E(X) = E k-e-). = .A L e-). = Ae).e-). = A 

k=O k! k=l (k - I)! 

as, of course, it should be. The mean-squared value is 

00 Ak 
E(X2) = L k2 k! e-). = A2 + A 

k=O 

t Simoon-Denis Poisson's book Recherches sur la probabilite des jugements en 
matiere criminelle et en matiere civile, precedees des regles genbales du calcul des 
probabilitis was published in 1837. 
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so that 
Var(X) = E(X2) - E(X)2 = A 

(Curiously, the mean and the variance are the saIne.) Finally, the charac
teristic function of the Poisson distribution is 

c/>(t) = E(eitX
) = f: eitk A~ e->' = exp(Aeit - A) 

k=O k. 

For an example using the Poisson distribution, consider the problem of 
a hardware store owner who sells boxes each containing 100 screws. Extra 
screws are inserted in the boxes to account for the possibility that some 
may be defective. Experience has shown that in the manufacturing process 
the probability that a screw will be defective is p = 0.015. 

Let the random variable X be the number of defective screws in a 
box. If it is desired to keep this smaller than some number w, then what is 
the probability that the number of defective screws will not exceed w? For 
customer satisfaction we will put 100 + w screws in the box and, hopefully, 
w need not be very large. 

In essence, we must calculate 

Prob(X ~ w) = Prob(X = 0 or X = 1 or ... or X = w) 

= Prob(X = 0) + Prob(X = 1) + ... + Prob(X = w) 

If X has a Poisson distribution with frequency 

then 

A = (100 + w)p ~ 1.5 

Prob(X < w) = e-1.5 (1 + 1.5 + (1.5)2 + ... + (1.5)W) 
- I! 2! w! 

{ 

0.8088 for w = 2 
= 0.9344 for w = 3 

0.9814 for w = 4 

Therefore, if the store owner wishes the customer to have a box of at least 
100 good screws better than 98% of the time, he must include four extra 
screws in each box. 

H.12 Example of the Central Limit Theorem 

Let Xl' X 2 , ••• , Xn be n independent random variables each having a 
Poisson distribution with a mean and variance of A. The characteristic 
function of the random variable 

X=XI +X2 +",+Xn 

is just the product of the individual characteristic functions. Thus, 

c/>x(t) = [exp(Aeit - A)]n = exp(nAeit - nA) 
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f(x} 

____ ==~ __ L-____ J-____ _L ____ ~~ ____ ~ __ ~~__ X 

-3 -2 -1 o 1 2 3 

Fig. H.4: The normal probability density function. 

which demonstrates that X has also a Poisson distribution but with a 
mean and variance of nA. 

Define the random variable 

y=X-nA 
vnx 

which will have a Poisson distribution with zero mean and unit variance. 
Then the characteristic function of Y is 

q,y(t) = E(eitY ) = f eit(k-n>.)/v'nX (n~)k e-n>. 
k=O 

= exp( -itv'n>. - nA + nAeit/vhl.) 

= exp(-!t2 
- it3 v'n>. + ... ) 

so that 
lim 4> (t) = e-!t

2 

n-oo Y 

To find the probability density function from this limiting fonn of the 
characteristic function, we can use the inversion fonnula (H.36) to obtain 

f(x) = - e-,xt4>(t) dt = _e-~X e-~ -,x dt 1 100
. 1 1 2100 

1 (t ')2 

27r -00 27r_00 

The value of this last integral is~. (See the note in Prob. H-24.) 
Therefore, 

(H.43) 

which is the probability density function of a random variable having a 
normal distribution with zero mean and unit variance shown in Fig. H.4. 
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A similar result is obtained in many practical applications when we 
are dealing with a large number of steps each of which contributes only a 
small amount to the outcome of an experiment. This statement is well sub
stantiated by experience. Indeed, it is a fact that many distributions which 
are encountered in the physical world are either normal or approximately 
normal. This remarkable state of affairs has some basis mathematically in 
the so called central-limit theorem. 

¢ Problem H-21 
Let Xl, X2, ... , Xn be mutually independent random variables, each 

possessing a Cauchy distribution whose frequency function is 

1 
f(x) = 7r(1 + x2) 

By means of characteristic functions, compute the frequency function for the 
random variable Sn = Xl + X2 + ... + Xn , and thus show that the random 
variable 

is independent of n. 

NOTE: The application of the central-limit theorem is not valid here since the 
moments of Xk do not exist. 

H.13 The Gaussian Probability Density Function 

The normal distribution is also called the Gaussian distribution. The more 
general form of the normal or Gaussian density function is 

f(x) = _1_e-!(x-m)2/q 2 (H.44) 
..;'2iu 

and, again referencing the note in Prob. H-23, we have i: /(x)dx = 1 

Furthermore, if a random variable X is normally distributed, then 

E(X) = i: x/(x) dx = m 

E[X2 - E2(X)] = i: (x - m)2/(x) dx = u2 

so that in Eq. (H.44), m is the mean and u2 is the variance. Graphs of 
the density function for sev~ral values of the standard deviation are shown 
in Fig. H.5. 

Just as the Poisson distribution was approximated using the normal 
distribution, so also can the binomial distribution be so approximated. 
In the Poisson approximation, ,\ = np is constant so that as n grows, 



Probability Theory and Applications 733 

p tends to zero. However, for the nonnal approximation to the binomial 
distribution, as n grows so also does np. 

Specifically, if X is a random variable having the binomial distribution 

f(x) = ~ (~)pk(1- p)k 6(x - k) 

then the random variable 

y= X-np 
yfnp(l- p) 

will also have a binomial distribution with zero mean and unit variance. If 
g(y) is the probability density function of Y , it can be shown thatt 

lim g(y) = !::e-!y2 
n-oo v 21T 

just as for the Poisson distributed variables. Also, for large n 

Prob(X = k) = (n)pk(l _ p)n-k ~ _1_e-!(k-m)2/a 2 
k ..j2iu 

with 

Mean: m = np 

and 

Variance: u2 = np(l - p) 

(H.45) 

t The most memorable discovery by Abraham De Moivre (1667-1754) is his approxi
mation to the binomial probability distribution by the normal distribution. To this end, 
he first developed the approximation 

now called Stirling's/ormula after James Stirling who discovered that c = ...tii and used 
it to sum the terms of the distribution. (Stirling was referenced earlier in Sect. H.3.) 
Here, indeed, was the first occurrence of the normal probability integral-the Gaussian 
distribution. It was later that Pierre-Simon de Laplace and Carl Friedrich Gauss gave the 
formula in its modern form. 

De Moivre was born and educated in France but emigrated to England in 1686 
where he took up a lifelong but unprofitable occupation as a tutor in mathematics. 
Edmond Halley became his mentor and Isaac Newton, his friend. Indeed, he dedicated 
his masterpiece The Doctrine 0/ Chances to Newton-a Latin version of which appeared 
in Philosophical 7tansactions 0/ the Royal Society in 1711. The only earlier published treatises 
were the ones by Huygens and Montmort. James Bernoulli's Ars Conjectandi had been 
written but not published. 

Considering his many fundamental contributions to probability, it is somewhat 
ironic that he is best remembered for De Moivre's theorem: 

(cos 4> + i sin 4>) n = cos n4> + i sin n4> 
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, ((x) 

Fig. H.5: Examples of the Gaussian probability density function. 

As an example, consider the binomial probability density function with 
p = 130 and n = 5 which is plotted in Fig. H.3. In Fig. H.6 we have, for 
comparison, overlaid this density function and the normal density function. 
Thus, the approximation is quite good even for moderate values of p and 
n. 

Many applications are facilitated through the formula 

b 

Prob(a ~ X ~ b) = {;. (~)pk(l_ p)k 

~ __ e-~x2 dx 1 l(b+!-m)/u 

.jij;i (a- !-m)/u 

For illustration, consider the following problem: 

In 200 tosses of a true coin (p = 4 ), what is the proba
bility that the number of heads deviates from 100 by at 
most 5? 

(H.46) 

In this case, n = 200, m = 100, (J = V50, a = 95, and b = 105 so that 

1 jS'S/vso 2 
rrc e- i x dx = 0.56331 

V 27r -s.s/vso 

Therefore, most of the time (~56%) we can expect the number of heads 
to fall within this range. 
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Jnpq f(x) 

0.3 

----------=-------~----~--~~-----+----~-==--x 
o 1 2 3 4 

Fig. H.6: Normal approximation to the binomial distribution. 

H.14 The Law of Large Numbers 

Our intuitive notion of probability rests on a basic assumption: If in n 
identical repetitions of an experiment, e.g., tossing a coin, the event E 
occurs nE times, then nE/n should differ very little from the probability 
p associated with the event E. Fortunately, we can translate this vague 
remark into a more precise statement. 

Let X be a random variable having a binomial distribution with mean 
m = np and variance (12 = npq. Then 

Prob(m - En ~ X ~ m + En) = Prob(-En ~ X - np ~ En) 

= Prob ( -E ~ ~ - p ~ E) 

= Prob(l~ - pi ~ E) 

Using the normal approximation, we obtain 

1 I.m +En 
1 2 2 Prob(m - En ~ X ~ m + En):::::; -- e- 2(x-m) /u dx 

J2ir(1 m-En 

:::::; _1_ {En/u e- !X2 dx 

J2ir J-m/u 

Therefore, 

(H.47) 
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and as n increases the right side of (HA 7) approaches one. Hence, 

nl~~ Prob(1 ~ - pi ::; €) = 1 (H.48) 

This is a fonn of the law o/large numbers-as n increases, the probability 
that the average number of successes deviates from p by more than any 
preassigned € tends to zero. 

An interesting application of these ideas can be had in the context of 
the following problem: 

An unknown fraction p of a particular population are 
smokers. Let X be a random variable whose value is 
the number of smokers observed in a sample size of n. 
The problem is to find the value that n must have to be 
assured that 

Prob(1 ~ - pi ~ 0.005) ~ 0.95 

The number 0.95 is referred to as the confidence level. 

First we consult a table of values of the normal distribution function 

1 13: 1 2 F(x) = f;C e-~u du 
y21T -00 

to determine that 

1 11.96 1 2 
f;C e-~3: dx ~ 0.9750021 

y21T -1.96 

By comparison with Eq. (H.47), we must have 

or 

0.005 rE ~ 1.96 VliQ 

But, of course, pq ::; 1 so that 

n ~ 1.153664 = 38416 
or 

n ~ 40,000 

(H.49) 

Thus, using a sample size of 40,000 people, we can say, with a confidence 
level of 0.95, that the observed fraction of smokers will differ from the true 
fraction p by no more than five parts out of a thousand. 
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~ Problem H-22 
Y The normal distribution function F(x), which is defined in Eq. (H,49), can 

be expressed in terms of conHuent hypergeometric functions as 

() 1 1 (1 3 1 2) 1 X _;z2 ( 3 1 2) 
FX=2+.j2ixM 2'2'-2 X =2+.j2ie Ml'2'2 x 

the second form of which leads to the following continued fraction expansions 
valid for positive values of x 

and 

F(x) = 1- _1_e-;z2 ____ 1 ___ _ 
.j2i 1 

x+-------
2 

x+-----
3 

x+----
4 

x+--
x+ '. 

F(x) =! + _1_e-;z2 ____ x----= __ _ 
2 V?;; x 2 

1 - -----;:----
2X2 

3 + -----:::--
3x2 

5- -----::--
4x2 

7+--
9-· 

H.15 The Chi-square Distribution 

Let X be a random variable having a normal distribution with zero mean 
and unit standard deviation. Then 

Prob(X ::; x) = F(x) and 
d 1 ~ 2 
-F(x) = f(x) = f(Ce-"'lX 
dx v 27r 

Define another random variable Y = X2 so that, for y > 0, 

G(y) = Prob(Y ::; y) = Prob( -.jY ::; X ::; .jY) 

= F(.jY) - F( -.jY) 

Hence, 
d 1 
dy G(y) = g(y) = 2JYlF' (.jY) + F'(-.jY)] 

= _l_e-;Y 
p:;ry 

The random variable whose density function is 

{

I -;x x> 0 
11 (x) = O~27rX e 

x::;O 
(H.SO) 
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Fig. H.7: The chi-square density function. 

is called chi-square and written X2. A graph of this density function is 
shown in Fig. H.7 and the characteristic function of X2 is 

(H.51) 

The chi-square test is used by statisticians to check the validity of 
the results of an experiment. For example, suppose that a coin is tossed 
n = 4040 times with the result a = 2048 heads and b = 1992 tails. Are 
these data consistent with the hypothesis that p = q = 4? In other words: 
Is this a true coin? 

For this set of data 

X = a - np = 2048 - 2020 
vnpq V1010 

so that the random variable X2 has the value 

2 = X2 = (a - np}2 = 28
2 

= 0.776 
X npq 1010 

and 

Prob(x2 ~ 0.776) = r~o 11 (x) dx = 0.38 
JO.776 

This means that there is a probability of 38% of obtaining a deviation from 
the expected result at least as great as that actually observed. The test is 
not, of course, conclusive. We can never really know if the coin is true. 

We can extend the definition of the chi-square distribution to include 
the sum of squares of normally distributed random variables. Let Xl' X 2 , 
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Fig. H.8: Chi-square density function with various degrees of freedom . 

... , Xn be n independent and normal random variables with zero mean 
and unit standard deviation. Then, the X2 random variable 

x2=xr+xi+···+x~ 

is said to have n degrees of freedom and its characteristic function, from 
Eq. (H.Sl), is 

4>n(t) = (1- 2it)-~n 

Therefore, the probability density function is 

1 100

. 1 fn(x) = -- e-,xt(1- 2it)-~n dt 
27r -00 

Carrying out the integration results in 

X>o 

X~O 

(H.52) 

as the density function of the chi-square distribution with n degrees of free
dom. The function r(! n} is Euler's Gamma function. In this connection 
it is useful to know that r(!) = Vi as developed in the next problem. 

Finally, we can show that the chi-square distribution with n degrees of 
freedom has a mean of n and a variance of 2n. Furthermore, the associated 
density function f n (x) tends to the normal density function as n -. 00. 

This is another example of the central-limit theorem. For illustration we 
have plotted the density functions for the chi-square distributions of one, 
two, and six degrees of freedom in Fig. H.B. 
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¢ Problem H-23 
For positive values of m and n the integral 

B(m,n) = /.1 xm-I(l- x)n-I dx = 2/.!· 8in2m- 1 OC082n- 1 OdO 

defines the Beta function. It was first investigated by John Wallis; however, 
because of the extensive work by Leonhard Euler, Legendre called it the first 
Eulerian integral. The second Eulerian integralt 

r(n + 1) = /.00 xne-x dx = 2/.00 
x2n-le-x2 dx 

was later named the Gamma function by Legendre. 
(a) Derive the relation between the Beta and Gamma functions 

B( ) = f(m)f(n) 
m,n f(m+n) 

which was discovered by Euler in 1771. 

HINT: Use the second form of the Gamma function above and change to polar 
coordinates. Then 

r(n)r(m) = 2/."" r 2
(n+m)-l e-,2 dr x 2/."" 8in2m- 1 OC082n -

1 OdO 

(b) Use Euler's relation to obtain 

f(!) = Ji 
( c) The integrals 

/.
;" /.;1r 

Wn = 0 cosn 
(J d(J = 0 sinn (J d(J 

are called Wallis' integrals. Show that 

Wn = !BI! !(n+l)]= v'i f l!(n+l)] 
2 2 ' 2 2f( ! n + 1) 

t The "interpolation problem" posed to Euler by Christian Goldbach (1690-1764) 
was to give meaning to n! for nonintegral values of n. Euler announced his solution in 
a letter to Goldbach on October 13, 1729. 

Euler gave the solution in several forms 

nl = lim m! m
n
+

1 = /.1 (-log x)n dx = /.00 xne-x dx 
m-oo (n + 1)(n + 2) ... (n + m + 1) 0 0 

Another form he obtained is the infinite product for the Gamma function 
00 

_1_ = xe'Yx II (1 + ~) e-x/ k where "y = lim (1+.! + .! + .! + ... + ..!. -logm) 
r(x) k m-oo 2 34m 

k=1 

The quantity "y = 0.5772156649. .. is known as Euler's constant. 
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Hence, 
2 ·4· .. (2n - 2) . 2n 

",2n+l =----~~--~~--~ 
3 . 5 ... (2n - 1) . (2n + 1) 

1 ·3· .. (2n - 3) . (2n - 1) 7r 
",2n = X -

2 . 4 ... (2n - 2) . 2n 2 

(d) Derive Wallis' infinite product representation of 7r as given in a footnote 
in Sect. 1.1. 

HINT: First establish 

Then show that 

1· ",2n+2 l' 2n + 1 1 1m --= 1m --= 
n-oo ",2n n-oo 2n + 2 

Wallis' product follows as the limit of 

7r ",2n+l 2·2·4·4··· (2n - 2) . (2n - 2) . 2n· 2n 
- x ---= --------~--~~~~~~~--~~--~ 
2 ",2n 1 ·3·3·5·· . (2n - 3) . (2n - 1) . (2n - 1) . (2n + 1) 

The Rayleigh distributiont is derived from the chi-square distribution 
with two degrees of freedom. Let X and Y be independent and normally 
distributed random variables with zero mean and a variance of u2 • Then 
X/u and Y /u are normal with unit variance and the random variable 

X2 y2 
X

2 =--+u2 u2 

has a chi-square distribution with two degrees of freedom. 
Now define a new random variable 

R = un = v'X2 + y2 

whose distribution function will be 

F(r) = Prob(R ~ r) = Prob (X2 ~ ::) 
The density function is derived as follows: 

I(r) = ! Prob(R ~ r) = :r Prob (X2 ~ ::) = !~/2 (::) 
The random variable R has a Rayleigh distribution with 

{ 

~e-!r2/CT2 T > 0 
f(r) = u2 

o T~O 
(H.53) 

t Named for John William Strutt (1842-1919), the third Baron Rayleigh. He is 
best known as Lord Rayleigh and was England's foremost mathematician and physicist 
during the last half of the nineteenth century. 
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so that 

L
ro r ~ 2/ 2 ~ 2/ 2 Prob{O ~ R ~ ro) = 2'e-"2"r (1 dr = 1 - e-"2"rO (1 

o U 
(H.54) 

Examples, of the Rayleigh density function for various values of the 
standard deviation are plotted in Fig. H.9. 

f(r) 

0.5 

o.~ 

0.3 

0.2 

0.1 

2 

Fig. H.9: Rayleigh density functions. 

¢ Problem H-24 

8 

A gun is fired at a target. Taking the origin of coordinates as the point of 
aim, it is known that due to dispersion effects the x and y coordinates of the hit 
are independent and each may be specified in a probabilistic sense by the same 
frequency function f where 

f(x) = _1_e-;x2 /a 2 

v'2iu 
Show that the probability of a point of hit lying within a circle of radius R 
centered at the origin is 

HINT: The probability in question is 

f f f(x)f(y) dxdy = 2:".1'·lR 

.-i"la' rdr dO 
Circle 

NOTE: This is an easy way of establishing the result 

_1_ {'JO e-;x2 /a 2 dx = 1 
~uJ-oo 
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H.16 The Markov Chain 

A sequence of random variables Xl' X 2 , ••• , X n , ... is called a Markov 
chaint if, given the value of the present variable X n , the future X n+1 is 
independent of the past Xl' X 2 , ••• , X n - 1 • 

As an example, let the value of the random variable Xn be the result 
of the nth random selection of a number on the real line from zero to one. 
One could imagine a game in which a wheel is spun to select the number 
and we could define the random variable Yn to be the cumulative score 
after n spins. Then 

(H.55) 

is a Markov chain-also called a Markov sequence or a Markov process. We 
have already seen that the probability density function of Xn is 

f(x) = {I for 0 ~. x ~ 1 
o otherwIse 

The mean and variance of the cumulative score Yn are readily obtained: 
n n 

E(Yn ) = L E(Xk ) = ! n Var(Yn ) = L var(Xk ) = 112 n 
k=l k=l 

To find the probability density function of Yn we note that 

Prob(a < Yn ~ b) = t In(y)dy = f!rJ(X)Jn-,(y)dXdY 

where r is the diagonal strip: a < Xn + Yn- 1 ~ b. Then 

t In(y)dy = i: dx t~" J(x)Jn_l(y)dy 

= i: dx t J(X)Jn-1 (y - x) dy 

= t dy i: J(x)Jn-I(Y - x)dx 

Since this holds for any a and b, the density function for Yn is 

In(Y) = i: J(X)Jn-1 (y - x) dx (H.56) 

This is a convolution integral. The technique has general applicability to 
find the density function for the sum of two random variables. 

t In his efforts to establish general laws of probability Andrei Andreevich Markov 
(1856-1922), the great Russian mathematician, introduced such sequences for the first 
time in his 1906 paper "The Extension of the Law of Large Numbers on Mutually 
Dependent Variables." Markov was a student of Pafnuti L. Tschebycheff, who headed 
the mathematics department of the St. Petersburg University. He spent his entire career 
as a professor at that University in the city of Petrograd. 
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For the particular case at hand, Eq. (H.56) can be reduced to 

fn(Y) = i: f(x)fn-,(y - x) dx = i: f(y - x)fn_, (x)dx 

= f.Y I n - l (x) dx (H.57) 
y-l 

Further, as another example of the central limit theorem, it can be shown 
that In (y) tends to the normal density function as n --. 00. 

A Gaussian random sequence or a Gaussian random process is a 
sequence of vectors whose components are random variables having a jointly 
normal distribution. In the absence of contradictory evidence it is generally 
desirable to assume a normal or Gaussian distribution. The advantages for 
this are summarized below: 

• The distribution function depends only on the mean and covariance. 
• A linear transformation of a Gaussian process is itself Gaussian. 
• A Gaussian process passed through a linear filter remains Gaussian. 
• The optimum estimate of a Gaussian random process is linear. 

In the space navigation problem, we model the dynamics as a Markov 
process. If the random variables have a Gaussian distribution, the process 
is termed a Gauss-Markov process. Thus if "0, Xl' ••• is a sequence of 
Gaussian random vectors and if f3 0' f3 1 , . .. is a sequence of purely random 
Gaussian vectors, i.e., 

then the linear system dynamics 

xn = 4.)n,n-I x n-l + f3 n 

comprise a Markov process. The terminology is that xn is the state vector, 
4.)n,n-1 is the state transition matrix, and f3 n is the plant noise or process 
noise. 

The system is observed by a sequence of measurements ql' q2' ... 
with 

qn =h:~ +an 

where hi' h2' ... is a sequence of measurement vectors and ai' a 2 , ••• 

is a sequence of purely random Gaussian variables. 
With these assumptions we are guaranteed that the optimum estimate 

of the state vector will be linear. 

¢ Problem H-25 
Plot the density functions /I (x), h (x), and fa (x) of the cumulative score 

random variable Yn considered above. Verify, for n = 3, the density function 
already has the familiar "bell-shape" of the normal distribution. 
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Miscellaneous Problems 

This appendix consists of a collection of problems on guidance and navi
gation which, to the author, do not seem to fit naturally in the previous 
chapters. Some are examination questions and some are from the author's 
earlier book Astronautical Guidance. 

¢ Problem 1-1 
A spacecraft is in the plane of the ecliptic with the sun at the origin of 

coordinates. The earth is located on the x axis at a distance of one astronomical 
unit from the sun and the reference coordinates of the spacecraft are 

x = y = la.u. 

To obtain a position fix, the distances from the sun and the earth are some
how measured. The measured distance from the sun is J2. 10-6 a.u. greater 
than expected while the measured distance from the earth is 10-6 a.u. greater 
than expected. 

(a) Find the position deviation vector of the spacecraft from its reference 
position. 

(b) If the measurements are assumed to be statistically independent with a 
standard deviation for each measurement of u = 10-6 a.u., calculate the two
dimensional covariance matrix of the position estimation errors. 
(c) Calculate the rms error, Le., the square root of the mean-squared error, in 

the estimate of the position deviation from the reference point. 

A new estimate of position is made by adding a redundant third measure
ment of the angle between the earth and the sun as observed from the spacecraft. 

(d) If the standard deviation ofthis angle measurement is u = 10-6
/ J2 radians, 

calculate the new covariance matrix of the position estimation errors as well as 
the rms error in the estimate. 

(e) If the measured angle is found to be ~ .10-6 radians larger than the reference 
angle, calculate the new estimate of the position deviation vector of the spacecraft 
from its reference position. 

745 
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¢ Problem 1-2 
A vehicle is launched in a parabolic orbit in a constant gravitational force 

field. Therefore, if r(t) and v(t) are, respectively, the position and velocity 
vectors, we have 

dr dv 
-=V 
dt dt = g 

where g is the constant acceleration vector. 

(a) Assume that two position fixes are made at times tn and tn-l with the 
result that Orn and Orn-l are the indicated deviations in position from the 
reference trajectory. Show that the velocity correction Il V n to be applied at 
time tn to carry the vehicle to the reference target point (fixed in space and 
time) is given by 

..... tJ - tn-l ~ 1 ~ 
IlVn = - orn + Orn-l 

(tJ - tn}{tn - tn-I) tn - tn-l 

where tJ is the reference time of flight. 
(b) Assume that the vehicle is injected into orbit with an initial velocity error 

and that only one position fix and associated velocity correction is made. If the 
mean-squared error in determining position is independent of the time of the fix, 
show that the optimum time (measured from launch) to make the fix, in order 
to minimize the magnitude of the resulting velocity correction, is less than ~ tJ. 

¢ Problem 1-3 
A vehicle is launched in orbit in a constant gravitational force field to inter

cept a target after a flight time of t J = 10. Position fixes are made at t = 1 and 
t = 3, and the following deviations from the reference trajectory are determined: 

or. = 3ix + 2 iI/ - Biz 

or3 = 71x -14iz 

(a) What is the velocity deviation at t = 3? 
(b) If no correction is made, what are the position and velocity deviations at 

the target? 
(c) What velocity correction is required at t = 3 to reduce to zero the position 

error at t = tJ? 

(d) What is the resulting velocity deviation at t = tJ? 

(e) What velocity correction would be required at t = 3 if it were desired to 
reduce the velocity deviation to zero at t = t J and what would be the resulting 
position deviation? 
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¢ Problem 1-4 
A vehicle is launched in a parabolic orbit in a constant gravitational force 

field. The position and velocity vectors r(t) and v(t) satisfy the following vector 
differential equations 

dr dv 
dt =V - = -gill 

dt 
subject to the initial conditions 

r(O) = 0 

Here, i2: and ill are the orthonormal reference coordinate vectors and t / is the 
reference time of flight. Assume the target to be moving with a constant velocity 
given by 

vp = igt/ 12: 

(a) Assume the position and velocity correction uncertainties to be isotropic and 
statistically independent random variables. Show that the rms required velocity 
correction at any time for variable-time-of-arrival is just vII of that for fixed
time-of-arrival guidance. 
(b) Assuming only one position fix at time t = tl and variable-time-of-arrival 

guidance, show that the mean-squared change in the arrival time is given by 

4 (U~ 2) 
3g2 t~ + u'1 

where Ufo is the rms uncertainty in position at the time of the fix and U'1 is the 
rms error in the launch velocity. 

~ Problem 1-5 
Y Consider the problem of a vehicle moving along the x axis in a force free 

field. At time t a measurement of the quantity 

q = x + cvt 

is made where x is the distance from the origin, v is the velocity, and c is 
a positive constant at our disposal. Assume that the measurement error is a 
random variable with zero mean and variance u 2

• At time t = 0, the covariance 
matrix of the estimation errors of position and velocity is the identity matrix. 

(a) At what time t should the measurement be made to minimize the mean
squared error in the estimate of position? 
(b) At what time should the measurement be made to minimize the mean

squared error in the estimate of velocity? 
(c) At what time should the measurement be made to minimize the correlation 

between position and velocity estimation errors? 
(d) Show that the mean-squared error in position for a measurement taken at 

any time is minimized by choosing c = u2
• With this value of c what are the 

answers to the first three questions? 
(e) After the measurement using the optimum c, how do the mean-squared 

estimates of position and velocity and their correlations change with time? 
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(f) Determine the sensitivity of the mean-squared error in the velocity estimate 
(at any time following the measurement) to small changes in c in the vicinity of 
the optimum value. 
(g) Suppose that the measurement at time t is processed (using the optimum 

value of c) under the assumption that no error in the measurement had been 
made. However, unknown to us, a random error with zero mean and variance 
(32 did actually exist in the measurement. What are the statistics of the actual 
errors, including correlations, in the estimates of position and velocity? 

¢ Problem 1-6 
A satellite is in orbit about a spherical earth. Measurement information 

consisting of sets of simultaneous range and range-rate data from the center of 
the earth are available from which to estimate certain orbital elements. The times 
of the measurements are unknown. The range measurements are error-free but 
the range-rate measurements have errors which are assumed to be independent 
normally distributed random variables each having zero mean and a standard 
deviation of 0.01 miles/sec. 

The measurement data are as follows: 

Set Number 

1 
2 
3 

Range (miles) 

5000 
4800 
5300 

Range-Rate (miles/sec) 

0.4373328 
0.4175231 
0.3200625 

and the gravitational constant for the earth is JL = 95630 miles3 /sec2 

(a) From the first two data sets determine an estimate for the orbital parameter 
p and the semimajor axis a. 
(b) Calculate the covariance matrix of estimation errors. 
(c) Use the third data set to determine an improved estimate of p and a as 

well as the new covariance matrix of estimation errors. 
(d) Sketch the equiprobability error ellipse for the case of two measurements 

and the case of three measurements. 

¢ Problem 1-7 
A spacecraft is in orbit about a spherical planet whose radius is 1,000 km. 

Altitude above the surface of the planet can be measured with a radar altimeter. 
The errors in the altitude measurements are assumed to be independent normally 
distributed random variables each having a zero mean and a standard deviation 
of 100 meters. The direction of the radar beam is referenced without error to 
an inertially-stabilized platform which is known to be free of drift but whose 
attitude relative to inertial space is completely unknown. Thus, only the angular 
difference between two successive line of sight directions to the planet can be 
accurately measured. 

Three altitude measurements are made 

Tl = 3, 186,983 meters 

T2 = 3,432, 777 meters 

T3 = 3,800,000 meters 
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at three points in the orbit where the angles between successive line of sight 
directions are exactly 15 degrees. 

(a) Calculate an estimate for the parameter, the eccentricity, and the location 
of pericenter. 
(b) From an appropriate linearized relationship calculate the covariance matrix 

of the estimation errors. 
(c) A fourth altitude measurement is made 

T4 = 4,312, 700 meters 

at a point whose line of sight is exactly 15 degrees displaced from the correspond
ing direction of the third measurement. Using this new measurement, calculate 
new estimates of the three orbital quantities and the new covariance matrix of 
estimation errors. 

~ Problem 1-8 
'j( According to mission plans, a spacecraft is to make a soft landing at a 

specified time and location on the surface of a planet whose gravity field is so 
small as to negligible. 

( a) Show that the optimum commanded acceleration vector, chosen to minimize 
the integral of the square of the magnitude of the acceleration vector, is of the 
form 

a = !t(tgo)rg + !2(tgo )Vg 

where tgo is the time remaining before touchdown. The vector r g is the target 
location minus the current position. The vector v g, called the velocity-to-be
gained, is the desired velocity at the target (assumed here to be zero) minus the 
current velocity. 

Suppose the mission plan is altered so that only a hard landing at the target 
is required. 

(b) Design a control law, using the same performance index as before, with 
the added requirement that the velocity-to-be-gained is always identically zero. 
That is, the desired velocity at impact is specified to be the same as the current 
velocity. 

NOTE: This is not the same as dropping the second term in the control law of 
part (b). 

(c) If the vehicle is flown using this control law, then by integrating the state 
equations, obtain an expression for the vector r g of the form 

rg = gl (tgo)Cl + g2(tgo )C2 

where Cl and C2 are the integration constants. Further, show that the com
manded acceleration vector has a fixed direction and a magnitude proportional 
to t:o • 

(d) Is this control law the same as the optimum control law with no requirement 
on the terminal velocity? If not, how would you design an optimum control law 
for a hard landing? 
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~ Problem 1-9 
Y Consider the problem of a vehicle moving in a straight line along the x axis 

in a force-free field. At time t = 0 a measurement of x, the distance from the 
origin, is made. Assume that the measurement error is a random variable with 
zero mean and variance equal to q2. At time t = 0, prior to the measurement, 
the covariance matrix of the estimation errors of position and velocity is the 
identity matrix. 

(a) Determine the error covariance matrix immediately following the measure
ment. 
(b) A second measurement of x is made at time t with the measurement error 

statistically independent of the first measurement error and having zero mean 
and variance q2. Determine the error covariance matrix immediately following 
the second measurement. 
(c) Assume at time t, when the second measurement is made, that the mea

surement error is composed of a random variable Q with zero mean, variance q2, 
statistically independent of the previous measurement error and a random bias 
with variance {32 , statistically independent of Q. If the measurement had been 
processed under the assumption that no bias existed, what are the statistics of 
the actual errors in the estimates of position and velocity? 
(d) Let Qo be the measurement error at t = 0 and Q( t) be the measurement 

error at time t. Assume they are correlated using the following model: 

Q(t) = Qoe-~t + q(l- e-2~t)tn(t) 

where n(t) is a white noise with a variance of one and q2 is the variance of 
Qo. A measurement of x is made at t = 0 and a second measurement at time 
t. Determine the mean-squared position error immediately following the second 
measurement. 

NOTE: This question is independent of part (c), i.e., there is no bias error. 
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