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Preface

This work is based on lecture notes about Celestial Mechanics of the planetary
system and of artificial satellites, about the rotation of Earth and Moon, and
about numerical analysis. The lectures were intended for diploma students of
astronomy, physics, mathematics, and geography at the University of Bern
in their first three academic years. In view of the broad and inhomogeneous
audience, the lectures had to be self-consistent and based on simple, generally
known physical and mathematical facts and concepts.
The work consists of three parts in two volumes, where the first Volume is
reserved for the development of theory and mathematical tools (Part I), the
second for applications (Part II) and the accompanying computer program
system (Part III). The two volumes were designed and written as one self-
contained work. Logically, they belong together. The program system, Part
III, is used throughout the two first parts to illustrate the theoretical concepts
in Volume I and the applications in Volume II.
The two volumes offer a thorough introduction into modern astrodynamics
and its applications to a broad variety of problems in the planetary system
and in global geodynamics for students in astronomy, physics, geodesy (in
particular space geodesy), geophysics and geosciences, and in applied math-
ematics. They contain many ideas for future research in the areas addressed,
and they are hopefully also beneficial for the experts in the field.
The equations of motion – for point masses and extended bodies – and their
solution methods are the central, unifying aspect of our treatment of Celes-
tial Mechanics and its applications. Particular solutions of the equations of
motion, specified, e.g., by initial conditions and by the parameters defining
the force field acting on the celestial bodies considered, are studied with the
tools of numerical analysis. Powerful and yet efficient numerical algorithms
are developed, starting from basic mathematical principles. The focus of our
treatment of numerical analysis is not on completeness but on a few key
methods, which are based on simple and easily understandable mathematical
principles.
We tried to avoid concepts which are “only” useful to the specialist in the
field, be it in numerical analysis or in Celestial Mechanics. If the choice was



VIII Preface

either that of an elegant or of a simple treatment, the simple approach was
followed.
Both volumes are accompanied by the same Compact Disk (CD) containing
the computer programs as executable modules for Personal Computers (PC).
The program system is easy to install and to use on PCs with a Windows op-
erating system. The computer programs are documented in Part III, Volume
II. The programs are a central issue of our treatment of astrodynamics, not
just as a nice supplement. They allow it to study and analyze a wide variety
of problems reaching far beyond those treated in this book. The program
package should be useful for academic teachers and their students, but also
for research workers.
Prof. Leoš Mervart of the Technical University of Prague designed and wrote
the menu system accompanying the computer programs. It is in essence his
merit that the computer-programs are easy to understand and to use. Part
III of Volume II were written jointly by him and the undersigned. In addition,
Leoš Mervart was proof-reading Chapter 3 (Equations of Motion) of the main
text and he was producing most of the more delicate figures.
My colleague and co-worker Dr. Andreas Verdun was the design expert con-
cerning the structure and the formal appearance of this work. In addition, his
collaboration was paramount in all aspects related to his specialization, the
history of astronomy, in particular of Celestial Mechanics. He screened and
proof-read the entire manuscript. His expertise and never ending encourage-
ment was of greatest importance for the realization and completion of this
work.
This work never could have been completed without the assistance of the two
young colleagues. Their contribution is acknowledged with deep gratitude.
Prof. Paul Wild, my predecessor as director of the Astronomical Institute of
the University of Bern (AIUB), contributed in many respects to this book.
The observations of minor planets used as examples in the chapter about
orbit determination were performed and reduced by Paul Wild personally.
The observations of minor planets and comets provided on the CD mostly
refer to objects discovered by him at the Zimmerwald Observatory. Paul
Wild also adapted his fabulous skill to screen Schmidt-plates for new objects
(minor planets, comets, supernovae, etc.) to the manuscript of this book
by performing an amazingly thorough proof-reading of major parts of the
manuscript. The final result is undoubtedly very much improved thanks to
his effort.
Chapters 4 (two- and three-body problems) and 7 (numerical analysis) were
proof-read by Adrian Jäggi, Chapter II- 2 (rotation of Earth and Moon) by
Claudia Urschl, and Chapter II- 3 (satellite motion) by Michael Meindl. The
three young colleagues are Ph.D.-candidates at our institute. Chapter 8 (or-
bit determination and parameter estimation) was proof-read by Dr. Thomas
Schildknecht, head of the institute’s CCD astrometry group. He also re-
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viewed the Chapter II- 4 (planetary system). Dr. Urs Hugentobler received
his diploma in theoretical physics, then joined the CCD group and wrote a
Ph.D. thesis in the field of astrometry and Celestial Mechanics. After a longer
research stay at ESOC in Darmstadt, he joined the AIUB team as head of
AIUB GPS research group. With his broad background and his sharp mind
he was perfectly suited to proof-read the entire Part II and the chapter about
orbit determination of Volume I.
Profs. Robert Weber from the Technical University of Vienna, Markus
Rothacher from the Technical University of Munich, and Prof. Werner Gurt-
ner, director of the Zimmerwald Observatory, also read and commented parts
of the manuscript. Dr. Jan Kouba from the National Geodetic Survey of
Canada thoroughly read most of Part II. The comments by the four dis-
tinguished colleagues are very much appreciated. A final proof-reading at
the entire manuscript was performed by Ms Edith Stöveken and Ms Claudia
Urschl.
The editing and reviewing process of a treatise of this extent is a crucial
aspect, at times even a nightmare. The reviewing work was a considerable
addition to the normal professional duties of the colleagues mentioned above
and to those of the author. It is my sincere desire to thank my friends and
colleagues for their assistance. I can only promise to assist them in a similar
way, should they decide to achieve something similar. I cannot recommend
this to anybody, on the other hand: My sabbatical leave from the University
of Bern in spring and summer 2001 and the following two years were in
essence sacrificed to the purpose of writing and completing this two volume
work.
The author hopes that the two volumes will be helpful to and stimulating
for students and researchers – which in turn would help him to forget the
“(blood), sweat and tears” accompanying the creative act.

Bern, February 2004 Gerhard Beutler
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Physical, Mathematical,

and Numerical Principles



1. Overview of the Work

This work contains three parts in two volumes. Volume I consists of Part I
Theory, Volume II of Part II Applications and Part III Program System. Part
I Theory contains Chapters 3 to 8, Part II Applications the Chapters II- 2 to
II- 4, and Part III Program System, the documentation of the entire program
system.

Celestial Mechanics, as we understand it today, has a long history. Its impact
on the concepts of physics and mathematical analysis and, more recently, on
geophysics can hardly be overestimated. Chapter 2 reviews the development
of classical Celestial Mechanics, but also the developments related to the
motion of artificial satellites.

1.1 Part I: Theory

The Equations of Motion. The title of this work demands that we depart
from the equations of motion for the celestial bodies, which may be considered
either as point masses or as extended bodies in our developments. In the
latter case the bodies may be either rigid or deformable. This initial problem
description is suited to address a great variety of problems: the orbital motion
in galaxies, globular clusters, planetary systems, binaries, the orbital and
rotational motion of planets, and the motion of natural and artificial satellite
systems around a planet. Such a general treatment of Celestial Mechanics
would be demanding, it could, however, hardly be dealt with in only two
volumes.

We focus our treatise on the planetary system (consisting of a limited number
of about N ≤ 20 of point masses), on the orbital and rotational motion of the
Earth-Moon-Sun system as an example of an N -body problem with extended
bodies, and on the orbital motion of artificial Earth satellites (the attitude of
satellites is briefly addressed, as well). With this selection of topics we leave
aside many fascinating and important problems in dynamical astronomy, in
particular the entire field of galactic dynamics. The latter topic is, e.g., very
nicely treated in the standard textbook by Binney and Tremaine [20]. Our
selection of topics still is rather ambitious, however.
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The equations of motion for three types of problems, namely for the planetary
system, for the three-body problem Earth-Moon-Sun and for the motion of
artificial satellites are derived in Chapter 3. The method, simple and transpar-
ent in principle, is the same for all problem types, for the orbital as well as for
the rotational motion: Using classical mechanics, Newton’s law of universal
gravitation, and the Newton-Euler formalism equating the time-derivatives
of the linear momentum of individual bodies (or of mass elements of extended
bodies) with the forces acting on the particles, the equations for the orbital
and rotational motion are obtained in the inertial system. Depending on the
problem type, the equations are then transformed to refer to the primary
body for the particular problem type. When the motions of planets, minor
planets or comets are studied, the position vectors in the equations of motion
are heliocentric, in the other two cases, these position vectors are geocentric.

The three problem types have certain peculiarities: (1) “only” the orbital
motion needs to be addressed in the first case, orbital and rotational motion
in the second case; (2) “only” gravitational forces must be considered in the
first two cases, whereas non-gravitational forces have to be dealt with, as well,
in the third case; (3) due to the artificial satellites’ proximity to the Earth,
the gravitational potential of the Earth needs to be modelled very accurately;
(4) in the latter application the equations of motion of different satellites
are not coupled mathematically, allowing it to deal with each satellite orbit
separately.

The developments are in essence based on classical mechanics. The relativis-
tic equations of motion are, however, reproduced, as well. In Chapter 3 the
so-called PPN (Parametrized Post-Newtonian) version of the equations of
motion for the N -body problem is introduced and discussed, as well. The
PPN equations may be viewed as a perturbation of the classical N -body mo-
tion. The direct use of the PPN equations (e.g., used for the production of
planetary and lunar ephemerides in [107]) in numerical integrations over mil-
lions of years prohibitively affects the efficiency of the solution algorithms.
This is why approximations of the correct PPN equations are considered,
as well (and implemented as options into the computer programs for the
planetary and satellite motion).

The Classical Two- and Three-body Problems. The two-body problem
must be an integral part of each treatise of Celestial Mechanics, and it is found
as an important issue in many textbooks of “ordinary” mechanics. Here,
it is dealt with in Chapter 4 together with the three-body problem. That
chapter thus deals with the two presumably simplest problems encountered
in Celestial Mechanics.

The two-body problem, the motion of two point masses w.r.t. each other, may
be solved “analytically”, i.e., in terms of a finite set of elementary mathemat-
ical functions of time. These analytical solutions are extremely important as
first approximations of more complicated problems. In Celestial Mechanics
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the two-body motion often is referred to as the unperturbed motion, implying
that all other motions may be viewed as perturbed two-body motions. The
chapter introduces the one-to-one relationship between the set of position-
and velocity-vectors on one hand, and the orbital elements on the other hand.
This relationship allows to introduce the concept of osculating orbital ele-
ments, by assigning one set of six orbital elements to each set of position-
and velocity-vectors of a perturbed motion, using the formulae of the two-
body problem.

Osculating and mean elements – the latter defined as averages of osculating
elements over certain time intervals – are introduced as fundamental concepts.
The computation of ephemerides, one of the important practical problems in
Celestial Mechanics, is briefly addressed, as well. The three-body problem
already contains many (if not most) of the characteristics and difficulties of
the general planetary N -body motion. It was studied by many eminent as-
tronomers and mathematicians (from Euler to Poincaré). The attempts to
find “analytical” solutions of the 3-body problem were only moderately suc-
cessful. They led, however, to the discovery of the problème restreint, one of
the most charming mathematical miniatures found in dynamical astronomy.
It is treated as a preparation to more general problems.

Variational Equations. The trajectory of a celestial body contains much
information. Studies of the development of the osculating orbital elements as
a function of time are indeed extremely informative, but yet it is impossible
to decide in an objective way whether or not the findings are representative
for other trajectories with similar initial characteristics. In order to answer
such questions it is mandatory to study the so-called variational equations,
which may be associated with each individual trajectory. The variational
equations are of greatest importance in Celestial Mechanics – in theory as
well as in application. They are required for orbit determination and for solv-
ing more general parameter estimation problems, in questions concerning the
stability of a particular solution, and in error propagation studies. Chap-
ter 5 introduces the variational equations as linear differential equations for
the partial derivatives of the position vector(s) of celestial bodies w.r.t. the
parameters defining the particular solution of the equations of motion consid-
ered. The chapter also provides analytical solutions (in the sense mentioned
above) of the variational equations associated with the equations of motion of
the two-body problem, and compares their characteristics with the solution
characteristics related to perturbed motion.

Theory of Perturbations. Perturbation theory is the central topic of
Chapter 6. Each method to solve an initial value problem associated with
the equations of motion of a particular orbital motion may be viewed as a
perturbation method. Usually one expects, however, that perturbation meth-
ods make (intelligent) use of the known approximative solutions, i.e., of the
solutions of the corresponding two-body motion. The knowledge of an approx-
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imative solution may be exploited in many different ways. It is, e.g., possible
to set up a differential equation for the difference vector between the actual
solution and the known two-body approximation. The best-known of these
attempts is the so-called Encke method, which is analyzed and considerably
expanded when introducing the problems in the chapter. The best possible
way to exploit the known analytical solution of the two-body problem consists
of the derivation of differential equations for the osculating orbital elements.
These equations are derived in an elementary way, without making use of the
results of analytical mechanics. Our approach first leads to the perturbation
equations in the Gaussian form, which allow it to consider a very broad class
of perturbing functions. Only afterwards we derive the so-called Lagrange
planetary equations, requiring the perturbing functions to be gradients of a
scalar (so-called perturbation) function. The method to derive the equations
is very simple and transparent, and the general form of the equations is amaz-
ingly simple. The drawback lies in the necessity to calculate the gradients of
the orbital elements (w.r.t. Cartesian position- and velocity-components), a
task which was performed in the last, technical section of the chapter.

When comparing the mathematical structure of the perturbation equations
for different orbital elements (either in the Gaussian or in the Lagrangian
form), one finds that all except one are essentially of the same simple math-
ematical structure. The exception is the equation for the time of pericenter
passage T0 (alternatively for the mean anomaly σ0 referred to the initial epoch
t0), because the time argument figures outside the trigonometric functions
on the right-hand sides of the equations. This is a nuisance independently
of whether one solves the equations analytically or numerically. As opposed
to the usual method of introducing new, auxiliary functions (as, e.g., the
function ρ introduced by Brouwer and Clemence [27]), we derive directly a
differential equation for the mean anomaly σ(t) which does not show the
problems mentioned above. σ(t) is of course not an orbital element (an inte-
gration constant of the two-body motion), but any other auxiliary functions
that might be introduced are not first integrals either.

Numerical Solution of Ordinary Differential Equations. Numerical
analysis, in particular the numerical solution of the equations of motion and
the associated variational equations, is studied in considerable detail in Chap-
ter 7. In view of the fact that first- and second-order equations as well as def-
inite integrals have to be solved in Celestial Mechanics, the general problem
of solving non-linear differential equation systems of order n is studied first.
Linear systems and integrals may then be considered as special cases of the
general problem.

It is not sufficient to consider only initial value problems in Celestial Mechan-
ics. The so-called local boundary value problem (where the boundary epochs
are close together in time) is of particular interest. It is, e.g., used in or-
bit determination problems. Euler’s original analysis (see Figure 7.1) is the
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foundation for all modern algorithms. It meets all requirements an algorithm
should offer, except one: Euler’s method is prohibitively inefficient. We show
that the (not so well known) collocation methods may be viewed as the logi-
cal generalization of Euler’s method. Cum grano salis one might say that the
Euler method and the collocation method are identical except for the order
of the approximation. Euler’s method corresponds to a local Taylor series
approximation of order n (where n is the order of the differential equation
system); the order q ≥ n of the collocation method may be defined by the
program user. Collocation methods may be easily adapted to automatically
control the local errors of the integration, allowing it to determine efficiently
not only orbits of small, but also large eccentricities.

Local error control is one issue, the accumulation of the local errors, due
to two different sources, is another one. The accumulation of errors is of
course studied for a machine-environment (as opposed to hand calculation).
Apart from that our treatment is closely related to the method described
in Brouwer’s brilliant analysis [26]. Based on this theory a rule of thumb is
provided for selecting the proper (constant) stepsize for producing planetary
ephemerides (assuming low eccentricity orbits). This approximate treatment
of the accumulation error is not applicable to very long integration spans or to
problems involving strong perturbations (as, e.g., in the case of resonances).
The correct theory of error accumulation therefore must to be based on the
variational equations as well.

Orbit Determination and Parameter Estimation. Orbit determination
and more general parameter estimation procedures are the topic of Chapter
8. The decision to conclude Part I with the chapter on orbit determination
is justified by the fact that the problem reveals many interesting theoretical
aspects related to parameter estimation theory. The determination of orbits
may, however, also be viewed as one of the important practical tasks in Celes-
tial Mechanics. The chapter may thus also be viewed as a transition chapter
to the application part.

Orbits of celestial bodies may only be determined if they were repeatedly
observed. For generations of astronomers the expression “observation” was
synonymous for “direction observation” (usually an astrometric position),
defining (in essence) the unit vector from the observer to the observed object
at the epoch of the observation (a precise definition is provided). Except for
the fact that today usually CCD (Charge Coupled Device) observations, and
no longer photographic or even visual observations, are made, not much has
changed in this view of things, when minor planets or comets are concerned.
Orbit determination based on astrometric positions is also an important issue
when dealing with artificial satellites and/or space debris. This is why the
classical orbit determination problem based on astrometric positions applied
to minor planets, comets, and artificial objects orbiting the Earth is addressed
first.
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It is important to distinguish between first orbit determination and orbit
improvement. In the former case there is no a priori information about
the orbital characteristics available. In the latter case, such information is
available, and this allows it to linearize the problem and to solve it with
standard procedures of applied mathematics. Cum grano salis one might
say that first orbit determination is an art, whereas orbit improvement is
mathematical routine.

Let us first comment the artistic task: If the force field is assumed to be known
(in most cases one even uses the two-body approximation) the problem is re-
duced to determining six parameters, the (osculating) orbital elements, using
the observations. First orbit determination can only succeed, if the number
of unknowns can be reduced to only one or two parameters. The principle is
explained in the case of determining a circular orbit using two astrometric
positions, where the (originally) six-dimensional problem is reduced to one
of dimension one.

In the general case, it is possible to reduce the problem to a two-dimensional
problem, the topocentric distances corresponding to two astrometric posi-
tions being the remaining unknowns. The method is based on the numerical
solution of a local boundary value problem as discussed in Chapter 7. The
new method presented here is very robust, allowing it to investigate also
delicate cases as, e.g., multiple solutions.

Classical orbit determination must be illustrated with standard and difficult
examples. Program ORBDET, serving this purpose, allows it to determine
first orbits of objects in the planetary system (minor planets, comets, NEO
(Near Earth Objects), etc.), and of satellites or space debris. First orbits
may be determined with a variety of methods in ORBDET, including the
determination of circular and parabolic orbits. Except for the case of the
circular orbit the basic method is the new method mentioned above. Sample
observations of minor planets, comets, and artificial satellites are provided.
Each orbit determination is concluded by an orbit improvement step, where
the more important perturbations of the particular problem may be taken
into account.

Most of the orbit determination procedures in use today are based on ideas
due to Gauss, Laplace, and others. The historical reminiscences are discussed,
but not considered for implementation. Often, the original recipes have been
simply translated into a computer code and applied – from our point of view
a totally unacceptable procedure. Our method outlined in the main text
and implemented in program ORBDET is based on Gauss’s brilliant insight
that the formulation of the orbit determination problem as a boundary value
problem (instead of an initial value problem) immediately reduces the number
of parameters from six to two, and on the numerical solution of the associated
(local) boundary value problem.
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Not only angles, but also distances, distance differences, and other aspects of
a satellite orbit may be observed. This naturally leads to much more general
orbit determination problems in satellite geodesy. Usually, one may assume
moreover that good approximations of the true orbits are known – meaning
that “only” standard methods (based on linearizing a non-linear parameter
estimation problem) are required to improve the orbits.

An observation of a celestial body does not only contain information con-
cerning the position (and/or velocity) vector of the observed object, but also
about the observer’s position and motion. This aspect is widely exploited in
satellite geodesy. Some of the general parameter estimation schemes and of
the results achieved are briefly mentioned in Chapter 8, as well.

The chapter is concluded with two modern examples of “pure” orbit determi-
nation problems. One is related to SLR (Satellite Laser Ranging), the other
to the determination of LEO (Low Earth Orbiter) orbits, where the LEO
is equipped with a GPS receiver. The latter orbit determination problem is
based on the LEO positions (and possibly position differences) as determined
from the data of the spaceborne GPS receiver. Program SATORB may be
used to determine these orbits. This latter application is attracting more
and more attention because more and more LEOs are equipped with GPS
receivers.

1.2 Part II: Applications

Rotation of Earth and Moon. Chapter II- 2 deals with all aspects of
the three-body problem Earth-Moon-Sun. All developments and analyses are
based on the corresponding equations of motion developed in Chapter 3; the
illustrations, on the other hand, are based almost exclusively on the computer
program ERDROT (see section 1.3).

In order to fully appreciate the general characteristics of Earth (and lunar)
rotation, it is necessary to understand the orbital motion of the Moon in the
first place. This is why the orbital motion of the Moon is analyzed before
discussing the rotation of Earth and Moon.

The main properties of the rotation of Earth and Moon are reviewed after-
wards under the assumption that both celestial bodies are rigid. Whereas the
characteristics of Earth rotation are well known, the rotational properties of
the Moon are usually only vaguely known outside a very limited group of
specialists. Despite the fact that the structure of the equations is the same
in both cases, there are noteworthy differences, some of which are discussed
in this chapter. The analysis pattern is the same for the two bodies: The mo-
tions of the rotation axis in the body-fixed system and in the inertial system
are established by computer simulations (where it is possible to selectively
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“turn off” the torques exerted by the respective perturbing bodies); the sim-
ulation results are then explained by approximate analytical solutions of the
equations of motion. The simulations and the approximate analytic solutions
are compared to the real motion of the Earth’s and Moon’s rotation poles.
Many, but not all aspects are explained by the rigid-body approximation.

This insight logically leads to the discussion of the rotation of a non-rigid
Earth. This discussion immediately leads in turn to very recent, current and
possible future research topics. Initially, the “proofs” for the non-rigidity of
the Earth are provided. This summary is based mainly on the Earth rotation
series available from the IERS and from space geodetic analysis centers. Many
aspects of Earth rotation may be explained by assuming the Earth to consist
of a solid elastic body, which is slightly deformed by “external” forces. Only
three of these forces need to be considered: (1) the centrifugal force due to
the rotation of the Earth about its figure axis, (2) the differential centrifugal
force due to the rotation of the Earth about an axis slightly differing from
this figure axis, and (3) the tidal forces exerted by Sun and Moon (and
planets). The resulting, time-dependent deformations of the Earth are small,
which is why in a good approximation they may be derived from Hooke’s
law of elasticity. The elastic Earth model brings us one step closer to the
actual rotation of the Earth: The difference between the Chandler and the
Euler period as well as the observed bi-monthly and monthly LOD (Length
of Day) variations can be explained now.

The elastic Earth model does not yet explain all features of the observed
Earth rotation series. There are, e.g., strong annual and semi-annual varia-
tions in the real LOD series, which may not be attributed to the deformations
of the solid Earth. Peculiar features also exist in the polar motion series. They
are observed with space geodetic techniques because the observatories are at-
tached to the solid Earth and therefore describe the rotation of this body (and
not of the body formed by the solid Earth, the atmosphere and the oceans).
Fortunately, meteorologists and oceanographers are capable of deriving the
angular momentum of the atmosphere from their measurements: by compar-
ing the series of AAM (Atmospheric Angular Momentum) emerging from the
meteorological global pressure, temperature, and wind fields with the corre-
sponding angular momentum time series of the solid Earth emerging from
space geodesy, the “unexplained” features in the space geodetic observation
series of Earth rotation are nowadays interpreted by the exchange of angular
momentum between solid Earth, atmosphere and oceans – implying that the
sum of the angular momenta of the solid Earth and of atmosphere and oceans
is nearly constant.

Even after having modelled the Earth as a solid elastic body, partly covered
by oceans and surrounded by the atmosphere, it is not yet possible to explain
all features of the monitored Earth rotation. Decadal and secular motions in
the observed Earth rotation series still await explanation. The explanation
of these effects requires even more complex, multi-layer Earth-models, as,
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e.g., illustrated by Figure II- 2.55. The development of these complex Earth
models is out of the scope of an introductory text. Fortunately, most of their
features can already be seen in the simplest generalization, usually referred
to as the Poincaré Earth model, consisting of a rigid mantle and a fluid
core (see Figure II- 2.56). It is in particular possible to explain the terms
FCN (Free Core Nutation) and NDFW (Nearly-Diurnal Free Wobble). The
mathematical deliberations associated with the Poincaré model indicate the
degree of complexity associated with the more advanced Earth models. It is
expected that such models will be capable of interpreting the as yet unex-
plained features in the Earth rotation series – provided that Earth rotation
is continuously monitored over very long time spans (centuries).

Artificial Earth Satellites. Chapter II- 3 deals with the orbital motion of
artificial Earth satellites. Most illustrations of this chapter stem from program
SATORB, which allows it (among others) to generate series of osculating
and/or mean elements associated with particular satellite trajectories.

The perturbations of the orbits due to the oblate Earth, more precisely the
perturbations due to the term C20 of the harmonic expansion of Earth’s po-
tential, are discussed first. The pattern of perturbations at first sight seems
rather similar to the perturbations due to a third body: No long-period or
secular perturbations in the semi-major axis and in the eccentricity, sec-
ular perturbations in the right ascension of the ascending node Ω and in
the argument ω of perigee. There are, however, remarkable peculiarities of
a certain practical relevance. The secular rates of the elements Ω (right as-
cension of ascending node) and ω (argument of perigee) are functions of the
satellite’s inclination i w.r.t. the Earth’s equatorial plane. The perturbation
patterns allow it to establish either sun-synchronous orbital planes or orbits
with perigees residing in pre-defined latitudes.

The orbital characteristics are established by simulation techniques (using
program SATORB), then explained with first-order general perturbation
methods (based on simplified perturbative forces). Higher-order perturba-
tions due to the C20-term and the influence of the higher-order terms of
the Earth’s potential (which are about three orders of magnitude smaller
than C20) are studied subsequently. The attenuating influence of the Earth’s
oblateness term C20 on the perturbations due to the higher-order terms Cik

is discussed as well.

If a satellite’s revolution period is commensurable with the sidereal revolution
period of the Earth, some of the higher-order terms of Earth’s potential may
produce resonant perturbations, the amplitudes of which may become or-
ders of magnitude larger than ordinary higher-order perturbations. Resonant
perturbations are typically of very long periods (years to decades), and the
amplitudes may dominate even those caused by the oblateness. Two types of
resonances are discussed in more detail, the (1:1)-resonance of geostationary
satellites and the (2:1)-resonance of GPS-satellites. In both cases the prac-
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tical implications are considerable. In the case of GPS-satellites the problem
is introduced by a heuristic study, due to my colleague Dr. Urs Hugento-
bler, which allows it to understand the key aspects of the problem without
mathematical developments.

The rest of the chapter is devoted to the discussion of non-gravitational forces,
in particular of drag and of solar radiation pressure. As usual in our treat-
ment, the perturbation characteristics are first illustrated by computer sim-
ulations, then understood by first-order perturbation methods. Atmospheric
drag causes a secular reduction of the semi-major axis (leading eventually
to the decay of the satellite orbit) and a secular decrease of the eccentric-
ity (rendering the decaying orbit more and more circular). Solar radiation
pressure is (almost) a conservative force (the aspect is addressed explicitly),
which (almost) excludes secular perturbations in the semi-major axis. Strong
and long-period perturbations occur in the eccentricity, where the period is
defined by the periodically changing position of the Sun w.r.t. the satellite’s
orbital plane.

The essential forces (and the corresponding perturbations) acting on (suffered
by) high- and low-orbiting satellites conclude the chapter.

Evolution of the Planetary System. The application part concludes with
Chapter II- 4 pretentiously entitled evolution of the planetary system. Three
major issues are considered: (a) the orbital development of the outer system
from Jupiter to Pluto over a time period of two million years (the past million
years and the next million years – what makes sure that the illustrations in
this chapter will not be outdated in the near future, (b) the orbital develop-
ment of the complete system (with the exception of the “dwarfs” Mercury
and Pluto), where only the development of the inner system from Venus to
Mars is considered in detail, and (c) the orbital development of minor planets
(mainly of those in the classical asteroid belt between Mars and Jupiter).

The illustrations have three sources, namely (a) computer simulations with
program PLASYS, allowing it to numerically integrate any selection of plan-
ets of our planetary system with the inclusion of one body of negligible mass
(e.g., a minor planet or a comet) with a user-defined set of initial orbital
elements (definition in Chapter 2), (b) orbital elements obtained through the
MPC (Minor Planet Center) in Cambridge, Mass., and (c) spectral analyses
of the series of orbital elements (and functions thereof) performed by our
program FOURIER.

By far the greatest part of the (mechanical) energy and the angular momen-
tum of our planetary system is contained in the outer system. Jupiter and
Saturn are the most massive planets in this subsystem. Computer simula-
tions over relatively short time-spans (of 2000 years) and over the full span
of two million years clearly show that even when including the entire outer
system the development of the orbital elements of the two giant planets is
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dominated by the exchange of energy and angular momentum between them.
The simulations and the associated spectra reveal much more information.

Venus and Earth are the two dominating masses of the inner system. They
exchange energy and angular momentum (documented by the coupling be-
tween certain orbital elements) very much like Jupiter and Saturn in the
outer system. They are strongly perturbed by the planets of the outer sys-
tem (by Jupiter in particular). An analysis of the long-term development of
the Earth’s orbital elements (over half a million years) shows virtually “no
long-period structure” for the semi-major axis, whereas the eccentricity varies
between e ≈ 0 and e ≈ 0.5 (exactly like the orbital eccentricity of Venus).

Such variations might have an impact on the Earth’s climate (annual vari-
ation of the “solar constant”, potential asymmetry between summer- and
winter-half-year). The eccentricity is, by the way, approaching a minimum
around the year 35’000 A.D., which does not “promise” too much climate-
relevant “action” in the near future – at least not from the astronomical
point of view. The idea that the Earth’s dramatic climatic changes in the
past (ice-ages and warm periods) might at least in part be explained by the
Earth’s orbital motion is due to Milankovitch. Whether or not this correla-
tion is significant cannot be firmly decided (at least not in this book). The
long-term changes of the orbital characteristics (of the eccentricity, but also
of the inclination of the Earth’s orbital plane w.r.t. the so-called invariable
plane) are, however, real, noteworthy and of respectable sizes.

Osculating orbital elements of more than 100′000 minor planets are available
through the MPC. This data set is inspected to gain some insight into the
motion of these celestial objects at present. The classical belt of minor planets
is located between Mars and Jupiter. Many objects belonging to the so-called
Kuiper-belt are already known, today. Nevertheless, the emphasis in Chapter
II- 4 is put on the classical belt of asteroids and on the explanation of (some
aspects of) its structure. The histogram II- 4.43 of semi-major axes (or of
the associated revolution periods) indicates that the Kirkwood gaps must
(somehow) be explained by the commensurabilities of the revolution periods
of the minor planets and of Jupiter. After the discussion of the observational
basis, the analysis of the orbital motion of minor planets is performed in two
steps:

• The development of the orbital elements of a “normal” planet is studied.
This study includes the interpretation of the (amazingly clean) spectra of
the minor planet’s mean orbital elements. These results lead to the defini-
tion of the (well known) so-called proper elements. It is argued that today
the definition of these proper elements should in principle be based on nu-
merical analyses, rather than on analytical theories as, e.g., developed by
Brouwer and Clemence [27]. A few numerical experiments indicate, how-
ever, that the results from the two approaches agree quite well.



14 1. Overview of the Work

• Minor planets in resonant motion with Jupiter are studied thereafter. The
Hilda group ((3:2)-resonance) and the (3:1)-resonance are considered in
particular. The Ljapunov characteristic exponent is defined as an excellent
tool to identify chaotic motion. A very simple and practical method for its
establishment (based on the solution of one variational equation associated
with the minor planet’s orbit) is provided in program PLASYS. The tools
of numerical integration of the minor planet’s orbit together with one or
more variational equations associated with it, allow it to study and to illus-
trate the development of the orbital elements of minor planets in resonance
zones. It is fascinating to see that the revolutionary numerical experiments
performed by Jack Wisdom, in the 1980s, using the most advanced com-
puter hardware available at that time, nowadays may be performed with
standard PC (Personal Computer) equipment.

1.3 Part III: Program System

The program system, all the procedures, and all the data files necessary
to install and to use it on PC-platforms or workstations equipped with a
WINDOWS operating system are contained on the CDs accompanying both
volumes of this work. The system consists of eight programs, which will be
briefly characterized below. Detailed program and output descriptions are
available in Part III, consisting of Chapters II- 5 to II- 11.

The program system is operated with the help of a menu-system. Figure 1.1
shows a typical panel – actually the panel after having activated the program
system Celestial Mechanics and then the program PLASYS. The top line of
each panel contains the buttons with the program names and the help-key
offer real-time information when composing a problem.

The names of input- and output-files may be defined or altered in these panels
and input options may be set or changed. By selecting � Next Panel �
(bottom line), the next option/input panel of the same program are activated.
If all options and file definitions are meeting the user’s requirements, the
program is activated by selecting � Save and Run � . For CPU (Central
Processing Unit) intensive programs, the program informs the user about the
remaining estimated CPU-requirements (in %).

The most recent general program output (containing statistical information
concerning the corresponding program run and other characteristics) may be
inspected by pressing the button � Last Output � . With the exception of
LEOKIN all programs allow it to visualize some of the more specific output
files using a specially developed graphical tool compatible with the menu-
system. The output files may of course also be plotted by the program user
with any graphical tool he is acquainted with. All the figures of this book
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Fig. 1.1. Primary menu for program system Celestial Mechanics, PLASYS

illustrating computer output were, e.g., produced with the so-called “gnu”-
graphics package. The gnu-version used here is also contained on the CD. The
programs included in the package “Celestial Mechanics” are (in the sequence
of the top line of Figure 1.1):

1. NUMINT is used in the first place to demonstrate or test the mutual
benefits and/or deficiencies of different methods for numerical integra-
tion. Only two kinds of problems may be addressed, however: either the
motion of a minor planet in the gravitational field of Sun and Jupiter
(where the orbits of the latter two bodies are assumed to be circular) or
the motion of a satellite in the field of an oblate Earth (only the terms
C00 and C20 of the Earth’s potential are assumed to be different from
zero).

The mass of Jupiter or the term C20 may be set to zero (in the respective
program options), in which case a pure two-body problem is solved.

When the orbit of a “minor planet” is integrated, this actually corre-
sponds to a particular solution of the problème restreint. In this program
mode it is also possible to generate the well known surfaces of zero ve-
locity (Hill surfaces), as they are shown in Chapter 4.

2. LINEAR is a test program to demonstrate the power of collocation
methods to solve linear initial- or boundary-value problems. The pro-
gram user may select only a limited number of problems. He may test the
impact of defining the collocation epochs in three different ways (equidis-
tant, in the roots of the Legendre and the Chebyshev polynomials, re-
spectively).

3. SATORB may either be used as a tool to generate satellite ephemerides
(in which case the program user has to specify the initial osculating
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elements), or as an orbit determination tool using either astrometric
positions of satellites or space debris as observations or positions (and
possibly position differences) as pseudo-observations. In the latter case
SATORB is an ideal instrument to determine a purely dynamical or a
reduced-dynamics orbit of a LEO. It may also be used to analyze the
GPS and GLONASS ephemerides routinely produced by the IGS (Inter-
national GPS Service).

The orbit model can be defined by the user, who may, e.g.,

• select the degree and the order for the development of the Earth’s
gravity potential,

• decide whether or not to include relativistic corrections,

• decide whether or not to include the direct gravitational perturbations
due to the Moon and the Sun,

• define the models for drag and radiation pressure, and

• decide whether or not to include the perturbations due to the solid
Earth and ocean tides.

Unnecessary to point out that this program was extensively used to il-
lustrate Chapter II- 3.

When using the program for orbit determination the parameter space
(naturally) contains the initial osculating elements, a user-defined selec-
tion of dynamical parameters, and possibly so-called pseudo-stochastic
pulses (see Chapter 8).

Programs ORBDET and SATORB were used to illustrate the algorithms
presented in Chapter 8.

4. LEOKIN may be used to generate a file with positions and position dif-
ferences of a LEO equipped with a spaceborne GPS-receiver. This output
file is subsequently used by program SATORB for LEO orbit determi-
nation. Apart from the observations in the standard RINEX (Receiver
Independent Exchange Format), the program needs to know the orbit
and clock information stemming from the IGS.

5. ORBDET allows it to determine the (first) orbits of minor planets,
comets, artificial Earth satellites, and space debris from a series of as-
trometric positions. No initial knowledge of the orbit is required, but at
least two observations must lie rather close together in time (time inter-
val between the two observations should be significantly shorter than the
revolution period of the object considered).

The most important perturbations (planetary perturbations in the case of
minor planets and comets, gravitational perturbations due to Moon, Sun,
and oblateness of the Earth (term C20) in the case of satellite motion)
are included in the final step of the orbit determination. ORBDET is the
only interactive program of the entire package.
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The program writes the final estimate of the initial orbital element into
a file, which may in turn be used subsequently to define the approximate
initial orbit, when the same observations are used for orbit determination
in program SATORB.

6. ERDROT offers four principal options:

• It may be used to study Earth rotation, assuming that the geocentric
orbits of Moon and Sun are known. Optionally, the torques exerted by
Moon and Sun may be set to zero.

• It may be used to study the rotation of the Moon, assuming that the
geocentric orbits of Moon and Sun are known. Optionally, the torques
exerted by Earth and Sun may be set to zero.

• The N -body problem Sun, Earth, Moon, plus a selectable list of (other)
planets may be studied and solved.

• The program may be used to study the correlation between the angular
momenta of the solid Earth (as produced by the IGS or its institutions)
and the atmospheric angular momenta as distributed by the IERS
(International Earth Rotation and Reference Systems Service).

This program is extensively used in Chapter II- 2.

7. PLASYS numerically integrates (a subset of) our planetary system
starting either from initial state vectors taken over from the JPL (Jet
Propulsion Laboratory) DE200 (Development Ephemeris 200), or using
the approximation found in [72]. A minor planet with user-defined initial
osculating elements may be included in the integration, as well. In this
case it is also possible to integrate up to six variational equations simul-
taneously with the primary equations pertaining to the minor planet.
Program PLASYS is extensively used in Chapter II- 4.

8. FOURIER is used to spectrally analyze data provided in tabular form
in an input file. The program is named in honour of Jean Baptiste Joseph
Fourier (1768–1830), the pioneer of harmonic analysis. In our treatment
Fourier analysis is considered as a mathematical tool, which should be
generally known. Should this assumption not be (entirely) true, the read-
ers are invited to read the theory provided in Chapter II- 11, where
Fourier analysis is developed starting from the method of least squares.
As a matter of fact it is possible to analyze a data set using

• either the least squares technique – in which case the spacing between
subsequent data points may be arbitrary,

• or the classical Fourier analysis, which is orders of magnitude more
efficient than least squares (but requires equal spacing between obser-
vations), and where all data points are used,

• or FFT (Fast Fourier Transformation), which is in turn orders of mag-
nitude more efficient than the classical Fourier technique, but where
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usually the number of data points should be a power of 2 (otherwise a
loss of data may occur).

In the FFT-mode the program user is invited to define the decomposition
level (maximum power of 2 for the decomposition), which affects the
efficiency, but minimizes (controls) loss of data. The general program
output contains the information concerning the data loss.

The program may very well be used to demonstrate the efficiency ratio of
the three techniques, which should produce identical results. FOURIER
is a pure service program.

The computer programs of Part III are used throughout the two volumes of
our work. It is considered a minimum set (“starter’s kit”) of programs that
should be available to students entering into the field of Astrodynamics, in
particular into one of the applications treated in Part II of this work. The
programs NUMINT, LINEAR, and PLASYS are also excellent tools to study
the methods of numerical integration.



2. Historical Background

Celestial Mechanics deals with the orbital and rotational motion of celes-
tial bodies, e.g., the dynamics of stellar systems, the motion of stars within
galaxies, the dynamics of planetary systems. In this book we focus on the
orbital motion of planets, minor planets, and comets in our solar system, on
the orbital motion of artificial satellites around the Earth, on the orbital and
rotational motion of Earth and Moon, and on the development of the plan-
etary system. In section 2.1 we focus on aspects of the history of Celestial
Mechanics related to the planetary system, in section 2.2 on the same aspects
related to the Earth-near space and to the aspects of the modern realizations
of the celestial and terrestrial reference systems.

2.1 Milestones in the History of Celestial Mechanics
of the Planetary System

We will consider two aspects in this overview: those related to eminent sci-
entists, summarized in Table 2.1, and those related to important discoveries
in the planetary system, summarized in Table 2.3.

The history of Celestial Mechanics should start with the first attempts to
observe and predict the apparent motions of the Moon, the Sun, and the
planets w.r.t. the celestial sphere of fixed stars. Our story, however, begins
in the 16th century with the epoch of Tycho Brahe (1546–1601) and Jo-
hannes Kepler (1571–1630). Towards the end of the 16th century Brahe had
set new standards in astronomical observation techniques. First in Denmark
(1576–1597), then in Prague (1599–1601), he and his collaborators observed
the positions of the planets and the Sun w.r.t. the zodiacal stars with an
accuracy of about 1–2 arcminutes (′). Loosely speaking, the position of a
celestial body is the direction from the observer to the observed object at a
certain observation epoch. The astronomical position is characterized by a
unit vector (which in turn may be specified by two angles) and the corre-
sponding observation time. The accuracy achieved by Brahe was one of the
best in the pre-telescope era, close to the best that could be obtained with
only mechanical observation techniques.
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In view of the accuracy of the position measurements, the observation epoch
had to be accurate to a few seconds of time. The best time scale then available
was given by the Earth’s rotation (sidereal or solar time), defined in turn by
observations of the stars and the sun. This is why Brahe also needed to
observe stars in his comprehensive observation program. For interpolation
of time, mechanical clocks with an accuracy of few seconds over, let us say,
one day already were available. These few remarks show that Brahe did not
only “observe a few planets”, but that he and his team accomplished a rather
comprehensive observational survey in astronomy towards the end of the 16th
century, lasting for a time period of about a quarter of a century. Brahe’s
program should be compared with current international observation programs
in astronomy, organized, e.g., by the IERS (International Earth Rotation and
Reference Systems Service). Brahe’s main result was a very consistent, long,
and complete set of positions for the sun and the planets.

Around 1600 Kepler was Landschaftsmathematiker (state surveyor) in Graz.
His inclination towards astronomy was documented by his work Mysterium
cosmographicum, where he tried to relate the radii of the classical planets to
the five regular polyhedra. Although Brahe was not so impressed by Kepler’s
work he invited Kepler as a co-worker to Prague. Tycho certainly hoped that
Kepler would help him to further develop his own model of the planetary
system, a mixture of the systems due to Nicholas Copernicus (1473–1543)
and Claudius Ptolemaeus (ca. 100–170). Kepler had different ideas, however.
We know from history that Kepler tried to find a physical law governing the
planetary motions. He used the law of areas and introduced ellipse-shaped
orbits to reduce the calculations when processing Tycho’s time series of the
positions of the sun and of the planet Mars. The steps eventually leading
to the so-called Kepler’s first two laws are documented in the Astronomia
nova (which appeared in 1609) and in the correspondence between Kepler
and his teacher Michael Mästlin (1550–1631) as well as Kepler’s “rival” Lon-
gomontanus (1562–1647). However, the first two ”laws” may not be found in
the Astronomia nova because Kepler failed to confirm them by theory and
observation. The third law was published only in the Harmonice mundi of
1619.

Let us include Kepler’s laws in modern language:

1. The orbit of each planet around the sun is an ellipse with the Sun at one
of its foci.

2. Each planet revolves so that the line joining it to the Sun sweeps out
equal areas in equal (intervals of) time. (Law of areas).

3. The periods of any two planets are proportional to the 3/2 powers of
their mean distances from the sun.

The first law implies that planetary motion is taking place in orbital planes,
characterized, e.g., by two angles (in the planetary system, e.g., Ω the eclip-
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Table 2.1. Highlights in the history of Celestial Mechanics

Name Year Event

T. Brahe 1600 Long and accurate (about 1–2 arcmin) time series
of observations of planets and sun

J. Kepler 1609 Astronomia nova published
I. Newton 1687 Publication of the Philosophiae naturalis prin-

cipia mathematica
L. Euler 1749 Modern version of eqns. of motion published in

Recherches sur le mouvement des corps célestes
en général

J. L. Lagrange 1779 Introduction of perturbing function
P. S. Laplace 1798 Traité de mécanique céleste published
C. F. Gauss 1801 Orbit determination for planetoid Ceres
U. J. J. Leverrier 1846 Analysis of perturbation of Uranus leads to detec-

tion of Neptune
G. W. Hill 1878 Researches in the lunar theory. Periodic varia-

tional orbit for Moon, establishment of Hill’s eqns.
of motion, etc.

F. Tissérand 1889 Traité de mécanique céleste contains, e.g., crite-
rion on identity of comets

H. Poincaré 1889 The work Sur le problème des trois corps et les
équations de dynamique wins the price of the
Swedish king

1892 Les méthodes nouvelles de la mécanique céleste
initiates the research on dynamical systems

S. Newcomb 1900 Basis for production of ephemerides (almanacs) in
planetary system

A. Einstein 1915 Theory of General Relativity as new fundament
of Celestial Mechanics

K. Hirayama 1918 Discussion of families of minor planets
A. N. Kolmogorov, 1963 Not all series developments of three body problem
V. Arnold, J. Moser are diverging
J. Wisdom 1987 In-depth analysis of chaotic movement in plane-

tary system
A. E. Roy 1988 Project Longstop, integration of planetary system

over 100 million years

tical longitude of the ascending node, and the inclination i with respect to
the ecliptic). The first law furthermore implies that there must be a point
of closest approach to the sun, the so-called perihelion, characterized by the
angle ω, the argument of perigee (angle between ascending node and perigee).
Size and shape of the ellipse are defined by the semi-major axis a and the
eccentricity e. If we add the time T0 of perihelion passage (or simply time of
perihelion) to these five geometrical elements we obtain a set of six orbital
elements a, e, i, Ω, ω, and T0, which we still use today to characterize the
orbits of celestial bodies. These orbital elements are illustrated in Figure 2.1.
Cum grano salis we may say that we owe Kepler the orbit parametrization
still in use today. We know that Kepler’s laws are only correct for the “pure”
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Fig. 2.1. Keplerian elements

two-body problem, i.e., in the absence of perturbing forces due to other plan-
ets. It is always possible, however, to view a trajectory as a time evolution of
the orbital elements mentioned.

The law of areas, illustrated in Figure 2.2, implies that the velocity of a
planet near perihelion exceeds that near aphelion. The law of areas is used to
compute the true anomaly v (the angle between the direction to the perihelion
and the current position, as seen from the Sun) as a function of time (see
Chapter 3). Kepler’s first two laws allow it to compute position and velocity
of a celestial body at any given instant of time t. Kepler’s laws therefore allow
it to calculate the ephemerides of the planets in a very simple way.
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Fig. 2.2. Kepler’s law of areas
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In 1687 Sir Isaac Newton (1643–1727) published his Philosophiae naturalis
principia mathematica. Newton’s famous work [83] contains the fundaments
of mechanics as they were understood in the 17th century. Because of their
tremendous impact on the development of physics in general and Celestial
Mechanics in particular we quote some of the important definitions in Table
2.2 using the recent English translation by Cohen and Whitman [84].

The chapter Definitiones (Definitions) deals with questions like what is mat-
ter?; what is linear momentum (as we call it today)?; what is a force?; what
is absolute time?; what is absolute space? The second chapter Axiomata sive
Leges motus (Axioms, the Laws of Motion) develops the fundaments of dy-
namics. Three so-called Books follow this introductory part. The first two
are entitled De motu corporum (about the motion of bodies), the third De
mundi systemate (about the system of the world). The quotes in Table 2.2
stem from the introduction and this third Book, which develops the law of
universal gravitation. The first definition in principle declares mass as the
product of volume and density, the second the (linear) momentum as the
product of mass and velocity in “absolute space”. The third defines the in-
ertia of a body, and the fourth introduces the concept of force as the only
reason for a body to change its state of motion. It is interesting that New-
ton discusses space, time, “place”, and motion only after these definitions
(which already require an understanding of these notions) in a section called
scholium. Reading the second law, we immediately recognize the equations
of motion. Newton’s wording is even general enough to derive from this law
the equation of motion of a rocket (with variable mass). This understanding,
however, does not reflect the historical truth. The equations of motion, as
we still use them today, are due to Leonhard Euler (1707–1783), who stated
them in the form still used today in his work Recherches sur le mouvement
des corps célestes en général published in 1749 (see Figure 2.3), more than
sixty years after the publication of Newton’s Principia. In 1750 he recognized
that these equations are valid for any mass element and thus define a “new”
mechanical principle [34]. Book 3 of Newton’s Principia, De mundi system-

Fig. 2.3. The equations of motion in Euler’s work of 1749
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Table 2.2. Quotes from Newton’s Principia

Part Statement

Definitions Def. 1: Quantity of matter is a measure of matter that arises from
its density and its volume jointly.
Def. 2: Quantity of motion is a measure of motion that arises
from the velocity and the quantity of matter jointly.
Def. 3: Inherent force of matter is the power of resisting by which
every body, so far as it is able, perseveres in its state either of
resting or of moving uniformly straight forward.
Def. 4: Impressed force is the action exerted on a body to change
its state either of resting or of moving uniformly straight forward.

Scholium 1: Absolute, true, and mathematical time, in and of itself and
of its own nature, without reference to anything external, flows
uniformly and by another name is called duration. . . .
2: Absolute space, of its own nature and without reference to
anything external, always remains homogeneous and immovable.
. . .
3: Place is the part of space that a body occupies, . . .
4: Absolute motion is the change of position of a body from one
absolute place to another; . . .

Axioms Law 1: Every body perseveres in its state of being at rest or of
moving uniformly straight forward, except insofar as it is com-
pelled to change its state by forces impressed.
Law 2: A change in motion is proportional to the motive force
impressed and takes place along the straight line in which that
force is impressed.
Law 3: To any action there is always an opposite and equal reac-
tion; in other words, the actions of two bodies upon each other
are always equal and always opposite in direction.
Corollary 1: A body acted on by [two] forces acting jointly de-
scribes the diagonal of a parallelogram in the same time in which
it would describe the sides if the forces were acting separately.

Book 3 Theorem 7: Gravity exists in all bodies universally and is propor-
tional to the quantity of matter in each.
Theorem 8: If two globes gravitate toward each other, and their
matter is homogeneous on all sides in regions that are equally
distant from their centers, then the weight of either globe towards
the other will be inversely as the square of the distance between
the centers.

ate, deals almost uniquely with the law of universal gravitation. After giving
rules for professional work in natural philosophy (which still should be ob-
served today), he states in a chapter called phenomena that the orbits of the
satellites of Jupiter and Saturn in their orbit around their planets, the orbits
of the five (classical) planets and that of the Earth around the Sun, and the
orbit of the Moon around the Earth are all in agreement with Kepler’s laws of
planetary motion (after suitable generalization). In the chapter propositions
Newton postulates (and proves these propositions making use of results from
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Books 1 and 2) that the force responsible for all the above mentioned orbital
motions is universal gravitation. He then concludes that the theorems 7 and
8 in Table 2.2 must hold. In mathematical terms, the law of gravitation states
that two bodies (of the type specified in theorem 8) separated by a distance
r attract each other by a force

f = G
m M

r2
e , (2.1)

where G is the gravitational constant, m and M are the masses of the two
bodies, and e is the unit vector from the attracted to the attracting body.
Experts in the field claim that Robert Hooke (1635–1702) initially played a
central role in the development of the law of gravitation, particularly by rec-
ognizing the importance of centripetal forces and by the idea of decomposing
the orbital trajectory into a tangential and a radial component, which points
to the “attractive” central body, and by explaining the change of the tan-
gential component by “pulses” (instantaneous velocity changes) in the radial
direction. It was, however, Newton’s achievement to explain Kepler’s laws
(more or less rigorously) by an inverse-square-law (the so-called direct and
inverse problem), to recognize gravitation as a property of matter, and thus
to postulate the universal law of gravitation.

Newton’s discussion in Book 3 of the Principia is much more general than
what is reflected in Table 2.2. He states, e.g., that the gravitational attraction
on a body exerted by an arbitrary mass distribution may be computed as the
superposition of the gravitational attractions of the mass elements of the mass
distribution. We will use this principle in Section 3.3 to derive the equations
of motion for the three-body problem Earth-Moon-Sun.

Perturbation theory is an essential instrument in Celestial Mechanics of the
planetary system. We make use of the fact that the motion in the ellipse is a
good approximation of the actual motion. Loosely speaking, we may deal only
with the difference “solution of the actual problem minus the corresponding
elliptical solution”. This difference may be rendered zero at one particular
epoch and it is small in absolute value in the vicinity of this epoch. The
goal of analytical perturbation theory is the approximative solution of the
equations of motion in terms of known base functions (usually trigonometric
series) which may be easily integrated.

Euler, Alexis-Claude Clairaut (1713–1765), Jean Le Rond d’Alembert (1717–
1783), and Joseph Louis de Lagrange (1736–1813), were pioneers of perturba-
tion theory. The introduction of the (scalar) perturbation function, e.g., is due
to Lagrange. In his Méchanique analitique (1788) we find an encompassing
compilation of analytical methods (the keywords being Lagrange brackets,
Lagrangian perturbation equations). Pierre Simon de Laplace (1749–1827)
was an accomplished master of Celestial Mechanics. He left behind the five
volumes of his Traité de mécanique céleste. He seems to have introduced the
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notion mécanique céleste, Celestial Mechanics. Using his methods of pertur-
bation theory he was able to explain the observed, seemingly secular pertur-
bations of Jupiter and Saturn (great inequality). His success in explaining
this and other delicate phenomena in the solar system probably led him to
his belief of predictability of all phenomena (not only in the planetary sys-
tem) over arbitrary time spans, provided the initial state of the system was
known with sufficient accuracy. In this context we still speak of the Lapla-
cian demon. Laplace was convinced of the stability of the solar system and
he thought that he had proved this statement. His conclusions were, however,
based on a rather uncritical use of series expansions.

Urbain Jean Joseph Leverrier (1811–1877) and later on Henri Poincaré (1854–
1912) had serious doubts concerning the stability of the planetary system, or,
to be more precise, concerning the validity of the proofs due to Laplace. With
the advancement of mathematical analysis and with the improvement of the
methods of analytical mechanics it became possible to show that some of the
series expansions which were previously thought to be convergent actually
were not. Poincaré showed that even in the restricted three-body problem
(see below) there were cases, where two orbits which are infinitesimally close
at a time t0 will deviate from each other exponentially as a function of time.
This is exactly what we understand today by the term deterministic chaos.
Poincaré is the father of the theory of dynamical systems. His Méthodes
nouvelles de la mécanique céleste are worth to be red even today. With the
new English edition [86] it is possible to fully appreciate his contribution to
Celestial Mechanics in particular and to the analysis of dynamical systems
in general. The three volumes entitled Integral invariants and asymptotic
properties of certain solutions, Approximations by series, and Periodic and
asymptotic solutions demonstrate his interests quite well. For relaxation and
entertainment we also refer to [85] in this context.

The circumstance that the so-called two-body problem has simple “analytic”
solutions but that the general three-body problem cannot be solved in closed
form led to many attempts to reduce the latter problem in such a way that
an analytical solution becomes feasible. The problema restrictum was studied
for the first time by Euler in 1766, then by Lagrange as problème restreint.
The well known five stationary solutions of the restricted problem are partly
due to Euler and to Lagrange. George William Hill (1838–1914) developed
his lunar theory by studying the actual motion relative to a periodic solution
of the three-body problem Earth-Moon-Sun. It is ironical that Poincaré, who
wanted to prove the stability of the restricted problem by representing an
actual orbit as infinitesimally close to a suitable periodic solution (which is
stable by definition), found that for some of the resonant motions the opposite
was true. It often happens that a problem, which is simplified in the attempt
to find simple approximations, is no longer strongly related to the original
problem. The (restricted) three-body problem, however, proved to be most
stimulating for the advancement of Celestial Mechanics.
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The analytical methods of perturbation theory were of greatest importance
and impact for practical work in astronomy, in particular for the production
of the ephemerides in the solar system. The Nautical Almanac and Astro-
nomical Ephemeris, predecessor of today’s Astronomical Almanac, and the
The American Ephemeris and Nautical Almanac (see [107]), were based on
Simon Newcomb’s (1835–1909) Tables of Sun, Moon and Planets. Today, the
ephemerides are based on the technique of numerical integration (see [107]).

Perturbation theory has already brought us deeply into the 20th century.
Let us return now to the 18th century to comment some of the exciting
discoveries in the planetary system since the invention of the telescope. Some
of the highlights are given in Table 2.3.

On March 13, 1781 Uranus, the seventh planet of our solar system, was
discovered by John Frederick William Herschel (1738–1822). Herschel never
agreed that he discovered Uranus by chance, but that he owed this success
to his systematic survey of the skies. This is of course true, but it is also
true that Herschel’s motivation for his systematic optical survey was not
the search for planets. The discovery of Uranus must have been an epoch-

Table 2.3. Discoveries in the planetary system

Year Discovery

1781 Uranus by Herschel
1801 First minor planet, Ceres, by Piazzi
1846 Neptune by Galle, based on predictions by Leverrier (and

Adams)
1930 Pluto by Clyde William Tombaugh (1906–1997) at Lowell Ob-

servatory
1977 Chiron, first minor planet with aphelion far beyond Jupiter

(Kuiper belt), discovered by Kowal

making event in the 18th century. At once, the “god-given” number of the
six classical planets Mercury, Venus, Earth, Mars, Jupiter and Saturn had
changed. Strangely enough, the semi-major axis of Uranus’ orbit seemingly
confirmed the empirical rule set up by Johann Daniel Titius (1747–1826) in
1766 relating the semi-major axes of the planetary orbits by a geometrical
series (today written as):

a = 0.4 + 0.3 · 2n AU , n = −∞, 0, 1, 2, . . . .

Johann Elert Bode (1729–1796) was making this rule publicly known in 1772.
It is a bit strange that there are no numbers between −∞ and 0 in this rule,
but Table 2.4 illustrates how well the rule holds in the planetary system.
We should keep in mind that the rule was set up prior to the discovery
of Uranus, which was interpreted as a strong evidence that this rule was
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a new law of nature which had to be explained by the scientists! It was
troubling that, according to this rule, there was no planet between Mars and
Jupiter corresponding to a semi-major axis of a ≈ 2.7 AU. The belief in the

Table 2.4. Titius-Bode rule

Planet True axis a Axis a Rev. Period
[ AU ] Titius-Bode [ AU ] [ Years ]

Mercury 0.39 0.40 0.24
Venus 0.72 0.70 0.62
Earth 1.00 1.00 1.00
Mars 1.52 1.60 1.88
Minor Planets ∼ 2.7 2.8 ∼ 4.44
Jupiter 5.20 5.2 11.86
Saturn 9.54 10.0 29.46
Uranus 19.19 19.6 84.02
Neptune 30.06 — 164.79
Pluto 39.53 38.8 249.17

Titius-Bode law was so strong that a coordinated search in Germany for the
new planet between Mars and Jupiter was initiated. The organized search
for it was not successful. On the other hand, Giuseppe Piazzi (1746–1826)
discovered a faint new planet in the evening of the New Year’s day 1801 –
a perfect way for an astronomer to commence a new century. Ceres, as the
new “planet” was called, proved to be the biggest object in a long series of
minor planets discovered in the following years. Piazzi could observe Ceres
only 19 times in January and early February 1801 during a period of 42 days
following the discovery. The time period of about 40 days is rather short when
compared to the revolution period of the planet of about four years. There
was a certain danger that the newly discovered planet would again be lost
“forever”. In 1801 there were no methods available allowing it to derive the
orbital elements of a celestial object in the solar system from a short time
series of direction observations.

The discovery of Ceres in 1801 and of other minor planets soon thereafter ini-
tiated a new branch in Celestial Mechanics, that of first orbit determination.
Two scientists have to be mentioned in this context, namely the famous Ger-
man mathematician Carl Friedrich Gauss (1777–1855) (see Table 2.1) and
the French specialist in Celestial Mechanics, Laplace (see also Table 2.1).
Their concepts of so-called first orbit determination both are most attractive
from the mathematical point of view and they are quite different in nature.
We will address the topic of first orbit determination in detail in Chapter 8.

The algorithm provided by Gauss proved to be very robust and most suc-
cessful; it was used by many generations of astronomers and it is still used
in modified form in the computer age. Gauss became famous in the greater
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scientific community (also) thanks to his successful orbit determination for
Ceres, which allowed a safe re-discovery of the celestial body on December
7, 1801. It was impressive that the semi-major axis a ≈ 2.77 AU of its orbit
did fit quite well into the Titius-Bode scheme in Table 2.4.

The next important event in Table 2.3 is the discovery of Neptune by Johann
Gottfried Galle (1812–1910) in 1846 in Berlin. This discovery was a triumph
of perturbation theory. In the first half of the 19th century the experts in
the field became aware of (periodic) orbit perturbations of Uranus that could
not be explained by the gravitational perturbations from the known planets.
Leverrier and independently John Cough Adams (1819–1892) tried to explain
the perturbations by a new outer planet. The inverse task of perturbation
theory (determination of orbit and mass of a perturbing body based on the
orbital behavior of a known planet) is a most delicate problem. It cannot be
addressed without adopting simplifying assumptions (e.g., circular orbit of
perturbing body with known semi-major axis, which are then iteratively im-
proved). It is interesting and convincing that both, the analyses by Leverrier
and Adams, led to similar results. Based on the computation by Leverrier
Galle found the new planet, subsequently called Neptune, only 4′ away from
the predicted position.

Leverrier wanted to repeat his success. By a very careful application of pertur-
bation theory, taking into account the perturbing effects of all known planets
he convincingly proved that about 43′′ per century of the secular perihelion
motion of Mercury could not be explained. This part of Leverrier’s work is a
masterpiece. Less convincing is the second half of the story: Leverrier tried
to explain this effect by a planet called Volcano with an orbit inside that
of Mercury. To make a long story short: Table 2.3 documents that Volcano
was never discovered. Other attempts to explain the excess of rotation of
Mercury’s perihelion (which was undoubtedly real), e.g., by a ring of dust
around the Sun, also failed. Long after the establishment of Mercury’s excess
perihelion motion Albert Einstein’s (1879–1955) general theory of relativity
eventually explained the phenomenon – ironically enough as a consequence
of gravitation (in the framework of general relativity), an explanation which
was ruled out as a possible explanation by most experts early in the 20st

century. The story is exciting and it is well documented in [91].

Let us once more address the second event in Table 2.3. Shortly after the
discovery of Ceres other minor planets were discovered, in particular Pallas
in 1802, Juno in 1804, and Vesta in 1807. By 1850 about 150 minor planets or
planetoids were known. Today, for more than 10000 of these objects excellent
orbit information is available, e.g., through the MPC (Minor Planet Center)
in Cambridge, USA, of the IAU (International Astronomical Union). The use
of photography, and later on in the 20th century the use of CCD (Charge
Coupled Devices), rendered the discovery of fainter and fainter objects much
easier. Today, thousands of new minor planets are discovered every month.
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A histogram of the semi-major axes or the corresponding revolution periods
reveals that the distribution between Mars and Jupiter is far from regular.
There are maxima and gaps which cannot be explained by natural fluctu-
ations. Based on a relatively modest sample of about fifty planets Daniel
Kirkwood (1814–1895) was the first to describe such gaps in the last century,
which is why they are called today Kirkwood gaps. Because many gaps and
maxima correspond to orbits for which the fraction of the revolution periods
of Jupiter and minor planets is a ratio of small integer numbers, it is fair to
guess that the observed histogram may be explained by gravity alone. Strong
evidence emerges from numerical experiments as performed, e.g., by Jack
Wisdom [131], that Newtonian mechanics, combined with considerations of
the probabilities of encounters are sufficient to explain the gaps.

Is there more to say concerning the structure of the population of minor plan-
ets? At the beginning of the 20th century Kiyotsugu Hirayama (1874–1943)
showed that there are families of minor planets with similar orbit charac-
teristics (semi-major axis, eccentricity, inclination), which might have been
created by fragmentation from one proto-planetoid.

Fast electronic computers are essential tools for modern research addressing
the structure and evolution of the planetary system. They allow it to study
the evolution of the entire planetary system (including minor planets) over
millions of years. We will again address this topic in Chapter II- 4. Let us
mention that progress was also made in the theoretical domain. In the second
half of the century (see Table 2.1) it was possible to demonstrate in the
framework of the KAM theory (Kolmogoroff, Arnold, Moser) that some series
developments in Celestial Mechanics are convergent after all. Such results are
of considerable importance for the stability of the planetary system.

In the night of 18–19 October 1977 Charles T. Kowal discovered Chiron, the
first minor planet between Saturn and Uranus, using the Schmidt Camera
of Palomar Observatory (see Table 2.3). Chiron has a very interesting orbit
lying almost entirely between Saturn and Uranus, with close encounters with
the two planets making a long-time prediction of its orbit a delicate issue.
The discovery seemed to indicate that minor planets are not confined to the
region between Mars and Jupiter, but that they are common in the outer
planetary system as well. More than 100 of these objects in the so-called
Kuiper belt, named after Gerard Peter Kuiper (1905–1973), were discovered
up to now.
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2.2 The Advent of Space Geodesy1

The Earth has one natural satellite, namely the Moon, and hundreds of ar-
tificial satellites. In view of the fact that the first artificial Earth satellite,
Sputnik-I, was only launched on October 4 of the International Geophysical
Year 1957 this statement is quite amazing.

The Moon is of particular interest in Celestial Mechanics. Due to its closeness
to the optical astronomical observatories on the surface of the Earth, not only
its orbital motion may be studied with great accuracy, but also its rotational
motion. The study of the orbital motion of the Moon led to the detection of
irregularities in the time scales related to the rotation of the Earth and, as
a consequence in the 1960s, to the introduction of ephemeris time as a more
uniform absolute Newtonian time based on the orbital motion of the Moon
(and of the planets). After the deployment of retro-reflectors on the surface of
the Moon in the second half of the 20th century, LLR (Lunar Laser Ranging)
allowed it to monitor the orbital (and rotational) motion of the Moon with
the unprecedented accuracy of (few) cms. Due to the excellent observability
and due to the Moon’s almost perfect insensitivity w.r.t. non-gravitational
forces (see Table II- 3.4 in Chapter II- 3), the orbit of the Moon proved to be
an ideal test object for the theory of general relativity (more details will be
provided in Chapter 3).

The three-body problem Earth-Moon-Sun is probably the best studied real
three-body problem in Celestial Mechanics : A profound analysis not only
gives insight into the orbital motion of the three bodies, but also into the
rotation of both, the Earth and the Moon. The equations of motion for this
problem, considering Earth and Moon as finite bodies, are set up in Chapter
3.3, the rotational motion of Earth and Moon is studied in considerable detail
in Chapter II- 2.

Definitions and Principles of Space Geodesy. Geodesy studies the size
and the figure of the Earth including the determination of the Earth’s gravity
field. Geodetic astronomy is that part of astronomy dealing with the definition
and realization of a terrestrial and a celestial reference frame. Space geodesy
addresses those aspects of geodesy and geodetic astronomy which are studied
by using natural or artificial celestial bodies as observed objects or as observ-
ing platforms. In the older literature the term Cosmic geodesy is sometimes
used as a synonym. Space geodesy is thus defined through the observation
techniques, also referred to as space geodetic techniques (methods).

Space geodesy evolved rapidly in the second half of the twentieth century. In
the space age it became possible to deploy and use artificial satellites either
to study size and figure of the Earth from space or to observe them as targets
1 based on the contribution Space geodesy by the author to the Encyclopedia of

Astronomy [79]
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from the surface of the Earth. The use of artificial Earth satellites for geodetic
purposes is also referred to as satellite geodesy. The second essential develop-
ment consists of the VLBI (Very Long Baseline Interferometry) technique as
a new tool to realize an extraordinarily accurate and inertial reference system
(called inertial reference frame) and to monitor Earth rotation using Quasars
(Quasistellar Radio Sources).

Today, space geodetic techniques are the primary tools to study size, figure
and deformation of the Earth, and its motion as a finite body w.r.t. the
inertial reference system. Space geodetic techniques thus are the fundamental
tools for geodesy, geodetic astronomy, and geodynamics.

Each space geodetic observation contains information about the position (and
motion) of the observed object and the observer. Therefore, these observa-
tions also contain information concerning the transformation between the
terrestrial and the inertial systems. The Earth orientation parameters, i.e.,
polar motion, UT1 (the time determined by the rotating Earth), precession
and nutation define this transformation.

The Role of the Earth’s Atmosphere. The signals of the observed or
observing celestial bodies have to travel through the Earth’s atmosphere.
This changes the paths and the travel times of the signals. These effects are
referred to as refraction effects. Refraction is usually considered a nuisance
in astronomy, geodesy and geodynamics. In recent years refraction effects are
more and more understood as a primary source of information for atmosphere
science and are systematically monitored by space geodetic methods.

Whether the atmosphere related signal is useful depends on the wavelengths
of the analyzed signals. If we measure, e.g., distances or distance differences
to satellites using optical signals, refraction effects may be computed with
sub-centimeter accuracy using pressure, temperature and humidity registra-
tions at the observing sites. This implies that Laser ranging is not very useful
for atmosphere monitoring. This fact may, however, also be formulated posi-
tively: Laser observations are well suited for calibrating other space geodetic
techniques, which are more prone to atmospheric effects.

For microwave techniques like the Doppler systems, the GPS (Global Posi-
tioning System), the VLBI, one has to distinguish between ionospheric re-
fraction stemming from the ionized upper part of the atmosphere (extend-
ing up to about 1500 km) and tropospheric refraction, stemming from the
lower, neutral layers of the atmosphere. Ionospheric refraction is wavelength-
dependent and may be (almost completely) eliminated if coherent signals are
sent through the atmosphere on different carrier wavelengths. In the VLBI
technique this is achieved by observing the Quasars in different wavelengths,
in the Doppler- or GPS-technique the same is achieved by using two different
wavelengths for signal transmission.

For microwave techniques tropospheric refraction is the ultimate accuracy-
limiting component in the error budget. As opposed to range observations in
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the optical band, we have to take into account the so-called wet component of
tropospheric refraction, which is highly variable in time and space. This fact
forces analysts using microwave observations to introduce station and time
specific parameters (or to model the effect as a random process). It allows,
on the other hand, the determination of the so-called total precipitable water
vapor content above an observatory with high accuracy and high temporal
resolution.

The Optical Period. For centuries optical observations were the only ob-
servation type available in astronomy. In the pre-space era a series of astro-
metric instruments was used for the purpose of defining a terrestrial reference
frame and for monitoring Earth rotation. The photographic zenith tube and
the Danjon astrolabe were the most advanced of these instruments. They
were used by the observatories contributing first to the ILS (International
Latitude Service), then to the IPMS (International Polar Motion Service)
and the BIH (Bureau International de l’Heure) to determine the geographic
latitude of a station with a precision of about 10–40 mas (milliarcseconds) in
one night. We refer to [76] for more information.

The first generation of artificial Earth satellites, like Sputnik 2 and Explorer
1, was observed with optical techniques. The balloon satellites Echo 1 and 2
and PAGEOS (PAssive GEOdetic Satellite) (which could even be seen “by
naked eye”) were observed by a worldwide optical tracking network. These
satellites were (supposedly) spherical, consisted of layers of aluminized mylar
foil. Thanks to their brightness, their tracks could easily be photographed
against the star background. It was not trivial to assign time-tags to specific
points of the track. Much better suited from this point of view, although more
difficult to track, were smaller satellites like Geos 1 (Explorer 29) and Geos
2 (Explorer 36) equipped with flash lamps allowing for tens of thousands
of high-precision optical observations. Obviously, the quasi-simultaneity of
observations from different sites was easily achievable.

Fascinating results came out of this first phase of satellite geodesy. The geode-
tic networks on different continents could be related to the geocenter (and
thus to each other) with an accuracy of about 5 meters. First reliable coeffi-
cients of the gravity field (spherical expansion up to degree and order 12–15)
could be also derived.

The classical astrometric technique, i.e., the establishment of the directions
from an observatory to celestial objects, was applied in the 1960s and 1970s
to artificial satellites and had serious deficiencies. At that time the star cat-
alogues were not of sufficiently good quality and the reduction time (time
interval between observation and availability of results) was of the order of
a few weeks in the best case. This aspect and the advent of new observation
techniques promising higher accuracy ruled out the astrometric technique for
a number of important applications. The optical technique no longer played
a significant role in space geodesy after about 1975.
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In view of newly developed observation techniques, e.g., CCD, and much
better star catalogues based on astrometry missions (e.g., the HIPPARCOS
(HIgh Precision PARallax COllecting Satellite) mission, named in honour of
the ancient Greek astronomer Hipparchus (ca. 190–125 B.C.)), the optical
observations are likely to play a more prominent role in space geodesy in the
near future. Additional evidence supporting this statement will be provided
in Chapter 8.

The Doppler Period. The NNSS (U.S. Navy Navigation Satellite System),
also called TRANSIT system (after the survey transit instrument), had a sig-
nificant impact on the development of space geodesy. It proved that a system
based on the measurement of the Doppler shift of a signal generated by a sta-
ble oscillator on board of a satellite could be used for relative positioning with
remarkably high accuracies (0.1–0.5 m relative, about 1 m geocentric). The
satellites sent information on two carrier frequencies (400 MHz and 150 MHz)
near the microwave band.

The two frequencies allowed for a compensation of ionospheric refraction.
Rather small receivers connected to omni-directional antennas made the tech-
nique well suited to establish regional and global geodetic networks. Obser-
vation periods of a few days were required to obtain the above mentioned
accuracy.

The NNSS satellites were in polar, almost circular, orbits about 1100 km
above the Earth’s surface. Only one satellite could be observed by one receiver
at a particular epoch. As opposed to astrometry the Doppler measurement
technique is weather-independent. Until a significant part of the GPS was
deployed (around 1990) the NNSS played a significant role in space geodesy.
Many Doppler campaigns were organized to establish local, regional or global
networks. With the full deployment of the GPS in the 1990s the geodetic
community eventually lost interest in the Doppler system. The Transit system
was shut down as a positioning system in December 1996 but continued
operating as an ionospheric monitoring tool. For more information concerning
the Doppler system we refer to [64].

Satellite and Lunar Laser Ranging (SLR and LLR). The Laser (Light
Amplification through Stimulated Emission of Radiation) technique, devel-
oped in the 1950s, is capable of generating highly energetic short light pulses
(of a few tens of picoseconds (ps) (1 ps = 10−12 s)). These pulses are sent
out using a conventional astronomical telescope, travel to the satellite (arti-
ficial or the Moon), are reflected by special corner cubes (comparable to the
rear reflectors of bicycles) on the satellite (artificial or natural) back to the
telescope, where they are detected.

The actual measurement is the travel time ∆t of the Laser pulse from the
telescope to the satellite and back to the telescope. Apart from refraction
this light travel time, after multiplication with the speed of light c in vac-
uum, equals twice the distance ρs

r between satellite and telescope at the time
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the light pulse is reflected from the satellite ρs
r ≈ ∆t · c/2 (the observation

equations are developed in more detail in Chapter 8). Today’s SLR (Satellite
Laser Ranging) technique is used to determine the distances between obser-
vatories and satellites with an accuracy of a few millimeters and, if required,
with a high repetition rate (several times per second).

SLR techniques may be used for every satellite equipped with corner cubes.
Figure 2.4 shows LAGEOS (LAser GEOdetic Satellite) II, a typical SLR-
dedicated satellite, which was launched in 1992. Lageos II is a spherical
satellite with a diameter of 0.6 m and a weight of 405 kg. 426 corner cubes
are inlaid in its surface. Lageos II is a close relative of Lageos I, which was
launched in 1976. The two Lageos satellites are in stable, almost circular
orbits about 6000 km above the surface of the Earth.

The two Lageos satellites are primary scientific tracking targets for the ILRS
(International Laser Ranging Service). The two satellites have contributed
in a significant way to the determination of the Earth’s gravity field. Many
more targets are regularly observed by the ILRS. Some of them, like the
French low orbiting satellite Starlette, with a diameter of 24 cm, are similar in
design to the Lageos satellites and serve a similar purpose. For other satellites
the SLR technique is just the primary or backup technique for precise orbit
determination.

Fig. 2.4. The Lageos 2 spacecraft

With the exception of UT1 (Universal Time, defined by Earth rotation), the
SLR technique is capable of determining all parameters of geodetic interest
(station coordinates and motion, Earth rotation parameters, gravity field).
The unique and most valuable contributions lie in the determination of the
Earth’s (variable) gravity field, in the determination of the geocenter (i.e.,
the location of the polyhedron formed by connecting the SLR stations with
respect to the geocenter), and in calibrating geodetic microwave techniques.

From the technical point of view there is no principal difference between SLR
and LLR (Lunar Laser Ranging): Light travel times are measured from the
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observatory to one of the laser reflectors deployed on the Moon by the Apollo
space missions or the Russian unmanned Lunokhod missions. The scientific
impact of LLR is significant. LLR was, e.g., capable of measuring directly
the secular increase of the Earth-Moon distance (3.8 cm per year), an effect
which is in turn coupled with the deceleration of the angular velocity of Earth
rotation. Also, LLR is well suited to evaluate gravitational theories.

Very Long Baseline Interferometry. Today, VLBI is the only non-
satellite geodetic technique contributing data to the IERS. The principles
of the technique are briefly outlined in Chapter II- 2.

Its unique and fundamental contribution to geodesy and astronomy consists
of the realization of the inertial reference system and in the maintenance
of the long-term stability of the transformation between the celestial and
terrestrial reference frame.

The ICRS (International Celestial Reference System) and the ICRF (Inter-
national Celestial Reference Frame), the realization of the ICRS, are defined
and maintained by the IERS [4]. It was adopted by the IAU as the primary
celestial reference system replacing the optical predecessors.

An accurate and stable celestial reference frame is a prerequisite for the estab-
lishment of a terrestrial reference frame. In this sense VLBI plays a decisive
role for the definition and maintenance of the terrestrial reference frame, as
well, and for establishing the transformation between the two frames. VLBI
is the only technique providing the difference UT1–UTC (where UTC (Uni-
versal Time, derived from atomic clocks)) with state-of-the-art accuracy and
excellent long-term stability. Also, VLBI is the only technique capable of
determining precession and nutation, defining the position of the Earth’s
rotation axis in the inertial system, with an angular resolution below the
mas-level.

The observation and analysis aspects are today coordinated by the IVS (In-
ternational VLBI Service for Astrometry and Geodesy) (see Table 2.5).

The Global Positioning System (GPS). Today, the GPS is the best
known of the space geodetic techniques. The system has a deep impact on
science and on society reaching far beyond space geodesy. GPS revolutionized
surveying, timing, car and aircraft navigation. Millions of hand-held receivers
are in use for navigation. Spaceborne applications of the GPS are about to
revolutionize geodesy and atmosphere sciences.

GPS is a navigation system allowing for instantaneous, real-time, absolute po-
sitioning on or near the surface of the Earth with an accuracy of few meters.
An unlimited number of users may use the system simultaneously. Absolute
means that the estimated coordinates may be established using only one
receiver and that they refer to a geocentric Earth-fixed coordinate system.
This coordinate system, the WGS-84 (World Geodetic System 1984), is to-
day aligned with sub-meter accuracy to the ITRF (International Terrestrial
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Reference Frame). The ITRF is the realization of the ITRS (International
Terrestrial Reference System), is maintained by the IERS.

The space segment of the GPS nominally consists of 24 satellites (21 oper-
ational satellites plus 3 active spares). The satellites are in almost circular
orbits distributed in six planes approximately 20000 km above the Earth’s
surface. These planes are separated by 60◦ on the equator and inclined by
55◦ with respect to the equator. The constellation is illustrated in Figure 2.5
as it would be seen from outside the system from the poles (left) and from a
latitude of 35◦.

Fig. 2.5. The GPS as seen from geographic latitudes of 90◦ and 35◦

The revolution period is half a sidereal day (11h58m), which means that for a
given location on the Earth’s surface the satellite constellation above horizon
repeats itself after one sidereal day (solar day minus four minutes). Figure 2.6
shows a Block II satellite. The first full GPS generation was realized around
the mid 1990s with this type of GPS satellites. We distinguish the main body
of the satellite with the antenna array pointing to the center of the Earth
and the solar panels. The attitude is maintained by momentum wheels, which
have to guarantee that the antenna array is always pointing to the center of
the Earth and that the solar panel axes are perpendicular to the Sun-satellite
direction. The satellite is capable of rotating the solar panels into a position
perpendicular to the same direction.

The GPS satellites transmit (essentially) the same information on two coher-
ent carrier frequencies L1 and L2 (with wavelengths of about 19 and 24 cm).
The two carriers are used to model (or eliminate) the frequency-dependent
part of the signal delay caused by the Earth’s upper atmosphere, the iono-
sphere. Both carriers are coherent, i.e., they are generated by one and the
same highly stable oscillator onboard the satellite. The information is trans-
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Fig. 2.6. Block II GPS satellite

mitted by the phase modulation technique. Two observables, the so-called
code observable and the phase observable are used for GPS positioning and
navigation. The code observable corresponds to the distance between the
satellite position (at signal transmission time) and the receiver position (at
signal reception time). The code observable is biased by the clock errors of
the satellite and the receiver, and atmospheric transmission effects. The GPS
code available for the civilian user community is accurate to about 1–3 m.
The phase observable is based in principle on a count by the receiver of the
incoming carrier waves (integer number plus fractional part). The measured
quantity is closely related to that of the code observable: exactly as the code
observation it corresponds to the distance between satellite and receiver, but
it contains one more bias, an initial phase count (the receivers have to start
their counts with an arbitrary value). The trouble introduced by the addi-
tional unknown is counterbalanced by the extremely high accuracy of the
GPS phase observable: the phase observable is established with mm- rather
than m-accuracy.

The phase observations allow it to establish local GPS networks with mm-
accuracy, regional and global networks with about cm-accuracy. This is only
possible, if precise satellite orbit and clock information, such as generated
and distributed by the IGS (International GPS Service), is available. Figure
2.7 shows the IGS network as of January 2002.

Over 200 IGS sites, distributed all over the globe, permanently observe all
satellites in view and transmit their observations (at least) on a daily basis
to the IGS Data Centers.

The data are then analyzed by IGS Analysis Centers, which deliver rapid
and final products. Rapid IGS products are available with a delay of about
one day (or even below), final products with a delay of about ten days. Daily
products include satellite orbits with an accuracy of about 5 cm, satellite
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clocks with an accuracy of about 0.1 ns (nanoseconds), daily values of polar
motion components accurate to about 0.1 mas, (corresponding to 3 mm on
the Earth’s surface), and LOD (Length of Day) estimates with an accuracy
of about 20 µs/day (microseconds per day). These products are essential
contributions to the monitoring of Earth rotation.

GMT Jan 23 16:10:19 2002

Fig. 2.7. The International GPS Service (IGS) Network in 2002

In addition the IGS Analysis Centers perform weekly global coordinate so-
lutions of their portion of the IGS network. These results are used, together
with the results of the other space techniques, for the establishment of the
ITRF.

The IGS products (orbits, satellite and receiver clock corrections, Earth ro-
tation parameters, coordinates and velocities of IGS stations) are used as
known a priori information to establish regional networks for crustal defor-
mation studies. More and more, the IGS network is used for purposes other
than space geodesy. Let us mention that the IGS network has been enhanced
to include time and frequency transfer and that it is able to monitor the
ionosphere.

From the point of view of space geodesy GPS is a “work horse” with impor-
tant contributions to the establishment and maintenance of a dense terrestrial
reference frame, providing Earth rotation parameters with a high time reso-
lution. It should not be forgotten, that the GPS – like every satellite geodetic
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method – is not able to maintain a long-term stability of UT1 or of preces-
sion and nutation. Moreover, despite the fact that GPS is a satellite geodetic
technique, it is not well suited to determine the Earth’s gravity field. The
height of the GPS satellites is one of the limiting factors.

The GPS observables and some of the essential results derived from them are
presented in section 8.5.3. Specific examples, e.g., concerning Earth rotation,
will be included in other chapters of this book. For detailed information
concerning the GPS as a tool for geodesy and geodynamics the readers are
referred to [122]. The interdisciplinary aspects offered by the GPS in general
and the IGS in particular are also discussed by Beutler et al. in [17].

Other Satellite Microwave Techniques. The Russian GLONASS
(GLObal NAvigation Satellite System) is so closely related to the GPS that
there is a number of combined GPS and GLONASS receivers available. These
receivers were used in the first global GLONASS tracking and analysis cam-
paign, the IGEX-98 (International GLONASS Experiment 1998). The exper-
iment revealed that a combined analysis of GPS and GLONASS is promising
for science and navigation.

The French DORIS (Doppler Orbitography by Radiopositioning Integrated
on Satellite) proved to be a very powerful tool for orbit determination. It is,
e.g., one of the orbit determination systems used in the TOPEX/Poseidon
(TOPEX (TOPography EXperiment for Ocean Circulation)) mission (see
below). Also, DORIS possesses a very well designed ground tracking network.
This is one reason why DORIS was accepted as an official space technique
by the IERS (see Table 2.5).

The German PRARE (Precise Range And Range-rate Equipment) system
may be viewed as the German counterpart of the DORIS system. It is used
as an orbit determination tool, e.g., on the European Space Agency’s ERS-2
(Earth Remote Sensing 2) spacecraft.

The Galileo system, to be implemented by the ESA (European Space Agency)
in the first decade of the 21st century, will soon be added to the list of powerful
operational satellite navigation systems.

Geodetic Satellite Missions. There were many satellite missions in the
past and there will be more in the future in which the satellite is used as an
observing platform to study aspects of the Earth relevant to geodesy and geo-
dynamics. Let us mention in particular that altimetry missions significantly
improved our knowledge of the sea surface topography, ocean currents, tidal
motions of the oceans, etc.

Figure 2.8 shows the TOPEX/Poseidon spacecraft. The mission is a com-
bined U.S. and French altimetry mission. It is the first mission which was
specially designed to investigate ocean currents. One entire volume of the
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Fig. 2.8. The TOPEX/Poseidon spacecraft

Journal of Geophysical Research was devoted to this mission [123]. For space
geodesy the TOPEX/Poseidon mission was a kind of “rosetta stone mission”
because its orbit was determined using three independent systems, the French
DORIS system, SLR tracking, and the GPS. All three systems proved their
capability. The radial component of the orbit (which is of crucial importance
for altimetry missions) could be established with an accuracy of a few cm.
JASON is the TOPEX/Poseidon follow-on mission. It is in orbit since early
2001. JASON, exactly as TOPEX/Poseidon, is a NASA(JPL)/CNES mis-
sion, named after the mythological hero who led the Argonauts on the search
for the Golden Fleece. According to information available through the ILRS
(internet address in Table 2.5) JASON symbolizes both the hard-fought quest
for a worthy goal and civilization’s fascination with the ocean and its mys-
teries. The specification of “1” attests to the expectation that JASON is one
of a series of TOPEX/Poseidon follow-on missions.

For geodesy, geodynamics, and atmosphere physics the CHAMP (CHAlleng-
ing Mini-satellite Payload for geophysical research and application, German
mission), GRACE (Gravity Recovery And Climate Experiment, U.S. / Ger-
man mission), and the upcoming GOCE (Gravity field and Ocean Current
Explorer, ESA mission) are and will be fundamental. It is expected that our
knowledge of the gravity field (using spaceborne GPS receivers, accelerome-
ters, gradiometers) to measure the non-gravitational forces and gravity gra-
dients will significantly increase thanks to these missions.

Also, CHAMP and GRACE are able to produce atmosphere profiles using
the GPS occultation method : the signal (phase and code) of a GPS satellite is
monitored by a spaceborne GPS receiver on a LEO (Low Earth Orbiter) dur-
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ing the time period the line of sight LEO → GPS satellite scans through the
Earth’s atmosphere. These developments support our initial statement that
interdisciplinary aspects are becoming more and more important in Space
Geodesy.

Organizations. Table 2.5 gives an overview of the international scientific
organizations, which are relevant for the worldwide coordination in space
geodesy.

They all are IAG (International Association of Geodesy) services. The IERS
and the IVS are in addition IAU services. The IERS, IGS and IVS are mem-
bers of FAGS (Federation of Astronomical and Geodesical Data Analysis
Services).

IGS, ILRS and IVS are technique-specific services. The IERS is a multi-
technique service. It was established in 1988 as the successor of the Inter-
national Polar Motion Service (IPMS) and the Earth rotation branch of the
Bureau International de l’Heure (BIH). The IERS products are based on the
measurements and products of the technique-specific services.

CSTG (Commission on Coordination of Space Techniques) is a commission
of IAG and a subcommission of COSPAR (Committee on Space Research),
the Commission on Space Research. It has a coordinating function within
space geodesy. In the time period 1995–1999 the CSTG created the ILRS
and the IVS, and it organized the first global GLONASS experiment IGEX-
98 together with the IGS.

More information about these services may be found at the internet addresses
in Table 2.5.

Protagonists of Space Geodesy. It would be easily possible to create a
list of eminent pioneers of this field (comparable to Table 2.1). Because a
short list, written by someone deeply involved in space geodetic research for
more than thirty years, would most likely be highly subjective, no such table
is provided here.
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Table 2.5. Space-geodetic services

Acronym Name, Mission, Internet

CSTG Commission on International Coordination of Space Techniques.
Coordination between space geodetic organizations, organizes
projects.

IERS International Earth Rotation Service. Establishes and maintains ce-
lestial and terrestrial reference frame, generates combined Earth
orientation parameter series
http://hpiers.obspm.fr

IGS International GPS Service. Makes available GPS data from its
global network, producing and disseminating high accuracy GPS
orbits, Earth rotation parameters, station coordinates, atmospheric
information, etc.
http://igscb.jpl.nasa.gov

ILRS International Laser Ranging Service. Collects, archives, and dis-
tributes SLR and LLR datasets. Generates scientific and operational
products
http://ilrs.gsfc.nasa.gov

IVS International VLBI Service for Geodesy and Astrometry. Operates
and supports VLBI programs. Organizes geodetic, astrometric, geo-
physical research and operational activities.
http://ivscc.gsfc.nasa.gov



3. The Equations of Motion

Basic concepts related to space, time, matter, and gravitation are briefly ad-
dressed in Section 3.1. In order to simplify the discussion we will first assume
the celestial bodies to be either point masses (planetary system) or rigid
bodies (satellite geodesy and Earth rotation). The assumption of rigidity will
be dropped in sections 3.3.7 and 3.3.8, where the basic properties of a non-
rigid Earth and its rotation are introduced. The structure of the equations
of motion does not change too much. Some physical entities (like the iner-
tia tensor and the angular momentum of a planet) have to be modified to
take changes due to deformations into account. The mathematical structure,
however, remains pretty much the same for a rigid and a deformable celestial
body – at least as long as the deformations are small.

The equations of motion for a system of point masses are developed in section
3.2. Only the gravitational forces according to the inverse square law (2.1)
are taken into account. It is assumed that the mass of one of the bodies
dominates those of all the others, i.e., the resulting equations of motion refer
to a planetary system. From these equations the well-known ten first integrals
are derived.

In Section 3.3 the equations of motion for the system Earth-Moon-Sun are
set up under the assumption that Earth and Moon are rigid celestial bodies
of finite dimensions with given density distributions. The equations of motion
for the orbital and for the rotational motions of these bodies are developed
directly from the Newtonian axioms (Table 2.2) and the law of universal
gravitation (2.1). The equations for the orbital and the rotational motions
are coupled. Because the coupling mechanism is only weak, it is possible to
derive handy approximations for the orbital and the rotational motion of the
system Earth-Moon-Sun.

In Section 3.4 the equations of motion for an artificial Earth satellite are
presented. For LEOs many terms of the Earth’s gravity field have to be taken
into account. Also, as opposed to the other equations of motion studied, non-
gravitational forces play a key role. For these reasons, the equations of motion
associated with an artificial Earth satellite are the most complex considered
here.
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We are mainly concerned with classical mechanics in this book. One should
keep in mind, however, that the equations of motion should be studied in the
framework of the theory of general relativity. The result of such studies would
be rather complex. Fortunately it is possible to account for the relativistic
effects approximately by “slightly modifying” the Newton-Euler equations of
motion. Relativistic versions for the equations of motion for the planetary
system and for artificial satellites are introduced in section 3.5.

The equations of motion derived in this Chapter are reviewed in Section 3.6.
The mathematical structure of the equations of different types is compared,
common aspects and differences are discussed.

3.1 Basic Concepts

The term inertial reference system or simply inertial system is defined as
a time scale in the Newtonian sense and a rectangular Cartesian coordi-
nate system (named in honour of René Descartes (1596–1650)) in the three-
dimensional Euclidean space E

3, in which celestial bodies obey Newton’s laws
of motion (Table 2.2) and his law of universal gravitation (2.1).

Time is the independent argument in the equations of motion. Newton used
the term “absolute time” to distinguish it from measures of time which are
far from uniform, like e.g., solar time as given by a Sun dial. Every “strictly”
periodic phenomenon may be used to realize an absolute time scale – by
counting the number of periods elapsed since a conventional time origin. As
one wishes to use the best possible periodic phenomenon for the purpose, it is
usually impossible to decide whether the underlying phenomenon is strictly
periodic or not. Such a decision can only be made as soon as a “better clock”
becomes available.

UT (Universal Time) is a measure of time reflecting the mean diurnal motion
of the Sun. Formally, UT is derived from ST (Sidereal Time), which is in
turn a measure of time defined by the apparent diurnal motion of the stars.
Both, ST and UT, are time scales based on the Earth’s rotation. UT (and
ST) are determined from observation. Due to the effect of polar motion (see
Chapter II- 2) UT, as observed at a particular observatory on the Earth,
slightly depends on the location of the observatory. This realization of UT is
designated as UT0. UT1 (UT corrected for polar motion effects) is in essence
the best possible “absolute time”, which can be obtained from Earth rotation.

Up to 1960 UT was the official realization of absolute time in astronomy.
From 1960 to 1984 ET (Ephemeris Time), based on the orbital motion of the
Moon and the planets, was used for the same purpose. ET was determined
from the equations of motion for the bodies in the planetary system. It is by
definition the best possible time scale for the purpose of Celestial Mechanics.
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Unfortunately, ET was only available months after real time. This circum-
stance and the fact that since about 1950 atomic clocks started to provide a
time scale of highest accuracy and stability, led in 1984 to the introduction
of atomic time scales in astronomy.

The atomic time scale is called TAI (International Atomic Time). TAI is re-
alized by an ensemble of atomic clocks distributed worldwide at national and
international timekeeping laboratories. These clocks are able to reproduce the
second (s) of the SI (International System of units). The clock combination
used to define TAI asks for corrections due to special and general relativity.
TAI corresponds to the performance of a perfect clock situated on the geoid,
the equipotential surface of the Earth at sea level. TT (Terrestrial Time),
which is today used as independent argument for Celestial Mechanics in the
Earth-near space is derived from TAI by the following equation:

TT = TAI − 32.184 s . (3.1)

TT is a time scale uniquely based on atomic time. TT is measured in units of
days defined as 86400 s in the SI. TAI and TT serve as uniform time-scales
in the non-relativistic approximation of the equations of motion referring to
Celestial Mechanics problems in satellite geodesy. The constant −32.184 was
introduced to make the transition from ET to TAI smooth at one particular
epoch in time, namely January 1, 1958.

UTC (Universal Time Coordinated) agrees with UT to within one second.
UTC is derived from TAI by adding an integer number N(TAI) of leap seconds
to TAI to guarantee that | UT1 − UTC |< 1 s . Formally, one may write

UTC = TAI + N(TAI) . (3.2)

The leap seconds are introduced (if required) end of July and/or end of De-
cember. Leap seconds and N(TAI) are announced by the IERS in its Bulletin
C.

Several other time scales are in use in satellite geodesy, GPS time probably
being the best known. GPS time and UTC (thus also between GPS time and
TAI) differ by an integer number of seconds.

TDB (Barycentric Dynamical Time) is the independent argument of the
equations of motion referring to the barycenter of the solar system. The
precise definition of TDB depends on the gravitational theory used. For most
applications it is sufficient to use the approximation (see [107]):

TDB = TT + 0.001658 sin g + 0.000014 sin 2g , (3.3)

where the amplitudes are given in seconds and

g = 357.53◦ + 0.9856003◦ (JD − 2451545.0) , (3.4)

where JD (Julian Date).
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For more information concerning the time scales actually used in astronomy
we refer to [107]. A concise overview of different time scales in use today may
also be found in [75].

For future reference we include the numerical values for the gravitational
constant in Newton’s law of universal gravitation (2.1). In the SI, where
meters (m), kilograms (kg), and seconds (s) are used as units for length,
mass, and time, the constant of gravitation has the following value:

G = 6.67259× 1011 m3kg−1s−2 . (3.5)

In applications related to the planetary system it is tradition to use other
units for time, mass, and length: One day d of 86400 s (SI) (in essence one
solar day) is used as time unit, the mass of the Sun (m� = 1.9891× 1030 kg)
as mass unit; the mean distance between the center of mass Earth-Moon
and the Sun, originally defined to be the AU (Astronomical Unit), serves as
length unit. In these units the constant of gravitation is written as k2, where
k is referred to as the Gaussian constant. Today, the AU is defined in such
a way that the Gaussian constant k keeps the same numerical value, namely

k = 0.01720209895
√

(AU)3m−1
� d−2 , (3.6)

as it already had at Gauss’s epoch. This is why every astronomer knows the
numerical value of k by heart. It is handy to assign a constant value to the
product “solar mass · gravitation constant”. The drawback lies in the fact
that the semi-major axis a of the center of mass of the Earth-Moon system
in its orbit around the Sun can no longer be strictly interpreted as a = 1 AU.
Currently, the semi-major axis a of the Earth-Moon barycenter is considered
to have a length of (see [107]):

a = 1.00000003 AU . (3.7)

The constant k is also approximately the mean daily motion of the center
of mass of the Earth-Moon system in its orbit around the Sun, expressed in
rad/d, what corresponds to 180◦/π · k ≈ 0.986 ◦/d .

Newton’s absolute space corresponds to what we call today inertial space. In
mathematical terms this space is the three-dimensional Euclidean space E

3,
where we may introduce a rectangular, right-handed Cartesian coordinate
system. Such a coordinate system is defined by three orthogonal unit vectors
ei, i = 1, 2, 3, originating from an origin O. For a right-hand system we have

e3 = e1 × e2 ,

where e1 × e2 is the vector product of the two vectors ei, i = 1, 2. The set
of the three unit vectors ei, i = 1, 2, 3, is also called an orthonormal base
in E

3. A vector x pointing from the origin of the coordinate system to an
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arbitrary point in E
3 is called a position vector. Each position vector may be

represented as a linear combination of the three base vectors:

x = x1 e1 + x2 e2 + x3 e3 . (3.8)

The coefficients xi, i = 1, 2, 3, are the Cartesian coordinates of the vector x in
the coordinate system defined by the unit vectors ei, i = 1, 2, 3. It should be
noted that the vector x is a quantity independent of the specific coordinate
system, whereas the coordinates xi, i = 1, 2, 3, are related to the specific
coordinate system. This is documented by the following relation emerging
from eqn. (3.8) by scalar multiplication with the unit vector ei:

xi = ei · x , i = 1, 2, 3 . (3.9)

It is convenient to use the following matrix notation for the coordinates of x

xT
e

def= (x1, x2, x3) . (3.10)

xe is a column-matrix with three elements, xT
e is its transpose, a row matrix

with three elements. We will also call xe the coordinate matrix.

We should make a clear distinction between a vector and its coordinate ma-
trix. In an attempt to reduce the formalism to the absolute minimum, we will
often leave out the index specifying the coordinate system (above, we used e
as an example), if no misunderstandings are possible.

Let us assume that x is the position vector of a spherically symmetric celestial
body (in the sense of Theorem 8 in Table 2.2), i.e., we assume that the mass
distribution in the body is spherically symmetric w.r.t. the center of mass of
the body, or that the size of the body is very small compared to the distances
between the bodies. In the former case we interpret x as the position vector of
(the center of mass of) the body, in the latter case we speak of a point mass.
Our goal is the derivation of the trajectories (see Figure 3.1) of all bodies (or
point masses) of a mechanical system (rigid, spherically symmetric bodies,
or point masses) as a function of time.

The realization of a coordinate system is a coordinate frame. How is the
inertial coordinate system realized? Taking the same pragmatic standpoint
as in the case of the realization of the uniform timescale we postulate that
the frame does not rotate with respect to the ensemble of Quasars. This
realization actually is closely related to definition 2) (out of four) of an inertial
frame in [127]. We demand that the unit vectors ei, i = 1, 2, 3, do not rotate
w.r.t. this ensemble of Quasars. This does not yet imply, however, that the
system is inertial, because linear accelerations, e.g., along one axis, still might
occur. In order to exclude such motions we have to set up the equations of
motion and derive the origin of the system as a function of time. This will
be a byproduct of the next section. An inertial reference system realized in
this way is called an inertial reference frame.
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Fig. 3.1. Trajectory of a point mass m in the inertial system

When establishing the inertial reference frame we neither need the equato-
rial plane of the Earth nor the ecliptic, the plane of the orbital motion of
the center of mass of the Earth-Moon system around the Sun. The ecliptic
does, however, play an important role in Celestial Mechanics of the planetary
system, and the Earth’s equatorial plane plays a similarly important role in
studies of the Earth-near space. The role of the former plane is given by the
circumstance that the inclinations of the orbital planes of most planets w.r.t.
the ecliptic are small (see Table II- 4.1), the role of the latter is given by
the flattening of the Earth with the equatorial plane as symmetry plane. It
makes sense to define the unit vectors ei, i = 1, 2, 3, in such a way that the
first unit vector ei lies in the intersection of the equatorial and the ecliptic
plane. This axis points into the direction of the vernal equinox. For studies in
the planetary system e2 is best defined to lie in the ecliptic, 90◦ away from
the vernal equinox in the direction of the motion of the Earth, for Celestial
Mechanics in the Earth-near space e2 is defined to lie in the equator, 90◦

away from the vernal equinox in the direction of the rotation of the Earth.

Both, the equatorial plane (due to precession and nutation) and the ecliptic
(due to planetary perturbations) are rotating w.r.t. the inertial system. This
is why we have to specify an epoch when defining the coordinate frames using
the equator and ecliptic. Today, the epoch J2000.0 serves as normal epoch.
J2000.0 corresponds to January 1, 2000, 12h UTC (for more details we refer
to [107]).

3.2 The Planetary System

We assume that N point masses are moving uniquely under their gravitational
attraction and that there are no other celestial bodies (masses) outside the
system. These assumptions define the classical N -body problem.
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Let us furthermore assume that N = n + 1. Each point mass mi is fully
described by its mass mi and its position vector xi(t), i = 0, 1, . . . , n, for all
times t. Let us furthermore assume that the mass m0 dominates the others.
This is the case in our planetary system where m0 corresponds to the Sun.

If we follow the trajectory of one of the bodies as a function of time we may
also define the velocity ẋi of each point mass as the first time derivative of
the position vector:

ẋi =
dxi(t)

dt

def= lim
∆t→0

xi(t + ∆t) − xi(t)
∆t

, i = 0, 1, 2, . . . , n . (3.11)

If the position vectors xi(t) and the velocity vectors ẋi(t) at the initial epoch
t = t0 are known, we have the task of finding the trajectories xi(t) for all
time arguments t and for all point masses mi, i = 0, 1, 2, . . . , n, in the inertial
system. The ensemble of vectors xi(t0), ẋi(t0), i = 0, 1, . . . , n, represents the
initial state vector of the entire system.

3.2.1 Equations of Motion of the Planetary System

According to (the modern understanding of) Newton’s second law, his corol-
lary concerning the superposition of forces (see Table 2.2), and the law of
universal gravitation (2.1) (replacing, however, for our application the gravi-
tation constant G by k2, see eqn. (3.6)) we may write down the equations of
motion in the inertial system for the N = n + 1 point masses:

d (miẋi)
dt

= − k2 mi

n∑
j=0,j �=i

mj
xi − xj

|xi − xj |3
, i = 0, 1, 2, . . . , n . (3.12)

On the left hand side we have the first derivative of the linear momentum, on
the right hand side the superposition of gravitational forces acting on point
mass mi. Assuming that the masses do not change with time (which will
never be 100% true) we may write

ẍi = − k2
n∑

j=0,j �=i

mj
xi − xj

|xi − xj |3
, i = 0, 1, 2, . . . , n . (3.13)

It is important to note that the mass mi does not show up in the equation for
this particular point mass. From the mathematical point of view the equations
of motion (3.13) of our N -body problem form an ordinary, coupled, nonlinear
differential equation system of second order in time. Mathematical analysis
tells that unique trajectories exist (under certain conditions) for all times
t ∈ (−∞, +∞) , provided the initial state of the system is known.

xi(t0)
def= xi0 , ẋi(t0)

def= ẋi0 , i = 0, 1, 2, . . . , n . (3.14)
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The equations (3.13) are vector equations. If we want to solve them (nu-
merically or otherwise) we have to select a concrete coordinate system with a
suitable origin. There is an entire class of equivalent inertial reference frames,
because the eqns. (3.13) are invariant under a Galilei transformation (named
in honour of Galileo Galilei (1564–1642)), composed of a translation X0 and
a velocity V0 :

xi = x′
i + X0 + V0 t

ẋi = ẋ′
i + V 0

t = t′ .
(3.15)

When introducing these transformation equations into eqns. (3.13) we easily
verify that the transformed equations have an identical structure in the new
reference frame, which is therefore inertial, as well.

Assuming that we were able to identify one particular inertial reference sys-
tem, we may interpret the symbols xi in the equations of motion as the
column matrices of coordinates relative to this system. We should use an
additional index, e.g., xIi to identify the coordinate system. If no transfor-
mations are required, we may as well skip the index “I”. Except for this
subtlety the equations of motion for the position vectors are formally identi-
cal with the corresponding equations for the coordinate matrices.

It was assumed that there are no masses outside the system of the N point
masses. This is not perfectly true. Think, e.g., of the gravitational attraction
the solar system experiences from our galaxy. When considering time periods
of hundreds of millions of years such effects must be taken into account (the
revolution period of the solar system around the galactic center is estimated
to be about 250 million years). We do not account for such effects in this
chapter and further explore the idea of an isolated system of point masses.

If the mass m0 dominates all other masses it makes sense to rearrange the
equations (3.13) to describe the motion of the system relative to the point
mass m0. For that purpose we introduce the notations:

ri
def= xi − x0 , i = 1, 2, . . . , n . (3.16)

In our planetary system we call the vectors ri the heliocentric position vec-
tors. Starting from the equations of motion (3.13) in the inertial system we
may easily set up the corresponding equations of motion for the heliocentric
position vectors ri by subtracting the equation for the point mass m0 from
the corresponding equation for the point mass mi. We obtain:
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r̈i
def= ẍi − ẍ0

= − k2
n∑

j=0,j �=i

mj
xi − xj

|xi − xj |3
+ k2

n∑
j=1

mj
x0 − xj

|x0 − xj |3

= − k2
n∑

j=0,j �=i

mj
ri − rj

|ri − rj |3
− k2

n∑
j=1

mj
rj

|rj |3
.

(3.17)

If we take out the first term (index j = 0) in the first sum on the right
hand side of the above equation and term j = i in the second sum and let
these terms precede the two sums, we obtain the equations of motion for the
heliocentric position vectors ri in the following form:

r̈i = − k2(m0+mi)
ri

r3
i

− k2
n∑

j=1,j �=i

mj

{
ri − rj

|ri − rj |3
+

rj

r3
j

}
, i = 1, 2, . . . , n ,

(3.18)
where rj

def= |rj |. We easily see that the equations of motion (3.18) for the
heliocentric motion again form a coupled second order differential equation
system. Its dimension is d = 3 n and has been reduced by 3 when compared
to the system (3.13) describing the motion in the inertial system.

If we interpret the above equations as equations for the coordinate matrices
we see that the underlying heliocentric Cartesian coordinate system is always
parallel to the original inertial Cartesian reference frame in the inertial space.
The heliocentric coordinate system is, however, not inertial, because its origin
follows the trajectory of the point mass m0 (e.g., that of the Sun), which,
according to the first of equations (3.13), shows non-vanishing accelerations
w.r.t. inertial space.

It is important to note that we are able to study the development of a plane-
tary system relative to the central mass without having defined the origin in
the inertial system, using the equations of motion (3.18), provided the initial
state in the heliocentric system is given by

ri(t0)
def= ri0 , ṙi(t0)

def= ṙi0 , i = 1, 2, . . . , n . (3.19)

It was the achievement of the preceding centuries to determine the initial
conditions (3.19) and the masses mi, i = 1, 2, . . . , n, of (Sun) planets with
higher and higher accuracy. The definition of a suitable origin in the inertial
system was a secondary issue.

The structure of the equations of motion (3.18) may be further specified: the
first term on the right hand side is called the main term of the force (per mass
unit) acting on point mass mi, the sum is called the perturbation term. This
characterization is correct as long as there are no close encounters between
the bodies of the system and if the ratios of the planetary (and satellite)
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masses to the mass of the central body mi/m� � 1 are small numbers.
Table II- 4.1 in Chapter II- 4 shows that this assumption holds in our solar
system, where the most massive planet, Jupiter, has a mass of only about
0.1 % of the solar mass.

We have stated above that the entire system is coupled. We have to modify
this statement slightly. So far, we made the distinction between the central
mass m0 and all the other masses mi, i = 1, 2, . . . , n. We now add one more
point mass to this system, assuming that its mass m

m � mi , i = 0, 1, 2, . . . , n , (3.20)

is negligible w.r.t. all other masses of the system. We denote the heliocentric
position vector of the new point mass with r. It is easy to add the equation of
motion for this body to the N -body problem described by equations (3.13).
The structure of the equations for the point masses with “finite masses” are
unaffected by this procedure, and for the point mass m of negligible mass we
obtain the following equations of motion in the heliocentric system (formally
the equations of motion are obtained from eqns. (3.18) by setting mi = 0 and
by leaving out the index i):

r̈ = − k2 m0
r

r3
− k2

n∑
j=1

mj

{
r − rj

|r − rj |3
+

rj

r3
j

}
. (3.21)

The sum on the right hand side has to be extended only over the finite
masses of the planetary system. The equations of motion (3.21) may be solved
independently from the equations of motion (3.18) for the entire planetary
system of the bodies with finite masses, or, in other words, we may consider
the position vectors rj as known functions of time on the right hand side
of the above equations. The equations of motion (3.21) are, e.g., used to
describe the trajectory of a minor planet or a comet. Note that in our solar
system we could set m0 = 1, which would further simplify the structure of
the differential equation system.

The right hand sides of the equations (3.18) for body number i may be
written as a gradient w.r.t. the coordinates of this body. The equations of
motion (3.18) therefore may be written in the form

r̈i = ∇i {Ui + Ri} , i = 1, 2, . . . , n . (3.22)

where

Ui =
k2 (m0 + mi)

ri
(3.23)

and

Ri = k2
n∑

j=1,j �=i

mj

{
1

|ri − rj |
− rirj

r3
j

}
, (3.24)
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and where the gradient ∇i is defined as

∇T
i

def=
(

∂

∂ri1

,
∂

∂ri2

,
∂

∂ri3

)
, (3.25)

where ∇T
i is the transpose of ∇i. Ui is the force function of the two-body

problem (to be discussed below), Ri is called the perturbation function of body
number i. Both, Ui and Ri are scalar functions of the rj , j = 1, 2, . . . , n, but
only the dependency on ri is considered for body number i when taking the
gradient of Ri. As mentioned in Chapter 2, the scalar perturbation function
was introduced by Lagrange. It has the advantage for analytical develop-
ments that only one instead of three functions (corresponding to the three
coordinates) has to be studied. If we inspect the perturbation function we see
that the term of the sum corresponding to a particular planet is composed
of a 1/r-term which we would also expect in the equations referring to the
inertial system. This term is called the direct perturbation term. The second
term containing the scalar product of the perturbing and the perturbed body
is called the indirect term. It is uniquely due to the transformation from the
inertial to the heliocentric system.

The equations of motion for a point mass with negligible mass may be written
in similar form

r̈ = ∇{U + R} , (3.26)

where

U =
k2 m0

r
(3.27)

and

R = k2
n∑

j=1

mj

{
1

|r − rj |
− r rj

r3
j

}
. (3.28)

The gradient refers to the components of the position vector r.

3.2.2 First Integrals

Ten scalar functions of the coordinates and velocities of the N -Body problem
are known to be time-independent. We call such quantities first integrals or
simply integrals. We also derive formulas for the time development of the
so-called polar moment of inertia of the system (to be defined below). The
result is called the virial theorem.

The developments of the entire section are based on the equations of motion
(3.13) referring to an inertial reference frame.
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Center of Mass. The center of mass of a system of point masses is defined
as:

X0
def=

1
M

n∑
i=0

mi xi , (3.29)

where the total mass M of the system is given by:

M
def=

n∑
i=0

mi . (3.30)

If we multiply equation number i of the system (3.13) with the factor mi/M
and add up all resulting equations, the double sum on the right hand side
adds up to zero. The differential equation for the center of mass in the inertial
system therefore reads as:

1
M

n∑
i=0

mi ẍi = Ẍ0 = 0 . (3.31)

This equation is solved by

X0(t) = X00 + V00(t − t0) , (3.32)

where t0 is an arbitrarily chosen origin of time, X00 is the position vector
of the center of mass in the inertial system, V 00 its velocity vector at the
same time. As X00 and V00 both are defined by three quantities, we have
actually found six first integrals by showing that the center of mass is moving
according to eqn. (3.32).

We are now in a position to define an inertial reference frame with origin in
the center of mass of our N bodies by asking that

X00 = V 00 = 0 . (3.33)

This implies that our definition (3.29) for the center of mass reads as follows

1
M

n∑
i=0

mi xi = 0 . (3.34)

Using the fact that the position vector xi for point mass mi can be written
as the sum of the position vector of the Sun (the central mass) referred to
the inertial system and the heliocentric position vector of point mass mi

xi = x0 + ri , i = 1, 2, . . . , n , (3.35)

and introducing this relation into the equation (3.34) and the corresponding
equation for the velocities, we obtain the relations
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x0 +
1
M

n∑
i=1

mi ri
def= x0 + R0 = 0 (3.36)

and

ẋ0 +
1
M

n∑
i=1

mi ṙi
def= ẋ0 + Ṙ0 = 0 , (3.37)

where R0 is the position vector of the barycenter as computed in the helio-
centric system and Ṙ0 its velocity. Obviously, we are in a position to compute
the position of the Sun in the barycentric system (which is an inertial system)
for any time t – provided we have solved the heliocentric equations of motion
(3.13). This implies that by the transformation from the inertial to the helio-
centric system we have not lost any information. We implicitly made use of
the six integrals found above when reducing the number of (scalar) equations
by three in the transition from the inertial to the heliocentric system.

Total Angular Momentum. The total angular momentum of a system of
point masses is defined as

h
def=

n∑
i=0

mi xi × ẋi . (3.38)

We multiply the equation of motion for point mass mi in eqns. (3.13) with
mi xi×, add the resulting equations and obtain:

n∑
i=0

mi xi × ẍi = − k2
n∑

i=0

n∑
j=1,j �=i

mi mj
xi × (xi − xj)
|xi − xj |3

d

dt

[
n∑

i=0

mi xi × ẋi

]
= k2

n∑
i=0

n∑
j=0,j �=i

mi mj
xi × xj

|xi − xj |3
= 0 .

(3.39)

From the last of the above set of equations we conclude that the total angular
momentum of a system is conserved:

n∑
i=0

mi xi × ẋi
def= h . (3.40)

As the (constant) vector h is defined by three scalar quantities (e.g., the
three components of h) we have found three (first) integrals of the equations
of motion of the N -body problem.

The plane perpendicular to the vector h is called the invariable plane or
the Laplacian plane. Due to its definition it actually would be the natural
plane of reference to describe the evolution of the planetary system (at least
over long time periods). It would be much better suited than the ecliptic
plane referred to a normal epoch like J2000.0, which becomes completely
meaningless for epochs a few million years apart from J2000.0.
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Total Energy. The total energy E of a mechanical system is defined as the
sum of its kinetic energy T and potential energy −U , the absolute value of
which is the force function U previously introduced.

E = T − U , (3.41)

where

T = 1
2

n∑
i=0

mi ẋ2
i (3.42)

and

U = k2
n∑

i=0

n∑
j=i+1

mi mj

|ri − rj |
. (3.43)

The “force function” U of the system at a particular point in time equals the
work that would have to be performed in order to completely dissolve the
system, i.e., to remove each pair of bodies of the system to infinite distance.
U may be written as:

U = k2
n∑

i=0

n∑
j=i+1

mi mj

|ri − rj |
=

k2

2

n∑
i=0

n∑
j=0,j �=i

mi mj

|ri − rj |
. (3.44)

The total energy of our system of point masses thus equals

E =
1
2

n∑
i=0

mi ẋ2
i − k2

2

n∑
i=0

n∑
j=0,j �=i

mi mj

|ri − rj |
. (3.45)

By multiplying equation i of the system of equations of motion (3.13) by
mi ẋi· and by summing up all resulting equations the total energy is seen to
be conserved:

n∑
i=0

mi ẋi · ẍi = − k2
n∑

i=0

n∑
j=1,j �=i

mi mj
ẋi · (xi − xj)
|xi − xj |3

= − k2
n∑

j=0

n∑
i=0,i�=j

mi mj
ẋj · (xj − xi)
|xi − xj |3

= − 1
2 k2

n∑
i=0

n∑
j=1,j �=i

mi mj
(ẋi − ẋj) · (xi − xj)

|xi − xj |3

1
2

d

dt

[
n∑

i=0

mi ẋ2
i

]
=

1
2

d

dt

⎡
⎣ k2

n∑
i=0

n∑
j=0,j �=i

mi mj

|xi − xj |

⎤
⎦ .

(3.46)

From the first to the second line the indices i and j were exchanged, from
the second to the third the sign in the expression (xj −xi) was changed and
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the summations over i and j were exchanged. In the third line the right hand
side was calculated as the “mean value” of the expressions in the first and
second line. In the last line the left and the right hand side of the equation
could be written as total time derivatives, from which the conservation of
total energy is obtained:

1
2

n∑
i=0

mi ẋ2
i − 1

2 k2
n∑

i=0

n∑
j=0,j �=i

mi mj

|xi − xj |
= E . (3.47)

Ten first integrals were found in this section, six related to the motion of
the center of mass, three to the total angular momentum, and one to the
total energy of the system. We were able to make excellent use of the first
six integrals by solving the equations of motion in the heliocentric coordi-
nate system. There is no obvious way to reduce the number of equations of
motion using the other four integrals. All attempts in this direction ruin the
symmetry and simplicity of the equations. The integrals may be used very
well, however, to check the quality of analytical or numerical solutions of the
equations of motion.

The question naturally arises whether there are other first integrals which
might further reduce the complexity of the problems. There are, e.g., the-
orems due to Poincaré and Heinrich Bruns (1848–1919). Both are negative
statements in the sense “if such and such assumptions hold, there are no
other integrals”. The assumptions are quite restrictive (which is why the the-
orems are not included here) and we agree with Moulton [77] who states: The
practical importance of the theorems by Bruns and Poincaré have often been
overrated by those who have forgotten the conditions under which they have
been proven to be hold true.

Virial Theorem. The so-called polar moment of inertia of a system is de-
fined as

I(t) def=
n∑

i=0

mi x2
i . (3.48)

By construction I(t) is always positive. It becomes infinite if one or several
of the bodies escape from the system. On the other hand, if the orbits of all
point masses would be concentric circles (with the center of mass as common
center), I(t) would be a constant. This condition certainly is not met in
our planetary system, but it is not far from the truth either. From such
considerations we see that I(t) might be a good indicator to decide whether
an N -body system is stable or not.

It is instructive to calculate the second time derivative of the polar moment
of inertia:
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İ = 2
n∑

i=0

mi xi · ẋi

Ï = 2
n∑

i=0

mi ẋ2
i + 2

n∑
i=0

mi xi · ẍi

= 4T − 2k2
n∑

i=0

n∑
j=0,j �=i

mi mj
xi · (xi − xj)
|xi − xj |3

= 4T + 2k2
n∑

i=0

n∑
j=0,j �=i

mi mj
xj · (xi − xj)
|xi − xj |3

= 4T − k2
n∑

i=0

n∑
j=0,j �=i

mi · mj

|xi − xj |

= 4T − 2U .

(3.49)

The second time derivative of I(t) is a function of the total kinetic and
potential energy (or of the force function), or the total energy (which is
constant) and either the kinetic or the potential energy of the system:

Ï = 4T − 2U = 2E + 2T = 4E + 2U . (3.50)

Equation (3.50) is a special form of the virial theorem. The above equation
is not a self-contained differential equation: the right hand side of equation
(3.50) may only be computed if either the potential or the kinetic energy are
known as a function of time.

Because the total kinetic energy of the system must always be a positive
quantity and because a positive Ï inevitably leads to the destruction of the
system, we have to ask for E < 0 as a necessary condition for a stable system.
This condition is not sufficient, however.

For many applications, the virial theorem may be written in a more mean-
ingful way, in particular if the solution is periodic or if all coordinates and
velocities vary only within certain given limits. The former condition is not
given in the planetary system, the latter just might be the case if the system
is stable. In the cases mentioned it makes sense to compute the mean value
of Ï over a certain time interval ∆t as

¯̈I
(

t +
∆t

2

)
=

1
∆t

t+∆t∫
t

Ï(t′) dt′ =
1

∆t

(
İ(t + ∆t) − İ(t)

)
= 4T̄ − 2Ū ,

(3.51)
where T̄ is the mean value of the total kinetic energy of the system in the
time interval [t, t + ∆t], −Ū is the mean value of the potential energy in the
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same time interval. For periodic solutions the quantity 1
∆t

(
İ(t + ∆t) − İ(t)

)
is exactly zero, if ∆t is equal to an integer number of periods. For many
non-periodic systems we may assume

1
∆t

(
İ(t + ∆t) − İ(t)

)
→ 0 for ∆t → ∞ . (3.52)

In practice ∆t should be much longer than the longest period occurring in
our system. If these conditions hold we obtain the virial theorem in the form

T̄ =
Ū

2
, (3.53)

i.e., averaged over long time intervals, twice the mean value of the kinetic
energy equals the mean value of the force function. We might call this state-
ment a statistical conservation law. The relation is well known in kinetic gas
theory, but also in galactic dynamics or in the dynamics of star clusters. We
expect that this relation holds approximately in the planetary system, as
well.

3.3 The Earth-Moon-Sun-System

3.3.1 Introduction

Point masses are idealizations of real bodies, which are of finite (non van-
ishing) size. We might generalize the N -body problem by replacing all point
masses by bodies of finite extensions. In view of the physical size of the plan-
ets and of the distances between them such a generalization would not make
sense in Celestial Mechanics. There are, however, sub-systems where the bod-
ies’ size cannot be neglected. The system Earth-Moon-Sun, as visualized in
Figure 3.2, is one important example. Figure 3.2 shows the Earth and the
Moon as bodies of finite size and the Sun as a point mass. This latter ap-
proximation is justified because the mass distribution within the Sun shows
almost perfect spherical symmetry and because the distance of the Sun w.r.t.
the two other bodies is big compared to the sizes of the three bodies.

Figure 3.2 illustrates the notations used throughout this section. Two parallel
coordinate systems, one inertial and one geocentric, are required. All position
vectors referring to the inertial system are characterized by x..., all referring
to the geocentric system by r.... The subscript 
 refers to the Sun, ♁ to the
Earth, and � to the Moon. The subscript p denotes a mass element (particle)
of the Earth, ℘ one of the Moon. The symbol dm is reserved for a general mass
element of a “general” celestial body. The vectors x�, x♁, x�, xp, x℘ are the
position vectors of the centers of mass of Sun, Earth, Moon, of a particular
mass element of the Earth and one of the Moon in the inertial system, r�, r�,
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Fig. 3.2. The Earth-Moon-Sun system

rp, r℘ are the corresponding vectors in the geocentric system. Occasionally,
position vectors relative to the Moon’s center of mass are required. In this
case we use two symbols to denote the selenocentric position vector, e.g.,
r�� for the selenocentric position vector of the Sun, r�℘ for the selenocentric
position vector of a lunar mass element.

Some of the essential facts related to the three-body problem Earth-Moon-
Sun are summarized in Table II- 2.1 in Chapter II- 2. From that table one must
conclude that the artist’s view of the Earth-Moon-Sun system in Figure 3.2
is largely exaggerated: Earth and Moon are close to spherical, which is why
the point mass model is a good approximation for the orbital motion for the
(centers of mass of the) three bodies as soon as the distances between the
bodies are big compared to the dimensions of the bodies.

Not only orbital, but also rotational motion has to be considered in this type
of three-body problem. The basic facts (see Table II- 2.1) are well known: the
Earth rotates with a period of one sidereal day about its axis. The rotation
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axis is inclined by about 23.5◦ w.r.t. the normal (pole) of the ecliptic. This
inclination angle does not vary much in time (of the order of a few degrees over
millions of years). It is well known that the rotation axis is precessing around
the pole of the ecliptic, the period being about 26500 years. This implies that
about 13000 years from now the Earth’s rotation axis will point to a point
47◦ from today’s polar star (Polaris = α Ursae Minoris), to return (more or
less) to its original position after a full precession period. The regression of
about 50′′ per year of the vernal equinox in the ecliptic was already known
to Hipparchus.

Orbital and rotational motion of the Moon show interesting peculiarities, as
well: The node of the Moon’s orbital plane (its intersection with the ecliptic)
regresses in the ecliptical plane with a period of about 18.6 years. It is also well
established that the Moon’s revolution and rotation periods agree perfectly. It
is probably not common knowledge, however, that the Moon’s rotation axis,
inclined by about 1.54◦ w.r.t. the ecliptical plane also shows the effect of
precession, where the precession period exactly corresponds to the period of
the regression of the node, illustrating the strong correlation between orbital
and rotational motion. A detailed discussion is provided in section II- 2.2.3.

It is in principle a straight forward procedure to add (some of) the planets
as additional point masses to the three-body system Earth-Moon-Sun (e.g.,
other planets of the planetary system). This is, e.g., necessary when studying
the long-term development of the Moon’s orbit or of the obliquity of the
ecliptic (see Chapter II- 2). Adding more point masses does not alter the
mathematical structure of the problem, which is why we confine ourselves to
the analysis of the three-body problem Earth-Moon-Sun subsequently.

In sections 3.3.2 to 3.3.6 it is assumed that Earth and Moon are rigid bodies.
In sections 3.3.7 and 3.3.8 we will introduce the generalizations needed to
discuss the rotation of a deformable Earth.

3.3.2 Kinematics of Rigid Bodies

Total Mass and Center of Mass. A body is said to be rigid, if the distance
between any two of its mass elements remains constant in time. Assuming a
continuous mass distribution described by a density function ρ(x), expressed,
e.g., in kg/m3, the body’s mass may be computed as a volume integral

m =
∫

dm =
∫
V

ρ(xdm) dV , (3.54)

where the integration has to be extended over the entire volume occupied by
the body.

The motion of a rigid body is completely known, if the motion of one specific
mass (or volume) element of the body with position vector x(t) is known as
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function of time, and if the orientation of a body-fixed Cartesian coordinate
system centered at this mass element is also given as a function of time (see
Figure 3.3). The former motion may be called the orbital motion, the latter
the rotational motion. In principle, an arbitrary point might be selected to
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x( )t

x dm( )t
m

dm

3

Fig. 3.3. Trajectory of an extended celestial body
∫
V

dm in the inertial system

describe the orbital motion and to serve as origin of the body-fixed coordinate
system. It is convenient, however, to select the center of mass of the body as
reference point. The center of mass of the rigid body is defined as

x
def=

1
m

∫
V

ρ(xdm) xdm dV . (3.55)

This is a straight forward generalization of the definition for the center of
mass in the N -body problem according to eqn. (3.29) – the system of point
masses merely had to be replaced by a continuous mass distribution described
by a density function ρ(x) in a volume V . Conventionally, the entire mass
m of the body is attributed to the center of mass. With these conventions,
x(t) in Figure 3.3 represents the trajectory of the center of mass, xdm, the
trajectory of an arbitrary mass element dm of the rigid body.

Coordinate Transformations and Euler Angles. The three-body prob-
lem is solved, if the trajectory xdm(t) for each individual mass element of
each body is known as a function of time, provided the initial state at an
initial epoch t0 is specified for each mass element.

In principle any coordinate system might be used for this description. An
astronomer would prefer to use only the inertial system (and possibly those
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parallel to it referring to the center of mass of one of the bodies involved), a
geodesist would prefer an Earth-fixed system (which inevitably rotates w.r.t.
the astronomical systems). The equations of motion are particularly simple in
the astronomical system, the description of locations on or within the Earth
is particularly simple in the Earth-fixed system. We have to introduce both
systems and to establish the transformation between them.

Figure 3.4 illustrates the geocentric inertial system, the Earth-fixed system
and the transformation between the two systems. Admittedly, “geocentric

Ecliptic

Equator

� �

�

Fig. 3.4. Transformation between the Earth-fixed and the geocentric ecliptical
system

inertial” is not a good designation, because any system attached to a par-
ticular point of the Earth shows accelerations w.r.t. the inertial system. By
this term we understand a geocentric system which is always parallel to the
inertial system. Figure 3.4 shows that the inertial system used here is the
ecliptical system referring to a particular epoch (in all applications the re-
alization J2000.0 [107] will be used), and that the Earth-fixed system is an
equatorial system (in all applications, the ITRF, the International Terrestrial
Reference Frame [71], will be used). Figure 3.4 documents that three angles,
the so-called Euler angles, are required to perform a coordinate transforma-
tion from the geocentric inertial to the Earth-fixed system (and vice versa).
Loosely speaking, Ψ♁ corresponds to precession (plus nutation) in (ecliptical)
longitude, ε♁ to the obliquity of the ecliptic (plus nutation in obliquity), and
Θ♁ to sidereal time, if we identify the third axis of the Earth-fixed system
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with the figure axis of the Earth (pointing approximately to the North pole,
to be defined below).

The inertial coordinates rpI (t) of the geocentric vector rp(t) of a mass el-
ement (or of any other geocentric position vector) may then be computed
from the Earth-fixed ones rpF (t) of the same vector with the following trans-
formation equations:

rpI = R3(−Ψ♁)R1(ε♁)R3(−Θ♁) rpF
def= T♁ rpF . (3.56)

The transformation matrix obviously is a function of all three Euler angles,
T♁ def= T♁(Ψ♁, ε♁, Θ♁). Note that it would have been preferable to introduce
ε̃♁ def= −ε♁ as the inclination of the Earth’s equator w.r.t. the ecliptic. In order
not to generate confusion, we follow the astronomical conventions in eqn.
(3.56) by using the obliquity of the ecliptic w.r.t. the equator (and not the
obliquity of the equator w.r.t. the ecliptic) to specify these transformations.

The equation corresponding to a particular mass element of the Moon reads
as

r℘I = R3(−Ψ�)R1(ε�)R3(−Θ�) r℘F
def= T�r℘F , (3.57)

where the angles Ψ�, ε�, Θ�, the transformation matrix T�, and the inertial
and Moon-fixed coordinates, are defined in an analogous way as the corre-
sponding quantities describing the rotation of the Earth.

Note that eqns. (3.56) and (3.57) are not vector equations, but transformation
equations for the coordinates of one and the same vector in the two systems.

Euler’s Kinematic Equations. In view of the fact that the bodies con-
sidered in this section are rigid, the velocity ṙdm of each mass element dm
relative to the center of mass of the body is merely due to a rotation about
an axis ω(t) through the center of mass of the body. The velocity of the
mass element dm of a body in the geocentric inertial system may therefore
be written as

ṙdm = ω(t) × rdm , (3.58)

where ω is the vector of angular velocity. Its absolute value ω
def= |ω| is the

angular velocity of the body’s rotation at time t, the unit vector ω/ω is the
rotation axis of the body at time t.

Equation (3.58) is a vector equation. It may be evaluated in any coordinate
system. In the inertial system the velocities of two mass elements of Earth
and Moon may be expressed as follows:

ṙpI = ω♁I (t) × rpI

ṙ℘I = ω�I (t) × r℘I . (3.59)

The velocity of a mass element p of the Earth may, on the other hand, also
be computed by taking the time derivative of eqn. (3.56):
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ṙpI =
[

Ψ̇♁ ∂

∂Ψ♁
{
R3(−Ψ♁)

}
R1(ε♁)R3(−Θ♁)

+ ε̇♁ R3(−Ψ♁) ∂

∂ε♁
{
R1(ε♁)

}
R3(−Θ♁)

+ Θ̇♁ R3(−Ψ♁)R1(ε♁) ∂

∂Θ♁
{
R3(−Θ♁)

}]
rpF .

(3.60)

The left-hand sides of eqns. (3.59) (first equation) and (3.60) are identical,
which is why the following relationship can be established:

ω♁I (t) × rpI =
[

Ψ̇♁ ∂

∂Ψ♁
{
R3(−Ψ♁)

}
R1(ε♁)R3(−Θ♁)

+ ε̇♁ R3(−Ψ♁) ∂

∂ε♁
{
R1(ε♁)

}
R3(−Θ♁)

+ Θ̇♁ R3(−Ψ♁)R1(ε♁) ∂

∂Θ♁
{
R3(−Θ♁)

}]
rpF .

(3.61)

Using the coordinate transformation from the inertial to the Earth-fixed sys-
tem

rpF = R3(Θ♁)R1(−ε♁)R3(Ψ♁) rpI (3.62)

to replace rpI by rpF on the right-hand side of eqn. (3.61), we obtain the
following remarkably simple relation:

ω♁I (t) × rpI =
[
Ṫ♁ TT♁

]
I

rpF

=

⎧⎨
⎩Ψ̇♁

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ + ε̇♁

⎛
⎝ 0 0 − sinΨ♁

0 0 cosΨ♁
sinΨ♁ − cosΨ♁ 0

⎞
⎠

+ Θ̇♁
⎛
⎝ 0 − cos ε♁ sin ε♁ cosΨ♁

cos ε♁ 0 sin ε♁ sinΨ♁
− sin ε♁ cosΨ♁ − sin ε♁ sinΨ♁ 0

⎞
⎠
⎫⎬
⎭ rpI ,

(3.63)

where [. . .]I indicates that the expression refers to the inertial system.

In view of the fact that the left-hand side of equation (3.63) may be written
in the following matrix form

ω♁I (t) × rpI =
[
Ṫ♁TT♁

]
I

rpI =

⎛
⎝ 0 −ω♁I3

+ω♁I2

+ω♁I3
0 −ω♁I1

−ω♁I2
+ω♁I1

0

⎞
⎠ rpI , (3.64)

we obtain the equation relating the components of the angular velocity vector
in the inertial system to the first derivatives of the Euler angles:
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ω♁I (t) =

⎛
⎝0 − cosΨ♁ − sin ε♁ sin Ψ♁

0 − sinΨ♁ + sin ε♁ cosΨ♁
1 0 cos ε♁

⎞
⎠
⎛
⎝ Ψ̇♁

ε̇♁
Θ̇♁

⎞
⎠ . (3.65)

The inverse transformation is given by⎛
⎝ Ψ̇♁

ε̇♁
Θ̇♁

⎞
⎠ =

⎛
⎝ sinΨ♁ cot ε♁ − cosΨ♁ cot ε♁ 1

− cosΨ♁ − sinΨ♁ 0
− sin Ψ♁ csc ε♁ + cosΨ♁ csc ε♁ 0

⎞
⎠ ω♁I (t) def= X♁I ω♁I (t) . (3.66)

Equations (3.59) and (3.60) were used to establish the relationship between
the Cartesian coordinates of the angular velocity vector of Earth rotation
in the inertial coordinate system and the first time derivatives of the Eu-
ler angles, Ψ̇♁, ε̇♁, and Θ̇♁. The same equations may be used to establish
the relationship between the Cartesian coordinates of the same vector in the
Earth-fixed system and the first derivatives of the Euler angles. The calcula-
tions are straight forward and lead to the following result:

ω♁F (t) =

⎛
⎝− sin ε♁ sin Θ♁ − cosΘ♁ 0

− sin ε♁ cosΘ♁ + sinΘ♁ 0
cos ε♁ 0 1

⎞
⎠
⎛
⎝ Ψ̇♁

ε̇♁
Θ̇♁

⎞
⎠ . (3.67)

The inverse transformation is easily derived from the above equation:⎛
⎝ Ψ̇♁

ε̇♁
Θ̇♁

⎞
⎠ =

⎛
⎝− sinΘ♁ csc ε♁ − cosΘ♁ csc ε♁ 0

− cosΘ♁ + sin Θ♁ 0
sin Θ♁ cot ε♁ + cosΘ♁ cot ε♁ 1

⎞
⎠ ω♁F (t) def= X♁F ω♁F (t) .

(3.68)
Equations (3.65, 3.66) and (3.67, 3.68) also are referred to as Euler’s kine-
matic equations of Earth rotation. We derived them in a purely algebraic way.
It is also possible to give a geometrical derivation by projecting the angular
velocities Ψ̇♁, ε̇♁, and Θ̇♁ on the resp. coordinate axes.

For later use we note the result, which was established as a side issue, so to
speak en passant in this section: It is obviously possible to express the matrix
Ṫ♁TT♁ either through the components of the angular velocity vector in the
inertial system, eqn. (3.64), or to the Earth-fixed system (analogous to eqn.
(3.64) related to the Earth-fixed system):

[
Ṫ♁TT♁

]
I

=

⎛
⎝ 0 −ω♁I3

+ω♁I2

+ω♁I3
0 −ω♁I1

−ω♁I2
+ω♁I1

0

⎞
⎠ ,

[
Ṫ♁TT♁

]
F

=

⎛
⎝ 0 −ω♁F3

+ω♁F2

+ω♁F3
0 −ω♁F1

−ω♁F2
+ω♁F1

0

⎞
⎠ .

(3.69)

Similar relationships may be derived for the Euler angles for the rotation of
the Moon. They follow from eqns. (3.65, 3.67) by replacing index ♁ by �.
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Angular Momentum Vector and Inertia Tensor. The angular momen-
tum vector of a rigid body w.r.t. a center of mass coordinate system is defined
as

h =
∫
V

ρ(rdm) rdm × ṙdm dV =
∫
V

ρ(rdm) rdm × (ω × rdm) dV . (3.70)

Using the well-known relation

rdm × (ω × rdm) = r2
dm ω − (ω rdm) rdm (3.71)

we obtain the following equation for the angular momentum vector of the
rigid body:

h =
∫
V

ρ(rdm)
{

r2
dm ω − (ω · rdm) rdm

}
dV . (3.72)

The expression shows that the Cartesian components of vector h are linear
functions of the components of the angular velocity vector ω. It may therefore
be written in the following elegant way:

h =

⎧⎨
⎩
∫
V

ρ(rdm)
[
r2
dm E− rdm ⊗ rdm

]
dV

⎫⎬
⎭ ω

def= I ω , (3.73)

where rdm ⊗ rdm is the outer product (or tensor product) of the vector (or
tensor of rank 1) rdm with itself, E is the unit tensor of rank two, I is the
inertia tensor, a tensor of rank two, as well. The inertia tensor I of a body is
thus defined by:

I =
∫
V

ρ(rdm)
[
r2
dm E− rdm ⊗ rdm

]
dV . (3.74)

Transformation Law for the Inertia Tensor, Principal Moments of
Inertia. The inertia tensor may be expressed in any coordinate system. The
tensor notation then becomes an ordinary matrix notation. Let us compute
the inertia tensor of the Earth in the inertial system as an example:

I♁I =
∫
V♁

ρ(rpI )
[
r2
p E− rpI ⊗ rpI

]
dV♁ . (3.75)

As the Earth performs rather complicated rotations in the inertial system,
the inertia tensor, expressed in the inertial system, is a quite complicated
function of time, as well. Wherever possible, one should therefore refer the
inertia tensor to an Earth-fixed system:
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I♁F =
∫
V♁

ρ(rpF )
[
r2
pF E− rpF ⊗ rpF

]
dV♁ . (3.76)

In view of the transformation equations (3.56) one easily establishes the trans-
formation law for the inertia tensor in the inertial and Earth-fixed coordinate
system:

I♁I = T♁ I♁F TT♁
= R3(−Ψ♁)R1(ε♁)R3(−Θ♁) I♁F R3(Θ♁)R1(−ε♁)R3(Ψ♁) .

(3.77)

By definition, I♁F is constant in time for a rigid Earth. In general, the matrix
will be fully populated, however.

So far, we have not put any requirements on the Earth-fixed system other
than letting its origin coincide with the center of mass. We are now in a po-
sition to introduce a particularly well-suited Earth-fixed system, namely the
one with respect to which the inertia tensor becomes diagonal. Is it always
possible to find such a system for any given density distribution? The answer
is given by the fact that it is always possible to perform a main-axis trans-
formation (a rotation in our case) r̃♁F = Ã r♁F such that Ĩ♁F = Ã I♁F ÃT

becomes diagonal. The technique consists of finding the eigenvalues and then
the eigenvectors of the matrix I♁F . We may thus assume that the coordinate
axes of the Earth-fixed system coincide with the principal axes of inertia and
that the inertia tensor in this system may be written as

I♁F
def=

⎛
⎝ I♁1 0

0 I♁2 0
0 0 I♁3

⎞
⎠ =

⎛
⎝A♁ 0 0

0 B♁ 0
0 0 C♁

⎞
⎠ ≈

⎛
⎝A♁ 0 0

0 A♁ 0
0 0 C♁

⎞
⎠ , (3.78)

where the quantities I♁1 = A♁ , I♁2 = B♁ , I♁3 = C♁ , A♁ < B♁ < C♁ are
called the principal moments of inertia.

If the inertia tensor of a celestial body becomes diagonal (as given by eqns.
(3.78) for the Earth), we call the underlying coordinate system the coordinate
system of the PAI (Principal Axes of Inertia) or simply PAI-system.

Their numerical values are listed in Table II- 2.1. In the case of the Earth,
rotational symmetry B ≈ A is an excellent approximation (as indicated in the
above equation). The principal axis corresponding to the maximum moment
of inertia, also called the figure axis of the planet, approximately points to
the North pole. Similar equations result for the inertia tensor of the Moon,
except for the approximation in equation (3.78) which is not justified in the
case of the Moon.

In the PAI-system the elements of the inertia tensor are defined as follows
(see eqn. (3.76) and take into account eqn. (3.78)):
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IF11 = A =
∫
V

ρ(r℘F ) (r2
F2

+ r2
F3

) dV

IF22 = B =
∫
V

ρ(r℘F ) (r2
F1

+ r2
F3

) dV

IF33 = C =
∫
V

ρ(r℘F ) (r2
F1

+ r2
F2

) dV

IFik
= 0 for i �= k .

(3.79)

These equations allow the establishment of the following useful relations:∫
V

ρ(r℘F ) r2 dV = 1
2 (A + B + C)

∫
V

ρ(r℘F ) r2
1 dV = 1

2 (A + B + C) − A

∫
V

ρ(r℘F ) r2
2 dV = 1

2 (A + B + C) − B

∫
V

ρ(r℘F ) r2
3 dV = 1

2 (A + B + C) − C .

(3.80)

We have established the transformation equations and the PAI-system for the
Earth. Equations of the same type may be developed for the Moon. Apart
from replacing the index “♁” by “�” they are identical with the corresponding
relations for the Earth. It is interesting to note (see Table II- 2.1) that (as
opposed to the Earth) rotational symmetry is not an appropriate approxi-
mation in the case of the Moon’s principal moments of inertia. Note that
(as in the case of the Earth) the axis of maximum moment of inertia closely
coincides with the rotation axis of the Moon, and that the axis of minimum
moment of inertia approximately points toward the Earth.

3.3.3 The Equations of Motion in the Inertial System

As in the case of the N -body problem the equations of motion first are es-
tablished in the inertial system. We set up one equation of motion for each
mass element p of the Earth and one for each mass element ℘ of the Moon.
The Sun is treated as one point mass. Afterwards, the equations of motion
are derived for the center of mass of Earth and Moon and for the angu-
lar momenta associated with Earth and Moon. Gravitational forces between
mass elements of different bodies of course have to be taken into account. In
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addition, other forces between the mass elements of one and the same body
may be considered, as long as they act along the line between the two mass
elements, and as long as the third Newtonian axiom (see Table 2.2) holds:

p ẍp = −Gm� p
xp − x�

|xp − x�|3
− Gp

∫
V�

ρ(x℘)
xp − x℘

|xp − x℘|3
dV� +

∫
V♁

fp,p′ dV♁

℘ ẍ℘ = −Gm� ℘
x℘ − x�

|x℘ − x�|3
− G℘

∫
V♁

ρ(xp)
x℘ − xp

|x℘ − xp|3
dV♁ +

∫
V�

f℘,℘′ dV�

ẍ� = −G

∫
V♁

ρ(xp)
x� − xp

|x� − xp|3
dV♁ − G

∫
V�

ρ(x℘)
x� − x℘

|x� − x℘|3
dV� ,

(3.81)

where fp,p′ and f℘,℘′ are internal forces acting from one mass element of a
body to another mass element of the same body.

The equations of motion are vector equations. They may, however, also be
interpreted as coordinate equations referring to the inertial system. In order
to reduce the formalism, the index specifying the coordinate system will be
omitted, wherever feasible.

The integrals over the gravitational and non-gravitational forces within the
same body have to be performed cautiously: The volume element occupied by
the mass elements p and ℘ on the left-hand side of the above equations must
be left out in the integration over the volumes of bodies on the right-hand
sides.

The equation of motion for the Sun is already in a useable form. Using the
decomposition xp = x♁ + rp , where x♁ is the position vector of the Earth’s
center of mass and the analogous decomposition for the position vector of
the Moon’s mass elements, one obtains by integrating over the equations of
motion of all mass elements of Earth and Moon, respectively, the equations
of motion for the centers of mass of the two bodies:
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ẍ♁ = −Gm�
∫
V♁

ρ(xp)
M

xp − x�
|xp − x�|3

dV♁

−Gm�
∫
V♁

ρ(xp)
M

∫
V�

ρ(x℘)
m�

xp − x℘

|xp − x℘|3
dV� dV♁

ẍ� = −Gm�
∫
V�

ρ(x℘)
m�

x℘ − x�
|x℘ − x�|3

dV�

−GM

∫
V�

ρ(x℘)
m�

∫
V♁

ρ(xp)
M

x℘ − xp

|x℘ − xp|3
dV♁ dV�

ẍ� = −GM

∫
V♁

ρ(xp)
M

x� − xp

|x� − xp|3
dV♁ − Gm�

∫
V�

ρ(x℘)
m�

x� − x℘

|x� − x℘|3
dV� .

(3.82)

The (double) integral
∫
V♁
∫
V ′♁

fp,p′ dV♁ dV ′♁ (and the corresponding integral for

the Moon) are zero by virtue of Newton’s third axiom. The above result was
obtained after division by the total mass of the bodies (observe the definition
(3.55) for a body’s center of mass).

In analogy to the derivation of the heliocentric equations of motion of the
planetary system, the equations of motion for the centers of mass of Sun and
Moon will be referred to the center of mass of the Earth as central body.
Let us recall here the notations shown in Figure 3.2 and introduce shorter
notations for the densities of Earth and Moon:

r� = x� − x♁
r� = x�− x♁
x℘ − xp = r℘ − rp

= r�+ r�℘ − rp

. . . = . . .

ρp
def= ρ(xp)

ρ℘
def= ρ(x℘)

ρpr =
ρ(xp)

M

ρ℘r =
ρ(x�℘)

m� .

(3.83)
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The relative densities ρpr and ρ℘r express the density as mass per volume,
where the total mass of the body serves as unit of mass.

Let us refer the equations for the geocentric motion to the geocentric inertial
system introduced previously. The equations for the geocentric motion of
Moon and Sun are obtained by subtracting the equation for the motion of
the Earth’s center of mass from the equations for the centers of mass of the
other two bodies in eqn. (3.82):

r̈� = −G (M + m�)
∫

V�

∫
V♁

ρprρ℘r

r�+ r�℘ − rp

|r�+ r�℘ − rp|3
dV♁ dV�

−Gm�

⎧⎪⎨
⎪⎩
∫
V�

ρ℘r

r� + r�℘ − r�
|r�+ r�℘ − r�|3

dV� +
∫
V♁

ρpr

r� − rp

|r� − rp|3
dV♁

⎫⎪⎬
⎪⎭

r̈� = −G (m� + M)
∫
V♁

ρpr

r� − rp

|r� − rp|3
dV♁

−Gm�
∫
V�

ρ℘r

⎧⎪⎨
⎪⎩

r� − r�− r�℘

|r� − r�− r�℘|3
+
∫
V♁

ρpr

r�+ r�℘ − rp

|r�+ r�℘ − rp|3
dV♁

⎫⎪⎬
⎪⎭ dV� .

(3.84)

The right-hand sides of these equations may be written as gradients of scalar
functions. In the equation for the Moon the gradients refer to the geocentric
coordinates of the Moon, in the equation for the Sun to those of the Sun.
This is indicated by the indices “�” and “�”.

r̈� = G (M + m�)∇�

⎧⎪⎨
⎪⎩
∫
V�

∫
V♁

ρpr ρ℘r

|r� + r�℘ − rp|
dV♁ dV�

⎫⎪⎬
⎪⎭

+ Gm� ∇�

⎧⎪⎨
⎪⎩
∫
V�

ρ℘r

|r�+ r�℘ − r�|
dV� −

∫
V♁

ρpr

(r� − rp) · r�
|r� − rp|3

dV♁

⎫⎪⎬
⎪⎭

r̈� = G (m� + M)∇�
∫
V♁

ρpr

|r� − rp|
dV♁ + Gm�∇�

⎧⎪⎨
⎪⎩
∫
V�

ρ℘r

|r� − r�− r�℘|
dV�

−
∫
V�

ρ℘r

∫
V♁

ρpr

(r�+ r�℘ − rp) · r�
|r�+ r�℘ − rp|3

dV♁ dV�

⎫⎪⎬
⎪⎭ .

(3.85)
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Equations (3.85) are the equations of orbital motion for a three-body prob-
lem with two bodies of finite size and one point mass. They reduce to the
corresponding equations (3.22) for point masses, if the mass distribution is
spherically symmetric. The generalized two-body motion is described by the
first terms on the right-hand sides of eqns. (3.85), the generalized perturba-
tion terms are the second terms on the right-hand sides. Obviously the above
equations are not yet convenient for the solution of the problem. Integrations
over the entire volume of the body are required at each integration step. Ap-
proximate and easy to use expressions for the integrals will be developed in
section 3.3.5.

The equations for the rotation of Earth and Moon are obtained by multi-
plying the equations for the mass elements for Earth and Moon in eqns.
(3.81) vectorially (from the left) with the geocentric and selenocentric po-
sition vectors rp and r�℘ and by integrating over the entire volume of the
bodies. Representing the vectors xp and x�℘ on the left-hand side as the
sums xp = x♁ + rp and x℘ = x� + r�℘ of the centers’s of mass vectors and
the geo- and selenocentric position vectors of the mass elements, and taking
into account the center of mass definition (3.55) for rigid bodies, the following
equations for the angular momenta of the two bodies result:∫
V♁

ρp rp × r̈p dV♁ = Gm�
∫
V♁

ρp
rp × r�

|r� − rp|3
dV♁

+ G

∫
V♁

∫
V�

ρp ρ℘
rp × (r�+ r�℘)
|rp − r�− r�℘|3

dV� dV♁
∫
V�

ρ℘ r�℘ × r̈�℘ dV� = Gm�
∫
V�

ρ℘
r�℘ × (r� − r�)
|r� − r�− r�℘|3

dV�

+ G

∫
V♁

∫
V�

ρp ρ℘
r�℘ × (rp − r�)
|r�+ r�℘ − rp|3

dV� dV♁ .

(3.86)

A comparison of the left-hand side of the above equations with the definition
(3.70) for the angular momentum of a celestial body reveals, that these may
be written as the time derivative of the bodies’ angular momenta:

ḣ♁ =
∫
V♁

ρp rp × r̈p dV♁

ḣ� =
∫
V�

ρ℘ r�℘ × r̈�℘ dV� .
(3.87)
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Taking into account that the gravitational attractions on the right-hand side
may be written as gradients of scalar functions, we obtain the equations for
the rotation of the Earth and the Moon:

ḣ♁ = + Gm�
∫
V♁

ρp ∇�

{
1

|r� − rp|

}
× r� dV♁

+ G

∫
V♁

∫
V�

ρp ρ℘∇�
{

1
|rp − r�− r�℘|

}
× (r�℘ + r�) dV� dV♁

ḣ� = + Gm�
∫
V�

ρ℘ ∇��
{

1
|r� − r�− r�℘|

}
× (r� − r�) dV�

− G

∫
V♁

∫
V�

ρp ρ℘∇�
{

1
|rp − r�− r�℘|

}
× (rp − r�) dV� dV♁ .

(3.88)

Note that the index of the gradient symbol indicates with respect to which
coordinates the gradient has to be taken.

As the torque acting on a body through a force f is defined as

�
def=
∫
V

ρ rdm × f dV , (3.89)

eqns. (3.88) express the physical law that the change of angular momentum
of a body is due to (and equal to) the sum of external torques acting on the
body:

ḣ♁ = ��♁ + ��♁
ḣ� = ���+ �♁� , (3.90)

where ��♁ , ��♁ are the torques exerted by Sun and Moon on the Earth,
���, �♁� those exerted by Sun and Earth on the Moon.

In the previous section the relations between the angular momentum h... and
the angular velocity vector ω..., and between the components of the angular
velocity vector and the first derivatives of the Euler angles were established
(see eqns. (3.73) and (3.65)). From these equations we may directly establish
the relation between the angular momentum vector and the Euler angles:
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⎝ Ψ̇♁

ε̇♁
Θ̇♁

⎞
⎠ = X♁I I−1♁I h♁I = X♁I T♁ I−1♁F TT♁ h♁I

def= Y♁I h♁I

⎛
⎝ Ψ̇�

ε̇�
Θ̇�

⎞
⎠ = X�I I−1�I h�I = X�I T�I−1�F TT� h�I

def= Y�I h�I .

(3.91)

Note that eqns. (3.91) are easy to evaluate: the inverse of the inertia tensor in
the body-fixed coordinate system is diagonal (the computation of the inverse
is thus trivial). The transformation matrices T... have to be evaluated at each
integration step.

Equations (3.85), (3.88) and (3.91) represent the complete set of equations
of motion of the three-body problem Earth-Moon-Sun. They describe the
geocentric orbital motions of the centers of mass of the Moon and the Sun
through eqn. (3.85) and the rotational motion of the Earth and Moon through
eqns. (3.88) and (3.91). The complete system of equations thus consists of
2× 3 = 6 second order differential equations (orbital motion), 2× 3 = 6 first
order equations for the angular momenta of Earth and Moon, and 2× 3 = 6
first order differential equations for the Euler angles. Taking into account
that each second order system may be transformed into a first order system
of twice the dimension of the second order system, we have derived a system
of d = 24 scalar, first order differential equations defining the generalized
three-body problem Earth-Moon-Sun.

Note that the entire system of d = 24 first order equations is coupled: The
geocentric position vectors of Sun and Moon are needed to evaluate the right-
hand sides of the eqns. (3.88), and the orientation of the bodies is required
to evaluate the right-hand sides of equations (3.85) describing the orbital
motion.

In order to solve the system of equations we have to specify the initial state
of the system, i.e., we have to provide the following quantities:

r�(t0) = r�0 , ṙ�(t0) = ṙ�0

r�(t0) = r�0 , ṙ�(t0) = ṙ�0

h♁(t0) = h♁0 , h�(t0) = h�0

Ψ♁(t0) = Ψ♁0 , Ψ�(t0) = Ψ�0

ε♁(t0) = ε♁0 , ε�(t0) = ε�0

Θ♁(t0) = Θ♁0 , Θ�(t0) = Θ�0 .

(3.92)

Instead of specifying the angular momentum at time t0 it may be more con-
venient to specify the corresponding angular velocity vectors ω♁ and ω� and
to use relation (3.73) to derive the initial state of the angular momentum
vectors.
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In order to use the equations of orbital and rotational motion as derived in
this section, we need to know the volumes occupied by the bodies and the
density distribution within these bodies. If we want to solve the initial value
problem defined by the above equivalent to the 24 scalar differential equations
and by the initial state of the system, we would have to evaluate the integrals
on the right-hand sides of the equations of motion at each integration step.
For a complicated density distribution this may be a formidable task. Also,
in general, we do not have the density distributions of the celestial bodies
readily available. We will therefore have to find approximations for the right-
hand sides of the equations of motion which depend only on some global
characteristics of the bodies, in particular on the total mass and the principal
moments of inertia. Such developments will be studied in section 3.3.5.

3.3.4 The Equations of Motion in the Body-Fixed Systems

Taking into account the defining equation (3.73) for the angular momentum
vector, it is easy to transform the equations (3.90) into equations for the
angular velocities (and no longer for the angular momenta) for Earth and
Moon. The left-hand sides of eqn. (3.90) may be transformed as follows:

ḣI =
d

dt

{
II ωI

}
=

d

dt

{
TIF TT ωI

}
. (3.93)

The transformation law (3.77) for the inertia tensor was used in the last step.

One such relation stands for the Earth and one for the Moon. It is important
to note in this context, that the above expression refers to the inertial system
(more precisely to a geo- resp. selenocentric system, at all times parallel to
the inertial system). In view of the definition (3.56) of the transformation
matrix T we may conclude:

ωF = TT ωI
ḣF = TT ḣI . (3.94)

With these equations the relation between the first derivative (3.93) of the
angular momentum and the angular velocity vector may be transferred easily
into the body-fixed reference system:

ḣF = TT d

dt

{
TIF ωF

}
= IF ω̇F +

[
TT Ṫ

]
F

IF ωF . (3.95)
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Using the fact that
[
TT Ṫ

]
F

=
[
ṪTT

]T
F

and in view of eqns. (3.69) and

(3.78), the following explicit relation is established for expression (3.95) in
the Earth-fixed (or Moon-fixed) system. For the first derivative of the Earth’s
angular momentum we obtain:

ḣ♁F =

⎛
⎝A♁ ω̇♁F1

+ (C♁ − B♁) ω♁F2
ω♁F3

B♁ ω̇♁F2
+ (A♁ − C♁) ω♁F3

ω♁F1

C♁ ω̇♁F3
+ (B♁ − A♁) ω♁F1

ω♁F2

⎞
⎠ . (3.96)

The differential equations (3.90) for the angular momentum in the inertial
system thus have a simple counterpart as equations for the angular momen-
tum in the body-fixed systems (Earth and Moon):

⎛
⎝A♁ ω̇♁F1

+ (C♁ − B♁) ω♁F2
ω♁F3

B♁ ω̇♁F2
+ (A♁ − C♁) ω♁F3

ω♁F1

C♁ ω̇♁F3
+ (B♁ − A♁) ω♁F1

ω♁F2

⎞
⎠ = ��♁F + ��♁F

⎛
⎝A� ω̇�F1

+ (C�− B�) ω�F2
ω�F3

B� ω̇�F2
+ (A�− C�) ω�F3

ω�F1

C� ω̇�F3
+ (B�− A�) ω�F1

ω�F2

⎞
⎠ = ���F + �♁�F .

(3.97)

It should be noted that eqns. (3.97) are equations in the components referring
to the resp. body-fixed systems, i.e., all the vector components have to refer
to the correct body-fixed coordinate system.

Eqns. (3.97) are truly remarkable: in the absence of external torques, the
components of the angular velocity vector may be established in the body-
fixed system without the knowing the motion of the rotation axis in space. As
soon as torques are present, it is of course no longer possible to establish the
angular velocity independently of the Euler angles. Therefore the equations
(3.97) should not be considered individually, but together with the so-called
kinematical relations, which now have to be related to the body-fixed system.
Eqns. (3.91) have to be replaced by the somewhat simpler relations

⎛
⎝ Ψ̇♁

ε̇♁
Θ̇♁

⎞
⎠ = X♁F I−1♁F h♁F

def= X♁F ω♁F

⎛
⎝ Ψ̇�

ε̇�
Θ̇�

⎞
⎠ = X�F I−1�F h�F

def= X�F ω�F .

(3.98)
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Equations (3.97) are the classical Euler equations for the rotation of a rigid
planet. It is interesting to note that Euler (as it is natural) first derived
his equations in the inertial system in the year 1750 in an article called
Découverte d’un nouveau principe de mécanique ([34]). The new principle
actually consisted of the insight that only the equation “change of linear mo-
mentum = sum of forces acting on a point mass” is required to understand
the motion of a rigid body, because it is always possible to create any rigid
body by superposition of small particles. Euler did not recognize at that time
that the equations of motion in the inertial system expressed the fundamental
law change of angular momentum of a body = sum of the torques acting on
the body. Limited by his computational tools – a computer at that time was
a human being – he did not gain too much detailed insight into the rotation
of planets. This remark is perhaps not justified. After all he understood very
well that the motion of the rotation axis in inertial space (i.e., precession and
nutation) is explained by the equations he derived. Euler published the equa-
tions for the rotation of a rigid body in the classical form, i.e., referred to the
body-fixed PAI-system, only in 1765 [36] in the famous article Du mouvement
de rotation des corps solides autour d’un axe variable presented to the Berlin
Academy on November 9, 1758 and published in 1765. It is amazing that the
mathematical form of the equations of motion for point masses and for rigid
bodies, as commonly used today, are both due to Leonhard Euler.

3.3.5 Development of the Equations of Motion

This section is rather technical. The one and only purpose consists of de-
veloping the integrals on the right-hand sides of the equations of the orbital
and rotational motion and to approximate the result by simple expressions.
Readers not interested in such technicalities just may inspect the final results
(eqns. (3.118) for the orbital motion, eqns. (3.124) for the rotational motion).
Let us point out, on the other hand, that the subsequent developments give
insight into the structure of the equations.

The equations of motion, as derived in the two preceding sections, are not
handy to use. Fortunately, the integrals on the right-hand sides of the equa-
tions of motion may be approximated using only the masses and the three
principal moments of inertia of Earth and Moon. A typical denominator in
the equations of motion has the general form

1
|∆ − r| , where |∆| = ∆ � r = |r| . (3.99)

This quantity may be developed into a rapidly convergent series (see, e.g.,
[25])
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1
|∆ − r| =

1
r

∞∑
n=0

(
∆

r

)n
Pn

(
r · ∆
r∆

)
=

1
r

∞∑
n=0

(
∆

r

)n
Pn(cosφ) , (3.100)

using the small quantity ∆
r as the argument of the development. φ is the angle

between the vectors r and ∆, and Pn(x) are Legendre polynomials (named
after Adrien Marie Legendre (1752–1833)) of degree n:

P0(x) = 1
P1(x) = x

P2(x) = 3
2 x2 − 1

2

. . . .

(3.101)

In view of the fact that the distances between Earth, Moon and Sun are
large compared to the physical sizes of Earth and Moon, we may confine
ourselves to the approximation up to terms of order n = 2 in the above series
development:

1
|∆ − r| =

1
r

{
1 +

r · ∆
r2

− 1
2

∆2

r2
+

3
2

(r · ∆)2

r4

}
. (3.102)

We will also need the third power of the above quantities:

1
|∆ − r|3 =

1
r3

{
1 + 3

r · ∆
r2

− 3
2

∆2

r2
+

15
2

(r · ∆)2

r4

}
. (3.103)

The integrals have to be evaluated in a well-defined coordinate system. Even-
tually, we may need the accelerations in the inertial system. It is much sim-
pler, however, to perform the integration in the body-fixed systems, the terms
involving integrals over V♁ in the Earth-fixed, the terms with integrals over
V� in the Moon-fixed system. Afterwards, the accelerations are transformed
back into the inertial system using the transformation matrices T♁ or T�.

Let us first deal with the equations (3.85) for the orbital motions of the Moon
and the Sun. The Sun is treated as a point mass in these equations, which
is why the structure of the equation for the Sun seems slightly simpler than
that for the Moon. Taking into account the development (3.102) we may
approximate the first integral for the equation of motion for the Sun on the
right-hand side as
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∫
V♁

ρpr

|r� − rp|
dV♁ =

∫
V♁

ρpr

r�

{
1 +

r� · rp

r2�
− 1

2
r2
p

r2�
+

3
2

(r� · rp)2

r4�

}
dV♁

=
1
r�

− 1
2r3�

∫
V♁

ρpr r2 dV♁

+
3

2 r5�

∫
V♁

ρpr

{
r2
�1

r2
1 + r2

�2
r2
2 + r2

�3
r2
3

}
dV♁ .

(3.104)

The integral over the first term reduces to 1
r� (due to the definition of ρpr ),

the second vanishes because the body-fixed system has the origin in the center
of mass. Using the definitions for the principal moments of inertia (3.79) and
taking into account the relations (3.80), the above approximation assumes
the form

∫
V♁

ρpr

|r� − rp|
dV♁ =

1
r�

+
A♁ + B♁ + C♁

2M r3�
−

3
(
r2
�1

A♁ + r2
�2

B♁ + r2
�3

C♁
)

2M r5�
.

(3.105)

Formula (3.105) may be brought into a standard form by

Ie� = e2
�1

A♁ + e2
�2

B♁ + e2
�3

C♁ . (3.106)

Ie� is the moment of inertia of the Earth in the direction e�, the geocentric
unit vector to the Sun. Using this result in eqn. (3.105) we obtain:∫

V♁

ρpr

|r� − rp|
dV♁ =

1
r�

+
A♁ + B♁ + C♁ − 3 Ie�

2M r3�
. (3.107)

Because the principal moments of inertia of the Earth have very similar nu-
merical values (see Table II- 2.1), the moment of inertia in direction e� will
not differ much from the three principal moments of inertia. As a conse-
quence, A♁ + B♁ + C♁ − 3 Ie� will be a small quantity, of the order of the
differences between the principal moments of inertia. Formula (3.107), after
multiplication with GM , represents the potential function of the attractive
force exerted by the mass distribution (V♁ and ρp) on a point mass with
barycentric position vector r�. The formula is known as MacCullagh’s for-
mula due to James MacCullagh (1809–1847).
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Formulas (3.105) or (3.107), when written in this form, have to be evaluated
in the Earth-fixed system. This circumstance has to be observed when tak-
ing the gradient of this potential function (as required in the equations of
motion). Although it would be possible to develop formulae for performing
these operations directly in the inertial system (see, e.g., [14]) we prefer to
use the following formulation based on taking the gradient in the Earth-fixed
system and then to transform the result back into the inertial system using
matrix T♁ def= T♁(Ψ♁, ε♁, Θ♁).

∇�
∫
V♁

ρpr

|r� − rp|
dV♁ = T♁ ∇�

{
1
r�

+
A♁ + B♁ + C♁

2M r3�

−
3
(
r2
�1

A♁ + r2
�2

B♁ + r2
�3

C♁
)

2M r5�

}
.

(3.108)

All component matrices and the gradient on the left-hand side refer to the
inertial, all symbols on the right-hand side to the Earth-fixed system.

The result (3.108) may be transcribed easily to the second term in the
equation of motion for the Sun in eqns. (3.85): the geocentric position vec-
tor r� of the Sun has to be replaced by the selenocentric position vector
r�� def= r� − r� , and the Earth-related quantities (mass, density, volume)
have to be replaced by the corresponding Moon-related quantities:

∇�
∫
V�

ρ℘r

|r�� − r�℘|
dV� = T�∇�

{
1

r�� +
A� + B�+ C�

2m�r3��

−
3
(
r2��1

A♁ + r2��2
B♁ + r2��3

C♁
)

2m�r5��

}
.

(3.109)

The last term to be considered in the equations of motion for the Sun (3.85)
contains a double integration over the volumes occupied by Earth and Moon.
First, the potential function of this term is considered. Equation (3.103) has
to be used to approximate the denominator on the left-hand side. In an
attempt to reduce the formalism we put

∆
def= rp − r�℘ (3.110)

and obtain (observe the sign to be chosen to be consistent with formula
(3.103)):
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V�

∫
V♁

ρ℘rρpr

(r�+ r�℘ − rp) · r�
|r� + r�℘ − rp|3

dV♁ dV� =
∫
V�

∫
V♁

ρ℘rρpr

r3�
{

1 +
3
r2� r� · ∆

− 3
2 r2� ∆2 +

15
2 r4� (r� · ∆)2

}
(r�− ∆) · r� dV♁ dV� .

(3.111)

All terms in the brackets {. . .}, except for the second, give non-zero con-
tributions when multiplied with r� · r� , only the second term contributes
(considering only terms up to the second order in ∆) when multiplied with
∆ · r� . Assuming again that we evaluate the integrals either in the Earth-
fixed or the Moon-fixed systems and considering that all terms linear in the
components of either rp or r�℘ and the mixed terms rpi rpk will give no con-
tribution after integration, the following terms actually have to be considered
of the above expressions (all other terms are marked with . . . in the following
equations):

∆2 = r2
p + r2�℘ − . . .

(r� · ∆)2 = r2
p1r

2�1
+ r2

p2
r2�2

+ r2
p3

r2�3
+ . . .

+ r2�℘1
r2�1

+ r2�℘2
r2�2

+ r2�℘3
r2�3

+ . . .

(r� · ∆) (r� · ∆) = r2
p1

r�1
r�1

+ r2
p2

r�2
r�2

+ r2
p3

r�3
r�3

+ . . .

+ r2�℘1
r�1

r�1
+ r2�℘2

r�2
r�2

+ r2�℘3
r�3

r�3
+ . . . .

(3.112)

The relevant terms related to Earth and Moon are very nicely separated. Note
that the components of the vectors r� and r� are referred to the geocentric
PAI-system, to the corresponding selenocentric PAI-system for Moon-related
parts. Using the expressions (3.112) we may give eqns. (3.111) the following
explicit form:∫
V�

∫
V♁

ρ℘r ρpr

(r�+ r�℘ − rp) · r�
|r� + r�℘ − rp|3

dV♁ dV� =
1
r3� r� · r�

+
{

3
2 r5�M

(A♁ + B♁ + C♁) − 15
2 r7�M

(
r2�1

A♁ + r2�2
B♁ + r2�3

C♁
)}

r� · r�

− 3
r5�M

{A♁r�1r�1 + B♁r�2r�2 + C♁r�3r�3 }

+
{

3
2 r5�m

(A�+ B�+ C�) − 15
2 r7�m

(
r2�1

A� + r2�2
B�+ r2�3

C�
)}

r� · r�

− 3
r5�m

{A�r�1r�1 + B�r�2r�2 + C�r�3r�3 } . (3.113)
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Note that for A♁ = B♁ = C♁ and A� = B� = C� the above scalar function
is reduced to the first term on the right-hand side, which is, as a matter of
fact, the term of the classical three-body problem. Using matrix notation,
the gradient of eqn. (3.113) may be written in the following elegant way:

∇�
∫
V�

∫
V♁

ρ℘r ρpr

(r�+ r�℘ − rp) · r�
|r� + r�℘ − rp|3

dV♁ dV� =
1
r3� r�

+
3

2 r5�M
T♁
{[(

A♁ + B♁ + C♁ − 5
r2� rT� I♁F r�

)
E + 2 I♁F

]
r�
}

+
3

2 r5�m
T�
{[(

A� + B�+ C�− 5
r2� rT� I�F r�

)
E + 2 I�F

]
r�
}

.

(3.114)

Equation (3.114) refers to the inertial system. The first bracket on the right-
hand side has to be evaluated in the geocentric, Earth-fixed PAI-system, the
second bracket in the corresponding selenocentric system.

With eqns. (3.108), (3.109) and (3.114) we may approximate the equations
of motion for the Sun in the three-body problem using the masses and the
principal moments of inertia. Using the work which was necessary to perform
this task it is now comparatively easy to find the corresponding approxima-
tion for the motion of the Moon in eqns. (3.85). Let us first compute the
two-body term of this motion:

∇�
∫
V�

∫
V♁

ρpr ρ℘r

|r�+ r�℘ − rp|
dV♁ dV� = ∇�

{
1
r�
}

+ T♁ ∇�
{

A♁ + B♁ + C♁
2 M r3� −

3
(
r2�1

A♁ + r2�2
B♁ + r2�3

C♁
)

2M r5�

}

+ T�∇�
{

A�+ B� + C�
2 m�r3� −

3
(
r2�1

A� + r2�2
B� + r2�3

C�)
2 m�r5�

}
.

(3.115)

The first bracket on the right-hand side may be directly evaluated in the in-
ertial system, the second refers to the geocentric, the last to the selenocentric
PAI-systems.

Equation (3.115), after multiplication with G(M + m�), contains the poten-
tial function for the generalized two-body problem Earth-Moon. The relative
motion of the centers of mass of two bodies of arbitrary shape is thus de-
scribed by a potential function which is the “weighted” sum of the potential
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functions as given by MacCullagh’s formulas for the Earth and the Moon
individually, the weights being G(M+m�)

M for the term corresponding to the

Earth, G(M+m�)

m� for the term corresponding to the Moon. This formula is,
e.g., reported by Brouwer and Clemence [27].

The first part of the perturbation acceleration in the equations of motion for
the Moon is in essence already given by formula (3.109):

∇�
∫
V�

ρ℘r

|r�� − r�℘|
dV� =

T�∇�
{

1
r�� +

A� + B�+ C�
2 m�r3�� −

3
(
r2��1

A♁ + r2��2
B♁ + r2��3

C♁
)

2 m�r5��

}
,

(3.116)

and the indirect part of the perturbative acceleration may be transcribed
from eqn. (3.114):

∇�
∫
V♁

ρpr

(r� − rp) · r�
|r� − rp|3

dV♁ =
1
r3�

r�

+
3

2r5� M
T♁
{[(

A♁ + B♁ + C♁ − 5
r2�

rT
� I♁F r�

)
E + 2 I♁F

]
r�

}
.

(3.117)

With this result the equations of motion for the generalized three-body prob-
lem may be summarized in the approximation sought in this section. The
terms below are arranged to let the point mass approximation precede the
terms proportional to the principal moments of inertia. The latter terms are
expressed as gradients of brackets {. . .}. The gradients have to be evaluated
in the corresponding body-fixed PAI-system. Afterwards the term is trans-
formed into the inertial system using the matrices T♁ and T�. When solving
the equations of motion with numerical techniques it is thus necessary to
transform the geocentric position vectors of Sun and Moon at each integra-
tion step into the geocentric and the selenocentric PAI-system, to evaluate
the gradients in these systems, and to transform the result back into the
inertial system.
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r̈� = −G (M + m�)
r�
r3� − Gm�

[
r�− r�

|r�− r�|3
+

r�
r3�

]

+
G (M + m�)

2 M
T♁∇�

{
A♁ + B♁ + C♁

r3� −
3
(
r2�1

A♁ + r2�2
B♁ + r2�3

C♁
)

r5�

}

+
G (M + m�)

2m� T�∇�
{

A� + B�+ C�
r3� −

3
(
r2�1

A� + r2�2
B�+ r2�3

C�)
r5�

}

+
Gm�
2 m� T�∇��

{
A�+ B� + C�

r3�� −
3
(
r2��1

A♁ + r2��2
B♁ + r2��3

C♁
)

r5��

}

− 3 Gm�
2 M r5�

T♁
{[(

A♁ + B♁ + C♁ − 5
r2�

rT
� I♁F r�

)
E + 2 I♁F

]
r�

}

r̈� = −G (M + m�)
r�
r3�

− Gm�

[
r� − r�
|r� − r�|3 +

r�
r3�
]

+
G(M + m�)

2 M
T♁∇�

{
A♁ + B♁ + C♁

r3�
−

3
(
r2�1

A♁ + r2�2
B♁ + r2�3

C♁
)

r5�

}

− 3 Gm�
2 M r5� T♁

{[(
A♁ + B♁ + C♁ − 5

r2� rT� I♁F r�
)

E + 2 I♁F

]
r�
}

− 3 Gm�
2 m�r5� T�

{[(
A� + B�+ C�− 5

r2� rT� I�F r�
)

E + 2 I�F

]
r�
}

.

(3.118)

The generalized equations of motion (3.118) for the geocentric motion of
the Sun and Moon are well structured: If only the first line in each of the
equations is taken into account, we obtain the equations of motion for the
classical three-body problem with point masses. If only the first three lines
of the equation for the Moon are taken into account, the equations for the
generalized two-body problem Earth-Moon are obtained.

What still remains to be done is the derivation of the equations (3.88) for the
rotation of Earth and Moon in the approximation used above for the orbital
motion. As a matter of fact, we only have to deal with the right-hand sides
of these equations, i.e., with the torques. In order to make our derivations as
simple as possible, we compute the torques in the corresponding PAI-systems.
Using the same development as in eqn. (3.104) we may write the first term
in (3.88) as
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V♁

ρp ∇�

{
1

|r� − rp|

}
× r� dV♁ =

∫
V♁

ρp ∇�

{
1
r�

+
r� · rp

r3�
− 1

2
r2
p

r3�
+

3
2

(r� · rp)2

r5�

}
× r� dV♁ .

(3.119)

What at first sight looks like a formidable task becomes rather simple, be-
cause ∇(rn) × r = 0 . Therefore, we only have to consider the terms which
result from taking the gradient of the numerators in the brackets {. . .} above.
This in turn immediately implies that only the contributions due to the sec-
ond and the fourth term have to be considered, because the other two do not
depend on r�. Taking into account that the second term is linear in the com-
ponents of rp, the integral related to this term will be zero (center of mass
condition). Therefore, only the contribution due to the last term, considering
only the dependence on r� of the numerator, will be different from zero:

∫
V♁

ρp ∇�

{
1
r�

+
r� · rp

r3�
− 1

2
r2
p

r3�
+

3
2

(r� · rp)2

r5�

}
× r� dV♁

=
∫
V♁

3 ρp

2 r5�
∇�
{
(r� · rp)2

}
× r� dV♁ =

∫
V♁

3 ρp

r5�
(r� · rp) rp × r� dV♁

=
∫
V♁

3 ρp

r5�
(r� · rp)

⎛
⎝ rp2r�3 − rp3r�2

rp3r�1 − rp1r�3

rp1r�2 − rp2r�1

⎞
⎠ dV♁ =

3
r5�

⎛
⎝ (C♁ − B♁)r�2r�3

(A♁ − C♁)r�3r�1

(B♁ − A♁)r�1r�2

⎞
⎠ .

(3.120)

In the last step we made use of the fact that only the diagonal terms of the
inertia tensor are different from zero in the PAI-system. For the computation
of the diagonal terms the formulae (3.80) were used.
The result (3.120) may be transcribed to the Sun- and Earth-induced torque
on the Moon in eqns. (3.88):

∫
V�

ρ℘ ∇�

{
1

|r� − r�− r�℘|

}
× r� dV� =

3
r5��

⎛
⎝ (C�− B�) r��2 r��3

(A�− C�) r��3 r��1

(B�− A�) r��1 r��2

⎞
⎠ .

(3.121)

Note that the result has this form only if the Moon’s PAI-system is used.
The computation of the torque exerted by the Earth on the Moon follows the
same pattern as above. It is interesting to note that to the level of approxi-
mation of this section the result is the same as if the attracting mass were a
point mass (and not an extended body). The result is given by
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∫
V♁

∫
V�

ρp ρ℘ ∇�
{

1
|rp − r�− r�℘|

}
× (r�℘ + r�) dV� dV♁

=
3 m

r5��

⎛
⎝ (C♁ − B♁) r�2 r�3

(A♁ − C♁) r�3 r�1

(B♁ − A♁) r�1 r�2

⎞
⎠

∫
V♁

∫
V�

ρp ρ℘∇�
{

1
|rp − r�− r℘|

}
× (rp − r�) dV� dV♁

=
3 M

r5��

⎛
⎝ (C�− B�) r�2 r�3

(A�− C�) r�3 r�1

(B�− A�) r�1 r�2

⎞
⎠ .

(3.122)

With the notation

γ♁1

def=
C♁ − B♁

A♁ ; γ�1

def=
C�− B�

A�
γ♁2

def=
A♁ − C♁

B♁ ; γ�2

def=
A�− C�

B�
γ♁3

def=
B♁ − A♁

C♁ ; γ�3

def=
B�− A�

C�

(3.123)

the equations for the rotation of Earth and Moon may be written in the resp.
PAI-systems as⎛
⎝ ω̇♁1

ω̇♁2

ω̇♁3

⎞
⎠+

⎛
⎝γ♁1 ω♁2 ω♁3

γ♁2 ω♁3 ω♁1

γ♁3 ω♁1 ω♁2

⎞
⎠ = +

3 Gm�
r5�

⎛
⎝γ♁1 r�2 r�3

γ♁2 r�3 r�1

γ♁3 r�1 r�2

⎞
⎠

+
3 Gm�

r5�

⎛
⎝γ♁1 r�2 r�3

γ♁2 r�3 r�1

γ♁3 r�1 r�2

⎞
⎠

⎛
⎝ ω̇�1

ω̇�2

ω̇�3

⎞
⎠+

⎛
⎝γ�1 ω�2 ω�3

γ�2 ω�3 ω�1

γ�3 ω�1 ω�2

⎞
⎠ = +

3 GM

r5�

⎛
⎝γ�1 r�♁2 r�♁3

γ�2 r�♁3 r�♁1

γ�3 r�♁1 r�♁2

⎞
⎠

+
3 Gm�

r5�

⎛
⎝γ�1 r��2 r��3

γ�2 r��3 r��1

γ�3 r��1 r��2

⎞
⎠ .

(3.124)

Obviously the equations show a particularly simple structure. For the solution
of the equations in the inertial system we obtain
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ḣ♁ = +
3 Gm�

r5� T♁
⎛
⎝ (C♁ − B♁) r�2 r�3

(A♁ − C♁) r�3 r�1

(B♁ − A♁) r�1 r�2

⎞
⎠

+
3 Gm�

r5�
T♁
⎛
⎝ (C♁ − B♁) r�2 r�3

(A♁ − C♁) r�3 r�1

(B♁ − A♁) r�1 r�2

⎞
⎠

ḣ� = +
3 GM

r5� T�
⎛
⎝ (C�− B�) r�2 r�3

(A�− C�) r�3 r�1

(B�− A�) r�1 r�2

⎞
⎠

+
3 Gm�

r5�� T�
⎛
⎝ (C�− B�) r��2 r��3

(A�− C�) r��3 r��1

(B�− A�) r��1 r��2

⎞
⎠ .

(3.125)

As usual the terms T♁ (. . .) have to be evaluated in the Earth’s PAI-system,
the terms T�(. . .) in the Moon’s PAI-system.

In the above approximation the generalized three-body problem Earth-Sun-
Moon is described by the equations (3.118) and either eqns. (3.124, 3.68) if
the rotational motion is described in the PAI-systems or eqns. (3.125, 3.66),
if this motion is described in the inertial system. These systems of equations
represent the most general three-body problem with rigid bodies considered
here.

3.3.6 Second Order Differential Equations for the Euler Angles Ψ ,
ε and Θ

The rotational motion of the Earth and the Moon are defined by the equations
(3.88) and the corresponding kinematic Euler equations (3.68) (one set of
kinematic equations must be used for Earth rotation, one for the rotation of
the Moon). Together, the equations (3.88) and (3.68) form one set of 2 · 6
first-order differential equations.

When solving the generalized three-body problem, i.e., when solving simulta-
neously the equations for the orbital and rotational motion of Earth, Moon,
and Sun, it would be preferable to transform the first order differential equa-
tion system for the Euler angles and the components of the angular velocity
vector into one second order system for the three Euler angles. This can be
achieved easily by taking the time derivative of Euler’s kinematic equations
(3.68):
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⎛
⎝ Ψ̈♁

ε̈♁̈
Θ♁

⎞
⎠ =

⎛
⎝− sinΘ♁ csc ε♁ − cosΘ♁ csc ε♁ 0

− cosΘ♁ + sin Θ♁ 0
sin Θ♁ cot ε♁ + cosΘ♁ cot ε♁ 1

⎞
⎠ ω̇♁F (t)

+
d

dt

⎛
⎝− sinΘ♁ csc ε♁ − cosΘ♁ csc ε♁ 0

− cosΘ♁ + sin Θ♁ 0
sin Θ♁ cot ε♁ + cosΘ♁ cot ε♁ 1

⎞
⎠ ω♁F (t) .

(3.126)

Using the differential equations (3.88) for the components of the angular
velocity vectors and Euler’s kinematic equations in the form (3.67) on the
right-hand sides of the above equations, one easily obtains a second-order
system for the Euler angles:

⎛
⎝ Ψ̈♁

ε̈♁̈
Θ♁

⎞
⎠ =

⎛
⎜⎝
(
− sin Θ♁ ω̇♁F1

− cosΘ♁ ω̇♁F2
+ ε̇♁ Θ̇♁ − ε̇♁ Ψ̇♁

)
/ sin ε♁

− cosΘ♁ ω̇♁F1
+ sin Θ♁ ω̇♁F2

− Ψ̇♁ Θ̇♁ sin ε♁
− Ψ̈♁ cos ε♁ + ε̇♁ Ψ̇♁ sin ε♁ + ω̇♁F3

⎞
⎟⎠ .

(3.127)

Equations (3.127) actually are second-order differential equations in the Eu-
ler angles, because the first derivatives of the components of the angular
velocity vector ω♁ in the Earth-fixed PAI-system only contain the compo-
nents of this vector (which may in turn be written as functions of the Euler
angles thanks to the kinematic equations (3.67)) and the components of the
perturbing bodies in the Earth-fixed PAI-system, which are obtained by the
corresponding components in the Earth-fixed PAI-system and the Euler an-
gles as transformation parameters.

By replacing the subscript “♁” by the subscript “�” in the above equations,
one obtains the corresponding relations for the Moon.

When using the equations (3.127) instead of the first-order version (3.88),
(3.68) one has to use the kinematic equations in the form (3.67) whenever
the angular velocity vector is required.

For analytical investigations the first-order version of the equations is usually
given the preference, when numerically solving the equations, the version
(3.127) is better suited.

3.3.7 Kinematics of the Non-Rigid Earth

Strictly speaking, expressions like body-fixed coordinate system, rotation and
angular velocity of a celestial body become meaningless when departing from
the rigid-body model and allowing for deformations.
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It is intuitively clear what has to be understood by the deformation of a
celestial body: As opposed to the rigid body approximation one allows for
the distances between individual mass elements of the body to vary in time.
These variations are due to forces acting between the mass elements. The
relevant deformations in the case of the Earth are small: the tidal deforma-
tions (mainly) due to Moon and Sun are, e.g., only of the order of a few
decimeters on the Earth’s surface and on the open ocean – an effect with a
relative amplitude of about 10−7 when measured in Earth radii.

The center of mass of a deformable body is defined in the same way as that
of a rigid body: The definition (3.55) may be taken over without any changes
– one only has to keep in mind that the physical shape of the volume V
occupied by the body may change in time. The same is true for the definition
of a celestial body’s inertia tensor: The definition (3.74) is suitable for a
deformable body as well.

It is therefore still possible to write the position vector xp (see Figure 3.2) of
a particular volume element as the sum of the position vector of the Earth’s
center of mass x♁ and the geocentric position vector rp of the volume element:

xp = x♁ + rp . (3.128)

In view of the fact that the deformations of an Earth-like planet are in general
small, it makes sense to define a rigid, rotating coordinate system w.r.t. which
the actual deformations of the body remain small at all times. Let us mention
that such a system may not exist for all celestial bodies. In the case of the
Sun there are, e.g., latitude dependent angular velocities of solar rotation,
which would invalidate this concept.

Having introduced the rigid, rotating coordinate system, it is natural to as-
sociate the angular velocity vector ω♁ with the rotating coordinate system,
implying in turn that the three Euler angles Ψ♁, ε♁ and Θ♁ describe the
orientation (attitude) of this rotating coordinate system in inertial space.

Equations (3.56) describe the transformation of the position vector of an
arbitrary volume element of the rigid Earth between the inertial and the
Earth-fixed PAI-systems. The same equations describe the transition between
the inertial and the rigid, rotating system in the case of deformable bodies.

For a rigid Earth the velocity of a volume element of the Earth may be written
as the sum of the velocity of the Earth’s center of mass and the geocentric
velocity of the element, which in turn is defined by the vector product (3.58).
If we allow for deformations we have to use the more general relation

ṙp = ω♁ × rp + δṙp , (3.129)

where δṙp describes the motion of the volume element relative to the rotating
system.
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With the above interpretation of the Euler angles Euler’s kinematic equa-
tions, i.e., the relations between the components of the angular velocity vec-
tor ω♁ and the angular velocities Ψ̇♁, ε̇♁, Θ̇♁, also may be used for the case of
the non-rigid Earth.

The definitions (3.74) and (3.70) for the inertia tensor and the angular mo-
mentum may be used for non-rigid bodies as well. One has to keep in mind,
however, that there is in general no coordinate system w.r.t. which all ele-
ments of the inertia tensor are constant in time.

The angular momentum of a deformable Earth is given by the definition
(3.70), where the representation (3.129) for the velocities of the Earth’s vol-
ume elements has to be used:

h♁ =
∫
V♁

ρ(rp) rp × ṙp dV♁ =
∫
V♁

ρ(rp) rp × {ω♁ × rp + δṙp } dV♁

= IFe ω♁ +
∫
V♁

ρ(rp) rp × δṙp dV♁ = I♁F ω♁ + κ♁ ,
(3.130)

where I♁F is the Earth’s inertia tensor expressed in a rigid, rotating coor-
dinate system and κ♁(t) is the angular momentum of the deformable Earth
relative to the same system. Note that eqns. (3.130) are the generalized re-
lations (3.73) between the angular momentum h of a deformable planet and
the angular velocity vector ω characterizing its rotation.

Up till now the definition of the rigid, rotating coordinate system was some-
what arbitrary: We just asked for a system relative to which the deformations
would be small – if possible at all times. A particularly suitable rigid, rotating
system may be defined by the requirement

κ♁(t) def= 0 (3.131)

for all times t. The idea of defining the rotating frame by asking the angular
momentum due to deformations to vanish for all times is attributed to Félix
Tissérand (1845–1896) (see [121]). The coordinate System F thus has a
slightly different meaning in the case of the deformable Earth. It may no
longer be defined as an Earth-fxed system, but as the system rotating with
the rigid coordinate system, w.r.t. which there is no inner angular momentum.

Equations (3.131) are the condition equations for the realization of a Tissérand
system. The actual realization of a Tissérand system is far from trivial, be-
cause we have no direct access to the velocities and densities in the Earth’s
interior. Usually, Tissérand systems are realized in a purely kinematic way
using the coordinates and velocities of the space geodetic observing sites on
the Earth’s crust.
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Tissérand systems are particularly suitable, because the equations of motion
are formally very similar to those of the rigid body when expressed in this
system.

3.3.8 Liouville-Euler Equations of Earth Rotation

For the derivation of the (orbital and rotational) equations of motion in the
case of deformable bodies we have to depart from the basic equations of
motion (3.81) for individual volume elements of Earth (and Moon) – as in
the rigid-body case. These equations then have to be combined according to
exactly the same pattern as in the case of the rigid body in order to obtain
the equations of motion for the center of mass and for the angular momentum
of the Earth.

When reviewing the derivation of the results (3.85) and (3.88) we observe,
that we actually did not have to assume the rigidity of celestial bodies. We
were only relying on the basic law actio=reactio between any two individual
mass elements. As long as this assumption holds, the equations of motion
(3.85), (3.88) and (3.90) remain the same for deformable bodies as for rigid
bodies.

Naturally, one has to keep in mind that the angular momentum h♁ of the
planet is now defined by eqn. (3.130), giving rise to the following equations
for Earth rotation:

d

dt

{
I♁F ω♁ + κ♁

}
= ��♁ + ��♁ . (3.132)

Equations (3.132) are vector equations. They may, however, also be inter-
preted as equations in the coordinates of the inertial system. Note that eqn.
(3.132), defining the rotation of a non-rigid body in inertial space, and the
first of eqns. (3.90), defining the same motion for a rigid body, are formally
identical, if a Tissérand system is used in the former case. Observe also, how-
ever, that I♁F cannot be transformed into a system, where all of its elements
are time independent.

The torques ��♁ and ��♁ are defined by the integrals on the right-hand side
of eqns. (3.88). When evaluating these integrals, one of course would have
to take the deformations into account, as well. In view of the fact that the
torques are small quantities, the rigid-body approximation is in practice good
enough for the computation of these integrals.

In section 3.3 it was argued that the equations for the rotation of the Earth
are particularly simple when referred to the body-fixed PAI-system. We can-
not expect a comparable gain, when transforming the equations for Earth
rotation into the rigid, rotating coordinate system – just because the inertia
tensor will neither become diagonal nor time-invariant in this system.
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For Earth-like planets it is, however, always possible to introduce a rigid, ro-
tating coordinate system w.r.t. which the off-diagonal elements of the inertia
tensor and the time-varying part of the diagonal elements are small when
compared to the diagonal elements of the corresponding rigid body.

The transformation of eqns. (3.132) from the inertial into the rigid, rotating
coordinate system follows the pattern of the transformation from the inertial
into the Earth’s PAI-system in the case of the rigid body (see section 3.3.4).
After a few rather tedious, but elementary algebraic transformations one
obtains:

d

dt

{
I♁F ω♁ + κ♁

}
+ ω♁ ×

{
I♁F ω♁ + κ♁

}
= ��♁ + ��♁ , (3.133)

where:

��♁ =
Gm�

r5� r�× (I♁F r�)

��♁ =
Gm�

r5�
r� × (I♁F r�) .

(3.134)

When using a Tissérand system, equations (3.133) assume the following par-
ticularly simple form

d

dt

{
I♁F ω♁

}
+ ω♁ ×

{
I♁F ω♁

}
= ��♁ + ��♁ . (3.135)

Equations (3.135) are usually referred to as the Liouville-Euler equations of
Earth rotation (named after Joseph Liouville (1809–1882) and Euler).

Note that for the special case of the rigid body eqns. (3.135) reduce to the
simpler equations (3.124), if the PAI-system is used. For a rigid body we
might use the Liouville-Euler equations (3.135) as the equations of motion
referring to an arbitrary body-fixed system. In this case we might even make
use of the fact that the inertia tensor is not a function of time and write

I♁F ω̇♁ + ω♁ ×
{
I♁F ω♁

}
= ��♁ + ��♁ , (3.136)

whereas we have to take into account the time variability of the inertia tensor
for non-rigid Earth models:

İFe ωFe + I♁F ω̇♁ + ω♁ ×
{
I♁F ω♁

}
= ��♁ + ��♁ . (3.137)

We are now in a position to solve the Liouville-Euler equations, provided the
inertia tensor and its time derivative are known. For this purpose we have to
specify the nature of the deformations considered. This discussion will be a
central issue in Chapter II- 2.
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3.4 Equations of Motion for an Artificial Earth Satellite

3.4.1 Introduction

The equations of motion for artificial Earth satellites and their derivation
from the Newtonian axioms is closely related to the developments related to
the Earth-Moon-Sun system. Figure 3.3 may also serve to describe the motion
of an artificial Earth-satellite in its orbit around our planet. It reminds us,
that in general, artificial Earth satellites should be viewed as “extended”
objects. A complete description of the satellite’s motion comprises the motion
of its center of mass and the orientation of a satellite-fixed coordinate system
(with origin in the center of mass of the satellite) in inertial space. In the
context of artificial satellites this orientation w.r.t. inertial space is called
the attitude of the satellite. Figure 3.5 illustrates the body-fixed coordinate
system for a satellite of the US Global Positioning System.
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Fig. 3.5. Body-fixed coordinate system of a GPS satellite

Whereas the orientation of Earth and Moon is defined uniquely by Euler’s
equations (3.124), the same cannot be true for active satellites, like e.g., GPS
satellites. These navigation satellites have to orient their antennas (along the
positive z-axis) always (more or less) towards the Earth’s center, in order to
optimize signal reception for navigation and positioning on the Earth’s sur-
face or in the Earth-near space (precise orbit determination for LEOs). The
solar panels of the GPS satellite provide the energy for the operation of the
satellites. In order to optimize the energy gain, the panels’ surfaces have to
be perpendicular to the direction Sun-satellite at all times. This is why the
attitude of the satellite has to be actively controlled. For GPS satellites the
nominal attitude is maintained with momentum wheels, mounted on the axes
of the satellites. Only occasionally, when the momentum wheels in the satel-
lites are spinning too rapidly, the rotation of the wheels has to be stopped,
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and the attitude has to be maintained using thrusters (this de-spinning of
the wheels is called “momentum dump”). If the attitude of satellites is main-
tained actively, the Euler equations for the rotation of a body are completely
ruled out (or they should be modified to include the torques applied by these
mechanisms).

There are satellites, for which the orientation is not important. The satel-
lites Lageos I and Lageos II (Lageos II is shown in Figure 2.4 in Chapter
2) were, e.g., designed as massive, spherically symmetric bodies with Laser
retro-reflectors distributed over the satellites’ surface. As the name implies,
the satellites were constructed to be observed by the Laser observation tech-
nique (for a precise definition of the Laser measurement see Chapter II- 3).
The reduction of the distance measurement from the actual reflector to the
satellite’s center of mass is trivial and needs no knowledge of the attitude of
the (spherically symmetric) satellite. Also, the mass distribution within the
satellite is almost perfectly spherically symmetric, which is why the attitude
of the satellite should not have any sizeable influence on the motion of the
center of mass.

The two examples indicate that in satellite geodesy often the attitude plays
a lesser role than the orbital motion, or, if the attitude is important, it is
established by active control mechanisms onboard the satellite, momentum
wheels and thrusters being the important tools for attitude maintenance.
However, as soon as a satellite is not (or is no longer) actively controlled, its
attitude may be derived from Euler’s equations describing the rotation of a
rigid body. This is why in section 3.4.3 we include the equations governing
a rigid satellite’s attitude under the assumptions that there are no active
control mechanisms onboard. In the same section we also discuss the validity
of separation of orbital and rotational motion for artificial satellites. In section
3.4.2 we uniquely focus uniquely on the motion of a satellite’s center of mass.

3.4.2 Equations for the Center of Mass of a Satellite

Apart from the attitude-related issues mentioned in the introductory section
3.4.1 the following differences w.r.t. the equations of motion dealt with so far
are relevant:

• The mass of an artificial satellite always may be neglected w.r.t to the
masses of Earth, Moon, Sun, and planets. This aspect considerably reduces
the complexity of the problem because we do not have to worry about the
accelerations exerted by the satellite on these celestial bodies.

• The orbits and orientation of Earth, Sun and Moon, and planets, required
to compute the satellite’s motion, may be assumed as known.

• Due to the proximity of artificial Earth satellites with height above surface
ranging from 150 − 200 km (below this height above the Earth’s surface
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an orbiting object will decay rather rapidly) up to, let us say, the geosta-
tionary belt at a geostationary distance of about 42000 km, it is no longer
sufficient to take only the main term and the second-order terms of the
Earth’s gravitational potential into account. A much more complete de-
scription including hundreds of terms of the stationary part of the Earth’s
gravitational potential is needed.

• The tidal deformations of the Earth (solid Earth and ocean tides) have to
be modeled as well when computing the gravitational attraction acting on
the satellite.

• Non-gravitational forces like

– Air drag due to the Earth’s upper atmosphere,

– solar radiation pressure effects,

– thruster firings,

– etc.

have to be considered as well.

The first of the above aspects is the only one reducing the complexity of the
problem. It allows us to address the equations for one satellite at the time,
which is why usually only three differential equations (of second order) for the
center of mass (and possibly three more equations describing the attitude) are
considered subsequently. The second aspect does not pose delicate problems,
in particular if the point mass approximation is used. The third aspect, the
generalization of the Earth’s gravitational potential, is the main topic of this
section. Non-gravitational forces (aspect 5) will be dealt with in Chapter II- 3
together with the forces associated with the aspects of a non-rigid Earth. The
discussion of tidal deformations is postponed to Chapter II- 3.

The Equations of Motion in the Inertial System. In the inertial system
the equations of motion for an artificial satellite follow directly from the
Newtonian axioms. In analogy to eqns. (3.81) the equations of motion of the
center of mass x of a satellite of mass m may be set up as follows:

m ẍ = −Gm

∫
V♁

ρpr

x − xp

|x − xp|3
dV♁

− Gm

n∑
j=1

mj
x − xj

|x − xj |3
+
∑

fng + . . . ,

(3.138)

where
∑

fng is the sum of non-gravitational forces acting on the satellite.
Apart from the Earth’s gravitational attraction the gravitational effects of
n ≥ 2 celestial bodies have to be modelled (Sun and Moon and possibly
(other) planets), where the point mass model can be adopted for all per-
turbing bodies. This is justified in most cases due to the distances of the



3.4 Equations of Motion for an Artificial Earth Satellite 99

satellite w.r.t. these bodies. For very ambitious applications (very long satel-
lite arcs) the term associated with lunar gravitation would have to be taken
into account by a volume integral, as well.

Dividing all terms of the above equation by the mass of the satellite gives the
acceleration of the satellite in the inertial reference frame. Using moreover
the relative density function, we obtain the equation of motion of the satellite
in the inertial system, with M = mass of the Earth:

ẍ = −GM

∫
V♁

ρpr

x − xp

|x − xp|3
dV♁ − G

n∑
j=1

mj
x − xj

|x − xj |3
+
∑

ang + . . . ,

(3.139)

where ang are the non-gravitational accelerations (better: forces per mass
unit) acting on the satellite. In the same approximation (i.e., point mass
approximation to describe the relative motion of all celestial bodies except
that of the satellite) the equations of motion for the Earth’s center of mass
may be written as (compare eqns. (3.82)):

ẍ♁ = −G
n∑

j=1

mj
x♁ − xj

|x♁ − xj |3
. (3.140)

For highest accuracies one might use the equation (3.82) to model the motion
of the Earth’s center of mass. For all applications we consider in this book,
the approximation (3.140) is sufficient. The generalization is straight forward
and may be left to the reader.

The Equations of Motion in the Geocentric System. Subtracting eqn.
(3.140) from eqn. (3.139) leads to the equation for the geocentric motion of
the satellite’ center of mass, r

def= x − x♁ (the geocentric position vectors for
the other bodies are defined in the same way).

r̈ = −GM

∫
V♁

ρpr

r − rp

|r − rp|3
dV♁

− G

n∑
j=1

mj

{
r − rj

|r − rj |3
+

rj

r3
j

}
+
∑

ang + . . . .

(3.141)

The above equation is a vector equation. It may, however, also interpreted
as an equation in Cartesian coordinates. Due to the fact that the equatorial
plane is in an excellent approximation a plane of symmetry of the Earth, it
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makes sense to refer the above equations to the equatorial geocentric coor-
dinate system of a particular reference epoch (which we always select as the
system J2000.0). The system is a so-called quasi-inertial system (as it is not
rotating w.r.t. any inertial system, but its origin is attached to the Earth’s
center of mass).

The gravitational terms on the right-hand sides of these equations may be
written as gradients of a potential function.

r̈ = GM ∇
∫
V♁

ρpr

|r − rp|
dV♁

+ G∇

⎡
⎣ n∑

j=1

mj

{
1

|r − rj |
+

rj · r
r3
j

}⎤⎦+
∑

ang + . . . .

(3.142)

Note that tidal effects, which are due to the Earth’s deformation caused by the
gravitational attraction of Moon and Sun (see Chapter II- 2), are included in
the equations of motion (3.142) provided the volume occupied by the Earth’s
body and the density ρpr are considered as time-varying quantities. In order
to simplify the discussion, we will assume for the remainder of this chapter
that the Earth is rigid and postpone the discussion of the tidal potential to
Chapters II- 2 and II- 3.

It was already mentioned that the equations of motion (3.142) may also be
interpreted as equations in the components of vector r in the geocentric
quasi-inertial system. It is, however, much more convenient to evaluate the
volume integral in the Earth’s PAI-system and to evaluate the gradient in
this system. This is achieved by transforming the component matrix from
the inertial to the Earth’s PAI-system, taking the gradient in this system
system, and then by transforming the gravitational acceleration due to the
Earth into the inertial system. Using this concept, the equations of motion
in the geocentric quasi-inertial system may be written in the form

r̈ = GM T♁ ∇V (r) + G∇

⎡
⎣ n∑

j=1

mj

{
1

|r − rj |
+

rj · r
r3
j

}⎤⎦+
∑

ang + . . . ,

(3.143)

with the understanding that all component matrices in the equations of mo-
tion (3.143) refer to the inertial system, except for the term ∇V (r), which
refers to the Earth’s PAI-system. The back-transformation into the inertial
system is performed by the matrix T♁, eqn. (3.56), which is why T♁ ∇V (r)
is a component matrix referring to the quasi-inertial geocentric system (as
all other terms on the right-hand side of eqn. (3.143)).
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The Earth’s Stationary Gravitational Potential. According to eqn.
(3.143) the potential function of the Earth may be written as

V (r) = GM

∫
V♁

ρpr

|r − rp|
dV♁ . (3.144)

In this definition V (r) is always positive. One easily verifies that the following
equation holds by taking first the gradient∇V (r) of the above scalar function,
then the divergence ∇ · ∇V (r) def= ∆V (r) of the gradient:

∆V (r) def=
{

∂2

∂r2
1

+
∂2

∂r2
2

+
∂2

∂r2
3

}
V (r) = 0 , (3.145)

where ri , i = 1, 2, 3, are the Cartesian coordinates of the vector r in the
Earth-fixed system (the equation would of course hold in any Cartesian coor-
dinate system). Equation (3.145) is called the Laplace equation. This equation
holds for any potential for vectors r outside the mass distribution (for satel-
lites, as long as they are in orbit(!), this condition is certainly met).

As the mass distribution within the Earth is close to spherically symmetric,
it makes sense to express Laplace’s equation in spherical, rather than rect-
angular coordinates. Let us introduce the following spherical coordinates in
the Earth-fixed system:

r1 = r cosφ cos λ ; r =
√

r2
1 + r2

2 + r2
3

r2 = r cosφ sin λ ; φ = arcsin
r3√

r2
1 + r2

2 + r2
3

r3 = r sin φ ; λ = arctan
r2

r1
,

(3.146)

where r is the geocentric distance, φ the latitude, and λ the longitude of the
satellite. φ and λ are geocentric coordinates, where the longitude λ is positive
East of the Greenwich meridian. For points on the northern hemisphere the
latitude φ is positive, for the southern hemisphere it is negative.

It is a tedious, but straightforward exercise to transform the Laplace equation
from rectangular to spherical coordinates:{

1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 cosφ

∂

∂φ

(
cosφ

∂

∂φ

)
+

1
r2 cos2 φ

∂2

∂λ2

}
V (r) = 0 ,

(3.147)
where

∆ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 cosφ

∂

∂φ

(
cos φ

∂

∂φ

)
+

1
r2 cos2 φ

∂2

∂λ2
(3.148)

is the Laplace operator in spherical coordinates.
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Every solution of the Laplace equation, be it expressed in rectangular (3.145)
or in spherical coordinates (3.147), is called a harmonic function. Solutions
of eqn. (3.147) are called spherical harmonic functions, or briefly spherical
harmonics.

It is particularly attractive that the solutions of the second order partial
differential equation (3.147) may be separated in spherical coordinates:

V (r) = R(r)Φ(φ)Λ(λ) . (3.149)

A formal proof for this equation and the derivation of its solution may be
found in any treatment of potential theory and in many textbooks of physical
geodesy. Let us mention in particular the very concise treatment by Kaula
[62] and the more elaborate and complete treatments in [52] and [124]. The
final result may be brought into the following form:

V (r, λ, φ) =
GM

r

∞∑
i=0

(a♁
r

)i i∑
k=0

P k
i (sin φ)

{
Cik cos kλ + Sik sin kλ

}
,

(3.150)
where a♁ ≈ 6378137 m (see Table II- 2.1) is the equatorial radius of the Earth.
The functions P k

i (x) are the associated Legendre functions, which may be
defined as follows:

P 0
i (x) = Pi(x) =

1
2i i!

di

dxi

{
(x2 − 1)i

}

P k
i (x) = (1 − x2)

k
2

dk

dxk

{
Pi(x)

}
, k = 0, 1, . . . , i ,

(3.151)

where Pi(x) are the Legendre polynomials as they were already introduced in
eqns. (3.101). The coefficients Cik and Sik are defined as (see, e.g., [124]):

Ci0 =
1
ai♁

∫
V♁

ρpr ri Pi(sin φp) dV ; i ≥ 0

Cik =
2
ai♁

(i − k)!
(i + k)!

∫
V♁

ρpr ri P k
i (sin φp) cos kλp dV ; i, k ≥ 0 , k ≤ i

Sik =
2
ai♁

(i − k)!
(i + k)!

∫
V♁

ρpr ri P k
i (sin φp) sin kλp dV ; i, k > 0 , k ≤ i .

(3.152)

(Remember that ρpr = ρ(rp)/M is the relative density as introduced in eqns.
(3.83)). The use of the equatorial radius a♁ of the Earth and the isolation
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of the factor GM
r in the representation (3.150) for the Earth’s gravitational

potential function is somewhat arbitrary. It has the advantage that the coef-
ficients Cik and Sik become dimensionless. Another advantage of this scaling
procedure resides in the fact that for LEOs, where a♁

r ≈ 1, the coefficients
may be easily compared with each other, in particular with the main term
C00 = 1.

The index i is called the degree, k the order of the spherical harmonic func-
tion in the above notation. For the sake of completeness we mention that the
Legendre functions, multiplied by either sin kλ or cos kλ, are called spheri-
cal functions ; if multiplied in addition with 1

ri+1 they are called spherical
harmonic functions (and they are solutions of the Laplace equation (3.147)).

It is worthwhile to calculate the first few low degree (and order) coefficients
Cik and Sik of the development (3.150). It should be mentioned that, because
of

sinkλ = 0 , for k = 0 ,

one may set
Si0 = 0 , for i = 0, 1, 2, . . . . (3.153)

Let us now calculate all terms up to degree i = 1 using the defining equations
(3.152). In order to preserve generality the results will first be given w.r.t. to
an arbitrary coordinate system, only in the last step it will be assumed that
the coordinate system refers to the center of mass. The result for the orders
zero and one are:

C00 =
∫
V♁

ρpr r0
p dV = 1

C10 =
1
a♁
∫
V♁

ρpr rp sin φp dV =
1
a♁
∫
V♁

ρpr rp3 dV =
r3

a♁ = 0

C11 =
1
a♁
∫
V♁

ρpr rp cosφp cosλp dV =
1
a♁
∫
V♁

ρpr rp1 dV =
r1

a♁ = 0

S11 =
1
a♁
∫
V♁

ρpr r cosφp sin λp dV =
1
a♁
∫
V♁

ρpr rp2 dV =
r2

a♁ = 0 .

(3.154)

The equalities “= 0” hold, because the coordinate system refers to the Earth’s
center of mass. The term C00, multiplied by M , is the total mass of the Earth,
the coefficients C10, C11 and S11 are the center of mass coordinates divided
by a♁ (expressed in units of the equatorial radius a♁).
In principle the origin of the coordinate system should coincide with the cen-
ter of mass of the Earth (this is what we assumed so far). In practice, one has
the difficulty that the center of mass of the Earth has to be determined from
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satellite geodetic observations relative to a polyhedron of observing sites on
the Earth’s crust. This implies that, with improving observation techniques
and processing strategies, better and better estimates for the center of mass
relative to the polyhedron of observing stations become available. If a new
center of mass estimate becomes available, one has in principle two options:

(a) Coefficients C10 �= 0, C11 �= 0 und S11 �= 0 are accepted, or,

(b) C10 = C11 = S11 = 0 is enforced, but then the coordinates of the entire
polyhedron of observing sites have to be adapted in order to refer to the
newly established center of mass.

In practice one often prefers option (a) – obviously there are more users of
station coordinates than of potential coefficients.

The coefficients of second degree may all be expressed in terms of the elements
of the inertia tensor. The developments are first given w.r.t. an arbitrary
coordinate system; in the last step the result refers to the PAI-system.

C20 =
1
a2♁
∫
V♁

ρpr r2
p

[
sin2 φp − 1

2 cos2 φp

]
dV

=
1
a2♁
∫
V♁

ρpr

[
r2
p3

− 1
2

(
r2
p1

+ r2
p2

) ]
dV

=
1

M a2♁
[

1
2

(
I♁F11

+ I♁F22

)
− I♁F33

]
=

1
M a2♁

[
1
2 (A♁ + B♁) − C♁

]

C21 =
1
a2♁
∫
V♁

ρpr r2
p cosλp cosφp sin φp dV

=
1
a2♁
∫
V♁

ρpr rp1 rp3 dV = − 1
M a2♁

I♁F13
= 0

S21 =
1
a2♁
∫
V♁

ρpr r2
p sin λp cosφp sin φp dV

=
1
a2♁
∫
V♁

ρpr rp2 rp3 dV = − 1
M a2♁

I♁F23
= 0

(3.155)
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C22 =
1
a2♁
∫
V♁

ρpr

1
4 R2 cos2 φp

(
cos2 λp − sin2 λp

)
dV

=
1
a2♁
∫
V♁

ρpr

1
4

(
r2
p1

− r2
p2

)
dV

=
1
4

1
M a2♁

(
I♁F22

− I♁F11

)
=

1
4

1
M a2♁

(B♁ − A♁)

S22 =
1
a2♁
∫
V♁

ρpr

1
2 R2 sin λp cosλp cos2 φp dV

=
1
a2♁
∫
V♁

ρpr

1
2 rp1 rp2 dV = − 1

2
1

M a2♁
I♁F12

= 0 .

From the above results it may be seen that, only if the coordinate axes
coincide with the axes of principal inertia, we have

C21 = S21 = S22 = 0 . (3.156)

It is an old tradition to let the first axis of the Earth-fixed coordinate system
lie in the Greenwich meridian. This is why in practice we might have C21 =
S21 = 0, but S22 �= 0.

If only terms up to degree 2 are taken into account and if a geocentric coordi-
nate system with its third axis lying in the figure axis of the Earth is chosen,
the potential function (3.150) assumes the following simple form:

V (r, λ, φ) =
GM

r
+

GM

M r3

{(
3
2 sin2 φ − 1

2

) [
1
2 (A♁ + B♁) − C♁

]

+ 3 cos2 φ
[

1
4 (B♁ − A♁) cos 2λ − 1

2 I♁F12
sin 2λ

]}
.

(3.157)

Except for the term proportional to I♁F12
, which would disappear if the coor-

dinate system would coincide with the Earth’s three principal axes of inertia,
the formula is just another version of MacCullagh’s formula (3.105) .

Let us now discuss the general development (3.150) of the Earth’s potential
function. Terms of any degree i and of order k = 0 do not depend on the
longitude λ. Their latitude dependence is defined by the Legendre polynomi-
als Pi(sin φ). Legendre polynomials of degree i have exactly i different roots
in the interval I = [−1, +1]. Relating this to the concrete problem we dis-
tinguish exactly i + 1 latitude zones on the unit sphere, at the borders of
which the Legendre polynomial changes sign. Figure 3.6 illustrates the case
i = 6, k = 0, where zones with positive polynomial values are white, those
with negative values black. Terms with k = 0 of the potential function are
called zonal terms. According to their definition (3.151), the associated Leg-
endre functions P i

i (sin φ) are constants, i.e., they neither depend on latitude
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Fig. 3.6. Zonal harmonic function (i = 6 , k = 0)

nor longitude. The associated spherical functions are either multiplied by
sin iλ or cos iλ. Therefore they have the same sign for all latitudes, but they
change sign at i equally spaced longitudes. This is why terms with i = k are
called sectorial harmonics. Figure 3.7 illustrates a sectorial harmonic func-
tion with i = k = 7, where zones of identical sign of the harmonic function
have the same shading. Harmonic functions with k �= 0 and k �= i are called
tesseral functions. Tesseral functions divide the sphere into 2k · (i− k) differ-
ent regions, in k · (i−k) of which the tesseral function assumes a positive and
in the others negative values. Figure 3.8 illustrates a term of degree i = 13
and order k = 7.

In the development (3.150) one often uses the fully normalized Legendre
functions P̄ k

i (sin φ). The normalization is done according to the following
scheme:

Fig. 3.7. Sectorial harmonic function (i = 7 , k = 7)
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Fig. 3.8. Tesseral harmonic function (i = 13 , k = 7)

Cik =

√
2 (2i + 1) (i − k)!

(i + k)!
C̄ik , k > 0

Ci0 =
√

2i + 1 C̄i0

Sik =

√
2 (2i + 1) (i − k)!

(i + k)!
S̄ik , k > 0

P̄ k
i (sin φ) =

√
2 (2i + 1) (i − k)!

(i + k)!
P k

i (sin φ) , k > 0

P̄ 0
i (sin φ) =

√
2i + 1 P 0

i (sin φ) .

(3.158)

Table 3.1 contains the coefficient, complete up to degree and order 4, of
the development (3.150) of the JGM3 (Joint Gravity Model 3) [120]. The
coefficient C̄20, characterizing the flattening of the Earth, dominates clearly.
There is no obvious hierarchy in the coefficients after C̄20. It makes therefore
sense to speak of a flattened or oblate Earth; but to use terms like “pear-
shaped Earth” is perhaps slightly exaggerated.

The adopted values for GM and a♁ are scaling constants of the gravitational
model, which is why the values for GM and a♁ used in JGM3 are contained
in Table 3.1. There are no terms of first degree, indicating that the origin of
the terrestrial coordinate system underlying JGM3 is the Earth’s center of
mass. The coefficients C̄21 and S̄21 are very small, implying that the third
axis very closely coincides with the figure axis of the Earth. The numerical
value for S̄22 is comparatively big, due to the fact that no attempt was made
to let the equatorial axes coincide with the axes of the second and third
principal moments of inertia. The numerical value for C̄22 shows that the
mass distribution in the Earth is not fully rotationally symmetric.
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Table 3.1. The first terms of the Earth gravity model JGM3

Coefficient Value Coefficient Value

GM 398.60044150 · 1012 m3s−2 a♁ 6378136.30 m

C̄20 −0.48416954845647 · 10−3 S̄20

C̄21 −0.18698764000000 · 10−9 S̄21 +0.11952801000000 · 10−8

C̄22 0.24392607486563 · 10−5 S̄22 −0.14002663975880 · 10−5

C̄30 +0.95717059088800 · 10−6 S̄30

C̄31 +0.20301372055530 · 10−5 S̄31 +0.24813079825561 · 10−6

C̄32 +0.90470634127291 · 10−6 S̄32 −0.61892284647849 · 10−6

C̄33 +0.72114493982309 · 10−6 S̄33 +0.14142039847354 · 10−5

C̄40 +0.53977706835730 · 10−6 S̄40

C̄41 −0.53624355429851 · 10−6 S̄41 −0.47377237061597 · 10−6

C̄42 +0.35067015645938 · 10−6 S̄42 +0.66257134594268 · 10−6

C̄43 +0.99086890577441 · 10−6 S̄43 −0.20098735484731 · 10−6

C̄44 −0.18848136742527 · 10−6 S̄44 +0.30884803690355 · 10−6

We stated above that the coefficients do not show a clear hierarchy. There
is, however, an order of magnitude rule, called Kaula’s rule of thumb [62],
stating that

• the quantity

σ2
i

def=
i∑

k=0

[
C̄2

ik + S̄2
ik

]
, (3.159)

• which may be viewed as the power spectral density of the degree variances
of degree i,

• corresponding to a half wavelength of

li ≈
2πa♁
2i

≈ 20′000
i

km (3.160)

on the Earth surface,

• decreases according to the rule

σ2
i =

160 · 10−12

i3
. (3.161)

Kaula [62] spelled out his rule at a time when the geopotential was not yet
well established by satellite geodesy, which is why he mainly used terrestrial
gravimetry data for his assessment. One may ask the question why σ2

i is con-
sidered as a spectral power density: Equation (3.150) represents the potential
function on the Earth surface (more precisely for r

def= a♁) as a linear combina-
tion of periodic functions. All terms of the same degree approximately have
the same wavelength (as stated above). The power contained in a periodic
signal is, on the other hand, proportional to the square of the amplitude of
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Fig. 3.9. Power spectral density of the Earth’s gravitational field as a function
of the spherical harmonics of degree i according to Kaula’s rule and using the
coefficients of JGM3

the signal. Therefore we may interpret the quantity σ2
i as a measure for the

power contained in all terms of degree i of the gravitational field. Figure 3.9
illustrates that Kaula’s rule of thumb is an excellent order of magnitude esti-
mate. Figure 3.9 shows the logarithm of σ2

i for i = 2, 3, . . . , 70 , as a function
of the degree i using the model JGM3. The Joint Gravity Model is one of
the most recent global models for the Earth’s gravitational field. It is based
to a large extent on satellite geodetic observations. For an overview of the
development of Earth gravitational models since the beginning of the Space
Age we refer to [75].

Let us conclude this section by representing the Earth’s potential function
(3.150) in a slightly different way. Using the definitions

Cik
def= − Jik cos kλik

Sik
def= − Jik sin kλik

Jik =
√

C2
ik + S2

ik

k λik = arctan
(
−Sik

−Cik

)
,

(3.162)

the potential function of the Earth may be written in a form which is (some-
times) better suited for studying the perturbations of an artificial Earth satel-
lite:

V (r, λ, β)=
GM

r
− GM

r

∞∑
i=2

(a♁
r

)i i∑
k=0

P k
i (sin β)Jik cos k(λ−λik) . (3.163)

Note that the sign associated with the perturbation potential is purely con-
ventional and that the terms of degree 1 were assumed to be zero.
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3.4.3 Attitude of a Satellite

Coupling of Orbital and Rotational Motion. So far it was assumed that
orbital and rotational motion of a satellite may be established independently.
We considerably extended the model for the motion of the satellite’s center
of mass by including not only Earth gravity terms up to the second order, as
in eqns. (3.118) describing the geocentric orbital motion of Sun and Moon,
but also up to any order that might seem appropriate; on the other hand,
the term due to the finite size of the satellite was neglected.
Let us check whether this procedure was justified by transcribing the eqns.
for the Moon in eqns. (3.118) to a satellite, and by taking into account only
the (generalized) two-body orbital accelerations of the Earth-satellite system.
Under these assumptions eqns. (3.118) read as

r̈ = − GM
r

r3

+
GM

2 M
T♁ ∇

{
A♁ + B♁ + C♁

r3
−

3
(
r2
1A♁ + r2

2B♁ + r2
3C♁
)

r5

}

+
GM

2 m
Ts ∇

{
As + Bs + Cs

r3
−

3
(
r2
1As + r2

2Bs + r2
3Cs

)
r5

}
.

(3.164)

The satellite’s mass m was neglected in eqns. (3.164) in the sum of masses
M + m. In view of the Earth’s mass of M ≈ 6 · 1024 kg (Table II- 2.1) this is
certainly justified. Equations (3.164) are correct up to terms of second order.
The model of the acceleration due to the mass distribution of the Earth is
contained in the second term (first bracket). This approximation was much
improved previously by generalizing the term proportional to GM

2M to any
degree and not only the second as in the above equations.
The last term proportional to GM

2m in eqn. (3.164) was not considered in the
equations of motion previously established. Whether or not this was justified,
depends to a large extent on the moments of inertia, more precisely on the
quantities As/m, Bs/m, and Cs/m of the satellite. Obviously the term is
nearly zero, for As = Bs = Cs. For (close to) spherically symmetric satellites
our procedure was therefore correct.
Let us consider now a satellite consisting of two equal point masses of mass
m/2 separated by a rigid, thin rod (dumb-bell shaped satellite). Clearly,
knowledge of the satellite’s attitude is required in the second bracket (last
term). Let us assume that the rod has a length of l = 20 m. This interesting
construction has the following principal moments of inertia

A = 0 ; B = C = 2
l2

4
m = 2 · 100 · m [m2kg] . (3.165)

In the least favourable situation (i.e., when the neglected term assumes max-
imum value), the rod points to the center of the Earth and only the first term
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in the second pair of brackets in eqns. (3.164) contributes to the perturbing
acceleration a, where:

|a| < 2
3 GM

2 m r4
· 2 l2

4
m =

3 l2 GM

2 r4
≈ 3.6 · 10−11 [m/s2] . (3.166)

This looks like a small acceleration, but, in view of the fact that the smallest
perturbing accelerations considered today are of the order of 10−12 m s−2, it
would have to be taken into account. Because

• the Earth radius was used for the estimate (3.166) (for satellites in GPS
orbits we would have r ≈ 26500 km, which would reduce the estimate by
a factor of about 300, rendering the term completely irrelevant), that

• a very special set of principal moments of inertia (As = 0, Bs = Cs =
2 l2

22 m) was used for the satellite, and that

• the arc lengths spanned by one set of initial conditions usually are not
longer than a few days,

we conclude that in practice the decoupling of orbital and rotational motion
is in general justified for artificial Earth satellites.

The situation is different, if, e.g., the orbit of a tethered satellite is considered,
where the connection between the two “point masses” may have a length l of
several km. The orbital and rotational motion of such constructions is much
more complicated than the cases considered here – in particular because
the assumption of a rigid body does no longer hold and because surface
forces (drag and radiation pressure) become rather important. Probably it
is safe to state that the term discussed here (and neglected previously and
subsequently) would be the least problematic.

Attitude of a Satellite. The above considerations show that in a good
approximation the attitude of a passive satellite may be determined by Eu-
ler’s equations under the assumption that the orbital motion of the satellite’s
center of mass is known. The derivation of the equations describing the atti-
tude of a rigid satellite, which shall be characterized by the three principal
moments of inertia As, Bs, and Cs, is done in close analogy to the derivation
of the corresponding equations for Earth and Moon rotation. The equations
for the rotation of the satellite in a satellite-fixed coordinate system with the
origin in the center of mass and the coordinate axes as axes of principal iner-
tia may be transcribed from the corresponding equations (3.124) and (3.68)
of Earth rotation:⎛

⎝ ω̇s1

ω̇s2

ω̇s3

⎞
⎠+

⎛
⎝γs1ωs2ωs3

γs2ωs3ωs1

γs3ωs1ωs2

⎞
⎠ = +

3 GM

r5

⎛
⎝γs1r2r3

γs2r3r1

γs3r1r2

⎞
⎠ . (3.167)

In the transition from eqns. (3.124) to eqns. (3.167) only the torque due to
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the Earth was taken into account. The torques due to the Moon and the
Sun are orders of magnitude smaller and are not considered here. Note that
the quantities γsi , i = 1, 2, 3, are defined in analogy to the corresponding
quantities (3.123) related to Earth and Moon. ωs is the angular velocity
vector of the satellite, its components used above are those referring to the
satellite-fixed PAI-system.

How shall the motion of the angular velocity vector be described in inertial
space? It would of course be possible to take over the notation of eqn. (3.68).
This would be awkward, however, because usually an equatorial (and not
an ecliptical) coordinate system (referring to a standard epoch) is used to
describe the motion of a satellite. This is why we introduce the angles Ω′,
i′, and u′ as Euler angles describing the angular velocity vector of the satel-
lite. The analogy to the orbital motion is underlined in this definition of the
Euler angles (Ω′ corresponding to the right ascension Ω of the node of the
orbital plane, i′ corresponding to the inclination i of the orbital plane, and
u′ corresponding to the argument of latitude u of the satellite). Figure 3.10
illustrates the selected Euler angles of the satellite’s attitude in the inertial,
equatorial reference frame of a particular epoch. The figure should be com-
pared to Figure 2.1. When adapting Euler’s kinematic equations to the new
set of angles given in Figure 3.10 we have to replace Ψ by Ω′, −ε by i′, and
Θ by u′. Equation (3.68), adapted to the new problem, thus reads as

1

i'

W'

u'

3
2

x

z

y

Fig. 3.10. Euler angles Ω′, i′, and u′ describing the orientation of the satellite’s
PAI-system w.r.t. the equatorial system
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⎝ Ω̇′

i̇′

u̇′

⎞
⎠ =

⎛
⎝+ sinu′ csc i′ + cosu′ csc i′ 0

cosu′ − sin u′ 0
− sin u′ cot i′ − cosu′ cot i′ 1

⎞
⎠ωs(t) . (3.168)

Equations (3.167) and (3.168) completely describe the attitude of the satel-
lite. On the right-hand side of eqns. (3.167) the coordinates of the satellite’s
center of mass in the satellite’s PAI-system are required. The corresponding
transformation matrix from the inertial to the satellite’s PAI-system may be
written as (see Figure 3.10)

TT
s = R3(u′) R1(i′) R3(Ω′) . (3.169)

The transpose was used to preserve consistency of all transformation matrices
T♁, Tm, and Ts between the inertial and body-fixed systems. Assuming that
the satellite was, at the time considered, at a geocentric distance r with an
argument of latitude u, its coordinates in the satellite’s PAI-system are⎛
⎝ r1

r2

r3

⎞
⎠ = R3(u′) R1(i′) R3(Ω′) R3(−Ω) R1(−i) R3(−u)

⎛
⎝ r

0
0

⎞
⎠ . (3.170)

Attitude Stabilization with the Gravitational Torque. Let us try to
control the attitude of a satellite with the goal that

δΩ
def= Ω′ − Ω

δi
def= i′ − i

δu
def= u′ − u

(3.171)

remain small quantities. Initially, this may be achieved by an appropriate
choice of an initial set of parameters. If eqns. (3.171) hold, the first coordinate
axis of the PAI-system points approximately to the center of the Earth, the
second along track (at least for circular orbits) and the third axis is normal
to the (instantaneous) orbital plane. If we neglect all terms of higher than
first order in these small quantities, the transformation equation (3.170) may
be written as ⎛

⎝ r1

r2

r3

⎞
⎠ = r

⎛
⎝ 1

−δu − cos i δΩ
− sin u δi + sin i cosu δΩ

⎞
⎠ . (3.172)

To the same order of approximation the Euler equations (3.167) may be
written as⎛
⎝ ω̇s1

ω̇s2

ω̇s3

⎞
⎠+

⎛
⎝γs1 ωs2 ωs3

γs2 ωs3 ωs1

γs3 ωs1 ωs2

⎞
⎠ =

3 GM

r3

⎛
⎝ 0

γs2 (− sinu δi + sin i cosu δΩ)
− γs3 (δu + cos i δΩ)

⎞
⎠ .

(3.173)
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Let us further simplify the problem by assuming rotational symmetry about
the first axis, i.e., by putting Bs = Cs. This implies

γs1 =
Cs − Bs

As
= 0

γs2 =
As − Cs

Bs

def= γs

γs3 =
Bs − As

Bs
= − γs .

(3.174)

Equations (3.173) may then be modified as follows:

⎛
⎝ ω̇s1

ω̇s2

ω̇s3

⎞
⎠ + γs

⎛
⎝ 0

+ ωs3 ωs1

−ωs1 ωs2

⎞
⎠ =

3 γs GM

r3

⎛
⎝ 0

− sin u δi + sin i cosu δΩ
δu + cos i δΩ

⎞
⎠ .

(3.175)

As in the case of Earth rotation, the system is separated into one single
(and trivial) equation, and into a system of two equations. In this case the
constant rotation takes place about the first axis in the satellite’s PAI-frame.
This in turn transforms the system for the second and third component of
the the angular velocity vector into a linear, inhomogeneous system. It might
be solved in analogy to the solutions sketched in the case of Earth rotation.

We do not follow this procedure here, but reduce the problem further by
approximating the orbit by an unperturbed elliptical orbit and by defining
the initial state of the satellite’s rotation as follows:

δi(t0) = 0 ; ωs1(t0) = 0
δΩ(t0) = 0 ; ωs2(t0) = 0
δu(t0) = δu0 ; ωs3 = n0 .

(3.176)

where n2
0 = GM

a3 is the (Keplerian) mean motion of the satellite. With these
assumptions and initial conditions, it is easy to verify that

δi(t) = 0 ; δΩ(t) = 0
ωs1(t) = 0 ; ωs2(t) = 0 .

(3.177)

With this particular solution the third of Euler’s kinematic equations (3.168)
reads as:

u̇s = u̇ + δu̇ = n0 +

t∫
t0

ω̇s3(t
′) dt′ . (3.178)
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This equation may be transformed into an ordinary differential equation by
taking its first time derivative (and by rearranging its terms):

δü − 3 γs GM

r3
δu = − ü . (3.179)

Taking into account that, according to our assumptions, r = r(t) and ü = ü(t)
are known functions of time t, the above equation is an ordinary, linear,
non-homogeneous differential equation, which may be solved by standard
procedures. Its structure is even better visible, if the problem is once more
simplified by assuming that the orbit is circular. Then, the equation becomes
even a homogeneous linear equation with constant coefficients

δü − 3 γs n2
0 δu = 0 . (3.180)

The equation has periodic solutions, provided that

3 γs n2
0 < 0 , (3.181)

or, since n2
0 is a positive quantity, provided that

Cs = Bs > As , (3.182)

which means that the symmetric satellite must have one small and two large
principal moments of inertia (a rod or an American football would meet the
requirements) and the axis of minimum principal moment of inertia has to
point (more or less) to the center of the Earth.

With the initial conditions specified above eqn. (3.180) has the solution

δu(t) = δu0 cos(ω̃s(t − t0)) , (3.183)

where
ω̃s =

√
− 3 γs n0 , (3.184)

which means that the satellite’s axis of minimum inertia oscillates about the
radial direction with an amplitude defined (in one way or another) by the
initial state of rotation. The oscillation period is given by

Patt =
1√

− 3 γs
Prev , (3.185)

where Prev is the orbital period. The mechanism outlined is also called gravity
stabilization of a satellite. It works under more general conditions than those
considered here.

The best results (shortest period Patt) are obtained for As

Bs
→ 0. As

Bs
is zero for

an ideal rod with As = 0 and Bs = Cs �= 0, where we have γs = −1, and the
period Patt would be a factor of

√
3 shorter than the revolution period of the

satellite. The period increases with increasing ratio As

Bs
. For As = Bs = Cs
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the period becomes infinite, indicating that a spherical satellite cannot be
stabilized with this method. No periodic solutions exist for As > Bs = Cs.
Gravity stabilization was, by the way, not invented by space agencies. The
Moon and other natural satellites prove this statement.

We only addressed the principles of gravity stabilization here. For a more
detailed discussion we refer to [103] and [41].

3.5 Relativistic Versions of the Equations of Motion

The equations of motion (3.13) of the planetary system and the corresponding
equations (3.143) describing the motion of an artificial Earth satellite are
approximations of the equations as they result from Einstein’s general theory
of relativity (or of even more general theories of gravitation), which were
developed in the 20th century. A thorough treatment of this theory is outside
the scope of this book, where the emphasis is on the methods of Celestial
Mechanics. We refer to Soffel [109] for this purpose.

The relativistic version of these equations must be used, on the other hand,
for many applications in practice, e.g., to generate the ephemerides of Sun,
Moon, and planets as published in astronomical almanacs (see, e.g., [107],
or [82]) and to compute precise (cm-type) orbits of artificial Earth satellites
(see, e.g., [70]).

The corrections required by the general theory of relativity are very small.
They may be taken into account by slightly modifying the equations of motion
(3.13) of the planetary N -body problem and the corresponding equations of
motion (3.143) of an artificial Earth satellite. The mathematical structure
of the equations of motion is in essence preserved in this approximation.
The equations of motion are quoted below (without proof) from the sources
mentioned and their content is discussed. No attempt is made to describe
the rotational motion of Earth and Moon in the framework of the theory of
relativity.

When using the relativistic version of the equations of motion attention has
to be paid to use the time argument which is consistent with the equations of
motion. Terrestrial time (TT) is the correct time argument for the integra-
tion of the equations of motion (3.143) of satellite geodesy, TDB (Barycentric
Dynamical Time) is the independent argument for the solution of the equa-
tions of motion of the planetary system (which are referred to the barycenter
of the solar system). The approximate transformation between the two time
scales is provided by eqn. (3.3), more precise formulae may be found in [107].
Both, TT and TDB are derived from the atomic time TAI.

According to [107] the relativistic version of the equations of motion of the
planetary system, also called PPN (Parametrized Post-Newtonian) equations
of motion of the planetary N -body problem read as
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ẍi = − k2
n∑

j=0,j �=i

mj
xi − xj

|xi − xj |3

{
1 − 2 k2 (β + γ)

c2

n∑
k=0,k �=i

mk

|xi − xk|

− k2 (2β − 1)
c2

n∑
k=0,k �=j

mk

|xj − xk|
+ γ

ẋ2
i

c2
+ (1 + γ)

ẋ2
j

c2

− 2 (1 + γ)
c2

ẋi · ẋj − 3
2 c2

[
(xi − xj) ẋj

|xi − xj |

]2
− 1

2 c2
(xi − xj) · ẍj

}

+
k2

c2

n∑
j=0,j �=i

mj

|xi − xj |3
{
(xi − xj)

[
(2 + 2 γ) ẋi

− (1 + 2 γ) ẋj

]}
· (ẋi − ẋj) +

k2 (3 + 4 γ)
2 c2

n∑
j=0,j �=i

mj
ẍj

|xi − xj |
,

i = 0, 1, . . . , n , (3.186)

where c = 173.14463 AU/d is the speed of light in AU per day, β and γ are
parameters of the particular theory of gravitation used. For Einstein’s general
theory of relativity these parameters are

β = γ = 1 . (3.187)

With the appropriate initial conditions and masses, eqns. (3.186) are the
equations of motion describing the motion of the Sun, the planets, and (possi-
bly) their moons. The bodies are considered to be point masses in an isotropic,
PPN (Parametrized Post-Newtonian) N -body metric (see [109]).

The accelerations showing up on the right-hand side may be approximated
by the non-relativistic equations (3.13).

Taking into account that

k2

c2
≈ 0.987 · 10−8 , (3.188)

we see that the differences between the relativistic and the non-relativistic
equations are of the order of (at maximum) a few parts in 10−8.

Equations (3.186) are used to generate the ephemerides of Sun, Moon, planets
and the asteroids Ceres, Pallas, Vesta, Iris, and Bamberga for the Astronom-
ical Almanac. The complexity of eqns. (3.186) has the consequence that their
numerical solution (as compared to that of eqns. (3.13)) is very inefficient.
For applications over very long time spans (millions of years) the integra-
tion of eqns. (3.186) still is prohibitively slow – even when using modern
computers.
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For such applications it is useful to have a “light version” of eqns. (3.186)
available. It is indeed possible to reduce these equations considerably by
retaining only those correction terms proportional to m0. This is justified
under the assumption

mi � m0 , i = 1, 2, . . . , n , (3.189)

i.e., for N -body problems describing a planetary system.

Assuming that eqn. (3.189) holds, one may in addition verify that ẋ0 is
a small quantity. When calculating the correction terms it is therefore al-
lowed to replace ẋi by the corresponding heliocentric velocity vector ṙi.
With these approximations one easily verifies that eqns. (3.186) for the bod-
ies i = 1, 2, . . . , n, (i.e., for the planets and moons) may be reduced to the
following handy equations:

ẍi = − k2
n∑

j=0,j �=i

mj
xi − xj

|xi − xj |3
+

k2 m0

c2 r3
i

{[
4

k2 m0

ri
− ṙ2

i

]
ri + 4 (ri · ṙi) ṙi

}
.

(3.190)
The equations for the central body m0 (index 0) do not contain sizeable
correction terms in the sense mentioned above, which is why we may approx-
imate them as

ẍ0 = − k2
n∑

j=1

mj
xi − xj

|xi − xj |3
, (3.191)

which makes it easy to derive the relativistic equations for the relative (he-
liocentric) motion by taking the plain difference of eqns. (3.190) and (3.191)

Sometimes, the relativistic term is even further reduced. For low eccentricity
orbits one may even argue that the scalar product

ri · ṙi ≈ 0 (3.192)

may be neglected. Moreover, the “energy theorem” of the two-body problem
(see eqn. (4.20)) may be reduced for low eccentricity orbits to

ṙ2
i ≈ k2 m0

ri
, (3.193)

which allows it to reduce eqns. (3.190) to

ẍi ≈ −k2
n∑

j=0,j �=i

mj
xi − xj

|xi − xj |3
+ 3

(k2 m0)2

c2

ri

r4
i

. (3.194)

It is in essence this version of the relativistic equations of motion which was
used in the long-term integration [95] of the planetary system. Observe, that
eqns. (3.194) might be written as the gradient of a potential function, where
the potential function would differ slightly from the 1/r-potential.
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When using program PLASYS (documented in Chapter II- 10) the equations
of our solar system may be integrated in the form (3.18), corresponding to the
classical Newton-Euler formulation, in the form (3.186) corresponding to the
correct PPN-formulation (with the drawback that the integration becomes
rather inefficient), or in the approximated version (3.190), which takes into
account the corrections due to the general theory of relativity to within about
0.1%. When the latter option is selected, the integration is performed in the
heliocentric system (using the corrections defined by eqns. (3.190)).

When solving the correct equations with program PLASYS the integration
is performed in the barycenric system – which is why the equations for the
Sun have to be integrated, as well. Let us mention, that in principle this
might have been avoided by referring the equations (3.186) to the general
relativistic definition of the center of mass (see, e.g., [107]):

n∑
i=1

m̃i xi = 0 , (3.195)

where

m̃i = mi

⎧⎨
⎩ 1 +

1
2

ẋ2
i

c2
− 1

2 c2

N∑
j=1,j �=i

k2 mj

|xi − xj |

⎫⎬
⎭ . (3.196)

Observe, that eqns. (3.195) are non linear in the coordinates xi.

The relativistic corrections required for an artificial Earth satellite are easily
transcribed from eqns. (3.190) by replacing k2 m0 by GM , the product of
the gravitational constant and the Earth’s mass, and by using geocentric
instead of heliocentric position vectors. The perturbing acceleration reads as
(compare [70]):

arel =
GM

c2 r3

{[
4

GM

r
− ṙ2

]
r + 4 (r · ṙ) ṙ

}
, (3.197)

where c = 299792.458 km/s is the speed of light, r and ṙ are the satellite’s
geocentric position and velocity vector in a quasi-inertial system (one which
does not rotate w.r.t. the inertial barycentric system).

Obviously the relativistic acceleration term arel lies in the orbital plane. For
a close Earth satellite the acceleration due to the theory of relativity is of
the order of 10−9 of the main term. For precise orbit determination it is
mandatory to take such effects into account.
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3.6 The Equations of Motion in Overview

Three sets of equations of motion were developed, namely

• the heliocentric equations of motion (3.18) for the planetary system in
section 3.2;

• the geocentric equations of motion (3.118) for the centers of mass of Sun
and Moon and the equations (3.124), (3.68) for the rotation of Earth and
Moon in section 3.3;

• the geocentric equations of motion (3.143) for an artificial Earth satellite
(and the equations (3.167) and (3.168) for the satellite’s attitude in section
3.4).

These equations will be the basis for all our subsequent developments and
considerations.

In all sets of equations of motion considered, the same pattern was used to
derive the equations in their final form: Starting from (the modern under-
standing of) Newton’s axioms the equations for each particle, be it a point
mass or a mass element of an extended body, were set up in the inertial
system. Then the equations were transformed to a body-centered system by
subtracting the equations for the center of mass for the selected central body
from the equations of all the other bodies. In the planetary system we ob-
tained heliocentric, in the generalized three-body problem Earth-Moon-Sun
and for artificial Earth satellites geocentric equations of motion.

Only the orbital motion had to be considered in section 3.2, equations for the
rotation of bodies of finite extensions were derived as well in sections 3.3 and
3.4. The equations for the orbital and rotational motion are a consequence
of the same mechanical principles, the same primitive (in the word’s original
sense) equations of motion for each particle (volume element) of a system.
This pattern is perhaps best seen in the case of the three-body problem
Earth-Moon-Sun, where the final equations for orbital and rotational motion
all emerge from the same basic equations (3.81) by very simple operations:
By integrating over the equations of all particles of a body, we obtained the
equations of motion for the bodies’ centers of mass, by first multiplying the
basic equations (3.81) vectorially with their geo- or selenocentric position
vector and then integrating over these equations the equations governing the
rotation of Earth and Moon were obtained. That both, orbital and rotational
motion, are a consequence of the same principles of mechanics was one of the
deep insights Leonhard Euler gained in his article [34] around 1750.

We have seen furthermore, both for the system Earth-Moon-Sun and for the
motion of an artificial satellite, that orbital and rotational motion are not
independent. This implies that in principle the equations for the orbital and
rotational motion should always be analyzed together. This is (almost) never
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done (and not required) in practice, because the coupling between the two
types of motion is very weak.

An analysis of the equations of the three-body problem Earth-Moon-Sun
showed that both, orbital motion and rotational motion, are governed by non-
linear differential equations in time. The structure of the rotational motion
proved to be quite interesting, when analyzed in the body-fixed coordinate
system. The equations for the time development of the angular velocity vector
form a linear, inhomogeneous system of first order differential equations –
allowing for approximate analytical solutions. In general, the equations for
the angular velocity vector and for the Euler angles cannot be separated.
The resulting system is a nonlinear first order system of ordinary differential
equations for the components of the angular velocity vector and the three
Euler angles.

An alternative treatment of this standard procedure was also given in section
3.3. Instead of using the components of the angular velocity vector and the
three Euler angles to describe the rotation, it is possible to use the Euler
angles and the components of the angular momentum vector. This alternative
approach to solve the equations for the rotation is governed by eqns. (3.125)
and (3.66).

The relativistic versions of the equations of motion (N -body problem and
satellite motion) were included and discussed, but not derived. In all appli-
cations, which will be considered subsequently, it is perfectly allowed to treat
the relativistic terms as small perturbations w.r.t. the classical equations of
motion.



4. The Two- and the Three-Body Problems

The two-body problem is analyzed in section 4.1, the three-body problem in
section 4.5. In both cases we assume point masses and neglect the effects due
to the theory of general relativity.

4.1 The Two-Body Problem

4.1.1 Orbital Plane and Law of Areas

The two-body problem is governed by two point masses m0 and m, where we
call m0 the primary, m the secondary mass (the index may be left out for the
latter mass). The motion of m relative to m0 results from equations (3.18) by
retaining only the central mass m0 and one of the other point masses. This
implies that the perturbation term is zero and we obtain

r̈ = − k2 (m0 + m)
r

r3

def= −µ
r

r3
, (4.1)

where µ = k2 (m0 + m).

We follow the procedure which led to the conservation law of total angular
momentum in the N -body problem by multiplying eqn. (4.1) by the vector
operator r× and obtain

r × r̈ = −µ
r × r

r3

def= 0 . (4.2)

Obviously this implies (in analogy to the conservation of the angular momen-
tum) that

r × ṙ = h (4.3)

is constant in time. (Observe that the actual definition of vector h slightly
differs from the angular momentum as defined by the equation (3.38)). Equa-
tion (4.3) implies that the motion of the point mass m relative to m0 takes
place in a plane through m0. The orbital plane is defined by any set of po-
sition and velocity vectors r(t) and ṙ(t) (as long as the two vectors are not
collinear).
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Figure 4.1 shows that the vector h allows the computation of the orbital
elements Ω, the longitude of the ascending node, and the inclination i, with
respect to the fundamental plane of the inertial coordinate system (e.g., the
ecliptic for applications in the planetary system):

h = h

⎛
⎝ cos(Ω − π

2 ) sin i
sin(Ω − π

2 ) sin i
cos i

⎞
⎠ = h

⎛
⎝ sin Ω sin i

− cosΩ sin i
cos i

⎞
⎠ . (4.4)

This allows the computation of the two orbital elements defining the orbital
plane w.r.t. the fundamental plane chosen:

Ω = arctan
(

h1

−h2

)
, i = arccos

(
h3

|h|

)
. (4.5)

Fig. 4.1. Angular momentum vector h and orbital elements Ω and i

The length of the vector h = r × ṙ is equal to the size of the area of the
parallelogram spanned by the vectors r(t) and ṙ(t). The area dF swept up
by the position vector r(t) during the infinitesimally short time interval dt
is that of the triangle spanned by the vectors r and ṙ dt (see Figure 4.2).
Therefore, the area may be computed as:

dF = 1
2 |r × ṙ| dt = 1

2 h dt , (4.6)

where h = |h|.
We recognize eqn. (4.6) as the infinitesimal formulation of Kepler’s second
law. By integration over time it emerges that the law holds for time intervals
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u
du

m

vdt

m0

Fig. 4.2. Area filled by position vector r with velocity ṙ in short time interval dt

of arbitrary length. Kepler discovered this law for the elliptic motion in the
planetary system. Kepler’s second law for a time interval ∆t is illustrated by
Figure 2.2.

From its derivation we see that this law would hold for a broad class of force
laws, not only for the inverse square law. In essence the right hand side of
eqn. (4.1) must have the form f(r) r. We also conclude from Figure 4.2 that
we may write

dF = 1
2 r2 du , (4.7)

where u and r are polar coordinates in the orbital plane. We identify u with
the argument of latitude (see Figure 2.1), but this is not an important issue
in our context; we might as well use another reference direction in the orbital
plane.

By comparison of the right hand side of the above equation with that of eqn.
(4.6) we obtain:

r2 du = h dt

or
u̇ =

h

r2
. (4.8)

4.1.2 Shape and Size of the Orbit

Following the procedure which led to the law of energy conservation in the
N -body problem we multiply eqn. (4.1) by the vector operator ṙ· and obtain

ṙ · r̈ = −µ
ṙ · r
r3

.

Both sides of the equation may be written as time derivatives:

d

dt

{
1
2 ṙ2
}

=
d

dt

{µ

r

}
,

which leads to the well-known result

1
2 ṙ2 − µ

r
= Ẽ , (4.9)
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where Ẽ may be designated as the energy constant of the two-body problem.
As ṙ2 and µ

r are both positive quantities, and as µ
r → 0 for r → ∞, only for

Ẽ < 0 the body m will never escape the main body. For Ẽ = 0 the body m
has a velocity |ṙ| → 0 for r → ∞, for Ẽ > 0 the absolute value of the velocity
will be positive for r → ∞. Equation (4.9) also implies that the absolute
value of the velocity uniquely is a function of the distance between the two
bodies for any given energy Ẽ.

Figure 4.2 illustrates that the velocity vector may be written as a superposi-
tion of two orthogonal unit vectors

ṙ = ṙ er + r u̇eu , (4.10)

where er is the unit vector in direction r, eu that in the orbital plane per-
pendicular to r (pointing into the direction of motion in the case of a circular
motion). Squaring eqn. (4.10) leads to

ṙ2 = ṙ2 + r2 u̇2 . (4.11)

If we introduce formula (4.11) into equation (4.9) and use relation (4.8) to
eliminate u̇, we obtain a self-contained second order differential equation for
the absolute value r of the position vector r:

1
2

(
ṙ2 +

h2

r2

)
− µ

r
= Ẽ . (4.12)

Equations (4.12) and (4.8) are transformations of the original equations of
motion in the orbital plane. They separate our problem: We first solve eqn.
(4.12) for r(t) and introduce the result into eqn. (4.8) to obtain u(t).

It is preferable to proceed in a slightly different way: Through the following
transformation we replace the time t by the angular variable u

ṙ =
dr

du
u̇ =

h

r2

dr

du
.

This transformation allows us to study the shape of the orbital curve without
considering the dynamics of the motion. Following the tradition (what would
not be necessary) we also transform the dependent argument r by its inverse

σ̃
def=

1
r

. (4.13)

We may then write:

dr

du
=

d

du

(
1
σ̃

)
= − 1

σ̃2

dσ̃

du
= − r2 dσ̃

du
.

These transformations lead to the so-called fundamental equation of the
two-body problem, also called Clairaut’s equation in honour of Alexis-Claude
Clairaut:
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dσ̃

du

)2
=

2
h2

{
Ẽ + µ σ̃

}
− σ̃2 . (4.14)

Clairaut’s equation is a scalar, non-linear, first order differential equation for
σ̃ = 1

r with the argument of latitude u as independent argument. It is solved
by

σ̃ =
1
p
{1 + e cos(u − ω)} , (4.15)

the polar equation for a conic section. p is the so-called semi-latus rectum
of the conic section, e its numerical eccentricity, and ω is the argument of
perihelion. This latter equation is better known when expressed in terms of
the length r of the position vector r and the true anomaly v = u − ω:

r =
p

1 + e cos v
. (4.16)

The square of the first derivative of expression (4.15) is

(
dσ̃

du

)2
=

e2

p2
sin2(u − ω) =

e2

p2
− e2

p2
cos2(u − ω) =

e2

p2
−
{

σ̃2 − 2
p

σ̃ +
1
p2

}
,

(4.17)
where we used eqn. (4.15) in the last step of the above derivation.

Comparing the coefficients of the terms σ̃i, i = 0, 1, (2), of this expression
with those in Clairaut’s equation (4.14), we verify that formula (4.15) solves
the fundamental equation, provided the semi-latus rectum p and the eccen-
tricity e of the conic section are defined as

p =
h2

µ
and e =

√
1 +

2 h2 Ẽ

µ2
. (4.18)

From the same formulae we may also compute the energy constant Ẽ as a
function of the semi-latus rectum of the ellipse and the eccentricity:

Ẽ =
µ

2 p

{
e2 − 1

}
. (4.19)

The argument of perihelion is defined by the initial conditions associated
with Clairaut’s equation. So far, the solution of the two-body problem may
be summarized as follows:

• Kepler’s second law is a consequence of the conservation of angular momen-
tum. The law implies that the motion is taking place in a plane defined
by the orbital elements Ω and i (e.g., longitude of ascending node and
inclination w.r.t. ecliptic).
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• Energy conservation leads to Clairaut’s equation, the fundamental equation
of the two-body problem relating the absolute value r of the radius vector to
the true anomaly v. Its solutions are conic sections (circle, ellipse, parabola,
and hyperbola).

• The semi-latus rectum p, eccentricity e, and argument of perihelion ω are
functions of h, the absolute value of the angular momentum vector h,
of the energy constant Ẽ, and of the initial conditions σ̃(u0) and dσ̃

du (u0)
associated with Clairaut’s equation. Kepler’s first law thus is a consequence
of energy conservation.

• So far, the solution of the two-body problem is defined by the five orbital
elements p, e, i, Ω, and ω. These orbital elements are well suited to describe
all conic sections.

The different orbit types are characterized in Table 4.1, where a is the semi-
major axis of the conic section. The circle is a special case of the ellipse (with
e = 0). From the orbit parameters p and e we may in particular calculate

Table 4.1. Characterization of conic sections

Type Eccentricity Semi-latus rectum Perihelion Energy

Circle e = 0 p = a a − µ
2 a

< 0

Ellipse e < 1 p = a (1 − e2) a (1 − e) − µ
2 a

< 0

Parabola e = 1 p q = p
2

= 0

Hyperbola e > 1 p = a (e2 − 1) a (e − 1) + µ
2 a

> 0

the pericenter distances (from m0), and, in the case of the ellipse and the
hyperbola, the semi-major axes. The semi-latus rectum p has the same simple
geometric meaning for all conic sections: It is the length of the heliocentric
position vector perpendicular to the major axis. Using these relations we
may write the energy theorem of the two-body problem for the three cases as
follows:

ṙ2 = µ

⎧⎨
⎩
(

2
r − 1

a

)
, Ellipse

2
r , Parabola(

2
r + 1

a

)
, Hyperbola

. (4.20)

Note, that in some textbooks the semi-major axis a of the hyperbola is defined
to be a negative value.

Figure 4.3 illustrates the three conic sections. The ellipses have an eccentricity
of e = 0.5, the hyperbolas one of e = 1.5 (for the parabolas we have e = 1).
The sun is at the coordinate origin. The orbits in the upper half-figure all
have the same semi-latus rectum p = 2.5 AU, and in that crossing point
even the same angular velocity (same distance r = p from the Sun, same



4.1 The Two-Body Problem 129

constant h =
√

µ p; therefore the same u̇ = h
r2 =

√
µ
p3 ). The orbits in the

lower half-figure have the same perihelion distance | a (1 − e) |= 2.5 AU.

Note also that the hyperbola asymptotes form angles of
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Fig. 4.3. Conic sections with the same semi-latus rectum p (upper) and the same
perihelion (lower); eccentricities e = 0.5, 1.0, 1.5
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α = ± arctan
{√

e2 − 1
}

, (4.21)

with the axis (sun-perihelion).

4.1.3 The Laplace Integral and the Laplace Vector q

In mathematics it is not unusual that one and the same result may be ob-
tained in different ways. In the previous section the orbital elements p and
e were found by solving the fundamental equation (4.14) of the two-body
problem. In this section we derive the so-called Laplace vector q, a linear
combination of the position and velocity vector, which is time-independent
(i.e., a first integral). The Laplace vector may also be used to calculate the
elements p and e. As frequent use will be made of the Laplace vector in
the subsequent chapters, this second solution of (one part of) the two-body
problem is a fruitful exercise.

Multiplying both sides of the equations of motion (4.1) of the two-body prob-
lem with the vector operator ×h (where h is the angular momentum vector
(4.3) of the two-body problem) results in:

r̈ × h = − µ

r3
r × h . (4.22)

Obviously the left-hand side of eqn. (4.22) may be written as a total time
derivative:

r̈ × h =
d

dt
(ṙ × h) . (4.23)

Using the well-known relation

a × (b × c) = (a · c) b − (a · b) c (4.24)

from vector analysis, the right-hand side of eqn. (4.22) may be written as:

− µ

r3
r × h = − µ

r3

{
(r · ṙ) r − r2 ṙ

}
= −µ

{
r · ṙ
r3

r − ṙ

r

}
= µ

d

dt

{r

r

}
.

(4.25)
The intermediary results(4.23) and (4.25) show that both sides of eqn. (4.22)
may be written as total derivatives w.r.t. time t

d

dt

{
ṙ × h − µ

r

r

}
= 0 , (4.26)

which is why, after integration, the following result may be established:

ṙ × h − µ
r

r
= q . (4.27)

Equation (4.27) is referred to as the Laplace integral, the vector q as the
Laplace vector. Applying formula (4.24) to the first term of eqn. (4.27) shows
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that the Laplace vector may be written as a linear combination of the position
and velocity vector.

Even more insight into the structure of vector q is gained when multiply-
ing eqn. (4.27) with the operator · r (scalar product). The resulting scalar
equation reads as:

(ṙ × h) · r − µ r = q · r def= q r cos v , (4.28)

where the angle between the position vector r and vector q was tentatively
designated by v, the symbol reserved for the true anomaly v.

Using yet another result

a · (b × c) = b · (c × a) (4.29)

from vector analysis, we see that v actually may be identified as the true
anomaly: Using formula (4.29) to transform the first term in eqn. (4.28), this
equation reads as

h2 − µ r = q r cos v ,

which eventually leads to the polar equation of the conic sections

r =
h2

µ

1 + q
µ cos v

, (4.30)

proving that the angle v actually is the true anomaly.

The result shows moreover that vector q is pointing to the pericenter and
has the length µe, and that the semi-latus rectum p and the eccentricity e
are defined by

p =
h2

µ
and e =

q

µ
, (4.31)

a result which was already established in eqn. (4.18) (the proof that the two
results are algebraically identical is left to the reader).

It is often more convenient to use the vector

e
def=

q

µ
(4.32)

of length e instead of the Laplace vector q. Both vectors, q and e, will sub-
sequently be referred to as Laplace vectors.

Let us conclude this section by explicitly writing the Laplace vector q as a
linear combination of the position and velocity vector. Taking into account
formula (4.24) eqn. (4.27) may be written as:(

ṙ2 − µ

r

)
r − (r · ṙ) ṙ = q . (4.33)
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Making use of the energy conservation law (4.20) this equation may be written
in different ways for different orbit types. For elliptic orbits we have, e.g.:

q = µ

{
1
r
− 1

a

}
r − (r · ṙ) ṙ

=
1
2

{
ṙ2 − µ

a

}
r − (r · ṙ) ṙ .

(4.34)

Observe, that q = 0 for circular orbits.

4.1.4 True Anomaly v as a Function of Time:
Conventional Approach

The transformation t → u of the independent argument removed the dy-
namics from the equations of motion and led to Clairaut’s equation. If we
introduce the solution (4.15) of this equation into the differential equation
(4.8) for the argument of latitude u, the dynamics of the system is recovered
by the following first order differential equation in the argument of latitude
u:

u̇ =
h

r2
=

h

p2

(
1 + e cos (u − ω)

)2 =
√

µ

p3

(
1 + e cos (u − ω)

)2
. (4.35)

Its solution gives the argument of latitude u as a function of time. The equa-
tion may, e.g., be solved by the method of separation of variables. Using the
true anomaly v

def= u − ω as angular argument (see also Figures 4.4 and 2.1),
the solution reads as:

u∫
u0

du′(
1 + e cos(u′ − ω)

)2 =

v∫
v0

dv′

(1 + e cos v′)2
=
√

µ

p3
(t − t0) , (4.36)

where u0 is the argument of latitude and v0 the true anomaly at the initial
epoch t0.

u0 would be the natural choice as sixth (and last) orbital element at time t0.
The set p, e, i, Ω, ω, u0 of orbital elements describes the orbit of any two-body
problem – for elliptic, parabolic, and hyperbolic orbits. Following astronom-
ical tradition we modify eqn. (4.36) with the goal to start the integration in
the perihelion. We replace the integration from v0 to v by one from 0 to v
and one from 0 to v0:

v∫
0

dv′

(1 + e cos v′)2
−

v0∫
0

dv′

(1 + e cos v′)2
=
√

µ

p3

(
(t − T0) − (t0 − T0)

)
, (4.37)

where T0 is the time of pericenter passage. Instead of the “natural” orbit
elements p, e, i, Ω, ω, u0 , one may therefore as well use the set p, e, i, Ω, ω, T0.
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If the orbit is either an ellipse or a hyperbola, p may be replaced by the
semi-major axis a. We refer to Table 4.1 and to Figure 4.4 for the definition
of the element a and the relationship between a, e and p in the case of the
ellipse, to Figure 4.5 in the case of a hyperbola.

b

a

ae

E
v

P

P'

r

O S
P

Fig. 4.4. True and eccentric anomalies v and E, semi-major axis a and eccentricity
e in the elliptic orbit

S P

P

a

a

ae

v

r

Fig. 4.5. True anomaly v, semi-major axis a and eccentricity e in the hyperbolic
orbit
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It is possible to compute the integral in eqn. (4.36) in closed form. This is
only a technical issue, a matter of computational convenience and efficiency.
It is only on this technical level where different cases, namely circles, ellipses,
parabolas, and hyperbolas, have to be distinguished. Table 4.2 gives the con-
ventional transformations required to solve equation (4.37), and the standard
results.

Table 4.2. Equation for the true anomaly v:
v∫
0

dv′
(1+e cos v′)2 =

√
µ
p3 (t − T0)

Type Transformation Solution

Circle — v = σ(t) *)

Ellipse tan v
2

=
√

1+e
1−e

tan E
2

E − e sin E = σ(t) *)

Parabola — tan v
2

+ 1
3

tan3 v
2

= 2
√

µ
p3 (t − T0)

Hyperbola tan v
2

=
√

e+1
e−1

tanh F
2

e sinhF − F = σ(t) *)

*) where: σ(t)
def
= n (t − T0) , with: n

def
=
√

µ
a3

In Table 4.2 σ = σ(t) is the mean anomaly for the elliptic and circular motion,
the constant n is the mean motion. In the circular motion (special case e = 0)
the true anomaly is the same as the mean anomaly v(t) = σ(t). In the elliptic
motion, the solution is sought by introducing the eccentric anomaly E (see
Figure 4.4), which has a simple geometrical meaning. The solution is given
by the Kepler equation relating the eccentric and mean anomalies E and σ.

Kepler’s equation follows easily with the help of Figure 4.4 and Kepler’s sec-
ond law (law of areas): The area of the ellipse segment SPΠ is first computed
with the help of the eccentric anomaly E and the elements a and e, and then
with the law of areas:

A(SPΠ) =
b

a
A(SP ′Π) =

b

a

(
A(OP ′Π) − A∆(OP ′S)

)
=

b

a

1
2
(
a2 E − a2 e sin E

)
=

ab

2
(E − sin E) .

(4.38)

Kepler’s second law implies on the other hand that

t − T0

U
=

A(SPΠ)
abπ

or A(SPΠ) =
π

U
∆t ab ,

where ∆t = t−T0 is the time elapsed between the planets perihelion passing
and its arrival at position P , U is the revolution period, and abπ is the area
of the ellipse.
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By equating the areas A(SPΠ) as computed in the previous two equations
we obtain Kepler’s equation:

E = σ(t) + e sin E , (4.39)

where σ(t) def= 2π
U (t − T0) is the mean anomaly of the celestial body at time

t. This definition of the mean motion n (via the revolution time) is, by the
way, which was accessible to Kepler. The relation n

def=
√

µ
a3 is only obtained

by solving the equation (4.36) between the limits u0 and u0 + 2π leading to
the result:

2π√
(1 − e2)3

=
√

µ

p3
U , (4.40)

from where the relation
n2 a3 = µ (4.41)

is easily obtained.

The Kepler equation is a linear equation for the determination of T0 if E is
given, it is transcendental in E, if σ is given. It has to be solved iteratively,
where the simplest (and best known) algorithm reads as

E1
def= σ(t) = n (t − T0)

Ei+1 = σ(t) + e sin Ei , i = 1, 2, 3, . . . . (4.42)

This simple initialization is possible because e < 1 and sin i < 1. For
e � 1 the process converges rapidly, for higher eccentricities it is better to
use an algorithm based on the correct linearization of the Kepler equation:

E1
def= σ(t) = n (t − T0)

∆Ei+1 =
σ(t) − (Ei − e sinEi)

1 − e cosEi

Ei+1
def= Ei + ∆Ei+1 , i = 1, 2, 3, . . . .

(4.43)

The analogue to Kepler’s equation in the case of a hyperbolic orbit also
is transcendental in F , the analogue to the eccentric anomaly E in the
elliptic orbit. As opposed to the eccentric anomaly E, the angle F does
not have a particular name, nor does it have a simple geometrical mean-
ing. It is solved by a linearization of the analogue to Kepler’s equation:

∆Fi+1 =
−σ(t) + e sinh Fi − Fi

1 − e coshFi

Fi+1 = Fi + ∆Fi+1 , i = 1, 2, 3, . . . .
(4.44)
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The initialization either may be done “graphically” or, e.g., by the following
recipe found in [94]:

σ ≤ 5 e − 5
2 : solve F 3 +

6 (e − 1)
e

F − 6 σ

e
= 0

σ > 5 e − 5
2 : F = ln

(
2 σ

e

)
.

(4.45)

The cubic equation in the above equations is of the structure

y3 + a y = b , (4.46)

which, according to [114], has exactly one real solution for a > 0 :

y =

⎧⎨
⎩ b

2
+

√(
b

2

)2
+
(

a

3

)3⎫⎬
⎭

1
3

+

⎧⎨
⎩ b

2
−

√(
b

2

)2
+
(

a

3

)3⎫⎬
⎭

1
3

. (4.47)

For the cubic equation in the recipe (4.45) we have

a

3
= 2

e − 1
e

and
b

2
=

3 σ

e
, (4.48)

giving rise to the solution

y =

⎧⎨
⎩3 σ

e
+

√(
3 σ

e

)2
+
(

2
e − 1

e

)3⎫⎬
⎭

1
3

+

⎧⎨
⎩3 σ

e
−

√(
3 σ

e

)2
+
(

2
e − 1

e

)3⎫⎬
⎭

1
3

.

(4.49)
The analogue to Kepler’s equation for parabolic orbits is the polynomial
equation of third degree in tan v

2 given in Table 4.2. It is of the structure
(4.46), which, in view of the above discussion, is solved by

tan
v

2
=
[
ξ +
√

ξ2 + 1
] 1

3
+
[
ξ −
√

ξ2 + 1
] 1

3
, with ξ

def= 3
√

µ

p3
(t − T0) .

(4.50)
For elliptic orbits the eccentric anomaly E and for hyperbolic orbits the
angle F proved to be most useful. When using these auxiliary quantities,
it is important to provide the transformation between E and v, F and v,
respectively, in a very explicit way. The transformation equations all may be
derived from the the defining transformation provided in column 2 of Table
4.2 using the half-angle theorems of trigonometry (and the corresponding
theorems for hyperbolic functions). The result is

sin v =
√

1 − e2 sin E

1 − e cosE
; sin E =

√
1 − e2 sin v

1 + e cos v

cos v =
cosE − e

1 − e cosE
; cosE =

e + cos v

1 + e cos v
.

(4.51)
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The corresponding transformation equations for hyperbolic orbits read as

sin v =
√

e2 − 1 sinh F

e cosF − 1
; sinhF =

√
e2 − 1 sin v

1 + e cos v

cos v =
e − coshF

e coshF − 1
; coshF =

e + cos v

1 + e cos v
.

(4.52)

Using the above transformation equations we may in particular immediately
establish the relations for the absolute value r of the radius vector r for
ellipses

r =
p

1 + e cos v
= a (1 − e cosE) , (4.53)

and for parabolas:

r =
p

1 + e cos v
= a (e coshF − 1) . (4.54)

4.1.5 True Anomaly v as a Function of Time:
Alternative Approaches

The solution methods of the equation (4.36) for the true anomaly v as a func-
tion of time t outlined in the previous section were based on the introduction
of (what might be called) auxiliary anomalies, namely the eccentric anomaly
E for elliptic orbits and the corresponding quantity F for hyperbolic orbits.
These anomalies are well established in astronomy and their use has impor-
tant advantages. The iterative procedures for the computation of E (eqns.
(4.43)) and F (eqns. (4.44)) are robust and converge rapidly.

On the other hand one may ask the question whether it is actually necessary
to introduce case-specific anomalies? The question may be answered with
a clear no: The true anomaly v has the same definition for the ellipse, the
parabola, and the hyperbola; the true anomaly v is implicitly given by eqn.
(4.36) together with some initial values, e.g., v(T0) = 0 ; this initial value
problem might then, e.g., be solved numerically using the technique of nu-
merical quadrature (addressed in Chapter 7). The resulting algorithm of this
“brute force” approach would, however, in general be very inefficient.

A much better alternative solution (without introducing auxiliary quantities)
of eqn. (4.36) is possible by observing that the integral on the left-hand side
may be solved analytically for all three cases.

The left interval boundary was chosen to correspond to the time of pericenter
passage in the subsequent formulae. The corresponding integrals sometimes
are referred to as the flight-time equations (e.g., [90]), because they allow it to
compute the flight time since the (most recent) perihelion passage associated
with a given value for the argument v. Using a standard compendium of
mathematical formulae, e.g., [25], one may establish the relations:
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v∫
0

dv′

(1 + e cos v′)2
=
√

µ

p3
(t − T0)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− e sin v
(1−e2)(1+e cos v) + 2√

(1−e2)3
arctan

[√
1−e
1+e tan v

2

]
; e < 1

1
2

[
tan v

2 + 1
3 tan3 v

2

]
; e = 1

e sin v
(e2−1)(1+e cos v) −

1√
(e2−1)3

ln
[√

e2−1+ (e−1) tan v
2√

e2−1− (e−1) tan v
2

]
; e > 1 .

(4.55)

The complexity of the first and the third of eqns. (4.55) may be slightly
reduced by multiplying them with

√
(1 − e2)3 and

√
(e2 − 1)3, respectively.

Observing the definition of p in the case of the ellipse and the hyperbola
(Table 4.1), one obtains:

√
µ

a3
(t − T0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− e
√

1 − e2 sin v

1 + e cos v
+ 2 arctan

[√
1 − e

1 + e
tan

v

2

]
; e < 1

e
√

e2 − 1 sin v

1 + e cos v
− ln

[√
e2 − 1 + (e − 1) tan v

2√
e2 − 1 − (e − 1) tan v

2

]
; e > 1 .

(4.56)

Equations (4.55) and (4.56) are linear in the time t. As already mentioned
above, it is therefore easily possible to calculate the epoch t corresponding
to a given value of the true anomaly v.

The equations are transcendent in the true anomaly v. For a given epoch t it
is a non-trivial task to compute the corresponding value for the true anomaly
v – the exception being the second of eqns. (4.55) (which is identical with
the equation already given in Table 4.2) and which is solved in closed form
by eqn. (4.50).

The other two equations (for the ellipse and the hyperbola) may in principle
be solved iteratively by some standard procedure of applied mathematics
(e.g., a Newton-Raphson procedure).

Figure 4.6, showing the mean, eccentric, and true anomalies σ, E, and v
for an orbit of eccentricity e = 0.8 as a function of the mean anomaly σ,
illustrates that the convergence of the iteration process to determine v more
critically depends on the first approximation than the corresponding iteration
process for the determination of the eccentric anomaly E. According to Figure
4.6 the solutions for σ = 40◦ are E(σ) ≈ 82◦ and v(σ) ≈ 141◦. Using the
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Fig. 4.6. Mean (σ), eccentric (E), and true anomalies (v) as a function of σ for
e = 0.8

first approximation E1
def= σ leads to a converging iteration process (4.50)

for E (marked by a solid black square in Figure 4.6) whereas the analogue
initialization v1

def= σ (marked by a solid black circle in Figure 4.6) would lead
to a diverging process. (This may be verified geometrically by constructing
the tangents to the curves E(σ) and v(σ) at the marked points, intersect them
with the vertical line at σ = 40◦, find corresponding second approximation
E2 and v2 by intersecting the horizontal line through the intersection points
of the mentioned tangents and the vertical line at σ = 40◦ with the curves
E(σ) and v(σ), respectively).

The fact that the initialization of the iteration process for the determination
of v is slightly more critical than for the corresponding processes in E and F
does not invalidate the use of the alternative method. It just means that the
iteration process has to be implemented carefully.

There are other alternatives to solve the integral for the anomaly. An attrac-
tive solution, which may be used for elliptic, parabolic, and hyperbolic orbits,
consists in the introduction and computation of so-called universal variables.
We refer to [31] for a concise discussion of the method.
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4.2 State Vector and Orbital Elements

The position vector and the velocity vector together are also referred to as
the state vector of the orbital motion. The state vector referring to one par-
ticular epoch and the corresponding differential equation system define one
particular solution of the equations of motion.

The preceding analysis showed that the equations of motion of the two-body
problem (4.1) are solved by conic sections as trajectories and that the time de-
velopment is a solution of the equation (4.37) (or (4.36)) for the true anomaly
v. Six time-independent orbital elements, e.g., the semi-latus rectum p of the
conic section, the eccentricity e, the inclination i, the longitude of the ascend-
ing node Ω, the argument of perihelion ω, and the time of perihelion T0 may
be used to define the solution of the two-body problem. On the other hand,
the state vector at epoch t also uniquely defines one particular solution of the
equations of motion (4.1). Therefore there must be a one-to-one relationship
between the orbital elements p, e, i, Ω, ω and T0 and the state vector at any
epoch t which will be formally established in the subsequent two paragraphs.

So far, all equations encountered in this Chapter were either vector equations
or equations in the component matrices referring to the inertial system, which
is characterized by the subscript I. In order to reduce the formalism we left
out the symbol I, even if this would have been appropriate (like, e.g., in the
equations (4.5), where the inclination i and the longitude Ω of the node were
calculated as a function of the components of the angular momentum vector).
We will preserve this habit throughout the book.

Subsequently we will need four different coordinate system in addition to the
inertial system, all of them having a common fundamental plane, namely the
orbital plane. We introduce the four systems for the two-body problem, not
without pointing out, however, that the same coordinate systems may as well
be defined and used for the perturbed motion. The difference merely resides
in the fact that the orbital plane, which is fixed in the inertial space in the
case of the two-body motion, has to be replaced by the instantaneous orbital
plane referring to epoch t in the case of the perturbed motion.

As the fundamental plane is the orbital plane, these systems are called orbital
coordinate systems. As the orbital plane is the common fundamental plane of
all four systems, the systems also share the same third coordinate axis, which
must be collinear with the angular momentum vector h. Assuming all systems
to be “Cartesian” (orthogonal, right-handed), the four different systems thus
can thus be uniquely characterized by their first coordinate axes. Table 4.3
contains a list of the four orbital systems with their characterization, the def-
inition of their first coordinate axis, and the coordinate transformation from
the inertial system into the particular orbital system. Figure 4.7 illustrates
the corresponding first axes.
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Fig. 4.7. First coordinate axes of orbital systems Ω, Π , R, T

Table 4.3. Orbital coordinate systems

System First unit vector Transformation from Inertial System I
Ω eΩ = e3×h

h
rΩ = R1(i) R3(Ω) r

Π eΠ = q
q

rΠ = R3(ω) R1(i) R3(Ω) r

R eR = r
r

rR = R3(u) R1(i) R3(Ω) r

T eT = ṙ
|ṙ| rT = R3(ξ) R3(ω) R1(i) R3(Ω) r

The coordinate transformations are given for the position vector in Table 4.3.
The same transformation does of course hold for the velocity vector (or the
acceleration vector).

Keep in mind that the argument of latitude u is defined by the sum of the
argument of pericenter and the true anomaly u = ω + v, and that the angle ξ
is the angle between the Laplacian vector q (pointing to the pericenter) and
the velocity vector ṙ.

The transformation between the inertial system and each orbital system is
defined by a series of rotations about particular axes and rotation angles. A
particular rotation about an axis k and an angle α is defined by the transfor-
mation matrix Rk(α), which is a 3× 3 matrix. For practitioners we mention
that the elements of the transformation matrix may be generated easily by
an algorithm (easily translatable into a computer program) of the following
kind:
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1. Rjj
def= cosα , j = 1, 2, 3

2. R12 = R23 = R31
def= sin α

3. R21 = R32 = R13
def= − sin α

4. Rkj = Rjk
def= 0 , j = 1, 2, 3

5. Rkk
def= 1 .

With this preparatory work it is now comparatively easy to solve our first
task in this section, namely the calculation of the orbital elements from the
state vector.

4.2.1 State Vector → Orbital Elements

Assuming that r
def= r(t) and ṙ

def= ṙ(t) are the components of the state vector
in the inertial system at time t, we may determine the orbital elements as
follows:

1. According to eqn. (4.3) we have

h = r × ṙ , h = |h| .

The orbital elements Ω and ω are defined by eqns. (4.5)

Ω = arctan
(

h1

−h2

)
, i = arccos

(
h3

h

)
.

2. The constant Ẽ is obtained from equation (4.9)

Ẽ = 1
2 ṙ2 − µ

r
,

which allows the computation of the elements p and e with eqn. (4.18)

p =
h2

µ
and e =

√
1 +

2 h2 Ẽ

µ2
.

3. Table 4.3 and Figure 4.7 show how to compute the argument of latitude
at time t:

u
def= u(t) = arctan

(
rΩ2

rΩ1

)
. (4.57)

4. The coordinates of the position and velocity vector in the R-System read
as follows:

rR =

⎛
⎝ r

0
0

⎞
⎠ and ṙR =

⎛
⎝ ṙ

ru̇
0

⎞
⎠ , (4.58)
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from where one may easily compute r and u̇ = v̇, allowing it to re-
trieve the two orbital elements e and ω. Equation (4.15) and its first
time derivative,

ṙ = − p(
1 + e cos(u − ω)

)2 (− e sin(u − ω)
)
u̇ =

r2 u̇

p
e sin v , (4.59)

leads to the two equations for the determination of the true anomaly
v = u − ω :

e cos v =
p

r
− 1 ; e sin v =

p

r2 u̇
, (4.60)

from where we may also determine the argument of perihelion

ω = u − v . (4.61)

5. Using the equations in Table 4.2 (or the alternative formulae developed
above) allows to determine the “last” element, the time T0 of pericenter
by solving, e.g., the flight-time equations (4.55) for the time argument
t − T0.

4.2.2 Orbital elements → State Vector

With the set p, e, i, Ω, ω, and T0 of orbital elements we may derive the
components of the vectors r(t) and ṙ(t) referring to the inertial system (or
any other coordinate system we might choose) at any epoch t in the following
steps:

1. The formulae in Table 4.2 (or the alternative formulae established) allow
the computation of the true anomaly v.

2. For all orbit types the length r of the position vector r may now be
computed using eqn. (4.16).

3. The components of the position vector at time t in the inertial coordinate
system with the orbital plane as reference plane and the direction to the
perihelion as first coordinate axis are defined as:

rΠ =

⎛
⎝ r cos v

r sin v
0

⎞
⎠ =

⎛
⎝ a (cosE − e)

a
√

1 − e2 sin E
0

⎞
⎠ . (4.62)

Figure 4.4 illustrates that in the case of the elliptic orbit the two compo-
nents of position vector may be expressed either by the true anomaly v
or the eccentric anomaly E. Note that the representation as a function
of v holds for all types of conic sections. For the sake of completeness we
note that the length r of the radius vector may also be expressed by the
eccentric anomaly:

r = a (1 − e cosE) . (4.63)

Equation (4.63) is equivalent to the polar equation (4.16).
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4. The components of the velocity vector referring to the same coordinate
system are derived by taking the first time derivative of eqn. (4.62):

ṙΠ =

⎛
⎝ ṙ cos v − r sin v v̇

ṙ sin v + r cos v v̇
0

⎞
⎠ =

√
µ

p

⎛
⎝ − sin v

e + cos v
0

⎞
⎠

= Ė

⎛
⎝ − a sin E

a
√

1 − e2 cosE
0

⎞
⎠ ,

(4.64)

where we have used eqn. (4.8) with the understanding that v̇ = u̇ , be-
cause u = v +ω , ω = const. The time derivative Ė is obtained by taking
the time derivative of the Kepler equation (4.39). One easily establishes
the result

Ė =
a n

r
. (4.65)

5. The components of vectors r and ṙ in the inertial system I are computed
by the inverse sequence of rotations already given in Table 4.3:

r = R3(−Ω) R1(−i) R3(−ω) rΠ

ṙ = R3(−Ω) R1(−i) R3(−ω) ṙΠ .
(4.66)

6. If necessary, the components of the state vector may be transformed into
other coordinate systems, e.g., into the geo- or topocentric equatorial
systems.

We have thus demonstrated that for any epoch t there is a one-to-one rela-
tionship between the orbital elements and the state vector referring to epoch
t:

{r(t), ṙ(t)} ↔ {p, e, i, Ω, ω, T0} . (4.67)

To the extent possible we have used formulae and parameters which are valid
for all orbit types (ellipse, parabola, hyperbola).

4.3 Osculating and Mean Elements

In section 4.2 it was shown that the set of orbital elements defining the two-
body problem may be computed from the state vector and that vice-versa
the state vector referring to a particular epoch t may be computed from this
unique set of orbital elements. In the framework of the two-body problem
there is, in other words, a one-to-one correspondence between the orbital
elements of a celestial body and the state vector referring to an (arbitrarily
selected) epoch t:
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t : {r(t), ṙ(t)} ↔ {a, e, i, Ω, ω, T0} . (4.68)

If the general N -body problem is integrated, the primary result consists of
time series of state vectors for each of the constituents of the N -body system.
If the orbit of a satellite is integrated in a very complex force field, the primary
result consists of time series of geocentric state vectors for this satellite.

Using the formulae of the two-body problem it is possible to assign (for each
celestial body considered) one set of orbital elements to each epoch t to the
state vector (of the particular celestial body) of that epoch:

• Let r(t), ṙ(t) be the solution of the equations of motion for one of the
celestial bodies considered.

• The osculating orbital elements or osculating elements referring to the
epoch t are defined by

t : {r(t), ṙ(t)} → {a(t), e(t), i(t), Ω(t), ω(t), T0(t)} , (4.69)

where t is called the osculation epoch, and where

• the osculating elements in the relation (4.69) are derived using the formulae
of the two-body problem associated with the celestial body considered.

This concept of computing osculating elements is extensively used in pro-
grams PLASYS and SATORB, where the integration is performed in rectan-
gular coordinates, but the planet-specific (satellite-specific) output contains
time series of orbital elements (see Chapters II- 10 and II- 7 of Part III).

With the set of osculating elements referring to epoch t one may associate a
Keplerian (two-body) orbit: The osculating orbit shares the state vector with
the actual orbit at epoch t, but from there onwards (in positive and negative
time direction) the osculating orbit follows the laws of the two-body problem
(i.e., the osculating orbit curve is a conic section).

The actual orbit and the osculating Keplerian orbit are tangential at epoch t.
This property explains the expression “osculating” stemming from the Latin
verb “osculari”, meaning “to kiss”. The actual orbit is the envelope of all
osculating orbits.

The osculating elements are excellent to gain insight of the orbital motion
over few orbital periods. Figure 4.8 (left) illustrates the statement. The figure
was generated with program PLASYS. The entire outer planetary system
was integrated, the mentioned figure therefore illustrates the perturbations
of the semi-major a of Jupiter due to the other planets over a few (about 10)
revolutions. Figure 4.8 (right) illustrates, that the osculating elements are not
ideal to study the development of an orbit over many revolutions (a time span
of 2000 years corresponding to about 200 revolutions is covered in Figure 4.8
(right)). It would be preferable to remove the short period perturbations.
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Fig. 4.8. Osculating orbital element a of Jupiter over a time intervals of 120 years
(left) and 2000 years (right)

In Figure 4.8 (right) one would like to study other than short-period per-
turbations with relatively small amplitudes. In order to focus on these more
interesting effects it is useful to define mean orbital elements in the following
naive sense:

• Let
I(t) ∈ {a(t), e(t), i(t), Ω(t), ω(t), T0(t)} (4.70)

designate one of the osculating elements.

• The mean orbital element Ī(t; ∆t(t)), averaged over a time interval of ∆t(t)
(which might be a function of time in the most general case), is defined as

Ī(t; ∆t(t)) =
1

∆t

t+∆t/2∫
t−∆t/2

I(t′) dt′ . (4.71)

Provided the osculating elements are continuous functions of time, eqns.
(4.70) and (4.71) define a continuous function of time t, as well. If the averag-
ing period ∆t vastly exceeds all the short periods, or if the averaging period
is an entire multiple of all short periods (something which is very difficult to
achieve because there usually are no “strictly constant” periods in perturbed
problems), the mean elements do no longer contain short period perturba-
tions of significant size. Mean elements are therefore much better suited for
studying the development of orbits over long time periods with thousands of
revolutions.

The result of the averaging process (4.71) is illustrated in Figure 4.9 (right),
where the osculating semi-major axis a of Jupiter was averaged over a time
interval of five revolutions

∆t(t) def= 5 P�(t) , (4.72)
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P�(t) being the (osculating) revolution period of Jupiter at time t. Note, that
only by averaging over five (or an entire multiple of five) sidereal revolutions
(corresponding to three synodical revolutions of the pair Jupiter-Saturn),
(almost) all short period effects can be eliminated.

With the exception of calculating mean instead of osculating elements, Figure
4.9 (right) is based on an integration performed with identical options as
that underlying Figure 4.9 (left), where the corresponding osculating element
is shown. Obviously the removal of short period perturbations was rather
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Fig. 4.9. Osculating (left) and mean (right) semi-major axis a of Jupiter over a
time interval of 2000 years

successful. Extensive use of the concept of mean elements will be made in the
subsequent chapters.

The osculating and mean elements of Jupiter (and other planets) over time
spans ranging from years to millions of years will be studied in more detail
in Chapter II- 4.

4.4 The Relativistic Two-Body Problem

The equations for the relativistic motion of planets and satellites were in-
troduced in section 3.5. From these equations we may extract the equations
describing the relativistic two-body motion. For the subsequent treatment
it is assumed that the conditions (3.189) hold, implying that we may use
the simpler equations (3.190) (and not eqns. (3.186)) to take the relativistic
effects into account.

Let us now consider the relativistic two-body problem with masses m0 and
m, assuming that m � m0. The equation for the relative motion of the two
bodies is obtained by taking the difference of eqns. (3.190), (3.191) resulting
in
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r̈ = − k2 (m0 + m)
r

r3
+ arel , (4.73)

with the perturbing acceleration

arel =
k2 m0

c2 r3

{[
4

k2 m0

r
− ṙ2

]
r + 4 (r · ṙ) ṙ

}
. (4.74)

These equations have the same mathematical structure as eqns. (3.197) de-
scribing the perturbing accelerations for an artificial Earth satellite.

As viewed from classical (non-relativistic) theory the first term on the right-
hand side of eqn. (4.73) is the two-body term of the classical theory, the
second term is the “perturbation term” due to the theory of general relativity.

According to eqn. (4.74) the perturbation term arel is a linear combination
of the relative position and velocity vector. The relativistic two-body motion
therefore takes place in an orbital plane. The orbital elements Ω and i are
thus first integrals of the relativistic motion, exactly as in the case of the
non-relativistic two-body problem.

For low eccentricity orbits we may use the approximations

r · ṙ ≈ 0 and r ≈ a = const ,

which allow it to reduce the differential equation (4.73) to

r̈ ≈ − k2

(
m0 + m − 3 k2 m2

0

a c2

)
r

r3

def= − µ̃
r

r3
. (4.75)

Equations (4.75) are closely related to those of the classical two-body prob-
lem (4.1). The only difference resides in the fact that the product “gravity
constant × mass of the central body” has to be slightly modified.

Our developments may be used to construct a circular orbit of radius a for the
relativistic motion, as well. The “only” difference w.r.t. the classical circular
orbit of radius a resides in the fact that the mean relativistic motion nrel is
defined by

n2
rel a

3 = µ̃ = k2

(
m0 + m − 3 k2 m2

0

a c2

)
, (4.76)

whereas the classical mean motion n is given by n2 a3 = k2 (m0 + m) . One
easily verifies that

nrel ≈ n

√
1 − 3 k2 m0

a c2
≈ n

(
1 − 3 k2 m0

2 a c2

)
. (4.77)

Using the value of c = 173.14463 AU/day for the speed of light, the numerical
value (3.6) for the Gaussian constant k, and m0 = m� for the solar mass one
obtains the relativistic correction for the mean motion as
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δnrel = 1.48 · 10−8 · n

a
. (4.78)

The impact δl due to the relativistic correction (4.78) in longitude l for a
circular orbit with the semi-major axis of Mercury a = 0.39 AU after one
century is then computed as:

δl = δnrel ∆t

= 4.046◦/day · 3.79 · 10−8 · 100 · 365.25
= 0.0061◦/century
= 22.2′′/century ,

(4.79)

which is a very small value, indeed. It was virtually impossible to detect
discrepancies of this kind before accurate distance measurements (e.g., Radar
measurements to Venus in the 1960s) became available. A slightly wrong
value for the mean motion of a planet could very well be absorbed by a
slight change of the semi-major axis: Equation (4.41) allows it to calculate
the relative error in the semi-major axis caused by a relative error in the
mean motion and vice-versa. From

n2 a3 = k2 one obtains: 2 n a3 δn + 3 n2 a2 δa = 0 ,

and eventually
δn

n
= − 3

2
δa

a
and

δa

a
= − 2

3
δn

n
. (4.80)

Equation (4.78) tells that the (relative) relativistic correction of the mean
motion is the order of a few parts in 108. Equations (4.80) tells that it is
possible to absorb this effect by scaling (reducing) the semi-major axis by a
factor 1+ ξ, where ξ is a few parts in 108. As the semi-major axis of Mercury
is a ≈ 0.39 AU (corresponding to a ≈ 58500000 km), the reduction to absorb
the relativistic correction of the mean motion by the semi-major axis a is
about 2 km – a discrepancy which was impossible to be detected, when the
scale in the solar system was still established by the means of triangulation.

Mercury has an exceptionally large eccentricity of about e ≈ 0.206 (see Table
II- 4.1 in Chapter II- 4). The planet’s perihelion therefore is well defined and
can be observed accurately. Let us calculate the perturbations in the semi-
major axis a, the eccentricity e and in the argument of perihelion ω using
program PLASYS (see Chapter II- 10 of Part III). All other perturbations
(due to the other planets) were “turned off”. Figure 4.10 shows the resulting
perturbations of the semi-major axis a and the eccentricity e. The Figure
is based on the solution of the relativistic two-body problem Sun-Mercury
(using the exact PPN-equations). The perturbations are shown only over the
time interval of one year, because the perturbations are strictly periodic. The
period of the perturbation is one revolution period of Mercury (about 0.24
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Fig. 4.10. Perturbation due to relativity in Mercury’s semi-major axis a (left) and
eccentricity e (right) over one year (two-body problem)

years), the amplitudes are of the order of 3 · 10−8 AU in the semi-major axis,
of the order of 9 · 108 in the eccentricity. Expressed in units of length, the
variations are thus of the order of one kilometer. Unnecessary to say, that
such subtle differences are extremely difficult to observe if only angles are
measured.

Figure 4.11 show that Mercury’s perihelion advances over one century as
obtained by solving the relativistic two-body problem. As predicted by the-
ory the advance is about ∆ω = 43′′/century. This is a strong signal, which
could be detected by optical observations already in the 19th century. Figure
4.12, giving Mercury’s “actual” perihelion advance over 1000 years, calculated
once with the Newton-Euler theory and once with the theory of relativity
(the correct PPN-equations were used) including (in both integrations) all
nine planets (Mercury-Pluto), demonstrates that the detection of Mercury’s
relativistic perihelion advance was far from trivial: Only about 4% of the to-
tal advance of about 1000′′/century are due to general relativity. Leverrier’s
merits (already mentioned in Chapter 2) are truly remarkable in this context.

4.5 The Three-Body Problem

After the successful treatment of the two-body problem the three-body prob-
lem is logically the next candidate of the N -body problem to be considered
and solved. In the 18th century there was hope to find solutions in closed form,
very much like they were described for the two-body problem. Investigations
performed by Euler, Clairaut and Lagrange indicated, however, that simple
analytical solutions would be obtained only under very special conditions.
Today we know that the three-body problem is not solvable in analytically
closed form and that it already contains most of the difficulties associated
with the general N -body problem.
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The three-body problem is relevant in practice. Think of the planetary sys-
tem, which is governed by the three-body problem Sun-Jupiter-Saturn con-
taining the greatest part of the mass of the solar system, of the problem
Sun-Jupiter-asteroid, which is essential to study the long-term development
of the belt of asteroids between Mars and Jupiter, the problems Earth-Sun-
Satellite or Earth-Moon-spacecraft, which matter for space agencies wishing
to fly to the Moon or to deploy Sun-observing satellites in the Earth-near
space.

In the attempt to reduce the degree of difficulty of the problem, the so-called
problème restreint or problema restrictum (in the scientific language of those
days) was introduced by Euler. It was subsequently studied by many eminent
mathematicians and astronomers. Euler, Lagrange, Carl Gustav Jacob Jacobi
(1804–1851), Poincaré, Tissérand should be mentioned in particular. In the
problème restreint it is assumed that the mass of one of the three bodies
is small and may be neglected. This immediately reduces the three-body
problem to describing the motion of the small body in the gravitational field
of the two other bodies (revolving around each other in two-body orbits). In
order to further reduce the degree of difficulty it is even assumed that the
orbits of the two finite masses about each other are circular. For this version
of the three-body problem Jacobi found a new integral of motion which is
independent from the ten classical first integrals of the N -body problem (see
section 3.2.2). This additional integral allows to gain considerable insight
into the structure of the three-body problem. It will be derived and discussed
in section 4.5.2. Despite all these positive aspects it must be admitted that
closed analytical solutions could not even be found for the general case of the
problème restreint. Poincaré even found chaotic aspects when studying the
problème restreint as a first step to explore the stability of the solar system.

Some interesting properties of the general three-body problem will be dealt
with in section 4.5.1, the problème restreint will be analyzed in section 4.5.2.

4.5.1 The General Problem

The general three-body problem with point masses is illustrated in Figure
4.13. We assume that the mass m0 is the biggest of the three masses mi , i =
0, 1, 2. The position vectors ri , i = 1, 2, are referred to m0. S is the center
of mass of the two bodies m0 and m1. Figure 4.13 also contains the Jacobian
vectors ui , i = 1, 2, where u1

def= r1 and where u2
def= r2 − m1

m0+m1
r1 is the

vector pointing from the center of mass S of m0 and m1 to the third body m2.
The ten classical integrals of the N -body problem were already established
in section 3.2.2 and need not be repeated here. It is, however, instructive to
express the conservation law for the angular momentum in the center of mass
system

h = m0 x0 × ẋ0 + m1 x1 × ẋ1 + m2 x2 × ẋ2 , (4.81)
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Fig. 4.13. The general three-body problem (point masses)

using the so-called Jacobian vectors (to be defined below). xi , i = 0, 1, 2, are
the position vectors of the bodies with masses mi in the inertial system (see
section 3.2). After elementary algebraic transformations the following result
is found:

h =
m0 m1

m0 + m1
u1 × u̇1 +

m2 (m0 + m1)
m0 + m1 + m2

u2 × u̇2 . (4.82)

The above relation is easily verified using the following definition for the
Jacobian vectors u1, u2, and the center of mass condition:

u1
def= x1 − x0

u2
def= x2 − (m0 x0 + m1 x1)

m0 + m1

m0 x0 + m1 x1 + m2 x2 = 0 .

(4.83)

Introducing the fictitious masses µ1 and µ2 by

µ1
def=

m0 m1

m0 + m1
, µ2

def=
m2 (m0 + m1)
m0 + m1 + m2

, (4.84)

the total angular momentum (4.82) may be composed as that of two sub-
systems, one consisting of the component µ1 relative to the component m0

and one consisting of the component µ2 relative to the center of mass of the
components m0 and m1:

h = µ1 (u1 × u̇1) + µ2 (u2 × u̇2)
def= µ1 h1 + µ2 h2 .

(4.85)

If the mass m0 dominates the two others, i.e., if mi � m0 , i = 1, 2, we have
approximately µ1 ≈ m1 and µ2 ≈ m2. These conditions are approximately
met in the three-body problems of interest in the planetary system.

4.5 The Three-Body Problem
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In the three-body problem Sun-Jupiter-Saturn, µ1 would correspond approx-
imately to the mass of Jupiter and h1 to the (two-body) angular momentum
of Jupiter relative to the Sun; µ2 would correspond to the mass of Saturn and
h2 to the (two-body) angular momentum of Saturn relative to the Sun. In this
approximation the angular momentum vectors hi , i = 1, 2, are perpendicular
to the orbital planes of Jupiter and Saturn, respectively. This interpretation
leads to Jacobi’s theorem of nodes: Multiplying eqn. (4.85) with h× to form
a cross product one obtains the interesting relationship

µ1 h × h1 ≈ −µ2 h × h2 , (4.86)

where vector h is perpendicular to the so-called invariable plane (see section
3.2.2). Vectors h × hi , i = 1, 2, are thus vectors lying in the intersection
of the invariable plane with the two orbital planes, thus in the line of nodes
of the orbital planes (referring to the invariable plane as reference plane).
More precisely the vectors point to the ascending nodes of the two planes.
This explains the name theorem of the nodes associated with eqn. (4.86) for
planetary three-body problems: Under the assumption mi � m0 , i = 1, 2,
the ascending node of Jupiter’s orbit coincides with the descending node of
Saturn’s orbit. Cum grano salis we may therefore state that in a planetary
three-body problem the orbital planes of the two small masses form approx-
imately a rigid system, which may only rotate about the axis h, the pole of
the invariable plane.

Figure 4.14, which was generated with program PLASYS (documented in
Chapter II- 10 of Part III), where only Jupiter, Saturn, and the Sun were
included, showing the projection of the orbital poles (unit vectors perpendic-
ular to the osculating orbital planes of Jupiter and Saturn on the plane of the
ecliptic J2000.0), documents that Jacobi’s theorem of the nodes is very well
met by the three-body problem Sun-Jupiter-Saturn. The integration covers
an interval of 40000 years. The lines connecting the starting and end points
of the projections of the two orbital poles, respectively, intersect each other
at the projection of the pole of the invariable plane on the ecliptic (see eqns.
(II- 4.5) and (II- 4.9)). In Chapter II- 4 we will see that, even if the entire
outer planetary system is included in the integration, Jacobi’s theorem of the
nodes still holds approximately.

The theorem of nodes is only one of the important aspects of the general
three-body motion. Other aspects would be worth being discussed as well. Let
us mention in particular the special cases which can be solved in closed form
(first described by Euler and Lagrange). We will deal with them only under
the more restrictive assumptions of the problème restreint in the next section.
Moreover it would be attractive to study the intermediary lunar orbits of the
three-body problem Earth-Moon-Sun. Space and time limitations do not al-
low it to discuss special problems of this kind here. For in-depth studies we re-
fer to the standard treatment by Szebehely [117]. Also, Guthmann [49] offers a
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concise treatment of the more important aspects of the general three-body
problem in German. Danby [31] contains a concise treatment in English.

4.5.2 The Problème Restreint

In the problème restreint the motion of a point mass of negligible mass is
studied in the gravitational field of two finite masses m0 and m1; the orbits of
m0 and m1 are assumed to be circular. In his studies concerning the problema
restrictum Euler even confined the discussion to a two-dimensional treatment
by assuming that the third body would also move in the orbital plane of the
bodies of finite mass.

Equations of Motion in the Inertial System. In any inertial system the
motion of the three bodies is represented by (compare eqns. (3.13), section
3.2):

ẍ = − k2

{
m0

x − x0

|x − x0|3
+ m1

x − x1

|x − x1|3

}
. (4.87)

From now on it is assumed that eqns. (4.87) refer to the center of mass
system of the bodies m0 and m1. It is natural to use the orbital plane of
the two bodies as reference plane. Also, we assume that at epoch t = 0 the
two bodies lie on the first (horizontal) axis of the coordinate system and that

4.5 The Three-Body Problem
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they rotate counterclockwise with angular velocity n̄ (defined below). Their
motion is illustrated by Figure 4.15. With these assumptions the motion of

x0(0)

x0( )t

x1(0)

x1( )t

S nt¯

Fig. 4.15. Motion of the two bodies m0 and m1 in their orbital plane

the two bodies (w.r.t. the rotating coordinate system of Figure 4.15) may be
written as:

x0 = − m1

m0 + m1
ā

⎛
⎝ cos n̄t

sin n̄t
0

⎞
⎠ (4.88)

and

x1 = +
m0

m0 + m1
ā

⎛
⎝ cos n̄t

sin n̄t
0

⎞
⎠ , (4.89)

where ā = |x1 − x0| is the radius of the circular motion of bodies m0 and

m1 about each other; n̄ = k
√

m0+m1
ā3 is the corresponding (mean) angular

motion.

Equations in the Rotating Coordinate System. The equations of mo-
tion are now transformed into the coordinate system co-rotating with the two
masses m0 and m1. The rotation axis is the pole of the orbital plane of the
two finite bodies and the origin is the center of mass S. The first coordinate
axis of the rotating system may be selected as the axis of the masses m0 and
m1.

In the rotating system the coordinates of the celestial bodies are designated
with y0, y1, and y. The coordinates of m0 and m1 in the rotating system
simply are:

y0 =
m1

m0 + m1
ā

⎛
⎝−1

0
0

⎞
⎠ (4.90)

and

y1 =
m0

m0 + m1
ā

⎛
⎝1

0
0

⎞
⎠ . (4.91)
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For the test particle the transformation from the inertial into the rotating
system reads as:

y = R3(n̄t)x , (4.92)

where R3(n̄t) is the 3 × 3-Matrix representing a rotation about the third
coordinate axis by the angle of +n̄t:

R3(n̄t) =

⎛
⎝ cos n̄t sin n̄t 0

− sin n̄t cos n̄t 0
0 0 1

⎞
⎠ . (4.93)

The inverse transformation from the rotating into the inertial system for the
test particle reads as:

x = R3(−n̄t) y . (4.94)

In order to transform the left-hand side of eqn. (4.87) into the rotating system,
we have to calculate the first two time derivatives of eqns. (4.94):

x = R3(−n̄t) y

ẋ = R3(−n̄t) ẏ + Ṙ3(−n̄t) y

ẍ = R3(−n̄t) ÿ + 2 Ṙ3(−n̄t) ẏ + R̈3(−n̄t) y .
(4.95)

Substituting these relations into the equations of motion (4.87), multiplying
the result with R3(+nt), and using the matrix relations

R3(n̄t) R3(−n̄t) = E ,

R3(n̄t) Ṙ3(−n̄t) = n̄

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ ,

R3(n̄t) R̈3(−n̄t) = − n̄2

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ ,

(4.96)

(where E is the identity matrix), one obtains the equations of motion of the
problème restreint in the rotating coordinate system:

ÿ + 2 n̄

⎛
⎝−ẏ2

ẏ1

0

⎞
⎠ = n̄2

⎛
⎝ y1

y2

0

⎞
⎠ − k2

{
m0

y − y0

r3
0

+ m1
y − y1

r3
1

}
, (4.97)

where the symbols r0
def= |y − y0| and r1

def= |y − y1| were introduced. The
second term on the left-hand and the first on the right-hand side, respectively,
may be identified with the coriolis and centrifugal accelerations.

4.5 The Three-Body Problem
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From the mathematical point of view the two systems of equations of mo-
tion (4.87) and (4.97) are equivalent. The latter allows us, however, to gain
additional insight into the structure of the problem.

Jacobi’s Integral. Multiplying the equations of motion (4.97) with ẏ one
obtains:

ẏ ÿ + 0 = n̄2 (y1 ẏ1 + y2 ẏ2) − k2

{
m0

ẏ (y − y0)
r3
0

+ m1
ẏ (y − y1)

r3
1

}
.

(4.98)
Obviously, each term of the above equation represents a total time derivative
(observe that vectors yi , i = 0, 1 are constant). Integrating the above equa-
tions and multiplying the result with the factor 2 we obtain the important
formula:

ẏ2 = n̄2
{

y2
1 + y2

2

}
+ 2 k2

{
m0

r0
+

m1

r1

}
− J . (4.99)

Equation (4.99) represents a first integral which is independent of the classical
ten integrals of the N -body problem. It is referred to as Jacobi’s integral and
the constant J occurring in it as Jacobi’s constant.

Jacobi’s integral is of central importance for the subsequent discussion of the
problème restreint because it significantly constrains the motion of the test
particle. It is, by the way, important to note that the terms on the right-hand
side are invariant under the transformations (4.92, 4.94).

Tissérand-Criterion. Comets may have close encounters with Jupiter (or
other planets). Their osculating orbital elements may have changed dramat-
ically after such encounters. It is therefore in general not possible to decide
whether two sets of osculating elements referring to epochs well before and
after the epoch of a close encounter, respectively, belong to one and the same
comet. We can expect, however, that the Jacobi constant J does not change
by such a close encounter. The constant J thus is an ideal instrument to de-
cide whether a “newly discovered” comet actually is identical with a known
comet – rediscovered after a close encounter with Jupiter.

Tissérand gave the criterium a very useful form for practice. The corre-
sponding criterium, although it is nothing but an application of Jacobi’s
integral, therefore is referred to as Tissérand’s criterion for the identification
of comets. Possibly, the monument erected in honour of Tissérand in Nuit
St. Georges (Burgundy, France) (which contains, among other, a symbolized
comet) has to be seen in the context of Tissérand’s criterion.

Osculating elements are easily available for all known comets. The corre-
sponding Jacobi constants usually are (were) not. Therefore, the question
(at least at the times of Tissérand) whether there is a simple possibility to
calculate Jacobi’s constant using only the osculating elements is legitimate.
A strikingly simple answer was given by Tissérand.



159

In order to derive this criterion we first write Jacobi’s constant approximately
as

J ≈ n̄2
{

y2
1 + y2

2

}
+ 2 k2 m0

r0
− ẏ2 , (4.100)

where we assume that the above equation refers to an epoch well separated
from that of a close encounter. Only under this condition one may neglect
the term m1/r1 w.r.t. the term m0/r0 .

In order to express the right-hand side of eqn. (4.100) by the osculating
elements, one has to transform it into the inertial system. As stated above
the transformation merely consists of a rotation about the third coordinate
axis about the angle −n̄t. The length of the projection of a vector onto the
reference plane is invariant under this transformation:

y2
1 + y2

2 = x2
1 + x2

2 . (4.101)

The lengths r0 and r1 of the associated position vectors are of course invari-
ant, as well. This only leaves us with the transformation of the term ẏ2. From
the transformation equation (4.92) one may conclude:

ẏ2 =
(
ẋT R3(−n̄t) + xT Ṙ3(−n̄t)

)(
R3(n̄t) ẋ + Ṙ3(n̄t)x

)
. (4.102)

In analogy to the proof of relations (4.96) we easily verify that

R3(−n̄t) R3(n̄t) = E ,

Ṙ3(−n̄t) R3(n̄t) = n̄

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ ,

Ṙ3(−n̄t) Ṙ3(n̄t) = n̄2

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ .

(4.103)

Using the above relations in eqn. (4.102) and substituting the resulting ex-
pression into eqn. (4.100), we may calculate Jacobi’s constant as:

J ≈ 2 k2 m0

r0
− ẋ2 + 2 n̄ (x1 ẋ2 − x2 ẋ1) . (4.104)

Considering the fact that x1 ẋ2 −x2 ẋ1 is the third component of the angular
velocity vector and making use of the energy theorem of the two-body motion,
we obtain

J ≈ k2

a
+ 2 k n̄

√
a (1 − e2) cos i , (4.105)

where we made use of the fact that in the solar system m0 = 1.

4.5 The Three-Body Problem
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Tissérand’s criterion therefore may be stated as follows:

Two sets {tj : aj , ej , ij , j = 1, 2} of osculating elements may be associated
with one and the same comet, provided

k

a1
+ 2 n̄

√
a1

(
1 − e2

1

)
cos i1 ≈ k

a2
+ 2 n̄

√
a2

(
1 − e2

2

)
cos i2 . (4.106)

Keep in mind that the above formula is only valid for epochs t1 and t2 well
separated from an epoch corresponding to a close encounter. Observe, that
in this approximation J is a strange combination of the energy and the third
component of the angular momentum of the two-body problem. One might
refer to it as an energy conservation law in the rotating system.

Hill’s Surfaces of Zero Relative Velocity. For a given value of Jacobi’s
constant J Jacobi’s integral (4.99) allows us to separate (in the rotating co-
ordinate system) regions which are accessible to the test particle considered
from those not accessible to it. The surfaces separating the regions are the
surfaces of zero relative velocity (the attribute “relative” referring to a veloc-
ity in the rotating system). Requesting ẏ2 def= 0 in the integral (4.99) defines
a surface in the three dimensional space:

n̄2
{

y2
1 + y2

2

}
+ 2 k2

{
m0

r0
+

m1

r1

}
− J = 0 . (4.107)

Defining the reduced masses (masses relative to the total mass) by

m∗
0

def=
m0

m0 + m1
, m∗

1
def=

m1

m0 + m1
,

(4.108)

and the reduced, dimensionless Jacobi constant by

J∗ def=
J

n̄2 ā2
, (4.109)

the equations for the surfaces of zero relative velocity may be given in a
slightly simpler form:

y2
1 + y2

2

ā2
+ 2 ā

{
m∗

0

r0
+

m∗
1

r1

}
− J∗ = 0 . (4.110)

The surfaces (4.110) are named after the American astronomer Hill. They
separate those regions of the three-dimensional space for which ẏ2 > 0 (ob-
viously that part of the space accessible to the body considered) from those
for which ẏ2 < 0 (that part of space not accessible to the body).

It is instructive to draw the intersection of these surfaces with the coordinate
planes for different values of the Jacobi constants. Such intersecting curves
may be found in Figure 4.16 for a (hypothetical) mass ratio of m0 : m1 = 3 : 1
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(Figures on left-hand side) and for a mass ratio of m0 : m1 ≈ 1047 : 1 (the
mass ratio of the solar mass and Jupiter’s mass) on the right-hand side. The
first row of Figures shows the intersection of Hill’s surfaces with the (x, y)-
plane, the second row the intersection with the (x, z)-plane, and the third
the intersection with the (y, z)-plane. The zero-velocity curves in the left
column are drawn for the values J∗ = 4.0, 3.8, 3.2, 2.8, of the reduced Jacobi
constant, those in the right column for J∗ = 4.0, 3.5, 3.0, 2.8. In the Figures
4.16 (left) the projections of the two masses m0 and m1 are included as “+”.
In the projection onto the (x, y)-plane (top, left) the five stationary solutions
L1 − L5 are marked with “x”. These solutions will be discussed below.

Equation (4.110) says that the reduced Jacobi constant J∗ (thus also the
constant J) always must be positive. For big values of J∗ a positive value
for the square of the velocity ẏ2 only results either in the immediate vicinity
of the two masses m0 and m1 or for big values of y2

1 + y2
2 , i.e., if the test

particle is far away from the z-axis. This in turn implies, that the test particle
is either trapped in an (almost) spherical vicinity of the masses m0 and m1

or it must be outside of a cylindrically shaped boundary of about 7− 8 AU.
The innermost boundary surfaces around m0 and m1 and the outermost
cylindrical boundary in Figure 4.16 correspond to the maximum value of
J∗ = 4.0 of the Jacobi constant.

If the Jacobi constant J∗ decreases, the permissible regions around the ce-
lestial bodies become bigger and bigger, and they are deformed to become
a connected dumb-bell shaped region. This occurs between J∗ = 4.0 and
J∗ = 3.8 in the left column of Figures 4.16. In addition, the radius of the
boundary cylinder becomes smaller and smaller in the vicinity of the (x, y)-
plane.

If the Jacobi constant is further reduced, the boundary cylinder and the
dumb-bell shaped regions are connected. For J∗ = 3.2 two kidney-shaped
regions are left back in the (x, y)-plane. For the value J∗ = 2.8 of the Jacobi
constant the entire (x, y)-plane is accessible to the test particle. The zones of
avoidance are contained within cylindrically shaped surfaces – moving further
and further away from the (x, y)-plane (see left column, middle and bottom
row of Figures 4.16).

Usually, Hill’s surfaces of zero relative velocity are drawn for mass ratios of
the type (m0 : m1) = (2 : 1), (3 : 1), (3 : 2), . . .. From the “designer’s” point
of view one obtains the nicest figures for values of this kind. The right column
of Figures 4.16, which was drawn for the mass ratio (m� : m�) ≈ 1047 : 1,
demonstrates that more realistic scenarios in the planetary system result in
slightly less attractive figures. For the value J∗ = 4, 3.5 the allowed region
around the mass mjup are very small indeed (they are only visible as points
in the top and middle row of Figures 4.16). For the values of J∗ = 3.0 the
two kidney-shaped areas are actually connected (Figures 4.16, top, left).

4.5 The Three-Body Problem
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Fig. 4.16. Hill’s surfaces ((y1, y2)-plane top, (y1, y3)-plane middle, (y2, y3)-plane
bottom) of zero velocity for (m0 : m1) = (3 : 1) (left) and for the case Sun-Jupiter
(right)
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Stationary Solutions. In this paragraph we are looking for solutions of
the equations (4.97) which are at rest in the rotating system. We call them
stationary solutions of the problème restreint. For a stationary solution we
must have for arbitrary epochs t:

y(t) = z0 = const. (4.111)

Such solutions obviously result if, at a particular initial epoch t0, the following
conditions are met:

y(t0) = z0

ẏ(t0) = 0
ÿ(t0) = 0 .

(4.112)

By introducing these equations into the equations of motion (4.97) of the
rotating system one obtains a set of algebraic condition equations to be met:

n̄2

⎛
⎝ z01

z02

0

⎞
⎠ − k2

{
m0

z0 − y0

r3
0

+ m1
z0 − y1

r3
1

}
= 0 . (4.113)

The structure of the above equations is recognized more easily, if they are
written component-wise and if the representations (4.90, 4.91) are used for
the coordinates of the two point masses m0 and m1:

n̄2 z01 − k2

{
m0

r3
0

[
z01 +

m1

m0 + m1
ā

]
+

m1

r3
1

[
z01 −

m0

m0 + m1
ā

]}
= 0{

n̄2 − k2

[
m0

r3
0

+
m1

r3
1

]}
z02 = 0

− k2

[
m0

r3
0

+
m1

r3
1

]
z03 = 0 .

(4.114)

Stationary solutions only result, if all three eqns. (4.114) hold. As the coeffi-
cient of the third of eqns. (4.114) is always negative, stationary solutions are
only possible for

z03 = 0 , (4.115)

implying that stationary solutions have to lie in the (x, y)-plane, i.e., in the
orbital plane of the two finite masses.

We make the distinction of two kinds of stationary solutions:

• For z02 = 0 candidate solutions lie on the straight line defined by the
two point masses m0 and m1. Solutions of this kind are referred to as
straight line solutions or collinear point mass solutions. The first of equa-
tions (4.114) provide the required condition equation. The straight line
solutions were discovered by Euler.

4.5 The Three-Body Problem
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• For z02 �= 0 the point masses m0, m1 and the test particle have to form
a (non-degenerated) triangle. One usually speaks of triangular solutions of
the problème restreint. These solutions were discovered by Lagrange. In
this case the coefficient of the term z02 in eqns. (4.114) must be zero:

n̄2 − k2

{
m0

r3
0

+
m1

r3
1

}
= 0 . (4.116)

In addition, the first of the three equations (4.114) must hold. Let us now
study the straight line and the triangular solutions separately.

Euler’s Straight Line Solutions. Obviously, we have to assume that z02 =
0 and z03 = 0. Figure 4.17 shows that the test particle may assume three
different positions w.r.t. the two point masses m0 and m1. It may either lie
between the two bodies (position 1), to the right of the two bodies (position
2), or to the left of the two bodies (position 3). Independently of the particular

S

Position 1

Position 2

Position 3
a� �a�

Fig. 4.17. Three positions of test particle w.r.t. the two point masses

position one may express r1 in units of ā:

r1
def= λ ā . (4.117)

The dimension-free quantity λ may assume different values according to the
position (relative to m0 and m1) considered:

Position 1: λ ∈ (0, 1) , r0 = (1 − λ) ā , z01 =
{

m0

m0 + m1
− λ

}
ā

Position 2: λ ∈ (0,∞) , r0 = (1 + λ) ā , z01 =
{

m0

m0 + m1
+ λ

}
ā

Position 3: λ ∈ (1,∞) , r0 = (λ − 1) ā , z01 =
{

λ − m0

m0 + m1

}
ā .

(4.118)
Let us now assume that the considered body resides at position 1. If we
replace the distances r0, r1 and z01 in the first of eqns. (4.114) according
to eqn. (4.117) and (4.118) we obtain after division by n̄2 (and taking into
account that n̄2 ā3 = k2 (m0 + m1) ) the following condition equation for λ:
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m0 − (m0 + m1)λ − m0

(1 − λ)2
+

m1

λ2
= 0 . (4.119)

Let us define the function

K(λ) def= m0 − (m0 + m1)λ − m0

(1 − λ)2
+

m1

λ2
(4.120)

to simplify the subsequent discussion.

One easily verifies that K(λ) → +∞ for λ → 0 and that K(λ) → −∞ for
λ → 1. This implies that the above condition equation has at least one root in
the interval I = (0, 1). As K(λ) monotonically decreases in the same interval
(take the derivative of K(λ) w.r.t. λ) one may even conclude that there is
exactly one root in the interval mentioned.

In an analogous way one may prove that there exists exactly one root for each
of the condition equations related to the positions 2 and 3 of the considered
test particle (see Figure 4.17).

In summary, we may state that there are three straight line solutions, one
for each of the positions of the three bodies as shown in Figure 4.17. For
m1
m0

→ 0 the roots corresponding to the positions 1 and 2 approach r1 → 0
implying that the test particle becomes a satellite of mass m1. Under the same
assumption r1 → 2 ā for the position 3, and the test particle lies diametrally
opposite to m1 as seen from the point mass m0. The semi-major axis of the
orbit is (approximately) the same as that of m1, but the orbital position is
opposite to m1 as seen from m0.

Lagrange’s Triangular Solutions. For (true) triangular solutions the first
of eqns. (4.114) and eqn. (4.116) must hold. A simple rearrangement of terms
in eqns. (4.114) leads to the result:{

n̄2 − k2

[
m0

r3
0

+
m1

r3
1

]}
z01 − k2 m0 m1

m0 + m1
ā

{
1
r3
0

− 1
r3
1

}
= 0 . (4.121)

According to the condition equation (4.116) the coefficient of z01 must be
zero. This allows us to conclude immediately that

r0 = r1 (4.122)

must hold. If we use this result in eqn. (4.116) and take into account that
k2 (m0 + m1) = n̄2 ā3 we obtain the final result

r0 = r1 = ā , (4.123)

which implies that the three celestial bodies of the problème restreint have
to form an equilateral triangle in the orbital plane of the two bodies m0 and
m1.

4.5 The Three-Body Problem
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We were able to identify five stationary solutions of the problème restreint,
namely three straight line solutions and two triangular solutions. Figure 4.18
illustrates the five solutions, where a mass ratio of m0

m1
= 3 , m0 + m1 = 1 ,

was used to draw the straight line solutions. The positions are labelled
Li , i = 1, 2, 3, 4, 5. They are also called libration points (implying that real
celestial bodies would librate about these points). The letter L also reminds
of Lagrange, who contributed significantly to the solution of the problème
restreint. The stationary solutions of the poblème restreint are obviously

0

2.5

-2.5

-2.5 0 2.5 5.0 7.5

L3
AU

AU

L4

L5

L1 L2m0 m1

Fig. 4.18. The stationary solutions Li , i = 1, 2, . . . , 5, of the problème restreint

particular “analytical” solutions (solutions in closed form) of the three body
solution. Solutions in closed analytical form corresponding to the five solu-
tions L1 to L5 may be found under more general conditions (all three masses
different from zero, elliptic instead of circular orbits for m0 and m1). For
more information we refer to [117], [49] (in German), or [31] (in English).

Stability of Stationary Solutions. Five stationary solutions of the prob-
lème restreint were found in the previous paragraph. Here we want to answer
the question whether these solutions are stable, i.e., whether the orbit of a
celestial body with slightly modified initial values will stay in the vicinity of
the points Li or not.

The tools to be used for this purpose will be fully developed in Chapter
5. Here we only need a very limited subset of the theory presented in that
chapter.

Let
p ∈ {z01 , z02 , z03 , ż01 , ż02 , ż03} (4.124)

be one of the coordinates of the initial values of a particular solution of the
equations of motion (4.97). Let us furthermore introduce the function
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w(t) def=
∂y

∂p
(t) . (4.125)

To a first order, w(t)∆p tells what the consequence at time t of a change
∆p in a particular initial value at time t0 will be. Obviously the solution
will remain in the neighborhood of the libration point considered, if w(t)
shows only periodic variations. If this is true for all initial conditions (4.124)
considered, the corresponding solution is said to be stable.

An ordinary differential equation system is obtained for the function w(t) by
taking the partial derivative of the equations of motion (4.97) w.r.t. p (one
of the initial values):

ẅ = A0 w + A1 ẇ . (4.126)

The system (4.126) is a linear, homogeneous system of equations. It is referred
to as the system of variational equations associated with the stationary solu-
tions of the problème resteint. (A general derivation for the variational equa-
tions will be given in Chapter 5.1). The matrices Ai , i = 0, 1 are obtained as:

A0 = n̄2

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ − k2 m0

r3
0

{
E − 3

r2
0

(y − y0) ⊗ (y − y0)
T

}

− k2 m1

r3
1

{
E − 3

r2
1

(y − y1) ⊗ (y − y1)
T

}
,

(4.127)

where ⊗ stands for the outer product of two vectors, and where

A1 = − 2 n̄

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ . (4.128)

For the five stationary solutions to be considered, the radii r0 and r1 are
constant, which in turn implies that the matrices Ai , i = 0, 1, are time-
independent, as well. For stationary solutions the system of variational equa-
tions is a linear, homogeneous system with constant coefficients – (almost)
the simplest case of an ordinary differential equation system.

Stability of Triangular Solutions. From Figure 4.18 one obtains:

y − y0 =
ā

2

⎛
⎝ +1

±
√

3
0

⎞
⎠ , (4.129)

as well as

y − y1 =
ā

2

⎛
⎝ −1

±
√

3
0

⎞
⎠ , (4.130)

4.5 The Three-Body Problem
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where the positive sign applies to the solution L4, the negative sign to solution
L5 (see Figure 4.18).

Taking into account that r0 = r1 = ā for the triangular solutions, matrix A0

reads as

A0 =
3 n̄2

4

⎛
⎝ 1, ±

√
3 χ, 0

±
√

3 χ, 3, 0
0, 0, − 4

3

⎞
⎠ , (4.131)

where:
χ =

m0 − m1

m0 + m1
. (4.132)

The variational equations for triangular solutions thus read as

ẅ − 3 n̄2

4

⎛
⎝ 1, ±

√
3 χ, 0

±
√

3 χ, 3, 0
0, 0, − 4

3

⎞
⎠w + 2 n̄

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ ẇ = 0 . (4.133)

Obviously the system is separated into one for the first two components and
a scalar equation for the third equation

ẅ3 + n̄2 w3 = 0 . (4.134)

This is the equation of the one-dimensional harmonic oscillator which is solved
by:

w3(t) = w03 cos(n̄t + α) , (4.135)

where w03 is the initial value of w3(t) at t = 0. Obviously the general solution
is periodic in nature. The triangular solutions at L4 and L5 are therefore
stable w.r.t. small changes in the third component of the initial position and
the velocity vectors.

The variational equations for the components w1(t) und w2(t) are (first two
of eqns. (4.133)):(

ẅ1

ẅ2

)
+ 2 n̄

(
0 −1
1 0

)(
ẇ1

ẇ2

)
− 3 n̄2

4

(
1, ±

√
3 χ

±
√

3 χ, 3

)(
w1

w2

)
= 0 .

(4.136)
The system is solved by (

w1

w2

)
= eλ (t−t0)

(
c1

c2

)
, (4.137)

where λ is an arbitrary complex number and c1 and c2 are (arbitrary) con-
stants. Should λ be purely imaginary only periodic solutions are obtained.
In all other cases there will be components showing an exponential growth.
Obviously the solutions would be stable in the former, unstable in the latter
case.
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Using eqn. (4.137) in the variational equations (4.136) one obtains the alge-
braic condition equations⎛

⎝ λ2 − 3
4 n̄2 , − n̄

(
2 λ ± 3

√
3

4 n̄ χ
)

+ n̄
(
2 λ ∓ 3

√
3

4 n̄ χ
)

, λ2 − 9
4 n̄2

⎞
⎠( c1

c2

)
= 0 . (4.138)

Non-trivial solutions are obtained only if the determinant of the above 2× 2-
matrix is identically zero. This requirement leads to the following biquadratic
equation in λ

λ4 + n̄2 λ2 + 27
16 n̄4

(
1 − χ2

)
= 0 , (4.139)

which is solved by:

λ2 = − n̄2

2

{
1 ±

√
1 − 27

4 (1 − χ2)
}

. (4.140)

The four solutions obviously are purely imaginary if

0 ≤ 1 − 27
4

(
1 − χ2

)
< 1 . (4.141)

Assuming that m0 ≥ m1 this implies 0 ≤ χ ≤ 1. This in turn means that
stable solutions are obtained if the mass ratio meets the condition

χ2 ≥ 23
27 (4.142)

or
χ =

m0 − m1

m0 + m1
≥ 0.9229582 . (4.143)

Triangular solutions are obviously stable if m0 � m1. For the three-body
problem Sun-Jupiter-Minor planet the triangular solutions are obviously sta-
ble, because we have

χ�� =
1 − 1

1047.35

1 + 1
1047.35

= 0.9980922 > 0.9929582 . (4.144)

In Chapter II- 4 we will see that in the solar system the libration points L4

and L5 (of the three-body problem Sun-Jupiter-asteroid) are populated by
the Trojans (and Greek) family of asteroids. The existence of these families of
minor planets underlines the importance of the problème restreint in practice.

From the above equations one easily derives the following basic frequencies
of the system Sun-Jupiter-Minor planet:

λ1,2 = ν1,2 i = ± 0.9967575 n̄ i

λ3,4 = ν3,4 i = ± 0.0804641 n̄ i ,
(4.145)

where i is the imaginary unit. In essence we have one period which is compa-
rable to the revolution period of the two masses m0 and m1, and one which is

4.5 The Three-Body Problem
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about twelve times longer. The latter period is observed as a slow librational
motion of the Trojan (Greek) family of minor planets about the libration
points L4 and L5.

Instability of Straight Line Solutions. We follow the procedure estab-
lished for the triangular solutions to address the issue of stability of the
straight line solutions. In a first step the variational equations (4.126) have
to be formulated for the special case considered. We observe that:

y − y0 =

⎛
⎝ r0

0
0

⎞
⎠ and y − y1 =

⎛
⎝ r1

0
0

⎞
⎠ . (4.146)

Let us select the libration point L2 as an example. Matrix A0 assumes the
form:

A0 = n̄2

⎛
⎝1 + 2 ζ2 , 0 , 0

0 , 1 − ζ2 , 0
0 , 0 , − ζ2

⎞
⎠ , (4.147)

where
ζ2 =

m0

m0 + m1

1
(1 + λ)3

+
m1

m0 + m1

1
λ3

> 0 . (4.148)

With these relations the variational equations relative to the stationary so-
lution at L2 are obtained as

ẅ − n̄2

⎛
⎝1 + 2 ζ2, 0, 0

0, 1 − ζ2 0
0, 0, − ζ2

⎞
⎠w + 2 n̄

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ ẇ = 0 . (4.149)

Obviously, it is again possible (as in the case of the triangular solutions) to
split up the system into an equation for the third component (normal to the
orbital plane of the bodies m0 and m1) and a system of equations for the
first two components of the vector w. According to the above definition the
auxiliary scalar quantity ζ is real, which is why we may conclude that ζ2 > 0.
This in turn implies that the third component w3(t) obeys the equation

ẅ3 + ζ2 n̄2 w3 = 0 (4.150)

of the harmonic oscillator, the solutions of which are periodic functions. The
same result (with a slightly different period) was obtained for the triangular
solutions. The considered straight-line solution thus is stable w.r.t. small
changes in the third components of the initial position and velocity vectors.

The first two components obey the following system of equations:(
ẅ1

ẅ2

)
+ 2 n̄

(
0 −1
1 0

)(
ẇ1

ẇ2

)
− n̄2

(
1 + 2 ζ2, 0

0, 1 − ζ2

)(
w1

w2

)
= 0 , (4.151)
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which is solved by the same type (4.137) of solution as in the case of the tri-
angular solutions. Introducing formula (4.137) into the variational equations
(4.151) for the libration point L2 yields the following condition equations for
the coefficient λ:(

λ2 − (1 + 2 ζ2) n̄2 , − 2 n̄ λ
2 n̄ λ , λ2 − (1 − ζ2) n̄2

)(
c1

c2

)
= 0 . (4.152)

Non trivial solutions only exist if the determinant of this matrix is zero. One
easily verifies that the above 2×2 matrix gives rise to a biquadratic expression
in λ for the determinant. Also one may show in a straight forward way that
it is not possible in this case to find purely imaginary solutions. Therefore,
there are no purely periodic solutions of the variational equations (4.151) for
the straight-line solution considered. This in turn implies that the solution of
the equations of motion (4.97) with initial conditions slightly (infinitesimally)
different from those of the stationary solution at L2 will eventually depart
exponentially from L2. Obviously, the stationary solution at L2 is not stable.

One easily verifies that the solutions corresponding to the other two libration
points L1 and L3 are not stable either. Before the advent of the space flight
era one could therefore safely state that only the libration points L4 and L5

are of practical importance (family of asteroids associated with them in the
three-body problem Sun-Jupiter-asteroid). The libration points L1 and L2 of
the three-body-problem Sun-Earth-spacecraft are of considerable importance
today, e.g., for Sun-observing space missions: when brought to either of the
two libration points, the spacecraft will remain in the vicinity of the Earth
(observe the mass ratio m� : m♁) and it will co-rotate with the Earth around
the Sun (the geocentric and heliocentric revolution periods are the same).
The stability of the solution, as considered in this section, is not a central
issue for spaceflight applications, because orbital manoeuvres are anyway
necessary (e.g., due to non-gravitational forces) to keep the spacecrafts in
place.

Periodic Solutions in the Problème Restreint. We were looking for
stationary solutions in the rotating system in the previous paragraphs. We
might as well study periodic solutions (and their stability) in the same co-
ordinate system. This would immediately lead to the question whether there
are such solutions and (in the affirmative case) how they can be established
in practice. A thorough discussion requires the distinction of many special
cases, e.g., periodic orbits about m0, m1, the libration points L4 and L5, pe-
riodic orbits around m0 and m1, etc. We refer to [117] for a broad discussion
of periodic solutions.

H. Poincaré was very much interested in the periodic solutions of the problème
restreint. He hoped to obtain clues concerning the stability of the solar system
with their help. He had the idea to associate a periodic orbit with each
real orbit (close to the latter) and to study stability properties with the
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help of the periodic orbit (which, by construction, would be rather simple
to describe) and the variational equations associated with it. This concept
eventually failed because he found that it was not even possible to find a
periodic solution for each revolution period, or, what is equivalent, for each
mean motion n of a test particle.

Let us conclude the chapter by constructing a few periodic orbits around m0

for a planetary three-body problem, i.e., for m0 � m1 . (The actual values
for the problème resteint Sun-Jupiter-asteroid will be used below). We focus
on orbits with a period P̃

def= 2 π
n−n̄ in the rotating system. Obviously n must

be the mean motion of the asteroid as observed in the inertial system, n̄ is
the orbital period of Jupiter around the Sun.

Periodic orbits of this kind may be generated numerically by defining a pa-
rameter estimation problem. It is (in general) safe to assume, that a circular
orbit with the mean motion n is a fair approximation to the true solution (it
approximates the true solution for m1 → 0). With this assumption we may
define approximate values for the initial conditions of a truly periodic orbit
in the rotating system: The initial epoch t0 = 0 is chosen to correspond to
a crossing of the first coordinate axis in the rotating system. As a circular
orbit was assumed, the initial conditions read as:

y(0) =

⎛
⎝ y∗

01

0
0

⎞
⎠ and ẏ(0) =

⎛
⎝ 0

ẏ∗
02

0

⎞
⎠ , (4.153)

where

y∗
01

def=
(

k2 m0

n2

)1
3

and ẏ∗
02

= y∗
01

(n − n̄) . (4.154)

A truly periodic orbit in the rotating system with the period P̃ = 2 π
n−n̄ must

intersect the first coordinate axis after the time period ∆t = P̃
2 perpendic-

ularly: For reasons of symmetry, the orbit in the time interval [12 P̃ , P̃ ] will
then be a mirror (with the first coordinate axis as a mirror) of the orbit in
the time interval [0, 1

2 P̃ ]. A truly periodic solution yp(t) therefore must meet
the following conditions:

yp,02

(
P̃

2

)
def= 0 and ẏp,01

(
P̃

2

)
def= 0 . (4.155)

With the approximate initial conditions defined above these conditions will be
met only approximately. How do we establish it to generate an orbit meeting
the condition equations (4.154) precisely? The answer is simple: we represent
the unknown, truly periodic orbit by

yp(t)
def= y(t) + w1 ∆y∗

01
+ w2 ∆ẏ∗

02
, (4.156)
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where wi , i = 1, 2, are the solutions of the variational equations (4.126)
w.r.t. the initial values y∗

01
and ẏ∗

02
. These two initial values must now be

varied in such a way that the orbit yp(t) meets the two condition equations
(4.155). Introducing the orbit representation (4.156) into the condition equa-
tions (4.155) we obtain the following system of two linear equations for the
determination of improved initial conditions:

yp,02

(
P̃

2

)
def= y2

(
P̃

2

)
+ w1,2

(
P̃

2

)
∆y01 + w2,2

(
P̃

2

)
∆ẏ02 = 0

ẏp,01

(
P̃

2

)
def= ẏ1

(
P̃

2

)
+ ẇ1,1

(
P̃

2

)
∆y01 + ẇ2,1

(
P̃

2

)
∆ẏ02 = 0 .

(4.157)

The solution of the two linear equations (4.157) are used to define new ini-
tial values y01

def= y∗
01

+ ∆y01 and ẏ02

def= ẏ∗
02

+ ∆ẏ02 which will result in
an orbit meeting the conditions (4.155) much better than the original orbit
represented by the initial value (4.153). Should there still be unacceptable
discrepancies, the parameter estimation procedure outlined above may be
repeated with the improved initial values as a priori approximations.

The sketched parameter estimation process will in general have a unique solu-
tion – two scalar condition equations are necessary and sufficient to determine
two free parameters, which may be adjusted.

The resulting orbits usually are close to circular. Exceptions to this rule occur
if the revolution periods of the test particle and the two bodies m0 and m1 are
commensurable. Two orbital periods P̄ and P are said to be commensurable
if their periods (in the inertial system) may be expressed by

P̄

P
=

k1

k2
, (4.158)

where k1 and k2 are integers. Observe, that commensurable periodic orbits
in the rotating system are also periodic in the inertial system (what is not
true in the general case).

The parameter estimation process (4.157) will fail, if the periods of the minor
planet and Jupiter (as measured in the inertial system) meet the additional
condition

P =
k − 1

k
P̄ , k = 2, 3, . . . . (4.159)

Figure 4.19 (left) shows two periodic orbits near the (2 : 1)-commensurability,
Figure 4.19 (right) two periodic orbits near the (3 : 2)-commensurability. The
differences in the mean motions of the two orbits are very small in both cases,
the resulting solutions differ dramatically, however. Moreover, the solutions
are highly eccentric. In the example of Figure 4.19 (left) the perihelia of the
two orbits differ by 90◦ in the rotating system (the close encounters of Jupiter

4.5 The Three-Body Problem
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and the minor planet occur at perihelia and at aphelia passing times of the
minor planet, respectively). Note that there is a group of minor planets, the
so-called Hilda group. The solid-line solution of Figure 4.19 (right) corre-
sponds to the Hilda-type objects (see Chapter II- 4, section II- 4.3.4 for more
information). The closer one tries to approach the exact commensurabilities,
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Fig. 4.19. Two periodic orbits near to the (2 : 1)- and to the (3 : 2)-commensu-
rability of three-body problem Sun-Jupiter-minor planet

the more eccentric the corresponding periodic orbits become.

This behavior also implies that already in the case of the problème restreint
there are orbits which are chaotic, i.e., even if the initial conditions of two
orbits differ only by infinitesimally small amounts, the resulting solutions will
depart from each other exponentially. Poincaré’s investigations of the periodic
solutions in the problème restreint were of fundamental importance. They
eventually led to the developments of the theory of dynamical systems and
to the detection of the so-called deterministic chaos, which will be discussed
in greater detail in Chapter II- 4.

The above figures were generated with the program PLASYS (documented
in Chapter II- 10).
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5.1 Motivation and Overview

When discussing the stability of stationary solutions in the problème restreint
in section 4.5.2 we derived differential equations for the partial derivatives
of these solutions w.r.t. the components of the initial state vector and called
them variational equations.

Variational equations may be attributed to all trajectories (particular solu-
tions) solving the different types of equations of motion given in Chapter 3.
As a matter of fact, variational equations exist for all initial (and boundary)
value problems – inside and outside the area of Celestial Mechanics. In this
chapter we review the essential properties of the variational equations encoun-
tered in Celestial Mechanics. These equations are in particular indispensable
for

• stability studies of particular solutions of differential equations (see sections
4.5.2, II- 4.3.4 for applications),

• parameter estimation theory, in particular orbit determination (see Chap-
ter 8), and

• the theory of error propagation in numerical integration (see Chapter 7).

Variational equations are of central importance for the theory of dynamical
systems, in particular in Celestial Mechanics.

In section 5.2 the problem is studied from a rather general point of view.
We depart from an initial value problem associated with a differential equa-
tion system of dimension d and order n ≥ 1 and derive the general form of
the variational equations. As the two-body problem could be solved in closed
form, it must also be possible to solve the corresponding variational equations
“analytically”. This task is accomplished in section 5.3, where extensive use is
made of the formulas of the two-body problem in Chapter 4. The variational
equations accompanying the perturbed trajectory of one celestial body are
studied in section 5.4, those associated with the general N -body problem in
section 5.5. Efficient solution methods for the variational equations occurring
in Celestial Mechanics are based on the (analytically known) solutions of the
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corresponding equations of the two-body problem. Methods of this type are
outlined in section 5.6. In the concluding section 5.7 the variational equations
are used to study the impact of small errors introduced at a particular time
tk on the trajectory for t ≥ tk. The so-called fundamental law of error prop-
agation is derived in this section. Unnecessary to say that this law is of vital
importance when studying the propagation of numerical integration errors in
Chapter 7.

5.2 Primary and Variational Equations

Primary Equations. The three types of equations of motion derived in
Chapter 3, namely the equations of the N -body problem, the three-body
problem Earth-Moon-Sun, and of the motion of artificial Earth satellites,
are non-linear systems of the second order. In Chapter 6 we will see that it
is equally well possible to transform the equations of motion into a system
of first order with the osculating orbital elements as dependent arguments.
Therefore we derive the variational equations associated with the following
general initial value problem:

y(n) = f(t; y, ẏ, ÿ, . . . ,y(n−1), p̃1, p̃2, . . . , p̃m)

y(i)(t0) = y
(i)
0 , i = 0, 1, . . . , n − 1 ,

(5.1)

where:

n ≥ 1 is the order of the differential equation system, d its dimension;

y(t), a column array with d elements, is the solution vector of the system,

ẏ, ÿ, . . . ,y(i), represent the first, second, . . . ith derivative of the solution
vector,

y
(i)
0 , i = 0, 1, . . . , n−1, is the initial state vector of the system at the initial
epoch t0 (the initial state vector may be understood as the set of the nd
components of the solution vector and its first n−1 derivatives at t = t0)
– these components are also referred to as “initial values”;

f(. . .), a column vector with d elements, is the right-hand side of the differ-
ential equation system, and

p̃j , j = 1, 2, . . . , m, are the so-called dynamical parameters of the system.

In the context of variational equations the initial value problem (5.1) is re-
ferred to as the system of primary equations.

The dynamical parameters are included explicitly in eqns. (5.1), because one
may wish to study the impact of (slightly) changing one or more of these
parameters on the particular solution of the primary equations. In this case
the partial derivatives of the particular solution defined by eqns. (5.1) w.r.t.
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these parameters are required in addition to the partials w.r.t. the compo-
nents of the initial state vector. The masses of the planets in eqns. (3.18) or
the coefficients Cik, Sik of the Earth’s gravitational potential in the equations
of motion (3.143, 3.150) are examples of dynamical parameters.

It is possible to use more general parameters describing the initial state of
the system than the components of the vectors y

(i)
0 , i = 0, 1, . . . , n − 1. This

is, as a matter of fact, frequently done: In Chapter 8 we will, e.g., use the
osculating elements at t0 to describe the initial state vector. As this more
general treatment does not alter the structure of the problem, we stick to the
formally simpler way of parametrization and consider the components of the
above mentioned vectors as parameters.

It is even possible to replace the initial value problem (5.1) by a boundary
value problem. This may, e.g., make sense when determining orbits, if the
problem is formulated as a local boundary value problem (see Chapter 8). As
it is a straightforward matter to generalize the tools developed subsequently
to boundary value problems of this kind, we do “only” address variational
equations associated with primary equations of type (5.1) from here onwards.

Notation. Let us introduce the following notation for the nd+m parameters
of the above primary equations (5.1)

{p1, p2, . . . , pnd+m} def=
{

yT
0 , ẏT

0 , ÿT
0 , . . . ,

(
y

(n−1)
0

)T

, p̃1, p̃2, . . . , p̃m

}
. (5.2)

Note that the first nd parameters pi define the initial values, whereas the
last m parameters characterize the differential equation system. With this
notation the particular solution defined by eqns. (5.1) may also be written
as y(t; p1, p2, . . . , pnd+m), if one wishes to underline the dependency of the
solution vector on the parameters (5.2).

Let us now assume that

p ∈ {p1, p2, . . . , pnd+m} (5.3)

is anyone of the parameters defining the initial value problem (5.1). The par-
tial derivative of the solution vector w.r.t. this parameter p is then designated
by

z(t) def=
(

∂y

∂p

)
(t) , (5.4)

where y(t) = y(t; p1, p2, . . . , pnd+m) is the solution vector of the initial value
problem (5.1).

Sometimes it is important to refer to a particular parameter pl in the list
(5.2). In this case we will designate the corresponding partial derivative by:

zl(t)
def=
(

∂y

∂pl

)
(t) , l ∈ {1, 2, . . . , nd + m} . (5.5)
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z(t) and zl(t) are functions of time. Their first, second, . . . derivatives w.r.t.
time are denoted by z(i), z

(i)
l , i = (0), 1, 2, . . . , n, (in analogy to the notation

used for vector y(t)).

Variational Equations. The function z(t) solves the initial value problem,
which is obtained by taking the partial derivative w.r.t. the parameter p of all
equations, the differential equations and the defining equations for the initial
state vector, in the original initial value problem (5.1).

Making extensive use of the chain rule of elementary calculus (by taking
first the partial derivatives of the differential equation in eqns. (5.1) w.r.t.
the components of the solution vector and its first n − 1 derivatives at time
t, then the partial derivatives of these components w.r.t. the parameter p),
one easily verifies that z(t) is a particular solution of the linear, in general
inhomogeneous differential equation system

z(n)(t) =
n−1∑
i=0

Ai(t)z(i)(t) + fp(t) , (5.6)

where the components of the square matrices of dimension d × d

Ai,jk(t) def=

(
∂fj

∂y
(i)
k

)
(t) ; i = 0, 1, . . . , n − 1, j, k = 1, 2, . . . , d (5.7)

are the elements of the Jacobian of vector f (. . .) w.r.t. the components of the
solution vector and its first n−1 derivatives, respectively. The column matrix
fp(t) is the explicit derivative, i.e., the partial derivative w.r.t. the parameter
p considered, of vector f(. . .) (disregarding the fact that the vectors y(i),
i = 0, 1, . . . , n − 1, also depend on p, see right-hand side of the differential
equation in eqns. (5.1)):

fp
def=

⎧⎨
⎩

0 , p ∈ {p1, p2, . . . , pnd}(
∂f

∂p

)
(t) , p ∈ {pnd+1, pnd+2, . . . , pnd+m} .

(5.8)

This explicit derivative is the zero vector 0, if the parameter p considered is
one of the initial values.

The differential equation system (5.6) is called the system of variational equa-
tions for parameter p of the original differential equation system (5.1) (of the
primary equations).

The initial values associated with the variational equations (5.6) for a pa-
rameter p are obtained by taking the partial derivatives of the corresponding
initial values of the primary equations (5.1) w.r.t. parameter p, i.e., by

z(i)(t0) =
∂y

(i)
0

∂p
, i = 0, 1, . . . , n − 1 . (5.9)



5.2 Primary and Variational Equations 179

The right-hand sides of eqns. (5.9) must all be identically zero, if parameter
p is one of the dynamical parameters (see parameter definition (5.2)):

z(i)(t0) = 0, i = 0, 1, . . . , n − 1, p ∈ {pnd+1, pnd+2, . . . , pnd+m} . (5.10)

If, on the contrary, parameter p
def= y

(l)
0k corresponds to component k of an

initial value y
(l)
0 , we obtain

z(i)(t0) =
{

0 , i �= l
ek , i = l

, i = 0, 1, . . . , n − 1 . (5.11)

The array ek therefore must be interpreted as the column array formed by
column k of the identity matrix E with d × d elements.

Elementary Properties of the Variational Equations. The properties
of the variational equations (5.6) and their solutions accompanying the pri-
mary problem (5.1) may be summarized as follows:

1. The system (5.6) of variational equations is a linear differential equation
system.

2. One solution vector z(t) is associated with each of the nd+m parameters
pl , l = 1, 2, . . . , nd + m, (5.2).

3. The partial derivatives zl(t), l = 1, 2, . . . , nd, w.r.t. the initial values
are particular solutions of one and the same homogeneous differential
equation system

z
(n)
l (t) =

n−1∑
i=0

Ai(t)z
(i)
l , l = 1, 2, . . . , nd . (5.12)

The nd solutions obey nd different sets of initial conditions (5.11).

4. The nd solutions zl(t) associated with the initial conditions define a
complete system of solutions of the homogeneous equations (5.12).

5. Each linear combination of the nd solutions of the homogeneous system

z(t) =
nd∑
l=1

αl zl(t) (5.13)

(with constant coefficients αl) is a solution of the homogeneous system
(5.12), as well. Function (5.13) may be considered as the general solution
of the homogeneous system (5.12).

6. The attribute “complete” of the system of nd solutions zl(t) reflects
the fact that any solution of the homogeneous system (5.12) may be
expressed as a linear combination of type (5.13).
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The homogeneous equations (5.12) occur in each of the problems mentioned
initially: when determining an orbit in a known force field, we have to de-
termine the initial values (or functions thereof), in stability theory we are
(usually) interested in the sensitivity of a particular trajectory w.r.t. small
changes in the initial values; when studying error propagation in numerical
integration we have to study the impact of small changes in the initial values
– at time t0 and at intermediary epochs ti.

Solution of the Inhomogeneous Variational Equation by Quadra-
ture. The inhomogeneous variational equations (5.6) only have to be solved,
if the force field contains dynamical parameters pj , j = nd+1, nd+2, . . . , nd+
m. In satellite-geodetic problems many of these parameters may occur in the
same parameter estimation problem. When determining the Earth’s gravity
field parameters Cik, Sik up to degree and order 300, about 90000 dynamical
parameters have to be determined. It may, therefore, be of crucial importance
to have efficient solution methods at hand for such purposes.

In this paragraph it is shown how the inhomogeneous equations (5.6) may
be solved by quadrature. This transformation is important because the solu-
tion methods for solving definite integrals are much more powerful than the
methods for solving an ordinary differential equation system.

The partial derivatives w.r.t. the dynamical parameters pj , j = nd+1, nd+
2, . . . , nd+m, are solutions of the inhomogeneous differential equation system
(5.6), where the explicit derivative has to be taken w.r.t. parameter pj . The
initial values at time t0, according to eqns. (5.10), are homogeneous (all zero).

The solution vector zj(t), j ∈ {nd + 1, nd + 2, . . . , nd + m} of the inhomoge-
neous system (5.6) (and its first n − 1 derivatives) are, e.g., obtained by the
method of variation of constants as a linear combination of the nd homoge-
neous solutions

z
(i)
j (t) def=

nd∑
l=1

αl(t)z
(i)
l (t) , i = 0, 1, . . . , n − 1 , (5.14)

where the coefficients αl(t) are functions of time t (to be determined below).
The functions zl(t) on the right-hand side of eqns. (5.14) are solutions of
the homogeneous system, they form the complete system of homogeneous
solutions of the equation (5.12).

Observe that eqns. (5.14) are rather special: If you would take the ith time
derivative of the function zj(t), you would obtain much more general formulas
than eqns. (5.14). We will make use of eqns. (5.14) to set up linear differential
equations for the parameters αl. In order to do that we write the above
equation in a very compact matrix form by introducing the one-dimensional
array

αT (t) def=
(
α1(t), α2(t), . . . , αnd(t)

)
, (5.15)
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with nd elements, which allows it to write eqns. (5.14) in the form

z
(i)
j (t) = Z(i)(t)α(t) def= Z(i) α , i = 0, 1, . . . , n − 1 , (5.16)

where Z(t) is the rectangular matrix with nd columns and d rows, in which
column l contains the elements of the solution zl(t) with index l of the ho-
mogeneous system.

Equations (5.16) and the inhomogeneous equation (5.6) allow it to list nd
scalar condition equations for the nd components of the array α(t):

d

dt
(Zα) = Żα → Z α̇ = 0

d2

dt2
(Zα) = Z̈α → Ż α̇ = 0

. . . = . . . → . . . = . . .

. . . = . . . → . . . = . . .

d(n−1)

dt(n−1)
(Zα) = Z(n−1) α → Z(n−2) α̇ = 0

d(n)

dt(n)
(Zα) = Z(n) α + Z(n−1) α̇

=
n−1∑
i=0

Z(i) α + fpj → Z(n−1) α̇ = fpj ,

(5.17)

where fpj =
(

∂f
pj

)
(t) , j ∈ {nd + 1, nd + 2, . . . , nd + m}.

For the sake of clarity we include the intermediary steps leading to the latter
condition equation. When forming this equation we already know (assumed)
that

d(n−1)

dt(n−1)
(Zα) = Z(n−1) α .

Using the chain rule of calculus, we obtain the next time derivative as

d(n)

dt(n)
(Zα) = Z(n) α + Z(n−1) α̇ .

Now, we want the function Zα to solve the inhomogeneous system (5.6):

d(n)

dt(n)
(Zα) =

{
n−1∑
i=0

Ai(t)Z(i)(t)

}
α + fpj (t) .

On the other hand we know that the function Z “alone” solves the homoge-
neous system:

Z(n) =

{
n−1∑
i=0

Ai(t)Z(i)(t)

}
.
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From the previous four relations the last line of the condition equations (5.17)
easily follows.

The condition equations (5.17) may be written simply as

Z̃ α̇ = Fpj , (5.18)

where the regular square matrix Z̃ is defined as

Z̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Z
Ż
Z̈
. . .
. . .

Z(n−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.19)

and the column array Fpj is defined as

Fpj =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
. . .
. . .
0

fpj

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.20)

Independently of the order n of the variational equation, a very simple dif-
ferential equation system of first order is obtained for the parameter array
α, which, as a matter of fact, may be solved by quadrature:

α(t) =

t∫
t0

Z̃−1(t′)Fpj (t
′) dt′ . (5.21)

In mathematical textbooks the above deliberations are usually given for first-
order systems of equations – what is sufficient from the point of view of pure
mathematics, because every system of order n > 1 may be decomposed into
one of first order. In numerical analysis, this step usually leads to a decrease
of computational efficiency and to an increase of disk storage requirements.

The representation (5.21) is of crucial importance, if many (hundreds to thou-
sands of) dynamical parameters have to be determined, because there are
much more efficient tools available to solve integrals than differential equa-
tions (see Chapter 7).

The numerical solution of eqns. (5.21) may be optimized, if many variational
equations referring to dynamical parameters have to be solved: Observe, e.g.,
that the matrix Z̃ has to be inverted only once and that the matrix multipli-
cation in the integrand has to be performed only over the last d elements of
matrix Fpj because only those elements are different from zero.
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5.3 Variational Equations of the Two-Body Problem

The motion of two spherically symmetric bodies obeying Newton’s law of
universal gravitation is governed by the differential equations (4.1). Accord-
ing to the procedure outlined in section 5.1, the corresponding variational
equations are obtained by taking the partial derivative of these equations
w.r.t. one of the initial values (or w.r.t. one of the orbital elements, which are
functions of these initial values). The result is

z̈ = − µ

r3

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − 3 r2
1

r2
, − 3 r1 r2

r2
, − 3 r1 r2

r2

− 3 r1 r2

r2
, 1 − 3 r2

2

r2
, − 3 r2 r3

r2

− 3 r1 r3

r2
, − 3 r2 r3

r2
, 1 − 3 r2

3

r2

⎞
⎟⎟⎟⎟⎟⎟⎠

z

def= − µ

r3

{
E − 3

r2
r ⊗ rT

}
z .

(5.22)

According to the definition (5.4) the column array z(t) def=
(

∂r
∂p

)
(t) is the

partial derivative of the array r(t) w.r.t. one of the parameters p defining
the initial values, r ⊗ rT is the Cartesian product, or outer product, of the
column array r with its transpose rT .

The variational equations obviously are a special case of eqns. (5.12), where
the order of the system is n = 2 and its dimension d = 3, and where

A00
def= A0 = − µ

r3

{
E − 3

r2
r ⊗ rT

}
and A10

def= A1 = 0 . (5.23)

The notations A00 and A10 will be used where necessary, to refer to the ma-
trices accompanying the two-body problem. No dynamical parameters need
to be considered in the case of the two-body problem.

The differential equations (4.1) of the two-body problem were solved in closed
form in Chapter 4. In the remainder of this section we derive closed solutions
of the variational equations (5.22).

According to eqns. (4.62, 4.64), and (4.66) the equations of motion (4.1) are
solved in the quasi-inertial system by

r = R3(−Ω) R1(−i) R3(−ω) rΠ

ṙ = R3(−Ω) R1(−i) R3(−ω) ṙΠ ,
(5.24)

where

rΠ =

⎛
⎝ r cos v

r sin v
0

⎞
⎠ ; ṙΠ =

√
µ
p

⎛
⎝ − sin v

e + cos v
0

⎞
⎠ (5.25)
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are the component matrices of the position and velocity vector in the orbital
system Π as defined in Table 4.3 and illustrated by Figure 4.7.

As v, the celestial body’s true anomaly, is defined in the same way for all
types of orbits, we can state that the above equations hold for all orbit types
(ellipses, parabolas, hyperbolas). r is the column matrix of Cartesian coor-
dinates in the quasi-inertial system, rΠ the corresponding column matrix
in the orbital system (orbital plane as fundamental plane, direction to the
pericenter as first coordinate axis).

Subsequently, either of two alternative sets of orbital parameters will be used
to define a particular solution of the two-body problem:

{a, e, i, Ω, ω, T0} or {p, e, i, Ω, ω, T0} , (5.26)

where a is the semi-major axis, e the numerical eccentricity, p the semi-latus
rectum, i the inclination w.r.t. reference plane, Ω the longitude (or right
ascension) of the ascending node, ω the argument of pericenter, and T0 the
time of pericenter passage.

The second of the sets (5.26) has the advantage to describe the orbit for all
possible solutions, namely ellipse, parabola, and hyperbola (with the under-
standing that the eccentricity is fixed to e = 1 in the case of the parabola).

Other sets of six independent functions of the above orbital elements may
be better suited for special cases (e.g., for low eccentricity elliptic orbits, or
for low inclination orbits). The derivatives w.r.t. alternative sets of elements
may be easily obtained by simple transformations of the derivatives provided
subsequently.

The three Eulerian angles i, Ω, and ω only show up in the rotation matrices
in eqns. (5.24) and (5.25), whereas the remaining three orbital elements are
contained only in the two non-zero components of the state arrays rΠ and
ṙΠ in the orbital system.

The partial derivatives of the state vector w.r.t. the three Eulerian angles
follow from eqns. (5.24):
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∂

∂Ω
{r} =

∂

∂Ω

{
R3(−Ω)

}
R1(−i) R3(−ω) rΠ =

∂

∂Ω
{R} rΠ

∂

∂i
{r} = R3(−Ω)

∂

∂i

{
R1(−i)

}
R3(−ω) rΠ =

∂

∂i
{R} rΠ

∂

∂ω
{r} = R3(−Ω) R1(−i)

∂

∂ω

{
R3(−ω)

}
rΠ =

∂

∂ω
{R} rΠ

∂

∂Ω
{ṙ} =

∂

∂Ω

{
R3(−Ω)

}
R1(−i) R3(−ω) ṙΠ =

∂

∂Ω
{R} ṙΠ

∂

∂i
{ṙ} = R3(−Ω)

∂

∂i

{
R1(−i)

}
R3(−ω) ṙΠ =

∂

∂i
{R} ṙΠ

∂

∂ω
{ṙ} = R3(−Ω) R1(−i)

∂

∂ω

{
R3(−ω)

}
ṙΠ =

∂

∂ω
{R} ṙΠ ,

(5.27)

where the product of the three rotation matrices was abbreviated as

R def= R3(−Ω) R1(−i) R3(−ω) . (5.28)

It is a straight forward matter to verify that the rotation matrix R may be
written explicitly as

R =

⎛
⎝ cosΩ cosω − sinΩ cos i sin ω , − cosΩ sinω − sinΩ cos i cosω , . . .

sin Ω cosω + cosΩ cos i sin ω , − sinΩ sin ω + cosΩ cos i cosω , . . .
sin i sinω , sin i cosω , . . .

⎞
⎠ .

(5.29)

Note that only the first two columns of matrix R (and of its partial derivatives
below) are needed, because the third components of the state vector is zero
in the orbital system.

The partial derivatives of matrix R w.r.t. the three Eulerian angles may then
be written explicitly as
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∂

∂Ω
{R} =

⎛
⎝− sinΩ cosω − cosΩ cos i sinω , + sinΩ sin ω − cosΩ cos i cosω , . . .

+ cosΩ cosω − sin Ω cos i sinω , − cosΩ sin ω − sin Ω cos i cosω , . . .
0 , 0 , . . .

⎞
⎠ ,

∂

∂i
{R} =

⎛
⎝+ sinΩ sin i sin ω , + sinΩ sin i cosω , . . .

− cosΩ sin i sinω , − cosΩ sin i cosω , . . .
cos i sinω , cos i cosω , . . .

⎞
⎠ ,

∂

∂ω
{R} =

⎛
⎝− cosΩ sin ω − sinΩ cos i cosω , − cosΩ cosω + sin Ω cos i sinω , . . .

− sinΩ sinω + cosΩ cos i cosω , − sinΩ cosω − cosΩ cos i sinω , . . .
+ sin i cosω , − sin i sin ω , . . .

⎞
⎠ .

(5.30)
As the angles Ω, i, and ω are constants of integration of the two-body prob-
lem, the matrix R and its partial derivatives are matrices with constant
elements, as well. Because the components rΠ and ṙΠ are periodic func-
tions of time in the case of the elliptic motion, the partial derivatives of the
state vector of an elliptic orbit w.r.t. the three Eulerian angles are periodic
functions, as well.

This leaves us with the partial derivatives w.r.t. the four elements a, p, e,
and T0 (where only three are independent). Let therefore

p̃ ∈ {a, p, e, T0} . (5.31)

Because the rotation matrix R does not depend on the three elements con-
sidered now, we may conclude from eqns. (5.24):

∂

∂p̃
{r} = R3(−Ω) R1(−i) R3(−ω)

∂

∂p̃

{
rΠ

}
∂

∂p̃
{ṙ} = R3(−Ω) R1(−i) R3(−ω)

∂

∂p̃

{
ṙΠ

}
.

(5.32)

From here onwards we have to distinguish between the three types of orbits,
namely ellipses, parabolas, and hyperbolas.

5.3.1 Elliptic Orbits

In the case of the ellipse the semi-latus rectum p, the numerical eccentricity
e, and the semi-major axis a are related by:
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p = a
(
1 − e2

)
, (5.33)

which means that we may derive the formulas for the partial derivatives for
two of the three elements and give the partial derivative w.r.t. the third ele-
ment as a function of the two others. We prefer to use a and e as independent
elements. By virtue of the above equation defining the semi-latus rectum of
the ellipse, the operator for the partial derivative w.r.t. the parameter p is
given by:

∂

∂p
=

∂a

∂p

∂

∂a
+

∂e

∂p

∂

∂e
=

1
1 − e2

∂

∂a
− 1

2 a e

∂

∂e
. (5.34)

From eqns. (5.25) and the formulas of the two-body problem we see that
the components of the state vector (in the orbital system) have the following
structure:

rΠ = rΠ

(
v(a, e, T0); a, e

)
ṙΠ = ṙΠ

(
v(a, e, T0); a, e

)
.

(5.35)

Consequently, the partials w.r.t. the three elements a, e, and T0 may com-
puted as:

∂

∂a
{rΠ} = {rΠ}a +

∂

∂v
{rΠ} ∂v

∂a
∂

∂e
{rΠ} = {rΠ}e +

∂

∂v
{rΠ} ∂v

∂e
∂

∂T0
{rΠ} =

∂

∂v
{rΠ} ∂v

∂T0

∂

∂a
{ṙΠ} = {ṙΠ}a +

∂

∂v
{ṙΠ} ∂v

∂a
∂

∂e
{ṙΠ} = {ṙΠ}e +

∂

∂v
{ṙΠ} ∂v

∂e
∂

∂T0
{ṙΠ} =

∂

∂v
{ṙΠ} ∂v

∂T0
,

(5.36)

where {rΠ}a and {rΠ}e designate the partial derivatives of the coordinates
in the orbital system w.r.t. a and e, ignoring, however, the dependency of the
true anomaly v on the two elements.

It is a straight forward matter to compute these partial derivatives starting
from eqns. (5.25):
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{rΠ}a =
r

a

⎛
⎝ cos v

sin v
0

⎞
⎠ ; {ṙΠ}a = − 1

2 a

√
µ

p

⎛
⎝ − sin v

e + cos v
0

⎞
⎠

{rΠ}e = − a
r

p

(
r

p
+ e

)⎛⎝ cos v
sin v

0

⎞
⎠ ; {ṙΠ}e =

√
µ

p

ae

p

⎛
⎝ − sin v

p
a e + e + cos v

0

⎞
⎠

∂

∂v
{ṙΠ} =

r2

p

⎛
⎝ − sin v

e + cos v
0

⎞
⎠ ;

∂

∂v
{ṙΠ} = −

√
µ

p

⎛
⎝ cos v

sin v
0

⎞
⎠ .

(5.37)

In order to calculate the partial derivatives of the true anomly w.r.t. the
elements a, e, and T0, we need the transformation between the true and the
eccentric anomalies v and E, Kepler’s equation, and the equation defining
the mean motion σ(t) (see Table 4.2):

tan
v

2
=

√
1 + e

1 − e
tan

E

2
E = σ(t) + e sinE

σ(t) =
√

µ

a3
(t − T0) .

(5.38)

Alternatively, the equations (4.55) might be used. The advantage of using
these equations resides in the elimination of the “auxiliary” angles E (elliptic
motion) and F (hyperbolic motion). The disadvantage has to be seen in the
complexity of eqns. (4.55).

The structure of eqns. (5.38) is obviously as follows:

v = v(e, E)
E = E(σ, e)
σ = σ(a, T0) .

(5.39)

In order to reduce the above formulas to the essential content, the time
dependency (which would enter into all equations) was left out.

Making use of this structure we may compute the partial derivatives of the
true anomaly w.r.t. the elements a, e, and T0 systematically as follows:
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∂v

∂a
=

∂v

∂E

∂E

∂σ

∂σ

∂a

∂v

∂e
= {v}e +

∂v

∂E

∂E

∂e

∂v

∂T0
=

∂v

∂E

∂E

∂σ

∂σ

∂T0
,

(5.40)

where ve designates the partial derivative of the true anomaly v w.r.t. e,
ignoring the dependency of E on e.

All that remains to be done is the calculation of the partial derivatives on
the right-hand side of the above equation.

From the first of equations (5.38) we obtain the partial derivative of the true
anomaly w.r.t. the eccentric anomaly:

1
2

1
cos2 v

2

∂v

∂E
=

√
1 + e

1 − e

1
2

1
cos2 E

2

∂v

∂E
=

√
1 + e

1 − e

1 + cos v

1 + cosE

=
1√

1 − e2

p

r
.

(5.41)

The first two lines of the above derivation are straight forward, for the third
line one needs the equation r cos v = a (cosE − e) (see eqns. (4.62)).

The partial derivative of the eccentric anomaly E w.r.t. the mean anomaly
σ follows from Kepler’s equation (second of eqns. (5.38)):

∂E

∂σ
=

a

r
. (5.42)

In order to obtain the partial derivative of the true anomaly v w.r.t. the
semi-major axis a we need, according to the first of eqns. (5.40), in addition
the partial derivative of the mean anomaly w.r.t. the semi-major axis. This
relation follows in turn from the third of eqns. (5.38):

∂σ

∂a
= − 3

2a
σ(t) . (5.43)

The partial derivative of the true anomaly v w.r.t. the eccentricity e (without
considering the dependency of the eccentric anomaly E on the eccentricity
e) follows first from taking the partial of eqn. (5.38) w.r.t. e:
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1
2

1
cos2 v

2

{v}e =
∂

∂e

{√
1 + e

1 − e

}
tan

E

2

{v}e =

√
1 + e

1 − e

2
1 − e2

tan
E

2
cos2

v

2

=

√
1 + e

1 − e

1
1 − e2

sinE
1 + cos v

1 + cosE

=
1(

1 − e2
)2 r

a
sin v (1 + e cos v)

=
1(

1 − e2
)2 p

a
sin v

=
sin v

1 − e2
,

(5.44)

then by taking the partial derivative of the eccentric anomaly w.r.t. the ec-
centricity:

∂E

∂e
=

a

r
sin E =

sin v√
1 − e2

. (5.45)

As we have already calculated the partial derivative of E w.r.t. σ, the pre-
ceding two relations allow us to calculate the partial derivative of the true
anomaly v w.r.t. the eccentricity e with the second of equations (5.40). The
partial derivative of the true anomaly w.r.t. T0 follows from the third of the
same set of equations, where the partial derivative of the mean anomaly σ
w.r.t. the time of pericenter is

∂σ

∂T0
= −

√
µ

a3
. (5.46)

We are now in a position to calculate – in closed form (“analytically”) –
the partial derivatives of the two-body orbit (and its velocity) w.r.t. all six
elements a, e, i, Ω, ω, and T0 as a function of time t.

The six functions z1
def= ∂r

∂a (t) , z2
def= ∂r

∂e (t) , . . . ,z6
def= ∂r

∂T0
(t) form a complete

system of solutions of the homogeneous variational equations (5.22) accom-
panying the two-body problem in the case of elliptic orbits.

5.3.2 Parabolic Orbits

Parabolic orbits are best described by the second set of orbital parameters
(5.26). As the numerical eccentricity is constrained to e = 1, we have to deal
with the five orbital parameters {p, i, Ω, ω, T0}.
The partial derivatives w.r.t. the three Eulerian angles i, Ω, and ω are the
same for all three types of orbits. Therefore, we only have to derive the par-
tial derivatives w.r.t. the semi-latus rectum p and the time T0 of pericenter.
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In order to do that, we first have to transform the derivatives (5.37) into
derivatives w.r.t. the semi-latus rectum p and the true anomaly v (where we
merely have to set e = 1 in the latter case):

{rΠ}p =
r

p

⎛
⎝ cos v

sin v
0

⎞
⎠ ; {ṙΠ}p = − 1

2

√
µ

p3

⎛
⎝ − sin v

1 + cos v
0

⎞
⎠

{rΠ}v =
r2

p

⎛
⎝ − sin v

1 + cos v
0

⎞
⎠ ; {ṙΠ}v = −

√
µ

p

⎛
⎝ cos v

sin v
0

⎞
⎠ .

(5.47)

According to Table 4.2 the true anomaly v may be computed without any
transformations as a function of time

tan
v

2
+

1
3

tan3 v

2
= 2
√

µ

p3
(t − T0) . (5.48)

The true anomaly v is a function of the semi-latus p of the parabola and of
the time T0 of pericenter passage (and of course of the time t).

The partial derivatives w.r.t. p and T0 are formed according to the same
pattern as in the case of the ellipse. The formula are simpler because no
auxiliary angle has to be introduced. Equations (5.36) have to be replaced
by the relations

∂

∂p
{rΠ} = {rΠ}p +

∂

∂v
{rΠ} ∂v

∂p

∂

∂T0
{rΠ} =

∂

∂v
{rΠ} ∂v

∂T0

∂

∂p
{ṙΠ} = {ṙΠ}p +

∂

∂v
{ṙΠ} ∂v

∂p

∂

∂T0
{ṙΠ} =

∂

∂v
{ṙΠ} ∂v

∂T0
.

(5.49)

All that remains to be done is the calculation of the partial derivatives of
the true anomaly w.r.t. the elements p and T0, by taking partial derivative
of eqn. (5.48) w.r.t. the corresponding element

∂v

∂p
= − 3

2
p2

r2

√
µ

p5
(t − T0)

∂v

∂T0
= − p2

r2

√
µ

p3
,

(5.50)

where use was made of the (elementary) relations
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d

dv

{
tan

v

2

}
=

1
2

1
cos2 v

2

=
1

1 + cos v
=

r

p
. (5.51)

Observe that the latter equality only holds for parabolas, whereas the first
hold for all conic sections.

With the equations derived in this paragraph we are in a position to calculate
the partial derivatives of the state vector w.r.t. all five orbital elements in the
case of the parabola.

In analogy to the elliptic motion only the partial derivative w.r.t. one orbital
element, namely p, grows linearly with the time t. The other partial deriva-
tives are of course not periodic (there is no period in the case of parabolic
motion), but their absolute values are constrained by sin v or cos v.

5.3.3 Hyperbolic Orbits

The partial derivatives w.r.t. the three Eulerian angles obey the formulas
(5.27), which are (as pointed out previously) independent of the shape of the
orbit.

The partial derivatives w.r.t. the elements a, e, and T0 are calculated ac-
cording to the same pattern as in the case of the ellipse. The only difference
resides in the facts that the eccentric anomaly E has to be replaced by the
hyperbolic analogue F , and that Kepler’s equation has to be replaced by the
corresponding equation in the case of hyperbolic motion (see Table 4.2). The
eqns. (5.38) thus have to be replaced by the following set of equations (where
only the first two are actually different from the set (5.38)):

tan
v

2
=

√
e + 1
e − 1

tanh
F

2
F = e sinh F − σ(t)

σ(t) =
√

µ

a3
(t − T0) .

(5.52)

Equations (5.36) and (5.37) may be taken over without change from the
elliptic motion, whereas eqns. (5.40) have to be modified as follows:

∂v

∂a
=

∂v

∂F

∂F

∂σ

∂σ

∂a
∂v

∂e
= {v}e +

∂v

∂F

∂F

∂e
∂v

∂T0
=

∂v

∂F

∂F

∂σ

∂σ

∂T0
.

(5.53)
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The three partial derivatives needed to calculate all partial derivatives of the
state vector w.r.t. the elements a, e, and T0 are:

∂v

∂F
=

√
e + 1
e − 1

1 + cos v

1 + coshF
=
√

e2 − 1
a

r

{v}e = −
√

e + 1
e − 1

1 + cos v

e2 − 1
tanh

F

2
= − sin v

e2 − 1
∂F

∂σ
=

1
e coshF − 1

=
a

r
,

(5.54)

where the first of eqns. (5.52) and the relation

r =
a
(
e2 − 1

)
1 + e cos v

= a (e coshF − 1) (5.55)

were used to derive the results (5.54).

5.3.4 Summary and Examples

Analytical solutions (solutions in mathematically closed form) of the varia-
tional equations (5.22) were derived for the three types of two-body orbits
in section 5.3. The orbital elements rather than the components of the ini-
tial state vectors were used to parametrize the problem. Complete sets of six
solutions for the solution of the variational equations were given for elliptic
and hyperbolic orbits. (For obvious reasons only five partial derivatives were
provided in the case of the parabola.)

Figure 5.1 shows the partial derivatives of an unperturbed two-body orbit
w.r.t. four out of the six elements (namely for a, e, i, and ω). The examples
refer to (hypothetical) minor planets with revolution periods P of about four
years (about a third of the revolution period P� of Jupiter) with moderate
eccentricity and inclination (the precise values do not matter in our context).

When interpreting Figures 5.1 we should keep in mind that the product
of a partial derivative w.r.t. an orbital element with the difference in the
corresponding orbital element equals the following differences of solutions of
the two-body problem
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Fig. 5.1. Partial derivatives of a two-body orbit w.r.t. semi-major axis a and
eccentricity e (first row), inclination i, and argument of pericenter ω (second row)
over 100 years (P = 0.326 P�, e = 0.10, i = 11.58◦, Ω = 107.6◦)

∂r

∂a
(t) ∆a = r(t; a + ∆a, e, i, Ω, ω, T0) − r(t; a, e, i, Ω, ω, T0)

∂r

∂e
(t) ∆e = r(t; a, e + ∆e, i, Ω, ω, T0) − r(t; a, e, i, Ω, ω, T0)

∂r

∂i
(t) ∆i = r(t; a, e, i + ∆i, Ω, ω, T0) − r(t; a, e, i, Ω, ω, T0)

∂r

∂Ω
(t) ∆Ω = r(t; a, e, i, Ω + ∆Ω, ω, T0) − r(t; a, e, i, Ω, ω, T0)

∂r

∂ω
(t) ∆ω = r(t; a, e, i, Ω, ω + ∆ω, T0) − r(t; a, e, i, Ω, ω, T0)

∂r

∂T0
(t) ∆T0 = r(t; a, e, i, Ω, ω, T0 + ∆T0) − r(t; a, e, i, Ω, ω, T0) ,

(5.56)

provided the differences ∆a, ∆e, ∆i, ∆Ω, ∆ω, and ∆T0 in the orbital ele-
ments are infinitesimally small.

With this understanding Figures 5.1 may be easily interpreted: They illus-
trate the development of the difference of two orbits, which were infinites-
imally close to each other at the initial epoch t0. If the semi-major axis of
the reference orbit r(t; a, e, i, Ω, ω, T0) is changed by a small amount at time
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t0, Figure 5.1 tells, that after one hundred years (corresponding to about 25
revolutions) the resulting effect on the orbit is amplified by a factor of about
250, whereas only periodic variations with small amplitudes are expected
when changing the other five elements.

The remarkable difference in the signature of the partial derivative of a refer-
ence orbit w.r.t. the semi-major axis a when compared to the partials w.r.t.
one of the other orbital elements is explained by the fact that a defines the
mean motion via Kepler’s third law n2 a3 = µ (see eqn. (4.41)). The oscil-
lations in Figure 5.1 with linearly growing amplitudes are explained as the
difference of two position vectors corresponding to orbits with slightly differ-
ent mean motions (the difference of mean anomalies grows linearly with time
t).

Figures 5.1 are (of course) characteristic for the partial derivatives of the two-
body motion, but also for the perturbed two-body motion – provided the time
interval considered is not too long and the perturbations are small compared
to the main term. If two perturbed orbits, which were infinitesimally close
at t0, evolve according to the pattern of Figure 5.1 (top, left), this merely
implies that the two semi-major axes (and consequently the corresponding
mean motions) slightly differ. Figures with the signature of Figure 5.1 are
often incorrectly interpreted.

The above figures were generated with program PLASYS (see Chapter II- 10
of Part III) and not with the analytical formulas developed above. The results
are, however, undistinguishable from the analytical solutions developed here.

5.4 Variational Equations Associated
with One Trajectory

In Chapter 3 the equations of motion (3.21) for a celestial body of negligible
mass (in the planetary system) were written as:

r̈ = − k2 m0
r

r3
− k2

n∑
j=1

mj

{
r − rj

|r − rj |3
+

rj

r3
j

}
. (5.57)

Following the procedure outlined in section 5.1 we take the partial derivative
of the above equation w.r.t. one of the parameters defining the initial state
vector at time t0, or with respect to one of the dynamical parameters, i.e.,
the masses mj of the planets. As there are no velocity-dependent forces in
this case, the result may be written in the form

z̈p = A0 zp + fp , (5.58)

where
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A0 = − k2

r3

[
E− 3

r2
r ⊗ rT

]

− k2
n∑

j=1

mj

|r − rj |3

[
E − 3

|r − rj |2
(r − rj) ⊗ (r − rj)T

]
def= A00 + ∆A0

(5.59)

and

fp =

⎧⎪⎨
⎪⎩

− k2

{
r − rj

|r − rj |3
+

rj

r3
j

}
; for p = mj

0 ; for p ∈ {a0, e0, i0, Ω0, ω0, T00} .

(5.60)

Observe that the initial values are assumed to be defined by the initial oscu-
lating elements a0, e0, i0, Ω0, ω0, T00, referring to the initial epoch t0.

One easily sees from eqn. (5.59) that the matrix A0 is composed of the
two-body constituent A00 and the (small) contribution ∆A0 due to the per-
turbations.

The initial conditions associated with the variational equation (5.58) are de-
fined by

zp(t0) =

⎧⎨
⎩

∂r0

∂p
for p ∈ {a0, e0, i0, Ω0, ω0, T00}

0 for p ∈ {m1, m2, . . . , mn}

żp(t0) =

⎧⎨
⎩

∂ṙ0

∂p
for p ∈ {a0, e0, i0, Ω0, ω0, T00}

0 for p ∈ {m1, m2, . . . , mn} .

(5.61)

The partial derivatives ∂r0
∂p and ∂ṙ0

∂p of the initial state vector have to be
calculated according to the formulas of the two-body problem developed pre-
viously.

The variational equations in program PLASYS are solved exactly accord-
ing to the procedure outlined here, where the equations are simultaneously
integrated with the primary equations (5.57).

Figure 5.2 illustrates the solution of the variational equations in the presence
of the perturbations by Jupiter, Saturn, Uranus, Neptune, and Pluto (where
the dominating influence is due to Jupiter and Saturn) over a time interval
of 1000 years.

The variational equations correspond to two orbits close to the (3:1)-commen-
surability with Jupiter. The revolution period of the first orbit is P =
0.32633̄P�, of the second orbit it is P = 0.3333̄P�. The solutions of
the variational equations (elements a, e, and i) are contained in the first
(P = 0.32633̄P�) and second (P = 0.3333̄P�) column in Figure 5.2.
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Fig. 5.2. Partial derivatives of a perturbed orbit (by Jupiter, Saturn, Uranus,
Neptune, and Pluto) w.r.t. semi-major axis a, eccentricity e, and inclination i over
1000 years (P = 0.3263̄ P� (left), P = 0.3333̄ P� (right) , e = 0.10, i = 11.58◦,
Ω = 107.6◦, ω̃ − ω̃� = 90◦, T0 = T0�, t0 = 2000, Jan 1.0; P� is Jupiter’s orbital
period, ω̃, ω̃� the test particle’s and Jupter’s perihelion longitudes)

The initial conditions of the primary equations corresponding to the left
column in Figure 5.2 are identical as those in Figure 5.1, where the variational
equations of the two-body problem are shown. For the first 100 to 200 years
(corresponding to 25 to 50 revolutions), the unperturbed and the perturbed
solutions of the variational equations are very similar. In view of the fact
that the perturbations are small compared to the main term, this result
could be expected (it was anticipated in the previous section). It implies,
that in parameter estimation procedures covering time intervals of only few
revolutions, it may be sufficient to approximate the partial derivatives of the
orbit w.r.t. the initial osculating elements by the two-body approximation.
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Note that in the case of the perturbed motion, after an initial time span of
a few dozen revolutions, the signature of the partial derivatives may deviate
significantly (in the second column of Figures 5.2 even dramatically) from
the signature observed for the two-body motion in Figure 5.1. Obviously, a
small change in the osculating elements other than a at t0 also influences the
mean motion of the minor planet.

The equations of motion for an artificial Earth satellite were derived in Chap-
ter 3, eqns. (3.143) and (3.144). One easily verifies that their structure is

r̈ = −GM
r

r3
+ δf , (5.62)

where the perturbation term may be much more complicated than in the
case of the motion in the planetary system. The structure of the variational
equations associated with eqns. (5.62) is

z̈ = A00 z + δA0 z + A1 ż + δfp , (5.63)

where A00 is the matrix of the two-body problem (see eqns. (5.23)). The
concrete form of the other matrices depend on the concrete orbit model used
and on the particular parameter.

In satellite geodesy the determination of dynamical parameters plays a much
more important role than in problems related to the planetary system. If the
gravity field of the Earth is determined from the orbital motion of close Earth
satellites, thousands of parameters Cik, Sik have to be solved for, whereas only
relatively few osculating elements have to be determined (the actual number
depends on the length of the satellite arcs analyzed).

Note, that the structure of the variational equations describing the satellite
motion is in essence the same as the structure of the variational equations
(5.58) associated with the motion of a minor planet or comet in the planetary
system. An important difference resides in the fact that matrix A1 �= 0 for
low Earth orbiters (LEOs).

5.5 Variational Equations Associated
with the N -Body Problem

Equations (3.18) are the equations of motion of the entire planetary system.
They were derived on the basis of the Newton-Euler equations of motion,
assuming point masses for all celestial bodies involved. A particular solution
of these equations is defined by the following initial value problem (the argu-
ment of latitude u0 is used subsequently instead of the time T0 of pericenter
passage):
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r̈i = − k2 (m0 + mi)
ri

r3
i

− k2
n∑

j=1,j �=i

mj

[
ri − rj

|ri − rj |3
+

rj

r3
j

]

ri(t0)
def= ri0(ai0, ei0, ii0, Ωi0, ωi0, ui0)

ṙi(t0)
def= ṙi0(ai0, ei0, ii0, Ωi0, ωi0, ui0)

i = 1, 2, . . . , n .

(5.64)

Only the members of the planetary system with non-zero masses were in-
cluded in the initial value problem (5.64). This reduction is fully justified
from the purely mathematical, not necessarily from the physical point of view
– but the equations for celestial bodies of negligible mass may be treated with
methods addressed in the previous section.

As indicated in eqns. (5.64) the osculating elements referring to the initial
epoch t0 were used to define the planets’ initial state vectors.

There is only one dynamical parameter, namely the mass mi, associated
with each celestial body of the planetary system, which implies that “only”
np = 7n + 1 parameters define the particular solution of the initial value
problem (5.64).

Generalizing the scheme set in section 5.2 the following notation for the
parameters is used:

{p1, p2, . . . , p7n+1} = { a10, e10, i10, Ω10, ω10, T10,
a20, e20, i20, Ω20, ω20, T20,
. . . , . . . , . . . , . . . , . . . , . . . ,
. . . , . . . , . . . , . . . , . . . , . . . ,

an0, en0, in0, Ωn0, ωn0, Tn0,
m0, m1, . . . , mn } .

(5.65)

Let
p ∈ {p1, p2, . . . , p7n+1}

be one of the parameters of the system. Let us furthermore denote the par-
tial derivative of the orbit ri(t) of planet i (characterized by the planet’s
component matrix) w.r.t. the parameter p by

zi(t)
def=
(

∂ri

∂p

)
(t) , i = 1, 2, . . . , n . (5.66)

For the entire planetary system we define the following column matrix (of
dimension d = 3 n) as the partial derivative of the solution vector of the
entire system:
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z(t) def=

⎛
⎜⎜⎜⎜⎝

z1(t)
z2(t)
. . .
. . .

zn(t)

⎞
⎟⎟⎟⎟⎠ . (5.67)

One column array of type (5.67) has to set up for each of the 7n+1 parame-
ters. The array (5.67) tells, what the impact of a small change in a particular
parameter on the state vector of the entire planetary system is. Consider,
e.g., the parameter p

def= a10, the osculating semi-major axis of the innermost
planet at t0 in the system. The elements 10 − 12 of the array (5.67) contain
the partial derivatives of the components of the position vector of orbit r4(t)
of planet number 4 w.r.t. the semi-major axis of the first planet. The ex-
ample shows that vector z(t) contains the complete (first order) information
concerning the dependence of the entire system on the parameter considered.

The variational equations for the entire planetary system are obtained by tak-
ing the partial derivative of the primary equations (5.64) using the general
procedure outlined in section 5.2. It is useful to introduce the following auxil-
iary 3×3 matrices to express the resulting variational equations in convenient
form:

Cij
def=

k2

|ri − rj |3

[
E − 3 (ri − rj) ⊗ (ri − rj)T

|ri − rj |2

]
, i, j = 1, 2, . . . , n, j �= i

(5.68)
and

Ci0
def=

k2

r3
i

[
E − 3 (ri ⊗ rT

i )
r2
i

]
, i = 1, 2, . . . , n , (5.69)

as well as

Aij
def= −mj

(
− Cij + Cj0

)
, i, j = 1, 2, . . . , n, j �= i (5.70)

and

Aii
def= − (m0 + mi)Ci0 −

n∑
j=1,j �=i

mj Cij , i = 1, 2, . . . , n . (5.71)

The auxiliary matrices Aij , i, j = 1, 2, . . . , n, (of dimension 3 × 3) are now
arranged in one matrix of dimension 3n × 3n

A0
def=

⎛
⎜⎜⎜⎜⎝

A11, A12, . . . , A1n

A21, A22, . . . , A2n

. . . , . . . , . . . , . . .

. . . , . . . , . . . , . . .
An1, An2, . . . , Ann

⎞
⎟⎟⎟⎟⎠ . (5.72)

With these definitions the variational equations for the parameters associated
with the initial osculating elements assume the standard form
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z̈ = A0 z , p ∈ {p1, p2, . . . , p6n} . (5.73)

The initial values z(t0), ż(t0) are obtained by taking the partial derivatives
of the equations defining the initial conditions in the initial value problem
(5.64). Only the formulas related to the two-body problem are required for
that purpose.

Let us assume that p designates an osculating orbital element of planet num-
ber j. In this case, all the elements of z(t0), ż(t0) not referring to this planet
are zero. The elements of zj(t0), żj(t0) are calculated according to the pro-
cedure given in section 5.3.

If the parameter p ∈ {m0, m1, . . . , mn} refers to one of the planetary masses
or to the solar mass, the corresponding system of variational equations is
inhomogeneous:

z̈ = A0 z + fp , p ∈ {m0, m1, . . . , mn} . (5.74)

For i > 0 the parameter p
def= mi is one of the planetary masses and the vector

fp assumes the form

fp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− δi
1 k2 r1

r3
1

− k2
n∑

j=2

δi
j

[
r1 − rj

|r1 − rj |3
+

rj

r3
j

]

− δi
2 k2 r2

r3
2

− k2
n∑

j=1,j �=2

δi
j

[
r2 − rj

|r2 − rj |3
+

rj

r3
j

]

. . .

. . .

− δi
n k2 rn

r3
n

− k2
n−1∑
j=1

δi
j

[
rn − rj

|rn − rj |3
+

rj

r3
j

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

p ∈ {m1, m2, . . . , mn} .

(5.75)

δk
i is the Kronecker-symbol (named after Leopold Kronecker (1823–1891)),

assuming the values δk
i = 0 for i �= k and δk

i = 1 for i = k. Observe, that each
element of vector fp consists only of one term (either stemming from the main
term or from one of the terms in the sum of the perturbing accelerations).

For p = m0 (=solar mass), fp assumes the form:

fp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− k2 r1

r3
1

− k2 r2

r3
2

. . .

. . .

− k2 rn

r3
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.76)
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For dynamical parameters p ∈ {m0, m1, . . . , mn} the variational equations
(5.74) are inhomogeneous, but the corresponding initial conditions are ho-
mogeneous (all zero): z(t0) = 0 and ż(t0) = 0.

Formally, it is rather simple to implement the solution of all variational equa-
tions into a computer program like PLASYS (see Chapter II- 10 of Part III).
The computational effort and the data handling aspect should not be un-
derestimated, however: Instead of solving one differential equation system of
order 2 and dimension 3n (n being the number of planets included in the in-
tegration), we would have to solve +7n such systems, where all systems, with
the exception of the primary system, are linear. When analyzing the outer
planetary system – without Pluto – we would therefore roughly increase the
processing time requirements by a factor of 30, and the storage requirements
would increase by a similar factor.

The benefits of including the system of variational equations are, on the
other hand, considerable: we do not only obtain information related to the
development of a sample planetary system, but the complete information
concerning its (first order) stability within the time interval of the integration.
Exactly as in the case of a minor planet (see Chapter II- 4.3) the variational
equations might serve to look for a chaotic behavior in the development of
a planetary system. It would also be extremely interesting to investigate the
stability of the system with respect to the planetary masses.

Instead of trying to integrate the equations of motion of the planetary system
over longer and longer time intervals, it would perhaps make more sense to
perform integrations over moderately long intervals, let us say up to about
100 million years, but to include the variational equations into the integration
process. Methods to implement such schemes without increasing the CPU
requirements dramatically will be discussed in the next section.

5.6 Efficient Solution of the Variational Equations

The general structure of the variational equations were developed in section
5.2, the structure of variational equations of Celestial Mechanics were then
discussed in sections 5.4 and 5.5. The distinction was made between the
motion of an individual body in a given force field (e.g., minor planet of
negligible mass or an artificial Earth satellite) and the solution of the N -
body problem governed by an initial value problem of type (5.64).

In section 5.2 we saw (see eqns. (5.21)) that there are powerful methods to
solve the variational equations associated with dynamical parameters. So far,
the issue of solving the variational equations associated with initial values
(e.g., the osculating elements at t0) was not addressed.

The development of efficient techniques to solve the variational equations
with this parameter type is the purpose of the current section. The specific
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structure of the equations of motion of Celestial Mechanics is exploited for
this purpose. The methods outlined below are therefore not literally trans-
ferrable to dynamical problems outside Celestial Mechanics.

5.6.1 Trajectories of Individual Bodies

In the most general case (disregarding dynamical parameters) the variational
equations

z̈ =
(
A00(r) + ∆A0

)
z + A1 ż (5.77)

have to be solved, where the matrix of the two-body problem A00(t) is given
by eqn. (5.23), and where the elements of the matrices ∆A0 and A1 are small
quantities when compared to the elements of matrix A00. We assume that
the partial derivative z(t) refers to one of the osculating elements at t0:

p ∈ {a0, e0, i0, Ω0, ω0, T00} .

The initial values at time t0 are:

z(t0) =
∂r0

∂p
and ż(t0) =

∂ṙ0

∂p
. (5.78)

Except for simple special cases, the above initial value problem has to be
solved by numerical methods. The prominent exception is the two-body prob-
lem with ∆A0 = A1 = 0, which was discussed in section 5.3.

Let us therefore define an auxiliary initial value problem, which differs from
problem (5.77), (5.78) only by the primary and variational differential equa-
tions, which are those of the two-body problem. Let us furthermore assume
that z0(t) solves this auxiliary problem:

z̈0 = A00(r0)z0

z0(t0) =
∂r0

∂p
and ż0(t0) =

∂ṙ0

∂p
. (5.79)

z0(t) thus is the solution of the variational equations associated with the
two-body problem obeying the same initial conditions at t0 as the function
z(t).

Introducing the notation

∆z(t) def= z(t) − z0(t) (5.80)

for the difference between the two partial derivatives z(t) and z0(t) one may
easily establish a differential equation system for this difference

∆z̈ = A00(r0)∆z +
(
∆A0 + δA00

)
z + A1 ż , (5.81)
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where δA00
def= A00(r) − A00(r0) is the difference of matrices A00, as com-

puted with formula (5.23), once with actual r(t), once with the two-body
approximation r0(t).

Because
∆z(t0) = 0 and ∆ż(t0) = 0 (5.82)

and because the matrices ∆A0 + δA0 and A1 are small when compared to
the matrix A00, ∆z(t) is a small quantity in the vicinity of the initial epoch
t0, as well.

This in turn implies that the second and third term in eqn. (5.81) are small
when compared to the first term. Equation (5.81) therefore may be solved by
the following iteration process:

∆z̈[I+1] = A00 ∆z[I+1] +
(
δA00 + ∆A0

)
z[I] + A1 ż[I] , I = 1, 2, . . . .

(5.83)
The process is initialized for I = 1 by

z[I](t) = z0(t) . (5.84)

Using eqn. (5.84) in eqn. (5.83) (which corresponds to the first approximation
step) actually is a first order approximation in the spirit of perturbation
theory (see Chapter 6).

We have thus replaced the solution of the system of variational equations
(5.77) by an iterative solution of the system of equations (5.83), which has the
advantage that the solution of the corresponding homogeneous system (as it is
the system of variational equations corresponding to the two-body problem)
is known: Its complete solution is given by the functions (5.21), where the
inhomogeneous part has to be adapted to the structure of eqns. (5.83). We
have therefore shown that the solution of the variational equations of the
perturbed motion may be reduced to the calculation of definite integrals,
a process which is orders of magnitude more efficient than the solution of
differential equations.

Usually, the iterative solution process (5.83) may be terminated after the first
step, which corresponds to a solution in the tradition of the perturbation
theory of the first order.

From the implementation point of view it is simpler to solve the variational
equations simultaneously with the primary equations without performing any
transformations (this is why this method of solving the variational equations
was implemented in program PLASYS), but from the economical point of
view such a procedure cannot be recommended. The procedure described
above was followed in program SATORB, when used in the orbit determina-
tion mode (see Chapter II- 7 of Part III).
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5.6.2 The N-Body Problem

A closer inspection of the homogeneous system of variational equations (5.73)
associated with the initial values of the primary equations (5.64) of a plane-
tary system reveals, that an approximative solution based essentially on the
same principles as those developed for the trajectories of individual bodies
in a pre-determined field is feasible.

According to eqn. (5.73) the variational equations referring to an initial os-
culating element of one of the bodies may be written as

z̈ = A0 z . (5.85)

The structure (5.72) of matrix A0 shows that all but the diagonal matrix
elements Aii are small quantities proportional to one mass mj or to a linear
combination of terms, each of which is proportional to a planetary mass. The
matrix may be decomposed as follows:

A0 =

⎛
⎜⎜⎜⎜⎝

A001, 0, . . . , 0
0, A002, . . . , 0

. . . , . . . , . . . , . . .

. . . , . . . , . . . , . . .
0, 0, . . . , A00n

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

δA11, A12, . . . , A1n

A21, δA22, . . . , A2n

. . . , . . . , . . . , . . .

. . . , . . . , . . . , . . .
An1, An2, . . . , δAnn

⎞
⎟⎟⎟⎟⎠ , (5.86)

where

A00i
def= − k2 (m0 + mi)

r3
i

[
E− 3 (ri ⊗ rT

i )
r2
i

]
, i = 1, 2, . . . , n (5.87)

and

δAii
def= −

n∑
j=1,j �=i

mj Cij , i = 1, 2, . . . , n . (5.88)

The matrices A00i are the matrix of the variational equations of the two-
body problem with the total mass m0 +mi of the system (and the associated
gravity constant k2 (m0 + mi) ). All the matrix elements of the above matrix
A0, with the exception of the matrices A00i, are small quantities of the first
order in the planetary masses mj , j = 1, 2, . . . , n.

The differential equations referring to one of the planets, say planet j, are of
the same structure as those referring to an individual trajectory (established
in the previous paragraph), which is why these equations may be solved
with the pattern established in the previous paragraph. For that purpose
we introduce z0i as the solution of variational equations associated with the
two-body problem of planet i

z0i = A00i z0i . (5.89)
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Designating by ∆z(t) = zi(t) − z0i(t) the difference between the actual and
the two-body version of the variational equations (obeying the same initial
conditions) for planet i, the following differential equation system is obtained:

∆z̈
[I+1]
i = A00i ∆z

[I+1]
i +

n∑
i=1,j �=i

Aij z
[I]
j +

(
δAii + δA00i

)
z

[I]
i , (5.90)

where δA00i
def= A00(ri)−A00(r0i) is computed with formula (5.23) using the

correct and the two-body solution of the initial value problem (5.85, 5.86) for
planet j.

For each planet the solution of the above linear, inhomogeneous system of
equations is performed using the routine procedure set up for individual tra-
jectories: A complete solution of the homogeneous system is produced first
(this solution is obtained in closed form as the solution of the variational
equation accompanying the two-body problem). The solution of the inho-
mogeneous equation is obtained afterwards by the method of variation of
constants.

5.7 Variational Equations and Error Propagation

The numerical solution of an initial value problem of type (5.1) differs from
its true solution due to small errors of different kind, introduced at discrete
epochs tk , k = 0, 1, 2, . . ., into true state vector (see Chapter 7). The dif-
ference numerically integrated − true solution may be written with the help
of the complete system of solutions of the homogeneous system (5.12) of
variational equations associated with the initial value problem (5.1). In this
section we develop the explicit form of this representation.

Let us assume that at epoch t = tk the errors εi
k are introduced into the state

vector y(i)(t), i = 0, 1, . . . , n−1. The error ∆zk(t) of the true state vector at
a time t ≥ tk due to the errors εi

k introduced at tk is defined as the solution
of the initial value problem

∆z
(n)
k =

n−1∑
i=0

Ai(t)∆z
(i)
k

∆z
(i)
k (tk) = εi

k , i = 0, 1, . . . , n − 1 ,

(5.91)

where the matrices Ai(t) are defined by eqn. (5.7). Equations (5.91) represent
nothing but a particular solution of the homogeneous part of the variational
equations (5.6) associated with the initial value problem (5.1).

The solution of the above initial value problem may be written as a linear
combination of type (5.16) (with constant coefficients, however) of the com-
plete system of solutions of the homogeneous system of variational equations
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associated with problem (5.1):

∆z
(i)
k (t) = Z(i)(t)αk , i = 0, 1, . . . , n − 1 , (5.92)

where Z(t) is the rectangular matrix with nd columns and d rows, in which
column j contains the elements of the solution zj(t) with index j of the
homogeneous system (5.12) (see eqn. (5.16)).

The nd (constant) coefficients in array αk are determined by the request
that the linear combination (5.92) must satisfy the initial conditions in eqns.
(5.91):

∆z
(i)
k (tk) = Z(i)(tk)αk = εi

k , i = 0, 1, . . . , n − 1 . (5.93)

Using the notations

∆Z̃T
k (t) def= ∆

(
zT

k (t), ∆żT
k (t), . . . ,

(
∆z

(n)
k (t)

)T
)

ε̃T
k =

((
ε0

k

)T
,
(
ε1

k

)T
, . . . ,

(
εn−1

k

)T)
,

(5.94)

the above condition equations may be given the compact matrix form

Z̃(tk)αk = ε̃k , (5.95)

allowing it to determine the coefficient matrix as:

αk = Z̃−1(tk) ε̃k . (5.96)

This result allows it in turn to write the solution of the initial value problem
(5.91) as:

∆Z̃k(t) = Z̃(t) Z̃−1(tk) ε̃k . (5.97)

Equation (5.97) describes the development of the errors introduced at one
particular epoch tk (the grid points of the numerical solution of an initial
value problem) as a function of time. The accumulated error at tN due to all
errors introduced at all the epochs tk , k = 1, 2, . . . , N , may then simply be
calculated as the superposition of all errors (5.97) evaluated at tN :

∆Z̃(tN ) def=
N∑

i=0

∆Z̃k(tN ) = Z̃(tN )
N∑

k=0

Z̃−1(tk) ε̃k . (5.98)

Equation (5.98) may be called the fundamental law of error propagation. It
represents the accumulated integration error as a linear combination of the
elementary errors introduced into the state vector at epochs tk. The result
will be used to describe the accumulation of rounding and approximation
errors in Chapter 7.



6. Theory of Perturbations

6.1 Motivation and Classification

The expression perturbed motion implies that there is an unperturbed motion.
In Celestial Mechanics the unperturbed motion is the orbital motion of two
spherically symmetric bodies represented by the equations of motion (4.1),
the solution of which is known in terms of simple analytical functions (see
section 4.1). The constant µ is the product of the constant of gravitation and
the sum of the masses of the two bodies considered. The numerical value of
µ thus depends on the concrete problem and on the system of units chosen.

The perturbed motion of a celestial body is defined as the solution of an initial
value problem of the following type:

r̈ = −µ
r

r3
+ δf(t, r, ṙ) , (6.1)

r(t0) = r0 and ṙ(t0) = v0 . (6.2)

For a system of point masses there is one such equation for each of the bodies,
except for the central body to which the position vectors refer.

The term −µ r
r3 in eqn. (6.1) is called the two-body term, δf the perturbation

term. The terminology makes sense if the perturbation term is considerably
smaller than the two-body term, i.e., if

| δf |�
∣∣∣−µ

r

r3

∣∣∣ . (6.3)

Three different kinds of perturbation equations were introduced in Chapter
3. One easily verifies that condition (6.3) is met for the planetary N -body
problem represented by eqns. (3.18), for the motion of a body with neg-
ligible mass in the planetary system (represented by eqn. (3.21)), for the
geocentric motion (3.118) of Moon and Sun in the generalized three-body
problem Earth-Sun-Moon, and for the motion of an artificial Earth satellite
represented by eqn. (3.143). Observe that the general relativistic equations of
motion (3.186) or their “light” version (3.190) also have the same structure
as eqns. (6.1) and that condition (6.3) is easily met, allowing us to consider



210 6. Perturbations

the relativistic two-body problem (see section 4.4) as a perturbed classical
two-body problem.

The differential equation system (6.1) is called the system of perturbation
equations or simply the perturbation equations. Every method solving the
initial value problem (6.1, 6.2) is a called a perturbation method.

In Celestial Mechanics one usually makes the distinction between

• General Perturbation Methods, seeking the solution in terms of series of
elementary integrable functions, and

• Special Perturbation Methods, seeking at some stage the solution by the
methods of numerical integration.

For general perturbation methods it is mandatory not to use the original
equations of motion (6.1) in rectangular coordinates, but to derive differ-
ential equations for the osculating orbital elements (see section 4.3) or for
functions thereof. This procedure promises to make the best possible use of
the (analytically known) solution of the two-body problem (4.1), because the
osculating elements are so-called first integrals of the two-body motion.

Both, general and special perturbation methods, provide approximate solu-
tions of the equations of motion (not regarding the few special cases which
could be solved in closed form). In the former case the approximation is due
to the fact that the series developments have to be terminated at some point
and that sometimes the convergence of the series is not well established, in
the latter case it is due to the accumulation of rounding and approximation
errors to be discussed in Chapter 7.

Special perturbation methods may be applied directly to the initial value
problem (6.1, 6.2) or to the transformed equations for the osculating elements.
Solution algorithms are discussed in Chapter 7.

In this Chapter the focus is on transformations of the initial value problem
(6.1, 6.2) with the goal to make optimum use of the analytical solution of the
two-body problem (4.1). In section 6.2 a differential equation is developed for
the difference vector of a perturbed and the associated unperturbed motion
(obeying eqns. (6.1) and (4.1), respectively, both meeting the same initial
conditions (6.2)). The analytical developments necessary for this purpose are
rather moderate, the importance is considerable in practice. In section 6.3
we outline the method to derive the differential equations for the osculating
elements starting from the original equations of motion (6.1). The perturba-
tion term δf may be rather arbitrary. The resulting equations usually are
referred to as the Gaussian perturbation equations.

In section 6.4 the perturbation equations are derived under the assumption
that the perturbation term may be written as the gradient of a scalar force
function. The resulting equations are called Langrange’s planetary equations.
The Gaussian and Lagrangian perturbation equations are derived directly
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from the Newton-Euler equations of type (6.1) without making use of the re-
sults of analytical mechanics. First- and higher-order perturbation methods
are discussed in section 6.5. When applying general perturbation methods,
the scalar perturbation function has to be transformed into a form allowing
for an analytical integration. This task, which may be frustratingly com-
plicated is briefly addressed in section 6.6. The Gaussian and Lagrangian
versions of the perturbation equations are set up and solved for the so-called
osculating orbital elements of the celestial bodies considered. These elements
are first integrals (integration constants) of the two-body problem. Having
solved that problem it is possible to set up differential equations for functions
of these orbital elements. It turns out that the equation for the mean anomaly
σ(t) def= n(t)(t−T0) obeys a particularly simple equation, which is, as a matter
of fact, preferable to the equations for the time T0 of pericenter passage or
for the mean anomaly σ0

def= σ(t0) at the initial epoch t0. The equations for
σ are developed for the Gaussian and Lagrangian version in section 6.7.

6.2 Encke-Type Equations of Motion

A simple method to solve the initial value problem (6.1, 6.2) making intel-
ligent use of the solution of the two-body problem (4.1) is attributed to the
German astronomer Johann Franz Encke (1791–1865). It is based on a dif-
ferential equation for the difference vector ∆r(t) def= r(t) − r0(t), where r(t)
is the solution of the perturbed motion (6.1), r0(t) the solution of the cor-
responding two-body motion (4.1), and where both solution vectors assume
the same initial values (6.2). The method is not only well suited to describe
the motion of an individual particle in a given force field (e.g., of a minor
planet or of an artificial Earth satellite) it may also be adapted to the inte-
gration of the entire planetary system. Encke’s method is well established in
astronomy. It was, e.g., used to integrate the planetary equations of motion
in the LONGSTOP project [95].

With equations (6.1), (4.1) and the common initial values (6.2) the initial
value problem for the difference vector ∆r(t) def= r(t) − r0(t) is easily set up:

∆r̈0 = −µ

{
r0 + ∆r

|r0 + ∆r|3 − r0

r3
0

}
+ δf

(
t, r0 + ∆r, ṙ0 + ∆ṙ

)
∆r0(t0) = 0

∆ṙ0(t0) = 0 ,

(6.4)

where vector r0(t) and its derivative on the right-hand side of the differential
equation are the known solutions of the two-body problem.
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The term in brackets {. . .} in the above differential equation system is a small
quantity in the vicinity of the initial epoch t0 (due to the initial values of
the difference vector ∆r(t)), the right-hand side of the equation is a small
quantity, because the perturbation term δf is small, as well. In the formu-
lation (6.4) the term is calculated as the difference of two “large” quantities
(compared to the result). It is therefore advisable, to look for an alternative
representation of the term {. . .}.
Using the notation of Brouwer and Clemence [27] we obtain:

−µ

{
r0 + ∆r

|r0 + ∆r|3 − r0

r3
0

}
= − µ

r3
0

{
∆r − fq (r0 + ∆r)

}
, (6.5)

where

q =
1
r2
0

(
r0 +

1
2

∆r

)
· ∆r (6.6)

and

f =
1 − (1 + 2 q)−3/2

q
. (6.7)

The initial value problem to be solved when using Encke’s formulation is
obtained by replacing the brackets {. . .} in the differential equations (6.4) by
the expression (6.5):

∆r̈0 = − µ

r3
0

{
∆r − fq (r0 + ∆r)

}
+ δf

(
t, r0 + ∆r, ṙ0 + ∆ṙ

)
∆r0(t0) = 0

∆ṙ0(t0) = 0 .
(6.8)

Due to the factors q and f (which are non-linear functions of ∆r) the differ-
ential equation in the initial value problem (6.8) is non-linear and of second
order. It must be solved by numerical integration (see Chapter 7), i.e., by
special perturbation methods.

When compared to the direct integration of the initial value problem (6.1,
6.2), the solution of the initial value problem (6.8) is perhaps twice as efficient.
A gain of this kind matters only, if the problem has to be integrated over
long time spans. This is the case when integrating the planetary system over
millions of years as it was, e.g., done in the LONGSTOP project [95]. The
decision to use Encke’s method was undoubtedly beneficial to the project.

One should on the other hand keep in mind, that the use of eqns. (6.8) is
only advantageous in the vicinity of the initial epoch t0. After a few revolu-
tions it is no longer justified to consider the vector ∆r as a small quantity
and Encke’s method would loose its efficiency. It is therefore necessary to
“re-initialize” Encke’s method from time to time by introducing new initial
epochs t̃0i and by defining new initial value problems by replacing t0 by t̃0i
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in eqns. (6.8), a process which involves (among other) the computation of
new osculating elements. From the point of view of processing time this does
not matter (because such re-initialization events are only required after a few
hundred integration steps) but the programming logics required should not
be underestimated. If processing time is not a critical issue there is no point
in using Encke’s method.

There is an alternative method to solve the initial value problem (6.4) promis-
ing to be much more efficient. The method reduces the problem from one of
solving differential equations to one of calculating definite integrals (i.e., to
quadrature). The gain resides in the fact that there are much more efficient
methods for numerical quadrature than for the solution of ordinary differen-
tial equations (see Chapter 7).

The method transforms the equations (6.4) as follows: The term in brackets
{. . .} is correctly linearized in the small quantity ∆r; the difference between
the nonlinear and the linearized function {. . .} is designated by δf0:

−µ

{
r0 + ∆r

|r0 + ∆r|3 − r0

r3
0

}
= A00 ∆r + δf0(r0, ∆r) , (6.9)

where the square 3 × 3-matrix

A00 = − µ

r3
0

{
E − 3

r2
0

r0 ⊗ rT
0

}
(6.10)

is identical with the matrix of the variational equations associated with the
two-body problem as defined in eqns. (5.22), (5.23) in Chapter 5.

Equation (6.9) defines the function δf0. By virtue of this definition, δf0 is a
small quantity of second order in vector ∆r. By introducing eqn. (6.9) into
the differential equation (6.4) we obtain the following initial value problem:

∆r̈0 = A00 ∆r + δf0(r0, ∆r) + δf
(
t, r0 + ∆r, ṙ0 + ∆ṙ

)
∆r0(t0) = 0

∆ṙ0(t0) = 0 .
(6.11)

It is important to note that eqns. (6.11) are algebraically identical with
Encke’s original eqns. (6.4), i.e., the solution of the initial value problem is
mathematically equivalent to the solution of the initial value problems (6.1,
6.2) and (6.8).

As already mentioned, the elements of δf0 are small quantities of the sec-
ond order in ∆r. The perturbation term δf , on the other hand, is a small
quantity of the first-order. If we would use the approximation ∆r

def= 0 in the
perturbation term δf we would therefore only neglect terms of the second
order in small quantities.
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This particular structure of the initial value problem (6.11) allows it to set
up the following iterative solution process:

∆r̈
[I+1]
0 = A00 ∆r[I+1] + δf0

(
r0, ∆r[I]

)
+ δf

(
t, r0 + ∆r[I], ṙ0 + ∆ṙ[I]

)
def= A00 ∆r[I+1] + δf̃ [I] , I = 0, 1, . . .

∆r0(t0) = 0
∆ṙ0(t0) = 0 ,

(6.12)

where
∆r[I] = 0 for I = 0 . (6.13)

Note, that the differential equation system in eqns. (6.12) is a linear system
of second order. The homogeneous part is the same as that of the two-body
problem (see eqns. (5.22), Chapter 5.2), the inhomogeneous part δf̃ consists
of the two contributions δf0 and δf .

The advantage of eqns. (6.12) over Encke’s original equations (6.8) resides in
the facts that

• the differential equation system (6.12) is a linear, inhomogeneous system,
and that

• a complete system of the homogeneous part in this linear system is known
in closed form. The solution was given explicitly in Chapter 5.

These two facts allow it, eventually, to reduce the solution of the inhomoge-
neous system to numerical quadrature: The six partial derivatives

z1(t)
def=
(

∂r0

∂a

)
(t) , z2(t)

def=
(

∂r0

∂e

)
(t) , . . . , z6(t)

def=
(

∂r0

∂T0

)
(t)

w.r.t. the osculating orbital elements a, e, i, Ω, ω, and T0 at epoch t0 form a
complete system of solutions of the homogeneous equations associated with
eqns. (6.12) (which are known in closed form). The solution of the inhomo-
geneous solution is then obtained by the method of variation of constants, as
outlined in section 5.1.

The solution of the inhomogeneous equation (6.12) may be written as a linear
combination of the homogeneous solutions, where the coefficients of the linear
combination are time-dependent:

∆r̈
[I+1]
0 = Zα[I+1](t) , (6.14)

where
Z(t) =

(
z1(t), z2(t), . . . ,z6(t)

)
(6.15)
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is a rectangular array of six columns, corresponding to the six partial deriva-
tives, and three lines, corresponding to the three components of the three-
dimensional vectors, and α[I+1](t) is a column array, the transpose of which
is defined by:

(
α[I+1]

)T

(t) =
(
α

[I+1]
1 (t), α[I+1]

2 (t), . . . , α[I+1]
6 (t)

)
. (6.16)

According to eqn. (5.21) in Chapter 5 the coefficients αi are expressed as
integrals of known functions of time:

α[I+1](t) =

t∫
t0

Z̃−1(t′)F [I]
p (t′) dt′ , (6.17)

where the matrix Z̃ is the following regular 6 × 6 matrix

Z̃ =
(

z1 z2 . . . z6

ż1 ż2 . . . ż6

)
, (6.18)

and where the one-dimensional array F
[I]
p is given by

(
F [I]

p

)T

=
(
0T ,
(
δf̃ [I]

)T
)

, (6.19)

where 0 is the column-array of three zero elements.

The solution of the equations of motion in the form (6.12) is in many as-
pects equivalent to the solution of the differential equations for the orbital
elements to be discussed now. The equivalence is in particular given regard-
ing the efficiency and the calculation of perturbations in increasing orders.
The solution of the initial value problem (6.12) for I = 0 corresponds to the
perturbations of first order when integrating the equations of motion for the
osculating elements (the concept of first and higher order perturbations will
be introduced below).

6.3 Gaussian Perturbation Equations

6.3.1 General Form of the Equations

The concept of osculating elements, as represented by eqn. (4.69), assigns
one set of osculating orbital elements to every epoch t via the position and
velocity vectors r(t) and ṙ(t). There is a one-to-one relationship between
the osculating elements of epoch t and the corresponding state vector. The
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transformation equations between the two sets of functions are those of the
two-body problem.

Let
I(t) ∈ {a(t), e(t), i(t), Ω(t), ω(t), T0(t)} (6.20)

be an arbitrary osculating element. When referring to particular elements the
following equivalence will be used:

{I1(t), I2(t), I3(t), I4(t), I5(t), I6(t)} = {a(t), e(t), i(t), Ω(t), ω(t), T0(t)} .
(6.21)

The definition (4.69) implies that each osculating element may be written in
the form

I(t) def= I (r(t), ṙ(t)) . (6.22)

The time enters only implicitly in this equation via the time-dependence of
the state vector.

The differential equation for the element I(t) is obtained by taking the total
derivative of eqn. (6.22) w.r.t. the time t. This is done by applying the well-
known chain-rule of elementary calculus:

İ =
3∑

l=1

{
∂I

∂rl
ṙl +

∂I

∂ṙl
r̈l

}
= ∇rI · ṙ + ∇vI · r̈ , (6.23)

where ∇rI designates the position-, ∇vI the velocity-gradient of the orbital
element I.

Equation (6.23) may be further modified by replacing the second time deriva-
tive of the position vector on the right-hand side by the right-hand side of
the original differential equation system (6.1):

İ = ∇rI · ṙ + ∇vI ·
{
−µ

r

r3
+ δf

}
.

Because I is a constant of integration of the two-body problem one may
conclude that

İ = ∇vI · δf , (6.24)

which is why the complete differential equation system for the entire set of
osculating orbital elements assumes the amazingly simple form

İk = ∇vIk · δf , k = 1, 2, . . . , 6 . (6.25)

Equations (6.25) are the so-called Gaussian perturbation equations. They are
not yet in a very useful form – but all that has to be done is to calculate the
scalar products on the right-hand sides of eqns. (6.25).

From the mathematical point of view eqns. (6.25) are an explicit, non-linear
system of six first-order differential equations. The system is equivalent to the
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second-order system (6.1). Note, that the scalar products are small quantities
of the first order because the perturbation term δf is a small quantity of the
first order.

If the perturbation term δf on the right-hand sides of eqns. (6.25) may be
written as gradient of a scalar function R, the so-called perturbation function,
the perturbation equations may be given the elegant form

İk = ∇vIk · ∇rR , k = 1, 2, . . . , 6 . (6.26)

The equations (6.25) and (6.26) are called perturbation equations in the Gaus-
sian form. In the form (6.25) they are applicable to a very broad class of per-
turbations. Gauss derived the perturbation equations by starting from the
Lagrangian formulation (which will be given below).

The perturbation equations have a very simple structure. The remaining
problem only resides in the fact that the formulas of the two-body problem
have to be used explicitly to compute the gradients of the orbital elements
w.r.t. the velocity components. The procedure is illustrated for the semi-
major axis a in the case of an elliptic motion.

6.3.2 The Equation for the Semi-major Axis a

Equation (4.20) defines the energy of the two-body motion. Considering only
elliptic motion, we reorder this equation to give the semi-major axis a as a
function of the state vectors:

µ

a
=

2 µ

r
− ṙ2 . (6.27)

Taking on both sides the gradient w.r.t. the velocity components we obtain

∇v

(µ

a

)
= − µ

a2
∇va = − 2 ṙ , (6.28)

resulting in

∇va =
2 a2

µ
ṙ . (6.29)

The perturbation equation for the semi-major axis a in the Gaussian form
thus reads as

ȧ =
2 a2

µ
ṙ · δf . (6.30)

The same pattern will be used to calculate the gradients of the other or-
bital elements. Observe that “only” the formulae of the two-body problem as
provided in Chapter 4 are required for that purpose.
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6.3.3 The Gaussian Equations in Terms of Vectors h, q

Perturbation Equations for h and q. The above derivation of the Gaus-
sian perturbation equation for the semi-major axis a has (hopefully) illus-
trated that the perturbation equations for the classical orbital elements may
be obtained in principle in a straightforward, perhaps though not always in
a technically simple way. A relatively simple method to derive all of the six
classical elements results, if systematic use is made of the angular momen-
tum vector h (see definition (4.3)) and the Laplacian vector q (see definition
(4.27)).

From the developments in Chapter 4 we know that the vectors h and q are
first integrals and that they are expressible as simple functions of vectors r
and ṙ. Two vectors with 3 components each, this even promises to take care
of the six independent first integrals of the two-body problem. This is not
the case, however: The two vectors are not independent, but related by

h · q = 0 , (6.31)

because the vector h must always be perpendicular to the instantaneous
orbital plane, whereas the vector q always must lie in this plane, by definition.

The five elements p, Ω, i, e, and ω may be easily derived from the two vectors
h and q after having solved their perturbation equations (plus the one for
the time T0 of pericenter passage). Therefore, in this straightforward and
formally very simple approach, seven instead of six perturbation equations
have to be considered. A reduction to six would be rather easily achieved by
making use of relation (6.31).

Alternatively, the perturbation equations for the classical elements may be
derived using the corresponding equations for h and q. This is the more
attractive way, because we avoid solving for more than the six independent
functions of the problem. This approach is followed subsequently.

Before providing the perturbation equations for h and q we recapitulate, for
convenience, the relevant relations (compare eqns. (4.18), (4.5), (4.31), and
(4.27)) of the two-body problem:
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p =
h2

µ
=

h · h
µ

Ω = arctan
(

h1

−h2

)
= arctan

(
h · e1

−h · e2

)

i = arccos
(

h3

|h|

)
= arccos

(
h · e3

|h|

)

e =
q

µ
=

1
µ

√
q · q

ω = arccos
{

eΩ · q
q

}
,

(6.32)

where the vectors ei , i = 1, 2, 3, are the unit vectors coinciding with the
three axes of the (quasi-)inertial Cartesian coordinate system used. The fifth
and last equation follows from calculating the scalar product of the Laplacian
vector (4.33) and the unit vector eΩ (the unit vector of the first axis of the
coordinate system Ω of Table 4.3) pointing to the ascending node. Note that
the vector eΩ was expressed by the vectors h and e3:

eΩ =
e3 × h

|e3 × h| =
e3 × h

h sin i
. (6.33)

The perturbation equations for vectors h and q are obtained by formally
taking the time derivative of the corresponding defining equations (4.3) and
(4.27) and by observing that the two vectors are first integrals in the case of
the two-body motion:

ḣ = r × δf (6.34)

and
q̇ = δf × h + ṙ × ḣ . (6.35)

The six equations (6.34) and (6.35) hold for all orbit types. Together with
the equation for T0 (not yet provided) and the relation (6.31) they fully
describe the perturbation problem. The above equations are well known in
literature (see, e.g., [94]). Often, they are cited together with the equation for
the “energy” (as defined by eqn. (4.9), which is equivalent with the equation
for the semi-major axis a for elliptic and hyperbolic orbits). This is not really
necessary, because the equation for a may be extracted from the eqns. (6.34)
and (6.35).

Equations for p, i, Ω, e, and ω. The perturbation equation for the semi-
latus rectum p is obtained by taking the time derivative of the first of eqns.
(6.32)

ṗ =
2
µ

h · ḣ . (6.36)
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The perturbation equation for the eccentricity is obtained by taking the time
derivative of the fourth of eqns. (6.32)

ė =
1
µq

q · q̇ . (6.37)

As the semi-latus rectum p, the eccentricity e, and the semi-major axis a are
related by the equations provided in Table 4.1, we may also give the equation
for the semi-major axis a from the above two equations:

ȧ =

⎧⎪⎨
⎪⎩

1
1 − e2

(
ṗ + 2 a e ė

)
, e < 1

1
e2 − 1

(
ṗ − 2 a e ė

)
, e > 1 .

(6.38)

From the second and third of eqns. (6.32) we obtain the perturbation equa-
tions for the elements i and Ω:

di

dt
= − 1√

h2
1 + h2

2

{
ḣ3 −

h3

h
ḣ

}

Ω̇ =
1

h2
1 + h2

2

{
h1 ḣ2 − h2 ḣ1

}
.

(6.39)

Using the relations

eΩ =

⎛
⎝ cosΩ

sin Ω
0

⎞
⎠ , ėΩ = Ω̇

⎛
⎝− sinΩ

cosΩ
0

⎞
⎠ , | eΩ · q | = q cosω , (6.40)

one obtains the perturbation equation for the argument of pericenter

ω = arccos
{

q · eΩ

q

}
(6.41)

by taking the time derivative of the above equation

ω̇ =
1

q sin ω
{cosω q̇ − eΩ · q̇} − cos i Ω̇ . (6.42)

Perturbation Equation for T0. The equation for the time T0 of pericenter
passage must be obtained by taking the time derivative of the solution of the
equation (4.35) for the argument of latitude u (or for the true anomaly v).
The concrete solutions were found to depend on whether the eccentricity e
is e < 1 (ellipse), e = 1 (parabola), or e > 1 (hyperbola). The perturbation
equation for T0 may thus be different for different orbit types, as well. We will
see below that the differences are of a minor nature – as a matter of fact they
might be avoided, if one would formally define the hyperbolic semi-major
axis to be negative. The parabolic case usually does not matter when dealing
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with perturbation equations. This is why only the elliptic and the hyperbolic
case are considered, subsequently.

Let us first handle the case of the elliptic orbit, where e < 1. For this purpose
we start from Kepler’s equation

E =
√

µ

a3
(t − T0) + e sin E , (6.43)

solving the equation for the true anomaly, when using the eccentric anomaly
E as an auxiliary angle (see Figure 4.4).

Taking the time derivative of Kepler’s equation one obtains after a slight
reordering of the terms (and by making use of the fact that n2 a3 = µ )

Ė (1 − e cosE) = − 3 n

2 a
(t − T0) ȧ + n

(
1 − Ṫ0

)
+ ė sinE . (6.44)

Making furthermore use of the fact that according to eqn. (4.53) r = a (1 −
e cosE) we obtain the following equation for the time of pericenter passage:

Ṫ0 =
sin E

n
ė − 3

2 a
(t − T0) ȧ + 1 − r

a n
Ė

=
r sin v

a n
√

1 − e2
ė − 3

2 a
(t − T0) ȧ + 1 − r

a n
Ė .

(6.45)

The time derivative of the eccentric anomaly is obtained from eqn. (4.63),
i.e., from r = a (1 − e cosE) :

ṙ = ȧ (1 − e cosE) − a ė cosE + a e sinE Ė

n a√
1 − e2

e sin v =
r

a
ȧ − (a e + r cos v) ė +

r e sin v√
1 − e2

Ė ,
(6.46)

where use was made of eqn. (4.64) for the transformation on the left-hand
side and of eqns. (4.62) for the transformations on the right-hand side of the
above equations. The time derivative of the eccentric anomaly E thus reads
as follows:

Ė =
n a

r
+

√
1 − e2

e sin v

{
e + cos v

1 − e2
ė − ȧ

a

}
. (6.47)

Introducing this latter result into the equation (6.45) for the time of pericenter
passage we obtain eventually

Ṫ0 = −
√

1 − e2

e n sin v

{
cos v ė − r

a2
ȧ
}

− 3
2 a

(t − T0) ȧ , e < 1 . (6.48)

Note that the perturbation equation for the time of pericenter passage is a
linear combination of the perturbation equations in the semi-major axis a and
the eccentricity e, where the coefficient of ȧ is explicitly time-dependence.
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When dealing with hyperbolic orbits one has to depart from the equivalent
of Kepler’s equation (see Table 4.2)

e sinh F − F =
√

µ

a3
(t − T0) , (6.49)

which solves the equation (4.35) of the true anomaly using the auxiliary angle
F . Taking the time derivative of the above equation results in

(e coshF − 1) Ḟ = − 3 n

2 a
(t − T0) ȧ + n

(
1 − Ṫ0

)
− sinh F ė

r

a
Ḟ = − 3 n

2 a
(t − T0) ȧ + n

(
1 − Ṫ0

)
− sinh F ė .

(6.50)

Making use of eqns. (4.52, 4.54) we obtain the following equation for the time
of pericenter passage:

Ṫ0 = − sinh F

n
ė − 3

2a
(t − T0) ȧ + 1 − r

a n
Ḟ

= − r sin v

a n
√

e2 − 1
ė − 3

2 a
(t − T0) ȧ + 1 − r

a n
Ḟ .

(6.51)

The resemblance of this result with the corresponding one (6.45) for the
elliptic motion is striking.

The time derivative of the angle F is obtained by taking the time derivative
of eqn. (4.54). Observe that the left-hand side (as expressed in terms of the
true anomaly v) is identical for both, the elliptic and the hyperbolic orbit –
except for replacing 1 − e2 by e2 − 1:

ṙ =
n a√
e2 − 1

e sin v =
r

a
ȧ + a cosh F ė + a e sinh F Ḟ . (6.52)

Making use of eqns. (4.52) it is a straightforward procedure to derive the
expression for the time derivative of F :

Ḟ =
n a

r
−

√
e2 − 1

e sin v

{
e + cos v

e2 − 1
ė +

ȧ

a

}
. (6.53)

Observe the similarity of the above expression with the corresponding deriva-
tive (6.47) for the elliptic motion.

Introducing the result (6.53) into the equation (6.51) leads to the final result
for hyperbolic orbits

Ṫ0 =
√

e2 − 1
e n sin v

{
cos v ė +

r

a2
ȧ
}

− 3
2 a

(t − T0) ȧ , e > 1 , (6.54)

which is, as expected, rather similar to the corresponding result (6.48) of the
elliptic motion.
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Summary. What was achieved in this section? Starting from the pertur-
bation equations (6.34, 6.35) for the angular momentum vector h and the
Laplacian vector q the perturbation equations for the classical osculating or-
bital elements were derived. Five equations, namely those for p, e, i, Ω, and
ω, hold for all possible orbit types. The equation for the time T0 of pericenter
passage is case sensitive. Below, we use the vector notation, as opposed to
the coordinate notation used so far by, e.g., using the identity h3 = h · e3,
the latter vector being the unit vector defining the third axis of the (quasi-)
inertial Cartesian coordinate system. The six perturbation equations for the
classical osculating elements, expressed in terms of the vectors h and q, are:

ṗ =
2
µ

h · ḣ

di

dt
= − 1√

h2
1 + h2

2

{
ḣ · e3 −

h3

h
ḣ

}

Ω̇ =
1

h2
1 + h2

2

{
(h × ḣ) · e3

}

ė =
1

µ q
q · q̇

ω̇ =
1

q sinω
{cosω q̇ − eΩ · q̇} − cos i Ω̇

Ṫ0 = − 3
2 a

(t − T0) ȧ +

√
|1 − e2|

e n sin v
·

⎧⎪⎨
⎪⎩
[
− cos v ė +

r

a2
ȧ
]

, e < 1[
+ cos v ė +

r

a2
ȧ
]

, e > 1
.

(6.55)

The above equations actually form a self-contained differential equation sys-
tem for the orbital elements p, i, Ω, e, ω, and T0. They may be used to
develop a computer program, where the vectors of the scalar products on the
right-hand sides, e.g., in h ·ḣ, have to be replaced by the corresponding right-
hand sides of the defining equations (4.3), (4.27) and their time derivatives
(6.34), (6.35).

6.3.4 Gaussian Perturbation Equations in Standard Form

Equations (6.55) may be brought into the standard form (6.26) in essence by
repeatedly using the theorem

a · (b × c) = c · (a × b) (6.56)

of vector algebra.

The results may be written in different levels of explicitness. On one hand,
one would like to retain a general vector notation (the choice of the mathe-
matician), on the other hand one would like to use, to the extent possible,
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the well-established formulae of the two-body problem to guarantee that the
equations may be used easily by the practitioner. In our sketch of the trans-
formation of equations (6.55) we will first derive the general vector notation,
then provide the (hopefully) optimal version for application.

Equation for the Semi-latus Rectum p. On the right-hand side of the
first of eqns. (6.55) the scalar product may be transformed as follows:

h · ḣ = h · (r × δf) = (h × r) · δf . (6.57)

The equation for p may thus be written as

ṗ =
2
µ

(h × r) · δf = 2
√

p

µ
r
(
eR2 · δf

)
, (6.58)

where eR2

def= h×r
h r is the unit vector lying in the second axis of the orbital

system (see Table 4.3). The vector is perpendicular to the position vector r
and points (more or less) into the direction of motion.

The above equation says that p is only affected, if the perturbing acceleration
δf has a component collinear with vector eR2 . One might wish to use another
form for the above equation. As the vector eR2 lies in the orbital plane, it can
be represented by the first two unit vectors eΠ1 (pointing to the pericenter)
and eΠ2 of the orbital coordinate system. The transformation is given by (see
Table 4.3)

eR2 = cos
(π

2
+ v
)

eΠ1 + sin
(π

2
+ v
)

eΠ2 = − sin v eΠ1 + cos v eΠ2 .

(6.59)
The perturbation equation for the semi-latus rectum p therefore also may be
given the form

ṗ = 2
√

p

µ
r {− sin v eΠ1 + cos v eΠ2} · δf . (6.60)

Equations (6.58) and (6.60) are mathematically equivalent. From the physi-
cal point of view one would probably prefer the first representation, because
it shows immediately that only the component of δf in eR2 -direction mat-
ters. In practice it may, however, be better to use the second representation,
because the unit vector of the orbital system usually have to be calculated
anyway.

Equation for Inclination i. In the second of eqns. (6.55) we may transform
the bracket {. . .} (using eqn. (6.56)) on the right-hand side as follows:

ḣ · e3 − h3

h
ḣ = (r × δf) · e3 − h3

h2
(h × r) · δf . (6.61)

The second term could be taken over from eqn. (6.57), the first one may now
be developed using eqn. (6.56). The result reads as



6.3 Gaussian Perturbation Equations 225

ḣ · e3 − h3

h
ḣ =

{
(e3 × r) − h3

h2
(h × r)

}
· δf . (6.62)

Making use of the relations

h3 = h cos i ,
√

h2
1 + h2

2 = h sin i , (6.63)

the perturbation equation for the inclination i may be written in the form

di

dt
= − 1

h sin i

{
(e3 − cos i eΠ3 ) × r

}
· δf def= +

1
h sin i

(r × x) · δf , (6.64)

where eΠ3 , the third unit vector of the orbital coordinate system, is normal to
the orbital plane. The vector x, defined above, lies in the orbital plane, points
to the point of maximum elevation above the reference plane (at argument
of latitude u = 90◦) and has the length |x| = sin i. The vector product x× r
therefore is collinear with vector h. The non-zero (third) coordinate in the
orbital system is given by

|x| |h| sin
(π

2
− u
)

= sin i
√

µ p cosu , (6.65)

which is why the perturbation equation for the inclination i also may be
brought into the form

di

dt
=

r cosu

n a2
√
|1 − e2|

eΠ3 · δf . (6.66)

Equations (6.64) and (6.66) are equivalent, where the second version un-
doubtedly is preferable from the practical point of view.

Equation for Node Ω. In order to obtain the perturbation equation for
the element Ω (third of eqns. (6.55)) we have to transform the bracket on
the right-hand side of this equation as follows:

(h× ḣ) ·e3 = (e3×h) · ḣ = (e3×h) · (r× δf) =
(
(e3 × h)×r

)
· δf . (6.67)

Note that e3 × h = h sin i eΩ, which is why

(
(e3 × h) × r

)
= h sin i r sin u

h

h
. (6.68)

As
h2

1 + h2
2 = h2 sin2 i and eΠ3 =

h

h
, (6.69)

the perturbation equation for Ω may be written as

Ω̇ =
1

h2 sin2 i

(
(e3 × h) × r

)
· δf =

r sin u

n a2 sin i
√
|1 − e2|

(eΠ3 · δf ) . (6.70)

As in the case of the other elements, two versions were provided to express
the perturbation equation for the node Ω. Both are in the standard form
(6.26). The second version is more useful from the practical point of view.
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Equation for Eccentricity e. In order to obtain the perturbation equation
for the eccentricity e we have to calculate the scalar product

q · q̇ = q ·
{
δf × h + ṙ × (r × δf)

}
=
{
h × q − r × (q × ṙ)

}
· δf . (6.71)

The vector h×q is of length hq, lies in the orbital plane and is perpendicular
to q, thus collinear with the second axis eΠ2 of the orbital system Π (see
Table 4.3). Making use of the theorem (4.24) of vector analysis the product
r × (q × ṙ) may be written as a linear combination of the vectors ePi1 and
ṙ. A first version for the eccentricity thus may be written as

ė =
√

p

µ

{
eΠ2 −

r · ṙ
h

eΠ1 +
r · eΠ1

h
ṙ

}
· δf . (6.72)

The three vectors in the parentheses {. . .} of the above expression are lying
in the instantaneous orbital plane. It is therefore possible to write one of the
two vectors as a linear combination of the two others. It seems reasonable
to represent the third vector ṙ by eΠ1 and eΠ2 . The transformation equa-
tions (4.62) and (4.64) are used for this purpose. In vectorial notation the
transformation reads as

1
h

(r · eΠ1) ṙ =
r

p
cos v

{
− sin v eΠ1 + (e + cos v) eΠ2

}
. (6.73)

Using the same transformation equations we may also transform the scalar
product

1
h

(r · ṙ) =
r

p
e sin v . (6.74)

The perturbation equation for the eccentricity e thus may be written as

ė =
√

p

µ

{
eΠ2 +

r

p
(e + cos v) (− sin v eΠ1 + cos v eΠ2)

}
· δf . (6.75)

Equation for Argument of the Pericenter ω. As the perturbation equa-
tion for Ω and q = µe were already given above, we only have to calculate
the term

eΩ · q̇ = eΩ

{
δf × h + ṙ × (r × δf )

}
. (6.76)

Using the theorem (6.56) it is a straightforward matter to show that

eΩ · q̇ =
{

(h × eΩ) + (eΩ × ṙ) × r
}
· δf . (6.77)

The first vector on the right-hand side is of length |h × eΩ | = h , lies in the
orbital plane and points to the argument of latitude u = π/2 . The second
vector lies in the orbital plane, as well, has the “length” of

√
µ/p r (cosu +

e cosω) , and is collinear with eS . (Use the equations (4.62) and (4.64) to
calculate the double vector product).
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It is a straightforward procedure to show that the three terms on the right-
hand side of the fifth of eqns. (6.55) may be written as

ω̇ = −
√

p

µ

1
e

{
eΠ1 +

r

p
sin v (− sin v eΠ1 + cos v eΠ2)

}
· δf − cos i Ω̇ .

(6.78)

Time of Pericenter Passage. The time of pericenter passage may be ex-
pressed as a linear combination of the equations for the semi-major axis a
and the eccentricity e. The differential equation for the eccentricity e is al-
ready available in the standard form. In order to express the equation for
the time T0 of pericenter passage in the standard form, we need the equation
for the semi-major axis in the same form, as well. This equation may easily
be derived using the relation (6.38). On the other hand, we already gave the
result for an elliptic orbit in eqn. (6.30). The result is

ȧ =
2

n2 a

{
+ ṙ · δf ; e < 1
− ṙ · δf ; e > 1 . (6.79)

Observe that we avoided the use of the semi-latus rectum p in the above
equations because of the different meanings in the elliptic and hyperbolic
case.

As we gave the equation for e in terms of the unit vectors eΠi , i = 1, 2, we
do the same for the semi-major axis a:

ȧ =
2

n
√
|1 − e2|

{
+
(
− sin v eΠ1 + (e + cos v) eΠ2

)
· δf ; e < 1

−
(
− sin v eΠ1 + (e + cos v) eΠ2

)
· δf ; e > 1

.

(6.80)
Introducing eqns. (6.80) and (6.75) into the perturbation equations for the
element T0 (6.48) (for elliptic orbits) and (6.54) (for hyperbolic orbits) we
obtain the result

Ṫ0 = − 1 − e2

e a n2 sin v

{(
cos v − 2

r

p
e

)
eΠ2

+
r

p

[
(e + cos v) cos v − 2

]
eR2

}
· δf − 3

2 a
(t − T0) ȧ

(6.81)

for elliptic orbits (e < 1) and

Ṫ0 = +
e2 − 1

e a n2 sin v

{(
cos v − 2

r

p
e

)
eΠ2

+
r

p

[
(e + cos v) cos v − 2

]
eR2

}
· δf − 3

2 a
(t − T0) ȧ

(6.82)

for hyperbolic orbits (e > 1).



228 6. Perturbations

Summary. The perturbation equations for the six classical orbital elements
were brought into the standard form (see (6.26)) in this section. From our
results the velocity-gradients associated with the individual elements may be
easily extracted (where we include for convenience, both, the gradients for
the semi-latus rectum p and the semi-major axis a):

∇v p = 2
√

p

µ
r eS

∇v i =
r cosu

n a2
√
|1 − e2|

eΠ3

∇v Ω =
r sinu

n a2 sin i
√
|1 − e2|

eΠ3

∇v e =
√

p

µ

{
eΠ2 +

r

p
(e + cos v) eS

}

∇v ω =
√

p

µ

{
eΠ2 +

r

p
(e + cos v) eS

}

∇v T0 +
3

2 a
(t − T0) ∇v a = − 1 − e2

e a n2 sin v

{[
cos v − 2

r

p
e

]
eΠ2

+
r

p

[
(e + cos v) cos v − 2

]
eR2

}

∇v a = ± 2
n
√
|1 − e2|

{
− sin v eΠ1 + (e + cos v) eΠ2

}
.

(6.83)

Note that the positive sign in the gradient for the semi-major axis holds for
elliptic, the negative for hyperbolic orbits. The equation for T0 holds for both,
elliptic and parabolic orbits!

6.3.5 Decompositions of the Perturbation Term

The scalar products on the right-hand sides of the Gaussian perturbation
equations (6.83) may be calculated in any coordinate system that might seem
convenient. Two particular Cartesian systems, both rotating w.r.t. inertial
space in a rather complicated way and both already defined in Table 4.3,
prove to be very useful:

• The R-system system, decomposing the perturbing acceleration into a ra-
dial component R′, a component S′ normal to R′ in the orbital plane
(pointing approximately into the direction of motion), and the out-of-plane
component W ′ normal to the orbital plane. The components refer to the
unit vectors eR1 , eR2 , and eΠ3 .

• The T -system, decomposing the perturbing acceleration into a tangential
component T ′ (parallel to the velocity vector ṙ), a component N ′ normal
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to T ′ in the orbital plane (and pointing into the ellipse), and the out-of-
plane component W ′ normal to the orbital plane. The unit vectors of this
Cartesian coordinate system shall be denoted by eT , eN , and eΠ3 .

R'

T'

S'

N'

M F

v

Fig. 6.1. Decomposition of the perturbing acceleration into the radial R′, normal
to radial in the orbital plane S′, and the out-of-plane direction W ′; or into the
tangential T ′, normal to tangential in the orbital plane N ′ and the out-of-plane
direction W ′

Figure 6.1 illustrates the (R′, S′, W ′)- and the (T ′, N ′, W ′)-systems. In the
(R′, S′, W ′)-system the components of the velocity vector are computed as
R3(v) ẋΠ using eqn. (4.64). The result is

ṙR =

⎛
⎝ ṙ

r u̇
0

⎞
⎠ =

√
µ

p

⎛
⎝ e sin v

p
r
0

⎞
⎠ .

In vector notation the same transformation may be written as:

ṙ =
√

µ

p

{
e sin v eR1 +

p

r
eR2

}
. (6.84)

With this representation of the velocity vector, the perturbation equation for
the semi-major axis a in eqns. (6.83) assumes the form

ȧ =
1

n
√

1 − e2

(
e sin v R′ +

p

r
S′
)

, (6.85)

where an elliptic osculating orbit was assumed.

In the case of the semi-major axis a the decomposition according to the
(T ′, N ′, W ′)-system leads to an even simpler result, because in this particu-
lar coordinate system the scalar product associated with the element a simply
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is the product of the absolute value of the velocity with the tangential com-
ponent T ′:

ṙ · δf = |ṙ|T ′ , (6.86)

The last of the perturbation equation (6.83) then simply reads as

ȧ =
2

n2 a
|ṙ|T ′ , (6.87)

where the relation µ = n2 a3 was used. An elliptic orbit was assumed.

Equation (6.87) illustrates how insight is gained into the structure of a par-
ticular perturbation by (a) using the perturbation equations for the orbital
elements instead of the original equations in rectangular coordinates and (b)
by an appropriate decomposition of the perturbing acceleration. The equa-
tion tells that only with a tangential component it is possible to change the
semi-major axis; a positive tangential component increases, a negative de-
creases the semi-major axis. The equation also tells that a tangential acceler-
ation T ′ of short duration (and of the same size) has maximum effect on the
semi-major axis a when applied in the pericenter and minimum effect when
applied in the apocenter. Space agencies operating artificial Earth satellites
are of course utilizing such basic facts. Manoeuvres intended to change the
semi-major axis of a space-craft have to be realized by thrusts in the tan-
gential (along-track) direction. The atmospheric drag acting on an artificial
Earth satellite in a circular orbit is an example for a (more or less) constant
perturbating force in the along-track direction. It is opposed to the satellite
motion, therefore decreases the semi-major axis, and eventually leads to the
decay of the satellite.

The complete set of the Gaussian perturbation equations for the (R′, S′, W ′)-
decomposition is now easily derived from the general representation (6.83):

ȧ =
√

p

µ

2 a

1 − e2

{
e sin v R′ +

p

r
S′
}

ė =
√

p

µ

{
sin v R′ + (cos v + cosE)S′

}

Ṫ0 = − 1 − e2

n2 a e

{(
cos v − 2 e

r

p

)
R′ −

(
1 +

r

p

)
sin v S′

}
− 3

2 a
(t − T0) ȧ

di

dt
=

r cosu

n a2
√

1 − e2
W ′

Ω̇ =
r sinu

n a2
√

1 − e2 sin i
W ′

ω̇ =
1
e

√
p

µ

{
− cos v R′ +

(
1 +

r

p

)
sin v S′

}
− cos i Ω̇ ,

(6.88)
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where v is the true, E the eccentric anomaly, and u = ω + v the argument of
latitude of the celestial body considered (see Chapter 4). Only the formulae
for the case e < 1 are reproduced above. The perturbation equations (6.88)
are arranged in two groups, the first consisting of the equations for the semi-
major axis a (defining the size), the eccentricity e (defining the shape), and
the time T0 of pericenter passage (defining the dynamics) of the orbital mo-
tion, the second consisting of the three Eulerian angles i, Ω, and ω defining
the orbital plane and the orientation of the conic section within the orbital
plane. Observe that the orbital plane can be only changed by an out-of-plane
component W ′.

The choice of the set a, e, i, Ω, ω and T0 of osculating elements is by no means
unique. Alternatives make in particular sense if the inclination i and/or if the
eccentricity e are small. The perturbation equations for such elements are
easily obtained by elementary combinations of the set of equations (6.88).
We include one alternative for the time of pericenter, by replacing T0 by
the mean anomaly σ0 referring to the initial epoch t0. The transformation
equation relating σ0 and T0 is:

σ0
def= n (t0 − T0) , (6.89)

where according to eqn. (4.41) n =
√

µ
a3 is the osculating mean motion of

the celestial body. Taking the time derivative of eqn. (6.89) results in the
following perturbation equation for the element σ0:

σ̇0 =
1 − e2

n a e

{(
cos v − 2 e

r

p

)
R′ −

(
1 +

r

p

)
sin v S′

}
+

3
2

n

a
(t − t0) ȧ .

(6.90)

For further reference we conclude this paragraph by the Gaussian pertur-
bation equations for the decomposition T ′, N ′, and W ′. The equations for i
and Ω may be skipped because they contain the W ′-component which is com-
mon to both decompositions. The result is easily obtained from the general
representation (6.83) of the Gaussian equations.

ȧ =
2 a2

µ
|ṙ| T ′

ė =
1
|ṙ|
{
− r

a
sin v N ′ + 2 (cos v + e)T ′

}

Ṫ0 =
√

1 − e2

n e |ṙ|

{
r

a
cos v N ′ + 2

(
1 + e2 r

p

)
sin v T ′

}
− 3

2 a
(t − T0) ȧ

ω̇ =
1

e |ṙ|

{(
r

p
cos v + e

(
1 +

r

p

))
N ′ + 2 sin v T ′

}
− cos i Ω̇ .

(6.91)
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6.4 Lagrange’s Planetary Equations

In this section it is assumed that the perturbing acceleration δf may be
represented as the gradient of the scalar perturbation function R:

δf
def= ∇rR . (6.92)

6.4.1 General Form of the Equations

The Gaussian perturbation equations assume the form (6.26):

İk = ∇vIk · ∇rR , k = 1, 2, . . . , 6 . (6.93)

Due to the fact that the osculating elements at epoch t may be derived from
the state vector referring to the same epoch (and vice versa), the gradient in
eqn. (6.26) may be expressed by a linear combination of the gradients (w.r.t.
the position vector) of the six osculating elements

∇rR =
6∑

j=1

∂R

∂Ij
∇rIj , (6.94)

where coefficients of the linear combination are the partial derivatives of the
perturbation function w.r.t. the corresponding osculating element. Replac-
ing the gradient of the perturbation function on the right-hand side of the
Gaussian perturbation equations (6.93) by the right-hand sides of eqn. (6.94)
leads to the formally very simple result

İk =
6∑

j=1

(
∇vIk · ∇rIj

) ∂R

∂Ij
, k = 1, 2, . . . , 6 . (6.95)

The perturbation equations (6.95) represent the time derivative of each or-
bital element as a linear combination of the perturbation function’s partial
derivatives w.r.t. all six orbital elements. It may be viewed as a disadvantage
of eqns. (6.95) that the sum has to be extended over all six orbital elements
(constants of integration).

This situation may be improved by making explicit use of the fact that the
perturbation function R does not depend on the velocity components, which
is why the velocity-gradient of the perturbation function R is a zero-vector.
The analogue of eqn. (6.94) in velocity space therefore reads as

∇vR =
6∑

j=1

∂R

∂Ij
∇vIj = 0 . (6.96)
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This relationship may be used to eliminate the term with summation index
j = k on the right-hand side of the perturbation equations (6.95): We simply
multiply the above equation (in the sense of a scalar product) with the vector
∇rIk and subtract the resulting scalar product from eqn. (6.95). The result
are the Lagrange’s planetary equations:

İk =
6∑

j=1

(
∇vIk · ∇rIj − ∇vIj · ∇rIk

) ∂R

∂Ij
, k = 1, 2, . . . , 6 . (6.97)

Observe that the term j = k on the right-hand side is zero due to symmetry
reasons. It is therefore not necessary to exclude the term number k explicitly
in the above sum. The terms (. . .) are the well known Poisson brackets of
analytical mechanics, named after Siméon-Denis Poisson (1781–1840). It is
remarkable that we arrived at the above representation of the perturbation
equations merely by making explicit use of the fact that the function R is
the gradient of a scalar function of the position vector (and does not depend
on ṙ).

The following notation for the Poisson bracket referring to the orbital ele-
ments k and j will be used subsequently:

[Ik, Ij ]
def= ∇vIk · ∇rIj − ∇vIj · ∇rIk . (6.98)

The Lagrange’s planetary equations may thus be given the following elegant
form:

İk =
6∑

j=1

[Ik, Ij ]
∂R

∂Ij
, k = 1, 2, . . . , 6 . (6.99)

The definition (6.98) of the Poisson bracket implies anti-symmetry

[Ik, Ij ] = − [Ij , Ik] and therefore [Ik, Ik] = 0 j, k = 1, 2, . . . , 6 ,
(6.100)

which is why only 15 out of the 36 Poisson brackets are independent and
have to be computed.

Lagrange’s planetary equations (6.99) are not yet very useful in this form,
but all that remains to be done is the explicit computation of the Poisson
brackets. This will be done in section 6.4.3, where we will see that only five
out of the 15 independent Poisson brackets are different from zero.

The general form (6.99) of the equations of motion is useable for a broad class
of problems: If a dynamical system may be written as a perturbation problem
and if the perturbation term is a position-gradient and does not depend on the
velocity, then the perturbation equations may be written in the form (6.99).
The problem-dependent part only resides in the explicit computation of the
Poisson brackets (see section 6.4.3). From this point of view the attribute
planetary in Lagrange’s planetary equations (6.99) can hardly be justified.
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6.4.2 Lagrange’s Equation for the Semi-major Axis a

The Gaussian perturbation equation for the semi-major axis a was derived
as a first example to introduce the problems. The same can be done for the
Lagrangian version of the perturbation equations: The total time derivative
of the perturbation function R may be computed as

dR

dt
= ∇rR · ṙ +

∂R

∂t
= − ∂R

∂T0
+

∂R

∂t
, (6.101)

where use was made of eqn. (6.30) to represent the perturbation term.

Note, that the scalar product ∇rR · ṙ may be interpreted as the time deriva-
tive of the perturbation function R(r(t), t), when ignoring the explicit time
dependence of this function. In this case, the time-dependence of vector r(t)
is eventually governed by the osculating mean anomaly σ(t) = n (t − T0) ,
showing that the derivative w.r.t. time t and T0 are equal, but of opposite
sign. This explains the second of eqns. (6.101). Therefore, eqns. (6.101) lead
directly to the final form of the perturbation equation for the semi-major axis
a in the Lagrangian form:

ȧ =
2 a2

µ
ṙ · δf =

2 a2

µ
ṙ · ∇rR = − 2 a2

µ

∂R

∂T0
. (6.102)

Equation (6.102) actually is of the general form (6.99), where, obviously, four
of the five Poisson brackets showing up in the equation for the semi-major
axis are zero (see next section).

The above derivation of Lagrange equation is sometimes given in textbooks
as an example. It is, in a way, a nice example, because the derivation and
the result are rather simple. The example is, however, not really instructive,
because it is not possible to derive the perturbation equations for the other
five elements along similar lines. We have to find a general method valid for
all elements. This is the purpose of the next section.

6.4.3 Lagrange’s Planetary Equations

The general method to derive the Lagrangian perturbation equations is im-
plicitly given by their general form (6.99): We first have to derive the position
and velocity-gradients of the elements, then we have to compute the Pois-
son brackets. Keeping in mind that we already have derived the expressions
for the velocity-gradients (summarized in eqns. (6.83)) the remaining task
cannot be too difficult. It will be solved in the next paragraph.
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The Position-gradients of the Osculating Elements. The elements p,
i and Ω are all derived from the angular momentum vector h = r × ṙ . As
the vector product is not commutative, but changes sign when the order of
its factors is reversed, we may easily derive the position-gradients from the
velocity-gradients by replacing r by ṙ and by reversing the sign in the final
formula for the position-gradients (vectorial notation). The final result reads
as follows (for convenience and comparison we include the velocity-gradients,
as well):

∇v p =
2
µ

(h × r) ; ∇r p = − 2
µ

(h × ṙ)

∇v i =
1

h sin i
(r × x) ; ∇r i = − 1

h sin i
(ṙ × x)

∇v Ω =
r · e3

h2 sin2 i
h ; ∇r Ω = − ṙ · e3

h2 sin2 i
h .

(6.103)

The eccentricity e and the argument of pericenter emerge from vector q (see
eqns. (6.32)). Let us focus on the eccentricity first. From the identity

q2 = q · q
we conclude that

2 q∇q = 2∇
{
q ·
[(

ṙ2 − µ

r

)
r − (r · ṙ) ṙ

]}
= 2∇

{(
ṙ2 − µ

r

)
(q · r) − (r · ṙ) (q · ṙ)

}
, (6.104)

where (due to the factor of 2 on the right-hand side) the vector q can be
considered as a constant when taking the gradient. Equation (4.33) was used
to represent vector q on the right-hand side. The above formula holds for
both, the position- and the velocity-gradient. One may now easily calculate
the position-gradient from the above formula. For convenience we include the
velocity-gradient, as well. The result is:

q∇rq =
µ

r3
(r · q) r − (ṙ · q) ṙ +

(
ṙ2 − µ

r

)
q

q∇vq = − (ṙ · q) r + 2 (r · q) ṙ − (r · ṙ) q .
(6.105)

It is a straightforward task to show that the above representation for the
velocity-gradient can be reduced to the one given in eqns. (6.83).
As the position-gradients of both, p and e, are available now, we may also
derive the position-gradient of the semi-major axis a, at this point, using the
relation

∇a =

⎧⎪⎨
⎪⎩

1
1 − e2

(∇p + 2 a e ∇e) , e < 1
1

e2 − 1
(∇p − 2 a e ∇e) , e > 1 ,

(6.106)
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which is derived in exactly the same way as eqn. (6.38) starting from the
definition of conic sections. Observe that the relation holds for both, position-
and velocity-gradients. The position-gradient of a may, of course, also be
directly derived from the “astronomical energy theorem” (4.20), which even
may be the shortest method. In any case the result is (again, we include the
velocity-gradient for convenience):

∇va = ± 2
n2 a

ṙ ; ∇ra = ± 2 a2

r3
r , (6.107)

where the positive sign holds for elliptic, the negative for hyperbolic orbits.

The (position- or velocity-)gradient of the argument of pericenter ω is ob-
tained in analogy to eqn. (4.33) as:

∇ω =
1

q sin ω

{
cosω ∇q − ∇ (eΩ · q)

}
− cos i ∇Ω . (6.108)

The equation holds for both, the position- and the velocity-gradients. The
gradients of q = µ e and Ω were already given above, which is why we only
have to deal with the gradient of the scalar product eΩ · q, where we may
consider eΩ to be a constant (the “neglected” term is taken care of as the
last term in the above equation).

Using the representation (4.33) for vector q, the scalar product in question
reads as

q · eΩ =
(
ṙ2 − µ

r

)
(r · eΩ) − (r · ṙ) (ṙ · eΩ) , (6.109)

from where the position- and velocity-gradients are computed as

∇r (q · eΩ) =
µ

r3
(r · eΩ) r − (ṙ · eΩ) ṙ +

(
ṙ2 − µ

r

)
eΩ

∇v (q · eΩ) = − (ṙ · eΩ) r + 2 (r · eΩ) ṙ − (r · ṙ)eΩ .
(6.110)

The gradients of the time T0 of pericenter passage is derived in analogous
way as the corresponding perturbation equation. One simply has to take the
gradient of Kepler’s equation and to replace the term ∇E by taking the
gradient of eqn. (4.53). When considering hyperbolic orbits one has to start
from the analogue of Kepler’s equation (see Table 4.2), where the auxiliary
angle F is used instead of the eccentric anomaly E. We quote the result for
elliptic orbits only:

∇rT0 = −
√

1 − e2

e n sin v

{
cos v∇re −

r

a2
∇ra
}
− 3

2 a
(t − T0)∇ra −

√
1 − e2

a r n e sin v
r

∇vT0 = −
√

1 − e2

e n sin v

{
cos v∇ve −

r

a2
∇va
}
− 3

2 a
(t − T0)∇va .

(6.111)

The gradients of a should be replaced by a linear combination of the gradients
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of p and e using eqn. (6.106), if p instead of a is used as osculating element.
Let us briefly sketch the derivation of the position-gradient of T0. Taking the
position-gradient of Kepler’s equation results in:

∇rT0 = − 3
2a

(t − T0)∇ra +
sin E

n
∇re − r

a n
∇rE . (6.112)

With the exception of ∇rE all gradients on the right-hand side of eqn. (6.112)
are available. In analogy to the computation of Ė when deriving the Gaussian
equation for T0 we obtain the position-gradient of E using eqn. (4.53):

∇rr =
r

r
= ∇ra (1 − e cosE) − a cosE ∇re + a e sinE ∇rE . (6.113)

Obviously, the position-gradient of r on the left-hand side of the above equa-
tion is not equal to the zero-vector. Using the above result in eqn. (6.112)
leads to the preliminary result:

∇rT0 =
{
− 3

2 a
(t − T0) +

r2

a3

1
n e sinE

}
∇ra

+
1
n

{
sin E − r

a e
cotE

}
∇re − 1

a2 n e sin E
r .

(6.114)

If we replace the eccentric anomaly E by the true anomaly v using eqns.
(4.51) we obtain the second of eqns. (6.111).

Poisson Brackets. The results presented in the previous paragraph allow
it to calculate the Poisson brackets rather easily. The result is amazingly
simple: All but five of the 15 independent Poisson brackets (when using the
classical six orbital elements a, e, i, Ω, ω, and T0) are zero. One recognizes,
e.g., that the four Poisson brackets of the elements i and Ω with a and e are
zero – because the gradients of i and Ω stand normal on the orbital plane
and the gradients of the a and e lie in this plane. This in turn implies the
products of the position-gradient (velocity-gradient) of either i or Ω with the
velocity-gradient (position-gradient) of either a or e to be zero. A little bit
more algebraic work is involved when evaluating the remaining 11 brackets.
The actual work can, however, be left as an exercise to the reader.

The final result is contained in the Table 6.1. We already proved that the
Poisson brackets are anti-symmetric, which is why we only have to provide
15 of the 36 brackets. With the Poisson brackets contained in Table 6.1
and with the general formula (6.99) of Lagrange’s planetary equations it is
no problem to quote the explicit version of these equations in the classical
orbital elements:
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Table 6.1. Poisson brackets of the classical orbital elements

e ] i ] Ω ] ω ] T0 ]

[ p, 0 0 0
2
√

|1 − e2|
n a

0

[ a, 0 0 0 0 − 2

n2 a

[ e, – 0 0 −
√

|1 − e2|
n a2 e

− 1 − e2

n2 a2 e

[ i, – – − 1

n a2 sin i
√

|1 − e2|
cot i

n a2
√

|1 − e2|
0

[ Ω, – – – 0 0

[ ω, – – – – 0

ȧ = ∓ 2
n2 a

∂R

∂T0

ė = −
√
|1 − e2|
n a2 e

∂R

∂ω
− 1 − e2

n2 a2 e

∂R

∂T0

di

dt
= − 1

n a2
√
|1 − e2| sin i

∂R

∂Ω
+

cot i

n a2
√
|1 − e2|

∂R

∂ω

Ω̇ =
1

n a2
√
|1 − e2| sin i

∂R

∂i

ω̇ =

√
|1 − e2|
n a2 e

∂R

∂e
− cot i

n a2
√
|1 − e2|

∂R

∂i

Ṫ0 =
2

n2 a

∂R

∂a
+

1 − e2

n2 a2 e

∂R

∂e
.

(6.115)

Observe that Table 6.1 allows it to write down Lagrange’s equations for the
set of elements p, e, i, Ω, ω, and T0. The result is:
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ṗ =
2
√
|1 − e2|
n a

∂R

∂ω

ė = −
√
|1 − e2|
n a2 e

∂R

∂ω
− 1 − e2

n2 a2 e

∂R

∂T0

di

dt
= − 1

n a2
√
|1 − e2| sin i

∂R

∂Ω
+

cot i

n a2
√
|1 − e2|

∂R

∂ω

Ω̇ =
1

n a2
√
|1 − e2| sin i

∂R

∂i

ω̇ = − 2
√
|1 − e2|
n a

∂R

∂p
+

√
|1 − e2|
n a2 e

∂R

∂e
− cot i

n a2
√
|1 − e2|

∂R

∂i

Ṫ0 =
1 − e2

n2 a2 e

∂R

∂e
.

(6.116)

From the purist’s point of view it would be preferable to use consequently
the elements p and e (and not a and e) in the above perturbation equations.
The advantage of the above formulation is their close relationship with the
classical eqns. (6.115).

We have given Lagrange’s planetary equations (6.115) (or (6.116)) for the
orbit of one celestial body in a given potential, consisting of the two-body
term and the perturbation function R. In this form Lagrange’s planetary
equations are well suited to describe the orbital motion of any celestial body
for which it is possible to compose the resulting acceleration as the sum of
the two-body term and a gradient of a scalar perturbation function. The
equations may be used in particular to describe the orbital motion of an
artificial Earth satellite or of a minor planet in conservative force fields.

The term “planetary” indicates, that Lagrange’s equations were originally
meant to describe the motion of the entire planetary system. Note that in
this case one set of equations of type (6.115) holds for each planet i = 1, 2, . . .,
and that there is one planet-specific perturbation function Ri for each of the
considered planets (see eqn. (3.24)):

Ri = k2
n∑

j=1,j �=i

mj

{
1

|ri − rj |
− ri · rj

r3
j

}
. (6.117)

For conservative perturbation problems in Celestial Mechanics, (i.e., when
the perturbation function(s) may be described by the position-gradient of a
potential), Lagrange’s planetary equations and the Gaussian version (6.88)
of the perturbation equations are mathematically equivalent.

For theoretical work aiming at a formal solution of the equations of motion
Lagrange’s version of the perturbation equations is preferable, because only
one scalar function (for each of the perturbed bodies) has to be dealt with,
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whereas the three components R′, S′, and W ′ (or any other set of three com-
ponents of the perturbing acceleration) have to be considered when using the
Gaussian version. Moreover, the coefficients of the partial derivatives of the
perturbation function w.r.t. the orbital elements, i.e., the Poisson brackets,
are first integrals of the underlying two-body problem. A similar statement
does not hold for the Gaussian version of the perturbation equations. The
Gaussian version (6.88) of the perturbation equations must be used, however,
as soon as non-conservative perturbing accelerations occur.

6.5 First- and Higher-Order Perturbations

On the right-hand sides of the perturbation equations in the Gaussian form
(6.25) and in the Lagrangian form (6.115) there are only “small” terms of
the order of the perturbation terms.

It is tempting to solve the perturbation equations (6.25) or (6.115) approx-
imatively by using the two-body approximation to calculate the right-hand
sides of these equations. In this approximation the right-hand sides of the
equations are known functions of time. The error committed by this proce-
dure is “small of the second order” in the perturbations because

• the right-hand sides are small quantities, and because

• the difference vector ∆r(t) = r(t) − r0(t) between the true solution r(t)
of the system (6.25) or (6.115) and its two-body approximation r0(t) is a
small quantity, as well (at least in the vicinity of the initial epoch t0).

By replacing r(t) by r0(t) on the right-hand sides of the equations we are
thus committing an error of the second order in the perturbations.

The impact of the approximation on the mathematical structure of the prob-
lem is important: The problem of solving a system of six coupled, non-linear
ordinary differential equations is reduced to the solution of six integrals,
which may be solved independently. It is thus possible to study the impact of
a perturbation separately for each orbital element, or only for one or several
elements of special interest.

The solution of the perturbation equations using the two-body approximation
on the right-hand sides of the perturbation equations is called the first-order
solution of the perturbation equations, and the theory outlined here is called
first-order perturbation theory.

Let us state explicitly the first-order perturbation equation and its solu-
tion for the semi-major axis in its Gaussian form using the (T ′, N ′, W ′)-
decomposition of the perturbing acceleration. The result must be distin-
guished from the true result. It may be directly transcribed from eqn. (6.87):
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ȧ[1] =
2

n2
0 a0

|ṙ0|T ′

a[1](t) def=
2

n2
0 a0

t∫
t0

|ṙ0(t′)| T ′(r0(t′), ṙ0(t′), t′
)
dt′ .

(6.118)

The notation a[1](t) indicates that the equation (6.87) was only solved using
first-order perturbation theory. All quantities on the right-hand side of this
equation are approximated by the two-body solution of the underlying initial-
value problem.

At least in the vicinity of the osculation epoch one may expect that the first-
order solution a[1](t) is much better than the zero-order solution a[0] def= a0

(which simply would be the osculating semi-major axis at the epoch t0).

One should not forget that the first-order solution of the perturbation equa-
tions is the solution of a problem differing considerably from the original
one. Nevertheless, a first-order solution, in particular when limited to a time
interval of, let us say, a few dozen revolutions, usually is an excellent approx-
imation for the true solution. It is moreover an excellent tool to gain insight
into the structure of a particular problem.

Having established the first-order solution for all six orbital elements it is in
principle easy to generate a supposedly better, second-order, solution by using
the first-order solution on the right-hand sides of the perturbation equations
instead of the two-body solution. The principle may be generalized to any
order by using the next lower-order approximation on the right-hand side of
the perturbation equations. Higher-order solutions for the semi-major axis
are, e.g., characterized by:

ȧ[I+1] =
2

n[I] a[I]
|ṙ[I]|T ′[I]

a[I+1](t) def=

t∫
t0

2
n[I](t′) a[I](t′)

|ṙ[I](t′)| T ′[I]
(
r[I](t′), ṙ[I](t′), t′

)
dt′ .

(6.119)

Note, that the above integral may be solved independently from the integrals
for the other five elements. The solution method of the perturbation problem
is thus the same in the higher than the first order: only known functions of
time are used in the integration process. One should be aware of the fact,
however, that on the right-hand side of the above equation a complete solution
of order I is needed in order to accomplish a correct solution of order I + 1,
even if only one of the orbital elements is of interest.

The procedure for generating first-order, then higher-order approximations of
the original perturbation equations is straight forward – and usually, it works.
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There are, however, risks involved in the procedure. Two of them should be
mentioned:

• If a first-order solution is used over very long time periods (hundreds of
revolutions), the essential assumption of first-order theory, namely that
the difference between the true and the two-body solution is a “small”
quantity, may become violated. This may lead to convergence problems, if
the attempt is made to generate higher-order solutions.

• If solutions are sought in the tradition of general perturbation theory, it
may occur that a perturbation term is exactly periodic in a first-order
approximation. It may in addition happen that small divisors or even a
zero-divisor occur, when taking the time derivative of this perturbation,.
Such problems are in particular encountered when resonance problems are
studied.

If first- and higher-order solutions are established using numerical methods,
such problems usually do not occur. In order to avoid problems of this kind,
one has to brake up a long time-interval into shorter partial intervals and
apply first- and higher-order approximation within these shorter intervals.
Numerical methods for solving the transformed equations of motion are, how-
ever, not yet well established. They should be considered as promising and
very powerful tools.
It is refreshing to read Taff’s treatise on perturbation theory, in particular the
section “the misapplications of perturbative theory”, which is concluded by
the editorial starting with the statement (see L. G. Taff, [118]): ” . . . beyond
first-order theory I know of no useful result from perturbation theory in Celes-
tial Mechanics because all of the higher-order results have no firm mathemat-
ical basis. Frequently the second approximation produces nonsensical results
. . . ” We agree with this assessment, where analytical theories (method of
general perturbations) are concerned – and such theories were meant in the
treatise [118]. We are, however, much more optimistical concerning the ap-
plication of the perturbation approach in the field of special perturbation
theory (i.e., when solving the perturbation equations in the elements using
the technique of numerical integration).

6.6 Development of the Perturbation Function

In general perturbation theory an “analytical” solution of the perturbation
equations is sought. This implies that the perturbation function has to be
developed into a series, the terms of which may be integrated in closed form
(“analytically”). General perturbation methods are very well suited to gain
a quick overview of a particular perturbation function. In such analyses first-
order perturbation theory is sufficient and usually it is allowed to simplify
the problem considerably.



6.6 Development of the Perturbation Function 243

If higher accuracy is required, the development of the perturbation function
may frustratingly complicated, and it is, by definition, problem-dependent.
This section will be concluded by a simple (simplified) example to demon-
strate the technical difficulties involved in this step. Other examples may be
found in subsequent chapters.

Until quite recently general perturbation theory was the only tool available
for practical problems requiring highest accuracy in Celestial Mechanics. The
striking example is Newcomb’s theory of the planetary (and natural satellite)
motion, which provided the firm fundament for astronomical almanacs well
into the second half of the 20th century. Only with the advent of fast com-
puters (and this time we do not speak of human beings) it was possible to
circumvent and, what was at least as important, to check analytical theories
of motion in Celestial Mechanics by numerical solutions.

Subsequently, we will use general perturbation theory only to generate simple
approximations (and apply them only to short time intervals). The following
example shall illustrate the use and limitations of first-order perturbation
theory.

6.6.1 General Perturbation Theory Applied to Planetary Motion

Let us study the orbital motion of two planets with small eccentricities in
one and the same orbital plane around the Sun. Formally, the distinction is
made between the perturbing and the perturbed planet. No index will be
used for the perturbed body and the index is p reserved for the perturbing
body. According to eqn. (6.117) the perturbing function (for the perturbed
body) may be written as:

R = k2 mp

{
1

|r − rp|
− r · rp

r3
p

}
. (6.120)

As we are dealing with a planar problem, we may disregard the perturbations
in the inclination i and the longitude of the node Ω and introduce instead
the longitude of the perihelion, the sum of the longitude of the node and the
argument of perihelion:

ω̃
def= Ω + ω

ω̃p
def= Ωp + ωp .

(6.121)

Neglecting the terms of higher than first order in the eccentricities e and
ep the following approximations may be used for quantities related to the
perturbed body:



244 6. Perturbations

σ = n (t − T0)
E ≈ σ + e sin σ

cosE = cosσ − 1
2 e (1 − cos 2σ)

sinE = sin σ + 1
2 e sin 2σ

r = |r| = a (1 − e cosE)
≈ a (1 − e cosσ)

r−m ≈ a−m (1 + m e cosσ) , m = 1, 2, . . .

r1 ≈ a
(
cos(E + ω̃) − e cos ω̃

)
≈ a

(
cos(σ + ω̃) +

e

2
cos(2 σ + ω̃)

)
r2 ≈ a

(
sin(E + ω̃) − e sin ω̃

)
≈ a

(
sin(σ + ω̃) +

e

2
sin(2 σ + ω̃)

)
,

(6.122)

where r1 and r2 are two components of the position vector of the perturbed
body in the orbital plane, where the first coordinate axis pointing to the
perihelion. Analogous approximations are obtained for the perturbing body.

With these approximations we are now in a position to develop the perturbing
function into a series with integrable terms. We may assume that

|r| > |rp| , (6.123)

which allows it to develop the first (and crucial) term of the perturbation
function (6.120) into series of Legendre polynomials (see eqn. (3.101))

1
|r − rp|

=
1
|r|

∞∑
i=0

(
|rp|
|r|

)i
Pi

(
r · rp

|r| |rp|

)
, (6.124)

where the functions Pi(x) are the Legendre polynomials of degree i. Using
the approximations (6.122) the argument of the Legendre polynomials may
be written as:

r · rp

|r| |rp|
=
{

cos(σ − σp + ω̃ − ω̃p) + 1
2 e cos(2 σ − σp + ω̃ − ω̃p)

+ 1
2 ep cos(2 σp − σ + ω̃p − ω̃)

}{
1 + e cosσ + ep cosσp

}
= cos(σ − σp + ω̃ − ω̃p)

+ 1
2 e
{
2 cos(2 σ − σp + ω̃ − ω̃p) + cos(σp − ω̃ + ω̃p)

}
+ 1

2 ep

{
2 cos(2σp − σ + ω̃p − ω̃) + cos(σ + ω̃ − ω̃p)

}
.

(6.125)

In the development (6.124) we have to raise this argument up to power n,
resulting in expressions of the kind
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r · rp

|r| |rp|

)n
= cosn(σ − σp + ω̃ − ω̃p) + n cosn−1(σ − σp + ω̃ − ω̃p)

·
[

+ 1
2 e
{
2 cos(2 σ − σp + ω̃ − ω̃p) + cos(σp − ω̃ + ω̃p)

}
+ 1

2 ep

{
2 cos(2σp − σ + ω̃p − ω̃) + cos(σ + ω̃ − ω̃p)

}]
.

(6.126)

Using the standard trigonometric relations one may replace the nth power
of a cosine-function by a linear combination of cosine-functions of multiples
of its argument. It is therefore possible to write the perturbation function as
a trigonometric series in the multiples of the angles i σ − k σp + j (ω̃ − ω̃p) .
The structure of the resulting series development is:

R̃ = k2 mp

{
1

|r − rp|
− r · rp

r3
p

}

=
+∞∑
j=0

αj(a, ap) cos
[
j (σ − σp + ω̃ − ω̃p)

]

+ e
∑

j

∑
k

∑
l

βjkl(a, ap) cos
[
j σ − k σp + l (ω̃ − ω̃p)

]

+ ep

∑
j

∑
k

∑
l

γjkl(a, ap) cos
[
j σ − k σp + l (ω̃ − ω̃p)

]
.

(6.127)

The sum limits were not specified in the above expression. It is important,
however, that in the terms proportional to e and ep we do not only have
terms with arguments proportional to l (σ − σp) + . . . .

In first-order theory, all of the above angular arguments except the two mean
anomalies σ and σp do not depend on time.

We are now ready to use the development (6.127) in Lagrange’s planetary
equations (6.115), where the partial derivatives of the development (6.127)
w.r.t. the orbital elements have to be calculated.

The development (6.127) shows that the dependence on the eccentricity e is
only contained in the coefficients of the development, whereas the dependence
on T0 and ω̃ resides uniquely in the arguments of the cos-functions. With the
exception of the semi-major axis, which occurs in the coefficients and implic-
itly in the anomalies (the mean motion n is a function of a), the dependence
on a particular orbital element is contained either in the coefficients or in the
arguments of the cos-series, but not in both.

As the arguments of the trigonometric series are linear functions of the mean
anomalies, and as the mean anomalies in turn are linear functions of time,
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the differential equations resulting after replacing the perturbation function
on the right-hand sides of Lagrange’s planetary equations (6.115) may be
integrated formally. The individual terms give raise to

• periodic perturbations with periods P = 2 π
j n− k np

, or

• secular perturbations, growing linearly with time t.

The basic period of the system occurring in the term proportional to e0e0
p is

the synodic revolution period of the two planets

P =
2 π

|n − np |
. (6.128)

Perturbations with periods of the order of P are called short-periodic.

Secular perturbations only occur, if there are terms not depending on the
mean anomalies in the integrands. Such terms cannot show up, if the partial
derivative of expression (6.127) is taken w.r.t. T0, because all resulting terms
will contain jσ with σ �= 0, j �= 0 in the argument. This is why secular
perturbations cannot occur in the semi-major axis a in first-order theory. This
might be viewed as an argument for the stability of the planetary system.
Unfortunately the argument is not valid because secular terms might show
up in higher-order solutions.

Because we have to take the partial derivative of the perturbing function
w.r.t. the eccentricity e in the equation for the perihelion (and because the
e-dependence is contained in the coefficients of the development), secular
terms may occur when solving the equation for the perihelion. The examples
in Chapter II- 4 will show that secular terms actually do show up in the per-
ihelion and in the longitude of the ascending node. The revolution periods of
these angles are very long compared to the basic period (the synodic revolu-
tion period P ) of the system. In higher-order approximations one would thus
expect perturbations with periods related to the revolution period of both,
the longitude of the pericenter and the longitude of the ascending node.

Long-period perturbations may, however, already show up in first-order so-
lutions, if

| j n − k np | ≈ 0 . (6.129)

The relation (6.129) holds, if the two mean motions are nearly commensu-
rable. The amplitudes of the corresponding perturbation terms may be rather
big, despite the fact that they are proportional to e and ep, because they are
amplified (after the integration) by the factor | j n − k np |−1.

Through this mechanism long-period perturbations with considerable ampli-
tudes may show up even in first-order theory, provided the revolution periods
are nearly commensurable. The great inequality of the planets Jupiter and
Saturn of about 900 years is an example for such a mechanism (see also
Chapter II- 4).
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If the resonance condition (6.129) holds precisely (this may occur when solv-
ing a perturbation problem with analytical means), the method, when blindly
used, fails due to the occurrence of zero-divisors. The problem can of course
removed by considering the associated sin- or cos-term as constant, e.g., by
the approximation

cos(j σ − k σp + α) ≈ cos
(
k np (T01 − T0) + α

)
. (6.130)

A term of this kind is capable of producing seemingly “secular” perturbations
in all orbital elements, a result which may become nonsensical if used over
very long time intervals. The example illustrates the difficulties and problems
that may occur in the framework of general perturbation theory.

If more than one perturbing planet are acting on the perturbed body, the
perturbations may be calculated separately in first-order theory and the com-
bined effect is obtained by superposition. This makes first-order perturbation
theory a very powerful and efficient tool. The theory, enhanced by selected
higher-order terms, was used for the production of the ephemerides of our
almanacs till the second half of the 20th century.

The above example was a gross simplification of the analytical developments
actually performed for applications in the planetary system. When allowing
for moderate eccentricities and inclinations between the orbital planes, the
perturbation function of two bodies moving around the Sun may be written
as (see, e.g., [94]):

R =
∑

P cosQ +
∑

P ′ cosQ′ , (6.131)

where the coefficients P and P ′ are functions of the elements a, ap, e, ep and
i, ip . In addition to the first-order terms in the eccentricities, higher-order
terms have to be taken into account, as well. Moreover, the inclination be-
tween the orbital planes generates additional terms proportional to sink i and
sinl ip . The argument Q is time-independent in first-order theory, whereas Q′

contains the time-dependence:

Q = j Ω + jp Ωp + k ω̃ + kp ω̃p

Q′ = l n (t − T0) + lp np (t − T10) + j Ω + jp Ωp + k ω̃ + kp ω̃p .
(6.132)

Equations (6.131) are somewhat more general than the development (6.127).
The elegant shape of eqns. (6.131) should not hide the fact that their explicit
versions are rather complicated.

6.7 Perturbation Equation for the Mean Anomaly σ(t)

The Gaussian and Lagrangian perturbation equations (6.88) and (6.115) were
set up for the osculating orbital elements a, e, i, Ω, and T0 (or σ0(= σ(t0))).
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All osculating elements are first integrals of the two-body equations of motion
(4.1).

All of the Gaussian perturbation equations (6.88) except the one for the equa-
tion for the time of pericenter passage (or, alternatively, the equation for the
mean anomaly σ0) are of a similar and simple structure: The right-hand sides
are linear combinations of the perturbing accelerations, and the coefficients
of the linear combinations are to the first-order (when using the two-body
approximation on the right-hand side) periodic functions of time (with the
revolution period of the perturbed body as period). The result therefore is
“well-behaved” – provided the perturbing accelerations are “reasonable”, as
well: One may expect periodic functions (with periods given by the perturbed
body and the periods contained in the perturbing accelerations) and possibly
linear functions of time.

In the equation for T0 or σ0 there is, however, a term proportional to the time
interval t − T0 or t − t0. For integrations over long time intervals, this term
is going to dominate all other terms, and it must generate periodic terms
of a linearly growing amplitude. Figure 6.2, showing the the initial mean
anomaly σ0 (referring to January 1, 2000) as a function of time over 2000
years, illustrates the effect. The Figure is based on the osculating elements
obtained by numerically integrating the outer planetary system. Whereas
the amplitudes of all other perturbations are small, we observe terms with
linearly growing amplitudes, which are already of the order of 30◦ after 2000
years. The result is not easy to interpret – as a matter of fact it is a kind of
an artefact (see subsequent discussion). This is why the development of σ0 or
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Fig. 6.2. σ0 = σ(2000.0) of Jupiter over a time interval of 2000 years
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of T0 usually is not discussed in textbooks, a tradition which will be followed
here.

When inspecting Lagrange’s planetary equations, one might first think that a
similar problem does not show up in eqns. (6.115). This is not the case, how-
ever: the equation for T0 contains the partial derivative of the perturbation
function R w.r.t. the perturbed body’s semi-major axis. As this perturbation
function does contain the radius vector r of the perturbed body (or functions
thereof), it will also depend on the true anomaly v, which in turn depends
on a, e, and T0 via the eccentric and the mean anomaly σ(t) = n (t − T0)
(see section 5.3). This dependence shows that the term ∂R

∂a also must contain
terms proportional to t − T0, as well.

The situation can be improved because the elements σ0 or T0 are only needed
to calculate the mean anomaly σ(t) for the time argument t considered. Hav-
ing established the perturbation equations for all six osculating elements
(referring to t0), it is of course also possible to derive a differential equation
for σ

def= σ(t). The mean anomaly σ(t) at time t is a function of a, T0, and t:

σ = n (t − T0) =
√

µ

a3
(t − T0) .

Taking the time-derivative of this equation we obtain:

σ̇ = n − 3 n

2 a
(t − T0) ȧ − n Ṫ0 . (6.133)

Using eqns. (6.88) one easily verifies that the differential equation for σ does
not contains terms proportional to (t − T0), but only the constant term n
(the two-body term) and small perturbation terms:

σ̇ = n +
1 − e2

n a e

{(
cos v − 2 e

r

p

)
R′ −

(
1 +

r

p

)
sin v S′

}
. (6.134)

Equations (6.134) are easier to handle, independently of whether general or
special perturbation methods are applied. If necessary, the osculating ele-
ment T0 may be reconstructed after having solved the Gaussian perturbation
equations (6.88) for a, e, i, Ω, ω, and σ(t) using the definition (6.7) of the
mean anomaly.

Lagrange’s planetary equations may be modified following the same pattern
as in the case of the Gaussian equations. The differential equation for σ is
again given by eqn. (6.133), but we have to replace Ṫ0 and ȧ using eqns.
(6.115):

σ̇ = n − 3 n

2 a
(t − T0) ȧ − n

[
2 a2

µ

∂R

∂a
+

L2

µ2 e

∂R

∂e

]
. (6.135)

Now, the partial derivative w.r.t. the semi-major axis a may be split up into a
derivative {R}a, where the dependence of the true anomaly v on a is ignored,
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and a contribution taking into account exactly this term (obviously it is only
the latter term which contains the terms proportional to the time argument
t − T0):

∂R

∂a
= {R}a +

∂R

∂v

∂v

∂E

∂E

∂a

= {R}a +
3

2 a
(t − T0)

∂R

∂v

∂v

∂E

∂E

∂T0

= {R}a +
3

2 a
(t − T0)

∂R

∂T0

= {R}a − 3
4

n2 (t − T0) ȧ .

(6.136)

Replacing in eqn. (6.135) the partial derivative of R w.r.t. a by the above
expression gives the following differential equation for the mean anomaly σ(t):

σ̇ = n − 2
n a

{R}a − 1 − e2

n a2 e

∂R

∂e
. (6.137)

Equation (6.137) is the equivalent to the perturbation equation for σ in the
Gaussian formulation (6.134). Both versions do not contain terms propor-
tional to the time t and are thus much more convenient to use than the
equations for σ0 or for T0. Keep in mind that the symbol {R}a stands for
the partial derivative of R(a, e, v) w.r.t. a, disregarding the fact that the true
anomaly v also depends on the semi-major axis a.

Figure 6.3 proves that the alternative “orbital element” σ = σ(t) is much
better behaved than σ0. σ only shows a linear trend and periodic variations
with a constant amplitude – exactly as all the other osculating elements.
Observe, that a linear trend of n0 (t − t0) , where n0 is the osculating mean
motion at t = t0, was removed in Figure 6.3 in order to make the periodic
variations visible.

A Side-Issue: The problem of “time t outside the trigonometric arguments” is
well known and may be dealt with in different ways. Brouwer and Clemence
[27], Roy [94], and most of the other “modern” authors introduce a “new”
element which does not contain the terms mentioned. They then derive a
second-order differential equation for this auxiliary element. Kaula [62] even
derives the Lagrangian perturbation equations using the set of parameters a,
e, i, Ω, ω, and σ(t) throughout the development. His result is, as a matter of
fact, equivalent to the equations presented here, because ∂R(t)

∂T0
= −n ∂R(t)

∂σ .
We believe that the equations given above for the five orbital elements a, e,
i, Ω, ω and for the mean anomaly σ are very easy to understand and (what
may be even more important) to use.
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Fig. 6.3. De-trended mean anomaly σ(t)−n0(t− t0) of Jupiter over a time interval
of 2000 years



7. Numerical Solution

of Ordinary Differential Equations:
Principles and Concepts

7.1 Introduction

The three different types of equations of motion set up in Chapter 3 and
the associated variational equations discussed in Chapter 5 are the central
theme of this book. In Chapter 6 it was shown that the equations of motion,
when using the osculating orbital elements instead of the celestial bodies’
coordinates and velocities as dependent variables, may be represented ap-
proximately as integrals of known functions of time. It seems therefore wise
to put the discussion of solution methods of differential equation systems
on a general basis in order to cope with quadrature, with linear, as well as
non-linear differential equation systems of any order.

In Celestial Mechanics the equations of motions are in general so complex that
only numerical methods promise efficient, yet accurate solutions. It is there-
fore appropriate to develop the key algorithms of numerical analysis related
to the solution of differential equation systems and to numerical quadrature.
We cannot strive for completeness, but we include those solution methods
which are of greatest importance in Celestial Mechanics.

The numerical solution of ordinary differential equation systems should not
be understood (and taught) as a “catalogue of recipes”. We will restrict the
discussion to few fundamental principles and concepts of numerical analysis.

In pure mathematics manifolds of solutions of differential equation systems
may be discussed. In numerical analysis the focus is on particular solutions of
ordinary differential equation systems. A particular solution is defined by the
differential equation system and additional information, usually the initial
values of the solution at one particular value t0 of the independent argument
t. We will also address what might be called a local boundary value problem
(see sections 7.2 and 7.5). The initial and the local boundary value problems
will be defined more precisely in the next section.

When dealing with ordinary differential equation systems the distinction is
made between one independent and one or more dependent arguments. A
particular solution represents all dependent arguments as functions of the
independent argument. Dependent and independent arguments have different
meanings in different applications. In an attempt to keep the language simple,
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the symbol t will be used for the independent argument and it is identified
with time. This convention allows it to speak, e.g., of an initial epoch, of
boundary epochs, etc.

Solving an initial or a boundary value problem should be viewed as a special
task of approximation theory, where an approximating function for the true
solution is sought. From now on it shall be called the numerical solution of
the underlying mathematical problem. The numerical solution might be a
truncated Taylor series (named after Brook Taylor (1685–1731)), a series of
trigonometric functions, and so on. Special problems might favor special func-
tions. Subsequently, we are only interested in algorithms with the potential
to solve “all possible” ordinary differential equation systems. When solving
a differential equation system with numerical methods we will observe the
following general guidelines:

• The numerical solution represents each component of the solution as a
linear combination of given base functions. We will use polynomials for
this purpose.

• The numerical solution is generated independently of specific user require-
ments (in the sense that the solution is needed at such and such epochs),
except that the approximating function must cover the entire time interval
of interest.

• After the actual solution step, the numerical solution may be evaluated at
any required epochs, its time derivative(s) may be taken at any epoch, the
numerical solution may be integrated over any time interval covered by the
solution.

This purist’s understanding of numerically solving an initial or boundary
value problem is not common – and it rules out a number of well known and
commonly used methods. Such alternative algorithms will only be included
for comparison purposes in section 7.4.

Formally, the numerical solution of a differential equation system may be
written as the sum of the true solution and of an error function. Good inte-
gration methods should have the capability to assess and/or control the errors
of the numerical solution. The appropriate treatment of errors and their ac-
cumulation is probably the most complicated aspect of numerical integration
methods.

Numerical integration is dealt with in six sections (not counting this in-
troductory section). The general mathematical structure of the problems is
discussed in section 7.2. The Euler method, so to speak the “mother of all
integration methods”, is reviewed in section 7.3. This review is mandatory,
because modern methods share many – as a matter of fact most – proper-
ties with Euler’s algorithm. Section 7.4 gives an overview of important and
powerful integration procedures in use today for the numerical solution of
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ordinary differential equation systems. Section 7.5, dealing with the collo-
cation methods, is the core of our treatment. Collocation methods may be
viewed as the logical successors of the Euler method, sharing all properties
with the Euler method but being orders of magnitude more efficient. The
well-known multistep methods are shown to be special cases of collocation
procedures in this section. In section 7.6 collocation algorithms are applied to
linear differential equation systems and to definite integrals, i.e., to numeri-
cal quadrature. The famous Gaussian quadrature formulae are shown to be
special cases of collocation methods, as well. The chapter is concluded with a
discussion of the error propagation in section 7.7, where the emphasis is put
on problems of Celestial Mechanics.

A treatment of numerical analysis without including at least a few key ex-
amples would be like a soup without salt. The illustrations in this Chapter
are based on the programs NUMINT, LINEAR, and PLASYS, which are in-
cluded in the program package and documented in Chapters II- 6 and II- 10
of Part III. Program NUMINT is particularly well suited to compare inte-
gration algorithms. Two basic problems of Celestial Mechanics, namely the
motion of an artificial Earth satellite in the gravity field of the oblate Earth,
and the motion of a minor planet in the gravity field of Sun and Jupiter, may
be solved using a variety of different methods. The program LINEAR is used
to solve selected linear differential equation systems and to evaluate definite
integrals. Program PLASYS is used to solve the planetary N -body problem.

7.2 Mathematical Structure

The equations of orbital and rotational motion derived in Chapter 3 are
special cases of the following explicit system of ordinary differential equation
systems of order n :

y(n) = f
(
t, y, ẏ, ÿ, . . . ,y(n−1)

)
, (7.1)

where

n > 0 is the order of the differential equation system,

d > 0 is the dimension of the system of equations, implying that

y = y(t) is the column array of d dependent variables yj(t), j = 1, 2, . . . , d ,
i.e., the array of unknown functions of time,

t is the time, the independent variable of the system of differential equations,

ẏ = ẏ(t) is the first derivative of y(t) w.r.t. t,

ÿ = ÿ(t) is the second derivative of y(t) w.r.t. t,
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y(i) = y(i)(t), i = 1, 2, . . ., is the i-th derivative of y(t) w.r.t. t, and

f = f
(
t, y, ẏ, ÿ, . . . ,y(n−1)

)
is the right-hand side of the system of differen-

tial equations.

Loosely speaking, y(t) is also called the solution vector. Note, however, that
the dimension d of the system has nothing to do with the dimension of the
vector space of the problem addressed. In the equations of motion of the
planetary system with N planets and/or planetoids and comets, etc., the
dimension of the differential equation system would be d = 3 N . For our
applications only equations of orders n = 1 and n = 2 are actually needed.

Equation (7.1) is not the most general formulation for a differential equation
of order n . A more general formulation would be:

f̃
(
t, y, ẏ, ÿ, . . . ,y(n−1), y(n)

)
= 0 . (7.2)

Quite a few important equations of mathematical physics are of the general
form (7.2), which might be called the implicit formulation of a differential
equation system. All systems of type (7.1) may be written in the form (7.2),
but not all systems of type (7.2) may be brought (easily) into the form (7.1).
Only explicit systems of type (7.1) are considered in this book.

The system (7.1) of order n and dimension d might be written in component
form ⎛

⎜⎜⎜⎜⎜⎝

y
(n)
1

y
(n)
2

. . .

. . .

y
(n)
d

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f1

(
t, y, ẏ, ÿ, . . . ,y(n−1)

)
f2

(
t, y, ẏ, ÿ, . . . ,y(n−1)

)
. . .
. . .

fd

(
t, y, ẏ, ÿ, . . . ,y(n−1)

)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

f1(t)
f2(t)
. . .
. . .

fd(t)

⎞
⎟⎟⎟⎟⎠ . (7.3)

Wherever possible the matrix notation (7.1) will be given the preference over
the component notation (7.3).

In general, all components of y(t) and of its first n−1 time derivatives occur
on the right-hand sides of eqns. (7.1). In this case the system is called a
coupled system of equations. If it is possible to split the system (7.3) into
two subsystems, where, within (at least) one subsystem only the components
referring to that subsystem occur on the right-hand sides, the system (7.3) is
separable, and both subsystems can be solved separately. Observe that the
system containing only the components of this system on the right-hand side
has to be solved first.

A planetary system with a mixture of finite point masses and bodies of neg-
ligible masses is described by a separable system. Obviously, the non-zero
masses give rise to a coupled system of type (3.18), which does, however,
not depend on the motion of the bodies of negligible mass. This subsystem
describing the motion of the finite masses must be solved first. Subsequently,
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we may solve – one by one – the equations of motion (3.21) for the bod-
ies of negligible mass. Obviously, the coordinates of the particular body of
negligible mass and the coordinates of all bodies with finite masses (which
are known functions of time after the solution of eqns. (3.18)) occur on the
right-hand side of the differential equation for the particular body.

In Chapter 5 we have seen that the variational equations associated with the
equations of motion are linear. Linear systems may be written in the form

y(n) =
n−1∑
i=0

Ai(t)y(i) + b(t) , (7.4)

where Ai(t) are square matrices of dimension d with elements Aijk
= Aijk

(t),
j, k = 1, 2, . . . , d , known as functions of time t, and where b(t) is a column
array, consisting of d known functions bj(t), j = 1, 2, . . . , d , of time.

The linearity of the differential equation systems may, but need not, be ex-
ploited by numerical algorithms. This aspect will be further pursued in section
7.6.

When numerically solving the system (7.1) we need additional information
to identify one particular solution, e.g., by defining an initial value problem,
where, at an initial epoch t0, the solution vector and its first n−1 derivatives
w.r.t. time t are specified. The initial value problem reads as:

y(n) = f
(
t, y, ẏ, ÿ, . . . ,y(n−1)

)
y(i)(t0)

def= y
(i)
0 , i = 0, 1, . . . , n − 1 .

(7.5)

The solution vector and its first n− 1 time derivatives at a particular time t
also are referred to as the state vector of the system at time t. Consequently
the initial values y

(i)
0 , i = 0, 1, . . . , n − 1, are referred to as the initial state

vector at time t0.

Equations (7.5) consist of the differential equation system, which should hold
for all time arguments t (it is the system of eqns. (7.1)), and the initial values
of the solution array and its first n− 1 derivatives at time t0. One can prove
that the initial value problem (7.5) has exactly one solution, if the function
f meets certain requirements (key word: Lipschitz conditions). We do not
review the existence and uniqueness theorems and proofs associated with
the initial problem (7.5), a topic, which is covered in many mathematical
textbooks.

Particular solutions may be specified in many alternative ways. If the con-
dition equations referring to one initial epoch t0 are replaced by equations
referring to several epochs, one generally speaks of a boundary value problem,
which might, e.g., be formulated as follows:
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y(n) = f
(
t, y, ẏ, ÿ, . . . ,y(n−1)

)
y(t′i)

def= yi , i = 1, 2, . . . , n, t′i �= t′k for i �= k .
(7.6)

In the above example the time derivatives of the solution vector at time t0
were replaced by the solution vector at n − 1 different epochs. It is a non-
trivial task to decide whether the problem (7.6) has a unique solution. (As a
matter of fact boundary value problems in Celestial Mechanics generally do
not have unique solutions, but usually all but one solution may be ruled out in
practice.) Two special cases are important: (a) if an approximate solution of
the boundary problem is available, a solution may be found by linearization;
(b) if the boundary epochs t′i , i = 1, 2, . . . n , are close together (within the
convergence radius of a Taylor series expansion of the solution with suitable
origin), it is possible to find a numerical solution by a special technique
(see section 7.5). Problems of type (b) may be called local boundary value
problems.

More general boundary value problems than that represented by eqns. (7.6)
occur in practice. One might, e.g., wish to provide the value for y(t) at time
t′1 , its first derivative at time t′2 , etc. One might even think of specifying
different time derivatives for different components at one and the same time.
It would not be too difficult to develop algorithms for such general situations.
In order to focus on problems actually occurring in Celestial Mechanics, we
refrain from studying such cases and uniquely deal with the initial value
problem (7.5) and the local boundary value problem (7.6).

Many algorithms may be used to solve only first-order differential equation
systems. From the mathematical point of view, no harm is done by this
restriction, because every higher-order system may be transformed into a
first order system by the following substitutions:

u0
def= y

u1
def= ẏ

. . .
def= . . .

ui
def= y(i)

. . .
def= . . .

un−1
def= y(n−1) .

(7.7)

These transformations allow it to set up the following first order system of
differential equations:
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u̇0 = u1

. . . = . . .
u̇i = ui+1

. . . = . . .
u̇n−2 = un−1

u̇n−1 = f(t, u0, u1, . . . ,un−1) .

Obviously the system (7.1) of order n and dimension d was transformed into
a system of order 1 and dimension n d . The definitions

u
def=

⎛
⎜⎜⎜⎜⎝

u0

u1

. . .

. . .
un−1

⎞
⎟⎟⎟⎟⎠ and F (t, u) def=

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

u2

. . .

. . .
un−1

f(t, u)

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8)

allow it to write the above differential equation system in the concise matrix
form:

u̇ = F (t, u) . (7.9)

If a dynamical system is described in this way, the designation of its solution
vector u(t) as state vector is commonly used. If the system is specified by
equations of type (7.1) of higher than the first order, its state vector must be
viewed, as already mentioned, as the solution function y(t) and its first n−1
time derivatives.

From the mathematical point of view the systems (7.1) and (7.9) are equiva-
lent. This is not necessarily true for their numerical solutions. From the point
of view of the practitioner one should always try to solve the higher-order
system, because the storage requirements and the so-called overhead of an
algorithm (comprising all operations not related to the solution of the specific
problem, i.e., not related to the evaluation of the right-hand sides f(. . .) of
eqns. (7.1) (or F (t, u) of eqns. (7.9))) are usually considerably smaller when
sticking to the original formulation (7.1).

7.3 Euler’s Algorithm

The numerical algorithms in use today to solve the initial value problem (7.5)
are based on the principles outlined by Leonhard Euler in 1768 [37]. This fact
is recognized by associating Euler’s name with the simplest, and perhaps the
most robust, integration algorithm. Euler’s original analysis, in the scientific
language of those days, is reproduced in Figure 7.1. In this algorithm Euler
approximates the solution of the initial value problem



260 7. Numerical Solutions

DE INTEGRATIONE AEQUATIONUM DIFFERENTIALIUM
PER APPROXIMATIONEM

PROBLEMA 85

650. Proposita aequatione differentiali quacunque eius integrale completum
vero proxime assignare.

SOLUTIO

Sint x et y binae variabiles, inter quas aequatio differentialis proponitur, atque
haec aequatio huiusmodi habebit formam, ut sit dy

dx
= V existente V functione

quacunque ipsarum x et y. Iam cum integrale completum desideretur, hoc ita
est interpretandum, ut, dum ipsi x certus quidem valor, puta x = a, tribuitur,
altera variabilis y datum quemdam valorem, puta y = b, adipiscatur. Quaes-
tionem ergo primo ita tractemus, ut investigemus valorem ipsius y, quando
ipsi x valor paulisper ab a discrepans tribuitur, seu posito x = a+ω ut quaer-
amus y. Cum autem ω sit particula minima, etiam valor ipsius y minime a b
discrepabit; unde, dum x ab a usque ad a + ω tantum mutatur, quantitatem
V interea tanquam constantem spectare licet. Quare posito x = a et y = b fiat
V = A et pro hac exigua mutatione habebimus dy

dx
= A ideoque integrando

y = b + A (x − a) , eiusmodi scilicet constante adiecta, ut posito x = a fiat
y = b. Statuamus ergo x = a + ω fietque y = b + A ω .
Quemadmodum ergo hic ex valoribus initio datis x = a et y = b proxime
sequentes x = a + ω et y = b + A ω invenimus, ita ab his simili modo per
intervalla minima ulterius progredi licet, quoad tandem ad valores a primi-
tivis quantumvis remotos perveniatur. Quae operationes quo clarius ob oculos
ponantur, sequenti modo successive instituantur.

Ipsius valores successivi

x a , a′ , a′′ , a′′′ , aIV , . . . , ′x , x

y b , b′ , b′′ , b′′′ , bIV , . . . , ′y , y

V A , A′ , A′′ , A′′′ , AIV , . . . , ′V , V

Scilicet ex primis x = a et y = b datis habetur V = A, tum vero pro secundis
erit b′ = b + A (a′ − a) differentia a′ − a minima pro lubitu assumpta. Hinc
ponendo x = a′ et y = b′ colligitur V = A′ indeque pro tertiis obtinebitur
b′′ = b′ +A′ (a′′−a′) , ubi posito x = a′′ et y = b′′ invenitur V = A′′. . . . Series
autem prima valores ipsius x successivos exhibens pro lubitu accipi potest,
dummodo per intervalla minima ascendat vel etiam descendat.

Fig. 7.1. Euler’s method of numerical integration
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dy

dx
= V (x, y)

y(a) = b
(7.10)

in the interval I = [a, x], where x may be to the left or to the right of
the initial value a of the independent argument. He subdivides the original
interval I by the points a, a′, a′′, . . ., x, where a′ − a, a′′ − a′, . . ., are
assumed to be infinitesimal, into the subintervals I1 = [a, a′], I2 = [a′, a′′],
etc. In practice these subinterval lengths will be defined as small values. The
true solution is approximated by a linear function of time t within each of
the subintervals I1 = [a, a′], I2 = [a′, a′′], etc., where the linear function is
defined by its value and slope at the left interval boundary (function values
y and V (x, y)). With this procedure an approximating function is defined
for all x′ ∈ [a, x], not only for the interval boundaries a, a′, a′′, etc. Euler’s
numerical solution is continuous in I = [a, x], its first derivative w.r.t. the
independent argument is only piece-wise continuous. Discontinuities occur at
the subinterval boundaries a, a′, a′′, etc.
The essential elements of Euler’s method are:

1. The entire integration interval I = [a, x] is divided by the points
a, a′, a′′, . . . , into subintervals Ik , k = 1, 2, . . ..

2. The numerical solution is defined as a linear function of the independent
argument within each of the subintervals Ik.

3. A subsidiary initial value problem is defined at the left boundary of each
of the subintervals I2 , I3 , etc.

4. The initial values y(a′), y(a′′), etc. are defined as the numerical solution
referring to the preceding subinterval I1 , I2 , etc., at the right interval
boundaries a′, a′′, etc. of this subinterval.

5. The linear approximating function within each of the subintervals is de-
fined by the initial value and the slope (right-hand side of the differential
equation) at the left interval boundary.

Euler proposed his algorithm in Figure 7.1 for one scalar differential equation
of order n = 1.
Let us transcribe Euler’s algorithm to the initial value problem (7.5) in an
interval I = [t0, tN ]. Within this interval the initial value problem (7.5)

y(n) = f
(
t, y, ẏ, ÿ, . . . ,y(n−1)

)
y(i)(t0)

def= y
(i)
0 , i = 0, 1, . . . , n − 1

is approximately solved by the following algorithm:

y(t) def= yk(t) def=
n−1∑
i=0

1
i!

(t − tk)i y
(i)
k0 +

1
n!

(t − tk)n f
(
tk, yk0, ẏk0, . . . ,y

(n−1)
k0

)
t ∈ Ik , k = 0, 1, . . . , N − 1 ,

(7.11)
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where the original interval I = [t0, tN ] is divided into N subintervals by the
epochs (t0), t1, . . ., tN−1, (tN ) (see Figure 7.2), and where the initial values
within each subinterval are defined by

y
(i)
k0 =

{
y

(i)
0 , k = 0

y
(i)
k−1(tk) , k > 0 .

(7.12)

The initial values are identical with those of the original problem in subin-
terval I0, whereas the initial values in subinterval Ik , k > 0, are defined by
the numerical solution yk−1(t) at time tk of the preceding interval Ik−1.

t0 t1 t2 t3 t4 tN�3 tN�2 tN�1 tN

I0 I1 I2 I3 IN�3 IN�2 IN�1

Fig. 7.2. Subdivision of the integration interval in Euler’s algorithm

The algorithm (7.11, 7.12) is in the following respects a generalization of
Euler’s original algorithm:

• The algorithm (7.11, 7.12) is capable of dealing not only with one scalar
equation, but with systems of equations. This part of the generalization
was simple: Scalar coefficients had to be replaced by arrays of coefficients.
Note, however, that each component of the solution may be dealt with
separately (except when evaluating the right-hand sides of the differential
equation systems).

• The algorithm (7.11, 7.12) is able to solve equations of higher than the
first order. The numerical solution is a polynomial of degree n (Taylor
series truncated after the terms of order n for differential equation systems
of order n). Its (n − 1)-st derivative (which is, e.g., needed to define the
new initial values at the right interval boundaries) is, however, a linear
approximation of the true (n − 1)-st derivative of the solution.

The second generalization might have been avoided if the n-th order system
would have been transformed into a first order system prior to its numerical
solution. The accuracy of both approaches are comparable. The only advan-
tage of algorithm (7.11, 7.12) over Euler’s original one in Figure 7.1 resides
in a reduction of the overhead of the algorithm.

The solution of the initial value problem associated with one of the intervals
Ik is usually called an integration step, and the length of the subinterval Ik ,
hk

def= tk+1−tk , is called the stepsize of the solution. The stepsize may change
from step to step.
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Euler’s scheme clearly was meant for numerical approximations, but it proved
to be very fruitful in pure mathematics, as well: Using a series of finer and
finer subdivisions of the integration interval (starting from an original, arbi-
trary subdivision), it can be shown that the corresponding series of approxi-
mate solutions converges to the true solution. The proofs of the existence and
uniqueness of solutions are, as a matter of fact, based on Euler’s (numerical)
solution scheme – which is truly remarkable! The convergence of Euler’s so-
lution method is very slow, however. The error decreases only linearly with
the number of subintervals.

This slow convergence is the main disadvantage of Euler’s scheme. It is doc-
umented by Figures 7.3 showing the error of the semi-major axis a of a hy-
pothetical minor planet orbiting the Sun in an orbit of small eccentricity and
small inclination with orbital elements defined by Table 7.1. The equations
of motion of the two-body problem (4.1) were directly integrated with pro-
gram NUMINT, once with the Euler method as explained above, once with
the classical Runge-Kutta method as it will be outlined in section 7.4.4. The
constant stepsize of the integration was one day in both cases, the integration
covered a time interval of 10 years.
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Fig. 7.3. Error of semi-major axis a when integrating an orbit of small eccentricity
in a two-body potential over 10 years with a stepsize of one day; Euler method
(left), Runge-Kutta of order 4 (right) (note scale differences)

After the numerical solution of the two-body problem, the orbital elements
were computed for each day from the numerically integrated position and
velocity vectors. As the orbital elements should be constant in the case of
the two-body problem, Figure 7.3 shows directly the errors introduced by
the integration. The results obviously are far from optimal in both cases.
There is, however, a striking accuracy difference in the two figures: Whereas
the error in a is of the order of a few hundredths of an astronomical unit
(AU) when using the Euler method, the error is only of the order of a few
10−12 AU when using the Runge-Kutta method. The accuracy gain when
using the Runge-Kutta method instead of the Euler method thus is about
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a factor of 1010. One must admit, on the other hand, that the comparison
in Figure 7.3 is not really fair: The number of evaluations of the right-hand
sides of the differential equation systems is four times higher in the case of
the Runge-Kutta method than in the case of the Euler method. So, with the
same computational effort it would be possible to reduce the step size for
the Euler method by a factor of four. This would, however, only improve the
accuracy by a factor of four.

Table 7.1. Osculating elements of a “minor planet” at t0=January 1, 2000, 0h

Element Value Element Value

a 2.502 AU e 0.05

i 10◦ Ω 130◦

ω 30◦ T0 t0

In summary, we may state that the Euler method is not a good choice, because
of efficiency considerations. Apart from that it meets all the requirements
specified in the introduction: Euler’s algorithm provides an approximating
function in the entire integration interval, and its error at an arbitrary epoch
t is known to decrease linearly with the number of subintervals, a fact that
might be exploited for an error assessment (see section 7.7 for a treatment of
this topic).

7.4 Solution Methods in Overview

Before discussing in detail the collocation and multistep methods, which are
fundamental in Celestial Mechanics, it is worthwhile to outline the principles
underlying the major integration methods in use today. Only the principles
and a few numerical examples are provided in this section. For detailed ex-
planations of the collocation and multistep methods the readers are referred
to the following sections, for extensive numerical comparisons of methods in
the field of Celestial Mechanics to [75].

7.4.1 Collocation Methods

The collocation method solving the initial value problem (7.5) is in all but
one aspects identical with the Euler algorithm (7.11, 7.12): Collocation algo-
rithms approximate the initial value problem within the subintervals Ik (see
Figure 7.2) by a polynomial of degree q, which is (in general) higher than
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in Euler’s algorithm. (For q = n the collocation method is reduced to the
Euler algorithm.) The polynomial degree q ≥ n is also called the order of the
method. The interval subdivision and the definition of the subsidiary initial
value problems at the left interval boundaries are done exactly as in the Euler
algorithm (using, however, usually the collocation method of order q > n of
the previous subinterval to define the new initial values).

The initial value problem referring to the interval Ik , k ∈ {0, 1, . . . , N − 1}
may be written as:

y
(n)
k = f

(
t, yk, ẏk, ÿk, . . . ,y

(n−1)
k

)
y

(i)
k (tk) def= y

(i)
k0 , i = 0, 1, . . . , n − 1 , (7.13)

where the initial values y
(i)
k0 are defined by eqns. (7.12), i.e., exactly like in

Euler’s method.

The collocation algorithm of order q ≥ n approximates the initial value prob-
lem (7.13) or the boundary value problem (7.6) in the interval Ik = [tk, tk+1]
by a polynomial of degree q

yk(t) def=
q∑

l=0

1
l!

(t − tk)l y
(l)
k0 , (7.14)

where the coefficients y
(l)
k0 , l = 0, 1, . . . , q, are obtained by the requesting

that

(a) the numerical solution assumes the initial values (7.12) and that

(b) the numerical solution solves the differential equation system at exactly
q +1−n different epochs tkj , j = 1, 2, . . . , q +1−n , within the interval
Ik (see Figure 7.4).

t0 t1 t2 t3 t4 tk tk+1 tN�3 tN�2 tN�1 tN

tk 1 tk2 tk 3 tk4 tkq�1�n tkq n� tkq�1�n

I0 I1 I2 I3 Ik IN�3 IN�2 IN�1

Fig. 7.4. Subdivision of the integration interval Ik for collocation algorithm

The conditions (a) are “automatically” met (replace y
(i)
k (tk) in the equations

for the initial values of the problem definition (7.13) using the right-hand
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sides of the defining eqns. (7.14) of the numerical solution). Conditions (b) are
obtained explicitly by replacing yk(t) (and its derivatives) in the differential
equation system (7.13) by eqns. (7.14) for the epochs tkj :

q∑
l=n

(tkj − tk)l−n

(l − n)!
y

(l)
k0 = f

(
tkj , yk(tkj ), ẏk(tkj ), . . . ,y

(n−1)
k (tkj )

)
j = 1, 2, . . . , q + 1 − n .

(7.15)

The condition equations (7.15) are algebraic and in general non-linear in the
unknowns y

(l)
k0 , l = n, n + 1, . . . , q , (because the unknowns implicitly also

show up on the right-hand sides of eqns. (7.15) – the terms y
(i)
k (tkj ) must be

replaced by the right-hand sides of eqns. (7.14)). Observe that the number
of unknowns equals the number of condition equations.

The task of developing the explicit collocation method is rather straight for-
ward from now on: We simply have to explain how to solve the system (7.15)
of non-linear algebraic equations! The collocation method of order q is thus
reduced to the problem of determining the coefficients y

(l)
k0 , l = n, n+1, . . . , q ,

of the numerical solution (7.14). This program will be performed in section
7.5, where we will show that the above condition equations may be solved
using standard methods of linear algebra.

The order q of the collocation method is defined by the program user. Orders
up to about q = 10 to q = 14 make sense in a double precision floating point
environment (see section 7.7).

7.4.2 Multistep Methods

When introducing the Euler method in section 7.3 and the collocation
method in the section 7.4.1 it was assumed that the subintervals Ik , k =
0, 1, . . . , N −1, do not overlap. There is no obvious reason for this restriction.
The subintervals for collocation methods are now defined in the following,
more general way:

Ik
def= [tk−q̃1 , tk+q̃2 ] , q̃1, q̃2 ≥ 0 , (7.16)

where q̃i , i = 1, 2, are positive integers (natural numbers). Obviously, the
case q̃1 = q̃2 = 0 does not make sense. The definition (7.16) guarantees that
tk is contained in the interval Ik.

The definition (7.16) formally does not affect the original subdivision of the
integration interval by the epochs tk. It only affects the subinterval in which
the collocation epochs tkj have to lie. Many “different”, potentially very
powerful, collocation methods may be derived using the generalized scheme
(7.16).
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Definition (7.16) obviously contains the “pure” collocation method, as intro-
duced above, as that special case for which q̃1

def= 0 and q̃2
def= 1 (and thus

Ik
def= [tk, tk+1]).

For multistep methods the subinterval Ik is defined either by

Ik
def= [tk−q+n, tk] , (7.17)

i.e., by q̃1
def= q − n and q̃2

def= 0 or by

Ik
def= [tk−q+n−1, tk+1] , (7.18)

i.e., by q̃1
def= q + 1 − n and q̃2

def= 1.

Multistep methods based on the subinterval definition (7.17) are called ex-
trapolation methods, those based on the subinterval definition (7.18) interpo-
lation methods. The name extrapolation method is explained by the fact that
extrapolation methods have to extrapolate the initial values to the epoch tk+1

for solving the initial value problem of the next subinterval Ik+1. Interpola-
tion methods require a previous extrapolation step. They iteratively improve
the solution values at tk+1 obtained by the extrapolation method solving the
initial value problem at tk.

The principle of multistep methods, in particular the transition from subin-
terval Ik to subinterval Ik+1, is illustrated by Figure 7.5: The interval sub-
division of the original interval I is illustrated by the top figure. The second
figure from the top shows the subinterval Ik for the extrapolation step. The
third figure from the top shows the same subinterval Ik, indicating that the
collocation epochs tkj , j = 1, 2, . . . , q + 1 − n of the extrapolation step are
identical with the partition epochs tk−j+1 , j = 1, 2, . . . , q+1−n of the inter-
val I (see top Figure). The extrapolation method in the interval Ik solves the
initial value problem at epoch tk; the differential equation system is “exactly”
solved at the collocation epochs tkj

def= tk+1−j , j = 1, 2, . . . , q + 1 − n . The
same figure also indicates that the extrapolation step has to be concluded
by extrapolating the solution vector (based on the polynomial of degree q)
to tk+1. This extrapolation is indicated by the cross “×” in this figure. The
next figure may be understood as the subinterval Ik,inter of the interpolation
step(s) related to the initial value problem referring to tk or (already) as the
next subinterval Ik+1 associated with the initial value problem at tk+1. If
there are no interpolation steps (pure extrapolation method), the extrapo-
lated function values at tk+1 are taken as the new initial conditions at tk+1.
If interpolation steps follow the extrpolation step, the solution (and its n− 1
first derivatives) of the interpolation step at tk+1 serve as initial values at
tk+1. The bottom figure shows the subinterval Ik+1 for the extrapolation
method.

Apart from using overlapping subintervals Ik, the multistep procedures have
another interesting and attractive property, which distinguishes them from a
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tk q n� � tk q n� � �� tk q n� � �2 tk�2 tk�1 tk tk+1
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Fig. 7.5. Subdivision of the integration intervals Ik, Ik+1 for multistep algorithm

general collocation method: With the exception of the initial value problem
referring to t0, the right-hand sides of the condition equations (7.15) are
taken over as known from the previous integration steps without ever being
recomputed ! This implies that the extrapolation methods compute the right-
hand sides of the differential equation systems exactly once per integration
step referring to Ik, namely at tk+1 (indicated by the cross × in Figure 7.5).
This makes multistep methods (potentially) very efficient. If one interpolation
step is performed, the number of function evaluations is doubled, because the
function f(tk+1) has to be evaluated one more time, but this still promises
a high computational efficiency.

If multistep procedures are understood, as they should, as special cases of
collocation methods, the designation “multistep” is somewhat misleading and
not really justified. The name can only be understood, if the integration step
is seen as the transition from the old initial epoch tk to the new one at tk+1. It
would have been much better to call such methods collocation algorithms with
overlapping intervals. When understanding the multistep methods as special
cases of collocation methods it is, e.g., not necessary to lose a word about
constructing a special initial sequence of function values – perhaps even,
horribile dictu, with Runge-Kutta procedures of low order, as recommended
by some experts in the field.

High-order multistep procedures (10 ≤ q ≤ 14) are extremely efficient and
accurate, probably the best of all methods available today, if the stepsize
hk

def= tk+1 − tk needs not be changed frequently. Multistep methods will be
discussed in detail in section 7.5.6.

In literature multistep methods are often introduced in a different way, where
it is (implicitly) assumed that a prediction is possible by making not only
use of the condition equations (7.15), but in addition of the values yk(tk−j)
of the solution vector yk(t) at the previous epochs tj , j = 1, 2, . . . , q − n .
Such methods in general cannot be stable. In the author’s opinion they do not
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deserve the name “integration method”, which is why they are not considered
here. In the best case, they have a role to play when studying the asymptotic
behavior of differential equation systems. More information may, e.g., be
found in [53].

7.4.3 Taylor Series Methods

Exactly as the collocation methods, the Taylor series algorithms differ only in
one aspect from Euler’s scheme (7.11, 7.12): The Taylor series development
is truncated only after the terms of order q > n and not already after the
terms of order n . The derivatives of the orders n to q have to be computed
with the help of the differential equation system:

yk(t) =
q∑

l=0

1
l!

(t − tk)l y
(l)
k0

=
n−1∑
l=0

1
l!

(t − tk)l y
(l)
k0 +

q∑
l=n

1
l!

(t − tk)l f
(l−n)
k0 ,

(7.19)

where the derivatives on the right-hand side all refer to the epoch tk, and
where

fk0
def= f

(
tk, yk0, ẏk0, . . . ,y

(n−1)
k0

)
. (7.20)

The first derivative of fk0
def= f(tk) is computed as follows:

y
(n+1)
k (tk) def= y

(n+1)
k0 = ḟk0

=
∂fk0

∂t
+

n−1∑
i=0

d∑
l=1

∂fk0

∂y
(i)
k0l

y
(i+1)
k0l

=
∂fk0

∂t
+

n−2∑
i=0

d∑
l=1

∂fk0

∂y
(i)
k0l

y
(i+1)
k0l

+
d∑

l=1

∂fk0

∂y
(n−1)
k0l

fk0l
,

(7.21)

where the index l characterizes the component no l of the corresponding array.
Higher-order derivatives are obtained by taking the derivatives of eqns. (7.21).

There can be no doubt that an algorithm resulting from such a scheme would
be much better than the Euler algorithm (7.11, 7.12) and that it would meet
all the requirements postulated in the introductory section 7.1. The result of
the integration is in particular an approximating function which may be used
everywhere within the interval considered. Also, local error control could be
easily established.

A practical consideration destroys the concept: The concrete form of the
derivatives of f(t) is problem-dependent and the resulting expressions may
become close to unmanageable. This is true for most problems in Celestial



270 7. Numerical Solutions

Mechanics. Efficient Taylor series methods may, however, be developed for
the solution of linear differential equation systems. The issue will be taken
up again in section 7.6.

Taylor Series Solution for the Two-Body Problem. In order to demon-
strate the complexity of Taylor series methods we include this type of algo-
rithm to solve the two-body problem. With the advent of digital computers
quite a few of these algorithms were developed. We quote the algorithm given
by A. E. Roy in [94]. The algorithm solves the following initial value problem:

r̈ = − r

r3

r(t0)
def= r0

ṙ(t0)
def= ṙ0 .

(7.22)

Note that the gravity constant was put to µ = 1 which has implications on
the units used. The approximate solution is sought in the form of a power
polynomial in t − t0 (which is equivalent to a Taylor series):

r(t) =
q∑

i=0

ri (t − t0)i . (7.23)

With the introduction of the four scalar auxiliary variables (for better refer-
ence the notation is taken over from [94] and only used in the context of this
particular algorithm)

u(t) def=
1
r3

=
q∑

i=0

ui (t − t0)i

w(t) def=
1
r2

=
q∑

i=0

wi (t − t0)i

s(t) def= r · ṙ =
q∑

i=0

si (t − t0)i

σ(t) def= s w =
q∑

i=0

σi (t − t0)i ,

(7.24)

where the functions u and w obey the differential equations

u̇ = − 3 u σ

ẇ = − 2 u σ
(7.25)

and the original differential equation may be written as

r̈ = − u r, (7.26)
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it is possible to calculate the terms of all power polynomials recursively:

u0 =
1
r3
0

w0 =
1
r2
0

s0 = r0 · ṙ0

σ0 = w0 s0

rj+2 = − 1
(j + 1)(j + 2)

j∑
i=0

uj−i ri

uj+1 = − 3
j + 1

j∑
i=0

ui σj−i

wj+1 = − 2
j + 1

j∑
i=0

wi σj−i

sj+1 =
j+1∑
i=0

(i + 1) ri+1 · rj−i+1

σj+1 =
j+1∑
i=0

wi sj−i+1

j = 0, 1, . . . , q − 2 .

(7.27)

Note that the algorithm (7.27) is valid for all conic sections. When generating
a computer code of the above algorithm, the vector r(t) may be treated as
two dimensional in the orbital plane (with the first axis pointing from the
focal point of the conic section to the pericenter). The algorithm only needs
the eccentricity e, the true anomaly v and (of course) the maximum order of
the development as input. The algorithm can be modified not to return the
polynomial coefficients ri, but the values of the derivatives at t0 , r(i)(t0) .
For a “real” orbit, characterized, e.g., in addition by a, the term r(i) has
to be scaled (multiplied) by ani (for elliptical orbits), where n is the mean
motion.

7.4.4 Runge-Kutta Methods

It is logical to deal with Runge-Kutta methods immediately after the Taylor
series method. Runge-Kutta methods of the order q compute the value of
the solution function (and its first n − 1 derivatives) for exactly one instant
near the initial epoch, namely at t = tk + hk , with an accuracy equivalent
to a Taylor series up to order q. Runge-Kutta methods are named after two
German mathematicians, Carl David Tolmé Runge (1856–1927) and Martin
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Wilhelm Kutta (1867–1944), who developed a procedure of order q = 4 for
differential equation systems of order n = 1 . Runge-Kutta algorithms are
robust and simple in application. They are very popular and therefore covered
in virtually every textbook of numerical analysis and in many textbooks
of Celestial Mechanics. As the result of Runge-Kutta procedures is not an
approximating function as requested in section 7.1, we only develop the key
ideas and reproduce the best-known algorithm. Runge-Kutta procedures of
the orders q = 4, 7, and 8 are available in the program NUMINT (see Chapter
II- 6 of Part III).

Let us approximate the solution of the initial value problem

ẏ = f(t, y)

y(t0)
def= y0

(7.28)

of a differential equation system of first order at t = t0 + h by an expression
which is equivalent to a Taylor series up to degree and order q

y(t0 + h) =
q∑

l=0

1
l!

y
(l)
0 hl + O

(
hq+1

)

= y0 +
q∑

l=1

1
l!

f (l−1)(t0)hl + O
(
hq+1

)
.

(7.29)

Runge-Kutta algorithms do not determine (approximations for) the coeffi-
cients of the Taylor series. They merely provide the sum on the right-hand
side of eqn. (7.29) to the accuracy specified.

The first derivative of f(t) at t = t0, namely ḟ(t0) = ḟ0 , may be written as

ḟ0 =
{

∂

∂t
+ ẏ0 ·

∂

∂y0

}
f (t0)

=
{

∂

∂t
+ f0 ·

∂

∂y0

}
f0

= Df0 ,

(7.30)

where the scalar operator D is explicitly defined as

D def=
{

∂

∂t
+ f ·

(
∂

∂y

)}
t0

=

⎧⎨
⎩ ∂

∂t
+

d∑
j=1

fj

(
∂

∂yj

)⎫⎬
⎭

t0

. (7.31)

This definition allows it to write the higher-order derivatives in a very concise
way:
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ḟ0 = Df0

f̈0 = D2f0

. . . = . . .

f
(q)
0 = Dqf0 .

(7.32)

The actual computation of the operator Di becomes more and more cum-
bersome with increasing order i, mainly due to the fact that f0 must be
considered as a function of t and y0 in the operator D defined by (7.31).
If we replace the functions f0 by their values ν0 at t = t0 , we obtain the
following linear operator:

D0
def=

∂

∂t
+ ν0 ·

∂

∂y
. (7.33)

With this linear operator (7.33) the derivatives (7.32) at t0 may be written
as follows:

ḟ0 = D0f0

f̈0 = D2
0f0 + (∇yD0)f0

f
(3)
0 = D3

0f0 + . . .

. . . = . . . .

(7.34)

With eqns. (7.34) and h
def= t − t0 for the time argument relative to t0 the

Taylor series expansion (7.29) may be written as

y(t) = y0 + h f0 +
h2

2!
D0f0 +

h3

3!

{
D2

0f0 + (∇yD0)f0

}
+ . . . . (7.35)

It is the goal of Runge-Kutta algorithms of order q to approximate the ex-
pansion (7.35) up to terms of order q by a linear combination of a (minimum)
number of function values f(ti, y) at different locations in the vicinity of the
point (t0, y0) in the (d + 1)-dimensional space. The general explicit Runge-
Kutta algorithm reads as:

k1 = h f(t0, y0)
k2 = h f(t0 + α h, y0 + β k1)
k3 = h f(t0 + α1h, y0 + β1k1 + γ1k2)
. . . = . . .

km = c1 k1 + c2 k2 + c3 k3 + . . .

y(t0 + h) = y0 + km ,

(7.36)

where the constants α, β, . . . , c1, c2, . . ., have to be defined in such a way that
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the last equation in formulae (7.36) is equivalent to the Taylor series (7.35)
truncated after terms of order q. In order to obtain the condition equations
for the coefficients, the right-hand sides of eqns. (7.36) have to be developed
up to the required order relative to the point (t0, y0). This is achieved by the
following formal development:

f(t0 + ∆t, y0 + ∆y) =
m∑

l=0

1
l!

D̃
l
f , (7.37)

where D̃ is a linear operator which differs from the linear operator D0 defined
by eqn. (7.33) only by the coefficients of the partial derivatives:

D̃ def= ∆t
∂

∂t
+ ∆y · ∂

∂y
. (7.38)

From here onwards, the procedure is in principle clear: The right-hand sides
of the eqns. (7.36) have to be developed using the expansion (7.37), and
the result has to be identical with the truncated Taylor series (7.35). This
comparison results in condition equations for the coefficients. The actual
computations are rather elaborate, in particular for orders q > 4.

The best-known Runge-Kutta algorithm undoubtedly is that of order q = 4,
probably reproduced in every treatment of numerical analysis:

k1 = h f(t0, y0)
k2 = h f

(
t0 + 1

2 h, y0 + 1
2 k1

)
k3 = h f

(
t0 + 1

2 h, y0 + 1
2 k2

)
k4 = h f

(
t0 + h, y0 + k3

)
. . . = . . .

km = 1
6

(
k1 + 2 k2 + 2 k3 + k4

)
. . . = . . .

y(t0 + h) = y0 + km .

(7.39)

The idea underlying Runge-Kutta procedures is attractive from the math-
ematical point of view, and the resulting algorithms are not only powerful,
but also easy to use. Due to the heavy algebra involved in the explicit com-
putation of the coefficients, it took quite some time to develop higher-order
methods, methods for higher-order equations, and algorithms providing error
control. Such algorithms are available today up to about order q = 12 for first
and second order differential equation systems. We refer to the pioneer work
[38] by E. Fehlberg, and to [75] for an overview of more recent developments
applied to problems of Celestial Mechanics.
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7.4.5 Extrapolation Methods

According to Gear [45] extrapolation methods are based on an idea originally
developed by L. F. Richardson in the early 20th century. The method is also
called “deferred approach to the limit”. The key idea is illustrated by Figure
7.6 and may be summarized as follows: The solution y(t) of the initial value
problem

ẏ = f(t, y)

y(t0)
def= y0

(7.40)

at one and the same epoch t = t0 + H is calculated using one and the same
simple algorithm (e.g., Euler’s method), however, with smaller and smaller
(constant) stepsizes hj , e.g., hj

def= H
j , in subsequent approximations.

t
 t H+

h H=

h H= /2

h H= /3

....

....

h H= /6

....

y( + , )t H H


y( + , /2)t H H


t

....

....

....

y( + , /3)t H H


y( + , /6)t H H


Fig. 7.6. Principles of extrapolation methods

Denoting the approximation of the solution at t0 + H with stepsize hj by
y(t0+H, hj) , one may then interpret these solutions at t = t0+H as functions
of the stepsizes hj . If all in all q + 1 approximations y(t0 + H, hj) , j =
1, 2, . . . , q +1, were calculated at t0 +H , it is possible to represent them by a
polynomial of degree q in the stepsize h and to use the value of the polynomial
at h = 0 as the estimate for the solution at t0 + H . It is intuitively clear that
this approximation corresponds to a hypothetical stepsize of h = 0.

Let us develop the procedure more explicitly using the Euler method as the
underlying integration method. The numerical solution of the initial value
problem (7.40) at t0 + H may thus be written as a function of the stepsize h

of the Euler integration steps used, where the function values for h = hj
def= H

j ,
j = 1, 2, . . ., are computed as:
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h1 = H : y(t0 + H, h1) = y0 + h1 f (t0, y0)
h2 = H

2 : y(t0 + h2, h2) = y0 + h2 f (t0, y0)
y(t0 + H, h2) = y(t0 + h2, h2) + h2f

(
t0 + h2, y(t0 + h2, h2)

)
h3 = H

3 : y(t0 + h3, h3) = y0 + h3 f (t0, y0)
y(t0 + 2 h3, h3) = y(t0 + h3, h3) + h3f

(
t0 + h3, y(t0 + h3, h3)

)
y(t0 + H, h3) = y(t0 + 2h3, h3) + h3f

(
t0 + 2 h3, y(t0 + 2 h3, h3)

)
. . . .

(7.41)
The numerical solutions y(t0 +H, h) at epoch t = t0 +H may be represented
by a special polynomial of degree q (plus an error term of order q + 1 in h)
in the (variable) stepsize h:

y(t0 + H, h) def=
q∑

i=0

ci hi + O(hq+1)

= y(t0 + H, 0) +
q∑

i=1

ci hi + O(hq+1) ,

(7.42)

where
c0

def= y(t0 + H, 0) (7.43)

has to be understood as the “true” solution vector (corresponding to stepsize
h = 0) at epoch t = t0 + H .

From now on, the procedure to calculate c0
def= y(t0+H, 0) is straight forward:

The coefficients ci , i = 0, 1, . . ., in formula (7.42) are determined using the
approximations y(t0 + H, hj) , j = 1, 2, . . . , q + 1, as function values to be
assumed by the representation (7.42):

q∑
i=0

hi
j ci

def= y
(
t0 + H, hj

)
, j = 1, 2, . . . , q + 1 . (7.44)

As the terms O(hq+1) of order q + 1 in h were neglected when setting up the
condition equations (7.44), all terms ci hi

j are accurate to order q in H . By
solving the linear system of equations (7.44) we obtain in particular the term
c0

c0 = y(t0 + H, 0) + O(hq+1) . (7.45)

Extrapolation methods can be substantially improved by replacing Euler’s
method to generate the successive approximations at t = t0+H with the steps
hj , j = 1, 2, . . ., by higher-order methods with the following error property:

y(t0 + H, h) − y(t0 + H, 0) =
n∑

i=1

ci hri + O(hn+1) , (7.46)
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where r > 1 is a positive number. The errors at t = t0 + H may thus be
represented as polynomial in ξ

def= hr, which is why the error property (7.46)
is superior to the error property (7.42) associated with Euler’s method.

Gragg [47] gives a simple algorithm based on a second order integrator for
which r = 2. The individual step in formulae (7.41) for h ∈ {h1, h2, . . . , } is
replaced by

y(t0 + h, h) = y0 + h f(t0, y0)
y(t0 + 2 h, h) = y0 + 2 h f

(
t0 + h, y(t0 + h, h)

)
. . . = . . .

y(t0 + i h, h) = y
(
t0 + (i − 2)h, h

)
+2hf

(
t0 + (i − 1)h, y(t0 + (i − 1)h, h)

)
. . . = . . .

y(t0 + n h, h) = y
(
t0 + (n − 2)h, h

)
+2hf

(
t0 + (n−1)h, y(t0 + (n−1)h, h)

)
y(t0 + H, h) = 1

2

[
y(t0 + n h, h) + y(t0 + (n − 1)h, h)

+ h f
(
t0 + n h, y(t0 + n h, h)

)]
,

(7.47)

where n must be an even number. Press et al. [88] recommend to use the
sequence hn , n = 2, 4, 8, 10, . . ., with nmax ≈ 16.

The algorithm may be brought into a very efficient form based on divided
difference schemes, where the approximations for y(t0 + H) are obtained in
increasing orders of h2. The error behavior allows it easily to estimate the
accuracy of the result at t = t0 + H (using in essence analogous methods
as in the case of collocation algorithms). One of the most advanced algo-
rithms was developed by J. Stoer and R. Bulirsch, see, e.g., [112] or [113]. An
extrapolation method of selectable order q is available in program NUMINT.

One should be aware of the fact that extrapolation algorithms provide accu-
rate values for the solution only at the interval boundaries. No comparable
approximation is available between the interval boundaries. If the only in-
terest in the solution of an initial value problem consists in propagating the
solution vector from the initial epoch t0 to a remote epoch tN , extrapolation
algorithms may be extremely powerful tools. If, on the other hand, an approx-
imating function is needed, their use seems somewhat limited. Extrapolation
methods certainly are superior to Runge-Kutta methods, among other be-
cause high-order extrapolation methods may be obtained easily, without the
painful algebra involved in the establishment of the Runge-Kutta methods.

7.4.6 Comparison of Different Methods

Five different methods were outlined in this introductory section. They all are
of orders q > n , higher than the order n of the differential equation system,
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which in turn is the order of Euler’s method. There are many different ways
to compare methods. In Celestial Mechanics it is a well-established practice
to apply the methods to the solution of the two-body problem, where usually
the distinction is made between applications to orbits of small and large
eccentricities.

Figure 7.7 compares the performance of four eight-order methods, namely the
Runge-Kutta, the extrapolation, the multistep, and the collocation methods.
A constant stepsize of h = 40 days was used for the Runge-Kutta and the
extrapolation method, one of H = 40 days for the extrapolation method,
and one of h = 40/(q − 1) ≈ 6 days for the multistep method. An orbit
with the small eccentricity e = 0.05 (initial elements defined by Table 7.1)
was integrated. The integration interval covers a time period of 1000 years
corresponding to 252.6 revolutions.
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Fig. 7.7. Error of semi-major axis a when integrating a minor planet orbit with e =
0.05 a in two-body potential over 1000 years with a stepsize of 40 days; Collocation,
Runge-Kutta, Extrapolation, and Multistep (stepsize of h = 6 days) (all of order
8)

The integration was performed in rectangular coordinates, i.e., the equations
of motion (4.1) using µ = k2 were integrated, where these equations were
transformed into a first-order system when using the Runge-Kutta and the
extrapolation methods. (The integration was based on the second order equa-
tions when using the collocation and multistep methods).

At intervals of 120 days the rectangular coordinates of the position- and
velocity-vectors were transformed into osculating orbital elements. The dif-
ferences of these elements w.r.t. the initial elements, i.e., the integration errors
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in the elements, were then stored in a file. Figure 7.7 shows the logarithm of
the (absolute values of) the integration errors in the semi-major axis a (the
results for the other elements show in essence the same pattern).

Figure 7.7 first of all tells that all methods are excellent. The results are
much better than those achieved in Figures 7.3. At the end of the integration
interval (i.e., after 1000 years) the error lies between the limits 10−11 AU for
the collocation method and 10−8 AU for the Runge-Kutta method of order
8. The extrapolation method and the multistep method with an accuracy of
about 10−9 AU are about comparable.

The order of a method in essence defines the order of magnitude of the error.
The efficiency of a method is defined by the number nf of evaluations of the
right-hand sides of the differential equation system per revolution (except
for those cases where the evaluation of the right-hand sides of the differential
equation systems is trivial). These numbers were nf = 470 for the collocation
method, nf = 759 for the extrapolation method, nf = 482 for the multistep
method, and nf = 470 for the Runge-Kutta method. These numbers would
favor the collocation and multistep methods for this kind of problems.

One should not “over-interpret” results of the kind represented by Figure
7.7. With increasing integration order q the mutual performance may change
considerably. For more information we refer to section 7.5.4.

7.5 Collocation

From the author’s point of view the collocation method is the central tool
for solving ordinary differential equation. Collocation provides a numerical
solution of type (7.14), representing each component of the solution as a
truncated Taylor series in each of the subintervals Ik.

The basic principles underlying the collocation method were already outlined
in section 7.4.1. The collocation method is based on the requests that

(a) the numerical solution of the initial or boundary value problem within in-
terval Ik assumes the same initial or boundary values as the true solution
of the same problem, and that

(b) the numerical approximation solves the differential equation system at
exactly q+1−n different epochs within the interval Ik (see eqns. (7.15)).

The theory of collocation methods is treated in sections 7.5.1 and 7.5.2, where
the solution of the initial value problem will be studied in section 7.5.1, that
of the local boundary value problem in section 7.5.2. Section 7.5.3 is devoted
to computational efficiency, numerical stability, and, to some extent, to the
elegance of the formalism. Collocation methods are applied to the problem
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of integrating an orbit of small eccentricity in section 7.5.4, a very important
class of problems in Celestial Mechanics. The integration interval may be
divided into subintervals Ik of the same length h

def= tk+1 − tk in this case.
The example demonstrates the power of the method for problems of this
kind. As the analytical solution is known, we also gain a first impression of
the accumulation of errors in this section. In section 7.5.5 we first show that
collocation methods based on a constant stepsize h are inefficient or even
inappropriate to solve the two-body problem when the orbital eccentricity e
is no longer small. The remainder of the section is devoted (a) to the devel-
opment of a very simple method to define the stepsize (subinterval length)
hk

def= tk+1 − tk “in real time” by using the information available from the
collocation method and (b) to demonstrate the power of the automatic step-
size control. In section 7.4.2 it was already shown that multistep methods
are special cases of collocation methods. In the concluding section 7.5.6 we
further develop the concept.

7.5.1 Solution of the Initial Value Problem

In the case of an initial value problem, requirement (a) states that the first
n − 1 derivatives of the numerical and the true solution are identical at tk:

y
(i)
k (tk) =

q∑
l=i

1
(l − i)!

(tk − tk)l−i y
(l)
k0 = y

(i)
k0 , i = 0, 1, . . . , n − 1 , (7.48)

where the values y
(i)
k0 , i = 0, 1, . . . , n−1, are the known initial values at time

tk (see eqn. (7.13)).

According to requirement (b) the numerical solution has to solve the differ-
ential equation system for q + 1 − n different epochs within the interval Ik.
This subdivision of the subinterval Ik is illustrated by Figure 7.4, where it
was assumed that tk1 = tk and tkq+1−n = tk+1. We will always adopt this
assumption, subsequently, would like to point out, however, that even a more
general selection of the collocation epochs tkj would be allowed. The coeffi-
cients are determined by the algebraic condition equations (7.15), which are
repeated here for convenience:

q∑
l=n

(tkj − tk)l−n

(l − n)!
y

(l)
k0 = f

(
tkj , yk(tkj ), ẏk(tkj ), . . . ,y

(n−1)
k (tkj )

)
,

j = 1, 2, . . . , q + 1 − n .

Equations (7.15) represent an algebraic system of equations for the deter-
mination of the coefficients y

(l)
k0 , l = n, n + 1, . . . , q. Note that the first n

coefficients are already known from eqns. (7.48). The problem of numeric in-
tegration in the interval Ik with a high-order integrator is thus one of solving
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the above system of algebraic equations, where the number of equations and
the number of unknowns are the same.

The left-hand sides of eqns. (7.15) are linear in the unknown coefficients.
These left-hand sides may even be dealt with component by component,
because in the (scalar) equation referring to a particular component, only
the coefficients corresponding to this component show up. In general, the
unknown coefficients are also contained on the right-hand sides of the above
condition equations. Depending on the problem considered, the dependence
of the function f (. . .) on the coefficients may be quite complicated. The
actual structure of the system (7.15) therefore depends on the structure of
the original differential equation system (7.1).

The solution of eqns. (7.15) is reduced to the solution of d separate linear
systems of equations (namely one for each component of the solution vector)
if the function f does neither depend on the solution vector nor on its deriva-
tives, i.e., if f

def= f (t) is “only” an explicit function of time. This situation is
encountered when solving a definite integral by numerical quadrature. Under
this assumption the equations for component m read as:

q∑
l=n

(tkj − tk)l−n

(l − n)!
y
(l)
k0m

= fm(tkj ) , j = 1, 2, . . . , q + 1 − n . (7.49)

Equations (7.49) characterize virtually every (useful) formula for numerical
quadrature. A unique solution exists, as long as tki �= tkl

for i �= l. The
condition equations of type (7.49) will be further studied in section 7.6.

If the differential equation system is linear, i.e., if it is of the form (7.4), the
system of condition equations (7.15) is linear, as well. The linear algebraic
system is, however, of dimension d′ = d (q − n). Depending on the specific
problem, d′ may assume rather high values, what might be prohibitive for
the numerical solution of a linear system of equations. Many scalar linear
differential equations of mathematical physics are, however, solved in a very
elegant and efficient way by solving the linear system of algebraic equations.
It is worthwhile to point out already at this point that the solution of a linear
differential equation system may be reduced to the solution of a linear system
of algebraic equations.

Having sorted out the two simple special cases (solution of integrals and of
linear equations), we are left with the general problem, where f (t, . . .) is a
non-linear function of the coefficients of the numerical solution (7.14). The
standard approach would be to linearize the right-hand sides of eqns. (7.15)
and to solve the resulting linear system of equations iteratively. The approach
would indeed work very well. It would, however, require the knowledge of
the partial derivatives of the function f(. . .) w.r.t. all components of the
solution vector and its first n−1 derivatives – and this might require extensive
algebraic (and numerical) computations.
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Fortunately, the structure of eqns. (7.15) admits a simple iterative solution.
Let us assume that we managed to find an approximate solution yI

k(t) which
agrees with the true solution up to terms of order m ≥ n in t − tk , where
n ≤ m < q :

yI
k(t) = yk(t) + O

(
(t − tk)m+1

)
. (7.50)

A solution yI+1
k (t) of the next higher order m + 1 is found by replacing

the “true” solution values on the right-hand side of equations (7.15) by the
approximation (7.50) and by setting the order of the approximation on the
left-hand side to m + 1 (and not to q):

m+1∑
l=n

(tkj − tk)l−n

(l − n)!
(
yI+1

k0

)(l)
= f
(
tkj , y

I
k(tkj ), ẏ

I
k(tkj ), . . . ,

(
yI

k

)(n−1)
(tkj )

)
,

j = 1, 2, . . . , m − n + 2 . (7.51)

The “new” condition equations (7.51) are much easier to handle than the
original ones, because the right-hand sides are now known functions of time
– exactly as in the case of numerical quadrature (7.49)! Elegance and sim-
plicity have their price: For a collocation method of order q, initialized with
the Euler approximation (7.11, 7.12), we have in the first step m = n , which
implies that q − n iteration steps are required to solve eqns. (7.15) “from
scratch”. Fortunately, this price has to be paid only once in the entire inte-
gration covering the interval I = [t0, tN ] , namely in the first subinterval I0.
In subsequent subintervals the numerical solution of order q of the preceding
interval may be used for initialization. This reduces the number of necessary
iteration steps dramatically, normally to 1-2 steps.
The iteration process defined by eqns. (7.51) is convincingly simple and easy
to implement into a subprogram. We have not yet proved, however, that this
iteration process actually will converge. This is achieved by the following
arguments: Assuming that the term y(n−1)(t) actually occurs on the right-
hand side f(. . .) of the differential equation system (which is the worst case
assumption), we conclude from a correct linearization of the problem and
from the assumption (7.50):

f
(
tkj , y

I
k(tkj ), ẏI

k(ttj ), . . . ,
(
yI

k

)(n−1) (tkj )
)

=

f
(
tkj , yk(tkj ), ẏk(tkj ), . . . ,y

(n−1)
k (tkj )

)
+ O

(
(tkj − tk)m−n+2

)
.

(7.52)

This result implies, in turn, that the left-hand sides of eqn. (7.51) are correct
to the same order – provided the degree of the polynomials are set to m + 1
on the left-hand side

m+1∑
l=n

(tkj − tk)l−n

(l − n)!
(
yI+1

k0

)(l)
=

m+1∑
l=n

(tkj − tk)l−n

(l − n)!
(
yI

k0

)(l)
+ O

(
(tkj − tk)m−n+2

)
,
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which proves that we have

(
yI+1

k0

)(l)
= y

(l)
k0 + O

(
(tkj − tk)m+2−l

)
(7.53)

and in particular for l = m + 1

(
yI+1

k0

)(m+1)
= y

(m+1)
k0 + O

(
(tkj − tk)1

)
, (7.54)

which proves that the iteration process (7.51), initialized either by the Euler
approximation for the first interval (accurate to order n) or by the numer-
ical solution of order q of the preceding interval, will in general converge.
Should the highest derivative y(n−1)(t) not occur on the right-hand side of
the differential equation system (as it is, e.g., the case of the equations of
motion for the planetary system or of the three-body problem Earth-Moon-
Sun), the order of the approximation could even be incremented by 2 in each
iteration step. This aspect is not too important for our applications, because
in general there will be thousands of subintervals, and an iteration starting
“from scratch”, i.e., from the Euler approximation, is required only in the
first subinterval I0. In the next subintervals the solution yk−1(t) (solving the
initial value at tk−1) may be used for initialization.

It is important, however, that the numerical solution obtained by collocation
methods is identical with the true solution except for terms of order q + 1 or
higher in t − tk (observe that all coefficients are bound by eqn. (7.53)).

7.5.2 The Local Boundary Value Problem

When solving a local boundary value problem of type (7.6), we assume that
the interval containing all boundary epochs t′i , i = 1, 2, . . . , n , can be covered
by one set of approximating functions (7.14). Whether or not this is true
depends on the concrete problem. Important questions can be answered in
Celestial Mechanics by local boundary problems. If the interval is shorter
than, let us say, a quarter of a revolution, and if the orbit has only a small
eccentricity, let us say e < 0.2, the corresponding boundary value problem
can be solved in the concise form to be developed now.

Let us assume that the boundary epochs lie in the interval Ik. According
to our definition of the collocation method we simply have to replace the
eqns. (7.48) defining the initial value problem by the corresponding equations
for the boundary values when replacing the initial by the boundary value
problem:

yk(t′i) =
q∑

l=0

1
l!

(t′i − tk)l y
(l)
k0 = yi , i = 1, 2, . . . , n . (7.55)
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The coefficients y
(l)
k0 , l = 0, 1, . . . , q, emerge as the solution of the system of

algebraic equations (7.55) and (7.15). As opposed to the initial value problem,
the two parts (7.55) and (7.15) of the condition equations cannot be solved
independently from each other in the general case.

There is an important exception, however, where such a separation is possi-
ble: If the function f (t) does not depend on the solution vector (nor on its
first n − 1 time derivatives), the system (7.15) can be solved independently
from the system (7.55) – as a matter of fact the solution is the same, under
these conditions, as in the case of the initial value problem. The remaining
coefficients y

(i)
k0 , i = 0, 1, . . . , n − 1, are then obtained by eqns. (7.55):

yk(t′i) =
q∑

l=0

1
l!

(t′i − tk)l y
(l)
k0 = yi

=
n−1∑
l=0

1
l!

(t′i − tk)l y
(l)
k0 +

q∑
l=n

1
l!

(t′i − tk)l y
(l)
k0

=
n−1∑
l=0

1
l!

(t′i − tk)l y
(l)
k0 + bi = yi , i = 1, 2, . . . , n ,

(7.56)

where

bi
def=

q∑
l=n

1
l!

(t′i − tk)l y
(l)
k0 , i = 1, 2, . . . n ,

are known functions after the solution of the system (7.15). Therefore, the
equations (7.56) represent for each component of the solution vector a linear
system of n equations for the determination of the first n coefficients of the
development (7.14).

This means, on the other hand, that we may again set up a very efficient iter-
ative solution for the combined system (7.55, 7.15), where the linear version
of the system (7.15) is, as a matter of fact, identical with the corresponding
system

m+1∑
l=n

(tki − tk)l−n

(l − n)!

(
y

(I+1)
k0

)l

= f
(
tkj , y

I
k(tkj ), ẏ

I
k(tkj ), . . . ,

(
yI

k

)(n−1)
(tkj )

)
j = 1, 2, . . . , m + 2 − n ,

(7.57)

when solving the initial value problem. After the solution of the linear system
(7.57) the first n coefficients are obtained in analogy to eqns. (7.56) as
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n−1∑
l=0

1
l!

(t′i − tk)l
(
yI+1

k0

)(l)
= yi − bI+1

i , i = 1, 2, . . . , n . (7.58)

From the above developments the conclusion may be drawn that collocation
methods are very flexible. They allow the solution of initial value problems
and of local boundary value problems, basically with one and the same algo-
rithm. In the case of initial value problems, the first n coefficients are defined
once and for all by eqn. (7.48), whereas in the case of local boundary value
problems these coefficients are obtained as a solution of the linear equations
(7.58) after having solved the system (7.57) of linear condition equations for
the coefficients of order l ≥ n .

The iteration process (7.57) has to be initialized. When dealing with an ini-
tial value problem, the process was initialized with the Euler approximation
(7.11, 7.12). In the general case, the same procedure cannot be applied when
solving boundary value problems, because we do not know the first (and
higher) derivatives of the solution vector available at any epoch t within the
subinterval Ik . It is therefore necessary to initialize the iteration process with
the interpolation polynomial of degree m = n − 1 defined by the boundary
epochs and values. If the function f

def= f (t, y) does not depend on the deriva-
tives of y, it is possible to initialize with a polynomial of degree m = 2n− 1 ,
where the coefficients are defined by the n boundary conditions and n con-
ditions of type (7.57) at the boundary epochs. This means that in Celestial
Mechanics, if the there are no velocity-dependent forces, the initialization
may be performed with the integration order q = 3(!).

7.5.3 Efficient Solution of the Initial Value Problem

Collocation methods require the solution of one linear system (7.51) of condi-
tion equations in each subinterval Ik . This implies the inversion of matrices
(even for every iteration step) within each subinterval Ik. Matrix inversions
are time consuming operations (see, e.g., [88]). Using the same interval sub-
division (see Figure 7.4) relative to the subinterval boundaries tk and tk+1

for all subintervals Ik , k = 0, 1, . . . , N − 1 , the coefficient matrices may be
made identical in all intervals – provided the coefficients y

(l)
k0 are scaled in an

appropriate way. This will be done subsequently. Also, we will introduce a
very dense and (hopefully) elegant matrix notation.

So far we only requested that all collocation epochs tkj , j = 1, 2, . . . , q+1−n ,
are different, implying that there are many different ways how to select the
epochs tkj , i = 1, 2, . . . , q+1−n , within the interval Ik . One obvious (but not
necessarily the best) way, leading, however, to a very transparent algorithm,
is to select an equidistant subdivision covering the entire subinterval:
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tkj

def= tk + (j − 1)
hk

q − n
, j = 1, 2, . . . , q + 1 − n , (7.59)

where hk
def= tk+1 − tk was already defined as the length of subinterval Ik .

The condition equations (7.51) can now be written with an interval-independ-
ent matrix of coefficients :

m+1∑
l=n

(tkj − tk)l−n

(l − n)!
(
yI+1

k0

)(l)
=

m+1∑
l=n

(j − 1)l−n

{
1

(l − n)!

(
hk

q − n

)l−n(
yI+1

k0

)(l)}

def=
m+1∑
l=n

(j − 1)l−n cI+1
kl

= f
(
tkj , y

I
k(tkj ), ẏ

I
k(tkj ), . . . ,

(
yI

k

)(n−1)
(tkj )

)
,

j = 1, 2, . . . , q + 1 − n ,
(7.60)

where

cI+1
kl

def=
1

(l − n)!

(
hk

q − n

)l−n(
yI+1

k0

)(l)
, l = n, n + 1, . . . , q . (7.61)

The matrix of coefficients merely consists of powers of integer numbers. The
above equations are written component by component (as mentioned we ob-
tain one system of q + 1 − n equations per component), and then combined
into the matrix equation

MCI+1
k = FI

k , (7.62)

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 . . .
1 1 1 1 1 1 1 1 1 . . .
1 2 4 8 16 32 64 128 256 . . .
1 3 9 27 81 243 729 2187 6561 . . .
1 4 16 64 256 1024 4096 16384 65536 . . .
1 5 25 125 625 3125 15625 78125 390625 . . .
1 6 36 216 1296 7776 46656 279936 167916 . . .
1 7 49 343 2401 16807 117649 823543 5764801 . . .
1 8 64 512 4096 32768 262144 2097152 16777216 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.63)

and

CI+1
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
cI+1

kn

]T[
cI+1

kn+1

]T
. . .
. . .
. . .[

cI+1
kq

]T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; FI
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[
f I(tk1)

]T[
f I(tk2)

]T
. . .
. . .
. . .[

f I(tkq+1−n)
]T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (7.64)
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CI+1
k and FI

k are matrices with q + 1 − n lines and d columns, where each
column stands for a component of the differential equation system. If a col-
location method of order q is applied to a differential equation system of
order n , the dimension of the matrix M is q + 1 − n , and independent of
the dimension d of the differential equation system. Note, as well, that the
elements of this matrix do neither depend on q nor on n.

The solution of equation (7.62) may be written as

CI+1
k = M−1 FI

k . (7.65)

Solution (7.65) is elegant, but it has two important disadvantages:

1. Whereas the elements of matrix M are order-independent, the same is
not true for the inverse matrix.

2. An algorithm derived from eqn. (7.65) cannot be recommended from the
numerical point of view, because differences of big numbers (resulting in
small numbers) have to be formed, what may lead to a loss of significant
digits.

Both disadvantages are removed by transforming the original condition equa-
tions (7.62) into a scheme, where on the right-hand side the matrix FI

k is
replaced by the matrix consisting of the differences (from order zero to or-
der q − n) of the original function values f(tkj ). Such a difference scheme,
illustrated by Figure 7.8, is defined by:

∆
[0]
kj

def= f (tkj ) , j = 1, 2, . . .

∆
[l+1]
kj

def= ∆
[l]
kj+1

− ∆
[l]
kj

, j = 1, 2, . . . , l = 0, 1, 2, . . . .
(7.66)

The differences defined above are also called forward differences.

Formally, the transformation of the original system (7.62) of condition equa-
tions into one based on the forward differences is achieved by multiplying
this matrix equation from the left with the auxiliary matrices D1, D2, . . . ,
Dq−n, and so on, where

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 . . .
−1 1 0 0 0 . . .

0 −1 1 0 0 . . .
0 0 −1 1 0 . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

; D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 −1 1 0 0 . . .
0 0 −1 1 0 . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

; D3 = . . . .

(7.67)
Through this series of transformations the matrix M becomes an upper tri-
angular matrix M̃. The result is:

Dq−n . . . D2 D1 MCI+1
k = Dq−n . . . D2 D1 FI

k (7.68)
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f (tk1)
def
= ∆

[0]
k1

∆
[1]
k1

f (tk2)
def
= ∆

[0]
k2

∆
[2]
k1

∆
[1]
k2

∆
[3]
k1

f (tk3)
def
= ∆

[0]
k3

∆
[2]
k2

∆
[4]
k1

∆
[1]
k3

∆
[3]
k2

∆
[5]
k1

f (tk4)
def
= ∆

[0]
k4

∆
[2]
k3

∆
[4]
k2

∆
[6]
k1

∆
[1]
k4

∆
[3]
k3

∆
[5]
k2

f (tk5)
def
= ∆

[0]
k5

∆
[2]
k4

∆
[4]
k3

∆
[1]
k5

∆
[3]
k4

f (tk6)
def
= ∆

[0]
k6

∆
[2]
k5

∆
[1]
k6

f (tk7)
def
= ∆

[0]
k7

Fig. 7.8. Visualization of forward differences up to order 6

and the final result may be written as

M̃CI+1
k = F̃I

k . (7.69)

The matrix M̃ up to order q = n + 10 has the form:

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1
0 0 2 6 14 30 62 126 254 510 1022
0 0 0 6 36 150 540 1806 5796 18150 55980
0 0 0 0 24 240 1560 8400 40824 186480 818520
0 0 0 0 0 120 1800 16800 126000 834120 5103000
0 0 0 0 0 0 720 15120 191520 1905120 16435440
0 0 0 0 0 0 0 5040 141120 2328480 29635200
0 0 0 0 0 0 0 0 40320 1451520 30240000
0 0 0 0 0 0 0 0 0 362880 16329600
0 0 0 0 0 0 0 0 0 0 3628800

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.70)

The right-hand side of eqns. (7.69) contain the following differences of the
original function values f I(tkj ) :
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F̃I
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
f I(tk1)

]T[
∆

[1]
k1

]T
[
∆

[2]
k1

]T
. . .
. . .
. . .[
∆

[q−n]
k1

]T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.71)

where the difference scheme has to be formed according to the pattern (7.66).
The differences used are the first ones given in each column in Figure 7.8.

The solution of eqn. (7.69) may now be written as

CI+1
k = M̃−1 F̃I

k , (7.72)

where up to order q = n + 10 :

M̃−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0

0 1 − 1
2

1
3 − 1

4
1
5 − 1

6
1
7 − 1

8
1
9 − 1

10

0 0 1
2 − 1

2
11
24 − 5

12
137
360 − 7

20
363
1120 − 761

2520
7129
25200

0 0 0 1
6 − 1

4
7
24 − 5

16
29
90 − 469

1440
29531
90720 − 1303

4032

0 0 0 0 1
24 − 1

12
17
144 − 7

48
967
5760 − 89

480
4523
22680

0 0 0 0 0 1
120 − 1

48
5

144 − 7
144

1069
17280 − 19

256

0 0 0 0 0 0 1
720 − 1

240
23

2880 − 1
80

3013
172800

0 0 0 0 0 0 0 1
5040 − 1

1440
13

8640 − 1
384

0 0 0 0 0 0 0 0 1
40320 − 1

10080
29

120960

0 0 0 0 0 0 0 0 0 1
362880 − 1

80640

0 0 0 0 0 0 0 0 0 0 1
3628800

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.73)

Note that the elements of matrix M̃−1, as the inverse of an upper triangular
matrix, do not change, if the order q of the approximation changes. There-
fore it is only necessary to store one (triangular) matrix of maximum order
qmax for all algorithms with orders q ≤ qmax . This removes the first of the
disadvantages mentioned after eqn. (7.65). The second disadvantage has been
removed also by introducing the differences of the elements of matrix FI

k (and
by not using the matrix elements themselves). Note also, that the elements
of the coefficient matrix M̃−1 are given as fractions of integers. The matrix
was generated with a computer program.

The diagonal of matrix M̃−1 obviously contains the terms 1/l! , l = 1, 2, . . .,
q−n . As the part of the matrix below the diagonal only contains zero elements
and as the terms ckl

are defined by eqn. (7.61), we may conclude that
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(
yI+1

k0

)(q)
=
(

q − n

hk

)q−n

∆
[q−n]
k1

+ O(hk) . (7.74)

The above equation says that the (q − n)-th forward difference of the forces
may be interpreted (in a modest approximation and apart from a scaling
factor) as the q-th derivative of the solution vector yk(t) at tk. The result
will be used when implementing automatic stepsize control.

Equation (7.72) tells that the coefficients ckl
, l = n, n + 1, . . . , q, are linear

combinations of the forward differences ∆
[l]
k1

, l = 0, 1, . . . , q−n . Consequently
(see eqn. (7.73)), the solution vector yk(t) may be represented as a linear com-
bination of the same differences. Let us give the resulting linear combination
in explicit form:

yI+1
k (t) =

q∑
l=0

1
l!

(t − tk)l
(
yI+1

k0

)(l)

=
n−1∑
l=0

1
l!

(t − tk)l y
(l)
k0 +

q∑
l=n

1
l!

(t − tk)l
(
yI+1

k0

)(l)

= . . . +
q∑

l=n

1
l!

(t − tk)l (l − n)!
(

q − n

hk

)l−n

cI+1
kl

= . . . +
q∑

l=n

q∑
j=l

1
l!

(t − tk)l (l − n)!
(

q − n

hk

)l−n

M̃
−1

l−n+1,j−n+1 ∆
[j−n]
k1

(7.75)

Introducing the interval-independent time argument by

τ =
(

q − n

hk

) (
t − tk

)
, (7.76)

we may further develop the above expression to obtain eventually:

yk(t) =
n−1∑
l=0

1
l!

(t − tk)l y
(l)
k0

+
q∑

j=n

{
j∑

l=n

(l − n)!
l!

M̃
−1

l−n+1,j−n+1 τ l

}(
hk

q − n

)n
∆

[j−n]
k1

.

(7.77)

Observe that the term in brackets {. . .} does not contain any terms depending
on the subinterval Ik . For the purpose of error control we do not only need
the formula for the solution vector, but also for its first n − 1 derivatives.
Taking into account that

di

dti
=
(

q − n

hk

)i
di

dτ i
, (7.78)
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we obtain the result:

(
yI+1

k

)(i)
(t) =

n−1∑
l=i

1
(l − i)!

(t − tk)l−i y
(l)
k0

+
q∑

j=n

{
j∑

l=n

(l − n)!
(l − i)!

M̃
−1

l−n+1,j−n+1 τ l−i

}(
hk

q − n

)n−i

∆
[j−n]
k1

,

i = 0, 1, . . . , n − 1 .
(7.79)

The collocation method implemented in the program system contains the
coefficient matrices up to degree and order q − n = 14 . The maximum order
thus would be q = 16 for a differential equation system of order n = 2 . The
algorithm supplied in the program system is able to handle any order n ≥ 1
of the differential equation system. It may be initialized either by the Euler
approximation or by the numerical solution of a previous step.

7.5.4 Integrating a Two-Body Orbit
with a High-Order Collocation Method: An Example

The power of a high-order collocation method (and of standard computer
equipment like PCs, notebooks, etc.) is illustrated by integrating the orbit of
a virtual minor planet with elements given by Table 7.1 over a time period
of one thousand years with program NUMINT (program PLASYS might be
used for the same purpose).

The processing characteristics are as follows:

• A 12th order collocation method with constant stepsize was used.

• Two program runs were made with stepsizes of h = 30 days and h =
100 days.

• After initialization, one iteration step was performed per sub-interval Ik .

• One output record (containing the osculating elements and the radial,
along-track, and out-of-plane coordinate errors) was stored per 100 days.

The general program output, containing statistical information of the pro-
gram run, is reproduced (partially) in Figure 7.9 for the program runs with
100 days stepsize. (The initial osculating elements and some additional in-
formation were excluded.) Figure 7.9 tells that the program run only lasted
for 0.4 s on a PC with a 1.4 GHz processor. Processing times are of course
hardware-dependent. The example shows, however, that test runs over tens
of thousands of revolutions do not pose serious problems, today. In the 1960s
such tests had the tendency to last for hours, even on mainframe computers.
The average number of evaluations of the right-hand sides of the differential
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NUMERICAL SOLUTION OF ORDINARY DEQ-SYSTEMS DATE: 21-SEP-02 TIME: 06:56
***************************************************************************
METHOD OF SOLUTION : COLLOCATION OF ORDER 12
******************
STEP SIZE : 100.000000 DAYS
# STEPS : 3653
# COMP (RHS)/REV : 304.
CPU (TOT) : 0.40 S
MAX ERROR IN A : 0.2834D-10 AU
MAX ERROR IN I : 0.2560D-12 DEG
MAX ERROR IN ANOM.: 0.3440D-07 AU
MAX ERROR IN POS. : 0.3440D-07 AU
ADDITIONAL INFORMATION FOR COLLOCATION METHODS:
**********************************************
ORDER OF DEQ-SYSTEM : 2
INITIALIZE AT EACH STEP : NO
INCREMENT ORDER OF APPROX PER ITERATION STEP : 2
NUMBER OF ITERATION STEPS AFTER INITIAL STEP : 1

Fig. 7.9. Output of program NUMINT for run with stepsize of 100 days

equation system per revolution is a computer-independent quantity. Roughly,
one function evaluation was required per degree swept by the radius vector
in the test illustrated in Figure 7.9.

Figure 7.10 shows the errors in the semi-major axis a (top row), the ec-
centricity e (second row), the longitude of perihelion ω (third row), the
mean anomaly σ0 at time t0 (fourth row), and the mean anomaly difference
δσ

def= n(t)
(
t− T0(t)

)
− n0

(
t− T0(t0)

)
at time t. The left-hand column of the

figure corresponds to the stepsize of h = 100 days, the right-hand column to
that of h = 30 days. The units are 10−10 AU (first row), 10−10 (second row),
10−10 degrees in rows 3−5. It does not make sense to document the errors of
the inclination i and of the longitude of the node Ω, because these values are
in essence “error-free” when the two-body problem is integrated (all vectors
are linear combinations of the initial position- and velocity-vector).

All errors in Figure 7.10 are small. The errors on the right-hand side are,
however, smaller by a factor of about 1000 than those in the corresponding
figures on the left-hand side. As the ratio of the stepsizes is 0.3, one would,
however, expect the ratio of the errors to be of the order of 0.313 ≈ 1.6 ·
10−7. The expectations clearly are not met in Figure 7.10. The “failure” is
explained by the circumstance that two different kinds of errors are visible
in Figure 7.10: on the left-hand sides we see the accumulated errors due to
the truncation of the numerical solution, subsequently called approximation
errors, on the right-hand side we see the accumulated rounding errors, due to
the calculation with a finite number of significant digits. The accumulation of
the two error types will be further discussed in section 7.7. The accumulated
approximation errors clearly show a systematic behavior, the accumulated
rounding errors show a random pattern.

There is a distinct difference in behavior between the accumulated approxi-
mation errors (left column in Figure 7.10) in the first three and the last two
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Fig. 7.10. Accumulation of errors in semi-major axis a, eccentricity e, longitude of
perihelion ω, mean anomalies σ0, and δσ over 1000 years (left: stepsize=100 days,
right: stepsize=30 days)
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rows: a linear trend is observed in the former, a quadratic growth in the lat-
ter case. The error in δσ(t) may be explained (approximately) by the linear
decrease of the semi-major axis:

δσ(t) =

t∫
t0

δn(t′) dt′ ≈ − 3
2

n0

a0

t∫
t0

δa(t′) dt′ . (7.80)

From Figure 7.10 (top, left) we may extract

δa(t) ≈ − 0.27 · 10−10
(
t̃ − t̃0

)
AU , (7.81)

where the time argument t̃ − t̃0 is measured in units of 1000 years relative
to the initial epoch t0. Using this formula in eqn. (7.80) gives the following
relation for the growth of δσ(t):

δσ(t) =

t∫
t0

δn(t′) dt′ ≈ 3
4

n0

a0
· 0.27 · 10−10

(
t̃ − t̃0

)2 = 7366 · 10−10
(
t̃ − t̃0

)2
,

(7.82)
where n0 has to be measured in degrees per 1000 years. This relation is
confirmed approximately in Figure 7.10 (bottom, left).

Often, one is not particularly interested in the integration error associated
with the orbital elements (or in the quantity σ(t)), but rather in the errors
of the rectangular coordinates of the trajectory. In such cases it is wise not
to display the errors in the coordinates of the inertial system, but rather (a)
in radial, (b) along-track, and (c) in the out-of-plane direction. Figure 7.11
illustrates this error decomposition. As expected from the error accumulation
in the mean anomaly σ(t), the error in the along-track direction dominates
the errors in the other two directions. It is easy to interpret the along-track
errors by re-scaling the results obtained for δσ(t). In view of the remarks
made concerning the elements i and Ω, it cannot amaze that the errors in
the out-of-plane direction are very small – negligible compared to the other
two components. The errors in the radial direction are a consequence of the
error in σ(t), as well. The polar equation (4.63) for the ellipse, expressed by
the eccentric anomaly E as argument, may be approximated as follows:

r = a (1 − e cosE) ≈ a (1 − e cosσ) . (7.83)

Consequently, an error in σ induces a periodic error in radial direction:

δr(t) ≈ a e δσ(t) sin σ . (7.84)

This explains the pattern of the perturbations in radial direction in Figure
7.11.
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Fig. 7.11. Accumulation of errors in radial (top row), along-track (second row), and
out-of-plane directions (bottom row) (left: stepsize=100 days, right: stepsize=30
days)

7.5.5 Local Error Control with Collocation Algorithms

Motivation. The numerical experiments in the preceding section might have
given the impression that collocation methods with a constant stepsize (con-
stant length hk = h of subintervals Ik) are sufficient to solve all kinds of
equations of motion. The situation changes considerably, however, as soon
as the orbital eccentricity e is growing. Figure 7.12 demonstrates what may
happen, if a well established procedure without error control is used to com-
pute an orbit with an eccentricity of e = 0.9 (the other orbital elements were
kept to the values of Table 7.1).
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Despite the fact that a constant stepsize of only h = 6 days was used, the
result is discouraging. Even the errors in the semi-major axis assume values
of a fraction of one percent – compared to the results obtained in Figure
7.10 with a stepsize which was five or even approximately 15 times larger,
really not a good achievement. The results in Figure 7.12 indicate, however,
that the collocation method with constant stepsize, which proved to be quite
efficient for orbits with small eccentricities, still might be used successfully for
orbits with large eccentricities – provided the stepsize is further reduced. As
a matter of fact, acceptable results are obtained with stepsizes of the order
of h = 0.5−1 days. The price to achieve results of acceptable quality is high,
though. The computational costs increase by a factor of about 30−100 when
integrating the orbit of an eccentricity of e ≈ 0.9 compared to one of e ≈ 0.1.
This poor efficiency is a consequence of the fact that the stepsize has to be
adapted to the worst case, i.e., to the motion near perihelion.
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Fig. 7.12. Errors in semi-major axis a and argument of latitude u over 1000 years
for an orbit with e = 0.9 using stepsize h = 6 days
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Principles of Stepsize Control. The computational situation encountered
above could be significantly improved, if accurate information concerning the
terms neglected in the numerical solution would be available in each interval
Ik. We might then adapt the stepsize with the goal to keep the error in
the position and/or the velocity associated with the initial value problem
of interval Ik below a specified (user-defined) limit. We have seen that the
numerical and the true solutions of the initial value problem in the subinterval
Ik differ only by terms of the order O(t−tk)q+1. Unfortunately there is no way
of estimating these terms (except by actually increasing the order internally
to (at least) q + 1). Therefore, we have to assess the error of the collocation
step with the highest forward difference of f (t) of order q − n , which is still
taken into account. Using eqn. (7.79) to represent the state vector and eqn.
(7.74) to replace the differences of order q − n of the functions f(tkj ) by the
derivative of order q of the solution vector, we obtain the approximation error
in the subinterval Ik by the last term of order j = q included in eqn. (7.79):

ε
(i)
k (t) def=

{
q∑

l=n

(l − n)!
(l − i)!

M̃
−1

l+1−n,q+1−n τ l−i

}(
hk

q − n

)q−i

y
(q)
k0

def= e(i)
r (τ)

(
hk

q − n

)q−i

y
(q)
k0 , i = 0, 1, . . . , n − 1 ,

(7.85)

where the scalar function er(τ) describes the (relative) propagation of the
errors in the subinterval Ik. Observe that er(τ) does not depend on the spe-
cific interval Ik. The relative time argument τ is defined by eqn. (7.76). If we
accept the above crude (and usually pessimistic) approximation of the local
error, we obtain the optimum length hk,opt of the interval Ik rather easily,
and even in “in real time”.

For this purpose, the formula (7.85) is evaluated for the time argument t =
tk + hk = tk+1 of the new initial values and for the derivative of order i =
n − 1. We are thus controlling the error of the (n − 1)-th derivative of the
solution vector. We can compare the actual error ε

(n−1)
k (tk+1), as emerging

from formula (7.85), component by component, with the externally provided
tolerance ε̃. Let∣∣∣ y(n−1)

k0,imax

∣∣∣ def= max
{∣∣∣ y(n−1)

k0,1

∣∣∣, ∣∣∣ y(n−1)
k0,2

∣∣∣, . . . , ∣∣∣ y(n−1)
k0,d

∣∣∣} (7.86)

be the component of maximum absolute value of the vector y
(n−1)
k0 .

The optimum stepsize hk,opt is obtained by equating the error function
ε
(n−1)
k (tk+1) for the component imax to the maximally tolerated error ε̃ (ob-

serve that τ(tk+1) = q − n):

∣∣∣ e(n−1)
r (q − n)

∣∣∣ (hk,opt

q − n

)q+1−n ∣∣∣ y(q)
k0,imax

∣∣∣ = ε̃ , (7.87)
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where we took into account that τ(tk+1) = q − n for a collocation method
with equidistant spacing of the collocation epochs. The above equation is
solved by

hk,opt = (q − n)

⎡
⎣ ε̃∣∣∣ e(n−1)

r (q − n) y
(q)
k0,imax

∣∣∣
⎤
⎦

1
q+1−n

. (7.88)

The criterion (7.88) asks for some comments:

• The criterion is independent of the specific problem. It may not only be
used in Celestial Mechanics but for all kinds of applications.

• The criterion might be generalized by specifying not one general tolerance
ε̃, but one per component of the (n−1)st derivative of the solution vector.

• The criterion might be further refined to make it depend on time t. Such
criteria might be useful in perturbation problems, if an approximate solu-
tion is available.

• One might have the idea to control not only the (n − 1)-st derivative of
the solution vector, but all derivatives from i = 0 up to i = n − 1. The
(n − 1)-st derivatives, however, have the lowest order of the error in hk,
which is why primarily these quantities should be kept under control.

• Criterion (7.88) is by no means the only possible way to control the local
error. One might, e.g., define a limit for the relative error in the components
of the solution vector. Error criteria of this type make the attempt to
control the number of significant digits of a solution. For quasi-periodic
solutions such criteria are usually not considered.

• Special problems may allow for better criteria.

A Case Study. Program NUMINT was used to integrate an orbit with
eccentricity e = 0.9 – all the other orbital elements were kept to the values of
Table 7.1. Figure 7.13 shows the essential part of the output statistics for this
program run. Observe that the stepsize indeed varied substantially during the
integration. Criterion (7.88) was used with the tolerance ε̃ = 1·10−13 AU/day.

The smallest stepsize is of the order of half a day, the longest of the order of
114 days (i.e., of the same order as the constant stepsizes used to compute
the orbits of small eccentricities). Compared to the integration of orbits with
small eccentricities, the computational burden was rising by a factor of about
two (compared to the run with a stepsize of 30 days). This performance
should be compared to the (only possible) alternative to cover the entire
interval (without error control) with the constant stepsize of 0.5 days, which
would have resulted in about 55000 function calls per revolution. Seen from
that perspective, we have saved a factor of about 20 in processing time by
using a method with an automatic stepsize control. Figure 7.14 shows the
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NUMERICAL SOLUTION OF ORDINARY DEQ-SYSTEMS DATE: 22-SEP-02 TIME: 05:08
**************************************************************************
PROBLEME RESTREINT IN PLANETARY SYSTEM
***************************************
..
SEMI-MAJOR AXIS : 2.50230307 AU
ECCENTRICITY : 0.90000000
..
NUMBER OF REVS : 252.6
REVOLUTION PERIOD : 1445.8 DAYS

METHOD OF SOLUTION : COLLOCATION OF ORDER 12
******************
MIN. STEP SIZE : 0.670557 DAYS
MAX. STEP SIZE : 113.597915 DAYS
CPU (TOT) : 1.92 S
# STEPS : 24703
# COMP (RHS)/REV : 2207.
..
ERROR TOL. IN VEL. : 0.1000D-12 AU/DAY
..

Fig. 7.13. Program output for run with automatic stepsize control

stepsize hk
def= h(tk) as a function of time for the first 100 years of the arc.

As expected, h(t) is a periodic function of time and assumes its maximum
values at aphelion, its minimum values at perihelion.
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Fig. 7.14. Automatic stepsize selection in days for first 100 years

Figure 7.15 gives an impression of the quality of the results achieved, which is
orders of magnitude better than that in the case documented by Figure 7.12.
In this sense we may consider the experiment a success. Note in particular
that the errors in the semi-major axis are multiplied by a factor of 1010.
The errors in a are stochastic in nature and of the order of a few 10−13 AU,
i.e., roughly comparable to what was achieved in the case of the orbits with
small eccentricities. The result is different for the argument of latitude u: We
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Fig. 7.15. Errors (AU) in semi-major axis a (upper figure) and argument of latitude
u (lower figure) over 1000 years for an orbit with e = 0.9, using automatic stepsize
control

observe spikes of considerable amplitudes, an effect asking for an explanation.
A closer inspection shows that the performance is comparable to the case of
small eccentricities everywhere except near the perihelion where the spikes
in Figure 7.15 actually occur. These spikes are of the order of a few units in
10−7 degrees.

Is this an unacceptable error? The answer is a clear “no”. The performance
is typical for orbits of a large eccentricity. The characteristics of the error in
the argument of latitude u in Figure 7.15 may be explained as a consequence
of the development of the semi-major axis a in the same Figure. Exactly as
in the case of orbits with a small eccentricity (compare eqn. (7.80)) the error
induced by a into the mean anomaly σ(t) is calculated by

δσ(t) ≈
t∫

t0

δn(t′) dt′ = − 3 n

2 a

t∫
t0

δa(t′) dt′ , (7.89)
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but we are no longer allowed to identify the error in σ(t) with the error in
the argument of latitude. Using the approximation

δa
(
t̃
)
≈ 5 · 10−16 t̃ [ AU ] , (7.90)

where t̃ represents the time in years, to model the time development of δa(t̃),
we obtain according to the formula (7.89)

δσ
(
t̃
)

= − 3 n

4 a
5 · 10−10

(
t̃

1000

)2
[ rad ] . (7.91)

This equation gives δσ(t̃) in radian as a function of time t̃ in units of years.
Equation (4.35) for the argument of latitude allows it to transform the error
in the mean anomaly into one in the argument of latitude u:

u̇ =
h

r2
=
√

µ

p3
(1 + e cos v)2 , (7.92)

from where we may conclude that in perihelion

δu(v = 0) =

√
1 + e

1 − e

δσ

1 − e
≈ 43.6 δσ , (7.93)

where the latter value results for the eccentricity of e = 0.9. Near the perihe-
lion, an error in mean anomaly translates into an error in true anomaly (and
the argument of latitude) with a magnification factor of about 44 (the factor
varies as a function of the eccentricity e according to the above formula).
For the concrete example shown in Figure 7.15 we obtain (observe that in
formula (7.91) the mean motion is needed in radian/year):

δu(v = 0) = 43.6
180
π

δσ = − 6 · 10−7

(
t̃

1000

)2
[ ◦ ] . (7.94)

This result is confirmed by Figure 7.15. It proves that the result of our in-
tegration was as good as could be expected. It shows also that for orbits
with big eccentricites it is extremely difficult to control the errors in the true
anomaly near perihelion. The above developments indicate that numerical
tests merely giving the accuracy of the coordinates at specific epochs (e.g.,
always near the aphelion) might not give a full picture of the error charac-
teristics.

The Impact of Rounding Errors. With automatic stepsize control we try
to control the approximation error, not the rounding error. Formula (7.85) in
essence promises that the error function obeys a hq−i-law for the derivative no
i of the solution, implying a dramatic reduction of errors when reducing the
stepsize. This is only true, however, if we are actually capable of determining
the highest derivative y

(q)
k0 with reasonable accuracy (with a few significant
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digits) from the algorithm itself. These derivatives follow from the forward
differences ∆

[q−n]
k1

. The differences are in turn calculated from the function
values f(tkj ) using the algorithm (7.66).

Rounding errors do occur in the components of the vectors f (tkj ). In order
to understand their impact on the difference vector ∆

[q−n]
k1

of order q − n ,
it is important to review the definition of the forward differences (7.66), as
illustrated by Figure 7.8. Every element in this scheme (with the exception
of the elements in the first column) is the difference of the lower minus the
upper element in the column to the left of the considered element.

In order to assess the order of magnitude of the error in the differences of
order q − n we consider one particular component and assume that (the
particular component of) the vectors f(tkj ) (considered) with even subscripts
j in Figure 7.8 are affected by a rounding error of +ρ, all others with one of
−ρ. This is admittedly a rather special situation. As one may assume that
the number of significant digits in the differences is smaller than or equal
to the number of digits in the (considered component of the) accelerations
f (tkj ), the difference formation process itself may be considered as free of
rounding errors. This is why only the propagation of the original rounding
errors (in the components) of the accelerations fkj over the scheme 7.8 has
to be studied.

Figure 7.16 shows that the (absolute values of the) errors increase by a factor
of 2 with each order of the difference. This power-law of error propagation
holds in the general case, although the real situation is more complicated:
the rounding errors of the elements of f (tkj ) are randomly distributed in
an interval of the length of one unit of the least significant mantissa digit,
centered at the true value of the f(tkj ), but statistically speaking, the 2q−n

law holds.

−ρ
+2 ρ

+ρ +22ρ
−2 ρ +23ρ

−ρ −22ρ +24 ρ
+2 ρ −23ρ +25ρ

+ρ +22ρ −24ρ 26ρ
−2 ρ +23ρ −25ρ

−ρ −22ρ +24ρ
+2 ρ −23ρ

+ρ +22ρ
−2 ρ

−ρ

Fig. 7.16. Propagation of rounding errors in a difference scheme
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Figure 7.16 shows that, independently of the actual interval length, the in-
duced error ρ[q−n] in one of the elements of vector ∆

[q−n]
k1

will be of the order

ρ[q−n] ≈ 2q−nρ . (7.95)

By reducing the stepsize further and further, i.e., for hk → 0, the highest
differences will be fully dominated by the rounding error and will no longer
contain any information concerning the solution vector. Statistically speaking
we have

E(∆k1) = const. for hk → 0 . (7.96)

Equation (7.85) and (7.74), or, more directly eqn. (7.79), tell that in this
case the error function for the velocity components is a linear function of hk

(and of ∆
[q−n]
k1

). This in turn implies that the optimum stepsize calculated
with criterion (7.88) will be a linear function of the external tolerance ε̃ for
hk → 0.

Table 7.2 illustrates the impact of the rounding errors. A minor planet with
the elements of Table 7.1, but with e = 0 (implying that the stepsize should
stay roughly constant for a particular value ε̃), was integrated over a time
interval of 10000 years with the collocation method of order q = 12 with
different error criteria. Program PLASYS was used for this purpose.

Table 7.2. Stepsize hk as a function of the tolerance ε̃

ε̃ hk(integration) hk(theory)

[ AU/day ] [ days ] [ days ]

1 · 10−13 253.5 253.5
1 · 10−14 210.9 209.2
1 · 10−15 171.2 172.7
1 · 10−16 139.0 142.6
1 · 10−17 107.6 117.7
1 · 10−18 15.05 97.1
5 · 10−19 7.7 91.7
4 · 10−19 6.2 90.0
3 · 10−19 4.7 87.8
2 · 10−19 3.2 84.9
1 · 10−19 1.6 80.2

Table 7.2 shows in column 2 the average stepsize selected by the program
for different (user defined) tolerances ε̃. Whereas the actual stepsize obeys
the power law underlying the selection criterion for the upper part of the
Table (down to the value ε̃ ≈ 1 · 10−17 AU/day), the stepsize breaks down
rather rapidly afterwards, and eventually becomes a linear function of τ , as
predicted. The third column illustrates the expected
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h(ε̃) = h
(
1 · 10−13

)
·
(

ε̃

1 · 10−13

)1
12

law for the stepsize.

There is an important message in Table 7.2: If one tries to strive for very
high accuracies using a small tolerance, the automatically selected stepsizes
become very small and the efficiency is decreased instead of increased (as one
should expect from automatic stepsize control). In the concrete example, the
best performance is expected for values 1 · 10−17 < ε̃ < 1 · 10−14.

If the limitations due to rounding errors are observed, automatic stepsize con-
trol is an excellent and very efficient tool in numerical orbit computation. It is
an absolute requirement when orbits with large eccentricities are integrated.
If the orbital evolution of resonant minor planets is studied, the eccentricities
may vary between broad limits. Any schemes relying (essentially) on similar
orbit characteristics over a long period of time might lead to unpredictable
results.

In principle it is possible to develop stepsize control mechanisms taking the
rounding errors into account. It would, e.g., be possible to check, whether
the absolute values of the few highest differences are governed by rounding
errors. Should this be the case, the criterion (7.88) should be replaced by a
criterion slightly increasing the stepsize. Such advanced techniques are out of
the scope of this book. We refer to [45] and [108] for further reading, to [88]
for a useful and entertaining general discussion.

7.5.6 Multistep Methods as Special Collocation Methods

In section 7.4.2 it was shown that multistep methods are in principle special
cases of collocation methods. This section is devoted to the development of
concrete multistep algorithms. The approximating function of the initial value
problem in the overlapping subintervals Ik – defined in section 7.4.2 either by
eqns. (7.17) (for extrapolation methods) or by eqns. (7.18) (for interpolation
methods) – is defined exactly like the approximating function of conventional
collocation methods. According to eqn. (7.14) it reads as follows:

yk(t) def=
q∑

l=0

1
l!

(t − tk)l y
(l)
k0 .

The most efficient algorithms result when assuming the collocation epochs
to be equidistantly spaced within each subinterval. Because the collocation
epochs tkj coincide with subinterval boundaries in the case of multistep meth-
ods (see Figure 7.5), an equidistant spacing of the collocation epochs implies
an equidistant spacing of all subinterval boundaries tk. Therefore multistep
methods with an equidistant spacing of collocation epochs are methods of
constant stepsize h, where
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h = tk+1 − tk
def= const. . (7.97)

From eqns. (7.17) and (7.18) we conclude that the collocation epochs are
defined as follows:

tkj

def= tk − (j − m)h = tk−j+m , j = 1, 2, . . . , q + 1 − n , (7.98)

where the method-dependent integer number m is

m =
{

1 for extrapolation methods
2 for interpolation methods . (7.99)

The system (7.15) of condition equations for multistep methods looks as
follows:

q∑
l=n

(tkj − tk)l−n

(l − n)!
y

(l)
k0 = f

(
tkj , yk(tkj ), ẏk(tkj ), . . . ,y

(n−1)
k (tkj )

)
q∑

l=n

(j − m)l−n (−h)l−n

(l − n)!
y

(l)
k0 = f

(
tkj , yk(tkj ), ẏk(tkj ), . . . ,y

(n−1)
k (tkj )

)
q∑

l=n

(−1)l−n (j − m)l−n dkl
= f
(
tk−j+m, yk(tk−j+m), . . . ,y(n−1)

k (tk−j+m)
)

j = 1, 2, . . . , q + 1 − n ,
(7.100)

where the coefficients dkl
obviously are defined by

dkl

def=
hl−n

(l − n)!
y

(l)
k0 . (7.101)

The similarities between the above system of condition equations with that
of the conventional collocation methods (eqns. (7.60)) are striking. Therefore,
the solution of eqns. (7.100) (using the coefficients dkl

as auxiliary unknowns)
may be done in strict analogy to the case of the conventional collocation
methods. It makes in particular sense to base the algorithm on the backwards
differences of the accelerations f(tk−j+m) , j = 1, 2, . . . , q+1−n (as opposed
to the forward differences considered in section 7.5.3). This implies, however,
that the backward differences, as illustrated by Figure 7.17 in the case of the
extrapolation methods, are used. These backward differences of the function
values f(tk−j+m) , j = 1, 2, . . . , q + 1 − n , are defined by the equations

∇[0]
k−j+m

def= f(tk−j+m)

∇[l]
k−j+m

def= ∇[l−1]
k−j+m − ∇[l−1]

k−j+m−1 . (7.102)
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f (tk7) = f (tk−6)
def
= ∇[0]

k−6

∇[1]
k−5

f (tk6) = f (tk−5)
def
= ∇[0]

k−5 ∇[2]
k−4

∇[1]
k−4 ∇[3]

k−3

f (tk5) = f (tk−4)
def
= ∇[0]

k−4 ∇[2]
k−3 ∇[4]

k−2

∇[1]
k−3 ∇[3]

k−2 ∇[5]
k−1

f (tk4) = f (tk−3)
def
= ∇[0]

k−3 ∇[2]
k−2 ∇[4]

k−1 ∇[6]
k

∇[1]
k−2 ∇[3]

k−1 ∇[5]
k

f (tk3) = f (tk−2)
def
= ∇[0]

k−2 ∇[2]
k−1 ∇[4]

k

∇[1]
k−1 ∇[3]

k

f (tk2) = f (tk−1)
def
= ∇[0]

k−1 ∇[2]
k

∇[1]
k

f (tk1) = f (tk)
def
= ∇[0]

k

Fig. 7.17. Visualization of backward differences up to order 6 for extrapolation
methods

After analogous transformations as in the case of collocation, the coefficients
dkl

for a pure extrapolation algorithm may be written in the following con-
venient matrix form:

DI+1
k = Ñ−1 F̃I

k , (7.103)

where DI+1
k is defined in analogy to the first of eqns. (7.64), matrix Ñ−1 by

eqn. (7.104)

Ñ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0

0 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

0 0 1
2

1
2

11
24

5
12

137
360

7
20

363
1120

761
2520

7129
25200

0 0 0 1
6

1
4

7
24

5
16

29
90

469
1440

29531
90720

1303
4032

0 0 0 0 1
24

1
12

17
144

7
48

967
5760

89
480

4523
22680

0 0 0 0 0 1
120

1
48

5
144

7
144

1069
17280

19
256

0 0 0 0 0 0 1
720

1
240

23
2880

1
80

3013
172800

0 0 0 0 0 0 0 1
5040

1
1440

13
8640

1
384

0 0 0 0 0 0 0 0 1
40320

1
10080

29
120960

0 0 0 0 0 0 0 0 0 1
362880

1
80640

0 0 0 0 0 0 0 0 0 0 1
3628800

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.104)

and
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F̃I
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
f I(tk)

]T[
∇[1]

k

]T
[
∇[2]

k

]T
. . .
. . .
. . .[
∇[q−n]

k

]T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.105)

Using the defining equation (7.100) one may easily verify that matrix Ñ−1

has to be replaced by eqn. (7.106) for an interpolation algorithm

Ñ−1
int =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0 0 0 0

0 1 −1
2

−1
6

−1
12

−1
20

−1
30

−1
42

−1
56

−1
72

−1
90

0 0 1
2

0
1

−1
24

−1
24

−13
360

−11
360

−29
1120

−223
10080

−481
25200

0 0 0 1
6

1
12

1
24

1
48

7
720

1
288

−1
5670

−61
25920

0 0 0 0 1
24

1
24

5
144

1
36

127
5760

101
5760

1271
90720

0 0 0 0 0 1
120

1
80

1
72

1
72

229
17280

427
34560

0 0 0 0 0 0 1
720

1
360

11
2880

13
2880

853
172800

0 0 0 0 0 0 0 1
5040

1
2016

7
8640

19
17280

0 0 0 0 0 0 0 0 1
40320

1
13440

17
120960

0 0 0 0 0 0 0 0 0 1
362880

1
103680

0 0 0 0 0 0 0 0 0 0 1
3628800

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.106)

and that the backward differences F̃I
k referring to epoch tk have to be replaced

by those referring to epoch tk+1:

G̃I
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
f I(tk+1)

]T[
∇[1]

k+1

]T
[
∇[2]

k+1

]T
. . .
. . .
. . .[
∇[q−n]

k+1

]T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.107)

The coefficients in the case of interpolation read as

DI+1
k = Ñ−1

int G̃I
k . (7.108)

A multistep procedure (extrapolation and interpolation) is included in the
program package accompanying this book. The programs NUMINT and
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PLASYS are capable of performing the integration either with a conventional
collocation method as discussed in section 7.5 or with a multistep procedure.
If only orbits with small eccentricities (e.g., the planetary system without
Mercury and Pluto) are integrated, the multistep procedure is an excellent,
probably even the best possible, choice. It is, however, the program user’s
task to define a suitable fixed stepsize (see section 7.7.4 for guidelines).

The diagonal of matrix Ñ−1 obviously contains the terms 1/l! , l =
1, 2, . . . , q − n . As the lower diagonal part of the matrix only contains zero
elements and as the terms dkl

are defined by eqn. (7.101), we may conclude
that

y
(q)
I+1 k0 = h−(q−n) ∇[q−n]

k + O(hk) . (7.109)

The above equation says that the (q−n)-th backward difference of the forces
may be interpreted (in a modest approximation and apart from a scaling
factor) as the q-th derivative of the solution vector yk(t) at tk .

Equation (7.103) tells that the coefficients dkl
, l = n, n+1, . . . , q, are linear

combinations of the backward differences ∇[l]
k , l = 0, 1, . . . , q − n . Conse-

quently (see eqn. (7.100)), the solution vector yk(t) may be represented as a
linear combination of the same differences. The task is achieved by introduc-
ing the interval-independent time argument

τ =
1
h

(t − tk) . (7.110)

Proceeding in an analogous way as in the case of the conventional collocation
method we obtain:

yk(t) =
n−1∑
l=0

1
l!

(t − tk)l y
(l)
k0

+
q∑

j=n

{
j∑

l=n

(l − n)!
l!

Ñ
−1

l−n+1,j−n+1 τ l

}
hn ∇[j−n]

k .

(7.111)

Observe that the term in brackets {. . .} does not contain any terms specific
for the subinterval Ik . For the purpose of error control we do not only need
the formula for the solution vector, but also for its first n − 1 derivatives.
Taking into account that

di

dti
=
(

q − n

hk

)i
di

dτ i
, (7.112)

we obtain the result:
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y
(i)
k (t) =

n−1∑
l=i

1
(l − i)!

(t − tk)l−i y
(l)
k0

+
q∑

j=n

{
j∑

l=n

(l − n)!
(l − i)!

Ñ
−1

l−n+1,j−n+1 τ l−i

}
hn−i ∇[j−n]

k

i = 0, 1, . . . , n − 1 .

(7.113)

The multistep method provided in the program system contains the coef-
ficient matrices up to degree and order q − n = 14 . The maximum order
thus would be q = 16 for a differential equation system of order n = 2 . The
algorithm supplied in the program system is able to handle any order n ≥ 1
of the differential equation system. It may be initialized either by the Euler
approximation or by the numerical solution of a previous step.

As already pointed out in section 7.4.2 only the function values f (tk+1) are
(re)calculated in the integration step referring to tk as initial epoch for k > 0 .
The function values f (tk+1−j) , j = 1, 2, . . . , q , are taken over without any
changes from the previous interval Ik−1 . As a matter of fact, the backward
differences and not the function values themselves are updated, where the
following scheme is used:

∇[0]
k+1

def= f (tk+1)

∇[l+1]
k+1 = ∇[l]

k+1 − ∇[l]
k , l = 0, 1, . . . , q − 1 − n .

(7.114)

Table 7.3 gives an impression of the performance of both, the classical col-
location and the multistep methods, implemented in the program package.
The stepsizes h

def= tk+1 − tk , together with the order q of the method, are
the independent arguments in Table 7.3. One might at first sight think that
the collocation method is much better than the multistep method, because
the stepsizes h are much longer in the former case. This is not true, however:
The number defining efficiency (at least for complicated differential equa-
tion systems) is the number of evaluations of the right-and sides f(t) of the
differential equation systems in a given time interval. The number nf of eval-
uations per revolution period of the planet is therefore included, as well, in
Table 7.3.

How do we have to select the stepsize h of the multistep step method to
achieve (roughly) the same performance as the corresponding collocation
method? Keeping in mind that the coefficients of the approximating func-
tion (7.14) are obtained as solutions of the condition equations (7.15) one
would expect that the length of the interval containing all q + 1 − n collo-
cation epochs should be identical for both, the collocation and the multistep
method. Therefore we expect a similar performance for



310 7. Numerical Solutions

Table 7.3. Multistep methods and conventional collocation methods

Multistep Collocation
q h nf δa δu h nf δa δu

[ days ] [ AU ] [ deg ] [ days ] [ AU ] [ deg ]

10 10.0 145 2.4 · 10−8 6.8 · 10−4 80 307 1.2 · 10−9 3.0 · 10−5

10 10.0 289 7.0 · 10−10 2.0 · 10−5 80 451 5.0 · 10−12 1.1 · 10−7

11 9.0 161 4.0 · 10−10 9.0 · 10−6 80 343 4.7 · 10−11 1.2 · 10−6

11 9.0 321 7.7 · 10−12 1.5 · 10−7 80 506 7.5 · 10−13 7.0 · 10−9

12 8.0 181 2.7 · 10−11 8.5 · 10−7 80 379 1.5 · 10−11 4.0 · 10−7

12 8.0 361 7.0 · 10−13 2.2 · 10−8 80 560 7.0 · 10−14 1.4 · 10−9

13 7.0 207 3.0 · 10−13 4.0 · 10−9 80 415 4.4 · 10−12 1.2 · 10−7

13 7.0 413 9.0 · 10−14 8.0 · 10−10 80 614 8.0 · 10−14 2.0 · 10−9

14 7.0 207 7.0 · 10−14 2.0 · 10−9 80 451 8.5 · 10−11 2.2 · 10−6

14 7.0 413 6.0 · 10−14 7.3 · 10−9 80 668 6.0 · 10−13 1.6 · 10−8

10 12.5 116 1.6 · 10−7 5.0 · 10−3 100 246 2.5 · 10−8 8.0 · 10−4

10 12.5 231 5.1 · 10−9 1.4 · 10−4 100 361 5.5 · 10−11 1.1 · 10−6

11 11.0 132 3.7 · 10−9 8.0 · 10−5 100 274 2.5 · 10−9 7.0 · 10−5

11 11.0 263 7.7 · 10−11 1.6 · 10−6 100 404 3.3 · 10−11 7.0 · 10−7

12 10.0 145 3.0 · 10−10 1.0 · 10−5 100 303 4.4 · 10−10 1.2 · 10−5

12 10.0 289 7.5 · 10−12 2.4 · 10−7 100 448 7.5 · 10−12 2.6 · 10−7

13 9.0 161 6.0 · 10−12 1.2 · 10−7 100 332 8.0 · 10−11 1.8 · 10−6

13 9.0 321 1.5 · 10−13 4.0 · 10−9 100 491 7.5 · 10−13 2.0 · 10−8

14 8.0 181 5.0 · 10−13 2.0 · 10−8 100 361 9.0 · 10−11 2.5 · 10−6

14 8.0 361 1.0 · 10−13 4.0 · 10−9 100 535 5.0 · 10−13 1.2 · 10−8

12 12.0 121 2.0 · 10−9 6.8 · 10−5 120 253 2.0 · 10−9 5.0 · 10−5

12 12.0 241 5.0 · 10−11 1.5 · 10−6 120 373 8.4 · 10−11 2.2 · 10−6

13 11.0 132 9.0 · 10−11 2.2 · 10−6 120 277 2.8 · 10−9 7.0 · 10−5

13 11.0 263 1.6 · 10−12 3.7 · 10−8 120 409 7.5 · 10−12 2.0 · 10−7

14 10.0 – – – 120 301 5.0 · 10−11 8.0 · 10−7

14 10.0 289 2.2 · 10−13 8.2 · 10−9 120 445 1.8 · 10−12 5.0 · 10−8

hmultistep ≈ 1
q − n

hcollocation . (7.115)

Tests with three different collocation stepsizes, namely h = 80, 100, 120
days, were made. According to the above rule this should roughly correspond
to steps of order dependent size hmulitstep = hcollocation /(q − 2) in the case
of multistep methods. In order to avoid numerical problems, the resulting
steps hmultistep were rounded to an integer number of days. The integration
order q was varied within the limits 10 ≤ q ≤ 14 . These integration orders
are reasonable for orbital dynamics (planetary system and satellite geodesy)
and a floating point environment with 14 hexadecimal digits.
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For a particular stepsize h one expects that the actual errors are governed
by the approximation error for the lower orders q, by rounding errors for the
higher orders.

For both methods the error in the semi-major axis a (in AU) and in the
argument of latitude (in ◦) are tabulated (the error in the position would
result after multiplication with the factor ≈ π

180 a ).

For both methods, the number of iterative improvements of the solution per
subinterval Ik was varied: The first line for each order q corresponds to a
pure extrapolation method in the case of the multistep method and to one
iteration step in the case of conventional collocation methods. The second
line corresponds to a multistep method with one interpolation step and to a
collocation method with two iteration steps.

Let us now discuss the results summarized in Table 7.3. First of all, we should
point out that all results in Table 7.3 are of a good quality. An inspection of
the numbers nf and the corresponding accuracies indicates that the multistep
procedure is about a factor of 1.5 − 3 more efficient than the collocation
method for these comparatively high integration orders. Multistep methods
are clearly preferable if the numerical solution is dominated by rounding
errors. The integration failed in one case, q = 14 for h = 10 in the case of the
multistep method and pure extrapolation, indicating that in the computing
environment given (double precision floating point) one should not try to
select very high orders and very long stepsizes.

One big advantage of the conventional collocation methods over the multi-
step methods resides in the fact that they may be easily modified to allow
for automatic stepsize control. We have shown in section 7.5.5 that stepsize
control may be achieved using the highest term y

(q)
k0 of the approximating

function in the case of conventional collocation methods. It would not be
difficult, in principle, to transform a multistep method into a procedure al-
lowing for stepsize control, as well. But a change of stepsize would require
a re-evaluation of all function values f (tkj ) , j = 1, 2, . . . , q + 1 − n , and
not only of the last one. Such a procedure, although it would work perfectly,
would be rather inefficient. This is why efficient stepsize control in the case of
multistep methods has to be performed by controlling the spacing hk between
the subinterval boundaries tk. There are no problems of principle involved
in such a procedure: Our discussion of collocation methods has shown that
equal spacing between the epochs tk is not a requirement, but that it leads to
very efficient algorithms. By dropping the requirement of an equal spacing,
a good part of the simplicity and elegance of multistep methods is lost. Nev-
ertheless, very powerful methods were developed for first order systems. For
a profound discussion we refer, e.g., to [108]. In view of the simplicity and
efficiency of the conventional collocation algorithm we do not use multistep
algorithms with stepsize control in this book.
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Table 7.3 indicates, on the other hand, that high-order multistep methods (10
≤ q ≤ 14) should be given the preference over the conventional collocation
methods, if only orbits of small eccentricities are considered.

Many “different” multistep procedures are distinguished in the literature. The
method developed here is equivalent to the so-called Adams-Bashford method
(extrapolation) and to the Adams-Bashford-Moulton method (interpolation),
when applied to first order differential equation. When applied to second-
order differential equation systems our multistep method is equivalent, from
the algebraical point of view, to the so-called Stormer method (extrapolation)
and the Cowell method (interpolation).

In the original Stormer and Cowell algorithms the position and velocity vec-
tor (in the case of a general differential equation of order n : the derivatives
y(i) , i = 1, 2, . . . , n−1) are replaced by the differences ∇y[i], i = 1, 2, . . . n−1,
of the solution vector w.r.t. the current initial epoch (the differences are
formed in analogy of those of the vector f (tkj )). The advantage of this for-
mulation over the one we use resides in the hierarchy of the differences: one
may assume that the differences of order i are (at least) one order of mag-
nitude smaller in absolute value than those of order i − 1. This implies that
there is also a hierarchy in the absolute value of rounding errors when com-
puting these differences. Despite these apparent advantages we did not use
the original Stormer and Cowell formulations, in order to keep the algorithms
simple and general (applicable to equations of all orders n > 0).

7.6 Linear Differential Equation Systems
and Numerical Quadrature

7.6.1 Introductory Remarks

Linear differential equation systems form a special class of ordinary differ-
ential equation systems, which may be solved by any method introduced so
far (capable of solving general, non-linear and linear, systems of equations).
Strictly speaking, it is therefore not necessary to discuss special methods
for linear differential equation systems. The readers not interested in such
subtleties may skip the entire section 7.6 and continue reading section 7.7.

Taylor series methods and collocation methods are capable of exploiting the
linearity of systems or the fact that the right-hand sides of the system are
merely known functions of time t. Neither the Runge-Kutta nor extrapolation
methods are candidates to solve such problems.

Exactly as in the general case, it may be necessary to divide the original
integration interval I into subintervals Ik , k = 0, 1, 2, . . .. As the transition
from one subinterval to the next is performed in the same way for linear and



7.6 Linear Differential Equation Systems and Numerical Quadrature 313

non-linear system, we need not address this issue subsequently. It is therefore
perfectly allowed to skip the subinterval index k in this section.

The problem to be studied in this section may be written either as initial or
as boundary value problem. Let us denote it by:

y(n) = f
(
t, y, ẏ, . . . ,y(n−1)

)
=

n−1∑
i=0

Ai(t)y(i) + b(t) , (7.116)

Initial value problem:

y(i)(t0)
def= y

(i)
0 , i = 0, 1, . . . , n − 1 . (7.117)

Boundary value problem:

y(ki)(t′i)
def= y

(ki)
i , i = 1, 2, . . . , n , ki ∈ {0, 1, . . . , n − 1} , (7.118)

where the above boundary value problem is a slight generalization of the
problem (7.6), which allowed only for zero-order derivatives, i.e., for ki = 0 ,
i = 1, 2, . . . , n . Observe that not all boundary value problems of type (7.116,
7.118) may be solved. It is, e.g., a requirement that at least for one index i we
have ki = 0 . The coefficient matrices Ai(t) are square matrices of dimension
d (d is the dimension of the system), the inhomogeneous part b(t) is a column
matrix of dimension d.

7.6.2 Taylor Series Solution

The numerical solution of the initial value problem (7.116, 7.117) (not of the
more general case) is sought in the form

y(t) =
q∑

l=0

1
l!

(t − t0)l y
(l)
0

=
n−1∑
l=0

1
l!

(t − t0)l y
(l)
0 +

q∑
l=n

1
l!

(t − t0)l f (l−n)(t) .

(7.119)

The first n coefficients of the series are defined by the initial condition. The
derivatives of n-th and higher order may be calculated as follows:
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y(n)(t0) =
n−1∑
i=0

Ai(t0)y(i)(t0) + b(t0)

y(n+1)(t0) =
n−1∑
i=0

Ai(t0)y(i+1)(t0) +
n−1∑
i=0

Ȧi(t0)y(i)(t0) + ḃ(t0)

y(n+2)(t0) =
n−1∑
i=0

Ai(t0)y(i+2)(t0) + 2
n−1∑
i=0

Ȧi(t0)y(i+1)(t0)

+
n−1∑
i=0

Äi(t0)y(i)(t0) + b̈(t0)

. . . .

(7.120)

Equations (7.120) together with the initial conditions in eqns. (7.117) de-
fine an algorithm to compute the higher-order derivatives. The information
needed to compute derivative number i is available, if all derivatives of lower
order are available.

This statement is only true, however, if the matrices A(l)
i (t0), l = 0, 1, . . . , q,

and b(t0) are easily available. In general this will not be the case. As opposed
to the non-linear case, there is, however, an easy way to solve this prob-
lem with an accuracy of order O((t − t0)q), simply by replacing the matrix
elements by their interpolating polynomials of degree q − n defined by the
function values Ai(t0j ), j = 1, 2, . . . , q + 1− n . The interpolation epochs t0j

(in principle) may be selected arbitrarily, provided all epochs are different.

This procedure is sufficient to make the algorithm defined by eqns. (7.120)
one of order q for y(t) in t− t0 (if the series is terminated after the terms of
order q). The resulting algorithm is rather efficient, if not only one, but many
initial value problems referring to one and the same homogeneous part of the
differential equation system (7.116), differing “only” by their initial values
and/or the non-homogeneous parts b, have to be solved. This is, e.g., the
case, if many variational equations referring to the same primary equations
have to be integrated.

The above formulae are drastically reduced when applied to the numerical
solution of a definite integral. In this case the higher-order derivatives simply
are computed as

y(i)(t0) = f (i−n)(t0) , i = n, n + 1, . . . , q . (7.121)

It is now even possible to deal with each component of the solution vector
separately, i.e., the problem is split up into the solution of d separate integrals.
If the (mathematically) correct formulae for the derivatives f(t0)(i), i =
1, 2, . . . , q, are not available (and this is the general case), these derivatives
must be replaced by the derivatives of an interpolating polynomial. The above
algorithm might be further refined. For more information we refer to [15].
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7.6.3 Collocation for Linear Systems: Basics

Collocation methods to solve the linear initial value problem (7.116, 7.117)
make explicit use of the linearity of the system (7.15) of condition equations
when replacing the iterative process (7.51) by a direct solution of the linear
system (7.15) in one step.

This system shall be given in explicit form. In a first step the order of the
double sum on the right-hand side of the differential equation system is re-
versed (for one of the equations of the system (7.15) with time argument
t):

q∑
l=n

(t − t0)l−n

(l − n)!
y

(l)
0 =

n−1∑
i=0

Ai(t)
q∑

l=i

(t − t0)l−i

(l − i)!
y

(l)
0 + b(t)

=
q∑

l=0

ñ∑
i=0

(t − t0)l−i

(l − i)!
Ai(t)y

(l)
0 + b(t)

ñ = l for l < n, ñ = n − 1 for l ≥ n .

(7.122)

Using the notations

Ãn = E

Ãi = − (t − t0)n−i Ai , i = 0, 1, . . . , n − 1 ,
(7.123)

where E is the unit matrix of dimension d , eqns. (7.122) may be written as:

q∑
l=0

(t − t0)l−n

[
ñ∑

i=0

Ãi(t)
(l − i)!

]
y

(l)
0 = b(t) , ñ = l for l ≤ n, ñ = n else.

(7.124)

The coefficients are determined by the request that either the initial or the
boundary conditions are met and that eqns. (7.124) hold at q+1−n different
epochs t0j , j = 1, 2, . . . , q + 1 − n . The condition equations may thus be
written as:

For the initial value problem:

y
(i)
0 = y

(i)
0 (t0) , i = 0, 1, . . . , n − 1 .

For the boundary value problem:
q∑

l=ki

(t′i − t0)l−ki

(l − ki)!
y

(i)
0 = y

(ki)
i , i = 1, 2, . . . , n ki ∈ {0, 1, . . . , n − 1} .



316 7. Numerical Solutions

Collocation conditions:
q∑

l=0

(t0j − t0)l−n

[
ñ∑

i=0

Ãi(t0j )
(l − i)!

]
y

(l)
0 = b(t0j ) , ñ = l for l ≤ n, ñ = n else

j = 1, 2, . . . , q + 1 − n ,
(7.125)

where the epochs t′i , i = 1, 2, . . . , n − 1, are the boundary epochs, and ki is
the derivative specified at epoch t′i . t0 is the initial epoch. The coefficients
y

(l)
0 , l = 0, 1, . . . , q, are the solutions of the above system of linear algebraic

equations.

The algorithm defined by eqns. (7.125) deserves a few comments:

• Algorithms of type (7.125) are the classical collocation methods encoun-
tered in the literature. Subroutine libraries like the NAg-Library [81] con-
tain routines based on eqns. of this type.

• As opposed to the application of collocation algorithms to non-linear sys-
tems,

– we have to solve one linear system of equations of dimension d (q + 1)
in one step and not d separate systems of dimension q + 1 iteratively,

– the differential equation systems hold exactly (apart from rounding er-
rors) at the q + 1 − n epochs t0j , j = 1, 2, . . . , q + 1 − n , and not only
up to the order q in (t − t0),

– the resulting matrix of coefficients for the determination of the unknowns
y

(i)
0 , i = 0, 1, . . . , q, is problem-dependent, i.e., there is no way to sepa-

rate the inversion of the coefficients from the actual problem (as it could
be done in the general case) and to compute the inverses a priori.

• Initial- or boundary-value problems referring to the same homogeneous
part of the linear system (7.116), i.e., to the same matrices Ai, may be
dealt with in a more efficient way, because the matrix inversion is required
only once for all particular solutions.

• For initial value problems the first n coefficients are obtained directly from
the initial conditions. The remaining coefficients y

(i)
0 , i = n, n + 1, . . . , q,

solve the system of the d (q+1−n) last equations in the algorithm (7.125).

• The solution of the initial value problem associated with the homogeneous
system (i.e., for which b(t) = 0) may be represented as a linear combination
of the elements of the initial state vector y

(i)
0 , i = 0, 1, . . . , n − 1.

• It is particularly interesting to study the impact of the distribution of
the epochs t0j , j = 1, 2, . . . , q + 1 − n , within the integration interval
on the quality of the solution vector. This question is intimately related
to the structure of the error function and will be studied in the following
paragraph.
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7.6.4 Collocation: Structure of the Local Error Function

We confine our studies to the initial value problem in this section. So far,
there was no need in this Chapter to make a clear distinction between the true
solution of the initial value problem at t0 and its numerical approximation.
This distinction is, however, vital for the following discussion. Therefore, let

y(t) designate the true solution of the initial value problem (7.116, 7.117),

z(t) the numerical solution of the same problem, using a collocation method
of order q, and

ε(t) def= z(t)−y(t) the error function (where rounding errors are not consid-
ered).

Observe that an approximation for the error function was already used in
section 7.5.5, eqn. (7.85) for the purpose of automatic stepsize control. This
approximation cannot be used here, where we are interested in the true struc-
ture of the error function ε(t).

The error function solves a linear, non-homogeneous system of differential
equations, where the homogeneous part is identical with that of the differen-
tial equation system in problem (7.116). In order to prove this statement, we
make use of the fact that the numerical solution and (of course) the true solu-
tion exactly solve the differential equation system at the collocation epochs:

z(n)(t0j ) =
n−1∑
i=0

Ai(t0j )z(i)(t0j ) + b(t0j ) , j = 1, 2, . . . , q + 1 − n

y(n)(t0j ) =
n−1∑
i=0

Ai(t0j )y(i)(t0j ) + b(t0j ) , j = 1, 2, . . . , q + 1 − n

ε(n)(t0j ) =
n−1∑
i=0

Ai(t0j ) ε(i)(t0j ) , j = 1, 2, . . . , q + 1 − n .

(7.126)
The third of the above equations implies that ε(n)(t) may be written as:

ε(n)(t) =
n−1∑
i=0

Ai(t) ε(i)(t) +
q+1−n∏

j=1

(t − t0j ) g(t) , (7.127)

where g(t) is an analytical function (which may be represented by a Taylor se-
ries with origin t0) – at least if the solution of the original initial value problem
is analytical, as well. As the true solution and the numerical approximation
obey the same initial conditions, the error function may be represented as
the solution of the following initial value problem:
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ε(n)(t) =
n−1∑
i=0

Ai(t) ε(i)(t) +
q+1−n∏

j=1

(t − t0j ) g(t)

ε(i)(t0) = 0 , i = 0, 1, . . . , n − 1 .

(7.128)

The structure of the above differential equation is the same as that of a
variational equation (5.6) associated with one of the dynamical parameters,
which was encountered in Chapter 5. We may therefore write the solution of
the initial value problem (7.128) as follows (compare eqns. (5.14) and (5.16)):

ε(i)(t) = Z(i)(t)α(t) , i = 0, 1, . . . , n − 1 , (7.129)

where Z(t) is the rectangular matrix with nd columns and d rows, in which
column l contains the elements of the solution εl(t) with index l of the com-
plete system of solutions of the homogeneous system associated with the
linear system (7.128). The coefficient matrix α(t) may be expressed by an
integral (compare eqn. (5.21)):

α(t) =

t∫
t0

Z̃−1(t′) F(t′) dt′ , (7.130)

where in our case F(t) may be written as

F(t) =
q+1−n∏

j=1

(t − t0j )G(t) , (7.131)

where G(t) is a column array with nd elemenent, defined as (compare eqn.
(5.20)):

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
. . .
. . .
0

g(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7.132)

In order to evaluate the definite integral (7.130) at t = t0 + h we perform a
transformation of the independent argument t, as illustrated by Figure 7.18.
Algebraically, the transformation reads as:

τ = −1 +
2
h

(t − t0)

t − t0 =
h

2
(τ + 1)

dt =
h

2
dτ .

(7.133)

The integral (7.130) thus may be written as:
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t0 t0 +h

+1�1

t

�

Fig. 7.18. Transformation of the independent argument t

α(t0 + h) =
(

h

2

)q+2−n
+1∫

−1

q+1−n∏
j=1

(τ − τj) Z̃−1(t′
(
τ ′)
)
G
(
t′(τ ′)

)
dτ ′ . (7.134)

This result formally proves that, in general and independently of the selection
of the collocation epochs τj in the interval Ĩ

def= [−1, +1], the local approxi-
mation error is bound by hq+2−n for an integration order q.

The result (7.134) indicates that even a much better approximation may
be achieved at t = t0 + h, provided the collocation epochs τj are defined as
the roots of the Legendre polynomial Pq+1−n(τ) of degree q + 1 − n. This
can be formally proved by introducing an auxiliary function X(t(τ)) and by
representing it as an infinite series of the Legendre polynomials Pi(τ) , i =
0, 1, 2, . . . :

X
(
t(τ)
) def= Z̃−1

(
t(τ)
)

G
(
t(τ)
)

=
∞∑

i=0

(
h

2

)i
Xi Pi(τ) . (7.135)

Assuming that the collocation epochs τj are the roots of the Legendre poly-
nomial of degree q + 1 − n we may write this polynomial as

q+1−n∏
j=1

(τ − τj) = ξ Pq+1−n(τ) , (7.136)

where the normalization constant ξ is of no interest in our context. The
integral (7.134) thus may be brought into the form

α(t0 + h) = ξ

(
h

2

)2q+3−2n

Xq+1−n

+1∫
−1

P 2
q+1−n(τ ′) dτ ′ , (7.137)

where use was made of the orthogonality properties

+1∫
−1

Pq+1−n(τ ′) Pl(τ ′) dτ ′ = 0 , l �= q + 1 − n
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of the Legendre polynomials. Assuming that the Legendre polynomials Li(τ)
are fully normalized, we may even write:

α(t0 + h) = ξ

(
h

2

)2q+3−2n

Xq+1−n . (7.138)

Observe that the excellent error property (7.138) can only be achieved for
one time argument, namely for t0 + h. For any other time argument t0 + ∆t,
the error behavior of the numerical solution is given by eqn. (7.134). The
improvement achieved at t0 + h by selecting the collocation epochs as the
roots of the Legendre polynomial of degree q+1−n w.r.t. every other selection
are substantial. One achieves in essence a doubling of the error order!

7.6.5 Collocation Applied to Numerical Quadrature

So far, we only considered solutions of ordinary differential equation systems
giving an approximating function as a result. If we apply the same principle
to the numerical solution of integrals, this simply means that we want to find
the indefinite integral or the primitive function y(t) of a function f(t) in an
interval: ∫

f(t′) dt′ = y(t) + C , (7.139)

where, in our applications, the integration constant C is usually given by
the value of y(t) at an initial epoch t0. By taking the first derivative of this
equation we obtain the underlying differential equation:

ẏ = f(t) . (7.140)

With this understanding it is sufficient for the solution of integrals to consider
only scalar equations of first order, because the vectorial system of d equations
of type

ẏ = f (t) (7.141)

is actually decomposed into d separate scalar equations, and because for an
equation of order n > 1 one may first calculate the solution function y(n−1)

and then integrate this approximating function y(n−1)(t) n−1 times – which
does not pose a problem when using polynomials as approximating functions.

The definite integral between the limits t0 and t0 + h may now be simply
defined as the difference of the values of the primitive function at t = t0 + h
and t = t0 :

t0+h∫
t0

f(t′) dt′ = y(t0 + h) − y(t0) . (7.142)
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With these introductory remarks the problem of numerical quadrature was
considerably reduced. The system of condition equations may be transcribed
from eqns. (7.125)

q∑
l=1

1
(l − 1)!

(
t0j − t∗0

)l−1
y
(l)
0 = f(t0j ) , j = 1, 2, . . . , q

q∑
l=1

τ l−1
j

(l − 1)!

(
h

2

)l−1

y
(l)
0 = f(t0j ) , j = 1, 2, . . . , q ,

(7.143)

where the origin of the development t∗0
def= t0 + h

2 (for numerical and for
symmetry reasons) was selected as the midpoint of the interval I0 = [t0, t0 +
h] and the relative time argument τ assuming the values τ(t0) = −1 and
τ(t0 + h) = +1 is defined by the transformation

τ
def=

2(t − t∗0)
h

. (7.144)

The above system of condition equations may be written in matrix form:

MY = F , (7.145)

where

Y T def=
(
ẏ0,
(

h
2

)
ÿ0, . . . ,

(
h
2

)q−1
y
(q)
0

)
,

FT def=
(
f(t01), f(t02), . . . , f(t0q)

)
, and

M is a matrix of dimension q with the general element

Mjl =
τ l−1

j

(l−1)! , i = 1, 2, . . . , q , j = 1, 2, . . . , q .

With the use of the relative time argument τ , the matrix M depends on the
order q and on the specific selection of the time arguments τj , but not on
the particular problem. This property allows it to compute the indefinite and
the definite integral with very concise formulae.

We observe in particular that each coefficient y
(l)
0 may be written as a linear

combination of the q function values f(t0j ) , j = 1, 2, . . . , q , and that in
consequence the definite integral between the limits t0 and t0 + h also is a
linear combination of the q function values f(t0j ) , j = 1, 2, . . . , q . The result
therefore may be written in the form:

t0+h∫
t0

f(t′) dt′ = y(t0 + h) − y(t0) =
h

2

q∑
i=1

Wi f
(
t(τi)

)
, (7.146)

where for every subdivision of the interval I0 the following error-order holds:
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t0+h∫
t0

f(t′) dt′ = y(t0 + h) − y(t0) =
h

2

q∑
i=1

Wi f(t′i) + O
(
hq+1

)
. (7.147)

If the relative time arguments are identified with the roots of the Legendre
polynomial of order q, the corresponding equation reads as

t0+h∫
t0

f(t′) dt′ = y(t0 + h) − y(t0) =
h

2

q∑
i=1

Wi f
(
t(τi)

)
+ O

(
h2q+1

)
, (7.148)

which is of course much better than what can be achieved by an “arbitrary”
(e.g., an equidistant) selection of the epochs τi . These particular methods
of numerical quadrature are called Gaussian quadrature formulae. They are
truly outstanding for the evaluation of definite integrals. There is no need
to prove the relationship (7.148): the equation is a consequence of the more
general result (7.138).

Table 7.4 gives the roots of the Legendre polynomials and the weights as-
sociated with the corresponding quadrature formulae up to order q = 10 .
Due to symmetry properties of the Legendre polynomials it is only necessary
to include the roots and weights in the right-hand side [0, 1] of the trans-
formed integration interval I ′0 = [−1, +1]. The other roots are defined by
τi = −τq+1−i , and the associated weights by Wi = Wq+1−i , i = 1, 2, . . . , q .
An integration routine, up to order q = 30 is used in the included program
package to solve integrals, where the limiting order is qmax = 30 – implying
that the error of the approximation is of the order O(h61).

Not all (but most) problems related to numerical quadrature may be solved
using the Gaussian quadrature formulae. Exceptions are perhaps the quadra-
ture of empirically given functions (where it may be much simpler to derive
a table of equally spaced function values or of functions which are provided
in tabular form). One can counter this argument by the remark that it is al-
ways possible to deduce function values at the epochs τi by interpolation. One
should, however, keep in mind that eqn. (7.148) is based on the assumption
that the function values are free of errors (except rounding errors limiting
the accuracy).

The result (7.138) assumes that the initial value problem is associated to a
linear differential equation system (which formally includes the case of an
integral). The question is whether the same subdivision of the integration
intervals Ik could also be used for the general case. This is possible in princi-
ple. The success is however limited by the fact that the function values at the
epochs τi need to be known with an accuracy of the order of h2q+1 – which
would ask for a rather large number of iterations in each subinterval. Also,
the accumulation of rounding errors would have to be considered.

Gaussian integration procedures may also be used to solve improper integrals.
We refer to [88] and to [15] for more information.
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Table 7.4. Roots τi of the Legendre polynomials and weights Wi of the Gaussian
integration procedure

Order q Index i Root τi Weight Wi

1 1 0.0000000000000000 2.0000000000000000

2 2 0.5773502691896257 1.0000000000000000

3 2 0.0000000000000000 0.8888888888888889
3 0.7745966692414834 0.5555555555555555

4 3 0.3399810435848563 0.6521451548625462
4 0.8611363115940526 0.3478548451374539

5 3 0.0000000000000000 0.5688888888888889
4 0.5384693101056831 0.4786286704993665
5 0.9061798459386640 0.2369268850561891

6 4 0.2386191860831969 0.4679139345726910
5 0.6612093864662645 0.3607615730481387
6 0.9324695142031521 0.1713244923791703

7 4 0.0000000000000000 0.4179591836734694
5 0.4058451513773972 0.3818300505051189
6 0.7415311855993945 0.2797053914892768
7 0.9491079123427586 0.1294849661688700

8 5 0.1834346424956498 0.3626837833783619
6 0.5255324099163290 0.3137066458778873
7 0.7966664774136267 0.2223810344533744
8 0.9602898564975362 0.1012285362903758

9 5 0.0000000000000000 0.3302393550012598
6 0.3242534234038089 0.3123470770400028
7 0.6133714327005904 0.2606106964029355
8 0.8360311073266358 0.1806481606948573
9 0.9681602395076261 0.0812743883615744

10 6 0.1488743389816312 0.2955242247147529
7 0.4333953941292472 0.2692667193099962
8 0.6794095682990244 0.2190863625159821
9 0.8650633666889845 0.1494513491505805
10 0.9739065285171717 0.0666713443086881

Our treatment of numerical quadrature has shown that the famous Gaussian
quadrature formulae are nothing but a special case of collocation methods,
where the “speciality” consists of the selection of the collocation epochs τj .
The approach was rewarding insofar as we saw that the solutions of linear
differential equation systems have similar properties as the solutions of inte-
grals.

Let us conclude the topic of numerical quadrature by the remark that the
Gaussian integration procedures may be introduced in many different ways.



324 7. Numerical Solutions

The analysis by Z. Kopal in [63], discussing an algebraic, a geometrical, and
an analytical approach is an excellent reference.

7.6.6 Collocation: Examples

Program LINEAR (see Chapter II- 6 of Part III) demonstrates the capabil-
ities of collocation techniques when applied to linear differential equations
(or systems of equations) and to integrals. LINEAR is based on a Fortran-77
subroutine, which is capable of generating (almost) the most general particu-
lar solution that can be associated with a linear differential equation system
of order n > 0. The order n , the approximation order q, and the dimension
d of the system are input variables of this subroutine.

The program LINEAR allows it to solve nine linear initial or boundary value
problems. Two of the problems are integrals, some of them are identical from
the mathematical point of view. The program produces a general output file,
an error file, and a tabular output file. The general output file contains the
coefficients of the numerical solution and all components of the solution vec-
tor. The tabular output file contains three columns, namely the independent
argument in the first column, the first component of the numerically inte-
grated solution in the second, and the associated error in the third column.
More information may be found in Chapter II- 6 of Part III. The problems
addressed by program LINEAR, in the order as they are proposed in the
primary menu of program LINEAR (see Chapter II- 6 of Part III), are:

1. Exponential function:

ẏ = −y

y(0) = 1
(7.149)

with the true solution
y(t) = e−t . (7.150)

2. Harmonic Oscillator:

ÿ = −y

y(0) = 1
ẏ(0) = 0

(7.151)

with the true solution
y(t) = cos t . (7.152)

3. Harmonic Oscillator: Same as problem (7.151), but solved as first order
system.
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4. Bessel’s differential equation (in a somewhat unusual explicit version):

ÿ = − t2 − n2
b

t2
y − 1

t
ẏ

nb = 0 : y(0) = 1
ẏ(0) = 0

nb > 0 : y(0) = 0

y(nb)(0) =
1

2nb

(7.153)

with the true solution
y(t) = Jnb

(t) , (7.154)

where Jnb
(t) is the Bessel function (of the first kind) with pointer nb

(named after Friedrich Wilhelm Bessel (1784–1846)).

5. Bessel’s differential equation (same as above problem), but solved as first
order system.

6. ẏ = sin t y

y(0) = e−1 (7.155)

with the exact solution
y(t) = e− cos t . (7.156)

7. Legendre’s differential equation:

ÿ =
2 t

1 − t2
ẏ − nl (nl − 1)

1 − t2
y

y(−1) = (−1)nl

ẏ(1) = +1

(7.157)

with the Legendre polynomial Lnl
(t) of degree nl (for integer values nl ≥

0) as true solution.

8. ẏ = cos t

y(0) = 0
(7.158)

with the solution

y(t) =

t∫
0

cos t′ dt′ = sin t . (7.159)

9. Special problem posed by Z. Kopal : The problem is taken from Z. Kopal
[63], where it is used to demonstrate the capabilities of methods for re-
peated integrations
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ÿ =
1 + 3 t + 2 t3

(1 + t2)
√

1 + t2
cos
√

1 + t2 − t2 (1 + t)
1 + t2

sin
√

1 + t2

y(−1) = 1
y′(0) = 0 .

(7.160)

The solution is

y(t) = 1 + (1 + t)
[
sin
√

1 + t2 − sin(1)
]

. (7.161)

It cannot be the intention to deal with all possible questions that might be
answered with program LINEAR. The following tests are meant to address
a few key issues and to stimulate further investigations. The key issues are:

• Establishment of the impact of the distribution of collocation epochs. Pro-
gram LINEAR allows to select three options (see Chapter II- 6 of Part
III):

1. Equidistant distribution in the integration interval I.

2. For the integration order q the collocation epochs are the roots of
the Chebyshev polynomial (named after Pafnutij Lwowitsch Chebyshev
(1821–1894)) of degree q + 1 − n in the interval I ′ = [−1, +1] (transfor-
mation of the original interval I = [t0, t0 + h]).

3. For the integration order q the collocation epochs are the roots of the
Legendre polynomial of degree q + 1 − n in the interval I ′ = [−1, +1]
(transformation of the original interval I = [t0, t0 + h]).

• The interval lengths typically may be much longer than in the case of
non-linear differential equation systems.

• High integration orders (up to order q ≈ 30) are allowed by program LIN-
EAR (and may make sense).

• Integrable singularities (as they are encountered, e.g., in problems (7.153),
(7.157), and (7.160)) do not matter, as long as none of the collocation
epochs is identical with the argument at which the singularity occurs.

• The accuracy of the solution at the right interval boundary t = t0 + h
is best, if the collocation epochs are defined as the roots of the Legendre
polynomials (confirmation of result (7.138)).

Let us start by solving problem (7.149) using an approximation order of
q = 20 in the interval I = [0, 10] and all three epoch selections (equidis-
tant, Chebyshev, and Legendre). The high order and the length of the in-
tegration interval impressively confirm the above statements concerning the
interval length and the order of the approximation: Linear and non-linear
problems really are problems of different categories. The approximation error
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Fig. 7.19. Integration error in problem 1 using equidistant collocation epochs,
q = 20

for equidistant collocation epochs, in units of 10−12, is shown in Figure 7.19.
The result is satisfactory throughout the interval. One should, however, keep
in mind that for t = 10 one has y(t) = e−10 ≈ 4.5 · 10−5, which means that
the relative accuracy at the right interval boundary is only ∆y/y ≈ 5.5 ·10−5.

The results are much better, if the collocation epochs are chosen as the roots
of the Chebyshev or the Legendre polynomials. Figure 7.20 shows that near
the interval boundaries the errors are about a factor of 150 smaller than in
the first case! The improvement is striking and the conclusion convincing:
If linear equations or integrals are solved numerically, the spacing between
collocation epochs should not be equidistant, but either be defined by the
spacing between the roots of the Chebyshev or the Legendre polynomials.
Figure 7.20 also shows, that on the average, over the entire integration in-
terval, the quality of the approximations is similar in both cases (Chebyshev
and Legendre), the latter case being perhaps a factor of 1.1 to 1.2 better.
The result is (as expected) different at the right interval boundary (docu-
mented by the blow-up of the results in the interval [9.5, 10]). The error at
the right interval boundary is a factor of 9.4·10−18

9.1·10−14 ≈ 10−4 smaller if the
collocation epochs are selected as the roots of the Legendre polynomial of
degree q + 1 − n and not as the roots of the Chebyshev polynomial of the
same degree. This characteristic is completely irrelevant, if the purpose of
integration is the generation of an approximating solution within the entire
integration interval. It does, however, matter, if the solution vector shall be
propagated over many intervals. Unnecessary to say that program LINEAR
could be easily generalized to serve this purpose.
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Fig. 7.20. Integration error in problem 1 using collocation epochs as roots of
Chebyshev and Legendre polynomials q = 20 (left: entire interval, right: error be-
havior near the right boundary)

The above results based on the solution of problem (7.149) may be easily
confirmed using the other examples. It is, e.g., instructive to perform the same
investigation as above using problem (7.151) and the same interval length of
h = 10 , corresponding to about 1.6 periods and the same order q = 20 of
the approximation. The accuracy (absolute and relative) of the solution is of
the order of 8.6 · 10−8 for the equidistant, of 3.2 · 10−12 for the Chebyshev,
and of 6.7 · 10−15 for the Legendre selection of collocation epochs. We might
view the solution cos t as one component of a solution vector of a circular
orbit. In the above computation we have achieved a solution with a relative
accuracy of ∼ 10−15 after 1.6 revolutions with just q+1−n = 20+1−2 = 19
function evaluations! This has to be compared to the results of the two-body
problem for circular orbits, where the same integration method (collocation)
required between 300 and 1000 function evaluations per revolution. These
facts underline that exploiting the linearity of differential equation systems
may very well reduce the computational effort.

Let us briefly discuss the differential equation (7.157) for the Legendre poly-
nomials. The problem is posed as a classical boundary value problem. More-
over, integrable singularities occur at t = ±1 . This is why the equidistant
distribution of collocation epochs cannot be used (otherwise the first and the
last grid-point would coincide with t = ±1). An error message is produced if
one tries to use this option, and processing is terminated. Also, as we know
that the solution will be a polynomial, the order of the method is constrained
to q

def= nl , where nl is the degree of the Legendre polynomial considered. If
one solve this problem with either the Chebyshev or the Legendre distribu-
tion of collocation epochs (using equidistant spacing is not allowed), you will
not observe the accuracy differences due to the collocation epochs mentioned
above: If the true solution of a differential equation is a polynomial of de-
gree q, this solution will be reproduced by any of the methods (equidistant,
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Chebyshev, Legendre), apart from the rounding errors (assuming that there
are no problems with singularities involved).

Problem (7.153) (Bessel’s differential equation) represents a conventional ini-
tial value problem for nb = 0 for a differential equation of order n = 2 , by
providing the solution vector and its first derivative at t = 0 . For higher
orders nb > 0 , the solution vector and a higher (than the first) derivative are
provided at t = 0 . The program LINEAR is obviously capable of handling
such generalized initial value problems – where nb > q would of course lead
to a disaster.

Using Bessel’s differential equation we try to answer the question whether it is
better to decompose a higher-order system into one of first order or not, from
the accuracy point of view. For the pointer nb = 0 both solution methods
can be used (options “BESSEL” for solving directly the second order system,
“BESSEL(1ST ORDER)” for solving the same problem after decomposition
into a system of first order). Figure 7.21 reminds us of the Bessel-function
J0(t) in the interval I = [0, 10] (generated with a collocation procedure of
order q = 20).

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

t

J0(t)

Fig. 7.21. Bessel function using q = 20 and Legendre distribution of collocation
epochs

Figure 7.22 contains the errors for case 1, a direct integration of the second-
order equation with order q = 20 , for case 2, an integration of the first-order
system with order q = 20 , and for case 3, an integration of the second-
order equation with an approximation order of q = 21. (The collocation
epochs were chosen as the roots of the Legendre polynomials). It must be
said that the three cases are not completely equivalent from the theoretical
point of view, and it is somewhat arbitrary which of the three cases should be
considered as equivalent. One may argue that cases 1 and 2 are equivalent,
because the solution vector y(t) = J0(t) is represented by a polynomial of
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Fig. 7.22. Errors of Bessel function J0(t) using orders q = 20, 21, 2nd and 1st
order differential equations, and Legendre distribution of collocation epochs

the same degree in the two cases. One may also argue that cases 3 and 2 are
equivalent because the first derivative of J0(t) is represented by polynomials
of the same degree, and, what is more important, because the same number of
collocation epochs were used in the two cases. Be this as it may: From Figure
7.22 we conclude that one should always try to solve directly the higher-
order equation (or system of equations) when using collocation methods.
This statement is strongly supported by the fact, that the dimension of the
linear system of equations to be solved is roughly doubled, if a second order
equation is replaced by a first order system.

In order to demonstrate that our algorithm may also be used to solve rather
tricky questions involving repeated integrals – and in order to prove that no
dedicated methods are required for this purpose – we solve Kopal’s example
(7.160) in the interval I = [−1, 0] using a collocation method of order q = 20 .
Figure 7.23 shows the integrated function, Figure 7.24 shows the associated
error. The interested reader may wish to compare these accuracies with the
results reported in [63].

7.7 Error Propagation

The two types of errors to be considered in numerical integration, namely

• the approximation errors, due to the truncation of the local approximating
functions, and

• the rounding errors, due to the fact that each number only is represented
by a finite number of digits,

were already identified in section 7.5.4.
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Fig. 7.23. Kopal’s example using q = 20 and Legendre distribution of collocation
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Fig. 7.24. Error of numerical solution of Kopal’s example using q = 20 and Leg-
endre distribution of Collocation epochs

The numerical examples in sections 7.5.4 and 7.5.5 gave a first impression of
the accumulation of these errors when integrating two-body orbits. In this
chapter we derive (some of) the laws of error propagation. Many of these
laws are problem independent, others are only applicable to the (pure and
perturbed) two-body motion.

In order to understand the accumulation of rounding errors the essential ele-
ments of computer-based algebra are reviewed briefly in section 7.7.1. Section
7.7.2 deals with rounding errors and their statistical prediction. Two-body
orbits illustrate the theoretical developments. We first define the rounding er-
rors introduced into the set of initial values referring to epoch tk. From these
local errors one may calculate the resulting changes of the first integrals, i.e.,
of the orbital elements. The error of the semi-major axis a is provided in
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particular. The accumulated rounding error in one of the first integrals at
epoch tN , due to the errors introduced at the epochs tk , k = 1, 2, . . . , N ,
may then be easily calculated as the plain sum of the epoch-specific errors
in the first integral considered. The error propagation in the semi-major axis
is of particular importance, because an error in the semi-major axis a, intro-
duced at epoch tk, induces an error in the mean motion, therefore also in the
mean anomaly σ(t) for the time t ≥ tk . The accumulated error in the mean
anomaly σ(t) due to the epoch-specific errors in a is derived towards the end
of this section.

The approximation error and its accumulation are studied in section 7.7.3.
The local error function referring to tk is provided for the two-body motion for
collocation and multistep methods. Two case studies illustrate the problems.
Based on the results of sections 7.7.2 and 7.7.3 a rule of thumb for the optimal
stepsize for orbits with small eccentricities is derived in section 7.7.4.

Some results of the error propagation theory developed up to section 7.7.4 are
strictly valid only for the two-body motion. They may, however, also be used
to describe approximately the error propagation of the perturbed two-body
motion, provided the perturbations are small compared to the main term,
and provided the integration interval is not excessively long. Should one or
both of these assumptions be wrong, the error propagation theory must be
put on a more general basis. The variational equations, as introduced in
Chapter 5, are the essential tools in this case. These advanced aspects of
error propagation are briefly sketched in the concluding section 7.7.5 of this
chapter.

7.7.1 Rounding Errors in Digital Computers

In digital computers rounding of the result of an arithmetic operation is a
part of the floating-point arithmetic environment. Each real number x is
approximated by a rational number r, called floating-point number. Each
floating-point number r is in turn represented by

• the absolute value |r| of r, defined by an integer mantissa M consisting of
a fixed number m of digits di in the system of numbers with base b,

• the sign s of r, and

• the integer exponent e in the system of numbers with base b.

Each floating-point number r may be brought into the form

r = s M b e−m+1 = s {d1d2 . . . dm} b e−m+1 , (7.162)

where d1 is the most significant, dm the least significant digit of the mantissa
M . We may think of s as an integer assuming either the value s = +1 for
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r ≥ 0 or s = −1 for r < 0 . Internally, the sign occupies only one “bit”, the
basic storage unit. A bit may assume two states – exactly what is needed to
define a sign or one digit in the binary system (base b = 2).

The floating-point number is called “normalized”, if the most significant digit
d1 �= 0 . Due to the representation (7.162), a normalized number r with
exponent e = 0 has a value

1 ≤ |r| < b . (7.163)

The precision of a particular floating-point arithmetic environment is referred
to as the smallest number εm , which, when added to the number 1, gives a
floating-point number r̃ �= r . Roughly speaking, εm may be identified with
the numerical value of the least significant digit dm of a number r with |r| ≈ 1
and an exponent er = −1 :

εm = 1 · b−m+1 . (7.164)

The program system described in Part III is based on FORTRAN double
precision in an environment, for which

b = 2 and m = 53 , (7.165)

which implies that
εm = 2−52 = 2.22 · 10−16 . (7.166)

Different values may result if the program system is compiled using a different
floating-point environment. For more information concerning floating-point
representation and machine-specific questions we refer to [88].

Let r be the floating-point result of an arithmetic operation, the exact value
of which is x. The result of this operation usually is a floating point number
with more than m digits. Consequently, this internal result has to be rounded
to the nearest floating-point number with m digits. The statistical charac-
teristics of the rounding operation are the expectation value E(r) and the
variance var(r) of the result. When rounding the number x it is assumed that
the expectation value E(r) of the rounded number r equals the true value:

E(r) = x . (7.167)

From now on we assume that perfect rounding is implemented. If the inter-
mediary result (before the rounding operation) were available with an infinite
number of digits, the variance var(r), expressed in units of the least significant
digit of the result x, is given by:

var(r) = var(r − x) = E
(
(r − x)2

) 0.5∫
−0.5

x′2 dx′ =
1
12

. (7.168)

The situation is more complicated if the intermediary result (before rounding)
is only available with m + 1 digit (e.g., in the binary system of numbers). In
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the case of numerical integration we may, however, usually assume that more
digits are available – at least where the essential arithmetic operations are
concerned. Therefore we assume that eqns. (7.167) and (7.168) hold. Variance
and expectation value of a floating point operation are thus assumed to be
given by:

E(r) = x and var(r − x) = E
(
(r − x)2

)
=

ε2
m

12
b2er . (7.169)

Equations (7.169) are the basis for the statistical treatment of rounding er-
rors.

Rounding is of vital importance, but it is not necessarily implemented in
all floating-point environments. In Chapter 20, Press et al. [88], provide so-
called “less numerical algorithms” capable of extracting the “essentials” of a
floating-point arithmetics environment.

As a side-remark we mention that the author, when writing his Ph.D. thesis,
was exposed to a computer environment where numbers were truncated and
not rounded. The consequences were rather dramatic: Because in the case of
truncation E(|r|) < |x| for each arithmetic operation (where x is the true,
r the floating-point result), any numerically integrated orbit inevitably was
shrinking (similar results would be obtained with correct rounding in the
presence of a drag (!)). For more information consult [9].

If rounding is done properly, the expectation value of the numerical approx-
imation equals its true value E(r) = x . The actual error of a numerically
integrated trajectory is therefore governed by the variance of the accumu-
lated errors and not by their expectation values.

7.7.2 Propagation of Rounding Errors

Local Rounding Errors in the Initial Values. Assuming that eqns.
(7.169) hold it is in principle a straightforward procedure to calculate the
resulting rounding error even for complicated algorithms. Keeping in mind
the complexity of the algorithms for numerical integration, such a correct
and straightforward approach is, however, hopelessly complicated, in prac-
tice. Thanks to the hierarchy of arithmetic operations we may fortunately
reduce this complexity by assuming that each component of the new initial
values calculated at the boundary tk of the subinterval Ik−1 contains exactly
one rounding error. These rounding errors are defined by:

ỹ(i)(tk) = y(i)(tk) + εki , i = 0, 1, . . . , n − 1 , (7.170)

where ỹ(i)(tk) is the rounded floating-point result, y(i)(tk) the true result,
and εki the column matrix of the rounding errors of the initial value matrix
y(i)(tk). Approximation errors are not considered (assumed to be zero) here.
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We assume, in other words, that the rounding errors introduced at tk are
merely due to one arithmetic operation “new initial value at tk = previous
initial value at tk−1 plus increment”. The old initial values and the increment
are considered as errorfree in this context. Moreover we assume that different
rounding errors are independent, leading to a diagonal variance-covariance
matrix (containing the expectation values of the products εkil

εkim , l, m =
1, 2, . . . , d ; the variances of the errors εkil

reside on the diagonal of this ma-
trix, the so-called covariances, i.e., the expectation values E(εkil

εkim) , l �= m,
are the off-diagonal elements):

E(εki) = 0 , i = 0, 1, . . . , n − 1

cov(εki) =
ε2

m

12

⎛
⎜⎜⎜⎜⎝

b2eki1 0 0 . . . 0
0 b2eki2 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
0 0 0 . . . b2ekid

⎞
⎟⎟⎟⎟⎠ , i = 0, 1, . . . , n − 1 ,

(7.171)

where ekil
is the exponent in the binary system b = 2 of the component l of

derivative i of the new initial value y(tk).

The model (7.170, 7.171) is general in the sense that it may be used for any
initial value problem, not just in Celestial Mechanics. Equations (7.170, 7.171)
assume that – from the point of view of the rounding errors – each algorithm
is equivalent to the Euler algorithm (7.11, 7.12) and that the rounding errors
in the increments (“new minus old” initial values) are negligible (and that
the rounding takes place when adding the small increment to the “old” initial
values). Due to the neglect of rounding errors in the increments the model is
expected to be a fair approximation of the real situation for small stepsizes
hk.

If the solution vector y(t) is a (quasi-)periodic function of time, as it is
often the case in Celestial Mechanics, the assumptions (7.171) may be further
simplified. We may in essence forget about the component-specific exponents
and use the approximation:

E(εki) = 0 , i = 0, 1, . . . , n − 1

var(εki) =
ε2

m

12
b2ei,max E , i = 0, 1, . . . , n − 1 ,

(7.172)

where ei,max is the maximum exponent assumed by the components of the
derivatives i of the solution vector in its quasi-periodic movement in time t
and E is the unit matrix of dimension d.

From now on we are going to use the simplified model (7.170, 7.172) for our
developments.
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Local Rounding Errors in First Integrals. Using the model (7.170,
7.172) for the errors introduced into the initial values at tk , the error of
any function of these initial values may be easily computed. It is in particu-
lar possible to compute the errors in the first integrals of motion (if they are
known).

Let us apply the above results to the integration of the two-body problem.
Let us denote the change in the semi-major axis due to the rounding errors
introduced at tk by δak . This error in the semi-major axis a of the two-body
motion is calculated as follows (compare eqn. (4.20)):

δak =
2 a2

µ

{
µ

r3
k

r(tk) · εk0 + ṙ(tk) · εk1

}
, (7.173)

where rk = |r(tk)| . Using the error model (7.170, 7.172) we obtain immedi-
ately

E(δak) = 0 , (7.174)

because the expectation value of a linear combination of independent random
variables is given by the same linear combination of the individual expectation
values, and

var(δak) =
ε2

m

12
4 a4

µ2

(
µ2

r4
k

b2e0,max + ṙ2
k b2e1,max

)
, (7.175)

because the variance of a linear combination of independent random variables
is given by the same linear combination of the individual variances. For orbits
with small eccentricities the approximations rk ≈ a and ṙ2

k ≈ n2 a2 may be
used. Using in addition the relationship n2 a3 = µ of the two-body problem,
the above expression may be approximated by

var(δak) =
ε2

m

3

(
b2e0,max +

1
n2

b2e1,max

)
≈ 2 ε2

m

3
b2e0,max . (7.176)

The latter approximation is justified by the fact that |ṙ| = na for circular
orbits, meaning that the errors in the velocity components, which originally
were much smaller than the errors in the coordinates, are blown up to the
same size as those in the coordinates. Observe, that in this approximation
the variances do no longer depend on tk and that the index k might be left
out.

Accumulation of Rounding Errors in First Integrals. As the first inte-
grals are constants in time, the accumulated error after N steps (subintervals)
is simply computed as the sum of the local rounding errors introduced in each
step. Using the approximation (7.176) for the local error in a we obtain the
accumulated rounding error at tN as the plain sum of the local rounding
errors:
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δa(tN ) =
N∑

k=1

δak . (7.177)

The expectation value and the variance of this quantity is:

E
(
δa(tN )

)
= 0 (7.178)

and

var
(
a(tN )

)
=

2 ε2
m

3

N∑
k=1

b2e0,max =
2
3

ε2
m b2e0,max N . (7.179)

Consequently, the mean error σ
(
a(tN )

)
in the semi-major axis due to the

accumulation of the rounding errors may be approximated by√
var
(
a(tN )

)
=
√

2
3 εm be0,max

√
N . (7.180)

The result derived for the semi-major axis may be generalized: The accumu-
lated rounding error of a first integral is always equivalent to the error of a
sum of numbers, which in turn is equivalent to the error of a definite integral.

Let us illustrate this theory of rounding errors by an example. The orbit of
Jupiter, with a semi-major axis of a ≈ 5.208 AU (this implies e0,max = 2 in the
binary system) and an eccentricity of e ≈ 0.048 , was numerically integrated
over one million years (extending the integration interval of previous tests
by a factor of one thousand). The integration was performed with program
PLASYS using a multistep method of order q = 14 with stepsizes h = 25 days
and h = 30 days, implying that 14.6 million integration steps had to be
performed when using the stepsize of h = 25 days, 12.2 million steps when
using a stepsize of h = 30 days.

Figure 7.25 shows the development of the semi-major axis and the corre-

sponding error limits ±
√

var
(
a(tN )

)
, which, according to the theory of nor-

mally distributed random errors, should contain 67% of the actual errors.
It is important that the actual errors are of the same order of magnitude
as the statistical estimates. They lie (almost) entirely within the error lim-
its given by the above theory. We may certainly conclude that rounding is
performed in the floating-point environment used (tests of this kind actually
would reveal serious rounding deficiencies).

The errors in all other integrals of motion (the orbital elements) show a similar
behavior. It is remarkable that, despite the fact that the integration of the
Newton-Euler equations of motion was performed in rectangular coordinates,
the errors in the first integrals are the errors corresponding to a sum (integral)
of random errors with identical variances (and expectation value 0).

Accumulation of Rounding Errors in Mean Anomaly. The accumu-
lated error δσ(tN ) in the mean anomaly σ(tN ) at tN may be computed as a
weighted sum of the local errors δak, where the weights are (tN − tk) :
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Fig. 7.25. Actual errors (in AU) in semi-major axis a and ±
√

var(a) error limits
for an integration of Jupiter over one million years in steps of 25 days (upper part)
and 30 days with multistep method

δσ(tN ) = − 3
2

n

a

N∑
k=1

(tN − tk) δak . (7.181)

The expectation value of δσ(tN ) is of course zero

E
(
δσ(tN )

)
= 0 (7.182)

and the variance of this expression, for orbits with a small eccentricity, may
be computed as

var
(
δσ(tN )

)
=

9
4

n2

a2
var(δa)

N∑
k=1

(tN − tk)2 . (7.183)

If the stepsize is (close to) constant (as it is, e.g., the case for the multistep
method used in the tests illustrated by Figure 7.25), we obtain

N∑
k=1

(tN − tk)2 = h2
N∑

k=1

(N − k)2 ≈ h2 N3

3
. (7.184)
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Introducing the above equation into eqn. (7.183) and taking into account
formula (7.176) gives the final result for the variance of the mean anomaly:

var
(
δσ(tN )

)
=

9
4

n2

a2

2 ε2
m

3
b2e0,max h2 N3

3
=

n2 h2

2 a2
ε2

m b2e0,max N3 . (7.185)

The expected mean error of the anomaly after N integration steps of equal
length is therefore given by the following equation:√

var
(
δσ(tN )

)
=

√
1
2

n h

a
εm be0,max

√
N3 . (7.186)

Whereas the mean error (root of the variance) of a numerically integrated first
integral was growing with a

√
N -law (N being the number of integration steps

performed), the error in the mean anomaly is expected to grow according to
a
√

N3-law.

Figure 7.26 compares the actual errors in the argument of latitude u of the
numerically integrated two-body orbit of Jupiter over one million years. The
integration specifications are the same as those already mentioned in the
context of Figure 7.25. For the small eccentricity of e ≈ 0.048 of Jupiter’s
orbit the error in the argument of latitude u is expected to be close to the
error in the mean anomaly. This is confirmed by Figure 7.26. It is satisfactory
to see that the actual errors are well captured by the simple formula (7.186).

It is important to fix the orders of magnitude: whereas the errors in the first
integrals, even after some 100000 revolutions, still are known to within a few
parts in 10−12, the argument of latitude (in degrees) may already contain
errors of the order of 10−5 degrees, corresponding to few hundredths (10−2)
of an arcsecond. This, on the other hand, is sufficient for most studies one
might wish to perform.

If algorithms for numerical integration are tested using the two-body problem,
one is often not aware of the structure of error propagation as it was outlined
here (

√
N -law for the integrals of motion, N3/2-law for the mean anomaly).

Usually, only the N3/2-law for the argument of latitude, which also trans-
lates into a N3/2-law for the error in the coordinates (and the velocities),
is observed (if a power law is mentioned at all). The errors in the position
vector have, for orbits with small eccentricities, the following characteristic
structure:

∆r(t) ≈ R3(−Ω) R1(−i) R3(−ω)

⎛
⎝a [ cos(σ + δσ) − cosσ ]

a [ sin(σ + δσ) − sin σ ]
0

⎞
⎠

≈ R3(−Ω) R1(−i) R3(−ω)

⎛
⎝− a δσ sinσ

+ a δσ cosσ
0

⎞
⎠ ,

(7.187)

i.e., the errors in the coordinates show an oscillation with the revolution
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Fig. 7.26. Actual errors in argument of latitude u (in degrees) and ±
√

var(u) error
limits for an integration of Jupiter over one million years in steps of 25 days (upper
part) and 30 days with multistep method

period as basic period and an amplitude growing with the N3/2-law of formula
(7.186).

The theory of the accumulation of rounding errors, as it developed in this
paragraph, is based on the fundamental article [26] “On the accumulation
of errors in numerical integration” by Dirk Brouwer (1902–1966) in 1937.
Brouwer’s laws were given for a special integration method and for the envi-
ronment of “manual” computation (fixed number of decimal digits including
leading zeros). This is why the coefficients in Brouwer’s work and in our pre-
sentation differ somewhat. Formulae (7.180) and (7.186) are applicable to a
broad class of integration methods. It is only required that the increments
added to the old initial values are small (compared to the latter values) and
that the rounding error of the increment itself is negligible. Formulae (7.180)
and (7.186) describe the rounding laws for all single-step methods, in par-
ticular Taylor series, Runge-Kutta methods, collocation and those multistep
methods equivalent to collocation methods.
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7.7.3 Propagation of Approximation Errors

Approximation Errors: A First Case Study. Figures 7.25 and 7.26
might give the impression that it is possible to eliminate approximation er-
rors completely in a numerical integration procedure. This is not true and
we will see that eventually, if the integration interval is made long enough,
approximation errors must become more important as an error source than
rounding errors. There are two ways to make the approximation error visible,
namely

1. by increasing the length of the integration interval – a method which
might be pretty costly – or

2. by increasing the stepsize.

The latter option is used to introduce the problem: The orbit of Jupiter was
numerically integrated as before (see Figures 7.25 and 7.26), but instead of
using stepsizes of h = 25 or h = 30 days one of h = 40 days was used. Observe
that a relatively modest change of the stepsize leads to a rather significant
change in the error behavior. As before, the integration was performed with
a multistep method (with one interpolation step).

The result in Figure 7.27 shows that the errors are much larger than expected
by the error limits (expected for the rounding errors). Instead of a

√
N -law

for the semi-major axis a and a
√

N3-law for the argument of latitude u, a
growth proportional to N in a and one proportional to N2 in u are observed.
The power-laws extracted from in Figure 7.27 support the above remark,
that the approximation errors may be made visible (for any choice of h) by
increasing the length of the integration interval.

The Local Error Function in Review. Equation (7.85) represents an ap-
proximation for the local error function of collocation methods. For multistep
methods the corresponding formula follows from the representation (7.113).
For convenience we include the explicit version of these error functions for
both, the collocation and the multistep methods. As opposed to section 7.5.5,
where we used the term of order q to get an estimate of the approximation
error for the collocation method of order q for the purpose of error control,
we have to use here the terms of order q+1 to assess the quality of a solution
of order q . The error function then reads as:
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ε
(i)
k (t) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

collocation{
q+1∑
l=n

(l − n)!
(l − i)!

M̃
−1

l+1−n,j+1−n τ l−i

}(
hk

q + 1 − n

)q+1−i

y
(q+1)
k0 ;

multistep{
q+1∑
l=n

(l − n)!
(l − i)!

Ñ
−1

l+1−n,j+1−n τ l−i

}
hq+1−i y

(q+1)
k0 ;

i = 0, 1, . . . , n − 1 .

(7.188)

The structure of the error function formally proves the result (7.115), saying
in essence that the spacing of the tk must be made much narrower (by a
factor of (q − n)−1) in the case of the multistep methods (as compared to
the collocation method). Only the formula for the pure extrapolation method
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is supplied in eqns. (7.188). The corresponding formula for the interpolation
method is obtained by replacing Ñik by Ñint,ik (see eqn. (7.106)).

The above error functions are approximations based on the assumption that
all terms of the Taylor series higher than order q + 1 are zero – what is
of course not the case. For linear systems we showed that the correct error
function solves the linear system of equations (7.127). It is an easy task to
show that the same equation holds for general non-linear differential equation
systems, provided the matrices Ai are interpreted as the Jacobian matrices
of the function f with respect to the derivative of order i of the solution
vector. Needless to say that the dependence of the true error function on the
actual problem type is much more complicated than that of the simplified
version (7.188), where the problem dependence is uniquely contained in the
term y

(q+1)
k0 .

Be this as it may: we will assume from now on that the error function is given
by eqn. (7.188). Observe that the terms in brackets in these equations may
be interpreted as the derivatives of a scalar function er(τ) depending on the
relative time argument τ (which is defined by (7.76) for collocation methods
and by (7.110) for multistep methods). Making use of these scalar functions
the error function (7.188) may be written as:

ε
(i)
k (t) def=

⎧⎪⎪⎨
⎪⎪⎩

di

dτ i
(er,colloc)

(
hk

q + 1 − n

)q+1−i

y
(q+1)
k0 ; collocation

di

dτ i
(er,multi) hq+1−i y

(q+1)
k0 ; multistep

i = 0, 1, . . . , n − 1 .

(7.189)

Subsequently we want to analyze the error behavior of the unperturbed two-
body motion. For this purpose we need to know the error function for differ-
ential equation systems of the order n = 2 at the right interval boundary. For
collocation methods the right interval boundary corresponds to τ = q−n , for
multistep methods to τ = 1. The results are contained in Table 7.5, where the
error function is provided for the extrapolation and the interpolation method
in the case of the multistep procedure. Table 7.5 is essential for properly un-
derstanding the error characteristics of collocation and multistep methods.
Its implications are:

• The table underlines the equivalence of multistep and collocation methods
from the point of view of the error function – provided the step ratio is
defined by hcolloc : hmulti = (q − n).

• All methods of order q share the important property that the local error
εk(t) of the solution is proportional to hq+1.

• This property implies that changing the stepsize h by a factor of r changes
the local error by a factor of rq+1. It is this characteristic which makes
high-order methods so efficient.
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Table 7.5. Error function er for multistep and collocation methods of order q for
equations of order n = 2

Multistep Collocation
Extrapolation Interpolation

q er(1)
der
dτ

(1) er(1)
der
dτ

(1) er(q-n) der
dτ

(q − n)

2 0.1667 0.5000 −0.3333 −0.5000 0.1667 0.5000
3 0.1250 0.4167 −0.0417 −0.0833 0.0000 0.3333
4 0.1056 0.3750 −0.0194 −0.0417 0.1500 0.3750
5 0.0937 0.3486 −0.0118 −0.0264 0.0000 0.3111
6 0.0856 0.3299 −0.0081 −0.0188 0.1364 0.3299
7 0.0796 0.3156 −0.0060 −0.0143 0.0000 0.2929
8 0.0749 0.3042 −0.0047 −0.0114 0.1263 0.3042
9 0.0710 0.2949 −0.0038 −0.0094 0.0000 0.2791
10 0.0679 0.2870 −0.0032 −0.0079 0.1185 0.2870
11 0.0652 0.2802 −0.0027 −0.0068 0.0000 0.2683
12 0.0628 0.2743 −0.0023 −0.0059 0.1123 0.2743
13 0.0608 0.2690 −0.0020 −0.0052 0.0000 0.2597
14 0.0590 0.2644 −0.0018 −0.0047 0.1072 0.2644

• From all methods included in Table 7.5 the multistep algorithms with one
or more iterative improvement steps using eqns. (7.103) and matrix (7.106)
clearly is the best. One may, however, expect that the pure extrapolation
and the interpolation procedures are of comparable accuracy if the ratio of
the stepsizes is

hextr

hinter
=
(

0.2644
0.0047

)1/(q+1)

≈ 1.3 . (7.190)

• As the multistep method with one iteration step needs twice the number
of evaluations of the right-hand sides of the differential equation w.r.t. the
pure extrapolation method, the choice of the interpolation method is not
obvious if only the approximation errors are considered. Multistep meth-
ods with interpolation are, however, the right choice if the accumulation of
rounding errors is critical (i.e., for integrations involving billions of steps),
these methods allow for longer stepsizes and therefore minimize the ap-
proximation errors.

• It is interesting to note that er (q−n) = 0 for odd orders of the collocation
method. This fact might generate problems when making the attempt to
develop error criteria, which also try to limit the error of the solution vector
itself.

• The error behavior documented by Table 7.5 should be compared to the
error of a Taylor series truncated after the terms of order q. Assuming that
the terms of order i ≤ q could be computed “error-free” (as it can be done
for simple differential equations), the local error-term associated with a
Taylor series method simply reads as
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εr,taylor =
1

(q + 1)!
hq+1

k y(q+1). (7.191)

Comparing this to the performance of the collocation method we obtain
the ratio∣∣∣∣ εr,colloc

εr,taylor

∣∣∣∣ = er,colloc(q − n)
(q + 1)!

(q − n)q+1
≈ 2 · 10−5 , (7.192)

where the numerical value corresponds to q = 12. We obtain the surprising
result that the error behavior of the collocation method is much better
than that of the Taylor series solution of the same order. The comparison
is about fair: In both methods q + 1 terms (either the derivatives at tk or
the right-hand sides f(tkj ) of the differential equation systems) have to be
calculated “from scratch”.

• The same comparison could be made for the multistep method. The result
reads as follows:∣∣∣∣ εr,multi

εr,taylor

∣∣∣∣ = er,multi(1) (q + 1)! ≈ 1.7 · 109 , (7.193)

which of course clearly speaks in favor of the Taylor series method! The
comparison is unfair, however: The multistep methods only need to evalu-
ate the right-hand sides of the differential equation systems once per step
(for the pure extrapolation method), whereas q derivatives have to be cal-
culated in the case of the Taylor series.

The Error Function of the Two-body Problem. In Celestial Mechanics
it is important to know the local error associated with the two-body solution.
The circular orbit is an important and simple special case. Its derivatives are
easily calculated as follows:

r(2i) = (−1)i n2i r , i = 0, 1, 2, . . . ,

r(2i+1) = (−1)i n2i ṙ , i = 0, 1, 2, . . . .
(7.194)

Using the approximation (7.189) for the local error function (of the multistep
method) we obtain

εk(tk + h) = er(1) (nh)q h

{
(−1)q/2 ṙ , q even
(−1)(q+1)/2 n r , q odd

,

ε̇k(tk + h) =
der(1)

dτ
(nh)q

{
(−1)q/2 ṙ , q even
(−1)(q+1)/2 n r , q odd

,
(7.195)

where the subscript “multi” was left out.

This result allows it to study the error propagation when integrating a circular
orbit. As usual, we are particularly interested in the impact of the local
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approximation error on the semi-major axis a. Adapting formula (7.173) to
the approximation errors we obtain:

δak =
2 a2

µ

{
µ

r3
k

r(tk) · εk(tk + h) + ṙ(tk) · ε̇k(tk + h)
}

. (7.196)

Taking into account that the scalar product r · ṙ = 0 for a circular orbit, the
error of the semi-major axis is obtained by introducing the above approxi-
mation for εk and its first derivative into formula (7.173):

δak = 2 a (nh)q

{
(−1)q/2 der(1)

dτ ; q even

(−1)(q+1)/2 nh er ; q odd
. (7.197)

Equation (7.197) promises that methods of an odd order q have to be pre-
ferred to methods of an even order for two-body orbits with small eccentrici-
ties, because the error in a is bound by hq+1 rather than hq. This result only
holds for the semi-major axis a – not for the other orbital elements (first
integrals).

Eventually, we are able to check whether the results in Figure 7.27 are in
accordance with theory. For Jupiter, a ≈ 5.208 and therefore n ≈ 1.45 · 10−3.
As the stepsize was h = 40 days, the order q = 14 , and as a multistep method
with one interpolation step was used, we expect an error of

δak = 2 a (nh)q (−1)q/2 der(1)
dτ

≈ −2.39 · 10−19 (7.198)

in the semi-major axis a per integration step. Observe, that in each step
the same error is made. Therefore the expected accumulated error after one
million years simply is the number of steps times the value in the above
formula:

δa(tN ) = 2 N a (nh)q (−1)q/2 der(1)
dτ

≈ −2.18 · 10−12 , (7.199)

where N = 1000000·365.25
40 ≈ 9131250 .

A negative drift (as observed in Figure 7.27) in the semi-major axis a is
predicted by our theory. The order of magnitude, however, is disappointingly
wrong: The error according to formula (7.199) is by about a factor of 50 too
small to explain the actual errors in Figure 7.27.

This failure of theory is uniquely due to the small eccentricity of e = 0.048
of Jupiter’s orbit! Repeating the same integration with an orbit of e = 0
would confirm the law (7.199). (Actually, one would no longer observe the
accumulated approximation error, but the accumulated rounding error, when
performing the integration with h = 40 and e = 0 ; the law may be estab-
lished, e.g., with h = 60 ).
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It is therefore important to note, that even for orbits with small eccentricities
with e < 0.1 a useful stepsize cannot be predicted with a formula of type
(7.199), which is based on the assumption of a circular orbit.

In order to obtain a useful formula we have to compute the mean values of
the following scalar products over one revolution period U :

χ′
1(q, e)

def=
1
U

∣∣∣∣∣∣
U∫

0

r(t)r(q)(t) dt

∣∣∣∣∣∣ ; χ′
2(q, e)

def=
1
U

∣∣∣∣∣∣
U∫

0

ṙ(t)r(q)(t) dt

∣∣∣∣∣∣ .

(7.200)
It turns out, that for even orders q only χ1 �= 0, for odd orders only χ2 �= 0 .
It is therefore possible to define the amplification factor

χ(q, e) def=

{
χ′

1(q, e)/χ′
1(q, 0) ; q odd

χ′
2(q, e)/χ′

2(q, 0) ; q even
. (7.201)

Averaged over a revolution, the change in the semi-major axis a per step
may therefore simply be obtained from the corresponding relation (7.197) for
circular orbits by multiplying it with the amplification factor χ(q + 1, e) :

δak = 2 a (nh)q χ(q + 1, e)

{
(−1)q/2 der(1)

dτ ; q even

(−1)(q+1)/2 nh er(1) ; q odd
. (7.202)

The amplification factors χ(q, e) are contained in Table 7.6. They are based
on the computation of the Taylor series coefficients using the algorithm (7.27).

For methods with constant stepsize, the accumulated error in the semi-major
axis a may now be calculated from the mean error (7.202) per step simply
by multiplying this equation with the number N of integration steps in the
entire interval:

δa(TN ) = 2 a (nh)q χ(q + 1, e)N

{
(−1)q/2 der

dτ ; q even

(−1)(q+1)/2 nh er ; q odd
. (7.203)

If we apply this result to the integration underlying Figure 7.27 we obtain
(h = 40 , q = 14 , e = 0.048 ≈ 0.05 , multistep-method with interpolation):

δa(tN ) = 2 a (nh)q χ(q+1, e)N
der

dτ
= −2.39·10−19·87.525 N ≈ −190·10−12 ,

(7.204)
giving eventually the correct order of magnitude for the accumulated error
actually observed in Figure 7.27 (!).

Using the relations N = tN

h , δn(tN ) = − 3
2

n
a δa(tN ) it is now easy to com-

pute the error in the mean anomaly σ(t) as an integral of δn(t) over time
t :
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Table 7.6. Amplification of absolute values of derivatives of an orbit with eccen-
tricity e = 0.05 w.r.t. derivatives of a circular orbit

Mean Amplification of Errors χ(e) in a over Revolution

q χ(0) χ(0.025) χ(0.05) χ(0.075) χ(0.100) χ(0.125)

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.002 1.008 1.017 1.031 1.048
4 1.000 1.002 1.008 1.017 1.031 1.048
5 1.000 1.009 1.038 1.087 1.158 1.255
6 1.000 1.009 1.038 1.087 1.158 1.255
7 1.000 1.040 1.163 1.382 1.718 2.209
8 1.000 1.040 1.163 1.382 1.718 2.209
9 1.000 1.162 1.689 2.704 4.450 7.351
10 1.000 1.162 1.689 2.704 4.451 7.357
11 1.000 1.668 4.043 9.399 20.504 42.898
12 1.000 1.668 4.043 9.400 20.523 43.053
13 1.000 3.827 15.871 50.818 143.741 379.445
14 1.000 3.827 15.872 50.855 144.292 384.361
15 1.000 13.710 87.525 383.631 1418.391 4753.541
16 1.000 13.710 87.549 384.682 1436.464 4934.982
17 1.000 65.100 638.604 3888.377 18871.046 80547.853
18 1.000 65.101 639.248 3922.941 19543.482 88014.411

δσ(t) = − 3
2

n

a

1
h

t∫
t0

δa(t′) t′ dt′ , (7.205)

where δa(t) has to be replaced by eqn. (7.202). Formula (7.205) actually
explains Figure 7.27 (bottom). (For small eccentricities we may consider the
mean anomaly σ(t) and the argument of latitude u(t) as equivalent.)

The local approximation error was given above for the multistep method. For
the collocation method h has to be replaced by hk

q−n and er(1) by er(q − n).

7.7.4 A Rule of Thumb for Integrating Orbits
of Small Eccentricities with Constant Stepsize Methods

Based on our knowledge of the accumulation of rounding and approximation
errors, and based on our analysis of the impact of the eccentricity, we are
now able to derive a formula for the optimum stepsize hopt promising the
most accurate results in the integration interval of length ∆t for all methods
based on the collocation principle. We consider the stepsize h as optimal if,
at the end of the integration interval, the accumulated rounding error and
the accumulated approximation error in the semi-major axis are of the same
order of magnitude.
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We have seen that the propagation of rounding errors (root of variance) in a
obeys a law of type

δa(TN) = cr

√
N , (7.206)

whereas the propagation of approximation errors obeys a law of type

δa(TN ) = ca N (nh)q , (7.207)

where, for the sake of simplicity, we assumed that the order q is even. ca and
cr are known constants. Assuming constant stepsize (which makes sense for
orbits with small eccentricities) we may replace N by N = ∆t

h , which leads
to the following formula for the optimum stepsize

n hopt =
(

cr

ca

√
n∆t

) 2
2q−1

. (7.208)

This equation may be brought into a form which is very easy to interpret
by replacing the stepsize by the optimum number of integration steps per
revolution

Nst/rev =
2π

n hopt
, (7.209)

and by using on the right-hand side the approximation

n ∆t = 2π Nrev , (7.210)

where Nrev is the total number of revolutions. Formula (7.208) may thus be
replaced by

Nst/rev = 2π

(
ca

√
2π Nrev

cr

) 2
2q−1

. (7.211)

According to eqn. (7.180) we have

cr =
√

2
3 εm be0,max ≈ 7.25 · 10−16 , (7.212)

whereas eqn. (7.203) provides

ca = 2 a χ(q + 1, e)
∣∣∣∣der(1)

dτ

∣∣∣∣ ≈ 4.28 . (7.213)

The numerical values are given for the example of Figure 7.27.

For the integration interval of one million years, the number of revolutions for
Jupiter is Nrev ≈ 1000000

11.86 ≈ 84317 . As the semi-major axis is a ≈ 5.208 AU,
formula (7.211) gives the result

Nst/rev = 2π

(
ca

√
2π Nrev

cr

) 2
2q−1

≈ 151 , (7.214)
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corresponding to a stepsize of about 29 days for multistep procedures with
(at least) one interpolation step.

As we can see the tests were performed with “reasonable” stepsizes. The rule
of thumb (7.211) may be used to answer a few questions:

• For multistep methods without interpolation the stepsize should be, as
established above, about a factor of 1.3 shorter.

• For collocation methods the stepsize is a factor of q − n longer.

• What would be the optimum stepsize, if the integration interval would
be stretched by a factor of 1000? (integrating over one billion (109) years
instead of one million years in our example)?

The change is not dramatic: The only entry changing in formula (7.211)
is the number of revolutions Nrev , which is a linear function of time. All
in all, the stepsize has to be reduced by a factor of only 1000

1
2q−1 ≈ 1.3 ,

corresponding to h ≈ 22 days in our example.

• How does the optimum stepsize depend on the eccentricity e of the orbit?

If the eccentricity would be e = 0.125 instead of 0.05, Table 7.6 tells that
the nominator of the rule of thumb (7.211) would be increased by a factor
of about 54, implying that the stepsize would have to be reduced by a
factor of about 1.35 .

If we would have integrated a precisely circular orbit the nominator in
formula (7.211) would be decreased by a factor of 87.5 , implying that the
stepsize could be increased by a factor of 1.4 .

Compared to the circular orbit, the stepsize for the integration of an ellip-
tical orbit with e = 0.125 has to be roughly cut in half compared to the
optimum stepsize for a circular orbit.

Note that the rule of thumb (7.211) does not say anything about the size
of the accumulated errors. For this purpose we have to use the rules for the
accumulation of rounding errors. As these are of the order of a few 10−12

after one million years in the semimajor axis, we have to expect an increase
in the error level of the semi-major axis by a factor of

√
1000 · 1.3 ≈ 36 , one

of
√

(1000 · 1.3)3 ≈ 4.7 · 104 in the mean anomaly (and, in view of the small
value for the eccentricity also in the argument of latitude) when integrating
over one billion years.

7.7.5 The General Law of Error Propagation

So far, we followed in essence the principles published by Brouwer [26] in
1937 to study error propagation. The error accumulation in the first integrals
was studied first, then the error approximation in the argument of latitude
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u could be derived as a consequence of the error in the semi-major axis a.
Following this procedure, useful formulae could be established for both, the
accumulated rounding errors and the accumulated approximation errors (in
the argument of latitude u, the coordinates and velocities, and other derived
quantities). The results are strictly valid for the two-body problem, they
hold approximately for the perturbed motion provided the integration period
is not of excessive length and provided the perturbations are small compared
to the main term.

One must of course ask the question what happens with more general prob-
lems. The answer is in principle very simple: For both error sources the study
of error propagation must be based on the fundamental law of error propaga-
tion (5.98) derived in Chapter 5. Before doing that it is appropriate to make
a few general comments:

• Approximation errors : The difficulties involved in calculating the (q+ i)-th
derivatives, i = 1, 2, . . . , q ≥ 10 , were considerable already in the case of
the two-body problem. It is close to impossible to obtain sound estimates
for these quantities for more general, non-trivial problems. On the positive
side we may note that a general reduction of all stepsizes involved reduces
these errors dramatically – the accumulated error is bound by a power law
of the type hq+1 for a method of order q with constant stepsize (see also
subsequent mathematical developments). It is therefore always possible to
“eliminate” this error type – even when integrating over long time periods.

• Rounding errors : If some first integrals are algebraically known for a gen-
eral dynamical problem, the error propagation in these integrals follows
exactly the rules established in sections 7.7.3 and 7.7.4 for the osculat-
ing Keplerian elements. Figures II- 4.5 in Chapter II- 4 may serve as an
example: The total energy E and the three components of the angular
momentum h are known to be conserved quantities (see eqns. (3.47) and
(3.40) in Chapter 3). The accumulated rounding errors in these quantities
therefore must follow the

√
N -law, exactly as in the case of the two-body

problem. Unfortunately it is not possible to derive a general law giving,
e.g., the ecliptical longitudes of all planets as a function of the conserved
energy (otherwise we would in essence have solved the N -body problem
“analytically”). Therefore, the error accumulation in the total energy E
and in the angular momentum vector h may be used only to check a pos-
teriori whether the integration error is governed by rounding errors (where
the

√
N -law must hold) or whether the approximation errors still played a

role (in which case a systematic pattern would be observed). Tests of this
kind may be used to establish the optimal processing strategy in a given
computer environment. They may not be used to assess the error in the
arguments of latitude, coordinates and velocities, etc. of the planets over
long time periods (typically longer than a few thousand years).
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For general problems in dynamics and for advanced problems in Celestial
Mechanics (integration over long time periods, general N -body problem, etc.)
the study of error propagation has to be based on the fundamental law of
error propagation (5.98):

∆Z̃(tN ) def=
N∑

k=0

∆Z̃k(tN ) = Z̃(tN )
N∑

k=0

Z̃−1(tk) ε̃k .

Equation (5.98) represents the accumulated error ∆Z̃(t) of the state vector
y(t) of a dynamical system at an epoch tN as a linear combination of the
local errors ε̃k introduced at each boundary epoch of the sub-intervals Ik

of the total integration interval I = [t0, tN ]. These errors may be either
approximation or rounding errors. The elements of the matrix Z̃(tN ) are the
components of the solution vector (or its n − 1 derivatives) at tN of the
n d homogeneous variational equations associated with the initial values of
the dynamical problem considered. Let us briefly sketch in the concluding
two sections how to use the above equation to deal with the propagation of
approximation and rounding errors.

Propagation of Approximation Errors: The General Law. Leaving
out all error terms of higher than (q + 2− n)-th order in the stepsize hk , the
approximation error at epoch tk may be written as:

ε̃k = hq+2−n
k

⎛
⎜⎜⎜⎜⎝

0
. . .
. . .
0

d(n−1)

dτ (n−1) (erk
) y

(q+1)
k0

⎞
⎟⎟⎟⎟⎠

def= hq+2−n
k ε̃rk , (7.215)

where ε
(i)
rk

def= ε
(i)
k

hq+1−i is the normalized local approximation error, which is
proportional to the (q + 1)-st derivative of the solution vector yk(t) and to a
factor depending on the solution method (but not on the stepsize).

Assuming constant stepsize, we easily obtain the accumulated approximation
error by introducing the above error term (7.215) into the general formula
(5.98):

∆Z(tN ) = hq+2−n Z̃(t)
N∑

k=0

Z̃−1(tk) ε̃k

= hq+1−n Z̃(t)

tN∫
t0

Z̃−1(t′) ε̃(t′) dt′ ,

(7.216)

where the sum on the right-hand side of eqn. (7.216) was approximated by
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an integral (assuming that the approximation errors at the concrete epochs
tk may be interpreted as values of a function ε̃(t)).

If an integration procedure with automatic stepsize control is used, formula
(7.216) has to be modified slightly. Let us assume that the stepsize at tk may
be expressed by

hk
def= sk h , (7.217)

where h is a meaningful reference stepsize, e.g., the mean stepsize for quasi-
periodic problems.

This leads to the following modification of formula (7.216):

∆Z(tN ) = hq+2−n Z̃(t)
N∑

k=0

sq+2−n
k Z̃−1(tk) ε̃k

= hq+1−n Z̃(t)

tN∫
t0

sq+1−n(t′) Z̃−1(t′) ε̃(t′) dt′ .

(7.218)

Formulae (7.216) and (7.218) show that the accumulated error of an integra-
tion procedure of order q is proportional to hq+1−n despite the fact that the
local errors are of the order of q + 2−n in h . They also show that the errors
of all derivatives y(i) , i = 0, 1, . . . , n − 1 , are of the same order q + 1 − n
(and not, as one might believe, of the order q + 1 − i for derivative i).

It must be pointed out that the computation of the accumulated error requires
the knowledge of (or a fair estimate of) the local error function εk , which in
term depends of the (q + 1)st derivative of the solution function. This is why
the above formulae are of greater theoretical than practical importance.

Propagation of Rounding Errors: The General Law. Equation (5.98)
is the fundamental equation for studying the accumulation of rounding er-
rors as well. As opposed to the accumulation of approximation errors we
have to consider the local rounding errors ε̃k as values of random variables.
In other words, we have to form the expectation value and the variance of
the fundamental equation (5.98), assuming the corresponding quantities of
the local rounding errors are known. The statistical properties of the local
rounding errors have been defined by eqns. (7.171). Reminding ourselves of
the notations (5.94) we may rewrite eqns. (7.171) as

E(ε̃k) = 0 (7.219)

and
var(ε̃k) = Dk , (7.220)

where matrix Dk is a diagonal matrix, the diagonal elements of which are
given by the diagonals of the matrices var(ε̃k) in eqns. (7.171).



354 7. Numerical Solutions

We are now in a position to calculate the expectation value of equation (5.98):

E
(
∆Z(tN )

)
= Z̃(t)

N∑
k=0

Z̃−1(tk) E (ε̃k) = 0 , (7.221)

i.e., the expectation value for the accumulated rounding error is zero, as well.

The variance of the accumulated rounding error is obtained as the expectation
value of the Cartesian product ∆Z(t) ⊗ ∆ZT (t):

var
(
∆Z(tN )

)
= E

(
∆Z(tN ) ⊗ ∆ZT (tN )

)

= Z̃(tN )

[
N∑

k=0

Z̃−1(tk) var (ε̃k)
(
Z̃−1(tk)

)T ]
Z̃T (tN )

= h−1 Z̃(tN )

·

⎡
⎣ tN∫

t0

s−1(t′) Z̃−1
0 (t′) var

(
ε̃(t′)

)(
Z̃−1(t′)

)T
dt′

⎤
⎦ Z̃T (tN ) ,

(7.222)

where hk = sk h and h(t) = s(t)h are defined as in the previous section,
when the accumulation of approximation errors was studied.

Equation (7.222) requires the knowledge of the local variances var
(
ε(t′)

)
.

As opposed to the case of approximation errors it is possible to come up
with fair estimates for these quantities during the integration process. If the
variational equations are solved together with the primary equations, formula
(7.222) might very well be used to compute the variance-covariance matrix
of the accumulated rounding error. It is also possible to compute only the
diagonal terms, the roots of which are representative for the errors of the
components of the solution vector and its derivatives.

Equation (7.222) also shows, that as soon as a problem is governed by round-
ing errors (and no longer by approximation errors) the accumulated error
must grow at least according to (

√
h)−1 or

√
N . The actual error propaga-

tion law is of course governed by the entire expression (7.222).

When comparing the solutions of the variational equations associated with a
perturbed trajectory with those of the corresponding two-body orbit (com-
pare, e.g., Figures 5.1 and 5.2) the limitations of using the two-body approx-
imation (instead of the formulae developed in this final section) for studying
the error propagation become apparent: Order of magnitude differences be-
tween the two types of solutions may easily occur. They are the rule when
studying resonance phenomena (see, e.g., section II- 4.3.4).



8. Orbit Determination

and Parameter Estimation

8.1 Orbit Determination
as a Parameter Estimation Problem

Orbit determination must be viewed a special case of a general parameter
estimation problem, where the parameters characterizing the orbit of a mi-
nor planet or of an artificial Earth satellite, have to be determined from
observations of these celestial bodies.

Observations are – apart from the unavoidable observation errors – values
of functions (the so-called observed functions) of the parameter estimation
problem considered. In our application the observed functions are nonlinear
in the orbit parameters. Nonlinearity and the fact that initially there may
be no approximate values available for the orbit parameters are the essential
difficulties of the orbit determination problem.

It is assumed that the readers of this book are familiar with the principles of
parameter estimation theory, in particular with the basic facts of the method
of least squares, which is the basis for the subsequent treatment. These basic
facts are briefly reviewed, so to speak en passant, using the orbit improve-
ment problem as an example in section 8.2 and when introducing the general
parameter estimation problem of satellite geodesy in section 8.5.

The orbit parameters must uniquely specify one particular solution of the
equations of motion and (possibly) the force field acting on the object. In a
pure orbit determination problem the forces acting on the bodies are assumed
to be known as a function of the bodies’ positions (and possibly velocities).
In this case, the orbit parameters are uniquely quantities defining the initial
state (position- and velocity-vector of the orbit), at a particular epoch t0.
Whether or not a problem may be described by a pure orbit determination
problem heavily depends on the time interval covered by the observations.
It is, e.g., clear that many dynamical parameters (definition in section 5.2)
have to be set up, if a high-accuracy orbit of a LEO (cm-dm accuracy) has
to be established over one day (with about 15−20 revolutions) using the ob-
servations of a spaceborne GPS receiver. No dynamical parameters have to
be estimated if the observations within one opposition of a minor planet are
analyzed. If initial values and dynamical parameters have to be determined,
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we speak of a general orbit determination problem. The most general parame-
ter estimation problem considered in this chapter does not only contain orbit
parameters, but also parameters related to the observers’ (observatories’)
trajectories in inertial space. Such observer-specific parameters are, e.g., the
coordinates of the observers in an Earth-fixed reference system, the Earth
rotation parameters, parameters characterizing the Earth’s atmosphere, etc.

Orbit determination and parameter estimation in Celestial Mechanics is an
extremely broad field, which would yield enough material to fill an entire
textbook. In this chapter we can therefore only address the most important
aspects related to this topic. Section 8.2 introduces the problems, sections
8.3 and 8.4 deal with classical orbit determination and orbit improvement,
where the attribute classical stands for the use of astrometric positions as
observations and for using an extremely simple (and a priori known) force
model, often even that of the two-body motion. In section 8.5 the scope
is broadened. The general parameter estimation task of satellite geodesy is
defined and a short overview of the particularities of the analysis in space
geodesy, in particular of analyzing SLR/LLR and GPS data, is provided. The
chapter concludes with a relatively new type of orbit determination problem,
namely that of deriving LEO orbits using the measurements of onboard GPS
receivers. Pure kinematic orbits (neglecting the equation of motion), pure dy-
namic orbits (assuming that the force field acting on the satellite is perfectly
known) and mixtures of the two orbit types are considered.

8.2 The Classical Pure Orbit Determination Problem

In the planetary system classical orbit determination may be defined as the

Estimation of the (osculating) orbital elements a , e , i , Ω , ω , and T0

of a celestial body referring to a particular epoch t0 from a series
of topocentric observations ti ; α′

i , δ′i , i = 1, 2, . . . , n ≥ 3 .
(8.1)

The orbital elements a, e, i, Ω, ω, and T0 were defined in section 4.1. The
definition (8.1) implies that orbit determination is the inverse problem of
the computation of ephemerides, where topocentric or geocentric spherical
coordinates αi , δi , ∆i , i = 1, 2, . . . , n , of a celestial body as observable at
epochs ti are computed from a given set of osculating elements (see Chapter
4). αi and δi are the right ascensions and declinations (to be defined more
precisely below) at the tabular epochs ti ; the ∆i are (in essence) the body’s
topocentric distances at the epochs ti .

Observations from one or more observatories at different locations on the
Earth (and/or elsewhere) may be used for orbit determination. It only mat-
ters that the heliocentric position vectors of the observer(s) at the observation
times are known.
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The osculating orbital elements in definition (8.1) should be understood as
parameters defining the initial values at time t0 in a problem governed in
the most general case by equations of motion of type (3.21) or (3.143), in
the simplest case by the equations of motion (4.1) of the two-body problem.
In the latter case the time-span covered by observations must be sufficiently
short (in practice shorter than about half a revolution), because otherwise
the perturbations would be visible as systematic effects in the residuals.

Orbit determination and ephemeris calculation are the two fundamental tasks
in applied Celestial Mechanics. The former task is much more demanding
than the latter one. Algorithms for the computation of ephemerides are simple
and transparent: In the first step, a table of helio- or geocentric positions has
to be compiled, in a second step the geo- or topocentric ephemerides are
obtained by applying a series of geometric transformations (translations and
rotations). Orbit determination, on the other hand, includes a non-linear
parameter estimation process.

The orbit determination problem may be solved with standard procedures
of applied mathematics, provided a set of approximate orbit parameters of
a sufficiently high accuracy is already available. If such approximations are
available we speak of an orbit improvement problem, because we “merely”
have to improve the known approximative parameters. This task is considered
in the following paragraph.

8.2.1 Solution of the Classical Orbit Improvement Problem

Assuming that
aK , eK , iK , ΩK , ωK , and T K

0 (8.2)

is a known set of approximate values of the orbit parameters a, e, i,
Ω, ω, and T0, we may develop the observed functions α(t; a, e, i, Ω, ω, T0)
and δ(t; a, e, i, Ω, ω, T0) into Taylor series about the values (8.2) as origin:

α(t; a, e, i, Ω, ω, T0) = αK(t) +
6∑

j=1

(
∂αK

∂Ij

)
(t)
(
Ij − IK

j

)
+ O(IkIl)

δ(t; a, e, i, Ω, ω, T0) = δK(t) +
6∑

j=1

(
∂δK

∂Ij

)
(t)
(
Ij − IK

j

)
+ O(IkIl) .

(8.3)

The notation
{I1, I2, . . . , I6} def= {a, e, i, Ω, ω, T0} (8.4)

was used to characterize the elements, and the notation
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αK(t) def= α
(
t ; aK , eK , iK , ΩK , ωK , T K

0

)
δK(t) def= δ

(
t ; aK , eK , iK , ΩK , ωK , T K

0

) (8.5)

to denote the right ascensions and declinations computed with the approxi-
mate orbit parameters (8.2).

The functions αK(t), δK(t) and their partial derivatives w.r.t. the orbit pa-
rameters are computed from the solutions of the initial value problem asso-
ciated with the primary equation (3.21), (3.143) or (4.1) and of the initial
value problems associated with the variational equations corresponding to
the orbit parameters (see Chapter 5).

Neglecting terms of second and higher order in eqns. (8.3) and subtracting
from these equations the observations α′

i and δ′i specified in the definition
(8.1), we obtain the set of linear observation equations

6∑
j=1

∂αK
i

∂Ij

(
Ij − IK

j

)
−
(
α′

i − αK(ti)
)

= vαi

6∑
j=1

∂δK
i

∂Ij

(
Ij − IK

j

)
−
(
δ′i − δK(ti)

)
= vδi

i = 1, 2, . . . , n ,

(8.6)

where
∂αK

i

∂Ij

def=
(

∂αK

∂Ij

)
(ti) and

∂δK
i

∂Ij

def=
(

∂δK

∂Ij

)
(ti) . (8.7)

The right-hand sides vαi and vδi of eqns. (8.6) are called the residuals in
right ascension and declination. Ideally, if the observations were error-free,
these quantities would be equal to zero. In practice, the system of observation
equations (8.6) is solved to make the sum of residuals squares a minimum:

n∑
i=1

{
[ cos δ′i vαi ]2 + v2

δi

}
= min. . (8.8)

This particular minimum principle (8.8) is appropriate, if the observed an-
gles cos δ′i α′

i and δ′i at ti are of comparable accuracy, and if the accuracies
are comparable for all observations i = 1, 2, . . . , n . These assumptions are
very closely met, if one and the same telescope is used to make photographic
or CCD observations. If observations stemming from telescopes of different
optical qualities (e.g., of different focal lengths) are analyzed together, the
residuals must be weighted to take quality differences into account. The re-
sulting minimum principle will, however, again minimize a sum of weighted
residuals squares – only the coefficients (weights) of the terms are different
from the simplest form (8.8):
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n∑
i=1

σ2
0

σ2
i

{
[ cos δ′i vα,i ]2 + v2

δ,i

}
= min. , (8.9)

where σi is the estimated rms error of observation number i, and σ0 the
so-called mean error of unit weight. The weight unit may in principle be
chosen arbitrarily. In practice it makes sense to associate it with the mean
observation error for one particular telescope. In order not to complicate the
discussion, we will always use the simpler minimum principle (8.8), but keep
in mind that generalizations of type (8.9) are possible without problems.

As the residuals in the expression (8.8) may be replaced by eqns. (8.6), the
sum in eqn. (8.8) is actually a quadratic form in the orbit parameters ∆IK

j
def=

Ij−IK
j , j = 1, 2, . . . , 6 . This quadratic form assumes a minimum, if its partial

derivatives w.r.t. all six orbit parameters Ij are zero. The resulting system
of six algebraic equations is linear. It is the well-known system of normal
equations :

NK ∆IK = bK , (8.10)

where(
∆IK

)T def=
(
a − aK , e − eK , i − iK , Ω − ΩK , ω − ωK , T0 − T K

0

)
, (8.11)

and where NK is a quadratic and symmetric matrix, the general element of
which is defined by

NK
jk =

n∑
i=1

{
cos2 δ′i

∂αK
i

∂Ij

∂αK
i

∂Ik
+

∂δK
i

∂Ij

∂δK
i

∂Ik

}
; j, k = 1, 2, . . . , 6 . (8.12)

bK is a column array of six elements, the general element of which is defined as

bK
j =

n∑
i=1

{
cos2 δ′i

∂αK
i

∂Ij

(
α′

i − αK(ti)
)

+
∂δK

i

∂Ij

(
δ′i − δK(ti)

)}
,

j = 1, 2, . . . , 6 .

(8.13)

The solution of the normal equation system (8.10) is usually written in the
form

∆IK =
(
NK
)−1

bK def= QK bK . (8.14)

The variance-covariance matrix associated with the solution vector ∆I is
given by

cov
(
∆IK

)
=
(
mK

0

)2
QK , (8.15)

where the a posteriori variance factor
(
mK

0

)2 of one observation is defined by

(
mK

0

)2 =

n∑
i=1

{[
cos δ′i vK

α,i

]2 +
(
vK

δ,i

)2}
2n− 6

. (8.16)



360 8. Orbit Determination and Parameter Estimation

The solution of each orbit determination task (8.1) is therefore accompanied
by a full variance-covariance matrix, allowing it to compute the mean error
of the determined orbit elements or of functions thereof, assuming that the
number n of direction observations exceeds three.

So far, we have shown that the orbit determination (8.1) may be reduced to
a standard least-squares procedure, provided that the non-linear parameter
estimation problem may be described by the set (8.6) of linear equations in
the unknowns. Whether or not this assumption holds, may be checked after
having solved the normal equation system (8.10): One has to see whether the
second and higher-order terms in the Taylor series expansion (8.3) actually
could be neglected, i.e., whether they were small compared to the mean error
mK

0 of the observations. In practice we have to check whether∣∣∣∣∣∣α(ti; a, e, . . . , T0) −

⎧⎨
⎩αK(ti) +

6∑
j=1

∂αK
i

∂Ij

(
Ij − IK

j

)⎫⎬⎭
∣∣∣∣∣∣ cos2 δ′i � mK

0

∣∣∣∣∣∣ δ(ti; a, e, . . . , T0) −

⎧⎨
⎩δK(ti) +

6∑
j=1

∂δK
i

∂Ij

(
Ij − IK

j

)⎫⎬⎭
∣∣∣∣∣∣ � mK

0 ,

(8.17)

where the terms α(ti; a, e, . . . , T0) and δ(ti; a, e, . . . , T0) have to be calculated
using the values a

def= aK +∆aK , e
def= eK +∆eK , etc. for the orbital elements.

With the above developments we may define the solution of the orbit classical
orbit improvement problem (8.1) through the following procedure:

Iterative Solution of the Classical Orbit Improvement Problem.

1. Initialize the process by defining/selecting a first set of approximate or-
bital elements, i.e.,

for K = 0 define aK , eK , iK , ΩK , ωK , T K
0 . (8.18)

2. Improve the solution iteratively for K = 1, 2, . . . using the observation
equations (8.6) and the normal equation system (8.10). Calculate the
mean error mK

0 of the observations according to formula (8.16).

3. Calculate the terms on the left-hand sides of the expressions (8.17).

4. Terminate the orbit determination process by setting Ij
def= IK

j + ∆IK
j ,

j = 1, 2, . . . , 6 , if all conditions (8.17) are met for i = 1, 2, . . . , n .

5. If this is not the case, invoke a new iteration step by using the solutions
IK+1
j

def= Ij = IK
j + ∆IK

j as the initial values of the new iteration step
K + 1 and proceed with step 2.

Orbit determination is thus nothing but a standard procedure of applied
mathematics to treat non-linear parameter estimation problems. It is based
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on the linearization of the originally non-linear problem. The solution method
is characterized by the keywords initialization, iteration, and termination.

The crucial part of non-linear parameter estimation procedures is the initial-
ization step. If for K = 0 the available approximation is poor, the iteration
process may diverge, or, if multiple solutions occur, the iterative solution may
swap from one solution to (the) other(s). If a problem has more than one so-
lution (i.e., if the sum (8.8) has several minima) and if the iteration process
happens to converge, it may be rather questionable whether the correct so-
lution was found. This is why the initialization of the orbit determination
problem has to be studied carefully.

In the case of orbit determination the initialization step is called first or-
bit determination or initial orbit determination. First orbit determination is
therefore nothing but the task to find an initial set of orbit parameters of suf-
ficient quality for the above iterative orbit improvement process to converge.
The result of a first orbit determination should not be viewed as some kind
of a “final” result. The final result shall always be based on all observations
available at the time of the analysis and it shall represent them in the sense
of the method of least squares by applying a minimum principle of type (8.8)
or (8.9).

The definition (8.1) of the orbit determination problem, when applied to the
planetary system, may be modified in several ways: The equatorial coordi-
nates (right ascension α and declination δ) might be replaced by ecliptical
coordinates (ecliptical longitude λ and ecliptical latitude β), or by different
(but equivalent) sets of orbital elements.

The definition (8.1) still lacks precision:

1. The observations involve the position and the velocity vectors of the ob-
served object and of the observer(s). In the orbit determination problem,
the position vectors of the observers (expressed in the coordinate system
of the orbital elements) are assumed to be known.

2. The light propagates with velocity c in vacuum, which is why the observed
angles αi and δi only approximately define the unit vector at time ti from
the observer to the observed object. The geometric quantity derived from
the observations is the so-called astrometric position, to be defined in
paragraph 8.2.2.

With the understanding that clarifications are necessary and that modifica-
tions are possible, definition (8.1) still is a valid characterization of the orbit
determination problem in the planetary system.

Classical orbit determination problems as defined by (8.1) are also encoun-
tered in satellite geodesy, e.g., in the context of optical surveys of space debris
(see, e.g., [99], [101]), but so far it never reached the importance of the cor-
responding task in the planetary system. The reasons are manifold:
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• Whereas direction observations play a dominant role for applications in
the planetary system, other observation types like ranges or range rates
(resulting, e.g., from the RADAR technique or from observing the Doppler-
shifted signals emitted by satellites, or from the SLR technique) are of much
greater importance in satellite geodesy.

• With each observation technique and each combination of such techniques
one might formulate a “new” orbit determination problem. For applica-
tions of this kind the definition (8.1) should be generalized by allowing
for more than one observation type. This is not done here, because these
new problems never could attract similar attention as the classical orbit
determination problem (8.1).

• For geodetic routine applications only the second part of the task, namely
the orbit improvement part, is relevant. Usually, initial orbits of sufficient
quality are available to invoke directly the orbit improvement process. (Of-
ten it is not even possible to observe the satellites without excellent orbit
predictions).

• In scientific applications, orbit determination often has to be considered as
a sub-task of a more general parameter estimation problem. The general-
izations are manifold:

– The orbit description always includes the initial osculating elements,
but it may well be that dynamical parameters characterizing the force
field (e.g., parameters of the Earth’s gravity field, radiation pressure
parameters, or empirical parameters) must be considered, as well.

– In order to model the observations with sufficient accuracy, it may be
necessary to determine not only orbit parameters, but also parameters
defining the position of the observer (observatory coordinates) and the
transformation parameters between the celestial and the terrestrial ref-
erence systems (Earth rotation and orientation parameters).

– It may not be possible to formulate and solve one orbit determination
problem per observed satellite, but only a general parameter estima-
tion problem encompassing the orbit parameters for an entire system of
satellites. This general approach is, e.g., required when analyzing the ob-
servations of navigation satellite systems like the US GPS or the Russian
GLONASS.

Despite these remarks, which do somewhat attenuate the importance of first
orbit determination in satellite geodesy, one should keep in mind that only
direction observations allow it to determine the orbit of a celestial object
using the observations from only one observatory.

In sections 8.3 and 8.4 the problem of first orbit determination and that of
orbit improvement will be dealt with separately.
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8.2.2 Astrometric Positions

The position of a celestial object P on the celestial sphere directly accessible
to an observer O at observation time t (usually referred to as apparent place)
is not easily interpreted geometrically, due to several reduction terms, namely

• the refraction of light in the Earth’s atmosphere,

• the annual and diurnal aberration corrections due to the motion of the
observer w.r.t. the inertial system,

• the gravitational deflection of light,

• the light propagation time ∆
c between P and O,

• etc.

It is, however, comparatively easy to derive the astrometric position of the
celestial body at observation time t from the directly observed apparent place.

We define the astrometric position as the geometric direction from the ob-
server at time t to the celestial object at time t− ∆

c , where ∆ is the distance
between P at time t−∆

c and O at time t. Figure 8.1 illustrates the astrometric
position represented by the unit vector e(t). By using astrometric positions

O

C

P

R( )t

r( )t /c� �

�( )t

e( )t

Fig. 8.1. Astrometric position e at observation time t of a celestial body P at a
distance ∆ from an observer O, and position vector r

(
t − ∆

c

)
w.r.t. the center C

of the primary attracting body

as illustrated in Figure 8.1 we avoid to include terms into the reduction pro-
cess of photographic plates and CCD-arrays, which depend on the distance
between the observed object and the observer. One should keep in mind that
this distance usually is not known with sufficient precision when reducing the
plates and/or arrays. When dealing with objects of the planetary system (like
planets, minor planets, comets) the astrometric position is comparable to cat-
alogue mean places of stars (see, e.g., glossary, term “astrometric ephemeris”
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in the Explanatory Supplement [107]). When dealing with artificial Earth
satellites (geocentric orbits), the astrometric position is in essence the sum
of the mean place (represented by the catalogue mean places of stars) and
the annual aberration.

The (astrometric) coordinates α and δ referring to the selected (quasi)-inertial
coordinate system may be computed from the relations (see Figure 8.1)

∆(t) =

⎛
⎝∆1

∆2

∆3

⎞
⎠ = ∆

⎛
⎝ cosα cos δ

sin α cos δ
sin δ

⎞
⎠ def= r

(
t − ∆

c

)
− R(t) , (8.19)

where we have assumed that the selected coordinate system is an equatorial
system referring to a particular epoch (e.g., the system J2000.0). The astro-
metric right ascension and declination are obtained from the above relations
as

α(t) = arctan
(

∆2

∆1

)

δ(t) = arcsin
(

∆3

∆

)
.

(8.20)

In the orbit determination process we need the formulae (8.20) to compute
the terms “observed - computed” in the observation equations. We also need
the partial derivatives of these quantities w.r.t. the orbital elements. Due to
the structure of the formulae (8.20) and due to the fact that the position
vector R(t) of the observer does not depend on the orbit parameters, we
obtain the following simple formulae for these partial derivatives:

∂α

∂I
= ∇∆α ·

∂r
(
t − ∆

c

)
∂I

∂δ

∂I
= ∇∆δ ·

∂r
(
t − ∆

c

)
∂I

,
(8.21)

where I ∈ {a, e, i, Ω, ω, T0}, and where the gradient has to be taken w.r.t.
the components ∆i .

With formulae (8.20) it is a straightforward matter to compute the gradients
of α and δ:

∇∆α =
1

∆2
1 + ∆2

2

⎛
⎝−∆2

∆1

0

⎞
⎠ and ∇∆δ =

1
∆2
√

∆2
1 + ∆2

2

⎛
⎝−∆1 ∆3

−∆2 ∆3

∆2
1 + ∆2

2

⎞
⎠ .

(8.22)
In view of the fact that the terms ∆

c are small (a few seconds in the planetary
system, fractions of seconds for artificial Earth satellites), it is safe to use the
approximation
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r

(
t − ∆

c

)
def= r(t) − ∆

c
ṙ(t) . (8.23)

Consequently, the partial derivatives of the position vector r
(
t − ∆

c

)
w.r.t.

the orbit parameters are obtained by

(
∂r

∂I

)(
t − ∆

c

)
=
(

∂r

∂I

)
(t) − ∆

c

(
∂ṙ

∂I

)
(t) −

(
∇∆

(
∆(t)

)
·
(

∂r

∂I

)
(t)
)

ṙ

c

≈
(

∂r

∂I

)
(t) . (8.24)

Note that ∇∆∆(t) is the unit vector from the observer to the observed object
at observation time t. The latter approximation in the previous equation
neglects even the terms O

(
∆
c

)
of first order in the light propagation time.

This approximation for the partial derivatives is usually good enough as
an approximation (the corresponding approximation is not allowed in the
terms “observed-computed”). The partials of the position vector w.r.t. the
orbital elements Ij , j = 1, 2, . . . , 6 emerge as solutions of the corresponding
variational equations (see Chapter 5).

Subsequently we will use the program ORBDET, as documented in Chapter
II- 8 of Part III, to illustrate the problem of orbit determination. The pro-
gram processes astrometric positions either of planets and comets or of Earth
satellites and space debris.

Table 8.1 shows the observations of minor planet Silentium, an object that
was discovered by Paul Wild at the Zimmerwald Observatory (Station No.
026) on October 18, 1977. Its name Silentium witnesses the discoverer’s at-
tempt to obey the IAU recommendation to reduce the sometimes lengthy
explanations for the minor planets’ names. That the attempt was successful
is documented in the Dictionary of Minor Planet Names [102]. The dic-
tionary is highly recommendable from the scientific, the cultural, and the
entertainment point of view.

Table 8.1 contains observations of the minor planet at the time of discovery
in 1977 and of 1993. The 1977 and 1993 observations were made during oppo-
sition periods. The observations will be used to illustrate the basic concepts
of orbit determination. It is important to note that observations from more
than one observatory may be used. Note, that two pre-discovery positions
of the minor planet were found a posteriori on photographic plates made at
the Nauchnyj Observatory on Crimea. The observations of minor planets and
comets may also be defined in a slightly different format, namely the one used
by the Minor Planet Center (MPC), (60 Garden St., Cambridge MA 02138
USA) of the International Astronomical Union (IAU).
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Table 8.1. Observations of minor planet Silentium

NAME: Silentium REF.: MPC 4393, 5199, 5202, 23004
EQUINOX: 1950.0

JJJJ MM DD.DDDDD HH MM SS.SS SDD MM SS.S STA
1977 9 19.05254 1 57 57.05 13 56 03.2 095
1977 9 22.04377 1 56 39.72 13 59 55.0 095
1977 10 18.91701 1 33 44.13 13 24 10.9 026
1977 10 19.98750 1 32 36.96 13 20 45.2 026
1977 10 20.03750 1 32 33.76 13 20 37.1 026
1977 11 3.78160 1 18 42.66 12 31 09.8 026
1977 11 5.81667 1 17 09.84 12 24 55.5 026
1977 11 9.00208 1 14 59.98 12 15 55.4 026
1977 11 9.04514 1 14 58.47 12 15 49.8 026
1977 11 10.91441 1 13 52.19 12 11 08.3 026
1977 11 11.01111 1 13 48.79 12 10 55.2 026
1993 9 19.92049 0 54 39.97 6 48 22.0 026
1993 9 20.94375 0 53 48.30 6 46 40.0 026
1993 10 10.92431 0 34 37.76 5 53 50.8 026
1993 10 11.96181 0 33 39.08 5 50 44.6 026

As mentioned, the program ORBDET is also capable of processing astromet-
ric positions from artificial satellites. The observations have to be provided
in a different format, which will be specified in Chapter II- 8.

8.3 First Orbit Determination

First orbit determination is the initialization step associated with the iter-
ative solution of the orbit determination problem (8.1) as outlined in para-
graph 8.2.1. The task has an artistic element: Intuition, imagination, elegance,
but also opinions (strong ones, at times), etc. play an essential role. This is
probably why protagonists of certain procedures at times assume the role of
art-critics.

Two eminent mathematicians and astronomers, Gauss and Laplace (in al-
phabetic order), are considered the pioneers of the problem of first orbit
determination in the sense the problem is understood today. The two names
stand (in the above order) for two different approaches, namely first orbit
determination as a boundary value problem and as an initial value problem.
The two approaches are briefly reviewed in section 8.3.6 despite the fact
that some of the concepts are outdated due to the computational resources
available today.

In 1809 Gauss gave a very concise description of the task. The first few lines
of Gauss’ 1809 treatment [44] are reproduced in Figure 8.2. Today, we would
probably call this part the abstract of the article.



8.3 First Orbit Determination 367

There are four essential elements in the introductory text:

1. The problem of orbit determination shall be solved independently of hy-
potheses concerning the shape of the orbit. Gauss rejects in particular the
assumption of a circular or a parabolic orbit (in the next section we will
see that such assumptions considerably reduce the degree of difficulty of
the problem).

2. In the same introductory sentence Gauss states that the problem has to
be solved using a “short series of observations”. The term is ambiguous,
but the following developments document that “observations in a short
time interval” (compared, e.g., to the revolution period of the observed
body), are meant (as opposed to “few observations in an arbitrary time
interval”).

3. The problem shall be solved in two steps: In step “I.” Gauss proposes to
find a solution which represents three observations perfectly (residuals in
the observed angles α and δ are zero).

4. In step “II.” he proposes to improve the solution using in essence “his”
method of least squares. This step is identical with the orbit improvement
step specified in section 8.2.

Obviously, our treatment of the problem in section 8.2 is very closely related
to Gauss’ proposed procedure in 1809: The distinction is made between an
initialization step and an orbit improvement step. The analogy goes even
further:

The methods to be developed and discussed in this section will be mostly
based on the assumption that the series of observations stems from a short
time interval (it will be shown below that this condition can be released). It
is thus fair to state that a modern treatment of the problem is (may be) still
closely related to the principles published by Gauss in 1809.

It is interesting to note that step “I.” of Gauss’ procedure was harshly
critizised in the 20st century by renowned practitioners of Celestial Mechan-
ics. Paul Herget [54] writes, e.g., that it would be a constructive achievement
to dispel the myth that a “preliminary orbit can be computed from three ob-
servations”. Observation errors, at times even gross errors (blunders), make
such a procedure vulnerable. Taff [118] finds even stronger words.

One should not forget, however, that Gauss (as can be seen in the original text
in Figure 8.2) simply viewed this first task as the initialization step, the result
of which merely has to be of sufficiently high quality for the orbit improvement
procedure to converge. Sometimes this original meaning is forgotten, probably
because the first orbits obtained by Gauss’ recipe often are of an amazingly
high quality.
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Fig. 8.2. The task of orbit determination according to Gauss
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8.3.1 Determination of a Circular Orbit

If only two observations (astrometric positions) of a celestial body are avail-
able, it is not possible to determine all six elements of its orbit. The situation
may arise in practice: After the discovery of a minor planet or a comet, the
observer tries to make follow-up observations as soon as possible after the
discovery. Using survey-type instruments (e.g., Schmidt-cameras) with fields
of view of several degrees, it is usually possible to find the object after a few
days without sophisticated prediction tools. If two observations are available,
the apparent topocentric orbit may be approximated by a great circle on the
celestial sphere assuming constant angular velocity. This approximation may
be sufficient to follow the object’s apparent trajectory over a few more days.

Figure II- 4.47 tells that, statistically speaking, most minor planets are low
eccentricity objects with eccentricities e ≤ 0.25 . One may therefore hope that
a circular orbit is a rather good approximation of the true orbit. Experience
tells, moreover, that observers are impatient and that they would like to
gain insight into the characteristics of the orbit as soon as possible. The
theoretician therefore usually has no choice, but to determine a circular orbit
based on two astrometric positions given. It is perhaps not fair to make a
general statement of this kind, but it is undoubtedly true if the observer’s
name is Paul Wild, and in our often rather long spells of clouded skies.

The assumption of a circular orbit reduces the number of unknowns from six
to four, because the eccentricity is e

def= 0 and because the pericenter ω may be
defined arbitrarily (e.g., as ω

def= 0◦). As each astrometric position provides two
observation equations (one in α, one in δ, see (8.6)), it is theoretically possible
to determine a circular orbit with two astrometric position. The parameters
of the circular orbit are, e.g., the semi-major axis a, the inclination i, the
longitude (or right ascension) of the ascending node Ω, and the node passing
time T0.

The attempt to determine a circular orbit may fail if the true eccentricity e of
the object is sizeable, let us say e > 0.1 , and if, by chance, the observations
are near the pericenter or the apocenter. One might then change the rules to
satisfy the observer’s needs by determining an elliptic orbit with prescribed
eccentricity e, and by assuming that the perigee or apogee lies in the middle
between the two observation epochs. It is, however, much better to wait for
additional observations . . . . If a solution is found, the four elements of a
circular orbit are usually quite good approximations of the “true” values.
A circular orbit may even be good enough to find the object in the next
opposition.

Figure 8.3 illustrates the observation geometry of a circular orbit determina-
tion in the planetary system. The observer is supposed to be at positions Ei,
at the observation times ti , i = 1, 2 , and the unit vectors ei represent the
astrometric position of the object at the observation times.



370 8. Orbit Determination and Parameter Estimation

S

P2

P1

e2

e1
E1

E2

	

�

i

Fig. 8.3. Determination of a circular orbit using two astrometric positions e1 and
e2 at observation times t1 and t2

The heliocentric positions Pi of the observed object at times ti − ∆i/c , i =
1, 2, are the intersections of the straight lines defined by Ei and ei with the
sphere of radius a centered at the sun S. Denoting the heliocentric radius
vectors of the observers Ei by Ri , i = 1, 2, and those of the observed object
Pi by ri , we obviously may write

ri = Ri + ∆i ei , i = 1, 2 , (8.25)

where the topocentric distances ∆i are obtained by squaring the above equa-
tion and by solving the resulting quadratic equation in ∆i :

∆i = −Ri · ei +
√

(Ri · ei)
2 − (R2

i − a2) , i = 1, 2 . (8.26)

With the heliocentric vectors r1 and r2 given, the heliocentric angle ∆ug

between the two vectors may be calculated unambiguously – provided the
observations stem from the same opposition – from Figure 8.3. The index
g in the expression ∆ug stands for “geometrical method to calculate the
heliocentric angle ∆u between the two heliocentric position vectors of the
celestial body”. The same angle may also be calculated using the mean motion

n =
√

k2

a3 of the object. In the case of a circular orbit this computation is
particularly simple:

∆ud = n

[
t2 − t1 −

(
∆2

c
− ∆1

c

)]
. (8.27)

The index d in the expression ∆ud stands for “dynamical method to calculate
the angle ∆u”. Both, ∆ud and ∆ug, are merely functions of the semi-major
axis a. Obviously, we have to meet the condition
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B(a) def= ∆ug(a) − ∆ud(a) = 0 (8.28)

for a circular orbit. This nonlinear equation in a may be solved iteratively,
with the help of a graph of the function B(a) within reasonable limits for a .

If a root is found, one obviously knows the corresponding semi-major axis a.
Afterwards we have to calculate the remaining three elements i, Ω, and T0 .
The Eulerian angles i and Ω of the orbital plane are obtained by computing
the vector h̃ normal to the orbital plane

h̃ = r1 × r2 (8.29)

and by using eqns. (4.5) thereafter to determine the elements i and Ω .

The argument of latitude u1 (corresponding to the first observation time) is
obtained by transforming the position vector r1 into the orbital system. The
passing time through the ascending node is then given by

T0 = t1 −
∆1

c
− u1

n
. (8.30)

This concludes the determination of a circular orbit.

Let us now apply the theory to the observations of minor planet Silentium.
Figure 8.4 shows the graph of function B(a) in the range 0.975 AU ≤ a ≤
7.0 AU, when using the third and fifth observations in Table 8.1. The plot was
generated with program ORBDET (see Chapter II- 8 of Part III). Obviously,
there are multiple roots in the interval considered. The three solutions are
made available to the program user (see Table 8.2) and the four orbital ele-
ments associated with the selected root are contained in the program output
file. The orbital elements associated with each of the roots in Table 8.2 are
listed in Table 8.3.

The first solution corresponds approximately to the orbit of the center of
mass of the Earth-Moon system, which in turn coincides almost with the he-
liocentric trajectory of the observer. This type of solution is often encountered
in the orbit determination process associated with objects in the planetary
system and need not be further considered. In this case the first solution even
might have been dismissed because the corresponding topocentric distances
were negative (see Table 8.2).

The third solution at a ≈ 6.138 AU would correspond to a retrograde orbit
between Jupiter and Saturn, which renders this particular solution a rather
unlikely candidate. The remaining second solution at a ≈ 2.377 AU is in all
likelihood the best approximation of the real orbit by a circular orbit (a guess
which we will find confirmed later on).

Table 8.4 shows the residuals of all 1977 observations w.r.t. the second and
third circular orbits of Table 8.3. It shows that the three observations (3-5)
of September 18, 19, and 20 (actually contained in an interval only slightly
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Fig. 8.4. Function B(a) = ∆ug − ∆ud in circular orbit determination for minor
planet Silentium

Table 8.2. Roots of circular orbit determination for minor planet Silentium

-----------------------------------------
NR ROOT TOPOC. DISTANCES
-----------------------------------------
1 0.9827972 -0.01329 -0.01296
2 2.3772021 1.38236 1.38250
3 6.1381280 5.14382 5.14388
-----------------------------------------
ROOT SELECTED: 2

Table 8.3. Different solutions of a first orbit determination using two observations

Element Solution 1 Solution 2 Solution 3

Semi-major Axis a 0.982797 AU 2.377 AU 6.138 AU
Inclination i 0.045◦ 5.800◦ 145.380◦

Long. of Asc. Node Ω 100.185◦ 6.955◦ 31.150◦

Node Passing Time T0 43508.541 days 43361.332 days 43358.112 days
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Table 8.4. Residuals of the 1977 observations of Silentium w.r.t. the two circular
orbits

Number Solution 2 Solution 3

α cos δ δ α cos δ δ

[ ′′ ] [ ′′ ] [ ′′ ] [ ′′ ]

1 −1308.13 −864.91 −4623.24 −2535.59
2 −937.84 −675.23 −3426.50 −1994.88
3 0.00 0.00 0.00 0.00
4 0.01 −1.74 0.64 −1.54
5 0.00 0.00 0.00 0.00
6 532.20 −2.96 1087.34 −37.02
7 702.35 13.99 1480.53 −2.83
8 1035.98 56.44 2280.27 94.14
9 1042.95 58.64 2266.47 91.17
10 1277.63 96.22 2849.74 179.78
11 1289.73 99.61 2879.32 185.69

longer than one day) are well represented by both solutions. Only when tak-
ing into account the observations 1 − 2 and/or 6 − 11 it becomes apparent
that solution 2 is preferable. It is, by the way, interesting to note, that both
solutions would be sufficient to find the minor planet within the time inter-
val of roughly ± one month with a survey-telescope (remember that 3600′′

correspond to one degree).

8.3.2 The Two-Body Problem as a Boundary Value Problem

When solving the general orbit determination problem we have to determine
eventually a set of orbital elements as stated in the original problem def-
inition (8.1). In the problem of first orbit determination it may, however,
be preferable to introduce auxiliary parameters for which good approximate
values are easily available.

Figure 8.3 helps to explain the principle: Two observation epochs tb1 and tb2 ,
bi ∈ {1, 2, . . . , n} , b1 �= b2 , are selected as boundary epochs. The correspond-
ing boundary vectors are written as:

rbi = Rbi + ∆bi ebi , i = 1, 2 , (8.31)

where ebi is defined by the right ascensions αbi and declinations δbi . Using
the set

{p1, p2, . . . , p6} def= {∆b1 , ∆b2 , αb1 , αb2 , δb1 , δb2} (8.32)

as auxiliary parameters in the first orbit determination process has the advan-
tage that excellent approximations are available for the latter four parameters
through the observations α′

bi
and δ′bi

.
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The selection (8.32) of auxiliary parameters implies that boundary value
problems of the type

r̈ = −µ
r

r3

r

(
tb1 −

∆b1

c

)
= rb1

r

(
tb2 −

∆b2

c

)
= rb2

(8.33)

have to be solved.

If the two observation epochs tb1 and tb2 are close together, the problem
(8.33) may be viewed and solved as a local boundary value problem in the
sense of section 7.5.2. This has the distinct advantage that the perturbations
might be included already in the process of first orbit determination and
that the partial derivatives w.r.t. the parameters may be easily obtained by
numerical methods, as well. The drawback must be seen in a restriction of
the length of the time interval |tb2 − tb1 |: In principle one cannot guarantee
that the interval is sufficiently short to allow the treatment of the problem
(8.33) as a local boundary value problem before actually having solved it.
Similar problems arise when solving the boundary value problem with the
well-known classical tool of the sector : triangle − ratios, which we do not
consider here (see, e.g., [114]).

Whereas such concerns usually are not justified when deriving a first orbit –
it is in most cases possible to find two suitable boundary epochs – it is never-
theless comfortable that the above boundary value problem may in principle
be solved without such restrictions. Let us now briefly sketch such a solution
method.

In the analysis of the two-body problem in section 4.1 the initial value prob-
lem in the orbital plane was solved in two steps: The absolute value r of
the radius vector r was derived as a function of the true anomaly (see eqn.
(4.16))

r =
p

1 + e cos v
, (8.34)

then the differential equation (4.35) for the true anomaly was set up:

v̇ =
h

r2
=

√
µ p

r2
=
√

µ

p3
(1 + e cos v)2 . (8.35)

Analytical solutions were given for elliptic, parabolic, and hyperbolic orbits
in section 4.1.5.

The analytical solution for the length of the radius vector of the two-body
problem may be used to find the solution of the boundary value problem
(8.33), as well. From eqn. (8.34) we obtain for the boundary epochs:
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e cos vb1 =
p

rb1

− 1

e cos vb2 =
p

rb2

− 1 .
(8.36)

By putting vb2
def= vb1 +∆v (with ∆v known as the heliocentric angle between

the two boundary vectors), two equations for the determination of e and
vb1 are obtained, provided we consider the semi-latus rectum p of the conic
section as known:

e cos vb1 =
p

rb1

− 1

def= A1 p − 1

e sin vb1 =
{
− p

rb2

+ 1 +
(

p

rb1

− 1
)

cos∆v

}
csc∆v

=
{(

cos∆v

rb1

− 1
rb2

)
csc∆v

}
p + {1 − cos∆v} csc∆v

def= A2 p + B2 .

(8.37)

From the above equations the eccentricity e and the true anomaly vb1 are
obtained as

e2 =
(
A2

1 + A2
2

)
p2 − 2

(
A1 − A2 B2

)
p + 1 + B2

2 (8.38)

and

vb1 = arctan
(

A2 p + B2

A1 p − 1

)
. (8.39)

The semi-major axis a may then be obtained from the relations p = a (1−e2)
(for e < 1) and from p = a (e2 − 1) (for e > 1). The pericenter passing time
T0 is eventually obtained from the analytical solutions (4.56) (or from eqns.
(4.55) if parabolic orbits shall be considered, as well) of the equation (8.35)
of the anomaly.

From the construction of eqn. (8.38) we can see that a real eccentricity e ≥
0 results for each value of the semi-latus rectum p. Equation (8.38) may,
however, also be used to define meaningful limits for the numerical values of
the semi-latus rectum p of the conic section. The investigator usually is only
interested in orbits with eccentricities between, let us say, 0 ≤ e ≤ 2 . The
corresponding values for p may be obtained from eqn. (8.38) by writing it as
a quadratic equation in the unknown p and the eccentricity e as a parameter.
The solution of the resulting equation reads as:

p1,2(e) =
A1 − A2 B2 ±

√
(A1 − A2 B2)2 − (A2

1 + A2
2)(1 − e2 + B2

2)
A2

1 + A2
2

.

(8.40)
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Equation (8.40) tells that positive real values for the parameter will only
result, if the determinant in the above equation is zero or positive:

det
(
(A1 − A2B2)2 − (A2

1 + A2
2)(1 − e2 + B2

2)
)
≥ 0 . (8.41)

This condition leads to a lower limit for the eccentricity emin of possible orbits
(note that det → +∞ for e → ∞ (because A2

1 + A2
2 > 0)). The upper limit is

defined by the user’s requirements (e.g., by emax ≤ 2). For a given boundary
value problem the semi-latus rectum p may therefore vary within the limits

p(emin ≥ 0) ≤ p ≤ p(emax) . (8.42)

For each selected value for p in the range (8.42) we have constructed a conic
section for which r(vbi ) = rbi , i = 1, 2 . From eqns. (8.38) and (8.39) the
eccentricity e and the pericenter are known, as well (because the true anomaly
vb1 is known). The relationship between the true and eccentric anomalies and
Kepler’s equation (or the corresponding equations in the case of parabolic or
hyperbolic orbits) may now be used to calculate the time T0 of pericenter
passage.

The analytical solution (4.56) of the equation (8.35) for the true anomaly v
may be used to calculate the time difference between the observations. One
just uses vb1 and vb2 = vb1 + ∆v on the right-hand sides of eqns. (4.56),
computes the corresponding values td1(p) and td2(p), and takes the difference
td2(p) − td1(p) of the two results. The index d stands, as usual, for the “dy-
namical” computation of the quantity associated with it. The correct value(s)
of the semi-latus rectum p is (are) then obtained as the root(s) of the function

B(p) def= tb2 − tb1 −
(

∆b2

c
− ∆b1

c

)
−
(
td2(p) − td1(p)

)
. (8.43)

The method outlined is in principle independent of the length of the time
interval [tb2 , tb1 ]. It is even capable of handling time intervals longer than one
revolution period – provided the correct number of revolutions between the
two boundary epochs may be assumed as known.

If ∆v is a “reasonably small” angle (angles of ∆v ≤ 60◦ usually pose no
problem) the unknown parameter p is, however, best obtained by solving
the boundary value problem (8.33) numerically and by computing p (and
the other two-body elements of the orbit) from one of the sets of position-
and velocity-vectors available after the solution of the problem (8.33). The
computation of the semi-latus rectum p is handled in this way in program
ORBDET (when selecting the solution option “boundary value”), where a
collocation method of order q = 12 is used to solve the boundary value
problem. It is, of course, very well possible to check a posteriori whether the
solution of the boundary value problem was successful or not.

When setting up the observation equations we do not only have to solve the
boundary value problem (8.33), we also need the partial derivatives of the
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reference orbit r(t) w.r.t. the orbit parameters pi given in (8.32). This can
be achieved in a very simple way: After having solved the boundary value
problem (8.33) for the reference trajectory, we also know the orbital elements
a, e, etc. In Chapter 5 we gave for each orbit type (ellipse, parabola, and
hyperbola) formulae for the partial derivatives of the two-body orbit w.r.t.
the orbital elements, allowing us to compute the partial derivatives of the
reference orbit w.r.t. the classical orbital elements.

The six partial derivatives
(

∂r
∂Ii

)
(t) of the orbit r(t) w.r.t. the orbital ele-

ments I1
def= p , I2

def= e , . . . form a so-called complete system of solutions of
the linear variational equations (5.22) associated with the two-body solution.
This implies that any solution of the equations (5.22) may be written as a
linear combination of the six partial derivatives defining the complete system
of solutions. Let us designate the partial derivative of the orbit r(t) w.r.t. a
general parameter pi in the list (8.32) by

zi(t)
def=
(

∂r

∂pi

)
(t) , i = 1, 2, . . . , 6 . (8.44)

Writing these functions as linear combinations of the known partial deriva-
tives w.r.t. the orbital elements leads to the representation

zi(t) =
6∑

l=1

cil

(
∂r

∂Il

)
(t) , (8.45)

where the coefficients cil have to be determined from the boundary conditions,
i.e., from

zi

(
tbk

− ∆bk

c

)
=

∂rbk

∂pi
, k = 1, 2; i = 1, 2, . . . , 6 . (8.46)

This implies that we have six linear equations for each of the partial deriva-
tives for the determination of the six coefficients cil , l = 1, 2, . . . , 6 , where
the coefficient matrix is the same for all six partial derivatives, only the right-
hand sides are different. These right-hand sides are computed as
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∂rb1

∂∆b1

= eb1 ;
∂rb2

∂∆b1

= 0

∂rb1

∂∆b2

= 0 ;
∂rb2

∂∆b2

= eb2

∂rb1

∂αb1

=

⎛
⎝− sinαb1 cos δb1

+ cosαb1 cos δb1

0

⎞
⎠ ;

∂rb2

∂αb1

= 0

∂rb1

∂αb2

= 0 ;
∂rb2

∂αb2

=

⎛
⎝− sinαb2 cos δb2

+ cosαb2 cos δb2

0

⎞
⎠

∂rb1

∂δb1

=

⎛
⎝− cosαb1 sin δb1

− sinαb1 sin δb1

+ cos δb1

⎞
⎠ ;

∂rb2

∂δb1

= 0

∂rb1

∂δb2

= 0 ;
∂rb2

∂δb2

=

⎛
⎝− cosαb2 sin δb2

− sinαb2 sin δb2

+ cos δb2

⎞
⎠ .

(8.47)

The coefficients cil of the partial derivatives (8.45) of the reference orbit
w.r.t. the auxiliary parameters (8.32) are now easily computed by observ-
ing the condition equations (8.46) for each of the parameters using eqns.
(8.47). As the left-hand sides of the condition equations are identical for all
six parameters, only one matrix inversion is required for the required set of
parameters.
It is obviously possible to change the parametrization from one set of six
orbit parameters to another by making use of elementary properties of linear,
homogeneous differential equations. It is in particular possible to use the set
of parameters (8.32) defining a boundary value problem.

8.3.3 Orbit Determination as a Boundary Value Problem

Based on the principles outlined in the introductory section 8.2, based on the
parametrization (8.32), and based on the analytical solution of the boundary
value problem (and the associated variational equations) outlined in the pre-
ceding paragraph, the following robust orbit determination procedure may
be defined:

• Two of n observation epochs tb1 and tb2 (corrected for the light-propagation
times between the celestial body and the observer(s)) are selected as bound-
ary epochs.

• The two boundary epochs may (but need not) be the first and last obser-
vation epochs. If the time interval containing the observations is short, it
is best to select the first and last epoch; if the time interval is rather long,
other selections may be better. The best performance may be expected if
the difference ub2 − ub1 between the arguments of latitude is between 10◦

and perhaps 30◦.
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• The boundary vectors rb1 and rb2 corresponding to the selected boundary
epochs (corrected by the corresponding light travel time) are defined by

rbi

def= Rbi + ∆bi e′
bi

, i = 1, 2 , (8.48)

where e′
bi

= e′
bi

(α′
i, δ

′
i) , i = 1, 2 , are the observed unit vectors at observa-

tion times tb1 and tb2 .

• The topocentric distances ∆bi are not known. They may be systematically
varied by assuming a scheme of the kind

∆b1,k
def= k d∆ , k = 0, 1, 2, . . . and ∆b2,j

def= j d∆ , j = 0, 1, 2, . . . ,
(8.49)

where d∆ is a user-specified increment.

• The sum of the residuals squares in the minimum principle (8.8) is com-
puted for each pair of topocentric distances according to

Σ(∆b1 , ∆b2)
def=

n∑
i=1

{
cos2 δ′i v2

α,i(∆b1 , ∆b2) + v2
δ,i(∆b1 , ∆b2)

}
, (8.50)

where the orbit used on the right-hand side to compute the residuals is
defined by the parameters ∆b1 , ∆b2 , α′

b1
, α′

b2
, δ′b1 , δ′b2 .

• It is now a straightforward task to establish the minimum (or the min-
ima) of the function Σ(∆b1 , ∆b2) in the two-dimensional table of values
Σ(∆b1,k, ∆b2,j) .

• After having identified these minima of Σ-values, a conventional param-
eter estimation process including all six parameters (8.32) concludes the
determination of the first orbit(s). Multiple solutions are possible.

The above procedure neither makes assumptions concerning the motion of
the observed object nor concerning the spacing of the boundary epochs. The
procedure promises to be robust and safe. This general procedure is, however,
not implemented in program ORBDET, because in situations typical for first
orbit determination, the two-dimensional search may be replaced by a more
efficient one-dimensional search algorithm: If the time interval between the
two boundary epochs is short compared to the expected revolution periods of
the objects, the difference between the heliocentric distances rb1 and rb2 of the
observed object at times tb1 and tb2 is comparatively small, as well. Having
therefore assumed a value for the distance rb1 , we also know a relatively good
approximation for rb2 by assuming simply rb2 ≈ rb1 . This approximation may
serve (exactly as in the case of the determination of a circular orbit) as an
initial value for the true topocentric distance ∆b2 , which then solves the
quadratic equation:
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r2
b1 ≈ r2

b2

=
(
Rb2 + ∆b2 e′

b2

)2
= R2

b2 + 2
(
Rb2 · e′

b2

)
∆b2 + ∆2

b2 .

(8.51)

The above quadratic equation in ∆b2 has one positive solution if Rb2 < rb1 ;
it has either no or two solutions if Rb2 > rb1 .

This first approximation for ∆b2 is iteratively improved by a conventional
parameter estimation process with ∆b2 as the only unknown parameter. ∆b2

has to solve the linearized observation equations (8.6) (where the six orbit
parameters we have only replaced by one, namely I1

def= ∆b2).

The above considerations allow it to set up an algorithm requiring only a
one-dimensional search over the topocentric distance referring to the first
boundary epoch. The modified algorithm is implemented in program ORB-
DET and may be described as follows:

1. The topocentric distance ∆b1 is systematically varied from zero to a
user-defined upper limit in user-defined steps of d∆ (ORBDET proposes
plausible values for planetary and satellite applications for the two user-
defined quantities.)

2. For any given value of ∆b1 one may compute the corresponding heliocen-
tric (geocentric) distance at tb1 by solving the equation in rb1 :

r2
b1 =

(
Rb1 + ∆b1 e′

b1

)2
. (8.52)

3. With this value for rb1 an approximate value for ∆b2 follows by solving
eqn. (8.51).

4. Keeping ∆b1 and the angles α′
bi

and δ′bi
, i = 1, 2 , fixed, the linearized

observation equations (8.6) are solved for the only remaining orbit pa-
rameter ∆b2 .

5. The sum of residuals squares is computed for each tabular value ∆b1

Σ(∆b1)
def=

n∑
i=1

{
cos2 δ′i v2

αi
(∆b1) + v2

δi
(∆b1)

}
. (8.53)

6. In the (one-dimensional) table of values Σ(∆b1) the minimum (the min-
ima) are established by numerical methods.

7. Having selected the minimum to be analyzed, a full orbit improvement
step involving all six parameters (8.32) is performed. This terminates the
initial orbit determination step.

This “one-dimensional” version of the first orbit determination problem is
implemented in program ORBDET. It lists all minima found and asks the
program operator to select the appropriate solution.
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The method makes use of all observations available, and the result is the
two-body orbit best representing the set of observations available (in the
least-squares sense). An orbit improvement step using the conventional orbit
parameters (following the first orbit determination outlined above) only is
required, if perturbations are included.

8.3.4 Examples

The above theory is now applied to the observations of minor planet Silen-
tium. Program ORBDET (see Chapter II- 8 of Part III) was used to produce
Figure 8.5 showing the logarithm of the function

σ(∆b1 )
def=

√
Σ(∆b1)
n − 1

(8.54)

of the topocentric distance ∆b1 . Program ORBDET departs in one minor
point from the theory outlined above: Instead of using the function Σ(∆b1)
standing for the sum of residuals squares, the function σ(∆b1 ) is shown, which
stands for the mean error of the observations. For terrestrial photographic or
CCD-observations using professional telescopes we expect |σ(∆b1 )| ≤ 1′′ near
the true solution. Figure 8.5 shows that our expectations are closely met in
the case of minor planet Silentium.
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Fig. 8.5. Function σ(∆b1) of general orbit determination for minor planet Silentium
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Observation epochs three and eleven (see Table 8.1) were used as boundary
epochs. The function σ(∆b1 ) in Figure 8.5 has exactly one minimum cor-
responding to a heliocentric distance of about rb1 ≈ 1.84 AU at the first
boundary epoch. By linear interpolation in the table of σ(rb1 )-values, ORB-
DET determines a more precise location of the minimum ∆b1,min and the
corresponding value ∆b2,min for ∆b2 . The parameters

{p1, p2, . . . , p6} =
{
∆b1,min, ∆b2,min, α

′
b1 , α

′
b2 , δ

′
b1 , α

′
b2

}
(8.55)

are then used as a priori values for an orbit determination process to deter-
mine the parameters (8.32).

Table 8.5 shows the residuals of the observations w.r.t. the best-fitting ellip-
tic orbit. The table illustrates that observations may be marked (not used
for the orbit determination process). Program ORBDET allows it also to
remove previously introduced marks. Initially, only observations referring to
one opposition are used.

If observations are marked or unmarked, program ORBDET either invokes an
orbit improvement process without perturbations using the orbital elements
p, e, i, Ω, ω, and T0 (this particular set is valid for all possible conic sec-
tions) or an orbit improvement process with perturbations (to be addressed
in section 8.4).

Table 8.5. Residuals of the 1977 observations of Silentium w.r.t. the two best-
fitting elliptic orbits (all observations, all except marked observations)

Number Solution (all) Solution*

α cos δ δ α cos δ δ

[ ′′ ] [ ′′ ] [ ′′ ] [ ′′ ]

1 −0.49 0.40 −0.41 0.99
2 0.77 −1.03 0.37 −0.78
3 0.31 −0.13 0.75 −0.43
4 −1.21 −0.28 −0.67 −0.81
5 −0.38 1.47 −0.17 0.94
6 3.67 1.10 4.51∗ 0.97∗
7 −1.76 −0.29 −1.10 −0.40
8 −1.71 −2.59 −1.46∗ −2.70∗
9 1.04 −1.10 1.28 −1.22
10 −0.66 0.44 −0.74 0.30
11 0.43 1.65 0.34 1.51

Observations marked (*) Excluded
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Table 8.6 shows the orbital elements determined by program ORBDET cor-
responding to the first of the solutions in Table 8.5, together with the corre-
sponding mean errors.

Table 8.6. First orbit determination for minor planet Silentium using all 1977
observations

Element Value Mean Error

Semi-latus rectum p 2.12633 AU 0.00064 AU
Semi-major Axis a 2.17577 AU 0.00064 AU
Eccentricity e 0.150735 0.000066
Inclination i 3.3739◦ 0.0024◦

Long. of Asc. Node Ω 358.5430◦ 0.0119◦

Arg. of Perihelion ω 1.3861◦ 0.0394◦

Per. Passing Time T0 43371.17 MJD 0.09 days

The above example is a routine case. It (probably) can be dealt with easily
using any of the available orbit determination tools. We might, as a matter
of fact, skip the very conservative and careful initialization process described
above by defining the initial values for the topocentric distances at the bound-
ary epochs “by experience” through rb1 ≈ rb2 ≈ 2.7 AU and by invoking the
orbit improvement process with parameters (8.32) from the corresponding
values of the topocentric distances (and the observed right ascensions and
declinations). Such procedures were studied in [10]. They were found to be
robust for orbits with reasonably small eccentricities.

Orbit determination does, however, not only know standard cases. Some-
times, the careful procedure developed above is actually required to study a
particular orbit in detail. The orbit of comet Panther is a good example for
a more demanding case.

Table 8.7 shows the (slightly rearranged) output of program ORBDET when
determining the orbit of comet Panther, which was discovered in fall 1980,
at Walgrave (England).

Orbit determination proved to be extremely delicate when only observations
1 to 8, spanning a time interval of about 11 days, were available. Using the
orbit determination tools available in 1981 in Zimmerwald, it was close to
impossible to determine a reliable orbit with these observations. This dis-
couraging example led eventually to the development of the tools for first
orbit determination outlined in this section.

Figure 8.6 shows the reason for the difficulties. Using observations 1 and 8
as boundary observations and the first eight observations to determine the
orbit(s) led to the σ(rb1 )-function illustrated by this figure.
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Table 8.7. Orbit determination for comet Panther
ORBIT DETERMINATION FOR OBJECT PANTHER DATE: 02-DEC-01 TIME: 11:12

---------------------------------------------------------------------

OBSERVATIONS

------------

NR JJJJ MM DD.DDDDD HH MM SS.SSS VDD MM SS.SS STA

1 1980 12 27.76076 1 18 47 55.60 39 22 27.5 026

2 1980 12 28.40625 1 18 48 14.47 39 32 01.3 026

3 1980 12 28.72986 1 18 48 24.52 39 36 55.2 026

4 1980 12 29.42986 1 18 48 45.24 39 47 40.5 026

5 1980 12 30.95234 1 18 49 32.25 40 11 53.0 026

6 1980 12 31.06597 1 18 49 35.87 40 13 52.4 026

7 1980 12 31.74792 1 18 49 57.37 40 24 53.0 026

8 1981 1 8.22194 1 18 54 10.61 42 44 30.3 026

9 1981 1 23.77500 1 19 04 20.58 49 25 27.3 026

10 1981 1 28.77222 1 19 07 59.99 52 11 39.3 026

11 1981 4 9.06250 1 07 59 31.09 59 29 06.4 026

# OBS = 8

RMS = 5.37 " / 4.65"

TIME INTERVAL = 102.302 DAYS

Solution 1 Solution 2

********** **********

P = 1.855 AU +/- 0.182 AU P = 4.674 AU +/- 1.030 AU

A = 2.221 AU +/- 0.356 AU A = 3.354 AU +/- 3.906 AU

E = 0.406 +/- 0.064 E = 1.547 +/- 0.425

I = 74.08 +/- 2.31 DEG I = 85.46 +/- 1.40 DEG

NODE = 339.69 +/- 0.68 DEG NODE = 326.95 +/- 3.29 DEG

PER = 103.43 +/- 3.42 DEG PER = 108.67 +/- 2.74 DEG

TPER = 44618.44 +/- 2.46 DAYS TPER =44641.13 +/- 0.86 DAYS

RESIDUALS IN RIGHT ASCENSION AND DECLINATION

--------------------------------------------

Solution 1 Solution 2

********** **********

# TIME RA*COS(DE) DE MARK RA*COS(DE) DE MARK

(") (") (") (")

1 44600.7613546 3.70 2.75 1.50 2.11

2 44601.4068446 -5.03 -3.05 -4.46 -2.28

3 44601.7304546 5.81 -0.77 4.53 -0.50

4 44602.4304546 -4.41 -3.22 -3.28 -1.97

5 44603.9529346 -0.75 1.73 0.11 0.94

6 44604.0665647 -2.98 9.72 -1.13 8.97

7 44604.7485147 3.36 -7.03 3.18 -7.47

8 44612.2225349 0.32 -0.13 -0.45 0.21

9 44627.7755952 -126.69 -273.45 * -85.46 139.13 *

10 44632.7728154 -248.21 -626.93 * -135.86 254.63 *

11 44703.0630971 4658.57 52066.37 * 2715.43 -10029.44 *

Instead of only one minimum, there are two relative minima. Their depths
do not allow for a clear identification of the correct solution. Alternative
orbits computed with program ORBDET, and starting from either of the two
minima, differ significantly (see Table 8.7): in the first case (corresponding
to the smaller heliocentric distance) an elliptic orbit with a ≈ 2.2 AU and
e ≈ 0.41 is obtained. Neither the orbital elements nor the residuals can be
used to rule out this solution. The second solution is hyperbolic. The resulting
error is slightly better than in the first case, but based on the information
available early in January 1980 it was not possible to rule out either of the two
solutions. The “residuals” for observations 9 to 11 indicate that the second
solution is nearer to the correct one. This is confirmed by Table 8.8, where
all observations are used.

8.3.5 Determination of a Parabolic Orbit

In section 8.3.1 a method to determine a circular orbit was presented. In
this case the number of orbit parameters was reduced from six to four. If



8.3 First Orbit Determination 385

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

ar
cs

ec
)

AU

log10(rms)

Fig. 8.6. Logarithm of function σ(∆b1) for comet Panther

Table 8.8. Orbit determination for comet Panther
ORBIT DETERMINATION WITHOUT PERTURBATIONS

-----------------------------------------

# OBS = 11

RMS = 4.34 "

TIME INTERVAL = 102.302 DAYS

# ITERATIONS = 2

P = 3.3102 AU +/- 0.0039 AU

A = 729.5177 AU +/- 574.7404 AU

E = 0.9977 +/- 0.0018

I = 82.642 DEG +/- 0.010 DEG

NODE = 332.009 DEG +/- 0.016 DEG

PER = 105.593 DEG +/- 0.023 DEG

TPER = 44631.304 DAYS +/- 0.046 DAYS

RESIDUALS IN RIGHT ASCENSION AND DECLINATION

--------------------------------------------

# TIME RA*COS(DE) DE

(") (")

1 44600.7613546 3.69 -1.72

2 44601.4068446 -3.73 -4.68

3 44601.7304546 5.44 -1.94

4 44602.4304546 -3.71 -2.11

5 44603.9529346 -1.45 3.92

6 44604.0665647 -3.03 12.07

7 44604.7485147 1.44 -3.73

8 44612.2225349 1.71 -0.95

9 44627.7755952 -0.32 -1.95

10 44632.7728154 -0.08 1.11

11 44703.0630971 -0.04 0.00
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an object in the planetary system is suspected to be a comet (not always a
trivial decision), the hypothesis that the orbit is a parabola may make sense.
In this case, the number of parameters is reduced from six to five, because
the eccentricity is set to e = 1 .

The first orbit determination method outlined in section 8.3.3 allows it to
check the parabola hypothesis, as well: When calculating the sum of residuals
squares Σ(∆b1) , we obtain as a byproduct all six orbit parameters p, e, i,
Ω, ω, and T0 as a function of the heliocentric distance rb1 = |Rb1 + ∆b1 eb1 | .
Figures 8.7 and 8.8 show the first two elements p and e when determining
the first orbit of comet Panther using observations 1 to 8 in Table 8.7.
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Fig. 8.7. Semi-latus rectum p for comet Panther as a function of topocentric
distance ∆b1

Figure 8.8 is of particular interest: For ∆b1 ≈ 1.92 the function e(∆b1) as-
sumes the value e ≈ 1, indicating that a parabolic solution might be a can-
didate orbit – in particular because the rms value (see Figure 8.6) associated
with this topocentric distance is reasonably small.

Program ORBDET keeps track of plausible parabolic solutions. It produces a
Table of parabolic orbits found together with the corresponding rms error and
allows the program user to generate the best-fitting parabolic orbit instead of
a general orbit. Table 8.9 shows the result of a parabolic orbit determination
based on the first eight observations (see Table 8.7).

Clearly the parabolic orbit in Table 8.9 based on the observations 1 to 8 is
much better (from the point of view of the mean errors of the elements, not
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Fig. 8.8. Orbital eccentricity e of comet Panther as a function of topocentric
distance ∆b1

Table 8.9. Orbit determination for comet Panther
ORBIT DETERMINATION FOR OBJECT PANTHER DATE: 05-DEC-01 TIME: 18:39

----------------------------------------------------------------------------

ORBIT DETERMINATION WITHOUT PERTURBATIONS

-----------------------------------------

# OBS = 8

RMS = 4.84 "

TIME INTERVAL = 102.302 DAYS

# ITERATIONS = 1

P = 3.350 AU +/- 0.028 AU

I = 82.870 DEG +/- 0.173 DEG

NODE = 332.036 DEG +/- 0.049 DEG

PER = 104.480 DEG +/- 0.935 DEG

TPER = 44630.220 DAYS +/- 0.962 DAYS

RESIDUALS IN RIGHT ASCENSION AND DECLINATION

--------------------------------------------

# TIME RA*COS(DE) DE MARK

(") (")

1 44600.7613546 4.64 1.43

2 44601.4068446 -3.14 -2.84

3 44601.7304546 5.81 -0.73

4 44602.4304546 -3.67 -2.11

5 44603.9529346 -2.08 1.70

6 44604.0665647 -3.69 9.72

7 44604.7485147 0.53 -6.78

8 44612.2225349 1.62 -0.39

9 44627.7755952 26.14 108.22 *

10 44632.7728154 45.15 192.38 *

11 44703.0630971 -881.39 -4347.64 *
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of the residuals) than either the elliptic or the hyperbolic orbits in Table 8.7
based on the same observations, when estimating all six orbit parameters.
The smaller errors in the parabolic elements are due to the fact that only
five, and not six elements had to be determined (as in the case of the elliptic
and hyperbolic orbit). A comparison of Tables 8.9 and 8.8 reveals that the
parabolic orbit determined with eight observations stemming from a time
interval of only ∼ 11.5 days is quite close to the “true” orbit determined with
all 11 observations stemming from a time interval of about 100 days.

8.3.6 Gaussian- vs. Laplacian-Type Orbit Determination

The algorithms for first orbit determination developed above followed in es-
sential aspects the original Gaussian design as documented in Figure 8.2.
We did in particular formulate and solve the problem as a boundary value
problem by using the auxiliary variables (8.32). In other aspects we deviated
considerably from the original Gaussian procedure. We did in particular not
take over the Gaussian method to solve the boundary value problem (8.33).

Moreover, as opposed to the Gaussian procedure, we always used all observa-
tions contained in a reasonably short time interval, whereas Gauss took only
three observations into account. This restriction allowed it to Gauss not to
use the original observations α′

i and δ′i but functions thereof which seemed
more appropriate. The “original” Gaussian procedure will be briefly reviewed
below.

Laplace developed a method which transformed the problem of first orbit
determination at the earliest possible instant into an initial value problem. It
is based on additional assumptions concerning the motion of the observer(s)
and will be briefly addressed after the discussion of the Gaussian procedure.

Remarks concerning Gauss’s “Original” Procedure. When restricting
the number of astrometric position to three and when using the parameters
(8.32) the number of unknowns is truly reduced from six to two because all
the residuals will be zero (the number of unknowns equals the number of
observations). Assuming that the first and the third observation epoch were
used as boundary epochs, the six auxiliary parameters may be written as:

{p1, p2, . . . , p6} def= {∆1, ∆3, α
′
1, α

′
3, δ

′
1, δ

′
3} , (8.56)

i.e., the latter four parameters are identical to the observed right ascensions
and declinations. This is a consequence of the fact that the residuals of the
observations must be zero, when the number of unknowns equals the number
of observations.

It is thus only necessary to vary the remaining two unknowns ∆1 and ∆3

in such a way that the second observation also is exactly represented by the
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resulting orbit. As the residuals of this observation must be zero, as well, this
latter condition is equivalent to the request that

R2 + ∆2 e′
2 = r

(
t2 −

∆2

c

)
, (8.57)

where the (heliocentric resp. geocentric) position vector R2 of the observer
and the unit vector e′

2 = e(α′
2, δ

′
2) of the observed direction to the object are

known.

Assuming for the moment, that we know the distances ∆i , i = 1, 2, 3 , we
also know the boundary values and the boundary epochs:

t̃1 = t1 −
∆1

c
: r1 = R1 + ∆1 e′

1

t̃3 = t3 −
∆3

c
: r3 = R3 + ∆3 e′

3 .
(8.58)

It is well known that the two-body motion takes place in a plane. As we
assume (at present) that the boundary vectors r1 and r3 are known, the
orbital plane is known, as well. This means that the solution vector r(t) of
the boundary value problem (8.33) may be written as

r(t) = n1(t) r1 + n3(t) r3 . (8.59)

By introducing the above formula into eqns. (8.33) we see that the functions
n1 and n3 solve the following boundary value problem:

n̈1 = −µ
n1

r3
; n̈3 = −µ

n3

r3

n1(t̃1) = 1 ; n1(t̃3) = 0
n3(t̃1) = 0 ; n3(t̃3) = 1 ,

(8.60)

where the heliocentric distance has to be calculated as r =
√

(n1 r1 + n3 r3)2
in the above differential equations.

In all likelihood, the boundary value problem (8.60) qualifies as a local bound-
ary value problem, which may be solved easily with collocation methods as
developed in Chapter 7 – as long as the boundary values r1 and r3 are known.

This statement allows us to consider the functions n1(t) and n3(t) as known
functions of time. We may therefore in particular consider the function values
at the time t̃2 = t2 − ∆2

c as known. Using the abbreviations

n12
def= n1(t̃2) ; n32

def= n3(t̃2) (8.61)

we obtain what is often called the fundamental equation of first orbit deter-
mination by introducing formula (8.59) into the condition equation (8.57)
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to be met. Considering the construction (8.58) of the boundary vectors and
the abbreviations (8.61) we obtain after a rearrangement of terms (collecting
all contributions proportional to the topocentric distances on the left-hand
side):

n12 e′
1 ∆1 − e′

2 ∆2 + n32 e′
3 ∆3 = − (n12 R1 − R2 + n32 R3) . (8.62)

This fundamental equation of orbit determination is a system of three scalar
equations. Obviously the true orbit must be a solution of it.

If n12 and n32 would not depend on the ∆i , the fundamental equation could
be viewed as a linear equation in the three unknown topocentric distances
∆i , i = 1, 2, 3 . Unfortunately, the function values do depend on ∆1 and ∆3,
because these quantities occur in the differential equation (see differential
equation in boundary value problem (8.60)).

In view of the fact that the boundary values of the functions n1(t) and n2(t)
do not depend on these distances, the dependence of n12 and n32 on these
distances is rather weak. We may demonstrate in particular that these quanti-
ties are uniquely functions of r2 (thus of ∆2), by approximating the functions
n1(t) and n3(t) as Taylor series of second order about t2 , the coefficients of
which are determined in order to obey the boundary conditions of problem
(8.60) and to satisfy the equations of motion of the same problem at t = t2 .
(Subtleties like light propagation times are neglected in this approach):

n1(t)
def= n12 + (t − t2) c11 + 1

2 (t − t2)2 c12

n3(t)
def= n32 + (t − t2) c31 + 1

2 (t − t2)2 c32 .
(8.63)

The coefficients are determined through the following condition equations

n1(t1) = n12 + (t1 − t2) c11 + 1
2 (t1 − t2)2 c12 = 1

n1(t3) = n12 + (t3 − t2) c11 + 1
2 (t3 − t2)2 c12 = 0

n̈1(t2) = c12 = − µ

r3
2

n12

n3(t1) = n32 + (t1 − t2) c31 + 1
2 (t1 − t2)2 c32 = 0

n3(t3) = n32 + (t3 − t2) c31 + 1
2 (t3 − t2)2 c32 = 1

n̈3(t2) = c32 = − µ

r3
2

n32 .

(8.64)

In this approximation all coefficients of the Taylor series are functions of
r2 . For the zero order terms (and only those are required subsequently) one
obtains:
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n12 = +
t3 − t2
t3 − t1

1
1 + µ

2 r3
2

(t1 − t2)(t3 − t2)

n32 = − t1 − t2
t3 − t1

1
1 + µ

2 r3
2

(t1 − t2)(t3 − t2)
.

(8.65)

The above developments give rise to two methods for solving the fundamental
equation (8.62):

Method 1: Direct Solution

1. A “plausible” value for r3
2 is selected. (For applications in the plane-

tary system one usually sets r3
2 = 20 , which is appropriate for minor

planets between Mars and Jupiter).

2. Using this approximation, the function values n12 and n32 are com-
puted according to formulae (8.65).

3. The fundamental equation (8.62) is solved for ∆1 , ∆2 , and ∆3 .

4. With the determined values ∆1 and ∆3 the boundary values r1 and
r3 are calculated using the relations (8.58).

5. The problem (8.60) is now solved as a local boundary value problem
using, e.g., the collocation method developed in Chapter 7 or the
analytical method developed in section 8.3.2.

6. Evaluating the solutions n1(t) and n2(t) at t = t̃2 we obtain the best
estimates for n12 and n32 .

7. The solution proceeds with step 3. until no further changes are ob-
served in the topocentric distances ∆i , i = 1, 2, 3 .

Method 2: Search Method

1. The fundamental equation (8.62) is solved for a table of values r2,k
def=

r2,min + k dr , k = 1, 2, . . ., where dr is a user-defined increment and
r2,min is the minimum value r2 may assume.

2. The topocentric distance ∆2,k obtained as a solution of the funda-
mental equation (8.62) for the selection r2,k is used to compute the
heliocentric (for satellite applications geocentric) distance using eqn.
(8.57):

r̃2,k
def=
√(

R2
2 + ∆2,k e′

2

)2
. (8.66)

3. The true (approximate) value for r2 is obtained as the root of the
function

B(r2)
def= r2 − r̃2 = 0 . (8.67)

4. Using the value of r2 solving the equation B(r2) = 0 as “plausible
value”, the orbit determination problem is iteratively improved with
Method 1.
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Method 1, if not preceded by a solution step using method 2, is a rather
risky strategy. It usually works well for standard applications in the plane-
tary system (i.e., for minor planets with orbits of rather small eccentricities
between Mars and Jupiter). There are many variations of this method. Even
Herget’s generalization of the Gaussian method [54] must be viewed as a
solution method of this type (apart from accepting more than three obser-
vations, the initialization differs by starting from two boundary vectors). In
literature the boundary value problem (8.60) is usually solved by the well-
established, but not easily understandable sector:triangle method (see, e.g.,
[114]). For cometary orbits this “shooting from the hips” method as reflected
by Method 1 often fails.

Method 2 is related to our more general algorithms discussed above and
implemented in program ORBDET. It has, however, the disadvantage that
the orbit representation (Taylor series up to terms of second order) used for
the search is rather poor. As mentioned, the Gaussian algorithms worked
remarkably well for many (not to say most) applications in the planetary
system.

When applying these methods to a broader class of objects (objects in the
Edgeworth-Kuiper belt, to cometary orbits, NEA (Near Earth Asteroids)),
and to artificial Earth satellites, a blind use of these methods may lead to
a bad, at times catastrophic performance. This is probably the reason for
the harsh criticism of the Gaussian methods in [118]. If the method is put
on a rational basis and modernized as it was done in the preceding sections,
Gaussian-type methods are among the best available.

Let us mention that in Method 2 the fundamental equations (8.62) might be
reduced to one scalar equation in ∆2 by formally eliminating the first and
third topocentric distances because n12 and n32 are only functions of the
parameter r3

2 , which in turn is a function of ∆2 .

First Orbit Determination According to Laplace. Easy understand-
ability is a particularly attractive aspect of Laplacian-type orbit determi-
nation methods. The method, attributed to Laplace, makes the attempt to
transform a problem, which from its nature is a boundary value problem,
into an initial value problem.

This may be achieved by fitting the original observations, e.g., the right
ascensions and declinations α′

i , i = 1, 2, . . . , n , and δ′i , i = 1, 2, . . . , n , by
Taylor series of a certain order 2 ≤ q ≤ n − 1 in time:

α(t) =
q∑

i=0

1
i!

αi
0 (t − t0)i ; δ(t) =

q∑
i=0

1
i!

δi
0 (t − t0)i , 2 ≤ q ≤ n − 1 .

(8.68)
The derivatives αi

0 and δi
0 of the observations referring to an arbitrary de-

velopment epoch t0 (best selected in the middle of the interval covered by
observations) are established by a conventional least-squares procedure. From
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now on, only the coefficients of the Taylor series (8.68), but no longer the ob-
servations themselves, are analyzed. As the entire information is now related
to one epoch t0, one may truly speak of an initial value problem.

Using the representation (8.68) for the observation, we may also represent
the observed unit vector e(t)

e(t) def= e
(
α(t), δ(t)

)
(8.69)

and its derivatives as a function of time. The first and the second derivative
are computed as

ė(t) =
(

∂e

∂α

)
(t) α̇(t) +

(
∂e

∂δ

)
(t) δ̇(t) (8.70)

and

ë(t) =
(

∂e

∂α

)
(t) α̈(t) +

(
∂e

∂δ

)
(t) δ̈(t) +

(
∂2e

∂α2

)
(t) α̇2(t)

+ 2
(

∂2e

∂α ∂δ

)
(t) α̇(t)δ̇(t) +

(
∂2e

∂δ2

)
(t) δ̇2(t) ,

(8.71)

where the derivatives of the unit vector w.r.t. α and δ are obtained from the
definition of the unit vector in the equatorial system

e =

⎛
⎝ cosα cos δ

sin α cos δ
sin δ

⎞
⎠ .

We may in particular consider the unit vector and its first two derivatives
w.r.t. time at t0 as known quantities.

For applications in the planetary system it is assumed in Laplacian-type orbit
determination procedures that not only the observed celestial body, but also
the observer is moving on a conic section around the Sun:

r̈ = − k2 r

r3

R̈ = − k2 (1 + m♁) R

R3
.

(8.72)

For applications to artificial Earth satellites the latter assumption does not
make sense. One may assume, however, that the observer moves on a known
analytical trajectory, the first two derivatives thereof are known, as well. Taff
[118] discusses generalizations of this kind.

Assuming that the trajectory of the observer is known and that the motion
of the observed object is defined by the differential equation of the two-body
problem we may derive an equation of motion of the observed body w.r.t.
the observer by taking the second time derivative of
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r(t) = R(t) + ∆(t)e(t) . (8.73)

For applications in the planetary system one obtains for time t = t0 , where
e0

def= e(t0) , etc.,

e0 ∆̈0 + 2 ė0 ∆̇0 +
(

ë0 + k2 e0

r3
0

)
∆0 = − k2

(
1
r3
0

− 1
R3

0

)
R0 (8.74)

and for artificial satellites (see, e.g., [118]):

e0 ∆̈0 + 2ė0 ∆̇0 +
(

ë0 + GM
e0

r3
0

)
∆0 = −GM

R0

r3
0

− R̈0 . (8.75)

Equations (8.74) and (8.75), respectively, are the fundamental equations for
Laplacian-type orbit determination. They correspond to the fundamental
equation (8.62) of Gaussian-type first orbit determination.

Equations (8.74) and (8.75), respectively, are non-linear equations in the three
scalar unknowns ∆0 , ∆̇0 , and ∆̈0 , because the only other quantity r0 which
is unknown in these equations may be written as a function of ∆0 :

r2
0 =

(
R0 + ∆0 e0

)2
. (8.76)

In practice, the systems of equations (8.74) and (8.75) may, e.g., be solved by
formally eliminating ∆̇0 and ∆̈0 using basic methods of linear algebra. The
result consists of an equation containing only the unknown quantities ∆0

and r0, which, in view of eqn. (8.76), means that one scalar equation for the
unknown ∆0 is obtained. The resulting equation may even be transformed
into an equation of degree eight in the remaining unknown (see, e.g., [114])
then solved by numerical methods.

Equations (8.74) and (8.75) may also be solved without such algebraic trans-
formations. Note, that the equations would be linear in the three scalar quan-
tities ∆0 , ∆̇0 , and ∆̈0 , if r0 were known. Therefore, one may solve these
equations for a table of values r0,k = r0,min + k dr , k = 1, 2, . . ., determine
the corresponding values ∆0,k by formally solving the equations (8.74) or
(8.75) for the three unknowns (where the derivatives of ∆0 are of no inter-
est when determining the correct value ∆0), and determine the root of the
function

B(r0)
def=
√

(R0 + ∆0 e0)2 − r0 = 0 (8.77)

with numerical methods using the table of values r0,k and ∆0,k .

Let us assume now that we have found the correct root(s) ∆0 of the function
(8.77). In order to obtain the initial position- and velocity-vector at time t0,
we need not only ∆0 but also the corresponding value ∆̇0 , which is obtained
by solving the fundamental equations (8.74) or (8.75) for the value r0 corre-
sponding to the root(s) of equation (8.77). The position- and velocity- vectors
at t0 are then obtained by:
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r(t0) = R0 + ∆0 e0

ṙ(t0) = Ṙ0 + ∆̇0 e0 + ∆0 ė0 .
(8.78)

The light-propagation time was neglected in our review of the essentials of
Laplacian-type orbit determination procedures. If one would wish to im-
plement such procedures, this aspect should be handled correctly. Approxi-
mately, we just might identify the starting epoch with t0 − ∆0

c and not with
t0 .

Classical Gaussian vs. Laplacian Procedures. In the preceding para-
graphs we have analyzed the classical Gaussian and Laplacian orbit deter-
mination methods. In both cases fundamental equations of a very similar
structure were obtained.

It is often viewed as an advantage of the Laplacian-type orbit determination
that implicitly all observations are used in the first orbit determination pro-
cess by fitting the observations by a development of type (8.68). This is true
if the observations are very noisy, and if many (dozens) of observations are
available in a short time interval. It is, however, questionable whether this
should be viewed as an advantage of the Laplacian method. One might as
well generate three artificial observations for three different epochs using the
same representation (8.68) and then apply the Gaussian procedure.

The advantage of the Laplacian procedure may also be viewed as its dis-
advantage: Fitting the observations by polynomials only makes sense if the
trajectories of the observer(s) and the celestial body are smooth enough to
justify such fits. For applications to artificial satellites this argument strictly
rules out the use of optical observations stemming from different observato-
ries, whereas this is possible without problems for Gaussian-type algorithms.
When applied to minor planets or comets the same argument is not valid.
In a fair approximation all observatories on the surface of the Earth may be
identified with the center of mass of the Earth-Moon system. The error intro-
duced through such neglects depend on the distance of the celestial object.
In most cases Laplacian first orbit determination is still possible – naturally
with a slightly reduced accuracy. It should be pointed out, however, that no
such concerns exist for Gaussian procedures.

The main advantage of Laplace-type orbit determination algorithms resides
in their transparency. The main advantage of Gaussian-type orbit determi-
nation procedures resides in their mathematical correctness. They are based
on the minimum number of assumptions. The algorithms for first orbit deter-
mination developed in this Chapter and implemented in program ORBDET
are based on the original Gaussian ideas as reflected by Figure 8.2. ORBDET
was successfully applied to all kinds of minor planets (“ordinary” objects
between Mars and Jupiter, objects in the Edgeworth-Kuiper belt, NEAs, ar-
tificial Earth satellites, and space debris). The search table in ORBDET is
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optimized for “normal” objects. When dealing with objects in the Edgeworth-
Kuiper belt, the table has to be extended toward larger geocentric distances
(see section II- 8).

8.4 Orbit Improvement: Examples

The theory of orbit improvement is in essence identical with the theory of
nonlinear parameter estimation. It is based on the three keywords initializa-
tion, iteration, and termination. This theory – using pure orbit determination
as an example – was already outlined in the paragraph 8.2.1. The delicate
part of the orbit determination problem, namely the initialization of the it-
erative orbit improvement process, was discussed in detail in the previous
section 8.3, which is why we may confine ourselves here with presenting and
discussing a few examples.

Let us first study the orbit of a minor planet using observations from several
oppositions. After a successful first orbit determination procedure using the
observations of only one opposition, observations from different oppositions
(planetary system) shall be analyzed now. When determining the best possi-
ble two-body orbit from observation series covering more than one revolution
period, one usually realizes that these observations are not well represented.
This behavior is illustrated by Table 8.10, where the two-body orbit of minor
planet Silentium is determined not only with the observations of the 1977 op-
position, but also with the Zimmerwald observations of the 1993 opposition.

Table 8.11 provides another example using observations made at Zimmer-
wald. Observations of this kind are, e.g., obtained during search campaigns
for space debris. Figure 8.9 illustrates two possibilities to observe geostation-
ary satellites. In Figure 8.9 (left) the satellites are moving w.r.t. the star
background, because the telescope is compensated for the diurnal motion of
the stars, in Figure 8.9 (right) the telescope is in the staring mode, i.e., it is
pointing into one and the same Earth-fixed direction; this mode implies that
geostationary objects are mapped as “points” and the stars as dashes. For
space debris search campaigns in the geostationary belt the second mode is
preferable.

In such campaigns an observation session may last for several hours (or even
the entire night). The geostationary belt is systematically screened for known
and unknown objects. In this observation mode, the same objects are ob-
served a few times on successive CCD-frames in a short observation interval
of a few minutes only (usually 30 seconds to three minutes), then (depending
on the search strategy) again after a longer time interval of one to a few
hours. In the example documented by Table 8.11 observations of the object
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Table 8.10. Orbit elements of Silentium, from the 1977 and 1993 observations,
and residuals w.r.t. the best-fitting two-body orbits

ORBIT DETERMINATION WITHOUT PERTURBATIONS

-----------------------------------------

# OBS = 15

RMS = 14.61 "

TIME INTERVAL = 5866.909 DAYS

# ITERATIONS = 5

P = 2.1264637123 +/- 0.0004464957 AU

A = 2.1768293257 AU

E = 0.1521089870 +/- 0.0006633385

I = 3.3608431 +/- 0.0027896 (DEG)

NODE = 358.3983727 +/- 0.0216815 (DEG)

PER = 0.7998919 +/- 0.4220762 (DEG)

TPER = 43369.5325464 +/- 0.9338195 DAYS

RESIDUALS IN RIGHT ASCENSION AND DECLINATION

--------------------------------------------

# TIME RA*COS(DE) DE MARK

(") (")

1 43405.0530984 11.62 -28.67

2 43408.0443285 13.34 -29.09

3 43434.9175693 17.07 -9.84

4 43435.9880594 14.84 -9.06

5 43436.0380594 15.21 -7.06

6 43450.7821598 2.79 1.46

7 43452.8172299 -5.37 1.23

8 43456.0026400 -11.18 1.06

9 43456.0457000 -9.16 2.67

10 43457.9149701 -12.61 4.55

11 43458.0116701 -12.67 6.11

12 49249.9211816 -7.90 5.20

13 49250.9444416 -4.84 6.89

14 49270.9250022 -8.48 24.60

15 49271.9625022 -9.37 24.67

Fig. 8.9. Astrometric CCD observation of geostationary satellites with the Zimmer-
wald observatory (left: sidereal tracking, right: staring mode, i.e., tracking turned
off)
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with COSPAR number 97049B (MeteoSat 7), stemming from two successive
nights (January 2/3 and January 3/4, 2002), are analyzed.

In Table 8.11 a circular orbit was determined first from observations 1 and
4, separated by 1m30s. The search for space debris in the geostationary belt
provides, by the way, an excellent example for the usefulness of determining a
circular orbit. In view of the fact that objects in the geostationary belt usually
are in orbits of samll eccentricities, a circular orbit determined with two
observations separated by only 1-2 minutes is usually of better quality than
an elliptic orbit based on all observations contained in the same short time
interval. Also, when the search strategy is optimized to obtain the maximum
number of new objects, usually only two observations are obtained of the
same object in the short time interval mentioned.

After the determination of a circular orbit, all 31 observations are used to
determine the best-possible two-body orbit. Obviously, the residuals show a
systematic behavior which is about one order of magnitude above the mea-
surement noise (which is of the order of about 0.10 − 0.20′′ per observation,
either α cos δ or δ).

Program ORBDET allows to considerably improve the force field for appli-
cations in the planetary system and in satellite geodesy. The improvement
implies that the equations of motion have to be modified and solved with
alternative methods.

For the purpose of the improvement of planetary orbits the equations of
motion (3.21) are implemented in program ORBDET:

r̈ = − k2 r

r3
− k2

n∑
j=1

mj

{
r − rj

|r − rj |3
+

rj

r3
j

}
, (8.79)

where the mass m0 of the central body (i.e., the Sun) was set to m0 = 1 . A
(sub)set of the nine major planets may be selected as perturbing bodies by the
user. The position vectors of the selected planets are computed approximately
using the formulae contained in Meeus [72].

The variational equations (see Chapter 5 of Part III) have to be integrated
simultaneously with the equations of motion. The variational equations as-
sociated with the two-body problem were derived in Chapter 5, eqn. (5.22).
The variational equations corresponding to the equations of motion (8.79)
read as

z̈ = A z , (8.80)

where z stands for the partial derivative of the celestial body’s position vector
w.r.t. one of the six orbit parameters, and where

A = −k2

r3

{
E− 3

r2
r ⊗ rT

}
−k2

n∑
j=1

mj

|r − rj |3

{
E − 3 (r − rj) ⊗ (r − rj)T

(r − rj)2

}
.

(8.81)
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Table 8.11. Residuals and orbital elements of MeteoSat 7 (97049B) w.r.t. the two
best-fitting two-body orbits

ORBIT DETERMINATION FOR OBJECT 97049B DATE: 17-FEB-02 TIME: 07:31

--------------------------------------------------------------------------

NR OBJECT YYYY MM DD HH MM SS.SSS RA(H) DE(DEG)

1 97049B 2002 1 2 18 48 19.841 1.593343 -6.92939

2 97049B 2002 1 2 18 48 49.853 1.601697 -6.92921

3 97049B 2002 1 2 18 49 19.852 1.610052 -6.92888

4 97049B 2002 1 2 18 49 49.862 1.618411 -6.92847

5 97049B 2002 1 2 19 16 2.389 2.056358 -6.91162

6 97049B 2002 1 2 19 16 32.410 2.064720 -6.91134

7 97049B 2002 1 2 19 17 2.410 2.073070 -6.91098

8 97049B 2002 1 2 19 17 32.421 2.081431 -6.91073

9 97049B 2002 1 2 19 44 57.938 2.539669 -6.89405

10 97049B 2002 1 2 20 43 39.847 3.520331 -6.86279

11 97049B 2002 1 2 20 44 9.888 3.528693 -6.86258

12 97049B 2002 1 2 20 44 41.276 3.537434 -6.86235

13 97049B 2002 1 2 20 45 15.526 3.546970 -6.86207

14 97049B 2002 1 2 21 27 51.772 4.258681 -6.84455

15 97049B 2002 1 2 21 28 21.812 4.267043 -6.84437

16 97049B 2002 1 2 21 28 51.813 4.275396 -6.84412

17 97049B 2002 1 2 21 29 21.803 4.283751 -6.84406

18 97049B 2002 1 3 1 27 7.210 8.254993 -6.84110

19 97049B 2002 1 3 1 27 37.221 8.263351 -6.84127

20 97049B 2002 1 3 1 28 16.438 8.274271 -6.84154

21 97049B 2002 1 3 17 59 29.162 0.840787 -6.96331

22 97049B 2002 1 3 17 59 59.192 0.849155 -6.96313

23 97049B 2002 1 3 18 0 29.203 0.857514 -6.96278

24 97049B 2002 1 3 18 0 59.194 0.865863 -6.96239

25 97049B 2002 1 3 19 48 34.731 2.663822 -6.89356

26 97049B 2002 1 3 19 49 4.781 2.672189 -6.89338

27 97049B 2002 1 3 19 49 34.772 2.680544 -6.89311

28 97049B 2002 1 3 19 50 4.773 2.688902 -6.89275

29 97049B 2002 1 3 22 20 17.917 5.198412 -6.83207

30 97049B 2002 1 3 22 20 47.963 5.206773 -6.83185

31 97049B 2002 1 3 22 21 17.264 5.214928 -6.83161

CIRCULAR ORBIT FOR OBJECT 97049B DATE: 17-FEB-02 TIME: 07:31

------------------------------------------------------------------------

RESIDUALS IN ARCSECONDS ELEMENTS

----------------------- --------

I RA DE

1 0.00 0.00 A = 42172088.0

2 -0.17 -0.48 E = 0.000000

3 -0.11 -0.38 I = 0.136461

4 0.02 0.00 NODE = 5.101649

5 3.73 4.07 * PER = 0.000000

6 3.87 4.03 * TPER = -4694.839

7 3.68 4.27 *

.. .... ....

.. .... ....

ORBIT DETERMINATION WITHOUT PERTURBATIONS

-----------------------------------------

# OBS = 31

RMS = 4.77 "

TIME INTERVAL = 99177.422 SEC

# ITERATIONS = 11

P = 42166181.332356 +/- 36.080678 M

A = 42166183.757693 +/- 36.071062 M

E = 0.0002398302 +/- 0.0000086390

I = 0.1436683 +/- 0.0004173 (DEG)

NODE = 6.3765383 +/- 0.1427097 (DEG)

PER = -75.6944880 +/- 2.1518521 (DEG)

TPER = -22500.4164587 +/- 507.3420231 SEC
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Table 8.11. (Continued.)

RESIDUALS IN RIGHT ASCENSION AND DECLINATION

--------------------------------------------

# TIME RA*COS(DE) DE MARK

(s) (") (")

1 0.0000000 1.85 5.80

2 30.0110397 1.60 5.24

3 60.0108481 1.57 5.26

4 90.0210240 1.61 5.56

5 1662.5476799 1.42 5.31

6 1692.5682240 1.50 5.19

7 1722.5688955 1.25 5.35

8 1752.5790720 1.40 5.12

9 3398.0964480 0.83 5.17

10 6920.0058239 -1.15 5.24

11 6950.0462400 -1.28 5.12

12 6981.4344958 -1.24 5.07

13 7015.6843195 -1.24 5.12

14 9571.9302718 -2.19 4.12

15 9601.9706880 -2.27 4.12

16 9631.9713595 -2.28 4.36

17 9661.9616640 -2.00 3.95

18 23927.3688959 0.06 0.84

19 23957.3790719 0.26 0.81

20 23996.5968956 0.41 0.64

21 83469.3206399 -2.26 -6.55

22 83499.3506879 -2.12 -7.12

23 83529.3617276 -2.11 -7.10

24 83559.3520315 -2.36 -6.94

25 90014.8895998 1.01 -8.79

26 90044.9395198 1.00 -9.19

27 90074.9306875 1.17 -9.25

28 90104.9313596 1.34 -9.00

29 99118.0756799 1.56 -9.52

30 99148.1212799 1.39 -9.09

31 99177.4221117 1.24 -8.59

All in all six variational equations, corresponding to the six orbit parameters
(initial conditions or osculating orbital elements) have to be integrated. In
order to avoid case-distinctions and in order to avoid delicate special cases
which might give rise to singularities (e.g., starting a general orbit determi-
nation procedure from a circular orbit), program ORBDET uses internally
the rectangular components of the position- and the velocity-vectors as or-
bit parameters for orbit improvement with perturbations. The results and
the associated mean errors are, however, transformed into osculating orbital
elements at the initial epoch after the completion of the orbit improvement
procedure.

Table 8.12 shows the osculating elements of Silentium’s orbit at the initial
epoch (first of the 1977 Zimmerwald observations) and the residuals w.r.t. the
best-fitting orbit, where the perturbations due to the planets Mars, Jupiter,
Saturn, and Neptune were included.

The residuals are (more or less) randomly distributed. When comparing the
results in Tables 8.10 and 8.12 one notes that the mean error of the semi-
major axis is much smaller in the latter case than expected according to a
1/

√
n-law (n being the number of observations). This is due to the circum-

stance that the semi-major axis a defines the mean motion. The mean error
of the semi-major axis thus decreases not only according to the 1/

√
n-law

but it is also proportional to the length of the time interval covered by the
observations.
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Table 8.12. Orbit elements of Silentium, from the 1977 and 1993 observations,
and residuals w.r.t. best-fitting perturbed orbit

ORBIT DETERMINATION WITH PERTURBATIONS

--------------------------------------

# OBS = 14

RMS = 1.34 "

TIME INTERVAL = 5866.909 DAYS

# ITERATIONS = 3

P = 2.1271958752 +/- 0.0000405400 AU

A = 2.1765687310 +/- 0.0000013513 AU

E = 0.1506114297 +/- 0.0000598213

I = 3.3772449 +/- 0.0002634 (DEG)

NODE = -1.4361728 +/- 0.0019823 (DEG)

PER = 1.4341112 +/- 0.0397738 (DEG)

TPER = 43371.2849103 +/- 0.0887213 DAYS

RESIDUALS IN RIGHT ASCENSION AND DECLINATION

--------------------------------------------

# TIME RA*COS(DE) DE MARK

(") (")

1 43405.0530984 -1.55 2.18

2 43408.0443285 -0.41 0.69

3 43434.9175693 1.14 0.35

4 43435.9880594 -0.47 0.23

5 43436.0380594 -0.08 2.19

6 43450.7821598 4.09 0.30 *

7 43452.8172299 -0.82 -1.01

8 43456.0026400 -1.24 -2.67

9 43456.0457000 0.85 -1.08

10 43457.9149701 0.70 0.02

11 43458.0116701 0.81 1.55

12 49249.9211816 -0.85 -1.95

13 49250.9444416 1.72 -1.19

14 49270.9250022 0.20 0.61

15 49271.9625022 0.10 0.07

For satellite geodetic applications, program ORBDET may take into account
the perturbations due to the Earth’s oblateness and due to the gravitational
attraction exerted by Sun and Moon. The equations of motion assume the
form (compare eqns. (3.143) and (II- 3.9)):

r̈ = +
1
r3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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−GM r +

3
2

C̃20

r2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
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(
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r2
3

r2

)

r2

(
1 − 5

r2
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r2

)
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(
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r2
3

r2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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+

r�
r3�

}
.

(8.82)

These equations of motion are hardly able to model the orbit of a LEO over a
time interval of more than a few revolutions. For satellites in the geostationary
belt and in the height of the current generation of navigation satellites, the
model is good enough to represent direction observations with an accuracy
well below the arcsecond. Better modelling capabilities will be provided and
discussed below.

As in the case of planetary and cometary orbits, the variational equations
are solved simultaneously with the primary equations (8.82) when the orbit
of an artificial satellite or of a space debris is determined. The structure of
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the variational equations is the same as in the case of the planetary system,
i.e., the variational equations are given by eqns. (8.80). The matrix A may
be written as a sum of the terms due to the point mass contributions from
Earth, Moon, and Sun, and due to the Earth’s oblateness J20. The former
three terms may be taken over from eqn. (8.81). Thus, only the contribution
due to C20 would have to be addressed here, but the exercise is left to the
readers.

Table 8.13 shows the result of an orbit improvement process including the
oblateness and the third-body perturbations due to the Moon and the Sun
using all observations of object 97049B in the nights of January 2/3 and
3/4. When comparing Tables 8.13 and 8.11 we may obviously conclude that
the improved force model is much better suited to represent the observations.
Small systematic effects of the order of a few 0.10′′ exist and will be addressed
below.

In program ORBDET the equations of motion and the associated variational
equations are solved with the numerical methods developed in Chapter 7. As

Table 8.13. Residuals and orbital elements of observations of MeteoSat 7 (97049B)
w.r.t. the best-fitting perturbed orbit

ORBIT DETERMINATION WITH PERTURBATIONS

--------------------------------------

# OBS = 31

RMS = 0.30 "

TIME INTERVAL = 99177.422 SEC

# ITERATIONS = 3

P = 42167030.659765 +/- 2.237931 M

A = 42167033.622328 +/- 2.237217 M

E = 0.0002650619 +/- 0.0000005579

I = 0.1441395 +/- 0.0000258 (DEG)

NODE = 5.8957628 +/- 0.0088765 (DEG)

PER = -72.2644793 +/- 0.1161062 (DEG)

TPER = -21794.5172848 +/- 27.3039082 SEC

RESIDUALS IN RIGHT ASCENSION AND DECLINATION

--------------------------------------------

# TIME RA*COS(DE) DE MARK

(") (")

1 0.0000000 0.45 0.46

2 30.0110397 0.20 -0.11

3 60.0108481 0.17 -0.10

4 90.0210240 0.22 0.20

5 1662.5476799 0.30 -0.10

6 1692.5682240 0.39 -0.22

7 1722.5688955 0.14 -0.06

8 1752.5790720 0.31 -0.29

9 3398.0964480 0.22 -0.19

10 6920.0058239 -0.33 0.32

11 6950.0462400 -0.45 0.20

12 6981.4344958 -0.40 0.16

13 7015.6843195 -0.39 0.22

14 9571.9302718 -0.23 -0.22

15 9601.9706880 -0.30 -0.22

16 9631.9713595 -0.30 0.03

17 9661.9616640 -0.01 -0.37

18 23927.3688959 -0.16 0.40

19 23957.3790719 0.03 0.38

20 23996.5968956 0.14 0.21

21 83469.3206399 -0.34 0.54

22 83499.3506879 -0.22 -0.02

23 83529.3617276 -0.23 0.02

24 83559.3520315 -0.50 0.18

25 90014.8895998 -0.02 0.30

26 90044.9395198 -0.04 -0.09

27 90074.9306875 0.12 -0.15

28 90104.9313596 0.29 0.11

29 99118.0756799 0.48 -0.72

30 99148.1212799 0.30 -0.30

31 99177.4221117 0.16 0.18
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the program should be able to accommodate any orbit types (not only orbits
with small eccentricities), the integration method of choice is the collocation
method with stepsize control. The numerical integration is set up in such a
way that the initial epoch may be located anywhere w.r.t. the observation
epoch. As a matter of fact the initial epoch is automatically set to coincide
with the first observation epoch selected for first orbit determination. This
means that forward and backward integration is possible.

Program ORBDET, as provided on the CD accompanying this book, is a tool
for first orbit determination (using all observations of one opposition resp.
one satellite pass) and for orbit improvement for observation series spanning
at maximum a few revolution periods of the observed object.

For orbit improvement based on longer time spans of observations, more
elaborate tools for orbit modelling have to be used. The included software
package contains program SATORB (see Chapter II- 7 of Part III), which
was already extensively used in Chapter II- 3 to illustrate the perturbations
acting on artificial satellites. Program SATORB may not only be used as
a tool to produce satellite ephemerides, but also as an orbit determination
tool. SATORB will be used in section 8.5.4 to produce ephemerides of LEOs,
for which geocentric position vectors (and possibly position differences) were
obtained from spaceborne GPS receivers. Here we use it to generate an im-
proved orbit for a time series of approximately 11 days of observations of
Meteosat 7. The first two days of observations are identical with those in
Table 8.11.

Table 8.14 shows the results of the orbit improvement process. The program
needs approximate orbital elements. These were taken over from program

Table 8.14. Orbital elements of MeteoSat 7 (97049B), and residuals w.r.t. the
best-fitting perturbed orbit (150 observations in 11 days, January 2 - 13, 2002)

ORBIT DETERMINATION FOR OBJECT 97049B DATE: 17-FEB-02 TIME: 10:45

----------------------------------------------------------------------------

ORBIT DETERMINATION USING *.OBS-FILES FOR 1 SATELLITE(S)

**********************************************************

SATELLITE 1 ARC = 1

FROM (MJD) = 52276.784

TO (MJD) = 52287.787

# OBS-EPOCHS = 155

# ITERATIONS = 5

-----------------------------------------

ORBITAL ELEMENTS AND THEIR RMS ERRORS

***************************************************

OSCULATION EPOCH = 52276.7835630 MJD

SEMIMAJOR AXIS = 42167095.628 M +- 0.195 M

REV. PERIOD U = 1436.218 MIN

ECCENTRICITY = 0.0002625494 --- +-0.0000000667

INCLINATION = 0.1441769 DEG +- 0.000007362

R.A. OF NODE = 5.9114545 DEG +- 0.002311926

ARG OF PERIGEE = -72.6985835 DEG +- 0.045279186

ARG OF LAT AT T0 = 18.7996063 DEG +- 0.002311457

***************************************************

NUMBER OF DYNAMICAL PARAMETERS : 1

DECOMPOSITION TYPE (1=RSW, 2=DYX): 2

********************************************************

PARAMETER = D0 VALUE =-.666859D-07 +-0.763417D-09 M/S**2

********************************************************

SAT 1 : RMS= 0.21" # OBS = 310 # PARMS = 7 BETA= -22.74 DEG
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ORBDET (not documented in Table 8.14). The best available force model
was used for the program run: The Earth’s potential coefficients up to terms
of degree and order 70 were used, gravitational attractions from Sun and
Moon were included, the solid Earth tides and the relativistic corrections
were taken into account, as well. Seven orbit parameters, namely the oscu-
lating elements at the initial epoch and a constant acceleration due to the
direct radiation pressure term (D0) were estimated. Unnecessary to say that
the orbital elements are much better determined from this long series of ob-
servations than for the series documented in Table 8.13. One can also see from
Table 8.14 that the direct radiation pressure, D0 ≈ 6.67 ·10−8 m/s2, is signif-
icant and has to be solved for. If only the six initial elements are determined,
the rms error of the single observation grows from 0.21′′ to 1.05′′.

Figure 8.10 shows the residuals of the observations in α cos δ and in δ as
a function of time (left) and as a function of the observation number. The
figure to the left nicely illustrates the problematic of observing merely from
one observatory: Due to the fact that optical observations can be made at
night only, the distribution of the observations in the time interval between
January 3 and January 13, 2002, is far from homogeneous. Also, it is hard to
judge whether or not there are small systematic errors left in the residuals.
Figure 8.10 indicates that this is not the case. A much better distribution of
observations could be achieved with 3 − 6 observatories well distributed in
geographical longitude.
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Fig. 8.10. Residuals of orbit improvement using 150 observations in 11 days of
Meteosat 7 (97049B), as a function of time (left) and of observation number (right)

8.5 Parameter Estimation in Satellite Geodesy

The development of space geodesy, with today’s cornerstones SLR/LLR and
GPS, was outlined in section 2.2 together with that of the third space geode-
tic technique, namely VLBI. The three techniques are fundamental for the
establishment, maintenance, and continued refinement of the celestial and



8.5 Parameter Estimation in Satellite Geodesy 405

the terrestrial reference systems. Nolens-volens non-geometrical parameters
related to the Earth’s atmosphere have to be determined (or eliminated) as
well, because the atmosphere influences the propagation characteristics of the
electromagnetic signals observed by the space geodetic techniques.

The theory of parameter estimation is that of non-linear parameter estima-
tion – assuming that approximate values for all parameters estimated are
available. This theory was already outlined in paragraph 8.2.1 using astro-
metric observations as an example. To cope with more general problems, we
simply have to replace the observation equations (8.6) for the astrometric
observations α′

i and δ′i by the observation equations for the functions o′i ac-
cessible to the satellite geodetic techniques mentioned above. Moreover we
have to acknowledge that the main difference of the general parameter esti-
mation problem in satellite geodesy w.r.t. the orbit improvement problems
treated so far resides in the much enlarged parameter space containing many
more different parameter types. The orbit parameters usually are only a small
subset of these parameters.

Subsequently only SLR/LLR and GPS, as satellite geodetic techniques, are
considered in this chapter, which is devoted to orbit determination and pa-
rameter estimation. The “orbits” of Quasars are not interesting in this con-
text. This does not mean that the VLBI technique is uninteresting for Earth
sciences: The discussions in Chapter II- 2 will show that VLBI is of funda-
mental nature, in particular for the establishment of the celestial reference
system and for modelling precession and nutation.

Rather complex parameter estimations are performed routinely in satellite
geodesy. It is the purpose of this section to give some insight into the work
performed by the space geodetic services ILRS and IGS (see Table 2.5).

8.5.1 The General Task

The parameters accessible to satellite geodetic techniques are:

• orbit parameters defining the initial state vector of a satellite at one partic-
ular epoch t0 and the dynamical parameters characterizing the force model
necessary to describe the orbital motion of the satellites,

• coordinates of the observing sites in an Earth-fixed system (if the rigid
body model is used for the Earth) or in a Tissérand system (see section
3.3.7), if non-rigid Earth models are used,

• motion of the observatories relative to a Tissérand system,

• Earth rotation and Earth orientation parameters defining the transforma-
tion between the Earth-fixed and the inertial system at the measurement
epoch (in particular x and y, the polar wobble coordinates, the length of
day, and possibly nutation terms),
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• atmosphere parameters defining the tropospheric refraction correction,

• atmosphere parameters defining the ionospheric refraction correction, as
well as

• technique-specific parameters (e.g., station-specific range biases, satellite
clock parameter, receiver clock parameter, etc.).

It may be possible to determine some of the parameters with additional and
independent measurements with sufficient precision. This may considerably
reduce the dimension of the parameter space. The parameter space underlines
the interdisciplinary potential of satellite geodesy.

The orbital arc or simply the arc as a contiguous, limited part of the satellite’s
trajectory plays an important role in satellite geodesy. Whereas usually all
observations made of a minor planet or a comet are represented eventually by
one contiguous trajectory described by one set of initial conditions (in general
only six parameters), the same is usually not true in satellite geodesy. When
a satellite is observed over many years, it is not possible to describe the
entire time period covered by observations by one set of initial conditions
and the appropriate dynamical parameters. In such cases the orbital arc
may be broken up into arcs of lengths defined by the analyst. Each arc is
described by exactly one initial state vector and the dynamical parameters.
This is why usually many sets of parameters defining the initial values have
to be estimated in satellite geodetic analyses. Alternatively (in an attempt to
avoid breaking up a trajectory into orbital arcs) one might introduce so-called
pseudo-stochastic parameters (fudge parameters) or replace the deterministic
differential equation for the trajectory by a stochastic differential equation,
which in essence asks for the replacement of least-squares estimators by digital
filters (the topic will be briefly addressed in section 8.5.4).

The orbit parameters (and the satellite ephemerides derived thereof) are of
different importance for different applications. Whereas a satellite ephemeris
usually is a necessary, but otherwise unimportant by-product when analyzing
the orbits of SLR satellites, the GPS ephemerides are of central importance.
It is only these high-precision ephemerides which allow it subsequently to
a broad (unlimited) user community to perform navigation or positioning
tasks with an accuracy in essence only limited by (a) the accuracy of the
determined orbits and (b) by tropospheric refraction effects.

8.5.2 Satellite Laser Ranging

Within each of the satellite geodetic observation techniques the satellites are
observed from sites on the Earth’s surface (or from low orbiting satellites
(LEOs)) at well-defined epochs. The definition of the observed quantity, the
observable, is different for each observation technique. So far we uniquely
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dealt with astrometric positions as observed quantities. Omitting technique-
specific parameters (like range or clock biases) the observation equations for
Satellite Laser Ranging (SLR) read as:

∆t̃ =
1
c

{∣∣ r(t + ∆t1) − R(t)
∣∣+ ∣∣R(t + ∆t1 + ∆t2) − r(t + ∆t1)

∣∣}
+ 2 ∆ttrop ,

(8.83)

where

t is the observation epoch, defined here as the epoch, when the Laser pulse
left the observatory,

c is the speed of light in vacuum,

R(t) is the geocentric position vector of the observatory,

r(t) that of the satellite at time t,

∆t1 is the propagation time of the Laser pulse from the observatory to the
satellite,

∆t2 the light propagation time of the pulse reflected at the satellite back to
the observatory,

∆ttrop is the tropospheric refraction correction, and

∆t̃ is the observable, the signal propagation time from the observatory to
the satellite and back.

The position vectors R(t) and r(t) have to be expressed in the same system,
either in the Earth-fixed or in the inertial system.

One may assume that the station R(t) is in rectilinear motion with constant
velocity during the short time interval [t, t + ∆t1 + ∆t2], which is why the
above equation may be simplified to read as:

∆t̃ =
2
c

∣∣ r(t + ∆t) − R(t + ∆t)
∣∣ + 2 ∆ttrop , (8.84)

where ∆t ≈ 1
2 (∆t1 + ∆t2) = 1

2 ∆t̃ is the propagation time between the
position vectors R(t + ∆t) and r(t + ∆t) .

One equation of type (8.84) is not sufficient to determine all parameters in
the above list. Parameter determination tasks in satellite geodesy ask for a
common processing of all observations of type (8.83) made by a global (or
at least regional) network of tracking sites. Moreover, all observations made
in a longer time-interval (a few days up to months or even years) have to be
analyzed together in order to achieve a good separation of all parameters.

It is possible to define “restricted” problems. For permanent sites it is often
allowed to assume the coordinates and the motion of the sites as known
(e.g., for pure orbit determination). Two restricted problems, namely that of
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optimizing the measurement process in real time and that of screening the
observations of a satellite pass are briefly addressed below.

Figure 8.11 shows the global network of the International Laser Ranging
Service (ILRS) (see Table 2.5).

Fig. 8.11. The ILRS network

When compared to the global IGS network in Figure 2.7 the number of
stations is much smaller (about 30 stations). The roots of the ILRS network
are going back to the early 1970s, when the first sizeable SLR experiments
took place. Seen from this perspective the ILRS network is much older than
the IGS network. In order to facilitate collocation between technique-specific
networks every ILRS observatory is (should be) equipped with a geodetic
GPS receiver, making the ILRS network a subnetwork of the IGS network,
as well.

As opposed to the IGS network where the equipment is rather small and
homogeneous, the ILRS sites have a high degree of individuality. Figure 8.12
shows the ILRS part of the Zimmerwald geodynamics observatory. The ob-
servatory is equipped with an astronomical telescope of 1 m aperture and a
Titanium-Sapphire Laser with a repetition rate of 10 Hz, a pulse width of
100 ps (corresponding to a length of 3 cm of the individual Laser pulse), and
a wavelength of λ = 423 nm.

The Zimmerwald telescope was designed as a multipurpose instrument. The
astrometric positions of the geostationary satellites analyzed in the previous
sections of this chapter were made with this telescope, as well. The setup
allows it to observe directions and distances in one and the same satellite
pass with state-of-the-art accuracies.
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Fig. 8.12. The Zimmerwald Observatory

As outlined in section 2.2 the ILRS observatories measure the light travel
times ∆t of the Laser pulses from the observatory to the satellite and back
to the observatory. As the field of view of a telescope of the type shown in
Figure 8.12 is very small (about 20′′) and because the beam divergence of
the Laser pulses is very small as well (10′′) rather precise predictions of the
satellites to be observed are required.

Figure 8.13 illustrates the signature of a typical Laser pass. When Lageos 1
(looking exactly like Lageos 2 in Figure 2.4) was first observed in this pass, the
light travel times were about 53 ms, corresponding to a distance ∆

def= |r−R|
of about 7950 km. Afterwards, the light travel times continually decreased
to reach a minimum at the epoch of the closest approach (the minimum
∆t ≈ 39 ms corresponds to a distance ∆ ≈ 5850 km). After the closest
approach, the light travel times grow again. The entire pass lasted for about
37 minutes. A total of more than 9000 Laser pulses were sent out, a real-time
analysis during the pass accepted about 1800 measured light travel times as
candidate echoes. A screening procedure (briefly described below) eventually
accepted about 900 measurements as real echoes. This performance is typical
for day-light passes. The night-time performance (as judged from the ratio
of accepted echoes and the total number of pulses) is about 10 times better.
The gaps between the recorded data in Figure 8.13 are not due to instrument
failures. They are caused by the fact that other Laser satellites in lower orbits
were tracked during the time period of the Lageos 1 pass.

Figure 8.14 illustrates the parameter estimation process taking place dur-
ing the satellite pass: The predicted orbit of the satellite and the (rather
well) known geocentric coordinates of the observatory allow it to compute
the difference between the predicted ranges and the actual measurements.
Predictions are never 100% true – or do you believe in weather predictions?
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Fig. 8.13. Observed light-pulse travel times (ms) to Lageos 1, observed at Zim-

merwald Observatory on July 7, 2002, 07h19m − 08h00m

Fig. 8.14. Observed-predicted light travel times (ns) to Lageos 1, observed at

Zimmerwald Observatory on July 7, 2002, 07h19m − 08h00m UT

In the case of a satellite orbit the uncertainty is mainly along track, i.e.,
all orbital elements may be assumed to be perfectly known, except one, the
mean anomaly σ0 = σ(t0) at the initial epoch t0. The predictions allow it to
define a so-called range gate. Only “echoes” within an observer-defined in-
terval centered at the predicted ranges (originally ± 60 ns in Figure 8.14) are
considered as candidate echoes. With a relatively high degree of probability it
is then possible to decide in real time whether or not a registered light travel
time within the range gate is real or not by looking for “identical” values in
a list of recently established values “observed-predicted”. If three or more of
these coincidences are found (by a majority voting technique), the accepted
observations may be used to determine an improved value for σ0 . From this
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time onwards, the predictions are much more reliable, allowing it to narrow
down the range gate. Obviously, this was done in the example illustrated by
Figure 8.14. After longer breaks, the range gate is reset to the original value.
Unnecessary to say that the determination of σ0 was based on the variational
equation for the element σ0 .

Real time decisions have to be based on a limited amount of information.
This is why after a satellite pass a more correct analysis, this time based on
a full orbit improvement process with all six elements (usually no dynamical
or pseudo-stochastic parameters have to be introduced for the short arc of
one pass), is performed before the data are sent to the ILRS data centers. As
opposed to an orbit determination based on astrometric positions it is in gen-
eral not possible to accurately determine all six osculating elements using the
range observations of one observatory only, even if the individual observations
are errorfree, because the normal to the orbital plane is very poorly defined
(it may in essence rotate on a cone with the axis pointing from the geocenter
to the observatory). In practice this means that the orbital elements i and
Ω have to be slightly constrained in the analysis. The orbit improvement is
done iteratively, where in principle the flag of every observation (indicating
whether the observation will be used for the next step) may be redefined in
each step. This process, the result of which is documented in Figure 8.15, is
fully automatic. The rms error of this particular pass was 0.155 ns, corre-
sponding to a mean error of about 2 cm in the measured ranges.

Fig. 8.15. Screened residuals (ns) of Lageos 1 observations at Zimmerwald Obser-

vatory on July 7, 2002, 07h19m − 08h00m UT

One of the primary targets of SLR, if not the primary target, is the deter-
mination of the Earth’s stationary and (to some extent) the time-variable
gravity field. The harmonic functions’ coefficients Cnm and Snm (see eqn.
(3.150) and Table 3.1) are determined as dynamical parameters in SLR anal-
yses combining many years of observations of all reasonable Laser satellites,
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where observations of Lageos 1, Lageos 2, and Starlette play a key role. These
satellites, with their favourable area to mass ratios (see Table II- 3.4) were
especially designed for gravity field determination. Only very few parameters
have to be “sacrificed” to model non-gravitational effects like radiation pres-
sure (for the Lageos satellites) and air drag (for Starlette). The parameter
estimation procedures and the (historical) development of the two fundamen-
tal Earth gravity field models GEM and GRIM are described by Reigber in
[89].

With every set of Earth potential coefficients it is possible to construct
equipotential surfaces. The equipotential surface at mean sea level, the geoid,
is of particular importance, e.g., for satellite altimetry. Figure 8.16 illustrates
this equipotential surface w.r.t. a spheroid (where the height differences are
“slightly” exaggerated).

Fig. 8.16. The geoid with exaggerated vertical scale (Courtesy of Dr. Alain Geiger
and Etienne Favey, ETH-Zürich, Switzerland)

Figure 8.16 symbolizes the historical contribution of SLR to geodesy and
Earth sciences.

The station coordinates derived from SLR analyses are automatically referred
to the geocenter, the Earth’s center of mass (see discussion in section 3.4.2).
Thanks to the insensitivity of the SLR satellites w.r.t. non-gravitational
forces, geocenter determinations (i.e., determination of the center of mass
w.r.t. the polyhedron of tracking sites) from SLR are accurate and reliable.

When the IERS was established in 1988, the SLR technique was (in essence)
one of the two space geodetic techniques routinely determining the polar wob-
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ble coordinates x and y. SLR still contributes to that service today. Usually,
one set of values is determined per three days. In principle it would be possible
to estimate these parameters with a higher time resolution, but the obser-
vation density (due to weather and, to a lesser extent, day-time limitations)
prevents this. With the advent of the GPS (see next section) this particular
application of SLR lost some of its attractiveness. The importance of SLR
thus resides in the determination of the gravity field and of the geocenter.

In addition, SLR is gaining more and more attention as a calibration tool
for microwave observation techniques. SLR is in a position to play this role
because its observable (8.83) is, as mentioned, only weakly affected by non-
geometrical effects: tropospheric refraction may be accounted for using stan-
dard meteorological equipment, there are (in principle) no technique-specific
biases. (The station-specific range biases usually have a rather high time sta-
bility, allowing it to keeping them constant over a long time). Figure 8.17,
showing the differences w.r.t. GPS-derived orbits of all ranges measured by
the ILRS to the GPS satellites equipped with SLR reflectors (PRN 5 and PRN
6) in the years 2001 and 2002, illustrates this calibration role. The constant
bias of about − 5 cm, but also a periodic signal with an annual period are not
yet fully understood. In view of the simplicity of the SLR observable these
discrepancies must, however, probably be attributed to the GPS-derived or-
bits. Unnecessary to point out that such cross-technique checks are extremely
important. Figure 8.17 is taken from [59].
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Fig. 8.17. Residuals of GPS satellites PRN 5 and 6

8.5.3 Scientific Use of the GPS

The International GPS Service (IGS) is an outstanding organization exploit-
ing the US Global Positioning System (GPS). Both, the GPS and the IGS,
were already mentioned in Chapter 2. Subsequently, the GPS observables
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are defined in mathematical terms and the fascinating work of the IGS is
highlighted with a few examples in this section.

The principle of the GPS code measurement is simple. The signal (or code)
at an epoch characterized by an index l, emitted by a satellite j, contains
the emission time τ j

l of the satellite clock at signal transmission time and
the receiver i keeps track of the time til of signal reception. The difference
reception time − emission time, after multiplication with the speed of light
c, is in essence the distance between the satellite and the receiver for a par-
ticular epoch. This idealized statement neither accounts for the propagation
characteristics of the signal nor for the satellite and receiver clock errors rela-
tive to an ideal clock, the so-called GPS time. The real observable is referred
to as the pseudorange pj

il between satellite and receiver. It is the difference
c · (reception time− emission time), where the signal reception time is read
from the receiver clock, and signal reception time from the satellite clock.
Therefore the pseudorange may be decomposed as follows:

pj
il = ρj

il − c ∆tjl + c ∆til + ∆ρj
ilion

+ ∆ρj
iltrop

+ εj
ilcod

, (8.85)

where

c is the speed of light,

pj
il the pseudorange,

j the satellite index, i the receiver index, and l the epoch index;

ρj
il

def=
∣∣ r(τ j

l

)
− R(til)

∣∣ is the geometric distance between the satellite at
signal emission time τ j

l and the receiver at signal reception time til (ρj
il

also is referred to as slant range between satellite and receiver);

∆tjl is the error of the satellite clock w.r.t. GPS time at emission time,

∆til the error of the receiver clock w.r.t. GPS time at signal reception time;

∆ρj
iltrop

is the tropospheric range correction,

∆ρj
ilion

is the ionospheric range correction, and

εj
ilcod

is the measurement error of the observation.

The same signal (code) is sent on two different wavelengths λ1 ≈ 19 cm and
λ2 ≈ 24 cm through the atmosphere. The corresponding carrier phases are
also referred to as L1 and L2 . Therefore, there are two equations of type
(8.85) at each epoch (for each pair of satellite and receiver). Apart from
the measurement error, only one term, namely the ionospheric refraction, is
wavelength-dependent. This dependence is exploited for ionosphere modelling
(see remarks at the end of this section).

When comparing the above observation equations with the corresponding
equations (8.83, 8.84) of Laser distance measurements, one notes that two
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clock terms and the ionospheric refraction correction have to be taken into
account in the case of GPS observations. These biases have to be dealt with
when analyzing GPS data. The clock terms may only be determined accu-
rately (or eliminated) from eqns. (8.85), if each receiver observes more than
one satellite (quasi-simultaneously), and if the observations from more than
one receiver are analyzed together. A new clock term has to be set up for
each observation epoch.

There are two observations of type (8.85) per receiver and satellite, one for
each of the two carrier frequency L1 and L2 , which allow it to eliminate the
ionospheric refraction term ∆ρj

ilion
by forming the so-called ionosphere-free

linear combination of these two equations (8.85). The procedure is possible
only because the ionosphere is a dispersive medium: the ionospheric refraction
correction is proportional to E

ν2 , where E is the total electron content between
receiver and satellite and ν = λ

c is the frequency of the signal. Alternatively,
one may form the plain difference between the two equations for L1 and L2 ,
which allows the direct determination of the ionospheric correction term.
This latter procedure is, e.g., used to determine global models for the total
electron content (discussed below).

Tropospheric refraction is delicate to model in the case of microwave observa-
tions because it is composed of the hydrostatic constituent (which also figures
in the Laser observation equation) and the so-called wet constituent, which
is due to the water vapor in the Earth’s atmosphere, more precisely due to a
resonance of water molecules with microwave radiation. The wet constituent
is relatively small (a few percent compared to the hydrostatic part under
“normal” (mid latitude) conditions, up to 10 – 25% in a tropical environ-
ment). Its high variability in space and time makes it extremely difficult to
account for the wet delay with sufficient accuracy using standard meteorolog-
ical measurements made at the receiver site. For high-accuracy applications
of the GPS it is therefore mandatory to implement rather complex modelling
procedures, which imply the estimation of many parameters for each receiver
location, or, alternatively, to introduce the tropospheric refraction for each
receiver as a stochastic quantity with given properties.

At observation time til not only the code, but also the phase φj
il may be

exploited as an observable. The essential differences of the phase w.r.t. the
code observable are

• the much better accuracy of the phase measurement (millimeters rather
than (deci-)meters),

• a bias term λN j
i , the number N j

i being an unknown integer, and

• the opposite sign of the ionospheric refraction term (the signal delay due
to the ionosphere (in the case of the code observation) has to be replaced
by the phase advance for phase observations).
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As the receiver keeps track of the number of cycles received from the satellite-
emitted signal as long as the satellite is above the receiver’s horizon, there is
only one such unknown parameter per receiver and satellite pass. If the signal
is obstructed (or if the observation is disrupted for other reasons), a new so-
called ambiguity parameter N j

i has to be set up for the considered pair of
receiver and satellite. With only minor neglects the observation equation for
the GPS phase observable reads as

φj
il = ρj

il − c ∆tjl + c ∆til − ∆ρj
ilion

+ ∆ρj
iltrop

+ λN j
i + εj

ilφ
, (8.86)

where N j
i is the unknown initial phase ambiguity parameter or simply ambi-

guity parameter, λ is the wavelength of the carrier considered, and εj
ilφ

is the
phase measurement error, which is of the order of a few mm only, for phase
observations.

Exactly as in the case of code observations there are two observations of type
(8.86) associated with the two carriers L1 and L2 . The two observations allow
it to form the ionosphere-free observation (by eliminating ionospheric refrac-
tion) or the geometry-free linear combination, leaving only the corresponding
linear combination of ionospheric refraction and of the ambiguity parameters
in the equation.

Using the quasi-simultaneous phase observations of two satellites made from
two receivers, one may form the so-called double difference phase observation,
which is (almost) free of the clock errors, and where the remaining ambiguity
term is known to be integer. Using statistical criteria, it is often possible to
resolve the double difference ambiguities after the estimation process. The
principles of ambiguity resolution are simple: If the real-valued estimates are
close to integers and if the mean errors associated with them are small, the
real valued estimates may be replaced by the integers, and the adjustment
may be repeated by assuming N j

i to be a known integer quantity in equation
(8.86). The resolution of ambiguities in general leads to a much better deter-
mination of the remaining parameters – those of physical interest. Whereas
the principles of ambiguity resolution are simple, the actual implementation is
rather complex. The degree of difficulty increases with the size of the network
and decreases with the length of observation time span. For more information
concerning ambiguity resolution and other subtleties of scientific processing
of the GPS observable the reader is referred to [122].

Let us now review some of the results generated by the IGS, which are based
on the observations made by the IGS network (see Figure 2.7). The data are
normally retrieved on a daily basis from the global IGS Data Centers and
analyzed by the IGS Analysis Centers, which issue so-called rapid and final
products. Currently there are eight IGS Analysis Centers.

Rapid IGS products are available with a delay of about one day, final products
with a delay of about ten days. IGS products, which are provided for each
day, include
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• satellite orbits with an accuracy of about 5 cm,

• satellite clocks with an accuracy of about 0.05 ns and a time resolution of
five minutes,

• daily values of polar motion components accurate to about 0.1 mas (mil-
liarcseconds), corresponding to about 3mm on the Earth’s surface,

• LOD (length of day) estimates with an accuracy of about 30µs,

• tropospheric path delays for a selected number of stations with a time
resolution of two hours, and

• station coordinates for those stations which are not known with sufficient
(sub-cm) precision.

Initially, the IGS was designed as an orbit determination service for GPS
satellites. Figure 8.18 documents this aspect of the IGS activities. It is based
on the analyses performed every week by the IGS Analysis Coordinator, who
compares and combines every week the ephemerides generated by the IGS
Analysis Centers. The Analysis Center Coordinator, stemming from one of
the IGS Analysis Centers, coordinates the work of the Analysis Centers. The
IGS final orbits are the basis for most satellite-based national or international
first order surveys since 1993.

Figure 8.18 shows the mean errors of the satellite positions (as produced by
the IGS Analysis Centers) w.r.t. the combined orbit, which is established
as a weighted average of the contributing centers. This rms error may be
interpreted as a measure of consistency between the GPS ephemerides of the
individual IGS Analysis Centers. It is a proud achievement of the IGS that
this consistency level is today of the order of a few cm.

In the same process the satellite clocks and the Earth rotation parameters
are analyzed and combined as well, with the goal to provide one consistent
set of orbit, clock, and Earth rotation parameters, referring in particular to
one consistent reference frame. The consistency of Earth rotation parameters
is of the order of fractions of milliarcseconds, corresponding to daily values
of the pole position of a few millimeters accuracy on the Earth’s surface.

Some of the parameters routinely estimated by the IGS Analysis Centers
might in principle be taken over as known from other sources (e.g., from
VLBI analyses), which seem better suited for their determination. This is in
particular true for the Earth orientation and rotation parameters (x and y
coordinates of the Earth’s rotation axis w.r.t. the Earth-fixed system and the
length of day values). It became clear pretty soon after the beginning of the
IGS Test Campaign in 1992, however, that no other technique was capable
of providing this information with sufficient accuracy and resolution at the
time needed by the IGS Analysis Centers.

This circumstance and the excellent global coverage provided by the IGS net-
work (see Figure 2.7) are the primary reasons why IGS-derived polar motion
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Fig. 8.18. Mean errors of the orbits as estimated by the IGS Analysis Center
Coordinator between 1993 and January 2002

data are among the best available today. Since 21 June 1992 (the official start
of the IGS Test Campaign) uninterrupted series of GPS orbits and of polar
motion and length of day data are available through the IGS.

Figures 8.19 to 8.21 display polar motion as derived by the CODE (Center for
Orbit Determinattion in Europe) Analysis Center of the IGS, which is located
at AIUB (Astronomical Institute, University of Bern). It is a joint venture
of AIUB, swisstopo (Swiss Federal office of Topography), the German BKG
(Bundesamt für Kartographie und Geodäsie), and the French IGN (Insti-
tut Géographique National). Figure 8.20 is particularly instructive, because
the time element (the third component of this three-dimensional represen-
tation) shows very nicely the beat period of about 6.2 years resulting from
the (principal) Chandler period (named after its discoverer Seth Carlo Chan-
dler (1846–1913)) of about 435 days and the annual period of 365.25 days
(see Chapter II- 2). The results shown in Figures 8.19, 8.20 and 8.21 are in
turn analyzed by the International Earth Rotation Service (IERS) together
with those of all IGS, VLBI, and SLR Analysis Centers and used to produce
the official IERS Earth rotation series. These IERS series were, e.g., used to
compute the so-called angular momentum functions in Chapter II- 2.

In addition to the results already described, the IGS Analysis Centers perform
each week coordinate solutions of their portion of the IGS network, which
are then combined by the IGS Analysis Center Coordinator. Subsequently
the IGS coordinate time series together with the contributions of the other
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Fig. 8.19. Polar motion from CODE Analysis Center of the IGS (1993-2002)

Fig. 8.20. Polar motion from the CODE Analysis Center of the IGS (1993-2002);
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Fig. 8.21. Excess LOD from the CODE Analysis Center of the IGS (1993-2001)

space geodetic techniques are used by the IERS to establish the International
Terrestrial Reference Frame (ITRF).

Not only the coordinates, but also the “velocities” of the observing sites rela-
tive to a Tissérand coordinate system may be extracted from the weekly co-
ordinate estimates. Figure 8.22 illustrates the station velocities derived from
the series of daily station positions produced by the CODE Analysis Center.
Obviously it is nowadays possible to monitor plate tectonics so to speak “in
real time” using space geodetic techniques. Remember that continental drift
was but a postulate by Alfred Lothar Wegener (1880–1930) early in the 20th
century!

More and more, the IGS network is used for purposes other than geodesy:
The IGS network has, e.g., been enlarged to include time and frequency
transfer. Thanks to the two carriers L1 and L2 it is possible to calculate the
electron content along the line of sight between satellites and receivers for
each individual observation. If one assumes that all electrons are contained
in one single layer of “infinitesimal thickness” at a given height H above
the spherical Earth, the electron content E measured along the line of sight
receiver → satellite may be represented by a single layer density Es at the
height H :

E =
Es

cos z′
,

where z′ is the zenith distance of the line from the receiver to the satellite
at the intersection point of this line with the single layer (the so-called iono-
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Fig. 8.22. Station motions of IGS sites from the CODE Analysis Center of the
IGS
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Fig. 8.23. Single layer model for the Earth’s ionosphere

spheric pierce point). The formula is illustrated by Figure 8.23. By using the
code and phase observations observed by the entire IGS network, the individ-
ual values Es referring to a certain time interval may be used to model the
vertical electron content Es as a function of geographical (or geomagnetic)
latitude and longitude Es = Es(φ, λ). Several Analysis Centers produce and
make available ionosphere models based on the observations performed by
the IGS network.

Figure 8.24 shows one such ionosphere map for February 5, 2002, 15h UT. It
fits the vertical electron contents stemming from about 100 receivers of the
IGS network by a series of harmonic functions up to degree and order 15 in
φ and λ. Two hours of data (between 14h and 16h UT) were used to generate
this figure. Dark areas correspond to a high electron density, bright areas to
a low electron density. The highest densities are observed near the sub-solar
point (intersection of the line geocenter → Sun with the Earth’s surface).
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Fig. 8.24. Ionosphere map for February 5, 2002, 15h UT

The equatorial bifurcation of the electron distribution is also clearly visible.
Twelve maps like that provided in Figure 8.24 are produced every day. The
figures and the corresponding coefficients of the development are available
over the world wide web (http://www.aiub.unibe.ch/index.html).

The mean global total electron content (global TEC) is represented by the
first term of the development. If this mean global TEC is drawn as a function
of time one in essence monitors the effect of the solar activity on the Earth’s
upper atmosphere. Figure 8.25 shows the development of the mean TEC
since January 1995. The Figure documents the effect of the maximum of
solar activity in 2001 on the Earth’s atmosphere. Variations with a period
of about 27 days are due to the rotation of the Sun. Annual and semiannual
periods are observed on top of these short period sisgnals. The smooth line
(after January 2002) is a prediction based on the measured TEC values. For
more information concerning the ionosphere we refer to [97] and [98], for more
information concerning the IGS and its interdisciplinary significance we refer
to [17] and to the homepage of the IGS (http://igscb.jpl.nasa.gov/).
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Fig. 8.25. Daily means of the total electron content (TEC) since 1 January 1995

8.5.4 Orbit Determination for Low Earth Orbiters

LEO Orbit determination based on the measurements of the onboard GPS
receiver(s) is about to become a well-established, efficient, and robust tech-
nique. The accuracy requirements for LEO trajectories range between a few
hundred meters to few centimeters or even millimeters. Naturally, the degree
of difficulty grows with increasing accuracy requirements.

First dual-band spaceborne GPS receivers of good quality were already de-
ployed in the early 1990s. Experience could be gained with data from receivers
onboard TOPEX/Poseidon (see Figure 2.8), GPS/MET (GPS Meteorology
using limb sounding), a satellite launched by JPL in 1995 to test the GPS oc-
cultation technique, etc. The first high-quality receiver well-suited for routine
POD (Precise Orbit Determination) with 1 m accuracy or better is the so-
called blackjack receiver developed by the JPL. Blackjack receivers are, e.g.,
used for the Argentine/US mission SAC-C, onboard the German/American
research satellite CHAMP (CHAllenging Minisatellite Payload), and onboard
the twin satellites GRACE A and GRACE B of the American/German
GRACE mission.

Subsequently we will use a limited amount of data gathered by the GPS re-
ceiver onboard the CHAMP spacecraft. CHAMP, launched on July 15, 2000,
is a combined mission to explore the Earth’s gravity and magnetic fields.
Figure 8.26 gives an impression of the spacecraft, Table 8.15 summarizes
CHAMP’s orbital characteristics (as of May 2001). CHAMP moves on an
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Fig. 8.26. The German satellite CHAMP

almost circular orbit in extremely low altitudes (about 430 km above the
Earth’s surface in May 2001). During its lifetime the orbital height gradu-
ally decreases. For precise orbit determination LEOs pose serious problems
because of the insufficiently known force field, in particular air drag and
higher-order gravity field parameters (which are at least initially unknown).
The high inclination of CHAMP makes it an excellent probe mass for the
determination of the Earth’s gravity field. For more information concerning
CHAMP we refer to the homepage of the GFZ (GeoForschungsZentrum) in
Potsdam (http://op.gfz-potsdam.de/champ/index CHAMP.html).

CHAMP has GPS receivers onboard for atmospheric sounding and for POD.
Only the latter receiver and the antenna associated with it are of interest
here. The zenith of the antenna of this POD receiver is pointing into the
positive radial direction (seen from the geocenter). It is (barely) visible “on
top of the roof” at the rear end (left) of the spacecraft in Figure 8.26.

Table 8.15. Osculating elements of CHAMP at t0 = May 20, 2001, 0h UT

Element Value Element Value

a 6809 km e 0.004

i 87.3◦ Ω 34.6◦

ω 178.5◦ P 93 Min
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The principles of LEO orbit determination are in essence the same as those
underlying the determination of a trajectory of a moving (roving) receiver
on the Earth’s surface (on cars, bikes, pedestrians) or in the Earth’s atmo-
sphere (on airplanes): The position vector of the roving receiver (actually of
its antenna) is determined at regular intervals (e.g., each second, every ten
seconds) using the code and phase observations of all GPS satellites above
the roving receiver’s antenna horizon, recorded at the measurement epochs by
the receiver. The measurement principle in its simplest form is illustrated by
Figure 8.27. The code measurements of at least four GPS satellites observed
at observation time t by the spaceborne GPS reciver are used to determine
the geocentric position vector r(t) of the LEO’s center of mass (neglecting the
offset of the receiver’s antenna w.r.t. the center of mass) and the clock offset
of the spaceborne GPS receiver at time t, implying that four scalar unknowns
have to be determined for each measurement epoch. The GPS satellites’ state
vectors rj(t), ṙj(t) and the clock offsets of the GPS clocks w.r.t. GPS time
are assumed to be known.

GPSk

GPS j GPS l

GPSm

r j( )t /c� � j

r( )t

� j
�k

� l

�m

Earth

LEO orbit

Fig. 8.27. LEO precise point positioning



426 8. Orbit Determination and Parameter Estimation

When analyzing the observations stemming from spaceborne GPS receivers,
one has to take into account the following characteristics differing from “nor-
mal” GPS data gathered on or near the Earth’s surface:

• As the LEO is in essence in free fall in the Earth’s gravity field, its tra-
jectory may be well described as a particular solution of the equations of
motion.

This fact allows it to considerably reduce the number of unknowns: Instead
of estimating one set of three coordinates for each geocentric LEO position
vector r(tl) at each measurement epoch tl, one may simply solve for the
orbit parameters, which does dramatically reduce the number of unknowns.

• Tropospheric refraction may be neglected for spaceborne GPS receivers.

• The “horizon” of the spaceborne GPS receiver is usually much better than
the horizon of a roving receiver on the Earth surface, where the view may
be obstructed by houses, trees, etc. Due to the height of the LEO above the
Earth’s surface it is in principle even possible to gather observations below
the antenna’s horizon. (Such observations are, however, often not of the
best quality, because the antennas are not optimized for such observations).

• Whereas the GPS measurement scenario varies only slowly for receivers on
the Earth’s surface, the LEO GPS receiver sees a good part of the entire
GPS constellation during one revolution (of about 1.5 to 2 hours). Rapidly
changing measurement scenarios are the consequence.

LEO Orbit determination with spaceborne GPS receivers may be classified
as follows:

1. Classification according to the Orbit Model:

• Kinematic methods do not make use of the fact that the geocentric
position vector r(t) of the spacecraft’s center of mass is (in good ap-
proximation) the solution of the equations of motion. They introduce
a new, unknown position vector for each measurement epoch of the
onboard GPS receiver. The result of the orbit determination process
thus consists of a table of satellite positions, the table’s spacing being
defined by the measurement rate of the onboard GPS receiver.

• Dynamic methods model the geocentric position vector r(t) of the
satellite’s center of mass as a particular solution of the equations of
motion. The unknowns of the parameter estimation process are, e.g.,
the initial osculating elements of an arc plus a wide variety of dynamical
parameters (e.g., gravity field parameters, parameters associated with
drag and radiation pressure, deterministic empirical parameters, etc.).
The main advantage of dynamical methods w.r.t. kinematic methods
resides in the greatly reduced number of orbit parameters (typically a
few tens to hundreds as opposed to four unknowns per measurement
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epoch when using kinematic methods). Dynamic methods require the
knowledge of an a priori trajectory, solving the equations od motion.

• Reduced Dynamics methods lie logically between purely kinematic
method and purely dynamic methods. The LEO trajectory is allowed to
have a stochastic component, either by introducing pseudo-stochastic
pulses (to be discussed below), or by introducing system noise into
the equations of motion, which actually replaces the differential equa-
tions by stochastic differential equations. Many different parameteriza-
tions are possible. A wide variety of methods exists. Reduced dynamics
methods of course also require the knowledge of an priori trajectory.

2. Classification according to the GPS Analysis Strategy:

• PPP (Precise Point Positioning) methods make use of eqns. (8.85) for
the GPS code and eqns. (8.86) for the GPS phase observables without
applying any data differencing techniques. This processing mode is also
referred to as zero difference GPS processing. In its purest form, the
PPP method takes over the GPS satellites’ clock terms c ∆tjl and the
orbital positions of the GPS satellites as known quantities from inde-
pendent orbit determination procedures for the GPS satellites. Typi-
cally, the IGS products are used for this purpose. If the ionosphere-free
linear combination of the original observations is analyzed, the obser-
vation equations (8.85) for code may be reduced considerably:

p̃j
l = ρj

l + c ∆tl + εj
lcod

, (8.87)

where the GPS satellite clock term was absorbed into the modified
pseudorange term p̃j

l .

Under these assumptions there are only four unknowns left in the equa-
tions (8.87) for each measurement epoch, namely the receiver clock
term and, e.g., the three Cartesian coordinates in the inertial system
of the spacecraft’s position vector r(tl). If a dynamical method is used,
each r(tl) has to be treated as a function of the orbit parameters, i.e.,
r(tl)

def= r(tl; p1, p2, . . . , pn). For purely kinematic procedures the code
observations referring to different epochs are, however, mathematically
independent and may be treated separately.

The phase observation equations (8.86) referring to the ionosphere-free
linear combination may be reduced in a similar way as those for the
code observations:

φ̃j
l = ρj

l + c ∆tl + ξj + εj
lφ

, (8.88)

where ξj def= ν2
1

ν2
1−ν2

2
λ1 N j

1 − ν2
2

ν2
1−ν2

2
λ2 N j

2 is the ambiguity term in the
ionosphere-free linear combination, which may assume any real value.
The GPS satellite clock terms are considered known (as in the case
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of the code observations). Orbit determination procedures making use
of the phase observable are more elaborate, because of the ambiguity
term ξj : It is no longer possible to treat each epoch independently (as
it is easily possible with the code equations (8.87)).

The JPL (Jet Propulsion Laboratory) pioneered the point positioning
approach [134]. Thanks to its simplicity and thanks to the optimum
use made of the IGS products, the method is widely used today. The
method is only limited by the accuracy of the GPS orbits and the GPS
satellite clocks.

• Double Difference methods combine the original observations (code
and/or phase) of the spaceborne receiver with those of Earth-fixed re-
ceivers. The method treats the satellite as a roving (kinematic) receiver
in a global network of Earth-fixed stations. The associated parameter
estimation process is based on the well-known double difference pro-
cessing of kinematic GPS observations (see, e.g., [122] or [58]). Ambi-
guity resolution and other techniques related to the double difference
processing may be applied in a straightforward way. The method is
CPU intensive, but promises highest accuracy. Rothacher and Švehla
from the Technical University of Munich, see, e.g., [115] and [116],
are protagonists of this approach. They use a modified version of the
Bernese GPS Software [58] for this approach. The observations from a
world-wide network of receivers have to be used. The advantage of the
method resides in the fact that the accuracy requirements regarding
GPS orbits and clocks are greatly reduced.

Advanced Orbit Modelling: Pseudo-Stochastic Parameters. With
only few exceptions the attitude of scientific satellites is actively maintained.
Also, it may be necessary from time to time to perform small orbital ma-
noeuvres to optimize the orbital characteristics of a satellite (an example
was given in Chapter II- 3, Figure II- 3.15). When determining the orbit of a
LEO like CHAMP one has moreover the problem, that the forces acting on
the satellite are not fully known. It is, e.g., not possible to model air drag
with the accuracy required. Also, the gravity field is (at least initially) not
known with sufficient accuracy to allow for the determination orbital arcs of,
let us say, one day or longer.

One radical method of curing orbit modelling deficiencies of this kind is to
break up the original arc into shorter arcs. To a great extent the modelling
deficiencies are then absorbed by the initial state vectors of the shorter arcs.
This well known method usually is referred to as the short arc method. One
should be aware of the fact, however, that this simple method multiplies the
number of arc-specific parameters by the number of arcs generated – which
may considerably weaken the solutions. Also, an old Latin proverb says natura
non facit saltus.
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Another method, very powerful and widely used technique to cope with this
problem is to replace the deterministic differential equation systems describ-
ing orbital motion by stochastic differential equation systems, which contain
on top of all deterministic forces so-called stochastic accelerations, which are
characterized by the (known) mean values (usually the zero vector) and the
associated (known) variance-covariance matrix. Stochastic modelling of this
kind is possible without major problems, provided the classical least-squares
approach is replaced by digital filter methods, in particular Kalman- and
Kalman-Bucy filters. In the framework of this more general theory every de-
terministic parameter estimated may be replaced by a stochastic process.
Not only the measurement noise, but also the system noise (represented by
the stochastic constituent in the differential equations in the case of orbit
parameters) has to be considered.

A general approach of this type is out of the scope of our treatment of orbit
determination. We will instead introduce a method which allows for stochastic
changes of the orbit, which may be established by conventional least-squares
methods. The method is in essence equivalent to the method of Kalman fil-
tering. The difference resides in the fact that the stochastic component is in-
troduced on the level of the first, and not of the second derivative of the orbit.
Let us mention that the pseudo-stochastic method was generalized/modified
to allow for piecewise constant or even piecewise linear accelerations [61].

Our original method of pseudo-stochastic pulses allows for instantaneous ve-
locity changes δv in predefined directions at predefined epochs ti. An instan-
taneous velocity change δv at the epoch ti in a predetermined direction e
is called a pseudo-stochastic pulse. Depending on the application many such
pulses (velocity changes) may be set up. Up to three pulses in different, not
necessarily orthogonal directions may be set up at one and the same epoch
ti (it does not make sense to set up more than three pulses, because in three-
dimensional space four or more vectors are always linearly dependent). Usu-
ally, pseudo-stochastic pulses are set up either in the radial, the along-track,
the out-of-plane directions, or in a combination thereof. The spacing of the
“stochastic epochs” ti may be different for different components. It is even
possible to define the spacing in a more general way (e.g., through a user-
provided table of the epochs ti). The velocity changes may be constrained to
“reasonably small” values by introducing artificial observations of the veloc-
ity changes (details are provided below). The method of pseudo-stochastic
pulses was introduced in [12]. It may be characterized as follows:

• Each orbital arc is continuous.

• Each arc is represented piecewise by conventional ordinary differential
equation systems (deterministic equations of motion).

• At predetermined epochs ti (e.g., every five minutes) the satellite is allowed
to change its velocity instantaneously in (up to three) predetermined di-
rections.
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• Pseudo-stochastic pulses δv are in every respect “normal” parameters of a
classical least-squares adjustment process.

• Each pseudo-stochastic pulse is characterized by an expectation value and
a variance (to be more precisely defined below).

There is a certain degree of arbitrariness in our approach (exactly as in the
case of the Kalman-Bucy filtering): The number of epochs and the associated
variances may be selected in many different ways. On the positive side one
may state that the procedure is very flexible: depending on the actual number
and the statistical properties of the pulses the orbit may be either purely
deterministic, purely kinematic, or something in-between, usually referred to
as reduced dynamics orbit.

The sizes of the velocity changes are controlled by artificial observation equa-
tions

δv = 0 , (8.89)

associated with the prescribed weights

w
def=

σ2
0

σ2(δv)
. (8.90)

The scalar velocity change δv is thus constrained as a random variable with
expectation value zero and variance σ2(δv). σ0 is the mean error of unit
weight of the adjustment.

If σ(δv) is big, the weight w is small, which allows δv to assume rather big
values. If σ(δv) is small, only minor velocity changes are possible. The allowed
velocity changes roughly lie within the range ± 3 σ(δv).

In order to introduce the parameter δv into the adjustment process we need
to know the partial derivative of the orbit r(t) w.r.t. this parameter. This
derivative w.r.t. a particular pseudo-stochastic pulse δv having occurred at
epoch ti may be represented as a linear combination of the partial derivatives
w.r.t. the six osculating orbital elements Ik , k = 1, 2, . . . , 6 at the initial
epoch t0 . In order to prove this statement we assume that the velocity change
δv refers to the direction represented by the unit vector e (e.g., one of the
unit vectors of the R-system defined in Table 4.3). The associated changes
in the initial conditions of the LEO at time ti may thus be written as:

δṙ(ti) = δv e

δr(ti) = 0 . (8.91)

Due to this pulse the orbit will be modified for times t ≥ ti according to
(neglecting higher-order terms in δv):

δr(t) =
(

∂r

∂ (δv)

)
(t) δv , (8.92)
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where (
∂r

∂ (δv)

)
(ti) = 0(

∂ṙ

∂ (δv)

)
(ti) = e .

(8.93)

The above equations may be interpreted as the initial values referring to
epoch ti of the homogeneous variational equations associated with the (de-
terministic) equations of motion. The variational equations associated with
the equations of motion were treated in Chapter 5.

The variational equations associated with the equations of motion together
with the above initial conditions define a particular solution of these varia-
tional equations. It is well-known, on the other hand, that each particular
solution of a linear homogeneous system of differential equations may be
written as a linear combination of a complete system of solutions. The six
solutions of the variational equations corresponding to the six osculating ele-
ments Ik , k = 1, 2, . . . , 6 at the initial epoch t0 form such a complete system.
We may thus write the partial derivative w.r.t. the parameter δv as follows:

(
∂r

∂ (δv)

)
(t) =

6∑
k=1

βk

(
∂r

∂Ik

)
(t) def=

6∑
k=1

βk zk(t) , (8.94)

where the symbol Ik stands for one of the six osculating elements referring
to the initial epoch t0 . The functions zk(t) are the (known) solutions of the
variational equations for the initial osculating elements Ik . The six coeffi-
cients βk , k = 1, 2, . . . , 6 , of the above linear combination are determined by
the six condition equations (following from the initial conditions (8.93))

6∑
k=1

βk zk(ti) = 0

6∑
k=1

βk żk(ti) = e .

(8.95)

Observe that the coefficients βk are time-independent and may therefore be
determined once and for all by solving one system of six linear algebraic
equations for each pulse set up in the analysis. The workload associated with
the computation of the partial derivatives w.r.t. the stochastic parameters is
therefore (almost) negligible, even if their number is large.

When setting up hundreds of these pseudo-stochastic pulses, the dimension
of the normal equation system grows considerably, which may lead to a very
inefficient processing scheme, when following the standard least squares pro-
cedures. One may show, however, that the complete normal equation system
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may be set up as a function of the reduced normal equation system (contain-
ing only the deterministic parameters) – provided the contributions to the
reduced normal equation are stored for all stochastic epochs ti . This is pos-
sible because eqn. (8.94) says that each partial derivative w.r.t. a stochastic
parameter may be written as a linear combination of the partial derivatives
w.r.t. the initial osculating elements. This efficient procedure is implemented
in program SATORB.

Simplified, Efficient and yet Precise LEO-POD. When striving for
the highest possible accuracy, one of course has to use one of the (not so
easily available) advanced software packages capable of optimally coping with
this problem. They are based on one or several of the orbit determination
procedures principles discussed previously. The Bernese GPS Software [58] is
one example.

The two programs LEOKIN and SATORB of the attached program system
(see Part III of this work) may be used to calculate precise LEO orbits.
Purely kinematic, purely dynamic, and reduced dynamics orbits may be es-
tablished. These programs are documented in Chapter II- 7. The principles
underlying the two programs are rather simple: LEOKIN calculates a table
of LEO positions and/or position differences (details provided below) using
the kinematic method, program SATORB uses theses positions (and possi-
bly position differences) as observations to determine a dynamical or reduced
dynamics orbit. A conventional least squares adjustment procedure (making,
however, use of the efficiency tools described in the previous paragraph) is
underlied in program SATORB.

This simple procedure, using kinematically established positions and position
differences (by LEOKIN) as intermediary observations (in SATORB), is not
the best possible from the point of view of adjustment theory. It is of course
preferable to use directly the GPS observations to determine the best pos-
sible (reduced dynamics) orbit. The approximate procedure is, on the other
hand, very instructive, remarkably robust, and the achievable accuracies are
sufficient for many (if not most) applications. The achievable accuracies are
of the order of 0.5 – 1 m (rms per coordinate) if only code observations are
used, of the order of 1 – 2 dm (rms per coordinate), if the phase observations
are used, as well.

It was mentioned above that kinematic POD becomes much more elaborate
as soon as the GPS phase observations are used in addition to the GPS code
observations (because it is no longer possible to calculate the positions epoch
by epoch). This statement is, as a matter of fact, only true, if the phase
observations are used in the statistically correct sense. They may, however,
be used in an alternative way, which still makes good (but not optimal) use
of the accuracy of the phase observations:

• Instead of analyzing the phase observation eqns. (8.88) for each epoch, one
uses the differences of such observations referring to subsequent epochs
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(pertaining to one and the same satellite). These differences are unam-
biguous.

• Instead of solving for the position vector r(t) at the observation epochs, one
solves for the position difference vector of the satellite between subsequent
epochs.

The “incorrectness” of the method in essence resides in neglecting the math-
ematical correlations between subsequent phase difference observations.

Let us now explain in detail how position differences may be determined
from subsequent phase observation equations of type (8.88). It is essential
that the difference of two such equations referring to one particular satellite
(the satellite index j can be skipped, because the method may be explained
using only one satellite) and the two epochs tl and tl+1 does no longer contain
the ambiguity term ξ:

∆φ̃l
def= φ̃l+1 − φ̃l = ρl+1 − ρl + c

(
∆tl+1 − ∆tl

)
+ εlφ . (8.96)

The above equation plays the equivalent role for the determination of the
position difference vector

δrl,l+1
def= rl+1 − rl (8.97)

as the equations (8.87) do for the determination of satellite position vectors
rl . Figure 8.28 illustrates how the difference vector rl,l+1 is formed and how
the distances ρ... have to be interpreted.

We will now assume that rather precise LEO position vectors are already
available from the analysis of GPS code observations. We may thus assume
to know the ranges ρl and ρl+1 with an accuracy of a few (deci)meters. For
further improvement we may linearize the ranges and range differences as
a function of the unknown coordinate differences w.r.t. the known a priori
positions:

ρl+1 = (ρl+1)0 +
3∑

k=1

(
∂ρl+1

∂ρl+1,k

)
0

∆ρl+1,k = (ρl+1)0 − el+1 · ∆rl+1

ρl = (ρl)0 +
3∑

k=1

(
∂ρl

∂ρl,k

)
0

∆ρl,k = (ρl)0 − el · ∆rl

∆ρl+1,l
def= ρl+1 − ρl = (∆ρl+1,l)0

− [ el+1 · ∆rl+1 − el · ∆rl ]
(8.98)

The subscript “0” stands for the known a priori values, calculated with a
known approximate orbit, el is the unit vector pointing from the LEO to the
GPS satellite at time tl (actually from the LEO at signal reception time to
the GPS satellite at signal emission time).
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Fig. 8.28. Precise determination of LEO position differences δrl,l+1
def
= rl+1 − rl

We may now use eqn. (8.97) to replace the correction ∆rl+1 of the position
vector at epoch tl+1 by the correction of the position vector at tl and the
correction of the difference vector δrl,l+1 . The third of eqns. (8.98) then
reads as

δρl+1,l = (δρl+1,l)0 −
[
el+1 · {∆rl + ∆δrl,l+1} − el · ∆rl

]
, (8.99)

where
∆δrl,l+1

def= δrl,l+1 − (δrl,l+1)0 (8.100)

is the correction of the a priori difference vector of subsequent LEO position
vectors.

With a suitable rearrangement of terms the above equation may be brought
into the form

δρl+1,l = (δρl+1,l)0 − [ el+1 − el ] · ∆rl − el+1 · ∆δrl,l+1 . (8.101)

The second term on the right hand side is a product of two small quantities
which shall be neglected from now on:
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δρl+1,l
def= (δρl+1,l)0 − el+1 · ∆δrl,l+1 . (8.102)

Clearly, this approximation introduces an error of the order of 10−3−10−4 of
the neglected quantity ∆rl . Assuming that the a priori position vectors were
determined with accuracies of few (deci)meters, the error introduced in eqn.
(8.102) is at maximum of the order of a few millimeters. As the errors of the
point positioning with code are (better: should be) random, we thus accept
random errors of the order of few millimeters by accepting the approximation
(8.102).

If we use the approximation (8.102) in the observation equation for the phase
differences (8.96), we obtain equations which allow us to estimate the posi-
tion difference vector δrl,l+1 of subsequent satellite positions using the phase
observations essentially with the accuracy dictated by the noise of the phase
observable. The position difference vectors may thus be established with an
accuracy of few cm.

The method is most attractive from the efficiency point of view. From the
structural point of view it may be viewed as the equivalent to the point po-
sitioning method with the code observable. The observation equations for all
available satellites corresponding to a particular epoch difference tl+1−tl may
be processed independently from those corresponding to other epoch differ-
ences, provided the mathematical correlations between the phase differences
of subsequent epoch differences are gracefully ignored. For more information
concerning this topic we refer to [24].

A Case Study: The Orbit of CHAMP. In order to illustrate the above
theoretical developments, the observations made on May 5, 2001, by the
CHAMP blackjack receiver, are processed in six different ways described by
Table 8.16. The data used were made available by the GFZ for the LEO
Working Group of the IGS. The permission to use these data is gratefully
acknowledged.

Table 8.16. Orbital analyses performed with CHAMP data of May 5, 2001 (day
140 of year 2000)

Data Program no ndet ns rms w.r.t. Result
R-Orbit [ cm ]

Code LEOKIN 402 C1-Orbit
Code SATORB 8024 15 45 62 C2-Orbit
Code LEOKIN 134 C3-Orbit
Code SATORB 8663 15 429 48 C4-Orbit

Code & Phase LEOKIN 14 P1-Orbit
Code & Phase SATORB 16715 15 429 14 P2-Orbit
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The first column of Table 8.16 says that the first four orbits are uniquely based
on GPS code observations (see eqns. (8.87) and Figure 8.27), the last two on
code and phase observations (see eqns. (8.102), (8.96) and Figure 8.28)).
The second column identifies the program generating the resulting orbit
(name in last column). The third column contains the number no of pseudo-
observations, the fourth the number ndet of deterministic parameters (incl.
the six osculating elements), and the fifth the number ns of pseudo-stochastic
parameters. The total number npar of parameters thus is npar = ndet + ns .
Observe that LEOKIN is only capable of producing kinematic orbits, whereas
SATORB generates (reduced) dynamic orbits using the positions (and pos-
sibly position differences) of the preceding LEOKIN orbit (in Table 8.16) as
“observations”. The total number of observations (actually used), the num-
ber of deterministic orbit parameters, and the number of stochastic pulses
are provided in columns 3 − 5. Column 6 of Table 8.16 compares the result-
ing orbits with a reference orbit. The method of orbit comparison is that
of a simplified Helmert transformation (similarity transformation), with only
three translation parameters adjusted.

R-Orbit: The reference orbit, referred to as “R-Orbit” from now on, was
produced at the TUM (Technical University of Munich) (see [115]) by pro-
cessing all code and phase observations in one program run using the Bernese
software package (see [58]). The R-Orbit deserves it to be used as reference:
the phase and code observation equations (8.87) and (8.88) of the entire day
were processed (with appropriate weighting) together in one program run.
All parameters, i.e., the LEO orbit parameters (initial osculating elements,
dynamical parameters, and pseudo-stochastic pulses), one clock term per
observation epoch, and all initial phase ambiguity parameters, were simulta-
neously solved for. The number of orbit and clock parameters is considerable
(measured in thousands). A few hundred ambiguity parameters had to be set
up because of the rapidly changing observation geometry. The best possible
gravity field available was used; a set of three pseudo-stochastic pulses was
set up every six minutes.

Let us now consider the six orbits of Table 8.16 in more detail:

C1-Orbit: In a first step we assume that there is no a priori orbit information
available. Program LEOKIN then produces a table of LEO positions using the
GPS code observation equations (8.87), which are spaced by 10 seconds in our
test data set. For each observation epoch all available code observations (8.87)
are used to produce a PPP-solution. The GPS satellite clock corrections,
assumed as known, stemmed from a special analysis of the CODE analysis
center of the IGS. High rate (30 s) satellite clock corrections were produced.
A polynomial interpolation scheme was used in LEOKIN to process the 10 s
observations of the spaceborne receiver for the entire day.

The maximum zenith distance of observations, which may be selected by the
program user, was set to zmax = 90◦ for the three program runs in Table 8.16.
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As already mentioned, spaceborne receivers are capable of gathering obser-
vations below the antenna’s horizon. (CHAMP observations were originally
made down to zmax ≈ 110◦; in spring 2002 the cut-off angle was eventually set
to z = 90◦). When zmax ≤ 90◦, program LEOKIN automatically weights the
observations with cos2 z to account for effects like multipath (which increase
with increasing zenith distance). The absence of a priori orbit information
poses particular problems for the preprocessing of observations. It is a non-
trivial problem to recognize and eliminate bad code data in the absence of
an a priori orbit. One may check the consistency of the pseudoranges in L1

and L2 and one may estimate the mean error of the observations in the ad-
justment (point positioning) and compare it with the a priori known value
for the receiver. This latter check is, however, not very reliable, because the
degree of freedom of the adjustment is only f = nsat − npar, where nsat is
the number of simultaneously observed GPS satellites and where npar = 4
is the number of parameters (three coordinates and one clock term). As the
blackjack receiver only tracked (at maximum) eight GPS satellites simulta-
neously in the time period of our example, the degree of freedom (number of
observations minus number of parameters) was f = 4 at best – not a luxuri-
ous over-determination. 8481 satellite position vectors r(tl) out of about 8640
possible vectors could be determined by program LEOKIN. The comparison
of the resulting C1-Orbit with the reference orbit R-Orbit is not really excit-
ing: the rms error of the Helmert transformation is about 4 m per satellite
coordinate (pair).

C2-Orbit: The positions of the C1-Orbit may now be used as artificial obser-
vations by program SATORB to estimate an orbit with 15 dynamical param-
eters (six initial osculating elements and nine deterministic parameters) and
42 pseudo-stochastic pulses. Three stochastic pulses in the R-system (defined
in Table 4.3) were set up every 90 minutes (i.e., once per revolution). An a
priori σ(δv) of 2 cm was used for each pulse. The resulting C2-Orbit, estab-
lished in seven orbit improvement steps, is a first simple reduced dynamics
orbit. The characteristics of this solution are referred to as C2-Orbit (second
line of Table 8.16).

As the entire day of data is treated as one arc, the a priori model for the
force field has to be rather accurate in SATORB. The gravity field used to
generate the results in this section is the JGM3 (see [120]), where the terms
up to degree and order n = m = 70 were included, gravitational attractions
from Sun and Moon were taken into account, the MSIS-drag model (compare
section II- 3.6.1) was used, solid Earth- and ocean tides were included, as
well. The relativistic version of the equations of motion were solved. Even
with this considerable investment in physical and mathematical modelling
one had to solve for nine empirical acceleration parameters (constant and
periodic (“once per revolution”) parameters) in the R-system, plus one set
of three pseudo-stochastic pulses every 90 minutes in order to obtain a fit of
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the positions with appropriate accuracy (i.e., with an accuracy of about one
meter per coordinate).

Program SATORB allows it to screen the observations using a 3σ-criterion.
This option was used for this runs. 8024 vectors (out of the 8481 vectors in
the C1-Orbit) were actually used, which indicates that about 5% of the data
were rejected by the screening procedure in program SATORB. Table 8.16
reveals that the reduced dynamics orbit generated by program SATORB is
of much better accuracy than the input orbit C1-Orbit: instead of an rms
of about 4 meters, we now have an orbit of an accuracy of about 60cm!
This example underlines the power of the dynamical and reduced dynamics
orbit modeling techniques. The gain of course could be achieved thanks to the
greatly reduced number of unknowns (only 60 instead of 4·8481 in LEOKIN).

The residuals of the artificial observations (i.e., the position vectors of the
satellites) in the R-system may be inspected in Figure 8.29 (left). Observe
that the residuals in radial direction are considerably (by a factor of about
three) larger than the residuals in S- and W -directions. This is a well-
known error characteristic for all GPS-derived positions, be they acquired
on Earth or in space. Observe, that there are two short gaps of data, around
t = 1000 min and t = 1300 min (time relative to the start of the day 140
in 2001 in minutes). Obviously, the screening procedure in LEOKIN experi-
enced at times problems to screen the code observations in an appropriate
way without a priori information. These problems were partly removed by
program SATORB. It is amazing that the reduced dynamics orbit C2-Orbit
based “only” on code-derived positions results in an orbit agreeing with the
R-Orbit already on the level of about 60 cm rms per coordinate (see Table
8.16).

Fig. 8.29. RMS of code observations, (left: C2-Orbit, right: P2-Orbit)

C3-Orbit: The orbit resulting from the analysis using only code observations
may now be used in LEOKIN to produce a better solution (screening of
code observations is much easier with an orbit accurate to ≤ 1 m rms being
available): Code errors of the order of more than about 5 m are easily rec-
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ognized and eliminated, because the clock error is the only remaining “truly
unknown” quantity in the observation eqns. (8.87). The C3-Orbit is a kine-
matic orbit. It only differs from the C1-Orbit by the use of a known a priori
orbit. Data screening obviously was much easier in LEOKIN: The resulting
rms error per coordinate (compared to the R-Orbit) dropped to the value
of 1.34 m (from about four meters for the C1-Orbit). 8663 position vectors
were determined by point positioning (which indicates that the data span
was slightly longer than one day).

C4-Orbit: In analogy to the C2-Orbit we now produce the C4-Orbit using the
position vectors in the C3-Orbit as artificial observations. As we know that
the observations already are relatively clean, we may improve the force field
by setting up a set of three stochastic pulses every 10 min, and we do not
allow for a further cleaning of observations. The resulting reduced dynamics
orbit, named C4-Orbit, is of rather good quality. An rms-error of 48 cm per
coordinate results in the Helmert transformation of orbits C4 and R. All 8663
position vectors were used in the adjustment.

It is important to know that the reduced dynamics orbits resulting from
SATORB, which are based only on the code observations yield orbits (C2-
and C4-orbits) which already coincide to within about half a meter rms per
coordinate with the best achievable LEO orbits!

P1-Orbit: With an orbit of type “C1” or “C2” at hand, position differences
δrl,l+1 = rl+1 − rl may be predicted to about one centimeter – which makes
phase preprocessing an easy game, as well. With cleaned phase and code
observations it is now possible to generate not only a table of positions, but
also one of position differences in program LEOKIN. LEOKIN also generates
a purely kinematic orbit by combining (in an extremely efficient way) the
estimated positions and position differences into a table of positions. The
rms error of the Helmert transformation of this purely kinematic ephemeris
with the R-Orbit is only 14 cm (see Table 8.16)! It only has the disadvantage
of a few data gaps (due to lack of data or due to data problems removed by
screening).

P2-Orbit: The positions and position differences of the P1-Orbit are now used
by program SATORB to generate a reduced dynamics orbit. The same orbit
model as in the case of the C4-Orbit was used. It is interesting to compare
the code residuals w.r.t. the first (C4-Orbit) and the second (P2-Orbit) orbit
in Figure 8.29 (left and right). First, we observe that the overall rms of the
observations is somewhat reduced (observe the scale differences). Secondly,
the data gaps around 1000, 1300 min disappeared. The improvements are a
consequence of the improved screening of code in program LEOKIN.

Figure 8.30 shows the residuals of the phase difference observations. Obvi-
ously, the observations are represented with an accuracy of a few centimeters
only. This means in summary that the P2-Orbit is capable of representing
the satellite positions to within about 1 – 2 meters, the position differences
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to within few centimeters. The comparison of the P2-Orbit with the R-Orbit

Fig. 8.30. Residuals of position differences for “P2-Orbit”

is roughly comparable as the corresponding comparison of the P1-Orbit.

Unnecessary to say that orbits of the P1- and P2-type are highly interesting
for many applications. It is interesting to note that orbits of this quality may
be rather easily established!

It is of course possible to use the P2-Orbit again as a priori orbit for program
LEOKIN and to repeat the entire orbit determination cycle. The achieved
improvement (if observable at all) would be marginal. Much better results
(one to few cm accuracy) are only achievable by a correct data processing
directly relating the observations with the unknown parameters, where in
particular the mathematical correlations of the phase observations in time
are fully accounted for. Much more information concerning this approximate,
but efficient way of establishing precise LEO orbits may be found in [24].
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49. A. Guthmann: Einführung in die Himmelsmechanik und Ephemeridenrechnung
– Theorie, Algorithmen, Numerik, 2. Aufl. (Spektrum Akademischer Verlag,
Heidelberg, Berlin, 2000)

50. A. E. Hedin: ‘MSIS-86 Model’, J. Geophys. Res., 92, 4649–4662 (1987)
51. A. E. Hedin: ‘Extension of the MSIS Thermosphere Model into the Middle and

Lower Atmosphere’, J. Geophys. Res., 96, 1159–1172 (1991)
52. W. A. Heiskanen, H. Moritz: Physical Geodesy (W. H. Freeman Comp., San

Francisco, London 1967)
53. P. Henrici: Discrete Variable Methods in Ordinary Differential Equations (John

Wiley & Sons, New York, London Sidney 1968)
54. P. Herget: ‘Computation of Preliminary Orbits’, Astron. J., 70, 1–3 (1965)
55. T. A. Herring: ‘An a priori model for the reduction of nutation observations:

KSV1994.3 nutation series’, Highlights of Astronomy, 10, 222–227 (1995)
56. K. Hirayama: ‘Groups of Asteroids Probably of Common Origin’, Astron. J.,

31, 185–188 (1918)



444 References

57. U. Hugentobler: Astrometry and Satellite Orbits: Theoretical Considerations
and Typical Applications, (Schweizerische Geodätische Kommission, Zürich
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112. J. Stoer, R. Bulirsch: Einführung in die Numerische Mathematik, 2. Aufl.
(Springer, Berlin, Heidelberg 1976-1978), Heidelberger Taschenbücher, 105,
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(Springer, Berlin, Heidelberg 1989), Lecture Notes in Earth Sciences, 25, pp.
235–260

120. B. D. Tapley, M. M. Watkins, J. C. Ries, G. W. Davies, R. J. Eanes,
S. R. Poole, H. J. Rim, B. E. Schutz, C. K. Shum, R. S. Nerem, F. J. Lerch,



References 447

J. A. Marshall, S. M. Klosko, N. K. Pavlis, R. G. Williamson: ‘The Joint
Gravity Model 3’, J. Geophys. Res., 101, 28029–28049 (1996)
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