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PREFACE

THE chief purpose of this volume is the development of methods

for the calculation of the general orbit of a planet. If an

accuracy comparable with that of modern observation is to be

attained in any particular case, the choice of the method to be

adopted may be an important factor in the amount of calculation

to be performed. Not only should the general plan of procedure
be efficient, but full consideration of tha details of the work

should be given in advance. We have attempted to anticipate

the difficulties which arise, not only in the older methods but

also in those developed here, by setting forth the various devices

which may be utilised when needed.

While the developments given below are intended to be

complete in the sense that they should not require a knowledge
of the subject drawn from other sources, the volume is not

supposed to be a substitute for an extended treatise like that of

Tisserand. It contains, for example, no detailed account of such

classical theories as those of Leverrier, Hansen and Newcomb.
It does, however, attempt to indicate that most of the methods

previously used ultimately reduce to two. One of the methods

involves a change of the variables to elliptic elements, while the

other consists of a direct calculation of expressions for the co-

ordinates. An example of each of these general plans is given
and worked out in detail.

Few references to previous work have been made and those

furnished are merely incidental. It has seemed unnecessary to

repeat material which the student can find equally well in

Tisserand's treatise or in vol. IV of the Encyklopddie der Mathe-

matischen Wissenschaften. While a critical estimate of the merits

and demerits of previous works would doubtless be of assistance

to anyone planning to carry out detailed calculations for the

theory of a particular planet, in the past the methods which

have been adopted have been sometimes chosen less on account

of their efficiency than for other reasons, and the same will

probably be to some extent true in the future. Nevertheless it
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is still advisable to give consideration to each of these plans,

and we have attempted, by occasional remarks, to aid the

student in this respect.

The mathematical processes which are used in developing

the theories of the planets and satellites from the laws of motion

are largely formal While mathematical rigour is desirable when

it can be attained, nearly all progress in the knowledge of the

effects of these laws would be stopped if complete justification

of every step in the process were demanded. The use of formal

processes is justified whenever experience shows that the results,

riot otherwise obtainable, are useful for the prediction of physical

phenomena. Thus when calculating with an infinite series

whose convergence properties are not known, one has to be

guided by the results obtained; if the series appears to be con-

verging with sufficient rapidity to yield the needed degree of

accuracy, there is no choice save that of using the numerical

values which it gives. We have not attempted to deal with con-

vergence questions, but have retained throughout the practical

point of view mentioned in the first sentence of this preface.

Considerable portions of the volume are new in the sense that

if they had not been given here, they would have been printed

in abbreviated form in the current journals. In particular is,

this true of the last two chapters. The novelty, however, consists

mainly in the adaptation and further exploitation of previously

known devices. Some of these extensions owe their effectiveness

to a recent publication of tables of certain functions*, or to the

introduction of mechanical computing aids. An example is the

attention given to development by harmonic analysis.

The following sentences give a brief summary of the contents

of the volume. In the first chapter, various forms of the equations

of motion are derived, other possible forms being suggested. The

second chapter is a collection of various expansion theorems

which are or may be needed in the later developments. A short

account of the essential properties of elliptic motion follows.

Various methods for developing the disturbing function and

disturbing forces are set forth in Chapter iv. Chapter v contains

* See footnote, p. 182.
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the elements of the theory of canonical variables so far as it is

needed in the later work. This theory is usually difficult for

a student to grasp, and we have tried to simplify the exposition

so that he may not only be able to understand it but also to

make use of it as a tool for investigation. In Chapter VI, it is

shown how this theory may be efficiently applied to the calcula-

tion of the orbit of a planet ;
the basis of the method is the use

of the transformation to eliminate the short-period terms as

a first step, leaving the long-period and secular terms to be dealt

with separately.

In Chapter vii, the direct calculation of the coordinates with

the use of the true orbital longitude as the independent variable

is developed with sufficient detail for the formation of an approxi-
mate or of an accurate theory. Chapter VIII contains an attempt
to place the theory of resonance on a general basis, in a form

which permits of application to specific problems. The point of

view taken is mainly that of explaining how this phenomenon
can be treated mathematically in certain of the cases of its

presence in the solar system. It appears, however, to give a

method of approach to the consideration of the question of the

general stability of the orbits of the planets and thus leads to

certain aspects of cosmogony. In Chapter IX, the theory is

applied to the Trojan group of asteroids in a form which it is

hoped will make the calculations of the orbits of these bodies

easier than has hitherto been the case.

The appendix on Harmonic Analysis will be found to contain

formulae for its application to the development of a given function

ready for actual use. Most of these formulae have been tried

out extensively and have been found to render the computations

easy and accurate, especially when the number of such functions

to be analysed is great.

We are indebted to Dr Dirk Brouwer and Mr R. I. Wolff for the

errata given on p. xii and discovered after the sheets had been

printed.r ERNEST W. BROWN
CLARENCE A. SHOOK

1933



Errata

p. 26, line 5 from bottom, insert factor
,

before ^-- .* r2 oT

p. 28, line 6 from bottom, for u2
, read uu'2 _- .11 ou du

p. 28, Equation (4), for $q read .

2 2tf 2

p. 28, Equation (5), /or read -
.. .

v ?r ^

p. 28, Equation (7), for -T read + l\

p. 30, omit lines 12, 13.

p. 63, Equation (10), /or rtd read andt.

p. 64, lines 12, 15, for

p. 66, last line, /or 47r'
2

/x, read /x/47r-.

p. 68, line 18, insert 2
fc
before second formula.

p. 76, Equation (J), for {-)
read (

C

-j
.

p. 83, line 18, for a~ read a-.

p. 87, line 7, for #= exp ^ read x-~exp \f/ *J
- 1.

p. 87, Equation (2), delete the letter^.

p. 98, line 22, /or ^
p. 117, Equation (2), for m

v
read m.

p. 118, line 5, for (5) mid (6).

p. 129, line 6 from bottom, for (3) read (8).

p. 131, line 14, for ^(-2^)"* m/d ^(-2^)"-.
p. 131, delete line 15, replacing it by *'Here the choice for S, slightly

differing from (1), is".

,._ r o f W
,

$S
p. 145, line 2, /or -_- mid

--^-

p. 157, line 4 from bottom, insert 2 before the last term.

p. 163, Equation (12), for - 3S read -32/j.

p. 176, last line, for Dv= l read Dv = l.

p. 224, line 15, for 8-8(9) read 8'S (10).

p. 230, line 5, for R read R .

p. 250, lines 5, 23, for Laplace read Lagrange.

p. 250, line 19, for configuration read condition.

p. 253, line 6 from bottom, for read
r*

p. 255, line 11, the equations should read

aB _ db 3 >/3 m' - 8a3
/t2 1 (y. m)* _ >/3~ t-

I 8 ^ "^
12

+ ,I'



CHAPTER I

EQUATIONS OF MOTION

A. GENERAL INTRODUCTION

I'l. The methods considered in this volume for the investiga-

tion of the mutual actions of two or more bodies are based wholly
on Newton's three laws of motion and on his law of gravitation.

It is assumed that there exist fundamental frames of reference

with respect to which the laws are exact and that the space in

which the bodies move is Euclidean. The modern theory of re-

lativity gives a different approach to the problem, but from

the point of view taken here, which is chiefly that of deriving
formulae for the comparison of gravitational theory with obser-

vation, the numerical difference resulting from the two methods

of approach is very small, and can be exhibited as a correction

to the results obtained through the Newtonian approach. These

corrections, which are near the limit of observational accuracy
at the present time, will not be considered here.

A further limitation is the treatment of the motions of the

bodies as those of particles having masses equal to the actual

masses. Here again, owing to the theorem that a sphere of

matter, whose layers of equal density are concentric spheres,

attracts an outside body as if it were a material particle, and

also, owing to the fact that most of the bodies with which we
have to deal are approximately spheres of this character or are

sufficiently far away from the attracted body that they can be

so treated, the differences are small. All other possible and actual

forces, unless they obey the inverse square law and have con-

stants which can be supposed to be included in the constants

which we call the masses of the bodies, are neglected.

1*2. A general knowledge of the masses and relative distances

of the various bodies from one another has to be assumed

because the method of treatment to be recommended depends
B&SPT I
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on this knowledge. The two principal divisions are the planetary

problem and the satellite or stellar problem. A third division

may include the cometary problem and those cases of motions

which cannot be included in either of the first two divisions.

In the planetary problem, one mass is very much greater than

the combined masses of all the other bodies and dominates the

motion of any one of them to such an extent that during a few

revolutions the orbit of the latter is not greatly different from

that which it would describe if the remaining masses did not

exist. These approximate orbits moreover are ellipses with the

principal mass in one focus and having minor axes which do not

differ from their major axes by more than about ten per cent, of

the latter. Further, the planes of these ellipses tire inclined to

one another at small angles generally less than 20. The dis-

tances of the bodies from one another may have any values what-

ever provided they do not fall below a certain limit. In general,

the methods of this volume are developed for this case alone.

In the satellite or stellar problem the distance between two

of the bodies must be small compared with the distance of

either from the third; the two nearer bodies circulate round one

another and their centre of mass circulates round the third body.

The maintenance of this state of motion requires a limiting

relation between the masses and distances of the bodies. There

are also limitations concerning the shapes and positions of the

orbits similar to those present in the planetary case. In the

satellite problem, the mass of one of the two nearer bodies is

small compared with that of the other, and the mass of the latter

small compared with that of the third body. In the stellar

problem, the masses are usually of the same order of magnitude.
The methods adopted to obtain the motions in these two limited

cases are not applicable to the cometary and other cases.

The methods developed below give expressions for the co-

ordinates in terms of the time which serve to give the positions

of the bodies over long intervals of time: the results are usually
named the general perturbations. Practically all other cases have

at present to be treated by the method of special perturbations
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which consists in a completely numerical process of calculating

the orbit over successive small arcs by 'mechanical integration.'

Practically all the problems which have hitherto been brought
within the range of observation belong to one of these classes.

There are numerous problems in the stellar universe in which

the law of gravitation undoubtedly plays a dominant r61e. At
the present time the deviations from rectilinear motion have

not been directly observed, although such deviations have been

inferred by statistical methods.

1*3. Since no method for the exact integration of the equations
of motion of three or more bodies exists, devices for continued

approximation to the actual motion are used. Sometimes these

lead rapidly to the desired degree of accuracy; in other problems,
the process may have to be repeated many times. In most cases,

the first approximation is taken to be an ellipse and this is

equivalent to a start with the two-body problem and a con-

tinuation with the calculation of the disturbing effects produced

by the attractions of other bodies.

As far as possible these changes in position or 'perturbations/

as they are named, are expressed by sums of periodic terms

which take the form of sines or cosines of angles directly pro-

portional to the time, or to some variable which always changes
in tfye same sense as the time. When, however, the number of

such terms becomes too great for convenient numerical applica-

tion, the terms of very long period are replaced by powers of the

time or other adopted independent variable, and these powers
are used in combination with the other periodic terms. In any
case, the expressions which are obtained give reliable results for

a limited interval of time only; all the periods with which we

have to deal are determined from observation and therefore

possess a limited degree of accuracy.

Expansions of functions in series, especially as sums of sines

and cosines, thus play a large part in the work. The possibility

of obtaining these expansions in such forms that numerical

results may be deduced from them without too much labour,
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usually depends on the presence of small constants or variables

'parameters' in the coefficients of the periodic terms, and

the expansions are partly made along powers of these parameters.

Their orders of magnitude are important. In general, they
consist of the eccentricities which rarely rise much above *2,

of the inclinations of the orbital planes to one another usually

less than 20, and of the ratios of the distances.

For the majority of cases, this last ratio lies between *4 and

*8, and the feet that we are compelled to expand in powers of so

large a parameter is responsible for many of the difficulties of

the problems.

1'4. The most fundamental difficulty, however, is caused by

approximate or exact 'resonance.' This term refers to those

cases in which two or more of the periods, which enter into the

expansions for the coordinates, are nearly or exactly in the ratio

of two small integers. In the approximate case, large amplitudes
of certain of the periodic terms, and slow numerical convergence
to the needed degree of accuracy, are characteristic effects. In

the cases of exact resonance the form of the solution has to be

changed.
In either event, the terms which cause the chief trouble are

those with periods which are long in comparison with the period

of revolution of the body round the central mass. Such periodic

terms may have small coefficients in the equations of motion,

but the integration of the equations produces small divisors

which give large coefficients in the coordinates. These small

divisors demand that the terms affected be carried to a much

higher degree of accuracy than the remaining terms, and as

there exists no short method for securing this accuracy, the

amount of calculation needed in any given planetary problem

depends mainly on the few, perhaps one or two only, terms of

long period which are sensible in the observations. The existence

of such terms in every planetary problem has to be kept in

mind while divising methods and in carrying them out. The
method finally chosen should depend mainly, not on the ease
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with which the first approximation may be obtained, but on the

work required for the final approximation.

1/5. Astronomical measurements. The only measurements of

the position of a celestial object which have a precision com-

parable with gravitational theory are those of angles on the

celestial sphere. The ultimate planes of reference from which

these angles are measured along great circles are defined by the

average positions of the stars (which have observable motions

relative to one another). For the theory, an origin is needed,

and this is ultimately the centre of mass of the system. It is

assumed that these definitions will give a Newtonian frame

because the stars are so far away that they affect neither the

motion of the centre of mass nor the relative motions of the

bodies within the system to an observable extent.

Time in this frame is measured by the interval between the

instants when a plane fixed in the earth arid passing through

its axis of rotation passes through a mark in the sky supposed

to be fixed relatively to the stars.

Owing to the rapid motion of the earth about its axis the

observer finds it convenient to give his measurements with

respect to the plane of the earth's equator, and to a point on the

equator defined by its intersection with the ecliptic the plane

of the earth's orbit round the sun. Both these planes are in

motion but their motions and positions relative to the ultimate

stellar frame are supposed to be known. This frame is incon-

venient for working out gravitational theories on account of its

large inclination to the planes of motion of most of the bodies

of the solar system. For this purpose the ecliptic and the point

on it defined above are used. The motions of these are nearly

uniform and are easily taken into account.

In the observer's frame, the angular coordinates are the

declination measured along a great circle from the object to the

equator and perpendicular to the latter, and the right ascension,

the angle between this great circle and that perpendicular to

the equator and passing through its intersection with the
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ecliptic. In the computer's frame, the angular coordinates are

the celestial latitude and longitude similarly measured with

respect to the ecliptic. As this latter frame is moving the

ultimate reference is to its position at some give'ri date. Thus

to transform the results obtained from the gravitational theory
for the use of the observer, geometrical relations must be com-

puted, and there is, in addition, a kinematical relation due to

the motion of the observer's frame.

It is assumed that a complete gravitational theory of the motion of any

body in the solar system referred to a frame whose motions are fully known,
should give the position of the body at any time when the constants of the

motion have been determined. Differences between the calculated and

observed positions of the body may be due to defects in the theory, un-

known motions of the frame of reference, errors in the determination of

the constants, or errors of observation. The analysis of these differences

in order to discover their source is a problem involving many difficulties.

In many cases two or more interpretations are possible and these can only

be separated by the use of more observations. An outstanding difference,

for example, between the observed and calculated values of the motion of

the perihelion of Mercury was variously attributed to the gravitational

attraction of a ring of matter supposed to surround the sun, to a motion

of the frame of reference, to defects in the gravitational theory, until the

theory of relativity furnished an explanation. A marked deviation of the

moon from its gravitational theory has received an explanation as a varia-

tion in the rate of rotation of the earth about its axis, through detection

of similar deviations from the gravitational theories of the observed posi-

tion of the sun, the satellites of Jupiter, and the planet Mercury.

1 *6. Observations of bodies in the solar system are usually of two classes.

Those made with the transit telescope give the instant of passage of the

body across the meridian of the observer and the angle between its observed

direction and that of the earth's axis, the time being given by a clock which

is constantly compared with the transits of stars. Differential observations,

often made by photography, give the position of the body at any time with

respect to stars in its neighbourhood, the places of these stars referred to

the frame being known. Under good conditions, either class of observation

should give the position with a probable error less than V such a standard

at least is aimed at in the gravitational theories of the principal bodies in

the solar system.

While direct observations of distances cannot in general be made ac-

curately, their theoretical determination is necessary because we cannot
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eliminate them from the equations of motion without introducing compli-

cations greater than those which the equations already possess. They are

also needed because the planetary theories use the sun as an origin ;
the

transformation from the observer's position on the earth to an origin in

the sun requires a knowledge of the variations of these distances.

Observations of masses or of relative masses are not made : a mass is

only known to us by its gravitational effects. In the solar system, the

orders of magnitude are such that the mass of a body has little effect on

its own motion ; the operation of Kepler's third law, (3 -6), eliminates from

the angular coordinates the greater part of the mass eftect. When dealing

with the effect of one planet on another, we need to know the ratio of the

mass of the disturbing planet to that of the sun. If the planet has a

satellite whose motion can be calculated, the mass of the planet can be

found with sufficient accuracy to calculate its effect on any other planet.

When it has no satellite, its mass can be found only by comparing its cal-

culated disturbing effects with those furnished by observation. There is of

course a correlation between the degree of accuracy required to calculate

the perturbations and that with which the perturbations can be observed.

Thus the masses of all the major planets except those of Venus and Mercury

are fairly well determined. The masses of the minor planets can be ob-

tained only from observation of the light they send with estimates as to

their albedo and density, since they are too small to exert any observable

attractive effect on any other body.

17. The Newtonian law of gravitation. This law states that

the attractive force between two particles of masses m. m' at a

distance r apart is along the line joining them and of magnitude

Cmm'/i*, where C is a constant the 'gravitation constant'

wfiose value depends only on the units adopted. It is convenient,

in order to avoid the continual presence of C in the mathematical

operations, to so choose the units that (7=1. Since m/r
2 has

then the apparent dimensions of an acceleration, it follows that

a mass with these units has the apparent dimensions of the cube

of a length and the inverse square of a time. The adoption of

this unit called the 'astronomical unit of mass' is closely

associated with Kepler's third law. This law, with a slight

modification (3*6) to bring it into accord with the law of gravi-

tation, states that if ZTT/H be the period of revolution of two

bodies about one another and if a be their mean distance apart,

ii* a* = C x sum of masses.



8 EQUATIONS OF MOTION [CH. i

In numerical work we need to deal with ratios only. If a

relation of this kind is used in the equations of motion, the

latter will be freed from the apparent inconsistency of possessing
terms having different physical dimensions, and will consist of

ratios of masses, distances and times only.

The units of time and distance to be finally chosen, depend
on the problem under investigation: a choice is not usually

needed until comparison with observation is to be made. For

this purpose, the mean solar second, day or year are used as

units of time, and the mean radius of the earth or the mean

distance of the earth from the sun as units of distance.

B, PLANETARY AND SATELLITE OR STELLAR TYPES
OF THE EQUATIONS OF MOTION

1*8. The Equations of motion with rectangular coordinates

A force-function for the motion of any particle, when it exists,

is defined as a function whose directional derivatives with respect

to the coordinates of the particle give the components of the

forces.

For two particles with masses m, in and at a distance r apart,

the gravitational force-function is mm'jr. For n + 1 bodies with

masses mi and mutual distances ?', it is

*
ij

the summation including each combination of i,j once only.

This function is independent of the directions in the frame of

reference which may be used. It may or may not depend on

the origin chosen.

In treatises on general mechanics, the potential is denned as a function

which has the property that its directional derivatives give the reversed

components of all the forces which act on the system. We shall have oc-

casion later (e.g. in 1 *9) to construct force-functions which are not potentials

with reversed signs, since the force-function for the motion of one particle

is not the same as those for the other particles of the system.
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Let
, m, f be the coordinates of mif Then, with the defini-

tion of V given above and under the limitations stated in 1*1,

the equations of motion are

d^i W d*m SV d2^ BF
mi~Ta^> m / J72~

= T~ '
mi~J^ = ^^' -(*)

at* dgi at* dm at2 o%i

Only the relative motions of the bodies are needed and, in

finding them, the equations are usually given two principal

forms, depending on the origins chosen.

1*9. Planetary form of the equations. In this form, one body
w is chosen as the origin of coordinates, and the motions of the

remaining bodies relative to m Q are to be determined.

Let

ff*
= &-?o, l/k^^k-no, s&=6fc-oi / = !, 2, ...w,

rk
2 = rok

2 =
(KI? + j/fc

a + ^A
2

.

Then r/ = (^ - #,)* + (^ - y^)
2

-h (^ -
^)

2
.

These definitions, together with the equations of motion, give

dt2

__ _ /p , v- _ '^fc _ v ; y

""8.'-*U
;

>,J >*3
~

;

^3 '

where J =(= ^- The penultimate term, being equal to the derivative

of m kjrk with respect to #&, can evidently be combined with that

of mo/rk . The last term can be written

9

in which form it will serve for all three coordinates.

Hence, if we put

the equations of motion for mk relative to mQ become

with similar equations for yk ,
zk .
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so that the new coordinates still depend on the differences of

the original coordinates.

Now when 7 is expressed in terms of the coordinates ;, TH, &,
we have, as a result of changes in the & only,

But since V contains the ^ only through their differences.

dV 37 dV

Whence, combining thia with the previous equation, we have

d V=
j|

(rfft
-

rf>) +^ (d& - d$>).
<7i O^2

But when V is;to be expressed in terms of #, ,7;', we have

7 ,

, ,

TT- dx + =-, dx .

ox ox

If we substitute the values for dx, dx' in terms of dgi dgQ,

d^z d^ and equate the coefficients of the latter in the two

expressions for dV, we obtain

ar
3 A''

'

...... (4)

The transformed equations of motion for #, x
r

become, with

the help of these results,

^r, (5)

dV I ftV , dV\
' - - ' - - ~i ^~~ '

.

' y
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For the purposes of calculation, we insert the value of V,

namely,
,7 m^mi
y .

j

n>l 7*02

with ?*i2
2 = .1? + ?/

2 + 2 = /
2

,

=
(,'i/H

2

,] +... + ...,
\ nil + itiz I

giving

d2x ?) (? + 77i w /M + //? 2) ///h wa
~

I H---
\r i r02

/

For theoretical investigations, the equations are exhibited in

the Newtonian form by putting

2 ir / 1/r /ox
, Kl = ^yU, K, ...... (8)

tQi~- ^)

when they become

with similar equations for ?/, ^, ?/', ^'.

This form cannot be used, however, if ?% or m% is zero. But

the equations then revert to the planetary form, with the motion

of mQ relative to raj elliptic if m2
= 0, so that the only motion

which has to be considered is that of ra2 relative to raj.

1'13. The equations of motion in the form 1*12 (6), (7) will not be needed

in the developments of this volume since they are, in general, useful only

when the distance between mi , m^ is small compared with those between

wi
, mi and wt

,
?n 2 ,

that is when r/r' is small. The initial development of

V will, however, be shown, in order to exhibit the contrast with the

developments used in the planetary problem.

Put xx' +yy' + zz? = rr' cos S,
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so that S is the angle between ?, r'. Then

" '2 i
2W*2 ' V*f 2 \

2
ar

()1

- r i
-f - rr' cos >S -i-

------ -
)

r2
,

?/i
1 -fw2 Vm^wo/

2 '<;
2m

1 ,
,

,
/ Wi Y2

,,

9 02
2= r 2 - ?r eos*S-H -----

)
? .

m! + 7?l 2 V>11+ W12/

Hence, if /^ be the zonal harmonic of degree i with argument ft, we have

1 -i /l+ ; (_ '*_ TP)
'01

' V ,=1 \ T+'S 'V '/'

JL.UH.
%2 '*

I t

and thence

y^'/^wiy Wp(wi-f^a) Wf>
*

r / r t=2

the terms for /=! having disappeared.

The force-function 1*12 (6) then becomes

L. _iilL_ 2 '^vi
(
!_\ p I /

the second term of F being useless. The function 1*12 (7) becomes

r
>

the first term in this case being useless.

In each case, if the function be confined to its first term we obtain elliptic

motion (Chap, in), the remaining portion being that which produces the dis-

turbing effect. If ?i, a be the mean angular velocity and mean distance in the

former, and n', a' those in the latter, wo have by Kepler's third law, (3-6),

By putting z= l, we see that the significant factors of the disturbing

effects in (1), (2) are

In the satellite problem, m is much greater than m t and m-! than w 2 ,

and a/a', n'/w are small, so that both these factors are small. If mQ1 m-j, wi2

refer to the sun, earth and moon, respectively, these ratios have the mag-
nitudes -007, 1-SxlO- 7

.

In those stellar problems which have up to the present shown observa-

tional evidence of perturbing effects, ?n
,
m t ,

m2 are of the same order of

magnitude, but a/a', n'/n are small of the order '2 or less. The disturbing

effects are chiefly shown in the motions of the apses and nodes. See

P. Slavenas, "The Stellar Case of the Problem of Three Bodies*."

* Trans, of Yale Obs. vol. 6, pt. 3.
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C. FRAMES OF REFERENCE

1*14. Choice of variables. In the preceding sections, the

equations of motion have been referred to certain origins in a

Newtonian frame with fixed directions for axes. Experience has

shown, however, that neither rectangular coordinates nor fixed

axes are convenient for finding the position of the body at any

time, and that the calculations may be much abbreviated by
suitable choices of coordinates. Analytically, the deduction of

these sets of equations may be regarded as nothing more than

a change from one set of variables to another. But since the

choice of a set of variables always depends on a knowledge of

the general characteristics of the motion, it is often useful to

give a geometrical or dynamical interpretation to the variables

chosen.

1'15. For the development of the planetary theory, the

osculating plane as a principal plane of reference possesses

certain advantages over all other planes of reference. It is

defined as a plane passing through the sun and the tangent to

the orbit of the planet. The plane is in motion but it is found

in most cases that its motions are either small or slow; that is, its

deviations from a mean position are either small or require long

periods of time to become large. This fact can be so used in the

analytical work as to abbreviate the calculations.

A second and even more important property of this plane is

due to the small effect its motion has on the motion of the

planet within the plane. In many cases this secondary effect

can be altogether neglected, so that the motion within the plane
can be treated as though the latter always occupied its mean

position. These remarks refer equally to both disturbing and

disturbed planet, that is, to the planet whose motion is supposed
known and to that which we are finding. The effect of the

motion of the plane of the former on the latter is usually

negligible or can be accounted for quite simply.

All the methods developed in this volume use the osculating

plane as a plane of reference.
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116. The choices of coordinates within the plane of reference

may be placed in two categories. In the first of these, the distance

of the planet from the sun or some function of this distance is used

as one coordinate, the second coordinate being the elongation of

this radius reckoned from some fixed or moving line with the time

as the third variable in the equations of motion. The roles played

by the second and third of these variables may be interchanged.
Two ways of measuring the elongation are used below. One

is the usual method of using a single symbol to denote the sum
of two angles measured in different planes : that between the

radius and the line of intersection of the osculating plane with

a fixed plane of reference, and that between this latter line and

a line fixed* in the plane of reference. This symbol is usually
called the longitude in the orbit or, briefly, the longitude. The

second is the measurement of the elongation from a line in the

osculating plane, this line being so defined that its resultant

velocity is always perpendicular to the osculating plane. This

second method has the advantage of eliminating the motion of

the osculating plane from the kinetic reactions within the plane.

With the use of these methods it is convenient to introduce an

auxiliary variable which substantially is the angular momentum
or a function of it.

1*17. The second category consists of the use of certain

variables associated with the osculating ellipse. This ellipse is

defined as the orbit which the body would follow if, at any
instant, all disturbing forces were annihilated and the body
continued its motion under the sole attraction of the central

mass. The definition requires that the velocity in the orbit and

in the osculating ellipse shall be the same in magnitude and

direction and therefore that its plane shall be the osculating

plane at the point. The variables used are those which define

the size, shape and position of the ellipse, or certain functions of

them which may or may not contain the time. These functions

are called the elements of the ellipse.

The elements which are simplest for descriptive purposes are

* The word ' fixed
'

is used in the Newtonian sense.
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the major axis, the eccentricity, the longitude of the axis and

the time of passage through the nearer apse or position when
the distance from the focus occupied by the central mass is least

;

the period of revolution is connected with the major axis by

Kepler's third law which involves the sum of the masses of the

two bodies. This sum may be unknown but, as it remains constant,

the relation between the variations of the major axis and the

period is always the same. Various combinations of these elements

and of the two elements which define the position of the osculating

plane are also used as elements : as we go from point to point of

the actual orbit these elements will change. According to the

definition, the changes will depend on the existence of attractions

other than that of the central mass, and the term ' Variation of

the Elements' refers to these changes. It will be seen below

that the methods used to determine them are similar to that

unfortunately named ' the Variation of Arbitrary Constants
'

in

the theory of differential equations.

1*18. This geometrical description of the elliptic frame, while

useful for descriptive purposes, conceals the analytical meaning
which is essential for a clear understanding of the processes

involved. Analytically, the elements are nothing else than a new
set of variables allied to the coordinates by a definite set of

relations which remain unchanged. Thus the process of forming
the differential equations satisfied by the elements is precisely

that of changing from one set of variables to another.

The description of the process is complicated by the fact

that the three old variables (the coordinates) are replaced by
six new variables

; consequently, three relations between the

latter are at our disposal. If the coordinates be denoted by Xi

and the new variables by j,
and if the relations between them be

Xi=fi(ai,a2 ,
.. .,<,,), t=l, 2, 3,

then the three additional relations are almost invariably chosen

to be so defined that they satisfy the equations

B&SPT
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As a result of this definition, we have

It follows that %i, dxi/dt are replaced byfit dfi/dt in the equations
of motion and that d2

%i/dt
2

is replaced by

This last process gives three equations and these with (1) furnish

the six equations necessary to find the a,-. The forms of the

functions /i, and consequently those of their partial derivatives,

remain unchanged and are given by algebraic and trigonometrical

formulae developed in Chap. III.

The analytical point of view just given is that which is chiefly

needed in the development of the equations of motion. This view

is often obscured by the methods used to obtain the functions fi.

These methods require the solution of the equations for elliptic

motion and in this solution the c^ appear as the arbitrary con-

stants : in the general problem they become the variables. The

fact is that the solution of the equations for elliptic motion is

merely a convenient device for finding the functions ft
which

connect the old and new variables.

The fact that the differential equations satisfied by the new

variables are all of the first order, together with another property
to be developed in Chap, v, namely, that the variables can be so

chosen that the equations have the canonical form, is largely

responsible for the use that has been made of them in theoretical

investigations. Their practical value lies in the ease with which

the equations may be integrated and in the simplicity of the geo-
metrical interpretations which maybe given to some of the results.

1*19. Certain methods like those of Hansen and Gylden, not developed
in this volume, as well as that given in Chap, vn, possess to some extent

the characteristics of both categories. No sharp division is possible or

necessary, the sole test being that of convenience for the problem under

consideration. Whenever a new variable is introduced, it can generally

be related to some property of the ellipse, but this relation is not usually

helpful except in so far as it may have led to the choice of the variable.
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1*20. The frames of reference should also be regarded as four-

dimensional in the sense that the time as well as the space co-

ordinates should enter into consideration in making choices of

new variables. The observer's demand is for expressions giving
the space coordinates in terms of the time, but the analyst is

free to regard any three of them as a function of the fourth and

to solve the problem according to his choice. If the time be not

used as the fourth coordinate, that is, as the independent vari-

able, a final transformation is usually, though not necessarily,

made to obtain the space coordinates in terms of the time.

However, practical demands limit the nature of the independent
variable. The linear coordinates are sums of periodic functions

of the time, that is of a variable which is unlimited in magnitude
and whose changes are always in the same sense. Any other

independent variable which is chosen should have the same pro-

perty: it may be angular or even areal provided the angles or

areas are always changing in the same sense. Otherwise trouble-

some infinities are apt to be introduced.

1'21. The choice of a method for the solution of any particular problem

depends on a number of factors which should receive consideration.

As between the two principal categories described above (1*16 and 1*17),

the elliptic frame requires the calculation of the expressions for six

variables as against the three coordinates which are alone needed by the

observer. On the other hand, the solution of the differential equations is

much more simple for the elliptic frame than those for the coordinates.

For this reason, certain sets of equations belonging to the first category
have been so developed that their solution is as simple as those for the

elliptic elements.

The elliptic frame as actually used requires a literal development of the

disturbing forces in terms of the variables : when high accuracy is needed

this development may entail very great labour. On the other hand, in

particular portions of the problem, for example, in the calculation of the

secular terms, those of very long period and resonance terms, it appears to

give the needed results more easily than any other method which has had

extensive trial.

For theoretical researches, and for the discovery of qualitative properties
of the motion, the elliptic frame has in general been more fruitful than

most of the other forms of the equations of motion. This statement refers

to motions of the general character of those which have been observed
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rather than to those which are mathematically possible, and to work which

has been done in the past rather than to what may be accomplished in the

future. In this connection, it should be remembered that a quantitative

solution for a particular set of problems is often more easily obtained by
a procedure different from that which is used to deduce a qualitative result.

1*22. In making a choice for the solution of a particular problem from

the various methods which have been proposed or developed, there are

several factors which should receive consideration.

1. The question as to whether a literal or numerical development is to

be made, that is, a development available for several cases or one which is

applicable to the motion of a single body only. The choice depends, not

only on the number of cases to which the solution can be applied, but on

the degree of accuracy with which the initial conditions, that is, the

arbitrary constants, are known. In cases where the deviations from

elliptic motion are large, the literal method may involve such extensive

computations that it becomes practically impossible, even if the infinite

series used were sufficiently convergent to give the quantitative results

needed. Sometimes a partly literal and partly numerical method can be

adopted with but little extra labour. In all numerical methods, provision

must be made for changes in the arbitrary constants which future obser-

vations may furnish.

Some details with reference to the problems of the solar system will

make these statements more concrete. For the eight major planets the

elements are known with considerable accuracy so that corrections to them
need scarcely be considered at the present time as a factor in the choice

of a method. It is impracticable to use the literal values of the ratios of

their mean distances from one another owing to the numerical magnitudes
of these quantities: numerical values must be adopted for these from the

outset and these involve numerical values for the periods of revolution

round the sun. Little is gained by the use of literal values ior their

eccentricities and inclinations, and much labour is saved by using
numerical values for the constant parts of the angular elements. Thus,

completely numerical theories are indicated for the major planets. For

the moon, the ratio of the periods of the moon and sun is the parameter

along which convergence is least rapid and there is little doubt that its

numerical value should be used from the outset. Literal values for all the

other elements can be used with but little additional work.

For the minor planets, numerical values of the ratios of the mean
distances are again a necessity, but since there are groups of them in

which this ratio is nearly the same it is useful to devise methods in which

this ratio has a given numerical value while the other elements are left
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arbitrary. For most of the satellites other than the moon, complete
numerical theories are indicated. This becomes a practical necessity in

the cases of the outer satellites of Jupiter where the eccentricities and in-

clinations have large values, although nothing is gained by using the

numerical values of the constant parts of the angles.

In general, planetary problems should be separated from satellite

problems. In the former convergence is slow along powers of the ratios

of the mean distances, but rapid along powers of the ratio of the mass of

the disturbing body to that of the primary; in the latter the case is

reversed. For the planetary problems the amount of calculation needed

for the terms dependent on the second and higher powers of the mass

ratio is nearly always small compared with that needed for the first power,

except, perhaps, in the case of the mutual perturbations of Jupiter and

Saturn. The same is true in the asteroid problems, except in the difficult

resonance cases, on account of the lower degree of accuracy at present

demanded.

2. Consideration should be given to the amount of routine computing
available. In some methods much of the work can be arranged so as to

be done by routine computers, in others this is not the case.

3. The liability to errors of computation and the extent to which tests

may be applied, play some part. It is rare that an extensive theory is

tested throughout by others than the author, and safeguards against mis-

takes should be provided as far as possible.

4. Possibilities for an extension of the work as new needs arise.

5. An examination of existing developments in order to discover the

numerical magnitudes which will be involved in the work.

6. The degree of numerical accuracy aimed at.

7. The extent to which use can be made of existing numerical or

literal developments and in particular of those of the disturbing func-

tion.

8. The extent to which any peculiarity of the motion may dominate

the whole work. In most cases this peculiarity is that of approximate

resonance between two periods, as for example in the great inequality in

the motions of Saturn and Jupiter, the principal librations in the Trojan

group of asteroids, and so on.
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D. VARIOUS FORMS OF THE EQUATIONS OF MOTION
DEPENDING ON THE USE OF POLAR COORDINATES

IN THE OSCULATING PLANE

1*23. Polar coordinates with the time as independent variable.

The osculating plane is one containing the origin and the

tangent to the orbit of the disturbed body. It is defined by the

angle i which it makes with a fixed plane and the angle 6 which

its line of intersection with that plane the line of nodes

makes with a fixed line in the same plane. When i is less than

90, 6 is measured in the same sense as the actual motion; thus 6

refers to that node at which the body is ascending from below

to above the fixed plane. In Fig. 1, let 0, S3, P be the points

where the fixed line, the line of nodes and the radius vector r

cut the unit sphere with centre at the origin. Let the angle S3P
be denoted by v 6.

Fig. 1.

The angular velocity of S3 along the fixed plane can be re-

solved into the components

d0 . d0 . .

within and perpendicular to the osculating plane. The latter

contributes a component (dO/dt) sin i cos (v 6) to the motion

of P perpendicular to the osculating plane.

The change of inclination contributes a velocity

(di/dt) sin (v
-

9)
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to the motion of P perpendicular to the same plane. The
definition of this plane therefore gives

-r-sin(v 0) -j- sinicos(u 0) = .......... (1)
(it dt

The velocity of P is compounded of its velocity relative to 8
and the velocity of & . It is therefore

d, ^d0 . dv r d0(v _ m _j_ -7- cos i = -T- 1 -r: ,
1 = 1 cos ^.

dt
^ '

dt dt dt

Hence the square of the velocity of the planet is

A geometrical interpretation can be given to a variable v

defined byJ dv = dv Ydv.

This definition makes dv/dt the angular velocity of the radius

vector in the osculating plane. We can therefore regard v as an

angle reckoned from a departure point 0' in that plane which

is such that, as the plane moves, the locus of 0' is perpendicular
to the trace of the osculating plane on the unit sphere.

The function T contains four variables. It may be regarded
as the kinetic energy of a system with four degrees of freedom

if we suppose the osculating plane to be material and if we add

a term depending on its mass and motion. Let F be the force-

function of this dynamical system. We can then apply Lagrange's

equations to it, with the variables r, v, 9, F, and, after forming

them, put the mass of the osculating plane equal to zero*. If,

in the resulting equations, we put

---
dt dt~ dt

y

they can be written

- r -
di) ~^' Jt\ ~dt

dt\di
* The relation (1) expresses the fact that the material osculating plane is not

acted on by any forces which do work.
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In these equations* we substitute for F the force-function

for the particular problem under consideration.

If #, y, z be the rectangular coordinates with the fixed plane
as that of #, y and as the trace of the #-axis, the positive part

of the y-axis being 90 from reckoned in the same sense as 0,

and that of the ^-axis being above the plane, we have

x = r cos (v 0) cos r sin (v 6) sin cos i,\

y~r cos (v 0) sin -f r sin (v 0) cos cos i, > ---CO

2 = ?* sin
(t; #) sin i = r sin Z, J

which show that F is expressible in terms of r, v, } F. The

definition of L shows that it is the angle between r and its pro-

jection on the fixed plane or the latitude of the body above this

plane.

1*24. Canonical form of the equations. If we put

so that

97,_/rfY . <? <fr_aT
~\di) r>' dt~ dr'

we can write the equations in the form

.(3)

or, more compactly,

dr . Sr - Sr . dr + d(? . Sy - 8G . dv

* For other derivations of these equations, see E. W. Brown, "Theory of the

Trojan Group of Asteroids," Trans, of Yale Obs. vol. 3 (1923), p. 9; C. A. Shook,
"An Extension of Lagrange's Equations," Bull, of the Amer. Math. Soc. vol. 38

(1932), p. 135.
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If, in the latter, we replace dv by dv Yd0 and QdO . SF by

d0(SHi rSG), obtained by submitting (2) to a variation S,

the equations take the canonical form

dr . Sr - Sr . dr + dO . Sv - SG . dv

We have here implicitly supposed that F has been replaced by

Hi/G in F\ T is a function of r, G, r only.

In general, F will be an explicit function of t as well as of the

six variables r, r, G, v, HI, 6. By making use of the canonical

equations (4), we obtain

a result which is independent of the variables in terms of which

F, T are expressed, provided that the equations defining any

change of variables do not contain t explicitly.

If in (5) we introduce the value of T, and integrate, we obtain

dt)
+
,*-**

"

The equation 1'23 (3) may be written

<Pr_GP_ SF
T

dt* r2
~ r

dr

Eliminating G between this and (6) we have

A further useful equation may be obtained. When F is

expressed as a function of 7', v, F, 0, t y
we have

dF dF . dF . dF^ dF * dF
-rr = ^-r + ^-i;+r-f^-0+-^-.
dt dr dv ol dv dt

In this equation replace v by v + F/9 and substitute for 6, F
their values obtained from 1*23 (5), (6). The result is

dF 3F . dF . dF /QNjT^a-r+a-v+or ................... (8)
dt dr dv dt

^ '
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This equation when R replaces F, where F= p/r + J?, is evidently

still true.

1*25. The equations of Encke and Newcomb. Put

p d'R dR dR dR . dR .

jP^-fJ?, -jr=-jT--57=-;r r
' + -5- v -

r at at at or dv

Equation 1*24 (7) rnay then be written

When R is neglected, the motion becomes elliptic and r can

be expressed as a periodic function of t (Chap. in). Let this

value of r be denoted by r and the complete value by r + Sr.

On expanding in powers of 8r and neglecting powers of Br beyond
the first in the left-hand member, we obtain

(2)

Elliptic values are substituted for the coordinates in the right-

hand member which then becomes a function of t. The equation
can then be integrated and it gives Sr.

The coordinate v is obtained from

$-*-/* <3 >

where GQ is an arbitrary constant, or, neglecting terms depending
on the square of the disturbing mass, from

............. (4)dt ?o 7*0 r 2
J dv

^ '

Further,

^ = ^Y r - dR -^Y H?^
*""A +

d""(ft"
l"dvar

-
d
+
dwar >

di dt

to the same order.

If then VQ be the value of v in elliptic motion, and VQ + # its

complete value, we have, to the first order of the disturbing mass,

d , 20 * 1 [dR j4 ,

FdR
T $VS--.

"
Sr -- ^ + .......... /5)d^ r 8 r 2

J dv VQ 9F
v ^
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Since dF/d0, dF/dT contain the disturbing mass as a factor,

the equations 1*23 (5), (6) are immediately integrable if we put

r*dv/dt*=* Go in the latter.

1*26. Newcomb solves the equation for Br in the following manner. He
notices that when /2=0, the solution of the equation for r contains two

arbitrary constants, e the eccentricity and w the longitude of perihelion

(see 3'2 (7)), in addition to the arbitrary constant already present in the

equation, a constant which is independent of e, w. Two particular

solutions of 1'25 (2) for 5r with R~Q are obtained by varying e, 07.

These two solutions may be written

He then makes use of a well-known method in the solution of a linear

differential equation of the second order, namely, that if yy\, yy'L are

two particular solutions of the equation

a particular solution of the equation

is Cy=y2 / Qyl dt
- ^ I Qy2 dt,

where y2
-~ -yl

-J^

2
(7, a constant.

In these formulae, I\ ^ are supposed to be known functions of t.

If X be the eccentric anomaly, we have from 3'2 (16), 3*2 (15), when Xis

expressed as a function of n, e, e> w, t,

dX
__

sin X
__

a sin X
de

~~
1 - cosX ~~

r

Thence, by differentiation of 3*2 (15), we obtain

Thus cos X e, sin X can be taken as the two particular solutions. They
give Ctt, the mean motion.

In the exposition of the application of these formulae to the theories of

the four inner planets (Amer. Eph. Papers, vol. 3, pt. 5), Newcomb

apparently puts v= v, for he makes no mention of any difference between

them. The difference between them, -Jrdtf, which to the first order of

the disturbing mass may be written 2 sin2
1 80, is very small because the
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inclinations of the orbits of these planets to the ecliptic are small. The

constant and secular parts of this term are absorbed in the constants of

the mean longitude, so that the only doubt which remains is whether the

term gives rise to any sensible periodic terms, and if it does, whether these

have been included in his final results.

1*27. Equations of motion with the true orbital longitude as

independent variable.

These equations are deduced from those of 1*23 by making v

the independent variable instead of t. The transformation is

effected by the introduction of new dependent variables u, q,

defined by the equations

With these definitions we have

dr _ dr dv _ ~ du~~~ m'~
'

dz r d*u du dG _ d*u 1 dO du~~~ "

dG d, *K_^O d

dv dt\ dtj dv^ }

If then we put

==/*(> + 72), .................. (3)

^ 4- 2so that TS- = MW ur -^- ,

dr du

and if we change from G to q by means of (2), the equations

1-23 (3), (4), (5), (6) are transformed to

d*u dR , dqdu do 2 dR
//f

. /cx
-1-5 + ft ? = ? o + 1 ? ;r :j- -T--

--2o~'-- (&)> (5 )dv2 * * du * * dv dv dv u2 dv
^ " \ '

TT-T X
^r =1 - r ;r> (6>'(7 )av 2

\/A' av av \ /> \ /

)
="^W' dv

=
72 3T (8)>(9)
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It is to be noticed that the disturbing function has been denoted

by fiR instead of by R, so that the mass factor present in the

new R is the ratio of the disturbing mass to the mass of the sun.

When we proceed by continued approximation as in Newcomb's method,
the equation for u is immediately solved when that for q has been inte-

grated, and it has the advantage of being one with constant coefficients, so

that the device shown in 1*26, requiring two multiplications of series, is

not needed.

When 72=0 we have const., and the solution of the equation for u is

(3-2)

e cos (v or)}, \jq-a (1 -e2
).

Since dq/dv has the disturbing mass as a factor, we can change the

variable u to MI where n = Uif(q) without losing the easy integrability of

the equation for HI . The special cases

have certain advantages which will be pointed out in 7*2.

It may be noticed also that when the terms in R containing the angle 6

are neglected, we have Tq
~
^ = const., so that r can be completely eliminated

at the outset.

The variables l/<?, \ju have the dimension of a length. If we introduce

the constants w
,

such that n 2a 3
=fi, and put dt\ for n^dt, Ui for uaQ ,

qi for qaot RI for aQ R, the constants
/LI, ,

n will disappear from the

equations and the variables are all ratios.

1'28. Latitude equation.

From the equations 1*23 (1), (2), namely,

di sin (v 6)
= d6 sin i cos (v 6), dv = dv (1 cos i) d0,

we easily deduce

d {sin i sin (v 6)}
= sin i cos (v 0) dv,

, f
.

, mi . . x /ix 7 sin i cos i 7/,a sin i cos (v 0)1 = sin i sin (y a) av + -; ;
----rr d^.

1 /j 7
sm(v 9)

Whence, with the help of 1-27 (9),

d2
-, \ - - / ^ sin i cos i d0

T-a + 1
)
sin sin (v

- tf)
= -77--^ -T~

dv2
/

v ' sm (v
-

^) dv

_ sin i cos i q dR _ m" = " >( }
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It will be seen, by differentiation of 4*1 (1) with the help of

the definitions of A, S, F, that dR/dT contains sin (t; 0) as a

factor, so that there is no discontinuity in Z when v is a

multiple of TT. In the section referred to, R is shown to be

a function of r, r', cos S and

dR . / /\\ / /\\ vR
^. _ sin (-(?) an (-<?)g g

.

If L be the latitude of the disturbed planet above the plane
of reference (1*23), equation (1) may be written

nZ =
, ..................(2)

so that sin L is obtained from an equation of the same type as

that for u.

When Z has been expanded, we obtain v by integrating

dv -. r,
- - / /K

-7-
= 1 Zsm i cos i sm (v u).

dv /

1*29. The Equations of motion with the disturbed Eccentric

Anomaly as independent variable.

Another variable which gives a linear form to the equation

for r is X as defined by

rdX pdt, p = const.

This variable gives

dr _ dr d / dr\ _ p
a d2r

T
dt~ P dX' dt\'dt)'~~rdX*'

Equation 1'24 (7) with F^p/r + R therefore gives

- dt.......... (1)r dX* r dr J dt
^ '

^ =-2^+2^ (2)
dt\a) dt* dt

................... v '

Define a by the equation

dt\a

Then equation T24 (6) may be written

$'+"(*)'-*: ;

which shows that 2a is the disturbed major axis.



28-30] RATIAL COORDINATES 31

From (1), (2) we deduce

7TT9 a I
*

I 9 n V^VdX2
p

2
\a / p

2 dr
v '

If a be an arbitrary constant, the integral of (2) may be written

11 E> f) r 3 Z?1 ^ Jtt < / f>/t 1Tr /^- = -- 2- + Ir^dX, (o)

and, with the aid of this equation, (4) becomes

d2 r LL , . r2 dR u

(6)
71* (t

N "'
/*"'* '*'*' '*''* l '* ft i ^ /

The transformation of the remaining equations to the variable

X as independent variable is effected immediately.

If ?i
, p be defined by the equations /i/?

2= a
, /i=n

2a 3
, the definition

of X gives r dXa^n^dt. A reference to Chap, in shows that in undisturbed

motion, X is the eccentric anomaly.
If the equation (6) be solved by the method outlined in 1 *26, it will be

seen that the solution is closely analogous to that of Newcomb, when we

change the variable from t to X under the integral sign. It has, however,
the advantage of being exact instead of approximate and is thus adaptable
to the calculation of the higher approximations.

These equations, which appear to be new, will not be developed further

in this volume. The general method of treatment would follow lines similar

to those adopted when the true longitude is taken as the independent
variable (Chap. vn). It may, however, be noticed that, since

in elliptic motion, the equations are integrated without multiplications of

series when R, rdlt/dr have been expressed in terms of X. The only

exception is the equation for v an exception common to all methods.

1*30. Equations of motion referred to the coordinates of the

disturbing planet.

T j. i ndv' , t dv , /1XPut r = rp, r^--A, P^,=hf ,
............(1)

so that **S = AVlr= A'Ap ................... (2)
(At cttV

A. direct transformation from the variables r, t to p, v' gives

d?r /dv\ a
_ /t'

2
f fflp /dv\ 2

) 1 dh' dp d?r'~ ~ ~ ~
d?r /dv\ a

_ /t'
2

f fflp /dv\ 2
)

dt*
~ r

\dt)
~
7 left/

2
~
p
\dv') }
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This equation, with the aid of the definitions

F, dF 1 W,

enables us to transform 1*23 (3) to

c77*~
p w/ "F* J + p

h'*~dt* ~/7 ~di d7""W
With the definitions (1) of hp ,h', equation 1*23 (4) gives

A
, dh<,

h
dv = ajp

rtt
p
dt dv

'

Replacing o? by r'*dv'/h' and 7^ by /\/r', we obtain

p _ *
/.

/ K \

dt/ /^
/2 Sw A' dt

p ^ ;

Now let r',v' be the polar coordinates of a disturbing planet

moving in the plane of reference and satisfying the equations

The elimination ofd?r'/dt
2

, dh'/dt from (4), (5) by means of (6),

(7) gives

dtp (dv\* _ _/ 3i / r^ dF'\ _r^d/^dp
dv'*

P
\dv') ~h'* dp

P
\ k'2

dr') h' dt dv'

dp
'2 J

2 V A'2 dr' h' dt dv'
'

...... (8)__
dv'~h'*dv h' a/

............................

The transformation of the equations for F, 9 is easily made.

When the disturbing planet moves in an ellipse, we have

(Chap, in)

/ 1 aP' af

so that the equations become

dtp t dv _ SF2~ ~
dp'
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u o /i + JpVcosfv'-w') , , xwhere F2
= \ % ^ -', (11)

1 +e cos(i/ w')
v '

equations which have a form similar to that which obtains when
t is the independent variable.

When the motion of the disturbing planet is no longer elliptic,

we put

The additional terms in (10) are easily written down : they
contain the derivatives dR'/dr', dR'/dv'.

The chief point of interest in this form of the equations of motion arises

from the fact that Fl is independent of /, t explicitly. That this is the

case is seen from 1*10 when we put

^ = y, Vj
=

v', 0,
=

0, ^ = r, H? + i,
=

/i,
mk =m'.

For then Fl=/V= ^+ m' \
----------

.
--
p cos S\ ,

P l(H-//
2
-2pcostf)* J

where cos 8= (1
-

-ir) cos (v- t>')+ ir cos (v+v
1 -

20).

Thus the only way in which the eccentricity of the disturbing planet

appears in the equations of motion is in the explicit form shown in F% .

It should be pointed out, however, that if we put m' so that 7^ is re-

duced to the term ra/p, the solution of the equations for p, v will contain e'
;

hence, in the second approximation, when we substitute these values in

the coefficient of m', the development of Fl will contain e'. Nevertheless

the equations appear to have possibilities for usefulness in the discussion

of certain problems in which it is necessary to take into account the per-
turbations of the disturbing planet by another planet

< the indirect

effect' of the latter, that is, the effect transmitted through the disturbing

planet. A case of this kind is the effect of the action of Saturn on Jupiter
where the latter is disturbing the motion of an asteroid of the Trojan group.
Another case is the indirect effect of a planet on the motion of the moon.

1*31. The most important of the various forms of the equations of

motion, namely, that referred to the *

elliptic frame,
5
will be developed in

Chap. v. In this form the two variables r, v are replaced by four new
variables which are so chosen that their -first derivatives only appear in the

equations of motion. The elliptic frame in various forms has been

extensively used for the calculation of perturbations. In its direct form
it was used by Leverrier for obtaining the orbits of the major planets and
in the 'canonical' form by Delaunay for the motion of the moon. In a
different form it was used by Hansen for both the planets and the moon.

B&SPT *
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Another group of methods depends on the use of a uniformly rotating

frame of reference. This, like most of the methods which have been used

for actual calculation, was initiated by Euler and adopted by G. W. Hill

and E. W. Brown for the development of the motion of the moon as dis-

turbed by the sun.

For these and other methods not treated here, the reader is referred to

standard treatises like those of Tisserand and Brown. References up to

the date of their publication will be found in the articles dealing with

celestial mechanics in the Ency. Math. Wiss.

1*32. Motion referred to an arbitrary plane of reference.

In the preceding developments the plane of reference has

been that of the motion of the disturbing planet.

Now let the symbols v, 9, i refer to any fixed arbitrary

reference plane and let v', &', i' have the corresponding signi-

fications for the disturbing planet; the rectangular coordinates

of the disturbed planet are then given by 1*23(7) and similar

formulae will hold for the disturbing planet.

We have rr
r

cos S xx' 4- yy' + zz' .

Put i = V 1 so that

xx 4- yy' is the real part of (x 4 ty) (x iy').

Define T, k, I", V by

F = 1 cos i, 2k = 1 4- cos i, F' = 1 cos i', 2k' = 1 4- cos i'.

We can then obtain from 1*23(7),

and similarly

The product contains v, v' onlyin the combinations v 4 v'. If

we form it and, after taking the real part, separate the coefficients

of the sines and cosines of these two angles we obtain

cos (v
-

v') {W 4 i IT' cos (2(9
-

20')}

4- sin (v
- v

1

) {JIT' sin (2(9
-

2(9')}

4- cos (v + v') $kT' cos 26' 4- J A?T cos 20}

4- sin (v 4- v') $ kF sin 20' + J&T sin 20}.
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To find cos S we must add zz'jrr to this. The latter can be

written

sin i sin i'fcos (v v') cos (6 6') + sin (v fl')
sin (0 0')

- cos (v + v') cos (0 + 6')
- sin (v + v') sin (0 + 0')}-

We can therefore express cos S in the form

cos 8 = KQ cos (v v' KI) + ^2 cos (v + 1/ jBT8)>

where K = 1, ^ = /i a
= ^3 = when i = i' = 0. Since the K's

are functions of 0, 0', i, i', only, cos S has the same form as in

the simpler case. Here

KQ ,
-Or 1ST Ki ,

K2 , /V3

replace 1-^r, W--OT', |T, 20,

used in the developments of the later chapters.

In these and many similar cases we replace

A cos a -h B sin a by (7 cos (a a
)>

where (7, are determined from

(7cosoo = J., (7 sin <)=-#>

(7 being in general so taken as to have a positive sign.

3-2



CHAPTER II

METHODS FOR THE EXPANSION
OF A FUNCTION

2*1. The greater part of the work of solving any problem in

celestial mechanics consists of the expansions of various functions

into sums of periodic terms, mainly because the integrals of

these functions cannot be obtained conveniently in any other

way. The majority of these methods, which depend chiefly on

Taylor's expansion and Fourier's theorem, are well known, but

there are certain expansions, continually recurring, which require
much labour. It is the purpose of this chapter to ease the work,

partly by giving formulae which are ready for immediate appli-

cation, and partly by so arranging them that the calculations

may be carried out with the least chance of error. Certain of the

formulae are intended to be used only when literal expansions are

required : when the coefficients are numerical the methods of har-

monic analysis usually give higher accuracy and are less laborious.

The coefficient of a periodic term in the expansions of most of

the functions considered here takes the form

a l

'(a + i
2 H-a 2

4
-f ...), (1)'

where a is a parameter and a , i, a*, ... are integers or fractions.

It is frequently required to calculate the function as far as some

definite power of , and to carry one or two coefficients con-

siderably further. It is this latter need which causes difficulty

because there is much wasted labour if the whole series be

carried to this higher power. This fact has to be remembered

when a choice of any method of expansion is made.

Expansions in power series are so much easier to perform and

are so much less subject to error than operations with series of

periodic functions, that the latter are usually reduced to the

former by the substitutions

x = exp. 6 V^T, 2 cos iff = xi
-t- or*, 2 V 1 sin iff = xi or*.

(2)
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When the coefficient of cos id or sin id has the form (1) the

work is made easier by the substitutions

. 6 V 1, p = a2
,

1

-\ 2a* v ^Tsin iff = z i

-p*z-* t)

We then expand in positive powers of p and in positive and

negative powers of 2. This simple change from the substitution

(2) not only gives greater freedom in the choice of methods of

expansion, but aids materially in solving the problem referred

to on the preceding page.

Extensive use is made of another device, namely, that of

expansions of functions of an operator. These usually take the

form <f>(D).f(x) where D d/dx. It is then always supposed
that

<f> ( D) is developable in the form

where o, i, a2 ,... are independent of x, so that

Operations with functions of D are performed in accordance with

the rules of ordinary algebra except that functions of D and

those of x do not follow the commutative law of multiplication.

The gain is partly in brevity of expression and partly in the

methods of expansion which are suggested by well-known ex-

pansions. Thus we can use such forms as exp. Z), log(l + />),

(1 4- D)
n

, (1 + a)
D

,
cos J9, etc., each acting

2'2. Lagrange's theoremfor the expansion of a function defined

by an implicit equation. Let the equation be

y = a? +a(y) = & + <, .................. (1)

where a is a parameter and and its derivatives are continuous

functions ofy. The problem \A the expansion ofF(y) = jPin powers
of a with coefficients which are functions of a?. The theorem gives

2 d

<>
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where Fx = F(x)9 (f>x =<f> (x).

The proof which follows indicates an extension of the theorem

to several variables.

We may regard F as a function of a, x. Regarded as a function

of a, it may be expanded in powers of a by Maclaurin's theorem

in the form

F=FQ + a(AF)Q+~
]

(A*F)Q + ...
y
A=~

t
......(3)

where the zero suffix denotes that a is put equal to zero after

the derivatives have been formed. Evidently FQ
=FX . Put

D = d/dx. The use of the operators A, D implies that the

functions on which they operate are expressed as functions of #, .

Operating on (1) with A, D } successively, we have

Ay = 4> +a^ Aij, Dy=I+a
d
fDy,J ^

dy dy
J

so that Ay = <f) Dy,

and therefore, for any function y of ?/,

From this result we can show, by induction, that

A nF=Dn~1
((f)

nDF)................... (5)

Assume that (5) is true and operate on it with A. Then, since

x, a are independent so that D, A are commutative,

A n+1F-= D"-1
{DF. A<f>

n + ^A (DF)}

= D*- 1
{DF. <f>D<f>

n
4-

<f>

nD (AF)},

the change in the first term being made by the use of (4) and

in the second by the commutation of A, D. But, by putting

g = F in (4) and operating with D we have D(AF) = D (QDF),
so that the portion under the operator D11"1

is D (<f>DF .
<f>

n
).

Hence

and since the theorem is true for n = 1, it holds universally.
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Finally, since <, F become
<f>x ,

Fx when a = 0, the coefficient

of an in (3) becomes the same as that in (2), and the theorem

is proved.

Particular case. When F(y) = y, we have

yy2 ,/ $ ,72

2*3. Extension of Lagranges theorem.

If yi
= Xi + aai<l>(yi 9 yz t y3)

=
a;i + aai<l>, i = l, 2, 3, ...(1)

where the a$ are constants and a is a parameter, and if

where F and
<f>

are continuous functions with continuous deriva-

tives of yi, 2/2> y?.>
and further, if

Fx = F(XI, o;2j ar8),

then

2/2, yd^

x ) ....... (2)

The proof follows the same general lines as before. We first

regard F as a function of a and expand in the form 2*2 (3).

Next, by differentiation of (1),

where the first term of the right-hand member is 1 or according

as i =j or i 4=j. This equation is multiplied by a,-
and summed

for j
= 1, 2, 3. The result is

But from (1) we have

2JL. 2*,.

(5)
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These two sets of equations may be regarded as linear, the

first set for the determination of J9yt-, and the second for that

of dyi/da. They are the same except that the absolute terms

in the latter are
</>

times those in the former. Hence

and therefore
^

=
<j>DF .

The remainder of the proof is the same as that in 2*2.

2*4. The most general case in which

Hi
= -n + Q/i , y* , #0, 1 = 1,2, 3,

does not seem to be soluble by a simple general formula. It is not difficult,

however, to obtain the solution as far as a2
. If we put

<tx= </>t (#1 , *2 1
#3)1 D == 2

t <j>lx
a ^

,
/ x̂

we obtain

Lagrange's theorem can be used to find X or any function of X in terms

of g from Kepler's equation X=*g e&\i\X (3'2 (16)), and was probably

suggested by this problem. The extension may be applied to the Jacobian

solution of the canonical equations (Chap, v) to find the new variables in

terms of the old or vice versa, when the disturbing function is confined to

a single periodic term or to a Fourier set of terms. The more general case

mentioned above is that of the Jacobian solution where the disturbing

function contains any periodic terms.

2'5. Transformation of a Fourier expansion with argument y
into one with argument #, where y is defined in terms of x by means

of an implicit equation*.

Let F(y} be expanded in the form

F(y) ^(ci Gosiy-{-disiniy) >
i = 0,1,2, ...... (1)

and let y x -f a
cf> (y\ ........................ (2)

where a is a parameter and
</> (y) is expressed in the same form

* E. W. Brown, Proc. Nat. Acad. Sc. Wash. vol. 16 (1930), p. 150.
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as F (y). It is required that we obtain the coefficients aif bit

when F(y) is expressed in the form

F=^(ai cos ix -h bi sin ix)................(3)

With the help of the notation,

</>
=

(x), F=F O), D =
d/dx,

nnd with the use of Lagrange's theorem, (2) gives

F(y)=F+'S,
an

]

Dn-1
(^

n
DF) t

n = l, 2, ....... (4)

Let
-v/r

be another function of # expressed as a Fourier series.

On multiplying both members of (4) by D-v/r, we obtain

). ...(5)

The identity,

2
(<f>

n
DF),

shows that, when all three terms are expressed as Fourier series,

the constant term of the left-hand member is the same as that

of the last term, the remaining term being the derivative of a

Fourier series. By repeating this process n 2 times, we deduce

the fact that the constant terms in the Fourier expansions of

D^r . D"-1
(4>

tl

DF), (- I)
n~l l)n^ .

<f>

nDF
lire the same. On applying this result to each term of the right-

hand member of (5) we obtain a series which is the expansion,

by Taylor's theorem, of

-DF.^(x-a<f)) ..................... (6)
in powers ofa<p.

Hence, the constant term in the Fourier expansion of

(7)

when F(y} is expressed in terms of x, is the same as the constant

term in the Fourier expansion of

-~F(x). + {x-a$(x)}, ............... (8)

or in that of F (a). -]-$ [x a$ (so)}................(9)ax
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It is to be remembered that ty [x a <(#)} means the result

obtained by replacing x by x a<j>(x) in ty(x). We obtain (9)

from (8) by noticing that their difference is the derivative of

the product of the two functions F(x), ^r {x a<f> (x)}.

The use of (9) enables us to state the theorem in a slightly

different form. If we put % (x) for d^r (x)/dx, we have the theorem :

The constant term in the Fourier expansion of

where F(y) is expressed in terms of x, is the same as the constant

term in the Fourier expansion of

, z=x-a$(x)..........(11)

According to this definition, % contains no constant term. But

if ^ is a constant, (4) shows that the constant term in F(y) is

the same as that in F+ a(f>.DF, which is the same as that in

F(l aD<f>), so that the theorem still holds when ^ (x) contains

a constant term.

Since we are concerned only with the constant terms in (8)>

(9) or (11), the theorem evidently holds if we replace the letter

x by the letter y in these three formulae.

The chief value of this theorem lies in the fact that it removes

the necessity for solving the implicit equation y = x -f a<f>(y)-m

order to get y in terms of x.

The application to the coefficients in (3) is immediate. If we

put i\fr
= sin ix, so that Dty = cos ix, and note that the constant

term in the product of D-fr by the right-hand member of (3) is

Jat-, we find from (8) the result,

at
- = constant term in r sin {ix za</> (x)} j- F (x).

i ctx

...... (12)

Similarly, by taking Dty = sin ix, we obtain

bi = constant term in - cos {ix ia < (x)} -y
F (x\ . . .(13)

i dx
and from (9)

Oo= constant term in \ 1 a -7- <f> (x) > F (x). . . .(14)
I

ax
)
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When y, x take the values 0, TT together, these last results

may be deduced from a change of variable in the Fourier in-

tegral.

2'6. Extension to two variables. Suppose that we have a second

pair of variables x', y' , independent of #, y, connected by the

implicit relation y*
= x' + a'<f> (y

f

) and that we desire to obtain

the expansion of F(y, y') in the form

2,i' {(%' cos (ioc + i'x') + ba> sin (ix + t'V){, ...... (1)

where i, i' are positive and negative integers. An expansion in

this form will be called a double Fourier series.

For the development we adopt a notation similar to that used

before, namely,

F= F (x, x'), J} = d/dx, D' = a/a*/, etc.

A double application of Lagrange's theorem gives

where the signification when n = or m= is the same as that

shown by 2'5 (4). This is multiplied by DD'ty(x, x'}, where ty

is a double Fourier series and the process adopted in 2'5 is then

fpllowed for each of the variables x, x' . It evidently leads to

similar results which can be stated in the following theorems.

The constant term in the doable Fourier expansion of

F (y' y

when F (y, y') is expressed in terms of x, x'
y
is the same as the

constant term in the double Fourier expansion of

-a^(ai
),

x' -')}, ......(2)

or in that of

,^{x-a^(x), *'-')) .......(3)

And the constant term in the double Fourier expansion of

F(y,y') X (x,x') ..................... (4)
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is the same as that in

F(x, x') % (z, z') -r- . , , ,
z = x a<f)(x), z' = x'

a'<f> (#').

...... (5)

It will be noticed that the double operation removes the negative

sign present in 2*5 (8). It reappears, however, if we replace

(5) by

--F(x,x'}~^{x-a<}>(x\ *' ->' OO}, -(6)

or by the similar formula in which the derivatives d/dx, d/dx' are

interchanged.

In order to apply the theorem to the coefficients in (1), we

put DD'ty equal to cos (ix -f i'x'), sin (ix + i'x'), successively in

(2). We obtain

" '= const, term in . {ix + i'x' ia
</> (x) i'a'<$> (x'}\sin

which hold only when i, i' are both different from zero.

When i = Q, we use (5) with % (x,x') equal to cos i'x
,
sin i'x',

successively, and obtain

?
0t
" = const, term in

"*" C S

{t
V -

i'cftf (x')\( r \ /j+ sin

or n
+ COS

Jl
-a 1

</>(^)| |l
-a'

^*'(^)}
^(*X), ...... (8)

V -
i'a'tf (x')} \l-a~<f> (x)\

?
,
a

, ^ (^, ^).r \ /)
^

dx^ ^

)
l tix

^ '

......(9)
The formulae for at

-

,
biQ are similar.

When i = i' = 0, we use (5) with ^ (x, x
1

)
= 1, and obtain

aoo = const, term in 41 -a
<j> (x)\ \1 -a' , <f>' (x')l F (x, x').

^
ox J I

c?<^/ J
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27. Expansion by symbolic operators.

IfpD is expansible in positive integral powers of D and iff (x)

is expansible in integral powers of x, then

f(poc) = pDf(x\ where D = x -j-
= -r--- .j vr / r j \ /> ^x ^ j g x

If m be a positive integer, we have

J)m (0n)
_ nm^,n <

Hence, if p
D = a 4- aiD 4- a2D2

4- ...
,

we have p
D

oc
n

(px)
n

.

If then /(a?)
= Sn ( bnx

n
),

n = 0, 1
,

. . .
,

we have f(px) = 2n bn (px)
n =pD ^ n bn x

n =pDf(x).
This theorem can evidently be extended to any number of

variables. Thus

/(Piffi,j02ff2. )
ss piDl .p*

D* f(xi,X2, -..) where A = ^3/9^.

The application of the theorem depends on the possibility of

expanding p
D in powers of D in such a manner that we can, by

stopping at some definite power, secure a given degree ofaccuracy.
This happens when p has the form (1 4- ey)

fc

,
where e is a small

parameter such that ey is less than unity. We can then use the

binomial theorem and obtain

p
D =

(1 + eyj* - 1 + ey . kD + kD(kD- 1) + ....
1 . i

We can also make use of the expansion of QZ in powers of z if

we put z = D log p, for then

and logp has the factor e.

2*8. Product of two Fourier series.

(i) Let the series be

A = a 4- 22a;a* cos {0, .B = 6 + SS^a* cos id,

Put _
z a exp. \l 1, p = a2

,
2a* cos 16 = z* 4- p^"

1
',

5 =
&<) 4- 26* 2*.............CO
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Then AB = (A + '2aip
i
z-*)(Bo + 2,bip

i z- i

)..........(2)

Since A, B are even functions of 0, their product will have

the same property and the coefficient of z* will be the same as

that of pi z"~i. It is therefore sufficient to find the coefficient of

z*, i > 0, and then to replace zi

by 2a* cos iff.

We thus reject all negative powers of z in (2) and it is

therefore necessary only to find the coefficient of z i in

A QBQ + AoZbip'z-* +

The first term is the product of the power series (1) and from

this product we select the coefficient of z*. In the second term
we select the coefficient of piz*t namely, ai+i bi} and sum for

j = 1, 2, ...
;
the third term is treated in a similar manner.

On performing these operations and replacing p by a2
, we find

for the coefficient of z*, that is, of 2a* cos iff

-_i -f . . . + a^) + 2

+ 4
(2&<+2 + a+2&2> 4- . . .

, ...... (3)

and for the constant term,

<*o&o + 2aa ai&1 +2d*tfa &2 + ................... (4)

The parameter a may not be present and we then put a = 1.

In the series with which we have to deal it is usually present

implicitly, if not explicitly, so that the order of magnitude of

any coefficient is denoted by its suffix, and in the product by the

sum of the suffixes of a, b. Thus the arrangement in (3) is made
as needed, namely, with respect to the orders of the terms, the

brackets giving successively the terms of orders i
y i -f 2, i -f 4, . . . .

(ii) If

A' = 22a,a* sin iff, B' = 226<a< sin iff,

we adopt the same substitution for 0, a and we have

2 V^l a* sin iff ^z'-p* z~*.

The product is an even function of ff and is therefore expressed
in terms of cosines of iff. We have only to find the coefficient

of zi in

z-* -f
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in which do = &o 0. Hence we obtain, for the coefficient of

2a* cos id,

......... (3)

and, for the constant term,

(6)

(iii) If

A' = 22a<a* sin {0, # = 6 + 22M* cos i0,

the product is an odd function of 0. Here we need only the

coefficient of zl
-r- V 1 in

and we obtain, for the coefficient of 2a* sin {0, since = 0,

(ai6t-_i + 2^-2 + . . . + a^o) + 2
(- i^+i -H e&f+i&i)

-f a4 (-a26^2 4-a^2 &2), ...(7)

there being no constant term.

2'9. Fourier expansion of a series expressed in powers of

cosines or sines.

(i) Let
'

G ^Sa.a'cos'fl = 26, (2 cos 6)\ i = 0, 1, 2, ....... (1)

Since this is an even function of 6 it can be expressed in terms

of cosines of multiples of 6. With 2=aexp. 0V 1, so that

2a cos 6 z -f a2/z, we have

on expansion by the binomial theorem. As in 2*8 we need to

find only the coefficient of z*, i > 0, and to replace zi

by 2a* cos iff.

The selection gives for the coefficient of 2a* cos id in (7,

2i
+ (* + 2* ^2 "2 -^

1.2.3
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The constant term in C is obtained by putting i = in this

formula.

The result shows that the numerical work will be simplified

by the use of ^ = aia
<
/2

<
. The coefficient of 2 cos id is then

___^
____

<+

(ii) Let

S = Sa^a* sin 1
' = 26, (2 sin 0)<, i = 0, 1, 2, . . . .

The terms in 8 with odd values of i will produce sines of odd

multiples of and those with even values of i, cosines of even

multiples of 0. With the same substitution as before, we have

By a similar procedure, we obtain, for the coefficient of

2 sin (2i + 1) 0,

(2^4-5) (2i + 4)
2i+ 3 H

J g
2i+5

- 62t+7 +...!>-----
r 2 3

and, for the coefficient of 2 cos 2i0,

---
T2T3

----

......(5)
the constant term being

4.3, 6.5.4,
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2*10. Expansion of a function of a Fourier series.

(i) It is desired to obtain the expansion of

cos 20 +...), ......... (1)
in the form

60 + 2&! cos 6 + 262a
2 cos 2(9 4- . . . ,

the assumption being made that /(a -l-#) is expansible in

powers of x. Evidentlyf is an even function of 0.

As before, we put z a exp. V 1, a2 = p, so that

2a* cos id = z i
-f p*z~*,

and recall that it is sufficient to find the coefficients of z i and

then to replace zi

by 2a* cos iff for i > 0.

Put A = mz + a2 z
2 + ..., -B = ai^ + a 2^ + >

so that (1) becomes /(oo -h ^4. 4- i?). This function will be first

expanded in powers of p by Taylor's theorem. We obtain

the suffix denoting that p is put equal to zero.

Put /i

and denote derivatives of/i with respect to aQ by accents. Then
since p is present inf only through B,

\dP

Hence, replacing p by a2
,
we obtain

a2 "*

/(ac + ^+-B)=/1 + -i/i'4

+ 5</'
It will be noticed that all negative powers of z are shown in

explicit form in this expression, and that their coefficients are

B&SPT 4
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positive powers of z\ thus the lowest power of z required in the

second, third, ... coefficients are the first, second, .... We plan,

however, to stop at some definite power of a
; suppose this power

be the seventh. Then since zi has the factor *, we shall need

the following expansions:

coef. of o?jz, from z to 6
;

coef. of a4/2
2

,
from z2 to z5

;

coef. of a6
/^

3
,

from z3 to
4

;

and these are all that are needed. The work of expansion is thus

reduced to operations with positive power series.

We next expand fj and its derivatives in powers of A, which

contains a as a factor. As far as a7
,
the result is, with/ set for/(a ),

'

,

!

a2 (A f" ,

^2

/'" ,

7\ ^ 2V + '"

(2a2/
" + 0!%'") + . +

5

*

(2a/o
vl

- 4 (6as/o" + Oaxa./o'" + ^yo
lv

) 4- . . .

The final step requires the expansions of powers of A in

powers of z, the results being required to z1 in the first line, to

z6 in the second line, and so on. The highest powers are easily

formed. We have, in fact,

A 1 = ajV, A 9 = ai
6 *6 + 6ai

8 aa *
7

,
....

The lower powers are conveniently obtained from the binomial

theorem by treating aiz + ctzz
2 as the first element and the rest

of the series as the second element. Thus

A* = (aiz 4- aiz*)' +j (az + a^z
2y~

will serve for j ^ 3. For j = 2, we have

^2 = aj2^2 ^ 2a 1 a2 2
3 + (a2

2 + 2a!a

-f- (a3
2 + 2a!a5 4- 2a2 a4) ^

6 + (2aia6 -h
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After the insertion of these results, the rejection of negative

powers of z, and the replacement of z* by 2a i cosiOt we shall

have the needed expansion.

An expansion carried out in this manner should, in general, be used

only when literal series are desired. If the coefficients have numerical

values, the methods of harmonic analysis lead much more easily and directly

to the required series. The same remark applies to the function of a sine

series, expanded in the next paragraph.

(ii) The expansion of

f(2ai sin + 2aa sin 2(9 + . . .).

With the same substitutions as before this becomes

/(-Vin"4+V^~I/0,
so that the results of (i) are immediately applicable. In general,

the resulting series will contain both sines and cosines, but as

the important applications are confined to those cases in which

fis either an even function of 0, in which case we shall have cosines

only, or an odd function of 0, in which we shall have sines only,

these two applications alone will be considered.

The expansion (2) can be utilised if in it

(a) di be replaced by t
- V 1 where it occurs explicitly ;

(/3) A be replaced by
- A V- 1

;

/odd.
We thus obtain, after simplifying :

(a) Whenf is an even function of 0, the expansion is

A 2 4 4 A 6
/ " n ** *

+
*

2 ^2a2/"+^< 3!

+ ^(63/." -</-) +^
A

\

^^1 ^"Z./ U 1
...(**)

4-2



52 METHODS FOR EXPANSION OF A FUNCTION [CH. n

After the expansion in powers of A as in (i) and the rejection of

negative powers of z
y
we replace zi

by "la
1 cos id.

(b) When / is an odd function of 6, the expansion is the

following expression divided by V 1 :

A3 A5 A7

4/o'-~/o"' + |\/o*-/v

- A 6a1 a2/
'" + (6

~ i2o ~ - 3o !o .(5)

After following the same processes as before we replace z{

by

V^l . 2a J sin id.

2'11. Fourier expansions o//( + 2ai cos ^), /(a + 2a5 sin 0).

When a2,a8 ,
... are zero, a method dependent on the series

._ . . 1 f, a; 1

which is closely allied to a Bessel function, may be conveniently

adopted.

Taylor's theorem may be written

/(tt + x)
"= exP-^ ./(o), ^ = 3/3a .

Hence

/(oo -f ttia? -f a-!^"
1
)
=

exp. a^xD . exp. a^x~
lD ./(a ). . . .(2)

Expand each of the exponentials in powers of x, taking the

power i -f k in the first and the power k in the second. The

product will give the terms containing xi if we sum for k. It is
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The similar expression for the coefficient of x~* is evidently found

by interchanging i -f k, i, that is, by interchanging cij , a_j. Hence

/(o + aix + a__ix~
l
)
= 2,- {(&!#)* 4- (a-iflT

1
)*}

xQdoia-^D'.ffa). ...(3)

In any application, the operator IPQifaia-iD*) must be used in

the expanded form (1).

For the first Fourier expansion put

tf-i ai >
~ exp ^ 1

>
&'* 4 &'~~

l = 2 cos id.

The expansion (3) then gives

/(oo + 2cn cos (9)
= 22; !'*& (a!

2
/)

2
) ./(a ) cos i0, . ..(4)

where i = 0, 1,2, ..., the factor 2 being omitted when i = 0.

For the second Fourier expansion, replace ai, c&i by a_i V 1,

with the same substitute for x. Since

x* x~ l = 2 V 1 sin id,

we get cosines for even values of i and sines for odd values, and

+ 22i (- I)''

...... (5)

with i=0, 1, 2, ..., the factor 2 in the first series being omitted

when i = 0.

It may be pointed out that

0'Qi(-^) = /i(2*),

where /; is a Bessel function (2*14), so that the operators may
be expressed by these functions. But since the expression in

this form involves the presence of imaginaries, it is simpler to

use the functions Q{.

212. Expansion of a power of a Fourier series. For

(oo + 2ai cos d 4- 2&2a
2 cos 20 + . . ,)>'

we make use of 210 (3) with
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It is usually found convenient to take out the factor (iQJ, so that,

in the operations, 6/ = 1 and/o,/o' a**e integers when j is an

integer.

For (2a! *an + 2a2a
2 sin 20 + . . .)'

we apply 2*10 (4) or (5) according as j is even or odd. In these

we put

when j is a positive integer.

2'13. Expansion of the cosine and sine of a Fourier sine series.

(i) The expansion of

is obtained from 2'10 (4) by putting / = -/</' =yi)
lv = ... = 1.

As far as a7 this gives

, A 2 A* A a2
/ . ^l

3
A*\

/J4

After expansion in powers of A as in 210 (i) and the rejection

of negative powers of z we replace z* by 2 lcos id.

(ii) The expansion of

sin (2a! sin 6 -f 2a2a
2 sin 204- . . .)

is obtained from 210 (5) by putting /</
= -/o'" =/ov =

. . .
= 1.

This gives for the function to be divided by V 1:

A* A* A^_ a?
(A

2 A* A^\*
3!
+

5!
"*"

7!
ai

z V21
+

4!
"*"

6!/

4 ,M 2 J.4 \

+ (2)

In the final result, 0* is replaced by V 1 2a l sin i^.
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2 14. BesseVs Functions, The Bessel function of the first kind,

Jj (#), may be defined by the series

where^ is a positive integer. For a negative suffix, we define it by

A comparison of coefficients of xi shows that

*)
= 2

...... (3)

2? rf

y_i (a;) + J,+i (*;)
= ~Jj 00, /M 0*)

- ^+1 (*)
= 2

and that the differential equation

is satisfied.

The properties most useful for our purposes are deduced

from the fact that Jj(x) is the coefficient of z* in the expansion

2^(*)^ j-0, 1, .......... (4)

This result is shown by expanding exp. ##/2, exp. ( xftz) in

powers of xz, xjz respectively and choosing the coefficient

of zj in the product of the two series.

Put 0= exp. gV 1 in (4), so that 21/2 = 2 V 1 sin g. We
obtain

exp. (x sin g . V^T) = ^Jj (x) exp. (j# V^T), j = 0, 1, . . . .

......(5)

In this equation, change the sign of g, put x = ie and multiply

both members by exp. (ig V 1). We obtain

exp. {i (g-e sin g) V- 1
j

= S, Jy (fc) . exp. {(t
-
j) gr %/- 1

}.

The real and imaginary parts of this equation give

-e sin g)^^ iJi (ie)GOs(i-j)g t
)

+1^ '~ '
""
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The same process may be applied to (5). With the aid of (2)
the results may also be written

sin(tf sin<7) = 22,Jw+1 (ar) sin (2j + l)g,\
3
~ L> *>

...... (7)
The Bessel function may also be defined by

i r*

j(x)=*- / cos (j< x sin <) d<, ......... (8)

a result which is deducible by the use of the Fourier theorem

from (6).

2*15. The Hypergeometric series. This series, namely,

...... (1)

includes certain series which are needed in the development of

the disturbing function. It satisfies the differential equation,

F=0, ...(2)

and admits of many transformations*, two of which give

F(A, B, C,X)=(I-X)-*F(A, C-B, a~
r),

...... (3)

F(A, B, C, x) = (1 -^-*- F(C-A, G - B, C, ). ...(4)

The differential equation may be used to find the expansion
of F in powers of y t where x = a -h y. If this substitution be
made in (2) and if we put

in the resulting equation, the condition that the coefficient

of y
n shall vanish identically is

(a
2 -

a) (M + 2) an+2 + {n (2a
-

1) + a(4 + fi + 1)
-

0} an+1

* See A. R. Forsyth, Differential Equations, Chap, vi; Riemann-Weber, Die

part. Diff.-Gleich. der Math. Phys. vol. 2, pp. 18, 19.
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This recurrence formula can be used to find all the coefficients

when two of them are known. By direct calculation do, fti can

be obtained from

to the required degree of accuracy, and thence a2 , aa, ... are

successively obtained. It may be necessary to carry a<>, i to

two or three additional places of decimals in order to compen-
sate for the loss of accuracy which the use of the recurrence

formula may produce.

The following formulae are immediately proved :

IT ^
~d~c~'

~
C A+1 > n+1 > c+1 '

............... ^ '

where the meaning of the notation is evident. By differentiating

these equations and substituting for the derivatives in the

differential equation, we can obtain various equations connecting
three series for A, A 4-1,^.4-2 with (7, B unchanged, or

<7, G -f 1, (7+2 with A, B unchanged or with A, B each increased

by 1, 2 with unchanged, etc.

2*16. Expansion of (1 ax)~
s

(1 /#)"* in positive and nega-

tive powers of x.

Let us adopt the notation

/V _ n(n + 1) ... (n + r--l) /n\'_ m
\r)

~
rl

'

\OJ
""

'
......

( }

the accent being used to avoid confusion with the usual notation

Expand each of the factors by the binomial theorem. The

product is

KO'-'H'G'M' '' j-- 1
'
2
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The coefficient of xn
,
n positive, in this product is obtained by

putting { = n+j in the first factor and summing for all values

of
j. The coefficient is

n +jj \JJ

(& -4- n.\ (& 4- n. -L 1 \ /// _i_ 1 \

4 -
'

1.2

The coefficient of xrn is evidently obtained by interchanging t, s.

The most important case is that for which s = t: the co-

efficients of positive and negative powers of x then become equal.
The part of the coefficient within the parentheses may be

expressed by the hypergeometric series

F(t,8 + n, 14- n, a2
),

a form which permits of the immediate application of the trans-

formations of 2' 15.

When t s, we obtain in this way the following forms for the

coefficient of xn or arn
, namely,

where

(3)

(l-)(2-) s(s+l) a*

_ r s *

1+n'll-a2

+w.)' 1.2 (l

l-s l+n-s

n)(2+w)' 1.2
4

+-..|.

(5)
When n =0, the coefficient of/(a

2
)
is 1.
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If x = exp. 6 V 1, the coefficients become those of 2 cos nO

and of the constant term in the expansion of (1 2a cos 6 + aa
)~

5
.

(Cf. 4*2.)

2*17. Devices for the numerical calculation of the values of

functions defined by power series. The ratio of two consecutive

coefficients of the hypergeometric series and of many other series

which occur in celestial mechanics approaches the limit unity,

and when the variable is near unity, the calculation may be-

come tedious. The following device is often effective, especially

when the coefficients are alternately positive and negative.

The identity
If x i x \

2
)

a aidJ + Gtefl
2

... =
.,

--- ^oH-Aaor-~ hA.2 a -r' +-.-K
1 4- IK

(
1 -f x \\-\-x: )

where
......

Aa = a -ai, A2</o=o -"i H- ^2, A3a = "o 3(/i+ 3a2 s>

...... (2)

is easily proved by expansion of the right-hand member in powers
of x. If OQ, i, . . . are positive, the coefficients Aa

,
Aa

ao, . . . may
form a rapidly decreasing series, and the rate of convergence is

increased by the fact that #/(! -f x) < x, when x is positive. For

efficient use the transformation should only be started at a term

in the given series where the ratio to the succeeding term is less

than 2.

A more general form is given by the identity,

...... (3)
where Aa

,
A2

<7
,

... are defined as before and

/=l-M? + &a
a - ...................... (4)

For efficient use, the series/ should be a known function such

that the coefficients of Aao, A2
ao> form a decreasing series

This is the case, for example, when

where X is positive and less than unity. The transformation

2'15 (3) from 2*15 (1) may be effected by means of this result.
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The ratio of the (j+ 2)th to the (y+ l)th term of the series 2'16 (4) may
be written

Suppose that we have calculated a few terms of this series, say j
1

of them.

The remainder of the series may be written

K(
2

Yfl !l + -(~^l -J-___^4-1 (5)

Ml-"V L I

l+
j(j+l)lj+ n+ ll-S +

-J
.......... ( >

The formula (3) is applicable if we put

In the applications $ has the values
, 3, ..., so that if j be suitably

chosen
,
A

, ... form a rapidly decreasing series. The function / denned

by (4) with these values of the b%
is the hypergeometric series

which satisfies the differential equation,

rf*F dF
(afi+ x)^ +{(2+7) .r+j+ n+ l} ^ r +^-0.......... (6)

A first integral of this equation is

since F=sl when a 0. The final integral is given by

Since
/*, y are positive integers, the right-hand member can be integrated.

When the value of F for any particular value of x has been found from

this equation, the first and second derivatives of F can be obtained

from (7), (6) and the higher derivatives by successively differentiating (6).

^l, n= we have xF

2*18. A device for approximating to the derivative of a series.

Suppose that the sum of the series

/S
f

a +a 1
#+ a2 a?

2+ ........................... (1)

is known for a particular value x of x, and that we also know the

coefficients up to a_i. We then know the value of

2V+ ................ (2)
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We have

dS dS

If we can neglect the last sum in (3) when #= .r
,
or approximate to it,

we obtain a corresponding approximation to (dSfdx\. We may get a use-

ful approximation because it often happens that an approximate law of

relation between the coefficients an> an + i ,
... is known and the divisor n will

assist in diminishing the error of the approximation.
Another result of these conditions is an approximation to an from (2)

better than would be obtained by the approximate law of relation just

mentioned.

2*19. Note on the forms of products of Fourier series with

different arguments.

If we express two Fourier series in the forms

So, . 2 cosj0, 2aV . 2 cosj'0', j, / = 0, 1, 2, . . .
,

where it is understood that forj = 0,/= 0, the factor 2 is omitted,

then their product may be expressed in the form

22aX,'. 2 cos (J0 +/0'),

where it is understood that the portions for j
= 0, /= 0, j j'

=

are
2 a'/ . 2 cos/0', 2oj . 2 cosj#, a o',

that is, no attention is to be paid to the double sign when

either j or f is zero, and the factor 2 is omitted only when

j=j'=o-
With the same values

2a,-2 sinj0 . 2^2 cosj'0'
= 22aX/2 sin (Je j'6'\

2aj2 sinj0 . 2a y2 sin/0'
= T 22aX/2 cos (j0 /0').

This method of expression avoids all doubts as to the presence

of factors of 2, which may occur if we use the form 2o; cosjO

with a factor J when j = 0. Moreover, it is the natural form

which arises when we use exponential methods of expansion.



CHAPTER III

ELLIPTIC MOTION

3*1. The relative motion of two bodies under the Newtonian

law of gravitation is a simple dynamical problem which admits

a general solution in terms of well-known algebraic and trigo-

nometric functions. Analytically and geometrically the range of

the solution is divided into two portions the elliptic and the

hyperbolic the transition from one to the other giving a special

case, the parabolic. It is shown in the elementary text-books

that one method of distinction is given by the relations

F2
-2/4/r<0, =0, >0,

where V is the relative velocity and r the distance apart at any

time; /JL
is the sum of the masses reckoned in astronomical units.

The first case is that of motion in a closed conic section, an

ellipse, in which the eccentricity is less than unity ;
in the second

case the conic is a parabola, with the eccentricity equal to unity,

and in the third case it is a hyperbola with the eccentricity

greater than unity. When the eccentricity is zero, we have

circular motion, the limiting case at one end of the range; when
it is infinite, the motion is rectilinear, the limiting case at the

other end of the range.

In this volume we shall be concerned only with the first case,

and the range will be further limited to values of the eccentricity

which are small enough for the series, which are developed in

powers of this quantity, to be used for numerical calculation

during a certain interval of time without too much labour. Ex-

pansions in powers of the eccentricity, either implicit or actual,

are necessary with the methods developed below, and the greater

part of this chapter consists of the formation of those expansions
which will be needed in the problem of three bodies.

3*2. Solution of the Equations for Elliptic Motion. If we put#0 in 1*23 (3), (4) and confine the motion to the plane of
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reference (see 3*6), these equations take the form__
dt* \dt

~
r*' dt

These equations possess the integrals,

,dv

where a, h are arbitrary constants.

The transformation in 1*27 shows that the elimination of t

between (1), (3), (4) gives, if u = I/?*,

d?u /j, A fdu\
2

2 /X/, 1\
j~2 + u - T2

=
> I T- )

+ '* = /2 (
2w - -

)
o?w

2
/i
2

Vat;/ /r\ a/
...... (5), (6)

The solution of the linear equation (5) is

u= T*{ 1 + ecos(t;-cr)}, ............... (7)

where 0, tn- are arbitrary constants and we suppose that ^ e < 1

This must satisfy (6). The substitution of (7) in (6) gives

A2 = /m(l-e2
)...................... (8)

1 1 -he cos (v cr)Hence - = -----
7T-- 2T .................. (y )

? a(l e
2
)

so that the maximum and minimum of r are a (I e). Equation

(9) is that of an ellipse referred to a focus as origin, the nearer

apse of the ellipse having polar coordinates a (I e), or.

Let us now introduce the variable X and a constant n defined

by rdX = ndt, /i
= n*a3.......... (10), (11)

The investigation of 1'29 with jR=* shows that the equations

of motion with X as independent variable are

d2r dv h aVr~e2_
a --,

...... (12), (13)
since (8), (11) show that

A = V/xtt (1
- e

2
}
= na* Vl~ e

2.............(14)
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Since the maximum and minimum of r are a (1 e), the solution

of (12) is

r = a(l-ecosZ), .................. (15)

where we define X as having the value when r a (1 e), that

is, when v= -&.

Thence, if e be an arbitrary constant, the solution of (10) gives

y = nt + -<& = X -esinX.............(16)

Finally we obtain, from (13),

The integral can be put into any one of the three forms,

, . ,
Vl (Ps'mX , cosX e

fsm-1
-,

- - v cos"1 --------
-.,J

\ e cosA l e cosA

We therefore obtain, with the help of (15),

rcos/= a (cos X e), r sin/= a Vl e
2 sin A,

...... (18), (19)

With the definitions (16), (17) of
</, /, the following results

are easily deduced:

df a2 V L e2 dr
__

ae sin/' dX _ a

fig** r*~
'

dg
~
v'T^?

'

W/~~r'
...... (21), (22), (23)

The constants 2a, e are the major axis and eccentricity of the

ellipse ;
w is the longitude of the nearer apse from the initial

line, and e, 'the epoch,' is the longitude of the body when it is

passing through the nearer apse, so that it defines the origin of

the time. The period of revolution is 2?r/n; n is called the mean

motion. The angles /, X, g are known as the true, eccentric and

mean anomalies, respectively, and nt + e as the mean longitude,

usually denoted in this volume by w.
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3 3. Frequent use will be made of <, ^, ^, tj defined by

<jE>

= exp./V 1, =*
exp. ^

e(l+r,*)-2i,, .....................(4)
so that

2 cos t/= < + !/</>*,
2 V-~7 sin t/ ^ -

!/<*, etc.

......(5)

By writing (4) in the form 77
= $e + \eif, and applying

Lagrange's theorem, (2 '2), we can deduce the expansion

JHJ

+ ....

(6)

The definitions (1), (2), (4) applied to (18), (19) of the previous
section give

...... (7), (8)

and, applied to 3'2 (9),

(10)

3'4. An important property of these relations when they are

expressed as Fourier series is that characteristic of most of the

expansions in Chap, n, namely, that the coefficient of cosjO or

sinjO is of the form

whether 6 be /, X or g. It appeared in the last chapter that if

the functions with which we started originally possessed this

property, it was retained under the operations to which they
were subjected.

B&SPT 5
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It is evident from equations (15), (16), (20) of 3*2 that r a,

g - X,f X, when expressed in terms of X, have this property.

The operations to which they are subjected are those dealt with

in the previous chapter, partly expansions in powers and partly

changes of variable, and consequently the property is retained.

It is apparently not present in such functions as r?cosqfy

r^sin qf, expressed in terms of g, but it reappears in rPcosq(f-g),
rp smq(fg), and the latter can always replace the former in

the applications.

Series having this property will be named d'Alembert series.

Operations with such series have been treated in Chap. II.

The relations 3*3 (9) show that any function of < in terms

of x> ?; can be at once transformed into the same function of %
in terms of <, 77.

3*5. The facts that l/r in terms of / and r in terms of X satisfy linear

differential equations of the form

furnish the reason for transforming the equations of motion to the forms

given in 1*27-1 '29. It will be noticed from 3'3 (7) that r cos/, rsin/' in

terms of X and rj cos /, r\ sin ^/ in terms of JA', have the same property,

but no use appears to have been found for this latter pair of expressions.

3*6. Agreement of results with Kepler's Laws.

That the motion takes place in a fixed plane is perhaps obvious. It can,

however, be proved at once from the equations of 1 *23. For if R =
0, F

depends only on r so that r'
2
dv/dt, r, 6 are constant, and v v.

Kepler's three laws and Newton's deductions from them can be im-

mediately illustrated from the equations of 3*2.

Law II, which states that equal areas are described by the radii of the

planets about the sun in equal times, i.e., that the rate of description of

areas is constant, moans that the right-hand member of 3*2 (2) is zero
; it

follows that the resultant force is along the radius.

Law I states that the planets move in ellipses with the sun in one focus.

If we substitute 3-2 (9), (4) in 1-23 (3), the radial force, dF/dr, will be seen

to vary inversely as the square of the distance.

Law III, which states that the squares of the periodic times are pro-

portional to the cubes of the major axes, is not quite exact. The equations

/x
= n2a3

, r= 2T/>i, give
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where p is the sum of the masses of the sun and planet. The largest

planet, Jupiter, has a mass less than 1/1000 that of the sun, so that the

difference between Kepler's third law and the exact statement is small.

With the observational material used by Kepler, it is not perceptible.

The laws are, in fact, only approximate descriptions of the actual

motions : they cease to hold when the mutual attractions of the planets

are included. The third law, in particular, becomes a mere definition. We
obtain the mean angular velocity of the planet directly from observation

and define a certain distance a by means of the equation fj.
= n2a3

. The

object of this definition is the convenience of calculating by means of

equations in which the terms are obvious ratios of times and lengths. For

example, the equation,

acceleration= mass x [length]
~ 2

,

which is the initial form of a gravitational equation of motion, is trans-

formed to
acceleration= [length]

3
[time]

~ J
[length]

~ 2
,

which is obviously correct in its dimensions.

The constant a so defined is usually called the 'mean distance.' This

use of the word 'mean' in the sense of 'average' is incorrect, even when
the motion is elliptic. Equation 3 '2 (15) shows that it is the average distance

if the eccentric anomaly be taken as the independent variable, but it is

easily seen from equations 3*2 (9), 3*10 (5) that it is not so when either the

true longitude or the time is so used; in the latter case, however, 3-11 (2)

shows that I/a is the mean value of I jr.

In the actual integration of the equations, it will be seen that the first

arbitrary constant to appear is that on which the distance depends: the

mean angular velocity is seen later to be a function of this and of other

arbitrary constants which have arisen in the integrations. But since, in

general, we can deduce the mean angular velocity from observation with

much higher relative accuracy than is possible for the mean distance, it is

convenient as a final step to adopt it as an arbitrary constant and to

express the constant of distance in terms of it and of the other arbitrary
constants. When this is done, a is nothing but an abbreviation for

</*/')*

Confusion is often caused by differences in the meanings attached to

the letter a. Sometimes it means (ji/n
2
)&; at other times it signifies a

variable or a constant which has this value as a first approximation. The
confusion exists throughout the literature, and the only remedy is the dis-

covery of its exact signification wherever it is used.

Similar confusion is often caused by the use of terms in the problem of

three bodies, which have a definite meaning in the problem of two bodies.

Thus the Eccentricity' in the former case may be the coefficient of a

5-2
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certain periodic term in the expression for one of the coordinates; the
' mean anomaly' and 'true anomaly

7

are used for certain angles ; and so on.

A qualifying adjective, like *

osculating,' may again alter the meanings.
There is usually not much trouble when qualitative descriptions are alone

involved ;
in quantitative work, accuracy of definition is essential.

3*7. Fourier developments in terms of X.

The logarithm of 3*3 (9) gives, on account of the definitions

of
<t>> X>

fV- 1 = X V=l + log (1
-

rj/x)
-

log (1
- vx )

= AV- 1 +17 (*- 1/X) + iV(X
a -

1/x
2
) + ....

Hence, by the definition of ^,

j=l,2, .......... (1)
J

Again, from 3*3 (7), we have

(a
\ p / 7i\^^Q

iT?) xa (i-w)"-a

(i-^)
- .-(2)

The binomial theorem gives, for the expansions of the two

binomial factors, with the usual notation for the binomial

coefficients,

The coefficient of ^, with j = 0, 1, 2, ..., in the product is

obtained by putting j + k for k in the first sum and summing
the product for all the values of A; for that of

^~~',
we proceed

similarly with the second factor. Thus the product is

provided the term for j
= 0, which is the same in both portions,

is not repeated. If we write

with a similar change in the corresponding binomial coefficient

of the second term, and define S^ Sj by
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-
q. -j

- 1 ) ( p + ?)" " ~ " "".

( j Vixj + 27"

" ~
'

"

""1.2

...... (3)
the required expansion can be put into the form

where J = 0, 1, 2, ...
;
the term for^'

= being

By putting for ^ its value cos qf+ ^l sin g/ in terms of/*,

and similarly for the powers of ^ in terms of X, and by equating
the real and imaginary parts, we obtain the expansions of

rp cos qf, rp sin qf

as Fourier series with argument X.

The formulae for Sj, Sj are hypergeometric series and are

therefore subject to the transformation 2'15 (3). We have,

in fact,

Hence, if we put Sf
=

(1
-

T/
2
)?^* T^ so that

r, = i+ _ .

.

^_ i

-

-j-^2

4-
(A

(j + !)(/+ 2)

(-5)
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Tf s= value of Tt when the sign of q is changed, and remember

that

,.. .(6)

where j
= 0, 1, 2, ...

,
the terms for j

= requiring the factor J.

In the applications, p takes the values 0, 1, 2, ...
,
and

</

the values 0, 1, 2, ... . When p^q, the series has a finite

number of terms. The case p = q is more easily deduced directly

from 3-3 (7). It gives

from which ?*^cos pcf),
rp smp<f) are at once obtained.

The particular case p = 0, q = 1, gives

sin/'
=

For the case q
=

0, we have T/ = T
i
and the development

contains only cosines of multiples of X. We thus obtain from (6)

Tt .1v*jX (8)

the factor 2 being omitted when j
= 0, and q having the value

zero in T$.

The following are important particular cases with <?= 0. When

p = 1, TJ = 1 and the binomial coefficient is ( iy. Hence

-= ^JL_ (1 + 27; cos Z + 277* cos 2Z+ ...). ...(9)
r v 1 - &

For p = 2, we have
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Hence

and = (l-*)-*Srf(l+j</l-*).2coBJX, ...(10)

the constant term being (1 e
2
)

~
3

.

3'8. Fourier developments in terms off.

The formula 3*3 (10) gives

A comparison of the right-hand member with 3' 7 (2) when

q = 0, shows that the development given for rp in terms of X
can be used directly by changing the sign of ij, and multiplying

by (1 -e)-*a-
a* We obtain

where Tj has the value 3*7 (5) with q = 0, and the factor 2 is

omitted when j = 0.

For p = 2, we obtain, as in 3*7,

in which j= 1, 2,

The series for g in terms of f is found from this last result,

by combining it with 3*2 (21) which may be written

ty = J**-^-
df a**Jl-e2

'

An integration with the arbitrary constant so determined that

/, g vanish together, gives

It should be noticed that the coefficient of sin/ in this series is
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The functions of X in terms of/ are obtained from those of/
in terms of X by interchanging/, X and changing the sign of ?;,

according to a remark in 3'4. They are, from 37(1),

X=f+2zl(-r,y Sinjf, .7
= 1,2,..., ......(4)

and from 37 (4), with p = 0,

(5)

where $j, $/ have the values 3*7 (3) with p = 0, and the value for

j
=

requires the factor . From these we obtain cos qX, sin qX.
In particular, from 37 (7),

FOURIER DEVELOPMENTS IN TERMS OF THE
MEAN ANOMALY

3*9, These developments are deduced from those in terms

of X by means of the implicit relation
cj

X e sin X. The

solution of this equation is avoided by making use of the

theorem of 2*5. Applied to the present case, this theorem states

that the coefficient of cosjg in the expansion of f(X) as a

Fourier series with argument y, is the same as the constant

term in the Fourier expansion of

__ 9 d
............ (1)

and that the constant term in the expansion is the same as that of

(l-ecosg)f(g)...................... (2)

For the coefficient of sin^, replace the first sin in (1) by
'

cos/

The form of the first factor of (1) shows that developments

by means of Bessel functions (2*14) will be needed. In these

developments the parameter ^e is convenient, while in those of

functions of/ in terms of X, the parameter r) was used. Hence

in functions of/in terms of # both parameters may appear.
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310. Expansions for coskX, s'mkX, A", r, rcosf, rsin/, in

terms of g.

When/(A) = cosyLY, 3*9(1) can be written

k k
7 cos {(j

-
k)g -je sin g} + . cos {(-j

- k)g +je sin g}.

According to 314 (6), the constant term in the Fourier expansion

of this expression is

k k
.J^.k (-je\ ............... (1)

forj=l, 2,.... When j = 0, equation 3'9 (2) shows that it is

zero if k ^ 1 and \ e if k = 1.

A similar investigation gives the coefficient of sinjg in the

expansion of sin kX.

Hence, allowing j to receive both positive and negative values,

we have, for kl,
cos

, v ^ k , . cos .
, i , o /.>\

. kX = 2 -J~-k (ie) . 9(7, 9 = -f-l, -f-2, ....... (2)sm J sm^ J ~

When &=1, it is convenient to make use of the formulae

214 (3), although those just written are available if we add

\e to the expansion for coskX. We obtain

cos X = -
\e + 2S r

2
-'- J

? (je) cos jq,

(*
sin X 2S -

Jj (je) sinjg,

The expansion for sin A", inserted in the relation

X = g 4- e sin X,

gives X = # -f 22 -. J
t (je) sinjg, j = l, 2, ....... (4)

The expansions for r, rcosf, r sin'/ are obtained from (3) by
the use of the relations

r a(l ecos X), rcosf=acos X ae,

r sin/= a (1
-

e*fi sin A.



3*11. Expansions for a/r, r2/a
2

,
a2

/r
2
,/, in terms of g.

For functions which contain a power of r as a factor, it is some-

times better to replace 3*0 (1) by*

2cos(jg-je*mg)f(ff)(I-ecosff).......... (1)

That the two expressions have the same constant term in the

Fourier expansions all that we need is evident since we can

express their difference as the derivative of a Fourier series.

The expansion of a/r can be obtained from (1) with

since r= a (1 ecos X), with the aid of 2*14 (6). It can also be

found from 3'10 (4) with the aid of the relation ajr dX/dg.
The result is

(2)

The fact that the constant term of a/r, expressed in terms of

is unity is an important property.

For the expansion of r2/a
2
, we have

2 jzl
6
j._i(je} +? Jj_2 (je)l cos

.?>,
\ / ./

'

by 3-10 (2), 310 (3). The use of 214 (3) enables us to write this

^ =
l+f^-2JiJ,-(>)cosj7,

j-1,2, ....... (3)

* The functional f(g) has, of course, no relation to the true anomaly/.
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The relation between the expansions (2), (3) is given by

dt2 \r aj

with
/L6
= ?^

2a3
. This equation is easily deduced from 3*2 (1) and

3-2 (3).

For the expansion of a2
/r

2
,
we make use of 3*11 (1) with

f(g)**(l ecos<7)~
2

,
so that the coefficient of cosjg is the

constant term in the Fourier expansion of

2 cos (jg je sin g) . (I e cos g)~
l

(4)

The expansion of 1/(1 6 cos X) in terms of X, e is given by
3*7 (9). Hence that of the second factor in terms of g, 77, is

(1 e
2
)"^ (\ + 22?7 cos ig), i = 1, 2, . . .

,

or (1 e
2
)"^ 2^1*1 cos

igr,
^ = 0, 1,2,

With the use of this result, (4) may be written

2(1- e
2
)~i 2 17!

*' cos {(i +j)g-je sin
</},

and, by 2*14 (6), the constant term in the Fourier expansion of

this function is

2 (1
- e

2
)-* 2 171*1 Ji+j (je), i = 0, 1, 2, . . . .

This is the coefficient of cosjg in the expansion of aa/r
2

.

The application of 3*9 (2) shows that the constant term in the

expansion of ti
2
/r

2
is (1

- e
2
)"*, and 2'14 (1) shows that J"t-(0)

except for i= when it is unity. The change of i into i+j in

the previous expression for the coefficient of cosjg therefore

gives

,,2

Jr
v

>
A

>

the factor 2 being omitted for the value j
= 0.

The expansion for f is deduced by inserting this result in

3'2 (21), namely, in

df_a*(l-e^
dg~ r*

'
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arid integrating with the condition that /, g are to vanish

together.

,The result is

sin;//, ............ (6)

where i = 0, 1, 2, ...; j = l, 2, ....

While this formula is quite general, it is not very convenient

for the actual calculation of any coefficient in powers of e or
-77,

partly because either of these parameters must be expressed in

terms of the other, and partly because there are j + 1 terms of

the same order in the coefficient of sin jg. The term of lowest

order in any coefficient is, however, easily found, since for this

term we can put

Hence the principal term in the coefficient of sin^'j is

The portions depending on higher powers of e in this coefficient

will not be developed in detail. If we adopt the definition

the coefficient of (e/2)
?+2 will be found to be

5*
(9)

and that of (*/2)J+*

i{l. 4.^ + 2. 5j2 + ... + 0'~
J _

j .7-
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3*12. Expansion of any power of r by recurrence.

The expansions of other special functions of r, / may be obtained from

the equations of motion. Thus, ifwe put x r cos/, y= r sin/, the equations

satisfied by x, y are
d*x \*.x d^y fjti/

'd?
" "~

73
~

'

rf?
= "

yJ
'

As we have already found the expansions of .r, _?/,
these equations give the

expansions of cos//r
2
, sin//?-

2
.

Again the equation

gives the expansion of 1/r* when those of
?-, I//-

2 are known.

In general, the equation

which is deducible from (1), (3), (4) of 3 -2, can be used to obtain, by recur-

rence, the series for r?) for all values of p, when those for certain values

have been obtained.

3'13. Expansions of rp cos qf, rp sin qf.

These expansions for values of p, q other than those just

considered can be dealt with by first expanding in multiples of

X by 3*7 (6), and then using 3*10 (2) to transform to multiples
of g. The series suffer from the defect of that forf mentioned in

3 f

ll, namely, that there are^' -f 1 terms of the same order in the

coefficients of cosjg, sin
j'gr.

If, however, we do not need such expansions beyond e
7

,
the

extensive tables given by Cayley
* for various values of p, q and

for other functions are available and will serve for most purposes.

In cases where this degree of accuracy is not sufficient, numerical

values are usually used and then the method of numerical

harmonic analysis (3*17) is available.

A combination of the results obtained from the literal and

numerical developments by the method indicated at the end of

2*18 will give an approximation to the terms of order ^in certain

of the coefficients. The method developed in that article also

increases the accuracy of derivatives with respect to e, when they
are needed.

* Mem. E.A.S. vol. 29, pp. 191-306; Coll. Paper*, vol. 3.
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3*14. The constant term in the expansion ofr? cos qfin terms ofg.

By means of the relation 3*2 (9), this function is immediately

expressed as a function of/. According to the theorem of 2'5,

the constant term, when it is expressed as a function of g, is the

same as the constant term of

expressed as a function of/. Hence, by 3'2 (21), we need the

constant term of
,

, ,

r^+a cos qf -r a2
(1
- e

2
)*,

expressed as a function of/.

The expansion of r^+a as a function of/is obtained from 3'8 (1)

by putting -^~2 for^. We thus need the constant term of

} . 2V cosj/cos g/

where in Tj we put -ju-2 forp, g
= 0. There is only one con-

stant term in this and it is evidently given by j = #, that is, it is

(1)
where

r-i + rJ^ -P^
''~ +

1
'

q+l
(_p_2)(- ? _

1.2

!.(?+!)

It is evident that 3T
? is a finite series for all negative integral

values of p ; it becomes unity for p = 1, 2.

315. The expansion of r? in terms of g.

The constant term in this expansion is obtained by putting

2 = in 3-14(1). The coefficient of (e/2)i cosjg is found to be,

with the help of the notation 3 -ll (8),
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and that of (e/2)>
+2

cosjg,

The series in each brace stops at the suffix j.

3*16. Literal developments to the seventh order.

The following detailed developments may be found useful for

reference. The notation

e = e,

is used.

g =y_ 4e sin/ + (3 C
2 + 2 e

* + 3e6) sin 2/~ f c
3

4- 4c
5
4- 8e

7 sin 3/

4-
(I

e
4
4- 6A sin 4/- ^

2
c
5
4- 8e7

)
sin 5/

4- 1 e
6 sin 6/-

1
_
6

c
7 sin 7/ . ..(1)o *

7

+
^4e

- 2e
+^

e
5 +~

c')
sin g+

^5e

2 -
?^

2
e
4 + -

g
-

c
8

)
sin 2#

/26 3
43 95 ,\

. ^ /103 4 902
6
\ .

IT 2" T j
sm ff

\ 6" T5" j
S1"

/;

/1097 B 5957 _\ . . 1223 6
.

+\W C ~
"36" j

S1" ^ 15"
S

Sin7,.......(2)

- = 1 + 2c
2 -

(
2e - oc3 + ? c

5 -
^ 9 e

7

)
cos gd \ \j t /

- ~ e
4 + 4e6

)
cos 2r;

-
(,3e

3 -^ e
5

4-

'^

6

J e
7

)
cos 87

/16 4 128 6
\ . /125

B 4375
7
\ K~

\T ~5" j
C S 9 ""

\ 12
""

"72" j
C S ^

108 e
. 16807 7 . /0 ,- c

6
cos6^r- --e7

cos75r.......(3)
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+
(4e

2 - ~6
c
4 + ^

c
6

)
cos ty +

(9e

3 - ^ c
5 +^ e

7

)
cos

/64 4
1024

6
\ . /625 5 15025

+U c TT c cos + "
c ~~

/n
(4)

It is evident that the expressions for/, r are d'Alembert series

with respect to the association of powers of e with multiples of

g or tsr (3;4).

317. Numerical developments by harmonic analysis.

When the numerical value of e is given, the most rapid and

accurate method for computing the functions is that of numerical

harmonic analysis (App. A). This method requires the calculation

of the functions for a few special values of the independent
variable. The calculation presents no difficulties when either

the eccentric or the true anomaly is taken as the independent

variable; the formulae in 3*2 are available for the purpose.

When the independent variable is g, the first step is the

solution of the equation g = X e sin X, for each special value

of
(/.

For a low degree of accuracy, tables for the purpose are

available*: methods for the correction of these values are given.

For high accuracy, the method given below will be found con-

venient.

When the special values ofX have been obtained, those of r,

/ and thence of any functions of r, / are found from

r = a(l -ecos Z),

with any one of the formulae 3'2 (18), (19), (20).

The considerable increase in accuracy obtained with the use of numerical

harmonic analysis is due to the fact that in most of the series with which

we have to deal, the rate of convergence along the coefficients Aj, in the

series SAjCi'cosjg or SJ/o'sin^, is more rapid than that of A
3 expressed

*
See, for example, those of Boquet, Obs. d'Abbadia, Hendaye, and of J. Bau-

schinger, Tafeln zur I'heor. Astr. Leipzig.
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as a series in powers of a2, especially for large values of j, unless a is very
small. A detailed examination of the errors produced in any coefficient by
the neglect of the higher terms with any given set of special values of g
will show how this result is obtained*.

Numerical Solution of Kepler's equation. When high accuracy is required,

it may be obtained rapidly by a formula obtained as follows.

Put X~g-\-x, so that Kepler's equation may be written

x-e sin (g + x) (1)
Hence

sin x= x i^+iJotf
5 - --

= esin(^+^)~Jtf
3 sm3

(t(7 + ^) + Ti^e
5 sm6

(<7-f.r)- (2)

Calculate (7, # from

C cos .'0 1 e cos
</,

sin # = e sin
</ (3)

These give

C 2=l 4- e2 2<? cos #, C sin
(. +gr)

= sin #, <?sin (# +#) = 8in # .

(4)
With the aid of (3), equation (2) may be written

(7sin(o;~^ )=-ie3 sm3
((7-f.t;) + -

IJTie
5 sm6

(^+ a;)- (5)

If e3 be neglected, we have #=#
,
the error being of order e3/6. If we

put X XQ in the right-hand member of (5), the maximum error of its first

term is found to be of order e6/46. Hence the formula

(7 sin (a; # )
= -^sin3

(#+ #o) (6)

gives x with an error of order e6/46 or e5/120.

By the use of (4) alternative forms for calculation are seen to be

1 e3

sin (x
- ff )

= -
Q(J

sin3 #o= -
gg*

sin3#

these giving the same results as (6). Should still higher accuracy be needed,

it can be obtained by substituting the value of x thus obtained in the right-

hand member of (5), but this will very rarely be necessary. For e<'14,
the error of X found from (6) is less than 0"*1.

* An example will be found in Mon. Not. R.A.S. vol. 88, p. 631.

B&SPT



CHAPTER IV

THE DEVELOPMENT OF THE
DISTURBING FUNCTION

4*1. In this chapter are given methods for expressing the

disturbing function as a sum of periodic terms when for the

coordinates are substituted their expressions in terms of the

elliptic elements given in Chap. in.

The disturbing function for planetary action obtained in 1*10 is

j _ m' m'r cos $ .-.

where r, r' are the distances of the two planets from the sun,

A is the distance between them, S is the angle between the

radii r, r', and mf

is the mass of the disturbing planet. Hence

We have seen also in 1*10, that if the plane of motion of m' be

taken as the plane of reference,

cos S = cos (v 6) cos (v 6) + cos / sin (v 6) sin (v' (

cos2 ^I cos (v v') + sin2 J / cos (v + v' 20).

(3)

In this formula, / is the angle between the two orbital planes,

6 is the longitude of the node of the orbital plane of the dis-

turbed planet from a fixed line in the plane of reference, v' is

the longitude of the disturbing planet from the same fixed line,

and v is that of the disturbed planet reckoned to the node and

then along its orbital plane to the body.

If cr', ty be the longitudes of the nearer apses reckoned in

the same manner as v'
9 v, respectively, and if/', /be the true

anomalies, we have

The substitution of (4), (3) and (2) in (1) gives R as a function

of r
y r', /', /', w, r', /, 6. The results of Chap. Ill show how

r, r'
9f9f may be expressed as functions of the true, eccentric
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or mean anomalies. There is thus no difficulty in expressing R
as a function of these angles; the problem is the expansion of

R into a sum of sines or cosines whose arguments are multiples
of them.

The changes necessary when the plane of reference is arbitrary

are given in 1*32.

4*2. Suppose that we put the eccentricities e, e' and the in-

clination 1 equal to zero. Then the true anomalies f, f, the

eccentric anomalies X, X 1

\ and the mean anomalies g, g' are

respectively equal and r, r' reduce to a, a'. The disturbing func-

tion becomes

with /S
Y = v v g 4- TV g' tsr'.

The first term can be expressed as a cosine Fourier series with

argument $; the second term is already in the required form,

Suppose a<a' and put a/a! = a. Then

R =^ (1
- 2 cos $ + a2

)"*
- ~ a cos

ft (/<

/= {l-Ja+t(2acu8S-a)+...},
Co

on expansion by the binomial theorem. The various powers of

cos$ can be replaced by cosines of multiples of S which will

then have coefficients expanded in powers of a2
; the general

form of the expansion is given in 2'16.

The practical difficulties in connection with this expansion
are due to the need for using values of a which are frequently
as large as '7 and to the fact that the coefficients may be needed

to five or more significant figures. If the literal series were used,

some dozens of terms in a coefficient would often be needed and

the work thus become extremely laborious: not infrequently

also, some eight or ten multiples of S are required. Thus one

problem is the construction of a set of devices for the rapid
calculation of these coefficients.

6-2
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The disappearance of the term a cos S from the expansion has important

consequences in satellite theory where a is very small. In the planetary

theory it simply has the effect of diminishing to some extent the terms

with argument S, so that those with arguments S, 2/S' have coefficients of

about the same order of magnitude in the coordinates.

4*3. When the eccentricities and inclination are not zero, the

only available methods for development depend on expansions,

implicit or explicit, in powers of these parameters, As far as

their magnitudes are concerned, the problem is less difficult

than with a, because they usually have values in the neigh-

bourhood of *1. In exceptional cases, one or two of them may
rise to '4 or '5: beyond this limit, the expansions are useless

for numerical calculation and, in general, the results will have

doubtful accuracy for values greater than *3.

A much more far-reaching effect is produced by the introduc-

tion of multiples of the anomalies, other than those of their

difference. When the disturbing function is expressed in terms

of the time, these multiples take the form jg j'g', where j, j'

are positive integers, and the coefficient of the term which has

this angle as argument contains the power |j f \

of the eccen-

tricities or inclination. The coefficient of t in the angle isjn j'ri >

and when an integration is performed this quantity will appear
as a divisor. The divisors with the upper sign will tend to

diminish the coefficient, but those with the lower sign may in-

crease it.

Consider the expression

Since n, n' are observed quantities, we can always find integers

which will render this expression as small as we wish, so that

integrals involve discontinuities which may require special treat-

ment. It has been pointed out, however, that a term with argu-
ment jg j'g

r
contains as a factor of its coefficient the power

\jj'\ of the eccentricities and inclination, so that for large

values of j, j' t the factor is very small. From the point of view

of the applications, the cases of interest are those in which j/f
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has such values as
, f , f, ..., and in which the expression (1)

is small.

Since the coordinates of the planet will contain the integrals

of such terms, the relative accuracy of the results will be

diminished unless the corresponding coefficients be taken to

more places of decimals. It is this requirement which con-

stitutes the central difficulty in the development of the disturb-

ing function: a few coefficients of a given order with respect to

the eccentricities and inclination are needed to a higher degree
of accuracy than the remainder of the terms of the same order.

The problem is practical rather than mathematical, namely, the

avoidance of extensive calculations of numerous terms, only a

few of which are ultimately retained.

4*4. In the majority of the older methods, the time is used

as the independent variable, requiring the disturbing function

to be expressed in terms of the mean anomalies. There are

several methods of approach. One is to express it first in terms

of the true anomalies by means of the equations,

1 -t- e cos/
'

1 -h e' cos/'
'

and, after expansion, to proceed to its expression in terms of the

mean anomalies by means of the relations developed in 3'10-3'16.

A second method is the expression of the coordinates in terms

of the eccentric anomalies, by means of the relations,

r = a(l ecos X),}

ro,o$f=a(cosX e), f
............... (2)

r sin/= a Vl e
2 sin X, )

with similar expressions for the disturbing planet, and then to

express the results in terms of the mean anomalies through the

use of the implicit relations

# = Z-esinZ, tf^X'-e'smX' ..........(3)

Still another method is to proceed straight to the mean

anomalies from ?, /, /, /' by means of the series developed in

the later sections of Chap. in.
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If an independent variable other than the time is used, t is

eliminated through the relations

vr, g'
= n't + e' -<GT', ............ (4)

so that the coordinates may be expressed in terms of the vari-

able chosen.

4*5. A further distinction between the methods arises accord-

ing as a literal development in powers of e, e', I is made, or as

numerical values are substituted for the elements of the ellipses

from the outset. When the time is the independent variable,

the expansion contains multiples of four angles: g, g' and the

differences of tzr, or', 0. If the numerical values be used for the

latter, as well as for e, e\ J, the disturbing function can be ex-

pressed in the form

~r Aj,f cos (jff +jy ) + ~ Bu sin (jg -f //),

where jy f receive positive and negative integral values, and the

A, B are numerical coefficients. The abbreviation of the work

is evidently very great. On the other hand, in a numerical

method it is difficult to find a few coefficients of high order to

more places of decimals without taking the whole, or the greater

part of the work to the same degree of accuracy. A further loss

with the numerical method is due to the fact that the derivatives

ofR with respect to the elements, or to some of them, are needed,

and these require the calculation of at least three functions when

numerical values are used from the outset.

A definite set of rules to fit all cases should be avoided if

much unnecessary calculation is not to be carried out. Each

case should be examined in some detail, especially the calcula-

tions needed for the long-period terms, that is, those for which

jnj'n' is small, and that plan adopted which would seem to give

the results needed most efficiently for the case in hand. Famili-

arity with one method is to some extent time-saving but the

gain does not usually balance the loss when a choice of methods

is available and advantage is taken of the choice.
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4'6. General methods for expansion in powers of the eccen-

tricities.

The methods adopted here involve the use of the theorem,

=*, ............ (1)

proved in 2*7, together with a variation of this theorem found

by putting __
p = exp. E V- 1, x = exp. ty>

. ^ d Id n d
so that x = _=

, p
u = exp. h,

,

dx \f-ld^
^ r

cfyr

and

F(exp. E*J- l.exp.^V-l) = exp. #-7-7 -f\exp. ^r V-l).

......(2)

The two formulae take care of all developments along powers
of the eccentricities, the former, in general, for linear coordinates,

and the latter for angular coordinates.

Put

r = a . function of e, r</
= a' . function of e', r /r

' = a,

where the functions of e, e' are at our disposal but reduce to

unity when e = 0, e' = 0, and let

r = r p, r' = r y, ..................... (3)

so that p, p' also become unity when e, e' vanish. Then since R
is a homogeneous function of r, r' of degree 1, and since we
assume that a < 1, we may write it

by a double application of (1). The eccentricities, so far as they
occur through r, r', are contained explicitly in the factors out-

side the functional sign only; whether they are present in a or

not is immaterial to the developments of this chapter.

Again, regarding R as a function ofy, /', and putting

............... (5)
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where E, E' vanish with e, e
r and -^, ^ are independent of e, e',

and remembering that/*,/' occur only under the signs sine and

cosine, we have, by (2),

^l) = F(ex]). E V^l . Gxp. ^ V^T)

Then

and for two variables,

(^f). ...(6)
<ty

' *

Again the eccentricities are concentrated in the factors outside

the functional sign.

Owing to the fact that p is of the form 1 + pi, where | pi |

< 1,

the two forms of expansion pointed out in 2*7 are available. The

binomial form gives

1) + ..., ...(7)r v-1- ri/ *
i pi-*-'

!

21

and the exponential form,

where

The latter form is valuable chiefly when the numerical value of

e is used, since the coefficients in the functions of p are then

numerical, and numerical harmonic analysis is efficient for the

expansion of the powers of log p. Similar remarks apply to the

expansion of p'"^"
1 which should be made in the form

(9)

The harmonic analysis is made with the functions

l/p', logp'/p',...
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4'7. There appears to be no escape from the fact that the

development of the disturbing function requires a five-fold series,

Developments along powers of e require in reality a double series

because r,/ require different methods; we may make various

combinations of them but the duplicity remains. A similar

statement is true of r',/'. The development along powers of the

inclination is also double but has been made essentially single

by the device of including the factor cos2J7 in the functions of a

(cf. 4*13(3); also the last paragraph of 4*31). And finally we

have the development along powers of a. Out of this six-fold

development, one-fold of the development can be avoided by the

proper use of the fact that R is a homogeneous function of r, /.

With the methods given in this chapter, the development takes

the form of series along powers of the inclination and multiples

of the difference of the anomalies, and along powers of the three

operators D, B y B', the possibility of such expansions being due

to the fact that any given power of these three operators has

as a factor of its coefficient the same power of the eccentricities.

4*8. Expansion of I/A along powers of e, e' and multiples of
'.

This requires the substitution for r, r' of the expressions,

1+ccos/' l + e'cos/'

As in 3-3, put = exp./V^l, e(l +<rj
2
)
=

2<rj, and let

(I-.?
2
)
2 1

--

-fr

with similar expressions for r', ?</, //.

Thence, according to 4*6 (4),

- -

where Ai
2 = 1 -I-

2 2a cos >, =-^, u-=a~. ...(4)
r </a

The expansions of p
D

, p
f ~D"1 into Fourier series with arguments

f,f and coefficients depending on positive integral powers of JD
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are given by the formulae of 2*1 G. It will be noticed that p
D is

equivalent to the function expanded in 2'16 if we put ?;, D, D, <f>

for a, s, t, x, respectively. Hence

...(5)

with
;
= 0, 1, 2, . .., the factor 2 being omitted when^ =

Similarly,

In forming the product of these two series, the rules noted in

2*19 are to be followed. This product, inserted in (3), gives

where F
t
F' denote the hypergeometric series in (5), (6) respec-

tively.

This is the required expansion. The portions of the coefficient

which depend on D have to be expanded in positive powers of D
and these are operators acting on 1/Ai which contains a only in

the explicit form shown in (4). In these expansions it is important
to notice that any power of D is always accompanied by at least

the same power of 77, 77', so that the number of powers of D
required is the same as the order with respect to the eccentricities

to which the expansion is to be developed.

4*9. It is sometimes more convenient to use 2*16 (5) or 2*16 (4)

for the developments. The necessary changes are easily seen. If

we use the former, the formula 4'8 (7) will still serve if we put

a
,

a' r /1X"

-D-2,j + l, if), ...... (2)

and multiply the result by (1 ?;

2
)/( 1 7/

2
).

In adapting tho

work to this formula, w-3 have put

-Vs?
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If formula 2*16 (4) is to be used, we put

(4)
with

F-F(l-D,D,j
+
l,-*),

F' =F2 + D,-D-l,j+l, f_ /2
. . . .(5)

In adapting to this formula, we have used

4*10. The operator ^1 = D 4- ^ has one advantage over D which may
render its use advisable in some problems. This advantage results from

the fact that when the expansion of the operator ( .

J
F has been made

in powers of A, that of (
.,

J
F' can be immediately written down by

changing the sign of A and substituting 77'
for

TJ.

4*11. The expansion of any function of r, r', A can evidently be made

by exactly the same methods. We have, for example,

the expansion of which follows exactly the same plan.

4'12. The complication of the various values of a over that usually used,

namely a/a', is more apparent than real, since the numerical value of a is

always used. Further, as
TJ

is greater than rf in most asteroid problems,
and as the convergence is improved by diminishing a, there is an advantage
with these values over the value a/a'. The slight disadvantage which

arises when we have to differentiate with respect to e or
rj

is easily dealt

with by adding to the derivative with respect to ^, so far as it occurs

explicitly, the derivative D.da/adri.

413. Development along powers of the inclination.

In the previous paragraphs I/A has been developed into cosines

of multiples of/,/', with coefficients which depend on 77, ??', 1/Ai
and on the derivatives of 1/Ai with respect to log a. Now

.................. (1)
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where, by 4*1 (3),

cos S = cos2 \I cos (v
-

v') + sin2 / cos (v + v'~ 20). . . .(2)

The general plan requires the expansion of 1/Ai into a double

Fourier series with arguments v v', v + v' 20, and this might
be achieved by first expanding into a Fourier series with argu-
ment S and then expanding cos iS into sums of cosines of

multiples of these two angles. More rapid convergence with less

computation can be obtained by making the development depend
on the Fourier expansion of 1/A ,

where

A 2=l+a2 - 2a cos2 17 cos (>-?/), ......... (3)

rather than on the same function with cos2 \I replaced by unity.

With the definition (3) of A
,
we have

sin2
1/ cos (?; + /- 2(9))

~*

which is then expanded by the binomial theorem. This expansion

evidently involves odd negative powers of A accompanied by
even powers of sin \I. The powers of cos (v + v' 20) are to be

expressed as cosines of multiples of the angle. Instead of giving
the general form of this expansion, we set it down as far as the

eighth power of sin \I which will be sufficient for all practical

needs.

Define RI, R9 , ..., by

where 2s takes the values 3, 5, 7, .... We then obtain

-- = RI + RS tan4 II + JR9 tan
8
\I

AI

tan2
\I + R? tan 6

\I) cos (v + v
f -

20)

+ (R5 tan
4
\I + jff9 tan

8
/) cos 2

(i; + v' - 2(9)

+ JJ?7 tan
6
|Jcos 3 (v + v' - 20) + T\,#9 tan

8
J/cos 4

(t; + / - 2(9).

...... (5)

In this development, it should be noticed that a multiple
of in the angle is always accompanied by at least the same

power of tan %I in the coefficient and that the series in any
coefficient proceeds by powers of tan4 J/.
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The angles v, v
1

are expressed in terms of the true anomalies

by means of the relations

t; = /+tar, v'=f +r'................... (6)

The development in powers of the eccentricities contained the

anglesfyf only, while this development contains the angles

f-.f+n->v', /+/++' -20.

When the functions R%8 have been developed as Fourier series,

and products of cosines replaced by sums of cosines, we shall have

a development containing multiples of the four angles

/, /', w -w', v+v'-20,
and this development will have the property that the difference,

taken positively, of the multiples of fy f in any angle will be

accompanied by the same power of e, e', I in the coefficient.

4'14. Development in multiples off,f to the third order.

The development of the RZS is given in a later section of

this chapter, (4*23), in the form

.fi28
=W>COsi(/-/+*r-O, /8f

l-> =&<>, *=0,1,2,....
......(1)

The coefficients are functions of a, cos* \I only, and the operators
D> act solely on these coefficients. The value of a given by 4 -8 (2),

4'8 (4) is used here.

By carrying out the various steps outlined above, we obtain

the following development as far as the third order with respect
to t), i)', tan \I.

^ =
(F! 2/34

(t) + 2 tan2 / . F9 2/3
t

M
) cos i (/-

where

v'-O
2
(D + 1) + ip/ D(D + I)

2

} cos/
+ {27?' (D + 1) + VsD(D + I)

2 + Vl**8 (D + 1)1 cos/
+ (T)

2 + D) {? cos 2/- 2W'
cos (/ /

'

) + 7/
a cos 2/' J

-
JT;* (D

3 + 3J52 + 2D) cos 3/+ JV3
(^

3- -) cos 3/'



94 DEVELOPMENT OF DISTURBING FUNCTION [CH. iv

Fz
= cos (j +/' + @) - vjD cos (2/+/' + @) - yD cos (/'

+ vf(D + l)cos(/+ 2/' + @) + V (D + 1) cos (/+ 8),

= w + w ' _ 20.

The double sign means that there are two terms each having
the coefficient set down.

The final step, that of expressing the products of the cosines

in FI, FZ by cosi(ff' + '& 'GT') as cosines of sums and

differences of the angles, is to be carried out. This is equivalent
to adding the angle i(ff -f VT

r') to each of the angles in

FI, FB , because /3a
(
"

i} =
/38

(l)
. The term in FI independent of

r, f requires no treatment; i receives all positive and negative

integral values and zero.

4*15. Transformationfrom the true to the mean anomalies.

The development in terms of the true anomalies consists of

a sum of terms of the type A cos (jf+ff -f (7), where A depends
on a, a', e, e', I and G on sr, -57', 6. To transform to a development
in which the arguments are functions of the mean anomalies,

we make use of the expansions

f=g+E = ff+2fi*mig, f =
g' -f E' = g' -f 2// sin tf,

obtained in 311 (6), together with 4'6 (6) which gives

cos (jf+ j'f -f C) = exp. (#
1 + E'

|>)
cos (jg + $<f + C).

...... (1)

The exponential is expanded in powers and products of Ed/dg,

E'd/dg', and this requires the expression of powers of E, E' as

Fourier series with arguments g, g
f

\ the operators d/dg, d'/dg
r

act only on the explicit functions of g, g' and not on E, E' .

The same result is reached by writing

cos (jf+ff + C) = cos (jg + j'g' + G) cos (JE +/#')
- sin (jg +j'g' + C) sin (jE+j'E'\

, . COS . r, COS .. ~,and expressing
1

. ih. . i &* *
sin*

7 sm J

as Fourier series with arguments g, g' respectively, for the

different values of
j, j' needed. The calculations of the functions
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of E, E' needed can be made in series or numerically by har-

monic analysis.

Properties of the expansion. Since R is independent of the

directions of the axes of the frame of reference, it is independent
of the origin from which the angles used in the expansion are

measured. Hence the algebraic sum of the multiples of such

angles present in any term is zero.

Thus if w
y
w f

be the mean longitudes, and CT, CT', 6 the longi-

tudes of the perihelia and node, and if any argument in the

expansion be
iw + i'w' +JK+J'<GT' + 2hV, ............... (2)

we have i + i' +j -h ;' + 2h = 0.

The original form of R was an expression in terms of v, v', r, r' ,

F, 20. It was pointed out in 3*16, that the expansions of v, r in

terms of g or v -GJ are d'Alembert series as far as the associa-

tion of powers of e with multiples of cr is concerned, and the

same is true of v', r' with respect to e
1

', -CD-'. It follows that R
has the same properties. Further, the expansion 413 (5) shows

that R is a d'Alembert series with respect to F, 26. It follows

that the coefficient of a term with the argument (2) is of order

j j |

-f
|j

f

|
-f

|

2h
|

with respect to the eccentricities and inclination.

But + '

Hence, the order of the coefficient of any term in the expansion

of R is equal to or greater than the algebraic sum of the multiples

of w, w' present in that term, and the same is true for the

multiples of g, g' when we put w g + &, w' g' -f r'.

This property at once gives the lowest order of the coefficient

of any term in a numerical expansion of R.

When numerical values ofthe elements are used, the expression

for tt'/A in terms of the true anomalies may be put into the form

*Q tf cos(tf+j'f') + 2SJt,*m(jf+j
f

f), j,/ = 0, 1,...,

or 2 coBJf(CJtf cos//' 4- 8Jtf sin//')

'jj, cos//
v + S'Jtf sin//), j, / = 0, M, . . . .
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The portions in brackets are transformed to multiples of g
f

by
the relation /'= g' + E', either by series or by harmonic analysis.

The series are then re-arranged in the form

2 cosJY (Ajtj
. cosjf+ Bjtj

>

sinjyT)

+ 2 sinJY (A'jtf WBJf+B'jj sin jf), j, j
r = 0, 1, 2, . . .

,

and the change to multiples of g is carried out by using the

relationf=g + E. By following this procedure we can limit the

additional work required to obtain the coefficients of the long

period terms to a higher degree of accuracy, owing to certain

peculiarities in the series for r,/.

4*16. The value of r in terms off is the series

r=a aecos/-f

Actually, this gives series along powers of %e, because the long

period terms always arise from the expression of the product of

two cosines as the sum of two cosines; only one of the latter is

needed more accurately. The same is true of r'. But when we
substitute for/ in terms of g by means of the series

we are substantially expanding in powers of e instead of 0; the

coefficients, which depend on
,
are in general of the same order

of magnitude for the series giving r in terms of/, and /in terms

ofg. Further, many of the actual problems are those of asteroids

disturbed by one of the great planets and the eccentricities of

the orbits of the latter are small. Thus while the steps up to

the last have to be carried out to the full degree of accuracy,

the series converge rapidly. The convergence is slowest in the

last step, but it is here that we can make selection of the terms

which have to be accurately computed, the remainder requiring
a much lower degree of accuracy.

The calculation of the coefficient of a particular term can also

be efficiently carried out by the method which follows.

4'17. Calculation of the coefficient of a particular term.

For this calculation we can make use of the theorem of 2*6,

where it is shown that the coefficient of cos (ig + i'g'} in the
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expansion of F(f,f) is the same as the constant term, when g, g'

are expressed in terms of/, /', of one of the expressions

For the coefficient of sin(ig + i'y'), change cosine to sine in (1)

and sine to cosine in (2).

To make use of them we have the relations

___ ___
df~ a^i- e*~(

ztani/, ...... (4)

with similar expressions for accented letters. An alternative to

(3), (4) is the use of the series 3'8 (3).

If we make use of the first of the forms, the initial expansion
of r2/r

/2A instead of the expansion of I/A, would be made: the

method for doing so is shown in 4*11, and the values p = 2,

p' ~ 2 in 411 (1) would be used. With this formula the ex-

pansions 4*9 (2) or 4*9 (5) are recommended. In F we replace D
by D -f 2 and in F f we replace D by D - 2: the same changes
must of course be made in the binomial coefficients in 4*8 (7).

If, however, the plan is used to get a particular coefficient to

a higher degree of accuracy after a general development of I/A
has been made, the second form of (1) is of advantage because

the development already made will serve; in such cases neither

i nor i
f
is zero, so that this form is always available.

4*18. Calculation of the constant term.

This is sometimes needed to a high degree of accuracy. Ac-

cording to the theorem of 2*6 the constant term in the expansion
of I/A in multiples of g, g' is the same as the constant term in

the expansion of

1 dgdg' = rV2

A dfdf A . aVaVT^T2 Vl - e'
2

B&SPT 7
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in multiples of/,/'. The use of the formula 41 1 (1) withp = 2,

p = 2 is indicated. This expansion does not require the use

of the relation connecting/ with g or /' with g' ;
it depends solely

on expansions along multiples of /, /', and therefore requires

merely the substitution for r, r' of their expressions in terms of

/,/'. A literal development to the eighth order with respect to

the eccentricities and inclination is to be found* in Astr. Jour.

vol. 40, pp. 35-38.

419. When harmonic analysis is used to obtain functions of/in terms
of g and those of/' in terms of #', the computation can be made as follows.

If multiples of g not higher than the sixth are needed the seven special
values of g namely, 0, 30, 60, 90, 120, 150, 180, are recommended. If

two more values be needed, those for 45, 135 can be added, and with two

fewer, those for 30, 160 can be omitted. It is useful to notice that the

addition of new values does not require the greater part of the work, which
is the computation of the special values of the function, to be done again ;

only certain small portions of the analysis have to be repeated.
The values of X for the chosen values of g are obtained from Kepler's

equation
X*=g+ emi\ X,

by one of the methods given in 3'17. From the relation

T~~
tan J/

the special values of /and thence those of any function of /are then ob-

tained. As / g take the values 0, 180 together, there are only 3, 5 or 7

special values of / to be computed for each planet. Methods for analysis
into Fourier series are given at the end of this volume.

The functions of/needed are cosjf/j shy/ for a number of integral values

of
,;'.

It is more convenient to calculate cos^' (fg\ sin,;' (/ g\ and after-

wards to deduce the expansions of cos.;/, ainjf by the use of the factors

coajg, sin^.
Most of the asteroid problems require the calculation of the perturbations

by Jupiter and Saturn only. The series for cosji/', sinj/', once computed
for these two planets will serve for all cases

;
small changes in the values

of the eccentricities are easily made since the power of e which accompanies
any term is known by the multiple of g in its argument.
Harmonic analysis is usually so much more accurate with respect to con-

vergence, and is so much more easily controlled than literal expansions, that

* E. W. Brown, The Expansion of the Constant term of the Disturbing Function
to any order.
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it should be used whenever possible. Where many such analyses are to be

carried out, a systematic arrangement of the work, by which one operation
at a time is performed on all the functions to be analysed, permits the

calculations to be carried out rapidly and accurately. See App. A.

4*20. Development in terms of the eccentric anomalies.

The expressions in 4*1 give I/A as a function of r,/, r',/',

6, /. Also in 3-3 (8) and (9), with the notation < =
exp. /V^HT,

% = exp. X V 1, where X is the eccentric anomaly, it has been

found that

with similar expressions for r', </>'.
If we put

we can make use of the theorem of 2*7 with four independent
variables.

Now I/A is equal to a function of r/r', <f>, <f>'
divided by r'.

Hence, if A^. ?V be what A becomes when we replace r, r', <, </>'

by r
,
r

'

} %, %', the theorem gives

xV-v'x'r*-
1-*' .......(i)

This has to be expanded in powers of the indices.

The expansion ofthe first pair of factors is made by the theorem

of 2-16. It gives

J

3 '
......(2)

7-z
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The result is unchanged if we change the sign of V 1, for then

%, l/x interchange and also B
y B\ it is therefore a real Fourier

series with argument X.

The product of the second pair of factors is obtained by

putting
- D -

1, *;', ', /, / for D, rj, B, x> j respectively in (2),

and it has the same properties.

Since /, 6 are present in A^ in the same way as they were

present in AI, the expansion of A^ along powers of the inclina-

tion follows the same plan as that of Ax in 4*13. In fact, if we

put v = X + er, v' = X 1 + *' in 413 (3), 4-13 (5) (taking note of

the different significations of r ,
r ', a), the results can be used

here without further change.

Newcomb has given (Astr. Eph. Papers, vol. 3) & detailed expansion of

the disturbing function in terms of the eccentric anomalies, certain portions

of which are taken to the seventh order with respect to the eccentricities.

He uses an operator but did not obtain the general formula which permits

any coefficient to be written down at once. The latter was given by one of

us (E. W. Brown, Astr. Jour. vol. 40, p. 19, 1930) in terms of the operator

D and certain integers i,
i' and later (Astr. Jour. vol. 40, p. 61, 1930) in the

improved form shown in the text with the use of the operators Z>, B^ B'.

4'21. Transformation from eccentric to mean anomalies.

After the disturbing function has been expanded in cosines

and sines of multiples of X, X', the transformation to mean
anomalies can be effected by the formulae of 3'10, which give

i\

cosjX = A H- S - JK_J (tee) cos /eg,

\ *=1, 2, ...(1)

sinjX = S< - J-j (tee) sin teg,

or, if f = exp. g V 1, in the exponential form,

tf-A + Z.ij^ice).?, (2)K

where -4 = or \e according as j =}=
1 or j = 1

; j may have any

positive or negative integral value. A similar set of formulae

holds for accented letters.

Since the only terms in the development which give a constant
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part are those containing the first multiples of X, X', the

constant term of the development in terms of g, g' is obtained

by adding to that in terms of X, X f

,
the terms

- \e . coef. of cos X -
\e' . coef. of cos X'

ee
f

+ -T - sum of coef. of cos (X X')....... (3)

The method developed in 4*17 for the calculation of the coefficient of a

particular periodic term and that in 4*18 for the constant term can

evidently be applied to the transformation from eccentric to mean anomalies.

For functions of/, /', we substitute functions of X, A'', with

But the coefficients in the expansions of costjX+j'X'), sin (JX+j'X') in

terms of g, g' can now be written down in terms of Bessel functions, as

defined in 2*14. For both periodic and constant terms, this process is

equivalent to that in the text and is merely a different mode of stating it.

4*22. A detailed comparison of the relative advantages of a primary

development in terms of the true or eccentric anomalies appears to favour

the 'former. In the first place, the expansion in terms of the true anomalies

requires the use of only one operator Z>, while that in terms of the eccentric

anomalies requires the use of three operators D
y /?, B'. Those three

operators produce both cosines and sines while, with the operator D alone,

only cosines are present, and therefore in reducing products of cosines to

sums of cosines, there will always be pairs of coefficients which are the

same.

It might be thought that the change from true to mean anomalies is

more complicated than that from eccentric to mean, because we cannot use

general formulae like the Bessel functions to make the change. As a matter

of fact, the actual labour of making the expansions differs very little in the

two cases, whether literal or numerical values of the eccentricities be used.

The developed series in powers of e have to be used in either case, and such

series are available in the tables of Leverrier and Cayley, if a literal ex-

pansion is desired. With a numerical expansion by harmonic analysis the

only additional work is the calculation, for a few special values, of the values

of/, after those of X have been found, from the equation 3-7 (1).

A point connected with the rate of convergence along powers of e, and

rarely mentioned, deserves some stress because the work of calculating the

coefficient of some particular term to an order of accuracy higher than that

of the general development can be made lighter by taking it into considera-

tion. It has been pointed out in 4*16 that the rates of convergence of the
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series for r, / in terms of /, /' are more rapid than those of /, /' in terms

of g, cf. There is no such difference in the rates of convergence in passing

directly from r,/, /,/ to X, X' and from X, X' to g, g'. Thus the longer

development in terms of X, X ' must also have the full accuracy desired

while the shorter development in terms of/, /' is still more abbreviated by
the separation of the more rapidly converging series from the more slowly

converging series.

The advantage possessed by the expansion in terms of the eccentric

anomalies in the form given in the text, consists in the fact that it is the

only method known by which any coefficient in the development of the

disturbing function can be written down from a general formula
;

it con-

tains the operators /), /?, B', and the Bessel functions. The highest power
of these operators present in any portion of a coefficient is the same as the

order of that coefficient with respect to the eccentricitie.s, so that stoppage
at a given power of the latter involves stoppage at the same power of the

former. The order of a Bessel function is known from its suffix. But the

formula suffers from the defect pointed out in the paragraph following

3*11 (6) for the case of the general expansion of/ in terms of g, namely,
that ^'-f-1 numerical coefficients have to be added together to obtain any

part of order ; ;
this defect becomes serious when^' is large.

4*23. The functions of the major axes.

The development of the previous sections of this chapter

require the calculation of the coefficients /38
{i) defined* by

/)*-* () - (1)

where t 0, 1, 2, ...; 2*= 1,3, o, ...; &<->-&<>;

and for 25 = 1, the numerator of the fraction is unity. The

definitions of
T/T,

a are immaterial to the work of this section

provided |a| < 1, We shall need also the derivatives of the

coefficients with respect to a or to log a.

It has been pointed out in 4'2 that the magnitude of a in

general prevents the use of literal series in powers of a as a

practical method for calculation and we must consequently use

other devices. In the following paragraphs, transformations of

the series in powers of a are made for two of the coefficients so

* This definition of the coefficients without the factor J is so much more con-

venient than that of Leverrier and others who have followed him that we have

retained it throughout. See 2*19.
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that they may be easily and rapidly obtained. It is then shown

how all the remaining coefficients and their derivatives can be

deduced from these two by the use of finite formulae. The two

coefficients to be first found will be those for s =
,
i= 10, 11,

for reasons which will appear. The more usual plan has been to

calculate

/%" =
^i> & (1) =

| (*i
-

Ei)............. (2)

where FI, E\ are the elliptic integrals of the first and the second

kind, from the tables of Legendre, with cos2 7=1. The tables of

Runkle (Smithsonian Contributions, 1855) give certain of these

coefficients for different values of a; those of Brown and Brouwer

(Camb. Univ. Press, 1932) have higher accuracy.

424. The series for &>.
Define i, * by*

! aeosH/
-

1+ai2= i + rf
.

* = cosi/, ............ (1)

so that

(1 + a2 - 2a cos2 \I cos f)~*
=
(~-Y( 1 -f i

2 - 2 x cos ^)~
s

. . . .(2)
VCE/C/

The last factor may be expanded into a Fourier series by the

method given in 216. By inserting this expansion in 4'23 (1)

we obtain
' ~

i)' ^- 2 cos

= at
s
(a*)-* S illl.Lr_

rtl
. /' . 2 cos t>, ......(3)

where F is the hypergeometric series given by

and i takes the values 0, 1, 2, ..., the constant term under the

sign of summation in (3) that for i = being F(s, s, 1, i
2
).

* The value of c^ can be readily found by putting aj = tan A\ , a= tan A, and

finding A l
from sin 2A

t
K sin 2A .
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By means of the transformation 2*15 (3) we have

F(8 + i,8,i + l,al*)~(l-a)-'F(l- 8,8,i + l,- p\
where p = i

2
/( 1 - i

2
), ..................... (5)

so that

in which

s s-1 ,( + !) (s-l)(s-2)

This last form of the hypergeometric series is evidently useful

for large values of i, since in this case the earlier coefficients of

powers of p diminish rapidly. It is true that the series converges

only when \p\ < 1, that is, when i< 2~*= 707, and that the

values of the coefficients are sometimes needed for values of i

larger than this. But we know that the function which the

series represents has no singularity provided |i| < 1, that is,

provided p be finite. It is therefore permissible to use the

method of analytic continuation to obtain expansions in powers
ofp PQ where pQ =(=

0.

4*25. The calculation o/ai , an.

For brevity, let us put fi
(i) = a t-,

so that

(1 -f a2 - 2a cos2 / cos ^r)~*
= a + 2Sa t

- cos fy t ...(I)

with
2 2

The transformation of (3) to series expanded in powers ofp pQ

can be effected by the use of Taylor's series:

The values of F(pQ) t
F r

(p ) are obtained directly from the series,

and the remaining derivatives from the recurrence formula
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2*15(5) deduced from the differential equation satisfied by the

hypergeometric series*.

On putting (1 i
2
)^ = #i^~^, we have the following expressions

for the cases j9 =0, J, 1. The factors 46,189 and 176,358 are

the respective products 11 . 13 . 17 . 19 and 2 . 13 . 17 . 19 . 21.

/a~v / \
9

aio = 46,189 A/ -- (

*

) multiplied by one of the series,V /ca \4/ r J

+ 1-00000000
- -02272 727 p
+ -00213 068 p

2

- -00034 15 p3

+ -00007 47 jo*

- -000020 p*

+ -000006 ;>

au = 176,358

tea

+ 0-98913047 +0'97912 120
- -02082065 (p-i) - -01926520 (/>-!)

+ -0017101 (p-V? + '00141681 (V-l)
2

- -0002304 (p-l)* - -00016 594 (p- 1)
3

+ -000041 (/>-4)
4 + -00002 515 Qt>- 1)

4

- -000009 (jo-i)
6 - -00000451 (p'-l)

6

+ -000002 (/J-i) + -00000091 (^-l)
6

- -00000020 (p-l)
1

+ -00000005 (^-l)
8

00000001 (p-1)
9

multiplied by one of the series,
/<*ip(<*iV ^

10

+ 1-00000000
- -02083 333 p
+ -00180 288 p'

- -0002683 p
+ -00005 48 p
- -00001 4 'p

00000 1 p (+

The series give

< -82. The table

a! = -45

= '25

+ 0-99000 356 +0*98074 527
- -01920 796 (p-i) - -01786420 (jo-1)

+ -00146840 (p-b)
2 + -00123022 (p-1)

2

- -0001854 (p-l? - -00013597 (p- 1)
3

+ -0000311 Q0-I)
4 + -00001956 (p-1)

4

- -000007 (p-) 5 - -00000 335 (p- 1)
6

+ -000002 (p-$f + "00000 065 (^-1)
()

- -00000014 (jo-1)
7

+ -00000003 (/>-!)*
- -00000001 (p-l)

aio, an to eight significant figures when

-61 '66 '71 '78 -82 '88

-50 75 1-00 T50 2'00 3'00

indicates the series to choose for any given value of i. For

ax
= -88, the error is about one part in 105 .

* E. W. Brown, Mon. Not. R.A.S. vol. 88, pp. 459-465. The numerical series

given in the text for2? = |, 1 are taken from this paper. Extensions to the cases

p = 2, 3, 4 are to be found in Mon. Not. vol. 92, pp. 224-7.
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Alternative form for a10 ,
an . The ratios of consecutive coefficients of

these series all tend to the limit unity, but for large values of i the approach
is very slow, and after the first two or three terms the ratio changes slowly.

We can make use of this fact by expressing the series a -\-alp + a 2

in the form

with a suitable choice of A. In this way the following expressions have

been obtained :

a10
= '35239,4104

where

au = '38183,0736 (&) a
\ K * /

Sa10
= (2131 + 245/7

-
19/>

2
)p

2
.

Q+ (1 + 275^),

These give 10 ,
r H to six significant figures when

figures for p<\ are furnished by the expressions,

a, =
l ~p p*

-
"00034,1 46/>

3 + '00007,469^

. Eight significant

'
829^3+ '00005,477/J

4

4'26. Formulae for calculating the /3
(<) t^Ae/i ^M;O consecutive

coefficients are known.

The procedure which appears to give numerical results most

easily requires the use of the following formulae. It is to be

noticed that as soon as two consecutive coefficients have been

found, there is no further need of i; the formulae involve only

a, K in the form

The proofs are given in the sections which follow.

For finding the remaining at
- =

/3|
( *) when two of them are

known, we have the formula,

a i
= eam- a +1 + -

(cam - 2a<+2) ......... (2)
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for values of i lower than those known, and

for higher values of i. These formulae are used by putting

i = 9, 8, ... successively in (2) when a, an have been found; and

i = 10, 11, ... as for as they are needed in (3). They are deduced

from the general formula,

* ~ *
&<>, .........(4)

1+ S I + S

by giving to s the value J.

The values of two consecutive coefficients for other values of

s are found by putting * = ,,..., successively in the formulae

-- -

4(6 _2)
~~ ""

2s)^ + (2 + 2 - 2s) /9^
+1)

"

'

The remaining coefficients are found rapidly from the formula

which may be used backwards or forwards along values of i.

Sufficient checks on the numerical work are obtained in the

following manner. When a9 ,
aB) ..., aQ have been successively

computed by means of (2), the value of a can be obtained

directly from 4'23 (2) with the use of Legendre's tables: this, in

effect, tests the whole series of cti .

When /3f
(11)

, ..., #
f

(0) have been found from (5) for the first

two and from (6) with s = \ for the remaining coefficients, the

values of
y8^

(1)
, /3J

* can be tested by computing from (5) with

s =
,
i = 0. A similar procedure tests the values for s = f , ,

....

In general, there is a loss of less than one significant figure

in running down from y88
(10) to /3

(0)
. There is some loss of

accuracy in the use of the formula (5), but this loss is balanced

by the fact that the higher values of s are present only with

the higher powers of the inclination and indirectly of the

eccentricities.
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4*27. Formulae for the derivatives of the p8
(i)

.

The first derivative is obtained from

for all values of i with s ^, and for two consecutive values of i

with s =
f, f, ..., the remaining derivatives being found most

easily from

f> =
iD/Sf? +D&?................(2)

For the higher derivatives, either of the following formulae in

which the index (i), being the same throughout, is omitted, may
be used:

Z)'+a& = (D--*"
11 ~ a

(3)

= (2*-l)JD'+
l& + (D + lXA+i

/c

>,, + 4,(l--z

To j are given successively the values 0, 1, 2, ...: the latter

formula requires the calculation of one fewer set of coefficients

/38 for a given degree of accuracy with respect to the eccen-

tricities (cf. 4*31). These formulae are used like those which

precede it. The derivatives for s = J and all needed values of i

are computed from either (3) or (4). For the remaining values

of s, they are used for the computation of the derivatives for the

two highest values of i only, the remaining derivatives being
found more easily from

&&? =<&&?+&/*?. (5)

These alternative methods ofcomputation furnish obvious checks.

4*28. The proofs of the preceding formulae are obtained by

treating the fundamental expansion,

c8 (1 4- a2 - 2/ca cos i/r)-
= (a*)*-* 2&(i) cos ty, . . .(1)

where cf i.f ...(*-!), i = 0, 1, 2, ...,

as an identity.
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The derivative of (1) with respect to f gives

sc8 (1 4- a2 2/ca cos ty)-*-
1

. 2/ea sin ty
= (*)*"* 2/3fi

(?) i sin if.

...... (2)

Replace 5 by s 4- 1 in (1) and insert the result in the left-hand

member of (2). Since cs+i = sc8 , we obtain

2 sin
i/r 2/3^ cos ty = 2/3^ i sin ty.

The left-hand member of this equation may be expressed as a

sum of sines of multiples of f. Equating the coefficients of

sin i\|r, we obtain
'

which is the formula 4'26 (6). The derivatives of this give 4'27 (2),

4-27 (5).

Again, multiply (2) by 1 + a2 - 2*a cos
i/r

and insert (1) in the

left-hand member of the result. After some reduction, we obtain

Ka S (i + s) $M sin (i + 1) ^ + *a2 (i
-

s) /38
(i) sin (i

-
1) ^

=
(1 +aa)SiA (t)

sini>.
In each of these series i takes all integral values from + oo to

oo . The selection of the coefficients of sin (i + 1) tjr,
from each

of them, gives

*a (i + s) &* +ica(i+2- s)^+2) =
(1 + a2

) (i + 1) #'
+1)

,

which is the same as 4*26 (4) when we put e = (1 + a2
)/ tea.

Finally, the identity

(1 + a2 - 2*a cos ^) S^^ cos ty = 6-a/t 2^ cos if,

obtained from (1), with the same equation when s + 1 is put for

s, yields by the same procedure as before,

)

.......(4)

If we successively eliminate $+i\ff*+^ between this equation
and (3), we obtain

Change i into i 1 in the former of these equations and add
the result to and subtract it from the latter; the two equations
thus obtained are the same as 4-26 (5).
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4'29. The values of the derivatives are obtained as follows.

The derivative with respect to a of the logarithm of 4*23 (1)

gives, after multiplication by a,

2s (a
2

/ca cos ^)
1 -f- a2- 2*a cos ^

<?n a2
\o ^ JL

^^ 1* /

2
1 + 2

2/tra cos ty

'

But, from the definition of Rzs,

+ a2 2/ea cos ^
Ktt.

I a2

Hence 01^ = ^^+ -
^2*^2

KCd

From this equation, by replacing R^8 , R^s^ by their expansions
in Fourier series and equating the coefficients of cos ity, we

obtain

which is the equation 4'27 (1).

The application of the operator Dj to this with the help of the

general theorem,

D'{oflf(a)}=<#(D + qy.f(a), ............ (1)

furnishes the equation 4*27 (3).

4'30. The proof of the relation 4'27 (4) is more difficult. If

we put
p = 1 + a2

2a/c cos
yfr,

..................(1)

we have

(Dp)
2 + \

= (2a
2 - 2a/ccos

>|r)
2

4- 4a2
/c
2 sin2

,fr

= 4V-f 4aa (/c
2
-l),

s-A = 4a2 2a/ cos
->|r

-f 2a/t cos ty
= 4a2

.

dy^

Also J5V' =
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Whence, with the aid of the two previous equations,

= * (s

(s -f-

...... (2)

Now, the definition (1) and 4'23 (1) give

P~' -(a*)*- RI. + C. ...................(3)

and the theorem 4'29 (1), applied to this, gives

Insert this result in the left-hand member of (2) and eliminate

/>
from the remaining terms of (2) by the use of (3) after re-

placing s by s + 1, s + 2, therein. With the help of the relations

o8+i
= sc8 ,

cs+z = s(s+ 1) cst

we obtain, after division by suitable factors,

(D + * -s)
2

.

The final step is the insertion of the Fourier series and the

equating of the coefficients of cos ity. This process gives

which is easily seen to be the same as equation 4*27 (4) when

we putj= in the latter. The result may be written

The application of the operator Di to this equation and the use

of the theorem 4-29 (1) give 4'27 (4).

4*31. The statement in 4'27 contrasting the formulae 4*27 (3),

4*27 (4), may be justified as follows. The continued use of

4'27 (4) makes D*/38 depend on the calculation ot/38+j,{ii+j-i 9
. . .,&.

If we put j = in this equation, the right-hand member depends
on Dftg, j3s+i which require the calculation of &+i, /8 only; the
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factor of /9, f2 is 4 tan2 \I (1 + sec2 /). Since the operator D2

is always accompanied by the square of the eccentricities in the

development of the disturbing function, the effect of this last

term is of the fourth order. The argument for values ofj greater
than zero in the formula is similar.

Incidentally, this formula shows why a considerable increase

in the convergence along powers of the inclination is obtained

by the insertion of the factor tc. In general, the coefficients /38+}

tend to increase with j for a given value of i and the factor 4>

which occurs in this term shows that it will modify the values

of the derivatives considerably when / is large. The additional

computation caused by its presence is very small *.

4'32. The literal expansion of I/A to the second order, in terms

of the mean anomalies.

This expansion is obtained from that in terms of the true

anomalies given in detail in 4*14. The latter contains products
of cosines which are expressed as sums of cosines as explained in

that paragraph. In writing the result out to the second order,

the notation

tf^a^a-t, 4 = 6, -6-,, /-/' + w -*r' = *-',

will be used. The result is

r
*

= sum for all positive and negative values of i, including

zero, of

(1 + ^L2 + 77

/2
(D + 1)

2
} a< cos i (v

-
1/)

-
27777' (D2 + D) ai cos (iv

- iV + /- /')

-
277 Da {

cos (iv
- iv' +/) + 277' (D + 1) a; cos (it;

- iv' +/')

4- T?
2
(D

2 + D) at cos (iv
- iv' + 2/)

+ 77
/2
(D

2 + D) a< cos (iv
- tV + 2/

x

)

-
27777' (D

2 + D) at cos (iv
- iv' +/+/')

-20)................(1)

* These modifications of the usual formulae in which *= 1, were given by
E. W. Brown, Mon. Not. R.A.S. vol. 88, pp. 459-465.
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The transformation to mean anomalies is made by means of

the theorem 415 (1), namely,

cos (tf+j'f + 0) - exp. (EJ-+E' g2>)
cos (jg + j'g' + 0),

where f-g + E, f'=g' + E'.

The expression for Z? is given in 3*16. Expressed in terms of

77 as far as the second order, it is

E =
4*77 sin g -f 5??

a sin
2jr,

and we have a similar form for E' . From these we deduce

-2 =
8??

2 _
8??

2 cos 2(/) EE'=8w' {cos (g
-

#')
- cos (g + #')}.

With the aid of these formulae and of the expansion

exp. tf +
3

/

we obtain the following development:

=
t x sum for i 0, 1, 2, ... of

*

{1 -f 7?
2
(D

2 + 4D - 4i a
) + V2

(
2 - 2D - 4i a -

3)} a< cos (iw
-

tw')

-
2777;' (D

2
-f D - 4i 2 -

2i) a< cos (iw
- iw' +g-g')

H- 2^7 ( D + 2t') a< cos (iw iw
7

4- g)

+ 27?' (D + 1 - 2i) % cos (iw
- I'M;' + g')

-f ?7
2
(D

2 - 4iD - 3D + 4i 2 + 5i) a< cos (iw
- iw' -f 2#)

+ 7/
/2
(D

2 - 4iD + 5Z> + 4i a - 9i -f 4) a, cos (iw
- iw' 4- 20')

-
27777' (D

2 - 4iD -f D -f 4i 2 -
2i) a< cos (iw

- iw' + g + g')

+ 2tan2
J/.6< cos(iw-iw' + w-f w'-20), ...............(2)

in which the notations

w, w' = mean longitudes
= g + r, ^' -f w'

are used.

B&8PT 8
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For convenient reference, we repeat the significations of the

remaining symbols used in this development:

{1 H- a2 2a cos2 / cos (w tt/)}"~^
=

2a,- cos f (w w') t . . .(3)

{a cos2/ (1 + a2 - 2a cos2 |/cos (w w')}~
= 26* cos i (w - w') t

...... (4)

where i = 0, 1, 2, Also, to the second order, 77
= ^, 77'=^'.

These definitions show at a glance the differences between

the development given above and that of Leverrier, given by

Tisserand* in which r
' = a' rQ = a. D* =

.-, (
r-

) , cos
2A/= 1 in

j ! \oa/

(3), (4), a< is replaced by %a{
and bt by |6 rf ,

and there is no

factor ^ in the left-hand member of (4). When the necessary

changes in notation have been made, the two developments will

be found to agree with one another.

4*33. The second term of R.

The first term of the disturbing function, namely, w'/A, is the

same for the action of either planet on the other, except as to

the mass factor; the only condition actually used in the develop-

ment is that accented letters shall refer to the outer planet.

Omitting the mass factor, the second term is

r cos 8 r
f

cos S
~/r~~ or ^ >

according as we are dealing with the action of the outer planet

on the inner or that of the inner on the outer.

Expressed in rectangular coordinates these expressions are

xx' + yy
r + zz* xx' 4- yy' 4- zz'

>s
>

^3

The equations for the elliptic motions of the planets are

* Mte. Ctl. vol. 1, p. 309.
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If we put ///=n'
2
a'

8
,
n'dt dg' in the former and

/-t
= n2a8

,

dg in the latter, we may write these

Since a;', y', z' do not contain
$r
and x, y, z do not contain g' t

the two cases of the second term of R may be written

which give a function rr
f
cos S, symmetrical with respect to the

two planets, to be developed.

These forms of the second term show that in the first case,

there are no terms in the development in terms of the mean
anomalies which contain the argument g only, and none in the

second case containing g' only.

In neither case does the second term produce a constant

part.

A quite general development in terms of the mean anomalies

can be made. With the form 4*1 (3) for cos S, it is evident that

rr* cos S is a linear function of r cos v, r sin v and therefore of

r cos^ r sin/, and similarly of r' cos/', r' sin/', and these

functions can be expressed in terms of the mean anomalies by
the formulae 310 (5). An easy way to carry out the calculation

is to use the second form of 4*1 (3) and write

rr' cos S = A' . r cos/ B' . r sin/

A' aiT^'cos. ,. . 9 . T r
f
cos , , , _m

ra ,
= cosH7 , . (r - v ) + sin2 A/ , . O + v -20).B ^ r sm v ' 2 r sm v '

The series for A', B' may be computed by harmonic analysis, or

in series from

A'= Cx . r' cos/' + Oa . r' sin/', JB'- ~ C3 . r' sin/' + C4 . r' cos/',

where

Ci,C3 = COS2 |J COS (r
-

r') sin2 / COS (tsr + r' - 20),

<72 , C
f

4
= cos2 J/sin (r - w') T sin2 \I sin ( + *? - 20).

8-2
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4*34. The expansion of r cos S/r'
2 can also be obtained from

that of I/A in the following manner. If we put f
(<) = except

for the cases i=l, s =
;

i = 0, s=|, and for these put the

value -
%a/c, so that

ai = a_i = bQ = - \aic = - %a cos2
17, .........(1)

we find from 413 (4), 414 (1), that

With these values 413 (5) becomes

-r- = a/c cos (v i/) a* tan2
\I cos (v -f v' 20) = a cos

^i

Finally if this be substituted in 4*8 (3) with D = 1
,
we have

Thus the required expansion is obtained from that of I/A by

putting D = 1 and making the substitution (1).

To the second order, with

we obtain from 4*32 (2), the result:

rcosS acos2 i/ (/ .
rt 2 /ax . .

,.--
~7a-

=--
-7a
A
-{(l~27;

2
-27/

2
)cos(^-/-ht!r^-Sr/)

/ iL

-f ?; COS (2g ^' -f cr
isr') 3?; COS (</' -or -f tir')

-f4^ COS (^
-

20' -f tr- -or')+4^' COS (2^r
-

20' 4- or - <cr')

-f |r;
2 COS (3<7

- g
f

-f tar - ') + i^
2 COS (^ 4-

flf'

- tar + tsr')

+ |i?'
2 cos

(^r + #' + tzr -'cr')+^
7
-7

?

'2
cos(5r~3/-f^ --cj')

-
121777' cos (2/ - ar + w')

+ tan2
\l cos (gr -h g' -f r + -cr' -

2(9)}.

The expansion of r' cos S/r
2
is evidently obtained by inter-

changing the accents.



CHAPTER V

CANONICAL AND ELLIPTIC VARIABLES

A. THE CONTACT TRANSFORMATION

5*1. Canonical differential equations.

Let the coordinates of a particle of mass ra at any time t

be #1, #2 #3- If this particle moves under the force-function

U (#1, %2, #3, t), the differential equations of its motion are

d2

^_atr -.190

These are three equations of the second order. We shall now

express them as six equations of the first order. This is

accomplished by the introduction of the three new variables

2/i> ^2> 2/3 > called momenta, defined by

The kinetic energy is

Differentiating (2) and substituting in (1) we have

%-% '-'''

From (2) and (3) we have

Since CT and T are independent of yt and < respectively, (4) and

(5) may be written, with HTU,

dt
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A set of differential equations in this form is said to be in the

canonical or Hamiltonian form, and H is called the Hamiltonian

function.

On account of the definitions of xiy yt as independent variables,

the equations (5) may be expressed in the symbolic form,

2(<fo,.8y<-dy.&,) = (ft.5ff, (7)

where the &Cj, Syt
are arbitrary variations of the &iy yiy and SH

is the consequent variation of H. The definitions of the symbols

d, S, introduced in this manner, will be made more precise in

5*3 below.

5'2. The Contact transformation.

Let ai9 yt be any 2n variables which satisfy the canonical

differential equations,

dxt_m dyi _ dH . m
dt'dyt' dt~ a*,'

*- 1>4-> w
> W

where H is a function of icit y,, t only: it does not contain any
derivatives. A contact transformation is a change from the 2n

variables xit yi to 2n new variables, pit qit which shall satisfy

equations of the same form, namely,

dp, JIT dqi=: _dHr
dt dq,' dt dp,

' v ~'

where H' is related to H by an equation to be given below, and

is expressed as a function ofpiy qit t.

According to a theorem of Jacobi, relations between the old

and new variables which fulfil the conditions can be expressed

by the implicit equations*

dS dS ct r j. j. /o\
2/<
=
g^> Pt^faS

S = funct.a?< ,9< ,t (3)

The determining function 8 must thus be expressed as a

function of one set, either the xt or the yt ,
of the old variables,

and one set of the new. It must be so chosen that it is possible,

* No confusion will be caused between this use of the letter S and that in the

development of the disturbing function.
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by means of the equations (3), to express the xit yt
in terms of

the pi, qt ,
or vice versa. This possibility depends on the Jacobian,

.(4)

which must not vanish identically.

The literature connected with canonical equations and contact trans-

formations is extensive and can be found from the usual sources of

information. It may be mentioned, however, that while Hamilton appears
to have first given the canonical forms of the equations of motion (Brit.

Ass. Report, 1834, p. 513), Lagrange had given the equations for the

variations of the elliptic elements in 1809 (M4m. de VInst. de Paris, p. 343)

in this form. The theorem of Jacobi appeared in the Comptes Rendus for

1837, p. 61, the contact transformation having been introduced by Hamil-

ton in 1828 (Trans. Roy. Irish A cad. vol. 15, p. 69).

Of the numerous applications of the theory of contact transformations

we shall give only those which are necessary for the later developments in

this volume. In particular, the proof of Jacobi 's theorem, given in 5*3,

docs not indicate the process of discovery, but it has the advantage of

showing immediately, not only the relation between //, Hf

, $, but also the

method which appears to be most useful in the search for new forms of

canonical variables.

5*3. Proof of the Jacobian transformation theorem.

For the purposes of this proof and of later developments, it is

desirable to define in more detail the meanings to be attached

to the symbols d, 8 in equations involving differentials.

The equations 5*2 (1) imply the existence of solutions of the

form

i
= x

i (*>>%> <%>), Vi
=

Hi (*> al> ' ' '
>
a2)>

and the relations 5*2 (3), the existence of functions,

which are solutions of 5*2 (3); in these expressions, aj ,..., aan
are the arbitrary constants of the solution.

The symbol d attached to any function will always denote

that when the function has been expressed in terms of t and

the ary it is t alone which is varied, while the symbol 8 implies
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that any or all of the ar are varied but that t is not changed.
Thus when xit yt are expressed in the forms just set down,

and thence, when 8 is expressed as a function of xiy qiy t,

In these expressions for d$, 8$, the meanings to be attached

to dxiy 8&i are those just given; similar meanings are to be

attached to dqt , Sqit

Since the variations denoted by d, S are independent, the

commutative law, namely, that 8 . d and d . S acting on any
function produce the same result, is satisfied.

The proof that the relations 5*2 (3) transform 5*2 (1) into

5'2 (2) follows.

Multiply 5*2 (1) by %*, 8^, respectively, and add for all

values of i. We obtain

A similar process performed with 5*2 (3) gives

85, ......... (2)

*/ j j x * fiS j dS , \ , a/S .

2 (yidxt+pidqt)
= 2^ Ac, +

g- d^J
= dfif -

-^
d$,

.........(3)

since S may contain t explicitly as well as through a-^q^

Operate on (2) with d and on (3) with 8 and subtract. Since

the operators d, 8 are commutative, we have dBxt
= 8d^t-,

d8S= 8dS, etc., and all the terms in which both 8, d act on the

same function disappear. We obtain
/dS\

X (dy( Set
- dc, 8y<) + 2 (dp, S3<

-
dg, 8P<)

- c . 8^J
,
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which is the same as

The addition of (1) to this last equation gives

*(t"--$*)-'(*+D
Finally, if we define H 1

by means of the equation

(5)

and suppose that H' has been expressed in terms of pit q it t, by
means of the relations 5*2 (3), so that

the independence of Spit Sqt furnishes, through the equality of

the members of (4), (6),

^
dt ~dqt

'

dt dPi
...................

In the use of this transformation, it is important to remember

that dS/dt is found from the expression for S in 5*2 (3) and that

H' is to be expressed in terms of p^ qi, t.

B. JACOBI'S PARTIAL DIFFERENTIAL EQUATIONS

5'4. The transformation theorem just proved is a device for

changing from one set of variables to another, the new variables

depending on the choice of the determining function 8. One
such choice is the following.

Suppose that it is possible to find a form of 8 which will

make the derivatives dH'/dpiy dH
f

/dq{ zero. (Since H' must

necessarily be expressed in terms ofp^ qif t before these deriva-

tives are formed, it follows that the derivatives will then be

identically zero.) The equations 5'2 (2) show that dpjdt, dqjdt
become zero, and hence that

Pi = const., qi
= const.
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Jacobi showed that when S is so determined as to satisfy

these conditions, it is a solution of a certain partial differential

equation. In the next section, this equation will be found and

those properties of it, which will be useful later, will be developed.

Notation. A semi-colon following a collective symbol xi>

where i 1, 2, ..., n, will denote that any or all of the xt may
be present, thus

t) means /Oi, #2, -,#> 0>

o

5*5. The equation and its solutions.

Amongst the values of S which will make p t , ^ constant,

we seek one which makes H' = 0, that is, one for which

But H was originally a function of xit y t-, t, and, by 5'2 (3),

y i
=

dS/dtti. Thus, we seek a value of S satisfying

Now the assumption concerning the form of ti was that it

should be expressed as a function of xit qit t, and the assumption
is to be retained in (1). But, in the present case, the qt are

constants by hypothesis. Hence, in order to satisfy (1), we
need an expression for S which contains xiy t, and n arbitrary

constants q{ . In other words, if we regard (1) as a partial

differential equation with xiy t as independent variables and

with S as the dependent variable, we need a solution of the

equation containing n arbitrary constants.

When such a solution has been obtained, all that is necessary
is to interpret the relation 5*2 (3) in the language of the theory
of differential equations, remembering that these now constitute

2n relations between the original variables #,-, yif the constants

Pi,qi, and t.
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Theorem. A general solution of the equations

is provided by the equations

dS

where pit #, are arbitrary constants, and S is an integral, contain-

ing n arbitrary constants q* (exclusive of that additive to S) of

the partial differential equation

This type of integral is known as a complete integral, for

the theory of which the reader is referred to treatises on first

order partial differential equations. For our purposes, it is

sufficient to state that the Jacobian 5*2 (4) must not vanish

identically.

The constant additive to S plays no part because S appears in the

differential equations and in the solution only through its derivatives, but

its presence is theoretically necessary since there are n-f 1 independent
variables in the partial differential equation.

It may be pointed out that the ordinary method for the solution of

first order partial differential equations simply leads back to the canonical

equations, so that nothing is gained by attempting to use it. In the

applications to celestial mechanics, the form of the function S is usually

set down from previous knowledge of the form of the solution, and the

relations 5*2 (3) are then used in various ways ; or, in particular cases, a

form for S may be suggested by the equation 5'5 (1).

The set of arbitrary constants which appears in this way is

known as a canonical set. It is evident that when the function

S, containing half of them, has been obtained, the remaining
half are chosen from the relations p t

=
dS/dqi. In general, there-

fore, only n of the 2n constants may be chosen arbitrarily. The

practical demands of the perturbation problem limit the choice

to very few types. See 5*12, 5*13, 5*14.
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5 '6. The case where H is independent of t explicitly.

A start may be made by assuming that

S^Si+Ct, ........................ (1)

so that the partial differential equation is reduced to

<>-<>................... <2 >

which contains n independent variables only. If C be chosen as

one ofthe canonical set ofconstants qiy and tQ be the corresponding
constant derived from the equation pi

= dS/dqi) we have

<-w +t......................... <3>

Since Si does not contain t, it follows that the solution will

contain t, tQ only in the form t tQ .

The equation (2) shows that H= constant is an integral of the

equations. This may be proved directly from the canonical

equations 5'2 (1), by multiplying them by dyi/dt, dxjdt, and

adding.

A similar procedure may be adopted when any one of the

coordinates xt is absent from H. It is evident that each absent

coordinate permits the writing down of an integral of the

equations.

5*7. Application to the perturbation problem.

The force-functions for the problem of three bodies which

have been constructed in Chap, i, have usually been divided

into the sum of two parts, the first of which, taken alone, gives

elliptic motion. This division would lead to putting 17= UQ + -R,

where UQ = /A/r. It has been adopted because we can solve the

equations completely when R = 0, and it has the added advan-

tage that, since jR usually contains a small factor, it constitutes

a first approximation to the motion. These considerations,

however, do not limit the applicability of the following method

of procedure.

If U is replaced by UQ + J?, H is replaced by T UQ R, or



6-8] VARIATION OF ARBITRARIES 126

by HQ R if HQ = T- UQ, so that the canonical equations will be

written

dxi d rr p dyt % (if p\ /i\- =
-^(H,-R), -^-(Ht-R) (1)

Let us transform to a set of new variables pt , qt by means of

the relations

ds as ,.

where S is a solution of the equation

ds

The transformation theorem in 5*2 shows that the equations

satisfied by the new variables are

dt dqt' dt dp^

for in this case we have, by (3),

, da__x/*-/* ^+g- ^

The interpretation of this result, usually adopted, is the

following. If we solve the equations with H = and obtain a

canonical set of constants piy qit and consider these constants as

variables when 2? 4= 0, the equations which they will satisfy are

those numbered (4); hence the phrase, Variation of Arbitrary
Constants. This latter point of view is useful in geometrical

descriptions of the motion, but it sometimes leads to confusion

and error if it is adopted in the analytical work. As*a matter of

fact, the equations with R = are solved mainly in order to

indicate the choice of the new variables, and are not used unless

we know in advance that a solution can be obtained.

5 '8. Osculating orbits.

Another geometrical interpretation of the results of 5*7 is of

value in the determination of the orbit of a body from observa-

tions of its position. Let us suppose that the problem of finding
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the solution of 5*7 (4) has been solved, so that the variables pit

qt are expressed as functions of t and arbitrary constants. If we

put t = tQ in this solution, where fo is some particular value of t y

these variables become constants and thus constitute a solution

of the equations 5 f

7 (4) when R = 0. Hence at the instant

t = fo, the variables and the constants have the same value. But

the coordinates and velocities are expressible in terms of t

and Pi> qit It follows that the orbits with jffi = 0, R^O, in-

tersect at t =s tQ and have the same velocities at the point of

intersection; when this happens the two orbits are said to

osculate at that point, and the ellipse described with R = is

called the osculating ellipse*.

If at the instant t tv, the disturbing forces which arise

through R were suddenly annihilated, the body would thereafter

proceed to move in the osculating ellipse. This constitutes

another definition of this curve.

In the great majority of cases arising in the solar system, the forces due

to R are small compared with those present when 72=0, so that the oscu-

lating ellipse constitutes a good approximation to the orbit at times near

=
<)

In the case of a planet, the separation is small during a period of

one revolution of the planet round the sun. Thus the osculating ellipse

can be used to predict approximately the place of the body for some time

before and after the instant t= t
(}

.

Ordinarily two coordinates, which give the angular position as seen from

the earth, are observed
;
neither the distance nor the velocities are directly

observed. From three such observations an osculating ellipse can in

general be deduced. A position predicted for some other time in order to

limit the area of search also needs only the two coordinates. There are six

constants present in the osculating ellipse, and according to the mathe-

matical theory of the approximate representation of a curve, considerable

variations may be made in the six constants without altering the two

needed functions of them very greatly. Thus the elements of an osculating

orbit may be considerably in error and yet it may furnish a good search

ephemeris for a considerable interval following its determination.

* Since the curvatures are not in general the same, the word 'osculating' is

not used in the same sense as in the theory of curves.
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C. JACOBIAN METHOD OF SOLUTION

5*9. Solution of the case of elliptic motion by the Jacobian

method.

The force-function in this case is m/i/r, and the canonical

equations of motion become, after division by m,

dxi __ dHo dyt _ 9#o
dt 9yt

-

'

dt dxt
'

where

The division by m is analytically equivalent to putting m = 1

in the formulae of 5*1.

According to 5*5, the equation satisfied by S is

MIS) +l
w-., ^ +*,+*,)

^
Transform to the tri-polar coordinates r, TT ~ i, X, so that L

is the latitude, and X the longitude of the projection of r on the

plane of reference. The equation becomes

dS ,. ,~.

According to the preceding theory, we need an integral of

(2) containing three arbitrary constants, exclusive of that

additive to S. Since t> \ enter only through derivatives, it is

convenient to put
8=-ait + a*\ + Si, .................. (3)

where Si is independent of X, t, and i, aa are constants.

Inserting this value of S in (2) we obtain, after multiplication

by 2r^ and rearrangement,-- 1

.......<>

The form of this equation indicates that we can obtain a

solution by putting Si = S$ + Sz, where S% is a function of r only
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and $3 that of L ouly, if we equate each member to a constant

a2
2

. This procedure gives

. 2a 2
2

/9$3\
2

3
2

= 2i 4- =- . I =-= i = a*2 ^-, .

\dL ) UU&-JL/

The integration of these equations will leave two arbitrary

constants at our disposal since the necessary three arbitrary

constants i, 2 ,
a3 are already present. Let $2 vanish for r = ri>

where TI is the smaller root of the equation

_ 2jjL a2
2

,, /f .

2ai-f -^ a = 0, (5)* /M /V1<fi
' ^ '

and let 3 vanish when // = 0. In order that this value of r

may be positive, it is necessary that both roots be positive;

hence a must be negative.

Inserting the values of jS>2 , 63, $1, thus obtained, in (3) we
obtain a solution in the required form :

...... (6)

The next step is the deduction of the solution of the canonical

equations by means of the relations & = 9S/3a$, yi 'dSldxiy

which would seem to demand a return to rectangular coordinates.

However, we do not need the latter set since the former gives the

necessary three relations between r, L, X, t, and the relations

between r, L t
\ and #1, #2 , #3, are independent of aiy 2 , 3 .

The derivatives of 8 with respect to the af are obtained

without carrying out the quadratures in (6), by means of the

formula

The derivative with respect to i gives

ft +

since the coefficient of dri/da vanishes on account of (5).
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Similarly,
L

'

The relations (7), (8), (9) are those needed, and the a, , /3< con-

stitute a set of canonical constants.

5*10. Relations between the set a iy fit and a or n
y e, i, e, w, 6.

Since the integrand of 5*9 (7) must be real, the equation
5 '9 (5) gives the maximum and minimum values of r. In 3 '2

these are shown to be a (1 e). Hence from a well-known

theorem connecting the roots and coefficients of a quadratic

equation, 2u/2! = 2a, 2
2
/2i = a*

2
(1 e

2
), giving c&i

=

According to 5*9 (7), /3j is the value of t when r=r1=a(l e).

But the mean anomaly nt + e w is zero for this value of r.

Hence /3i
=

(e w)/n.

Equation 5*9 (9) shows that /33 is the value of \ when L = 0,

that is, when the body is in the plane of reference. Hence

y33
= 0, the longitude of the node.

Since the integrand of 5*9 (9) must be real, the maximum
and minimum values of cos L are 3/a2 . But the maximum
and minimum values of L are i, where i is the inclination

of the plane of the orbit to the plane of reference. Hence

3 s= 2 cos i.

Finally, if we put a3 = a2cosi in the last term of 5*9 (3) it

becomes

[
L cos LdL

__
CL d (sin L) __

. ^ /sin L\

Jo (cos
2Z - cos2 z')*

~
Jo (sin

2
! - sin2i)*

~ &m
\ am?/'

But if v be the hypotenuse of the right-angled spherical

triangle in which L is the side opposite to the angle i
9
we have

sin L = sin i sin v. Thus the above integral is v and the equation
B&SPT 9
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5*9 (8) shows that /92 is the value of v when r = n. Since v

is then the angle between the apse and the node, we have

$2 = & #

Collecting these results, we obtain the system of canonical

elements

i=(e-

Hence, according to the principles set forth above, the

equations satisfied by the a,-, & when R 4= 0, are

2 (da, 8& - d& 8a
f)
= eft . 812, (2)

or, written in extenso,

^
m 4& p<ft d& eft 9a t

5*11. The fact that 5'9 (7), (8), (9) give elliptic motion rn\y be deduced

in the following manner.

If we put r=a aecos A" in (7), and insert the values* of the constants

found above, we obtain, after integration,

n

which, with the aid of the relation a?n?=p, is seen to be the equation con-

necting the mean and eccentric anomalies.

Equation 5*9 (8), with the same substitution for r, becomes

[X dX
l~e cos X '

since v= v 6, f vw, this equation gives the relation between the true

and eccentric anomalies.

Finally, the substitution sin Z= sin i sin v in the integral of (9) gives

sst X - tan*"1

(cos i tan
i/) ;

since X 6 is the side adjacent to the angle i in the right-angled triangle

to which reference is made in the text, this equation merely constitutes a

well-known geometrical relation.

A logical procedure requires the proof that the motion is elliptic to

precede the identification of the constants. But as the objective in view is

the discovery of a set of canonical constants only, we assumed that the

nature of the motion had been found by the easier method of Chap. in.

(Cf. 3-2.)
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D. OTHER CANONICAL AND NON-CANONICAL SETS

5*12. Delaunays canonical elements.

Changes from one canonical set of elements a
i , /^ to another

such set can sometimes be carried through easily by the

Jacobian transformation theorem proved in 5*3 if we use as

the determining function

S = 2a,A, ........................(1)

where the /3t (or the a
t) are expressed in terms of half the

variables of the new set.

Let us take as three of the variables of a new set, I, g, h,

defined by

so that i = /*(- 2ax)~^
-

t.

Hence S, expressed in the required form, is

S = ^(-2a1)^l-al t-^a2g + aB h.......... (2)

If the other three new variables be L
y 0, H, we have, by

5'2 (3),

r d$
/- ^ \ i /

- ^ 9$ rr ^S
i = _ =/t (_2a1ri=VMa )

(?== # = ^ =
3.

......(3)

The remaining three equations are automatically satisfied. Also

H'-H + -R-*-R + .............(4)

Thus this set, which is that used by Delaunay, satisfies the

equation

_ ......(5)

where L = V'pa, I = nt + e tsr,!

......(6)

cos

9-2
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The variables in each of the two groups are homogeneous;

L, 0, H are angular momenta or, since the mass acted on has

been divided out, areal velocities. If we put /JL
= n2a8

,
the

common factor "Ja/j, becomes na2
.

5*13. The modified Delaunay set.

If we use the determining function S Ll + Gg + Hh, in the

form

the equations of transformation show that L, G L, HG and

I -f g -f h, g + h, h form a canonical set. We shall denote them

by ci? wit so that

d = v^a, ivi
= nt -f e = mean longitude,]

c2 = Vyu,a (Vl (? 1), w2
~ TZ = l ng- of apse,

c3 = \/y^a (1 e
2
) (cos i 1), w^ long, of node.

...... (1)

The Hamiltonian function is unaltered and is equal to R -h yu,

2
/2ci

2
.

When expansion is made in powers of e, i, the element c2 is

divisible by e2 and c$ by i* properties which make this set

useful in planetary problems.

5*14. A set given by Poincare'*.

This set is ci, p%, PB', w, q%, qs> defined by

p2 = \/ 2c2 sin w, q ?i
= V 2c2 cos sr,

jt)3
V- 2c3 sin 6, </3

= V 2c3 cos ^,

where 02, CB are defined in 5*13 (1). That it is canonical can be

tested by showing that

dpiSqz dq^pz = dczBw2 divz Sc2t

with a similar equation for the suffix 3.

This is a particular case of a general theorem f which states

* Les Nouv. Mtt. de la Mtc. Cel. vol. 1, p. 30.

f C. A. Shook, I.e. in 5-5.
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that if two variables p2 , fa are related to two canonical variables

C2 ,
w2 in such a manner that the Jacobian,

pz , qz are also canonical variables.

The Hamiltonian function is E -f /*
2
/2ci

2
,
as before.

This set is useful because the approximate values of p2 , q% are

V/t . e siri -GT, V/xa , e cos t*j,

when e
8

is neglected, and those of
^>3 , f/3

are

e
2
) . i sin 0, V/xa ( 1 e

2
) . i cos 0,

when i
3

is neglected, so that the disturbing function is develop-

able in powers of p2) p$, 72 , </3>
such a development replacing

powers of e, i, and cosines and sines of multiples of -or, 6. The

possibility of such a development depends on the association of

powers of e with multiples of r, and of powers of i with multiples

of when the angles are expressed in terms of tsr, r', and the

mean longitudes. See 4*15,

5*15. The non-canonical set a, eit PI, w, r, 0, ?0A0re M; = H 4- e,

ex - s/2 (1
- \/l - e*)

= ^ + ^e
3
..., T! = (1

- cos i) Vl
- e

2
.

...... (1)

The disturbing function is not usually expressed in terms of

the preceding canonical sets of elements. The angular variables

are present explicitly, but the remaining elements are mixtures

of a, e, i which are present explicitly. The same is true of the

coordinates. For calculation, it is usually easier to adopt elements

which are more directly related to those which are explicitly

present in the ordinary developments ofR and of the coordinates.

The equations satisfied by such elements are not canonical.

The definitions of e\, FI given in (1) show that these variables

are related to d, c2 ,
c3 by the equations

cx =V/ua, c2=- iei
2
V/xa, c3 = Ti^pa....... (2)

The variables w, or, are the same as those denoted in 5'13 (1)

by wi, u'2, w^.
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The transformation to the new variables is most easily effected

by forming their variations from (2) and substituting them in

the left-hand member of the equation,

The process is quite straightforward. After the variations

have been formed, it is convenient to use the equation fju
= n2 a3

by putting V'pa = ulna, V/j/a = p/ncP. After rearrangement, we

obtain for the left-hand member of (3) the expression

S0

multiplied by p/no
2

.

Since
/-c

2
/2ci

2 =
/x/2a, we have, if R be supposed expressed

in terms of the new elements,

-^
--

o
3o. 2tt

2

,

-^-~
SlV +

mu oiv

which is substituted in the right-hand member of (3).

Since the variations of the new elements are, like those of the

old elements, independent, we can equate their coefficients on

the two sides of the equation. On solving the six equations

thus obtained so as to isolate da/dt, dei/dt, ..., we obtain

1 da _ _ 2 1 dn = 2na dR
a dt

~
3 n dt?

~~

^6 dw '

dw
__

2?uta 3JB Jiae^dR naTidR
dt

IUL
da %IJL dei p, 3Fi

_
3

dt

dt

nadR

/M 9-or

nae^dR

90
naT^R
p~~ dw '

d9 na dR

The objective in this transformation is the isolation of deriva-

tives with respect to a, so that the operator D, which plays so

large a part in the development of the disturbing function, may
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act only on those portions which are specifically set forth in

Chap. iv.

Since R has the dimensions, mass divided by distance, and n

has the dimension of the inverse of a time, the factor p/no?

reduces all the equations to relations between ratios.

The right-hand members of all the equations except the second

contain the small factor present in R. The value of n found from

the first equation is to be substituted for the term n of the

second equation before the latter is integrated.

The relations

* = *l(l-l*M 2,;^1 (l-iV)-*, ......... (5)

deduced from (1) and from e = 2iy/(l -f rf\ permit R to be easily

expressed in terms of e\\ ei e, 2rjei are approximately -J-e

3
,

so that in many problems it would be possible to neglect these

differences. It is recalled that e
y
and therefore e\, is present in

a as defined in the developments of Chap. IV
;

it is also present

in I\. Hence if R be developed as in that chapter, we have to

substitute for dR/dei in the equations (4), the value derived from

/dR dRdT lda\ de
I ^ -f- f=i ^~ 4- DLL . 1 f

-
,

\ce 01 oe a ?e/ de\

when dT/de is formed from F = I\ (1 e
2
)~^ and de/dei from (5).

For dR/dTi we have (dR/dT) (1 -e2
)-*.

5*16. The non-canonical set a, ey
F or i, w or e, w, 6.

This set is deduced from 5*15 (4) by means of the relations

5*15 (1) or 5*15 (5), through the usual process of a change of

variables from e\ to e and TI to F. The result is the following

set of equations

__ ^_
a dt 3n dt~~ /A dw '

dw 2na dR e*Jl e
2 na dR F na dR_ ^ r> ._ fl_ 1 _______ ______ _ _

_j_
_- _ __

dt
IJL

da l-fVl e
2

A6 de Vl - e
2 P ^F'

de ,--o na dR e A/1 & na dR_ ._. _ V 1 6 _ _ --" __ ___
dt
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dfff __ i~, nadR F na dR
~dt~

~
^e'de vfT:^ 9F

'

30

This set is slightly more convenient than the older form in

which 61, i replace w, F respectively.

The definition of 61 is usually given by means of the equation

w nt -f- e = I n dt -f ei ,

so that dei/dt = dw/dt n. And as e occurs in R and in the co-

ordinates only in the combination nt -f e, we have dR/Sw = dR/de.

Nothing is gained by the substitution of ei for w, except perhaps
a separation, in the case of the long-period terms, of those

portions which have the square of the small divisor as a factor,

from those which have the first power of this divisor as a factor.

The substitution of F = 1 cos i for i is advantageous because

i occurs in the disturbing function only in the form cost, or

rather cos / when the orbital plane of the disturbing planet is

taken as the plane of reference. The older form can be at once

deduced by means of the relations,

rfF . di -r, dR .

.,
. dR

5'17. The case of attraction proportional to the distance from
a fixed origin.

An example of such a gravitational force is that on any one

of a spherical arrangement of particles with a mass-density
which is uniform throughout the sphere. Since such an arrange-
ment cannot be exactly maintained under the Newtonian laws

of force and gravitation, the force and resulting motion must be

considered as approximate only. Another similar example is

that of an arrangement of particles in an ellipsoid of revolution



16, 17] FORCE VARYING AS THE DISTANCE 137

with uniform mass-density: the force on a particle in the

equatorial plane varies directly as the distance from the centre.

In the spherical case, the force is pmr, where m is the mass

of the particle, r its distance from the origin and /j,
is 4?r/3 times

the density multiplied by the gravitational constant. In the

ellipsoidal case, //, depends also on the eccentricity of the

ellipsoid.

The force-function for these ideal cases is $fj,mr
2

. Let mR
denote the force-function for the remaining forces which act on

m. If #1, #2 > #s he the rectangular coordinates of m referred to

fixed axes through the centre of the system, the equations of

motion will be

with >* = x + a

When R =
0, each coordinate describes a harmonic motion

with period 2?r/n, where n2 = p, and the orbit is an ellipse whose

centre is at the origin.

As before, the elements of this ellipse may be considered as

new variables for the examination of the case R + 0. A canonical

set, with Hamiltonian function R, in which /A is replaced by na
,

is the following:

1Q
= e -or, y = w 0, h = ff.

If 1 be replaced by / = nt + e r, the only change needed is

the replacement of R by R nL as the Hamiltonian function.

The proof is left to the reader. A modification similar to that

of 5*13 may also be made.



CHAPTEK VI

SOLUTION OF CANONICAL EQUATIONS

6*1. The main object of this chapter is the development of

methods of solution for the types of canonical equations which

have been obtained in the previous chapter. All the methods

depend fundamentally on the assumption that the variables

differ from constants by amounts which have as factor the ratio

of the disturbing mass to that of the primary, and therefore

that the variables may be developed in powers of this ratio. As

long as we confine ourselves to the first power of this ratio there

is little choice between the various methods; substantially, they
are equivalent. It is when we need to take into account higher

powers of the ratio that differences appear, mainly in the amount

of calculation which is necessary to secure the desired accuracy.

The fundamental idea of the method of Delaunay, namely a

change of variables such that the new variables are more nearly

constant than the old ones, is used throughout. But the applica-

tion of the idea is different from that which Delaunay made to

the solution of the satellite problem, where the changes of

variables were very numerous*. Here it is shown that one

change of variables is, in general, sufficient for the solution of

the majority of planetary problems provided the new variables

are suitably chosen. Much of the discussion in the chapter

hinges on the amount of labour which the development and

solution of the equations for the new variables requires.

6*2. Elliptic elements or variables.

In Chap, v it has been shown that the equations of motion

can be put into the canonical form, and methods of changing
from the coordinates and velocities to other sets of variables

are developed. Particular sets of new variables which are con-

* See for example, Tisserand, vol. 3, Chaps, xi, xn; E. W. Brown, Lunar

Theory , Chap. ix.
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nected with motion in an ellipse have been chosen and the

equations satisfied by these new variables have been given in

canonical form; other sets are given in non-canonical form.

Various points of view of these new variables, usually called

the elliptic elements, are given. It was, however, pointed out

that for the purposes of mathematical development, they should

be regarded merely as a set of new variables which are connected

with the coordinates and velocities by a set of equations, the

latter remaining the same for all values of the variables.

These new variables have the property of becoming constants

or linear functions of t when R = 0. In one set, they are all

constants; in the other sets, one of them is a linear function

oft.

The canonical set denoted by a, Wi and developed in 5*13, will

be used in this chapter. Only slight changes, easily made, are-

needed if the set GI , pa , p3 , MI, qz , q*> given in 5'H be used. Since

R is not in general developed in terms of canonical elements, it

is shown how the work may be so adapted that the developments

of R given in Chap. IV may be used.

63. The disturbing function.

In Chap. IV, the disturbing function has been expanded into a

sum of periodic terms on the assumption that the motion of each

planet is elliptic. This restriction can now be removed, so far as

the disturbed planet is concerned. Since the development consisted

in the replacement of the coordinates by their values in terms

of the time and the elliptic elements, the relations between them

being those referred to in 6'2, the development is unchanged if

we consider these elements as variables.

The relations between the coordinates and velocities and the

new variables C;, Wi are independent of t explicitly; in elliptic

motion t is implicitly present in Wi only. Thus the only way in

which t is explicitly present in R is through the coordinates of

the disturbing planet, and it appears actually only through

id' = n't + e' or <f
= n't 4- e' - tsr'. If the motion of the disturb-

ing planet is not elliptic, its deviations from elliptic motion can
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be expressed as variations of its elements, so that the given

development of R can still be utilised. The necessary modifica-

tions of the solution are not difficult; they are exhibited in one

particular case (6*19 below).

The possibility of expanding R in power series when the

canonical elements C;, Wi are used has to be considered. Since

d = V//,a, it is evident that Ci can replace a without difficulty.

Also, by 515 (2), we have

and since, by 515 (1) or 515 (5), we can replace e by e\ and

F by TI in the developments, it follows that developments in

powers of e, F are replaceable by developments in powers of

(-2c2/Ci)^, ( c8/ci)^. Derivatives with respect to c2 ,
C3 will

implicitly involve the presence of negative powers of e, F, and

it will be necessary to show that these negative powers disappear
from the transformed disturbing function. The difficulty does

not arise when the variables Ci, p*, p$, w1} q2j q^ are used, be-

cause R and the coordinates are expansible in positive integral

powers of p2) p9) q 2 , 73 (514).

We have, approximately, p2 e sin sr, qt
= e cos BT; suppose

that ?o, ^o ftre the undisturbed constant values of e, *&. We then

get
e sin w = CQ sin OTO + perturbations,

e cos r = CQ cos tzr -h perturbations.

While the perturbations vanish with the disturbing mass, they

do not in general vanish with e$. Hence, even if the observed

eccentricity of the disturbed body is so small as to be negligible,

we cannot assume that e is negligible in finding its perturbations

by the method of the variation of the elements. Thus, while

geometrical descriptions of the motion are simple in terms of

e, -or, the analytical development fundamentally requires the use

of e sin tzr, e cos w, as convenient variables. The general control

of the work is, however, much easier with the use of the former

than with that of the latter variables. In certain cases, particularly
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those in which CQ is very small, and also in the discussion of the

secular perturbations, it is advisable to use the variables p%, q%

rather than c%, iv2 . Similar remarks apply to js, q$ and to F, 0,

but the problem for these latter variables is less difficult because

R is expansible in positive integral powers of F and therefore of 03.

The solution of the problem of the apparent presence of

negative powers of e is given in the theorems of 6'4, 6*15 below.

6*4. D*Alembert series.

The association of powers of e with multiples of -or, of powers

of e
r

with multiples of or', of powers of VF with multiples of 0,

and of powers of a with multiples of w w', which have been

pointed out in the development of R (4*15), and in certain of

the developments of Chap, in (3*3), are so useful that it was

found convenient to give a designation to such series: we have

named them d'Alembert series*.

Certain of the expansions of Chaps. II, ill, have been seen to

be of this type. Certain other series are easily related to it.

Thus, sinjf, cosjf are not d'Alembert series with respect to the

coefficient e and the angle g, but sinj(fff), co8J(f ff) are.

It is evident that if we have a d'Alembert series with respect

to a coefficient A and an angle #, the series is formally expansible

in powers of A sin#, A cos#, and in powers of A exp. #V 1,

A exp. x V 1. A general property of these series is given in

the following theorem.

If f, f are d'Alembert series with respect to the coefficient A
and the angle x, then the Jacobian,

d (A
2

, x) 2A \dA dx

is also a d'Alembert series with respect to A, x.

Let _ __

y = A exp. x V 1, 2 = A exp. x V 1, yz = A 2
.

*
It appears that d'Alembert was the first to notice this property of the dis-

turbing function with respect to the eccentricities and longitudes of perihelia, in

his memoir, "Becherches sur diffe'rens Points importans du Systeme du Monde,"

Mem. Paris Acad. Sc. 1754.
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The transformation of the Jacobian from the variables A, x to

the variables y, z gives

8T_ a/'N_
2A \ABy Adz) V dy dz )

d
+

z

d A

-,
\dz dy 'by dz /

'

since yz = A2
. The definitions of /, /' make them expansible

in powers of y, z and therefore their derivatives have the same

property. The Jacobian is therefore a d'Alembert series.

Thus while the separate terms of the original Jacobian are

not d'Alembert series, the divisor A disappears from the Jaco-

bian when it is expressed in terms of A, x. This is the property
we really require to know.

6 '5. Other properties of It.

It is useful to recall certain of these.

(a) It is homogeneous and of degree
- 1 with respect to

length. The variables GI are homogeneous and of dimensions

(mass)* (length)* or, with the unit of mass actually used, of

dimensions (time)"
1
(length)

2
.

(6) It depends only on relative coordinates and is therefore

independent of the origin of measurement of the angles. The
anomalies are by definition independent of such origin. When
R is expressed in terms of gt g' , -or, txr', 6, the only forms in which

the latter three angles are present are their differences, usually

expressed by tzr txr', tar -f & 26.

(c) It is a function of the coordinates onlyand is independent
of the velocities. This property was utilised in forming the

equations of motion. One result is the equation

d ^ a V? dR
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which is a consequence of the equation

a result which is deducible from the canonical equations in

513, with the help of the relation 7i =
The relation (1) may also be written

dR dR dR

by the use of the canonical equation for ci.

When the two bodies are supposed to move in fixed ellipses,

the relation (3) is evidently true, since t occurs only through

y, g\ the term dR/dt enters through g' only and dR/dwi through

g = wi TZ only. Its importance is due to the fact that it is still

true when the elements are variable, but it must be remembered

that the term dR/dt is still a derivative with respect to t only as

the latter is present through the coordinates of the disturbing

planet.

(d) Since the term ra'/a' in the preliminary expansion of

R given in 4'2 does riot contain the coordinates of the disturbed

planet, R has the factor w'a2
/a'

3 when a' > a. This factor may
be written (m'/a) (a/a')

3
. Since the undisturbed force-function

is
fji/r,

it follows that the disturbing effect of an outer planet

has as factors the ratio of its mass to that of the sun and the

cube of the ratio of the distances of the two planets from the

sun.

If the outer planet be the disturbed planet, the first term of

R can be included in the elliptic force-function. We can then

consider R as having the square of the ratio of the distances as

a factor instead of the cube.

6'6. Elimination of a portion R t of the disturbing function.

In Chap, iv, R has been expanded into a sum of terms having
the form

R = 2KcosN, N=
ji wi +j2 iu2 +j3w3 +ji'wi +jz'^2, (1 )

where w\ = n't + e' g' + /, w2
' = w',
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and the jt-, J/ are positive or negative integers or zero, the sign

of summation referring to their various values. The coefficients

K are functions of a, e, /, a', e' and therefore of Ci, c2 , 3, a', e' t

and they contain the mass of the disturbing planet as a factor.

Of. 4-15.

Put R = Rt + Rc ,
........................ (2)

where R t may contain any or all of the terms for which the

relations ji j\
= do not hold. Thus for all terms in Rt ,

the

value of v defined by

"=jiw+jiV, n = ^/c^ ............... (3)

is never zero. It is here assumed that n/n
r

is not in the ratio of

two integers ;
this case, if it does occur, must also be excluded

from Rt it will be considered in Chaps, vui, ix.

The elimination of R t will be effected by a change of variables

with the help of the Jacobian transformation theorem (5'3).

The new variables will be denoted by

Cto, w#, i=l, 2, 3,

and the suffix zero will in all cases denote that the old variables

have been replaced by the new. Thus

NO =ji MIO 4-^20 +j3 MM +ji'wi +j*W2 ....... (4)

Take as the transforming function

Sy = :E;Ct ^o-S, S=S~smJV , ......... (5)

so that S is a function of the three old variables d and the three

new variables w^; 8 is to contain only those terms present in

Rt with the divisor v appropriate to each term. It will be

noticed that S can be regarded as the integral of Rt taken on

the supposition that the ellipses are invariable; this fact, how-

ever, is not at this stage to be regarded as having any physical

significance since (5) is merely a definition of S.

The equations 5*2 (3) give

dS dS _
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as the six relations connecting the old and new variables. Also

01 01 V \ V

by the definition (3) of v. But when (5) is substituted in (6),

the equation for CIQ becomes

v

whence by (3)
dS ^ -rr ~\T M / \

~ 7 = - ^K COS NQ -f
~-

3 (Ci
~

CIQ).
dc Ci

The new Hamiltonian function is

The equations (5), (6) show that Wi WM has m' as a factor.

Hence cosN cosN has the same factor, and K cosN
has m'2 as a factor. Also, since Ci CIQ has m' as a factor,

)

...f,

The last two terms of (9) can therefore be written

P* 3(Cl -c10)
2

2 ,

(10)
2cio

2 2c10
4 ^ T -'

the first power of Ci CIQ disappearing. Finally, since Rc R^
has the factor m'2

,
the right-hand member of (9) may be written

^co-H 9^~~2
+ terms w^ factor m'2

(11)

If, therefore, we omit terms having the factor m'2
,
the equations

satisfied by the new variables are
/

^2
v

These have the same form as the original equations, but the

terms present in Rt have disappeared.

B&SPT 10
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At this point it is convenient to indicate the general plan of the remain-

ing portions of this chapter. Two choices of the terms to be included in Rt

will be made. In one of them, Rt
contains all the terms for which *>4=0 ;

Rc then contains only those terms which produce the so-called secular

motions of the elements. In the other, Rt contains the short period terms

only, so that Re contains the long period and secular terms.

It is for the latter choice that the calculation of the terms in (10)

dependent on m'2 will be made. Several methods for carrying out the work

to this degree of accuracy will be outlined, and certain cases where it is

possible to obtain numerical results with but little calculation will be

developed.

It may be pointed out that the work as far as equation (9) is quite

general in character, no approximation being involved. It in only after this

point that we assume the possibility of development in powers of m' and

proceed to find the first terms of the expansion.

THE FIRST APPROXIMATION

6*7. First approocimation by change of variables.

Let R
t
contain all the terms for which z>=i=0; then Ec is

independent of Wi, w\ and therefore of t explicitly.

The first approximation is obtained by neglecting all terms

which have m'2 as a factor. The variables ct
-

,
WZQ therefore

satisfy 6*6 (12). Since RcQ is obtained from Rc merely by

substituting the new variables for the old, it follows that RcQ

is independent of WIQ, t. The equation for CJQ therefore gives

j~ 0, CIQ = const. = ki ,

and the equation for WIQ is

_ _
dt Cio

3
9cio ki* 9cio

"

When m' is neglected, the remaining variables are constant

and then

M2

^io=r3^-fi, w = aa, W3o = a3 ; c,-
= *i, ...... (1)

KI

where a^, ki are arbitrary constants
;
these values may be

substituted in all terms containing the factor m' and therefore in

R<$ . As R& does not contain WIQ , it follows that all the derivatives



6,7] FIRST APPROXIMATION 147

of jRco will become constants. The solution of the equations

6*6 (12) to the order iri will therefore be

M -<2>

c<o
= ki + ~t, w =

<
- T^ * * = 2, 8,

dWi-o dCio

in which the coefficients of are all constant.

The values of the new variables in terms of t having been

obtained, the old variables are to be calculated from the

equations 6*6 (6) with the value 6*6 (5) for S. But since

S, Ci ciQ have the factor m' we can replace ct
- by ct0 in S

and in its derivatives. We therefore obtain

Finally, since the values (1) differ from (2) by terms having
the factor m', we can replace WM, c^ by their values (1) in SQ

and in its derivatives.

These results may be restated in the following manner. If

It = R -f ^K cos JV, jV =jiWi +J2w2 + JBw2 -f ji Wi 4- jz w* >

where Rc contains all terms for which ji
=

ji 0, the values of

the variables c, wt
- to the order in' are given by

cos N,

ij? dRc\^ v a (K\ .

y~
-

-5
U - S A si

^i
3

3ci/ dcAv)
c ^ v .=

i -f ( y~
-

-5
U - S A sin3

...(4)~ t + 2ji cos
OWi V

C4 ^ . ..
wf =at

- - -^ ^ - S -
-5- sm Jv,

dCi // oCi

where i = 2, 3
;
in all the terms of the right-hand members the

constants kiy &2 , &3 are substituted for d, ca ,
c3 ,

the constants

2, 3 for ^2i ^3> and the value i + /^
2
/&i

3 for wlf and i/ is

defined by

"=ji+ji''......................(5)
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Equations (4) may be written in the following form. If we put

K
^ = *flc + S -

sinjy, ..................(6)

M2

d - ki = Sci, MI - i
-
-3 1 = Swi, Wi-ai = Swi, . . .(7)
#1

d *-, *~g .........................(8)

the undisturbed values (1) being substituted in the right-hand

members. These are called the perturbations of the elements. It

must be remembered, however, that the coefficient of t in Swi is

to be included with fjf/ki
3 in comparing with observation.

6*8. Secular and periodic terms.

The coefficient of t in wt is deduced from observation and is

known as the 'observed mean motion.' If we denote it by T?OO>

we have

If we define oo by means of the equation oo
3
^oo

2
/*, we obtain,

to order m'
21 9Re\ ,

But since Ci
2 =

/x-a, the equation for Ci gives, to the order m',

Cl
2

A-!
2
/, 2~.K

A7
\

-* = -M l -f
-

Sjj cos N
,

/JL /JL \ ki
J*

V J*

/, 2 1 aftc 2 . K .
7\

a =oo(l~ -gr
+ r^i-cos^) . ...(3)

\ OWoodCi A?i
"

1^ /cj-^
or

Thus the mean value of a is not oo but this quantity with a

small additive portion.

The coefficients of t in 02, 03, w;2 , MS are known as the secular

parts of these variables. An important result is the fact that

Ci, and therefore a, contains no secular part to the order m'.

Since the coefficient of t in Wi is the observed mean motion,

the secular part of Wi is defined as any part which it may have

depending on t
2
, tf

3
,

... . To the order m' there is no such part.
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The coefficients of the periodic terms in wiy w2 , w$ depend on

the derivatives with respect to Ci, c?2, c3 of K/v. Since v is

independent of ca , c3 but does depend on GI, we have

K\ldK9
(K\o~ I

-
I

oCi \ v /
*

since n =
jjf/Ci

3
.

The presence of the square of v as a divisor in Wi but in

none of the other elements, is of fundamental importance in

the theory of the long period terms which have small values

of vjn. The simple manner in which this divisor arises with the

method of solution adopted here is noticeable.

6'9. Transformation to the elements a, e\> T\ or #, e, F.

In the developments of the disturbing function, the angles w^ or quite

simple linear functions of them, are used, but in place of the ct we find

the elements a, e1? rl5 related to them by the formulae 5-15 (2), or the

elements a, e, r, shown by 5'13 (1).

If /be any function of the <S'
t-,
we have, with arbitrary variations of them,

From 5*15 (2) we deduce

(2)

On substituting these in (1) and equating the coefficients of the fict ,
we

obtain

\ l

V /i ^

a/_ l_ l^df d__ \_ty'

The derivatives of A' with respect to the c$ may be found from (3), and

the differences of ct, e1 , TX from constants by means of (2), if we put therein

dc% =*Ci k$.

Similarly, for the elements a, e, r, we find

sa-- aCl ,
ae= _(lz^ /i

na ^ \e
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and

df _ 1
/ df e(l-erf ?/_ r d/1

"

cci

~~
no? \ da i -j_ (j

_ e2)i
96

(i
_ evfi crj

*

d#2 net? \ e c!e n e2)^ c*rj
'

a/;= i i a/

A difficulty occurs in consequence of the presence of the divisor e\ or e

in the expressions for 9//?c2 . But this latter derivative is present only in

the expression 6*7 (4) for w2 ,
which in turn only appears in terms having

the factor e in the expressions for the longitude, latitude, and radius vector

in terms of the elliptic elements. It is for this reason that it is usual to

give the perturbation of fisr in the form eStzr.

This solution of the difficulty is sufficient when we confine ourselves to

the first power of ra', but further consideration is necessary when we

proceed to higher powers. The solution is then contained in the theorem

of 6*4, applied to the development given in 6'15.

6*10. The perturbations of the coordinates.

The coordinates are supposed to be expressed in terms of the

elliptic elements. If, then, we define the perturbations of the

elements as in 6'7, the perturbations of any coordinate x to the

first power of m' will be given by

"~*

\dci
l

d'Wi / ~*\dC{,dtVi dividci/'
"'

The latter form again introduces a function of the type con-

sidered in 6'4. The periodic part S of
i/r

is a d'Alembert series

and the longitude, latitude, and radius vector, when expressed
in terms of the elliptic elements are d'Alembert series. It follows

that the periodic parts of the perturbations of these three

coordinates are also d'Alembert series. It should be remembered,

however, that Scz/e, eSw% contain perturbations which do not

vanish with e.

611. This form of the solution, in which powers as well as periodic

functions of t are present, is that which is usual in applications to problems
of the solar system. The results in this form usually have sufficient accuracy

during the limited intervals over which observations are available. It is

evident that a continuation of the process to powers of m' beyond the first
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will lead to terms containing higher powers of t and to the presence of

periodic functions of t multiplied by powers of t. That it is possible

formally to express the perturbations wholly by periodic functions of
2,
at

least in a first approximation, may be indicated in the following manner.

Instead of the variables c2 ,
w2y let us use p2 > q2 defined in 5*14, and for

simplicity let us neglect the inclination. The canonical equations for these

two variables are
dp2 dR dq>2 dR

,-jx

dt dp%

The process for eliminating the terms present in Rt can still be followed :

it leads to new variables p20 , q.2{) witli the same function 7^, which is

the portion of R independent of w\, MI'. The development of R as far as

the second powers of the eccentricities is given by 4-32 (2), and the 'non-

periodic part,' depending on the eccentricities, is given by putting i=
in the first line of the expression, and i= 1 in the second line. The

resulting terms have the form*

(2)
ct

where P, Q are functions of a/a'. Just as before we show that e and there-

fore a is constant. To the second powers of the eccentricities, we have, by

5-14, .

e sin 37=p2/Ci >
e cos w= q.2/ci .

Since a is constant we can use units such that
/z, a, w, are all unity. If we

put e' sin v^=p
f

,
e' cos w'= #', the expression (2) may be written

{iP (P2
2+ ?2

2 + P'
2+ q'

2

)
+ Q (pp' + qq')} m' a.

With this portion of R the canonical equations (1) give

leading to

and furnishing the solution,

^2=a ~-5p' + C'sm(m'aP^ + />), ^2
=-

^ g' + C coa (mf

where {7, Z) are arbitrary constants.

With the adopted units, the period of revolution of the planet is 2?r.

Since aP<l and m'<'001 for the largest planet Jupiter, it follows that the

period of the periodic parts ofp2 , q2 is verj l ng compared with the period

of revolution of the planet in general, it is greater than 10,000 years.

Hence, for intervals of a few centuries, we can develop these periodic

* As a contains e2 ,
e'2

, functions of a must be expanded as far as e2 , e'
2 in

powers of these parameters.
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terms in powers of t and still obtain the needed accuracy without additional

calculation.

The practical objection to this method of procedure is the complication

caused by the introduction of a new argument. Still another argument
would be introduced by the solution of the equations for p3 , #3. Thus, four

arguments would be present. Even with a single disturbing planet and the

calculation confined to the first power of ra', the work becomes complicated
as soon as we proceed beyond the second powers of the eccentricities and

inclination and the labour becomes almost prohibitive in the case, for

example, of the mutual perturbations of Jupiter and Saturn.

In satellite theories, the periods are so short that expansions in powers
of t are impracticable and the four arguments must be retained. On the

other hand only a few powers of a, and consequently a few values of i, in

the expansions of Chap, iv, are needed. Part of the compensation thus

afforded is lost by the fact that many powers of the disturbing mass must

be retained.

The general theory of the secular motions of the elements, to which the

solution just given constitutes an introduction, will not be given in this

volume. The reader is referred to other treatises, particularly to that of

Tisserand, vol. 1, Chap, xxvi, and to later work referred to in Ency. Math.

Wiss. Bd. 5. A warning concerning frequently quoted results, which give

limits to the eccentricities and inclinations, should be made. These investi-

gations, in general, take into account the first powers of the disturbing

masses and the earlier powers of the eccentricities and inclinations only.

When higher powers are included, approximate resonance conditions have

to be considered and these may alter the limits extensively over very long

periods of time. Thus while such results may be used with a fair degree of

confidence in cosmogonic speculations for a few million years from the

present time, we have no present knowledge as to the facts over intervals

of the order of 109 years.

6'12. Long period terms.

We have seen that in a first approximation we may sub-

stitute elliptic values for the coordinates in the development of

the disturbing function. In Chap, iv, this development gives

any angle N in the form

iK -
wi') jg j'g' k(wi +< -

2(9),

where i, j,/, k are positive integers or zeros. The coefficient of

a term with this argument contains the factor (cf. 4*15)
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When elliptic values are used, the coefficient of t in the

argument is

v = i (n n') jn j'n
r

k (n + n').

It follows that if we have any argument in which the coefficient

of t is jin ji'n', the order of its coefficient will be \ji ji ,
as far

as powers of the eccentricities and inclination are concerned.

A long period term is defined as one in which

vjn (jiii j\n') -r n

is small compared with unity: the secular terms for which

ji =j/ = are excluded from this definition. Since it is

supposed that we are using the methods developed above, n

should properly be replaced by ??oo, but the suffix may be

omitted in the discussion. Since n, n' are usually positive we

have to consider cases where n'/n is nearly equal to the ratio of

two integers. The word 'small' as used above is indefinite in

both the theory and its applications; in general, if v/n is less

than about one-third, so that the period of the term is longer

than three times that of the revolution of the body round the

sun, the term would be treated as one of long period.

Since n, n' are obtained independently from observation it is

always possible to find terms in R for which v/n is small. The

critical values of ji, ji are obtained by expanding n'/n as a

continued fraction. If p/q be any convergent, then for any

convergent after the firsfc, ji
= p, j\

= q will give a long period

term. But as the order of the coefficient is \p q\ such a term

may be quite insensible to observation even after receiving

the factor 1/iA

For example in the case of Jupiter and Saturn where

w = 43996" (Saturn), n' - 109256" (Jupiter), these being the

mean annual motions, we have

2n ?&'= '483?i, order 1
;

5n - 2n' = '0334^, order 3;

72n - 29n' = - -0162*1, order 43.

The third of these is obviously insensible.
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In considering the degree of approximation needed, we can

make use of the property of a continued fraction which states

that if p/q, p'/q' are consecutive convergents, p' >p, no fraction

whose denominator lies between 9, q' gives so close an approxi-
mation as p/q. Thus if q' q is large, p/q is usually a close

approximation, v/n is very small and higher convergents are

unlikely to give sensible coefficients. An apparent exception to

the argument is the case of multiples of N when the term with

argument N has a sensible coefficient. This case is dealt with

in the second approximation (cf. 618). In the case of Jupiter

and Saturn, the term for which v = Wn 4w/ has a sensible

coefficient; that for which i> = 15/i 6n' is insensible.

We have seen that the element Wi is that chiefly affected by a

long period term since the term in this element has the divisor i>
2
>

while those in the other elements have the divisor v only. In

other words, it is the mean longitude which shows the principal

effect. But there is an associated short period term in the true

longitude which may have a coefficient comparable in magnitude
with that of the long period term and which arises in the

following way. The determination of the perturbations of e, TV,

or more properly, of ecos w, e sin or substantially requires the

division of the term in the disturbing function by e (6*9). Thus

the term in R substantially acquires the divisor ev when it

is inserted in the true longitude. Now e, ra occur in the

true longitude principally through the chief elliptic term

2esin(w1 cr) and the long period term, therefore, gives two

terms with motions n v. As v is small, these have nearly the

period of revolution as periods. One of the two coefficients is

usually quite small owing to the association of powers of e with

multiples of tsr: the proof of this statement is simple and is left

to the reader.

The fact that terms of very long period are usually of very high order

would seem to suggest some theoretical limit beyond which such terms

could always be neglected. But, as far as is known, the observational

determinations of the constants which give the mean motions are

substantially independent of those which give the eccentricities, when the
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determination is spread over many revolutions of the planet round the sun.

Thus the ratio of ej e'*'rk to v or v 2 has no definite limit and a coefficient

may be very small or very large according to the values chosen for n, ri.

From the practical point of view the difficulty is surmounted by supposing
that such terms, having periods very long compared with the interval of

observation, can be expanded in powers of t. The constant parts of the

expansions are absorbed in the arbitrary constants of the solution and, in

the case of the true longitude, the coefficient of t is absorbed in the mean

motion; the remaining portions are usually quite insensible during the

interval.

There is, however, an upper limit because of the fact that when the

coefficient of the term exceeds a certain magnitude comparable with STT,

the procedure previously followed becomes invalid : the phenomena of

resonance then begin to appear. This limitation does not remove the

difficulty. The form of tho mathematical development has to be changed
and the argument proceeds on different lines. The complications which

arise make the problem exceedingly difficult : some indications of them

will be given in Chap. vin. It may be pointed out that one of the

difficulties is due to the fact that the period of the term may become

comparable with the periods of the so-called secular terms (6'8) and that

it is not then possible to treat them independently even in a first

approximation.

6*13. Other forms of solution.

Instead of the value of S written in 0*6, we might have used

T*

t> = ^ctQwt -f 2 --- sin N.

Here the rdles of c t-, wt are simply interchanged. A little con-

sideration will make evident the fact that in a first approximation
this form of $ gives nothing new: it is only in the second and

higher approximations that differences appear.

When the Poincar6 variables p^ q%, />3 , q$ are used, the

expansion of R takes the form

R = ZKc cosN' + 2 #. sin -ZV',

where N f = ji^i 4 ji'wi -f /8,

y8 depending on the constants of the disturbing body only. In

this form Kcy Ks are expanded in positive integral powers of



156 SOLUTION OF CANONICAL EQUATIONS [OH. vi

p*> </2> pa, #3 and are also functions of ci, a, e*. The transformation

function to be used is then

e-- sn cos #',

where the suffix zero has the meaning defined in 6*6 except in

(7ifc)o, (K8\, where it means that ga , #3 are replaced by 20 #3o>

while p%, p$ are left unchanged. We may also interchange the

rdles played by p, q.

THE SECOND APPROXIMATION

6*14. The calculation of the second approximation to the

values of the variables may be very laborious if advantage is

not taken of every feature which may help to shorten it. The

first step consists of an examination to discover what classes of

terms will give sensible coefficients or sensible additions to

coefficients found in the first approximation. Methods for the

calculation of the sensible portions will then be given and these

methods will be developed in such a manner that the actual

computation may be reduced to comparatively few operations.

There are several devices which can be used to obtain the

terms dependent on the squares of the disturbing masses. We
can follow the process of Delaunay which involves continual

changes of variables until the Hamiltonian function is freed from

all sensible terms for which the relations ji =*ji
= do not hold;

the equations for the final variables can then be solved by series

arranged along powers of t. Another plan is the substitution of

the results of the first approximation in the derivatives of R
instead of the elliptic values which have been used in finding

the first approximation ;
the equations are then again integrated

and the new portions of the variables calculated. Another

device which is sometimes useful is a method of integration by

parts which makes use of the fact that the derivatives of c\, c%,

Ca, w% t w& with respect to t have m' as a factor.

The most useful device is, however, the separation of the

terms of long period from those of short period and also from
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those which are secular. It will be seen that the second

approximations to the long period and to the secular terms can

be rendered almost independent of the first approximation to

the short period terms, so that they can be determined inde-

pendently of the latter. But the effects of the long period and

secular terms on the short period terms are usually sensible, and

it is these effects which become most evident in comparisons
with observations extending over long intervals of time.

The methods adopted to prove that these limitations are

possible are not necessarily the most convenient for the actual

calculation of the sensible terms, so that more than one of

the plans for continuing the approximations will be found

developed in the sections which follow.

6*15. The Hamiltonian function in terms of CIQ, WIQ.

The equations 6*6 (9), 6*6 (10) give, for the Hamiltonian

function of the equations for the new variables, the value

A -
1 .i (d

-
cio)

2 + Re + S^Tcos N - Stfcos N ,

^CIQ A CIQ

...... (1)

in which powers of c
i

i
-

CIQ beyond the second are dropped. This

last omission is equivalent to stopping at the order ra'
2

. We
need (1) expressed in terms of ct0 , W& to this order.

Since 8 has the factor ra', we have ct-=cto, ^ =
^,-0 when

ra' = 0. It follows that, as far as the first power of ra', the

equations 6*6 (6) give

and that, if/be any function of cif wiy t,

?\f 7\f

f(Ci\ Wi\ )=/(ct0 ; w#\ + 2^ (c,
-

Cfl) +^ (w<
-

to the same order. The substitution of (2) in this last equation

enables us to write it
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On applyiug this to %KcosN=R t
and to %K cos N0} we

obtain

V V ^ \T 7? i V /^tO 3$0 SRtQ 3$o\ f
.

2<K cos iv = JKtQ + i
(

~---- - - ~ ,
......(4)

\3ci0 9wt0 dwtfdcio/

(5)
CiO O

Since R already contains the factor ra', these results hold to the

order m 2
. The same application to the development of Rc may

be made. The second term of (1) evidently has the factor 'in'
2

and may be replaced by its value in terms of the new variables

by means of the first of equations (2).

Thus the Hamiltonian function for the canonical equations

satisfied by c,o, wt-o to the order m'2 becomes

Ft + Fc ................... (6)
2c10

2

where

/IT\

Fc

The expressions (7) contain the factor m'2
. The application

of the theorem of 6*4 shows that they are d'Alembert series and

therefore that they contain no powers of e, F as divisors.

If R t be defined to contain all the terms in which ji =ji =
do not simultaneously hold and no others, Rc and therefore ^ c0

will contain only the terms in which these relations do hold.

Since $o contains the same terms as those present in RM, it

follows that Fc is like R to in this respect, and therefore that the

secular portions which depend on the terms in which ^i
=jV =

will arise only from FI, Ft ,
RcQ .

The Hamiltonian function (6) will, however, be used below

only to distinguish between the effects of the short period and

long period terms, and for this purpose Rt will be defined to

contain the short period terms only. The investigation will show

what portions may be neglected in the actual calculations which

can then be carried out by a more simple method.
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A direct second approximation to the solution of the equations

for Ci, wit is easily seen to be given by

4. - 4. V _
Ci
"

Cio + ^
w*tofl

92 $o 9$o

These require the formation of the products of the derivatives

of SQ for each of the six variables. The method given in the

text confines the formation of such products to those in one

function, namely (6).

6*16. Influence of the short period terms in the first approxi-

mation on the second approximation.

Let Rt and therefore SQ contain only short period terms, so

that in 6*15 (6) there are no small divisors v or v* tending to

raise the magnitudes of the terms in FI, Ft ,
Fc . Suppose that

all these functions are expressed as sums of periodic terms.

These terms will have the same general form with respect to

the variables ct-o, wlQ that R had with respect to Ci, Wi, that is,

they have the form KQ cos NQ> where NQ is a linear function of

the WM, w\, Wz with integral coefficients, and KQ is a function of

the CM and of the elements of the disturbing planet.

The terms present in RcQ are all either of long period or

those for which ji=j = 0, while those arising from Fit Ft ,
Fc

are of the same character with additional terms of short period

but all having the factor m'2
.

If the short period terms were again eliminated by a Jacobian

transformation, the new variables would differ from CM, w^o

by terms having the factor m'2 and with no small divisors

present. As the largest value of m' in the problems of the

solar system is less than "001, and as an accuracy to *001 of a

short period coefficient is rarely attainable in comparisons with

observations, these portions can generally be neglected.

The long period terms present in J\, Ft there are none in

Fe because the product of terms of the form cos (at + a'),
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cos (-42+ A
1

), in which a is small and A is of the order of the

mean motion, gives rise to terms with arguments

(Aa)t + A'a'
have the factor m'2 and are additive to those in RcQ with the

factor m'. Thus these terms will merely change the coefficients

of the long period terms by amounts of the order of *001 of their

values at most, and such changes again are rarely sensible to

observation. The same result holds for the terms in which

ji=ji'-0.

Exception to these statements may arise on account of the

fact that when we differentiate with respect to c2o or 030 a

divisor of order e
2 or F is, in fact, introduced. In the method

adopted for calculation it is seen (last paragraph of 6*17) that

these terms of lower order disappear, so that the general argu-

ment is not affected by them.

Thus the short period terms present in the first approximation

can be altogether neglected in proceeding to a second approxi-

mation, or at most, only a very few, and those with the largest

coefficients, need be retained. It follows that the long period

and secular terms can be obtained to the order m'2 with sufficient

accuracy if we neglect at the outset nearly all short period

terms present in R.

As the apparent exception mentioned in the text always raises a

difficulty in the discussion of the canonical equations for the elements,

further details as to the occurrence of such terms may be of value.

According to the theorem of 6*4, Rc produces d'Alembert series in Fe

and is therefore free from these terms of lower order. Hence they will

only arise through Ft
. The divisor e2 will arise in F

t only through the

product (9/2w/<to>2o) (9>/9c2o). This may be written P+, where

' * 2 acgo 8w>2o 2 j

By the theorem just quoted, P is a d'Alembert series, and is therefore

free from the exceptional terms. As for
,
we note that elliptic values are

to be substituted and that then jRtQ=dS ldt. Hence, since derivatives with

respect to
, w%) , c^ are commutable we deduce

^"SSiUfcii
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On account of the relation between R, S this suggests that some second

order terms might have been included in the expression for S which would

have prevented the occurrence of these terms in the new Hamiltonian

functions. The fact that another method shows that they ultimately dis-

appear, indicates that the portions of this character which arise from the

solution of the equations 6'15 (8) which give ct> w^ in terms of
c,- , w^ to

the second order, will cancel the portions which arise through Q.

As a matter of fact, even if the method were used for calculation, the

terms would cause very little trouble. For we are actually interested only
in the long period terms present in

,
and the operator djdt introduces

the small factor v in such terms. The numerical effect of this fact would

be to cancel to a large extent that produced by the divisor e* or r.

6*17. Calculation of the second approximation to long period
and secular terms.

The fact that the first approximation to the short period terms

exercises little or no sensible influence on the second approxima-
tion to the secular and long period terms, enables us to calculate

the latter as though the former did not exist. Thus the equations
for CM, wto become the same as the original equations for cit wt

would have been if we had omitted all short period terms. For

the sake of brevity in notation, therefore, we shall omit the suffix

zero in finding this second approximation, restoring it only at

the end of the work.

The equations are

all short period terms being excluded from R. These equations,

except that for w\ , may be written

dci __
dR dw% _ dR dws __

dR
di^dwi' ~dt~~fo*' dT""""3c3

....... ^

If we differentiate the equation for Wj and make use of the first

of equations (2) we obtain

__ d/f^_dR\_ _ V9^_rf/W*\~~

dtW dcJ
~

d4 dwl dt \dcj
.......

dt*

The first approximation gives the values of Ci, Wi in the form

/3 + i* + 2jBcos(^ + "o), ...............(4)

B&SPT II
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if we note that the addition of ^TT to i/ will take care of the

presence of sines. The coefficients &, B all contain the factor

m' except that of t in Wi which is nw . In the case of Ci, we have

fti
= 0. Finally, B contains the first power of v as a divisor in

all cases except that of w\ which contains an additional part

having v2 as a divisor.

This first approximation was obtained on the supposition that

the elliptic elements in R were constant. If we denote the

difference of the constant and variable values of the elements by
the symbol 8 (in the case of Wi, the symbol Sw{ denotes the

difference between Wi and its undisturbed value n$ t + const.),

and if the additional part due to the second approximation be

denoted by $2 > Taylor's theorem, applied to equations (2), (3),

gives

d rs v / d2R ^ d2R
5,

\ .
i rt > /e \

-7; 820*^^U -a toj-f ^ a
-

ocj ),
1= 1, 2, 3, ...(5)

at \dWidWj dWidCj /
\ /

* 2
o o /PX

1 = 2,3, ...(6)
--

dCidWj

-
^
--r

Ci
4 J

\dwidWj

d / PR

...... (7)

in which j takes the values 1, 2, 3, Since all the terms in the

right-hand members of these equations have the factor ra'
a
,

constant values may be substituted for the elements in the

derivatives of R. Also since Scif Swt are present in a linear form

only, their various portions may be separately calculated in any
manner which may be convenient.

According to 6'7 (8) the periodic parts of 8c,-, 8w$ are found

from

* dS X *S /QX
SC<= , *",

g^,
............... (8)

where tf-SsinJV, Rt
= 2KcosN, ............(9)
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with N=ji Wi+J2w2 +jz w3 +ji wi +J2 Wt,
* I I L f\ 2/3 /I A\

if = 'I-* ji -(-
o* n } v ^ \jy n == u/ I c\ t ........ {L\J )

constant values for the elements being used in these expressions.

Hence

1
v

y

v ^C2
'

v uC$

(11)

Swi = -35^- sin^-S-^sin^. (12)

Although these formulae serve for all periodic terms, we are

considering only the long period terms in R t .

The secular parts are given by

C/jtV/ UxLfl
OCi == uC% == t , OCa L ~^.

8

'^ ^ (13)

Swi = 0, &W2= t -^
-

, 8w$ = t ^
-

,

OCz OC$

where Rc
= ^K cos (jiw* +^3^3 +jV^/).

The substitution of (8) in the right-hand member of (5) gives

_ ~- 2
y

*
dwidwj dcj

*
dwi dc$ dwj

"

According to the theorem of 6*4, this is a d'Alembert series

since ti, R, dR/dWf are d'Alembert series. The same result is

evidently true for the series in (7). For i = 2 in (6), we note

that CzdR/dcz is a d'Alembert series, so that 0282^2 has the same
character. Similarly c3 S2w3 is such a series also. Thus the

presence of the divisor e
2 or F, lowering the orders of certain

terms in the first approximation, does not affect the equations
for the second approximation because such terms disappear.
This is the proof referred to in 6*16.

6*18. The principal part of the coefficient of a second order

term.

Let us consider first the case of a single term of long period.

In general, the principal part of the coefficient will be that part
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in which the divisor v occurs to the highest power. This is

evidently the fourth, obtained by substituting the first term of

Swl in 6-17 (12) in the first line of 6'17 (7). It gives

3K . n

~
9jl

3
~T ~2 S^n N COS N'

Whence, integrating,

s 9 .

3 K2 n* . ,
7

^i=^i
3 -

j?
-

a
sm2^.

If, then, we write

&wi = B sin N,

for the first term in 6*17 (12), we obtain

StWi^ffsmZN................... (1)o

This result is independent of the method by which the

coefficient B may have been obtained. It gives at once the

principal part of the second order term with argument 2jV when

the first order part with argument N is known*.

It still holds if we include in Sivi all the terms for which ji,

ji are the same. For these terms may be written in the form

P cos (jj wj +ji'wi) + Q sin (j^vt +ji'wi),

where P, Q are functions of Ci, c2 ,
c3 , w%, iv$, a', e'

y
w2 ', and this

expression may be put into the form

where /3, jB are independent of Wi, W}'. In this case we put

j\Wi +jiWi -f /8 for N. It is thus immediately applicable when

the numerical values of B, $ have been obtained.

It is not difficult to extend this result to the case in which

two or more long period terms are present. For two such terms

in R denoted by K cos N, K cos N, we have

j-
2
= j^K cos N j-K cos N.

* The result, obtained by a different method, was given by E. W. Brown,
loc. cit. 7'32.
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If Swi = BcoaN+5 cosN9

we have B = - 3Kn/* cl} B = - 3Kn/v
2d .

Whence, on integration,

(2)

In the general case, we add together all such pairs of terms.

6*19. Effect of a long period perturbation of the disturbing

planet.

The effect of such a perturbation is most marked in wi and

the principal part of its effect on a term Kcos N in R will be

= _
jx

' K sin N. a<.

In the formation of the canonical equations, it is assumed that

i is independent of the elements of the disturbed planet. Hence

If we are given

Swt' = B' sin N' = B' sin (v't + *><>'),

where v
f

/n is small, we obtain, by a procedure similar to that

followed in 6'18,

(1)

When we are dealing with the mutual perturbations of two

planets, there will be terms in Sw/, due to the effect of the

planet (which we have been calling the disturbed planet) having
the argument N, and for these terms (1) gives

This case requires care if it is deduced directly rather than

by substitution in (1), because Swi contains the elements c^, wit

and we might be tempted to substitute in R before forming the

n-3
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derivatives with respect to c$, Wi. That we cannot do so is seen

from the statement made above, namely, that the canonical

equations are formed on the basis that the coordinates of the

disturbing planet are functions of t only and are independent
of the elements of the disturbed planet. This basis must be

retained in the subsequent work.

A useful exercise for the student is the deduction of these results by

solving the equations of 6'15. He will find, for example, that the solution

6*15 (8) of the equations 6'6 (6) to the second order will contribute

ji B2 sin 2N to the value of S2 ^i f r the case considered in 6*18, while

the solution of the canonical equations of 6'15 contributes I^Z^sin 2^V,

the sum of these giving the result 6'18 (1).

Incidentally, this exercise furnishes a reason for not continuing the

solution by the Delaunay method. There are two portions to calculate

instead of one, and each of these portions is large compared with their sum.

6*20. More accurate determination of second order terms.

The calculation of the portions of 82 fy, SzWi which have the

small divisor i>
3 in the terms with arguments 2^ or JV" N, is

not difficult. In the equations 6*1 7 (5), 6*17 (6) we need to use

only the portion of Swi which has the divisor zA Thus the

derivatives of R needed are

Now the derivatives of R with respect to wi} Ci will have been

obtained in finding the first approximation, and the derivatives

(1) can be written down at once, even after numerical values

have been inserted.

To calculate S2Wi, we need the full value of Sivi and the values

of 8c,-, St^2> Swa f r the terms in the first line of 6*17 (7); in the

second line of the latter equation, we need the principal part of

Swi only and we can neglect Scit Sw2 > Siv$.

In 617 (5), (6) we can also neglect Sct) Sw%, Sw$ and use only

the principal part of Swi. Thus, in all cases, the terms divided

by the cube of the small divisor can be obtained with the second

derivatives (1) only.
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6*21. Second order secular effects.

These are produced by inserting the values 6*17 (13) in the

equations (5), (6), (7) of 6*17. It will be noted that they give

d'Alembert series in the same sense as the periodic portions

discussed in the same section.

There are three classes of terms present in the right-hand
members of the equations to be considered.

(a) Terms of the form t multiplied by terms in which

ji=ji'
= 0.

(6) Terms of the form t multiplied by terms in which v 4= 0.

(c) Terms in which ji
= j/ = which arise when the periodic

portions of Bci} Bwi are substituted, these portions having been

laid aside in the previous sections.

The integration of the equations with the terms of class (a)

gives terms factored by t
2 and by m'2 since constant values may

be substituted for the elements in the right-hand members. It

is to be noticed that Bz Ci contains no such terms because when

J!
= 0, dR/dwi and its derivatives are zero. The same result is

true of the terms arising in the first line of 6'17 (7). A constant

part arises from the terms of the second line which gives a term

factored by t
2 in Sz wi. All these portions are very small since

no small divisors enter.

The terms of class (6) give rise to differential equations of the

form

-T = tk cos (vt

an integral of which is

tk k
x sin (vt + i/o) + -a cs (vt 4- z>

).

Terms of this character arise in S%cit S%W2, B^w^. We have seen

that terms of the second order with the small divisor v2 can

usually be neglected, and the terms with the factor t/v will

rarely be sensible except for large values of t.
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For 82Wi we have an equation of the type

d?x ^ , .
,

.

-Tig
= & cos (vt 4- VQ),

a particular integral of which is

tk k
x --

g
cos (yt -f VQ) + 2 -3 sin (i/ -f i/ )-

The second of these terms is of the same order as those con-

sidered in 6'20; the first will be sensible for large values of t.

Class (c) gives rise to terms of the form \t in &2ct-, ^2^2, B^WS

and to terms of the form \t2 in S2 ^i- A long period term in

Swt possesses the small divisor v* so that the resulting term

in S2^j may become sensible as a result of integration, for large

values of t. The proof that S2 Ci contains no such terms is

furnished as follows.

Suppose that in the transformation of 6'6, we define R t as

containing all terms for which v 4= 0, and that instead of solving

by the method of approximation adopted above, we write down

the equation for CIQ as given by 6*15 (6). It is

By definition, ,<$ is independent of ww and FI, Ft) Fc contain

no terms factored by t', as the remaining terms have the factor

?/i
/a

,
we can insert constant values for ct0) lu^, ^30 and the value

ftoo + const, for WIQ. The right-hand member has then no constant

term and consequently CIQ has no term factored by t.

Next, the solution of the equation Ci = Cio + 9$/9wio, to the

second order, is

The portion of this under the sign of summation contains the

factor m'2
,
and since SQ consists wholly of periodic terms, it cannot

contain any term factored by t. In the second term we can

substitute the values of c<o, wiQ to the order m'; these have the

form j3Q + fat, where # > Pi are constants. Hence, 3$ /9wio will
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contain only terms of the form B cos N or Bt cos NQ, where the

coefficient of t in N is not zero, and B is a constant. Since it

has been shown that CIQ contains no term of the form t x const.,

it follows that Ci has the same property. It does, however,

contain terms of the form Bt cosN where the coefficient of t in

NQ is not zero.

Finally, the result is true for any function of Ci. For such

terms can arise only from products of terms of the form t cosN
with terms of the form cos N^ the former have the factor m'2

while the latter have the factor m', so that the product will have

the factor m'3
. In particular it is true for a = CI

Z
//UL

and for any
function of a to the order m'2

. For remarks on the degree of

importance to be attached to this well-known result see 7 '29.

6*22. General Summary. The notation of 6*15 will now be

resumed. The results in 6*17 to 6*21 give the values of c^o, wt0

in the form

dQ const. 4-Scio, Wio = const. -hSw t-o, ......... (1)

except in the case of WIQ which takes the form

Wi = T?OO t -f const, -f SWIQ ................... (2)

The symbols 8c#), Sw; include all long period and secular per-

turbations as far as the order m'2
.

In putting $ = 2 smN
,

..................... (3)

we have included in S only the terms corresponding to the short

period terms S/f cos Af in R. For such terms we have seen in

6*7 that a sufficient approximation to the values of ct-, Wi in terms

of Cio, WM is, in general, given by

The values of c^o, WM given by (1), (2) are substituted in (4).

Since $ contains the factor m', it is sufficient to use the values

of c,-o, WM to the first order in the second terms of (4).

Thus the short period terms to the second order are found

with sufficient accuracy by substituting in them the constant
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values of the elements increased by their secular and long period

portions.

A literal development of R is needed to obtain the first

approximation in order to obtain the first derivatives of jR with

respect to the elements. The second derivatives of R are needed

to a lower degree of accuracy, and as far as they are usually

necessary for the calculation of the second approximation to the

long period terms, they can be obtained from the first derivatives

after numerical values have been inscribed therein.

6*23. Integration by parts.

A method of integration which can be applied to non-canonical

as well as to canonical equations for the variations of the elements

depends on the identity

smAr
......(1)

dt\jf ) dt\N)

where N is written for dN/dt.

Suppose that two of the variables chosen be ivi and a (or any
function of a) and define n by ?i

2a3 =
/>6.

Let the remaining
variables be any functions of a, e, CT, F, which do not contain

t explicitly. The equation for wi has the form

(2)

and the equation for any one of the other variables, including nt

has the form

~ = 2PcosAT+Q, ..................... (3)

where P, Q have the factor ra' in both cases. Hence P, Q may
be functions of any of the elements except Wi, and MI, t will

be present only in JV, and in the form jiWi + ji'wi, where

Wi' = n't + e'.

It follows that N has the form

and that N has the factor m' and the form P cos N 4- Q. Since

cos (N - 90) = sin N, this statement includes terms of the form

SPsinJV'+Q.
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Integrating (3) by the aid of (1) we have

...(4)

where # is a constant. Since P has the factor in' and since the

derivatives of all the elements present in P, N have the same

factor, the third term has the factor ra'
2

.

In a first approximation, terms factored by w'2 are neglected
and constant values are substituted for the elements in the

terms factored by ra'. Hence, the first approximation to the

integral of (3) is

.r = a- + 2~"sinN, + Qot ................ (5)
#o

For a second approximation, the values (5) are substituted in

the second and fourth terms of (4): in the third term constant

values of the elements can be used. The integrations may then

be carried out in the usual manner.

The first approximation to Wi is obtained from (2) after the

substitution for n of its first approximation obtained from (5);

in this approximation a term Q t is not present in (2). The

second approximation is made in a manner similar to those out-

lined for the other elements.

6*24. The case of a single long period term.

Whenever it is possible to limit the long period terms to a

single value of jiw +ji'wi and its multiples it is possible by a

change of variables to eliminate the time from the Hamiltonian

function, H. This function equated to a constant then constitutes

an integral of the equations, and by means of this integral Ci

may be expressed as a function of the other variables and thus

eliminated from the equations. The manner in which effective

use can be made of this elimination is shown in Chapter vin

which treats of resonance but which is equally applicable to

terms of long period.

6 '25. The theory outlined in this chapter, in common with all theories

which depend on the method of the variation of the elements, has a simplicity

of analytical form which makes it attractive for many theoretical investiga-
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tions and particularly for those which are concerned with the phenomena
of resonance. But it is doubtful whether it lends itself most conveniently

for the calculation of ordinary planetary perturbations. It appears, in

general, to demand more extensive calculation to secure a given degree of

accuracy than those methods in which the perturbations of the coordinates

are obtained directly.

The chief objection is the necessity for expanding the disturbing function

literally in order that the derivatives with respect to the elements of the

disturbed planet may be obtained : there are six of these derivatives to be

found, as against three functions to be calculated when the forces are

used. A second objection is the necessity for carrying the expansion in

powers of the eccentricity of the disturbed planet to one order higher than

that needed in the coordinates. A third objection is the slow convergence

along powers of e2
,

e'
2
,
r of the series which gives the coefficient of any

periodic term, especially for those terms which contain high multiples of

y, (/'.
To a large extent this slow convergence disappears where numerical

values for these elements are used at the outset of the work, particularly

if the developments are made by harmonic analysis in the manner outlined

in 3'17. The chief exception to these statements is the theory of the Trojan

group, but this theory is so different from that of the ordinary planetary

theory that comparisons are not useful. It is possibly true that all the

actual cases of resonance or of very near resonance can be treated effectively

by this method, but some rather extensive comparisons would be needed

before any reliable statement could be made in this respect.

The literature on the subject of the application of the method of the

variation of the elements to the planetary problem is extensive. The
reader is referred to the standard treatises, particularly to that of Tisserand

and to the articles in the Ency. Math. Wiss. for the earlier literature. For

the later work, references and abstracts will be found in the mathematical

and astronomical publications which summarise the literature annually.

6*26. Throughout this chapter it has been supposed that the mutual

perturbations of two planets can be separated, so that in determining the

motion of one planet that of the other can be supposed to be known. As

long as we confine our attention to perturbations which depend only on

the first power of the ratio of the mass of any planet to that of the sun,

this procedure is justified by the fact that the coordinates of the disturbing

planet only appear in a function which has the mass of this planet as a

factor. Hence, any perturbations of these coordinates will produce pertur-

bations depending on the squares or products of two disturbing masses.

When we begin to calculate these higher approximations, it is evidently

necessary to calculate previously the perturbations depending on the first

powers of the masses for both planets.
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But the general problem of three bodies admits of four integrals in

addition to those arising from the uniform motion of the centre of mass,

namely, the three integrals of areas or of angular momenta and the energy

integral. No use has been made of these in the theory developed above

and the question naturally arises as to whether they can be effectively

utilised for the abbreviation of the work. In asteroid problems where

there is a very small mass disturbed by a very large one, the effect of the

former on the latter is negligible, and the integrals consist chiefly of por-
tions depending on the large mass, the effect of the portions depending on

the small mass being relatively small. Thus the integrals are not useful

in such cases. But when the two planets have masses of the same order

of magnitude, as, for example, in the case of the mutual perturbations of

Jupiter and Saturn, the variations of the coordinates in the portions'of the

integrals due to the two planets have the same order of magnitude, and it

would seem that this fact should be utilised to abbreviate the calculations.

It generally appears, however, that the lack of symmetry which their use

introduces, causes additional difficulties in the calculations. The more

useful procedure is that of following the usual method for each of the

planets and later making the integrals serve as tests of the numerical work.

These tests are particularly valuable for the coefficients of any terms of

very long period which may be present.

For theoretical work in the general problem of three bodies, these inte-

grals have been much discussed. Since there are four of them, the system
of variables, namely six for each planet, can be reduced from the twelfth

order to the eighth.

We shall see in a later chapter that it is not always possible to proceed

by following the process described at the beginning of this article. It

breaks down in certain cases of resonance and notably in the case of the

Trojan group. If, for example, we attempt to determine the action of

Saturn on a member of this group without taking into account at the

same time the action of Jupiter, quite erroneous results will be obtained.

A difficulty of a similar nature occurs in dealing with the motion of a

satellite disturbed by a planet other than that about which it is circulating :

it is necessary to take account of the disturbing action of the sun during

the computation of the disturbance caused by the planet.



CHAPTER VII

PLANETARY THEORY IN TERMS OF THE
ORBITAL TRUE LONGITUDE

A. EQUATIONS OF MOTION AND METHOD
FOR SOLUTION

7*1. The equations of motion have been derived in 1/27. The

independent variable v is the longitude reckoned from a depar-
ture point within the osculating plane, while the longitude v is

reckoned in the usual way from an origin in the plane of reference

to the node and then along the osculating plane. The radius

vector is r and i, 6 are the inclination and longitude of the node

of the osculating plane. The force-function is

fj./r + /j,R, (1)

so that jjuR now denotes the disturbing function. The remaining
definitions and the equations of motion are as follows:

?/,= -, (c) = r2 r=l cost, (2)
r \q/ dt

x '

I M """" Q == Q "^
"~"

9. ~^\ ~T
"" == Q ~*"\ I t-i ~7

"
~7 ) \ <5 )

__ _ ,

dv" u2 dv
'

dv~\p u2 '

dv dv'

......W,(
d

The latitude L t
defined by

sin L = sin i sin (v 0), ..................(9)

may be found directly by solving the equation

(d
2

i\ r sin i cos i a dR .-. x

^-j-f llsini^-^-T-^-^^rr ....... (!0)dv2
) sin (v -0)u2 dr v '
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The values of the variables u, v, t, L (or F, 6) are to be deduced

from these equations in terms of v.

7'2. It was pointed out in 1'27 that any substitutions of the form

=/(?!) M-stt^fal)

leave the essential characteristics of these equations unchanged, namely,
that they shall be integrable like linear equations with constant coefficients

when the right-hand members have been expressed in terms of v. A trans-

formation which renders the equations useful for the treatment of the

satellite problem is

q = q t
M=z 1 gr 1 4.

The transformation to the new variables HI, q^ is straightforward. For

the Ui equation we have, if D be written for djdv,

so that Du^ disappears. This and the remaining equations become, if

be put for w3
3fl/9w, and /? for u*R,

/>a Ml + Wl
-
q L
= - --

3 /^
-

wi n /> (
=^1

j

-
g

=-^ ix . Dt = ~,^ -.. Z)y=l-fr/)0,
</!

2 Wj
4 8y

' ^ ?^
' '

"r
""

3 "^"

""

^* r W "~^7
4 ^F

When the ratio of the distances is neglected we have RV'RV and each

is independent of u\ . This portion constitutes the chief part of the dis-

turbing function in the satellite problem.
It will be noticed that Dt is a function of u\ only, and in fact that the

substitution %= (DQ"~i/i~i eliminates the radius vector from the equations
of motion. No particular advantage, however, appears to be gained by this

elimination.

7*3. The method for solution.

The equations will be solved by continued approximation. The

function R contains as a factor m'jp, the ratio of the mass of the

disturbing planet to the sum of the masses of the sun and the

disturbed planet. This factor being always small (its maximum
value is less than '001), the first step is the solution of the equa-
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tions with R = 0. As we have seen in Chap, in, this solution

gives elliptic motion and the solution will be called the elliptic

approximation. The results consist of expressions for the variables

u, t, ..., in terms of v.

For the first approximation to the disturbed motion, these

expressions are substituted in the terms which have m'/ft as a

factor and the equations are solved again. Analytically, the

process presents no difficulties since, with the exception of the

equation for t, the right-hand members become functions of v

only, while the left-hand members are linear with constant

coefficients. The value of q is first obtained and then those of

u, t and of the remaining variables.

The second approximation is similarly obtained by substitut-

ing the results from the first approximation in the terms which

have m'/fji as a factor and proceeding as before. It is rarely

necessary to go beyond this stage in planetary problems and, in

fact, a second approximation is necessary in general only for

those terms which, on account of their long periods, have re-

ceived large factors during the integration of the equations

giving the first approximation.
The system of differential equations is one of the seventh order

while that from which it was derived was of the sixth order

requiring six arbitrary constants. The additional arbitrary con-

stant necessary in the new system owing to the differential

definition of v, will be defined as follows. The final expression
of v v in terms of v is a sum of periodic terms and powers of

v : when all these terms are neglected we are to have v = v. In

general, this is equivalent to putting v = v when m' = 0. But

there are sometimes periodic terms present whose coefficients

do not vanish with m' but whose arguments become constant

when ra' =
;
the relation v = v is to hold when these terms are

suppressed.

7*4. The elliptic approximation. When R = we have q, F,

0, i constant and with D =
d/dv,
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In accordance with the definition given in the previous section,

the last equation gives v = v. The solution of the equation for

u can be written

- = u = q + qe cos (v -or),

where e, ty are arbitrary constants. As we have seen in Chap, ill,

this is the equation of an ellipse with the origin at one focus.

If 2a, e, isr be the major axis, eccentricity and longitude of the

nearer apse of the curve, we have

Following the notations of Chap, in, namely, n defined by
naa3 = /*, with nt 4- txr as the mean anomaly and X as the

eccentric anomaly, we obtain t expressed in terms of v by the

equations [cf. 3'2 (16) and (20)],

nt 4- e TV =X e sin X, tan JX = I
--

)
tan (v vr),

\ 1 -f" 6/

......(1)
or by [cf. 3'8 (3)],

nt + = v Ef, Ef= 20 sin (v 57) Je
2 sin 2(v r)+ ....

......(2)
The solution of the equation for i gives

sin Z = sin i sin (v 6).

The arbitrary constants of the solution are q, et t*r, i, 0> 6. It

is, however, more convenient to regard n as one of the funda-

mental arbitraries since it is determined more directly from

observation, and to regard q as a function of n, 0, defined by
means of the equations l/q = a (I e

2
),
n2a8 =

/A.

The adopted definitions of u, q }
R give them the dimension

1 in length. If we put u/aQy <?/a , ^R/o for these symbols and

define n by the equation no
2 3 =

p> none of the equations except

that for Dt is altered and the latter becomes n^Dtq^u^. The

unit of length is at our disposal: it will be found convenient to

so choose a that T?O is the mean value of the angular velocity

of the disturbed body which has been adopted. With this

definition therefore, we put a = a, n^=n in finding the first

approximation to the perturbations.
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We shall suppose this transformation to have been made so

that
u = (1 + e cos/) -r a (1

- e
2
)

with a = 1 is the elliptic approximation, to the end of 7'18.

B. THE FIRST APPROXIMATION TO THE
PERTURBATIONS

7' 6. Development of the disturbing function.

According to the plan outlined in 7 '3, the elliptic approxima-

tion, that is, the values of the coordinates in terms of v and six

arbitrary constants, found in 7'4, is to be substituted in the

derivatives of R which are present in the right-hand members-

of the equations of motion.

Since the disturbing function is here denoted by pR we have,

from 1-10,

n m' (\ rcosS\ A2 , ,
~

7? = ( ^ -73- J
,
A2 = r2 + r 2 - 2rr cos S,

cos S = cos (v 0) cos (v
f

6) + cos / sin (v
-

0) sin (v' 6)

=
(1
- JF) cos (v

-
v') -f^F cos (v + v' - 20).

The disturbing function contains the coordinates r', v' of the

disturbing body and these must be expressed in terms of v. Since

the orbit of the disturbing body is used as the plane of reference,

we have i = /.

The work is best done in two steps. First, r', v' are expressed
in terms of t by means of

1 iWcosfo'-tQ
r
'-

a'(i- e'*)

v' = n't +e' + 2e' sin (n't +'-*/) + >

as found in 3*11, and then in terms of v by means of the relations

similar to 7 '4 (1), (2).

It is found convenient to introduce the angles
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Evidentlyf is the true anomaly of the disturbed planet and /i

is the mean value of the true anomaly of the disturbing planet
when the latter is expressed in terms of v. The derivatives of

ft fi are in the ratio n : n', that is, in the ratio of the mean

motions.

The disturbing function is ultimately expressed as a sum of

cosines of multiples of the angles f, /i, vr -or', r -H r' 20, with

coefficients which depend on a, a', ey e', F. The chief difference

in the literal form of the expansion from that obtained with t as

the independent variable is the presence of a/a' in the form of

powers of n'/n as well as directly. But as these powers of n
9

jn

occur only in rapidly converging forms they cause little additional

trouble*.

The expression for R used above assumes that the plane of motion of the

disturbing planet is fixed and adopted as the plane of reference. It should

be pointed out that, as far as perturbations of the first order with respect

to the masses are concerned, it makes no difference whether this plane is

fixed or moving. For since its motions are produced solely by other dis-

turbing bodies, they contain the disturbing masses as factors. But the

effects of the disturbing body enter the equations of motion only through
R which has m' as a factor : these motions will therefore produce perturba-

tions having the product of two disturbing masses as a factor.

Hence, if we have solved the problem under the assumption that the

plane of reference is fixed, the solution to the first order still holds when
we transform to another plane of reference which is actually fixed, the

motion of the former plane being included in the transformation. In other

words, we need to take into account only the geometrical effect of the

motion of the plane of the disturbing body and can neglect its dynamical
effect on the disturbed body. Actually, these second order dynamical
effects are, in most cases, so small that they may be neglected in making

comparisons with observations.

Another point of a similar character may be mentioned. We are sub-

stituting constant values for the various elements in the expressions for

the coordinates in R. To the first order of the disturbing forces it makes

no theoretical difference what these elements are, whether, for example, they
are osculating elements at one date or another, or are mean elements derived

* A method, similar to that just outlined, for developing the disturbing func-

tion in terms of the true longitude, is given by C. A. Shook, Mon. Not. R.A.S.

vol. 91 (1981), p. 553. In this paper will be found the literal development to the

second order with respect to the eccentricities and inclination.
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in some manner, for all these sets differ from one another only by magni-
tudes of the order of the disturbing forces. But when we compute to the

second order actual definitions are necessary. In general, we get better

accuracy when we use mean elements if they are known. Such elements

are best found after the theory has been completed and their insertion

usually involves small corrections to those which have been used in forming
the theory : in most cases such corrections are easily made.

For these reasons, it is not necessary, in forming the equations for the

first approximation, to use a separate notation for the elements used in the

elliptic approximation and for the new values which may be assigned to them
in the first approximation to the perturbations.

7*6. Numerical developments of the disturbing forces. The

following method of calculation is based on the possibility of

expressing the disturbing function and the disturbing forces in

the form

ZiKiCOsi (/-/i + CT ~ r') + ^iKi sin i(/-/i + *r - w'), (1)

where the coefficients are series of the form

2j,h^h cos (3f + A/i) +^ A'M sin (jf+ j/V/i), . . .(2)

the latter coefficients containing the numerical values of the

eccentricities, of the inclination and of 2tsi 20. The coefficients

in the series (2) are supposed to be calculated by double harmonic

analysis for each value of i needed.

The principal reasons for the adoption of this plan are first, the slow

convergence of the coefficients A*, K{ with increasing values of i, and

second, the comparatively rapid convergence of the series for AJJ ,
A '

JtJ ,

so that only a few special values of /, /i are needed for the harmonic

analysis. No additional calculation is involved by the retention of w w'

in a literal form as far as the final step.

Omitting the factor m'/p, we have

i^ 7
t3 cos S

_
du
~

dr A3 "/a

1 r/2 "~ r2 r2 cos ^
~~"2A

r
2A8 7'a ' ............('

^-2tf) l
......(5)
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(iR) = - -
.

r' sin (v
-

6) sin (
-

0), . . .(6)

When 71 (10) is used instead of 7'1 (7), (8), the calculation of

(5) is needed only for that of (7); (6) is then calculated without

the factor sin (v
-

0). Of. 1'28.

It will appear below that of these, the development of (7) re-

quires the highest degree of accuracy. Somewhat lower accuracy
will serve for (4), and still lower for (5), (6); since (5) contains

the factor F, these facts require that (3) shall be carried to the

highest accuracy of all the functions. The most extensive part of

the work is the development of the functions r2
/A, r

3
/A3

,
the former

being needed to a higher degree of accuracy than the latter.

7*7. Numerical development of the disturbing function.

Define A, B, by the equations

.A cos(v
- <?-) = cos (v-0),

A sin (v
- - B) = cos / sin

(t;
-

0).J

......... ^ '

The expression for A2 in 7*5 can then be written

tf = r2 + r'
2 -2rr'Acos(v-v'-B).......... (2)

From (1) we deduce

-4
2 ==l-sm2/sin2

(?;-0), ...............(3)

A sin B = sin2 J / sin ( 2v
-

2(9),v - 2(9), )

sm2
0;-<9).j

.........

Since v=/+'zar, the special values of A
y
B corresponding to

the chosen special values of / can be calculated from (3), (4)

when the numerical values of F, CT are given.

Next, define ?*i, C by

(r,
2 + r'2) C

2 = r2 + r/2
, r^W^rA, ......... (5)

so that A2 = C2
(n

2 + r'
2 - 2rx r' cos (v

- v' - B)}....... (6)

The special values of r, r' corresponding to special values of

f, fi having been found, those of ri, C can be obtained con-

veniently by calculating X, \i from

T
tan\=

, sin2\i = A sin2X, ............(7)

B&SPT IZ
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and then ri, C from

/ ,
_ cos \i /oxn-rtan^, 6'-, .............. (8)

equations which will be found to satisfy (5).

The expression (6) for A2
gives

...(10)

Methods for the expansions of these functions have been

given in 4'23 and the following sections. The particular form

which is useful here is that in which we put

(1 + a2 - 2a cos ^)- = /8/> + S 2/3/> cos
ii/r,

. . .(11)

with a ri/r', tyv v' B, i=l, 2, ..., s = J, f.

The expressions for the /38
(i> are given by 4*24 (6) with K= 1,

!
== a, namely,

/v* ^v
/P (i) - (t) ^ (i) _____....._ ,7 (t)" "

where

t 2.4...2t
->' '-">

in which j9
= a2

/(l a2
).

The methods developed for the calculation of these functions

depend on the numerical value of a being given. In the present
case these numerical values are the special values of r*i/r'. The

efficiency of the method outlined here depends on the existence

of tables giving the coefficients for different values of a*.

* The tables of Brown and Brouwer, I.e. p. 103, give Iog2^() for t=0 to 11

and for s=, f , f to 8 places of decimals and for s = J to 7 places of decimals.

They are tabulated for values of p at intervals of '01 up to p= 2-5 or a =-83.

For higher values of p up to p= 6 (a
= -93) rapidly converging series are given.

A separate table for a -90 to -95 is added.
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In this way, each of the functions 7*6 (3), (4), (5), (6) is expanded
into a series having the form

22C (i) cosi(v-v'-B\ ...............(12)

in which the special values of the coefficients for each required
value of i have been obtained.

We next put
V - v

r - B =/> *r /i -or' - BI,

where Bi=f'-fi + B,

and calculate the special values of Bt .

The final special values to be computed are those of

for each value of i. Each of these functions is then analysed into

a series of the form

2t, il
L

1>il cos(jf+j1f1 ) +
-

i , il
L'

itil sm(jf+j1fi ). ...(13)

The results give series having the form 7*6 (1), (2). After

the derivative of 7 '6 (3) with respect to -cr' has been formed,

the numerical value of &'&' is inserted in all of them, the

various terms having the same multiples of ft f\ in their argu-
ments are collected and each expression is put into the form

(13) or, if desired, into the form

M
it h cos (jf+A/I - Nit fc).............(14)

The most important preliminary step is the expression of f
f

in terms of/i,/.

7'7a. Expression of the true anomaly of the disturbing planet
in terms of that of the disturbed planet.

When harmonic analysis is to be used (App. A), the following
method gives the required transformation rapidly.

We have, according to previous definitions,

g=f-Ef , flr'=/i-^,=/i-/i,
where Ef is the equation of the centre with eccentricity e and

true anomaly f. Also

/' = g' + E, =/i - 8/i + E (/i
-
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where E
g

> = E (fi S/i) is the equation of the centre of the

disturbing planet with eccentricity e' and mean anomaly

g' =/! S/i. If this function be expanded in powers of S/i we

obtain, if E' (/i) denotes dE(fi)/df1)

Since f\ 4- E(fi) =/ is the expression for a true anomaly in

which e' is the eccentricity and /i takes the place of the mean

anomaly, we can write the equation in the form

- df n' \ 1 d*fn'-

The special values of Ef are calculated with special values of

/ in the usual manner. Those of / with special values of f\ are

similarly obtained. For the derivatives we have

df ^(1 + e'cos/)
2

dfi~ (I-**)*

Hence =
(1
- e'

2
)~* (1 + e' cos/).

If we denote the successive derivatives of/with respect to fi

by the notations /, f, ..., and put e\= e' (1 e
/2
)~^, we can

obtain the following formulae for their successive determination :

i ei cos/

/ 1 -W ~T6 '

2-J-
which will be sufficient for all practical needs.

The calculation of/,/
iv from the series 3'16 (2) will be found

to be sufficiently accurate in most cases and is rather easier than

that from the formulae just given.

The amount of calculation needed in any particular case depends on a

variety of circumstances. Before undertaking calculation on the general

plan outlined above, a preliminary survey should be made to find the
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order of magnitude of the term with the largest coefficient in the longitude,

pr, in the present case, in t expressed in terms of the longitude. Usually,

the term is one having a long period. The order of magnitude with respect

to the eccentricities and inclination for a term with argument jf+ji f\ is

\j+ji\* While a rough approximation to the coefficient can be obtained by

following the method developed in 7*38 below, the degree of accuracy, that

is, the number of places of decimals needed in the calculation, can be

found from the number of significant figures needed to obtain this coefficient

with the required accuracy.

The accuracy possible with the methods developed above is theoretically

unlimited, but is practically limited by the accuracy of the tables of the

coefficients g^\ Those referred to in the footnote on p. 178 are sufficient

to obtain solutions of practically all the planetary problems in the solar

system with the accuracy needed at the present time; the determination

of the great inequality in the motion of Saturn is probably the limit in

this respect.

It may be pointed out that since A < 1, C> 1 (p. 178), the inclusion of

the inclination in r^r' in general tends to diminish this ratio and therefore

to increase the rate of convergence. Thus, if we can obtain a certain degree

of accuracy with 7=0, we can obtain at least the same degree of accuracy
with /=t=0. The method is thus particularly effective for large inclinations.

The method of procedure outlined above is a general one. The experi-

enced computer will see various ways in which it may be abbreviated. One

important choice is the number of special values to be adopted for /, /i . In

the majority of minor planet problems, the values of /, /j at intervals of

45 will serve. If the eccentricity of the planet or the inclination is large,

additional values at intervals of 60 may be used : these additional values

merely involve corrections of the coefficients in the last part of the process

that of the harmonic analysis so that all the previous work is fully

utilised. It is not difficult to settle at the outset the number of places of

decimals required, but it is not easy to say how many special values should

be used. The work can be started with the minimum number and others

can be added afterwards without the loss of the previous calculations.

7*8. Solution of the equations.

The methods of the previous sections give the expression

of R in the form

JZ-SJCcoB^+jj/i + i), j = 0, 1, 2, ...; ^ =
0, 1, 2, ....

When a literal development is made the angles k are multiples

of r r', w + ta' 20, and the coefficients K are functions of

a/a', e, e', F. In a numerical development the terms having the
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same values of j> ji are gathered together and R and its

derivatives are expressed in the form

0o + 2 cos (jf +jj/x) 4- 2/3' sin (jf+^/i),
or in the form _

+ 2 cos (j/+ji /i-lto,

where y9 > A /3', J5, l?i are numerical quantities dependent on all

the elements
;
in these expressions the terms in which j

=
ji
=

are gathered into the symbol /3

The constant y8o is independent of v and is implicitly a

function of the angles w -GT', OT -f TB' 20. The terms present

in this constant when expressed in a literal form possess the

property (6'4) associating a power of e in the coefficient with the

same multiple of -cr in the angle, with similar properties for

iff', e' and for 20, F. The corresponding properties are obtained

when j t ji are not both zero by putting cr =1; /, & =vi fi
and associating powers of e t e'

y
20 with the respective multiples of

/, /i, 20 a statement which is easily seen to be true by referring

back to the development of R in 4*14.

Finally, since we have put v = v, we have

D (Jf+ ji/i)
= J +hn'ln = s >

so that s becomes a divisor of the coefficient when we integrate

one of these expressions.

It is evident that Rf(r, /) will possess these same properties.

7*9. The equationfor q. This equation has the form

J5s
=

/
9 -f^cos(j/+j1/1) + SyS'sin(j/+jJ/] ), (1)

and its integral is

q = ?o + /9ov + 2 f sin (j/+ jj/i)
- Sf cos (jf+jtf), . . .(2)

o o

where
<jo

is an arbitrary constant to be defined later. The term

$ov is the secular part of q. The terms for which s is small com-

pared with unity are those of long period, the remaining terms

having 'short
1

periods, that is, periods of the same order of

magnitude as
2-7T/71,

the period of revolution of the planet, and

shorter.
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7*10. The equation for n. The right-hand member has

already been developed into an expansion of the form 7*9 (1).

In the left-hand member, the value of q just obtained is sub-

stituted. The periodic terms in q are added to the terms of the

right-hand member and the equation takes the form

jyu + u = qQ -f v + fa cos/+ fa' sin/
+ /3MO + 2&* cos (jf +J!/t) + 2&/ sin (jf -f ^/i),

the terms for which ji
=

0,^'
= 0, 1, simultaneously, being isolated.

The integral of this equation is

u =
<?o + ov -f /3iv sin / /3x

'

v cos/ 4- ec cos/ 4- e8 sin/ 4- t*p ,

...... (1)
where

2 -"-8 cos <#+M) + 2 -~ra sin
JL o 1 o

as can be seen by submitting each member to the operator
D2

-f 1; ec ,
ea are the arbitrary constants in the solution.

Now after the substitution u/a for u, q/a for q, the elliptic

values of u, q are

__
1 -f e cos/ _ 1 /____

with e, -BT as arbitrary constants. As qQ ,
ec , es are at our disposal

we can put

e =___._ e = o q = 1

so that the remaining terms would constitute the perturbations.

These values of ec , e8 will be adopted, but instead of that for qQ

we shall put

where SqQ is still arbitrary. It will later be defined to be such

that the mean value otnDt shall be unity.

We shall next show that u, q may be written in the forms

......(2)
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where - 1+'-
**>. -* + ! (3)

Here is the value of e which has been used in the develop-
ment of R\ TI, ei are small constants whose squares may be

neglected.

The expansion of UQ in powers of e\, -CTI, gives

__ l+ocos/ 2eo
0_i

l-h#o
2

f o

Comparison of this with (1) shows that if we put

lO-V)2
;,, il-eo'*

the coefficients of v cos/, vsin/ in (1) will be included in

The term /3 v will also be included if

The argument in 7*24 shows that this relation is satisfied, so that

it constitutes a useful test of the accuracy of a part of the

numerical calculations. Hence u and q have the form (2).

The terms #iv, wj.v are called the secular motions of the

eccentricity and longitude of perihelion. Expressed in time

they would be e^ni, vrint.

Since we are neglecting squares of the disturbing force we may insert

these secular parts in the perturbations wp , qp . If a development in which

the literal values of e^ w have been retained is made, this can be done by

replacing / by / s^v and w by or+orjv, and e by e+ ev \ in wp , qp a

procedure which is advantageous as will appear later. Usually, however,

it is not possible to make these changes because it is customary to use

numerical developments in order to save labour.

7*11. The equation for t. Since SqQ ,
up ,

u
q
are of the order of

the disturbing forces, we have, as far as the first order,

{1 4- e cos(/'

x
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In the terms factored by 8qQ , qp ,
up we can put <?i

= 0, ^ = 0,

since the products would be of the second order. Hence

We now determine SqQ to be such that in the expansion of

the right-hand member as a sum of periodic terms, the constant

term shall be unity.

By 3'8 (3), the constant part of the first term is 1. It will be

shown in 713 that if we expand (1 4-e cos/)~
3 into a Fourier

series the constant term is (1 + ie
2
)(l

-
eo

a
)~*- The constant

term in the coefficient of SqQ is therefore

j(l _ ef)
-

(2 + e?) = - t (1 + e,
2
).

The required condition therefore gives

^of i
-

2
x constant term in the expansion of

1 "T #0

It is evident that we only need those portions of rp ,
up which

are independent of the argument /i. It is recalled that qp con-

tains no constant term and that up contains no term with

argument/.
When SqQ has been found, its value is inserted in (1). The

second and third terms are then calculated in the form

(1 + e cos/) &Bq

the constant term of which should vanish, so that these portions

give a sum of periodic terms of the form

3e cos (jf+ jifi) + 2&' sin (jf+ j,ft) .

712. Integration of the equation for t. If we neglect all per-

turbations so that e = eQy ori= 0, we obtain by 3*8 (3)

nt + e= v-Efy ..................... (1)



190 TRUE LONGITUDE AS ARGUMENT [OH. vn

where Ef is the equation of the centre expressed in terms of the

true anomaly /. To obtain the integral when e\, ts\ are not

neglected put eQ + e^v, f tsriv for e, f in (1) and differentiate.

We obtain, if squares of e\, TZ\ are neglected,

The first two terms of the right-hand member evidently give

(1
-

<?
2
)* {1+ ecos (/- rlV)}-

2
;

in the third and fourth terms we can put e eQ , is\ v = 0. Hence

the integral of the first term of 7*11 (1) gives
ffiji

1
f r) J?

nt + = v - Ef-
eij -~^df+

TI
j -j^

d/,

where is the constant of integration, and the values e^ + eiv

and / tsrjv are used for the eccentricity and true anomaly in

the expression for the second term, that is, for the equation of

the centre. The integral of the third term is given by the

formula 7*13 (4) below; that of the fourth term is &iEf.

The remaining terms in the expression 7*11 (1) for nDt, the

form of which is given at the end of 7 '11, are integrated im-

mediately. We obtain

nt + 6 = v -

+ S sin (jf+ j,/,)
- 2 i cos

o o

where s=j+jin'/n, Ef is the equation of the centre with

eccentricity eQ + eiV and true anomaly/ -B^V and, by 713 (4)>

= 2 (- 1)* eo
1"1

(
1 + e

2
H r

]
cos if, eQ =

1 2
.

713. The Fourier expansions which are needed above are obtained from

fl-*)1 -
CD

[)(l+e COS/)
2

Differentiation with respect to e gives
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and differentiation of this result with respect to/ provides

The value of dE/fie can be obtained either from the series for E/ or by

integrating (2). The latter integration is performed by making use of the

identities,

d sin/ __ cos/4-0 8 sin/ _ 2<?4-cos/ 0cos2/
a/" 1 + e cos/

=
(1 +e cos/)

2 '

a/* (1+0 cos/)
2
=

(1+ecos/)
3 '

the sum of the right-hand members being

1 2-M2 2 l-i2
_

(1+ecos/)
3

~"

e (1 + ecos/)
2 "~~e (\+e cos/)

3
'

Hence

^ - sin/ sin/
\l+ecoa/ (1+ecos/)

2
/

The value ofFfD' 1

(dEf/de) is obtained immediately from this result, and

it also completes the expansion 7*13 (3).

The calculation of these expansions by harmonic analysis is at least as

rapid as by series and is advisable for large values of e. Harmonic analysis

can also be used to calculate Ef when e= eQ+ ei\ by calculating the coef-

ficients with =
00, and again with e~eQ -\-1cei when k has some convenient

numerical value (? 100). The difference between the resulting pairs of

coefficients divided by k gives the factor of v in the coefficient.

714. The equation for F. The equation 7*1 (7) for F gives,

on integration, F^ + FiV + F^i .................. (1)

where FI is the constant term in the expansion of ql dR/u
2
dO,

Tp is a sum of periodic terms, and k is an arbitrary constant.

The value 7*10 (2) for q gives, on expansion to the first order,

+ qp) (1
-

,)*,

whence

r A (1
- eoT* + 4% (1

-
^o

2
)* -f (*cio (1

- eoT*

+ F! (1
- e 2

)-*} v + i* (1
- ^ 2

)* gp + (1
-

^o')"* ^P-

The first two terms in this expression constitute the constant

part of F; denote it by F . In terms which have the disturbing
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mass as a factor we can put &= F (l eQ
2
)^. Hence the value

of F is given by

r = To + [el e, Fo (1
- eoV + Fx (1

- * T*} v

When the disturbing forces are neglected we have r = F ,

which is therefore the value of F used in calculating the per-

turbations. The secular motion of F is the coefficient of v. All

the terms contain F as a factor.

Since F = 1 cos 7, SF = sin 7S7, the equation for F, which

may be written F = FO 4- SF, gives 7 = 7o + SF/sin 7 ,
where ST

contains Fo = sin2 7 /(l -f cos7 ) as a factor. Hence when 7 is

small the perturbations of 7 have 7e as a factor.

715. The equation for 0. The integral of 7*1 (8) gives

0=0 + 0iV4-0p,

where the signification of the symbols is evident. Here is the

value of used in calculating the perturbations and 0iv is its

4

secular motion/

7*16. The equation for v. Since dO/dv contains the disturbing

mass as a factor, we can put F = F in 7*1 (6) so the integral is

no constant being added, in accordance with the definition in

the last paragraph of 7*3.

The usual definition of n is to make it the mean value of

dv/dt rather than of dv/dt as defined in 7'1 (6). This definition

requires us to replace n by n/(l
~

Fo0i). Since n is not present
in the coefficients of elliptic motion and since the change may
be neglected in the perturbations, no further adjustment of the

value of t in terms of v is necessary. The value of 8qQ (7*11) is

altered and receives an additional part F 0i/(l +e
2
); this is

usually insensible in the value of u and elsewhere.

The only further change necessary to obtain t in terms of v

is the replacement of v by v -f F P .
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7*17. The equation for sin L. When T0P can be neglected, we can save

some labour by integrating the equation for sin L to replace those for r, 6.

If we treat the right-hand member like that of the equation for u, isolating

the terms with argument / and also the constant term, the equation takes

the form

............... (1)

where gp denotes the remaining periodic terms with arguments jf+j\f\ .

The solution, like that for u, may bo written

sin Z=sin 7 sin (/+ w -^o)+y -
4^i' v cos

The constants are shown in the above form because we have in ellipti

motion
sin L = sin 7 sin (v

-
#o)

The terms with factor v may be included in the solution

if we put 71 v = S7, #^= 0, where 57, $0 are determined from

5 {sin 7sin (sr
-
0)}= -^i'v, 8 (sin 7cos (ETO

- ^Hi&v. ...(4)

718. The small divisors. The divisors s are present in the

equation for
q,

and when s is small, that is, when the corre-

sponding term has a long period compared with 27r/n, the

coefficient will be increased by the integration. It is again in-

creased by the same divisor in the integration of the equation

for t, so that in the expression for t in terms of v or v, the

divisor s
2

is present.

The divisor 1 s
1

is small in the expression for u or sin L
when s is nearly equal to 1, that is, when the period of the

term is near that of revolution of the disturbed body. It might
be expected that these terms in combination with the elliptic

terms would produce terms with the product of small divisors

5, 1 s2 in t. It is true that they do so, but such terms in general

have a factor e
2
as compared with the terms in q from which they

arise, a result which will be evident when the following method

of the variation of the elements is used.
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C. EQUATIONS FOR THE VARIATIONS
OF THE ELEMENTS

719. Let us return to the original equations of motion in 7*1

and introduce three new variables a, e, ur to take the place of

u, q. These new variables have as yet no relation to those denoted

by the same letters in the previous sections of this chapter.

We retain the notation D = d/dv and, for brevity of expression,

introduce new operators defined by

Dt=Da!l- + De%-+D*r-, DQ
=~ ....... (1)da de dur 9v

^ '

Thus when we are operating on a function of a, e, tsr, v we have

Since we are replacing two variables by three, one relation

between the new variables is at our disposal. The three relations

to be adopted are

__
1 -f 0cos (v CT) 1 ~ 1 -f e cos (v -or) __U ~

a (l-e
27~~

' ?==
a(l-6)'

*
~

a(\-#)
~

'

...... (2)

so that Du = DQ u, 1)^ = 0, .................. (3)

when u is expressed in terms of the new variables.

Since Dq = D^q, the third of equations (2) gives

{1 -f e cos (v cr)} Dq + qD\ {e cos (v )}
= 0.

This, combined with 7*1 (4), gives
T\ ( / \1 ^ C/./V / > \

I>!{C08(V-W)}--^J-
................ (4)

Next, the equation Du = DQU gives

Di^ = qe sin (v tsr)...................(5)
Hence

D*u + w g
= D {gesin(v &)} -\-u-q
= DI {qe sin (v -or)}

= D^ . e sin (v tsr) ^Z>i {e sin (v -or)},

since DO (^ sin (v r)} =u~q.
But Dq.e sin (v -or)

= (Dq/q) . DM.
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Whence, from 71 (3),

n f / M dR Du'dR ,-.
DX {* sin (v

-
r)}
= - -=---=- -5- ..........(6)1 n du u* dv

The equations (4), (6) are those which give the variations of

y
w "

To obtain the equation satisfied by a, multiply equations

71 (3), (4) by Du/q, {(Du)* + u2
}/2q* respectively, and subtract;

the result may be written

|

W + *_ 2
) ag +^

{ q )
dv on

Substituting for u, Da, q from (2), (5), we obtain

dR dR _

which is the equation satisfied by a.

7*20. The last equation may be transformed into a form which

is not only more convenient for calculation but which furnishes

an important theorem concerning the secular terms.

The disturbing function was originally expressed as a function

of u, v, P, 6, and of t through its presence in r'
y

v'. Hence

T. n dR
-p.

dR ^ oR nT1 dR ^^ dR *.DR =
-5- Dv + ^- Dw +^ DF + ^^ DQ + -^~ Dt.
dv ou dT cQ dt

With the use of the expressions 71 (6), (7), (8) for Dv, DT, DO,
this reduces to

T-. ,-> dR dR ^ dR r,.DR = -~- + *- Du + -zrDt................ (1)
dv du dt

^

Now t enters into r', v
r

only in the form n't + e', and this angle
enters (7'5) into R only through fi in such a manner that

^n'. Hence

a result which is true whether R be expressed in terms of the

old or new variables. Utilising (1), (2), we may write 719 (7) in

the forms

, ...... (3)\W
since Dt = qft~ku~

z and since w does not contain /i explicitly.
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7*21. Finally, the expression for Dt, just quoted, gives, in terms,

of the new variables with n2as = /4 and the expansion 3*8 (3),

<s7)}
2 n 7i 3v

'

where Ef is the equation of the centre. Hence

f^dv- Dodv + const............. (2)

The values of n = (/4/a
8
)^, 0, -or, as deduced from the integrals of

7*19 (4), (6), (7) are to be substituted under the integral signs in

(2), and the integrations are then to be carried out.

Equation (2) may be written, since D = D D\,

f=f!dv-^+ fl)1(^dv + const.......... (3)
Jn n } \nj '

7'22. As in the earlier work, it is advisable to expand Rr
2 = R^

rather than R. With this change and with the usual abbrevia-

tion,/= v w, equations 719 (4), (6) can be written

.sinf=2u 9 ............ (1)

De . sin/- eDv? . cos/= r2 --- Da
(~

, ...... (2)

the computation of r2 9JR/9r being carried out in the manner ex-

plained in 7*6. From these equations we deduce those for De,

The equation for a becomes

The equations for 6, T remain the same, namely

The latter may be replaced by

Equation 7 '21 (3) is used to 6nd t.
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7*23. Solution of the equations. We proceed as before. When
R is neglected a, e

y -or, F, become constants, and the motion is

elliptic. These constant values are substituted in the expansion
of jRx, the derivatives of RI and of R being obtained as in 7 '6.

For the arbitrary constants we use these same values, except
in the case of I/a, to the elliptic value of which we add a, where

is so determined that when the equation for Dt has been

formed, the constant term shall be represented by I/KQ, where

KO is the observed value of the mean motion.

The amount of calculation needed with the use of these equations is not

very much greater than that required in the previous form. The additional

work is mainly the multiplication of EI by the three terms in u\ namely,

where q\ e are numerical constants, in order to find I/a, and the multipli-

cations by cos/, sin/ to find e, w.

In either case the work is less laborious than when t is used as the

independent variable, chiefly because, in the latter case, the single terms

cos/, sin/ have to be replaced by Fourier series containing a number of

terms corresponding to the highest power of e we need to retain.

The chief saving of labour in the use of the methods of this chapter over

those of Chap, iv is due to the avoidance of the formation of derivatives

with respect to e. There is great advantage in using the numerical value

of e from the outset and if this be done we cannot find the derivative with

respect to e. Further, the development, to secure a given degree of accuracy,

requires the presence of one power of e higher in the latter case than in

the former.

7*24. The proofs of certain theorems, quoted earlier, follow

easily from the equations of variations.

To show that there are no secular terms of the first order in

I/a and none of the form tcv
2 in t, we use equations 7*20 (3). To

the first order, dRi/dfi has the same value whether RI be

expressed in terms of u, v, t, F, 6, or in terms of f,fi and the

constant elements. In the latter case, dRi/dfi will have no term

free from the angle fi and consequently no constant term. Under

the same conditions, RI has no term proportional to v, so that

I/a has no term containing the factor v.

B&SPT 13
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The secular terms in e, & are ei\, e\is. These, substituted in

Ef, produce terms of the forms v cos if, v sin if, but no term of

the form tcv to the first order. Since there is no term factored

by v in 1/n, there will be none of the form /ev
2 in t.

a . I
Smce w=

the substitution e=e + ^i v iQ the former of these terms will produce a

secular term in u. This differs from the case of u expressed in terms of t,

where the absolute term is I/a which has no secular part. This fact exhibits

the artificial nature of the statement that the major axis has no secular

part. When referred to actual coordinates, the existance of a secular part

depends on the coordinates used.

7'25. We next show that the only terms with the divisors s2

arise through the variable a. This is proved by 7*22 (6). For the

integrals giving e, vs contain the first power of s only, so that

Effn gives rise to this class of terms only. Also Di(Ef/n), which

depends on Da, De, Dcr, has no divisors and its integral will give

rise to terms of the same kind. The integral giving a gives rise

to divisors s and that of I/n, through n2 a* = p, to divisors s2.

This latter result which was stated in 7*18 is of some assistance in the

numerical developments of the methods in the previous section. It shows

that the terms of long period in which s is small are needed in u to a lower

degree of accuracy than terms with the same argument in q. If we calculate

the coefficients of the long period terms of dlt/du to a lower degree of

accuracy than those of dR/dv, but retain the same number of places of

decimals, the theorem shows that the inaccurate or omitted portions cancel

one another. The relative degree of accuracy needed must be judged from

the small values of s present.

D. THE SECOND APPROXIMATIONS TO THE
PERTURBATIONS

7*26. The results of the first approximations are as follows.

We have obtained u, q, t, v, F, in the forms

, l-f ecos(f
where =

v - Ef , /= v - isr
,
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in which e=*eQ + eiv; Ef is the equation of the centre with

eccentricity e> true anomaly/ OTI v, and o
3
^o

a =
/* The constants

aQ , e0y <*o> r , #o have been used to compute the terms arising

from R; eiy TI, 0i, TI are constants whose values have been

found
;
up , qp ,

tp ,
Tp , p are sums of periodic terms, up , qp alone

containing a constant term, so that Sqo of 7*10 (2) is now included

in Up, qp .

If we had solved by the method of the variation of arbitrary

constants, the forms of t, F, 6, v would have remained the same,

but for u, q we should have had

to be substituted in

u= {1 -f e cos (v tzr)} -f-a(l e
2
), l/q = a(l e

2
).

7*27. To obtain the second approximation, these values of the

variables, or of the elements, must be substituted in R in the

place of the constant elements previously used. Whichever plan
has been adopted in the first approximation, we can and shall

still use the equations for the variations of the elements in the

second approximation on account of their greater simplicity for

both computation and exposition. The exposition will be limited

by neglecting the variations of F, 6, v v. The effects of these

variations on the perturbations of the second order are usually

insensible, but they can be included, if necessary, by the use of

the methods given for the other variables.

7'28. Denote any perturbation of the first order by the symbol
S and one of the second order by &2 and put p = 1.

Equation 7*20 (3) gives

and
, 1

37 =
57T~ u

8/1 8/x9M

~
du 8fi
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Since R^dRi/du, dRi/dfi, R have already been obtained in finding
the first approximation and are expressed in terms of the angles

/, fi t
their derivatives with respect to /i are immediately ob-

tained. If the first approximation has been obtained by finding

the variations of the elements, we replace Sqk, Su by

M<i-<rt *-+-.......w
where UQ = {1 + eQ cos (v

- <sr
)}

4- a ( 1 - e
2
).

It will presently appear that we can usually neglect Sa, Be, Sr
and therefore &u, Sl}Q u, Sq in finding &2 e, S2^ When this is the

case, equations 7'22 (1), (2) give
rfi Ft

(5)

St.sin/D (8,) - e cos/D (S2 *r) = n'
f
A

(r*
d

)
- D u

(oji \ or J

...... (6)

The second order derivatives, again being derivatives with

respect to/i of first order derivatives used in the first approxima-
tion, are obtained immediately. Further, only a very few terms

in &u, St have to be considered and the same is true of their

products by the second derivatives of R or RI. Finally, as these

variations enter into the right-hand members of the equations in

a linear form only, we can compute separately the effects due to

the few terms in Su, St which have to be taken into consideration.

7*29. Calculation of the effects due to the secular terms in the

first approximation. To obtain them we put

eiv, tsr = T!3-1 v,

From these we get
,j8u = 5--i-

ceo dtjj

These results are to be substituted in the right-hand members
of 7-28 (1), (2), (3), (5), (6). They give terms of the form

fcv -f v SO sin (sv + a).
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First, let us consider the equation 7'28 (1). The only portion

of this equation which can give a term of the form tev from Su, is

- D
{A

(/feu") .

S|
= - (D +

since all the other portions are products of series one member
of which contains /i and the other is independent of fi. For

terms of this form we therefore have, since R =

from which the terms of the form /cv are to be chosen. This is

equivalent to putting e = eQ + e\v y
tar = TJTO -I- OTIV in the constant

term of the expansion of 2R^ if or in 2R.

The expression 7'28 (2) may be written

3 /3JZi,
, /3JZi\ 3#i 3 , 3#i 3

The two latter terms are equal to 3(8jR)/3/i. Hence when we

substitute for frw, &t the portions up , tp> 7*28 (3) will have no

constant term and therefore will produce no term of the form

KV in S2 a. Evidently, these portions substituted in D (RiiP)

produce no such term. Hence, the only term of the form /cv

present in |82 (l/a) arises from the constant term in

l n'_2fi
d^l

*
90*3/1'

which in general will not be zero. Thus the theorem, that I/a

has no secular term of the second order when t is the independent

variable, is not true when v is the independent variable. It may
be noted however that it is true for a second order perturbation

arising from two different disturbing planets.

The same arguments evidently apply to the right-hand
members of 7*28 (5), (6) which thus contain secular terms of the

forms vcos(jf/-hji/i), v sm(jf+jifi), with ji=t=0. Hence these

portions of 2 e> S2 tr give no terms of the form #v2 in the co-

ordinates. Such terms, however, will arise from Su; when it is

necessary to calculate them, we shall need those parts of the
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second derivatives of EI with respect to u,v which are independent
offi\ their calculation presents little difficulty since the degree
of accuracy required is quite low.

The practical importance of the theorem that there are no secular terms

of the first and second orders with respect to the masses in I/a when t is the

independent variable, has been much over-estimated. It is a result which

eliminates certain secular terms from 1/r, but does not do so from r or, in

general, from other functions of r. There is no particular reason from a

physical point of view why, in getting a mean value of the deviation of the

orbit from circularity, we should choose 1/r rather than r as the function

to be averaged. The fact is that the separation of the deviations of the co-

ordinates into deviations of a, 0, or, etc. is an artificial one, convenient for

calculation and description, but one which has no particular physical

significance.

7'30. Terms of the form v cos sv, v sin sv are integrated by
the formulae

[ , v . 1 f . , v 1 .

v cos sv dv = - sinsv-i- -
cossv, v sin svav = cossv-H - sin sv.

J s s
2

) s s
2

Such terms are present in S2 a, $2 e, Sa r and therefore in 82 it,

DS2t The succeeding integration necessary to obtain S2 t will

introduce the factors v/s
2

, 1/s
3

.

These terms will usually be insensible except when s is very
small and even then the only portions which need be retained

are those in St having the last-named factors.

7*31. Calculation of the effects due to the periodic terms in

the first approximation. Only the long period terms need to be

considered. The right-hand members of the equations in 7*28

have the form a derivative of R multiplied by Su or by St. In

Su, the divisor s is present; in &t, the divisors s, s2 are present.

The products just referred to will produce products

COS 5V . COS s' V = ^ COS (S $') V 4- i COS (S -f $') V,

with similar results for sines of sv, s'v. Long period terms can

arise in two ways: from short period terms in which ss' is

small, or from long period terms in which both s, s' are small.
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The former will produce small divisors (s s') in Stu and their

squares in S2 . These will rarely be sensible.

For the latter, we have divisors s, s
2 or 5', s'

2 in the right-hand

members of the equations of 7*28, and therefore the smallest

divisors present in their integrals will have the forms s
2
(s s').

Hence, the small divisors in S2 , arising from Sz a, will have the

form s
2
(s s'f. Thus, whenever we are able to neglect the

squares of the small divisors in the second approximation, the

equations of 7*28 will be sufficient for the calculation of the

remaining terms. Even then it is usually necessary to consider

only one or two terms, so that the amount of calculation needed

is quite limited.

We shall now show that the chief part of a long period term

in S2 that having the divisor s2 (s s')
2 can be obtained

immediately from the first approximation.

7'32. Calculation of the portion of a coefficient in &%t depend-

ing on the fourth power of the small divisor*.

We have seen in the previous paragraph that this portion can

arise only from the term

substituted in &2t=
|

S2
(

-
) dv, ..................... (2)

J \n/

where Bt arises from

<$(-)dv,
.....................(4)substituted in

by the use of the relation n2 a8= /A.

Suppose that the term in RI is

a $ cos sv + a /S' sin sv = aQA cos (sv + ^), sv =
...... (5)

* E. W. Brown, Mon. Not. R.A.S. vol. 90, p. 14.
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If this be substituted in (3) and the result integrated, we

obtain

-}
= 2n' (&] a 4cos(v + ai)..........(6)

CL/ \/^/ S

The equation n2 a3 = /x gives

Whence, from (4),

g! 3a,
8
l
...................... (7)

ft 2i? .

*

From the substitution of (5) in (1), we have

Moo cos (sv + !) . S<

fiv + si) g<

(sv + s1), ...............(10)O

from (8), (9). The integral gives

^v-M,).......... (11)\ v \ /2
a 6

And since {S(l/a)}
2 has the divisor s

2
only, while S2 (l/a) has

the divisor s
8

,
we have, neglecting the former,

/1\ 3 do. A

Finally,

which, with the use of (11), gives

*. In'.
(12)
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7'33. If we have two long period terms in RI, namely,

Hi = aQA cos (sv 4- si) + a^A' cos (s'v -f $/),

and if we wish to obtain the terms due to their combinations, it

is evident from equation 7*32 (10) that we shall have

= !- B cos (sv + Sl ) . B' sin ('v -fO
'

CoS (5V + 81') . B sin (^v -f si)

-
' (^ V) sin K*' )O

the upper sign giving one term and the lower the other.

The process previously followed gives

V =
\J Bff-gr^

1
'

sin [(,' s)v + sl
'

s,}.

In the case s' = s, si'^si, the term arising from the lower

signs disappears since ji
=
jV- The remaining term gives

1 ^'
82 ^ = - _ frBB' sin (2sv + sl + Si).O ??Q

7*34. The same method may be applied to find the effect of

a perturbation Sit;' of the longitude of the disturbing planet.

In 7*5 we replace v' by /i + &' 4- equation of the centre, so that

Siv' may be regarded as an addition to fi. Hence in this case

the addition to dR/dfi is

If Sit;'
= B\ sin (s'v + ^i') we can therefore utilise the formulae

7-32 (11), (12) by putting BJjri for B'/n. The latter formula, in

particular, gives an additive part to t:

S2 t = l^ BBJ sin (25V +sl + $/).
O UQ

7'35. Numerical illustration. The 'great inequality
'

ofJupiter and Saturn.

The periods of revolution of Jupiter and Saturn are. very nearly in the

ratio of 2 to 5, so that if n, n' be their mean motions, the terms with

argument (5n'
-

2ri) t will have a very long period actually about 70 times
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that of Jupiter. Thus, in the motion of Jupiter disturbed by Saturn, 1/s*

will have the order 2-5 x 107
.

Suppose that we have calculated the terms with argument (5n
f -

2?i) t to

the first order in the motions of both planets, and that we need the principal

second order portions, the latter can be obtained immediately from the

formulae in 7 '32. We shall perform the calculation and compare the

results with those given by Hill*. Since the latter uses Hansen's method

it will be necessary to compare it with that of this chapter.

Denote Hill's notation by (H) and that of this chapter by (v). In elliptic

motion we have

(T), v=z+ n+E(z)', (v), nt+c = v-JS(f),

where E(z) is the equation of the centre expressed in terms of the mean

anomaly z and E(f) is the same expressed in terms of the true anomaly/.
In disturbed motion we have

(H\ ws*g+te+ vr+ff(2+bi); (v), nt+c=v-E(f) + nto.

Now we have seen that, for the principal part of a long period perturbation

of the first order, the portion due to the elliptic periodic terms can be

neglected since it only produces portions with the divisor s. Hence, very

nearly,
n dt= - n fa, ri dt'=-ri &',

the former for Jupiter and the latter for Saturn.

There are two resulting second order perturbations in the motion of each

planet. The first is that which arises as in 7*32 and the second that which

arises from substituting the disturbed motion of the disturbing planet in

R. For the latter we have in the motions of Jupiter and Saturn, respectively,

dv^ridz*, v = noz,

since there are additions to */, v in the respective disturbing functions.

Hill gives t
7i52 = 1196" sin N, n'8z'= - 2908" sin N,

where N=- bg
1 -

2g+ 69, approximately. (There are additional secular parts

given by Hill arising from the second order terms.) Thus for Jupiter the

two portions are, in our notation,

n 8t= - 1 1 96" sin tf, 8v'= - 2908" sin N,

and in N we can put / for nt + e - w**g and fi for n't+ e' -cr' =g\ for the

reasons stated above.

If p as 1/206265'', the factor necessary to reduce the coefficient to radians,

we have, in the notation of 7 '32, B- - 1 1 96/>, Bl
= -

2908/>, j\
f=

5, n'/n = 2/5

and the two parts give

WoM=| . 1196p (f . 1196/3+ 2908p) sin 2N= 12"-3 sin 2N.

* American Ephemeris Papers, vol. 4
; Coll. Works, vol. 3.

t Coll. Works, vol. 3, pp. 560, 568.
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For the action of Jupiter on Saturn we have similarly,

M2 *= -f -2908p(f .2908p + 1196p)sin2iV=
- 30" '9 sin 2^.

Hill's coefficients for this term in n 82, n' 8z' are *

Jupiter (first+ second approx.)
-

(first approx.)=
- 11"*0 1"'4= 12"'4,

Saturn = 26"'84-3"-4= 30"'2.

After the change of sign necessary for accordance with our notation, the

comparison shows a close agreement between the two sets of results.

It may be pointed out that the percentage accuracy of the method is

greater the smaller the value of s. As far as the present demands for

accuracy in the various problems of the planetary theory are concerned,

the method will give all second order coefficients with sufficient accuracy.

It has been shown, however, that the terms depending on the divisor s3

can be obtained without great labour.

E. TRANSFORMATION TO THE TIME AS

INDEPENDENT VARIABLE

7'36. Although most of the purposes for which the theory is

developed can be equally well served whether v or t be used as

the independent variable, comparisons of different theories will

be facilitated if we can transform from one to the other without

too much labour.

The method gives results in the form

n t + e = v-Ef + P, v = v + Sv, (1), (2)

where Ef is the equation of the centre expressed in terms of the

true anomaly /, and P, 8v are the perturbations expressed in

terms of v by means of

/-v-*r, /1=s (v -) + '-t*' (3), (4)

The expression of v in terms of t can be deduced from (1) by
the use of Lagrange's theorem, but the following method of

carrying out the transformation in two steps demands much
less calculation.

Pub n$t -f e tzr = g and write (1) in the form

g-P=f-E} (5)

Coll. Works, vol. 3, pp. 195, 107, 561, 569.
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This equation may be regarded as expressing a 'mean anomaly*

g P in terms of the true anomaly/. The formula 3'11 (6)

which gives the true anomaly in terms of the mean may there-

fore be used. It gives

g - P + 2e sin (g
- P) + |e

2 sin 2 (g
- P) + . . .

.., ............ (6)

by Taylor's theorem. The terms dependent on P2 will be very
small and higher powers of P may be neglected.

The perturbations Pare expressed in terms of/,/i, and their

expression in terms of t by continued approximation constitutes

the second step. The first approximation consists in putting in

them

f=g+Eg , fi = g' +
n

^Eg ,
............... (7)

where g'
= n't -f e' sr'.

Consider any term of P :

where B, Si are constants. With the use of (7) this term becomes

B sin (jg +J1g
t + BI) cos

j(j
+

~^J E^
+ B cos (jg +jlg' + Bl) sin

The second factors of these are expressible as Fourier series with

argument g, either by harmonic analysis or by the respective

formulae

l-t(j+Ji^)X'
+ ...,

(j+fi%)E,-..., ...(8)

for expansions of sines and cosines in terms of the angles. An

important point to notice is the fact that for long period terms

j + ji ft'/
71 is small, so that the effect of the transformation in

changing the terms which usually have the largest coefficients

is small.

The transformed value of P is substituted in (6), which then

gives / in terms of t to the first order of the disturbing forces.
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If this first approximation be denoted by f=*g + Eg + f, a

second approximation is obtained by replacing Eg by Eg -f Sf
in (8), and adding the second order term in (6) with 8/=0.

For the great majority of the terms in P, powers of the

eccentricity beyond the first in the transformation may be

neglected. For all such cases, a perturbation

in n^t becomes a perturbation

in v, where s = j

'

-f jfi
. n'/n.

For the final step we have

where the last term contains the perturbations due to the trans-

formation from an origin in the osculating plane to one in the

fixed plane. These, having the square of the inclination as

well as the disturbing mass as factors, are very small, so that

the values (5), (6) for/,/i with Eg
= 2esmg will serve.

The remaining coordinates 1/r, 9, T are transformed in a

similar manner, that of 1/r being found with the aid of 2*2 (2).

The value just found for / in terms of t is used in the

expression for 1/r, while the values (5), (6) will be sufficiently

accurate for substitution in the expression for 6, T.

7'37. The method of this chapter is closely allied, as far as its final form

is concerned, with that of Hansen*. Substantially, his method requires

the expression of the true longitude in the form

v=g+m+ tff+ 2eam(g+tg)+ e'
2 sin2 (#+ fy)+ ...,

so that all the perturbations are expressed by adding 8g to the mean

anomaly #. Equations 7 '36 (1), (2) show that the same thing is done hero,

with the difference, however, that while Hansen calculated dg in terms of t
y

it is here calculated in terms of v.

That the theory is more simple than that of Hansen is due to the fact

that it can be expressed by means of equations which follow forms well

* The original theory is given in a volume, Fundamenta Nova, etc., Gotha,
1838.
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known in other dynamical problems. The two principal objections which

may be urged are, first, the necessity for expressing the true longitude of

the disturbing planet as a function of that of the disturbed planet, and

second, the possible need for the final transformation given in 7 '36. As
we have seen, the latter requires comparatively little additional calculation,

while it is doubtful whether the former transformation, which is needed

only in the development of the disturbing forces, requires more labour than

that in terms of t. As pointed out in Chap, iv, each requires substantially

four operations, two of which are more simple in the present method than

in that of Hansen, while one of the remaining operations is more

complicated.

There is, however, a special advantage possessed by the present method

when we are dealing with the perturbations produced by an exterior planet
on an interior one having a considerable eccentricity. In the transformation

giving v' as a function of /, the principal elliptic term, 2e sin /, enters only
with the factor n'/n which in most cases is not much greater than 1/2.

Thus the powers of this elliptic term have a maximum effect nearer to

those of e than to those of 20. To some extent this is compensated by the

factor r2 which accompanies R in the developments, but the convergence
is much more easily controlled with the method of this chapter than with

the usual independent variable.

F. APPROXIMATE FORMULAE FOR THE
PERTURBATIONS

7*38. It is often useful to get an idea of the order of magnitude
of the perturbations in a given problem. This is particularly the

case when extensive calculations are to be undertaken to obtain

the general perturbations accurately; an approximate preliminary
calculation may save much unnecessary labour. Approximate
formulae can also be utilised when the interval of time during
which the results are needed is short or when the constants of the

orbit are not well known.

In obtaining such formulae, we shall neglect the inclination,

so that v = v, and attention can be confined to the equations
7*1 (3), (4), (5). If in these equations we put

e
2
), q = (1 + Sq) q0j u = (l+e cos/+ Su) q ,

|=
f*>

nQ t + = (!-#)% (1 -f e cos/)~
2 + n St, J

(1)
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,hey may be written

..............................(2)

(3)

d *,_ -">*_ fift o SM \~
+ e cos/y/

= JSg -28w + (68^-8^)6 cos/+ ....... (4)

Consider a term with argument <r in the disturbing function

md suppose that this term gives rise to terms

A sino- in
^-(r*Rqo),

Bcoscr in rz
-^-

.

...... (5), (6)

[n general, A> B will be of the same order of magnitude.

Substituting (5) in (2) and integrating, we obtain

* 2^1 da- _
gg,

-- COS CT, S T- ................ (7)*
s dv ^

With the help of (5), (6), (7), equation (3) becomes

(& + i) Su = - f + J8)
cos a- + \eA cos (<r +/)

\rtw / \ s /

\eA cos(ov /),
}he integral of which furnishes

2A \coso- eA fcos(<r+/) . cos(cr-/)]~"" +"~'
...... (B)

jince l-(* l)
2 = + 2s-s2

.

The substitution of (7), (8) in (4) and a subsequent integration

jive nQ St.

7*39. Let us first neglect the terms in 7*38 (8), (4) which have

tihe explicit factor e. The remaining terms give

/2A
cosr tt--f

S

/2A D\ coso-
-f

+JB)=
--

a , ..-(1),
\ o / -I- o
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The transformation to the time as independent variable ia

immediately made, since with e = 0, we have Sv= n^St, and

/=#,/!=/ in <r.

These results hold for all terms in the disturbing function

whether they contain e or not; we have neglected e only where

it appears explicitly in 7*38 (3), (4) and in the transformation to

the time as independent variable. Denote the former by the

suffix zero, and the additional parts factored by the first power of

e by the suffix unity. To obtain the results to the first power
of e, it is sufficient to substitute the terms with suffix zero in

the previously neglected terms. Hence

nQ j-Sit- 2SiU -h (68Qu SQq) e cos/. ............... (5)

To the same order, the formulae for the transformation to the

time as independent variable give

2e sin g -j-nQ$Q t
- n Q Sit,

...... (6)

with/=<7,/i g
f
in all the formulae.

The terms of chief importance are usually those in which

s or s 1 is small and the order of magnitude of these is given

by SQ v = n SQ t. When s 2 is small the additional terms with

argument a / must be considered.

7'40. Solution to the first powers of the eccentricities. The

development of a'/A a'r cos S/r'
z as far as this order is

*

Si {c^ cos i^r e (D 2mi) af cos (i^r +/)
+ e' (D + 1 - 2i) di cos (fy +/i)J

+ a{cos^r + i$(l -f 2rn)cos(^-/)
+ i* (1

- 2m) cos (t +/) - 2e' cos (^ -/,)},
where

a = a/a', -^ =/ 4- w ~/i *', D = d/a
7

a, m =
w'/w,

* The development to the second order with respect to the eccentricities and

inclination is given by C. A. Shook, Mon. Not. R.A.S. vol. 91, p. 558.
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and

,
t = 0, 1, 2,....

CN- - j /- /. x
bince r-^- a-^ )

r a (I ecos/),
or da

we have

r2 ,r = a 2i }Da$
- cos i\Jr e (Z) 4- 1 2rm) /) cos (ti/r 4-/)

4- e' (D + 1 - 20 Dcti cos (

7?2/

4- a2 - --

{
cos

-v|r
+ e (1 -f m) cos (^ /)

4- e (1
- m) cos (^ -f-/)

- 2e' cos (

- a -

Sii {a 4 sin ity e(D + 2 2nn) a< sin (i-

-
a, sn

{- sin
yfr -f ie(3 + 2m) sin (^ -/)

+ \ e (3
- 2m) sin (^ +/) - 2e' sin 0/r

-

Substitutions from these formulae in 7*39 (1), (2), (3) give

SO<?K &o u > nS^t, and from the first term in each parenthesis the

additional terms in 7*39 (4), (5). In most cases values of i

beyond 4 will not be needed.

G. FINAL DEFINITIONS AND DETERMINATION
OF THE CONSTANTS

7*41. The method of this chapter suggests the following
definitions of the constants.

The mean motion n and the epoch e are such that when all

periodic and secular terms are suppressed, the true longitude
shall be represented by nt 4- e. If terms dependent on the second

powers of the masses be neglected there is no difference in the

values of n, e whether t or v be used as the independent variable,

and the additions depending on these second powers will usually

be insensible to observation,

B&SPT 14
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The constants e$, OTO have been defined to be such that the

principal elliptic term in OO/T, where n2Oo
8 =

/i, shall be repre-

sented by

2
cos (v cj

).

Since any definition depends on the specification of some

particular coefficient in a particular coordinate, a change to

another definition can always be made. In numerical work it is

usually sufficient to make any small correction due to an altered

definition in the elliptic terms only.

The constants 7
, Q are defined above by making the principal

term in the latitude equal to sin /o sin (v # ) Here / is the

inclination of the two orbital planes. The change to i
y
the

inclination to any other plane of reference, is made by the

formulae of 1*32, and the change to i$ is made to correspond. The

slight difference when t is used as the independent variable will

be sufficiently accounted for in the determination of the constants

from observation.

7*42. A process ofapproximation is used in the determination of

the values of the constants from observation. The perturbations

may be calculated with the osculating elements at some given
date unless previous work has given elements more nearly

approximating to the constants of the theory. Thus constructed,

the theory is compared with the observations, or with a selection

from them. The differences are assumed to be due to erroneous

values of the elements and are analysed so as to determine their

corrections. While the formulae for the perturbations should be

examined to see whether these corrections make any sensible

difference in them, it will usually be found sufficiently accurate

to correct the elliptic terms only.

7*43. The detailed work connected with the determination of the

constants, as well as their correct definitions, has to be carried out what-

ever method be used to calculate the perturbations. The difficulty of

avoiding error in performing the work can to some extent be lessened by
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carrying it out as far as possible in a systematic way, since few checks of

its accuracy are available. Most of the work of developing the disturbing

forces can be done by harmonic analysis in the manner explained in 7 '7, and

this work has the advantages of being easily systematised and of carrying
its own checks. The integration of the equations cannot be done in this

manner, but the steps with the method of this chapter are easy and simple.

The final step of comparing the calculated results with observation, although
dismissed here in a few sentences, is or may be as laborious as that of

calculating the general perturbations, but it is necessary if good values of

the constants are to be obtained.

14-2



CHAPTEE VIII

RESONANCE

8*1. Resonance is usually defined as a case of motion in which

a particle or body, moving or capable of moving with periodic

motion, is acted on by an external force whose period is the

same as that of the motion of the body. This definition, while

it describes the apparent character of the phenomenon, implies
the existence of certain conditions which are not present in

actual mechanical systems.

Let us take the usual illustration, namely the equation

t ,,
-r 4- n*x = m sin n t.

at*

When n =f n
r

,
we have the solution

. / , x in IAx = c sin (nt -f a) + -
-75 &m n t.

/ a

But when n nf

, the solution is

x = c sin (nt + a) \ mn't cos n't,

where, in both cases, c, a are arbitrary constants.

The illustration is defective because such an equation does

not arise in any actual mechanical system except as an approxi-

mation, and because the approximation is valid only when x is

small. The solution, therefore, breaks down as soon as n nf

becomes too small. In actual mechanical problems, either the

left-hand member which, equated to zero, gives the undisturbed

motion, is not a linear function of x
y
or else the variable x is

present in the expression for the disturbing forces, or both of

these conditions may be present.

8*2. In the previous chapters we have based our procedure
on the plan of continued approximation with respect to the

disturbing mass. In the elliptic approximation this mass was

neglected. In the first approximation to the disturbance the
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elliptic values were substituted in the expressions for the

disturbing forces, and the equations were again integrated. In

the second approximation, the new values were substituted for

the coordinates in the disturbing forces and the equations were

again integrated. This procedure carried the implication that

it was possible to develop the perturbations in positive integral

powers of the disturbing mass, and that the coordinates would

be expressed as sums of periodic terms. It is true that terms

with coefficients increasing with the time were admitted,

but it was seen that this was merely a convenient device

adopted in order to abbreviate the calculations when the results

were needed for a limited interval of time only. The terms so

treated had periods which were long in comparison with the

interval during which the expressions were to be used for

comparison with observation.

In cases of resonance, this procedure fails. The reasons for

its failure may be exhibited in several ways. That which is most

fundamental in the mathematical development is due to the

fact that expansions in powers of the disturbing mass have to

be replaced by expansions in powers of the square root of of

some other fractional power of this mass. Further, there is a

fundamental discontinuity in the passage from non-resonance to

resonance, which cannot be bridged by any mathematical device,

since it is a physical characteristic of the motion.

The principal features of certain of the resonance problems in

celestial mechanics can be illustrated by the motion of a pen-
dulum which can make complete revolutions about a horizontal

axis as well as oscillate about the vertical, and a following

section (8*5) contains an analysis of these motions made from

the point of view needed later.

8*3. We shall be concerned mainly with those cases of resonance which

occur in the present configuration of the solar system. A certain number

of such cases are present in the satellite systems of Jupiter and Saturn,

where the periods of revolution round the planets appear to be very nearly

in the ratio of two small integers. In the planetary system, we have the

Trojan group of asteroids whose members circulate round the sun with
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the same period as Jupiter. The motions of this group are treated in the

following chapter. The most difficult problem is, however, to find out why,

amongst the numerous asteroids which circulate between the orbits of Mars

and Jupiter, none are known having periods exactly twice or three times

that of Jupiter, or periods in the ratio to that of Jupiter of two small

integers. A discussion of certain features of this problem will be given
in this chapter.

8*4. In the actual cases of observed motions in the solar system, so far

as they have been developed, we know of no case in which the discontinuity

referred to in 8*2 is present in an observable form. We have referred to

resonance as a set of cases in which the periods of revolution are in

the ratio of two small integers. Since the final expressions for the co-

ordinates contain all multiples of the frequencies, each pair of these can be

regarded as a possibility for resonance conditions. But these frequencies

are observed quantities, namely, those of the mean periods of revolution,

and since such a pair of observed quantities can always be expressed as

the ratio of two integers, it would seem that resonance must always be

present in any three body problem.
The question goes further than this. It will appear below that the

phenomena of resonance occur not only when the observed periods are

exactly in the ratio of two integers but also when these periods are nearly
in such a ratio. In other words, resonance occurs not only for a pair of

special values of the periods but also for a range of values and this range
is finite. One difficulty, namely, the question of the accuracy of our measures

of the periods, disappears to some extent, but it is replaced by another,

namely, the consideration of the infinite number of periodic terms which

must have the resonance property.

The discontinuity referred to is not a place where either the coordinates

or the velocities are discontinuous in a physical sense, but is one in which

an infinitesimal change in one or more of the constants will ultimately

produce a different type of motion. Thus the computer arrives at a situation

where he needs a considerable increase in the accuracy with which the

constants obtained from observation must be known in order to choose

between two possible routes. And this process appears to continue as the

approximations follow one another. From his point of view, there can be

no general solution of the problem of three bodies, that is, there cannot

exist one. set of formulae giving the coordinates in terms of the time and

the initial conditions which will serve for more than one set of such initial

conditions, which will be valid for all time, and which can be used for

calculation of the position. This conclusion may be a result of the mathe-

matical devices which he adopts, but is more probably due to an inherent

difficulty, namely, that of finding expressions which shall be continuous
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functions of the constants which can be determined from observation. Any
proper solution of the problem requires also the consideration of the limi-

tations placed on the observer
; it is not solely a mathematical problem.

8*5. The motion of a pendulum. The fundamental equation
in resonance problems appears to be

K*smx = (1)

This is the same as the equation of motion of a simple pendulum
of length ,

if /c
2 =

g/l, and if x be the angle which it makes with

a vertical line drawn downwards at time t. Since the substitu-

tion, x -f- TT for x, changes the sign attached to #2,
the equation

with /c
2
replacing /c

2
gives the same motion as (1).

The equation has the integral

Y-C'-f 2*2
cos#, (2)

where G is an arbitrary constant : for the motion to be real it is

necessary that G 4- 2/c
2 5 0. There are three types of motion

depending on C > 2#2
, C < 2/c

2 and the intermediate case C 2*2
.

(i) (7>2/e2. As dxfdt never vanishes in this case, it is

always either positive or negative, and the pendulum is making

complete revolutions in one sense or the other. We have

dx
f const.

as the integral. If we put

dx1 _ J^ f
2"

dx^
n
~
2^ Jo (C + 2*2 c

n can replace as the arbitrary constant, and the solution can

be expanded in the form

K? /e
4

x nt 4- e H 5 sin (nt -f e) -f 5 ^ sin 2 (nt -f e) + (3)n on

The periodic portion of this series can be regarded as an oscilla-

tion about the mean state of motion which is revolution with a

period 27T/W. The half-amplitude of this oscillation is evidently
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less than TT and it decreases as n increases. It is convenient to

consider n, e as the arbitrary constants of the motion to be

determined from the initial conditions.

(ii) C < 2/e
2
. Here dx/dt = when x = a, where

The integral can be written in the form

sin2 |a -sin2
|#),

and x is a periodic function of t oscillating between the values a,

where a < TT. The solution can be expanded into the series

C
3

x = c sm (pt -f /?) + - T^T sin 3 (pt + ft) -f . . . , (4)

where p K (1 -^c
2 + ...).

It is convenient here to consider c, /3 as the arbitrary constants,

since the limit of p as c approaches zero is tc> a quantity inde-

pendent of the arbitrary constants.

(iii) (7= 2#2
. Here dx/dt %K cos -|#, the solution of which

gives
x -f TT = 4 tan"1

cxp. (fct 4- c/o), (5)

where a<> is one arbitrary constant, the other having a particular

value.

When t= <x>
,
x= TT: at both places dx/dt = 0, d2

x/dt
2 = 0,

and it follows by differentiation of (1) that all higher derivatives

of x vanish. Near this point, while x approaches one of the

limits TT, t tends to become an indeterminate function of x. It

should be noted also that x is a discontinuous function of the

arbitrary constant (7, since the motion is of a quite different type

according as <7-^2*a from C - 2*2 > or from C- 2** < 0. This

result is of course characteristic of unstable equilibrium, but the

point of view stated here is required in the applications to be

made below.

Attention is drawn to the following facts which are obvious

consequences, but which are needed for the interpretation of

resonance equations.
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(a) The mean value of dx/dt in (i) is n and in (ii) it is zero.

(6) As n passes from positive to negative through zero the

solution given under type (i) is a discontinuous function of n at

n = 0. With certain initial conditions, there is a range of solutions

(independently of the time constant) corresponding to the case

n = 0. This range of solutions constitutes type (ii) and is

characterised by the constant c or a which is related to it, and

can have any value between TT.

(c) In case (i) the series giving the solution proceeds along

powers of *2
;
in case (ii) it depends on V/c2 . There is no analytical

continuity between the two types of solution, and they cannot

be represented by one and the same analytic function of t.

(d) In case (i), the adopted arbitrary constants are the

period of revolution and the time of passage through the vertical.

In case (ii) they are the amplitude of the oscillation and time

at which this oscillation vanishes.

8'6. A more general type of motion is exhibited by the equation

with its integral (~\ = C-

where/(#) is assumed to have an upper limit/(K). We get the same three

types of motion according as <7>2/(K), C< 2/(fc), C=%/(*). In the first

case x can take all its possible values
;
in the second case it is limited by

the value given to (7. In the first case also dx\dt never vanishes and it has

a mean value different from zero
;
in the second case x is a periodic function

of t and the mean value of dx/dt is zero. When #=2/(K), CZf(x) is

divisible by (x
-

/O
2 since K is the value of oo which makes f(x) a maximum,

so that dx/dty d
2
x/dt'

z and consequently all higher derivatives of x vanish.

8'7. The disturbed pendulum. The characteristics of resonance

phenomena can be well exhibited by considering the equation

x-72/yi

-y-2
4- /c

2 sin x = mic2 sin (x n't e'), ......... (1)
(it

which may be regarded as the equation of motion of a pendulum
disturbed by a periodic force. We shall suppose that m, n', e' are
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given constants and thatm is small compared with unity. We shall

further suppose that when ra = 0, the pendulum is oscillating

with a small amplitude, so that only the type (ii) with the

solution 8*5 (4) is under consideration for the undisturbed motion.

To solve the equation (1) conveniently, it is advisable to use

the method of the '

variation of arbitraries
' The method is given

in the following article for a more general type of equation than

(1), as it serves to illustrate in detail the plan to be followed in

cases where the undisturbed motion is periodic, and also the

nature of the change of variables useful when resonance problems
in celestial mechanics have to be considered.

8*8. It is proposed to find the solution of the equation

when that of
d?

4"^'^" ^
is periodic and is known.

Suppose bhat the solution of (2) has been obtained in the form

x~x(l,c\ l nt+e, n = func. c, (3)

where x (I, c) is a Fourier series with argument I and with

coefficients depending on c, the arbitrary constants being c, e.

The solution (3) has the following properties. Let

be regarded as a function of two independent variables I, c and

let us form ?i
2
3
2
#/9J

2
, substituting the result in

(4)

If n be the function of c defined by (3), the variables /, c disappear
from (4) and the substitution reduces (4) to zero. The disappear-

ance of I, c is not dependent on their values : they may be any
functions of t or any variables whatever or constants.

Let us suppose that they are variable. We have

dx dx dl ex dc
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We are about to replace x in (1) by two new variables I, c which

are related to x by equations (3). Since we are replacing one

variable by two others, a relation between the new variables is

at our disposal. Let us so choose it that

dx dl dx dc _ dx
,~^'~ w

'
.................. ( }

. i dx dx
then

di
nm

Whence, since t is present in (6) only through I, c, n,

d*x d*x dl 9 / dx\ dc

Substituting this in (1) and making use of the fact that (4) is

zero, we have
dl 9 / dx dcx ( \ ,

/ x\ c ,, /(7Nn
W'(dr n

)
+
dc(

n
dl)'dt-

m(
t
> ..........(7 >

The equations (5) and (7) may be regarded as linear equations
to find dl/dt n, dc/dt. Their solution gives

dc m dx , dl m dx , .

, Tjr 9 / dx\ dx (Px dx /r.

xwhere K = -
(n -^ }. ~r

- n^ . 5- ................ (9)
dc\ dl/ dl dl2 dc

^ /

It is easy to prove that K is a function of c only. For since

the expression (4) vanishes identically for all values of l
y c

}
its

partial derivatives with respect to them will do so also. We thus

obtain two equations between which df'(x)/dx can be eliminated

and it is found that the result can be expressed in the form

dK/dl 0, showing that K is independent of I and is therefore a

function of c only.

If <' = d<f>/dx, where
<f>

is a function of x, t, we can express (8)

in the form
dc m d6 dl m 9<f> /irkX_ __ _ _ _ ij _ _ r / 1 1 1 \

dt'Kdr dt~ Kdc'
............ v '

where
<f>

has been expressed in terms of /, c, t by inserting for x

its value (3) in terms of I, c.
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Since n
t
K are functions of c only, we can put (10) into

canonical form with new variables Ci, JB, defined by

dci= Kdc, dB = n dc\ = nKdc,

and the equations then become

i /r>, \ /D, i\ /-i\~ = -(B + m <t>), ^ -(B + Kf).......(11)

89, Solution of the equations for I, c. When m is small, the

usual method of approximation is the substitution of constant

values of j?
, Q, Co for n, e, c in the terms factored by m which

then become functions of t and can be integrated. If we put

I = / -f /!
= nQ t -f f + hj o = Co -f Ci,

and neglect powers of /l5 Ci beyond the first, we have

dn\

from which Ci and then li are immediately found.

In cases of resonance this procedure breaks down, and it is

necessary to proceed as follows. Differentiate the equation 8*8 (9)

for dl/dt and substitute the expressions for dc/dt, dl/dt in the

result. We obtain

^ - A ( - ty\ *? _ -^ ^ - ^. -?

2

^
dt2 ~dc\ ~K^c)

t

dt
i

Kdldc'Tt Kdcdi

_ m fdn d^ _ _8^> _ 9
2
j> \~'"~ ?l ""

Since the last line of (2) has the factor m2
it may, in general, be

neglected in a first approximation.
In the applications, I, t are present in

</> only as a sum of

periodic terms with arguments il j (n't -h e'), where ri
y e' are

given constants. When this is the case

cty^jV cty

dt i dl
'
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and the first approximation to (2) can be written

d*
1

, v/- /\a
m 9 /

* 9<M /Q ,

-T72 -f 5 (in
- w ) ^ 5-

~-
=-> ai )

- .......w)ar J 7 iKoc \in-jn oil

The standard type is that in which < has the form

< = c^ cos ^-f&, li ilj(n't+e), .........(4)

where ait b are functions of c only. The equation for lt is then

If, in a first approximation, we put c = c ,
n = nQ) K=KQ

all constants (5) takes the form of the equation for the pen-
dulum. [If the coefficient of sin l t be negative, we put

Z. = i7-j(?i' + e') + 7r

instead of the value (4).] There are therefore the types of

solution considered in 8*5 . Type (i) is that in which dli/dt is

never zero so that iri^jri does not vanish. Type (ii) is that in

which li oscillates about the value [or TT].

With type (i), we put li
= i(nQt + o)-j(n't + e')

= li0 in the

second term of (5) and deduce

9 / cti \ . , /a .

as a first approximation.
With type (ii), we choose n

, e to be such that

iiiQ jn'
-=* 0, i Q je

f = or TT, (7)

and li is an oscillating function. If the oscillations be small we

can put sinli = liy n n^> c = Co, K = !Q in order to find a first

approximation. This gives
7 / \ <> \

mai fin\ /o\
I- = X sin (pt 4- Xo), p "If" 13") > ()

X, X<> being arbitrary constants.

With similar limitations, the equation for c gives

dc f
t

Whence c = c mt\ - cos (^ + Xo), (9)
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where c is determined from WQ =jri\ since T?O is a known function

of CQ.

The coefficient of the periodic term in (9) is

X, .....................(10)v '

and we thus have the first term of an expansion in powers of m^.

If the coefficient of ra^ is not large, the assumption that we can

put c Co in the coefficient of sin I in (5) is justified.

The difficult cases in celestial mechanics are those which

depend on the value of c . If (10) becomes infinite as c tends

to zero, and if the coefficient of the periodic term in (9) is com-

parable with c , this method of approximation breaks down. The

analogy of (5) with the pendulum equation no longer exists and

special devices have to be employed in order to find out whether

resonance is possible. A case of this kind in which i = l,j = 2 is

treated below.

In general, the solution (6) corresponds to the case of an

ordinary perturbation and (8) to a case of resonance. The

various features noted in 8*5 as peculiar to the two types of

solution are present and can be interpreted in the light of our

knowledge of the motion of the pendulum*.

8*10. The general case of resonance in the perturbation problem.

We recall the method of integrating the equations

S (dct . Swi - dwt . 8^) = dt.S ( Ai~2 + mR), . . .(1)

where mR now denotes the disturbing function, ra being the

disturbing mass with that of the sun as unit.

We had, with a slightly different notation,

E = RQ + 2Aco*jiN, .................. (2)

where A was a function of the ct and

JI'MI +J2W, ...... (3)

3

' = n't 4- e', WZ^VT'.
* A more elementary treatment of resonance with applications to the motions

of one and two pendulums is given by E. W. Brown, Rice Institute Pamphlets,

vol. xix, No. 1. Also reprinted separately and issued by the Cambridge University

Press.
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In a first approximation we put dw^dt = WQ and obtained

integrals for the values of cit
fwi which contained the divisors

j\n*+ji!n'. It was assumed that no one of these divisors

vanished.

Let us now suppose that there is one term for which this

condition does not hold, or rather, in order not to limit the

argument too much, let us assume that there is one term in

which neither ji nor j\ is zero but in which j\n + j\n
f

is so small

that the approximation is no longer valid, but that we can

approximate with all the remaining terms. We shall see later

on that this latter condition cannot hold, but that an approach
to the solution can be made by supposing that it does hold.

All these remaining periodic terms can be eliminated by

changes of variables in the manner explained in 6 '6. We can

therefore suppose that the equations (1) refer to the new
variables after such terms have been eliminated and that

R^Ro + AcosfrN, .................. (4)

where jiN has the value (3) and R consists of those parts of R
which are independent of MI, Wjf.

Let us change the variable Wi to W\ where

ji Wi =jiwi +ji'wi +J2W, ............... (5)
so that*

ji8Wi= i/iSwi, jidWi^jidw^+tfridt....... (6)

It is easily seen that the left-hand member of (1) merely

requires the substitution of Wi for Wi if we replace the right-

hand member by

ci ji

Next, replace Ci by a new variable GH defined by

(8)

Previously, n$ was defined for the case m = by the relation

^2 Clo
-3 = ft0) so that the second relation (8) is the same as

?i o + ji'n'
= 0. This definition does not demand that rc shall be

* The symbols d and 8 have the same signification as in 5 '3.
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the final mean value of n, since there may be a constant portion

in en which prevents this. The only condition needed at this

stage is that CH/CIO shall be small so that the expansion of Ci~
a

in powers of this ratio shall be possible. We then have

j^

The first two terms of the right-hand member of (9) do not

contain the variables and may therefore be omitted from (7) ;

the coefficient of Cn vanishes in virtue of (8). Hence, inserting

flo
= /^io~

3
=-ji

/

?*
/

/ji> ............... (10)

we obtain for (7) the expression

n
cos

...... (11)

The last expression is the characteristic form of the Hamil-

tonian function for cases of resonance. It is to be remembered

that no, CIQ are, by definition, functions of n' only and are there-

fore independent of c,-, Wi, w{
.

8*11. The equations for cn , Wi become

-^
= --mjiABUijlN', ....................................... (1)

dQ Cu a cn2
3^0 d-^ - ~ ~

-7- - - ~ """
5~~

-
5

dt ecu CIQ Ci<f den ocn
......(2)

The right-hand members of the equations for c2 ,
c3 ,

w2 ,
w3 all

contain the factor m. If then we replace the variables Cu, c2 , 3

by Ci, (72 ,
Gz ,

where

cu = mi(7i, 02=020 + ^^2, c3 = Cso + m^Cs, ...(3)

and ^ by m""*!
7

,
the equations can be written
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where TF2 >
TF8 are written for w2 , w$ to preserve symmetry of

form. The quantities Cao, CM are now constants which are at our

disposal. It will be noticed that the factor m has disappeared
from the coefficient of cosjiN.

In order to apply these results to actual problems, we need

to know what the new variables mean in relation to the dis-

turbed elliptic orbit. We have

d = (/ia)* c2 = ci {(1
- e

2
)*
-

1}, CB = ci (1
- e

a
)
}
(cos i - 1).

The replacement of d by Ci -f m^Ci, with the expansion in

powers of wJCi/Cio, implies that we assume an initial major
axis 2a and that its variations are small compared with 2oo.

The factor wi would seem to imply that Ci is not infinite when
m = 0. Mathematically this is correct, but as the whole problem
demands that in shall not be zero, we can at present be content

with the previous statement.

Next, since in the problems considered e< 1, we have

The replacement of c% by Cw+ndCt implies that there is a

value CQ such that (e e } -f- m% is not very great. But care

is necessary if we contemplate expansions in powers of m^C^Cm.
For perturbations by Jupiter, m//j, is of the order 10~3 so that

mi is of order '03/xi. Thus expansions in powers of
(<?2 ^20)^

will converge too slowly for useful numerical computation if e

is much less than 1. (See the last paragraph of 8*24.) The same

difficulty does not occur in the case of c3 ;
for the expansion is

made in powers of (2 sin Jt)
a
, so that it involves positive integral

powers only of Ca CSQ. However, if we contemplate a develop-
ment of Li in powers of m*, which these changes imply, we may
be in danger of not obtaining a real approximation if (2 sin Ji)

2

is comparable with wi.

These difficulties are actually present in the consideration of

the motions of the asteroids circulating between the orbits of

Mars and Jupiter. They play a much smaller part in the

resonance cases amongst the satellites of Jupiter and Saturn,

mainly because the disturbing mass-ratios are much smaller.

B&SPT 15
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8*12. Let us suppose that expansions in powers of

m^ OS/CM are possible, and let us further suppose that, in a first

approximation to the solution of the equations 8*11 (4), we can

neglect mi
The coefficient A then becomes a constant, A Q ,

and R is a

function of w2 , w3 only ;
thus C2 , 0$ disappear from Q and w2f w3

are therefore constant. The remaining equations are

rt GI /i\ /n\
-3?! -\ ............ (1), (2)

......(3), (4)
The first two equations give

l 710 *r rx

-,-^T
- 3wo

'a
smjitf = 0,

U-JL CIQ

or, since wa , ^3 are constant, so that dN/dT=dWi/dT,

This is the pendulum equation previously discussed. In the

type of solution where jiN makes complete revolutions so that

dN/dt never vanishes, we have an ordinary perturbation; this

was expressly excluded from the definition of N. In the second

type jiN oscillates about the value or TT according as AQ is

negative or positive. This oscillation is known as a libration.

In general, therefore, it appears that, under the stated con-

ditions, such oscillations are possible. If the amplitude of the

oscillation is small so that we may replace sin^i^V" by j^N or by

jiN -f TT, we have, after the replacement of dT by its value m^dt,

tf=Xsin(p* + Xo), if
=

a>ji*\A* ~m, ...(6)
CIQ

where X, Xo are arbitrary constants.

The frequency p is proportional to the square root of the dis-

turbing force, while the coefficient and phase are to be determined

from observation. In all cases except that of the Trojan group
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of asteroids in which ji
= /, some power of e, e

f

,
F will be

present in A and it is therefore necessary to consider the

possibilities of expansions in powers of e^
> e'&, T$ as well as those

in powers of ra*.

The value of Ci is given by (2), (6). We find

Ci = CIQ + m*(7i = Cio
-

t^-r p\ cos (pt + X ).
. . .(7)

^oji

The small factor p in the coefficient of the periodic part of d
is consistent with the assumption, made earlier, that expansions

in powers of m^Ci/Cio are possible. It shows further that while

the libration of N, that is of the angular position of the body, may
have a finite amplitude, that of GI and therefore of the major axis

is small.

Since RQ) w2 ,
w3 are constants, the integrals of (3), (4) are

2 ~Ci + const., ............ (8)

C8
= w**!^+-i

8
ft + const.............(9)dw3 fr

^ '

Now RQ contains wz ,
w3 ,

w2
'

only in the form of cosines of

multiples of wa w2', ^2 4- w2
' 2w3 . In order therefore that

(72 ,
C9 shall not increase continually with the time, it is necessary

that
w2 = w2 =^3 ......................(10)

Since jiN= j1wl + J2w2 + J3 iv3 +ji'wi +J2W,
where the sum of all thejiy ji is zero, the condition (10) gives

jlN= ji(Wi-W2)+ji'(Wi-W2).......... (11)

If, however, e
f = 0, RQ is a function of the ct only, so that the

condition (10) is not needed and as w% disappears we have

where, as usual,

jl+jl'+J2 + J3
= 0.

Since the value of Q in 8'10 (11) does not contain the time

explicitly, the integral Q = const, exists. We have made no

direct use of this integral in the investigation just given. This

15-2
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omission corresponds to that in the case of the pendulum making
small oscillations where it is more convenient to solve the

equation directly than through the medium of its first integral.

8*13. The constants. The general solution of the equations of

motion requires the presence of six arbitrary constants. When
the libration ofjiN is zero, and e

r =
0, the constants present in

wi, wi, w3 are all determinate since wz ,
wa are given by 812 (10)

and that in w\ by the condition that j\N must be zero or TT.

The constant Cu is determined by 8*10 (8). Thus the constants

CM> Cao onty are ak our disposal. But as the libration in general

will exist and as its presence introduces two new arbitrary

constants, the loss of four arbitrary constants is reduced to a

loss of two. Since the two conditions 812 (10) disappear when

e' = 0, there is no loss in this case. Thus when e
r = 0, there is a

finite range of values for each of the arbitrary constants: in

other words, the resonance cases are not particular solutions,

but are merely types of solutions in which all the arbitrary

constants have finite ranges.

When e
1

4= 0, the question of the ranges of the constants

cannot be settled by the approximation used above: this

involved the neglect of terms factored by m but the retention

of those factored by m%. The conditions 812 (10) may be merely

limiting values about which oscillations can exist in the same

manner that N = is a limiting value about which librations

are possible. The treatment of this case for the Trojan group
will be found in Chap. ix.

814. It is evident that the change of variable, Wi to W\,

eliminates t from all the angles for which the ratio ji/ji is the

same: all these terms have in fact the resonance property and

should properly be included with the single term chosen above.

After the change of variable, the Hamiltonian function does

not contain the time explicitly and there is an integral of the

equations, namely,
M
2

7iV
2

1 4/1

= const.
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The succeeding change from ci to cn gives, by 8*1 (9),

.

c10 V Cio
2

c10
3

This equation may be regarded as determining Cn in terms of

the remaining variables. A comparison with 8*5 (2) will show

that Cn plays a role similar to that of dxjdt in the integral for

the motion of the pendulum, and that the presence of resonance

depends on the value attributed to the constant.

It should be pointed out that the investigation given in the

preceding articles does not prove the existence of resonance; it

merely shows that so far no condition preventing resonance has

appeared.

The illustration afforded by the motion of the pendulum must be

regarded as showing only the general nature of the problem. Difficulties

from which it is free appear as soon as we begin to consider even the

simplest case of actual resonance in the solar system. Some of these arise

from the fact that the consideration of a single resonance term is not

sufficient. For example, in the case of the 2 : 1 ratio, the principal terms

present in the disturbing function are

A
l
e cos

( \GI 2w
x

' +w2), A
x
V cos (w\

-
2wj' + 10%).

In the ordinary planetary theory, the variation of w%' and especially its

secular part can be neglected in a first approximation and the result may
be later corrected sufficiently to satisfy the needs of observation. If, how-

ever, the former angle is oscillating about a mean value, it is necessary to

consider the nature of the motion of the latter according as it oscillates or

makes complete revolutions.

Another difficulty not exhibited by the pendulum is the existence of

types of motion in which small oscillations do not exist but in which

oscillations of finite amplitude can exist. In certain simple cases these

types may be dealt with by the use of the periodic orbit and of variations

from this orbit. But these methods have heretofore given little or no in-

formation as to the range of the oscillations and this range may be of

importance in actual problems. If, for example, the eccentricity of an

asteroid can become so large under the influence of Jupiter's attraction

that its orbit can intersect that of Mars, it is only a question of time until

a close approach to that planet will occur and such a close approach may
alter the orbit so fundamentally that a completely new investigation of its

further motion will be needed. A method of approach to the investigation

of such cases is given below.
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GENERAL METHOD FOR RESONANCE CASES

8*15. Certain features of resonance problems have been

developed in the previous sections of this chapter. In this and

the following sections a method of procedure applicable to

certain of the actual cases of resonance in the solar system will

be given.

The integers j,j
f

,
for which j^ jiV is very small or zero,

are usually less than 5. Here nQ ,
n r

are observed mean motions

whose ratio can be expanded into a continued fraction. If the

successive convergents be formed, the practical cases of resonance

are those in which a convergent with small numbers is so close

to the ratio that the next convergent is a fraction with large

integers. Since the order of the coefficient with respect to the

eccentricities and inclination is
l^i ^i'l (cf. 4*15), it follows that

the coefficients corresponding to the higher convergents will be

very small, and it will be assumed that their effects can be

neglected in the limited intervals during which it is desired to

obtain an approximation to the motion.

The terms for which jinQ j\n' is not very small or zero can be

eliminated by the method of 6 '6 and the resulting function there-

fore contains Wi, Wi only in the combinations p(jiWiji'wi),
where p is a integer. Further, since the new terms produced by
the elimination of the short period terms have the factor m2

,

they may, in general, be neglected. Thus we can take as the

Hamiltonian function

mR = ~- + rafi + m2A cos pjiN, ...... (1)

where RQ contains the terms in the elliptic development of R
independent of Wi, Wi'y and jiN contains these variables only in

the combination j\fw\ j\w\) where ji, ji are given integers.

Any multiples of w^^ WQ, w^
f

may also be present in the angles.

The substitution of W for w\ defined by

similar to that of 8*10 (5), is made. The equations still remain

canonical if to (1) we add the term ji'n'ci/ji.
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In view of the relations Ci = (^a)*, n2a3 =
p, it is convenient

to put

Ci = C ( 1 + z)~l, c = (^a )*, wo
8
(to

3 =
/*, NO = ji n'/ji ,

......... (2)

so that ft = w (l -M), ........................(3)

and is a variable which in stable motion must oscillate between

limits which are small compared with unity.

With the notation (2), the function (1) with the additional

termji'n'cj/ji can be written

rc Co {i (1 + *)* 4- (1 + *)-*} + 01 JR,

or, on expansion in powers of #,

and with 2 replacing Ci we have

As ^ is not present explicitly in R, the expression (4) equated
to a constant is an integral of the equations. It may be written

*2-*3 +... +6mjR/w Ctt=(7. ............ (5)

The symbol z corresponds to m^Ci used in 8*11 and therefore

has the factor m*: it follows that C can be regarded as having
the factor m.

This equation is analogous to the first integral in the motion

of the pendulum. In a first approximation, it is assumed that

constant values can be given in R to all the elements except W.

Retaining only the lowest power of z, we have

2r = (C
r

-6mJfZ/7? Co)
i................... (6)

This will be expected to furnish at least two types of motion

depending on the value assigned to C. It will be shown in 8*17

that we can go a step further and include in the fundamental

equation, which is that for W, terms depending on m$.

8'16. Although we are concerned in this chapter with resonance cases,

it is of some interest to apply 8'15 (6) to cases in which s is small but

never zero for any value of t.
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Suppose that mR contains a single periodic term denoted byAn cQ cos/! TV

and that we include the non-periodic portion mR$ in C. As z does not

vanish, we can expand 8*15 (6) in the form

If #00 be the observed value of the mean motion, the definition of z gives

for its mean value

^oo i ./i^oo-/!^' j/ 1 36mM a
v

A ~ ~~
. \J *

1 A -r-r- ~~~77i> 1~ I .......... I & )n ftitQ \ 16 6Y2 /

Since nw is nearly equal to n
, they can be interchanged in the coefficients

of periodic terms. By hypothesis, the value of C given by (2) is small

compared with unity. Thus the coefficient of cosj\N in (1) receives the

small divisor C-. Hence the periodic term in z is large compared with the

term having the same argument in R.

The canonical equation for w\ ,
with the definitions of W

9 z, nQ in 8'15, givea

d W dR
~dt=

n Z - m^
the second term of which can be neglected in comparison with the first.

Integrating, and making use of (1), we have

rrr / x , . . , r .

TF= (9^
- tt ) t+ const. - - - sin^ ^- ^ \~~c~~) J

Thus the principal perturbation produced in the longitude by a term of

long period is

and there is also another long period term with argument 2jiN having a

coefficient
-

feji (coef. of sinjiN)
2
,

a result in accordance with that obtained in 6'18 and also in 7-32.

817. The equation for W. With the definitions in 815, the

canonical equation for W becomes

dW dR

Differentiating with respect to t, we obtain

dz &R ( 9R\
~Tt
~ m ^~^nr \n z-m 5-}-m %-, -jfat acidW \ 3cj/ 9ci

a at

_ v (*IL **
4.
&R *?A

dt)'
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where, in the last term, i has the values 2, 3. Since the derivatives

of Ci, <?a, c3 , Wz, ws contain m as a factor, we obtain, on neglecting
terms in this equation which are factored by ma

,

dz

But the first of equations 8-10 (1) with 8*10 (7) gives, on

substituting for Ci its value 815 (2),

or, neglecting terms of order m2
,

dz 3 , t

Now K is a function of Ci. If we put therein CI = CQ (1

and expand .R in powers of z, we obtain

where the notation ( ) implies that c has been substituted

for c.

Hence, to the order m',

PR

On combining this result with (2), (4), and noticing that

(d*R/dcidW)o disappears, we obtain

in which, to the order of the terms retained, we can put

^^~
nQ dt

Thus the variable Ci has been eliminated as far as the order

% and we can write (7) in the form

3
(+ ~ m ~ .......

It is to be remembered that the variables ca , 03, wz , w3 are still

present in the last term of (8).
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818. Another integral can be obtained when e' = 0. Since

the disturbing function is a function only of the differences of

the angles Wi,W2,w9> W> W> we have

dR dR
,

3-R dR dR _ A m
T" ^ i ?\ T > T ^ >

"............. (*)
dwi dw2

But by hypothesis the part of R which we are using contains

wi t MI only in the combinations jiWi ji'wi, so that

On changing the variable Wi to W
y
the new disturbing function

has the same properties. Hence, from (1) and (2),

I ^ /*_
| j

j -
t

\ ji/dW dwz dwz dwj'

Thence, with the help of the canonical equations 810 (1), we

obbain by integration

/, ji\ , f 3R n / \
1

J
-r ci -h c2 -f c3 = const. m ~ > dt (6)

\ ji/ J ow2

If, in accordance with a previous notation, we put

and make use of 815 (2), we obtain

When e' =Q, R is independent of ^2' =^'

The last term o

disappears, and the equation becomes an integral.

THE CASE <?' = r =

819. The variables c3 ,
w3 disappear and the canonical system

reduces to one with four variables. The differences of the angles

Wi, Wi, w* are present in R and the ratio of the multiples of

Wi tW is fixed by the resonance condition. Hence a single angle
N and its multiples are alone present in R.

The system admits of the two integrals 815 (5), 818 (4). The
latter enables us to eliminate the variable c. From the former,
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with the equation for dz/dty
we can eliminate N and thus obtain

an equation giving dz/dt in terms of z. After the integration of

this equation, giving z in terms of
tf,
the remaining variables may

be found without difficulty. The process thus described will be

followed below but will be simplified by the omission of terms

known to be small in comparison with those retained.

We assume that z, e
2

,
m are small compared with unity. The

omission of higher powers gives e\=* e
2

,
and from 8*18 (4),

--z = const.

or # = E-l\l-
J

4Jz
% (1)

where E is a constant.

Next, if R = RQ -f %AP cospjiN, R0y Ap are functions of c\ or z

and c2 only, and by the use of (1) can be expressed as functions

of z. Since RQ contains only even powers of e, it can be expressed

as a positive power series in z, and the constant part is all that

need be retained, although the retention of z, z2 creates little

additional labour. The coefficient Ap has the form

where Oo> <#2?-" catl be expressed in series of positive powers of

z\ the same limitations as those made in the case of RQ permit
us to retain the constant term only.

Finally, on the same basis, we put p = 1 and thus reduce R to

a single periodic term and a constant portion.

With these limitations, we can put

R = const. + riQCo AeJ cosjiN. (2)

On substitution of this in 8*15 (5), we can suppose that the

constant part is included in C and thus obtain

2* = G-6mAeJ
co*jiN. (3)

With the same limitations, 8*17 (4) becomes

~~
7fi
=

3?1 mAeJ sin ji N. (4)
770 Cut
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The elimination of jiN between (3), (4) with the help of (1)

gives

4 / d? \ 2

...... (5)

This equation has the form dzldt={f(z)}^ and gives t as a function

of z. For values of / less than 5, the integral is of the elliptic

type and the discussion of (5) or of its integral gives the chief

characteristics of the motion.

For the cases of chief interest in the solar system, J is, in fact,

less than 5, and the equation includes all these cases. The most

serious limitation is that introduced by the assumption e
r = 0.

8*20. Particular cases. These are classified according to the

values of /.

For J = 0, we have jt=ji = 1. This case, that of the Trojan

group of asteroids, is treated in detail in Chap. ix. It permits of

numerous simplifications, but the development ofR takes a quite

different form.

For /=!, the ratio ji/ji has the values 1/2, 2/8, 3/4,..., in

the cases of exterior bodies disturbing interior ones, and their

inverses when interior are disturbing exterior bodies. For these

ratios, the mean values of a/a' are '64, *76, '82, It is doubtful

whether the expansions are sufficiently convergent for numerical

calculations beyond the ratio 4/5. The case 1/2 is discussed in

detail in the following paragraphs.

The case J==2*, corresponding to the ratios 1/3, 3/5, 5/7,...,

is rather more simple than the case J= 1, owing to the fact that

only even powers of e are present in the formulae. This case

also arises when we take into account the inclination of the

orbit. This and the higher values of J are chiefly of interest in

the applications to asteroids disturbed by Jupiter.

* See Charlier, Mech. des Himmels, Absch. (1) ;
D B. Ames, Mon. Not. R.A.S.

vol. 92, p. 542.
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THE CASE ji
= l, ji'

= 2

8*21. Change of scale. If we put

a)z,
-

t, (
~

} e, for z, t, e respectively,
??o&> \o/

where a> = (12A
2m2

)%, the equations given in the preceding
sections become, with the given limitations and with appropriate

changes in E, C,

dW dr*-~> ,
N= Wl - 2^' + OT = W + <*,

Cvv Clu

For an asteroid disturbed by Jupiter with n Q/n
f = 2, we have*

= -000716. For the change of scale we have o> = *0183,

so that an actual eccentricity '1 has the value *78 in the new

scale. The values of the variables in the new scale are thus

comparable with unity.

8*22. There are two problems. One, that dealing with the

conditions under which N is an oscillating angle (resonance) or

a revolving angle (non-resonance). The other, the conditions

under which z can pass through the value zero. The latter is

not, in the limited case here treated, strictly a resonance problem,
but it becomes one when e' ^ and it is applicable to the cases

of the apparent absence of asteroids for which the osculating

mean motion is exactly twice that of Jupiter.

Conditions to be satisfied.

(i) Since z measures the deviation of the major axis from

a mean value, it must be an oscillating function and must there-

fore lie between finite limits which will be denoted by s d: we

shall choose d to be a positive number so that s + d is the maxi-

mum value of z and s d the minimum.

* Mon. Not. R.A.S. vol. 72, p. 619.
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(ii) The limiting values of z are given by dzjdt
= 0, so that

s d are two of the roots of

-(z*-C)* = ...................(1)

(iii) The left-hand member of (1) must be > for all other

values of z.

(iv) The convergence of the developments is doubtful if

the actual eccentricity is greater than about '3; this gives a limit

2*4 to the variable in the new scale.

(v) The conditions s = d separate the cases in which z can

or cannot take the value zero according as s > or s < 0.

(vi) The equation e
2 = E+2z gives

de dz d2e /de_
e
dt~dt' dt2 \dt """3?"

It is necessary to have d2
z/dt

2
=f=

when dzfdt
= 0, in order

that equation 8*21 (1) shall give a determinate value of z for all

values of t. It follows from the equations just written that

e
y de/dt cannot be zero simultaneously. Since e is not negative,

it can vanish only if de/dt vanishes simultaneously: hence e is

never zero.

Since z = s d are two of the roots of (1), it is easily deduced

that

CW +
CP--JJ-,

E = 4*ffi + -28, ...(2), (3)

and that 8*21 (1) may be written

-4(^)
These results give

............... (5)

so that the maximum and minimum of e are given by

I ......................(6)
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8-23. The identities

compared with 8*22 (6) and with

z2 = s
2

-I- d2 -
n 6 cos N,
ZiS

show that if 5 > 0, d > l/4s
2

,
the extreme values of N are TT, 0,

but that if d< 1/4$*, jV" takes the value TT at both extremes,

Hence, the relation d = l/4s
a
separates oscillating from revolving

angles of N, that is, the resonance from the non-resonance case. It

is easily seen that the same statement is true if s < 0, but that

in the latter case N takes the value zero at both extremes when

8*24. The four values of z given by 8*22 (4) when dz/dt are

zl = s -f d, z% = s d,

By hypothesis 2 is to lie between z\, z. This condition demands

that

or that 3 > 4 > #1 > ^2-

(a) For 5 > 0, d
2 > 1/5, the descending order of magnitude

is zi, z%, z$, 24. The condition z3 < zz gives

d<2s, d<s-f^-2.
fr<S

(6) For 5 > 0, d
2< 1/5, the roots #3, #4 are imaginary and dz/dt

is always real between z = z, z%. Hence for s > the boundary is

d = s + l/4s
2

,
when d < 2s,

d2
=l/s, when d> 25.

If we regard 5, d as the rectangular coordinates of a point on a

curve, the two conditions are the equations of two bounding
curves which meet and have the same tangent at d = 2s = 2^.
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(c) If s < 0, all four roots are real, and the ascending order

of magnitude of the roots is zZ) zi, #4, z%. This demands that

2s + d > 0, d<-s- l/4s
a

. Since d > 0, s < it is easily seen

that the latter condition includes the former. It also requires
that s + d < 0, and as we have s d < 0, it follows that z does

not change sign. Hence, z cannot vanish for s < 0, that is, if z can

vanish its middle value is positive.

-1-5 -1-0 -0-5 1-6

The conditions that z may vanish are therefore quite compli-
cated. The boundary of the region consists of the four curves,

and d, s are both positive.

On the other hand, the resonance regions for N are simply
those portions included between the two curves

for s < and s > 0, where z is real.

In Fig. 2, z is imaginary in the regions with inclined shading;
z can be zero in the region with horizontal shading; N oscillates
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in the region with vertical shading; the two latter regions

overlap as shown.

Passage from s > to s < is effected when the minimum in

the former case is the same as the maximum in the latter, that

is, along the boundary d = s 4- l/4s
2 for s > to the boundary

d = s l/4s
a for s < 0. Along these two curves and also along

d?=l/s, two of the values of z are equal and W jzdt is

indeterminate near t= oo in the same sense as in the case of

the pendulum near its highest position.

The only other case of equal roots for z is that given by d 0.

When s > and d is small, the second factor of 8'22 (4) is

approximately 4s2 -f l/ which is constant. The solution is then

z = s + d cos (qt -f <?o), <f
= s

2
-f l/4s.

The same solution is available for s < provided s is not too near

the value given by s2 -f l/4s = 0. In these cases the mean value

of e is 1/2 \s\,
so that s must not be too small. The case d =

in which z oscillates about the value s is the resonance case for

N TT when the libration is zero.

From 8-22 (2), (3), we deduce

C2 - E=(s*-d

so that C2 E changes sign at the boundary separating the region in which

z can be zero from that in which it is never zero. But C2 also when

d2 =82
+l/s, a relation which does not enter into the discussion given above.

It follows that the condition OL=E is not the necessary and sufficient

condition that z shall take the value zero*.

In vol. 4, chap. 25 of his Mfaanique Ce'leste, Tisserand treats the resonance

case by supposing that the eccentricity is equal to e -f Se, where eQ is a

constant, and he expands in powers of 8e/eQ . With a proper choice of eQ

this is theoretically possible, since e is essentially positive, but it gives very
slow convergence in the most important cases those in which eQ is small.

8*25. Applications. The discussion in the previous sections is

applicable to the cases of asteroids whose mean motions are

nearly twice that of Jupiter. The statistical discussions f show
* For a different and less complete discussion see E. W. Brown, Mon. Not.

R.A.S. vol. 72, pp. 609-630.

f These have been numerous. Fairly complete lists are given by S. G. Barton,

A.J. 702, 838; A. Klose, Mitteil. Univ. Riga, 1928.

B&SPT 16
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that while there are numerous asteroids with mean motions

somewhat greater and somewhat less than twice that of Jupiter,

there is none which can be stated with certainty to have the

relation satisfied within a certain range. This result refers to

osculating elements. If we omit the short period terms, the

variable z may be regarded as an element of this nature and the

vanishing of z corresponds to the exact relation.

Now we have seen that the limiting case in which z can be

zero is given by s = d and the maximum value of z is then 2s.

According to 8*22 (6) the maximum value of e is then 2s -f 1/2$

and the least value which this expression can have is given by
5 = J. The least maximum of e is, therefore, 1'5. On referring

back to the scale relation in 8'21, we find that this gives a least

maximum for the eccentricity of *13.

So far, therefore, nothing has been proved which prevents the

existence of asteroids which can have an osculating mean motion

exactly twice that of Jupiter. But it has been shown that if such

asteroids can exist, the elements, in particular the eccentricity,

must oscillate through a considerable range of values ; small

oscillations are impossible.

The existence of asteroids or satellites in which the angle N
oscillates is a quite different question. What has been shown is

that if such orbits exist, the middle value s of z must be different

from zero. Small oscillations or librations about this value are

possible. We have, for example, the case of Titan and Hyperion,
satellites of Saturn, where the ratio is nearly 3 : 4, a case similar

to that of 1 : 2.

THE CASES e'4=0

8*26. These cases are much more difficult, mainly because the

integral e
2 = E f (1 ji/ji) z no longer exists. But in the cases

of the ratios j\ j\ + 1, where the principal terms are of the first

order with respect to the eccentricities, it is possible, in a first

approximation, to utilise the results obtained above by a change
of variables.

For simplicity let us consider the case ji= 1. The additional

first order term in R has the form nQ CQe'A' cos N' 9 where
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JV's= W+ vr'. Arguments similar to those used above give the

equations for W, z :

- *r / At ' *T/\--
,

_ __ sm N + e A sm N) 9

n at n^ at

z* = C-6mAe cosN- 6mA' e' cos N'.

Instead of the variables 02, w2 , let us transform to the variables

2> (72 defined by

sin w2 , #2
= 0i Ci* cos w2 ,

where, as before, 2 = isi^i
2

- According to 5'14, the equations
for Ci, W, p2) <?2

are still canonical.

Let us change from p2 , q* to new variables defined by

sn cr, ^2
=

^2 +^ cos

where X is a function of Ci only. We have

with similar equations for dq^'/dt, Sq%'.

Now dp2/dt dR/dqz ,
and JK is a linear function of p2 , q2 for the

only terms we have under consideration. It follows that dp2/dt

does not contain either eccentricity as a factor while dci/dt does

contain them. The second term in the equation for dp2 /dt is

therefore two orders, with respect to the eccentricities, higher
than the first term and maybe neglected. The canonical equations

may therefore be written

dt . $H=dci . 8W-dW. Sci + dp2 . Sq2
- dq2 . Sp2

pz
'

. Sq2
' - dq2

f

. Sp2
'

3 (e
f

cos OT' dp2 e' sin cr' dq%) Sci.
C/Ci

But the approximation z= dW/dt to the equation dW/dt=dH/dci
involved the neglect of all parts of It in this equation and this

is the only way in which the coefficient of 8ci in the canonical

set just given arises. It follows that the equations for Ci, TF,

PZ> q* are still canonical.

16-2
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These results suggest that we can put

,A
r

e cos -or = e cos *& + e ? cos -&
,

e sin ts = e sin *r + e -~r sin IB
,

so that
__

eA sin N -f e'A
'

sin N' = 4 sin N, } ^ _
e^. cos JV^-f e'^1

'

cos N' = e^. cos N, ]

and that when we do so, e, N will have the same properties that

e, N had in the case e' 0.

In particular, we shall have

and the limits previously given for e will now apply to e.

In the cases of the asteroids disturbed by Jupiter we have

b'/b
s=s -36, e' = '048 (loc. cit. 8'24), so that unless e is small the

additional terms will not give large corrections to the results

previously obtained as far as the vanishing of z is concerned.

In the cases of the small oscillations ofN or JV, it appears
that these must take place about the values or TT and that

& - tar' must oscillate in a similar manner. But the argument,
based on the assumption that TS' is constant, is not necessarily

valid if -or' has a mean motion.

8*27. The methods of this chapter are constructed mainly for the treat-

ment of those cases of resonance which arise in the solar system. The

theory of periodic orbits is applicable as a first approximation in certain

problems : the asteroids which form the Trojan group are examples. In

general, however, this theory fails, either because the numerical applications

are too remote or because the restrictions under which the theory is

developed avoid the very difficulties which the actual problems present.

The methods given above apply to cases of resonance in which both

periods of revolution are present. The perihelia and nodes are angles which

in general revolve and there are possibilities of resonance relations between

their periods of revolution. In the comparatively short interval of time

during which observations have been made, such relations are unimportant

because, with the very long periods involved, expansions in powers of the
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time give the required degree of accuracy. Comparable with these are the

new periods introduced by the librations, and there are, therefore, further

possibilities for resonance relations. So long as the past history of the

solar system was supposed to be confined within an interval of 108 years,

deductions as to its initial configuration from its present configuration ap-

peared to have some degree of value
;
the extension of this interval to 10*

years or longer makes these deductions quite doubtful. The doubt appears
not so much in the ranges of values possible for the mean distances as in

the ranges of the eccentricities and inclinations.

The indications furnished by the theory of resonance as applied to the

solar system point towards the possibility of occasional large osculating

eccentricities and inclinations at some time in the future. On the other

hand, statistical evidence appears to indicate that these elements will tend

to be confined within narrow limits. A discussion of these and other

difficulties involved in the attempts to apply the theory to the solar system
will be found elsewhere*.

* E. W. Brown, Bull. Amer. Math. Soc. May-June, 1928; PuU. Astro. Soc.

Pac. Jan. 1932.



CHAPTEB IX

THE TROJAN GROUP OF ASTEROIDS

9*1. The triangular solutions of the problem of three bodies.

The problem of three bodies does not, in general, admit a

finite solution in terms of known functions. Laplace, however,

has shown that there is a solution in which the three bodies

always occupy the vertices of an equilateral triangle. The plane
of the triangle is fixed and any two of the bodies describe

ellipses having the same eccentricity about the third body which

lies in a focus. Further, if n, a be the mean motion and semi-

axis major of any one of these ellipses, the relation

tt
2a3 = sum of the masses

is found to be a necessary consequence of the solution. Other

sets of finite solutions, in which the bodies are collinear, are

known but they will not be considered here.

Small changes from the triangular configuration or in the

appropriate velocities, or perturbations by other planets, cause

oscillations about the triangular configuration, provided the

masses satisfy a certain limiting configuration ;
the study of these

oscillations and the applications of the theory are the objects of

this chapter. Ten asteroids, each of which, with Jupiter and the

Sun, apparently satisfies the given conditions, have been dis-

covered, the first in 1901, more than a century after Laplace

gave the solution, and the last in the year 1932. They have re-

ceived names taken from the Iliad of Homer and from this cir-

cumstance constitute what is usually called the Trojan group.

We shall first prove the existence of the triangular solutions

and of small oscillations of a certain kind about this solution
;

these will indicate some of the characteristic features of the

motion. A general theory for the motion of an asteroid of the

Trojan group will then be based on the methods used in

Chaps. VI and VIII.
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The problem differs from that of the ordinary planetary theory
in several respects. In the first place, the development of the

disturbing function given in Chap. IV cannot be used because

the ratio of the mean distances of Jupiter and the asteroid is

very near unity and that development ultimately depends on

series in powers of this ratio which do not converge when the

ratio is unity. In the second place, the motion is a case of

resonance, since the ratio of the mean motions of the asteroid

and Jupiter oscillates about the value unity. Thirdly, these

oscillations, instead of being small, may have very considerable

amplitudes and require special methods if an accuracy com-

parable with that of observation is to be secured. Another point,

brought out in Chap, vm, is the development in powers of the

square root of the ratio of the mass of Jupiter to that of the Sun,

instead of in integral powers of this ratio as in the ordinary

planetary theory ;
since the square root of a small fraction is

much greater than the fraction, the rate of numerical con-

vergence may be much diminished in consequence. Still another

peculiar feature is the theory of the long period terms produced

by other planets, and notably by Saturn. A first approximation
to their coefficients cannot be obtained by neglecting the action

of Jupiter, and these coefficients tend to become greatest, not

when the periods are longest, but when these periods approach
most nearly to that of the principal libration.

9*2. Existence of the triangular solutions.

Since the motion takes place in a fixed plane, the latter may
be used as the plane of reference. With the use of the equations

of 1*23, those numbered (5), (6) disappear and v = v. Let us take

one of the bodies, mass m ,
as origin and let the coordinates and

masses of the other two bodies be r, v, mi and r', v'
t m'. It is

then necessary to show that the equations

*-W d( dv

Jt) ~dr' 5V 5

_
dt* \dt

~
9/ '

dt \ dt
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where, according to 1'9, 1*10, with the inclinations zero,

^ mo + mi , , fl r cos (v v')) 7 _,H ' __ *
I AV)

' J ..
V / I

I ^ I
J.'

~ ~ in
i A

~"~
7o i j \ *-* /

r (A r 2
J

^ '

, _ 7/? + w' (1 r' cos (v'
-

v)\ /r .

jp j_ ^j j v 10)
r (A r2

j

A2 = r2 -f r'a - 2rr' cos (v
-

v'),

are simultaneously satisfied by r = r' = A, v t/ = 60, with

elliptic motion for each of the bodies.

According to 3'2(1), (2), these conditions demand that

--_ --
dr

~
dr'

~
r2

'

dv
"~

fo'
~

From (5) we have

dF _ w Q + mt , (r - r' cos (v-v') cos (v t;'-'

dr

^ = _
dv
~

with similar expressions for dF'/dr', dF'/dv'. It is at once

evident that the equations (7) are satisfied by the given

relations provided /u
= mQ -f mi 4- rti'.

The elements n> a, are evidently the same for the two

ellipses with n2a8 = 7W -f m\ 4- w'. For the remaining elements

we have e 6
/ =cr t*r'=4 60.

9'3. 2%^ equations of variations.

These equations are defined by giving to the coordinates in

the general equations of motion small additions to their elliptic

values, the squares, products and higher powers of these

additions being neglected. This procedure is not sufficient for

the calculation of the general perturbations, but it serves to

indicate their nature to some extent. The actual calculation of

the perturbations is more easily carried out by quite different

methods.

The problem will be limited now and throughout the remainder

of this chapter by supposing that the mass mi of one body (the
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asteroid) is so small compared with either of the masses of the

other two bodies (the Sun and Jupiter), that it can be neglected
in the equations of motion. We then have F' = (mQ 4- w')/r' and

the motion of mr

relative to mo is elliptic with mo in one focus.

In the present section, two further limitations will be made.

The motion of m' relative to mo will be supposed to be circular

and to receive no disturbance, and the disturbance of mi will be

supposed to take place within the plane of motion of m', so that

the problem of the motion of mi is still two-dimensional.

According to these assumptions, the undisturbed motion of 77*1

will be circular. Denote this motion by the suffix zero and the

disturbed values by
r = r + Sr, v = VQ -f Sv.

Substitute these values in 9'2(1), (2) and expand in powers ot

Sr, Sv and of their derivatives, neglecting powers and products
of these quantities above the first. Since the equations are

satisfied when 8r, Sv and their derivatives are zero, this pro-

cedure gives

,

-Ji ~J7 ji ^~2 ^-^- Sv,
dt ) dt dt 2

d ( 2
d * , O dv

<>
5^ \ f

&F \ S> , /92A 55
-r. r 2

-j-.
Sv + 2r ~-~ Sr = 5-=- Sr +

( 5-0 )
ov.

dt\ dt dt ) \drdvJo \9^
2
/

These are the 'equations of variations.'

The second derivatives of .fare formed from 9'2 (5), (6). They
are

') m' 3m' , , x)2

1 82f /I IN ,
.

, /x
7 5-^-= ~

( Xa /a )
r sm (v

- v )m 9r3v \A3 r'3/
v

The limitations imposed above give

r = a = r
/ = A, VQ v' = 60,
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The substitution of these values in the second derivatives of F
and in the equations of variations gives for the latter,

s .
2

m -m ,,
or zarz ~rA ov n*or = j-= o?* -f -=-- ra ov,

dt 4a3 ""
4a2

d * .3 A/3 ,, 9m'
^ ^r = + "T~2- m ^r + T 8v.
dt

~
4a2 4a

These equations being linear with constant coefficients, their

solution is obtained by assuming

where A, B, X are constants. The substitution of these values

gives, after division by ext
,
the conditions

The elimination of the ratio A : between these equations

gives

X* + X' 8n - 2 *- + + T- = 0.
V a3

/ 4a8
\ a3

;

The use of the relation ?i
2 a8 = r??o + ^i

/

and the introduction

of m, where

reduce this to

X4 + X2
/i
2 + ^-w

4 /^ (1
- m) = 0.

If 27//i(l-wi)<l,

or m < '04 approximately, the roots are all pure imaginary and

the motion is oscillatory. Since m < *001 in the case of the Trojan

group, the condition is easily satisfied. If powers of m beyond
the first be neglected, the roots are

so that the periods are

2-rr -r n V^w, 2w -T- n (1
-
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With 27T/n = 11*86 years, l/m=1047, the former period is

148 years and the latter nearly the same as that of revolution of

the asteroid or of Jupiter round the Sun.

The oscillation having a long period is a first approximation
to the effect usually known as the 'libration.' The short period
oscillation will be seen below to correspond to the principal elliptic

term in the motion of the asteroid, so that the principal part
of the motion of the perihelion is %g-mn.

The ratio B:A for the long period oscillation is given by either

of the equations (1), (2) with \ = m (27ra/4)i From (2) we find

aB 3m'-ani-m _
1

t,

A
~~

-27a3
?i
2m-9ra'

~~ + T*
\/3m'

with the aid of the relations a?n2 = mQ + m' = m'jm> Since the

second of the two terms is large compared with the first, the

approximate ratio of \aB\ to
|A\ is 1 : V3?Ai or 18'7 : 1. As

| A\ is

the amplitude of the oscillation along the radius vector and

\aB\ that perpendicular to it, it follows that the former is small

compared with the latter, the ratio being nearly as V8m : 1.

The features of the motion brought out in this investigation,

namely, the long period of the libration, the small disturbance

along the radius vector as compared with that perpendicular to

it, and the presence of Vm, will be utilised in the general theory
which follows*. Incidentally, it may be pointed out that they
are present in all resonance problems occurring in connection

with planetary motion, as can be shown from the results of

Chap. vin.

We now proceed to the general theory of the motion.

* The small oscillations were first fully treated by E. J. Eouth, Proc. Lond

Math. Soc. vol. 6 (1875) ;
see also his Dynamics of Rigid Bodies, Part n, Chap, in .

A special case of them is treated by Charlier, Himmels-Mech. vol. 2, Chap. ix.
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GENERAL THEOKY OF PERTURBATIONS
DUE TO JUPITER

9*4. The disturbing function.

According to 1*10, the force-function for the action of a planet,

mass m'
,
on one of mass nil when the sun, mass mo, is taken as

the origin of coordinates, is

r ,- x

(1)

where A2 = r2 + r'
2 - 2rr' cos 5, ............... (2)

/S being the angle between the radii r, r'.

If 8 be eliminated between (1), (2), F can be written in the

form

F= mo + mi + m'

+R^ + R, ............ (3)
r r x 7

, D ,/l 1 1 A2 1 v*\ ...

where Brsm U~r +
27*~ 2?j'

............ (4)

since the term | m'/r', thus introduced, can play no part in the

equations of motion which depend only on the derivatives of F
with respect to the coordinates of mi.

In the form (4), .72 = when r r' = A. It can also be written

a form which at once shows that the first derivative of R with

respect to any coordinate of mi vanishes when A = r = r'.

The mass mi of the asteroid will be neglected in comparison
with mo-fw'. The osculating mean motions n

t
n' and mean

distances a, a! will then be connected by the relations

9'5. The equations of motion.

We start with the variables c^, Wi (defined in 5*13 and used

in Chap, vi) which satisfy the canonical equations,

i+R .......... (1)
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Define a new variable r by the relation

Wi= n' -f e' + r = Wi + T, ............... (2)

and in (1) replace the variable Wi by r. Since dw-i^n'dt + dr,

8^1==8r, the equations for the variables c^, T, ^2, ^3 will still

remain canonical if we add H'CI to R in the right-hand member

of (1) so that the Hamiltonian function becomes

(3)

Since all the d have the dimension \V, arid since a/a' is near

unity, let us put

d = Ci (1 4- X) = \Va' (1 + #), C2 = Ci'^2 > C3 = Ci'#3 . . . .(4)

The equations for the variables #, #2 ,
#3 , T, w2t w9 still remain

canonical and can be written

dx . ST dr .

Since JK is a homogeneous function of a, a' of degree 1 and

contains m' as a factor, the Hamiltonian function is now a pure
ratio like the variables x> #2 > #3> T, w2 , w^, and ofR/p has the

factor m = m'//^.

It will be seen below that x consists of portions which have

either the factor m or the factor TI Vm, where TI is the coefficient

of the principal term in the libration. No case of an asteroid is

yet known* in which \x\ exceeds *01, and as eccentricities and

inclinations are in general of the order *1, x will be treated as of

the same order as the square of the eccentricities. We shall

carry R as far as the fourth powers of the eccentricities and

inclination for the long period terms and on this basis it is

advisable to retain terms of orders x*, mx2
. In such terms the

eccentricities and inclination can be neglected, and then the

retention of terms of order x*, mx2
presents no serious difficulty,

but as it will much simplify the exposition to neglect them, they
will not be retained in the developments which follow. In any

*
Except possibly Anchises discovered in 1931.
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case we are going to neglect terms in the Hamiltonian function

which have the factor w2
, provided such terms have no small

divisors, so that the neglect here of the terms of orders #4
,
ma?

follows a general rule.

With these limitations, the right-hand member of (5) can be

expanded in powers of x, and becomes

n'dt . S (I a* -W+ + 2x ~] to order
,

. . .(6)
\2 p fJb OCLJ

where R is the value of R when a = a' or x = and similarly for

the definition of 3R/9a. The approximation a = a! (1 -f 2#) has

been used in the expansion of R.

9*6. Form of the expansion of R.

As in Chap. IV, it is assumed that R is developable in powers
of the eccentricities and mutual inclination. The development
there given is available also here as far as the stage where it is

reduced to odd powers of 1/A (cf. 4'13), with

a (JL

and to derivatives of these powers with respect to a, wi. With

WI WI=T, A becomes a function of a, F, r, and r is an oscil-

lating angle.

The angles present are g, g' , Wi + Wi - 20 or r, wZ) WB, Wi, -cr'.

Thus R consists of a sum of terms of the form

where K> K' are functions of x, x%> ^3, r and N of r, w^, w3> t. The

particular point to be remembered is that r is present both in

coefficient and angle because K, K' contain functions of A .

We shall distinguish between the terms containing w\ after

the substitutions, g tVi Wz, g'
= Wi' w^, WI = T + WI, and

those independent of Wi. Our preliminary investigation showed

that dr/dt was small so that the terms in the former class have

short periods and those in the latter have long periods or are

constant. The latter class is also distinguished by being inde-

pendent of t explicitly when the orbit of Jupiter is an ellipse.
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These considerations give us the form of the development, but

the actual development will be carried out by a method quite

different from that of Chap. IV, chiefly because very considerable

abbreviations of the work are possible with the use of the special

properties which R possesses in the case of the Trojan group.
In general, it appears that we can secure sufficient accuracy

for observational needs by taking the short period terms to the

second order with respect to the eccentricities and inclination,

and the terms independent of iv\ to the fourth order. Classified

with respect to the arguments g, g'', w\ 4- iv\ 26 used in Chap. IV,

the latter are

Arg. 0*, orders 0, e
2

,
e'

2
, e\ e

2
e'

2
, e'\ T 2

;

9~9*> orders ee'
,
e
z
e

f

,
ee'*\

>} 2#-2<7', order eV2
;

2g-(wi + wi'-20), order (?T
\

9 + o'
~

(w* + wi
~~

2#)> order 00' r 5

2g'
- (wl + wi -

2(9), order e
f*
T.

9'7. Elimination of the short period terms.

The plan adopted is that used in Chap, vi, namely, a change
of variables which leaves the equations canonical. Owing, how-

ever, to the fact that the variable r is contained in both coefficients

and angles, the form of the transformation function S has to be

modified. Further, use can be made of the fact that with the

neglect of m2
,
one variable x appears in the differential equations

only in a linear form as shown in 9*5.

Let the short period terms be denoted by Rt and put

where, in accordance with 9'5 (6), K, L are independent of x,

but are functions of #2 > #3, T, and

N^j'n't -f multiples of T, w2> w9 + const.,

as shown in 9*6.

* The term of order T is included in A .
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Let us transform to new variables #o, #20 > w> To> WM, iu& by
means of the transformation function /, where

= sn sin jy + cos jy
jn \jn j

In this last expression,

Ki t LI are the values of K, L when TO is put for T ;

MI, Qi are functions of #, #2 > #3> To to be determined;

NQ is the value of N when TO , 1%) , WSG are put for T, ^2, ^3*

According to the general theory, the relations connectingTthe
new and old variables are

_as = _d_s_
\

dx>
XQ " X

aV
...(2)3 Cf Ci Q ^ ' .__ == __^_ '

9 S

and the equations for the new variables will still be canonical

provided we add d$/dt to the Hamiltonian function. From (1),

and

SS/dt
= 2 (^i + #ii) cos A7 + ^2 (Mi cos Ar

o
-

(?i sinN ).
. . .(3)

In performing fche transformation to the new variables, we
shall neglect terms factored by w2

. We recall that x has the

factor m* while 8 has the factor m. Hence, to the order m$,

from (2),
)

,
^3 = *o

3
, ...(4)

where SQ is the value of 8 when #
, ^2o> ^30 are substituted for

#> ^2> #3 therein.

Next consider the portion of R independent of t explicitly,

denoting it by Rc . Since the new variables differ from the old

by terms having the factor m
y
we can put

~z cO i "O ooa /JL /it da
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where terms factored by m2 are neglected. (Incidentally, it may
be noticed that the terms of order m? are all of short period, so

that even if we were calculating the long period terms with

terms of order m2 retained in the Hamiltoman function, these

could still be neglected.) Similarly, we can replace E,
t by R^o,

and dS/dt by dS /dt.

If then in (4) we put for SQ its value deduced from (1), we

obtain for the new Hamiltonian function expressed in terms of

the new variables,

f*
a - 2* 3 + -'

R.,0 + 2/r.

8^
/JL /A da

- xQ 2 (Mo cosNQ
- QQ sin JV ),

. . .(5)

where, in all cases, the suffix zero denotes that the old variables

are replaced by the new in the corresponding functions. The

terms arising from Rto have been cancelled by the same terms

present in dSo/dt, and terms factored by xgm have been omitted.

Finally, if we determine the coefficients MI, Qi by the relations

ZKrfN Q 3 a^
1̂
=
jV9V ^ =

~JV8^'
............(6)

relations which still hold to the required order when the suffix

zero is inserted, the terms of order m% will disappear from (5)

and it will be reduced to its first line.

The remaining portion of this chapter will be devoted to the

determination of the new variables in terms of the time. After

this work is done, the old variables will be obtained in terms of

the time with sufficient accuracy if we substitute #o> #20, #30 for

x, #2> #3 in S and its derivatives in equations (2).

9*8. The expansion ofR in powers of e, e', F.

We have, as in 41 (2) and 110 (2),

cos 8 = (1
- JP) cos (v

-
v') + |F cos (v + v'~ 20).

If we put

sCt, -<;')>

B&SPT 17
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the expansion of R given by 9'4 (4) in powers of the second

term of cos S as far as the order F2 can be put in the form

'

cos 2 ( + '-
20)!, ...(1)1

16 r'3 "A^

where RI==^ +
2
^*~

'r

~
2?* (2)

The long period terms defined in 9 7 will be calculated as far

as the fourth order with respect to e, e'
y F*, and the short period

terms to the second order.

For this purpose, put

a(l+/3),

~

(4)

so that RQ, A are the values of Z?i, AI when the eccentricities

vanish. Taylor's theorem then gives

a'Ri_a'lta u'p ?R a'dlto 1 a'p* 2
S2.Ro

r'

~
~7~

+
7-
r "

8
+ ?? IT

+
2~7~

a
3 8

+ -'

......(5)

which is to be continued to the fourth powers of p, f for the

long period terms.

For the calculation of the coefficients of the derivatives of RQ

in (5), we have, from 316,

= 1 + (e
-
|e

3
) cos# + e

2 cos 2

.& = 2 (e
-
^e

8
) sin^r + |e

2 sin 2#,

with similar expressions for a'/r', E'. Since
gr
= Wi + isr,

gr'
== wi 4- ^r', the long period terms will be those whose argu-
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ments are multiples of g g'. The expressions (6) are sufficient

to obtain such terms to the fourth order, in spite of the omission

of terms of the forms e
4 cos 2g, e

3 cos 3g, e* cos 4*g in a/r, and of

similar forms in E, a'/r', E'. For a term with argument 2g
must be combined with one with arguments 2g, g + g', or 2g' to

give terms of the required form and these have coefficients of

the second order, so that the combination is of the sixth order.

Similarly for the other terms omitted. Finally, RQ and its

derivatives have no short period terms, so that it is sufficient to

omit such terms in the expansions of powers of p,

The advantage of this mode of development is seen by a

reference to the results given in 9*9. Four of the coefficients are

zero, three others are the same except for the numerical factors,

jwo others have the same property, and two more differ only in

;he fourth order parts.

9*9. The coefficients of the derivatives of JK *

To obtain these expressions put a/r = 1 4- u\ , a'/r'
= 1 4- MI,

so that
of a of ,

p -j = ---7
= Ui Uir r

'

r T
'

has no long period term. The functions needed have the form

where i -f j 4. The calculations appear to be most easily

carried out by expressing each such product as a sum of terms,

each of the form PQ', where P is a function of ui, E, and Q' of

ui, E',r'\ from these products the terms independent of g, g'',

and those with arguments g g' , 2g 2g', are easily selected.

The positive and negative powers of r, r' which are needed and

the positive powers of E, E 1

can be read off from Cayley's

tables*.

Use can be made of the fact that pa'/r', E E' both change

sign when e, g are interchanged with e'y g', so that terms of

the forms ee' sin (g g'), e
2
e'

2 sin 2 (g g') cannot be present in

* Mem. Roy. Astr. Soc. vol. 29, pp. 191-306.
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products of p/r
f

, p
3
/r'

3 with f, f
8
(in the fourth order terms the

divisor r' takes the value a'). The remaining terms have the

form (eV e'
9
e) sin (g #'), and these disappear on account of

the relation between the coefficients of cos g, sin g in a/r, E,

respectively.

The following results for the terms independent of g, g' and

for those dependent on g g' and its multiples, to the fourth

order with respect to e, e', have been obtained :

-
(2ee' + f e

a
e' - f ee'

8
) cos (g

-
#')

-
feV2 cos 2 (g

-
g'),

-
(Zee'

- feV - ee'
8
) cos (g

-
g')

- ^eV2 cos Z(g- g'),

-
(3e

3
e' + ee'

3
) cos (0

-
0')

+ eV2 cos 2(g-g'),

4^a

=
(e

4 _ e'4)
_

(2e
3 e

' _ 2ee'3) cos (^
_ g')t

=
3

=
(e3e

'

+ ee/3) sin (sf
~

^'}
~ e2e

'a sin

==
3 r r 6 r

-
(4e

8
e' 4- 4ee'8) cos (g

-
^r') + 2eV2 cos

These are ready for substitution in 9*8 (5) which is the develop-

ment of the first term of d'Efn in 9'8 (1).

To the second order, we have

. ...(1)
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The calculation of the short period terms to the second order

presents no difficulty. For the portion m (ofIT') jRi, we obtain

afpjr'
= ecosg e' cos g' + e

2 cos 2g e'
2 cos 2#',

a' f/r'
= 2e sin g 2e' sin #' -f f e

2 sin 2$r

- ee' sin (# + g')
- e'

2 sin 2#',

r' = - a'^/r'
= e

2 cos 2g
- 2ee' cos (gr -f g') + e'

2 cos 20',

r' = e
2 sin 2g

- 2ee' sin ( + ') + e'
2 sin 2'.

Up to this point, no use has been made of the fact that a'/a is near unity,

so that the development just given is quite general, at least as far as the

second order. In order to deduce the results of 4'32, the expansions of the

derivatives of RQ in terms of the coefficients A t and cosines of multiples of

Wi w{ are to be substituted. In making the comparison, the difference

in the definitions of the symbol a should be remembered. However, the

expansion to the second order is not difficult whatever the method used
;

it is in the calculation of the terms of higher orders that the expressions

become long and complicated, so that for them the method should be

suited to the problem.

9'10. Calculation of the derivatives of RQ .

These derivatives can all be reduced to the calculation of

derivatives with a = 1. For, according to the definition in 9*5,

and
\ oa a==1

since it has been pointed out (9*7) that the first power of cc is

sufficient in the expansion of R. The last result still holds if we

substitute for RQ any one of its derivatives. Since we can neglect

the fourth order terras in the coefficient of #, this coefficient will

not need derivatives of RQ beyond the third and the latter are

already required in the calculation of the term independent of x.

For the calculation of the derivatives put

so that by 9'8 (3), (4),

-o a 1 q-
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Whence, when a = ]
, Q2 = 2 (1

-
q),

T> 1 1 3 dRo 1 1 1

___ -
g8 4 Q

'

da3
~

2 g
8 8 Q

1_1_161
9a4 ~Q6 2Q3 16Q

9 1 31

-

9T2

_ ,3~ U '

9'11. TAe additional portions of a'Rj/ji depending on F.

The second term of 9'8 (1) has the factor T and the long

period terms which it produces are of the fourth order at least,

since the argument v + v' 20 must be combined with the

arguments 2g, g + g', or 2g' to produce multiples of Wi - Wi, and

these terms have the respective factors e
2

, ee', e'
2
.
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In order to expand it, write v + v
f

20 in the form

v - v' 4- 2t/ - 26.

It is then easy to prove that

'-
20)

where, as before, a'R\fr' is expressed as a function of r, #, #'.

But, with the help of 9'8 (6),

cos (2v'
-

2(9)
= cos (2wi' - 2(9) cos 2" - sin (2w/ - 2(9) sin 2"
= cos (2Wl

' -
2(9) . (1

- 4e'2 + 4e'2 cos 20')

- sin (2wi' - 2(9) . (4e' sin #' + f e
/2 sin 2^'),

and the only portions of this which will give long period terms

as far as the fourth order including those with factor F are

cos(2^i'-2(9)- 2e
/

cos(2M;l
/

-0
/ -

20) + f e'
2
cos(2w/ - 2#'

-
2(9).

...... (1)

For sin (2v
f

2^), these cosines are changed to sines.

The first of the three terms of (1) gives long period terms by
combination with the short period terms of a'Ri/r' having

arguments 2#, g + g'', 2g', the second with those having arguments

g, g', and the last with RQ. The derivatives with respect to F,

T present no difficulties, since they can be formed directly from

the results in 9*10.

For the short period part which is taken to the second order

only, we put v = Wi,v' w\ ,
r = r' = a', Ax

= A = Q.

The third term of a'Rjp, in 9*8 (1), having the fourth order

factor Fa
, gives the single term 3F2

/16Q
5

.

The portions due to the factor 1 JF have been retained

throughout on account of the large numerical multipliers which

accompany them. As in Chap. IV, their presence causes but little

additional calculation, and adds considerably to the numerical

convergence for large values of F. But it is easy if desirable to
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expand the derivatives of R given in 9*10 in powers of F. For,

when a = 1, F = 0,

3Q __
1 cos r d2Q __

I cos2 r~ ~

,, , s\ ~ r COS T , -no COS
2 T ,~.

so that (^--Hr*-..., .........(2)

where Q 2 = 2 - 2 cos r.

9*12. Transformation to the canonical elements.

The element #2 is given (cf. 9*5 (4) and 513 (1)) by

*2 =(l+tf)f(l-*
2
)*-l}, ............... (1)

from which e can be expressed in terms of ( x$ and x. But the

canonical elements #2 ,
w2 will be replaced later by |?2 , #2> where

j92
= 61 sin w2 (ci/c/)*, #2 = ^i cos w;2 (ci/Ci')i, ...... (2)

These correspond to the elements in 5'14.

As w2
=

-cr, and as we neglect powers of x beyond the first,

these give

esin tzr = a (l i^
2

#). ^ costxr =

which, with the relation g g'
= r + tv' tsr, permit us to express

a'Rijr' in terms of these canonical elements with but little

additional calculation.

For the terms containing F, 0, the substitutions

ps
= (2F)i (1

- \# -f J0) sin 0, g3 = (2F)* (1
- \# -h |a;) cos 0,

...... (3)

can be further abbreviated by putting unity for 1

except in the factor 1 ^F, where we put

with 6a = ^2
2 + 9

r

2
2

-

These changes are not necessary in the solution of the equation
for T, provided, in forming xdR/da we remember that a is present
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in R through e, F when we transform to the canonical elements.

The coefficient of x in the expansion given above can be obtained

with sufficient accuracy from

/ 3
i

9 ^ 9 \ a'R
-2a 5---!e 5--r= ,

V da *
de oTJ JJL

and in this expression, R can be limited to the terms of the

second order.

913. The equation for T.

It has been shown in 97 that, by a suitable change of variables,

the short period terms can be eliminated from the disturbing

function, and that the equations for the new variables, which

are distinguished by the suffix zero, have the same form as those

for the old variables if we simply omit from the latter the short

period terms. The suffix is unnecessary during the solution of

the equations for the new variables and will be omitted.

The Hamiltoniau function, namely,

Q /->< ^ Tt . C\ ^ V\>CAn& *Iff& i VI
\ 'in* _

ft-iX/ t\Aj ~\ JLVg f ^O/ "7T ,

/& IJL
oa

will be denoted by

f,-E
2 2#3 -f (7 + 2# F, to order m*.

According to 97, with its reference to 9'5, <7, Fare independent
of x, t.

The equations for #, r are then

dx dU
,

3F , s /1X
r^- = - 4-2^ -^ , to order wi* (1)

71 Cl6 OT OT

~ r =. 3# + 6^ 2F, to order m (2)
n eft

v 7

Differentiate the last equation with respect to t. Since the

derivatives of oc, x2 ,
XB> w%, w& have the factor m and that of r

has the factor m^, we obtain

;7T,- 2 ^ tt> to order mi... (3)
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On substituting for dx/dt, dr/dt from (1), (2), we see that the

portions depending on Vdisappear and that the equation becomes

0/ ,
. .

ss - 8 <
1 - 4a?) , to order m*.......... (4)

The disappearance of V from the equation for r, the solution

of which is the principal part of the problem, is fortunate because

it enables us to find T with high accuracy without transforming

the disturbing function to canonical variables. It is true that

V is needed in the determination of x, but this is a comparatively

simple problem when T has been obtained in terms of the time.

Since x = ^ -, -y- ,
to order m^

t

o n at

the transference of the factor 1 4# to the opposite side of (4),

where it becomes a factor 1 -f- 4#, gives the somewhat more con-

venient form of (4):

1 d2 r 2 d (I dr\* dU ^ , 3

"2 Ti2
~

o -TIT 1 -/ T^ I
= - 3 ^~ ,

to order m*.
?i

2 dt
2 3 n r/^ \?i di/ dr

Finally, if we put
^ = ^ -f- ^ (r -f- const.),

it is easily seen that the equation reduces to

-S-2 + 3 ?T =. to order m*. (5)/Yl'^x-/-^ A x-1
' ' ^ '

which is the fundamental equation for the determination of the

libration.

914. First approximation to r.

We shall obtain this approximation on the assumption that

#2> #3> W2> Wa are constants: it will appear later that their

variable parts are divisible by m%. With this assumption, U
becomes a function of a single variable r and the equation 9*13 (5)

admits the integral

const. = C- 6U,
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so that n' fc -f const. -
J (0

- 6 U)~*dr

gives the solution. A reversion will give r in terms of fo.

From a theoretical point of view, this is sufficient to determine

r, but the process is inconvenient for calculation, and it is better

to find r as follows.

Since we know that r oscillates about one of the values 60,
let us put

T = 60 + ST,

and expand the second term of 9*13 (5) in powers of ST. If J7-

be the ith derivative of U with respect to r with r = 60

inserted, the equation becomes

_

...... (i)
When e e' F = 0, the formulae of 9*3 give

In this case, when powers of Sr beyond the first are neglected,

(1) reduces to

the solution of which is

r = bcos(vn'ti + i>o)
= bcos

<f>,
v* = 2?-m, ...... (2)

where 6, VQ are arbitrary constants.

The result agrees with that obtained in 9*10. In the further

approximations, we are assuming that 6 is a parameter which is

small enough for expansions in powers of b to be possible. The

largest known value for b is that in the case of Hector for which

it is near *3. As z> = *079, we have Ji/&
= *008 in this case.

The statement in 9*5 that x is less than '01 in all known (see

footnote to 9*5) cases is thus justified.

In general, when constant values of e, e', F are used, we have,

for the first approximation,

= & cos
</>,

i>
2 =3tf2 ....... (2')
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For the next approximation, the value (2') is substituted for

Sr in the term f ^(Sr)
2 of (1) and the term 3Ci is included.

The equation becomes

1 _7X

T = -3/i-f t/3&
2-73 &

2 cos2<. ...(3)

The addition to 8r is the particular integral corresponding to

the right-hand member. It is

TT 1 7T t TT O JL

7y A TT A TT- A, _ "1
^ '

For the next approximation, we substitute the sum of (2), (4)

in the term f f/3(8r)
2

,
and (2) in the term Jt/VSr)

3
. The ad-

ditional terms on the right of (3) are

- 3C/3 b cos $ ( - -J -
^ yj?

b2 + Y2 7j

or -

The particular integral corresponding to the term with

argument 30 is

A * fr
3^2

3(/2 '9-l 8Vi/2

In the term with argument </>
we can put b cos

</>

= Sr, since

it has 63 as a factor. On combining it with the first approxima-
tion we have

This shows that instead of the value 3C/2 for v2, previously used,

we must put

in order that ST may still remain periodic.
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The process is continued as far as may be necessary. Each

alternate approximation requires an addition to the value of v.

The process of approximation followed above is that which is usual in

the case of equations of the type (1). It is to be remembered that the

value 3C/2 is merely an approximation to v 2 and that the latter must

contain other terms if Sr is to remain periodic.

The equation may be solved also by putting

in (1) and equating to zero the coefficients of cost<. A series of equations
of condition are obtained which have to be solved by continued approxi-

mation on the basis that 6, bQ and 6
2 ,

Z>3 ,
... are quantities of the first,

second, third, ... orders. The coefficient of cos
(f>

determines v, and b is an

arbitrary constant.

The arbitrary constants 6, VQ replace the usual arbitrary constants %, f

which become fixed as soon as the triangular solution is adopted.

9*15. The equations for the remaining variables.

The development of the disturbing function in 9
f8 shows that

the long period terms containing the argument 6 are of the

fourth order. If we neglect terms of this order, the canonical

equations give dx^fdt 0, or #3 = const. Further, since

#3 = T (1
- e

2
)* d/d' = T (1

- e
2
)* (1 + x\

we have, to the same degree of accuracy, F = ,r3 = const.

The equation for 6 is found with the aid of 9'12 (2) and is

integrated after this expression has been developed as a Fourier

series with argument </>
with the solution given in 9*14.

To the same degree of accuracy, 9*12 (1) shows that #2 = i^
2

.

The variables p2 > <?a,
defined in 912(2), reduce to

p2
= esin'cr, g^ ecos tzr................(1)

The limitation enables us to neglect the part of R which

has a? as a factor. Hence, with the Hamiltonian function in

9*13, the equations for pt) g2 become

- __
n'dt~ 9c

'

ri dt~ 8s
'

with the briefer notation s for p% and c for q%.
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The development of a'Rj^ which contains c, s to the second

order, is given by 9*9 (1). With g g'
= T ta- -f TO-', the substi-

tution (1), and the notation

this development may be written

T {- se' cos (r + r') + ce' sin (T + r')}

+ JP (s
2 + c2 -f e'

2 - 2e' s sin (T + -sr')
- 2e'c cos (T+ r')}.

The equations for s, c are therefore

1 d*
-, ^ = Te' sin (T + w')

- Pe' cos (T + w') + PC,n af

1 r/r-

-, ^ = 2V cos (T + w') + Pe' sin (T + w')
- Ps.

?l C6t

The only variable present in T
7

,
P is T and we suppose that

T has been expressed as a function of t by means of the solution

obtained in 914. Further, as T = 60 + Sr, it is supposed that

any of the functions of r present can be expanded into Fourier

series with argument </>.

9*16. Solution of the equations for s, c.

As is usual with linear equations, we first find the comple-

mentary function, which is the solution of

0, ............(1)^ '
--

,

~
n dt n dt

where P = P + PI cos
<j>

-f P2 cos 2< + . .

with
</>
= vn't -\-VQ\P has the factor m.

It is at once seen that the solution is

s = sin (-CT! 4- o)> c = ^ cos (*TI -f

where d^ildt = P, so that
p''

(2)

where eo> WD are arbitrary constants. We thus have

(P- \
P^n't -f TQ + S ~^ cos *0 ) >

lv '

, p. \

C = Q COS ( PfiU't + Wo + S ~ COS
!</> J

.
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In the usual language of celestial mechanics P n' is the

mean motion of the perihelion. It appears then that this part
of the motion gives a constant

'

eccentricity
'

and a variable motion

to the perihelion. Since the coefficients Pi/iv contain the

factor bm^, the solution to this order can be expressed in the form

s = Q sin (P^nt -f- WQ)

p
+ 2 ~ {sin (PQ n't + ^ + i<f>)

- sin (PQ n't + CTO
-

i<f>)},tv

with a similar form for c. The mean motion of the perihelion is

divisible by m, the periodic part being divisible by 6i?A

The particular integral corresponding to the terms factored

by e' in 9*15(3) is required. These portions are functions of r

only and can therefore be expressed by Fourier series with

argument <. Suppose the solution to be of the form

s = e
r

2 (Si cos {</> + s^ sin if)
= e' (sc -f s,), ,..

c = e' S (Ci cos icf> + c^ sin
i</>)

= e' (cc + c,),

so that the suffixes c, s denote expansions in cosines and sines

of multiples of
<j> respectively. These are to be substituted in

9'15(3). The coefficients of cosi</>, sini^> equated to zero will

give the coefficients sit /, Ci, c/.

In a first approximation we retain only the terms of lowest

order with respect to m in r. According to 9'13, fa is then equal
to t, and r = 60 -f 56* cos i<. The terms factored by e' in

9*15 (3) are then expressible by cosines of multiples of <. The

only sines which will be present will be those arising from

dsc/dt, dcc/dtf Sj, c8 . We must therefore have

'), -(5)

Since dcj>/dt has the factor m*, the required conditions can be

satisfied only if

sc ,
cc
= const. + cosines of multiples of <, factor m,

s, c, = sines of multiples of
</>,

factor m*.
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If, then, Po be the constant term in the expansion of P as a

Fourier series with argument <>, the equations (5) and (6), with

the notation (4), give

P Co = const, term in the expansion of

P cos (T + r')
- Tsiu (r + w'),

PO SQ
= const, term in the expansion of

- P sin (r + vr')-T cos (r + vr') 9

to the order m.

Since the coefficients ciy c/, Si, s/ have at least the factor mi,

the terms PC,, Ps, in (5), (6) can be neglected in finding a

first approximation to these coefficients. Hence s*, c* are given

by
f

Sj
= {_ p cos (r + or') + Tsin (r 4- tar')} dt,

and they will have the factor m*. When these have been found,

the first of (5), (6) give sc ,
cc ,

the variable parts of which have

the factor m.

The same plan is followed when terms factored by ra$ are

retained in 9*15(3). The work is simplified by remembering
that in these expansions the coefficients of cosines of multiples

of have even powers of m% as factors, while those of sines

have odd powers as factors. The latter also have & as a factor.

It follows that the errors of c ,
SQ as determined in the approxi-

mation just given, have the factor m, those of cit st the factor m2
,

and those of c/, st

f

the factor m*.

When b = we have T = + 60, T = 0, and P is reduced to a

constant. The particular integral is then

s = 6
/

sin(60 + w'), c = e'cos(60+'cr
/

), ...(7)

and the complete solution is obtained by adding these to the

complementary function which is

(8)
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Since the mean longitudes of the asteroid and Jupiter differ

only by the constant 60, the terms (7) can be interpreted by
the statement that Jupiter impresses its elliptic terms on the

motion of the asteroid. This result might have been anticipated

from the triangular solution given in 9 '2, for the mass of Jupiter
is so large compared with that of the asteroid that in this

solution its elliptic motion will be dominant,

In the ordinary planetary theory, the terms (8) would be

expanded in powers of t Thus, neglecting terms factored by m2
,

we have

s = eo sin vrQ -f P^te^ cos 1^0, c = # cos WQ

The constants (7) might therefore have been supposed to be in-

cluded in the arbitraries sin TOO, eQ cos tsr
,
which are to be

determined from observation. Thus although these constants

are affected by an error of order m in the first approximation,
most of the error will be absorbed in the determination of e

,

TO from observation. Owing to the need for further approxima-

tion, however, they must be kept separated.
The fact thab s, c differ from constants by terms having the

factor w* at least, justifies the assumption made in 9*14 that e, CT

may be treated as constants in finding a first approximation to r.

9'17. Higher approximations and final results.

The equations for T, x have been taken to the order m% and

solved with s, c, p3 , qz constant. Since the variable parts of the

latter have the factor 6m*, it follows that the errors of the

equations for r, x have the factor 6m* and also a factor of the .

order of the squares of the eccentricities and inclination. The
error of r has therefore this latter factor and also the factor 6ra*.

For the next approximation, the variable values of s, c, pQ , q$

are inserted in U. Since the resulting addition to T will be

small, it will in general be sufficient to find it from the following

equation, deduced from 9*13 (5),

/I d* .A* .,. ,
,

dU
~/2 j^s + v*\OT = additional terms m -%

-
;

\n
*
air ) or

B&SPT iS
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the additional part of x can then be obtained. If further

approximations to the values of the remaining variables are

needed, they can be obtained in a similar manner.

The final results give the values of TO , #o> #20, #30 > ^20* ^30> r

of the variables which replace them, where the suffix zero which

was dropped according to the statement in the first paragraph
of 9'13 is now replaced. The values of the original variables are

then found by substituting these results in 9*7 (2). Now the

portions dependent on the derivatives of S in these latter

equations all have the factor m, so that the effect of substituting

variable for constant values of the variables with suffix zero will

be very small, with one exception, that of r now called TO ,
and

for the latter the portion independent of m will serve.

9'18. Numerical developments.

A literal theory in which the expansions are made in powers of b, e
,
r

,

e'
y
m* can be formed which will give a close approximation without an

excessive amount of calculation. Even with so large a value of b as *3, the

series for r converges rapidly owing to the numerical divisors which the

integration produces. In this respect the theory of the Trojan group differs

from the ordinary planetary theory where expansions in powers of a con-

verge so slowly that they are useless for numerical calculation.

The work can, however, he greatly simplified when the numerical values

of the parameters are known. The chief part of r is a Fourier series with

argument <f>
and most of the further calculations consist in the calculation

of various functions of cos r, sin r. The functions are rapidly calculated if

harmonic analysis be used
; five, or at most seven, special values of < will

be sufficient. Analyses of the special values of the functions are needed

only when they have to be integrated or differentiated.

Harmonic analysis can also be used conveniently to complete the solution

of 9'13 (5) when an approximate value of r has been obtained by the

method of 9*14. Suppose that such an approximate value is

r= 60 + 2^008 ifa d(t>ldt v, (1)

and lot the required correction be

Sr= SbbiCoaiQ-tfoZbii sin fy, 661
= 0, (2)

where we neglect squares of the correction to v. As the arbitrary constant

can be left unchanged, we can put 561
= 66= 0. With the value (1) of r, the

function dU/dr is computed by harmonic analysis and compared with

dt*. Let the sum of these be denoted by

c 4- *i cos <f> + eg cos
2

< 4- . . . .
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Then a further approximation will be obtained by solving the equation

in which 32 U/dr
2 is computed like 3 U/dr.

On substitution of the expression (2) for 5r, it will be found that the

coefficient of t disappears and that the values of 8bt ,
dv can bo obtained by

equating to zero the coefficients of cos 1$. The process can be repeated if

necessary. Since the principal part of 332
(7/dr

2 is i>
2
,
the principal part of

Sr is found at once.

9'19. Determination of the constants from observation.

The nature of the orbit is usually set forth by giving the values of the

osculating elements at some given date : these are found from the observa-

tions by methods which are outside the scope of this volume. A procedure
for finding the values of the constants used in the theory from these

elements is contained in the following plan.

An approximation to the short period terms can be obtained by substitut-

ing for the elements with suffix zero in the terms arising from S, their

osculating values. The same procedure is followed with the terms due to

the action of Saturn determined below. We then obtain an approximation
to the elements with suffix zero by the use of tho equations which connect

them with the actual osculating elements.

By comparison of the elements with suffix zero with the literal series for

r, x in powers of 6, values of 6, v are obtained. With these the short period

terms, particularly those dependent on the angle $, can be calculated again

and the same procedure repeated. At this stage the values of the constants

attached to the remaining elements can be found with high accuracy. If

necessary, the whole procedure may be repeated, but it will rarely be

necessary to do so except perhaps for the constants 6, qf> ,
which are

sensitive to small changes in the elements.

The process does not differ essentially from that which would be followed

in the ordinary planetary theory if the methods of Chap, vi be used to

determine the perturbations. In the latter, however, the elements with

suffix zero contain the long period and secular terms only, and if desired

we can treat these like the short period terms, using the observed osculating

elements to find a first approximation to n
,
c

,
etc. Thus while the methods

of Chap, vi have certain disadvantages which have been pointed out in

6*25, the custom of defining an orbit by giving the values of its osculating

elements at a given date, makes the determination of the constants of the

orbit from these values a simple problem.
In the case of the Trojan group, the following modification gives the

constants more rapidly. The values of the osculating elements are found

at several dates by carrying them forward or backward by the method of

18-2
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special perturbations. Since all the short period terms have periods ap-

proximating to that of revolution round the sun or sub-multiples of this

period, a mean value of an element with suffix zero can be found by analysing
its values at the various dates into a Fourier series with argument 2rr/w-'

and choosing the constant term as the first approximation to its value at

a mean date.

PERTURBATIONS BY SATURN
9*20. The calculation of the perturbations of an asteroid of

the Trojan group by Saturn is difficult because the procedure of

the ordinary planetary theory cannot be followed. This procedure
consists in finding the perturbations due to each planet separately,
then those due to their combined actions, and adding the results.

Here, in finding the principal perturbations produced by Saturn,

we cannot; neglect the action of Jupiter, even in a first approxi-

mation. Thus the problem is one of four bodies rather than of

three, and in this respect it is similar to that of the action of

the planets on the moon.

The disturbing function for the direct attraction of Saturn is

that given by 1*10 (1). An indirect effect is also produced by
the action of Saturn in causing Jupiter to deviate from elliptic

motion, so that, in the disturbing function due to the direct

action of Jupiter, it is necessary to add to the elliptic elements

of that planet the perturbations caused by Saturn. An indirect

effect of the action of Jupiter is also present in the perturbations
this planet produces on the motion of Saturn.

It is assumed that the mutual perturbations of Jupiter and

Saturn on one another are completely known. The largest term

in the action of Saturn on Jupiter has a coefficient in the

longitude of Jupiter of nearly 1200" and a period of some 870

years, this long period being due to the fact that the period of

revolution of Saturn is nearly 2 times that of Jupiter. Since

the period of revolution of the asteroid is the same as that of

Jupiter, we might expect to find a term of similar magnitude in

the motion of the asteroid. It will be shown, however, that the

action of Jupiter fundamentally alters the direct effect of the

action of Saturn, and that the indirect effect produced by Saturn

is the largest part of the action of that planet.
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It will be assumed that these effects are, in general, small

compared with those which we have been considering in the

first part of this chapter, and that, in developing the disturbing
functions due to Saturn, we can put for the coordinates of the

asteroid their values in terms of the time. These additional

portions can then be separated into long and short period terms.

The latter may be eliminated as before by a change of variables

which will give additional portions to the function 8. We have

then to consider the effect of small additive terms in the function

U on the variables with suffix zero; as before this suffix will be

dropped until the final results for the long period terms have

been obtained.

9*21. The equation for Sr and its solution.

The equation for r given in 9 '18, namely,'

is still true when we add to U the portions due to the actions of

other planets, provided the conditions laid down remain satisfied.

These conditions demanded that the principal part of x should

be given by oo^ ^drfn'dti, and that the terms present in x

should be large compared with the corresponding terms in U.

With the conditions laid down in the last paragraph of 9*20,

the inclusion of the action of Saturn will require the solution of

equations of the form

/n .

(2)

where t/"has the meaning previously given and A,p,pQ are known

constants. To simplify the exposition, we shall put ti t', this

amounts to the neglect of terms of order higher than those

retained.

Let T = TO be the solution of (1) and r = TO -f Sr that of (2). If

squares and higher powers of Sr be neglected, we have

where in U and its derivatives the value r = TO is inserted.
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The solution of (1) gave TO as a function of t and of two

arbitrary constants 6, v$\ if this solution be substituted in (1)

the constants b
y VQ disappear identically. We can therefore

differentiate (1) with respect to b and VQ and obtain

.
*.. _

n'* dt* \9fc / 9T 2 '

db
~

'

n'* dt* \fa)
+

drf
'

fa
~

...... (4)

Hence Sr=|? gT =
^<>

..................(5)
ob di/o

are particular solutions of (3) when A = 0.

It follows from a well-known theorem that a particular

solution of (3), corresponding to A =f 0, is

(6)
vy i/J'O J Ul/

where

Equation (6) may be tested by substitution in (3), and equation

(7) by eliminating d
2
U/dT<? from (4).

Since TO has been obtained as a Fourier series with argument

<j>
= vn't+ z^o, the derivatives of TO with respect to i/

,
b will still

be Fourier series provided v be independent of b. Actually, v is

a function of b and dr/db contributes a non-periodic portion

n't(dv/db)(dT/dvo)', it is easily seen, however, that this non-

periodic part disappears from (6).

The principal term in TO T 60 is 6cos(im' + j>o)> where

z>
2= 27m/4. With this value of TO we obtain

a result which might be deduced directly from (3) since in this

case 332 7/3r
2 = v2. With the complete value of r, the divisor

v2 ~p2 will be replaced by divisors of the form i*v*-p
2

.
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9*22. Indirect perturbations.

These arise through the substitution for the elements of

Jupiter their disturbed instead of their elliptic values. We shall

suppose that the perturbations of the plane of Jupiter's orbit

can be neglected so that we can still use it as a fixed plane of

reference. The perturbations to be considered are therefore those

of a', e', Wi = w', wz = w'.

These perturbations, chiefly due to Saturn, have the mass of

Saturn as a factor and are substituted in an expression which

has the mass of Jupiter as a factor. The resulting short period
terms will be very small and, in any case, they are supposed to

have been eliminated by the change of variables. It is found

that the only terms likely to produce sensible effects are those

of long period in the motion of Jupiter, producing terms of long

period in the motion of the asteroid.

For their calculation, we return to the point in the original

canonical equations where the transformation r = w w' was

made (9*5). This transformation still holds if w' is any function

of t independent of the elements of the asteroid provided that

the expression Cidw'/dt be added to the Hamiltonian function.

As before, w' is then no longer present explicitly in the dis-

turbing function.

If we denote by 8a
f

,
Se'

y
SOT' the perturbations of a', e', -or', the

equations for Ci, T become

dd dR d*R , . a
2
/? , , d*R . , /1X

-rr =^- + n^T/S +;Ta-/Be +3-5--/
or

, .................. (1)
at dr drda drde

dr ffjf , d , A dR
-T7= r

3 -tto ~T* W
} "5--

dt \Ci
3 dt J dci

PR , , PR , , d*R
a a' > ~^i"a '

-"
-> ,

dcida ocide BciPtsr

...... (2)

where n$ is the constant term in dw'/dt.

We have seen in Chap, vi that the variations Sa', 80', STST'

contain the first powers only of the small divisor which is present

in the case of a long period term, and these variations, when

multiplied by the second derivatives of R, will give very small

terms which can be neglected, at least in a first approximation.
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If the procedure followed in 9*6 and 911 be then adopted, it is

easily seen to lead to the equation

an equation which replaces 9*13 (5). To find the principal term

we put ti=t.

Suppose Sw' =B sin (n'pt +pQ),

and that we substitute this in (3). According to 9*21 (8) the

principal part of Sr is given by

Bp2

8r=
-%-_ 2

sin (n'pt 4-pQ).

But Sw = Sr -f w'. Hence
J ft

(4)

The effect of a perturbation in w' therefore depends on the

relative magnitudes of v, p.

If v is large compared with p, (4) gives approximately

Sw = B sin (n'pt + pQ)
= $w'.

The result Sw = $w' applies also to a secular term since such a

term can be expressed as one of very long period. Hence the

general proposition:

If the period of a perturbation of Jupiter by Saturn or by any
other planet is long compared with the period of libration of the

asteroid (about 150 years), the perturbation of the longitude of

Jupiter is directly impressed on the longitude of the asteroid.

The principal perturbation of Jupiter by Saturn has a period

of some 870 years, so that the indirect perturbation of the

asteroid differs from the direct perturbation in the motion of

Jupiter by less than three per cent., although this indirect effect

is one of the second order with respect to the masses while the

direct effect on Jupiter is one of the first order.

Terms in which p is large compared with v have been treated

as short period effects and therefore do not enter into the dis-

cussion.
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Terms in which p
2
is nearly equal to v* would give rise to much

larger perturbations in the motion of the asteroid than those

present in the motion of Jupiter. There are no such terms having
sensible coefficients in the perturbations produced by Saturn,

Neptune, which has a period of 164 years, comes nearest to pro-

ducing such a term.

9*23. To obtain the perturbations of #, the equation 9*13 (1)

is used. When pjv is small, Sr is small compared with Sw' and

therefore (d/dt) ST with (d/dt) Sw'. The latter is, however, large

compared with dR/dc^ which has the factor ra and has no small

divisor. Hence, since /^
2
/Ci

3 =
(1 + #)~

3
n'>

or, since S% = JSa/a', this gives (d/dt) Sw' = f8n'. Hence

8a = S&'.

The long period terms in the major axis of Jupiter are therefore

impressed on that of the asteroid.

For the perturbations of e, r, the equations 9'15 (3), which

are still true if ef', BT' are variable, are used. Let e', or' receive

long period variations 80', SOT'. Then, as before, it may be shown

that PC, Ps may be neglected. When the libration vanishes, the

equations for 8s, 8c reduce to

^8s-P S{e'cos(60 4V)} f ^8c
= P S {e'sin ( 60 +w%

If 27r/n'p be the period of the variations of &e', S-sr', the corre-

sponding coefficients in Ss, Sc are diminished in the ratio P /p

which is usually small, so that &, 8c will be negligible. For the

terms depending on
<f>
when b

=j= 0, the divisor is approximately
iv if p is small compared with v and the coefficients of such terms

in 8s, 8c will be still smaller than those just treated. Thus the

long period variations of e', tzr' are not impressed on the asteroid

but produce effects which are much smaller than those in the

motion of Jupiter.
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9*24. The direct action of Saturn.

The disturbing function for this action is given by 1'10(1),

and it can be expanded in terms of the elements of the asteroid

and of Saturn by one of the methods used in the ordinary

planetary theory. The expansion, if made in a literal form, is

available whether the elements be constant or variable. The

disturbing function, denoted by R' y adds a term a'-R'/A6 to the

Hamiltonian function in 9*5 (5).

The variable x which measures the deviation of Ci/Cj' from unity
is still small, so that 9*5 (6) still holds when we add R f

to R.

Let the elimination of the short period terms, as made in 9*7,

include those arising from Saturn. For simplicity, we shall retain

the lowest power of x only, so that the additional terms in S are

similar to those found in Chap. vi. The Hamiltonian function

used in 9*13 therefore becomes

f a? + -(Re + R,') = f x* + U+ U',
P

with the notation adopted there. The equations 9*13 (1), (2) then

become

l^'-^J7 ?E1 IL^T -__<} _'
n' dt

~
dr

+
dr

'

n' dt

and equation 9*13 (3) reduces to

1 ^-_ql d_d_(dU
n*d&~~ n'dt dt\dx

On substituting for dx/dt, this gives

JL rf2r - (
dJL + dU '\ _ 1 fiV'\

n'
2 dt2

~
\ dr ~dr) dt \dx )

*

For a term of long period, the last term of this equation is small

compared with dU /dr, and may be neglected in a first approxi-

mation. The equation then reduces to

J ^j.Q^-.q^
'"8

rfi
8 + *ST~ dr

The right-hand member of this equation has the mass of

Saturn as a factor, and we can substitute for the elements of the
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asteroid the values obtained from the action of Jupiter alone.

In accordance with the previous work, it will be sufficiently

accurate to use the series for r and to take all the other elements

constant.

Let any term in the right-hand member be denoted by

A sin(pn't-\-po).

The method of 9*21 is now available for the solution of the

equation. The principal part of the addition to r will be given by

A-
2
-

^v p
The principal long period term due to the action of Saturn will

have nearly the same period as it produces in the motion of

Jupiter, namely, about 870 years, and therefore p is small com-

pared with v. Hence the small divisor due to a long period term

is much larger than in the ordinary planetary theory and the

resulting effect much smaller. Thus

Jupiter not only impresses on the asteroid its own inequalities

ofperiod long in comparison with that of the libration, but it also

prevents the asteroid from having any very large terms of this

nature arising from the action of another planet.

The substitution of the series for r will also produce terms

with arguments (p iv)n't +p ivQ . When i = l we shall

have divisors v2 (p p)
2 or 2pv approximately. Such terms

will have the factor 6, and if b is large they may be sensible.

The theory of the perturbations of Jupiter by Saturn given by Leverrier*

can be utilised for calculating the perturbations of the asteroid by Saturn,

since the numerical value of the ratio of the mean distances is the same,

and since Leverrier gives the contribution of each separate power of the

eccentricities and inclination, so that the change to those of the asteroid

can be easily computed. But the convergence along powers of the inclina-

tion is so slow when the inclination is large, as in the cases of certain

members of the group, that the value of the coefficient of the principal

long period term obtained in this way is doubtful. Another difficulty arises

from the fact that the mean motion of the perihelion of the asteroid is

comparable with that of the argument of this term so that it cannot be

* Paris Obt. Mtm. vol. x.
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neglected, even in a first approximation : see "Theory of the Trojan Group
"

referred to in 9 '25.

9'25. The literature connected with the triangular solutions of the pro-

blem of three bodies is extensive : much of it is concerned with the possible

orbits which may be described under different conditions but which have

no present applications in the solar system. Amongst the earlier develop-

ments arriving at a more general theory for the asteroids of the Trojan

group may be mentioned those of L. J. Linders (Stockholm Vet. Ak. Arkivy

Bd. 4, No. 20) and W. M. Smart (Mem. Roy. Astron. Soc. vol. 62, pp. 79-

112, 1918) ;
the latter used the method adopted by Delaunay for the

development of the lunar theory. In a paper by E. W. Brown (Mon. Not.

Roy. Astron. Soc. vol. 71 (1911), pp. 438-454), the particular periodic

solution which constitutes the principal part of the libration is shown to be

a linkage between the orbits of planets outside and inside that of Jupiter

and those of satellites of Jupiter, the passages between them going through
the collinear solutions. The linkage bears some resemblance to that which

joins the two sets of solutions of the equation for the motion of a pendulum.
A literal development sufficiently complete to give the position of an

asteroid of the group within a few seconds of arc has been made by
E. W. Brown ("Theory of the Trojan Group of Asteroids," Trans, of Yale

Obs. vol. 3, pp. 1-47, 87-133). The method of Chap, vn is used for the

development of the action of Jupiter : the various problems which arise in

finding this action are closely analogous to those set forth in this chapter.

The problems and theorems connected with the action of Saturn are dealt

with in detail. The theory was applied to the asteroid Achilles. This

numerical application has been revised by D. Brouwer (Trans, of Yale

Obs. vol. 6, pt. vn) who has added tables for finding its position at any time.

W. J. Echert has applied the same theory to Hector (Ib. vol. 6, pt. vi), the

libration of which runs up to over 20.



A. APPENDIX ON NUMERICAL HARMONIC
ANALYSIS

A'l. Let Fc (x) be a periodic function of x, period 2?r, which

is expansible in the form

Fc (x) = CQ + Cicos x + C2cos 2# + . . . + cn cos nx + ....... (1)

The problem under consideration is the rapid numerical cal-

culation of the coefficients c^. It is supposed that Fc (x) con-

tains numerical constants only, and that after some term cn cos nx

the remainder of the series may be neglected.

Under the latter condition (1) may be regarded as an

identity satisfied for all values of x. If then we choose n -f 1

numerical values of x and calculate the corresponding values

of Fc (x) and of the cosines of the multiples of #, we obtain

Ti + 1 relations which may be regarded as n + 1 linear equations,

giving the n + 1 unknowns c , Ci, ...
, cn .

The effectiveness of the method depends on the ease with

which the special values of Fe (as) can be computed and on

that with which the linear equations may be solved. It is found

that the questions principally to be considered are the choice

of the special values of x and the best arrangement of the

work for finding the c-.

Similar remarks apply to the development of an odd func-

tion of x in the form

F8 (x)-Sismx + s%sm2x+ ... -f snsmnx+ ..., ......(2)

except that n values of x only are needed since there is no con-

stant term.

If F(x) contains both even and odd functions of x and if we

stop at the nth harmonic, 2n + 1 special values of x are needed

In cases where the calculation of special values of Fe (x) and

of F9 (x) is needed and where much of the work is the same in

each case, the same special values of x should be used.
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A'2. Choices of the special values of x. If F(x) contains both

even and odd functions of x, they can be separated by choos-

ing the values of x in pairs ,
2?r . Since

cos ia = cos i (2?r a), sin ia = sin i (2zr a),

we have

F(a) + F(%7r -a) = cosine series, F(a)F(27ra) = sine series.

In future it will be supposed that this separation has been

effected so that the forms (1) and (2) of A'l can be considered

separately.

Next, since

Fe (d) + Fc (7r-a), F8 (a)-Fs (7r-a)

contain even multiples of x only, while

Fc (a)-Fc (7r-a), F8 (a) + FB (ir-a)

contain odd multiples only, the choice of pairs of supplementary
values enables us to separate the equations giving the ct

- or the

Sj into two sets, one containing the coefficients with odd suffixes

and the other those with even suffixes.

Finally, choices of a which are multiples of
TT/?I,

where n is an

integer, have obvious advantages. The special cases n = 3, 4 or 6

will suffice for most of the requirements in the plans for develop-

ing the disturbing function and the disturbing forces outlined

here. For the rare cases in which eight harmonics are needed,

it is advisable to add the values # = 45, 135 to those given

by n = 6, since the work done with six harmonics only can be

fully utilised and repetition of it is not needed. Schedules for

this last case are to be found in Trans, of Yale Obs. vol. 6, part 4,

pp. 61-65.

A'3. Determination of the nth harmonic in Fs . Since F8

vanishes for x = 0, TT, these values are useless for the computa-
tion of the S{. Moreover, since sin nx vanishes when x is any

multiple of TT/W, it is the coefficient of the rath harmonic which

is undetermined with this set of values of x. It is sometimes

possible to estimate its coefficient with sufficient accuracy; where

this is not the case, one of the following devices may be adopted.
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For n = 3, the chosen values of a? are 0, 60, 120, 180. The

value # = 90 may be added to find 53. If this value be used

also in FC) we can find c4 and then get higher accuracy for

c2 (see A*4).

For n 4, 6 we may proceed as follows : In most cases the

calculation of dFsjdx for x = 0, TT will be found to be easy. These

give the values of % 2s2 + 3s3 4s4 -f . . . which, combined with

the relation furnished by the other values of x inserted in F8t will

give the value of sn . Only one of the two values is necessary,

but the solution of the equations is simplified by using both :

they give also the (n + l)th harmonic and higher accuracy to

the (n l)th harmonic.

A*4. Errors of the coefficients. When multiples of irfn are used

for the special values of x, the solution of the linear equations for

the cosine series actually gives, instead of c t-, i < n, the value of

d + C2n-i + Ctn+i + C4n-i + ,

if we include all the terms of the series. Thus the principal part

of the error of c t
- is the rejected coefficient c2n-i When i = n,

we actually determine the value of

so that the error of cn is c3/l . Hence the lower the harmonic the

higher the accuracy with which it is found, with the exception
of the nth which has an error equal to the coefficient of the

3nth harmonic, approximately.

In the case of Fs we determine the value of

Si S^ni 4" fyn+i &4ni "^

instead of Si, for i < /?, so that the principal part of the error of sf

is $2n-i, and tne same rule with respect to the errors of the

coefficients of the lower harmonics holds.

When the harmonic with coefficient sn (which vanishes when
x is a multiple of TT/U) is found for n odd by using the additional

value x= 90, it is easily seen that we actually determine
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for without its use we find sn_2
- sn+2 + ,

and with its use we
find sn_2 sn + sn+ g . . . , so that the principal part of the error of

$n is 2sn+2 . If x 90 be also used in finding Fc ,
we determine

cn_! with an error cn+s and cn+i with an error cn+a, the errors

of the other coefficients being unaffected.

When n is even, the use of the additional values dF/dx with

# = 0, TT gives us

sn_i + sn+s + . . . , sn + 2sn+2 + . . .
,

sn+i + sn+3 4- . . .
,

so that the principal part of the error of sn_i is sn+3 and that of

sn is 2sn+2 ,
the remaining earlier harmonics being unaffected.

Thus in the case of F9 the nth harmonic has the greatest error

exactly opposite to the case of Fc where it had the smallest error.

A'6. The schedules made out below are given in detail so

that they may be used without preparation for harmonic analysis

either for a single function or for many functions. In the latter

case, the work should be carried out in parallel columns, any
one step being the performance of the same operation in all the

columns; since most of the operations are simple additions and

subtractions, much time can be saved by this reduction to

routine computation.
In the cases where the coefficients are known to diminish

with some degree of regularity along values of i the results

themselves furnish a test of the accuracy of the work; in any

case, one or two of the special values may be reproduced from

the final results with but little labour.

A'6. Notation for the schedules. The function to be analysed
is denoted by F and the argument by x. For an even function,

we put
F = C + Ci COS X + 02 COS 2x + . . .

,

and for an odd function

F = SI sin x 4- $2 sin 2x + ....

For the special values of x
y

0, 180; 90; 45, 135; 30, 150; 60, 120;
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the corresponding values of F will be denoted respectively by
ET I7 '

. I7 I7 37 '. XT' JP * . IT* I?'.
TO, ^0 > ^9; ^4, ^4 3 ^3> ^3 5 ^6, ^6 3

and, in the case of an odd function,

The letters A,B,C>... used in the schedules are defined therein

The first column of each schedule gives the symbols; the

second column gives their numerical values in the examples
the third, omitted in the computing forms, is explanatory. The

error of any coefficient is shown in the final values. Thus c3 (+ c9]

indicates that if CQ were known it would be subtracted in order

to find Cs.

Since the same function has been used in all the examples
for the cosine analyses and its derivative in the sine analyses :

direct comparison of the errors of the various results is possible.

B&SPT 19
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A'7. SCHEDULE FOR 3 HARMONICS. COSINE SERIES.

Values of x = 0, 180, 60, 120. JP= (l--

A'8. SCHEDULE FOR 3 HARMONICS. SINE SERIES.

Values of x = 60, 120, 90. F = '3 sin x (1
- '6 cos a?)-*.

FQ

'

31053

22787

30000

53840

31085

01085

08266

04772

31085

04772

01085
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A'9. SCHEDULE FOR 4 HARMONICS. COSINE SERIES.

Values of # = 0, 180, 90, 45, 135. .F = (l
-

-6cos#)*.

19-2
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All. SCHEDULE FOR 6 HARMONICS. COSINE SERIES.

Values of = 0, 180, 90, 30, 150, 60, 120. jF(l--6cos0)*-

F,

A =

B =
C =

=(7+1)

4c =^+2c4

63246

1-26491

1-00000

69311

1-23272

83666

1-14018

1-89737

2-00000

1-92583

1-97684

3-89737

3*90267 4c -2c4

- -00530

- '00177

3-90090

- -10263

- -05101

-15364
- -05121

- -00020

2
- 4ce

2c3

- -63245

- -30352

- -53961

- -93597

-93463

-1-87060
- -00134

-31199 ^+5
- '00847

97523

- -31177

- -02561

- -00423

-00089
- -00022

-00005
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A12. SCHEDULE FOR 6 OR 7 HARMONICS. SINE SERIES.

Values of x = 0, 180, 90, 30, 150, 60, 120. F= '3 sin x (1
- '6 cos )-
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J\'13. Double Harmonic Analysis. When a function of two

angles can be expressed in the form

F (a>, y)
= 2 (Ajtj

> cosjx cosj'y + Bjtf sinj# sin j'y

^, > + G*,f cos j>aj sin ?'y + A*,/ sin^ cos/2/)>

where J,j'
= 0, 1, 2, ..., the numerical calculation of the co-

efficients can be reduced to a double application of single

harmonic analyses.

First, the choice of pairs of values a, 2?r a separates the

terms containing cosines of multiples' of x from those contain-

ipg sines by addition and subtraction. A similar choice for y
makes a similar separation in each case. Thus the analysis is

reduced to that of each of the four groups, and values for x, y

equal to or less than 180 are to be used.

A*14. Consider the first group given by

= 42J.4jj' cos joe cos j'y.

The special values of A XtV are arranged in a block, each line

containing those corresponding to a special value of x, and each

column those corresponding to a special value of y.

The special values in each column are analysed by one of the

schedules for cosine analysis and give series 2-4^ cosj#, in each

of which y has a special value.

The results are rearranged in a block in which all the numbers

Ajt y corresponding to a given j are placed in a column, the

successive columns thus containing the special values of the

coefficients of cos Ox, cos x, cos 2x, . . . for the special values of y.

The special values in each column are then analysed by one

of the schedules for cosine analysis and give the coefficients AJJ>.

The process for finding the BJJ is the same with the exception
that the cosine analyses are replaced by sine analyses.

For Cjj>, the first block of analyses is that for cosines, and the

second that for sines.



A-13-A-16] DQUBLE HARMONIC ANALYSIS ^299

For Djj' t
the first block of analyses is that for sines, and the

second that for cosines.

The choices of special values of x, y are made on the same

plans as those developed for single harmonic analysis. It is not

necessary that^the same choices of values be adopted .for so as

for y.

A*15. The derivatives

are to be used in the sine analyses instead of the zero values of

the functions F. This is possible because the derivatives of the

cos jx terms in F disappear from dF/dx when x = 0, TT ;
and

similarly those of the cosj'y terms from dF/dy when
2/
= 0, TT.

A*16. In the method of development of the disturbing function

and disturbing forces outlined in 4*15, the separation into the

four sets of terms is made at the outset. Each function which

vanishes for g 0, TT or for g' = 0, TT, is replaced by a derivative

as shown above.

When the development is made in terms of the angles f>fi

(4*19), the special values of the first two sets are found together
and must be separated by addition and subtraction: similarly

for the third and fourth sets.

An example in which the calculations are shown in detail

will be found in the Tables for the Development of The Disturb-

ing Function, by Brown and Brouwer*.

*
Cambridge University Press, 1933.
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*
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mutual, of Jupiter and Saturn, 205
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on Trojan asteroids, 284, 287
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second apprdximation to, 161, 167
effect of, on second approximation,

200
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elimination of, 143, 259 *

effect of, on second approximation
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source of, 84

discussed, 154
in true longitude theory, 193

Solution
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Contents, Chap. VI)
of true longitude equations, 185 (see

Contents, Chap. VII)
of equations of variation, 151, 197,

253

Time, method of measuring, 5
Transformation

contact, 118

theorem, Jacobi's, 119
to elliptic elements, 149, 194
to time as independent variable, 207

Triangular solution, 250

Trojan group, 250 (see Contents,

Chap. IX)
True longitude as independent variable,

174 (see Contents, Chap. VII)

Variation of arbitrary constants, 17,
125

equations of, 149, 194, 252
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